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Abstract 

The counterfactual framework represents the dominant paradigm for testing and evaluating 

causal claims within epidemiology. What began as a philosophical framework has been 

formalised mathematically in the language of directed acyclic graphs (DAGs), whose 

underpinning theory provides a rigorous mathematical framework for the identification and 

estimation of causal effects. Moreover, DAGs provide a conceptual framework for thinking 

though causal processes and explicating causal assumptions.  

Advances in DAG-based methods are invaluable in the era of ‘big data’, since we are 

increasingly awash with large, complex – and frequently longitudinal – datasets. However, the 

relative recentness of such developments means that many established methods for analysing 

observational data have not been considered within a robust causal framework.  

This PhD thesis explores how counterfactual thinking, encoded in the language of DAGs, may 

be integrated into established methods for longitudinal data analysis, and illustrates several 

advantages of doing so. Three statistical- and simulation-based methods are considered: (1) 

the analysis of change, (2) regression with ‘unexplained residuals’, and (3) microsimulation 

modelling. For each method, DAGs are specifically employed to consider causal structures and 

to explore potential problems and/or biases that might arise when these methods are applied 

without sufficient consideration for such structures. In (1), DAGs are used to demonstrate that 

‘change scores’ do not in general represent exogenous change; alternate analytical strategies 

for isolating change are identified. In (2), DAGs are employed to illustrate why the method 

works and how it may be extended to adjust for confounding. In (3), DAGs are used to 

explicitly consider data-generating processes, and to demonstrate some of the unique 

challenges faced by simulation approaches. DAGs are demonstrated to be useful tools for 

informing causal analyses across a wide variety of longitudinal scenarios, thereby providing a 

basis for integrating counterfactual thinking into other methods for longitudinal data analysis.  
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Chapter 1  
Introduction 

1.1 Introduction 

Estimating the causal effect of a particular factor or event (an ‘exposure’1) on a subsequent 

factor or event (an ‘outcome’) is not a trivial task. Causation is a concept for which most (if not 

all) human beings have an intuitive understanding. Nevertheless, it is a complex phenomenon 

which may be difficult to even articulate. Despite thousands of years of philosophical 

discourse, there exists very little consensus as to what it is, how it can be defined, and – 

perhaps most importantly for researchers – how it can be inferred within practical research 

applications (7-15). Prominent theories of causation include the regularity, counterfactual, 

probabilistic, agency and interventionist, and mechanistic theories (16), though no single 

account may be considered universal because each is subject to counterexamples (17). 

The counterfactual framework has risen to prominence as the dominant paradigm for testing 

and evaluating causal claims in many disciplines; this is likely due to both its conceptual 

simplicity and its recent mathematical formalisation in the form of directed acyclic graphs 

(DAGs).2 However, in spite of its prominence, there exist many (purportedly causal) methods 

which have not been examined through this lens. This PhD thesis explores how counterfactual 

thinking, encoded in the language of DAGs, may be integrated into established methods for 

longitudinal data analysis; this thesis also seeks to demonstrate the advantages of doing so, 

though focus on the counterfactual framework is not intended to imply its superiority over any 

other causal framework. The contexts considered are primarily health- and epidemiology-

focused, but the analyses performed have applicability to other domains.  

Population-level health patterns emerge from a complex, dynamic, and multi-layered system, 

in which a multitude of different interrelationships operate (21). Estimating causal effects in 

this context requires somehow accounting for all potential non-causal associations and biases 

which may distort the association of interest (2). Historically, a ‘top-down’ approach has been 

implemented to control such complexities and minimise biases via study design (e.g. case-

control studies, randomised controlled trials). However, in the era of ‘big data’, we are 

increasingly awash with large and complex datasets from the many systems and technologies 

that routinely record information on individual experiences. Big data offers much promise for 

                                                           

1 The term ‘treatment’ is often used interchangeably with ‘exposure’, particularly in medical- and 
health-related contexts (6). 

2 This framework is substantively very similar to the ‘potential outcomes’ framework introduced by Jerzy 
Neyman in 1923 (18) and more extensively developed and popularised by Donald Rubin from 1974 
(19, 20), though the two frameworks employ different terminology and possess other subtle 
differences. 
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understanding causal processes, but it does not in and of itself eliminate any of the classical 

challenges and data quality issues associated with observational data, such as missing or 

incomplete data and measurement error (22). Neither does big data eliminate the need for a 

priori subject matter knowledge, since any association may reach the threshold of ‘statistical 

significance’ given sufficiently large sample sizes. To fully exploit the potential of big data, 

robust methods for evaluating causal relationships are needed which emphasise 

understanding data-generating processes from the bottom up. 

Longitudinal data in particular form a large proportion of the new and emerging forms of data 

in the digital age. For instance, smartphone apps are able to continuously track and collect 

data relating to location and activity levels. Hospital records constitute another example, 

which may additionally be linked to general practice and pharmacy records to create a more 

comprehensive picture of an individual’s interaction with health services over time. Traditional 

forms of data collection like cross-sectional surveys are inherently longitudinal, since even data 

which are collected or measured at the same time are likely to have an implicit time ordering. 

This is because the time at which a variable is measured implies nothing about the time at 

which its value became manifest. For example, a cross-sectional survey may contain 

information on individuals’ biological sex and their weight, but these variables nevertheless 

have a clear temporal ordering – sex becomes fixed at the time of conception, whereas weight 

represents an accumulation of infinitesimal changes throughout the life course and whose 

value only becomes manifest at the time it is measured. However, the term ‘longitudinal’ is 

typically applied to data for which there exist multiple measurements of one or more variables, 

and this is the meaning we adopt throughout. Such data are explicitly longitudinal, and are of 

particular interest to epidemiologists and data scientists as they allow for changes to be 

quantified and examined. A key focus of life course epidemiology, for instance, is to identify 

and quantify important periods of change or growth in an exposure, and to evaluate their 

effect on subsequent outcomes (23, 24). 

Longitudinal data may be conceptualised  both as exposures and as outcomes, but across all 

contexts they present analytical challenges for causal inference over and above those of cross-

sectional data. This thesis explores some of those challenges in the context of three statistical- 

and simulation-based methods for assessing causal relationships, and demonstrates the 

insights that DAGs and the counterfactual framework can bring to causal analyses. 

1.2 Aims and objectives 

As outlined previously, the aim of this PhD thesis is to explore how DAGs can be integrated 

into established methods for longitudinal data analysis, and to illustrate the benefits of doing 

so. To this end, three specific statistical- and simulation-based methods are considered, all of 

which relate to distinct longitudinal scenarios but which are connected via the fact that they 

are purportedly used for estimating causal relationships.  
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As broad objectives, DAGs will be used to depict the longitudinal context in which each 

method is deployed; the principles of graphical model theory will be applied in order to 

identify how each method should be employed to robustly estimate causal effects; and the 

potential biases which result from failing to consider each method within a robust causal 

framework will be identified and explored. 

1.3 Thesis overview 

Chapter 2 provides background literature related to the counterfactual framework for causal 

inference, and demonstrates how this framework has been formalised mathematically in the 

language of DAGs. The aim of this chapter is to provide sufficient information related to the 

concepts and vocabulary which are necessary for understanding the contents of the remainder 

of the thesis. 

Chapter 3 expands on Chapter 2 by introducing several methods for estimating causal effects 

in longitudinal data, some of which are based on DAGs but many of which are not. The utility 

of using DAGs to inform causal analyses is demonstrated through specific examples. 

Additionally, a critical comparison of statistical methods and individual-based simulation 

methods is provided, since both have been recognised as useful tools for evaluating 

counterfactual contrasts. This provides a foundation for understanding the contexts in which 

the methods considered in the remainder of the thesis may be used, as well as understanding 

some of the potential strengths and weaknesses of these methods. 

Each of the next three chapters uses DAGs to examine a particular method for estimating 

causal effects in longitudinal data. The methods are both statistical- and simulation-based, and 

each method relates to a different longitudinal scenario. 

Chapter 4 uses DAGs to consider the analysis of change – a topic which has historically been a 

matter of much disagreement but which has rarely been examined within the framework of 

DAGs. This context involves quantifying the relationship between a single exposure and 

subsequent ‘change’ in a longitudinal outcome. In this chapter, the concept of ‘change’ is 

considered within a formal causal framework, in order to demonstrate the analytical strategies 

most compatible with analysing ‘change’ and the problems which may arise by failing to 

consider underlying causal structures and data-generating processes.  

Chapter 5 uses DAGs to consider regression with ‘unexplained residuals’ – a method which was 

introduced to circumvent some of the difficulties associated with estimating causal effects in 

longitudinal settings but which was never extended to address confounding. This context 

involves quantifying the relationship between separate measurements of a longitudinal 

exposure and a subsequent outcome. In this chapter, DAGs are used to illustrate why the 

method works in the absence of any confounding, and to provide the principles on which the 

method may be extended robustly to account for confounding by both time-fixed and time-

varying covariates. 
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Chapter 6 uses DAGs to consider microsimulation modelling – a simulation method often used 

to estimate counterfactual quantities for policy evaluation and which shares many similarities 

with the statistical ‘g-formula’. This context involves quantifying the relationship between 

multiple measurements of a longitudinal exposure and a subsequent outcome. In this chapter, 

DAGs are used to consider the parallels between the data-generating processes they represent 

and those which are modelled using microsimulation, and the importance of faithfully 

modelling data-generating processes from the bottom up in order to make causal inferences. 

Chapter 7 summarises the findings and implications of all chapters, including their 

contributions to the literature. It additionally discusses the limitations of the research 

contained in the thesis, and offers suggestions for future research of this kind. Potential areas 

for future research are outlined.  
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Chapter 2  
Background 

2.1 Introduction 

Epidemiological research relies primarily on the counterfactual theory of causation for testing 

and evaluating causal claims. Counterfactual reasoning underpins randomised controlled trials, 

long considered to be the superior and most robust method for demonstrating causal effects. 

However, the counterfactual framework has also been formalised in the language of DAGs, 

which provide a rigorous mathematical framework for causal analyses and the identification of 

causal effects in non-randomised contexts. 

Chapter 2 provides a comprehensive introduction to the counterfactual framework for 

exposures which are both time-fixed and time-varying; of fundamental importance is the 

concept of exchangeability, which allows for the identification of causal effects in this 

framework. This chapter also introduces DAGs, and illustrates their utility in identifying causal 

effects for time-fixed and time-varying exposures. Since this thesis explores how DAGs may be 

integrated into established methods for longitudinal data analysis, the purpose of this chapter 

is to provide sufficient information related to the relevant concepts and vocabulary which are 

necessary for understanding the remainder of this thesis. 

2.1.1 Chapter overview 

A general chapter overview is provided below. 

In Section 2.2, we distinguish between time-fixed and time varying variables, and consequently 

define what it means for an exposure to be either time-fixed (§2.2.1) or time-varying (§2.2.2). 

In Section 2.3, we introduce the counterfactual framework for causal inference. We use 

specific examples to demonstrate how this framework conceptualises individual-level causal 

effects for both time-fixed (§2.3.1.1) and time-varying (§2.3.1.2) exposures. We additionally 

highlight a crucial concept in counterfactual causation – exchangeability (§2.3.2). 

In Section 2.4, we discuss how randomisation may be used to identify average causal effects 

for both time-fixed (§2.4.1) and time-varying (§2.4.2) exposures. We highlight the difference 

between unconditional and conditional exchangeability in each context. 

In Section 2.5, we introduce graphical causal models, with particular focus given to DAGs 

(§2.5.2). We illustrate how DAGs may be used to identify causal effects for both time-fixed 

(§2.5.3) and time-varying (§2.5.4) exposures by emulating randomisation.  
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2.2 Time-fixed versus time-varying variables 

A variable is considered to be time-fixed if it occurs only once (e.g. a one-dose vaccine, 

birthweight), does not change over time (e.g. sex, BRCA1/BRCA2 genes (25)), or evolves over 

time in a deterministic way (e.g. age, time since treatment) (26). Very few time-fixed variables 

exist over the entire lifecourse, but over shorter periods of time certain variables may be 

reasonably conceptualised and/or treated as time-fixed. For example, height changes 

substantially over the lifecourse, though remains relatively fixed throughout middle-age. 

In contrast, a variable is considered to be time-varying if it occurs multiple times (e.g. a multi-

dose vaccine) or changes over time (e.g. smoking status, blood sugar) (26). Such variables form 

the majority of those of interest in epidemiological applications, though the complexity of 

dealing with variables of this type means that they are often ‘reclassified’ as time-fixed by 

defining their values at a particular point in time. For example, height at age three and height 

at age five could be considered as two distinct time-fixed variables. 

2.2.1 Time-fixed exposures 

We use the term time-fixed exposure to refer to an exposure whose effect on an outcome of 

interest is only being considered at a single point in time. For example, an epidemiologist 

might consider what effect obesity at age fifteen has on the risk of depression at age twenty. 

Although obesity is a time-varying variable, it is considered a time-fixed exposure in this 

context because its effect is only being considered at the specific age of fifteen. 

2.2.2 Time-varying exposures 

We use the term time-varying exposure to refer to an exposure whose effect on an outcome 

is being considered at multiple points in time. For example, an epidemiologist might consider 

what effect obesity at ages ten, fifteen, and eighteen has on the risk of depression at age 

twenty. A sequence of exposures such as this is often referred to an exposure (or treatment) 

regime. 

2.3 The counterfactual framework for causal inference 

Here, we introduce the basic concepts of, and the intuition behind, the counterfactual 

framework for causal inference. This framework is most easily conceptualised in the context of 

individual-level causal effects, and so we define such effects for both time-fixed (§2.3.1.1) and 

time-varying (§2.3.1.2) exposures. We additionally highlight the key concept of exchangeability 

(§2.3.2) and the so-called ‘fundamental problem of causal inference’ for the identification of 

individual-level causal effects (§2.3.3). 

2.3.1 Individual-level causal effects 

2.3.1.1 For time-fixed exposures 

The counterfactual framework states that an event 𝑋 (i.e. a time-fixed exposure) may be 

considered a cause of an event 𝑌 if, contrary to fact, had 𝑋 not occurred then 𝑌 would not 
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have occurred (16, 27). As an example (adapted from (27)), we can imagine that an individual, 

Mary, is driving to work and comes to a fork in the road. She chooses to go left (i.e. event 𝑋) 

and subsequently arrives late for work (i.e. event 𝑌). Upset, Mary declares ‘I should have gone 

right instead!’ What her statement implies is that her decision to go left at the fork in the road 

caused her to be late for work because, had she gone right instead (i.e. event ‘not 𝑋’), she 

would arrived on time (i.e. event ‘not 𝑌’). Of course, there is no way to prove her statement, as 

doing so would require Mary to simultaneously go both left and right and then observe the 

outcome under each condition, in order to guarantee that the effect cannot be attributed to 

any other factor that differed between the drives. Nevertheless, this example demonstrates 

the intuition of (and utility behind) conceptualising causal effects as counterfactual contrasts 

between two scenarios that are equivalent in every way except for the putative causal factor 

of interest. 

2.3.1.2 For time-varying exposures 

The counterfactual framework – although more frequently conceptualised in the context of 

time-fixed exposures – can also be naturally extended to time-varying exposures. To this end, 

we consider a scenario involving two events 𝑋0 and 𝑋1 (i.e. a time-varying exposure). The 

events 𝑋0 and 𝑋1 may be considered a joint cause of an event of 𝑌 if, contrary to fact, had at 

least one of 𝑋0 or 𝑋1 not occurred then 𝑌 would not have occurred (26). As an example, we 

can imagine that Mary takes two doses of antibiotics to treat a chest infection (i.e. events 𝑋0 

and 𝑋1, respectively), which clears up (i.e. event 𝑌) after the second dose. We may conclude 

the two doses of antibiotics are a joint cause of clearing Mary’s chest infection if there exists a 

counterfactual scenario in which Mary did not take at least one of the doses and her chest 

infection did not clear. For example, if Mary did not take the second dose of antibiotics (i.e. 

event ‘not 𝑋1’) and her chest infection persisted (i.e. event ‘not 𝑌’), we could conclude that the 

two doses are a joint cause of her chest infection clearing. However, if Mary’s chest infection 

cleared regardless of whether she took each dose of antibiotics (i.e. if all counterfactual 

scenarios resulted in the same outcome), the clearing cannot be attributed to the antibiotic 

regime. 

2.3.2 Exchangeability 

Exchangeability is a fundamental concept in counterfactual causation. In this framework, a 

causal effect is defined in terms of a comparison between two units of analysis which are in all 

ways equivalent except for the putative causal factor of interest – in other words, two units of 

analysis which are exchangeable. 

2.3.3 The ‘fundamental problem of causal inference’ 

The so-called ‘fundamental problem of causal inference’ (28) is that individual-level causal 

effects cannot ever be identified because it is impossible to observe an individual subjected to 

different values of the putative causal factor simultaneously. In other words, it is impossible to 
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view the unrealised counterfactual scenario(s) and therefore impossible to achieve 

exchangeability. 

2.4 Using randomisation to identify average causal effects 

Although identification of individual-level causal effects is generally agreed to be impossible 

within the counterfactual framework, identification of average causal effects is possible and 

forms the basis of a great deal of epidemiological causal inference (6). Average causal effects 

may be identified by creating exchangeable groups of individuals and comparing their average 

outcomes. This is often achieved through randomisation (29, 30).  

2.4.1 Average causal effects for time-fixed exposures 

To demonstrate the principle of using randomisation to identify the average causal effect for a 

time-fixed exposure, we consider a specific example involving the effect of chemotherapy 

versus radiotherapy on two-year survival amongst breast cancer patients. We illustrate how 

both unconditionally and conditionally exchangeable groups of individuals may be created by 

randomisation. 

2.4.1.1 Exchangeability 

2.4.1.1.1 Unconditional exchangeability 

Epidemiologists have long considered the randomised controlled trial (RCT) to be the ‘gold 

standard’ for demonstrating causality because, if implemented correctly, it guarantees 

unconditional exchangeability (31). An RCT in our example context might involve randomly 

assigning each patients to receive either chemotherapy and radiotherapy, and then comparing 

the average outcome for each treatment group. 

In this situation, the group who received chemotherapy is unconditionally exchangeable with 

the group who received radiotherapy. This is because randomisation ensures that the outcome 

is equally likely in both groups prior to the intervention, and so a simple comparison of the 

average outcome for each group after the intervention is sufficient to identify an average 

causal effect (32). In other words, those who received chemotherapy, had they instead 

received radiotherapy, would have experienced the same average outcomes as those who 

actually did receive radiotherapy (6), i.e. they are unconditionally exchangeable.3 

2.4.1.1.2 Conditional exchangeability 

We could alternately consider a conditionally randomised controlled trial (CRCT), in which 

each patient is randomly assigned to receive either chemotherapy or radiotherapy based on 

                                                           

3 If there exists differential loss to follow-up, then exchangeability may not be ensured by this process 
(33, 34). However, this is an additional complexity which we do not cover here, since our purpose 
is simply to illustrate the conceptual rationale behind such designs. 
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their initial cancer stage. For example, individuals in stage IV are randomised to receive 

chemotherapy with a higher probability than radiotherapy.  

Here, a simple comparison of the average outcome for each treatment group cannot be 

assumed sufficient, as any difference in two-year survival might be attributable to the fact that 

the chemotherapy group has, on average, a worse prognosis at the beginning of the study. 

Nevertheless, we are still able to identify an average causal effect by comparing the average 

two-year survival between those who received chemotherapy and those who received 

radiotherapy among individuals who had the same initial cancer stage. Thus, within each 

subgroup of cancer stage, those who received chemotherapy, had they instead received 

radiotherapy, would have experienced the same average outcomes as those who actually did 

receive radiotherapy (6). The two treatment groups are conditionally exchangeable, i.e. they 

are exchangeable conditional on initial cancer stage. 

2.4.2 Average causal effects for time-varying exposures 

To demonstrate the principle of using randomisation to identify an average causal effect for a 

time-varying exposure, we return to the example from Section 2.3.1.2 involving the use of 

antibiotics to clear a chest infection, in which a dose of antibiotics may be prescribed at the 

point of initial diagnosis or at a subsequent follow-up visit. 

We illustrate in this context how unconditionally and conditionally exchangeable groups of 

individuals may be manufactured by sequential randomisation.  

2.4.2.1 Exchangeability 

2.4.2.1.1 (Sequential) unconditional exchangeability 

An RCT in our example context might involve randomly assigning each patient to receive each 

dose of antibiotics. This is referred to as ‘sequential randomisation’ (26) because patients are 

randomised at each time point. In this way, we create four treatment groups – those who 

received two doses, no doses, only the first dose, or only the second dose.  

The proportion of people whose infections subsequently cleared in each of the treatment 

groups may then be directly compared. The process of sequential randomisation ensures that 

the outcome is equally likely in all groups prior to treatment both at the point of diagnosis and 

at the point of follow-up. Thus, a simple comparison of the average outcome for each group 

after the final intervention is sufficient to identify an average causal effect. For example, those 

who received both doses of antibiotics, had they instead received one of the other dosing 

regimes, would have experienced the same average outcomes as those who actually did 

receive those other dosing regimes (6), i.e. they are unconditionally exchangeable. 

2.4.2.1.2 (Sequential) conditional exchangeability 

By contrast, a CRCT in our example context might instead involve randomly assigning each 

patient to receive each dose of antibiotics based on the severity of their infection at the time. 
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For example individual who are initially judged to have more severe infections may be 

randomised to receive the first dose of antibiotics with a higher probability than those with 

less severe infections. Similarly, individuals with more severe infections at the follow-up visit 

may be randomised to receive the second dose with a higher probability. 

Because each treatment group (i.e. those who received two doses, no doses, only the first 

dose, or only the second dose) is likely to have a different average outcome prognosis as a 

result of the way in which individuals were randomised, they cannot be directly compared. 

Moreover, we cannot even identify an average causal effect by comparing the proportion 

cleared chest infections among individuals who had the same infection severity at both time 

points, because infection severity at the second time point is itself affected by whether or not 

an individual received the first dose of antibiotics (i.e. infection severity is not randomised). 

However, within subgroups defined by initial infection severity, receipt of the first dose of 

antibiotics, and follow-up infection severity, those who received the second dose of 

antibiotics, had they instead not received the second dose of antibiotics, would have 

experienced the same distribution of outcomes as those who actually did not receive the 

second dose. The average outcome for each of the treatment groups may then be compared 

within levels of baseline and follow-up infection severity because they are (sequentially) 

conditionally exchangeable, i.e. they are exchangeable at each time point conditional on 

current infection severity. 

We will return to this concept in Section 2.5.4, where we present a clearer graphical depiction 

of this issue (§2.5.4.1) and the challenges associated with identifying casual effects in 

sequentially randomised contexts (§2.5.4.2). 

2.5 Using DAGs to identify average causal effects 

For situations in which (C)RCTs are either infeasible (e.g. for extremely rare diseases), 

impractical (e.g. for complex and/or costly interventions), and/or unethical (e.g. for potentially 

deadly or otherwise harmful exposures), epidemiologists must rely on observational, non-

randomised data. However, the average causal effect of an exposure on an outcome may still 

be identified by using the principles of graphical model theory to emulate exchangeability. 

In this section, we give a brief introduction to graphical causal models and DAGs, and illustrate 

how they encode counterfactual statements for both time-fixed and time-varying exposures.  

2.5.1 Graphical causal models 

Modern causal models trace their roots to 1918, with Sewall Wright’s invention of path 

analysis (35, 36). They also have origins in structural equation models (SEMs), which represent 

groups of causally related variables (both observed and latent) as systems of simultaneous 

linear equations (37). However, both were subsumed at the beginning of the twenty-first 

century under the framework of nonparametric causal models by Judea Pearl in his seminal 

book Causality (38). 
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These models are typically represented graphically (hence ‘graphical causal models’4) and 

consist of two fundamental components: 

1. A set of variables (i.e. ‘nodes’); and 

2. A set of arrows (i.e. ‘arcs’ or ‘edges’). 

Any two variables in the graph may be connected by an arrow (e.g. 𝐴 → 𝐵), which means that 

the first variable (𝐴) exerts a direct causal effect on the second (𝐵) for at least one member of 

the population (39). A variable may be either endogenous (i.e. having at least one direct cause 

represented in the graph), or exogenous (i.e. having no direct causes represented in the 

graph). However, the graph makes no assumptions about the distribution of the variables, nor 

does it imply or constrain either the magnitude or functional form of the causal effects (27, 

39).  

Two examples of graphical causal models are provided in Figure 2.1. By convention, observed 

and/or measured variables are denoted by rectangles, whereas unmeasured and/or 

unobserved (i.e. latent) variables are denoted by ovals. We also adopt the convention that 

time flows from left to right (6). 

Figure 2.1 Graphical causal models depicting the causal relationships between three random 
variables 𝑿, 𝒀, and 𝒁 

 

Observed and/or measured variables are depicted in rectangular boxes, and latent variables 
are depicted in ovals. In panel (1), 𝑋 and 𝑌 cause one another. In panel (2), 𝑋 and 𝑌 are caused 
by the unobserved variable 𝑈. 

The graphical causal model in panel (1) of Figure 2.1 depicts the causal relationships between 

the variables 𝑋, 𝑌, and 𝑍; the graph implies that both 𝑋 and 𝑌 are direct causes of 𝑍, and that 

𝑋 and 𝑌 cause each other. The graphical causal model in panel (2) of Figure 2.1 is very similar 

to that in panel (1), but instead depicts 𝑋 and 𝑌 as being caused by the unobserved variable 𝑈, 

which is the source of their mutual dependency. 

The graph in panel (2) is a particular type of graphical causal model – a directed acyclic graph.  

                                                           

4 Graphical causal models may alternately be referred to as ‘causal diagrams’ (6), ‘graphical models’ 
(27), or simply ‘graphs’ (27). 
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2.5.2 Directed acyclic graphs (DAGs) 

Directed acyclic graphs (DAGs) represent a special subset of graphical causal models, as they 

form the foundation on which modern statistical causal inference methods are based. 

A DAG is a graphical causal model in which all arrows are unidirectional (hence ‘directed’). 

Moreover, no variable can indirectly cause itself (hence ‘acyclic’) (6, 39). As identified 

previously, the graphical causal model in panel 1 of Figure 2.1 is not a DAG because there 

exists a bidirectional arrow between 𝑋 and 𝑌, whereas the graphical causal model in panel 2 of 

Figure 2.1 is a DAG because the bidirectional arrow has been replaced by two unidirectional 

arrows emanating from the common cause 𝑈. 

DAGs encode qualitative causal assumptions about the data-generating process in the 

population (39), i.e. the process by which any endogenous value in the graph obtains its value. 

Given information on all exogenous variables in a DAG, the values of any endogenous variable 

can be identified. In Figure 2.2, for example, if we know the values of 𝐴 and 𝐵 (the exogenous 

variables, which have no causes in the graph) we are able to identify the value of 𝐶, as it 

depends only on 𝐴 for its value. Similarly, we are able to identify the values of all other 

endogenous variables 𝐷, 𝐸, and 𝐹, as they depend only on other variables in the graph. 

Figure 2.2 DAG depicting the data-generating process for the six random variables 𝑨, 𝑩, 𝑪, 
𝑫, 𝑬, and 𝑭 

 

2.5.2.1 Key terminology  

Kinship terminology is often employed to describe the relationships between variables in a 

DAG (39). For example, the variables which are directly caused by a given variable are called its 

children (e.g. 𝐶 and 𝐷 are children of 𝐴 in Figure 2.2), and all variables which are directly or 

indirectly caused by a given variable are called its descendants (e.g. 𝐶, 𝐷, 𝐸, and 𝐹 are 

descendants of 𝐴 in Figure 2.2). Conversely, the variables which directly cause a given variable 

are called its parents (e.g. 𝐶 and 𝐷 are parents of 𝐸 in Figure 2.2), and all variables which 

directly or indirectly cause a given variable are called its ancestors (e.g. 𝐴, 𝐶, and 𝐷 are 

ancestors of 𝐸 in Figure 2.2). 

A path is a sequence of arrows connecting two variables, regardless of the orientation of those 

arrows; there may be multiple paths connecting any two nodes in the graph (39). For example, 

𝐷 and 𝐹 are connected by the path 𝐷 ← 𝐶 → 𝐸 → 𝐹 in Figure 2.2. 
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A collider on a path is a variable on a path that has two arrows pointing into it; all other 

variables on the path are non-colliders (39). For example, 𝐷 is a collider on the path 𝐶 → 𝐷 ←

𝐴 in Figure 2.2.  

A causal path is a sequence of arrows which all flow in the same direction (39). For example, 

𝐶 → 𝐷 → 𝐸 → 𝐹 is a causal path between 𝐶 and 𝐹 in Figure 2.2. Any path which connects two 

variables and is not a causal path is a non-causal path, of which backdoor paths are of 

particular interest.  

A backdoor path is a path from one variable to another which begins with an arrow into the 

first variable (39). For example, the path 𝐶 ← 𝐴 → 𝐷 → 𝐸 → 𝐹 is a backdoor path between 𝐶 

and 𝐹 in Figure 2.2.  

Conditioning refers to the act of filtering a dataset based on the values of one or more 

variables (27). 

A path between two variables is open if it does not contain a collider, or if it contains a collider 

which has been conditioned upon (39). An open path therefore transmits a statistical 

association between the two variables (27). For example, the backdoor path 𝐶 ← 𝐴 → 𝐷 →

𝐸 → 𝐹 between 𝐶 and 𝐹 in Figure 2.2 is open. Conversely, a path between two variables is 

closed if it contains a collider, or if it contains a non-collider which has been conditioned upon 

(39). A closed path transmits no statistical association between the two variables (27). The 

backdoor path 𝐶 ← 𝐴 → 𝐷 → 𝐸 → 𝐹 between 𝐶 and 𝐹 in Figure 2.2 can be closed if we 

condition on any of 𝐴, 𝐷, or 𝐸. 

2.5.2.2 Direct, indirect, and total causal effects 

For any two variables in a DAG, there are potentially three types of causal effects of the first 

(the ‘exposure’) on the second (the ‘outcome’) which may be of interest. 

The direct causal effect represents the change in the outcome that results directly from 

changing the exposure (27). This is signified by the existence of an arrow that directly connects 

the exposure and outcome.  

An indirect causal effect represents the change in the outcome that results from changes to 

the exposure which are passed through one or more other variables (27). This is signified by 

the existence of a causal pathway between the exposure and outcome. 

The total causal effect (TCE) comprises all of the direct and indirect causal effects (i.e. all of 

the direct and indirect causal pathways between the exposure and outcome) (27).5  

To demonstrate, we consider Figure 2.2, in which 𝐶 is the exposure and 𝐹 is the outcome. 

There is no direct causal effect of 𝐶 on 𝐹, since there is no arrow from 𝐶 to 𝐹. However, there 

are two indirect causal effects of 𝐶 on 𝐹, as indicated by the two causal pathways 𝐶 → 𝐷 →

                                                           

5 In a linear system, the total causal effect is simply a sum of the direct and indirect effects, though this 
does not hold in a non-linear system (27, 40). 
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𝐸 → 𝐹 and 𝐶 → 𝐸 → 𝐹. The total causal effect of 𝐶 on 𝐹 thus comprises just the combination 

of two indirect causal effects. 

2.5.2.3 Variable roles 

The role(s) of any variable in the DAG are defined with respect to its relationship with the 

exposure and outcome and outcome of interest (41, 42). In the following paragraphs, we 

define all other potential roles that a variable in a DAG may have. We also provide an example 

of each role by considering the DAG in Figure 2.2, in which  𝐶 is the exposure and 𝐹 is the 

outcome. 

A confounder is a variable which is an ancestor of both the exposure and outcome (i.e. a 

preceding common cause) (41). A confounder transmits a non-causal association between the 

exposure and outcome via a backdoor path. In Figure 2.2, for example, 𝐴 is a confounder of 

the relationship between 𝐶 and 𝐹. 𝐴 transmits a non-causal association between 𝐶 and 𝐹 via 

the backdoor path 𝐶 ← 𝐴 → 𝐷 → 𝐸 → 𝐹. 

A mediator is a variable which is a descendant of the exposure and an ancestor of the 

outcome (i.e. a variable which lies on the causal pathway between the exposure and outcome) 

(41). A mediator transmits part of the causal association between the exposure and outcome. 

In Figure 2.2, both 𝐷 and 𝐸 are mediators of the causal effect of 𝐶 on 𝐹. 𝐷 transmits a causal 

association between 𝐶 and 𝐹 via the causal path 𝐶 → 𝐷 → 𝐸 → 𝐹, whereas 𝐸 transmits a 

causal association via the causal paths 𝐶 → 𝐷 → 𝐸 → 𝐹 and 𝐶 → 𝐸 → 𝐹. 

A proxy confounder is a variable which is a descendant of a confounder and an ancestor of 

either the exposure or the outcome (but not both, otherwise if would be a confounder) (41).  A 

proxy confounder thus does not itself transmit a non-causal association between the exposure 

and outcome, but it may be thought of as an imperfect measure of the true confounder. In 

Figure 2.2, 𝐷 is a proxy confounder of the relationship between 𝐶 and 𝐹, since it is a 

descendant of the confounder 𝐴 and an ancestor of the outcome 𝐹. 

A competing exposure is a variable which is an ancestor of the outcome but is unrelated to the 

exposure (i.e. it is neither a confounder, mediator, or proxy confounder) (41). A competing 

exposure therefore represents an independent cause of the outcome. In Figure 2.2, 𝐵 is a 

competing exposure for the causal effect of 𝐶 and 𝐹, since it is a parent of 𝐹 but it does not 

affect (nor is it affected by) 𝐶. 

It is possible for a variable to have multiple roles in a single DAG. For example, when 

considering the exposure-outcome relationship between 𝐶 and 𝐹 in Figure 2.2, 𝐷 acts both as 

a mediator and a proxy confounder (for the confounder 𝐴). 

2.5.3 Average causal effects for time-fixed exposures 

To illustrate how DAGs can be used to identify the causal effect of a time-fixed exposure on an 

outcome, we return to the previous context involving the effect of chemotherapy versus 
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radiotherapy on two-year survival amongst breast cancer patients (§2.4.1). Instead of 

randomised data, however, we only have data collected by hospitals. 

In this dataset, it is unlikely that the group of individuals who received chemotherapy are 

equivalent to (i.e. exchangeable with) those who received radiotherapy. For example, 

chemotherapy drugs are less likely to be administered to individuals who are taking 

medications for other conditions in order to minimise the risk of adverse interactions (43), but 

more likely to be administered to individuals whose cancer is at an advanced stage and grade 

at the time of treatment (44).  

Such imbalances between the groups receiving chemotherapy and radiotherapy mean that 

their average outcomes cannot be directly compared. However, this scenario is not in principle 

far removed from the scenario involving a CRCT. That is, if we are able to identify the causes of 

two-year survival which affect the treatment received, we can conceptualise the exposure as 

having been randomised within subgroups defined by those factors and identify the average 

causal effect within them. For example, we could compare average two-year survival between 

those who received chemotherapy and those who received radiotherapy among individuals 

who were taking no other medications and whose cancer was classed as stage IV and grade III. 

In this way, the two treatment groups are conditionally exchangeable, i.e. they are 

exchangeable conditional on the factors which affected the treatment received.  

The power of graphical model theory is that it provides a way of determining which set(s) of 

variable(s) are sufficient for guaranteeing conditional exchangeability for a given DAG through 

a simple graphical criterion – the backdoor criterion. 

2.5.3.1 The backdoor criterion 

The backdoor criterion is actually a set of three criteria, which, if met, guarantee conditional 

exchangeability for a given DAG, thereby allowing for the identification of the average total 

causal effect of a time-fixed exposure on an outcome (27). Briefly, a set of variables is 

sufficient for guaranteeing conditional exchangeability if conditioning on those variables: 

1. Closes all non-causal paths between the exposure and outcome; 

2. Does not close any causal paths between the exposure and outcome; and 

3. Does not open any additional non-causal paths between the exposure and outcome (6, 

27). 

There may be multiple sets of variables in a given DAG which satisfy these criteria, or none. A 

set is said to be minimally sufficient (i.e. a minimally sufficient adjustment set, or MSAS) if it 

satisfies the backdoor criterion with the smallest number of variables (39). Variable sets which 

satisfy the backdoor criterion may be identified algorithmically (e.g. using the ‘dagitty’ 

software (45) or R package (46, 47)), and it is for this reason that DAGs have heralded as tools 

which facilitate the ‘algorithmisation of counterfactuals’ (48). 
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2.5.3.2 A graphical representation of exchangeability 

Figure 2.3 provides a graphical depiction of exchangeability, in which 𝑋 represents a time-fixed 

exposure, 𝑌 represents an outcome, 𝑀 represents a set of measured baseline causes of 𝑌, and 

𝑈 represents a set of unmeasured and/or unknown baseline causes of 𝑌 (26). 

In panel (1), unconditional exchangeability holds, since no baseline causes of the outcome 

(either measured or unmeasured) affect the exposure.  

In panel (2), conditional exchangeability holds, since only measured baseline causes of the 

outcome affect the exposure (i.e. exchangeability can be created by conditioning on the 

variables in 𝑀). It is for this reason that the conditional exchangeability is sometimes referred 

to as the condition of ‘no unmeasured confounding’ (26). 

In panel (3), exchangeability does not hold, since unmeasured and/or unknown baseline 

causes of the outcome affect the exposure. 

Figure 2.3 DAG depicting the data-generating process for a time-fixed exposure 𝑿, an 
outcome 𝒀, a set 𝑴 of measured baseline causes of the outcome, and a set 𝑼 of measured 
and/or unknown baseline causes of the outcome  

 

In panel (1), unconditional exchangeability holds. In panel (2), conditional exchangeability 
holds. In panel (3), exchangeability does not hold. Figure is adapted from Robins, J.M. and M.A. 
Hernán (26). 

2.5.3.3 Other ‘identifiability conditions’ 

Two other conditions are required to identify the average causal effect of a time-fixed 

exposure on a subsequent outcome; together with conditional exchangeability, these are 

referred to as the identifiability conditions (26).  

Positivity is the requirement that the exposure is not deterministically allocated within any of 

the subgroups defined by possible combinations of the measured baseline covariates (26). 

Recall that, in principle, average causal effects are identified by comparing the average 



- 17 - 
 

outcomes within subgroups for which the distribution of confounding factors is equivalent. If 

there exist one or more subgroups in which every individual in the subgroup received the same 

value of the exposure (i.e. the exposure was deterministically allocated), then we cannot 

identify the causal effect of the exposure in that subgroup because there exists no 

‘counterfactual’ scenario. 

Consistency is the requirement that, for an individual who received a particular value of the 

exposure, their counterfactual outcome is equal to their observed outcome and is therefore 

known (though their other counterfactual outcome(s) remain(s) unknown) (26). Consistency 

may not hold for exposures comprised of a combination of various factors which affect the 

outcome through different mechanisms (e.g. socioeconomic position), since such an exposure 

would likely have multiple counterfactual outcomes associated with a single value of the 

exposure (49).6 Inherent in the consistency condition is the assumption of no interference, i.e. 

the assumption that the exposure received by one individual does not affect the outcomes of 

any other individual (54).7 

Taken together, the three conditions (i.e. conditional exchangeability, positivity, and 

consistency) imply that an observational study may be conceptualised as a CRCT, or an RCT in 

which the exposure was randomised conditional on the set of covariates which satisfy the 

backdoor criteria (26). 

2.5.4 Average causal effects for time-varying exposures 

DAGs can also be used to identify the causal effect of a time-varying exposure on an outcome 

in non-randomised contexts. As in the time-fixed case, this is achieved by using the principles 

of graphical model theory to determine set(s) of variables which are sufficient for guaranteeing 

sequential conditional exchangeability. 

The criterion for determining which set(s) of variable(s) are sufficient for guaranteeing 

conditional exchangeability for a given DAG is known as the sequential backdoor criterion, 

which is a generalisation of the previously-introduced backdoor criterion (§2.5.3.1). The logic 

behind the sequential backdoor criterion is very similar to that of the original and for that 

reason we do not explicitly cover it here. However, a comprehensive summary of the 

sequential backdoor can be found in Elwert, F. (39). 

                                                           

6 We note that there exists a substantive and contentious debate within the causal inference 
community as to whether consistency is an assumption or a theorem (50-52), and consequently 
whether causal effects can be identified in the absence of well-defined interventions (53). 
However, this is a philosophical debate which we believe has very little bearing on the topics 
covered in this thesis.  

7 The assumption of no interference may also be referred to the ‘stable unit treatment value 
assumption’ (SUTVA) (55). 
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2.5.4.1 A graphical representation of exchangeability 

Exchangeability in a time-varying context is most easily represented graphically. Figure 2.4 

provides such a representation, in which 𝑋𝑡 represents a time-varying exposure measured at 

baseline (i.e. 𝑡 = 0) and follow-up (i.e. 𝑡 = 1), 𝑌 represents an outcome measured at or after 

the point of follow-up, 𝑀𝑡 represents a set of measured causes of 𝑌 at baseline and follow-up, 

and 𝑈𝑡  represents a set of unmeasured and/or unknown causes of 𝑌 at baseline and follow-up 

(26). 

In panel (1), unconditional sequential exchangeability holds, since neither measured nor 

unmeasured/unknown causes of the outcome affect the exposure at either time point. This is 

signified by a lack of any arrows from 𝑀 or 𝑈 into 𝑋. 

In panel (2), conditional sequential exchangeability holds, since only measured causes of the 

outcome affect the exposure at each time point. This is signified by a lack of any arrows from 𝑈 

into 𝑋.  

In panel (3), sequential exchangeability does not hold, since unmeasured and/or unknown 

causes of the outcome affect the exposure at each time point. 
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Figure 2.4 DAG depicting the data-generating process for two measurements of a time-
varying exposure 𝑿 (i.e. 𝑿𝟎 and 𝑿𝟏), one outcome 𝒀, two measurements of a set 𝑴 of time-
varying causes of the outcome (i.e. 𝑴𝟎 and 𝑴𝟏), and two measurements of a set 𝑼 of time-
varying unmeasured and/or unknown causes of the outcome (i.e. 𝑼𝟎 and 𝑼𝟏) 

 

In panel (1), sequential unconditional exchangeability holds. In panel (2), sequential conditional 
exchangeability holds. In panel (3), sequential exchangeability does not hold. 

2.5.4.2 Time-dependent confounding 

Time-dependent confounding is an issue that is unique to situations involving time-varying 

exposures. Whilst it is conceptually challenging to understand within the counterfactual 

framework, the use of DAGs illustrates simply the problem posed by time-dependent 

confounding (39). 

For example, we consider the DAG in panel (2) of Figure 2.4 where we are interested in the 

joint effect of 𝑋0 and 𝑋1 on 𝑌. In this DAG, 𝑀1 is a confounder for the effect of 𝑋1 on 𝑌, and 

thus the non-causal path 𝑋1 ← 𝑀1 → 𝑌 should be closed by conditioning on 𝑀1. However, 𝑀1 

is also a mediator for the effect of 𝑋0 on 𝑌, and thus conditioning on 𝑀1 closes the causal path 

𝑋0 → 𝑀1 → 𝑌. Moreover, 𝑀1 is a collider on the path 𝑋0 → 𝑀1 ← 𝑈1 → 𝑌, such that 

conditioning on 𝑀1 opens an additional non-causal path between 𝑋1 and 𝑌. 
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Thus, it is both necessary and forbidden to condition on 𝑀1 because it simultaneously 

confounds and mediates the causal effect of 𝑋 on 𝑌. Estimating the joint effect of 𝑋0 and 𝑋1 

on 𝑌 requires the use of one of the ‘g-methods’, which are a suite of methods which deal with 

time-dependent confounding in ways that do not involve direct conditioning (26, 56). The g-

methods are reviewed in the next chapter. 

2.5.4.3 Other ‘identifiability conditions’ 

As in the setting of a time-fixed exposure (§2.5.3.3), two additional identifiability conditions 

are required to identify the average causal effect of a time-varying exposure on a subsequent 

outcome (26).  

In a time-varying setting, positivity is the requirement that the exposure at each time point is 

not deterministically allocated within any of the subgroups defined by possible combinations 

of past exposure and covariate history (26). In other words, there is a non-zero chance of being 

exposed (or unexposed) at every time point, regardless of prior exposure and confounder. 

Thus, positivity is satisfied when there are both exposed and unexposed individuals within all 

levels of prior exposure and confounders, which can easily be evaluated empirically (for 

categorical variables, at least) (56). 

Consistency is the requirement that, for an individual who received a particular exposure 

regime, their counterfactual outcome is equal to their observed outcome and is therefore 

known (though their other counterfactual outcomes remain unknown) (26). This condition also 

includes the assumption of no interference. 

Taken together, the three conditions (i.e. conditional exchangeability, positivity, and 

consistency) imply that an observational study may be conceptualised as a sequential CRCT, or 

an RCT in which the exposure at each time point was randomised conditional only on prior 

exposure and measured covariate history (26). 

2.6 Summary 

The counterfactual framework for causal inference underpins much of health and social 

science research. Although it is impossible to identify individual-level causal effects in this 

framework (which is often referred to as the ‘fundamental problem of causal inference’), it is 

possible to identify average causal effects. This has historically been achieved through 

randomisation, though recent advances in graphical model theory have provided a framework 

for identifying causal effects by emulating randomisation in observational data. Of particular 

importance are DAGs, which encode counterfactual statements in simple statistical diagrams. 

Time-varying exposures present additional identification challenges over and above those of 

time-fixed exposures due to the issue of time-dependent confounding. The utility of using 

DAGs to estimate causal effects and the additional methodological challenges presented by 

longitudinal data structures will be expanded upon in the next chapter, in which we review and 

critically compare statistical- and simulation-based approaches. 
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Chapter 3  
Methods for estimating causal effects in longitudinal data 

3.1 Introduction 

There exist myriad methods for estimating causal effects in longitudinal data, some of which 

are grounded in the principles of graphical model theory but many of which are not.  

Chapter 3 introduces several methods for estimating causal effects in longitudinal data. Of 

fundamental importance are statistical, regression-based methods which are informed by 

DAGs; these methods utilise the principles of graphical model theory to robustly estimate 

counterfactual quantities. There additionally exist individual-based simulation methods (i.e. 

microsimulation modelling and agent-based modelling) which are able to simulate 

counterfactuals; however, the conditions under which they provide meaningful causal effect 

estimates are not well-understood. This chapter offers a critical comparison of statistical and 

individual-based simulation methods for causal inference, which provides a foundation for 

understanding the contexts in which the methods considered in the remainder of this thesis 

may be used. This chapter also provides several examples of the benefits of using DAGs to 

consider problems and paradoxes which have historically arisen in causal analyses, thereby 

providing a basis for our aim to integrate DAGs and counterfactual thinking into the methods 

considered in the remainder of this thesis. 

3.1.1 Chapter overview 

A general chapter overview is provided below. 

In Section 3.2, we demonstrate how DAGs can be used to inform statistical (regression) models  

in order to estimate causal effects in observational data, for both time-fixed (§3.2.1) and time-

varying exposures (§3.2.2). 

In Section 3.3, we give three specific examples which illustrate the benefits of applying DAGs 

and counterfactual thinking to new contexts. 

In Section 3.4, we introduce three established methods for longitudinal data analysis (both 

statistical- and simulation-based) which will be examined in this thesis. The methods 

considered are the analysis of change (§3.4.1), regression with ‘unexplained residuals’ (§3.4.2), 

and microsimulation modelling (§3.4.3). 

In Section 3.5, we critically compare statistical- and individual-level simulation-based 

approaches for causal inference. 

3.1.2 Related publications 

This chapter contains work based on the following publications:  
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Arnold, K.F., Berrie, L., Tennant, P.W.G. and Gilthorpe, M.S. A causal inference perspective on 

the analysis of compositional data. International Journal of Epidemiology. 2020, 0(0), pp.1-7. 

(1) 

Arnold, K.F., Davies, V., de Kamps, M., Tennant, P.W.G., Mbotwa, J. and Gilthorpe, M.S. 

Reflections on modern methods: Generalised linear models for prognosis and intervention – 

theory, practice, and implications for machine learning. International Journal of Epidemiology. 

2020, 0(0), pp.1-9. (2) 

Arnold, K.F., Harrison, W.J., Heppenstall, A.J. and Gilthorpe, M.S. DAG-informed regression 

modelling, agent-based modelling and microsimulation modelling: a critical comparison of 

methods for causal inference. International Journal of Epidemiology. 2019, 48(1), pp.243-253. 

(3) 

3.2 DAG-informed regression methods 

As introduced previously (§2.5.2), a DAG is a qualitative (i.e. nonparametric) map of the data-

generating process for a set of variables (39). For any given DAG, the principles of graphical 

model theory provide a way of determining whether a causal effect can be identified and, if so, 

what set(s) of variables need to be conditioned on to do so.  

Where the true structure of a DAG is not known, as in almost all observational contexts, its 

structure must be assumed based upon subject matter knowledge and theories, and then 

tested and further refined according to available data (47, 57). In this way, the DAG represents 

the hypothesised data-generating process, and all inferences are made subject to the DAG 

being correct. 

This DAG may then also be combined with parametric assumptions about the data-generating 

process in order to estimate causal effects. The primary method for achieving this is through 

regression modelling. In the following subsections, we outline how DAG-informed regression 

modelling can be implemented in order to estimate causal effects in observational data, for 

both time-fixed (§3.2.1) and time-varying exposures (§3.2.2). 

Throughout, we use capital letters (e.g. 𝑌) to denote random variables and small letters to 

denote specific values (e.g. 𝑦 = 0 or 𝑦 = 1), by convention (26). 

3.2.1 For time-fixed exposures 

To illustrate, we consider the DAG in Figure 3.1, which represents the hypothesised data-

generating process for a time-fixed exposure 𝑋, outcome 𝑌, confounders 𝐴, 𝐵, and 𝐶, and 

mediator 𝐷 in a population of individuals (all continuous random variables).  
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Figure 3.1 DAG depicting the hypothesised data-generating process for a time-fixed exposure 
𝑿, an outcome 𝒀, a set of confounders 𝑨, 𝑩, and 𝑪, and a mediator 𝑫 

 

Observed and/or measured variables are depicted in rectangular boxes, and latent variables 
are depicted in ovals. 

By the backdoor criterion (§2.5.3.1), there exist two sets of variables which are minimally 

sufficient for identifying the total causal effect of 𝑋 on 𝑌: 

Set 1: 𝐴 and 𝐵 

Set 2: 𝐶 

Therefore, conditioning on either of these sets of variables will allow us to estimate the 

desired total causal effect. However, given that 𝐶 is unmeasured, Set 1 would be chosen as the 

conditioning set. 

In the context of linear regression, conditioning is achieved by including the variable as a 

covariate in the model. Estimating the total causal effect of 𝑋 on 𝑌 in our example context thus 

becomes a matter of estimating the parameters of the following model: 

 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝐴 + 𝛽3𝐵 + 𝜀  

Assuming the model has been correctly parameterised, we are able to interpret �̂�1 as the 

estimated total causal effect of 𝑋 on 𝑌. In other words, for individuals with the same values of 

𝐴 and 𝐵 (i.e. conditionally exchangeable groups), every one-unit difference in the exposure 

corresponds to an expected difference in the outcome of �̂�1. 

The expected counterfactual outcome associated with a particular value 𝑥 of the exposure for 

an individual whose values of 𝐴 and 𝐵 were equal to 𝑎 and 𝑏, respectively, can thus be 

computed as: 

 �̂� = �̂�0 + �̂�1𝑥 + �̂�2𝑎 + �̂�3𝑏  

3.2.2 For time-varying exposures 

We next consider the DAG in Figure 3.2, which represents the hypothesised data-generating 

process for two measurements of a time-varying exposure 𝑋 (i.e. 𝑋0 and 𝑋1), one subsequent 

outcome 𝑌, and one time-dependent confounder 𝑀1 (all continuous random variables) in a 

population of individuals. 
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Figure 3.2 DAG depicting the hypothesised data-generating process for two measurements 
of a time-varying exposure 𝑿 (i.e. 𝑿𝟎 and 𝑿𝟏), one outcome 𝒀, and one time-dependent 
confounder 𝑴𝟏 

 

The joint causal effect of 𝑋0 and 𝑋1 on the outcome 𝑌 is identifiable by the sequential 

backdoor criterion (39). However, simultaneously conditioning and not conditioning on 𝑀1 is 

impossible in a conventional single-equation regression model (39). Thus, one of the three ‘g-

methods’ may be used to estimate the average counterfactual outcomes associated with 

different exposure regimes. Each g-method is summarised in the following subsections; more 

detailed descriptions are provided by Robins, J.M. and M.A. Hernán (26), Naimi, A.I. et al. (56), 

Daniel, R.M. et al. (58), Arnold, K.F. and M.S. Gilthorpe (59), Taubman, S.L. et al. (60), Robins, 

J.M. et al. (61), Vansteelandt, S. and M. Joffe (62), and Picciotto, S. and A.M. Neophytou (63). 

3.2.2.1 The (parametric) g-formula 

Implementing the parametric g-formula requires that we first use our data to estimate the 

functions which govern the data-generating process, thereby creating a sequence of functions 

which combine to generate the values for every endogenous node in the DAG.8 For example, if 

we assume a linear process, we would estimate the parameters for each of the following 

models: 

 𝑀1 = 𝛽0
0 + 𝛽1

0𝑋0 + 𝜀𝑀1
  

 𝑋1 = 𝛽0
1 + 𝛽1

1𝑋0 + 𝛽2
1𝑀1 + 𝜀𝑋1

  

 𝑌 = 𝛽0
2 + 𝛽1

2𝑋0 + 𝛽2
2𝑀1 + 𝛽3

2𝑋1 + 𝜀𝑌1
  

Estimating the average value of 𝑌 that would have been observed if the exposures 𝑋0 and 𝑋1 

had been equal to whatever values we are interested in (e.g. 𝑥0 and 𝑥1, respectively) therefore 

requires replacing 𝑋0 with 𝑥0 and 𝑋1 with 𝑥1 in our estimated models and sequentially 

computing the expected value of each variable, as in: 

 �̂�1 = �̂�0
0 + �̂�1

0𝑥0  

 𝑋1 = 𝑥0   

 �̂� = �̂�0
2 + �̂�1

2𝑥0 + �̂�2
2�̂�1 + �̂�3

2𝑥1  

                                                           

8 In low-dimensional settings with discrete data, the conditional probability of each variable may be 
estimated nonparametrically; in such cases, this method is simply referred to as ‘the g-formula’ 
(64). 
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The g-formula thus effectively simulates the joint distribution of the variables that would have 

been observed under a hypothetical intervention targeting the exposure, based on the joint 

distribution that was actually observed (6). 

3.2.2.2 Inverse probability of treatment weighting (IPTW) of marginal structural 
models 

The second g-method uses weighting instead of conditioning to estimate the average 

counterfactual outcome associated with different exposure regimes.  

Inverse probability of treatment weighting (IPTW) refers to the process of creating a ‘pseudo-

population’ by estimating the expected value of each measurement of the exposure 

conditional on previous exposure and confounding history in the whole sample, calculating the 

expected value of each measurement of the exposure for each individual, and then weighting 

each individual by the inverse of their expected value of each measurement of the exposure. 

For example, based on the DAG in Figure 3.2 and assuming linearity, we would first estimate 

the parameters of the following models: 

 𝑋0 = 𝛼0
0 + 𝜀𝑋0

  

 𝑋1 = 𝛼0
1 + 𝛼1

1𝑋0 + 𝛼2
1𝑀1 + 𝜀𝑋1

  

For any individual, we can then calculate the expected value of 𝑋0, and the expected value of 

𝑋1 when 𝑋0 = 𝑥0 and 𝑀1 = 𝑚1 as: 

 �̂�0 = �̂�0
0  

 �̂�1 = �̂�0
1 + �̂�1

1𝑥0 + �̂�2
1𝑚1  

Each individual’s weight (𝑤) is then calculated by multiplying the inverse of their expected 𝑋0 

by the inverse of their expected 𝑋1, i.e.: 

 𝑤 =
1

�̂�0
∙

1

�̂�1
  

In the resulting pseudo-population, the counterfactual mean associated with each exposure 

regime is equal to that in the true population, but the exposure at each time point depends 

only on prior exposure history (i.e. there is no time-dependent confounding). The DAG for the 

pseudo-population is depicted in Figure 3.3, in which there is no arrow between 𝑀1 and 𝑋1. 

Figure 3.3 DAG depicting the pseudo-population created by inverse probability of treatment 
weighting (IPTW) for the DAG in Figure 3.2 

 

IPTW creates a pseudo-population in which there exists no time-dependent confounding (i.e. 
there is no arrow between 𝑀1 and 𝑋1). 
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Because there exists no time-dependent confounding in the pseudo-population, the joint 

effect of 𝑋0 and 𝑋1 on 𝑌 can be estimated by estimating the parameters of a single model: 

 𝑌 = 𝛽0 + 𝛽1𝑋0 + 𝛽2𝑋1 + 𝛽3𝑋0𝑋1 + 𝜀𝑌  

In the above ‘marginal structural model’, 𝛽1 represents the average effect of 𝑋0, 𝛽2 represents 

the average effect of 𝑋1, and 𝛽3 represents the average additional joint effect of 𝑋0 and 𝑋1. 

The average value of 𝑌 that would have been observed if the exposures 𝑋0 and 𝑋1 had been 

equal to whatever values we are interested in (e.g. 𝑥0 and 𝑥1, respectively) is therefore: 

 �̂� = �̂�0 + �̂�1𝑥0 + �̂�2𝑥1 + �̂�3𝑥0𝑥1  

3.2.2.3 G-estimation of structural nested models (SNMs) 

The condition of sequential conditional exchangeability underlies causal inference for time-

varying exposures, as outlined in Chapter 2. Moreover, the conceptualisation of longitudinal 

data as arising from a ‘nested’ sequence of trials is the foundation for g-estimation, which 

exploits conditional exchangeability to estimate average counterfactual outcomes (63). 

Heuristically, the idea is to estimate the average effect of the exposure for the innermost 

(most recent) trial first (i.e. the average effect of 𝑋1 on 𝑌), while adjusting for past exposure 

and covariate history (i.e. 𝑋0 and 𝑀1, respectively). The estimated effect of 𝑋1 is then removed 

from 𝑌, and the process is repeated for 𝑋0. Ultimately, the average counterfactual outcome 

associated with the exposure regime 𝑥0, 𝑥1 is computed. 

For the DAG in Figure 3.2 and assuming linearity, for example, we could construct the 

following two structural nested models (SNMs): 

 𝑌 = 𝛽0
1 + 𝛽1

1𝑋1 + 𝛽2
1𝑋1𝑀1 + 𝛽3

1𝑋1𝑋0 + 𝛽4
1𝑋1𝑀1𝑋0 + 𝜀𝑌

1  

 𝑌 = 𝛽0
2 + 𝛽1

2𝑋0 + 𝜀𝑌
2  

G-estimation refers to the method by which the parameters of the above models are 

estimated. The first model expresses the average effect of 𝑋1 on 𝑌, which may be modified by 

𝑋0 and 𝑀1. The second model expresses the average effect of 𝑋0 on 𝑌, when the exposure at 

time 1 is set to some counterfactual value of interest (i.e. 𝑋1 = 𝑥1). 

Sequential conditional exchangeability implies that the counterfactual outcome associated 

with a particular exposure regime 𝑥0, 𝑥1 is independent of the exposure regime that was 

actually observed. G-estimation directly leverages this assumption by determining the 

parameters for which the counterfactual outcomes are statistically independent of the 

observed exposures. In practice, this often involves a grid search or optimisation algorithm 

(63). 
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3.3 Examples of the benefits of DAG-based counterfactual thinking 

For the identification and estimation of quantifiable causal effects, DAGs hold a privileged 

position due to the rigorous mathematical framework that underpins them (65).9 However, 

the utility of DAGs extends far beyond the narrow framework of identifying and estimating 

causal effects. DAG-based thinking has also been instrumental in providing clarity to previously 

unresolved ‘paradoxes’ (66-69), for example, and in clarifying the assumptions that must hold 

for an association to be interpreted as a causal association (27, 70). 

3.3.1 Example 1: Understanding the implications of conditioning on a collider 

The dependency induced between two independent events when conditioning on a common 

outcome (i.e. a collider) has the potential to cause serious interpretational problems for causal 

analyses. Termed ‘collider bias’, it often produces seemingly paradoxical results which are 

contrary to intuition and/or scientific feasibility (e.g. the Monty Hall problem (27)). However, 

there are circumstances in which conditioning on a collider may provide useful and informative 

causal effect estimates.  

The implications of conditioning on a collider can be easily understood and illuminated using 

the framework of DAGs. We first discuss the birthweight paradox, which is considered to be 

one of the most well-known examples of collider bias. We then discuss compositional data, 

which present a unique context in which conditioning on a collider may be desirable (i.e. not 

bias).  

3.3.1.1 The birthweight paradox 

Low birthweight has long been recognised as a strong factor which increases the risk of 

neonatal and infant mortality (71). Moreover, maternal smoking during pregnancy increases 

the risk of an infant being born with low birthweight (72). However, paradoxically, among low 

birthweight babies, infant mortality is substantially lower for mothers who smoke compared to 

those who do not smoke. Thus, among low birthweight babies, maternal smoking appears to 

have a protective effect on the risk of infant mortality. This paradox was first noted by 

Yerushalmy, J. (73) in 1971 and has been consistently replicated in other datasets (74).  

Many hypotheses have been put forward attempting to explain the seemingly paradoxical 

results, e.g. (75), but perhaps the most compelling is grounded in graphical causal models (74, 

76-79). To demonstrate, we represent the situation by the DAG in Figure 3.4, in which all 

unknown causes of low birthweight are represented by 𝑈. 

                                                           

9 Nevertheless, it is worth mentioning that DAGs are currently underutilised in health research; a recent 
review by Tennant, P.W. et al. (57) of studies published between 1999 and 2017 identified only 234 
which used a DAG to guide their analysis. 
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Figure 3.4 Directed acyclic graph (DAG) depicting the ‘birthweight paradox’ 

 

𝑈 represents all unknown common causes of low birthweight and infant death. 

In this DAG, it is apparent that low birthweight is a collider on the (closed) path 𝑀𝑎𝑡𝑒𝑟𝑛𝑎𝑙 →

𝐿𝑜𝑤 𝑏𝑖𝑟𝑡ℎ𝑤𝑒𝑖𝑔ℎ𝑡 ← 𝑈. That is, maternal smoking and 𝑈 are competing causes of low 

birthweight. However, conditioning on low birthweight (as Yerushalmy did) opens the path 

between maternal smoking and 𝑈 and thus creates a non-causal dependency between the 

competing causes of low birthweight. 

Heuristically, what this means is that if a low birthweight baby has a mother who smokes, 

his/her low birthweight is likely a consequence of that smoking rather than a consequence of 

another serious unobserved cause of infant death. It is for this reason that maternal smoking 

then appears to be protective against infant death despite there being no obvious causal 

explanation. 

3.3.1.2 Relative versus total effects in compositional data 

Although the consequences of conditioning on a collider are now well-recognised in specific 

probabilistic instances, such as the birthweight paradox, the consequences of doing so in 

deterministic instances are only beginning to be recognised. To illustrate, we consider the case 

of compositional data, where conditioning on a collider may in fact provide useful causal effect 

estimates. This example represents additional work carried out by the author of this thesis, 

and has been recently published in its entirety (1). 

Compositional data comprise the parts (or ‘components’) of some whole (or ‘total’), for which 

all parts sum to that whole (80). For example, suppose we are interested in the causal effect of 

the total number of economically active individuals within a geographical area on the area-

level gross domestic product (GDP). This can be represented by the DAG in Figure 3.5, which 

explicitly depicts the compositional nature of the exposure (i.e. economically active population 

+ economically inactive population = total population).10 

                                                           

10 Although the components together determine the total, no time flow is indicated by the double arcs 
from the components to the total. Compositional data are unique in that the component parts and 
the total – which denote the same variable at different levels of aggregation – occur 
simultaneously. This is an additional complexity that we do not discuss here, but has been 
addressed in Arnold et al. (81). 
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Figure 3.5 DAG depicting total population in relation to gross domestic product (GDP), in 
which total population is subdivided into economic activity and inactivity 

 

Deterministic relationships (i.e. total population = economically active population + 
economically inactive population) are indicated by double-lined arrows, and fully determined 
nodes are indicated by double-outlined rectangles; this notation has been adapted from 
Shachter, R.D. (82). A dashed box around variables indicates that those variables occur at an 
instantaneous point in time. 

The benefit of depicting compositional data as in Figure 3.5 is that total population 

immediately becomes recognisable as a collider on the (closed) path 

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑝 → 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐𝑎𝑙𝑙𝑦 𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑝. Thus, 

conditioning on the total population when estimating the effect of the economically active 

population on GDP will create a dependency between the economically active and inactive 

populations, thereby generating a relative effect. 

The relative effect of the economically active population represents the average change in 

GDP achieved by swapping economically inactive individuals for economically active 

individuals. This effect is therefore a joint effect, representing the combined effect of 

simultaneously increasing the economically active population while decreasing the 

economically inactive population by equal numbers (thereby retaining the same total 

population). 

By contrast, the total effect of the economically active population (i.e. without conditioning on 

the total population) represents the average change in GDP that results from adding 

economically active individuals to the area, thereby increasing both the number of 

economically active individuals and the total number of individuals, whilst doing nothing to the 

population of economically inactive individuals. 

In this scenario, both the relative and total effects reflect the population-level average effects 

of changing the relative numbers (i.e. the proportions) of economically active individuals to 

alter GDP, but by different means. It is therefore possible derive two distinct causal quantities, 

each of which may be of interest depending on the context or hypothetical intervention. For 

example, an estimate of the relative effect may be of interest if the government were 

considering job-training programmes for currently unemployed individuals, whereas an 
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estimate of the total effect may be of interest if the government were considering policies 

aimed at increasing economic immigration. 

In general, whether the relative or total effect represents a useful estimand dependents upon 

the context and, in particular, the number of components which make up the total. 

3.3.2 Example 2: Understanding the distinction between prediction and causal 
inference 

Causal inference is fundamentally distinct from prediction (83, 84). However, the two are often 

conflated since many of the same statistical techniques (e.g. linear models) can be applied to 

both predictive and causal queries (70). Moreover, the relative newness of a formal framework 

for causal inference from observational data meant that the routine application of such 

techniques that became embedded was predicated on prediction, rather than causal inference. 

Consequently, it remains common practice to endow certain ‘predictive’ variables with causal 

significance, either explicitly or implicitly (e.g. (85)). The framework of DAGs offers insight into 

the dangers of doing so by explicating the assumptions required to interpret associations 

between individual predictors and the outcome as causal effects. 

To illustrate, we consider the following linear model, which represents the expected value a 

single variate 𝑌 (the ‘dependent’ or ‘outcome’ variable) from a linear combination of a set of 

observed covariates 𝑋1, … , 𝑋𝑛 (the ‘independent’ or ‘explanatory’ variables, or simply 

‘predictors’): 

 �̂� = �̂�0 + �̂�1𝑋1 + ⋯ + �̂�𝑛𝑋𝑛   Equation 3.1 

Any coefficient in Equation 3.1 could potentially represent a true causal effect (either direct, 

total, or a subset of the total), an association due to uncontrolled confounding or collider bias, 

or any combination thereof. Interpreting a particular coefficient as an estimate of the total 

causal effect of that covariate on the outcome requires making the assumption that all other 

covariates in the model ‘control for’ all spurious associations, do not ‘control for’ any of the 

causal association, and do not create any additional spurious associations.11 Causal modelling 

processes have these assumptions explicitly built into their foundations, but prediction 

modelling processes do not.  

A model for prediction is concerned with optimally deriving the likely value (or risk) of an 

outcome (i.e. 𝑌 in Equation 3.1) given information from one or more ‘predictors’. The goal of 

prediction modelling is to develop a useful tool to forecast an outcome that has yet to occur, 

and so the model-building process is ultimately driven by convenience and other practical 

considerations. It is well-suited to automated methods for covariate selection and 

                                                           

11 This is closely related to the fallacy of ‘mutual adjustment’ – often referred to as the ‘Table 2 fallacy’ 
(86) – since interpreting every coefficient in the model as a total causal effect requires making 
these assumptions about all other covariates in the model simultaneously, which cannot be valid 
unless all covariates are causally unrelated (i.e. ‘competing exposures’) and orthogonal (i.e. 
uncorrelated in the sample). 
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parameterisation, because the specific subset of covariates that is ultimately used to predict 

the outcome (and the way in which they are parameterised) is relatively unimportant so long 

as the model has a sufficient degree of internal and external validity. 

In contrast, a model for causal inference is concerned with optimally deriving the likely change 

in an outcome (i.e.  �̂�𝑖 for 1 ≤ 𝑖 ≤ 𝑛 in Equation 3.1) due to (potentially hypothetical) change 

in a particular covariate (i.e. 𝑋𝑖). The causal model-building process is necessarily driven by 

external and a priori theory, and thus benefits little from algorithmic modelling methodologies. 

To estimate the causal effect of one variable on another, one must specify both the possible 

causal pathways through which those effects are realised and the possible non-causal 

pathways that transmit spurious associations before any modelling is undertaken. Although 

the process of identifying a suitable subset of covariates which remove all spurious 

associations between the exposure and outcome may be automated once all causal 

assumptions are made explicit (often in the form of a DAG), identifying the initial set of 

variables and specifying the manner in which they are likely to transmit spurious associations 

cannot be automated. 

Consequently, models for prediction and causal inference are fundamentally distinct in terms 

of their purpose and utility, and methods optimised for one cannot be assumed optimal for the 

other. This has important implications for more advanced modelling methods (e.g. ‘machine 

learning’ methods (87-89)), which have been developed with the goal of prediction in mind. 

3.4 Other established methods for longitudinal data analysis 

The previous examples illustrate the benefits of bringing DAGs and counterfactual thinking to 

new contexts and to methods which may not have been developed in an explicit causal 

framework. Although several authors have been critical of the increasingly widespread use of 

DAGs (8, 14, 15, 90, 91), the insights into many important causal questions and apparent 

paradoxes (like the birthweight paradox) that have been facilitated by the use of DAGs are 

substantial (27, 66).  

This PhD explores how counterfactual thinking, encoded in the language of DAGs, can be 

integrated into established methods for causal longitudinal data analysis. Although DAGs 

provide a formal mathematical framework for the identification and estimation of causal 

effects, the relative recentness of such developments has meant that many established 

methods for causal analysis have not been considered within a robust causal framework. The 

methods to be considered are both regression-based and simulation-based. The regression-

based methods considered are the analysis of ‘change’ and the method of ‘unexplained 

residuals’ (UR) models; the simulation-based method considered is microsimulation modelling.  

Each is summarised in the following subsections. 
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3.4.1 The analysis of change 

Studies of change are an important element of health research. Understanding how people 

change, and the factors that may cause them to change more or less, are important for 

prognosis and treatment decisions.  

There are two primary methods for analysing the effect of a baseline exposure 𝑋0 on ‘change’ 

in 𝑌, which is measured once at baseline (i.e. 𝑌0) and once at follow-up (i.e. 𝑌1).  

The first method involves constructing a ‘change score’ by subtracting the baseline outcome 

from the follow-up outcome (i.e. ∆𝑌 = 𝑌1 − 𝑌0). The effect of the baseline exposure 𝑋0 on the 

change score is then estimated using a regression model of the form:  

 ∆𝑌 = 𝛼0 + 𝛼1𝑋0 + 𝜀  

The second method involves regressing the follow-up outcome 𝑌1 on the baseline exposure 𝑋0 

and adjusting for the baseline outcome 𝑌0, as in: 

 𝑌1 = 𝛽0 + 𝛽1𝑋0 + 𝛽1𝑌0 + 𝜀  

This method is commonly referred to as an analysis of covariance (ANCOVA). 

It has been recognised that these two methods produce discordant results, and therefore lead 

to differing causal conclusions, in situations in where the exposure is not randomised (92). 

In Chapter 4, we use DAGs to consider the analysis of change and to resolve the historical 

disagreement between the two methods. 

3.4.2 Regression with ‘unexplained residuals’  

Another common research question involving change relates to how changes in a time-varying 

exposure (e.g. 𝑋0 and 𝑋1) affect a subsequent outcome (𝑌). 

Regression with ‘unexplained residuals’ (93), or UR models, are regression models which 

simultaneously estimate the effect on 𝑌 of the initial measurement of the exposure 𝑋0 and 

subsequent change in 𝑋. A UR model is constructed by regressing 𝑌 on 𝑋0 and all ‘unexplained’ 

changes in 𝑋 (i.e. 𝑒𝑋1), as in: 

 �̂� = �̂�0 + �̂�1𝑋0 + �̂�2𝑒𝑋1  

The term 𝑒𝑋1 is itself derived from the regression of 𝑋1 on 𝑋0 (i.e. 𝑋1 = 𝛾0 + 𝛾1𝑋0 + 𝑒𝑋1), and 

it has been claimed that the model therefore provides insight (via the coefficient �̂�2) into the 

effect on 𝑌 of 𝑋 increasing more than expected (93). However, this claim has been previously 

challenged (94).  

UR models have also been extended ad-hoc in order to accommodate more than two 

measurements of a time-varying exposure, and to accommodate time-fixed and time-

dependent confounding. 



- 33 - 
 

In Chapter 5, we use DAGs to evaluate the properties of UR models and their suitability for 

causal analyses. We also demonstrate how to extend the method robustly in order to 

accommodate confounding variables and more complex longitudinal scenarios. 

3.4.3 Microsimulation modelling 

Several authors have identified microsimulation models (MSMs) as being promising tools for 

causal inference, especially due to their ability to evaluate exposure regimes. In its most basic 

form, microsimulation is a method for generating micro-level data in order to provide an 

estimated cross-sectional snapshot of a population (95). However, the resulting synthetic 

population is then often used as the foundation for a dynamic simulation model, which 

simulates the evolution of individuals in the population through time and potentially space.  

MSMs are able to evaluate counterfactual (or ‘what if’ (96, 97)) scenarios by, for example, 

altering the model parameters at one or more time points throughout the simulation, 

according to evidence derived from real-world interventions. The effects of these 

‘interventions’ on some outcome of interest can then be compared and evaluated. Moreover, 

since the initial population remains unchanged, each simulation run may be thought of as 

being exchangeable with any other (98). However, the conditions under which simulation-

based approaches like MSMs provide meaningful estimates of causal effects are not well 

understood (98). Similarities between MSMs and the g-formula have been noted previously 

(99), but there are several key differences which arise from their distinct historical evolutions, 

which are outlined in the next section.  

In Chapter 6, we use DAGs to represent the microsimulation modelling process, and conduct a 

simulation to demonstrate the relative importance of faithfully modelling data-generating 

processes using microsimulation compared to the g-formula. 

3.5 A critical comparison of statistical versus individual-based simulation 
methods for causal inference  

Statistical, regression-based approaches to causal inference (or ‘DAG-informed regression 

modelling’) currently dominate epidemiological research. However, there have been growing 

calls for a more pluralistic approach in the field (8, 90, 91), many of them premised on the 

argument that there are numerous causal scenarios which do not lend themselves to statistical 

analysis. Many authors have proposed more widespread adoption of ‘systems approaches’ (21, 

100-104), a somewhat nebulous term for a group of methods that may be used to study the 

nature of systems. In particular, several authors have identified individual-based simulation 

methods as promising tools for causal inference in complex systems, as they provide a 

framework for the simulation of counterfactuals (96, 98, 104). Microsimulation modelling 

(discussed previously in Section 3.4.3) is one such method; agent-based modelling is another, 

which is methodologically and conceptually similar to microsimulation but notably features 

interactions amongst individuals (3).  
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Microsimulation and agent-based modelling are historically distinct, but both have roots in 

cellular automata (105), which first emerged in the 1940s and involve simulating the evolution 

of a collection of coloured cells within a grid at discrete time steps, in accordance with a set of 

rules based on the states of neighbouring cells. From this, MSMs and agent-based models 

(ABMs) evolved separately as more complex simulation methods. While both methods have 

been in use for approximately the last half century – with Orcutt, G.H. (106) frequently 

credited as one of the founding fathers of the field of microsimulation and Schelling, T.C. (107) 

for agent-based modelling – the vast increases in computing power ushered in by the age of 

technology has rendered early implementations virtually unrecognisable in comparison to 

their modern counterparts (e.g. (108-111)). 

Here, we offer a brief comparison of statistical and individual-based simulation approaches for 

causal inference. Though this thesis does not explicitly consider ABMs, their methodological 

and conceptual similarities with MSMs, and their ability to accommodate and model time-

dependent confounding, nevertheless make them potentially important tools for causal 

inference.  

Hernán, M.A. (112) provides a useful commentary on DAG-based regression modelling and 

agent-based modelling, in which he frames their differences in terms of their relative reliance 

on data versus theory and thus reflecting the relative value placed on data and theory within 

the disciplines in which they are typically used. This distinction is elaborated on in the 

following subsection (§3.5.1), in which we also consider the place of microsimulation 

modelling. We also discuss how the separate evolutions of DAG-based regression modelling, 

microsimulation modelling, and agent-based modelling have shaped the types of causal 

questions for which they are well-suited to evaluating (§3.5.2), their focus on fixed versus 

random effects (§3.5.3), and the timescales and timeframes upon which they generally 

operate (§3.5.4). 

3.5.1 The relative importance of theory versus data 

Epidemiology – though arguably a social science – has historically been associated with the 

field of medicine. Consequently, it has tended to direct greater focus towards causal questions 

that lend themselves to experimentation (112). Even when such experimentation is infeasible, 

large quantities of observational, individual-level data are collected and statistical methods 

(e.g. regression models) are employed with the aim of mathematically controlling for those 

factors which would typically be controlled via experimental manipulation. The recent 

advances in graphical model theory have provided the theoretical foundations for causal data 

analysis that had historically been lacking, but it nevertheless remains that epidemiology is a 

data-loving science. 

In contrast, disciplines such as sociology and psychology, for example, tend to be interested in 

answering broader, more theory-driven questions. These often relate to phenomena for which 

data do not exist or may be difficult to measure or quantify (e.g. social norms); the theory-
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driven, hypothesis- and data-generative nature of ABMs make them more suitable for 

modelling in such contexts.  

Economics – the primary realm of MSMs – falls somewhere in between; indeed, the discipline 

has shown a degree of willingness to embrace graphical model-based methods (e.g. 

instrumental variable analysis (113)). 

3.5.2 Research questions considered 

The minimisation (albeit not elimination) of theory in the field of epidemiology has 

necessitated addressing narrower causal questions (112), and this is the context in which DAGs 

have been employed and in which the majority of methodological work is ongoing (e.g. 

VanderWeele, T.J. (40) and Burgess, S. et al. (114)). In contrast, the theory-driven, hypothesis- 

and data-generative nature of ABMs make them more suitable for modelling more abstract 

phenomena.  

To illustrate how use of the methods differs, we can consider obesity as a case study.12 

Table 3.1 provides a sample of the stated research objectives for published studies which have 

examined obesity using DAG-informed regression modelling, microsimulation modelling, and 

agent-based modelling. 

                                                           

12 This context has been chosen because the obesity epidemic has previously been characterised as 
containing many features of a complex system (21, 100, 115) and many elements from a wide 
variety of disciplines (e.g. biology, social policy, economics, psychology, geography, etc.); it 
therefore offers an ideal context for comparing the methods of interest. However, the analysis that 
follows is applicable to many other contexts. 
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Table 3.1 A sample of the stated research objectives for published studies which have 
examined obesity using DAG-informed regression modelling, microsimulation modelling, and 
agent-based modelling 

DAG-informed  

regression modelling 

Microsimulation  

modelling 

Agent-based  

modelling 

‘… to estimate the joint effects 
of obesity and smoking on all-
cause mortality and investigate 
whether there were additive or 
multiplicative interactions.’ 
(116)* 
 
‘… to estimate the independent 
causal effects of body mass 
index […] and physical activity 
on current asthma…’ (117)* 
 
‘… to study whether weight-
related anthropometrics, 
changes in BMI SDS [standard 
deviation score] and physical 
activity at different ages in 
childhood are associated with 
atopic disease by late 
childhood.’ (118) 
 
‘… to estimate the 26-year risk 
of CHD [coronary heart disease] 
under several hypothetical 
weight loss strategies.’ (119)* 
 
‘… [to evaluate] the 
associations between early-life 
POP [persistent organic 
pollutant] exposures and body 
mass index…’ (120) 
 
‘… to assess the mediating role 
of anthropometric parameters 
in the relation of education and 
inflammation in the elderly.’ 
(121) 
 
‘… to examine differences in the 
contribution of obesity 
measures to adenoma risk by 
race.’ (122) 

‘… to establish whether 52-
week referral to an open-group 
weight-management 
programme would achieve 
greater weight loss and 
improvements in a range of 
health outcomes and be more 
cost-effective than the current 
practice of 12-week referrals.’ 
(123) 
 
‘…to estimate the expected 
impact of the [1-peso-per-litre] 
tax [on sugar sweetened 
beverages] on body weight and 
on the prevalence of 
overweight, obesity and 
diabetes in Mexico.’ (124) 
 
‘…to estimate changes in calorie 
intake and physical activity 
necessary to achieve the 
Healthy People 2020 objective 
of reducing adult obesity 
prevalence from 33.9% to 
30.5%.’ (125) 
 
‘To assess the cost-utility of 
gastric bypass versus usual care 
for patients with severe obesity 
in Spain.’ (126) 
 
‘To analyse the cost-
effectiveness of bariatric 
surgery in severely obese (BMI 
≥ 35 kg/m2) adults who have 
diabetes.’ (127) 
 
‘To estimate the impact of 
three federal policies on 
childhood obesity prevalence in 
2032, after 20 years of 
implementation.’ (128) 
 
‘To determine the cost-
effectiveness of gastric band 
surgery in overweight but not 
obese people who receive 
standard diabetes care.’ (129) 

‘To explore the role that 
economic segregation can have 
in creating income differences 
in healthy eating and to explore 
policy levers that may be 
appropriate for countering 
income disparities in diet.’ (130) 
 
‘… [to compare] the effects of 
targeting antiobesity 
interventions at the most 
connected individuals in a 
network with those targeting 
individuals at random.’ (131) 
 
‘… [to] simulate how a mass 
media and nutrition education 
campaign strengthening 
positive social norms about 
food consumption may 
potentially increase the 
proportion of the population 
who consume two or more 
servings of fruits and 
vegetables per day in NYC.’ 
(132) 
 
‘… [to explore] the efficacy of a 
policy that improved the quality 
of neighborhood schools in 
reducing racial disparities in 
obesity-related behaviour and 
the dependence of this effect 
on social network influence and 
norms.’ (133) 
 
‘… to examine: a) the effects of 
social norms on school 
children’s BMI growth and fruit 
and vegetable (FV) 
consumption, and b) the effects 
of misperceptions of social 
norms on US children’s BMI 
growth.’ (134) 
 
‘…to examine the effects of 
different policies on unhealthy 
eating behaviors.’ (135) 

In the first column (DAG-informed regression modelling), ‘*’ denotes use of a g-method. 



- 37 - 
 

Examination of Table 3.1 demonstrates several important distinctions, and also provides 

evidence to support Hernan’s (112) observation that DAG-informed regression modelling and 

agent-based modelling exist along a spectrum according to the relative weights given to data 

and theory, with microsimulation modelling providing a bridge between the two. 

The research questions addressed by DAG-informed regression modelling tend to be framed in 

terms of estimating the effect of a specific factor on a subsequent outcome. The concept of 

intervention is often implicit in these analyses (e.g. ‘If we were to intervene to alter exposure 

to early-life persistent organic pollutions, how would this affect BMI?’, as in Karlsen, M. et al. 

(120)), but may also be explicit, as in Danaei, G. et al. (119). In fact, the example of Karlsen, M. 

et al. (120) is illuminating due to its use of the g-formula, which shares certain similarities with 

microsimulation (99). 

Researchers using microsimulation modelling tend to exclusively focus on estimating the effect 

of a specific policy or intervention on a subsequent outcome and, often, determining its cost-

effectiveness (136, 137). Inherent in and integral to these analyses are specific comparisons 

between alternative intervention programmes, as in Kristensen, A.H. et al. (128).  

This explicit evaluation of interventions crosses over to agent-based modelling, with several 

stated research objectives in the third column of Table 3.1 referring to specific hypothetical 

policy interventions. However, unique to agent-based modelling analyses is their exploration 

of social phenomena (e.g. economic segregation, as in Auchincloss, A.H. et al. (130), and social 

norms, as in Li, Y. et al. (132)) in the simulation framework. Agent-to-agent interactions often 

give rise to greater complexity, producing highly nonlinear and ‘emergent’ properties (138); 

consequently, ABMs are less-suited than MSMs to producing the detailed predictions often 

required by economists and policymakers, but arguably more-suited to modelling naturally 

complex social phenomena. Thus, although they share considerable overlap methodologically, 

microsimulation and agent-based modelling are distinct in their underlying purposes and 

practical utility.  

3.5.3 Focus on fixed versus random effects 

A natural consequence of using DAG-informed regression models is that greater focus is 

directed towards modelling mean structures and estimating mean (or ‘fixed’) effects instead of 

evaluating distributional properties and patterns of variation. Although DAGs describe causal 

processes that could potentially manifest in infinitely many parametric ways, the use of 

regression models to interrogate causal questions and identify (average) causal effects makes 

focus on the distributional properties of the variables of interest effectively redundant. 

However, there are myriad determinants of health and disease – particularly social ones (104) 

– which operate on many levels and in complex ways, about which the ‘random’ structures 

(possibly arising from individual interactions) are of equal if not greater importance than the 

‘fixed’ ones. Such determinants may be of great interest to epidemiologists, yet statistical 

modelling is limited in the insights it can provide into the potential complexity of random 
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structures that contain spillover effects and interference. Consequently, causal questions 

involving such complexities have tended to be relegated to the social sciences, in which 

greater emphasis is placed on theory as opposed to data. 

ABMs are theoretically very different from their statistical counterparts. As recognised by 

Oakes, J.M. (139), the outcome of interest is primarily the process by which group phenomena 

emerge. In other words, the (micro-)simulated processes of ABMs give rise to patterns and 

properties of a system; mean effects may be eventually derived, but the primary focus is on 

conceptualising and modelling the system as a whole, and how individual agency and 

heterogeneity interact to give rise to aggregate patterns. Although ABMs have seen some use 

in epidemiology, this has largely been confined to the study of infectious diseases (140-143); in 

such situations, there exist clear transmission mechanisms via individual interactions (144) and 

it is widely recognised that the effects of those interactions are a fundamental part of the 

causal mechanism and thus cannot be overlooked (55). Although the random effects arising 

from agent-to-agent interactions in ABMs are absent in MSMs, individuals remain the central 

focus of MSMs rather than average patterns. Indeed, in introducing the method of 

microsimulation, Orcutt, G.H. (106) lamented that ‘current models of our socio-economic 

system only predict aggregates and fail to predict distributions of individuals […]’. Individual-

level focus allows for the analysis of heterogeneity and distributional properties that might be 

masked by approaches considering only mean effects (136, 145). 

3.5.4 Timescales and timeframes modelled 

MSMs and ABMs tend to model much smaller timescales (e.g. days, weeks, months) than do 

statistical models because these are closer to the timescales upon which human behaviour and 

interactions generally operate, and upon which the effects of policy interventions might be 

realised. For ABMs in particular, in which agent-to-agent interactions are integral to the causal 

processes operating (e.g. for infectious diseases), modelling geolocation with high frequency is 

essential. Abstraction to larger scales has the potential to miss out on the complexity that 

these models seek to explore and/or explain; moreover, because they are not as limited by 

data availability, they are able to explore phenomena in finer granularity when the context 

requires it. Although DAG-based regression models are theoretically able to model such small 

timescales, their reliance on data (which has historically tended to be collected infrequently, as 

in cohort studies) limits this in practice. 

Additionally, because DAG-based regression models are reliant upon a single dataset, they 

exclusively model past events; the counterfactuals represent thought experiments about what 

would have happened had some condition been different. Although public health and 

epidemiological are generally interested in intervening to alter future health states, DAG-based 

regression methods do not explicitly model this – their results must be extrapolated to infer 

what would happen in the future. In contrast, MSMs and ABMs may be used to model both 

past and future events by utilising and synthesising historical data and estimates to make 



- 39 - 
 

decisions about hypothetical future interventions; indeed, estimating the future impact of 

potential policy interventions has historically been fundamental to the utility of these methods 

(136, 145, 146). 

3.6 Summary 

DAGs may be combined with parametric assumptions about data-generating processes in 

order to estimate counterfactual quantities in non-randomised contexts. Typically, this is 

achieved through regression modelling, which is a methodological cornerstone of 

epidemiological causal inference. DAGs also have utility as conceptual tools, and have provided 

clarity in understanding phenomena such as collider bias. However, there are many 

established methods for causal analysis – both statistical and simulation-based – which have 

not been considered in the framework of DAGs. Individual-based simulation methods are 

fundamentally distinct from statistical regression-based methods, despite both being able to 

evaluate counterfactual quantities; these methodological differences arise from their 

evolution across separate research domains. In the remainder of this thesis, the integration of 

DAGs with both statistical- and simulation-based methods will be explored, and the utility of 

using DAGs to consider causal questions across different longitudinal scenarios will be 

demonstrated.  
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Chapter 4  
The analysis of change 

4.1 Introduction 

Studies of change are a foundation for much of health research. A common target of enquiry 

involves quantifying the effect of a single exposure on change in a time-varying outcome (e.g. 

‘How do beta-blockers affect change in blood pressure?’). Previous methodological research 

involving questions of this kind has exclusively focused on experimental contexts. However, 

analyses of ‘change’ are deceptively complex, particularly in observational data. One of the 

most common – yet poorly understood – challenges stems from the use and interpretation of 

‘change scores’.  

Chapter 4 considers the analysis of change within a formal causal framework . Although 

studies of change are extremely common, the concept of change – and, indeed, the use of a 

change score as a measure of change – has received relatively limited consideration in this 

framework. To this end, we use DAGs to consider the concept of ‘exogenous change’, which is 

the definition of change that is of greatest utility for causal analysis and which we demonstrate 

is not isolated by the construction of a change score. We also demonstrate the utility of using  

DAGs to consider the different causal structures that might arise in the analysis of change. This 

allows us to draw conclusions about the analytical strategies most appropriate for analysing 

change, and highlights the importance of defining the most meaningful estimand according to 

the causal structure under consideration.  

4.1.1 Chapter overview 

A general chapter overview is provided below. 

In Section 4.2, we introduce the example context that will be considered throughout the 

remainder of the chapter, and define the change-score analysis (§4.2.1) and the follow-up 

adjusted for baseline analysis (§4.2.2) in this context. Additionally, we briefly review historical 

perspectives on the contradictory results that these methods may provide (§4.2.3). 

In Section 4.3, we argue that the estimand targeted by a change-score analysis is not useful for 

causal analyses, nor meaningful in most circumstances.  

In Section 4.4, we use DAGs to consider the analysis of change. We consider three distinct 

causal structures that may arise, and we use path tracing to demonstrate the degree of 

discordance that may arise between a change-score analysis and a follow-up adjusted for 

baseline analysis in each context. 
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In Section 4.5, we argue that adjusting for the baseline exposure (as in a follow-up adjusted for 

baseline analysis) is not always appropriate, and that an unadjusted estimate may be preferred 

in certain scenarios. 

In Section 4.6, we emphasise the importance of defining the most useful estimand on a case-

by-case basis. We also present a simple simulation to illustrate the degree of inferential bias 

that might be introduced by a change-score analysis, and to emphasise the utility of using 

DAGs to determine correct adjustment. 

In Section 4.7, we examine Lord’s Paradox through the lens of our previous analysis. 

In Section 4.8, we compare our results with those from two previous attempts to examine the 

analysis of change using DAGs, and explain our differences and disagreements. 

In Section 4.9, we discuss the implications of our analyses. 

4.1.2 Related publications 

This chapter contains work conducted jointly and based on the following pre-print: 

Tennant, P.W.G., Arnold, K.F., Ellison, G.T.H. and Gilthorpe, M.S. Analyses of ‘change scores’ 

do not estimate causal effects in observational data. ArXiv e-prints: 1907.02764. 2019. (4) 13 

4.2 Methods for estimating the effect of a baseline exposure on ‘change’ 
in an outcome 

Throughout, we consider a baseline exposure 𝑋0 in relation to an outcome 𝑌, which is 

measured once at baseline (i.e. 𝑌0) and once at follow-up (i.e. 𝑌1).  

Historically, the issue of estimating the effect of 𝑋0 on ‘change’ in 𝑌 has been framed in the 

context of adjusting for ‘pre-existing differences’ between groups (147), where the exposure 

𝑋0 represents a manipulable treatment. For example, in determining the effect of Ramipril (i.e. 

𝑋0) on blood pressure (i.e. 𝑌1), we would want to be certain that any effect we find is not 

simply the result of differences in baseline blood pressure (i.e. 𝑌0) between those who 

received the drug and those who did not. In other words, we would want to be certain that the 

effect is not confounded. 

In the following subsections, we describe two primary methods for analysing the effect of 𝑋0 

on ‘change’ in 𝑌, and briefly review historical perspectives on the apparently contradictory 

answers that the methods provide. 

                                                           

13 This manuscript was originally submitted to the International Journal of Epidemiology on 5 July 2019, 
where it received a decision of ‘revise and resubmit’ on 16 March 2020. It is currently being revised 
in line with reviewer comments. 
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4.2.1 Change-score analysis 

A change-score analysis attempts to adjust for the confounding effects of 𝑌0 via offsetting 

(148), i.e. by subtracting the baseline outcome from the follow-up, as in ∆𝑌 = 𝑌1 − 𝑌0.14 The 

effect of 𝑋0 on ‘change’ in 𝑌 is thus estimated by constructing a regression model of the form: 

 ∆�̂� = �̂�0 + �̂�1𝑋0   Equation 4.1 

In this formulation, �̂�1 represents the effect of interest – the estimated effect of 𝑋0 on ∆𝑌. 

4.2.2 Follow-up adjusted for baseline analysis 

A follow-up adjusted for baseline analysis attempts to adjust for the confounding effects of 𝑌0 

via blocking or conditioning (148), i.e. by examining the association between 𝑋0 and 𝑌1 within 

levels of 𝑌0. The effect of 𝑋0 on ‘change’ in 𝑌 is thus estimated by constructing a regression 

model of the form: 

 �̂�1 = �̂�0 + �̂�1𝑋0 + �̂�2𝑌0   Equation 4.2 

In this formulation, �̂�1 represents the effect of interest – the estimated effect of 𝑋0 on 𝑌1, 

controlling for the effect of 𝑌0 on 𝑌1.  

We note that a follow-up adjusted for baseline analysis is also commonly referred to as an 

analysis of covariance (ANCOVA) (92, 152). 

4.2.3 Discordance between methods and summary of previous literature 

It is widely recognised that in randomised contexts (i.e. where the correlation between 𝑋0 and 

𝑌0 is zero), both methods of analysis lead to the same, unbiased conclusions (i.e. that �̂�1 = �̂�1) 

(92, 150, 153). However, in non-randomised contexts, the two methods provide ‘contradictory 

results’ (92), and there exists little consensus as to which is correct. Indeed, Lord’s eponymous 

paradox centres around this very issue and the lack of an obviously correct answer (147). 

Maris, E. (154), Wainer, H. (155), and Wainer, H. and L.M. Brown (156) examine both methods 

in the context of Lord’s paradox and the potential outcomes framework. All conclude that each 

method makes untestable assumptions about unobserved counterfactuals and thus it is often 

impossible to determine which method is best. Wainer, H. (155) additionally highlights that 

both methods may be used to make correct descriptive statements, but that the ‘validity of the 

causal inferences that naturally follow from each of these descriptive statements will all 

depend on different untestable assumptions.’ 

Allison, P.D. (157) explains that regression to the mean implies that 𝑌0 will usually be 

negatively correlated with the change score ∆𝑌 = 𝑌1 − 𝑌0, and consequently any variable (e.g. 

𝑋0) that is correlated with 𝑌0 will have a spurious negative relationship with ∆𝑌; however, he 

goes on to argue that a change-score analysis is superior to a follow-up adjusted for baseline 

                                                           

14 ∆𝑌 is typically referred to as a ‘change score’, and this is the language we have adopted throughout 
this chapter. However, change scores have alternately be known in the literature as ‘difference 
scores’ (149), ‘gain scores’ (148, 150), and ‘change variables’ (151). 
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analysis when 𝑋0 is temporally subsequent to 𝑌0 and uncorrelated with the ‘transient’ 

component of 𝑌0. Van Breukelen, G.J.P. (92) acknowledges that in randomised contexts both 

methods are unbiased but that a follow-up adjusted for baseline analysis has more power; 

however, in non-randomised contexts, a change-score analysis ‘seems less biased’. In contrast, 

Senn, S. (152) shows that baseline randomisation is not a necessary condition to estimate an 

unbiased effect of 𝑋0 using a follow-up adjusted for baseline analysis; he also argues that 

although there may be situations in which a follow-up adjusted for baseline analysis is biased, 

a change-score analysis is also likely to be biased in such situations. Cronbach, L.J. and L. Furby 

(150) conclude even more bluntly that ‘[change] scores are rarely useful, no matter now they 

may be adjusted or refined.’ 

Notably, a few authors have sought to examine the analysis of change using DAGs, but 

unfortunately their conclusions are equally divergent as those of their predecessors. Glymour, 

M.M. et al. (158) focus on the role of measurement error and argue that follow-up adjusted 

for baseline analyses are likely to result in bias where measurements of 𝑌 are unreliable or 

unstable.15 Kim, Y. and P.M. Steiner (148) argue that change-score analyses are immune to the 

potentially adverse effects of measurement error in 𝑌0, bias amplification, and collider bias 

because they do not account for 𝑌0 by conditioning (as in follow-up adjusted for baseline 

analyses). However, Shahar, E. and D.J. Shahar (151) focus exclusively on change scores, and 

conclude that change scores are simply ‘derived variables’ which have no direct causes and do 

not cause anything; consequently, the authors conclude that change scores are ‘not of causal 

interest.’ We will return to these authors in Section 4.8, where we re-examine their 

conclusions in light of our own analyses. 

4.3 Considering change in a formal causal framework 

Although studies of change are extremely common in health research, the use of change 

scores has received relatively limited consideration within a formal causal framework. Here, 

we use DAGs to argue that the estimand targeted by a change-score analysis is not useful for 

causal analyses, nor meaningful in most circumstances. This is because ‘change’ is 

fundamentally defined by the follow-up outcome only, and because change scores do not 

represent exogenous change – the concept of change most useful from a causal perspective. In 

the following subsections, we elaborate on these two arguments. 

4.3.1 Change is fundamentally defined by the follow-up outcome 

We first argue that ‘change’ is an undefined, latent concept that occurs post-baseline and only 

becomes manifest when the point of follow-up is fixed. In other words, the ‘change’ that 

occurs in a variable after the baseline cannot be defined until the point of follow-up is chosen. 

                                                           

15 We note that Glymour, M.M. et al. (158) actually compare a change-score analysis with a change-
score adjusted for baseline analysis, i.e. Equation 4.1 in which the baseline outcome 𝑌0 is 
additionally included as a covariate. However, this is formally equivalent to a follow-up adjusted 
for baseline analysis (153). 
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Thus, the concept of ‘change’ is fully encapsulated within the follow-up variable only. This 

indicates that the follow-up outcome is what should be the true target of any analysis of 

change. Indeed, this is most evident in the context of RCTs, in which baseline randomisation 

allows for fruitful comparison of average follow-up outcomes between groups.  

4.3.2 Change scores do not represent exogenous change 

The concept of exogenous change is of greatest utility for causal analysis and, as we will 

demonstrate, this is the quantity targeted by follow-up adjusted for baseline analyses.  

To illustrate the concept and utility of exogenous change, we could consider a time-varying 

variable like weight, which is measured at the beginning and the end of a given year in a 

sample of adults. While there may be limited utility in summarising the change that has 

occurred over the course of the year, from a causal perspective we are most likely interested 

in is the part of that change which can hypothetically be modified by a targeted intervention. 

However, each individual’s weight at the end of the year is likely to be at least partly 

determined by his/her weight at the beginning of the year; that part of weight at the end of 

the year is therefore not modifiable and not of interest from a causal perspective. Instead, we 

should be interested in the part of weight at the end of the year which has not been 

determined, i.e. the part which is exogenous. 

Exogenous change is the structural (i.e. non-random) part of the follow-up outcome which has 

not been determined at baseline, and thus may potentially be modified by intervention. This is 

depicted in Figure 4.1, in which the follow-up values 𝑌1 are partly determined by baseline 

values 𝑌0 (in orange), with the remainder determined by random features 𝑅1 (in yellow) plus 

exogenous change 𝐶1 (in blue). Here, 𝐶1 represents all non-random change in 𝑌 that is not 

determined by 𝑌0, and thus the concept of exogenous change can be considered an average of 

all the processes in 𝐶1 → 𝑌. 
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Figure 4.1 DAG depicting the relationship between two measurements of a longitudinal 
variable 𝒀 (i.e. 𝒀𝟎 and 𝒀𝟏) and their difference (i.e. ∆𝒀 = 𝒀𝟏 − 𝒀𝟎), where exogenous change 
(i.e. 𝑪𝟏) exists after baseline 

 

The follow-up outcome 𝑌1 is partly determined by the baseline 𝑌0 (in orange), with the 
remainder determined by random features 𝑅1 (in yellow) plus exogenous change 𝐶1 (in blue). 
Construction of the change score ∆𝑌 does not isolate exogenous change because it conflates 
information from 𝑌0 with 𝑌1, whereas 𝐶1 is fundamentally defined by 𝑌1. Note that the use of 
colours in DAGs is not commonplace, but we have introduced them here to aid understanding.  

From Figure 4.1, it is clear that construction of the change score ∆𝑌 does not isolate 

exogenous change (i.e. 𝐶1, in blue), since a change score represents an arbitrary linear 

combination of 𝑌0 and 𝑌1. Instead, 𝐶1 is isolated by conditioning away the part of 𝑌1 that is 

determined by 𝑌0 (in orange). This is the quantity targeted by a follow-up adjusted for baseline 

analysis (i.e. the effect of 𝑋0 on 𝑌1, conditional on 𝑌0).  

4.4 Understanding analyses of change using DAGs 

We now use DAGs to consider why (and the degree to which) a change-score analysis might 

differ from a follow-up adjusted for baseline analysis. Because the majority of past research 

focussing on the analysis of change has done so in an experimental context, the issue of 

temporality has been masked. In experimental contexts, the baseline outcome 𝑌0 may 

reasonably be assumed to occur before or at the time of the exposure 𝑋0, but this cannot be 

assumed to hold in observational contexts. To this end, we use DAGs to consider three distinct 

potential causal structures that might arise in analyses of change: 

Scenario 1: 𝑋0 and 𝑌0 are causally unrelated (§4.4.1). 

Scenario 2: 𝑋0 is caused by 𝑌0 (§4.4.2). 

Scenario 3: 𝑋0 causes 𝑌0 (§4.4.3). 

Because both the change-score analysis and follow-up adjusted for baseline analysis are based 

on linear regression, we depict each scenario as a path diagram (35, 36). A path diagram is a 

(linearly) parametric DAG, in which a single coefficient is assigned to every arc and all variables 

are constrained to have a variance of one. Throughout, we use the notation 𝑝𝑏𝑎 to represent 

the coefficient of the arrow 𝑎 → 𝑏. 
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For each scenario, we are then able to use simple path tracing rules (35, 36) to identify the 

effect estimand for each method. We illustrate that the degree of discordance between a 

change-score analysis (i.e. Equation 4.1) and a follow-up adjusted for baseline analysis (i.e. 

Equation 4.2) depends on both the strength and nature of the relationship between the 

baseline exposure 𝑋0 and the baseline outcome 𝑌0. Specifically, we show that although both 

methods purportedly estimate the effect of the baseline exposure 𝑋0 on ‘change’ in 𝑌, where 

there exists a causal relationship between 𝑋0 and the baseline outcome 𝑌0 (i.e. in non-

randomised settings), the two methods of analysis target different estimands. 

Note that in all scenarios, we do not depict any direct causal relationship between 𝑋0 and ∆𝑌. 

This is because ∆𝑌 is a mathematically determined variable, and thus 𝑋0 cannot have any 

effect on ∆𝑌 independent of its effects on the separate components 𝑌0 and/or 𝑌1. There is 

historical precedence this depiction (67) and it is theoretically justified by the results of Shahar, 

E. and D.J. Shahar (151). Throughout, deterministic relationships are indicated by double-lined 

arrows, and fully determined nodes are indicated by double-outlined rectangles. 

4.4.1 Scenario 1: 𝑿𝟎 and 𝒀𝟎 are causally unrelated 

In Scenario 1, the baseline outcome 𝑌0 is a ‘competing exposure’ for the effect of 𝑋0 on 𝑌1 

(Figure 4.2). This is equivalent to a large, well-conducted randomised controlled trial, in which 

randomisation ensures that there exists no association between the exposure 𝑋0 and the 

baseline outcome 𝑌0. In this scenario, both methods of analysis target the same causal 

association (i.e. the total causal effect of 𝑋0 on 𝑌1).  

Figure 4.2 Path diagram representing the hypothesised data-generating process for an 
exposure 𝑿 measured once at baseline (i.e. 𝑿𝟎) and two measurements of a longitudinal 
outcome 𝒀 (i.e. 𝒀𝟎 and 𝒀𝟏), where 𝑿𝟎 and 𝒀𝟎 are causally unrelated 

 

The exposure 𝑋0 is measured once at baseline, and the outcome 𝑌 is measured once at baseline 
(𝑌0) and once at follow-up (𝑌1). The change-score ∆𝑌 is constructed from 𝑌1 − 𝑌0.  

The change-score analysis targets the total association between 𝑋0 and ∆𝑌. In this scenario, 

the total association between 𝑋0 and ∆𝑌 is equal to the causal association 𝑝𝑌1𝑋0
 (Table 4.1), 

and thus a change-score analysis will provide an unbiased estimate of the total causal effect of 
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𝑋0 on ∆𝑌. Moreover, baseline randomisation ensures that the effect of 𝑋0 on ∆𝑌 is in fact 

equal to the total causal effect of 𝑋0 on 𝑌1 only. 

The follow-up adjusted for baseline analysis targets the total association between 𝑋0 and 𝑌1. 

As in the change-score analysis, this is equal to the causal association between 𝑋0 and 𝑌1 

(Table 4.1).  

Thus, both the change-score analysis and the follow-up adjusted for baseline analysis estimate 

the total causal effect of 𝑋0 on 𝑌1.  

Table 4.1 Total association between 𝑿𝟎 and each of ∆𝒀 and 𝒀𝟏, subdivided into causal and 
confounding associations, for the path diagram depicted in Figure 4.2 

Outcome Path  Association size Total association 

∆𝑌  
Causal: 𝑋0 → 𝑌1 → ∆𝑌  𝑝𝑌1𝑋0

∙ 1  
𝑝𝑌1𝑋0

  
Confounding: n/a n/a 

𝑌1  
Causal: 𝑋0 → 𝑌1  𝑝𝑌1𝑋0

  
𝑝𝑌1𝑋0

   
Confounding: n/a n/a 

4.4.2 Scenario 2: 𝑿𝟎 is caused by 𝒀𝟎 

In Scenario 2, the baseline outcome is a confounder of the effect of 𝑋0 on 𝑌1 (Figure 4.3). Here, 

the change-score analysis and follow-up adjusted for baseline analysis target different 

estimands, and thus their results will diverge; the magnitude of this divergence is dependent 

upon the strength of the relationship between 𝑋0 on 𝑌0. 

Figure 4.3 Path diagram representing the hypothesised data-generating process for an 
exposure 𝑿 measured once at baseline (i.e. 𝑿𝟎) and two measurements of a longitudinal 
outcome 𝒀 (i.e. 𝒀𝟎 and 𝒀𝟏), where 𝑿𝟎 is caused by 𝒀𝟎 

 

The exposure 𝑋0 is measured once at baseline, and the outcome 𝑌 is measured once at baseline 
(𝑌0) and once at follow-up (𝑌1). The change-score ∆𝑌 is constructed from 𝑌1 − 𝑌0.  

The change-score analysis targets the total association between 𝑋0 and ∆𝑌, which is 𝑝𝑌1𝑋0
+

𝑝𝑋0𝑌0
∙ 𝑝𝑌1𝑌0

− 𝑝𝑋0𝑌0
 (Table 4.2). However, in this scenario, the total association comprises both 
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causal and confounding associations, and thus the change-score analysis targets an estimand 

which is difficult – if not impossible – to interpret causally. 

In contrast, the follow-up adjusted for baseline analysis targets only the causal association 

between 𝑋0 and 𝑌1, which is 𝑝𝑌1𝑋0
 (Table 4.2), since adjusting for 𝑌0 closes the confounding 

path 𝑋0 ← 𝑌0 → 𝑌1. 

Thus, where the baseline outcome 𝑌0 is a confounder for the effect of 𝑋0 on 𝑌1, the effects 

targeted by the change-score analysis and the follow-up adjusted for baseline analysis are 

expected to differ by 𝑝𝑋0𝑌0
∙ (𝑝𝑌1𝑌0

− 1). As the causal effect of 𝑌0 on 𝑋0 strengthens (i.e. as 

𝑝𝑋0𝑌0
 increases), the magnitude of this difference will increase. Only under two specific 

circumstances are the two methods of analyses expected to agree: 

1. Where 𝑋0 and 𝑌0 are uncorrelated, such that 𝑝𝑋0𝑌0
= 0; or 

2. Where 𝑌0 and 𝑌1 are perfectly correlated, such that 𝑝𝑌1𝑌0
− 1 = 0. 

We note that the first circumstance corresponds to the randomised experimental setting (i.e. 

Scenario 1), whereas the second corresponds to a setting in which 𝑌0 and 𝑌1 are related 

deterministically. 

Table 4.2 Total association between 𝑿𝟎 and each of ∆𝒀 and 𝒀𝟏, subdivided into causal and 
confounding associations, for the path diagram depicted in Figure 4.3 

Outcome Path  Association size Total association 

∆𝑌  
Causal: 𝑋0 → 𝑌1 → ∆𝑌  𝑝𝑌1𝑋0

∙ 1  

𝑝𝑌1𝑋0
+ 𝑝𝑋0𝑌0

∙ 𝑝𝑌1𝑌0
−

𝑝𝑋0𝑌0
  

Confounding: 𝑋0 ← 𝑌0 → 𝑌1 → ∆𝑌  𝑝𝑋0𝑌0
∙ 𝑝𝑌1𝑌0

∙ 1  

  𝑋0 ← 𝑌0 → ∆𝑌  𝑝𝑋0𝑌0
∙ −1  

𝑌1  
Causal: 𝑋0 → 𝑌1  𝑝𝑌1𝑋0

  
𝑝𝑌1𝑋0

+ 𝑝𝑋0𝑌0
∙ 𝑝𝑌1𝑌0

   
Confounding: 𝑋0 ← 𝑌0 → 𝑌1  𝑝𝑋0𝑌0

∙ 𝑝𝑌1𝑌0
  

4.4.3 Scenario 3: 𝑿𝟎 causes 𝒀𝟎 

In Scenario 3, the baseline outcome is a mediator of the effect of 𝑋0 on 𝑌1 (Figure 4.4). As in 

the previous scenario, the change-score analysis and follow-up adjusted for baseline analysis 

target different effects, and consequently their results will diverge according to the strength of 

the relationship between 𝑋0 on 𝑌0. 
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Figure 4.4 Path diagram representing the hypothesised data-generating process for an 
exposure 𝑿 measured once at baseline (i.e. 𝑿𝟎) and two measurements of a longitudinal 
outcome 𝒀 (i.e. 𝒀𝟎 and 𝒀𝟏), where 𝑿𝟎 causes 𝒀𝟎 

 

The exposure 𝑋0 is measured once at baseline, and the outcome 𝑌 is measured once at baseline 
(𝑌0) and once at follow-up (𝑌1). The change-score ∆𝑌 is constructed from 𝑌1 − 𝑌0.  

The change-score analysis targets the total association between 𝑋0 and ∆𝑌. This association 

comprises the total causal effect of 𝑋0 on 𝑌1 (i.e. 𝑝𝑌1𝑋0
+ 𝑝𝑌0𝑋0

∙ 𝑝𝑌1𝑌0
) in addition the biasing 

component −𝑝𝑌0𝑋0
 that is introduced by the construction of the change-score (Table 4.3).  

The follow-up adjusted for baseline analysis targets only the direct causal association between 

𝑋0 and 𝑌1, which is 𝑝𝑌1𝑋0
 (Table 4.3), since adjusting for the baseline outcome closes the 

indirect causal path 𝑋0 → 𝑌0 → 𝑌1. 

Thus, where the baseline outcome 𝑌0 is a mediator for the effect of 𝑋0 on 𝑌1, the effects 

targeted by the change-score analysis and the follow-up adjusted for baseline analysis are 

expected to differ by 𝑝𝑌0𝑋0
∙ (𝑝𝑌1𝑌0

− 1). As the causal effect of 𝑋0 on 𝑌0 strengthens (i.e. as 

𝑝𝑌0𝑋0
 increases), the magnitude of this difference will increase. Only under two specific 

circumstances are the two methods of analyses expected to agree: 

1. Where 𝑋0 and 𝑌0 are uncorrelated, such that 𝑝𝑌0𝑋0
= 0; or 

2. Where 𝑌0 and 𝑌1 are perfectly correlated, such that 𝑝𝑌1𝑌0
− 1 = 0. 

The first condition corresponds to the randomised experimental setting (i.e. Scenario 1), 

whereas the second corresponds to a setting in which 𝑌0 and 𝑌1 are related deterministically. 
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Table 4.3 Total association between 𝑿𝟎 and each of ∆𝒀 and 𝒀𝟏, subdivided into causal and 
confounding associations, for the path diagram depicted in Figure 4.4 

Outcome Path  Association size Total association 

∆𝑌  

Causal: 𝑋0 → 𝑌1 → ∆𝑌  𝑝𝑌1𝑋0
∙ 1  

𝑝𝑌1𝑋0
+ 𝑝𝑌0𝑋0

∙ 𝑝𝑌1𝑌0
−

𝑝𝑌0𝑋0
  

 𝑋0 → 𝑌0 → 𝑌1 → ∆𝑌  𝑝𝑌0𝑋0
∙ 𝑝𝑌1𝑌0

∙ 1  

 𝑋0 → 𝑌0 → ∆𝑌  𝑝𝑌0𝑋0
∙ −1  

Confounding: n/a  

𝑌1  

Causal: 𝑋0 → 𝑌1  𝑝𝑌1𝑋0
  

𝑝𝑌1𝑋0
+ 𝑝𝑌0𝑋0

∙ 𝑝𝑌1𝑌0
   𝑋0 → 𝑌0 → 𝑌1  𝑝𝑌0𝑋0

∙ 𝑝𝑌1𝑌0
  

Confounding: n/a n/a 

4.5 Follow-up adjusted for baseline analyses are not always the best 
solution for the analysis of change  

In the previous sections, we have argued that change scores are of limited utility for causal 

analyses (§4.3) and demonstrated why change-score analyses will differ from follow-up 

adjusted for baseline analyses in non-randomised scenarios (§4.4). 

It may thus be tempting to conclude that follow-up adjusted for baseline analyses represent 

the best solution for analyses of change in observational (i.e. non-randomised) scenarios, as 

has been concluded previously by several authors (150, 152). However, such a general 

conclusion is unwarranted for two reasons, both of which stem from a failure to consider 

situations in which the exposure 𝑋0 causes the baseline outcome 𝑌0 (i.e. Scenario 3). In such 

situations, a follow-up adjusted for baseline analysis targets the direct effect of 𝑋0 on 𝑌1 only. 

However, estimation of direct effects is notoriously difficult using standard regression methods 

due to their potential susceptibility to collider bias (159). Moreover, the direct effect is itself 

arguably less useful than the total effect in such situations, which can be obtained by a ‘follow-

up unadjusted for baseline’ analysis. 

We detail these two issues in greater detail in the following subsections.  

4.5.1 The issue of collider bias in the analysis of change 

Where the exposure 𝑋0 causes the baseline outcome 𝑌0 (i.e. Scenario 3), conditioning on 𝑌0 

implies conditioning on a mediator, which can introduce collider bias if there exist unknown 

and/or unmeasured common causes of 𝑌0 and 𝑌1. Although we purposely omitted confounders 

in our simplified example scenarios (§4.4), in reality there are likely to be numerous common 

causes of 𝑌0 and 𝑌1 since they represent the same variable measured at different times. 

To illustrate briefly, we consider the scenario depicted in Figure 4.5, in which 𝑌0 is a mediator 

for the effect of 𝑋0 on 𝑌1 and there exists a latent variable 𝑈 which confounds the relationship 

between 𝑌0 and 𝑌1. Here, adjusting for 𝑌0 (as in a follow-up adjusted for baseline analysis) 
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creates a spurious association between 𝑋0 and 𝑌1 via the open path 𝑋0 → 𝑌0 ← 𝑈 → 𝑌1. This 

path could be closed by additionally conditioning on 𝑈, but this is impossible by definition 

because 𝑈 is unobserved. 

Figure 4.5 DAG representing the hypothesised data-generating process for an exposure 𝑿 
measured once at baseline (i.e. 𝑿𝟎), two measurements of a longitudinal outcome 𝒀 (i.e. 𝒀𝟎 
and 𝒀𝟏), and one unobserved/latent variable 𝑼 

 

In the setting of mediation analyses, 𝑈 is frequently referred to as a ‘mediator-outcome 
confounder’ (159) since it confounds the relationship between the mediator (i.e. 𝑌0) and the 
outcome (i.e. 𝑌1).  

4.5.2 Follow-up unadjusted for baseline analysis 

Not only are direct effects more difficult to estimate in situations where the exposure 𝑋0 

causes the baseline outcome 𝑌0, they are arguably less useful. The experimental context is 

unique for ensuring that 𝑌0 is measured at or before the time of 𝑋0 (as in Scenarios 1 and 2, 

respectively), thereby ensuring that all changes in 𝑌 that are caused by 𝑋0 are fully realised by 

the effect of 𝑋0 on the follow-up outcome 𝑌1. In other words, the experimental setting ensures 

that the effect of 𝑋0 on exogenous change in 𝑌 is equal to the total causal effect of 𝑋0 on 𝑌1. 

Indeed, this is underlined by Senn, S. (152), who argues that ‘one should focus clearly on 

“outcomes” as being the only values influenced by treatment.’ 

However, where 𝑋0 causes 𝑌0 (i.e. Scenario 3), the effects of an intervention targeting 𝑋0 will 

be realised via its effects on both 𝑌0 and 𝑌1. In this case, a follow-up unadjusted for baseline 

analysis may be more appropriate, as in: 

 �̂�1 = 𝛾0 + 𝛾1𝑋0   Equation 4.3 

In this formulation, 𝛾1 represents the effect of interest – the total causal effect of 𝑋0 on 𝑌1. 

4.6 The importance of defining the most useful estimand  

A ‘one-size-fits-all’ approach to the analysis of change is unwarranted, since such an approach 

fails to consider the potential causal structures which exist. While change-score analyses 
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should be avoided in non-randomised contexts, the decision of whether to adjust for the 

baseline outcome (i.e. 𝑌0) when analysing effect of the exposure (i.e. 𝑋0) the follow-up 

outcome (i.e. 𝑌1) should be informed by the context under consideration. 

When the baseline outcome 𝑌0 causes 𝑋0 (i.e. Scenario 2), a follow-up adjusted for baseline 

analysis should be conducted, since 𝑌0 is a confounder for the total effect of 𝑋0 on 𝑌1. 

However, when the baseline outcome 𝑌0 is instead caused by 𝑋0 (i.e. Scenario 3), adjusting for 

𝑌0 targets the direct effect only. This effect may be useful in some contexts, including where 

the exposure 𝑋0 is immutable and/or cannot hypothetically be targeted for intervention; 

however, estimation of this effect is likely to involve additional difficulties when there are 

unmeasured and/or unobserved common causes of 𝑌0 and 𝑌1 (as outlined in Section 4.5.1). 

Thus, it might alternately be determined that the total effect of 𝑋0 on 𝑌1 is a more useful 

estimand, in which case adjustment for the baseline 𝑌0 is unwarranted. 

Across all contexts, using DAGs to consider the causal structures involved can help to clarify 

these issues and to identify appropriate adjustment to target the most useful estimand. To this 

end, we present a simple simulated example in the following subsection. 

4.6.1 Simulated example 

To illustrate the degree of inferential bias that might be introduced by a change-score analysis, 

and to emphasise the importance of using DAGs to help determine the most useful analytical 

strategy, we consider a simple simulated example involving the effect of baseline waist 

circumference (𝑊𝐶0) on the longitudinal exposure serum insulin concentration (𝐼𝐶), measured 

at baseline (i.e. 𝐼𝐶0) and follow-up (i.e. 𝐼𝐶1). 

4.6.1.1 Methods 

Data were simulated according to eight causal scenarios, each of which are depicted in 

Figure 4.6: 

Scenario 1: Baseline waist circumference (𝑊𝐶0) and baseline serum insulin 

concentration (𝐼𝐶0) are causally unrelated, i.e. 𝐼𝐶0 is a competing exposure 

for the effect of 𝑊𝐶0 on 𝐼𝐶1. 

Scenario 2: Baseline waist circumference (𝑊𝐶0) is caused by baseline serum insulin 

concentration (𝐼𝐶0), i.e. 𝐼𝐶0 is a confounder for the effect of 𝑊𝐶0 on 𝐼𝐶1. 

Scenario 3: Baseline waist circumference (𝑊𝐶0) causes baseline serum insulin 

concentration (𝐼𝐶0), i.e. 𝐼𝐶0 is a mediator for the effect of 𝑊𝐶0 on 𝐼𝐶1. 

A. No unmeasured confounding. 

B. Unmeasured variable (𝑈) affecting 𝐼𝐶0 and 𝐼𝐶1 (i.e. mediator-

outcome confounding (159)). 
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Figure 4.6 DAG representing four distinct hypothesised data-generating processes for the 
exposure waist circumference (𝑾𝑪) measured once at baseline (i.e. 𝑾𝑪𝟎) and two 
measurements of the outcome serum insulin concentration (𝑰𝑪, i.e. 𝑰𝑪𝟎 and 𝑰𝑪𝟏)  

 

In Scenario (1), 𝐼𝐶0 is a competing exposure for the effect of 𝑊𝐶0 on 𝐼𝐶1. In Scenario (2), 𝐼𝐶0 is 
a confounder for the effect of 𝑊𝐶0 on 𝐼𝐶1. In Scenario (3), 𝐼𝐶0 is a mediator for the effect of 
𝑊𝐶0 on 𝐼𝐶1; 𝑈 represents an unobserved or unmeasured variable that confounds the 
relationship between 𝐼𝐶0 and 𝐼𝐶1 (i.e. a mediator-outcome confounder).  

Parameter values and path coefficients were informed by data on US adults aged 18-49 

collected by the US National Health and Nutrition Examination Survey (NHANES), from the 

years 2019-2014 (160). The total causal effect of 𝑊𝐶0 on 𝐼𝐶1 was fixed at 0.200 

Log(mmol/L)/dm; when mediated through 𝐼𝐶0, this was partitioned into an indirect causal 

effect of 0.150 Log(mmol/L)/dm and a direct causal effect of 0.050 Log(mmol/L)/dm. 

Additional details relating to this simulation, including parameters and code, can be found in 

Appendix A (§A.2). 

For each Scenario, we simulated 10,000 non-overlapping random samples of 1,000 

observations from a multivariate normal distribution based upon the relevant DAG in 

Figure 4.6, using the ‘dagitty’ package (v. 0.2-2)(46, 47) in R (v. 3.3.2)(161). For each sample, 

we conduct three analyses: 
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1. A change-score analysis: ∆𝐼�̂� = �̂�0 + �̂�1𝑊𝐶0. 

2. A follow-up adjusted for baseline analysis: 𝐼�̂�1 = �̂�0 + �̂�1𝑊𝐶0 + �̂�2𝐼𝐶0. 

3. A follow-up unadjusted for baseline analysis: 𝐼�̂�1 = 𝛾0 + 𝛾1𝑊𝐶0. 

The median value across all 1000 samples for the coefficient of 𝑊𝐶0 in each analysis (i.e. �̂�1, 

�̂�1, or 𝛾1) is reported along with its 95% simulation limits (i.e. 2.5 and 97.5 centile estimates). 

We then consider the implications of interpreting these coefficients as the desired causal 

effect on 𝐼𝐶1. Note that coefficient units (i.e. Log(mmol/L)/dm) are omitted to aid readability. 

4.6.1.2 Results 

The simulation results are summarised in Table 4.4.  

4.6.1.2.1 Scenario 1: 𝑾𝑪𝟎 and 𝑰𝑪𝟎 are causally unrelated 

Scenario 1 is analogous to a large, well-conducted RCT. The total association between 𝑊𝐶0 

and ∆𝐼𝐶 consists entirely of the causal effect of 𝑊𝐶0 on 𝐼𝐶1 since there is no confounding or 

mediation by 𝐼𝐶0. All methods therefore provide an unbiased estimate of the total causal 

effect of 𝑊𝐶0 on ‘change’ in 𝐼𝐶 (i.e. �̂�1, �̂�1, 𝛾1 = 0.200). 

4.6.1.2.2 Scenario 2: 𝑾𝑪𝟎 is caused by 𝑰𝑪𝟎  

In Scenario 2, the total association between 𝑊𝐶0 and ∆𝐼𝐶 consists of both the causal effect of 

𝑊𝐶0 on 𝐼𝐶1 and confounding by 𝐼𝐶0. Therefore, only the follow-up adjusted for baseline 

analysis provides an unbiased estimate of the total causal effect of 𝑊𝐶0 on 𝐼𝐶1 (�̂�1 = 0.200), 

whereas the change-score analysis and the follow-up unadjusted for baseline analysis are 

biased (�̂�1 = 0.119 and 𝛾1 = 0.350, respectively). 

4.6.1.2.3 Scenario 3: 𝑾𝑪𝟎 causes 𝑰𝑪𝟎 

In Scenario 3, the total association between 𝑊𝐶0 and ∆𝐼𝐶 consists of both the direct and 

indirect effects of 𝑊𝐶0 on 𝐼𝐶1, in addition to the biasing path from 𝑊𝐶0 to ∆𝐼𝐶 through the 

baseline outcome 𝐼𝐶0. Thus, in Scenarios 3A and 3B the change-score analysis provides a 

biased estimate (�̂�1 = -0.031) of both the total and direct causal effects of 𝑊𝐶0 on 𝐼𝐶1; 

moreover, this estimate is of opposite sign to the true effects. The follow-up adjusted for 

baseline analysis provides an unbiased estimate of the direct causal effect of 𝑊𝐶0 on 𝐼𝐶1 (�̂�1 = 

0.050, Scenario 3A), though it becomes biased in the presence of unmeasured mediator-

outcome confounding by 𝑈 (�̂�1 = 0.025, Scenario 3B). The follow-up unadjusted for baseline 

analysis, however, provides an unbiased estimate of the total causal effect of 𝑊𝐶0 on 𝐼𝐶1 (𝛾1 = 

0.200, Scenario 3A); this estimate remains robust in the presence of mediator-outcome 

confounding (i.e. Scenario 3B). 

4.6.1.3 Implications 

In this simulated example, we explored the seemingly simple context of change in an outcome 

(i.e. insulin concentration) with respect to a baseline exposure (i.e. waist circumference) for 
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four different causal scenarios. Using change-score analyses, misleading coefficients – 

sometimes of opposite sign to the true causal effects – were observed in all scenarios where 

the baseline outcome and exposure were correlated at baseline (i.e. Scenarios 2 and 3). In such 

scenarios, determining the most appropriate adjustment for the baseline outcome when 

analysing the effect of the baseline exposure on the follow-up outcome was aided greatly by 

the use of DAGs. 

Although our simulations were deliberately simplified and made several distributional 

assumptions that may not be entirely realistic, they clearly demonstrate the potential 

problems associated with analysing ‘change’ using change scores, and the benefits of using 

DAGs to understand and identify the most appropriate analytical strategies. We additionally 

considered the four causal scenarios in Figure 4.6 with an unmeasured baseline confounder 𝑈2 

affecting each of 𝑊𝐶0, 𝐼𝐶0, and 𝐼𝐶1. Under such circumstances, all three methods 

unsurprisingly provided biased estimates of the total causal effect of 𝑊𝐶0 on 𝐼𝐶1. However, 

across all scenarios, the results were broadly consistent with those of the original simulation; a 

follow-up adjusted for baseline analysis appeared to be the least biased for Scenarios 1, 2, and 

3A, whereas a follow-up unadjusted for baseline analysis was preferred for Scenario 3B. All 

details related to this additional simulation and analysis are located in Appendix A (§A.2 ). 
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4.7 Examining ‘Lord’s Paradox’ 

The previous analysis offers a compelling lens through which to view ‘Lord’s Paradox’ (147), a 

peculiarity that has evaded statisticians since its original formulation in 1967 (154-156, 162). 

The paradox is summarised below: 

A university is interested in investigating whether the diet provided in the dining halls has an 

effect on students’ weight over the course of the year, and whether there are any sex 

differences in these effects. It hires two statisticians to answer this question. The first 

statistician examines the mean weight of the girls at the beginning of the year and at the end 

of the year and finds that these are identical; moreover, the frequency distribution of weight 

for girls at the end of the year is the same as it was at the beginning. He finds the same to be 

true for boys, and thus concludes that there is no evidence for any differential effect on the two 

sexes. The second statistician conducts an analysis of covariance (i.e. a follow-up adjusted for 

baseline analysis). He finds that the slope of the regression line of final weight on initial weight 

is essentially the same for the two sexes, but that the difference between the intercepts is 

statistically highly significant. The second statistician therefore concludes that boys showed 

significantly more gain in weight than the girls when proper allowance is made for differences 

in initial weight between the two sexes.16 

Which statistician is correct? The conclusions of the two statisticians appear to contradict one 

another, leading Lord to conclude that ‘there simply is no logical or statistical procedure that 

can be counted on to make proper allowances for uncontrolled pre-existing differences 

between groups’ (147). However, the causal lens adopted in the previous sections can help to 

resolve this question.  

4.7.1 Considering the paradox within a causal framework 

One of the primary challenges in interpreting Lord’s paradox stems from the fact that baseline 

weight is a mediator for the effect of sex on final weight. Thus, although baseline weight 

represents a ‘pre-existing difference’ between boys and girls according to Lord, it is actually a 

consequence of the exposure rather than a cause of it. Therefore, it is fundamentally different 

from the experimental setting that has historically been considered in the analysis of change – 

a setting in which pre-existing differences occur before the exposure.17 

                                                           

16 We note that the research question is itself ill-defined, since the diet is a fixed condition that is 
applied to all students, male and female. Therefore, the diet can have no identifiable causal effect 
on the students’ weights. Consequently, the question appears to actually be about the differential 
effect of sex on weight change. 

17 Additional confusion has been created by the fact that in several subsequent reinterpretations of 
Lord’s Paradox, the baseline outcome is in fact a confounder rather than a mediator (27, 163). 
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In Figure 4.7 we draw the scenario described by Lord as a path diagram, where 𝑆 represents 

sex, 𝑊0 represents initial weight, 𝑊1 represents final weight, and 𝐷 represents diet. This path 

diagram is equivalent to the one considered in Scenario 3 (§4.4.3). 

Figure 4.7 Path diagram representing Lord’s Paradox (147) 

 

The exposure sex (𝑆) is measured once at baseline, and the outcome weight (𝑊) is measured 
once at baseline (𝑊0) and once at follow-up (𝑊1). The change-score ∆𝑊 is constructed from 
𝑊1 − 𝑊0. The diet (𝐷) is depicted in grey because, although it affects 𝑊1, it is not truly a 
variable; all students are subjected to it, and it thus does not have any identifiable causal effect 
on 𝑊1. 

The first statistician, in comparing the average change scores between boys and girls, has 

essentially conducted a change-score analysis and found the effect of sex on ‘change’ in weight 

to be zero. In other words, the first statistician estimated the total effect of sex on weight 

change-score (i.e. 𝑝𝑊1𝑆 + 𝑝𝑊0𝑆 ∙ 𝑝𝑊1𝑊0
− 𝑝𝑊0𝑆, in Figure 4.7). By contrast, the second 

statistician conducted a straightforward follow-up adjusted for baseline analysis, and thus 

estimated the direct effect of sex on final weight (i.e. 𝑝𝑊1𝑆, in Figure 4.7). 

It is therefore not surprising that the two statisticians came to different conclusions, and Lord 

himself did not see how this problem might be resolved, as the effects estimated are expected 

to differ by 𝑝𝑊0𝑆 ∙ (𝑝𝑊1𝑊0
− 1). Only under one of the following conditions would the two 

agree:  

1. Where 𝑆 and 𝑊0 were uncorrelated (i.e. the randomised experimental setting), such 

that 𝑝𝑊0𝑆 = 0; or 

2. Where 𝑊0 and 𝑊1 were perfectly correlated (i.e. the deterministic case in which no 

exogenous change exists), such that 𝑝𝑊1𝑊0
− 1 = 0. 

4.7.2 Identifying the most useful estimand 

Identifying the most useful and/or important estimand in this scenario can help us to identify 

which statistician was correct. 
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In conducting a change-score analysis, Statistician 1 did not in fact estimate the effect of sex on 

‘change’ in weight; this is because ‘change’ is fully encapsulated in the follow-up weight 

whereas a change score conflates information from both baseline and follow-up (as argued in 

Section 4.3).18 Therefore, Statistician 2 can claim to be in possession of a more meaningful 

answer to the original query, since the direct effect represents a valid estimand in this 

scenario.  

However, we might consider an equally valid solution (presented by a fictional ‘Statistician 3’) 

to be the total effect of sex on final weight, obtained via a follow-up unadjusted for baseline 

analysis. This effect captures all changes in weight which result either directly or indirectly 

from sex. Moreover, this estimate is not susceptible to the potential biases introduced by 

conditioning on a mediator (i.e. baseline weight, which is likely to share many causes with 

follow-up weight). 

4.8 Comparison with Glymour, M.M. et al. (158) and Kim, Y. and P.M. 
Steiner (148) 

Our conclusions appear to fundamentally contradict those of Glymour, M.M. et al. (158) and 

Kim, Y. and P.M. Steiner (148) who – as was mentioned in Section 4.2.3 – are notable for 

having considered the analysis of change using DAGs. Here, we attempt to briefly explain the 

reasons behind our differing conclusions. 

Glymour, M.M. et al. (158) examine the analysis of change in the context of the effect of 

education on change in cognitive function in an elderly cohort. This context is most closely 

approximated by our Scenario 3, in which the baseline outcome (i.e. baseline cognitive 

function) is a mediator for the effect of the exposure (i.e. education) on the follow-up outcome 

(i.e. follow-up cognitive function). However, a critical difference is that the authors do not 

recognise the deterministic nature of the change score, and that it is fundamentally distinct 

from true exogenous (or modifiable) change. This represents a philosophical difference that 

cannot be resolved by mathematics, but for which both we (in Section 4.3.2) and Shahar, E. 

and D.J. Shahar (151) have argued. 

More problematically, the conclusions of Glymour, M.M. et al. (158) are supported only by an 

analysis of data from the Assets and Health Dynamics Among the Oldest Old (AHEAD) study, in 

which the true causal structure is not known. The authors assume there is no causal effect of 

education on change in cognitive function, but do not simulate data for which this is sure to be 

the case. Their change-score analysis produces an estimated effect of -0.02 (-0.05, 0.01) and 

their follow-up adjusted for baseline analysis produces an estimated effect of 0.20 (0.17, 

0.23),19 which they interpret as suggesting that the change-score analysis is unbiased. 

                                                           

18 We note that this is in contrast to Pearl, J. (67), who claims that the first statistician did in fact 
estimate the total effect of sex on gain (i.e. change). 

19 For change in cognitive function between the years 1993 and 1995. 
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However, we note that their results are broadly consistent with those produced for Scenario 3 

in our simulated example (Table 4.4), in which we simulated a true causal effect.  

Kim, Y. and P.M. Steiner (148) do acknowledge the deterministic nature of the change score, 

but fail to recognise that this is not equal to true exogenous change. Of note, the authors 

assume that any relationship between the baseline and follow-up outcome is due to a 

(possibly latent) preceding common cause which also affects the exposure; this causal 

structure is depicted in Figure 4.8. Using path tracing, the authors show that where 𝑝𝑌1𝑈 =

𝑝𝑌0𝑈 (i.e. where 𝑈 affects both 𝑌0 and 𝑌1 to the same extent) the confounding bias caused by 𝑈 

cancels out. While there may be specific instances in which this holds, we do not believe that it 

can be assumed to hold in general. Moreover, where there exists a causal relationship 

between the baseline outcome and the exposure (i.e. 𝑌0 → 𝑋0 in Figure 4.8), the authors 

acknowledge that this assumption is likely untenable. 

Figure 4.8 Path diagram representing the analysis of change as depicted by Kim, Y. and P.M. 
Steiner (148) 

 

The exposure 𝑋0 is measured once at baseline, and the outcome 𝑌 is measured once at baseline 
(𝑌0) and once at follow-up (𝑌1). The unobserved variable 𝑈 affects each of 𝑋0, 𝑌0, and 𝑌1. The 
change-score ∆𝑌 is constructed from 𝑌1 − 𝑌0.  

4.9 Implications 

Using DAGs, we have demonstrated that change scores do not in general represent exogenous 

change, and thus are of limited utility in causal analyses despite their seemingly intuitive 

formulation. Change-score analyses treat two separate events (i.e. 𝑌0 and 𝑌1) as one (i.e. ∆𝑌), 

thus conflating the causal pathways involved and potentially leading to inferential bias. Only 

under baseline randomisation can change scores be used without bias; in non-randomised 

data, change-score analyses do not generally estimate causal effects. Previous studies which 

have conducted change-score analyses in observational data should be scrutinised, and their 

results viewed with caution. 
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The use of a DAGs also clarifies the situations in which adjustment for the baseline outcome 

(i.e. 𝑌0) may or may not be warranted, when analysing the effect of the exposure (i.e. 𝑋0) on 

the follow-up outcome (i.e. 𝑌1). Statistical adjustment for 𝑌0 (as in follow-up adjusted for 

baseline analyses) has historically been considered necessary, in order to ‘standardise’ 𝑌1 by 

𝑌0. However, this may not actually be desirable across all contexts. This highlights the 

importance of using DAGs to identify the most plausible causal structure on a case-by-case 

basis, and to determine appropriate adjustment for 𝑌0 according to the most useful estimand. 

4.10 Summary 

Studies of ‘change’ are common in the epidemiological literature, yet rarely has the concept of 

change been formally considered within a causal framework. This chapter demonstrates that 

DAGs are useful for clarifying the distinction between change scores and true exogenous 

change, which is the concept of change most useful from a causal perspective. DAGs are also 

useful for considering the potential causal structures that may arise in analyses of change, and 

consequently in understanding why (and the degree to which) change-score analyses may 

differ from follow-up adjusted for baseline analyses. Across all contexts, using DAGs to 

consider the causal structures involved can help to identify the most useful estimand to target 

in analyses of change, which may necessitate follow-up unadjusted for baseline analyses in 

certain situations.  
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Chapter 5  
Regression with ‘unexplained residuals’ 

5.1 Introduction 

Time-varying exposures present analytical challenges above and beyond those of time-fixed 

exposures. Consequently, time-varying exposures are often reconceptualised as a series of 

time-fixed exposures, each of which has a total causal effect on the outcome of interest that 

can be estimated using a standard regression model. The necessity of multiple models led to 

the introduction of ‘unexplained residuals’ (UR) models by Keijzer-Veen, M.G. et al. (93) as a 

way of estimating the total causal effect of multiple measurements of a time-varying exposure 

within a single model.20 However, this method presents other unrecognised analytical 

challenges, particularly in the presence of confounding by both baseline and time-dependent 

covariates (which were not formally considered when UR models were first introduced, nor 

subsequently).  

Chapter 5 considers UR models within a formal causal framework. The basis of this chapter has 

three primary benefits. First, it clarifies why the method works (i.e. why it is equivalent to 

standard regression methods) for estimating the total causal effect of multiple measures of a 

time-varying exposure on an outcome in the absence of any confounding. Second, it allows us 

to consider how the method may be extended robustly to account for confounding by both 

baseline and time-dependent covariates, since UR models are of limited utility if they may only 

be used in situations in which no confounding exists. Third, it provides a general framework for 

considering how the method may be extended robustly to more complex longitudinal 

scenarios. With this information, we are then able to more comprehensively evaluate the 

benefits of UR models across a wide variety of longitudinal scenarios. 

5.1.1 Chapter overview 

A general chapter overview is provided below. 

In Section 5.2 we introduce the example scenario originally considered by Keijzer-Veen, M.G. 

et al. (93), and depict this scenario using a DAG. We consider how standard regression models 

and UR models may be used to estimate total causal effects in this setting. 

In Section 5.3 we use the method of path coefficients to illustrate the unique properties of UR 

models within a causal framework. 

                                                           

20 UR models have alternately been referred to as ‘unexplained residuals regression’ (164), the ‘method 
of unexplained residuals’ (165), ‘conditional linear regression’ (164), ‘conditional (regression) 
models’ (24, 166), ‘conditional (regression) analysis’ (167-171), ‘regression with conditional growth 
measures’ (166), ‘conditional growth models’ (172-175), and ‘conditional weight models’ (176). 
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In Section 5.4 we separately consider confounding by a baseline (§5.4.1) and time-dependent 

covariate (§5.4.2). In each scenario, we use a DAG to consider correct confounder adjustment 

and to explain why a UR model with correct adjustment for confounding will continue to 

satisfy the original properties of UR models. 

In Section 5.5 we extend the method of UR models to a scenario involving 𝑇 measurements of 

a time-varying exposure, and additionally consider how to adjust confounding by a baseline 

(§5.5.1.1) and time-dependent covariate (§5.5.1.2) in this extended context. 

In Section 5.6 we demonstrate that the standard error(s) of the estimated effect sizes are 

artificially reduced when using UR models – a previously unrecognised caveat regarding their 

use and implementation. 

In Section 5.7 we discuss the implications of our findings. 

5.1.2 Related publications 

This chapter contains work based on the following publication:  

Arnold, K.F., Ellison, G.T.H., Gadd, S.C., Textor, J., Tennant, P.W.G., Heppenstall, A. and 

Gilthorpe, M.S. Adjustment for time-invariant and time-varying confounders in ‘unexplained 

residuals’ models for longitudinal data within a causal framework and associated challenges. 

Statistical Methods in Medical Research. 2019, 28(5), pp.1347-1364. (5) 

5.2 Estimating the total causal effect of multiple measurements of a 
time-varying exposure on a future outcome 

The total causal effect of an exposure on a subsequent outcome comprises both its direct 

effect and any indirect effects on the outcome. Where an exposure is time-varying, the total 

effect of each measurement may be desired.  

In the following sections, we introduce a simple example scenario involving two 

measurements of a time-varying exposure and subsequent outcome. We then describe the  

‘standard’ regression method for estimating the total causal of each measurement and the 

associated ‘unexplained residuals’ (UR) regression method. 

Throughout, all DAGs are drawn forwardly saturated (i.e. where each node may causally affect 

all future nodes), and all unexplained causes of endogenous nodes are represented by the 

variable 𝑒 and depicted as independent (i.e. we assume no unobserved confounding). 

5.2.1 Example scenario 

We consider a time-varying exposure 𝑋 measured at two time points (i.e. 𝑋0 and 𝑋1) and a 

subsequent outcome 𝑌, where all variables are continuous. This scenario is depicted using a 

DAG in Figure 5.1, in which all unexplained causes of the endogenous nodes 𝑋1 and 𝑌 are 

represented by the variables 𝑒𝑋1 and 𝑒𝑌, respectively. 
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Figure 5.1 DAG depicting the hypothesised data-generating process for two measurements 
of a time-varying exposure 𝑿 (i.e. 𝑿𝟎 and 𝑿𝟏) and one outcome 𝒀 

 

The terms 𝑒𝑋1 and 𝑒𝑌 represent all unexplained causes of 𝑋1 and 𝑌, respectively, and are 
included to explicitly reflect uncertainty in all endogenous nodes (whether modelled or not). 

5.2.2 Standard regression method 

To estimate the total causal effect on 𝑌 of each measurement of the exposure (i.e. 𝑋0 and 𝑋1), 

each must be treated as a separate entity that is potentially subject to confounding by any 

previous measurement(s) of that variable. Therefore, two distinct regression models are 

necessary, respectively: 

 �̂�𝑆
(0)

= �̂�0
(0)

+ �̂�𝑿𝟎
(𝟎)

𝑋0   Equation 5.1 

 �̂�𝑆
(1)

= �̂�0
(1)

+ �̂�𝑋0
(1)

𝑋0 + �̂�𝑿𝟏
(𝟏)

𝑋1   Equation 5.2 

In Equation 5.1, the total causal effect of 𝑋0 on 𝑌 is represented by the coefficient �̂�𝑋0
(0)

. In 

Equation 5.2, the total causal effect of 𝑋1 on 𝑌 is represented by the coefficient �̂�𝑋1
(1)

; no 

interpretation of �̂�𝑋0
(1)

 is possible (nor should it be attempted) for 𝑋0 in Equation 5.2, as it acts 

purely as a confounder for the effect of 𝑋1 on 𝑌. 

A visual depiction of these equations is given in Figure 5.2. 
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Figure 5.2 Path diagrams depicting the two standard regression models that would be 
constructed to estimate the total causal effect of each of 𝑿𝟎 and 𝑿𝟏 on 𝒀 (i.e. Equation 5.1 
and Equation 5.2, respectively) 

 

For each model, only the final coefficient may be interpreted as a total causal effect; all other 
coefficients are greyed to illustrate that no such interpretation should be made for them. 

5.2.3 Unexplained residuals (UR) method 

A UR model allows us to quantify the total effects of both the initial measurement of 𝑋 (i.e. 𝑋0) 

and subsequent change in 𝑋 (i.e. 𝑋1) on the outcome 𝑌. To achieve this, a two-step process is 

implemented, summarised in Figure 5.3. 

Figure 5.3 Path diagrams depicting the two steps of constructing a UR model 

 

Step (1): the preparatory regression of 𝑋1 on 𝑋0 (Equation 5.3); and Step (2): the UR model 
(Equation 5.4). 

First, the second measurement of the exposure 𝑋1 is regressed on the initial measurement 𝑋0, 

as in: 

 𝑋1 = 𝛾0
(1)

+ 𝛾𝑋0
(1)

𝑋0 + 𝑒𝑋1   Equation 5.3 
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This produces a measure of each observation’s ‘expected’ value of 𝑋1 as predicted by its value 

of 𝑋0. The difference between the expected value of 𝑋1 and the observed value of 𝑋1 equals 

the residual term 𝑒𝑋1. Put another way, 𝑒𝑋1 represents the part of 𝑋1 ‘unexplained’ by 𝑋0. 

Second, 𝑌 is regressed on both the initial exposure 𝑋0 and subsequent residual term 𝑒𝑋1: 

 �̂�𝑈𝑅
(1)

= �̂�0
(1)

+ �̂�𝑿𝟎
(𝟏)

𝑋0 + �̂�𝒆𝑿𝟏
(𝟏)

𝑒𝑋1   Equation 5.4 

Keijzer-Veen, M.G. et al. (93) have previously demonstrated that the UR model in Equation 5.4 

is algebraically equivalent to the final standard regression model (Equation 5.2), whilst 

allowing for the interpretation of both coefficients (i.e. �̂�𝑋0
(1)

 and �̂�𝑒𝑋1
(1)

) as the total causal 

effects on 𝑌 of 𝑋0 and 𝑋1, respectively. Indeed, this is perceived to be a key advantage of UR 

models (177), since the final standard regression model may be prone to misinterpretation of 

the coefficient �̂�𝑋0
(1)

 (which represents the direct effect of 𝑋0 on 𝑌 only). 

5.2.3.1 Key properties of UR models 

The key properties of UR models are described and formally expressed mathematically in 

Table 5.1.  

Table 5.1 Description of key properties of UR models for a time-varying exposure 𝑿 
measured at two time points (i.e. 𝑿𝟎 and 𝑿𝟏) and one outcome 𝒀 

Property Description 

Mathematical 

formulation 

(i) 

The outcome values predicted by the final standard 

regression model (i.e. for exposure 𝑋1) are equal to those 

predicted by the UR model. 

�̂�𝑆
(1)

=  �̂�𝑈𝑅
(1)

  

(ii) 

The estimated coefficient for 𝑋0 in the initial standard 

regression model (i.e. for exposure 𝑋0) is equal to the 

estimated coefficient for 𝑋0 in the UR model. 

�̂�𝑋0
(0)

= �̂�𝑋0
(1)

  

(iii) 

The estimated coefficient for 𝑋1 in its individual standard 

regression model (i.e. for exposure 𝑋1) is equal to the 

estimated coefficient for the corresponding UR term 𝑒𝑋1 in 

the UR model. 

�̂�𝑋1
(1)

= �̂�𝑒𝑋1
(1)

  

 

Formal proofs of Properties (i) – (iii) are provided in Appendix B (§B.4, with 𝑇 = 2), though 

intuitive explanations are given below.  

Property (i) follows from the fact that the UR model (Equation 5.4) is simply a 

reparameterisation of the final standard regression model (Equation 5.2). Whereas the final 

standard regression model represents 𝑌 as a function of 𝑋0 and 𝑋1, the UR model represents 𝑌 
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as a function of 𝑋0 and 𝑒𝑋1. However, owing to the fact that 𝑒𝑋1 is a function of 𝑋0 and 𝑋1 

(Equation 5.3), the UR model itself is also a function of 𝑋0 and 𝑋1.  

Property (ii) follows from the fact that 𝑒𝑋1 is orthogonal to 𝑋0 by construction. Thus, the 

estimated effect of 𝑋0 on 𝑌 is the same regardless of whether or not 𝑒𝑋1 is included in the 

model. 

Property (iii) follows from the previous two. Adjustment for 𝑋0 in the standard regression 

model (Equation 5.4) amounts to testing the relationship between 𝑌 and the part of 𝑋1 

unexplained by 𝑋0 (i.e. the unexplained residual). Thus, the two coefficients are in fact equal 

because they mean the same thing (94), the only difference being that 𝑒𝑋1 is orthogonal to 𝑋0 

by construction but 𝑋1 is not.  

5.3 Understanding UR models using DAGs 

The unique properties of UR models can be easily visualised and understood using DAGs 

(Figure 5.1). If one were to naively model both measurements of the exposure (i.e. 𝑋0 and 𝑋1) 

simultaneously, only the coefficient for 𝑋1 could be interpreted as a total causal effect on 𝑌; 

the coefficient of 𝑋0 would represent only the direct effect of 𝑋0 on 𝑌, because 𝑋1 mediates 

the effect of 𝑋0 on 𝑌.  

However, the UR modelling process relies upon and exploits the independence (i.e. 

orthogonality) of the UR term 𝑒𝑋1, which is independent of 𝑋0 by construction. Thus, 𝑒𝑋1 does 

not act as a mediator for the effect of 𝑋0 on 𝑌. In fact, the UR term 𝑒𝑋1 can be understood as 

an instrumental variable (178) for 𝑋1 that has been produced by the modelling process.21 

More formally, we may apply the method of path coefficients (35, 36) to demonstrate that the 

‘true’ total causal effect of each measurement of the exposure (i.e. 𝑋0 and 𝑋1) in the data-

generating process is equal to the total causal effect of the associated terms in the UR model 

(i.e. 𝑋0 and 𝑒𝑋1, respectively). Because both the standard regression models and their 

corresponding UR models are based on linear regression (where the causal relationships 

between variables are assumed to be linear functions), we may parameterise the DAG in 

Figure 5.1 by assigning a single coefficient to every arrow and assuming all variables have a 

variance of one. We use the notation 𝑝𝑏𝑎 to represent the coefficient of the arrow 𝑎 → 𝑏. 

Table 5.2 gives the total effects of the model covariates in both the standard regression model 

and the corresponding UR model; each effect is decomposed into direct and indirect effects. 

As is evident, the total effects of 𝑋0 and 𝑒𝑋1 in the UR model are equivalent to the effects of 𝑋0 

and 𝑋1, respectively, in the standard regression model. This is because there are no direct 

paths between 𝑒𝑋1 and 𝑌, and the only indirect path passes through 𝑋1 (with 𝑝𝑋1𝑒𝑋1
  being 

equal to one, as in Figure 5.3). 

                                                           

21 The process shares similarities with the two-stage least squares regression method (179), a form of 
instrumental variable analysis commonly encountered in economics research. 
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Table 5.2 Comparing standard regression models and UR models using the method of path 
coefficients 

Exposure Path  Effect size Total effect 

Standard regression models (Equation 5.1 and Equation 5.2): 

𝑋0  
Direct: 𝑋0 → 𝑌  𝑝𝑌𝑋0

  
𝑝𝑌𝑋0

+ 𝑝𝑋1𝑋0
∙ 𝑝𝑌𝑋1

 
Indirect: 𝑋0 → 𝑋1 → 𝑌  𝑝𝑋1𝑋0

∙ 𝑝𝑌𝑋1
  

𝑋1  
Direct: 𝑋1 → 𝑌  𝑝𝑌𝑋1

  
𝑝𝑌𝑋1

   
Indirect: n/a  

‘Unexplained residuals’ (UR) model (Equation 5.4): 

𝑋0  
Direct: 𝑋0 → 𝑌  𝑝𝑌𝑋0

  
𝑝𝑌𝑋0

+ 𝑝𝑋1𝑋0
∙ 𝑝𝑌𝑋1

 
Indirect: 𝑋0 → 𝑋1 → 𝑌  𝑝𝑋1𝑋0

∙ 𝑝𝑌𝑋1
  

𝑒𝑋1  
Direct: n/a  

𝑝𝑌𝑋1
  

Indirect: 𝑒𝑋1 → 𝑋1 → 𝑌  𝑝𝑋1𝑒𝑋1
∙ 𝑝𝑌𝑋1

  

Total effects estimated by individual standard regression models (Equation 5.1 and 
Equation 5.2) compared to total effects estimated by a single composite UR model 
(Equation 5.4). 

5.4 Confounding adjustment within UR models 

Keijzer-Veen, M.G. et al. (93) did not address confounding variables in their original paper, and 

there has been little to no discussion or analysis of this issue by subsequent authors using UR 

models. Consequently, ad-hoc methods for confounding adjustment within UR models have 

arisen in the absence of any formal guidance. For instance, Horta, B.L. et al. (173) made no 

adjustments for potential confounders when deriving their UR terms, but did make 

adjustments within their UR model. In contrast, Gandhi, M. et al. (175) adjusted for one 

potential confounder when creating their UR terms, but also made further adjustments in the 

UR model. Different procedures for confounder adjustment abound in the literature. 

Because confounding is fundamentally a causal concept, considering how to correctly adjust 

for confounding within UR models is aided greatly by the use of a causal framework. To this 

end, we use DAGs to justify how to adjust for confounding variables in UR models, and prove 

mathematically in Appendix B that the resulting models satisfy the three properties of UR 

models (from Table 5.1). 

5.4.1 Baseline confounding 

We first consider the scenario in Figure 5.4, in which a baseline covariate 𝑀 confounds the 

relationship between each of 𝑋0, 𝑋1 and 𝑌.  
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Figure 5.4 Directed acyclic graph (DAG) depicting the hypothesised data-generating process 
for two measurements of a time-varying exposure 𝑿 (i.e. 𝑿𝟎 and 𝑿𝟏), one outcome 𝒀, and 
one baseline confounder 𝑴 

 

The terms 𝑒𝑋0, 𝑒𝑋1 and 𝑒𝑌 represent all unexplained causes of 𝑋0, 𝑋1 and 𝑌, respectively, and 
are included to explicitly reflect uncertainty in all endogenous nodes (whether modelled or not). 

Because the relationship between each of 𝑋0 and 𝑋1 and 𝑌 is confounded by 𝑀 in addition to 

any potential confounding by a previous measurement of 𝑋, 𝑀 must be included in the 

standard regression models, as in: 

 �̂�𝑆
(0)

= �̂�0
(0)

+ �̂�𝑀
(0)

𝑀 + �̂�𝑿𝟎
(𝟎)

𝑋0   Equation 5.5 

 �̂�𝑆
(1)

= �̂�0
(1)

+ �̂�𝑀
(1)

𝑀 + �̂�𝑋0
(1)

𝑋0 + �̂�𝑿𝟏
(𝟏)

𝑋1   Equation 5.6 

The total casual effects of 𝑋0 and 𝑋1 are represented by the coefficients �̂�𝑋0
(0)

 (Equation 5.5) 

and �̂�𝑋1
(1)

 (Equation 5.6), respectively; a visual depiction of these equations is given in 

Figure 5.5. 



- 71 - 
 

Figure 5.5 Path diagrams depicting the two standard regression models that would be 
constructed to estimate the total causal effect of each of 𝑿𝟎 and 𝑿𝟏 on 𝒀 in the presence of 
a baseline confounder 𝑴 (i.e. Equation 5.5 and Equation 5.6, respectively) 

 

For each model, only the final coefficient may be interpreted as a total causal effect; all other 
coefficients are greyed to illustrate that no such interpretation should be made for them. 

Fully adjusting for 𝑀 in the UR modelling process requires that 𝑀 be adjusted both when 

creating the UR term and in the UR model, as summarised in Figure 5.6. As is evident from the 

DAG in Figure 5.4, 𝑀 confounds the relationship between 𝑋0 and 𝑋1; therefore, when 𝑋1 is 

regressed on 𝑋0 to produce the UR term, 𝑀 must also be included as a covariate: 

 𝑋1 = 𝛾0
(1)

+ 𝛾𝑀
(1)

𝑀 + 𝛾𝑋0
(1)

𝑋0 + 𝑒𝑋1   Equation 5.7 

In this way, the UR term 𝑒𝑋1 represents the difference between the actual value of 𝑋1 and the 

value of 𝑋1 as predicted by 𝑋0, adjusted for the confounding effect of 𝑀.  
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Figure 5.6 Path diagrams depicting the two steps of constructing a UR model in the presence 
of a baseline confounder 𝑴 

 

Step (1): the preparatory regression of 𝑋1 on 𝑋0 (Equation 5.7); and Step (2): the UR model 
(Equation 5.8). 

Moreover, because 𝑀 confounds the effect of 𝑋0 on 𝑌, it is necessary to adjust for 𝑀 in the 

subsequent UR model: 

 �̂�𝑈𝑅
(1)

= �̂�0
(1)

+ �̂�𝑀
(1)

𝑀 + �̂�𝑿𝟎
(𝟏)

𝑋0 + �̂�𝒆𝑿𝟏
(𝟏)

𝑒𝑋1   Equation 5.8 

The UR model given in Equation 5.8 thus represents the outcome 𝑌 as function of the initial 

value of the exposure 𝑋0, the subsequent ‘unexplained’ increase 𝑒𝑋1, and the baseline 

confounder 𝑀. It can be proven (Appendix B, §B.5, with 𝑇 = 2) that this model satisfies the 

three properties of UR models. 

By considering the DAG in Figure 5.4 as a path diagram (as in §5.3), we can again visualise the 

properties of a UR model correctly adjusted for a baseline confounder 𝑀. A regression model 

containing 𝑀, 𝑋0, and 𝑋1 (as in Equation 5.6) would only allow for the interpretation of the 

coefficient for 𝑋1 as a total causal effect on 𝑌; the coefficient for 𝑋0 would represent only the 

direct effect on 𝑌, because 𝑋1 blocks the indirect path while 𝑀 blocks the backdoor path 

between 𝑋0 and 𝑌. However, within the UR model, the independence of the UR term 𝑒𝑋1 

ensures no indirect paths are blocked and the only backdoor path between 𝑋0 and 𝑌 is blocked 

by 𝑀. 
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5.4.2 Time-dependent confounding 

We finally consider the scenario in Figure 5.7, in which a time-varying covariate 𝑀0, 𝑀1 

confounds the relationship between each of 𝑋0, 𝑋1 and 𝑌.  

Figure 5.7 Directed acyclic graph (DAG) depicting the hypothesised data-generating process 
for two measurements of a time-varying exposure 𝑿 (i.e. 𝑿𝟎 and 𝑿), one outcome 𝒀, and 
two measurements of a time-dependent confounder 𝑴 (i.e. 𝑴𝟎 and 𝑴𝟏) 

 

The terms 𝑒𝑋0, 𝑒𝑀1, 𝑒𝑋1 and 𝑒𝑌 represent all unexplained causes of 𝑋0, 𝑀1, 𝑋1 and 𝑌, 
respectively, and are included to explicitly reflect uncertainty in all endogenous nodes (whether 
modelled or not). 

The relationship between each of 𝑋0, 𝑋1 and 𝑌 is not only potentially confounded by previous 

a measurement of 𝑋, but also by the current measurement and all previous measurements of 

the time-dependent confounder 𝑀. Thus, the standard regression models necessitate 

adjustment for 𝑀0 and 𝑀1 in the following way: 

 �̂�𝑆
(0)

= �̂�0
(0)

+ �̂�𝑀0
(0)

𝑀0 + �̂�𝑿𝟎
(𝟎)

𝑋0   Equation 5.9 

 �̂�𝑆
(1)

= �̂�0
(1)

+ �̂�𝑀0
(1)

𝑀0 + �̂�𝑋0
(1)

𝑋0 + �̂�𝑀1
(1)

𝑀1 + �̂�𝑿𝟏
(𝟏)

𝑋1   Equation 5.10 

The total causal effects of 𝑋0 and 𝑋1 are represented by the coefficients �̂�𝑋0
(0)

 (Equation 5.9) 

and �̂�𝑋1
(1)

 (Equation 5.10), respectively; visual depictions are provided in Figure 5.8. 
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Figure 5.8 Path diagrams depicting the two standard regression models that would be 
constructed to estimate the total causal effect of each of 𝑿𝟎 and 𝑿𝟏 on 𝒀 in the presence of 
time-dependent confounders 𝑴𝟎 and 𝑴𝟏 (i.e. Equation 5.9 and Equation 5.10, respectively) 

 

For each model, only the final coefficient may be interpreted as a total causal effect; all other 
coefficients are greyed to illustrate that no such interpretation should be made for them. 

Whereas adjustment for the time-fixed covariate 𝑀 is relatively straightforward using standard 

regression methods, extending the UR modelling process to accommodate 𝑀0 and 𝑀1 requires 

a significant extension to the original process formulated by Keijzer-Veen, M.G. et al. (93). This 

process is summarised visually in Figure 5.9. 
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Figure 5.9 Path diagrams depicting the three steps of constructing a UR model in the 
presence of time-dependent confounders 𝑴𝟎 and 𝑴𝟏 

 

Step (1): the preparatory regression of 𝑀1 on 𝑀0 and 𝑋0 (Equation 5.11); Step (2): the 
preparatory regression of 𝑋1 on 𝑀0, 𝑋0, and 𝑀1 (Equation 5.12); and Step (3): the UR model 
(Equation 5.13). 

The introduction of a time varying confounder necessitates the creation of UR terms for both 

the confounder 𝑀1 and the exposure 𝑋1 (i.e. 𝑒𝑀1 and 𝑒𝑋1, respectively). This is because UR 

models rely upon the orthogonality of the terms included in the model post-baseline. To this 

end, the UR term 𝑒𝑀1 is constructed by regressing 𝑀1 on all previous variables 𝑀0 and 𝑋0, as 

in: 

 𝑀1 = �̂�0
(1)

+ �̂�𝑀0
(1)

𝑀0 + �̂�𝑋0
(1)

𝑋0 + 𝑒𝑀1   Equation 5.11 

Similarly, the UR term 𝑒𝑋1 is constructed by regressing 𝑋1 on all previous variables 𝑀0, 𝑋0, and 

𝑀1, as in: 
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 𝑋1 = 𝛾0
1 + 𝛾𝑀0

(1)
𝑀0 + 𝛾𝑋0

(1)
𝑋0 + 𝛾𝑀1

(1)
𝑀1 + 𝑒𝑋1   Equation 5.12 

The UR terms 𝑒𝑀1 and 𝑒𝑋1 thus represent the difference between the observed value of their 

respective variables and the value of those variables as predicted by all previous 

measurements. 

The UR model, then, represents 𝑌 as a function of the initial value of the confounder 𝑀0 and 

the exposure 𝑋0, and the subsequent ‘unexplained’ increases 𝑒𝑀1 and 𝑒𝑋1, respectively: 

 �̂�𝑈𝑅
(1)

= �̂�0
(1)

+ �̂�𝑀0
(1)

𝑀0 + �̂�𝑿𝟎
(𝟏)

𝑋0 + �̂�𝑒𝑀1
(1)

𝑒𝑀1 + �̂�𝒆𝑿𝟏
(𝟏)

𝑒𝑋1   Equation 5.13 

It can be proven (Appendix B, §B.6, with 𝑇 = 2) that this model satisfies the three properties 

of UR models. 

While it may not seem immediately obvious as to why UR terms must be created for both the 

exposure and the time-dependent confounder in this case, considering the DAG in Figure 5.7 

as a path diagram (as previously in §5.3 and §5.4.1) sheds light on this. A regression model 

containing all of 𝑀0, 𝑋0, 𝑀1, 𝑋1 (as in Equation 5.10) does not allow for the interpretation of 

the coefficient of 𝑋0 as a total causal effect, because the indirect paths between 𝑋0 and 𝑌 are 

blocked by both 𝑀1 and 𝑋1. However, when we create the UR terms 𝑒𝑀1 and 𝑒𝑋1 which are 

independent of 𝑋0 by construction, they do not block any of the effect of 𝑋0 on Y. 

5.5 Extension of UR models to a time-varying exposure measured at 𝑻 
time points 

Although the method of using unexplained residuals was originally formulated and introduced 

for a scenario involving just two measurements of a time-varying exposure (i.e. Figure 5.1), 

many authors have also extended the method ad-hoc to accommodate scenarios involving 𝑇 

measurements of a time-varying exposure, as in Figure 5.10. This has resulted in different 

methods for deriving the UR terms 𝑒𝑋1, 𝑒𝑋1, … , 𝑒𝑋(𝑇−1), and uncertainty about which is in fact 

correct. For example, Horta, B.L. et al. (173), Gandhi, M. et al. (175), and Toemen, L. et al. (168) 

derived each UR term 𝑒𝑋𝑡 by regressing each measured value of the exposure 𝑋𝑡 on all 

previous measurements 𝑋0, 𝑋1, … , 𝑋𝑡−1, for 1 ≤ 𝑡 ≤ (𝑇 − 1). In contrast, Hardy, R. et al. (180) 

derived each UR term 𝑒𝑋𝑡 by regressing each measured value of the exposure 𝑋𝑡 on only the 

previous measure 𝑋𝑡−1, for 1 ≤ 𝑡 ≤ (𝑇 − 1). 
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Figure 5.10 DAG depicting the hypothesised data-generating process for 𝑻 measurements of 
a time-varying exposure 𝑿 (i.e. 𝑿𝟎, 𝑿𝟏, … , 𝑿𝑻−𝟏) and one outcome 𝒀. 

 

The terms 𝑒𝑋1, … , 𝑒𝑋(𝑇−1), 𝑒𝑌 represent all unexplained causes of 𝑋1, … , 𝑋𝑇−1, 𝑌, respectively, 

and are included to explicitly reflect uncertainty in all endogenous nodes (whether modelled or 
not). 

Determining how to extend the method of unexplained residuals to a time-varying exposure 

measured at 𝑇 time points (as in Figure 5.10) is greatly aided by the use of DAGs, as previously. 

To create a UR model for the scenario depicted in Figure 5.10, each UR term 𝑒𝑋𝑡 should be 

derived from the regression of each measured value of the exposure 𝑋𝑡 on all previous 

measurements 𝑋0, 𝑋1, … , 𝑋𝑡−1, for 1 ≤ 𝑡 ≤ (𝑇 − 1), in order to maintain the orthogonality of 

the UR terms with all other terms in the model. The outcome 𝑌 should then be regressed on 

𝑋0 and all subsequent UR terms 𝑒𝑋1, 𝑒𝑋1, … , 𝑒𝑋(𝑇−1).  

This can be formally proven mathematically, as in Appendix B (§B.4). 

5.5.1 Confounding adjustment 

Here, we also summarise how to adjust for both baseline and time-dependent confounders in 

the extended UR models. These results follow naturally from the original scenarios considered 

previously (i.e. in §5.4.1 and §5.4.2), and so we only briefly outline the results. 

Formal proofs are provided in Appendix B (§B.5 and §B.6, respectively). 

5.5.1.1 Baseline confounding 

Where there exists a baseline covariate 𝑀 which confounds the relationship between each of 

𝑋0, 𝑋1, … , 𝑋𝑇−1 and 𝑌 (Figure 5.11), each UR term 𝑒𝑋𝑡 should be derived from the regression of 

each measured value of the exposure 𝑋𝑡 on all previous measurements 𝑋0, 𝑋1, … , 𝑋𝑡−1, for 

1 ≤ 𝑡 ≤ (𝑇 − 1), and on 𝑀. The UR model should then be constructed by regressing 𝑌 on 𝑀, 

𝑋0, and all subsequent UR terms 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑇−1). 
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Figure 5.11 DAG depicting the hypothesised data-generating process for 𝑻 measurements of 
a time-varying exposure 𝑿 (i.e. 𝑿𝟎, 𝑿𝟏, … , 𝑿𝑻−𝟏), one outcome 𝒀, and one baseline 
confounder 𝑴 

 

The terms 𝑒𝑋0, 𝑒𝑋1, … , 𝑒𝑋(𝑇−1), 𝑒𝑌 represent all unexplained causes of 𝑋0, 𝑋1, … , 𝑋𝑇−1, 𝑌, 

respectively, and are included to explicitly reflect uncertainty in all endogenous nodes (whether 
modelled or not). 

5.5.1.2 Time-dependent confounding 

Where there exists a time-varying covariate 𝑀0, 𝑀1, … , 𝑀𝑇−1 which simultaneously confounds 

and mediates the relationship between distinct measurements of 𝑋 and 𝑌 (Figure 5.12), UR 

terms 𝑒𝑋𝑡 and 𝑒𝑀𝑡 must be created for all post-baseline measurements of the exposure 𝑋𝑡 and 

confounder 𝑀𝑡, respectively, for 1 ≤ 𝑡 ≤ (𝑇 − 1). Each UR term 𝑒𝑀𝑡 should be derived from 

the regression of each measured value of the time-dependent confounder 𝑀𝑡 on all previous 

measurements of the confounder 𝑀0, 𝑀1, … , 𝑀𝑡−1 and on all previous measurements of the 

exposure 𝑋0, 𝑋1, … , 𝑋𝑡−1. Each UR term 𝑒𝑋𝑡 should be derived from the regression of each 

measured value of the exposure 𝑋𝑡 on all previous measurements of the exposure 

𝑋0, 𝑋1, … , 𝑋𝑇−1 and on all previous measurements of the confounder 𝑀0, 𝑀1, … , 𝑀𝑡. Finally, 

the UR model should be constructed by regressing 𝑌 on 𝑀0, 𝑋0, and all subsequent UR terms 

𝑒𝑀1, … , 𝑒𝑀(𝑇−1), 𝑒𝑋1, … , 𝑒𝑋(𝑇−1). 
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Figure 5.12 DAG depicting the hypothesised data-generating process for 𝑻 measurements of 
a time-varying exposure 𝑿 (i.e. 𝑿𝟎, 𝑿𝟏, … , 𝑿𝑻−𝟏), one outcome 𝒀, and 𝑻 measurements of a 
time-varying exposure 𝑴 (i.e. 𝑴𝟎, 𝑴𝟏, … , 𝑴𝑻−𝟏) 

 

The terms 𝑒𝑋0, 𝑒𝑀1, 𝑒𝑋1, … , 𝑒𝑀(𝑇−1), 𝑒𝑋(𝑇−1), 𝑒𝑌 represent all unexplained causes of 

𝑋0, 𝑀1, 𝑋1, … , 𝑀𝑇−1, 𝑋𝑇−1, 𝑌, respectively, and are included to explicitly reflect uncertainty in all 
endogenous nodes (whether modelled or not). 

5.6 Artefactual standard error reduction using UR models 

While a UR model is algebraically equivalent to its associated standard regression model (as in 

Equation 5.4 and Equation 5.2, respectively), a previously unexamined issue surrounding their 

use and implementation is that of an artefactual reduction in coefficient standard errors (SEs). 

Although focus on statistical significance by way of p-values and confidence intervals is not in 

and of itself justifiable within a causal framework (where focus is on effect sizes and likely 

functional significance, e.g. the absolute risk posed), the artificial precision of estimated effect 

sizes within a UR model must nevertheless be considered. 

By definition, the SE of an estimated regression coefficient is a point estimate of the standard 

deviation of an (infinitely) large sampling distribution of estimated regression coefficients. 

Because standard regression and UR models elicit identical point estimates of the total causal 

effect of each measure of a time-varying exposure on the outcome of interest, it follows that 

the associated SEs should themselves be equal. However, this is not the case. 

Standard regression models estimate the total causal effect of a particular measurement of the 

exposure using information from the past only (i.e. any past measures of the exposure plus any 

potential confounders). In contrast, UR modelling process generates (orthogonal) residuals for 

the entire exposure period and combines these into a single model, thereby using information 

that is from both the past and the future. If we possessed data pertaining to any true 

independent causes of future measurements of the exposure, this would be valid; however, 

the UR terms are simply estimated using prior measurements of the exposure. Moreover, the 

UR terms are estimates which thus consequently contain additional variation that is not 

accommodated by traditional regression methods. As a result, the SEs of estimated causal 

effects derived from UR models are artificially reduced and should not be inferred as robust. 
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Indeed, when the SEs within the UR models are estimated via bootstrapping, they are similar 

to those within the standard regression models. 

5.6.1 Simulated example 

To briefly demonstrate the artefactual standard error reduction that results from the use of UR 

models, we consider the simple example depicted in Figure 5.1, which involves two 

measurements of a time-varying exposure 𝑋 (i.e. 𝑋0 and 𝑋1) and a subsequent outcome 𝑌. 

5.6.1.1 Method 

1,000 non-overlapping random samples of 1,000 observations from a multivariate normal 

distribution were simulated based upon the DAG in Figure 5.1 using the ‘dagitty’ package (v. 

0.2-2) in R (v. 3.3.2) (46, 47, 161).  

For each sample, the following steps were carried out:  

1. The two standard regression models necessary for estimating the total causal effect of 

each of 𝑋0, 𝑋1 on 𝑌 (Equation 5.1 and Equation 5.2, respectively) were created;  

2. The UR term 𝑒𝑋1 was derived by regressing  𝑋1 on 𝑋0 (Equation 5.3); and  

3. The UR model in which 𝑌 is regressed on 𝑋0 and 𝑒𝑋1 (Equation 5.4) was created.  

For each standard regression model, the reported SE of the regression coefficient for the 

exposure (i.e. 𝑋0 and 𝑋1, respectively) was stored. For each UR model, the SE of the regression 

coefficients for each of 𝑋0 and 𝑒𝑋1 was stored in two forms: (1) as reported in the UR model 

summary output; and (2) as estimated by bootstrapping 1000 samples and calculating the 

standard deviation of the distribution of estimated coefficients.  

Additional details relating to this simulation, including parameters and code, can be found in 

Appendix B (§B.7). 

5.6.1.2 Results and discussion 

Violin plots of the SEs estimated for each coefficient representing a total causal effect across 

the 1000 simulations are displayed in Figure 5.13 for each method considered. 

As is evident from Figure 5.13, the reported SEs within the UR models are reduced in 

comparison to those within the first standard regression models (for exposure 𝑋0) and equal 

to those within the final standard regression models (for exposure 𝑋1).  

Although the magnitude of bias in estimated SEs is small in this simulated example, it will 

always be present due to the way in which UR models are constructed. Quantifying the 

magnitude of this bias is not trivial and is beyond the scope of the present research, but it is 

worth noting that the degree of bias will increase as the number of measurements of the time-

varying exposure and/or time-dependent confounders increases (i.e. as more orthogonal 

terms are added to the UR model). 
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Figure 5.13 Violin plots comparing the standard errors (SEs) associated with equivalent 
coefficients estimated in standard regression vs. UR models 

 

Data were simulated based upon the scenario depicted in Figure 5.1. Horizontal bars within 
each distribution represent the mean ± 1 standard deviation. 

5.7 Implications 

We have demonstrated that UR models are able to quantify the total causal effect of multiple 

measurements of a time-varying exposure on a subsequent outcome in a single model, even in 

the presence of baseline and time-dependent confounding. However, the modelling process is 

substantially more complex to implement than standard regression methods. Although only 

one UR model need ultimately be presented, the necessity of generating orthogonal UR terms 

for all post-baseline variables requires that multiple models be created. In fact, the total 

number of models created by the UR process will always be either equal to or greater than the 

total number of models created by the standard regression process. 

For an exposure 𝑋 measured at 𝑇 points in time, the standard regression approach 

necessitates 𝑇 separate models for estimating the total causal effect of each measurement on 

the outcome regardless of the number of confounders. In the case of one time-invariant 

confounder (Figure 5.11), 𝑇 models are also created (i.e. 𝑇 − 1 models to generate all UR 

terms and one UR model); for a time-dependent confounder (Figure 5.12), 2𝑇 − 1 models are 

created (i.e. 2𝑇 − 2 models to generate all UR terms and one UR model). Where there exist 

multiple, causally-linked confounders, the number of intermediate or ‘preparatory’ models 

increases by orders of magnitude.  

If the additional complexity of UR models were offset by true gains in insight into the scenario 

under consideration, the method may in fact be preferred to standard regression methods. 

However, as has been demonstrated, they offer no additional insights compared to standard 

regression methods, and indeed the additional challenges associated with implementing them 

may result in additional errors. Moreover, UR models may create unwarranted confidence in 
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the precision of estimated effect sizes. Previous research that has utilised UR models without 

undertaking sufficient adjustment for confounders and correcting standard errors via 

bootstrapping should not be considered robust. 

5.8 Summary 

Regression with ‘unexplained residuals’ was introduced as a method to circumvent the need 

for multiple standard regression models to estimate the total causal effects of multiple 

measurements of a time-varying exposure on a subsequent outcome, and to ‘solve’ the 

potential interpretational challenges associated with multiple models. This chapter 

demonstrates that DAGs are useful for understanding the properties of UR models and 

determining how to correctly adjust for confounding, which has allowed for the benefits and 

drawbacks of the method to be fully evaluated against traditional regression approaches. 

Using DAGs, the benefits of UR models have been demonstrated to be little more than illusory, 

as the method provides no additional insight compared to standard regression methods. 

Moreover, the additional complexity required to implement them (particularly in the case of 

time-dependent confounding) makes them more vulnerable to analytical and interpretational 

issues.  
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Chapter 6  
Microsimulation modelling 

6.1 Introduction 

Estimating the causal effect of a time-varying exposure on a subsequent outcome is both 

theoretically and computationally challenging. Standard regression methods and UR models 

(considered previously in Chapter 5) are able to estimate causal effects in this context; 

however, they do so by considering separate measurements of the exposure as if they were 

distinct entities, which remains unsatisfactory in many situations. Microsimulation models 

(MSMs) have been identified as promising tools for considering multiple measurements of the 

exposure together as an exposure regime, and parallels between microsimulation and the g-

formula have been recognised previously (99).22 However, the conditions under which MSMs 

provide robust estimates of causal effects are not well understood, nor are the unique 

challenges presented by simulation approaches fully appreciated. 

Chapter 6 considers MSMs within a formal causal framework. This allows us to draw explicit 

parallels between the data-generating processes modelled in MSMs and those represented by 

DAGs, in order to consider the different issues associated with modelling this process using 

microsimulation compared to the g-formula. To this end, we simulate a longitudinal population 

for which the data-generating process is known, and interrogate it from the perspective of 

both methods. We demonstrate how the process of constructing an MSM might be improved 

by using DAGs, and investigate how reliable and/or robust microsimulation and the g-formula 

might be for longitudinal studies where the data-generating process is mis-specified to varying 

degrees. This chapter establishes a framework and simulation template for the evaluation of 

longitudinal methods from a sensitivity perspective for methods robustness. 

6.1.1 Chapter overview 

In Section 6.2, we introduce the key features and concepts of microsimulation. We emphasise 

important similarities between the data-generating processes modelled in MSMs and those 

represented by DAGs (§6.2.1), and we illustrate how an MSM can be represented as a DAG in 

the context of a specific example scenario (§6.2.1.1). Additionally, we highlight key differences 

between the g-formula and microsimulation (§6.2.2).  

In Section 6.3, we outline the implications which result from the differences between the g-

formula and microsimulation, specifically those which pertain to the relative importance of 

faithfully modelling the true data-generating process of the target population. This sets the 

                                                           

22 MSMs are also commonly referred to as ‘state transition models’ (136), ‘decision analytic models’ 
(136, 146), and Markov models (181), particularly in clinical decision analysis and health-economic 
evaluation. 
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stage for (and provides the rationale behind) the simulations which are presented in the 

following section. 

In Section 6.4, we describe and present the results of a simulation in which we evaluated how 

methodological differences between the g-formula and microsimulation affected estimation of 

causal effects. We simulate a longitudinal population for which the data-generating process is 

known (§6.4.1), and interrogate it from the perspective of both the g-formula and 

microsimulation (§6.4.2). 

In Section 6.5, we discuss the results of our findings, including limitations and areas for future 

work (§6.5.1). 

6.2 Microsimulation models (MSMs) 

MSMs simulate an artificial population of heterogeneous individuals, typically over a long time 

horizon that extends into the future.23 Each individual in the model possesses a set of 

attributes or ‘states’ (e.g. physical, socio-demographic, geographic), which may be updated 

throughout the simulation; in particular, individuals are often defined as belonging to one of a 

finite number of mutually exclusive and collectively exhaustive states, and events of interest 

are modelled as transitions from one state to another that occur according to a set of 

deterministic and/or stochastic rules (i.e. ‘transition probabilities’) (136, 141, 181, 182). The 

parameters governing transitions between states often depend on an individual’s 

characteristics and possibly on previous history, and these parameters are typically estimated 

from a wide range of data sources, such as cohort studies, population-based epidemiological 

studies, and RCTs (136, 183). 

MSMs may be either case-based or time-based (184). In a case-based model, individuals are 

simulated one at a time through all time points; in a time-based model, all simulated 

individuals are transitioned simultaneously through the model. Both methods produce 

equivalent results where there are no interactions amongst individuals, but time-based models 

tend to be more computationally efficient since they can easily be vectorised (185). 

Additionally, MSMs may be modelled in either discrete or continuous time (184). In a discrete-

time model, transitions between states occur at discrete time steps; in a continuous-time 

model, the duration between state transitions is modelled in continuous time. In this chapter, 

we focus only on discrete-time MSMs, as they share natural parallels with the causal data 

structures considered throughout this thesis.24 

                                                           

23 Note that the term ‘microsimulation’ may also refer to the process by which a cross-sectional 
snapshot of a population is created by generating a synthetic set of individuals whose 
characteristics match aggregate, area-level statistics; this type of microsimulation is referred to as 
‘spatial microsimulation’ (95). However, the focus of this chapter relates primarily to 
microsimulation which is explicitly longitudinal. 

24 The depiction of continuous time and competing events using DAGs is complicated by their 
discretised nature, in which variables are required to have a clear time ordering. There is new 
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An MSM may simply be used to model the ‘natural history’ of the population, which describes 

the progression of the population under no exogenous intervention (182); such a model might 

be used for the purposes of population projection, for instance (184). Additionally, an MSM 

may also be used to model ‘counterfactual histories’, which describe the progression of the 

population under various hypothetical interventions (98). This has historically made MSMs 

important tools for policy evaluation (3). 

6.2.1 Representing an MSM as a DAG 

A key aspect of microsimulation is evolution, which is a concept closely related to data-

generating processes. For instance, Ryder, N.B. (188) note that the focus is on ‘events rather 

than things, processes rather than states’. This is echoed by van Imhoff, E. and W. Post (189), 

who argue that an MSM should not only specify what the population will look like at some 

future point in time, but also how it gets there. 

There exist clear parallels between the data-generating processes modelled in MSMs and 

those represented by DAGs. At every time point in an MSM, each individual’s characteristics 

may be updated according to some specified probabilities, which may themselves be 

conditional on any number of current and/or past characteristics; each characteristic may thus 

be thought of as having a conditional probability (or distribution) associated with it. Similarly, 

each variable in a DAG is hypothesised to have a probability (or distribution), conditional on 

the variables which directly cause it.  

These similarities make representation of an MSM as a DAG useful and informative, as it helps 

to draw explicit parallels between the two processes and enables us to understand the 

conditions under which MSMs may provide valid causal effect estimates. In the following 

subsection, we illustrate how this might be done in the context of a specific example scenario. 

6.2.1.1 Example scenario 

We consider an example scenario involving eleven time periods (i.e. 𝑇 = 11) and three 

variables: (1) sex (female or male); (2) obesity status (non-obese or obese); and (3) diabetes 

status (non-diabetic or diabetic). At baseline (i.e. 𝑡 = 0), individuals possess a value for each of 

the three attributes. At each time 𝑡, for 1 ≤ 𝑡 ≤ 10, each individual’s obesity and diabetes 

states may be updated according to some conditional probability. Specifically, obesity status at 

time t is conditional on sex, obesity status at time 𝑡 − 1, and diabetes status at time 𝑡 − 1; 

diabetes status at time 𝑡 is conditional on sex, diabetes status at time 𝑡 − 1, and obesity status 

at time 𝑡. 

A DAG offers a useful way to visually summarise the aforementioned process, as in Figure 6.1. 

Panel (1) depicts the full data-generating process (i.e. for 0 ≤ 𝑡 ≤ 10). While correct, this 

representation may nevertheless be difficult to interpret due to the number of time points. 

                                                           

research being done in the area of causal inference in the presence of competing events (186, 
187), but this is beyond the scope of the present research. 
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Therefore, in panel (2) we exploit the repeated nature of the data-generating process to 

produce a simplified representation for time 𝑡; variables depicted in grey are those which 

affect variables at time 𝑡 but whose causes are not themselves represented in the graph. Panel 

(2) allows for easier visualisation of the data-generating process and identification of the 

conditional probabilities which govern it. 

The data-generating process described in Figure 6.1 may be thought of as the ‘natural history’ 

of the population, as it represents the population under no exogenous intervention. 

Figure 6.1 DAG representing the data-generating process for the variables sex (𝑺), obesity 
(𝑶), and diabetes (𝑫), for 𝟎 ≤ 𝒕 ≤ 𝟏𝟎 

 

In (1), the full DAG (i.e. for 0 ≤ 𝑡 ≤ 10) is depicted. In (2), only the data-generating process for 
time 𝑡 is depicted; variables in grey are those which affect variables at time 𝑡 but whose causes 
are not themselves represented in the graph. 

6.2.2 Key differences between the g-formula and microsimulation 

Parallels between the g-formula and microsimulation have been recognised by Murray, E.J. et 

al. (99), who describe the use of a ‘similar mathematical approach: construction of a sequential 

model that is the basis for a Monte Carlo simulation of a (counterfactual) population under 

each treatment strategy of interest.’ The g-formula involves modelling the observed joint 

distribution of the data, and then estimating the (counterfactual) distributions under various 

interventions to calculate causal effects. This can be related to an MSM, which models the 

‘natural history’ of the population and then estimates the ‘counterfactual histories’ under 

various interventions. However, although the two are methodologically similar, there exist key 

differences which arise from their distinct historical evolutions (as outlined in Chapter 3).  
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The joint distribution of the data is generally unknown and cannot be directly estimated in a 

microsimulation model (189). This is because microsimulation models are often used to make 

general inferences about a population, and often in the future. This is in contrast to the g-

formula, which makes inferences about a specific (often highly-selected) population from a 

single retrospective dataset (99). Thus, using the g-formula, the conditional probability of 

every variable at every time point in Figure 6.1 can be estimated from a single dataset. MSMs, 

however, do not have direct access to these probabilities. In this way, the g-formula may be 

thought of as a special case of microsimulation, in which we have access to the entire joint 

distribution of all variables and in which all parameters come from a single dataset. 

6.3 The importance of faithfully modelling data-generating processes 

The differences between the g-formula and microsimulation which were highlighted in the 

previous section (§6.2.2) have implications for the relative importance of faithfully modelling 

the data-generating process of the target population using each method. 

Using microsimulation, the future distributions of states in the population must be generated 

by the repeated processes specified in the model. As described by van Imhoff, E. and W. Post 

(189), ‘microsimulation models can be regarded as models which generate their own 

explanatory variables’, thus underscoring  the importance of modelling the true data-

generating process. Likewise, DAG-based methods – including the g-formula – emphasise the 

importance of understanding and modelling data-generating processes in order to make causal 

inferences. However, the g-formula is potentially more robust to mis-specifications of the 

data-generating processes because it uses data from the entire distribution of data to estimate 

the observed (i.e. natural) and counterfactual distributions. Mis-specifications in the data-

generating process in an MSM are likely to have more consequential onward effects which 

result in biased estimates of both natural and counterfactual histories.  

Moreover, an MSM is arguably more likely to simplify the data-generating process being 

modelled due to the way in which it is constructed. Whereas implementing the g-formula 

requires estimating the parameters governing the conditional probability of each variable (at 

each time point) from a single dataset, implementing an MSM requires specifying the 

parameters governing these conditional probabilities to produce a plausible population. The 

additional challenges of specifying such parameters, which frequently must be combined from 

multiple datasets, may encourage simplification of the data-generating process. Indeed, 

Murray, E.J. et al. (183) highlight some of the challenges associated with parameterising direct 

effects in MSMs, including the lack of clear guidance on how to use published effect estimates 

to inform model construction. 

In the following section, we present the results of a simple simulated example, in which we 

evaluated how methodological differences between the g-formula and microsimulation 

affected estimation of natural and counterfactual histories. In particular, we investigated how 
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robust each method was to varying degrees of mis-specifications of the data-generating 

process. 

6.4 Simulated example 

We conducted a simple simulation based on the example scenario described previously in 

Section 6.2.1.1, in order to demonstrate the importance of faithfully modelling true data-

generating processes, and to assess the relative performance of the g-formula and 

microsimulation for estimating natural and counterfactual histories when the data-generating 

process was mis-specified to varying degrees. A brief overview of this simulation is given 

below. 

First, we simulated a population for which the data-generating process was known. We 

simulated both the ‘natural history’ of this population and the ‘counterfactual histories’ of this 

population under six hypothetical interventions. These histories represent the true histories of 

the population, which any method should aim to faithfully replicate in order to estimate the 

true intervention effects. This simulation is described and its results presented in Section 6.4.1 

We then used both the g-formula and microsimulation to model the true natural and 

counterfactual histories of the population in order to estimate the causal effects of the 

interventions in the population, using hypothesised data-generating processes which differ 

from the true data-generating process to varying degrees. When both methods correctly 

modelled the true data-generating process of the population, we expected them to perform 

equally well at replicating both the true natural and counterfactual histories of the population 

under intervention. Conversely, we expected both methods to be biased for estimating the 

true natural and counterfactual histories when the data-generating process was mis-specified; 

however, we expected the g-formula to be more robust to mis-specification since it utilised 

data from the population across all time points. These simulations are described and their 

results are presented in Section 6.4.2. 

The results of our simulations are synthesised and discussed in Section 6.4.3, and the potential 

for substantive changes to our methodological findings through specific sensitivity analyses are 

explored in Section 6.4.4. 

6.4.1 Simulation of a population according to the true data-generating process 

We simulated a population for which the data-generating process was known, according to 

that which is depicted in the DAG in Figure 6.1. For simplicity, we simulated a closed 

population (i.e. where no individuals dropped out of the simulation and no new individuals 

entered it post-baseline). 

In the following subsections, we describe our simulations relating to the ‘natural history’ of 

this population (§6.4.1.1) and the ‘counterfactual histories’ under six hypothetical 

interventions which targeted obesity (the ‘exposure’) (§6.4.1.2). We also calculate the true 
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population average causal effect of each intervention on diabetes prevalence at time 10 (the 

‘outcome’) (§6.4.1.3). 

6.4.1.1 Natural history 

Longitudinal data for 5 million individuals were simulated using a discrete time, time-based 

microsimulation model in R (v.3.5.2) (190), according to the data-generating process depicted 

in Figure 6.1. The population size was chosen to be sufficiently large that all possible exposure 

and covariate histories would be represented, in order to capture the important features in 

the data-generating process. 

Simulation parameters were chosen to produce a population whose characteristics 

approximately tracked the true overall and disaggregated (by sex) prevalence of obesity and 

diabetes in England, as reported by the Health Survey for England (HSE) for the years 1994 to 

2004 (191, 192). Briefly, males were simulated to have a higher overall probability of obesity 

compared to females at baseline, and a higher probability of developing obesity (i.e. incident 

probability) at each time 𝑡; the effect of previous diabetes on the probability of obesity at time 

𝑡 was positive but modest for both males and females. Males were also simulated to have a 

higher overall probability of diabetes compared to females at baseline, and a higher 

probability of developing diabetes at each time 𝑡; obesity substantially increased the risk of 

developing diabetes for both males and females. Once an individual developed diabetes, 

he/she maintained that status for all subsequent time points. 

Appendix C contains the simulation parameters (§C.2.1.1.1), a fuller description of the 

characteristics of the simulated population (§C.2.1.1.2), a comparison of the simulated 

population with HSE statistics (§C.2.1.1.3), and all annotated R code relating to this simulation 

(§C.2.1.1.4).  

6.4.1.2 Counterfactual histories under hypothetical interventions 

The effects on diabetes prevalence as observed at time 10 due to the following population 

interventions were simulated: 

Intervention 1: Prevent anyone from being obese (i.e. reduce the incident and prevalent 

probabilities of obesity to zero). 

Intervention 2: Make everyone obese (i.e. increase the incident and prevalent 

probabilities of obesity to one). 

Intervention 3: Prevent any new individuals from becoming obese (i.e. reduce the 

incident probability to zero). 

Intervention 4: Reduce the probability of becoming obese by 15% (i.e. reduce the 

incident probability by 0.15). 

Intervention 5: Reduce the probability of remaining obese by 10% (i.e. reduce the 

prevalent probability by 0.10). 
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Intervention 6: Reduce the probability of becoming obese by 15% and reduce the 

probability of remaining obese by 10% (i.e. both Interventions 4 and 5 

were combined).  

As is evident, all interventions targeted diabetes prevalence indirectly – that is, they altered 

diabetes prevalence by altering obesity. Because diabetes could not be reversed in our 

simulation, and no individuals were ‘lost to follow-up’, no intervention on obesity could be 

expected to reduce diabetes prevalence to zero. Nevertheless, each intervention could be 

expected to modify diabetes prevalence to some degree. 

All interventions were applied to the population at each time point post-baseline (i.e. for 1 ≤

𝑡 ≤ 10). Because the simulation progresses via a series of stochastic events, each intervention 

was simulated fifty times, and the mean of all simulation runs was calculated to be the ‘true’ 

counterfactual population average history under the specified intervention. 

Figure 6.2 displays obesity prevalence at each time point under each intervention, compared 

to the natural history of obesity prevalence in the population. Figure 6.3 displays diabetes 

prevalence at each time point under each intervention, compared to the natural history of 

diabetes prevalence in the population. Figure 6.4 displays the proportion of individuals with 

each combination of characteristics at each time point under intervention, compared to that of 

the natural history. 

Appendix C contains a more thorough discussion of the effects of each intervention on obesity 

and diabetes prevalence (§C.2.1.2.2) and all annotated R code relating to this simulation 

(§C.2.1.2.3). 
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6.4.1.3 True causal effects of interventions 

We defined the true population average causal effect of each intervention on diabetes 

prevalence to be the difference between natural diabetes prevalence at time 10 (i.e. under the 

natural history) and mean diabetes prevalence at time 10 under that intervention (i.e. under 

the counterfactual history). For example, the true causal effect of Intervention 1 was 

calculated by subtracting the observed diabetes prevalence at time 10 under the natural 

history from the average diabetes prevalence at time 10 that was observed when Intervention 

1 was applied to the population. 

In addition, we defined the true population average total causal effect (TCE) of obesity on 

diabetes to be the difference between average diabetes prevalence at time 10 if everyone 

were obese at all time points post-baseline (i.e. for 1 ≤ 𝑡 ≤ 10) and average diabetes 

prevalence at time 10 if no one were obese at any time point post-baseline.  The true TCE of 

obesity on diabetes was therefore calculated by subtracting the average diabetes prevalence 

at time 10 that was observed when Intervention 1 was applied to the population from that 

which was observed when Intervention 2 is applied.25  

Table 6.1 contains the true causal effects of each intervention on diabetes prevalence, as well 

as the TCE of obesity on diabetes. 

                                                           

25 This represents the standard definition of the TCE in the setting of a time-varying exposure (6). We 
acknowledge that it is an unrealistic effect to estimate from a practical or policy perspective, but 
we nevertheless believe it is important to calculate in our analyses because it is often of calculated 
in standard epidemiological analyses of time-varying exposures. 
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Table 6.1 Table describing the true population average causal effect of each intervention on 
diabetes prevalence in the simulated population 

Effect Value 

Effect of Intervention 1 
(prevent individuals from being obese) 

-0.0112 

(-26.9%) 

Effect of Intervention 2 
(make all individuals obese) 

0.0080 

(19.3%) 

Effect of Intervention 3 
(prevent anyone from becoming obese) 

-0.0034 

(-8.2%) 

Effect of Intervention 4 
(reduce probability of becoming obese 
by 15%) 

-0.0004 

(-0.9%) 

Effect of Intervention 5 
(reduce probability of remaining obese 
by 10%) 

-0.0031 

(-7.4%) 

Effect of Intervention 6 
(reduce probability of becoming obese 
by 15% and remaining obese by 10%) 

-0.0035 

(-8.3%) 

Total causal effect (TCE) 
0.0192 

(63.2%) 

The true causal effect of each intervention (1 through 6) on diabetes prevalence was calculated 
by subtracting the observed diabetes prevalence at time 10 under the natural history from the 
average diabetes prevalence at time 10 that was observed when the given intervention is 
applied to the population. The true TCE was calculated by subtracting the average diabetes 
prevalence at time 10 that was observed when Intervention 1 was applied to the population 
from that which is observed when Intervention 2 was applied. All effects are additionally 
expressed as percentage changes. 

6.4.2 Comparison of the g-formula versus microsimulation for estimating true 
causal effects in the population 

We investigated the robustness of the g-formula and microsimulation for replicating the true 

natural history of the population and the true counterfactual histories of the population under 

six hypothetical interventions which targeted obesity (described in §6.4.1.2), and the resulting 

robustness of each method for estimating the true population average causal effects (from 

Table 6.1). 

A general description of each simulation follows. For each autocorrelation structure, a random 

sample of 20,000 individuals was drawn from the population, and the conditional probabilities 

of obesity and diabetes were estimated according to the autocorrelation structure under 

consideration. Using the g-formula, these conditional probabilities were estimated at each 

time 𝑡, for 1 ≤ 𝑡 ≤ 10; however, using microsimulation, these conditional probabilities were 

estimated at time 1 only. A random sample of 20,000 was then simulated through time 10 by 

applying the estimated conditional probabilities to estimate the natural history. The sample of 

20,000 was also simulated under Interventions 1 through 6 by modifying the estimated 
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conditional probabilities accordingly. This process was repeated 100 times, and the mean 

history calculated to estimate the intervention effects. 

Because the g-formula utilises data about the conditional probability of each state at every 

time point, it was expected to produce a population whose natural history appears consistent 

with the true population for most of the autocorrelation structures considered. In contrast, 

microsimulation was expected to produce a population whose natural history appears 

consistent with the true population only when the true data-generating process was modelled, 

since it was unable to utilise data about the conditional probability of each state at every time 

point in the population. It was also expected that mis-specification of the data-generating 

process would adversely affect estimation of counterfactual histories using both methods, and 

therefore produce inaccurate estimates of intervention effects. 

In the following subsections, we describe the three hypothesised data-generating processes 

which were considered (§6.4.2.1). We then describe results obtained by using the g-formula 

(§6.4.2.2) and microsimulation (§6.4.2.3) to model the natural and counterfactual histories of 

the population, according to each of the hypothesised data-generating processes. 

6.4.2.1 Description of hypothesised data-generating processes 

Three distinct autocorrelation structures (representing three distinct hypothesised data-

generating processes) were considered, with each summarised visually as a DAG in Figure 6.5.  
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Figure 6.5 DAGs representing three hypothesised data-generating processes at time 𝒕 for the 
time-varying variables obesity (𝑶) and diabetes (𝑫) 

 

Each panel represents a different autocorrelation structure modelled by using the g-formula or 
microsimulation (AS1 through AS3, respectively). Variables in grey are those which affect 
variables at time 𝑡 but whose causes are not themselves represented in the graph. 

Autocorrelation structure 1 (AS1) represents the true data-generating structure of the 

population. Updated obesity status at time 𝑡 is conditional on sex, current obesity status 

(𝑂𝑡−1), and current diabetes status (𝐷𝑡−1). Updated diabetes status at time 𝑡 is conditional on 

sex, current diabetes status (𝐷𝑡−1), and current obesity status (𝑂𝑡). 

Autocorrelation structure 2 (AS2) is nearly identical to AS1, but does not fully model the true 

data-generating process in the population. Updated obesity status at time 𝑡 is conditional on 

sex and current obesity status (𝑂𝑡−1), but not on current diabetes status (𝐷𝑡−1). Thus, it does 

not fully model the time-dependent confounding that exists. 

Autocorrelation structure 3 (AS3) does not model any dependence between adjacent time 

points. Updated obesity status at time 𝑡 is conditional on sex only, whereas diabetes status at 

time 𝑡 is conditional on sex and current obesity status (𝑂𝑡) only. Thus, modelling AS3 is 

equivalent to randomly sampling from the cross-sectional joint distribution of sex, obesity, and 

diabetes (i.e. 𝑃(𝑆, 𝑂𝑡 , 𝐷𝑡) = 𝑃(𝐷𝑡|𝑂𝑡 , 𝑆) ⋅ 𝑃(𝑂𝑡|𝑆) ⋅ 𝑃(𝑆)) in the population. 

These autocorrelation structures were chosen to represent a broad range of possible data-

generating processes, though we acknowledge that not all are equally plausible in practice. For 

example, AS3 does not model any dependence between time points (except that which exists 
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due to sex), which contradicts clinical and biological knowledge about the conditions of obesity 

and diabetes. However, AS2 does represent a plausible hypothesis for the data-generating 

process, since the potentially small magnitude of time-varying confounding may be judged as 

trivial and not to warrant the added complexity introduced by additional model parameters. 

This is particularly relevant for MSMs, which rely on published estimates to inform model 

parameterisation (183). 

Hereafter, we alternately refer to AS1 as the correctly specified data-generating process, AS2 

as the slightly mis-specified data-generating process, and AS3 as the highly mis-specified data-

generating process. 

6.4.2.2 The g-formula 

This subsection describes the results of using the g-formula to estimate the true natural and 

counterfactual histories of the population, according to the process described previously 

(§6.4.2). 

6.4.2.2.1 Estimated causal effects of interventions 

The estimated causal effect on diabetes prevalence of each intervention is given in Table 6.2, 

for each of AS1 through AS3, as modelled by the g-formula; the true effects in the population 

(from Table 6.1) are also given for comparison. 

Both the correctly-specified and slightly mis-specified autocorrelation structures (i.e. AS1 and 

AS2, respectively) appeared to perform well in estimating the true effects of Interventions 1 

through 6, while the highly mis-specified autocorrelation structure (i.e. AS3) performed 

relatively poorly. In the following subsections, we briefly discuss these results further by 

examining how well each autocorrelation structure replicated the true natural and 

counterfactual histories. 
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Table 6.2 Table describing the estimated causal effect of each intervention on diabetes 
prevalence, for each of A1 through A3 modelled using the g-formula, compared to the true 
effect in the population 

Effect True AS1 AS2 AS3 

Effect of Intervention 1 
(prevent individuals from being obese) 

-0.0112 

(-26.9%) 

-0.0115 

(-27.5%) 

-0.0115 

(-27.6%) 

-0.0206 

(-49.1%) 

Effect of Intervention 2 
(make all individuals obese) 

0.0080 

(19.3%) 

0.0080 

(19.3%) 

0.0079 

(19.0%) 

0.0124 

(-29.7%) 

Effect of Intervention 3 
(prevent anyone from becoming obese) 

-0.0034 

(-8.2%) 

-0.0034 

(-8.1%) 

-0.0036 

(-8.6%) 

-0.0207 

(-49.3%) 

Effect of Intervention 4 
(reduce probability of becoming obese 
by 15%) 

-0.0004 

(-0.9%) 

-0.0005 

(-1.2%) 

-0.0003 

(-0.8%) 

-0.0032 

(-7.6%) 

Effect of Intervention 5 
(reduce probability of remaining obese 
by 10%) 

-0.0031 

(-7.4%) 

-0.0031 

(-7.6%) 

-0.0032 

(-7.6%) 

-0.0024 

(-5.7%) 

Effect of Intervention 6 
(reduce probability of becoming obese 
by 15% and remaining obese by 10%) 

-0.0035 

(-8.3%) 

-0.0036 

(-8.8%) 

-0.0037 

(-8.8%) 

-0.0050 

(-12.0%) 

Total causal effect (TCE) 
0.0192 

(63.2%) 

0.0195 

(64.6%) 

0.0194 

(64.4%) 

0.0330 

(154.7%) 

The estimated causal effect of each intervention (1 through 6) on diabetes prevalence was 
calculated by subtracting the average observed diabetes prevalence at time 10 under the 
natural history from the average diabetes prevalence at time 10 that was observed when the 
given intervention was applied to a random sample of 20,000 individuals. The TCE was 
calculated by subtracting the average diabetes prevalence at time 10 that was observed when 
Intervention 1 was applied from that which was observed when Intervention 2 was applied. All 
effects are additionally expressed as percentage changes. 
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6.4.2.2.2 Natural history 

Plots which compare the true natural history of the population and those modelled by the g-

formula according to AS1 through AS3 are shown in Figure 6.6 (obesity and diabetes 

prevalence) and Figure 6.7 (cross-sectional prevalence of sex, obesity, and diabetes). 

All three autocorrelation structures appeared to reasonably reflect the true overall and 

disaggregated (by sex) prevalence of obesity and diabetes, as well as the proportion of 

individuals with each combination of characteristics at each time point under the natural 

history. 

6.4.2.2.3 Counterfactual histories under hypothetical interventions 

Although each autocorrelation structure was able to produce a population whose aggregated 

characteristics were consistent with those of the true population under its natural history, the 

same cannot be said for the counterfactual histories. Across all interventions, the highly mis-

specified autocorrelation structure (i.e. AS3) performed poorly, thus explaining its poor 

performance relative to the more correctly-specified autocorrelation structures (i.e. AS1 and 

AS2) at estimating the causal effects of each intervention (from Table 6.2). 

As an example, we consider how well each autocorrelation structure modelled the effects of 

Intervention 1. Each of AS1, AS2, and AS3 accurately modelled the effects of Intervention 1 on 

obesity prevalence (Figure 6.8), because the probability of obesity is (counterfactually) reduced 

to zero for all individuals regardless of the true probability of obesity. However, all 

autocorrelation structures were not equally good at modelling the effects of Intervention 1 on 

diabetes prevalence. For example, AS3 dramatically underestimated diabetes prevalence; this 

is because according to AS3, diabetes status at each time point was dependent upon only sex 

and obesity status (and not on previous diabetes status); thus, there were very few prevalent 

cases and the dramatic reduction (to zero) in the probability of obesity had the effect of 

substantially reducing incident cases. 

The results for all interventions are presented in Appendix C (§C.2.2.1). 

6.4.2.3 Microsimulation 

This subsection describes the results of using microsimulation to estimate the true natural and 

counterfactual histories of the population, according to the process described previously 

(§6.4.2). 

6.4.2.3.1 Estimated causal effects of interventions 

The estimated causal effect on diabetes prevalence of each intervention is given in Table 6.3, 

for each of AS1 through AS3, as modelled using microsimulation; the true effects in the 

population (from Table 6.1) are also given for comparison. 
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The correctly-specified autocorrelation structure (i.e. AS1) performed well in estimating the 

true effects of Interventions 1 through 6, while the highly mis-specified autocorrelation 

structure (i.e. AS3) performed poorly, as expected. However, the slightly mis-specified 

autocorrelation structure (i.e. AS2) appeared to perform as well as AS1 in estimating the 

intervention effects of interest. In the following subsections, we briefly discuss these results 

further by examining how well each autocorrelation structure replicated the true natural and 

counterfactual histories. 

Table 6.3 Table describing the estimated causal effect of each intervention on diabetes 
prevalence, for each of the autocorrelation structures modelled using microsimulation, 
compared to the true effect in the population 

Effect True AS1 AS2 AS3 

Effect of Intervention 1 
(prevent individuals from being obese) 

-0.0112 

(-26.9%) 

-0.0110 

(-26.6%) 

-0.0118 

(-28.3%) 

-0.0121 

(-46.2%) 

Effect of Intervention 2 
(make all individuals obese) 

0.0080 

(19.3%) 

0.0077 

(18.5%) 

0.0080 

(19.3%) 

0.0097 

(37.3%) 

Effect of Intervention 3 
(prevent anyone from becoming obese) 

-0.0034 

(-8.2%) 

-0.0032 

(-7.7%) 

-0.0037 

(-9.0%) 

-0.0121 

(-46.3%) 

Effect of Intervention 4 
(reduce probability of becoming obese 
by 15%) 

-0.0004 

(-0.9%) 

-0.0005 

(-1.1%) 

-0.0004 

(-1.0%) 

-0.0019 

(-7.3%) 

Effect of Intervention 5 
(reduce probability of remaining obese 
by 10%) 

-0.0031 

(-7.4%) 

-0.0031 

(-7.4%) 

-0.0032 

(-7.8%) 

-0.0014 

(-5.2%) 

Effect of Intervention 6 
(reduce probability of becoming obese 
by 15% and remaining obese by 10%) 

-0.0035 

(-8.3%) 

-0.0035 

(-8.5%) 

-0.0038 

(-9.2%) 

-0.0030 

(-11.4%) 

Total causal effect (TCE) 
0.0192 

(63.2%) 

0.0187 

(61.5%) 

0.0198 

(66.5%) 

0.0218 

(155.4%) 

The estimated causal effect of each intervention (1 through 6) on diabetes prevalence was 
calculated by subtracting the average observed diabetes prevalence at time 10 under the 
natural history from the average diabetes prevalence at time 10 that was observed when the 
given intervention was applied to a random sample of 20,000 individuals. The TCE was 
calculated by subtracting the average diabetes prevalence at time 10 that was observed when 
Intervention 1 was applied from that which was observed when Intervention 2 was applied. All 
effects are additionally expressed as percentage changes. 
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6.4.2.3.2 Natural history 

Plots which compare the true natural history of the population and those modelled by 

microsimulation according to AS1 through AS3 are shown in Figure 6.9 (obesity and diabetes 

prevalence) and Figure 6.10 (cross-sectional prevalence of sex, obesity, and diabetes). 

As is evident, both the correctly specified and slightly mis-specified autocorrelation structures 

(i.e. AS1 and AS2, respectively) produced populations whose characteristics at every time point 

were broadly consistent with those of the true natural history. However, the highly mis-

specified autocorrelation structure (i.e. AS3), which was unable to model the increasing 

conditional probabilities of obesity and diabetes over time, produced a population which 

diverged substantially from that of the true population under the natural history. 

6.4.2.3.3 Counterfactual histories under hypothetical interventions 

As with the natural history, modelling the correctly-specified autocorrelation structure (i.e. 

AS1) and the slightly mis-specified autocorrelation structure (i.e. AS2) appeared able to 

accurately replicate the true counterfactual histories under Interventions 1 through 6. 

However, across all interventions, modelling the highly mis-specified autocorrelation structure 

(i.e. AS3) using microsimulation performed poorly at estimating the counterfactual histories of 

obesity and/or diabetes, which resulted in poor estimates of the true causal effects of each 

intervention (from Table 6.2). 

We again consider how well each autocorrelation structure models the effects of Intervention 

1 as an example (depicted in Figure 6.11). Each of AS1, AS2, and AS3 accurately modelled the 

effects of Intervention 1 on obesity prevalence, because the probability of obesity was 

(counterfactually) reduced to zero for all individuals regardless of the true probability of 

obesity.26 AS3 nevertheless dramatically underestimated diabetes prevalence, since the 

dramatic reduction (to zero) in the probability of obesity substantially reduced incident cases 

of diabetes and the autocorrelation structure implies very few prevalent cases. 

The results for all interventions are presented in Appendix C (§C.2.2.2). 

6.4.3 Discussion of findings 

Both the g-formula and microsimulation performed equally well at replicating the true natural 

history and the true counterfactual histories of the population under various interventions 

when they correctly modelled the true data-generating process of the population (i.e. AS1), as 

expected. Moreover, both methods performed poorly when the data-generating process of 

the population was highly mis-specified (i.e. AS3); even so, the g-formula performed better at 

                                                           

26 We note that for interventions which reduce the probability of obesity by a factor which is itself 
dependent on the true probability of obesity (i.e. Interventions 3 through 6), AS3 is not able to 
accurately model their effects on obesity prevalence. This is discussed further in Appendix C, 
where the full results of these simulations are presented (§C.2.2.2.1). 
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estimating the true natural and counterfactual histories, relative to microsimulation, since it 

utilised data from the true population at all time points. 

However, using both methods, the slightly mis-specified autocorrelation structure (i.e. AS2) 

appeared to perform as well as the correctly specified autocorrelation structure (i.e. AS1) at 

modelling the natural history of the population, as well as the counterfactual histories of the 

population under Interventions 1 through 6, suggesting that in our example scenario both 

methods are relatively robust to minor mis-specifications of the data-generating process.  

6.4.4 Sensitivity analyses 

While the results of our simulation were broadly consistent with expectations, the slightly mis-

specified data-generating process (i.e. AS2) appeared to perform as well as the correctly 

specified data-generating process (i.e. AS1) at replicating the true natural and counterfactual 

histories when using both the g-formula and microsimulation, despite the fact that AS2 did not 

fully model the time-dependent confounding that was present in the true data-generating 

process.  

We speculated that this might be due to two factors specific to the example scenario chosen: 

(1) the low overall incidence and prevalence of diabetes in the population, or (2) the low 

degree of time-dependent confounding in the population (i.e. the small effect of obesity status 

on diabetes incidence, which was not modelled under AS2). 

Therefore we performed the following five sensitivity analyses: 

Sensitivity analysis 1: Increase baseline diabetes prevalence. 

Sensitivity analysis 2: Increase diabetes incidence. 

Sensitivity analysis 3: Increase the effect of previous diabetes on obesity 

incidence/prevalence (i.e. increase the magnitude of time-

dependent confounding). 

Sensitivity analysis 4: Both (1) and (3). 

Sensitivity analysis 5: Both (2) and (3). 

6.4.4.1 Method 

For each sensitivity analysis, the natural history of the initial population was simulated 

according to the same process described in Section 6.4.1.1, but with different simulation 

parameters. The counterfactual history under each of the six hypothetical interventions on 

obesity was simulated according to the same process described in Section 6.4.1.2, and the true 

causal effect of each intervention was calculated as previously (§6.4.1.3). We then used the g-

formula and microsimulation to estimate the causal effects on diabetes prevalence of each 

intervention, according to the same processes described in Section 6.4.2. 

Appendix C contains the simulation parameters for each sensitivity analysis and a fuller 

description of the characteristics of the simulated populations (§C.2.3). 
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6.4.4.2 Results 

In sensitivity analysis 5, we saw the largest divergence between the results of the g-formula 

and microsimulation when modelling autocorrelation structures which differed from the true 

(i.e. AS2 and AS3); we also saw the largest divergence between the results of the true (i.e. AS1) 

and the slightly mis-specified data-generating processes (i.e. AS2), though this was still 

relatively modest. Table 6.4 describes the effect of each intervention on diabetes prevalence in 

sensitivity analysis 5, as estimated by the g-formula and microsimulation; the true effects in 

the population are given for comparison. 

In Table 6.4, we can see that when the data-generating process is correctly specified (i.e. AS1), 

both the g-formula and microsimulation perform equally well at estimating the true 

intervention effects, as in the original simulations. However, when the data-generating process 

is slightly mis-specified (i.e. AS2), both the g-formula and microsimulation perform poorly 

compared to when they are correctly specified, though the magnitude of divergence is still 

relatively modest. Furthermore, the g-formula performs better than microsimulation for 

estimating the effects of the most dramatic interventions (i.e. Interventions 1 through 3) but 

there is little difference with respect to more modest interventions (i.e. Interventions 4 

through 6). When the data-generating process is highly mis-specified (i.e. AS3), both the g-

formula and microsimulation perform poorly at estimating the true intervention effects, as in 

the original simulations. 

Results from all sensitivity analyses are provided in Appendix C (§C.2.3.2). 
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6.5 Discussion 

For our example scenario, our simulations broadly aligned with our expectations. That is, both 

the g-formula and microsimulation faithfully replicated the true natural and counterfactual 

histories of the population when they correctly modelled the data-generating process of the 

population. Our results also suggested that small mis-specifications in this context don’t make 

substantial differences for either the g-formula or microsimulation, but that more serious mis-

specifications were more likely to negatively impact MSMs. It can be interpreted with cautious 

optimism that the most accurate results were produced by the most plausible hypothesised 

autocorrelation structures (i.e. AS1 and AS2). However, our simulations were deliberately 

simplified and thus the magnitude of any biases should not be assumed to be transferrable to 

other contexts. 

Our sensitivity analyses produced a larger divergence between the correctly specified and 

slightly mis-specified autocorrelation structures, and provided evidence for the g-formula 

being more robust to small mis-specifications in the data-generating process. However, the 

magnitude of these differences was still relatively modest, suggesting they also may be the 

result of some other structural factor(s) present in the example context chosen. For instance, 

both obesity and diabetes were simulated to have a strong serial correlation, reflecting that 

they are conditions which are difficult to transition out of; the probability of becoming non-

obese at any given time point ranged between 0.03 and 0.05 in the original simulation, 

whereas the probability of becoming non-diabetic was zero. Moreover, diabetes incidence was 

simulated to be very low in absolute terms, both in the original simulation and subsequent 

sensitivity analyses. Across other contexts, in which individuals can more easily transition in 

and out of different states, the differences might become more pronounced. 

Despite the g-formula being potentially more robust to mis-specifications than 

microsimulation, it is worth keeping in mind that the utility of MSMs lies in their ability to 

produce estimates of a future population, which are inherently uncertain; thus, those 

employing MSMs may be more willing to sacrifice a certain degree accuracy and/or precision 

for the sake of utility. Nevertheless, where possible, researchers would benefit from modelling 

different plausible data-generation processes as sensitivity analyses.  

6.5.1 Limitations and future work 

Our simulations were deliberately simplified in several respects. First, we considered only 

three binary variables (i.e. sex, obesity, and diabetes), when in reality there are many others 

which are likely relevant to the causal processes of interest. This simplification also meant that 

the conditional probabilities of each variable could be nonparametrically estimated using both 

methods. Second, the true data-generating process (as depicted in Figure 6.1) had only first-

order autocorrelation, i.e. where variables at one time point did not affect any future variables 

except for those in the immediately subsequent time point. For example, obesity status at time 
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𝑡 was dependent only on variables at time 𝑡 − 1 and not on any variables at time 𝑡 − 2. Third, 

as simulated, the true probabilities governing transitions in and out of obesity were the same 

for every time point, which could be interpreted as representing no change in the underlying 

obesogenic environment. We did not consider a situation involving transition problems which 

changed over time. We suspect that had the true data-generating process been more complex, 

and had the true transition probabilities been simulated to change over time, mis-

specifications in the hypothesised data-generating process when using the g-formula and 

microsimulation would have been more consequential. 

Other limitations include that we did not consider interventions which varied over the course 

of the simulation, and that one of the hypothesised autocorrelation structures considered (i.e. 

AS3, in Figure 6.5) was so simple that it is unlikely to be encountered in practical applications. 

Nevertheless, it was chosen as part of a broad range of possible data-generating processes. We 

also did not consider the added complexity of parameterising our MSMs with estimates from 

different datasets, as this was not the primary focus of this particular research.27 Future 

simulations are warranted to explore these issues, with the current simulation providing a 

foundation for doing so. 

6.6 Summary 

Microsimulation provides a promising method for estimating causal effects in a longitudinal 

setting via the simulation counterfactual scenarios. This chapter demonstrates the utility of 

DAGs for understanding how specification of data-generating processes impacts on estimation 

of both natural and counterfactual histories. DAGs are also demonstrated to be an invaluable 

tool for clearly explicating the assumptions made about the causal structure of an MSM, 

thereby aiding interpretability and reproducibility. The simulations presented in this chapter 

provide a framework for evaluating individual-based simulation methods intended for causal 

inference, and inform how the robustness and reliability of such methods may be improved by 

accurately capturing data-generating processes.   

                                                           

27 Murray, E.J. et al. (99) have begun to explore this issue, and provide a useful starting point for 
considering some of the potential issues arising from the combination of parameter estimates 
which have come from populations which differ in their distribution of unmeasured confounders. 
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Chapter 7  
Conclusion 

7.1 Introduction 

This thesis set out to explore how counterfactual thinking, encoded in the language of DAGs, 

could be integrated into established methods for longitudinal data analysis by considering 

three specific methods – the analysis of change, regression with ‘unexplained residuals’, and 

microsimulation modelling. Each of these methods is typically applied in a distinct longitudinal 

context, and DAGs have been demonstrated to be useful tools for thinking through causal 

processes and informing causal analyses in each. This highlights the utility and promise of 

DAGs for informing a wide variety of methods for longitudinal data in a robust causal 

framework – a task that has become increasingly necessary in the era of ‘big data’, where the 

familiar biases associated with observational data are likely amplified. 

While longitudinal data are of great interest to epidemiologists and data scientists, they 

present additional challenges for causal inference. Even the seemingly simple idea of ‘change’ 

can pose difficulties, since changes are in fact captured by follow-up events conditional on 

baseline events rather than a conflated summary of the two, as demonstrated in Chapter 4. 

Indeed, this conceptualisation of change is that which is exploited by UR models and 

fundamental to why the method works, as demonstrated in Chapter 5. The importance of 

understanding and faithfully modelling data-generating processes in order to make robust 

causal inferences in longitudinal contexts has been demonstrated throughout this thesis. 

Chapter 7 summarises and critically evaluates the findings of this thesis.  

7.1.1 Chapter overview 

A general chapter overview is provided below. 

In Section 7.2, we summarise the key findings of the individual pieces of research contained in 

this thesis and discuss their implications. 

In Section 7.3, we highlight the contributions made to the literature by this research, including 

details of related publications. 

In Section 7.4, we discuss the limitations of this research, and outline potential areas for future 

research. 

7.2 Summary of findings 

Chapter 3 provided a foundation for understanding the contexts in which the three methods 

considered in this thesis might be used. For each of methods, DAGs were first used to depict 

the longitudinal context under consideration. The principles of graphical model theory were 

then applied so that robust conclusions could be drawn about how the method ought to be 

deployed in order to estimate causal effects. In each scenario, the application of DAGs was also 
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useful for identifying potential problems and/or biases that might arise if the method was 

deployed incorrectly or without proper consideration for causal structures. 

A general summary of the findings of each chapter follows, each of which includes fuller details 

of how the objectives of this thesis have been fulfilled. Additionally, key messages for 

epidemiological and public health researchers are summarised in Table 7.1. 

Table 7.1 Key messages for epidemiological and public health researchers 

1. DAGs are useful tools for thinking through causal processes and informing causal 

analyses involving longitudinal data; where possible, they should be incorporated into 

standard practices for answering causal questions.  

2. DAGs should be used to consider the causal structures and data-generating processes 

governing a given scenario; this enables researchers to identify appropriate covariate 

adjustment to target the most useful estimand, and to clearly communicate causal 

assumptions when presenting results. 

3. The misapplication of methods for causal inference is likely to invoke inferential bias, i.e. 

where the numerical estimate obtained does not correspond to a sensible or 

interpretable causal quantity, thereby leading to incorrect interpretation and/or 

inference. This is very different to statistical bias. 

7.2.1 Statistical versus individual-based simulation methods for causal 
inference 

Chapter 3 considered several important methods for estimating causal effects in longitudinal 

data, including DAG-informed regression modelling, microsimulation, and agent-based 

modelling. The distinct historical evolutions of these three methods have given rise to distinct 

features of the methods themselves, which provide a foundation for critical comparison. Of 

note are the differing levels of emphasis they place on data versus theory, which in turn 

informs the types of causal questions which they are well-suited to answering, their relative 

focus on fixed versus random effects, and the timescales upon and timeframes in which they 

operate. 

DAG-informed regression modelling is well-suited to analyses in which the query of interest 

can be explicated in the traditional language of ‘exposures’ and ‘outcomes’, for which 

sufficient individual-level data are available on a suitable timescale to capture the causal 

processes of interest, and for which spillover effects and interference are negligible. With 

regards to their practical utility for policy-making decisions, this type of modelling is 

appropriate for exposures and/or interventions whose effects may be safely assumed to be 

transportable across time. When such conditions are met, statistical DAG-informed 

approaches provide a robust method for causal inference whilst requiring relatively few 

assumptions, and they offer a transparent means for communicating those assumptions.  
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In contrast, agent-based modelling provide a means for modelling greater complexity (e.g. in 

the form of individual interactions and spillover effects) though they do so by relying on a 

greater number of assumptions. Moreover, ABMs inherently contain greater uncertainty about 

the validity of their causal effect estimates because they are typically applied in situations in 

which key variables may not be represented numerically, or in which observed data are not 

sufficiently granular in timescale to fully inform parameterisation and/or enable effective 

validation. In this context, microsimulation offers a useful halfway house, since they may be 

able to utilise the robust foundations of graphical causal models whilst also exploring the 

effects of complex (i.e. multiple) interventions that occur over long periods of time (which 

possibly extend well into the future). 

7.2.2 The analysis of change 

Chapter 4 considered the analysis of change using DAGs, a context which involves quantifying 

the relationship between a single exposure and subsequent ‘change’ in a longitudinal 

outcome. In doing so, we demonstrated that change scores do not in general represent 

exogenous change, and that the follow-up outcome should be the true target of any analysis of 

change. Moreover, we used path tracing to demonstrate why, and the degree to which, 

change-score analyses differ from follow-up adjusted for baseline analyses (i.e. ANCOVA) in 

non-randomised data. 

However, follow-up adjusted for baseline analyses are not always the best solution for the 

analysis of change, since the estimand targeted by such analyses differs according to the causal 

structure of the data. Where the exposure is caused by the baseline outcome, a follow-up 

adjusted for baseline analysis targets the total causal effect; where the exposure causes the 

baseline outcome, this method of analysis targets the direct causal effect only. Thus, 

determining whether to adjust for the baseline outcome is context-dependent, and there may 

exist scenarios in which follow-up unadjusted for baseline analyses are more appropriate. This 

has not previously been considered by other authors examining the analysis of change because 

scenarios in which the exposure causes the baseline outcome are not generally encountered in 

experimental contexts; nevertheless, they arise frequently in observational contexts and 

therefore this research has the potential for substantively improving analyses of change. 

Using a simple simulated example, the degree of inferential bias that might be introduced by a 

change-score analysis was illustrated. Furthermore, the importance of using DAGs to help 

determine the most useful analytical strategy was emphasised. This has applicability across 

other methods and contexts, where DAGs can be used to consider the causal structures 

involved and to identify appropriate adjustment to target the most useful estimand. 

7.2.3 Regression with ‘unexplained residuals’ 

Chapter 5 considered regression with ‘unexplained residuals’ using DAGs, a context which 

involves quantifying the relationship between separate measurements of a longitudinal 

exposure and a subsequent outcome. Using path tracing, we demonstrated why the method 
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(as originally formulated) is able to quantify the total causal effects of multiple measurements 

of an exposure on a subsequent outcome within a single model. We also demonstrated how 

UR models must be implemented in order to robustly accommodate confounding by both 

baseline and time-dependent covariates; this is an issue that has not previously been explored 

but is nevertheless crucial for practical applications of the method.  

Despite their perceived advantages, UR models are significantly more complex to implement 

than standard regression methods, particularly in the presence of time-dependent 

confounding. UR models rely on the orthogonality of the constructed UR terms; where there 

exists time-dependent confounding, this necessitates the creation of UR terms for the 

confounder as well as the exposure. Moreover, bootstrapping is necessary to obtain robust 

estimates of standard errors (SEs) for all UR models, since SEs are artefactually reduced when 

using UR models; this was demonstrated through a simple simulated example. 

Taking all results together, we were able to conclude that DAGs are useful for understanding 

the properties of UR models, and for determining correct adjustment for confounding. 

However, the additional complexity required to implement UR models makes them more 

vulnerable to analytical and interpretational problems, and thus they offer little to no benefit 

compared to standard regression models. 

7.2.4 Microsimulation modelling 

Chapter 6 considered microsimulation modelling using DAGs, a context which involves 

quantifying the relationship between multiple measurements of a longitudinal exposure and a 

subsequent outcome. By specifically contrasting microsimulation with the g-formula, we 

demonstrated some of the unique challenges faced by individual-based simulation approaches 

and the importance of faithfully modelling the data-generating processes in order to estimate 

causal effects. Using a simulated example, we demonstrated how varying degrees of mis-

specification adversely impacted estimation of natural and counterfactual histories using 

microsimulation compared to the g-formula. 

Using microsimulation, the future distributions of individuals’ states must be generated by the 

data-generating processes specified in the model. Mis-specification of these processes 

therefore has more consequential effects on estimation of causal effects using 

microsimulation compared to the g-formula, though the magnitude of any biases depends on 

the true causal structure, the degree of mis-specification, and the true causal parameters. 

MSMs are also more likely to simplify data-generating processes, due to the difficulties 

involved in parameter specification. Few authors to date have considered microsimulation 

within a formal causal framework, despite widespread use of the method for making causal 

inferences; this research therefore provides a foundation for exploring and identifying 

additional causal considerations associated with this method. 

Our simulations demonstrate the importance of using causal parameters in MSMs and of 

modelling plausible data-generating processes. DAGs are demonstrated to be a useful means 
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by which the causal assumptions of an MSM can be made explicit, which can additionally aid 

model interpretability and reproducibility. 

7.3 Contributions to the literature 

Several pieces of work related to this thesis have already been published or accepted for 

publication. 

Chapter 3 contains a critical comparison of statistical versus individual-based simulation 

methods for causal inference (§3.5), which was published in its entirety in the International 

Journal of Epidemiology (3). This manuscript arose due to a lack of clarity in the literature 

surrounding the distinction between microsimulation and agent-based modelling. Moreover, 

because DAG-informed regression modelling and individual-based simulation modelling have 

largely been confined to separate research disciplines, there has existed little overlap in the 

knowledge about them and skills necessary for implementing them; the published manuscript 

fills this gap. Chapter 3 also contains three examples which illustrate the benefits of applying 

DAGs in new contexts; two of the three examples arise directly from research conducted by 

the author of this thesis. Section 3.3.1.2 discusses the use of DAGs to understand the analysis 

of compositional data for causal inference, and Section 3.3.2 discusses the distinction between 

models for prediction and models for causal inference. Both pieces of research have been 

published in the International Journal of Epidemiology (1, 2). 

The work featured in Chapter 4 has been submitted to the International Journal of 

Epidemiology; it is currently being revised following a second round of peer review and is 

available as pre-print on ArXiv (4). This manuscript arose due to historical confusion in the 

literature surrounding the use of ‘change scores’ and their suitability for causal analysis. It is 

hoped that the published manuscript will demonstrate the problems with change-score 

analyses, and will inform alternate analytical strategies by encouraging researchers to think 

about the plausible causal structure that may arise in specific scenarios involved in the analysis 

of change. 

The work featured in Chapter 5 has been published in Statistical Methods for Medical Research 

(5). This manuscript arose due to a lack of clarity in the literature concerning how to robustly 

extend UR models to accommodate both longitudinal exposures measured at more than two 

time points as well as confounding variables. The published manuscript therefore 

demonstrates how to implement UR models correctly in more complex longitudinal scenarios 

(including the requirement that standard errors be estimated via bootstrapping), which is 

useful for future researchers seeking to use this method. 

It is anticipated that the work featured in Chapter 6 will form the basis of one to two 

manuscripts, and that the simulations developed here will provide a foundation for 

postdoctoral research to be conducted by the author of this thesis. 
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The author of this thesis has also contributed to a manuscript which examines the use of DAGs 

in applied health research and offers recommendations for improving their transparency and 

utility in future research. This manuscript has been submitted to the International Journal of 

Epidemiology and is currently available as a pre-print on medRxiv (57). 

7.4 Limitations and future work 

Across all contexts considered in this thesis, we did not consider additional issues which might 

threaten estimation of unbiased causal effects, such as measurement error or incorrect model 

specification. All simulated examples were purposely oversimplified to highlight the key issues 

involved from a causal perspective, though the work contained in this thesis provides a 

foundation for which to explore additional issues. Several of the most promising avenues for 

future research are outlined in the following subsections. 

7.4.1 Understanding regression to the mean (RTM) using DAGs 

The issues surrounding the use of change scores which were discussed in Chapter 4 have 

historically been bound up in discussions surround measurement error and regression to the 

mean (RTM) (158, 193). This is because in observational data, the results of change-score 

analyses are expected to agree with those obtained from follow-up adjusted for baseline 

analyses only under the specific condition in which the baseline and follow-up outcome are 

perfectly correlated (as demonstrated in §4.4). However, RTM is fundamentally distinct from 

the estimand confusion problem – namely, that the estimand targeted by change-score 

analyses is neither meaningful nor useful for causal analyses. Previous research focusing on the 

challenges of measurement error and biological variation abound, but these have often been 

confused by the misunderstanding around what constitutes change. It is anticipated that using 

DAGs to consider RTM and associated phenomena of regression dilution and Bayesian 

shrinkage can cast light on many of these issues. Additionally, the practice of considering 

deterministic relationships within DAGs – including the explicit depiction of error terms (as in 

Figure 4.1) – is likely to be useful for understanding phenomena associated with patterns of 

variation rather than mean structures.  

7.4.2 Generalisability, transportability, and MSMs 

There exists an emerging literature related to the issue effect generalisability and 

transportability, both of which represent threats to the external validity of a model (194-196). 

Generalisability relates to the issue of making inferences from a possibly biased sample of a 

target population back to the full target population (which includes the study sample); in 

contrast, transportability relates to the issue of making inferences for a target population 

where the study sample and target population are at least partially non-overlapping (194). 

Both of these issues are of particular relevance to the field of microsimulation, in which 

parameters are often combined from multiple datasets (and thus likely from multiple 

populations) into one single model in order to estimate causal effects; this is related to the 

issues discussed in Murray, E.J. et al. (99). 
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In the simulations presented in Chapter 6, we did not consider the added complexity of 

parameterising our MSM using estimates from different populations or datasets. However, this 

likely represents a fruitful area for future research, in which recent advances in graphical 

model theory may be applied in microsimulation contexts. 

7.4.3 Integrating DAGs with ABMs 

All methods considered in this thesis are typically applied in contexts in which there exists no 

interference, i.e. in which each individual’s outcome is affected only by his/her exposure and 

not that of any other individual. However, there exists an emerging literature relating to causal 

inference in the presence of interference (197-200). A notable example is that of Ogburn, E.L. 

and T.J. VanderWeele (197), who distinguish amongst three causal mechanisms which give rise 

to interference using DAGs and provide criteria for the identification of causal effects in these 

scenarios.28 These developments have obvious applications for vaccination programmes and 

social network data, but likely also have more general applications to ABMs. Moreover, ABMs 

provide a useful framework for simulating interference, since ABMs are defined by interactions 

between agents. 

7.5 Summary 

Longitudinal data constitute a large proportion of the new and emerging forms of data in the 

era of ‘big data’. In this context, robust methods for identifying and estimating causal effects 

are necessary to inform clinical and public health interventions. However, longitudinal data 

present both theoretical and analytical challenges for causal inference, over and above those 

presented by cross-sectional data. The counterfactual framework provides a valuable 

paradigm for conceptualising and identifying causal effects in longitudinal data. This thesis has 

illustrated the utility of using DAGs to think through causal processes and inform causal 

analyses across a wide variety of longitudinal scenarios and statistical- and simulation-based 

methods. It is anticipated that the application of DAGs to other methods (e.g. ABMs) provide 

fruitful areas for research, and the analyses conducted in this thesis provide a basis and a 

starting point for doing so.    

                                                           

28 These three mechanisms which give rise to interference are: (1) direct interference, in which one 
individual’s exposure directly affects another individual’s outcome; (2) interference by contagion, 
in which one individual’s outcome affects the outcome of other individuals; and (3) allocational 
interference, in which an individual is allocated to a group and his outcome is affected by which 
individuals are allocated to the same group. 
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Appendix A  
The analysis of change 

A.1 Introduction 

This appendix contains additional material relating to Chapter 4. In particular, it contains 

additional details relating to the simulated example described in Section 4.6.1. 

A.2 Simulated example 

A.2.1 DAGs 

In this subsection, we depict the DAGs from which data were simulated in both the original 

simulation and the additional simulation. The ‘original simulation’ refers to the simulation 

whose results are presented in Section 4.6.1.2. The ‘additional simulation’ refers to the 

simulation in which additional baseline confounding was included, which was referred to in 

Section 4.6.1.3. 

A.2.1.1 Original simulation 

Figure A.1 depicts the DAGs from which multivariate normal data were simulated in order to 

demonstrate the degree of inferential bias that might be introduced by a change-score 

analysis. 

Insulin concentration (𝐼𝐶) appears log-normally distributed (160), and so was simulated and 

analysed in its log-transformed form. For each of the scenarios depicted in Figure A.1, 10,000 

non-overlapping random samples of 1,000 observations from a multivariate normal 

distribution were simulated, using the ‘dagitty’ package (v. 0.2-2)(46, 47) in R (v. 3.3.2)(161). 

Standardised path coefficients were selected to approximately match observed cross-sectional 

patterns. The path coefficient between 𝑊𝐶0 and 𝐼𝐶1 was simulated as 0.500 where applicable 

(i.e. Scenarios 2, 3A, and 3B); the path coefficient between 𝐼𝐶0 and 𝐼𝐶1 was simulated as 0.650, 

to represent a strong but imperfect correlation over time. In Scenario 3B, an unobserved 

variable 𝑈 was simulated to introduce confounding a confounding correlation averaging 0.08. 

The total causal effect of 𝑊𝐶0 on 𝐼𝐶1 was fixed at 0.200 Log(mmol/L)/dm; when mediated 

through 𝐼𝐶0, this was partitioned into an indirect causal effect of 0.150 Log(mmol/L)/dm and a 

direct causal effect of 0.050 Log(mmol/L)/dm.  
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Figure A.1 DAGs from which multivariate normal data were simulated to demonstrate the 
degree of inferential bias that might be introduced by a change-score analysis 

 

In Scenario (1), 𝐼𝐶0 is a competing exposure for the effect of 𝑊𝐶0 on 𝐼𝐶1. In Scenario (2), 𝐼𝐶0 is 
a confounder for the effect of 𝑊𝐶0 on 𝐼𝐶1. In Scenario (3), 𝐼𝐶0 is a mediator for the effect of 
𝑊𝐶0 on 𝐼𝐶1; 𝑈 represents an unobserved or unmeasured variable that confounds the 
relationship between 𝐼𝐶0 and 𝐼𝐶1 (i.e. a mediator-outcome confounder). Numbers represent 
standardised path coefficients. Deterministic relationships are indicated by double-lined 
arrows, and fully determined nodes are indicated by double-outlined rectangles. 

A.2.1.2 Additional simulation with unmeasured baseline confounder 𝑼𝟐 

Because our original simulation was deliberately simplified, we also considered the four causal 

scenarios depicted in Figure A.2, in which an unmeasured baseline confounder 𝑈2 affecting 

each of 𝑊𝐶0, 𝐼𝐶0, and 𝐼𝐶1. 
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Figure A.2 DAGs from Figure A.1, with an additional unmeasured baseline confounder 𝑼𝟐 

 

In Scenario (1), 𝐼𝐶0 is a competing exposure for the effect of 𝑊𝐶0 on 𝐼𝐶1. In Scenario (2), 𝐼𝐶0 is 
a confounder for the effect of 𝑊𝐶0 on 𝐼𝐶1. In Scenario (3), 𝐼𝐶0 is a mediator for the effect of 
𝑊𝐶0 on 𝐼𝐶1; 𝑈 represents an unobserved or unmeasured variable that confounds the 
relationship between 𝐼𝐶0 and 𝐼𝐶1 (i.e. a mediator-outcome confounder). Numbers represent 
standardised path coefficients. Deterministic relationships are indicated by double-lined 
arrows, and fully determined nodes are indicated by double-outlined rectangles. 

Path coefficients for 𝑈2 were chosen which induced a confounded correlation of 

approximately 0.08 between 𝑊𝐶0 and both 𝐼𝐶0 and 𝐼𝐶1. All other details from the original 

simulation (§A.2.1.1) remained unchanged.  

Results of this additional simulation are presented in Section A.2.3.  

A.2.2 Simulation parameters 

The simulated mean and standard deviation (SD) specified in the simulation are provided in 

Table A.1. 
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Table A.1 Mean (SD) of waist circumference and insulin concentration, as reported in three 
separate waves of NHANES data and as simulated 

 NHANES Simulated 

 2009-2010 2011-2012 2013-2014 

Waist circumference 

(dm) 
9.50 (1.58) 9.42 (1.61) 9.52 (1.65) 9.50 (1.60)  

Insulin concentration 

(Log(mmol/L)) 
4.20 (0.70) 4.08 (0.74) 3.98 (0.77) 

4.00 (0.74) 

4.20 (0.74) 

- baseline 

- follow-up 

Pearson correlation 0.58a 0.58a 0.60a 0.50 – 0.60  

aBetween waist circumference and log insulin concentration 

The mean values for insulin concentration (𝐼𝐶) were simulated to represent a notional five 

percent increase between baseline and follow-up. 

A.2.3 Results of additional simulation with unmeasured baseline confounder 
𝑼𝟐 

The results of the additional simulation with unmeasured baseline confounder 𝑈2 are 

summarised in Table A.2. As expected, all three methods provided biased estimates of the 

total causal effect of 𝑊𝐶0 on 𝐼𝐶1. However, a follow-up adjusted for baseline analysis 

appeared to be the least biased for Scenarios 1, 2, and 3A, whereas a follow-up unadjusted for 

baseline analysis was preferred for Scenario 3B. The change-score analysis performed poorly 

across all scenarios. 
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A.2.4 Annotated R code 
################################################################################ 1 
## CHANGE SCORES: SIMULATED EXAMPLE ############################################ 2 
################################################################################ 3 
 4 
# This code demonstrates the degree of inferential bias that might be 5 
# introduced by a change-score analysis (compared to a follow-up adjusted 6 
# for baseline analysis & a follow-up UNadjusted for baseline analysis) 7 
 8 
# The scenario considered is for the baseline exposure waist cicumference (WC0), 9 
# two longitudinal measures of the time-varying outcome insulin concentration  10 
# (IC0, IC1), one baseline confounder (U2), and one mediator-outcome 11 
# confounder (U) [all variables continuous] 12 
 13 
################################################################################ 14 
## (1) SET UP ------------------------------------------------------------------ 15 
 16 
# Load required packages 17 
if(packageVersion('dagitty') < "0.2.3"){ 18 
  warning("Please install at least version 0.2.3 of the dagitty package!") 19 
  stop("Use this command: devtools::install_github('jtextor/dagitty/r')") 20 
} 21 
 22 
require(dagitty)  23 
require(MASS)  24 
require(rpsychi)  25 
 26 
# Set simulation parameters 27 
N <- 1000 28 
Nreps <- 10000 29 
 30 
### (a) Functions -------------------------------------------------------------- 31 
 32 
#### (i) runSims function --------------------------------------------------- 33 
 34 
# This function executes multiple simulations and summarise findings 35 
 36 
runSims  <- function(Means, Sigma, N, Nreps, Seed) { 37 
  start  <- Sys.time() 38 
  Sum    <- NULL 39 
  for (itn in 1:Nreps) { 40 
    seed       <- Seed*N*itn 41 
    dat        <- data.frame(mvrnorm(N, Means, Sigma, empirical = FALSE)) 42 
    names(dat) <- c("X", "Y0", "Y1", "U2")[VarOrd] 43 
    dat$DY     <- dat$Y1 - dat$Y0 44 
    mod1       <- lm(DY ~ X, data = dat) 45 
    mod2       <- lm(Y1 ~ X + Y0, data = dat) 46 
    mod3       <- lm(Y1 ~ X, data = dat) 47 
    Coeffs     <- c(mod1$coefficients[2], mod2$coefficients[2], mod3$coefficients[2]) 48 
    names(Coeffs) <- c("Beta1", "Beta2", "Beta3") 49 
    Sum        <- rbind(Sum, Coeffs) } 50 
  end   <- Sys.time(); print(end - start) 51 
  Sims  <- apply(Sum, 2, function(x){quantile(x, c(0.025, 0.5, 0.975))}) 52 
  return(Sims) } 53 
 54 
runSims2  <- function(Mu, Sigma, Nobs, Nsims, Seed) { 55 
  start   <- Sys.time() 56 
  Sum     <- NULL 57 
  for (itn in 1:Nsims) { 58 
    seed       <- Seed*Nobs*itn 59 
    dat        <- data.frame(mvrnorm(Nobs, Mu, Sigma, empirical = FALSE)) 60 
    names(dat) <- c("X", "Y0", "Y1", "U2", "U")[VarOrd2] 61 
    dat$DY     <- dat$Y1 - dat$Y0 62 
    mod1       <- lm(DY ~ X, data = dat) 63 
    mod2       <- lm(Y1 ~ X + Y0,data = dat) 64 
    mod3       <- lm(Y1 ~ X, data = dat) 65 
    Coeffs     <- c(mod1$coefficients[2], mod2$coefficients[2], mod3$coefficients[2]) 66 
    names(Coeffs) <- c("Beta1", "Beta2", "Beta3") 67 
    Sum        <- rbind(Sum,Coeffs) } 68 
  end    <- Sys.time(); print(end - start) 69 
  Sims   <- apply(Sum, 2, function(x){quantile(x,c(0.025, 0.5, 0.975))}) 70 
  return(Sims) } 71 
 72 
#### (ii) DAG functions -------------------------------------------------------- 73 
 74 
# These functions generate DAGs according to the given scenarios 75 
 76 
# Scenarios 1 and 2: 77 
DAG_base_confounder <- function(pU2_WC0, pU2_IC0, pU2_IC1,  78 
                                pWC0_IC0, pWC0_IC1, pIC0_IC1) { 79 
  dag  <- dagitty(paste0("dag{ U2->WC0 [beta=",pU2_WC0,"]  80 
                          U2->IC0 [beta=",pU2_IC0,"]  81 
                          U2->IC1 [beta=",pU2_IC1,"]  82 
                          IC0->WC0 [beta=",pWC0_IC0,"]  83 
                          WC0->IC1 [beta=",pWC0_IC1,"]  84 
                          IC0->IC1 [beta=",pIC0_IC1,"]}")) 85 
  return(dag) } 86 
 87 
# Scenario 3A: 88 
DAG_base_mediator <- function(pU2_WC0, pU2_IC0, pU2_IC1, pWC0_IC0,  89 
                              pWC0_IC1, pIC0_IC1) { 90 
  dag  <- dagitty(paste0("dag{ U2->WC0 [beta=",pU2_WC0,"]  91 
                               U2->IC0 [beta=",pU2_IC0,"]  92 
                               U2->IC1 [beta=",pU2_IC1,"]  93 
                               IC0<-WC0 [beta=",pWC0_IC0,"]  94 
                               WC0->IC1 [beta=",pWC0_IC1,"]  95 
                               IC0->IC1 [beta=",pIC0_IC1,"]}")) 96 
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  return(dag) } 97 
 98 
# Scenario 3B: 99 
DAG_base_mediator2 <- function(pU2_WC0, pU2_IC0, pU2_IC1, pU_IC0,  100 
                               pU_IC1, pWC0_IC0, pWC0_IC1, pIC0_IC1) { 101 
  dag  <- dagitty(paste0("dag{ U2->WC0 [beta=",pU2_WC0,"]  102 
                               U2->IC0 [beta=",pU2_IC0,"]  103 
                               U2->IC1 [beta=",pU2_IC1,"]  104 
                               IC0<-WC0 [beta=",pWC0_IC0,"]  105 
                               U->IC0 [beta=",pU_IC0,"]  106 
                               U->IC1 [beta=",pU_IC1,"]  107 
                               WC0->IC1 [beta=",pWC0_IC1,"]  108 
                               IC0->IC1 [beta=",pIC0_IC1,"]}")) 109 
  return(dag) } 110 
 111 
################################################################################ 112 
## (2) DATA SIMULATION --------------------------------------------------------- 113 
 114 
### (a) Set up ----------------------------------------------------------------- 115 
 116 
# Set means and variances 117 
WCmu <- 9.5 118 
WCvar <- 1.6^2 119 
IC0mu <- 4.0 120 
IC0var <- 0.74^2 121 
IC1mu <- 4.2 122 
IC1var <- 0.74^2 123 
 124 
# Set vectors for simulations 125 
VarNames <- c("WC0", "IC0", "IC1", "U2")  126 
Nmu <- c(WCmu, IC0mu, IC1mu, 0)  127 
Nvar <- c(WCvar, IC0var, IC1var, 1) 128 
 129 
# Set consistent path coefficient 130 
pIC0_IC1 <- 0.65 131 
pWC0_IC1 <- EffSize <- 0.433 132 
 133 
# Set final output file identifier 134 
Name <- paste0("final-", (Nreps/1000), "k", "-", substr(Sys.time(), 1, 10), ".csv") 135 
 136 
### (b) Scenario 1 ------------------------------------------------------------- 137 
 138 
pU2_IC0 <- 0.0; pU2_WC0 <- 0.0; pU2_IC1 <- 0.0; pWC0_IC0 <- 0.0;  139 
dag <- DAG_base_confounder(pU2_WC0, pU2_IC0, pU2_IC1, 140 
                           pWC0_IC0, pWC0_IC1, pIC0_IC1); # plot(graphLayout(dag)) 141 
Cor <- impliedCovarianceMatrix(dag) 142 
VarOrd <- as.integer(sapply(colnames(Cor), function(x){which(VarNames == x)})) 143 
Means <- Nmu[VarOrd] 144 
Sigma <- r2cov(sqrt(Nvar[VarOrd]), Cor) 145 
Sim1 <- data.frame(runSims(Means, Sigma, N, Nreps, 13)) 146 
Filename <- paste0("1-full-", Name) 147 
write.csv(Sim1, file = Filename, row.names = FALSE) 148 
 149 
### (c) Scenario 1+ ------------------------------------------------------------ 150 
 151 
# (Scenario 1 plus baseline confounder U2) 152 
 153 
pU2_IC0 <- 0.4; pU2_IC1 <- 0.04; pU2_WC0 <- 0.2; pWC0_IC0 <- 0.0 154 
dag <- DAG_base_confounder(pU2_WC0, pU2_IC0, pU2_IC1, 155 
                           pWC0_IC0, pWC0_IC1, pIC0_IC1) 156 
Cor <- impliedCovarianceMatrix(dag) 157 
VarOrd <- as.integer(sapply(colnames(Cor), function(x){which(VarNames ==x )})) 158 
Means <- Nmu[VarOrd] 159 
Sigma <- r2cov(sqrt(Nvar[VarOrd]), Cor) 160 
Sim1plus <- data.frame(runSims(Means, Sigma, N, Nreps, 17)) 161 
Filename <- paste0("1plus-full-", Name) 162 
write.csv(Sim1plus, file = Filename, row.names = FALSE) 163 
 164 
### (d) Scenario 2 ------------------------------------------------------------- 165 
 166 
# set consistent path coefficient 167 
pWC0_IC0 <- 0.5 168 
 169 
pU2_IC0 <- 0.0; pU2_IC1 <- 0.0; pU2_WC0 <- 0.0 170 
dag <- DAG_base_confounder(pU2_WC0, pU2_IC0, pU2_IC1,  171 
                           pWC0_IC0, pWC0_IC1, pIC0_IC1); # plot(graphLayout(dag)) 172 
Cor <- impliedCovarianceMatrix(dag) 173 
VarOrd <- as.integer(sapply(colnames(Cor), function(x){which(VarNames == x)})) 174 
Means <- Nmu[VarOrd] 175 
Sigma <- r2cov(sqrt(Nvar[VarOrd]), Cor) 176 
Sim2 <- data.frame(runSims(Means, Sigma, N, Nreps, 19)) 177 
Filename <- paste0("2-full-", Name) 178 
write.csv(Sim2, file = Filename, row.names = FALSE) 179 
 180 
### (e) Scenario 2+ ------------------------------------------------------------ 181 
 182 
# (Scenario 2 plus baseline confounder U2) 183 
 184 
pU2_IC0 <- 0.4; pU2_IC1 <- 0.04; pU2_WC0 <- 0.2 185 
dag <- DAG_base_confounder(pU2_WC0, pU2_IC0, pU2_IC1, 186 
                           pWC0_IC0, pWC0_IC1, pIC0_IC1) 187 
Cor <- impliedCovarianceMatrix(dag) 188 
VarOrd <- as.integer(sapply(colnames(Cor), function(x){which(VarNames == x)})) 189 
Means <- Nmu[VarOrd] 190 
Sigma <- r2cov(sqrt(Nvar[VarOrd]), Cor) 191 
Sim2plus <- data.frame(runSims(Means, Sigma, N, Nreps, 23)) 192 
Filename <- paste0("2plus-full-", Name) 193 
write.csv(Sim2plus, file = Filename, row.names = FALSE) 194 
 195 
### (f) Scenario 3A ------------------------------------------------------------ 196 
 197 
pU2_IC0 <- 0.0; pU2_IC1 <- 0.0; pU2_WC0 <- 0.0 198 
pWC0_IC1 <- EffSize - (pIC0_IC1*pWC0_IC0) 199 
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dag <- DAG_base_mediator(pU2_WC0, pU2_IC0, pU2_IC1,  200 
                         pWC0_IC0, pWC0_IC1, pIC0_IC1) 201 
Cor <- impliedCovarianceMatrix(dag) 202 
VarOrd <- as.integer(sapply(colnames(Cor), function(x){which(VarNames ==x )})) 203 
Means <- Nmu[VarOrd] 204 
Sigma <- r2cov(sqrt(Nvar[VarOrd]), Cor) 205 
Sim3a <- data.frame(runSims(Means, Sigma, N, Nreps, 29)) 206 
Filename <- paste0("3A-full-", Name) 207 
write.csv(Sim3a, file = Filename, row.names = FALSE) 208 
 209 
### (g) Scenario 3A+ ----------------------------------------------------------- 210 
 211 
# (Scenario 3A plus baseline confounder U2) 212 
 213 
pU2_IC0 <- 0.4; pU2_IC1 <- 0.04; pU2_WC0 <- 0.2 214 
pWC0_IC1 <- EffSize - (pIC0_IC1*pWC0_IC0) 215 
dag <- DAG_base_mediator(pU2_WC0, pU2_IC0, pU2_IC1, 216 
                         pWC0_IC0, pWC0_IC1, pIC0_IC1) 217 
Cor <- impliedCovarianceMatrix(dag) 218 
VarOrd <- as.integer(sapply(colnames(Cor), function(x){which(VarNames == x)})) 219 
Means <- Nmu[VarOrd] 220 
Sigma <- r2cov(sqrt(Nvar[VarOrd]), Cor) 221 
Sim3aplus <- data.frame(runSims(Means, Sigma, N, Nreps, 31)) 222 
Filename <- paste0("3Aplus-full-", Name) 223 
write.csv(Sim3aplus, file = Filename, row.names = FALSE) 224 
 225 
### (h) Scenario 3B ------------------------------------------------------------ 226 
 227 
# (mediator-outcome confounder U) 228 
 229 
# Reset vetors for simulations 230 
VarNames <- c("WC0", "IC0", "IC1", "U2", "U")  231 
Nmu <- c(WCmu, IC0mu, IC1mu, 0, 0)  232 
Nvar <- c(WCvar, IC0var, IC1var, 1, 1) 233 
 234 
pU2_IC0 <- 0.0; pU2_IC1 <- 0.0; pU2_WC0  <- 0.0 235 
pU_IC0 <- 0.4; pU_IC1 <- 0.2 236 
pWC0_IC1 <- EffSize - (pIC0_IC1*pWC0_IC0) 237 
dag <- DAG_base_mediator2(pU2_WC0, pU2_IC0, pU2_IC1, pU_IC0, 238 
                          pU_IC1, pWC0_IC0, pWC0_IC1, pIC0_IC1) 239 
Cor <- impliedCovarianceMatrix(dag) 240 
VarOrd2 <- as.integer(sapply(colnames(Cor), function(x){which(VarNames == x)})) 241 
Means <- Nmu[VarOrd2] 242 
Sigma <- r2cov(sqrt(Nvar[VarOrd2]), Cor) 243 
Sim3b <- data.frame(runSims2(Means, Sigma, N, Nreps, 37)) 244 
Filename <- paste0("3B-full-", Name) 245 
write.csv(Sim3b, file = Filename, row.names = FALSE) 246 
 247 
### (i) Scenario 3B+ ----------------------------------------------------------- 248 
 249 
# (Scenario 3B plus baseline confounder U2) 250 
 251 
pU2_IC0 <- 0.4; pU2_IC1 <- 0.04; pU2_WC0  <- 0.2 252 
pU_IC0 <- 0.4; pU_IC1 <- 0.2 253 
pWC0_IC1 <- EffSize - (pIC0_IC1*pWC0_IC0) 254 
dag <- DAG_base_mediator2(pU2_WC0, pU2_IC0, pU2_IC1, pU_IC0, 255 
                          pU_IC1, pWC0_IC0, pWC0_IC1, pIC0_IC1) 256 
Cor <- impliedCovarianceMatrix(dag) 257 
VarOrd2 <- as.integer(sapply(colnames(Cor), function(x){which(VarNames == x)})) 258 
Means <- Nmu[VarOrd2] 259 
Sigma <- r2cov(sqrt(Nvar[VarOrd2]), Cor) 260 
Sim3bplus <- data.frame(runSims2(Means, Sigma, N, Nreps, 41)) 261 
Filename <- paste0("3Bplus-full-", Name) 262 
write.csv(Sim3bplus, file = Filename, row.names = FALSE) 263 
 264 
### (h) Export data ---------------------------------------------------------- 265 
 266 
Summ      <- NULL 267 
for (itn in c("1", "1plus", "2", "2plus", "3A", "3Aplus", "3B", "3Bplus")) { 268 
  Label    <- paste0(itn, "-full") 269 
  Filename <- paste0(Label, "-",Name) 270 
  File     <- read.csv(Filename)[, c("Beta1", "Beta2", "Beta3")] 271 
  rownames(File) <- paste(Label, c("2.5%", "50%", "97.5%")) 272 
  Summ     <- rbind(Summ, File) } 273 
 274 
write.table(signif(Summ), Name, sep = ",", row.names = TRUE, col.names = N275 
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Appendix B  
Regression with ‘unexplained residuals’ 

B.1 Introduction 

This appendix contains additional material relating to Chapter 5. In particular, it contains 

formal mathematical proofs relating to the key properties of UR models, and details relating to 

the simulation in Section 5.6 which demonstrates the artefactual standard error reduction. 

We first define the key three properties of UR models for a longitudinal exposure measured at 

𝑇 time points (§B.2). We also define the key properties of ordinary least squares (OLS) 

regression estimators and introduce two lemmas (§B.3), which will be required in the 

subsequent sections. We then prove the three properties of UR models for a longitudinal 

exposure measured at 𝑇 time points in the absence of any confounders (§B.4), where there 

exists a baseline confounder (§B.5), and where there exists a time-dependent confounder 

(§B.6). We finally provide additional details relating to the simulation which demonstrates the 

artefactual standard error reduction in UR models, including annotated R code (§B.7). 

B.2 Key properties of UR models for a longitudinal exposure measured at 
𝒌 time points 

The key properties of UR models for a longitudinal exposure 𝑋 measured at 𝑇 time points (i.e. 

𝑋0, 𝑋1, … , 𝑋𝑇−1) are summarised in Table B.1.  

Note that the original scenario examined by Keijzer-Veen et al. (93) is equivalent to the 

scenario considered here where 𝑇 = 2. 
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Table B.1 Description of key properties of UR models for a longitudinal exposure 𝑿 measured 
at 𝑻 time points (i.e. 𝑿𝟎, 𝑿𝟏, … , 𝑿𝑻−𝟏) and one outcome 𝒀 

Property Description 

Mathematical 

formulation 

(i) 

The outcome values predicted by the final standard 

regression model (i.e. for exposure 𝑋𝑇−1) are equal to those 

predicted by the UR model. 

�̂�𝑆
(𝑇−1)

=  �̂�𝑈𝑅
(𝑇−1)

  

(ii) 

The estimated coefficient for 𝑋0 in the initial standard 

regression model (i.e. for exposure 𝑋0) is equal to the 

estimated coefficient for 𝑋0 in the UR model. 

�̂�𝑋0
(0)

= �̂�𝑋0
(𝑇−1)

  

(iii) 

The estimated coefficient for each 𝑋𝑡 in its individual 

standard regression model (i.e. for exposure 𝑋𝑡) is equal to 

the estimated coefficient for the corresponding UR term 𝑒𝑋𝑡 

in the UR model, for 1 ≤ 𝑡 ≤ (𝑇 − 1). 

�̂�𝑋𝑡
(𝑖)

= �̂�𝑒𝑋𝑡
(𝑖)

  

B.3 Lemmas 

The proofs that follow (in §B.4, §B.5, and §B.6) rely upon the following key properties of 

ordinary least squares (OLS) regression estimators and two lemmas. 

B.3.1 Key properties of ordinary least squares (OLS) estimators 

We may represent the regression equation 𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑇𝑥𝑇 + 𝜀 in summary 

notation as: 

 𝑦 = 𝑋𝛽 + 𝜀 , 

where: 𝑦 represents the vector of 𝑛 continuous observations of the outcome; 𝑋 represents the 

𝑛 × (𝑇 + 1) matrix of 𝑛 observations for 𝑇 continuous covariates and 1 constant; 𝛽 represents 

the 𝑇 + 1 vector of coefficients for each covariate and constant; and 𝜀 represents the vector of 

𝑛 residuals. 

The OLS estimate of 𝛽 is given by: 

 �̂� = (𝑋′𝑋)−1𝑋′𝑦  

On the assumption that the inverse matrix exists, this equation has a unique solution. 

Further, for the given OLS equation 𝑦 = 𝑋�̂� + 𝑒, it can be shown that the vector of residuals 

(𝑒) is orthogonal (denoted ⊥) to every column (1, 𝑥1, 𝑥2, … 𝑥𝑇) of 𝑋.29 

                                                           

29 Note that detailed proofs have not been provided, but can be located in the referenced material 
(203). 
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B.3.2 Lemma 1 

For two orthogonal components 𝜏 and 𝛿 (i.e. 𝜏 ⊥ 𝛿), the estimated coefficients of the 

regression of 𝑦 on 𝜏 and 𝛿 are equal to the estimated coefficients for the separate regressions 

of 𝑦 on 𝜏 and 𝑦 on 𝛿. 

Proof: The regression of 𝑦 on 𝜏 and 𝛿 may be written as: 

 𝑦 = [𝜏 𝛿] [
𝛽𝜏

𝛽𝛿
] + 𝜖 = 𝜏𝛽𝜏 + 𝛿𝛽𝛿 + 𝜀  

From Definition 1, the OLS estimate of 𝛽𝜏 and 𝛽𝛿 is given by �̂� = (𝑋′𝑋)−1𝑋′𝑦. In this scenario, 

 𝑋′𝑋 = [
𝜏′

𝛿′] [𝜏 𝛿] = [
𝜏′𝜏 𝜏′𝛿
𝛿′𝜏 𝛿′𝛿

] = [
𝜏′𝜏 0
0 𝛿′𝛿

]  

where the final equivalency follows from the condition of orthogonality. Then 

 (𝑋′𝑋)−1 = [
𝜏′𝜏 0
0 𝛿′𝛿

]
−1

= [
(𝜏′𝜏)−1 0

0 (𝛿′𝛿)−1]  

 and 

 𝑋′𝑦 = [
𝜏′

𝛿′] 𝑦 = [
𝜏′𝑦

𝛿′𝑦
]  

Combining these elements gives: 

 [
�̂�𝜏

�̂�𝛿

] = [
(𝜏′𝜏)−1 0

0 (𝛿′𝛿)−1] [
𝜏′𝑦

𝛿′𝑦
] = [

(𝜏′𝜏)−1𝜏′𝑦

(𝛿′𝛿)−1𝛿′𝑦
]  

From this, we see that the estimated coefficients are equivalent to those that would be 

produced for the separate regressions of 𝑦 on 𝜏 and 𝑦 on 𝛿. ∎ 

B.3.3 Lemma 2 

If 𝜏𝑖 ⊥ 𝛿𝑗  for 0 ≤ 𝑖 ≤ ℎ and 0 ≤ 𝑗 ≤ 𝑘, then 𝑠𝑝𝑎𝑛(𝜏0, 𝜏1, … , 𝜏ℎ) ⊥ 𝑠𝑝𝑎𝑛(𝛿0, 𝛿1, … 𝛿𝑘) for any 

vectors 𝜏0, 𝜏1, … , 𝜏ℎ , 𝛿0, 𝛿1, … 𝛿𝑘. 30 

Proof: 𝜏𝑖 ⊥ 𝛿𝑗  implies that 𝜏𝑖 ∙ 𝛿𝑗 = 0 for 0 ≤ 𝑖 ≤ ℎ and 0 ≤ 𝑗 ≤ 𝑘. Then 

𝑠𝑝𝑎𝑛(𝜏0, 𝜏1, … , 𝜏ℎ) ∙ 𝑠𝑝𝑎𝑛(𝛿0, 𝛿1, 𝛿2, … 𝛿𝑘)  

= (𝑐0𝜏0 + 𝑐1𝜏1 + ⋯ + 𝑐ℎ𝜏ℎ) ∙ (𝑑0𝛿0 + 𝑑1𝛿1 + ⋯ + 𝑑𝑘𝛿𝑘)  

= 𝑐0𝑑0(𝜏0 ∙ 𝛿0) + 𝑐0𝑑1(𝜏0 ∙ 𝛿1) + ⋯ + 𝑐0𝑑𝑘(𝜏0 ∙ 𝛿𝑘) + 𝑐1𝑑0(𝜏1 ∙ 𝛿0) +

𝑐1𝑑1(𝜏1 ∙ 𝛿1) + ⋯ + 𝑐1𝑑𝑘(𝜏1 ∙ 𝛿𝑘) + ⋯ + 𝑐ℎ𝑑0(𝜏ℎ ∙ 𝛿0) + 𝑐ℎ𝑑1(𝜏ℎ ∙ 𝛿1) +

⋯ + 𝑐ℎ𝑑𝑘(𝜏ℎ ∙ 𝛿𝑘)  

= 𝑐0𝑑0(0) + 𝑐0𝑑1(0) + ⋯ + 𝑐0𝑑𝑘(0) + 𝑐1𝑑0(0) + 𝑐1𝑑1(0) + ⋯ + 𝑐1𝑑𝑘(0) +

⋯ + 𝑐ℎ𝑑0(0) + 𝑐ℎ𝑑1(0) + ⋯ + 𝑐ℎ𝑑𝑘(0)  

                                                           

30 The span of a set of vectors 𝛿0, 𝛿1, 𝛿2, … 𝛿𝑘 is the set of all possible linear combinations of 𝛿0, 𝛿1, 𝛿2, … 𝛿𝑘, i.e.: 

 𝑠𝑝𝑎𝑛(𝛿0, 𝛿1, 𝛿2, … 𝛿𝑘) = 𝑐0𝛿0 + 𝑐1𝛿1 + 𝑐2𝛿2 + ⋯ + 𝑐𝑘𝛿𝑘 , where the coefficients 𝑐0, 𝑐1, 𝑐2, … , 𝑐𝑘 are scalars. 
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= 0  

Thus, 𝑠𝑝𝑎𝑛(𝜏0, 𝜏1, … , 𝜏ℎ) ⊥ 𝑠𝑝𝑎𝑛(𝛿0, 𝛿1, 𝛿2, … 𝛿𝑘). ∎ 

B.4 UR models with no confounders (Figure 5.10) 

B.4.1 Definitions 

B.4.1.1 Definition 1 

We define the ordinary least-squares (OLS) regression model �̂�𝑆
(𝑡)

 for each measurement of 

the exposure variable 𝑋𝑡, for 0 ≤ 𝑡 ≤ (𝑇 − 1). Because the relationship between 𝑋𝑡 and 𝑌 is 

confounded by all previous values of 𝑋 (i.e. 𝑋0, 𝑋1, … , 𝑋𝑡−1), we represent 𝑌 as a function of 

1, 𝑋0, 𝑋1, … , 𝑋𝑡: 

 �̂�𝑆
(0)

= �̂�0
(0)

+ �̂�𝑋0
(0)

𝑋0  

 �̂�𝑆
(1)

= �̂�0
(1)

+ �̂�𝑋0
(1)

𝑋0 + �̂�𝑋1
(1)

𝑋1  

 ⋮  

 �̂�𝑆
(𝑇−1)

= �̂�0
(𝑇−1)

+ �̂�𝑋0
(𝑇−1)

𝑋0 + �̂�𝑋1
(𝑇−1)

𝑋1 + ⋯ + �̂�𝑋(𝑇−1)
(𝑇−1)

𝑋𝑇−1   Equation B.1 

The coefficient of the last/most recent measurement of 𝑋 (i.e. �̂�𝑋𝑡
(𝑡)

) may be interpreted as the 

total causal effect of 𝑋𝑡 on 𝑌. 

B.4.1.2 Definition 2 

As established by Keijzer-Veen et al. (93), each UR term 𝑒𝑋𝑡 is derived from the OLS regression 

of 𝑋𝑡 on all previous measurements of 𝑋 (i.e. 𝑋0, 𝑋1, … , 𝑋𝑡−1): 

 𝑋𝑡 = 𝛾0
(𝑡)

+ 𝛾𝑋0
(𝑡)

𝑋0 + 𝛾𝑋1
(𝑡)

𝑋1 + ⋯ + 𝛾𝑋(𝑡−1)
(𝑡)

𝑋𝑡−1 + 𝑒𝑋𝑡   Equation B.2 

for 1 ≤ 𝑡 ≤ (𝑇 − 1). Thus, 

 𝑒𝑋1 = −𝛾0
(1)

− 𝛾𝑋0
(1)

𝑋0 + 𝑋1  

 𝑒𝑋2 = −𝛾0
(2)

− 𝛾𝑋0
(2)

𝑋0 − 𝛾𝑋1
(2)

𝑋1 + 𝑋2  

 ⋮  

 𝑒𝑋(𝑇−1) = −𝛾0
(𝑇−1)

− 𝛾𝑋0
(𝑇−1)

𝑋0 − 𝛾𝑋1
(𝑇−1)

𝑋1 − ⋯ − 𝛾𝑋(𝑇−2)
(𝑇−1)

𝑋𝑇−2 + 𝑋𝑇−1   Equation B.3 

By its formulation, 𝑒𝑋𝑡 represents the difference between the actual value of 𝑋𝑡 and the value 

of 𝑋𝑡 as predicted by all previous measurements of 𝑋. 

B.4.1.3 Definition 3 

The UR model �̂�𝑈𝑅
(𝑡)

 is defined as an OLS regression model which represents 𝑌 as a function of 

1, 𝑋0, 𝑒𝑋1, … , 𝑒𝑋𝑡, for 0 ≤ 𝑡 ≤ (𝑇 − 1): 

 �̂�𝑈𝑅
(0)

= �̂�0
(0)

+ �̂�𝑋0
(0)

𝑋0  

 �̂�𝑈𝑅
(1)

= �̂�0
(1)

+ �̂�𝑋0
(1)

𝑋0 + �̂�𝑒𝑋1
(1)

𝑒𝑋1  
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 ⋮  

 �̂�𝑈𝑅
(𝑇−1)

= �̂�0
(𝑇−1)

+ �̂�𝑋0
(𝑇−1)

𝑋0 + �̂�𝑒𝑋1
(𝑇−1)

𝑒𝑋1 + ⋯ + �̂�𝑒𝑋(𝑇−1)
(𝑇−1)

𝑒𝑋(𝑇−1)   Equation B.4 

B.4.2 Mathematical proofs 

B.4.2.1 Covariate orthogonality 

We prove in Lemma 3 that all UR terms 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑇−1) are orthogonal to all preceding 

variables in the composite UR model (Equation B.4), and therefore orthogonal to their span in 

Theorem 1. 

B.4.2.1.1 Lemma 3 

𝑒𝑋𝑡 ⊥ 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1), for 1 ≤ 𝑡 ≤ (𝑇 − 1). 

Proof: By construction, 𝑒𝑖 represents the residuals from the OLS regression of 

𝑋𝑡~1, 𝑋0, 𝑋1, … , 𝑋𝑡−1 (Equation B.2). Thus, 𝑒𝑋𝑡 ⊥ 1, 𝑋0, 𝑋1, … , 𝑋𝑡−1, which implies that 𝑒𝑋𝑡 ⊥

𝑠𝑝𝑎𝑛(1, 𝑋0, 𝑋1, … , 𝑋𝑡−1) by Lemma 2. 

It is clear that 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1) 𝜖 𝑠𝑝𝑎𝑛(1, 𝑋0, 𝑋1, … , 𝑋𝑡−1) for 1 ≤ 𝑡 ≤ (𝑇 − 1) by 

construction; we are therefore able to conclude that 𝑒𝑋𝑡 ⊥ 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1). ∎ 

B.4.2.1.2 Theorem 1 

𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑋0, 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1)), for 1 ≤ 𝑡 ≤ (𝑇 − 1). 

Proof: 𝑒𝑋𝑡 ⊥ 1, 𝑋0 because 𝑒𝑋𝑡 represents the residuals from the OLS regression of 

𝑋𝑡~1, 𝑋0, 𝑋1, … , 𝑋𝑡−1. Further, 𝑒𝑋𝑡 ⊥ 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1) for 1 ≤ 𝑡 ≤ (𝑇 − 1) by Lemma 3. 

Thus, 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑋0, 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1)) by Lemma 2. ∎ 

B.4.2.2 Property (i) 

�̂�𝑆
(𝑇−1)

= �̂�𝑈𝑅
(𝑇−1)

. 

Proof: This equality follows from the fact that each UR model �̂�𝑈𝑅
(𝑡)

 is a function of the same 

variables as the corresponding standard regression model �̂�𝑆
(𝑡)

. 

By Definition 3, �̂�𝑈𝑅
(𝑡)

= 𝑓(1, 𝑋0, 𝑒𝑋1, … , 𝑒𝑋𝑡), where 𝑒𝑋𝑡 = 𝑓(1, 𝑋0, 𝑋1, … , 𝑋𝑡) by Definition 2. 

Thus, it also holds that 

 �̂�𝑈𝑅
(𝑡)

= 𝑓(1, 𝑋0, 𝑋1, … , 𝑋𝑡)  

Moreover, by Definition 1, 

 �̂�𝑆
(𝑡)

= 𝑓(1, 𝑋0, 𝑋1, … , 𝑋𝑡)  

From this, it follows that �̂�𝑆
(𝑡)

= �̂�𝑈𝑅
(𝑡)

 and, consequently, �̂�𝑆
(𝑇−1)

= �̂�𝑈𝑅
(𝑇−1)

. ∎ 

B.4.2.3 Property (ii) 

�̂�𝑋0
(0)

= �̂�𝑋0
(𝑇−1)

. 



- 136 - 
 

Proof: By definition, �̂�𝑆
(0)

= �̂�𝑈𝑅
(0)

= 𝑓(1, 𝑋0), and so it is trivially true that �̂�𝑋0
(0)

= �̂�𝑋0
(0)

. 

Because 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑋0, 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1)) for 1 ≤ 𝑡 ≤ (𝑇 − 1) by Theorem 1, we are 

able to apply Lemma 1 and conclude that �̂�𝑋0
(0)

= �̂�𝑋0
(1)

= ⋯ = �̂�𝑋0
(𝑇−1)

. 

Therefore, �̂�𝑋0
(0)

= �̂�𝑋0
(𝑇−1)

. ∎ 31 

B.4.2.4 Property (iii) 

�̂�𝑋𝑡
(𝑡)

= �̂�𝑒𝑋𝑡
(𝑇−1)

 . 

Proof: Consider the UR model: 

 �̂�𝑈𝑅
(𝑡)

= �̂�0
(𝑡)

+ �̂�𝑋0
(𝑡)

𝑋0 + �̂�𝑒𝑋1
(𝑡)

𝑒𝑋1 + ⋯ + �̂�𝒆𝑿𝒕
(𝒕)

𝑒𝑋𝑡  

If we substitute the expansion for 𝑒𝑋𝑡 (Equation B.3) into this equation and rearrange, we 

produce: 

�̂�𝑈𝑅
(𝑡)

= �̂�0
(𝑡)

+ �̂�𝑋0
(𝑡)

𝑋0 + �̂�𝑒𝑋1
(𝑡)

[−𝛾0
(1)

− 𝛾𝑋0
(1)

𝑋0 + 𝑋1] + ⋯ + �̂�𝑒𝑋𝑡
(𝑡)

[−�̂�0
(𝑡)

− 𝛾𝑋0
(𝑡)

𝑋0 −

𝛾𝑋1
(𝑡)

𝑋1 − ⋯ − 𝛾𝑋(𝑡−1)
(𝑡)

𝑋𝑡−1 + 𝑋𝑡]  

= [�̂�0
(𝑡)

− �̂�𝑒𝑋1
(𝑡)

𝛾0
(1)

− ⋯ − �̂�𝑒𝑋𝑖
(𝑡)

𝛾0
(𝑡)

] + [�̂�𝑥0
(𝑡)

− �̂�𝑒𝑋1
(𝑡)

𝛾𝑋0
(1)

− ⋯ − �̂�𝑒𝑋𝑡
(𝑡)

𝛾𝑋0
(𝑡)

] 𝑋0 +

[�̂�𝑒𝑋1
(𝑡)

− �̂�𝑒𝑋2
(𝑡)

𝛾𝑋1
(2)

− ⋯ − �̂�𝑒𝑋𝑡
(𝑡)

𝛾𝑋1
(𝑡)

] 𝑋1 + ⋯ + [�̂�𝒆𝑿𝒕
(𝒕)

] 𝑋𝑡  

Since we have already established that �̂�𝑆
(𝑡)

= �̂�𝑈𝑅
(𝑡)

 (i.e. Property (i)) because they are functions 

of the same covariates, it follows that the estimated coefficients for those covariates must 

themselves be equal. Specifically, we are able to see that the coefficient for 𝑋𝑡 will always 

equal the coefficient for 𝑒𝑋𝑡, i.e. �̂�𝑋𝑡
(𝑡)

= �̂�𝑒𝑋𝑡
(𝑡)

. 

Finally, because 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑋0, 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1)), we can again apply Lemma 1 and 

conclude that �̂�𝑒𝑋𝑡
(0)

= �̂�𝑒𝑋𝑡
(1)

= ⋯ = �̂�𝑒𝑋𝑡
(𝑇−1)

, from which it follows that �̂�𝑋𝑡
(𝑡)

= �̂�𝑒𝑋𝑡
(𝑇−1)

. ∎ 

B.5 UR models with baseline confounding (Figure 5.11) 

B.5.1 Definitions 

B.5.1.1 Definition 4 

Because the relationship between each measurement 𝑋𝑡 and 𝑌 is confounded by 𝑀 (for 0 ≤

𝑡 ≤ (𝑇 − 1)), adjustment for 𝑀 is necessary to estimate the total effect of 𝑋𝑡 on 𝑌 in the 

standard regression models: 

 �̂�𝑆
(0)

= �̂�0
(0)

+ �̂�𝑀
(0)

𝑀 + �̂�𝑿𝟎
(𝟎)

𝑿𝟎  

 �̂�𝑆
(1)

= �̂�0
(1)

+ �̂�𝑀
(1)

𝑀 + �̂�𝑋0
(1)

𝑋0 + �̂�𝑿𝟏
(𝟏)

𝑿𝟏  

 ⋮  

 �̂�𝑆
(𝑇−1)

= �̂�0
(𝑇−1)

+ �̂�𝑀
(𝑇−1)

𝑀 + �̂�𝑋0
(𝑇−1)

𝑋0 + �̂�𝑋1
(𝑇−1)

𝑋1 + ⋯ + �̂�𝑿(𝑻−𝟏)
(𝑻−𝟏)

𝑿𝑻−𝟏   Equation B.5 

                                                           

31 Although no causal meaning/significance can be attributed to the intercept term, the logic applied in this proof may be easily 

extended to show that �̂�0
(0)

= �̂�0
(𝑇−1)

. 
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B.5.1.2 Definition 5 

The relationship between 𝑋𝑡 and 𝑋0, 𝑋1, … , 𝑋𝑡−1 for 1 ≤ 𝑡 ≤ (𝑇 − 1) is confounded by 𝑀, and 

thus adjustment for 𝑀 is necessary when regressing 𝑋𝑡~𝑋0, 𝑋1, … , 𝑋𝑡−1 to generate each UR 

term 𝑒𝑋𝑡, i.e.: 

 𝑋𝑡 = 𝛾0
(𝑡)

+ 𝛾𝑀
(𝑡)

𝑀 + 𝛾𝑋0
(𝑡)

𝑋0 + 𝛾𝑋1
(𝑡)

𝑋1 + ⋯ + 𝛾𝑋(𝑡−1)
(𝑡)

𝑋𝑡−1 + 𝑒𝑋𝑡   Equation B.6 

 and 

 𝑒𝑋𝑡 = −𝛾0
(𝑡)

− 𝛾𝑀
(𝑡)

𝑀 − 𝛾𝑋0
(𝑡)

𝑋0 − 𝛾𝑋1
(𝑡)

𝑋1 − ⋯ − 𝛾𝑋(𝑡−1)
(𝑡)

𝑋𝑡−1 + 𝑋𝑡   Equation B.7 

In this way, 𝑒𝑋𝑡 represents the difference between the actual value of 𝑋𝑡 and the value of 𝑋𝑡 as 

predicted by all previous measurements 𝑀, 𝑋0, 𝑋1, … , 𝑋𝑡−1. 

B.5.1.3 Definition 6 

𝑀 also confounds the relationship between 𝑋0 and 𝑌, and so adjustment must be made in the 

composite UR model: 

 �̂�𝑈𝑅
(𝑇−1)

= �̂�0
(𝑇−1)

+ �̂�𝑀
(𝑇−1)

𝑀 + �̂�𝑋0
(𝑇−1)

𝑋0 + �̂�𝑒𝑋1
(𝑇−1)

𝑒𝑋1 + ⋯ + �̂�𝑒𝑋(𝑇−1)
(𝑇−1)

𝑒𝑋(𝑇−1)  

  Equation B.8 

B.5.2 Mathematical proofs 

B.5.2.1 Covariate orthogonality 

We prove in Lemma 4 that all UR terms 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑇−1) are orthogonal to all preceding 

variables in the composite UR model 

(  Equation B.8), and therefore orthogonal to their span in Theorem 2. 

B.5.2.1.1 Lemma 4 

𝑒𝑋𝑡 ⊥ 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1), for 1 ≤ 𝑡 ≤ (𝑇 − 1). 

Proof: By construction, 𝑒𝑋𝑡 represents the residuals from the OLS regression of 

𝑋𝑡~1, 𝑀, 𝑋0, 𝑋1, … , 𝑋𝑡−1 (Equation B.6). Thus, 𝑒𝑋𝑡 ⊥ 1, 𝑀, 𝑋0, 𝑋1, … , 𝑋𝑡−1, from which it follows 

that 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀, 𝑋0, 𝑋1, … , 𝑋𝑡−1) by Lemma 2. 

Because 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1) 𝜖 𝑠𝑝𝑎𝑛(1, 𝑀, 𝑋0, 𝑋1, … , 𝑋𝑡−1) for 1 ≤ 𝑡 ≤ (𝑇 − 1) by 

construction, we are able to conclude that 𝑒𝑋𝑡 ⊥ 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1). ∎ 

B.5.2.1.2 Theorem 2 

𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀, 𝑋0, 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1)), for 1 ≤ 𝑡 ≤ (𝑇 − 1). 

Proof: 𝑒𝑋𝑡 ⊥ 1, 𝑀, 𝑋0 because 𝑒𝑋𝑡 represents the residuals from the OLS regression of 

𝑋𝑡~1, 𝑀, 𝑋0, 𝑋1, … , 𝑋𝑡−1. Further, 𝑒𝑋𝑡 ⊥ 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1) for 1 ≤ 𝑡 ≤ (𝑇 − 1) by Lemma 4 

above. 

Thus, 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀, 𝑋0, 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1)) by Lemma 2. ∎ 
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B.5.2.2 Property (i) 

�̂�𝑆
(𝑇−1)

= �̂�𝑈𝑅
(𝑇−1)

  

Proof: As before, this equality follows from the fact that �̂�𝑈𝑅
(𝑡)

 is a function of the same variables 

as �̂�𝑆
(𝑡)

. 

By Definition 6, �̂�𝑈𝑅
(𝑡)

= 𝑓(1, 𝑀, 𝑋0, 𝑒𝑋1, … , 𝑒𝑋𝑡), where 𝑒𝑋𝑡 = 𝑓(1, 𝑀, 𝑋0, 𝑋1, … , 𝑋𝑡) by 

Definition 5. Thus, it also holds that 

 �̂�𝑈𝑅
(𝑡)

= 𝑓(1, 𝑀, 𝑋0, 𝑋1, … , 𝑋𝑡)  

Moreover, by Definition 4, 

 �̂�𝑆
(𝑡)

= 𝑓(1, 𝑀, 𝑋0, 𝑋1, … , 𝑋𝑡)  

From this, it follows that �̂�𝑆
(𝑡)

= �̂�𝑈𝑅
(𝑡)

 and, consequently, �̂�𝑆
(𝑇−1)

= �̂�𝑈𝑅
(𝑇−1)

. ∎ 

B.5.2.3 Property (ii) 

�̂�𝑋0
(0)

= �̂�𝑋0
(𝑇−1)

  

Proof: By definition, �̂�𝑆
(0)

= �̂�𝑈𝑅
(0)

= 𝑓(1, 𝑀, 𝑋0), and it is trivially true that �̂�𝑋0
(0)

= �̂�𝑋0
(0)

. 

Because 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀, 𝑋0, 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1)) for 1 ≤ 𝑡 ≤ (𝑇 − 1) by Theorem 2, we 

conclude that �̂�𝑋0
(0)

= �̂�𝑋0
(1)

= ⋯ = �̂�𝑋0
(𝑇−1)

 from Lemma 1. 

Therefore, �̂�𝑋0
(0)

= �̂�𝑋0
(𝑇−1)

. ∎ 32 

B.5.2.4 Property (iii) 

�̂�𝑋𝑡
(𝑡)

= �̂�𝑒𝑋𝑡
(𝑇−1)

  

Proof: Consider the UR model: 

 �̂�𝑈𝑅
(𝑡)

= �̂�0
(𝑡)

+ �̂�𝑀
(𝑡)

𝑀 + �̂�𝑋0
(𝑡)

𝑋0 + �̂�𝑒𝑋1
(𝑡)

𝑒𝑋1 + ⋯ + �̂�𝒆𝑿𝒕
(𝒕)

𝑒𝑋𝑡  

If we substitute the expansion for 𝑒𝑋𝑡 (Equation B.7) into this equation and rearrange, we 

produce: 

�̂�𝑈𝑅
(𝑡)

= �̂�0
(𝑡)

+ �̂�𝑀
(𝑡)

𝑀 + �̂�𝑋0
(𝑡)

𝑋0 + �̂�𝑒𝑋1
(𝑡)

[−�̂�0
(1)

− 𝛾𝑋0
(1)

𝑋0 + 𝑋1 − 𝛾𝑀
(2)

𝑀 ] + ⋯ +

�̂�𝑒𝑋𝑡
(𝑡)

[−�̂�0
(𝑡)

− 𝛾𝑋0
(𝑡)

𝑋0 − 𝛾𝑋1
(𝑡)

𝑋1 − ⋯ − 𝛾𝑋(𝑡−1)
(𝑡)

𝑋𝑡−1 + 𝑋𝑡 − 𝛾𝑀
(𝑡)

𝑀]  

= [�̂�0
(𝑡)

− �̂�𝑒𝑋1
(𝑡)

𝛾0
(1)

− ⋯ − �̂�𝑒𝑋𝑡
(𝑡)

𝛾0
(𝑡)

] + [�̂�𝑋0
(𝑡)

− �̂�𝑒𝑋1
(𝑡)

𝛾𝑋0
(1)

− ⋯ − �̂�𝑒𝑋𝑡
(𝑡)

𝛾𝑋0
(𝑡)

] 𝑋0 +

[�̂�𝑒𝑋1
(𝑡)

− �̂�𝑒𝑋2
(𝑡)

𝛾𝑋2
(2)

− ⋯ − �̂�𝑒𝑋𝑡
(𝑡)

𝛾𝑋1
(𝑡)

] 𝑋1 + ⋯ + [�̂�𝒆𝑿𝒕
(𝒕)

] 𝑋𝑡 + [�̂�𝑀
(𝑡)

− �̂�𝑒𝑋1
(𝑡)

𝛾𝑀
(1)

−

�̂�𝑒𝑋𝑡
(𝑡)

𝛾𝑀
(𝑡)

] 𝑀  

We have already established that �̂�𝑆
(𝑡)

= �̂�𝑈𝑅
(𝑡)

 (i.e. Property (i)) because they are functions of 

the same covariates, so it follows that the estimated coefficients for those covariates must 

                                                           

32 Although no causal meaning/significance can be attributed to the coefficient of the confounder 𝑀, the logic applied in this 

proof may be easily extended to show that �̂�𝑀
(0)

= �̂�𝑀
(𝑇−1)

. 
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themselves be equal. Specifically, we see that the coefficient for 𝑋𝑡 will always equal the 

coefficient for 𝑒𝑋𝑡, i.e. �̂�𝑋𝑡
(𝑡)

= �̂�𝑒𝑋𝑡
(𝑡)

. 

Because 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀, 𝑋0, 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1)), we may apply Lemma 1 and conclude that 

�̂�𝑒𝑋𝑡
(0)

= �̂�𝑒𝑋𝑡
(1)

= ⋯ = �̂�𝑒𝑋𝑡
(𝑇−1)

, from which it follows that �̂�𝑋𝑡
(𝑡)

= �̂�𝑒𝑋𝑡
(𝑇−1)

. ∎ 

B.6 UR models with time-dependent confounding (Figure 5.12) 

B.6.1 Definitions 

B.6.1.1 Definition 7 

The relationship between each 𝑋𝑡 and 𝑌 is confounded by all previous measurements of the 

exposure 𝑋0, 𝑋1, … , 𝑋𝑡−1, as well as all previous and current measurements of the confounder 

𝑀0, 𝑀1, … , 𝑀𝑡 (for 0 ≤ 𝑡 ≤ (𝑇 − 1)). These covariates must all be included in the standard 

regression models to obtain an unbiased estimate of the total causal effect of each 

measurement 𝑋𝑡 on 𝑌, i.e.: 

�̂�𝑆
(0)

= �̂�0
(0)

+ �̂�𝑀0
(0)

𝑀0 + �̂�𝑿𝟎
(𝟎)

𝑿𝟎  

�̂�𝑆
(1)

= �̂�0
(1)

+ �̂�𝑀0
(1)

𝑀1 + �̂�𝑋0
(1)

𝑋0 + �̂�𝑀1
(1)

𝑀1 + �̂�𝑿𝟏
(𝟏)

𝑿𝟏  

⋮  

�̂�𝑆
(𝑇−1)

= �̂�0
(𝑇−1)

+ �̂�𝑀0
(𝑇−1)

𝑀0 + �̂�𝑋0
(𝑇−1)

𝑋0 + ⋯ + �̂�𝑀(𝑇−1)
(𝑇−1)

𝑀𝑇−1 + �̂�𝑿(𝑻−𝟏)
(𝑻−𝟏)

𝑿𝑻−𝟏 

  Equation B.9 

B.6.1.2 Definition 8 

The relationship between each measurement 𝑋𝑡 and all previous measurements of the 

exposure 𝑋0, 𝑋1, … , 𝑋𝑡−1 is confounded by all previous and current measurements of the 

confounder 𝑀0, 𝑀1, … , 𝑀𝑡, for 1 ≤ 𝑡 ≤ (𝑇 − 1). Thus, we create UR terms 𝑒𝑋𝑡 for each 

measurement of the exposure variable 𝑋𝑡 by adjusting for 𝑀0, 𝑀1, … , 𝑀𝑡, i.e.: 

 𝑋𝑡 = 𝛾0
(𝑡)

+ 𝛾𝑀0
(𝑡)

𝑀0 + 𝛾𝑋0
(𝑡)

𝑋0 + ⋯ + 𝛾𝑀(𝑡−1)
(𝑡)

𝑀𝑡−1 + 𝛾𝑋(𝑡−1)
(𝑡)

𝑋𝑡−1 + 𝛾𝑀𝑡
(𝑡)

𝑀𝑡 + 𝑒𝑋𝑡  

  Equation B.10 

 and 

 𝑒𝑋𝑡 = −𝛾0
(𝑡)

− 𝛾𝑀0
(𝑡)

𝑀0 − 𝛾𝑋0
(𝑡)

𝑋0 − ⋯ − 𝛾𝑀(𝑡−1)
(𝑡)

𝑀𝑡−1 − 𝛾𝑋(𝑡−1)
(𝑡)

𝑋𝑡−1 − 𝛾𝑀𝑡
(𝑖)

𝑀𝑡 + 𝑋𝑡  

  Equation B.11 

In this way, 𝑒𝑋𝑡 represents the difference between the observed value of 𝑋𝑡 and the value of 

𝑋𝑡 as predicted by all previous measurements 𝑀0, 𝑋0, 𝑀1, 𝑋1, … , 𝑀𝑡−1, 𝑋𝑡−1, 𝑀𝑡. 

Previous proofs have relied upon the orthogonality of the terms in the composite UR model 

(i.e. Theorem 1 and Theorem 2 in §B.4.2.1.2 and §B.5.2.1.2, respectively). This necessitates the 

creation of UR terms 𝑒𝑀𝑡 for each measurement of the time-dependent confounding variable 

𝑀𝑡, for 1 ≤ 𝑡 ≤ (𝑇 − 1). Each 𝑒𝑀𝑡 is derived from the OLS regression of 𝑀𝑡 on all previous 
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values of the confounder 𝑀0, 𝑀1, … , 𝑀𝑡−1 and all previous values of the exposure 

𝑋0, 𝑋1, … , 𝑋𝑡−1, i.e.: 

 𝑀𝑡 = �̂�0
(𝑡)

+ �̂�𝑀0
(𝑡)

𝑀0 + �̂�𝑋0
(𝑡)

𝑋0 + ⋯ + �̂�𝑀(𝑡−1)
(𝑡)

𝑀𝑡−1 + �̂�𝑋(𝑡−1)
(𝑡)

𝑋𝑡−1 + 𝑒𝑀𝑡  

  Equation B.12 

 and 

 𝑒𝑀𝑡 = −�̂�0
(𝑡)

− �̂�𝑀0
(𝑡)

𝑀0 − �̂�𝑋0
(𝑡)

𝑋0 − ⋯ − �̂�𝑀(𝑡−1)
(𝑡)

𝑀𝑡−1 − �̂�𝑡−1
(𝑡)

𝑋𝑡−1 + 𝑀𝑡  

  Equation B.13 

These adjustments follow from the DAG in Figure xx, in which it is evident that 𝑋0, 𝑋1, … , 𝑋𝑡−1 

confound the relationship between 𝑀𝑡 and 𝑀0, 𝑀1, … , 𝑀𝑡−1. Thus, 𝑒𝑀𝑡 has a similar 

interpretation to the original UR terms, in that it represents the part of 𝑀𝑡 unexplained by all 

previous values  𝑀0, 𝑋0, 𝑀1, 𝑋1, … , 𝑀𝑡−1, 𝑋𝑡−1. 

B.6.1.3 Definition 9 

Finally, we represent the composite UR model as a function of the initial value of the exposure 

𝑋0 and all subsequent URs for the exposure 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋𝑡, and the initial value of the 

confounder 𝑀0 and all subsequent URs for the confounder 𝑒𝑀1, 𝑒𝑀2, … , 𝑒𝑀𝑡: 

�̂�𝑈𝑅
(𝑇−1)

= �̂�0
(𝑇−1)

+ �̂�𝑀0
(𝑇−1)

𝑀0 + �̂�𝑋0
(𝑇−1)

𝑋0 + �̂�𝑒𝑀1
(𝑇−1)

𝑒𝑀1 + �̂�𝑒𝑋1
(𝑇−1)

𝑒𝑋1 + ⋯ +

�̂�𝑒𝑀(𝑇−1)
(𝑇−1)

𝑒𝑀(𝑇−1) + �̂�𝑒𝑋(𝑇−1)
(𝑇−1)

𝑒𝑋(𝑇−1)    Equation B.14 

B.6.2 Mathematical proofs 

B.6.2.1 Covariate orthogonality 

Here, we show that: the UR terms for each measurement of the confounder (i.e. 

𝑒𝑀1, 𝑒𝑀2, … , 𝑒𝑀𝑡) are mutually orthogonal (Lemma 6); the UR terms for each measurement of 

the exposure (i.e. 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋𝑡) are mutually orthogonal (Lemma 7); and, importantly, the 

UR terms 𝑒𝑀1, 𝑒𝑀2, … , 𝑒𝑀𝑡 are orthogonal to 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋𝑡 (Lemma 8).  

B.6.2.1.1 Lemma 6 

𝑒𝑀𝑡 ⊥ 𝑒𝑀1, 𝑒𝑀2, … , 𝑒𝑀(𝑡−1), for 1 ≤ 𝑡 ≤ (𝑇 − 1). 

Proof: By construction, 𝑒𝑀𝑡 represents the residuals from the OLS regression of 

𝑀𝑡~1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1 (Equation B.12). Thus, 𝑒𝑀𝑡 ⊥ 1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1, which 

implies 𝑒𝑀𝑡 ∙ 1 = 0, 𝑒𝑀𝑡 ∙ 𝑀0 = 0, 𝑒𝑀𝑡 ∙ 𝑋0 = 0, …, 𝑒𝑀𝑡 ∙ 𝑀𝑡−1 = 0, 𝑒𝑀𝑡 ∙ 𝑋𝑡−1 = 0. 

From this, it follows that 𝑒𝑀𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1) from Lemma 2. 

Because 𝑒𝑀1, 𝑒𝑀2, … , 𝑒𝑀(𝑡−1) 𝜖 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1) for 1 ≤ 𝑡 ≤ (𝑇 − 1) by 

construction, we are able to conclude that 𝑒𝑀𝑡 ⊥ 𝑒𝑀1, 𝑒𝑀2, … , 𝑒𝑀(𝑡−1). ∎ 
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B.6.2.1.2 Lemma 7 

𝑒𝑋𝑡 ⊥ 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1), for 1 ≤ 𝑡 ≤ (𝑇 − 1). 

Proof: By construction, 𝑒𝑥𝑡 represents the residuals from the OLS regression of 

𝑋𝑡~1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1, 𝑀𝑡 (Equation B.10). Thus, 𝑒𝑋𝑡 ⊥ 1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1, 𝑀𝑡, 

which implies 𝑒𝑋𝑡 ∙ 1 = 0, 𝑒𝑋𝑡 ∙ 𝑀0 = 0, 𝑒𝑋𝑡 ∙ 𝑋0 = 0, …, 𝑒𝑋𝑡 ∙ 𝑀𝑡−1 = 0, 𝑒𝑋𝑡 ∙ 𝑋𝑡−1 = 0, 𝑒𝑋𝑡 ∙

𝑀𝑡 = 0. 

From this, it follows that 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1, 𝑀𝑡) from Lemma 2. 

Because 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1) 𝜖 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1, 𝑀𝑡) for 1 ≤ 𝑡 ≤ (𝑇 − 1) by 

construction, we are able to conclude that 𝑒𝑋𝑡 ⊥ 𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑡−1). ∎ 

B.6.2.1.3 Lemma 8 

𝑒𝑋𝑡 ⊥ 𝑒𝑋𝑖, for 1 ≤ 𝑡 ≤ (𝑇 − 1) and 1 ≤ 𝑖 ≤ (𝑇 − 1). 

Proof: As established previously, 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1, 𝑀𝑡) by Lemma 2, for 

1 ≤ 𝑡 ≤ (𝑇 − 1). Because 𝑒𝑀1, 𝑒𝑀2, … , 𝑒𝑀𝑡𝜖 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1, 𝑀𝑡) by 

construction, it is evident that 𝑒𝑋𝑡 ⊥ 𝑒𝑀1, 𝑒𝑀2, … , 𝑒𝑀𝑡. 

Further, 𝑒𝑀𝑖 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑀𝑖−1, 𝑋𝑖−1) by Lemma 2, for 1 ≤ 𝑖 ≤ (𝑇 − 1). Because 

𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑖−1) 𝜖 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑀𝑖−1, 𝑋𝑖−1) by construction, it is evident that 𝑒𝑀𝑖 ⊥

𝑒𝑋1, 𝑒𝑋2, … , 𝑒𝑋(𝑖−1). 

Combining these two results, it follows that 𝑒𝑋𝑡 ⊥ 𝑒𝑀𝑖 for 1 ≤ 𝑡 ≤ (𝑇 − 1) and 1 ≤ 𝑖 ≤ (𝑇 −

1). ∎ 

B.6.2.1.4 Theorem 3 

𝑠𝑝𝑎𝑛(𝑒𝑋𝑡 , 𝑒𝑀𝑡) ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑒𝑀(𝑡−1), 𝑒𝑋(𝑡−1)), for 1 ≤ 𝑡 ≤ (𝑇 − 1). 

Proof: By definition, 𝑒𝑋𝑡 ⊥ 1, 𝑀0, 𝑋0. As established in Lemma 7 and Lemma 8, 𝑒𝑋𝑡 ⊥

𝑒𝑋1, … , 𝑒𝑋(𝑡−1), 𝑒𝑀0, … , 𝑒𝑀(𝑡−1). 

Further, 𝑒𝑀𝑡 ⊥ 1, 𝑀0, 𝑋0 by definition, and as established in Lemma 6 and Lemma 8, 𝑒𝑀𝑡 ⊥

𝑒𝑋1, … , 𝑒𝑋(𝑡−1), 𝑒𝑀0, … , 𝑒𝑀(𝑡−1). 

Thus, by Lemma 2, it follows that 𝑠𝑝𝑎𝑛(𝑒𝑋𝑡 , 𝑒𝑀𝑡) ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑒𝑀(𝑡−1), 𝑒𝑋(𝑡−1)). ∎ 

B.6.2.2 Property (i) 

�̂�𝑆
(𝑇−1)

= �̂�𝑈𝑅
(𝑇−1)

 . 

Proof: As previously, Property (i) follows from the fact that �̂�𝑈𝑅
(𝑡)

 is a function of the same 

variables as �̂�𝑆
(𝑡)

. 

By Definition 9, �̂�𝑈𝑅
(𝑡)

= 𝑓(1, 𝑀0, 𝑋0, 𝑒𝑀1, 𝑒𝑋1, … , 𝑒𝑀𝑡 , 𝑒𝑋𝑡), where 𝑒𝑋𝑡 = 𝑓(1, 𝑀0, 𝑋0, … , 𝑀𝑡 , 𝑋𝑡) 

and 𝑒𝑀𝑡 = 𝑓(1, 𝑀0, 𝑋0, … , 𝑀𝑡−1, 𝑋𝑡−1, 𝑀𝑡) by Definition 8. Thus, it also holds that 

 �̂�𝑈𝑅
(𝑡)

= 𝑓(1, 𝑀0, 𝑋0, … , 𝑀𝑡, 𝑋𝑡)  



- 142 - 
 

Moreover, by Definition 7, 

 �̂�𝑆
(𝑡)

= 𝑓(1, 𝑀0, 𝑋0, … , 𝑀𝑡, 𝑋𝑡)  

From this, it follows that �̂�𝑆
(𝑡)

= �̂�𝑈𝑅
(𝑡)

 and, consequently, �̂�𝑆
(𝑇−1)

= �̂�𝑈𝑅
(𝑇−1)

. ∎ 

B.6.2.3 Property (ii) 

�̂�𝑋0
(0)

= �̂�𝑋0
(𝑇−1)

 . 

Proof: By definition, �̂�𝑆
(0)

= �̂�𝑈𝑅
(0)

= 𝑓(1, 𝑀0, 𝑋0), and it is trivially true that �̂�𝑋0
(0)

= �̂�𝑋0
(0)

. 

Because 𝑠𝑝𝑎𝑛(𝑒𝑋𝑡 , 𝑒𝑀𝑡) ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, … , 𝑒𝑀(𝑡−1), 𝑒𝑋(𝑡−1) for 1 ≤ 𝑡 ≤ (𝑇 − 1) by 

Theorem 3, we are able to conclude that �̂�𝑋0
(0)

= �̂�𝑋0
(1)

= ⋯ = �̂�𝑋0
(𝑇−1)

 by applying Lemma 1. 

Therefore, �̂�𝑋0
(0)

= �̂�𝑋0
(𝑇−1)

. ∎ 33 

B.6.2.4 Property (iii) 

�̂�𝑋𝑡
(𝑡)

= �̂�𝑒𝑋𝑡
(𝑇−1)

 . 

Proof: Consider the UR model: 

 �̂�𝑈𝑅
(𝑡)

= �̂�0
(𝑡)

+ �̂�𝑀0
(𝑡)

𝑀0 + �̂�𝑋0
(𝑡)

𝑋0 + �̂�𝑒𝑀1
(𝑡)

𝑒𝑀1 + �̂�𝑒𝑋1
(𝑡)

𝑒𝑋1 + ⋯ + �̂�𝑒𝑀𝑡
(𝑡)

𝑒𝑀𝑡 + �̂�𝒆𝑿𝒕
(𝒕)

𝑒𝑋𝑡  

By substituting the expansions for 𝑒𝑋𝑡 (Equation B.11) and 𝑒𝑀𝑡 (Equation B.13) into this 

equation and rearranging, we produce: 

�̂�𝑈𝑅
(𝑡)

= �̂�0
(𝑡)

+ �̂�𝑀0
(𝑡)

𝑀0 + �̂�𝑋0
(𝑡)

𝑋0 + �̂�𝑒𝑀1
(𝑡)

[−�̂�0
(1)

− �̂�𝑋0
(1)

𝑋0 − �̂�𝑀0
(1)

𝑀0 + 𝑀1] +

�̂�𝑒𝑋1
(𝑡)

[−�̂�0
(1)

− 𝛾𝑋0
(1)

𝑋0 + 𝑋1 − 𝛾𝑀0
(1)

𝑀0 − 𝛾𝑀1
(1)

𝑀1] + ⋯ + �̂�𝑒𝑀𝑡
(𝑡)

[−�̂�0
(𝑡)

− �̂�𝑋0
(𝑡)

𝑋0 −

⋯ − �̂�𝑡−1
(𝑡)

𝑋𝑡−1 − �̂�𝑀0
(𝑡)

𝑀0 − ⋯ − �̂�𝑀(𝑡−1)
(𝑡)

𝑀𝑡−1 + 𝑀𝑡] + �̂�𝑒𝑋𝑡
(𝑡)

[−�̂�0
(𝑡)

− 𝛾𝑋0
(𝑡)

𝑋0 −

⋯ − 𝛾𝑡−1
(𝑡)

𝑋𝑡−1 + 𝑋𝑡 − 𝛾𝑀0
(𝑡)

𝑀0 − ⋯ − 𝛾𝑀𝑡
(𝑡)

𝑀𝑡]  

= [�̂�0
(𝑡)

− �̂�𝑒𝑀1
(𝑡)

�̂�0
(1)

− �̂�𝑒𝑋1
(𝑡)

�̂�0
(1)

− ⋯ − �̂�𝑒𝑀𝑡
(𝑡)

�̂�0
(𝑡)

− �̂�𝑒𝑋𝑡
(𝑡)

�̂�0
(𝑡)

] + [�̂�𝑀0
(𝑡)

− �̂�𝑒𝑀1
(𝑡)

�̂�𝑀0
(1)

−

�̂�𝑒𝑋1
(𝑡)

�̂�𝑀0
(1)

− ⋯ − �̂�𝑒𝑀𝑡
(𝑡)

�̂�𝑀0
(𝑡)

− �̂�𝑒𝑋𝑡
(𝑡)

�̂�𝑀0
(𝑡)

] 𝑀0 + [�̂�𝑋0
(𝑡)

− �̂�𝑒𝑀1
(𝑡)

�̂�𝑋0
(1)

− �̂�𝑒𝑋1
(𝑡)

�̂�𝑋0
(1)

− ⋯ −

�̂�𝑒𝑀𝑡
(𝑡)

�̂�𝑋0
(𝑡)

− �̂�𝑒𝑋𝑡
(𝑡)

�̂�𝑋0
(𝑡)

] 𝑋0 + ⋯ + [�̂�𝑒𝑀𝑡
(𝑡)

− �̂�𝑒𝑋𝑡
(𝑡)

�̂�𝑀𝑡
(𝑡)

] 𝑀𝑡 + [�̂�𝒆𝑿𝒕
(𝒕)

] 𝑋𝑡  

Having established that �̂�𝑆
(𝑡)

= �̂�𝑈𝑅
(𝑡)

 (i.e. Property (i)) because they are functions of the same 

covariates, it follows that the estimated coefficients for those covariates must themselves be 

equal. Specifically, we see that the coefficient for 𝑋𝑡 will always equal the coefficient for 𝑒𝑋𝑡, 

i.e. �̂�𝑋𝑡
(𝑡)

= �̂�𝑒𝑋𝑡
(𝑡)

. 

Finally, using the fact that 𝑒𝑋𝑡 ⊥ 𝑠𝑝𝑎𝑛(1, 𝑀0, 𝑋0, 𝑒𝑀1, 𝑒𝑋1, … , 𝑒𝑀(𝑡−1), 𝑒𝑋(𝑡−1), 𝑒𝑀𝑡), we apply 

Lemma 1 and conclude that �̂�𝑒𝑋𝑡
(0)

= �̂�𝑒𝑋𝑡
(1)

= ⋯ = �̂�𝑒𝑋𝑡
(𝑇−1)

, from which it follows that �̂�𝑋𝑡
(𝑡)

=

�̂�𝑒𝑋𝑡
(𝑇−1)

.  ∎ 

                                                           

33 Although no causal meaning/significance can be attributed to the intercept term or the coefficients of the UR terms for the 

confounder 𝑒𝑀1, … , 𝑒𝑀(𝑇−1), the logic applied in this proof may be easily extended to show that �̂�0
(0)

= �̂�0
(𝑇−1)

 and �̂�𝑀1
(0)

=

�̂�𝑒𝑀1
(𝑇−1)

, …, �̂�𝑀(𝑇−1)
(0)

= �̂�𝑒𝑀(𝑇−1)
(𝑇−1)

, respectively. 
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B.7 Artefactual standard error reduction using UR models: Simulation 
details and code 

B.7.1 Directed acyclic graph (DAG) 

Figure B.1 depicts the DAG from which multivariate normal data were simulated in order to 

demonstrate the artefactual reduction in standard errors that results from using UR models. 

Figure B.1 Directed acyclic graph from which multivariate normal data were simulated to 
demonstrate standard error reduction in UR models 

 

Numbers represent standardised path coefficients. 

The DAG in Figure B.1 implies the correlation matrix given in Table B.2. 

Table B.2 Correlation matrix implied by the DAG in Figure B.1 

 𝑿𝟎 𝑿𝟏 𝒀 

𝑿𝟎 1.00 - - 

𝑿𝟏 0.40 1.00 - 

𝒀 -0.22 -0.34 1.00 

B.7.2 Population parameters 

The population mean and standard deviation (SD) specified in the simulation are provided in 

Table B.3. 

Table B.3 Population mean and standard deviation (SD) used in the data simulation based on 
the DAG in Figure B.1 

 Mean SD 

𝑿𝟎 10.00 2.50 

𝑿𝟏 15.00 3.75 

𝒀 20.00 5.00 

B.7.3 Annotated R code 
################################################################################ 1 
# UR MODELS: BOOTSTRAPPED STANDARD ERRORS ###################################### 2 
################################################################################ 3 
 4 
# This code demonstrates the artificial reduction in standard errors (SEs) 5 
# in UR models compared to standard regression models  6 
 7 
# The scenario considered is for two longitudinal measures of a time-varying 8 
# exposure (X0, X1) and one outcome (Y) [all variables continuous] 9 
 10 
################################################################################ 11 
## (1) SET UP ------------------------------------------------------------------ 12 
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 13 
# Load required packages - data simulation  14 
require(Matrix); require(matrixcalc); require(MASS) 15 
#require(devtools); devtools::install_github("jtextor/dagitty/r") ## update regularly 16 
require(dagitty) 17 
 18 
# Load required packages - plots 19 
require(ggplot2); require(gridExtra); require(extrafont); require(Hmisc); library(tidyr) 20 
font_import(pattern="[C/c]alibri"); loadfonts(device="win") ## use fonttable() to see options 21 
 22 
### (a) Functions -------------------------------------------------------------- 23 
 24 
#### (i) Covar function -------------------------------------------------------- 25 
 26 
# This function converts SDs and pairwise correlations to a covariace matrix 27 
 28 
Covar <- function(n=2,SD=data.frame(1,1),c.vec=data.frame(0.5)) { 29 
  check   <- n-length(SD) 30 
  if (check !=0) stop("Incorrect SD specifications!") 31 
  check   <- (n*(n-1)/2)-length(c.vec) 32 
  if (check !=0) stop("Incorrect correlation specifications!") 33 
  Cor     <- NULL 34 
  for (i in 1:(n+1)) { 35 
    Row <- NULL 36 
    for (j in 1:(n+1)) { 37 
      if (i==j) Element <- 1  38 
      else if (i<j) Element <- c.vec[((i-1)*(2*n-i)/2)+(j-i)] 39 
      else if (i>j) Element <- c.vec[((j-1)*(2*n-j)/2)+(i-j)] 40 
      Row <- c(Row,Element) 41 
    } 42 
    Cor <- rbind(Cor,Row) 43 
  } # cov(i,j) = cor(i,j)*sd(i)*sd(j) 44 
  Cov <- matrix(nrow=n,ncol=n) 45 
  for (i in 1:n) { for (j in 1:n) { Cov[i,j] <- Cor[i,j]*SD[i]*SD[j] }}  46 
  Cov <- as.matrix(forceSymmetric(Cov)) 47 
  if (!is.positive.definite(Cov)) { 48 
    print("Warning: covariance matrix made Positive Definite") 49 
    Cov <- as.matrix(nearPD(Cov)$mat) } 50 
  return(Cov)  51 
} 52 
 53 
#### (ii) Present function ----------------------------------------------------- 54 
 55 
# This function presents model summary (point estimates and 95% CIs) 56 
 57 
Present <- function(mod) { 58 
  Est     <- summary(mod)$coefficients[,1] 59 
  CI95    <- confint(mod) 60 
  coeffs  <- cbind(Est,CI95); rownames(coeffs)[1] <- "Intercept" 61 
  Trim    <- round(coeffs,3) 62 
  Tidy    <- data.frame(apply(Trim,1,function(x) {paste0(x[1]," (",x[2],", ",x[3],")")})) 63 
  names(Tidy)[1] <- "Model Summary" 64 
  return(Tidy) } 65 
 66 
#### (iii) Data summary -------------------------------------------------------- 67 
 68 
# This function produces summary statistics (mean and +/- sd) 69 
 70 
data_summary <- function(x) { 71 
  m <- mean(x) 72 
  ymin <- m - sd(x) 73 
  ymax <- m + sd(x) 74 
  return(c(y=m, ymin=ymin, ymax=ymax)) 75 
} 76 
 77 
################################################################################ 78 
## (2) DATA SIMULATION --------------------------------------------------------- 79 
 80 
### (a) Define DAG from which data will be simulated --------------------------- 81 
 82 
dag1 <- dagitty('dag{ 83 
                X0 [pos = "0.2, 0.2"] 84 
                X1 [pos = "0.6, 0.2"] 85 
                Y [pos = "1, 1"] 86 
                X0 -> X1 [beta = 0.4] 87 
                X0 -> Y [beta = -0.1] 88 
                X1 -> Y [beta = -0.3] 89 
                }') 90 
#plot(dag1) 91 
mod <- lm(Y ~ X0 + X1, data = simulateSEM(dag1, empirical = TRUE)) 92 
#Present(mod) 93 
 94 
### (b) Calculate covariance matrix based on DAG ------------------------------- 95 
 96 
MyData  <- simulateSEM(dag1, empirical = TRUE)  ## (standardised data) 97 
Names   <- c("X0","X1","Y") 98 
SetCor  <- cor(MyData); Corr <- SetCor[lower.tri(SetCor)] 99 
N       <- 1000 100 
X0.mu   <- 10  101 
X1.mu   <- 15  102 
Y.mu    <- 20 103 
Mu      <- c(X0.mu, X1.mu, Y.mu) 104 
X0.sd   <- X0.mu/4 105 
X1.sd   <- X1.mu/4 106 
Y.sd    <- Y.mu/4 107 
SD      <- c(X0.sd, X1.sd, Y.sd) 108 
MyCov   <- Covar(3, SD, Corr) 109 
 110 
### (c) Simulation ------------------------------------------------------------- 111 
 112 
# Set storage for SEs for X0 113 
seX0.reg <- NULL  # standard regression models 114 
seX0.UR <- NULL  # UR models (as reported) 115 
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seX0.UR.boot <- NULL  # UR models (bootstrapped) 116 
 117 
# Set storage for SEs for X1/e1 118 
seX1.reg <- NULL  # standard regression models 119 
see1.UR <- NULL  # UR models (as reported) 120 
see1.UR.boot <- NULL  # UR models (bootstrapped) 121 
 122 
# Set seed 123 
set.seed(23) 124 
 125 
for (i in 1:1000) { 126 
   127 
  # Simulate N observations 128 
  MyData  <- data.frame(mvrnorm(N, Mu, MyCov, empirical = FALSE)) 129 
  names(MyData) <- Names 130 
   131 
  # Create standard regression model for X0 and save SE 132 
  modX0 <- lm(Y ~ X0, data = MyData) 133 
  seX0.reg <- c(seX0.reg, summary(modX0)$coefficients[2, 2]) 134 
   135 
  # Create standard regression model for X1 and save SE 136 
  modX1 <- lm(Y ~ X0 + X1, data = MyData) 137 
  seX1.reg <- c(seX1.reg, summary(modX1)$coefficients[3, 2]) 138 
   139 
  # Create UR term 140 
  modX1.resid <- lm(X1 ~ X0, data = MyData) 141 
  MyData$e1 <- modX1.resid$residuals 142 
   143 
  # Create UR model and save SEs for coeffs 144 
  modUR <- lm(Y ~ X0 + e1, data = MyData) 145 
  seX0.UR <- c(seX0.UR, summary(modUR)$coefficients[2, 2]) 146 
  see1.UR <- c(see1.UR, summary(modUR)$coefficients[3, 2]) 147 
   148 
  # Use bootstrapping to create distribution of coefficients for UR model 149 
  coeffX0.UR.boot <- NULL  # set storage for coeffs for X0 from UR model 150 
  coeffe1.UR.boot <- NULL  # set storage for coeffs for e1 from UR model 151 
   152 
  for (j in 1:1000) { 153 
     154 
    # Select random sample with replacement from MyData 155 
    select <- sample(c(1:1000), 1000, replace = TRUE) 156 
    MyData.boot <- MyData[select, ] 157 
     158 
    # Create UR term 159 
    modX1.resid.boot <- lm(X1 ~ X0, data = MyData.boot) 160 
    MyData.boot$e1 <- modX1.resid.boot$residuals 161 
     162 
    # create UR models and save coeffs 163 
    modUR.boot <- lm(Y ~ X0 + e1, data = MyData.boot) 164 
    coeffX0.UR.boot <- c(coeffX0.UR.boot, summary(modUR.boot)$coefficients[2, 1]) 165 
    coeffe1.UR.boot <- c(coeffe1.UR.boot, summary(modUR.boot)$coefficients[3, 1]) 166 
     167 
     168 
  } 169 
   170 
  # calculate SES for UR model as standard deviation of distribution of coefficients 171 
  seX0.UR.boot <- c(seX0.UR.boot, sd(coeffX0.UR.boot)) 172 
  see1.UR.boot <- c(see1.UR.boot, sd(coeffe1.UR.boot)) 173 
   174 
  # Display progress of simulation 175 
  cat('\r', paste(round((i / 1000 * 100), 2),  176 
                  "% done of simulation    ", sep = " ")) 177 
   178 
   179 
} 180 
 181 
# Bind and export datasets 182 
SimDataX0 <- data.frame(seX0.reg, seX0.UR, seX0.UR.boot) 183 
SimDataX1 <- data.frame(seX1.reg, see1.UR, see1.UR.boot) 184 
write.csv(SimDataX0, file = "SE bootstrap - X0.csv", row.names = FALSE) 185 
write.csv(SimDataX1, file = "SE bootstrap - X1.csv", row.names = FALSE) 186 
 187 
################################################################################ 188 
# (3) PLOTS COMPARING SEs ------------------------------------------------------ 189 
 190 
# Import datasets 191 
SimDataX0 <- read.csv("./SE bootstrap - X0.csv", header = TRUE) 192 
SimDataX1 <- read.csv("./SE bootstrap - X1.csv", header = TRUE) 193 
 194 
# Label data with exposure variable 195 
SimDataX0$Exp <- "X0" 196 
SimDataX1$Exp <- "X1" 197 
 198 
# Rename variable names 199 
names(SimDataX0) <- c("se.reg", "se.UR", "se.UR.boot", "Exp") 200 
names(SimDataX1) <- c("se.reg", "se.UR", "se.UR.boot", "Exp") 201 
 202 
# Create combined long format data frame 203 
DataFrame <- rbind(SimDataX0, SimDataX1) 204 
DataFrame.long <- gather(data = DataFrame, key = Model, value = SE, 1:3) 205 
#str(DataFrame.long) 206 
DataFrame.long[, c("Exp", "Model")] <- data.frame(apply(DataFrame.long[c("Exp", "Model")], 2, 207 
as.factor)) 208 
 209 
# Violin plot 210 
plot <- ggplot(DataFrame.long, aes(x = Model, y = SE,  211 
                                   group = interaction(Model, Exp))) + 212 
  theme_bw() +  213 
  theme(axis.line = element_line(size = 1, colour = "black"), 214 
        panel.border = element_blank(), 215 
        panel.grid.minor = element_blank(), 216 
        text = element_text(size = 13, family = "Calibri Light"), 217 
        axis.text.x = element_text(size = 13), 218 
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        axis.text.y = element_text(size = 11)) + 219 
  geom_violin(size = 1.2, trim = TRUE,  220 
              position = position_dodge(0), 221 
              aes(fill = Exp, colour = Exp)) + 222 
  stat_summary(fun.data = data_summary, color = "grey20", size = 0.7, 223 
               position = position_dodge(0)) + 224 
  scale_fill_manual(name = "Exposure", 225 
                    breaks = c("X0", "X1"), 226 
                    labels = c("X0", "X1"), 227 
                    values = c("orchid", "slateblue1")) + 228 
  scale_colour_manual(name = "Exposure", 229 
                      breaks = c("X0", "X1"), 230 
                      labels = c("X0", "X1"), 231 
                      values = c("orchid4", "slateblue4")) + 232 
  scale_x_discrete(name = "",  233 
                   limits = c("se.UR.boot", "se.UR", "se.reg"), 234 
                   labels = c("UR models \n(bootstrapped)", 235 
                              "UR models \n(reported)", 236 
                              "Standard \nregression \nmodels")) + 237 
  scale_y_continuous(name = "Standard error", 238 
                     limits = c(0.03, 0.08), 239 
                     breaks = seq(from = 0.03, to = 0.08, by = 0.01), 240 
                     expand = expand_scale(mult = c(0.02, 0.02))) + 241 
  coord_flip() 242 
#plot 243 
 244 
# Export as png 245 
ggsave("UR models - SE bootstrap - combined.png", plot = plot,  246 
       width = 8, height = 5, units = "in", dpi = 800) 247 
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Appendix C  
Microsimulation modelling 

C.1 Introduction 

This appendix contains additional material relating to Chapter 6. In particular, it contains 

additional details, methods, results, and annotated R relating to the simulation described in 

Section 6.4. 

C.2 Simulated example 

This section contains all details relating to the simulation described in Chapter 6, Section 6.4; 

the simulation is based on the example scenario described in Figure 6.1. 

C.2.1 Simulation of a population according to the true data-generating process 

In this subsection, we provide details relating to the simulation of a population according to 

the true data-generating process, which is described in Section 6.4.1. This includes simulation 

of both ‘natural’ (§C.2.1.1) and ‘counterfactual’ histories (§C.2.1.2). 

C.2.1.1 Natural history 

For the ‘natural history’ simulation, we provide the simulation parameters (§C.2.1.1.1), 

characteristics of the resulting simulated population (§C.2.1.1.2), a comparison of the 

simulated population with Health Survey for England (HSE) statistics (§C.2.1.1.3), and all 

annotated R code relating to these simulations (§C.2.1.1.4). 

C.2.1.1.1 Simulation parameters 

Parameters describing the distribution of sex, obesity, and diabetes at baseline (i.e. 𝑡 = 0) are 

given in Table C.1.  

Parameters describing the evolution of the baseline population (i.e. the transition parameters) 

for all subsequent time points (i.e. time 𝑡, for 1 ≤ 𝑡 ≤ 10) are given in Table C.2. 
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Table C.1 Parameters describing the joint distribution of sex, obesity, and diabetes in the 
baseline population (i.e. time 𝒕 = 𝟎) 

Status Covariate(s) Probability 

Male n/a 0.521 

Obese Female 0.490 

 Male 0.580 

Diabetic Female, non-obese 0.010 

 Female, obese 0.030 

 Male, non-obese 0.017 

 Male, obese 0.037 

The probability of the ‘complement’ states (i.e. Female, Non-obese, and Non-diabetic, 
respectively) are equal to 1 minus the stated probability. For example, the probability of being 
female is equal to 1 – 0.521 = 0.479. 
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Table C.2 Transition parameters describing the evolution of the baseline population (i.e. time 
𝒕, for 𝟏 ≤ 𝒕 ≤ 𝟏𝟎) 

Updated status Current status Current covariates Probability 

Obese Non-obese Female, non-diabetic 0.07500 

  Female, diabetic 0.10500 

  Male, non-diabetic 0.10000 

  Male, diabetic 0.13000 

 Obese Female, non-diabetic 0.95000 

  Female, diabetic 0.97000 

  Male, non-diabetic 0.95000 

  Male, diabetic 0.97000 

Diabetic Non-diabetic Female, non-obese 0.00060 

  Female, obese 0.00260 

  Male, non-obese 0.00065 

  Male, obese 0.00265 

 Diabetic Female, non-obese 1.00000 

  Female, obese 1.00000 

  Male, non-obese 1.00000 

  Male, obese 1.00000 

The probability of the ‘complement’ updated states (i.e. Non-obese, and Non-diabetic, 
respectively) are equal to 1 minus the stated probability. For example, the probability of having 
the updated state of obesity at time 𝑡, given an individual is currently non-obese, female, and 
non-diabetic (i.e. line 1 of the table) is equal to 1 – 0.075 = 0.925. 

C.2.1.1.2 Characteristics of the simulated population 

The proportion of individuals with each combination of characteristics for each time point in 

the simulated population are displayed in Figure C.1. 
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Figure C.1 Proportion of individuals in the simulated population with each combination of 
sex, obesity status, and diabetes status at every time point 

 

The proportion of obese individuals steadily increases over the course of the simulation, while 

the proportion of non-obese individuals decreases. Because diabetes has such a low overall 

prevalence, the proportion of obese individuals without diabetes represents a much larger 

subgroup than those with diabetes, though both increase throughout the simulation. As 

simulated, males represent a higher proportion of obese individuals – both diabetic and non-

diabetic – compared to females. 

The probabilities of becoming and remaining obese for every time point in the simulated 

population are displayed in Figure C.2; the probabilities of becoming and remaining diabetic 

for every time point in the simulated population are displayed in Figure C.3. These probabilities 

are consistent with the parameters specified in Table C.2, confirming that the simulation 

performed as expected. 



- 151 - 
 

 

Figure C.2 Probabilities of becoming and remaining obese in the simulated population at 
every time point 

 

 

Figure C.3 Probabilities of becoming and remaining diabetic in the simulated population at 
every time point 

 

C.2.1.1.3 Comparison of the simulated population with Health Survey for England (HSE) 

statistics 

Comparison of simulated population data with Health Survey for England (HSE) statistics (191, 

192) are depicted in Figure C.4. 
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Figure C.4 Obesity and diabetes prevalence in the simulated population compared to the 
Health Survey for England (HSE, years 1994-2004) 

 

Obesity prevalence reported by the HSE includes both overweight and obese individuals. 

Between 1994 and 2004, overall obesity prevalence increased from 53% (49% for females and 

58% for males) to 62% (57% for females and 67% for males), as reported by the HSE (191, 192). 

This was approximated by the simulated population, in which overall obesity increased from 

53.57% at baseline (49.00% for females and 57.97% for males) to 61.53% at time 10 (57.49% 

for females and 65.41% for males).  

Similarly, between 1994 and 2004, overall diabetes prevalence increased from 2.40% (1.90% 

for females and 2.90% for males) to 4.23% (3.67% for females and 4.73% for males) (191, 192). 

In the simulated population, overall diabetes prevalence increased from 2.43% at baseline 

(1.97% for females and 2.87% for males) to 4.16% at time 10 (3.59% for females and 4.70% for 

males). 

C.2.1.1.4 Annotated R code  

################################################################################ 1 
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# POPULATION SIMULATION ######################################################## 2 
################################################################################ 3 
 4 
# This code generates an artificial longitudinal population using 5 
# a time-based, discrete time microsimulation model 6 
 7 
# Simulated individuals have the following 3 attributes: 8 
# Sex (time-fixed): 0 = female, 1 = male 9 
# Obesity (time-varying): 0 = nonobese, 1 = obese 10 
# Diabetes (time-varying): 0 = nondiabetic, 1 = diabetic 11 
 12 
################################################################################ 13 
## (1) SET UP ------------------------------------------------------------------ 14 
 15 
# Clear workspace 16 
rm(list = ls()) 17 
 18 
# Load all required packages  19 
library(readxl); library(stringr); library(Hmisc); library(plyr); library(scales) 20 
library(ggplot2); library(gridExtra); library(HydeNet); library(data.table) 21 
 22 
### (a) Population/simulation parameters --------------------------------------- 23 
 24 
# Define population parameters 25 
N.i.pop <- 5000000  # number of individuals 26 
N.t.pop <- 11  # number of time points (including baseline) 27 
Time.pop <- as.vector(seq(from = 0, to = (N.t.pop - 1), by = 1),  28 
                      mode = "integer")  # time vector 29 
 30 
### (b) Tables to store population data ---------------------------------------- 31 
 32 
# Create empty matrices to store individual-level population data 33 
# Each row represents 1 individual (N.i.pop rows) 34 
# Each column represents 1 time point (N.t.pop columns) 35 
Sex.pop <- matrix(nrow = N.i.pop, ncol = 1, 36 
                  dimnames = list(paste0("ind", 1:N.i.pop), "Sex")) 37 
Obes.pop <- matrix(nrow = N.i.pop, ncol = N.t.pop, 38 
                   dimnames = list(paste0("ind", 1:N.i.pop), 39 
                                   paste0("O.t", Time.pop))) 40 
Diab.pop <- matrix(nrow = N.i.pop, ncol = N.t.pop,  41 
                   dimnames = list(paste0("ind", 1:N.i.pop),  42 
                                   paste0("D.t", Time.pop))) 43 
 44 
### (c) Tables to store summary data ------------------------------------------- 45 
 46 
# Create empty cross-sectional frequency table 47 
Frequency.cs.pop <- data.frame(Time = numeric(), Sex = numeric(),  48 
                               O.t = numeric(), D.t = numeric(),  49 
                               freq = numeric())   50 
 51 
# Create empty tables to record obesity & diabetes prevalence from population 52 
# (overall and disaggregated by sex) 53 
Obes.prev.pop <- data.frame(Time = numeric(), Subgroup = factor(),  54 
                            prev = numeric()) 55 
Diab.prev.pop <- data.frame(Time = numeric(), Subgroup = factor(),  56 
                            prev = numeric()) 57 
 58 
# Create empty tables to record cross-sectional conditional probabilities of obesity & diabetes 59 
CProbability.Obes.cs <- data.frame(Time = numeric(), Sex = factor(),  60 
                                   O.t = factor(), prob = numeric()) 61 
CProbability.Diab.cs <- data.frame(Time = numeric(), Sex = factor(),  62 
                                   O.t = factor(), D.t = factor(),  63 
                                   prob = numeric()) 64 
 65 
# Create empty tables to record cross-time conditional probabilities of obesity & diabetes 66 
CProbability.Obes.ct <- data.frame(Time = numeric(), Sex = factor(),  67 
                                   O.tminus1 = factor(), D.tminus1 = factor(),  68 
                                   O.t = factor(), prob = numeric()) 69 
CProbability.Diab.ct <- data.frame(Time = numeric(), Sex = factor(),  70 
                                   D.tminus1 = factor(), O.t = factor(),  71 
                                   D.t = factor(), prob = numeric()) 72 
 73 
### (d) Functions -------------------------------------------------------------- 74 
 75 
#### (i) SampleV function ------------------------------------------------------ 76 
 77 
# samplev() function 78 
# efficient implementation of the rMultinom() function of the Hmisc package 79 
# from Krijkamp et al (2018) (185) 80 
samplev <- function(probs, m) { 81 
  d <- dim(probs)  # (dimensions of probability matrix) 82 
  n <- d[1]  # (number of rows, i.e. individuals) 83 
  k <- d[2]  # (number of columns, i.e. states) 84 
  lev <- dimnames(probs)[[2]]  # (names of columns, i.e. state values) 85 
  if (!length(lev))  86 
    lev <- 1:k 87 
  ran <- matrix(lev[1], ncol = m, nrow = n) 88 
  U <- t(probs) 89 
  for(i in 2:k) { 90 
    U[i, ] <- U[i, ] + U[i - 1, ] 91 
  } 92 
  if (any((U[k, ] - 1) > 1e-05)) 93 
    stop("error in multinom: probabilities do not sum to 1") 94 
   95 
  for (j in 1:m) { 96 
    un <- rep(runif(n), rep(k, n)) 97 
    ran[, j] <- lev[1 + colSums(un > U)] 98 
  } 99 
  ran 100 
} 101 
 102 
#### (ii) Calculate prevalence proportions ------------------------------------- 103 
 104 
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# Calculate Obesity prevalence 105 
# args: group = subgroup, freqtable = cross-sectional frequency table (numeric) 106 
# returns single number (prevalence) 107 
CalculatePrevObesityT <- function (group, freqtable) { 108 
   109 
  if (group == "overall") { 110 
     111 
    prevalence <- sum(subset(freqtable, Time == (t-1) & O.t == 1)$freq) /  112 
      N.i.pop  113 
    return(prevalence) 114 
     115 
  } else if (group == "female") { 116 
     117 
    prevalence <- sum(subset(freqtable, Time == (t-1) & Sex == 0 & O.t == 1)$freq) / 118 
      sum(subset(freqtable, Time == (t-1) & Sex == 0)$freq) 119 
    return(prevalence) 120 
     121 
  } else if (group == "male") { 122 
     123 
    prevalence <- sum(subset(freqtable, Time == (t-1) & Sex == 1 & O.t == 1)$freq) /  124 
      sum(subset(freqtable, Time == (t-1) & Sex == 1)$freq) 125 
    return(prevalence) 126 
     127 
  } 128 
   129 
}  # (close funciton loop) 130 
 131 
# Calculate Diabetes prevalence 132 
# args: group = subgroup, freqtable = cross-sectional frequency table (numeric) 133 
# returns single number (prevalence) 134 
CalculatePrevDiabetesT <- function (group, freqtable) { 135 
   136 
  if (group == "overall") { 137 
     138 
    prevalence <- sum(subset(freqtable, Time == (t-1) & D.t == 1)$freq) /  139 
      N.i.pop  140 
    return(prevalence) 141 
     142 
  } else if (group == "female") { 143 
     144 
    prevalence <- sum(subset(freqtable, Time == (t-1) & Sex == 0 & D.t == 1)$freq) / 145 
      sum(subset(freqtable, Time == (t-1) & Sex == 0)$freq) 146 
    return(prevalence) 147 
     148 
  } else if (group == "male") { 149 
     150 
    prevalence <- sum(subset(freqtable, Time == (t-1) & Sex == 1 & D.t == 1)$freq) /  151 
      sum(subset(freqtable, Time == (t-1) & Sex == 1)$freq) 152 
    return(prevalence) 153 
     154 
  } 155 
   156 
}  # (close function loop) 157 
 158 
#### (iii) Calculate conditional probabilities --------------------------------- 159 
 160 
# Calculate conditional probability table at time t 161 
# args: dv = dependent variable, iv = independent variable(s), dataset = data frame (factorised) 162 
# returns conditional probability table (cprob.t) 163 
CalculateCPT <- function(dv, iv, dataset) { 164 
   165 
  # Define formula for use in cpt function (from HydeNet package) 166 
  formula <- as.formula(paste(dv, paste(iv, collapse = " + "), sep = " ~ ")) 167 
   168 
  # Create conditional probability table 169 
  cprob.t <- cbind(Time = (t-1), am_adt(cpt(formula, data = dataset))) 170 
   171 
  return(cprob.t) 172 
   173 
} 174 
 175 
# Function for converting multidimensional arrays to tables 176 
# (from https://github.com/Rdatatable/data.table/issues/1418) 177 
am_adt <- function(inarray) { 178 
  if (!is.array(inarray)) stop("input must be an array") 179 
  dims <- dim(inarray) 180 
  if (is.null(dimnames(inarray))) { 181 
    inarray <- provideDimnames(inarray, base = list(as.character(seq_len(max(dims))))) 182 
  } 183 
  FT <- if (any(class(inarray) %in% "ftable")) inarray else ftable(inarray)  184 
  out <- data.table(as.table(ftable(FT))) 185 
  nam <- names(out)[seq_along(dims)] 186 
  setorderv(out[, (nam) := lapply(.SD, type.convert), .SDcols = nam], nam)[] 187 
} 188 
 189 
################################################################################ 190 
## (2) SIMULATION -------------------------------------------------------------- 191 
 192 
# Set seed 193 
set.seed(23) 194 
 195 
### (a) Define (conditional) probabilities at baseline ------------------------- 196 
 197 
#### (i) Sex ------------------------------------------------------------------- 198 
 199 
p.male <- 0.51  # baseline P(Sex = 1) 200 
 201 
#### (ii) Obesity -------------------------------------------------------------- 202 
 203 
# Function to calculate baseline P(Obesity = 1 | Sex) 204 
 205 
CalculateProbObesity0 <- function(Sex) { 206 
   207 
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  p.obes.0 <- 0.49 + 0.09*Sex 208 
  return(p.obes.0) 209 
   210 
}  211 
 212 
#### (iii) Diabetes ------------------------------------------------------------ 213 
 214 
# Function to calculate baseline P(Diabetes = 1 | Sex, Obesity) 215 
 216 
CalculateProbDiabetes0 <- function(Sex, Obes) { 217 
   218 
  p.diab.0 <- 0.01 + 0.007*Sex + 0.02*Obes 219 
  return(p.diab.0) 220 
   221 
}   222 
 223 
### (a) Define conditional probabilities at time t ----------------------------- 224 
 225 
#### (i) Obesity --------------------------------------------------------------- 226 
 227 
# Function to calculate P(Obesity = 1 | Sex, Prev obesity, Prev diabetes) at time t 228 
 229 
CalculateProbObesityT <- function(Sex, PrevObes, PrevDiab) { 230 
   231 
  # Incident probability (PrevObes = 0): 0.075 + 0.025*Sex + 0.03*PrevDiab 232 
  # Prevalent probability (PrevObes = 1): 0.95 + 0.02*PrevDiab 233 
   234 
  p.obes.t <- 0.075 + 0.025*Sex + 0.03*PrevDiab + 235 
    PrevObes*(0.875 - 0.025*Sex - 0.01*PrevDiab) 236 
  return(p.obes.t) 237 
   238 
}  239 
 240 
#### (ii) Diabetes ------------------------------------------------------------- 241 
 242 
# Function to calculate P(Diabetes = 1 | Sex, Obesity, Prev diabetes) at time t 243 
 244 
CalculateProbDiabetesT <- function(Sex, PrevDiab, Obes) { 245 
   246 
  # Incident probability: 0.0006 + 0.00005*Sex + 0.002*Obes 247 
  # Prevalent probability: 1 248 
   249 
  p.diab.t <- 0.0006 + 0.00005*Sex + 0.002*Obes + 250 
    PrevDiab*(0.9994 - 0.00005*Sex - 0.002*Obes) 251 
  return(p.diab.t) 252 
   253 
}  254 
 255 
### (b) Simulation ------------------------------------------------------------- 256 
 257 
v <- Sys.time()  # record start time of simulation 258 
 259 
# (1) Loop through time points 260 
for (t in 1:N.t.pop) { 261 
   262 
  ## Assign baseline characteristics & record summary data 263 
  if (t == 1) { 264 
     265 
    # Assign baseline characteristics ------------------------------------------ 266 
     267 
    # (1) Sex 268 
    p.sex <- cbind(rep(1 - p.male, N.i.pop), rep(p.male, N.i.pop)) 269 
    Sex.pop[, 1] <- samplev(probs = p.sex, m = 1) 270 
    Sex.pop[, 1] <- Sex.pop[, 1] - 1  # (factor levels should be 0 and 1) 271 
     272 
    # (2) Obesity 273 
    p.obes.0 <- cbind(1 - CalculateProbObesity0(Sex = Sex.pop[, 1]),  274 
                      CalculateProbObesity0(Sex = Sex.pop[, 1])) 275 
    Obes.pop[, 1] <- samplev(probs = p.obes.0, m = 1) 276 
    Obes.pop[, 1] <- Obes.pop[, 1] - 1  # (factor levels should be 0 and 1) 277 
     278 
    # (3) Diabetes 279 
    p.diab.0 <- cbind(1 - CalculateProbDiabetes0(Sex = Sex.pop[, 1], Obes = Obes.pop[, 1]),  280 
                      CalculateProbDiabetes0(Sex = Sex.pop[, 1], Obes = Obes.pop[, 1])) 281 
    Diab.pop[, 1] <- samplev(probs = p.diab.0, m = 1) 282 
    Diab.pop[, 1] <- Diab.pop[, 1] - 1  # (factor levels should be 0 and 1) 283 
     284 
    # Record summary data ------------------------------------------------------ 285 
     286 
    # Bind variables from time t and baseline together 287 
    Population.t <- data.frame(cbind(Sex.pop[, 1], Obes.pop[, t], Diab.pop[, t])) 288 
    vars.cs <- c("Sex", paste0(c("O.t", "D.t"), (t-1)))  # define variables 289 
    names(Population.t) <- vars.cs 290 
     291 
    # (a) Cross-sectional frequency table -------------------------------------- 292 
     293 
    freq.t <- cbind(Time = (t-1), count(Population.t[, vars.cs]))  # create freq table for time t 294 
    names(freq.t) <- names(Frequency.cs.pop)  # rename columns to match Frequency table 295 
    Frequency.cs.pop <- rbind(Frequency.cs.pop, freq.t) 296 
     297 
    # (b) Prevalence ----------------------------------------------------------- 298 
     299 
    ## Obesity 300 
    prev.O <- cbind.data.frame(Time = (t-1), Subgroup = "Obes.prev", 301 
                               prev = CalculatePrevObesityT("overall", Frequency.cs.pop))  # overall 302 
    prev.O.f <- cbind.data.frame(Time = (t-1), Subgroup = "Obes.prev.f", 303 
                                 prev = CalculatePrevObesityT("female", Frequency.cs.pop))  # f 304 
    prev.O.m <- cbind.data.frame(Time = (t-1), Subgroup = "Obes.prev.m", 305 
                                 prev = CalculatePrevObesityT("male", Frequency.cs.pop))  # m 306 
    Obes.prev.pop <- rbind.data.frame(Obes.prev.pop, prev.O, prev.O.f, prev.O.m)   307 
     308 
    ## Diabetes 309 
    prev.D <- cbind.data.frame(Time = (t-1), Subgroup = "Diab.prev", 310 
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                               prev = CalculatePrevDiabetesT("overall", Frequency.cs.pop)) # overall 311 
    prev.D.f <- cbind.data.frame(Time = (t-1), Subgroup = "Diab.prev.f", 312 
                                 prev = CalculatePrevDiabetesT("female", Frequency.cs.pop))  # f 313 
    prev.D.m <- cbind.data.frame(Time = (t-1), Subgroup = "Diab.prev.m", 314 
                                 prev = CalculatePrevDiabetesT("male", Frequency.cs.pop))  # m 315 
    Diab.prev.pop <- rbind.data.frame(Diab.prev.pop, prev.D, prev.D.f, prev.D.m)   316 
     317 
    # (c) Conditional probabilities -------------------------------------------- 318 
     319 
    # Convert variables in Population.t dataset to factors 320 
    # (requred for calculating conditonal probabilties) 321 
    Population.t <- data.frame(lapply(Population.t, factor)) 322 
     323 
    ## (i) Cross-sectional ----------------------------------------------------- 324 
     325 
    ## Obesity 326 
    var.d <- paste0("O.t", (t-1))  # (define dependent variable) 327 
    var.i <- "Sex"  # (define independent variable) 328 
    cprob.t <- CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t) 329 
    names(cprob.t) <- names(CProbability.Obes.cs)  # rename columns to match CP table 330 
    CProbability.Obes.cs <- rbind.data.frame(CProbability.Obes.cs, cprob.t)   331 
     332 
    ## Diabetes 333 
    var.d <- paste0("D.t", (t-1)) 334 
    var.i <- c("Sex", paste0("O.t", (t-1))) 335 
    cprob.t <- CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t) 336 
    names(cprob.t) <- names(CProbability.Diab.cs) 337 
    CProbability.Diab.cs <- rbind(CProbability.Diab.cs, cprob.t) 338 
     339 
    ## Update time-varying characteristics & record summary data 340 
  } else { 341 
     342 
    # Update time-varying characteristics -------------------------------------- 343 
     344 
    # (a) Obesity -------------------------------------------------------------- 345 
     346 
    p.obes.t <- cbind(1 - CalculateProbObesityT(Sex = Sex.pop[, 1],  347 
                                                PrevObes = Obes.pop[, (t-1)],  348 
                                                PrevDiab = Diab.pop[, (t-1)]),  349 
                      CalculateProbObesityT(Sex = Sex.pop[, 1],  350 
                                            PrevObes = Obes.pop[, (t-1)],  351 
                                            PrevDiab = Diab.pop[, (t-1)])) 352 
    Obes.pop[, t] <- samplev(probs = p.obes.t, m = 1) 353 
    Obes.pop[, t] <- Obes.pop[, t] - 1  # (factor levels should be 0 and 1) 354 
     355 
    # (b) Diabetes ------------------------------------------------------------- 356 
     357 
    p.diab.t <- cbind(1 - CalculateProbDiabetesT(Sex = Sex.pop[, 1],  358 
                                                 PrevDiab = Diab.pop[, (t-1)],  359 
                                                 Obes = Obes.pop[, t]),  360 
                      CalculateProbDiabetesT(Sex = Sex.pop[, 1],  361 
                                             PrevDiab = Diab.pop[, (t-1)],  362 
                                             Obes = Obes.pop[, t])) 363 
    Diab.pop[, t] <- samplev(probs = p.diab.t, m = 1) 364 
    Diab.pop[, t] <- Diab.pop[, t] - 1  # (factor levels should be 0 and 1) 365 
     366 
    # Record summary data ------------------------------------------------------ 367 
     368 
    # Bind variables from time t, time t-1, and baseline together 369 
    Population.t <- data.frame(cbind(Sex.pop[, 1], Obes.pop[, (t-1)], Diab.pop[, (t-1)]), 370 
                               Obes.pop[, t], Diab.pop[, t]) 371 
    vars.cs <- c("Sex", paste0(c("O.t", "D.t"), (t-1)))  # define cross-sectional variables 372 
    vars.ct <- c("Sex", paste0(c("O.t", "D.t"), (t-2)), paste0(c("O.t", "D.t"), (t-1)))  # define 373 
cross-time variables 374 
    names(Population.t) <- vars.ct 375 
     376 
    # (a) Cross-sectional frequency table -------------------------------------- 377 
     378 
    freq.t <- cbind(Time = (t-1), count(Population.t[, vars.cs]))  # create freq table for time t 379 
    names(freq.t) <- names(Frequency.cs.pop)  # rename columns to match Frequency table 380 
    Frequency.cs.pop <- rbind(Frequency.cs.pop, freq.t) 381 
     382 
    # (b) Prevalence ----------------------------------------------------------- 383 
     384 
    ## Obesity 385 
    prev.O <- cbind.data.frame(Time = (t-1), Subgroup = "Obes.prev", 386 
                               prev = CalculatePrevObesityT("overall", Frequency.cs.pop))  # overall 387 
    prev.O.f <- cbind.data.frame(Time = (t-1), Subgroup = "Obes.prev.f", 388 
                                 prev = CalculatePrevObesityT("female", Frequency.cs.pop))  # f 389 
    prev.O.m <- cbind.data.frame(Time = (t-1), Subgroup = "Obes.prev.m", 390 
                                 prev = CalculatePrevObesityT("male", Frequency.cs.pop))  # m 391 
    Obes.prev.pop <- rbind.data.frame(Obes.prev.pop, prev.O, prev.O.f, prev.O.m)  392 
     393 
    ## Diabetes 394 
    prev.D <- cbind.data.frame(Time = (t-1), Subgroup = "Diab.prev", 395 
                               prev = CalculatePrevDiabetesT("overall", Frequency.cs.pop)) # overall 396 
    prev.D.f <- cbind.data.frame(Time = (t-1), Subgroup = "Diab.prev.f", 397 
                                 prev = CalculatePrevDiabetesT("female", Frequency.cs.pop))  # f 398 
    prev.D.m <- cbind.data.frame(Time = (t-1), Subgroup = "Diab.prev.m", 399 
                                 prev = CalculatePrevDiabetesT("male", Frequency.cs.pop))  # m 400 
    Diab.prev.pop <- rbind.data.frame(Diab.prev.pop, prev.D, prev.D.f, prev.D.m)  401 
     402 
    # (c) Conditional probabilities -------------------------------------------- 403 
     404 
    # Convert variables in Population.t dataset to factors 405 
    # (requred for calculating conditonal probabilties) 406 
    Population.t <- data.frame(lapply(Population.t, factor, levels = c("0", "1"))) 407 
     408 
    ## (i) Cross-sectional ----------------------------------------------------- 409 
     410 
    ## Obesity 411 
    var.d <- paste0("O.t", (t-1))  # (define dependent variable) 412 
    var.i <- "Sex"  # (define independent variable) 413 
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    cprob.t <- CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t) 414 
    names(cprob.t) <- names(CProbability.Obes.cs)  # rename columns to match CP table 415 
    CProbability.Obes.cs <- rbind.data.frame(CProbability.Obes.cs, cprob.t)  416 
     417 
    ## Diabetes 418 
    var.d <- paste0("D.t", (t-1)) 419 
    var.i <- c("Sex", paste0("O.t", (t-1))) 420 
    cprob.t <- CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t) 421 
    names(cprob.t) <- names(CProbability.Diab.cs) 422 
    CProbability.Diab.cs <- rbind.data.frame(CProbability.Diab.cs, cprob.t) 423 
     424 
    ## (ii) Cross-time --------------------------------------------------------- 425 
     426 
    ## Obesity 427 
    var.d <- paste0("O.t", (t-1))   428 
    var.i <- c("Sex", paste0(c("O.t", "D.t"), (t-2)))   429 
    cprob.t <- CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t) 430 
    names(cprob.t) <- names(CProbability.Obes.ct)   431 
    CProbability.Obes.ct <- rbind.data.frame(CProbability.Obes.ct, cprob.t)   432 
     433 
    ## Diabetes 434 
    var.d <- paste0("D.t", (t-1)) 435 
    var.i <- c("Sex", paste0("D.t", (t-2)), paste0("O.t", (t-1)))  436 
    cprob.t <- CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t) 437 
    names(cprob.t) <- names(CProbability.Diab.ct) 438 
    CProbability.Diab.ct <- rbind.data.frame(CProbability.Diab.ct, cprob.t) 439 
     440 
  } 441 
   442 
  # Display progress of simulation 443 
  cat('\r', paste(round((t / N.t.pop * 100), 0),  444 
                  "% done of simulation    ", sep = " ")) 445 
   446 
}  # (close time loop) 447 
   448 
comp.time <- Sys.time() - v; comp.time  # print total simulation time  449 
 450 
### (c) Export simulated population data & aggregate tables -------------------- 451 
 452 
# Export univariable datasets 453 
write.csv(Sex.pop, file = "./Population simulation - vectorised/PopSexData.csv",  454 
          row.names = TRUE) 455 
write.csv(Obes.pop, file = "./Population simulation - vectorised/PopObesData.csv",  456 
          row.names = TRUE) 457 
write.csv(Diab.pop, file = "./Population simulation - vectorised/PopDiabData.csv",  458 
          row.names = TRUE) 459 
 460 
# Export complete individual-level dataset 461 
# (1) Create list of all variables to be in whole dataset 462 
allvars <- c("Sex", apply(expand.grid(c("O.t", "D.t"), Time.pop), 1, paste0,  463 
                          collapse = "")) 464 
allvars <- str_replace_all(allvars, fixed(" "), "")  # remove blank spaces from variable names 465 
# (2) Column bind univariable datasets 466 
Population <- data.frame(cbind(Sex.pop, Obes.pop, Diab.pop)) 467 
# (3) Reorder variables 468 
Population <- Population[, allvars] 469 
# (4) Export complete dataset 470 
write.csv(Population, file = "./Population simulation - vectorised/PopData.csv",  471 
          row.names = TRUE) 472 
# (5) Export baseline datset 473 
Population.t0 <- Population[, 1:3] 474 
write.csv(Population.t0, file = "./Population simulation - vectorised/PopDataBaseline.csv",  475 
          row.names = TRUE) 476 
 477 
# Export frequency table 478 
write.csv(Frequency.cs.pop, file = "./Population simulation - vectorised/PopFreq.csv",  479 
          row.names = FALSE) 480 
 481 
# Export prevalence tables 482 
write.csv(Obes.prev.pop, file = "./Population simulation - vectorised/PopObesPrev.csv",  483 
          row.names = FALSE) 484 
write.csv(Diab.prev.pop, file = "./Population simulation - vectorised/PopDiabPrev.csv",  485 
          row.names = FALSE) 486 
 487 
# Export conditional probability tables 488 
write.csv(CProbability.Obes.cs, file = "./Population simulation - vectorised/PopObesCPcs.csv",  489 
          row.names = FALSE) 490 
write.csv(CProbability.Obes.ct, file = "./Population simulation - vectorised/PopObesCPct.csv",  491 
          row.names = FALSE) 492 
write.csv(CProbability.Diab.cs, file = "./Population simulation - vectorised/PopDiabCPcs.csv",  493 
          row.names = FALSE) 494 
write.csv(CProbability.Diab.ct, file = "./Population simulation - vectorised/PopDiabCPct.csv",  495 
          row.names = FALSE)496 

C.2.1.2 Counterfactual histories under hypothetical interventions 

For the ‘counterfactual history’ simulations, we provide the simulation parameters for each 

intervention (§C.2.1.2.1), characteristics of the simulated population under each of the six 

interventions (§C.2.1.2.2), and all annotated R code relating to these simulations (§C.2.1.2.3). 
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C.2.1.2.1 Simulation parameters 

Table C.3 describes the transition parameters governing obesity status at time 𝑡 for each 

intervention, compared to the original parameters governing the natural history of the 

population. All interventions were applied to the population at each time point post-baseline 

(i.e. for 1 ≤ 𝑡 ≤ 10).  
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C.2.1.2.2 Characteristics of the simulated population under hypothetical interventions 

Figure C.5 and Figure C.6 display the probability of becoming and remaining obese, 

respectively, for each intervention in the simulated population, compared to that of the 

natural history. These probabilities are consistent with the parameters specified in Table C.3, 

confirming that the simulations performed as expected. 

Figure C.7 and Figure C.8 display the probability of becoming and remaining diabetic, 

respectively, for each intervention in the simulated population, compared to that of the 

natural history. These probabilities are consistent with the original parameters specified in 

Table C.2, confirming that the simulations performed as expected. 

G.5.1.1.1.1 Intervention 1 

Prevent anyone from being obese (i.e. reduce the incident and prevalent probabilities of obesity 

to zero). 

Under Intervention 1, all obese individuals at baseline transition to being non-obese at time 1 

and maintain this status for the duration of the simulation. Similarly, all non-obese individuals 

are prevented from developing obesity for the duration of the simulation. This is apparent in 

Figure 6.2, in which obesity prevalence decreases from 53.57% at baseline to 0.00% at time 1, 

where it remains until time 10. 

The effect of Intervention 1 on diabetes prevalence can be visualised in Figure 6.3, in which 

overall diabetes prevalence increases from 2.43% at time 0 to 3.04% at time 10. This increase 

in diabetes prevalence is substantially lower than that which is observed in the natural history 

of the population, where overall prevalence increases from 2.43% to 4.16% over the same 

period. Thus, Intervention 1 decreases overall diabetes prevalence by 1.12% compared to no 

intervention (Table 6.1). 

G.5.1.1.1.2 Intervention 2 

Make everyone obese (i.e. increase the incident and prevalent probabilities of obesity to one). 

Under Intervention 2, all individuals who are not obese at baseline transition to being obese at 

time 1 and maintain this status for the duration of the simulation. Moreover, all obese 

individuals are prevented from transitioning out of obesity for the duration of the simulation. 

Figure 6.2 depicts this intervention, in which obesity prevalence increases from 43.57% at 

baseline to 100.00% at time 1, where it remains until time 10. 

The effect of Intervention 2 on diabetes prevalence can be visualised in Figure 6.2, in which 

overall diabetes prevalence increases from 2.43% at time 0 to 4.96% at time 10. Compared to 

the natural history of the population, Intervention 2 thus increases overall diabetes prevalence 

by 0.80% (Table 6.1). 
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G.5.1.1.1.3 Intervention 3 

Prevent any new individuals from becoming obese (i.e. reduce the incident probability to zero). 

Under Intervention 3, non-obese individuals are prevented from becoming obese, but obese 

individuals may transition out of obesity as normal. This has the effect of dramatically 

decreasing obesity prevalence over the duration of the simulation – from 53.57% at baseline to 

32.41% at time 10 (Figure 6.2). This effect is also evident in (Figure 6.4), in which the 

proportion of non-obese, nondiabetic individuals (in blue) increases at the expense of obese, 

nondiabetic individuals (in green). 

Unsurprisingly, the effect of Intervention 3 on diabetes prevalence is less than that of 

Intervention 1 (in which both the incident and prevalent probabilities are reduced to zero), as 

shown in Figure 6.3. Under Intervention 3, overall diabetes increases from 2.43% to 3.82% 

between time 0 and time 10, which represents a modest 0.34% decrease in the overall 

prevalence of diabetes at time 10 compared to the natural history of the population 

(Table 6.1). 

G.5.1.1.1.4 Intervention 4 

Reduce the probability of becoming obese by 15% (i.e. reduce the incident probability by 0.15). 

Under Intervention 4, obese individuals maintain their obesity status at each time point with 

the same probability as under the natural history. However, non-obese individuals have a 15% 

smaller chance of developing obesity at each time point. Because the incidence probability of 

obesity is relatively modest compared to the prevalent probability in the population under the 

natural history, Intervention 4 slows the rate of increase of obesity (from 52.57% at baseline to 

58.37% at time 10) compared to that of the natural history, but does not reverse the upward 

trend in obesity prevalence (Figure 6.2). 

Therefore, the effect of Intervention 4 is very modest, as evident in Figure 6.3. Diabetes 

prevalence increases from 2.43% at time 0 to 4.12% at time 10, representing just a 0.04% 

reduction in prevalence compared to the natural history of the population (Table 6.1). 

G.5.1.1.1.5 Intervention 5 

Reduce the probability of remaining obese by 10% (i.e. reduce the prevalent probability by 

0.10). 

Under Intervention 5, non-obese individuals have the same probability of becoming obese at 

each time point as under the natural history, but obese individuals are 10% less likely to 

maintain their obesity status at each time point. Because the prevalent probability of obesity is 

far greater than the incident probability under the natural history, Intervention 5 has the effect 

of reversing the upward trend in obesity prevalence (Figure 6.2). From baseline to time 10, 

overall obesity prevalence decrease from 53.57% to 38.97%. This effect can be further 
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visualised in Figure 6.4, in which the proportion on obese, non-diabetic individuals (in green) 

decreases at the expense of non-obese, non-diabetic individuals (in blue). 

The effect of Intervention 5 on diabetes prevalence is depicted in Figure 6.3. Overall diabetes 

prevalence increases from 2.43% to 3.85% between baseline and time 10, and this represents 

a 0.31% decrease in prevalence compared to the natural history of the population (Table 6.1). 

G.5.1.1.1.6 Intervention 6 

Reduce the probability of becoming obese by 15% and reduce the probability of remaining 

obese by 10% (i.e. reduce the incident probability by 0.15 and reduce the prevalent probability 

by 0.10). 

Intervention 6 represents a combination of Interventions 4 and 5 – non-obese individuals are 

15% less likely to develop obesity at each time point, and obese individuals are 10% less likely 

to maintain their obesity status at each time point, compared to the natural history. 

Intervention 6 therefore reverses the upward trend in obese prevalence to an even greater 

degree than Intervention 5 alone; between baseline and time 10, obesity prevalence decreases 

from 53.57% to 35.76% (Figure 6.2). 

Compared to the natural history of the population, Intervention 6 thus decreases overall 

diabetes prevalence by 0.35% (Figure 6.3 and Table 6.1). 

C.2.1.2.3 Annotated R code 

################################################################################ 1 
# POPULATION INTERVENTION 1 #################################################### 2 
################################################################################ 3 
 4 
# This code simulates the effects on diabetes prevalence at time 10  5 
# in the artificial longitudinal population  6 
# (generated using the code 'Population simulation - vectorised.R') 7 
# of the following intervention:  8 
 9 
# (1) Preventing anyone from being obese 10 
 11 
# Simulated individuals have the following 3 attributes: 12 
# Sex (time-fixed): 0 = female, 1 = male 13 
# Obesity (time-varying): 0 = nonobese, 1 = obese 14 
# Diabetes (time-varying): 0 = nondiabetic, 1 = diabetic 15 
 16 
################################################################################ 17 
## (1) SET UP ------------------------------------------------------------------ 18 
 19 
# Clear workspace 20 
rm(list = ls()) 21 
 22 
# Load all required packages 23 
library(readxl); library(stringr); library(Hmisc); library(plyr); library(scales) 24 
library(ggplot2); library(gridExtra); library(HydeNet); library(data.table) 25 
 26 
### (a) Population/simulation parameters & baseline data ----------------------- 27 
 28 
# Import baseline individual-level population dataset 29 
Population.t0 <- read.csv("./Population simulation - vectorised/PopDataBaseline.csv",  30 
                          header = TRUE, row.names = 1) 31 
 32 
# Define population parameters 33 
N.i.pop <- nrow(Population.t0)  # number of individuals 34 
N.t.pop <- 11  # number of time points (including baseline) 35 
Time.pop <- as.vector(seq(from = 0, to = (N.t.pop - 1), by = 1),  36 
                      mode = "integer")  # time vector 37 
 38 
# Define simulation parameters 39 
N.sim <- 50  # number of simulation runs per intervention 40 
 41 
### (b) Tables to store population data ---------------------------------------- 42 
 43 
# Create empty matrices to store individual-level population data 44 
# Each row represents 1 individual (N.i.pop rows) 45 
# Each column represents 1 time point (N.t.pop columns) 46 
Sex.pop <- matrix(nrow = N.i.pop, ncol = 1, 47 
                  dimnames = list(paste0("ind", 1:N.i.pop), "Sex")) 48 
Obes.pop <- matrix(nrow = N.i.pop, ncol = N.t.pop, 49 



- 167 - 
 

 

                   dimnames = list(paste0("ind", 1:N.i.pop), 50 
                                   paste0("O.t", Time.pop))) 51 
Diab.pop <- matrix(nrow = N.i.pop, ncol = N.t.pop,  52 
                   dimnames = list(paste0("ind", 1:N.i.pop),  53 
                                   paste0("D.t", Time.pop))) 54 
 55 
# Populate empty matrices with baseline data 56 
# Population is same at time 0 for every simulation 57 
Sex.pop[, 1] <- Population.t0[, 1] 58 
Obes.pop[, 1] <- Population.t0[, 2] 59 
Diab.pop[, 1] <- Population.t0[, 3] 60 
 61 
# Remove baseline dataset 62 
rm(Population.t0) 63 
 64 
### (c) Tables to store summary data ------------------------------------------- 65 
 66 
# Create empty cross-sectional frequency table 67 
Frequency.cs.pop.int1 <- data.frame(Sim = numeric(), Time = numeric(), 68 
                                    Sex = numeric(), O.t = numeric(), D.t = numeric(), 69 
                                    freq = numeric()) 70 
 71 
# Create empty tables to record obesity & diabetes prevalence from population 72 
# (overall and disaggregated by sex) 73 
Obes.prev.pop.int1 <- data.frame(Sim = numeric(), Time = numeric(),  74 
                                 Subgroup = factor(), prev = numeric()) 75 
Diab.prev.pop.int1 <- data.frame(Sim = numeric(), Time = numeric(), 76 
                                 Subgroup = factor(), prev = numeric()) 77 
 78 
# Create empty tables to record cross-sectional conditional probabilities of obesity & diabetes 79 
CProbability.Obes.cs.int1 <- data.frame(Sim = numeric(), Time = numeric(),  80 
                                        Sex = factor(), O.t = factor(),  81 
                                        prob = numeric()) 82 
CProbability.Diab.cs.int1 <- data.frame(Sim = numeric(), Time = numeric(),  83 
                                        Sex = factor(), O.t = factor(),  84 
                                        D.t = factor(), 85 
                                        prob = numeric()) 86 
 87 
# Create empty tables to record cross-time conditional probabilities of obesity & diabetes 88 
CProbability.Obes.ct.int1 <- data.frame(Sim = numeric(), Time = numeric(),  89 
                                        Sex = factor(), O.tminus1 = factor(),  90 
                                        D.tminus1 = factor(), O.t = factor(),  91 
                                        prob = numeric()) 92 
CProbability.Diab.ct.int1 <- data.frame(Sim = numeric(), Time = numeric(),  93 
                                        Sex = factor(), D.tminus1 = factor(),  94 
                                        O.t = factor(), D.t = factor(),  95 
                                        prob = numeric()) 96 
 97 
### (d) Functions -------------------------------------------------------------- 98 
 99 
#### (i) SampleV function ------------------------------------------------------ 100 
 101 
# samplev() function 102 
# efficient implementation of the rMultinom() function of the Hmisc package 103 
# from Krijkamp et al (2018) 104 
samplev <- function(probs, m) { 105 
  d <- dim(probs)  # (dimensions of probability matrix) 106 
  n <- d[1]  # (number of rows, i.e. individuals) 107 
  k <- d[2]  # (number of columns, i.e. states) 108 
  lev <- dimnames(probs)[[2]]  # (names of columns, i.e. state values) 109 
  if (!length(lev))  110 
    lev <- 1:k 111 
  ran <- matrix(lev[1], ncol = m, nrow = n) 112 
  U <- t(probs) 113 
  for(i in 2:k) { 114 
    U[i, ] <- U[i, ] + U[i - 1, ] 115 
  } 116 
  if (any((U[k, ] - 1) > 1e-05)) 117 
    stop("error in multinom: probabilities do not sum to 1") 118 
   119 
  for (j in 1:m) { 120 
    un <- rep(runif(n), rep(k, n)) 121 
    ran[, j] <- lev[1 + colSums(un > U)] 122 
  } 123 
  ran 124 
} 125 
 126 
#### (ii) Calculate prevalence proportions ------------------------------------- 127 
 128 
# Calculate Obesity prevalence 129 
# args: group = subgroup, freqtable = frequency table (numeric) 130 
# returns single number (prevalence) 131 
CalculatePrevObesityT <- function (group, freqtable) { 132 
   133 
  if (group == "overall") { 134 
     135 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & O.t == 1)$freq) /  136 
      N.i.pop  137 
    return(prevalence) 138 
     139 
  } else if (group == "female") { 140 
     141 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0 & O.t == 1)$freq) / 142 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0)$freq) 143 
    return(prevalence) 144 
     145 
  } else if (group == "male") { 146 
     147 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1 & O.t == 1)$freq) /  148 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1)$freq) 149 
    return(prevalence) 150 
     151 
  } 152 
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   153 
}  # (close funciton loop) 154 
 155 
 156 
# Calculate Diabetes prevalence 157 
# args: group = subgroup, freqtable = frequency table (numeric) 158 
# returns single number (prevalence) 159 
CalculatePrevDiabetesT <- function (group, freqtable) { 160 
   161 
  if (group == "overall") { 162 
     163 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & D.t == 1)$freq) /  164 
      N.i.pop  165 
    return(prevalence) 166 
     167 
  } else if (group == "female") { 168 
     169 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0 & D.t == 1)$freq) / 170 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0)$freq) 171 
    return(prevalence) 172 
     173 
  } else if (group == "male") { 174 
     175 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1 & D.t == 1)$freq) /  176 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1)$freq) 177 
    return(prevalence) 178 
     179 
  } 180 
   181 
}  # (close function loop) 182 
 183 
#### (iii) Calculate conditional probabilities --------------------------------- 184 
 185 
# Calculate conditional probability table at time t 186 
# args: dv = dependent variable, iv = independent variable(s), dataset = data frame (factorised) 187 
# returns conditional probability table (cprob.t) 188 
CalculateCPT <- function(dv, iv, dataset) { 189 
   190 
  # Define formula for use in cpt function (from HydeNet package) 191 
  formula <- as.formula(paste(dv, paste(iv, collapse = " + "), sep = " ~ ")) 192 
   193 
  # Create conditional probability table 194 
  cprob.t <- cbind(Time = (t-1), am_adt(cpt(formula, data = dataset))) 195 
   196 
  return(cprob.t) 197 
   198 
} 199 
 200 
# Function for converting multidimensional arrays to tables 201 
# (from https://github.com/Rdatatable/data.table/issues/1418) 202 
am_adt <- function(inarray) { 203 
  if (!is.array(inarray)) stop("input must be an array") 204 
  dims <- dim(inarray) 205 
  if (is.null(dimnames(inarray))) { 206 
    inarray <- provideDimnames(inarray, base = list(as.character(seq_len(max(dims))))) 207 
  } 208 
  FT <- if (any(class(inarray) %in% "ftable")) inarray else ftable(inarray)  209 
  out <- data.table(as.table(ftable(FT))) 210 
  nam <- names(out)[seq_along(dims)] 211 
  setorderv(out[, (nam) := lapply(.SD, type.convert), .SDcols = nam], nam)[] 212 
} 213 
 214 
################################################################################ 215 
## (2) SIMULATION: INTERVENTION 1 ---------------------------------------------- 216 
 217 
# Prevent anyone from becoming obese 218 
 219 
# Set seed 220 
set.seed(1) 221 
 222 
### (a) Define conditional probabilities at time t ----------------------------- 223 
 224 
#### (i) Obesity --------------------------------------------------------------- 225 
 226 
# Function to calculate P(Obesity = 1 | Sex, Prev obesity, Prev diabetes) at time t 227 
 228 
CalculateProbObesityT <- function(Sex, PrevObes, PrevDiab) { 229 
   230 
  p.obes.t <- 0  # under Intervention 1, no individuals may be obese 231 
  return(p.obes.t) 232 
   233 
}  234 
 235 
#### (ii) Diabetes ------------------------------------------------------------- 236 
 237 
# Function to calculate P(Diabetes = 1 | Sex, Obesity, Prev diabetes) at time t 238 
 239 
CalculateProbDiabetesT <- function(Sex, PrevDiab, Obes) { 240 
   241 
  # Incident probability: 0.0006 + 0.00005*Sex + 0.002*Obes 242 
  # Prevalent probability: 1 243 
   244 
  p.diab.t <- 0.0006 + 0.00005*Sex + 0.002*Obes + 245 
    PrevDiab*(0.9994 - 0.00005*Sex - 0.002*Obes) 246 
  return(p.diab.t) 247 
   248 
}  249 
 250 
### (b) Simulation ------------------------------------------------------------- 251 
 252 
v <- Sys.time()  # record start time of simulation 253 
 254 
# (1) Loop through simulation runs 255 
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for (s in 1:N.sim) { 256 
   257 
  # (2) Loop through time points 258 
  for (t in 1:N.t.pop) { 259 
     260 
    ## Record summary data 261 
    if (t == 1) { 262 
       263 
      # Record summary data ---------------------------------------------------- 264 
       265 
      # Bind variables from time t and baseline together 266 
      Population.t <- data.frame(cbind(Sex.pop[, 1], Obes.pop[, t], Diab.pop[, t])) 267 
      vars.cs <- c("Sex", paste0(c("O.t", "D.t"), (t-1)))  # define variables 268 
      names(Population.t) <- vars.cs 269 
       270 
      # (a) Cross-sectional frequency table ------------------------------------ 271 
       272 
      freq.t <- cbind(Sim = s, Time = (t-1), count(Population.t[, vars.cs]))   273 
      names(freq.t) <- names(Frequency.cs.pop.int1)  # rename columns to match Frequency table 274 
      Frequency.cs.pop.int1 <- rbind(Frequency.cs.pop.int1, freq.t)   275 
       276 
      # (b) Prevalence --------------------------------------------------------- 277 
       278 
      ## Obesity 279 
      prev.O <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev", 280 
                                 prev = CalculatePrevObesityT("overall", Frequency.cs.pop.int1))   281 
      prev.O.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.f", 282 
                                   prev = CalculatePrevObesityT("female", Frequency.cs.pop.int1))   283 
      prev.O.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.m", 284 
                                   prev = CalculatePrevObesityT("male", Frequency.cs.pop.int1))   285 
      Obes.prev.pop.int1 <- rbind.data.frame(Obes.prev.pop.int1, prev.O, prev.O.f, prev.O.m)   286 
       287 
      ## Diabetes 288 
      prev.D <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev", 289 
                                 prev = CalculatePrevDiabetesT("overall", Frequency.cs.pop.int1))   290 
      prev.D.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.f", 291 
                                   prev = CalculatePrevDiabetesT("female", Frequency.cs.pop.int1))   292 
      prev.D.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.m", 293 
                                   prev = CalculatePrevDiabetesT("male", Frequency.cs.pop.int1))   294 
      Diab.prev.pop.int1 <- rbind.data.frame(Diab.prev.pop.int1, prev.D, prev.D.f, prev.D.m)   295 
       296 
      # (c) Conditional probabilities ------------------------------------------ 297 
       298 
      # Convert variables in Population.t dataset to factors 299 
      # (requred for calculating conditonal probabilties) 300 
      Population.t <- data.frame(lapply(Population.t, factor)) 301 
       302 
      ## (i) Cross-sectional --------------------------------------------------- 303 
       304 
      ## Obesity 305 
      var.d <- paste0("O.t", (t-1))  # (define dependent variable) 306 
      var.i <- "Sex"  # (define independent variable) 307 
      cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t)) 308 
      names(cprob.t) <- names(CProbability.Obes.cs.int1)  # rename columns to match CP table 309 
      CProbability.Obes.cs.int1 <- rbind.data.frame(CProbability.Obes.cs.int1, cprob.t)   310 
       311 
      ## Diabetes 312 
      var.d <- paste0("D.t", (t-1)) 313 
      var.i <- c("Sex", paste0("O.t", (t-1))) 314 
      cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t)) 315 
      names(cprob.t) <- names(CProbability.Diab.cs.int1) 316 
      CProbability.Diab.cs.int1 <- rbind(CProbability.Diab.cs.int1, cprob.t) 317 
       318 
      ## Update time-varying characteristics & record summary data 319 
    } else { 320 
       321 
      # Update time-varying characteristics ------------------------------------ 322 
       323 
      # (a) Obesity ------------------------------------------------------------ 324 
       325 
      p.obes.t <- cbind(1 - CalculateProbObesityT(Sex = Sex.pop[, 1],  326 
                                                  PrevObes = Obes.pop[, (t-1)],  327 
                                                  PrevDiab = Diab.pop[, (t-1)]),  328 
                        CalculateProbObesityT(Sex = Sex.pop[, 1],  329 
                                              PrevObes = Obes.pop[, (t-1)],  330 
                                              PrevDiab = Diab.pop[, (t-1)])) 331 
      Obes.pop[, t] <- samplev(probs = p.obes.t, m = 1) 332 
      Obes.pop[, t] <- Obes.pop[, t] - 1  # (factor levels should be 0 and 1) 333 
       334 
      # (b) Diabetes ----------------------------------------------------------- 335 
       336 
      p.diab.t <- cbind(1 - CalculateProbDiabetesT(Sex = Sex.pop[, 1],  337 
                                                   PrevDiab = Diab.pop[, (t-1)],  338 
                                                   Obes = Obes.pop[, t]),  339 
                        CalculateProbDiabetesT(Sex = Sex.pop[, 1],  340 
                                               PrevDiab = Diab.pop[, (t-1)],  341 
                                               Obes = Obes.pop[, t])) 342 
      Diab.pop[, t] <- samplev(probs = p.diab.t, m = 1) 343 
      Diab.pop[, t] <- Diab.pop[, t] - 1  # (factor levels should be 0 and 1) 344 
       345 
      # Record summary data ---------------------------------------------------- 346 
       347 
      # Bind variables from time t, time t-1, and baseline together ------------ 348 
      Population.t <- data.frame(cbind(Sex.pop[, 1], Obes.pop[, (t-1)], Diab.pop[, (t-1)]), 349 
                                 Obes.pop[, t], Diab.pop[, t]) 350 
      vars.cs <- c("Sex", paste0(c("O.t", "D.t"), (t-1)))  # define cross-sectional variables 351 
      vars.ct <- c("Sex", paste0(c("O.t", "D.t"), (t-2)), paste0(c("O.t", "D.t"), (t-1)))  # define 352 
cross-time variables 353 
      names(Population.t) <- vars.ct 354 
       355 
      # (a) Cross-sectional frequency table ------------------------------------ 356 
       357 
      freq.t <- cbind(Sim = s, Time = (t-1), count(Population.t[, vars.cs]))   358 
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      names(freq.t) <- names(Frequency.cs.pop.int1)   359 
      Frequency.cs.pop.int1 <- rbind(Frequency.cs.pop.int1, freq.t)   360 
       361 
      # (b) Prevalence --------------------------------------------------------- 362 
       363 
      ## Obesity 364 
      prev.O <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev", 365 
                                 prev = CalculatePrevObesityT("overall", Frequency.cs.pop.int1))   366 
      prev.O.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.f", 367 
                                   prev = CalculatePrevObesityT("female", Frequency.cs.pop.int1))   368 
      prev.O.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.m", 369 
                                   prev = CalculatePrevObesityT("male", Frequency.cs.pop.int1))   370 
      Obes.prev.pop.int1 <- rbind.data.frame(Obes.prev.pop.int1, prev.O, prev.O.f, prev.O.m)   371 
       372 
      ## Diabetes 373 
      prev.D <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev", 374 
                                 prev = CalculatePrevDiabetesT("overall", Frequency.cs.pop.int1))   375 
      prev.D.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.f", 376 
                                   prev = CalculatePrevDiabetesT("female", Frequency.cs.pop.int1))   377 
      prev.D.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.m", 378 
                                   prev = CalculatePrevDiabetesT("male", Frequency.cs.pop.int1))   379 
      Diab.prev.pop.int1 <- rbind.data.frame(Diab.prev.pop.int1, prev.D, prev.D.f, prev.D.m)   380 
       381 
      # (c) Conditional probabilities ------------------------------------------ 382 
       383 
      # Convert variables in Population.t dataset to factors 384 
      # (requred for calculating conditonal probabilties) 385 
      Population.t <- data.frame(lapply(Population.t, factor, levels = c("0", "1"))) 386 
       387 
      ## (i) Cross-sectional --------------------------------------------------- 388 
       389 
      ## Obesity 390 
      var.d <- paste0("O.t", (t-1))  # (define dependent variable) 391 
      var.i <- "Sex"  # (define independent variable) 392 
      cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t)) 393 
      names(cprob.t) <- names(CProbability.Obes.cs.int1)  # rename columns to match CP table 394 
      CProbability.Obes.cs.int1 <- rbind.data.frame(CProbability.Obes.cs.int1, cprob.t)   395 
       396 
      ## Diabetes 397 
      var.d <- paste0("D.t", (t-1)) 398 
      var.i <- c("Sex", paste0("O.t", (t-1))) 399 
      cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t)) 400 
      names(cprob.t) <- names(CProbability.Diab.cs.int1) 401 
      CProbability.Diab.cs.int1 <- rbind(CProbability.Diab.cs.int1, cprob.t) 402 
       403 
      ## (ii) Cross-time ------------------------------------------------------- 404 
       405 
      ## Obesity 406 
      var.d <- paste0("O.t", (t-1))   407 
      var.i <- c("Sex", paste0(c("O.t", "D.t"), (t-2)))   408 
      cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t)) 409 
      names(cprob.t) <- names(CProbability.Obes.ct.int1)   410 
      CProbability.Obes.ct.int1 <- rbind.data.frame(CProbability.Obes.ct.int1, cprob.t)   411 
       412 
      ## Diabetes 413 
      var.d <- paste0("D.t", (t-1)) 414 
      var.i <- c("Sex", paste0("D.t", (t-2)), paste0("O.t", (t-1)))  415 
      cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Population.t)) 416 
      names(cprob.t) <- names(CProbability.Diab.ct.int1) 417 
      CProbability.Diab.ct.int1 <- rbind.data.frame(CProbability.Diab.ct.int1, cprob.t) 418 
       419 
    } 420 
     421 
    # Display progress of simulation 422 
    cat('\r', paste(round((t / N.t.pop * 100), 0),  423 
                    "% done of simulation", s, "of", N.sim, "    ", sep = " ")) 424 
     425 
  }  # (close time loop) 426 
   427 
   428 
}  # (close simulation loop) 429 
 430 
comp.time <- Sys.time() - v; comp.time  # print total simulation time  431 
# (6.2 min / simulation run) 432 
# (~xx hrs / 100 simulation runs) 433 
 434 
### (c) Calculate mean trends -------------------------------------------------- 435 
 436 
#### (i) Cross-sectional frequencies ------------------------------------------- 437 
 438 
# Frequency table doesn't show combinations with empty cells 439 
# Use expand.grid function to create full frequency table 440 
f <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), Sex = c(0, 1), Time = Time.pop,  441 
                 Sim = seq(from = 1, to = N.sim, by = 1)) 442 
f <- cbind(f[, c("Sim", "Time", "Sex", "O.t", "D.t")], freq = 0)  # initialise frequencies with 0 443 
# Fill f with data from (incomplete) Frequency table 444 
for (i in 1:nrow(Frequency.cs.pop.int1)) { 445 
   446 
  sim <- Frequency.cs.pop.int1[i, "Sim"] 447 
  time <- Frequency.cs.pop.int1[i, "Time"] 448 
  sex <- Frequency.cs.pop.int1[i, "Sex"] 449 
  o.t <- Frequency.cs.pop.int1[i, "O.t"] 450 
  d.t <- Frequency.cs.pop.int1[i, "D.t"] 451 
  freq <- Frequency.cs.pop.int1[i, "freq"] 452 
   453 
  f[f[, "Sim"] == sim & 454 
      f[, "Time"] == time & 455 
      f[, "Sex"] == sex & 456 
      f[, "O.t"] == o.t & 457 
      f[, "D.t"] == d.t,  458 
    "freq"] <- freq 459 
   460 
} 461 
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 462 
# Overwrite incomplete Frequency table 463 
Frequency.cs.pop.int1 <- f; rm(f) 464 
#write.csv(Frequency.cs.pop.int1, file = "./Population intervention/Intervention 1/PopFreqInt1.csv", 465 
row.names = FALSE) 466 
 467 
# Calculate mean frequency at each time 468 
Mean.frequency.int1 <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), Sex = c(0, 1),  469 
                                   Time = Time.pop) 470 
Mean.frequency.int1 <- cbind(Sim = "mean", Mean.frequency.int1[, c("Time", "Sex", "O.t", "D.t")],  471 
                             freq = 0)  # initialise frequencies with 0 472 
#str(Mean.frequency.int1) 473 
for (i in 1:nrow(Mean.frequency.int1)) { 474 
   475 
  time <- Mean.frequency.int1[i, "Time"] 476 
  sex <- Mean.frequency.int1[i, "Sex"] 477 
  o.t <- Mean.frequency.int1[i, "O.t"] 478 
  d.t <- Mean.frequency.int1[i, "D.t"] 479 
   480 
  avg <- mean(subset(Frequency.cs.pop.int1, Time == time &  481 
                       Sex == sex &  482 
                       O.t == o.t &  483 
                       D.t == d.t)$freq) 484 
   485 
  Mean.frequency.int1[Mean.frequency.int1[, "Time"] == time & 486 
                        Mean.frequency.int1[, "Sex"] == sex & 487 
                        Mean.frequency.int1[, "O.t"] == o.t & 488 
                        Mean.frequency.int1[, "D.t"] == d.t, 489 
                      "freq"] <- avg 490 
   491 
} 492 
 493 
### (ii) Prevalence ------------------------------------------------------------ 494 
 495 
# Calculate mean prevalence at each time 496 
## Obesity: 497 
Mean.obes.prev.int1 <- expand.grid(Subgroup = c("Obes.prev", "Obes.prev.f", "Obes.prev.m"), 498 
                                   Time = Time.pop) 499 
Mean.obes.prev.int1 <- cbind(Sim = "mean",  500 
                             Mean.obes.prev.int1[, c("Time", "Subgroup")],  501 
                             prev = 0)  # initialise prevalence with 0 502 
#str(Mean.obes.prev.int1) 503 
for (i in 1:nrow(Mean.obes.prev.int1)) { 504 
   505 
  time <- Mean.obes.prev.int1[i, "Time"] 506 
  sub <- Mean.obes.prev.int1[i, "Subgroup"] 507 
   508 
  avg <- mean(subset(Obes.prev.pop.int1, Time == time & Subgroup == sub)$prev) 509 
   510 
  Mean.obes.prev.int1[Mean.obes.prev.int1[, "Time"] == time & 511 
                        Mean.obes.prev.int1[, "Subgroup"] == sub, 512 
                      "prev"] <- avg 513 
   514 
} 515 
## Diabetes: 516 
Mean.diab.prev.int1 <- expand.grid(Subgroup = c("Diab.prev", "Diab.prev.f", "Diab.prev.m"), 517 
                                   Time = Time.pop) 518 
Mean.diab.prev.int1 <- cbind(Sim = "mean",  519 
                             Mean.diab.prev.int1[, c("Time", "Subgroup")],  520 
                             prev = 0)  # initialise prevalence with 0 521 
#str(Mean.diab.prev.int1) 522 
for (i in 1:nrow(Mean.diab.prev.int1)) { 523 
   524 
  time <- Mean.diab.prev.int1[i, "Time"] 525 
  sub <- Mean.diab.prev.int1[i, "Subgroup"] 526 
   527 
  avg <- mean(subset(Diab.prev.pop.int1, Time == time & Subgroup == sub)$prev) 528 
   529 
  Mean.diab.prev.int1[Mean.diab.prev.int1[, "Time"] == time & 530 
                        Mean.diab.prev.int1[, "Subgroup"] == sub, 531 
                      "prev"] <- avg 532 
   533 
} 534 
 535 
### (iii) Conditional probabilities -------------------------------------------- 536 
 537 
# Calculate mean CP at each time point 538 
## Obesity (cross-sectional): 539 
Mean.CP.Obes.cs.int1 <- expand.grid(O.t = c(0, 1), Sex = c(0, 1), Time = Time.pop)  540 
Mean.CP.Obes.cs.int1 <- cbind(Sim = "mean",  541 
                              Mean.CP.Obes.cs.int1[, c("Time", "Sex", "O.t")],  542 
                              prob = 0) 543 
for (i in 1:nrow(Mean.CP.Obes.cs.int1)) { 544 
   545 
  time <- Mean.CP.Obes.cs.int1[i, "Time"] 546 
  sex <- Mean.CP.Obes.cs.int1[i, "Sex"] 547 
  o.t <- Mean.CP.Obes.cs.int1[i, "O.t"] 548 
   549 
  avg <- mean(subset(CProbability.Obes.cs.int1, Time == time &  550 
                       Sex == sex &  551 
                       O.t == o.t)$prob) 552 
   553 
  Mean.CP.Obes.cs.int1[Mean.CP.Obes.cs.int1[, "Time"] == time & 554 
                         Mean.CP.Obes.cs.int1[, "Sex"] == sex & 555 
                         Mean.CP.Obes.cs.int1[, "O.t"] == o.t, 556 
                       "prob"] <- avg 557 
   558 
} 559 
## Obesity (cross-time): 560 
Mean.CP.Obes.ct.int1 <- expand.grid(O.t = c(0, 1), D.tminus1 = c(0, 1),  561 
                                    O.tminus1 = c(0, 1), Sex = c(0, 1),  562 
                                    Time = Time.pop[-1])  563 
Mean.CP.Obes.ct.int1 <- cbind(Sim = "mean",  564 
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                              Mean.CP.Obes.ct.int1[, c("Time", "Sex", "O.tminus1", "D.tminus1", 565 
"O.t")],  566 
                              prob = 0) 567 
for (i in 1:nrow(Mean.CP.Obes.ct.int1)) { 568 
   569 
  time <- Mean.CP.Obes.ct.int1[i, "Time"] 570 
  sex <- Mean.CP.Obes.ct.int1[i, "Sex"] 571 
  o.tminus1 <- Mean.CP.Obes.ct.int1[i, "O.tminus1"] 572 
  d.tminus1 <- Mean.CP.Obes.ct.int1[i, "D.tminus1"] 573 
  o.t <- Mean.CP.Obes.ct.int1[i, "O.t"] 574 
   575 
  avg <- mean(subset(CProbability.Obes.ct.int1, Time == time &  576 
                       Sex == sex &  577 
                       O.tminus1 == o.tminus1 & 578 
                       D.tminus1 == d.tminus1 & 579 
                       O.t == o.t)$prob) 580 
   581 
  Mean.CP.Obes.ct.int1[Mean.CP.Obes.ct.int1[, "Time"] == time & 582 
                         Mean.CP.Obes.ct.int1[, "Sex"] == sex & 583 
                         Mean.CP.Obes.ct.int1[, "O.tminus1"] == o.tminus1 & 584 
                         Mean.CP.Obes.ct.int1[, "D.tminus1"] == d.tminus1 & 585 
                         Mean.CP.Obes.ct.int1[, "O.t"] == o.t, 586 
                       "prob"] <- avg 587 
   588 
} 589 
## Diabetes (cross-sectional): 590 
Mean.CP.Diab.cs.int1 <- expand.grid(D.t = c(0, 1), O.t = c(0, 1),  591 
                                    Sex = c(0, 1), Time = Time.pop)  592 
Mean.CP.Diab.cs.int1 <- cbind(Sim = "mean",  593 
                              Mean.CP.Diab.cs.int1[, c("Time", "Sex", "O.t", "D.t")],  594 
                              prob = 0) 595 
for (i in 1:nrow(Mean.CP.Diab.cs.int1)) { 596 
   597 
  time <- Mean.CP.Diab.cs.int1[i, "Time"] 598 
  sex <- Mean.CP.Diab.cs.int1[i, "Sex"] 599 
  o.t <- Mean.CP.Diab.cs.int1[i, "O.t"] 600 
  d.t <- Mean.CP.Diab.cs.int1[i, "D.t"] 601 
   602 
  avg <- mean(subset(CProbability.Diab.cs.int1, Time == time &  603 
                       Sex == sex &  604 
                       O.t == o.t & 605 
                       D.t == d.t)$prob) 606 
   607 
  Mean.CP.Diab.cs.int1[Mean.CP.Diab.cs.int1[, "Time"] == time & 608 
                         Mean.CP.Diab.cs.int1[, "Sex"] == sex & 609 
                         Mean.CP.Diab.cs.int1[, "O.t"] == o.t & 610 
                         Mean.CP.Diab.cs.int1[, "D.t"]== d.t, 611 
                       "prob"] <- avg 612 
   613 
} 614 
## Diabetes (cross-time): 615 
Mean.CP.Diab.ct.int1 <- expand.grid(D.t = c(0, 1), O.t = c(0, 1),  616 
                                    D.tminus1 = c(0, 1), Sex = c(0, 1),  617 
                                    Time = Time.pop[-1])  618 
Mean.CP.Diab.ct.int1 <- cbind(Sim = "mean",  619 
                              Mean.CP.Diab.ct.int1[, c("Time", "Sex", "D.tminus1", "O.t", "D.t")],  620 
                              prob = 0) 621 
for (i in 1:nrow(Mean.CP.Diab.ct.int1)) { 622 
   623 
  time <- Mean.CP.Diab.ct.int1[i, "Time"] 624 
  sex <- Mean.CP.Diab.ct.int1[i, "Sex"] 625 
  d.tminus1 <- Mean.CP.Diab.ct.int1[i, "D.tminus1"] 626 
  o.t <- Mean.CP.Diab.ct.int1[i, "O.t"] 627 
  d.t <- Mean.CP.Diab.ct.int1[i, "D.t"] 628 
   629 
  avg <- mean(subset(CProbability.Diab.ct.int1, Time == time &  630 
                       Sex == sex &  631 
                       D.tminus1 == d.tminus1 & 632 
                       O.t == o.t & 633 
                       D.t == d.t)$prob) 634 
   635 
  Mean.CP.Diab.ct.int1[Mean.CP.Diab.ct.int1[, "Time"] == time & 636 
                         Mean.CP.Diab.ct.int1[, "Sex"] == sex & 637 
                         Mean.CP.Diab.ct.int1[, "D.tminus1"] == d.tminus1 & 638 
                         Mean.CP.Diab.ct.int1[, "O.t"] == o.t & 639 
                         Mean.CP.Diab.ct.int1[, "D.t"] == d.t, 640 
                       "prob"] <- avg 641 
   642 
} 643 
 644 
 645 
### (d) Export aggregate tables & mean trends tables --------------------------- 646 
 647 
# Export frequency table 648 
write.csv(Frequency.cs.pop.int1, file = "./Population intervention/Intervention 1/PopFreqInt1.csv",  649 
          row.names = FALSE) 650 
 651 
# Export prevalence tables 652 
write.csv(Obes.prev.pop.int1, file = "./Population intervention/Intervention 1/PopObesPrevInt1.csv",  653 
          row.names = FALSE) 654 
write.csv(Diab.prev.pop.int1, file = "./Population intervention/Intervention 1/PopDiabPrevInt1.csv",  655 
          row.names = FALSE) 656 
 657 
# Export conditional probability tables 658 
write.csv(CProbability.Obes.cs.int1, file = "./Population intervention/Intervention 659 
1/PopObesCPcsInt1.csv",  660 
          row.names = FALSE) 661 
write.csv(CProbability.Obes.ct.int1, file = "./Population intervention/Intervention 662 
1/PopObesCPctInt1.csv",  663 
          row.names = FALSE) 664 
write.csv(CProbability.Diab.cs.int1, file = "./Population intervention/Intervention 665 
1/PopDiabCPcsInt1.csv",  666 
          row.names = FALSE) 667 
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write.csv(CProbability.Diab.ct.int1, file = "./Population intervention/Intervention 668 
1/PopDiabCPctInt1.csv",  669 
          row.names = FALSE) 670 
 671 
# Export mean cross-sectional frequency tables 672 
write.csv(Mean.frequency.int1, file = "./Population intervention/Intervention 673 
1/PopFreqMeanInt1.csv",  674 
          row.names = FALSE) 675 
 676 
# Export mean prevalence tables 677 
write.csv(Mean.obes.prev.int1, file = "./Population intervention/Intervention 678 
1/PopObesPrevMeanInt1.csv",  679 
          row.names = FALSE) 680 
write.csv(Mean.diab.prev.int1, file = "./Population intervention/Intervention 681 
1/PopDiabPrevMeanInt1.csv",  682 
          row.names = FALSE) 683 
 684 
# Export mean conditional probability tables 685 
write.csv(Mean.CP.Obes.cs.int1, file = "./Population intervention/Intervention 686 
1/PopObesCPcsMeanInt1.csv",  687 
          row.names = FALSE) 688 
write.csv(Mean.CP.Obes.ct.int1, file = "./Population intervention/Intervention 689 
1/PopObesCPctMeanInt1.csv",  690 
          row.names = FALSE) 691 
write.csv(Mean.CP.Diab.cs.int1, file = "./Population intervention/Intervention 692 
1/PopDiabCPcsMeanInt1.csv",  693 
          row.names = FALSE) 694 
write.csv(Mean.CP.Diab.ct.int1, file = "./Population intervention/Intervention 695 
1/PopDiabCPctMeanInt1.csv",  696 
          row.names = FALSE) 697 

Note that the above code relates to Intervention 1; for all other interventions, the probability 

of obesity at time 𝑡 (line 231) varies according to the specific intervention. For Interventions 2 

through 6, respectively: 

p.obes.t <- 1 231 

 
p.obes.t <- PrevObes*(0.95 + 0.02*PrevDiab) 231 
 
p.obes.t <- 0.06375 + 0.02125*Sex + 0.0255*PrevDiab + 231 
    PrevObes*(0.88625 - 0.02125*Sex - 0.0055*PrevDiab) 
 
p.obes.t <- 0.075 + 0.025*Sex + 0.03*PrevDiab + 231 
    PrevObes*(0.78 - 0.025*Sex - 0.012*PrevDiab) 
 
p.obes.t <- 0.06375 + 0.02125*Sex + 0.0255*PrevDiab + 231 
    PrevObes*(0.79125 - 0.02125*Sex - 0.0075*PrevDiab) 
 

The output from each simulated intervention is then saved to its respective subfolder 

(‘Intervention 2’ through ‘Intervention 6’, respectively). 

C.2.2 Comparison of the g-formula versus microsimulation for estimating true 
causal effects in the population 

In this subsection, we provide details relating to the simulations in which the g-formula and 

microsimulation were used to estimate the true natural and counterfactual histories in the 

population, which is described in Section 6.4.2. For each method (the g-formula in §C.2.2.1 and 

microsimulation in §C.2.2.2), we provide additional details relating to the simulations 

performed; this includes a fuller evaluation of the autocorrelation structures, the results of 

modelling the counterfactual histories under each of the six interventions, and all annotated R 

code. 

C.2.2.1 The g-formula 

Because it represents the true autocorrelation structure of the population, AS1 is expected to 

replicate the true natural history of the population, thereby producing unbiased estimates of 

obesity and diabetes prevalence in the population at all time points. Moreover, it is expected 

to replicate the true counterfactual histories under Interventions 1 through 6. Modelling AS1 is 

therefore expected to produce unbiased estimates of all intervention effects. 
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AS2 is not expected to faithfully replicate the true natural history of the population because it 

does not correctly model the dependence between time points. Neither is modelling AS2 

expected to faithfully replicate the true counterfactual scenarios under interventions on 

obesity. Modelling AS2 is therefore expected to produce biased estimates of all intervention 

effects. 

AS3 is expected to produce a population whose characteristics under the natural history are 

consistent with the true cross-sectional characteristics of the population. However, under 

Interventions 1 through 6, AS3 cannot be expected to replicate the true counterfactual 

histories because the effects of the interventions on obesity which are implemented at each 

time point are not carried forward. Modelling AS3 is thus expected to produce biased 

estimates of all intervention effects. 

C.2.2.1.1 Counterfactual histories under hypothetical intervention 

Here, we present the results of using the g-formula to model the counterfactual histories for 

Interventions 2 through 6 (the results of Intervention 1 are presented in Chapter 6, 

Section 6.4.2.2.3), according to each of the three autocorrelation structures (AS1 through AS3). 

Figures which compare the true effect of each intervention on obesity and diabetes prevalence 

in the population with those modelled by the g-formula are shown in Figure C.9 (Intervention 

2), Figure C.10 (Intervention 3), Figure C.11 (Intervention 4), Figure C.12 (Intervention 5), and 

Figure C.13 (Intervention 6). 
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C.2.2.1.2 Annotated R code 

################################################################################ 1 
## MSM: AUTOCORRELATION STRUCTURE 1 ############################################ 2 
################################################################################ 3 
 4 
# This code simulates the 'natural history' of an artificial longitudinal population  5 
# sampled from a population of 5 million ('Population simulation - vectorised.R') 6 
# using a TIME-based, discrete time microsimulation model 7 
 8 
# The true autocorrelation structure of the source population is modelled 9 
 10 
# Simulated individuals have the following 3 attributes: 11 
# Sex (time-fixed): 0 = female, 1 = male 12 
# Obesity (time-varying): 0 = nonobese, 1 = obese 13 
# Diabetes (time-varying): 0 = nondiabetic, 1 = diabetic 14 
 15 
# It then simulates the effects on diabetes prevalence at time 10 16 
# of the following interventions: 17 
 18 
# (1) Preventing anyone from being obese 19 
# (2) Making everyone obese 20 
# (3) Preventing any new obese individuals 21 
# (4) Reducing the probability of becoming obese by 15% 22 
# (5) Reducing the probability of remaining obese by 10% 23 
# (6) Reducing the probability of becoming obese by 15% and remaining obese by 10% 24 
 25 
################################################################################ 26 
## (1) SET UP ------------------------------------------------------------------ 27 
 28 
# Clear workspace 29 
rm(list = ls()) 30 
 31 
# Load all required packages 32 
library(readxl); library(stringr); library(Hmisc); library(plyr) 33 
library(scales); library(ggplot2); library(gridExtra); library(HydeNet) 34 
library(data.table) 35 
 36 
### (a) Population/sample/simulation parameters & population data -------------- 37 
 38 
# Import individual-level population dataset 39 
Population <- read.csv("./Population simulation - vectorised/PopData.csv", 40 
                       header = TRUE, row.names = 1) 41 
 42 
# Define population parameters 43 
N.i.pop <- nrow(Population)  # number of individuals in population 44 
N.t.pop <- 11  # number of time points (including baseline) 45 
 46 
# Define sample parameters 47 
N.i.sam <- 20000  # number of individuals to sample from population 48 
N.t.sam <- 11  # number of time points (including baseline) 49 
Time.sam <- as.vector(seq(from = 0, to = (N.t.sam - 1), by = 1),  50 
                      mode = "integer")  # time vector 51 
 52 
# Define simulation parameters 53 
N.sim <- 100  # number of simulation runs (per intervention/natural history) 54 
N.int <- 6  # number of interventions (not including natural history) 55 
 56 
### (b) Tables to store sample simulation data --------------------------------- 57 
 58 
# Create empty matrices to store individual-level sample data 59 
# Each row represents 1 individual (N.i.sam rows) 60 
# Each column represents 1 time point (N.t.sam columns) 61 
Sex.sam1 <- matrix(nrow = N.i.sam, ncol = 1, 62 
                   dimnames = list(paste0("ind", 1:N.i.sam), "Sex")) 63 
Obes.sam1 <- matrix(nrow = N.i.sam, ncol = N.t.sam, 64 
                    dimnames = list(paste0("ind", 1:N.i.sam), 65 
                                   paste0("O.t", Time.sam))) 66 
Diab.sam1 <- matrix(nrow = N.i.sam, ncol = N.t.sam, 67 
                    dimnames = list(paste0("ind", 1:N.i.sam),  68 
                                   paste0("D.t", Time.sam))) 69 
 70 
### (c) Tables to store summary data ------------------------------------------- 71 
 72 
# Create empty cross-sectional frequency table 73 
Frequency.cs.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 74 
                               Sex = numeric(), O.t = numeric(), D.t = numeric(), 75 
                               freq = numeric()) 76 
 77 
# Create empty tables to record obesity & diabetes prevalence from sample 78 
# (overall and disaggregated by sex) 79 
Obes.prev.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 80 
                             Subgroup = factor(), prev = numeric()) 81 
Diab.prev.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 82 
                             Subgroup = factor(), prev = numeric()) 83 
 84 
# Create empty tables to record cross-sectional conditional probabilities of obesity & diabetes 85 
CProbability.Obes.cs.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 86 
                                        Sex = factor(), O.t = factor(), 87 
                                        prob = numeric()) 88 
CProbability.Diab.cs.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 89 
                                        Sex = factor(), O.t = factor(), 90 
                                        D.t = factor(), 91 
                                        prob = numeric()) 92 
 93 
# Create empty tables to record cross-time conditional probabilities of obesity & diabetes 94 
CProbability.Obes.ct.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 95 
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                                       Sex = factor(), O.tminus1 = factor(), 96 
                                       D.tminus1 = factor(), O.t = factor(), 97 
                                       prob = numeric()) 98 
CProbability.Diab.ct.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 99 
                                       Sex = factor(), D.tminus1 = factor(), 100 
                                       O.t = factor(), D.t = factor(), 101 
                                       prob = numeric()) 102 
 103 
# Create empty table to record estimated parameters governing transition probabilities 104 
TransitionParameters.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 105 
                                        Parameter = factor(), value = numeric()) 106 
 107 
 108 
# Create empty tables to store mean frequency, prevalence, conditional probability, and transition 109 
parameter trends 110 
## Cross-sectional frequencies 111 
Mean.frequency.sam1 <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), Sex = c(0, 1), 112 
                                   Time = Time.sam) 113 
Mean.frequency.sam1 <- cbind(Sim = "mean", 114 
                             Mean.frequency.sam1[, c("Time", "Sex", "O.t", "D.t")], 115 
                             freq = 0)  # initialise frequencies with 0 116 
## Obesity prevalence 117 
Mean.obes.prev.sam1 <- expand.grid(Subgroup = c("Obes.prev", "Obes.prev.f", "Obes.prev.m"), 118 
                                   Time = Time.sam) 119 
Mean.obes.prev.sam1 <- cbind(Sim = "mean", 120 
                             Mean.obes.prev.sam1[, c("Time", "Subgroup")], 121 
                             prev = 0)  # initialise prevalence with 0 122 
## Diabetes prevalence 123 
Mean.diab.prev.sam1 <- expand.grid(Subgroup = c("Diab.prev", "Diab.prev.f", "Diab.prev.m"), 124 
                                   Time = Time.sam) 125 
Mean.diab.prev.sam1 <- cbind(Sim = "mean", 126 
                             Mean.diab.prev.sam1[, c("Time", "Subgroup")], 127 
                             prev = 0)  # initialise prevalence with 0 128 
## CP obesity - cross-sectional 129 
Mean.CP.Obes.cs.sam1 <- expand.grid(O.t = c(0, 1), Sex = c(0, 1), Time = Time.sam)  130 
Mean.CP.Obes.cs.sam1 <- cbind(Sim = "mean", 131 
                              Mean.CP.Obes.cs.sam1[, c("Time", "Sex", "O.t")], 132 
                              prob = 0)  # initialise probs with 0 133 
## CP obesity - cross-time 134 
Mean.CP.Obes.ct.sam1 <- expand.grid(O.t = c(0, 1), D.tminus1 = c(0, 1), 135 
                                    O.tminus1 = c(0, 1), Sex = c(0, 1), 136 
                                    Time = Time.sam[-1])  137 
Mean.CP.Obes.ct.sam1 <- cbind(Sim = "mean", 138 
                              Mean.CP.Obes.ct.sam1[, c("Time", "Sex", "O.tminus1", "D.tminus1", 139 
"O.t")], 140 
                              prob = 0)  # initialise probs with 0 141 
## CP diabetes - cross-sectional 142 
Mean.CP.Diab.cs.sam1 <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), 143 
                                    Sex = c(0, 1), Time = Time.sam)  144 
Mean.CP.Diab.cs.sam1 <- cbind(Sim = "mean", 145 
                              Mean.CP.Diab.cs.sam1[, c("Time", "Sex", "O.t", "D.t")], 146 
                              prob = 0)  # initialise probs with 0 147 
## CP diabetes - cross-time 148 
Mean.CP.Diab.ct.sam1 <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), 149 
                                    D.tminus1 = c(0, 1), Sex = c(0, 1), 150 
                                    Time = Time.sam[-1])  151 
Mean.CP.Diab.ct.sam1 <- cbind(Sim = "mean", 152 
                              Mean.CP.Diab.ct.sam1[, c("Time", "Sex", "D.tminus1", "O.t", "D.t")], 153 
                              prob = 0)  # initialise probs with 0 154 
## Transition parameters 155 
Mean.TP.sam1 <- expand.grid(Parameter = c(paste0("a", 0:7), paste0("b", 0:7)), 156 
                            Time = Time.sam[-1]) 157 
Mean.TP.sam1 <- cbind(Sim = "mean", 158 
                      Mean.TP.sam1[, c("Time", "Parameter")], 159 
                      value = 0)  # initialise values with 0 160 
 161 
### (d) Functions -------------------------------------------------------------- 162 
 163 
#### (i) SampleV function ------------------------------------------------------ 164 
 165 
# samplev() function 166 
# efficient implementation of the rMultinom() function of the Hmisc package 167 
# from Krijkamp et al (2018) 168 
samplev <- function(probs, m) { 169 
  d <- dim(probs)  # (dimensions of probability matrix) 170 
  n <- d[1]  # (number of rows, i.e. individuals) 171 
  k <- d[2]  # (number of columns, i.e. states) 172 
  lev <- dimnames(probs)[[2]]  # (names of columns, i.e. state values) 173 
  if (!length(lev))  174 
    lev <- 1:k 175 
  ran <- matrix(lev[1], ncol = m, nrow = n) 176 
  U <- t(probs) 177 
  for(i in 2:k) { 178 
    U[i, ] <- U[i, ] + U[i - 1, ] 179 
  } 180 
  if (any((U[k, ] - 1) > 1e-05)) 181 
    stop("error in multinom: probabilities do not sum to 1") 182 
   183 
  for (j in 1:m) { 184 
    un <- rep(runif(n), rep(k, n)) 185 
    ran[, j] <- lev[1 + colSums(un > U)] 186 
  } 187 
  ran 188 
} 189 
 190 
#### (ii) Calculate prevalence proportions ------------------------------------- 191 
 192 
# Calculate Obesity prevalence 193 
# args: group = subgroup, freqtable = frequency table (numeric) 194 
# returns single number (prevalence) 195 
CalculatePrevObesityT <- function (group, freqtable) { 196 
   197 
  if (group == "overall") { 198 
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     199 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & O.t == 1)$freq) /  200 
      N.i.sam  201 
    return(prevalence) 202 
     203 
  } else if (group == "female") { 204 
     205 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0 & O.t == 1)$freq) / 206 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0)$freq) 207 
    return(prevalence) 208 
     209 
  } else if (group == "male") { 210 
     211 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1 & O.t == 1)$freq) /  212 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1)$freq) 213 
    return(prevalence) 214 
     215 
  } 216 
   217 
}  # (close function loop) 218 
 219 
 220 
# Calculate Diabetes prevalence 221 
# args: group = subgroup, freqtable = frequency table (numeric) 222 
# returns single number (prevalence) 223 
CalculatePrevDiabetesT <- function (group, freqtable) { 224 
   225 
  if (group == "overall") { 226 
     227 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & D.t == 1)$freq) /  228 
      N.i.sam  229 
    return(prevalence) 230 
     231 
  } else if (group == "female") { 232 
     233 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0 & D.t == 1)$freq) / 234 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0)$freq) 235 
    return(prevalence) 236 
     237 
  } else if (group == "male") { 238 
     239 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1 & D.t == 1)$freq) /  240 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1)$freq) 241 
    return(prevalence) 242 
     243 
  } 244 
   245 
}  # (close function loop) 246 
 247 
#### (iii) Calculate conditional probabilities --------------------------------- 248 
 249 
# Calculate conditional probability table at time t 250 
# args: dv = dependent variable, iv = independent variable(s), dataset = data frame (factorised) 251 
# returns conditional probability table (cprob.t) 252 
CalculateCPT <- function(dv, iv, dataset) { 253 
   254 
  # Define formula for use in cpt function (from HydeNet package) 255 
  formula <- as.formula(paste(dv, paste(iv, collapse = " + "), sep = " ~ ")) 256 
   257 
  # Create conditional probability table 258 
  cprob.t <- cbind(Time = (t-1), am_adt(cpt(formula, data = dataset))) 259 
   260 
  return(cprob.t) 261 
   262 
} 263 
 264 
# Function for converting multidimensional arrays to tables 265 
# (from https://github.com/Rdatatable/data.table/issues/1418) 266 
am_adt <- function(inarray) { 267 
  if (!is.array(inarray)) stop("input must be an array") 268 
  dims <- dim(inarray) 269 
  if (is.null(dimnames(inarray))) { 270 
    inarray <- provideDimnames(inarray, base = list(as.character(seq_len(max(dims))))) 271 
  } 272 
  FT <- if (any(class(inarray) %in% "ftable")) inarray else ftable(inarray)  273 
  out <- data.table(as.table(ftable(FT))) 274 
  nam <- names(out)[seq_along(dims)] 275 
  setorderv(out[, (nam) := lapply(.SD, type.convert), .SDcols = nam], nam)[] 276 
} 277 
 278 
 279 
 280 
################################################################################ 281 
## (2) MSM: AUTOCORRELATION STRUCTURE 1 ---------------------------------------- 282 
 283 
# Set seed 284 
set.seed(101) 285 
 286 
### (a) Define conditional probabilities at time t ----------------------------- 287 
 288 
#### (i) Obesity --------------------------------------------------------------- 289 
 290 
# Function to calculate P(Obesity = 1 | Sex, Prev obesity, Prev diabetes) at time t 291 
 292 
CalculateProbObesityT <- function(Sex, PrevObes, PrevDiab) { 293 
   294 
  # Inc probability (PrevObes = 0): a0 + (a2-a0)*Sex + (a1-a0)*PrevDiab + (a3-a2-a1+a0)*Sex*PrevDiab 295 
  # Prev probability (PrevObes = 1): a4 + (a6-a4)*Sex + (a5-a4)*PrevDiab + (a7-a6-296 
a5+a4)*Sex*PrevDiab 297 
   298 
  p.obes.t <- a0 + (a2-a0)*Sex + (a1-a0)*PrevDiab + (a3-a2-a1+a0)*Sex*PrevDiab +  299 
    PrevObes*((a4-a0) + (a6-a2-(a4-a0))*Sex + (a5-a1-(a4-a0))*PrevDiab +  300 
                (a7-a6-a5-a3+a2+a1+(a4-a0))*Sex*PrevDiab) 301 
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  return(p.obes.t) 302 
   303 
}  304 
 305 
# (a0,...,a7 will be estimated from sample of population for each simulation run... 306 
# ... using EstimateTransitionProbs function) 307 
 308 
#### (ii) Diabetes ------------------------------------------------------------- 309 
 310 
# Function to calculate P(Diabetes = 1 | Sex, Obesity, Prev diabetes) at time t 311 
 312 
CalculateProbDiabetesT <- function(Sex, PrevDiab, Obes) { 313 
   314 
  # Inc probability: b0 + (b2-b0)*Sex + (b1-b0)*Obes + (b3-b2-b1+b0)*Sex*Obes 315 
  # Prev probability: b4 + (b6-b4)*Sex + (b5-b4)*Obes + (b7-b6-b5+b4)*Sex*Obes 316 
   317 
  p.diab.t <- b0 + (b2-b0)*Sex + (b1-b0)*Obes + (b3-b2-b1+b0)*Sex*Obes + 318 
    PrevDiab*((b4-b0) + (b6-b2-(b4-b0))*Sex + (b5-b1-(b4-b0))*Obes +  319 
                (b7-b6-b5-b3+b2+b1+(b4-b0))*Sex*Obes) 320 
  return(p.diab.t) 321 
   322 
}  323 
 324 
# (b0,...,b7 will be estimated from sample of population for each simulation run... 325 
# ... using EstimateTransitionProbs function) 326 
 327 
#### (iii) Calculate parameters governing transition probabilities ------------- 328 
 329 
# Function to estimate transition probabilities from a sample of individuals for time t 330 
# (will change based on autocorrelation structure) 331 
# args: sampledata = individual-level sample dataset (numeric) 332 
 333 
EstimateTransitionProbs <- function(sampledata) { 334 
   335 
  # Create dataframe for sample data (baseline, time t-1, & time t) 336 
  vars <- c("Sex", paste0(c("O.t", "D.t"), (t-2)), paste0(c("O.t", "D.t"), (t-1)))   337 
  sampledata.t <- data.frame(cbind(Time = (t-1), sampledata[, vars])) 338 
  names(sampledata.t) <- c("Time", "Sex", "O.tminus1", "D.tminus1", "O.t", "D.t")   339 
  sampledata.t[, -1] <- data.frame(apply(sampledata.t[, -1], 2, factor))  340 
   341 
  # Calculate cross-time conditional probabilities & define transition parameters 342 
  # (1) Obesity  343 
  var.d <- "O.t"  # define dependent variable 344 
  var.i <- c("Sex", "O.tminus1", "D.tminus1")  # define independent variables 345 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 346 
  CP.Obes <- data.frame(am_adt(cpt(formula, data = sampledata.t))) 347 
  CP.Obes <- rename(CP.Obes, replace = c("N" = "prob"))  # rename prob column 348 
  CP.Obes <- subset(CP.Obes, O.t == "1")  # remove 'complement' rows 349 
  CP.Obes <- subset(CP.Obes, select = -O.t)  # remove O.t column 350 
  a0 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 351 
                   CP.Obes[, "Sex"] == 0 & 352 
                   CP.Obes[, "D.tminus1"] == 0, "prob"] 353 
  a1 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 354 
                   CP.Obes[, "Sex"] == 0 & 355 
                   CP.Obes[, "D.tminus1"] == 1, "prob"] 356 
  a2 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 357 
                   CP.Obes[, "Sex"] == 1 & 358 
                   CP.Obes[, "D.tminus1"] == 0, "prob"] 359 
  a3 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 360 
                   CP.Obes[, "Sex"] == 1 & 361 
                   CP.Obes[, "D.tminus1"] == 1, "prob"] 362 
  a4 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 363 
                   CP.Obes[, "Sex"] == 0 & 364 
                   CP.Obes[, "D.tminus1"] == 0, "prob"] 365 
  a5 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 366 
                   CP.Obes[, "Sex"] == 0 & 367 
                   CP.Obes[, "D.tminus1"] == 1, "prob"] 368 
  a6 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 369 
                   CP.Obes[, "Sex"] == 1 & 370 
                   CP.Obes[, "D.tminus1"] == 0, "prob"] 371 
  a7 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 372 
                   CP.Obes[, "Sex"] == 1 & 373 
                   CP.Obes[, "D.tminus1"] == 1, "prob"] 374 
  # (2) Diabetes 375 
  var.d <- "D.t"  # define dependent variable 376 
  var.i <- c("Sex", "D.tminus1", "O.t")  # define independent variables 377 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 378 
  CP.Diab <- data.frame(am_adt(cpt(formula, data = sampledata.t))) 379 
  CP.Diab <- rename(CP.Diab, replace = c("N" = "prob"))  # rename prob column 380 
  CP.Diab <- subset(CP.Diab, D.t == "1")  # remove 'complement' rows 381 
  CP.Diab <- subset(CP.Diab, select = -D.t)  # remove D.t column 382 
  b0 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 383 
                   CP.Diab[, "Sex"] == 0 & 384 
                   CP.Diab[, "O.t"] == 0, "prob"] 385 
  b1 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 386 
                   CP.Diab[, "Sex"] == 0 & 387 
                   CP.Diab[, "O.t"] == 1, "prob"] 388 
  b2 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 389 
                   CP.Diab[, "Sex"] == 1 & 390 
                   CP.Diab[, "O.t"] == 0, "prob"] 391 
  b3 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 392 
                   CP.Diab[, "Sex"] == 1 & 393 
                   CP.Diab[, "O.t"] == 1, "prob"] 394 
  b3 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 395 
                   CP.Diab[, "Sex"] == 1 & 396 
                   CP.Diab[, "O.t"] == 1, "prob"] 397 
  b4 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 398 
                   CP.Diab[, "Sex"] == 0 & 399 
                   CP.Diab[, "O.t"] == 0, "prob"] 400 
  b5 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 401 
                   CP.Diab[, "Sex"] == 0 & 402 
                   CP.Diab[, "O.t"] == 1, "prob"] 403 
  b6 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 404 
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                   CP.Diab[, "Sex"] == 1 & 405 
                   CP.Diab[, "O.t"] == 0, "prob"] 406 
  b7 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 407 
                   CP.Diab[, "Sex"] == 1 & 408 
                   CP.Diab[, "O.t"] == 1, "prob"] 409 
   410 
} 411 
 412 
### (b) Simulation ------------------------------------------------------------- 413 
 414 
# Initialise obesity (a) and diabetes (b) parameters with 0 415 
a0 <- a1 <- a2 <- a3 <- a4 <- a5 <- a6 <- a7 <- 0 416 
b0 <- b1 <- b2 <- b3 <- b4 <- b5 <- b6 <- b7 <- 0 417 
 418 
# Draw N.sim random numbers from N.i.sam  419 
# These represent the random samples that will be drawn from the population 420 
select <- matrix(nrow = N.i.sam, ncol = N.sim, 421 
                 dimnames = list(paste0("ind", 1:N.i.sam), 422 
                                 paste0("sample", 1:N.sim))) 423 
for (s in 1:N.sim) { 424 
  select[, s] <- sample(x = c(1:N.i.pop), size = N.i.sam, replace = FALSE) 425 
} 426 
 427 
# Record start time of simulation 428 
v <- Sys.time()  429 
 430 
# (1) Loop through natural history & interventions ----------------------------- 431 
# (v = 0 represents natural history, v = 1-6 represent interventions 1-6) 432 
for (z in 0:N.int) { 433 
   434 
  # Reset summary tables 435 
  # (each intervention (or natural history) has a separate summary table) 436 
  Frequency.cs.sam1 <- Frequency.cs.sam1[0, ] 437 
  Obes.prev.sam1 <- Obes.prev.sam1[0, ] 438 
  Diab.prev.sam1 <- Diab.prev.sam1[0, ] 439 
  CProbability.Obes.cs.sam1 <- CProbability.Obes.cs.sam1[0, ] 440 
  CProbability.Diab.cs.sam1 <- CProbability.Diab.cs.sam1[0, ] 441 
  CProbability.Obes.ct.sam1 <- CProbability.Obes.ct.sam1[0, ] 442 
  CProbability.Diab.ct.sam1 <- CProbability.Diab.ct.sam1[0, ] 443 
  TransitionParameters.sam1 <- TransitionParameters.sam1[0, ] 444 
   445 
  # (2) Loop through simulation runs  446 
  for (s in 1:N.sim) { 447 
     448 
    # Sample N.i.sam individuals from population 449 
    # Store data in Sample dataframe (all longitudinal vars in order) 450 
    Sample <- Population[select[, s], ] 451 
     452 
    # Fill Sex.sim, Obes.sim, & Diab.sim matrices with baseline data 453 
    Sex.sam1[, "Sex"] <- Sample[, "Sex"] 454 
    Obes.sam1[, "O.t0"] <- Sample[, "O.t0"] 455 
    Diab.sam1[, "D.t0"] <- Sample[, "D.t0"] 456 
     457 
    # (3) Loop through time points 458 
    for (t in 1:N.t.sam) { 459 
       460 
      ## Record summary data at baseline 461 
      if (t == 1) { 462 
         463 
        # Record summary data -------------------------------------------------- 464 
         465 
        # Bind variables from time t and baseline together 466 
        Sample.t <- data.frame(cbind(Sex.sam1[, 1], Obes.sam1[, t], Diab.sam1[, t])) 467 
        vars.cs <- c("Sex", paste0(c("O.t", "D.t"), (t-1)))   468 
        names(Sample.t) <- vars.cs 469 
         470 
        # (a) Cross-sectional frequency table ---------------------------------- 471 
         472 
        freq.t <- cbind(Sim = s, Time = (t-1), count(Sample.t[, vars.cs]))   473 
        names(freq.t) <- names(Frequency.cs.sam1)  # rename columns to match Frequency table 474 
        Frequency.cs.sam1 <- rbind(Frequency.cs.sam1, freq.t)   475 
         476 
        # (b) Prevalence ------------------------------------------------------- 477 
         478 
        ## Obesity 479 
        prev.O <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev", 480 
                                   prev = CalculatePrevObesityT("overall", Frequency.cs.sam1))   481 
        prev.O.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.f", 482 
                                     prev = CalculatePrevObesityT("female", Frequency.cs.sam1))   483 
        prev.O.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.m", 484 
                                     prev = CalculatePrevObesityT("male", Frequency.cs.sam1))   485 
        Obes.prev.sam1 <- rbind.data.frame(Obes.prev.sam1, prev.O, prev.O.f, prev.O.m)   486 
         487 
        ## Diabetes 488 
        prev.D <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev", 489 
                                   prev = CalculatePrevDiabetesT("overall", Frequency.cs.sam1))   490 
        prev.D.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.f", 491 
                                     prev = CalculatePrevDiabetesT("female", Frequency.cs.sam1))   492 
        prev.D.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.m", 493 
                                     prev = CalculatePrevDiabetesT("male", Frequency.cs.sam1))   494 
        Diab.prev.sam1 <- rbind.data.frame(Diab.prev.sam1, prev.D, prev.D.f, prev.D.m)   495 
         496 
        # (c) Conditional probabilities ---------------------------------------- 497 
         498 
        # Convert variables in Sample.t dataset to factors 499 
        # (requred for calculating conditonal probabilties) 500 
        Sample.t <- data.frame(lapply(Sample.t, factor, levels = c("0", "1"))) 501 
         502 
        ## (i) Cross-sectional ------------------------------------------------- 503 
         504 
        ## Obesity 505 
        var.d <- paste0("O.t", (t-1))  # (define dependent variable) 506 
        var.i <- "Sex"  # (define independent variable) 507 
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        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 508 
        names(cprob.t) <- names(CProbability.Obes.cs.sam1)   509 
        CProbability.Obes.cs.sam1 <- rbind.data.frame(CProbability.Obes.cs.sam1, cprob.t)   510 
         511 
        ## Diabetes 512 
        var.d <- paste0("D.t", (t-1)) 513 
        var.i <- c("Sex", paste0("O.t", (t-1))) 514 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 515 
        names(cprob.t) <- names(CProbability.Diab.cs.sam1) 516 
        CProbability.Diab.cs.sam1 <- rbind(CProbability.Diab.cs.sam1, cprob.t) 517 
         518 
         519 
      } else {  ## Estimate transition probs, update time-varying characteristics, & record summary 520 
data at time t 521 
         522 
        # Estimate transition probabilities for time t ------------------------- 523 
         524 
        # Estimate transition probabilities (for natural history) using Sample dataframe 525 
        EstimateTransitionProbs(sampledata = Sample) 526 
         527 
        # Define transition probabilities for obesity under Interventions 1-6 528 
        if (z != 0) { 529 
          if (z == 1) {  # under Intervention 1, no individuals may be obese 530 
            a0 <- a1 <- a2 <- a3 <- a4 <- a5 <- a6 <- a7 <- 0 531 
          } else if (z == 2) {  # under Intervention 2, all individuals are obese 532 
            a0 <- a1 <- a2 <- a3 <- a4 <- a5 <- a6 <- a7 <- 1 533 
          } else if (z == 3) {  # under Intervention 3, no individuals may become obese 534 
            a0 <- a1 <- a2 <- a3 <- 0 535 
          } else if (z == 4) {  # under Intervention 4, reduce incident prob of obesity by 15% 536 
            a0 <- 0.85*a0; a1 <- 0.85*a1; a2 <- 0.85*a2; a3 <- 0.85*a3 537 
          } else if (z == 5) {  # under Intervention 5, reduce prevalent prob of obesity by 10% 538 
            a4 <- 0.9*a4; a5 <- 0.9*a5; a6 <- 0.9*a6; a7 <- 0.9*a7 539 
          } else if (z == 6) {  # under Intervention 6, reduce incident prob of obesity by 15% & 540 
prevalent prob of obesity by 10% 541 
            a0 <- 0.85*a0; a1 <- 0.85*a1; a2 <- 0.85*a2; a3 <- 0.85*a3 542 
            a4 <- 0.9*a4; a5 <- 0.9*a5; a6 <- 0.9*a6; a7 <- 0.9*a7 543 
          } 544 
        } 545 
         546 
        # Record parameters governing transition probabilities 547 
        par.t <- cbind.data.frame(Sim = s, Time = (t-1),  548 
                       Parameter = c(paste0("a", 0:7), paste0("b", 0:7)),  549 
                       value = c(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, b7))  550 
        TransitionParameters.sam1 <- rbind.data.frame(TransitionParameters.sam1, par.t)   551 
         552 
        # Update time-varying characteristics ---------------------------------- 553 
         554 
        # (a) Obesity ---------------------------------------------------------- 555 
        p.obes.t <- cbind(1 - CalculateProbObesityT(Sex = Sex.sam1[, 1],  556 
                                                    PrevObes = Obes.sam1[, (t-1)],  557 
                                                    PrevDiab = Diab.sam1[, (t-1)]),  558 
                          CalculateProbObesityT(Sex = Sex.sam1[, 1],  559 
                                                PrevObes = Obes.sam1[, (t-1)],  560 
                                                PrevDiab = Diab.sam1[, (t-1)])) 561 
        Obes.sam1[, t] <- samplev(probs = p.obes.t, m = 1) 562 
        Obes.sam1[, t] <- Obes.sam1[, t] - 1  # (factor levels should be 0 and 1) 563 
         564 
        # (b) Diabetes --------------------------------------------------------- 565 
        p.diab.t <- cbind(1 - CalculateProbDiabetesT(Sex = Sex.sam1[, 1],  566 
                                                     PrevDiab = Diab.sam1[, (t-1)],  567 
                                                     Obes = Obes.sam1[, t]),  568 
                          CalculateProbDiabetesT(Sex = Sex.sam1[, 1],  569 
                                                 PrevDiab = Diab.sam1[, (t-1)],  570 
                                                 Obes = Obes.sam1[, t])) 571 
        Diab.sam1[, t] <- samplev(probs = p.diab.t, m = 1) 572 
        Diab.sam1[, t] <- Diab.sam1[, t] - 1  # (factor levels should be 0 and 1) 573 
         574 
        # Record summary data -------------------------------------------------- 575 
         576 
        # Bind variables from time t, time t-1, and baseline together  577 
        Sample.t <- data.frame(cbind(Sex.sam1[, 1], Obes.sam1[, (t-1)], Diab.sam1[, (t-1)]), 578 
                               Obes.sam1[, t], Diab.sam1[, t]) 579 
        vars.cs <- c("Sex", paste0(c("O.t", "D.t"), (t-1)))   580 
        vars.ct <- c("Sex", paste0(c("O.t", "D.t"), (t-2)), paste0(c("O.t", "D.t"), (t-1)))   581 
        names(Sample.t) <- vars.ct 582 
         583 
        # (a) Cross-sectional frequency table ---------------------------------- 584 
        freq.t <- cbind(Sim = s, Time = (t-1), count(Sample.t[, vars.cs]))   585 
        names(freq.t) <- names(Frequency.cs.sam1)   586 
        Frequency.cs.sam1 <- rbind(Frequency.cs.sam1, freq.t)   587 
         588 
        # (b) Prevalence ------------------------------------------------------- 589 
         590 
        ## Obesity 591 
        prev.O <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev", 592 
                                   prev = CalculatePrevObesityT("overall", Frequency.cs.sam1))   593 
        prev.O.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.f", 594 
                                     prev = CalculatePrevObesityT("female", Frequency.cs.sam1))   595 
        prev.O.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.m", 596 
                                     prev = CalculatePrevObesityT("male", Frequency.cs.sam1))   597 
        Obes.prev.sam1 <- rbind.data.frame(Obes.prev.sam1, prev.O, prev.O.f, prev.O.m)   598 
         599 
        ## Diabetes 600 
        prev.D <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev", 601 
                                   prev = CalculatePrevDiabetesT("overall", Frequency.cs.sam1))   602 
        prev.D.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.f", 603 
                                     prev = CalculatePrevDiabetesT("female", Frequency.cs.sam1))   604 
        prev.D.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.m", 605 
                                     prev = CalculatePrevDiabetesT("male", Frequency.cs.sam1))   606 
        Diab.prev.sam1 <- rbind.data.frame(Diab.prev.sam1, prev.D, prev.D.f, prev.D.m)   607 
         608 
        # (c) Conditional probabilities ---------------------------------------- 609 
         610 
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        # Convert variables in Sample.t dataset to factors 611 
        # (requred for calculating conditonal probabilties) 612 
        Sample.t <- data.frame(lapply(Sample.t, factor, levels = c("0", "1"))) 613 
         614 
        ## (i) Cross-sectional ------------------------------------------------- 615 
         616 
        ## Obesity 617 
        var.d <- paste0("O.t", (t-1))  # (define dependent variable) 618 
        var.i <- "Sex"  # (define independent variable) 619 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 620 
        names(cprob.t) <- names(CProbability.Obes.cs.sam1)   621 
        CProbability.Obes.cs.sam1 <- rbind.data.frame(CProbability.Obes.cs.sam1, cprob.t)   622 
         623 
        ## Diabetes 624 
        var.d <- paste0("D.t", (t-1)) 625 
        var.i <- c("Sex", paste0("O.t", (t-1))) 626 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 627 
        names(cprob.t) <- names(CProbability.Diab.cs.sam1) 628 
        CProbability.Diab.cs.sam1 <- rbind(CProbability.Diab.cs.sam1, cprob.t) 629 
         630 
        ## (ii) Cross-time ----------------------------------------------------- 631 
         632 
        ## Obesity 633 
        var.d <- paste0("O.t", (t-1))   634 
        var.i <- c("Sex", paste0(c("O.t", "D.t"), (t-2)))   635 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 636 
        names(cprob.t) <- names(CProbability.Obes.ct.sam1)   637 
        CProbability.Obes.ct.sam1 <- rbind.data.frame(CProbability.Obes.ct.sam1, cprob.t)   638 
         639 
        ## Diabetes 640 
        var.d <- paste0("D.t", (t-1)) 641 
        var.i <- c("Sex", paste0("D.t", (t-2)), paste0("O.t", (t-1)))  642 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 643 
        names(cprob.t) <- names(CProbability.Diab.ct.sam1) 644 
        CProbability.Diab.ct.sam1 <- rbind.data.frame(CProbability.Diab.ct.sam1, cprob.t) 645 
         646 
      } 647 
       648 
      # Display progress of simulation 649 
      cat('\r', paste(round((t / N.t.sam * 100), 0),  650 
                      "% done of simulation", s, "of", N.sim, "of Intervention", z, "of", N.int, "    651 
", sep = " ")) 652 
       653 
    }  # (close time loop - 3) 654 
     655 
  }  # (close simulation run loop - 2) 656 
   657 
  # Calculate mean trends for Intervention z ----------------------------------- 658 
   659 
  # (a) Cross-sectional frequencies -------------------------------------------- 660 
   661 
  # Use expand.grid function to create full frequency table 662 
  # (Frequency table doesn't show combinations with empty cells) 663 
  f <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), Sex = c(0, 1), Time = Time.sam,  664 
                   Sim = seq(from = 1, to = N.sim, by = 1)) 665 
  f <- cbind(f[, c("Sim", "Time", "Sex", "O.t", "D.t")], freq = 0)  # initialise frequencies with 0 666 
  # Fill f with data from (incomplete) Frequency table 667 
  for (i in 1:nrow(Frequency.cs.sam1)) { 668 
     669 
    sim <- Frequency.cs.sam1[i, "Sim"] 670 
    time <- Frequency.cs.sam1[i, "Time"] 671 
    sex <- Frequency.cs.sam1[i, "Sex"] 672 
    o.t <- Frequency.cs.sam1[i, "O.t"] 673 
    d.t <- Frequency.cs.sam1[i, "D.t"] 674 
    freq <- Frequency.cs.sam1[i, "freq"] 675 
     676 
    f[f[, "Sim"] == sim & 677 
        f[, "Time"] == time & 678 
        f[, "Sex"] == sex & 679 
        f[, "O.t"] == o.t & 680 
        f[, "D.t"] == d.t,  681 
      "freq"] <- freq 682 
     683 
  } 684 
   685 
  # Overwrite incomplete Frequency table 686 
  Frequency.cs.sam1 <- f; rm(f) 687 
   688 
  # Calculate mean frequency at each time 689 
  for (i in 1:nrow(Mean.frequency.sam1)) { 690 
     691 
    time <- Mean.frequency.sam1[i, "Time"] 692 
    sex <- Mean.frequency.sam1[i, "Sex"] 693 
    o.t <- Mean.frequency.sam1[i, "O.t"] 694 
    d.t <- Mean.frequency.sam1[i, "D.t"] 695 
     696 
    avg <- mean(subset(Frequency.cs.sam1, Time == time &  697 
                         Sex == sex &  698 
                         O.t == o.t &  699 
                         D.t == d.t)$freq) 700 
     701 
    Mean.frequency.sam1[Mean.frequency.sam1[, "Time"] == time & 702 
                          Mean.frequency.sam1[, "Sex"] == sex & 703 
                          Mean.frequency.sam1[, "O.t"] == o.t & 704 
                          Mean.frequency.sam1[, "D.t"] == d.t, 705 
                        "freq"] <- avg 706 
     707 
  } 708 
   709 
  # (b) Prevalence ------------------------------------------------------------- 710 
   711 
  # Calculate mean obesity prevalence at each time 712 
  for (i in 1:nrow(Mean.obes.prev.sam1)) { 713 
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     714 
    time <- Mean.obes.prev.sam1[i, "Time"] 715 
    sub <- Mean.obes.prev.sam1[i, "Subgroup"] 716 
     717 
    avg <- mean(subset(Obes.prev.sam1, Time == time & Subgroup == sub)$prev) 718 
     719 
    Mean.obes.prev.sam1[Mean.obes.prev.sam1[, "Time"] == time & 720 
                          Mean.obes.prev.sam1[, "Subgroup"] == sub, 721 
                        "prev"] <- avg 722 
     723 
  } 724 
   725 
  # Calculate mean diabetes prevalence at each time 726 
  for (i in 1:nrow(Mean.diab.prev.sam1)) { 727 
     728 
    time <- Mean.diab.prev.sam1[i, "Time"] 729 
    sub <- Mean.diab.prev.sam1[i, "Subgroup"] 730 
     731 
    avg <- mean(subset(Diab.prev.sam1, Time == time & Subgroup == sub)$prev) 732 
     733 
    Mean.diab.prev.sam1[Mean.diab.prev.sam1[, "Time"] == time & 734 
                          Mean.diab.prev.sam1[, "Subgroup"] == sub, 735 
                        "prev"] <- avg 736 
     737 
  } 738 
   739 
  # (c) Conditional probabilities ---------------------------------------------- 740 
   741 
  ## (i) Cross-sectional ------------------------------------------------------- 742 
   743 
  # Calculate mean CP of obesity at each time point 744 
  for (i in 1:nrow(Mean.CP.Obes.cs.sam1)) { 745 
     746 
    time <- Mean.CP.Obes.cs.sam1[i, "Time"] 747 
    sex <- Mean.CP.Obes.cs.sam1[i, "Sex"] 748 
    o.t <- Mean.CP.Obes.cs.sam1[i, "O.t"] 749 
     750 
    avg <- mean(subset(CProbability.Obes.cs.sam1, Time == time &  751 
                         Sex == sex &  752 
                         O.t == o.t)$prob) 753 
     754 
    Mean.CP.Obes.cs.sam1[Mean.CP.Obes.cs.sam1[, "Time"] == time & 755 
                           Mean.CP.Obes.cs.sam1[, "Sex"] == sex & 756 
                           Mean.CP.Obes.cs.sam1[, "O.t"] == o.t, 757 
                         "prob"] <- avg 758 
     759 
  } 760 
   761 
  # Calculate mean CP of diabetes at each time point 762 
  for (i in 1:nrow(Mean.CP.Diab.cs.sam1)) { 763 
     764 
    time <- Mean.CP.Diab.cs.sam1[i, "Time"] 765 
    sex <- Mean.CP.Diab.cs.sam1[i, "Sex"] 766 
    o.t <- Mean.CP.Diab.cs.sam1[i, "O.t"] 767 
    d.t <- Mean.CP.Diab.cs.sam1[i, "D.t"] 768 
     769 
    avg <- mean(subset(CProbability.Diab.cs.sam1, Time == time &  770 
                         Sex == sex &  771 
                         O.t == o.t & 772 
                         D.t == d.t)$prob) 773 
     774 
    Mean.CP.Diab.cs.sam1[Mean.CP.Diab.cs.sam1[, "Time"] == time & 775 
                           Mean.CP.Diab.cs.sam1[, "Sex"] == sex & 776 
                           Mean.CP.Diab.cs.sam1[, "O.t"] == o.t & 777 
                           Mean.CP.Diab.cs.sam1[, "D.t"]== d.t, 778 
                         "prob"] <- avg 779 
     780 
  } 781 
   782 
  ## (ii) Cross-time ----------------------------------------------------------- 783 
   784 
  # Calculate mean CP of obesity at each time point 785 
  for (i in 1:nrow(Mean.CP.Obes.ct.sam1)) { 786 
     787 
    time <- Mean.CP.Obes.ct.sam1[i, "Time"] 788 
    sex <- Mean.CP.Obes.ct.sam1[i, "Sex"] 789 
    o.tminus1 <- Mean.CP.Obes.ct.sam1[i, "O.tminus1"] 790 
    d.tminus1 <- Mean.CP.Obes.ct.sam1[i, "D.tminus1"] 791 
    o.t <- Mean.CP.Obes.ct.sam1[i, "O.t"] 792 
     793 
    avg <- mean(subset(CProbability.Obes.ct.sam1, Time == time &  794 
                         Sex == sex &  795 
                         O.tminus1 == o.tminus1 & 796 
                         D.tminus1 == d.tminus1 & 797 
                         O.t == o.t)$prob) 798 
     799 
    Mean.CP.Obes.ct.sam1[Mean.CP.Obes.ct.sam1[, "Time"] == time & 800 
                           Mean.CP.Obes.ct.sam1[, "Sex"] == sex & 801 
                           Mean.CP.Obes.ct.sam1[, "O.tminus1"] == o.tminus1 & 802 
                           Mean.CP.Obes.ct.sam1[, "D.tminus1"] == d.tminus1 & 803 
                           Mean.CP.Obes.ct.sam1[, "O.t"] == o.t, 804 
                         "prob"] <- avg 805 
     806 
  } 807 
   808 
  # Calculate mean CP of diabetes at each time point 809 
  for (i in 1:nrow(Mean.CP.Diab.ct.sam1)) { 810 
     811 
    time <- Mean.CP.Diab.ct.sam1[i, "Time"] 812 
    sex <- Mean.CP.Diab.ct.sam1[i, "Sex"] 813 
    d.tminus1 <- Mean.CP.Diab.ct.sam1[i, "D.tminus1"] 814 
    o.t <- Mean.CP.Diab.ct.sam1[i, "O.t"] 815 
    d.t <- Mean.CP.Diab.ct.sam1[i, "D.t"] 816 
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     817 
    avg <- mean(subset(CProbability.Diab.ct.sam1, Time == time &  818 
                         Sex == sex &  819 
                         D.tminus1 == d.tminus1 & 820 
                         O.t == o.t & 821 
                         D.t == d.t)$prob) 822 
     823 
    Mean.CP.Diab.ct.sam1[Mean.CP.Diab.ct.sam1[, "Time"] == time & 824 
                           Mean.CP.Diab.ct.sam1[, "Sex"] == sex & 825 
                           Mean.CP.Diab.ct.sam1[, "D.tminus1"] == d.tminus1 & 826 
                           Mean.CP.Diab.ct.sam1[, "O.t"] == o.t & 827 
                           Mean.CP.Diab.ct.sam1[, "D.t"] == d.t, 828 
                         "prob"] <- avg 829 
     830 
  } 831 
   832 
  # (d) Transition parameters -------------------------------------------------- 833 
   834 
  # Calculate mean TP at each time point 835 
  for (i in 1:nrow(Mean.TP.sam1)) { 836 
     837 
    time <- Mean.TP.sam1[i, "Time"] 838 
    par <- Mean.TP.sam1[i, "Parameter"] 839 
     840 
    avg <- mean(subset(TransitionParameters.sam1, Time == time & Parameter == par)$value) 841 
     842 
    Mean.TP.sam1[Mean.TP.sam1[, "Time"] == time & 843 
                   Mean.TP.sam1[, "Parameter"] == par, 844 
                 "value"] <- avg 845 
     846 
  } 847 
   848 
  # Save summary tables for Intervention z ------------------------------------- 849 
   850 
  # Define file location 851 
  if (z == 0) {  # (natural history) 852 
    path <- paste0("./Microsimulation models/Time t transition probs/MSM 1/Natural history/") 853 
  } else {  # (intervention z) 854 
    path <- paste0("./Microsimulation models/Time t transition probs/MSM 1/Intervention ", z, "/") 855 
  } 856 
   857 
  # Define file names 858 
  if (z == 0) {  # (natural history) 859 
    file.freq <- paste0("Sam1Freq.csv")  # frequency 860 
    file.prev.o <- paste0("Sam1ObesPrev.csv")  # obesity prevalence 861 
    file.prev.d <- paste0("Sam1DiabPrev.csv")  # diabetes prevalence 862 
    file.cpcs.o <- paste0("Sam1ObesCPcs.csv")  # CP obesity (cross-sectional) 863 
    file.cpct.o <- paste0("Sam1ObesCPct.csv")  # CP obesity (cross-time) 864 
    file.cpcs.d <- paste0("Sam1DiabCPcs.csv")  # CP diabetes (cross-sectional) 865 
    file.cpct.d <- paste0("Sam1DiabCPct.csv")  # CP diabetes (cross-time) 866 
    file.tp <- paste0("Sam1TP.csv")  # transition parameters 867 
    file.m.freq <- paste0("Sam1FreqMean.csv")  # mean frequency 868 
    file.m.prev.o <- paste0("Sam1ObesPrevMean.csv")  # mean obesity prevalence 869 
    file.m.prev.d <- paste0("Sam1DiabPrevMean.csv")  # mean diabetes prevalence 870 
    file.m.cpcs.o <- paste0("Sam1ObesCPcsMean.csv")  # mean CP obesity (cross-sectional) 871 
    file.m.cpct.o <- paste0("Sam1ObesCPctMean.csv")  # mean CP obesity (cross-time) 872 
    file.m.cpcs.d <- paste0("Sam1DiabCPcsMean.csv")  # mean CP diabetes (cross-sectional) 873 
    file.m.cpct.d <- paste0("Sam1DiabCPctMean.csv")  # mean CP diabetes (cross-time) 874 
    file.m.tp <- paste0("Sam1TPMean.csv")  # mean transition parameters 875 
  } else {  # (intervention z) 876 
    file.freq <- paste0("Sam1FreqInt", z, ".csv")  # frequency 877 
    file.prev.o <- paste0("Sam1ObesPrevInt", z, ".csv")  # obesity prevalence 878 
    file.prev.d <- paste0("Sam1DiabPrevInt", z, ".csv")  # diabetes prevalence 879 
    file.cpcs.o <- paste0("Sam1ObesCPcsInt", z, ".csv")  # CP obesity (cross-sectional) 880 
    file.cpct.o <- paste0("Sam1ObesCPctInt", z, ".csv")  # CP obesity (cross-time) 881 
    file.cpcs.d <- paste0("Sam1DiabCPcsInt", z, ".csv")  # CP diabetes (cross-sectional) 882 
    file.cpct.d <- paste0("Sam1DiabCPctInt", z, ".csv")  # CP diabetes (cross-time) 883 
    file.tp <- paste0("Sam1TPInt", z, ".csv")  # transition parameters 884 
    file.m.freq <- paste0("Sam1FreqMeanInt", z, ".csv")  # mean frequency 885 
    file.m.prev.o <- paste0("Sam1ObesPrevMeanInt", z, ".csv")  # mean obesity prevalence 886 
    file.m.prev.d <- paste0("Sam1DiabPrevMeanInt", z, ".csv")  # mean diabetes prevalence 887 
    file.m.cpcs.o <- paste0("Sam1ObesCPcsMeanInt", z, ".csv")  # mean CP obesity (cross-sectional) 888 
    file.m.cpct.o <- paste0("Sam1ObesCPctMeanInt", z, ".csv")  # mean CP obesity (cross-time) 889 
    file.m.cpcs.d <- paste0("Sam1DiabCPcsMeanInt", z, ".csv")  # mean CP diabetes (cross-sectional) 890 
    file.m.cpct.d <- paste0("Sam1DiabCPctMeanInt", z, ".csv")  # mean CP diabetes (cross-time) 891 
    file.m.tp <- paste0("Sam1TPMeanInt", z, ".csv")  # mean transition parameters 892 
  } 893 
   894 
  # Export frequency table 895 
  write.csv(Frequency.cs.sam1, file = paste0(path, file.freq), row.names = FALSE) 896 
   897 
  # Export prevalence tables 898 
  write.csv(Obes.prev.sam1, file = paste0(path, file.prev.o), row.names = FALSE) 899 
  write.csv(Diab.prev.sam1, file = paste0(path, file.prev.d), row.names = FALSE) 900 
   901 
  # Export conditional probability tables 902 
  write.csv(CProbability.Obes.cs.sam1, file = paste0(path, file.cpcs.o), row.names = FALSE) 903 
  write.csv(CProbability.Obes.ct.sam1, file = paste0(path, file.cpct.o), row.names = FALSE) 904 
  write.csv(CProbability.Diab.cs.sam1, file = paste0(path, file.cpcs.d), row.names = FALSE) 905 
  write.csv(CProbability.Diab.ct.sam1, file = paste0(path, file.cpct.d), row.names = FALSE) 906 
   907 
  # Export transition parameter tables 908 
  write.csv(TransitionParameters.sam1, file = paste0(path, file.tp), row.names = FALSE) 909 
   910 
  # Export mean trend tables 911 
  write.csv(Mean.frequency.sam1, file = paste0(path, file.m.freq), row.names = FALSE) 912 
  write.csv(Mean.obes.prev.sam1, file = paste0(path, file.m.prev.o), row.names = FALSE) 913 
  write.csv(Mean.diab.prev.sam1, file = paste0(path, file.m.prev.d), row.names = FALSE) 914 
  write.csv(Mean.CP.Obes.cs.sam1, file = paste0(path, file.m.cpcs.o), row.names = FALSE) 915 
  write.csv(Mean.CP.Obes.ct.sam1, file = paste0(path, file.m.cpct.o), row.names = FALSE) 916 
  write.csv(Mean.CP.Diab.cs.sam1, file = paste0(path, file.m.cpcs.d), row.names = FALSE) 917 
  write.csv(Mean.CP.Diab.ct.sam1, file = paste0(path, file.m.cpct.d), row.names = FALSE) 918 
  write.csv(Mean.TP.sam1, file = paste0(path, file.m.tp), row.names = FALSE) 919 
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   920 
}  # (close intervention loop - 1) 921 
 922 
comp.time <- Sys.time() - v; comp.time  # print total simulation time  923 
# (~39 seconds per simulation run of 20000 individuals) 924 
# (~37 mins per 100 simulation runs of 20000 individuals)925 

Note that the above code relates to AS1 (i.e. the true data-generating process of the 

population); for all other autocorrelation structures, the function which estimates the 

transition probabilities at time 𝑡 from a sample of individuals from the population (lines 334 – 

411) changes based on the autocorrelation structure that is modelled. For AS2, this function is: 

EstimateTransitionProbs <- function(sampledata) { 334 
   335 
  # Create dataframe for sample data (baseline, time t-1, & time t) 336 
  vars <- c("Sex", paste0(c("O.t", "D.t"), (t-2)), paste0(c("O.t", "D.t"), (t-1)))  # define 337 
variables 338 
  sampledata.t <- data.frame(cbind(Time = (t-1), sampledata[, vars])) 339 
  names(sampledata.t) <- c("Time", "Sex", "O.tminus1", "D.tminus1", "O.t", "D.t")  # rename 340 
variables 341 
  sampledata.t[, -1] <- data.frame(apply(sampledata.t[, -1], 2, factor))  # convert vars to factors 342 
   343 
  # Calculate cross-time conditional probabilities & define transition parameters 344 
  # (1) Obesity  345 
  var.d <- "O.t"  # define dependent variable 346 
  var.i <- c("Sex", "O.tminus1")  # define independent variables 347 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 348 
  CP.Obes <- data.frame(am_adt(cpt(formula, data = sampledata.t))) 349 
  CP.Obes <- rename(CP.Obes, replace = c("N" = "prob"))  # rename prob column 350 
  CP.Obes <- subset(CP.Obes, O.t == "1")  # remove 'complement' rows 351 
  CP.Obes <- subset(CP.Obes, select = -O.t)  # remove O.t column 352 
  a0 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 353 
                          CP.Obes[, "Sex"] == 0, "prob"] 354 
  a2 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 355 
                          CP.Obes[, "Sex"] == 1, "prob"] 356 
  a4 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 357 
                          CP.Obes[, "Sex"] == 0, "prob"] 358 
  a6 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 359 
                          CP.Obes[, "Sex"] == 1, "prob"] 360 
  # (2) Diabetes 361 
  var.d <- "D.t"  # define dependent variable 362 
  var.i <- c("Sex", "D.tminus1", "O.t")  # define independent variables 363 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 364 
  CP.Diab <- data.frame(am_adt(cpt(formula, data = sampledata.t))) 365 
  CP.Diab <- rename(CP.Diab, replace = c("N" = "prob"))  # rename prob column 366 
  CP.Diab <- subset(CP.Diab, D.t == "1")  # remove 'complement' rows 367 
  CP.Diab <- subset(CP.Diab, select = -D.t)  # remove D.t column 368 
  b0 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 369 
                   CP.Diab[, "Sex"] == 0 & 370 
                   CP.Diab[, "O.t"] == 0, "prob"] 371 
  b1 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 372 
                   CP.Diab[, "Sex"] == 0 & 373 
                   CP.Diab[, "O.t"] == 1, "prob"] 374 
  b2 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 375 
                   CP.Diab[, "Sex"] == 1 & 376 
                   CP.Diab[, "O.t"] == 0, "prob"] 377 
  b3 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 378 
                   CP.Diab[, "Sex"] == 1 & 379 
                   CP.Diab[, "O.t"] == 1, "prob"] 380 
  b4 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 381 
                   CP.Diab[, "Sex"] == 0 & 382 
                   CP.Diab[, "O.t"] == 0, "prob"] 383 
  b5 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 384 
                   CP.Diab[, "Sex"] == 0 & 385 
                   CP.Diab[, "O.t"] == 1, "prob"] 386 
  b6 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 387 
                   CP.Diab[, "Sex"] == 1 & 388 
                   CP.Diab[, "O.t"] == 0, "prob"] 389 
  b7 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 390 
                   CP.Diab[, "Sex"] == 1 & 391 
                   CP.Diab[, "O.t"] == 1, "prob"] 392 
   393 
} 394 

For AS3, this function is:

EstimateTransitionProbs <- function(sampledata) { 334 
   335 
  # Create dataframe for sample data (baseline & time t) 336 
  vars <- c("Sex", paste0(c("O.t", "D.t"), (t-1)))  # define variables 337 
  sampledata.t <- data.frame(cbind(Time = (t-1), sampledata[, vars])) 338 
  names(sampledata.t) <- c("Time", "Sex", "O.t", "D.t")  # rename variables 339 
  sampledata.t[, -1] <- data.frame(apply(sampledata.t[, -1], 2, factor))  # convert vars to factors 340 
   341 
  # Calculate cross-sectional conditional probabilities & define transition parameters 342 
  # (1) Obesity  343 
  var.d <- "O.t"  # define dependent variable 344 
  var.i <- "Sex"  # define independent variable 345 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 346 
  CP.Obes <- data.frame(am_adt(cpt(formula, data = sampledata.t))) 347 
  CP.Obes <- rename(CP.Obes, replace = c("N" = "prob"))  # rename prob column 348 
  CP.Obes <- subset(CP.Obes, O.t == "1")  # remove 'complement' rows 349 
  CP.Obes <- subset(CP.Obes, select = -O.t)  # remove O.t column 350 
  a0 <<- CP.Obes[CP.Obes[, "Sex"] == 0, "prob"] 351 
  a2 <<- CP.Obes[CP.Obes[, "Sex"] == 1, "prob"] 352 
  # (2) Diabetes 353 
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  var.d <- "D.t"  # define dependent variable 354 
  var.i <- c("Sex", "O.t")  # define independent variables 355 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 356 
  CP.Diab <- data.frame(am_adt(cpt(formula, data = sampledata.t))) 357 
  CP.Diab <- rename(CP.Diab, replace = c("N" = "prob"))  # rename prob column 358 
  CP.Diab <- subset(CP.Diab, D.t == "1")  # remove 'complement' rows 359 
  CP.Diab <- subset(CP.Diab, select = -D.t)  # remove D.t column 360 
  b0 <<- CP.Diab[CP.Diab[, "Sex"] == 0 & 361 
                          CP.Diab[, "O.t"] == 0, "prob"] 362 
  b1 <<- CP.Diab[CP.Diab[, "Sex"] == 0 & 363 
                          CP.Diab[, "O.t"] == 1, "prob"] 364 
  b2 <<- CP.Diab[CP.Diab[, "Sex"] == 1 & 365 
                          CP.Diab[, "O.t"] == 0, "prob"] 366 
  b3 <<- CP.Diab[CP.Diab[, "Sex"] == 1 & 367 
                          CP.Diab[, "O.t"] == 1, "prob"] 368 
   369 
} 370 

The output from each simulation is then saved to its subfolder (‘MSM 2’ and ‘MSM 3’, 

respectively). 

C.2.2.2 Microsimulation 

Since AS1 represents the true autocorrelation structure of the population, it is expected that 

using microsimulation to model AS1 will replicate the true natural history of the population 

and produce unbiased estimates of obesity and diabetes prevalence in the population at all 

time points. AS1 is also expected to replicate the true counterfactual histories under 

Interventions 1 through 6, thereby producing unbiased estimates of all intervention effects. 

However, no other autocorrelation structures (i.e. neither AS2 nor AS3) are expected to 

faithfully replicate the natural history of the population because the MSM does not have 

access to the entire joint distribution of all variables (i.e. all variables across all time periods. 

Modelling AS2 and AS3 is therefore expected to produce biased estimates of all intervention 

effects. 

C.2.2.2.1 Counterfactual histories under hypothetical intervention 

Here, we present the results of using microsimulation to model the counterfactual histories for 

Interventions 2 through 6 (the results of Intervention 1 are presented in Chapter 6, 

Section 6.4.2.3.3), according to each of the three autocorrelation structures (AS1 through AS3). 

Figures which compare the true effect of each intervention on obesity and diabetes prevalence 

in the population with those modelled by the g-formula are shown in Figure C.14 (Intervention 

2), Figure C.15 (Intervention 3), Figure C.16 (Intervention 4), Figure C.17 (Intervention 5), and 

Figure C.18 (Intervention 6). 



 
  

- 191 - 

Fi
gu

re
 C

.1
4 

C
o

u
n

te
rf

ac
tu

al
 h

is
to

ri
es

 o
f 

o
b

es
it

y 
an

d
 d

ia
b

et
e

s 
p

re
va

le
n

ce
 u

n
d

e
r 

In
te

rv
e

n
ti

o
n

 2
 f

o
r 

e
ac

h
 o

f 
A

S1
 t

h
ro

u
gh

 A
S3

 m
o

d
el

le
d

 u
si

n
g 

m
ic

ro
si

m
u

la
ti

o
n

, 
co

m
p

ar
ed

 t
o

 t
h

e 
tr

u
e 

co
u

n
te

rf
ac

tu
al

 h
is

to
ry

 

  

 



 
  

- 192 - 

Fi
gu

re
 C

.1
5 

C
o

u
n

te
rf

ac
tu

al
 h

is
to

ri
es

 o
f 

o
b

es
it

y 
an

d
 d

ia
b

et
e

s 
p

re
va

le
n

ce
 u

n
d

e
r 

In
te

rv
e

n
ti

o
n

 3
 f

o
r 

e
ac

h
 o

f 
A

S1
 t

h
ro

u
gh

 A
S3

 m
o

d
el

le
d

 u
si

n
g 

m
ic

ro
si

m
u

la
ti

o
n

, 
co

m
p

ar
ed

 t
o

 t
h

e 
tr

u
e 

co
u

n
te

rf
ac

tu
al

 h
is

to
ry

 

  

 



 
  

- 193 - 

Fi
gu

re
 C

.1
6 

C
o

u
n

te
rf

ac
tu

al
 h

is
to

ri
es

 o
f 

o
b

es
it

y 
an

d
 d

ia
b

et
e

s 
p

re
va

le
n

ce
 u

n
d

e
r 

In
te

rv
e

n
ti

o
n

 4
 f

o
r 

e
ac

h
 o

f 
A

S1
 t

h
ro

u
gh

 A
S3

 m
o

d
el

le
d

 u
si

n
g 

m
ic

ro
si

m
u

la
ti

o
n

, 
co

m
p

ar
ed

 t
o

 t
h

e 
tr

u
e 

co
u

n
te

rf
ac

tu
al

 h
is

to
ry

 

  

 



 
  

- 194 - 

Fi
gu

re
 C

.1
7 

C
o

u
n

te
rf

ac
tu

al
 h

is
to

ri
es

 o
f 

o
b

es
it

y 
an

d
 d

ia
b

et
e

s 
p

re
va

le
n

ce
 u

n
d

e
r 

In
te

rv
e

n
ti

o
n

 5
 f

o
r 

e
ac

h
 o

f 
A

S1
 t

h
ro

u
gh

 A
S3

 m
o

d
el

le
d

 u
si

n
g 

m
ic

ro
si

m
u

la
ti

o
n

, 
co

m
p

ar
ed

 t
o

 t
h

e 
tr

u
e 

co
u

n
te

rf
ac

tu
al

 h
is

to
ry

 

  

 



 
  

- 195 - 

Fi
gu

re
 C

.1
8 

C
o

u
n

te
rf

ac
tu

al
 h

is
to

ri
es

 o
f 

o
b

es
it

y 
an

d
 d

ia
b

et
e

s 
p

re
va

le
n

ce
 u

n
d

e
r 

In
te

rv
e

n
ti

o
n

 6
 f

o
r 

e
ac

h
 o

f 
A

S1
 t

h
ro

u
gh

 A
S3

 m
o

d
el

le
d

 u
si

n
g 

m
ic

ro
si

m
u

la
ti

o
n

, 
co

m
p

ar
ed

 t
o

 t
h

e 
tr

u
e 

co
u

n
te

rf
ac

tu
al

 h
is

to
ry

 

  

 



- 196 - 
 

 

 

C.2.2.3 Annotated R code 
################################################################################ 1 
## MSM: AUTOCORRELATION STRUCTURE 1 ############################################ 2 
################################################################################ 3 
 4 
# This code simulates the 'natural history' of an artificial longitudinal population  5 
# sampled from a population of 5 million ('Population simulation - vectorised.R') 6 
# using a TIME-based, discrete time microsimulation model 7 
 8 
# The true autocorrelation structure of the source population is modelled 9 
 10 
# Simulated individuals have the following 3 attributes: 11 
# Sex (time-fixed): 0 = female, 1 = male 12 
# Obesity (time-varying): 0 = nonobese, 1 = obese 13 
# Diabetes (time-varying): 0 = nondiabetic, 1 = diabetic 14 
 15 
# It then simulates the effects on diabetes prevalence at time 10 16 
# of the following interventions: 17 
 18 
# (1) Preventing anyone from being obese 19 
# (2) Making everyone obese 20 
# (3) Preventing any new obese individuals 21 
# (4) Reducing the probability of becoming obese by 15% 22 
# (5) Reducing the probability of remaining obese by 10% 23 
# (6) Reducing the probability of becoming obese by 15% and remaining obese by 10% 24 
 25 
################################################################################ 26 
## (1) SET UP ------------------------------------------------------------------ 27 
 28 
# Clear workspace 29 
rm(list = ls()) 30 
 31 
# Load all required packages 32 
library(readxl); library(stringr); library(Hmisc); library(plyr) 33 
library(scales); library(ggplot2); library(gridExtra); library(HydeNet) 34 
library(data.table) 35 
 36 
### (a) Population/sample/simulation parameters & population data -------------- 37 
 38 
# Import individual-level population dataset 39 
Population <- read.csv("./Population simulation - vectorised/PopData.csv", 40 
                       header = TRUE, row.names = 1) 41 
 42 
# Define population parameters 43 
N.i.pop <- nrow(Population)  # number of individuals in population 44 
N.t.pop <- 11  # number of time points (including baseline) 45 
 46 
# Define sample parameters 47 
N.i.sam <- 20000  # number of individuals to sample from population 48 
N.t.sam <- 11  # number of time points (including baseline) 49 
Time.sam <- as.vector(seq(from = 0, to = (N.t.sam - 1), by = 1),  50 
                      mode = "integer")  # time vector 51 
 52 
# Define simulation parameters 53 
N.sim <- 100  # number of simulation runs (per intervention/natural history) 54 
N.int <- 6  # number of interventions (not including natural history) 55 
 56 
### (b) Tables to store sample simulation data --------------------------------- 57 
 58 
# Create empty matrices to store individual-level sample data 59 
# Each row represents 1 individual (N.i.sam rows) 60 
# Each column represents 1 time point (N.t.sam columns) 61 
Sex.sam1 <- matrix(nrow = N.i.sam, ncol = 1, 62 
                   dimnames = list(paste0("ind", 1:N.i.sam), "Sex")) 63 
Obes.sam1 <- matrix(nrow = N.i.sam, ncol = N.t.sam, 64 
                    dimnames = list(paste0("ind", 1:N.i.sam), 65 
                                   paste0("O.t", Time.sam))) 66 
Diab.sam1 <- matrix(nrow = N.i.sam, ncol = N.t.sam, 67 
                    dimnames = list(paste0("ind", 1:N.i.sam),  68 
                                   paste0("D.t", Time.sam))) 69 
 70 
### (c) Tables to store summary data ------------------------------------------- 71 
 72 
# Create empty cross-sectional frequency table 73 
Frequency.cs.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 74 
                               Sex = numeric(), O.t = numeric(), D.t = numeric(), 75 
                               freq = numeric()) 76 
 77 
# Create empty tables to record obesity & diabetes prevalence from sample 78 
# (overall and disaggregated by sex) 79 
Obes.prev.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 80 
                             Subgroup = factor(), prev = numeric()) 81 
Diab.prev.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 82 
                             Subgroup = factor(), prev = numeric()) 83 
 84 
# Create empty tables to record cross-sectional conditional probabilities of obesity & diabetes 85 
CProbability.Obes.cs.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 86 
                                        Sex = factor(), O.t = factor(), 87 
                                        prob = numeric()) 88 
CProbability.Diab.cs.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 89 
                                        Sex = factor(), O.t = factor(), 90 
                                        D.t = factor(), 91 
                                        prob = numeric()) 92 
 93 
# Create empty tables to record cross-time conditional probabilities of obesity & diabetes 94 
CProbability.Obes.ct.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 95 
                                       Sex = factor(), O.tminus1 = factor(), 96 
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                                       D.tminus1 = factor(), O.t = factor(), 97 
                                       prob = numeric()) 98 
CProbability.Diab.ct.sam1 <- data.frame(Sim = numeric(), Time = numeric(), 99 
                                       Sex = factor(), D.tminus1 = factor(), 100 
                                       O.t = factor(), D.t = factor(), 101 
                                       prob = numeric()) 102 
 103 
# Create empty table to record estimated parameters governing transition probabilities 104 
TransitionParameters.sam1 <- data.frame(Sim = numeric(), Parameter = factor(),  105 
                                        value = numeric()) 106 
 107 
# Create empty tables to store mean frequency, prevalence, & conditional probability trends 108 
## Cross-sectional frequencies 109 
Mean.frequency.sam1 <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), Sex = c(0, 1), 110 
                                   Time = Time.sam) 111 
Mean.frequency.sam1 <- cbind(Sim = "mean", 112 
                             Mean.frequency.sam1[, c("Time", "Sex", "O.t", "D.t")], 113 
                             freq = 0)  # initialise frequencies with 0 114 
## Obesity prevalence 115 
Mean.obes.prev.sam1 <- expand.grid(Subgroup = c("Obes.prev", "Obes.prev.f", "Obes.prev.m"), 116 
                                   Time = Time.sam) 117 
Mean.obes.prev.sam1 <- cbind(Sim = "mean", 118 
                             Mean.obes.prev.sam1[, c("Time", "Subgroup")], 119 
                             prev = 0)  # initialise prevalence with 0 120 
## Diabetes prevalence 121 
Mean.diab.prev.sam1 <- expand.grid(Subgroup = c("Diab.prev", "Diab.prev.f", "Diab.prev.m"), 122 
                                   Time = Time.sam) 123 
Mean.diab.prev.sam1 <- cbind(Sim = "mean", 124 
                             Mean.diab.prev.sam1[, c("Time", "Subgroup")], 125 
                             prev = 0)  # initialise prevalence with 0 126 
## CP obesity - cross-sectional 127 
Mean.CP.Obes.cs.sam1 <- expand.grid(O.t = c(0, 1), Sex = c(0, 1), Time = Time.sam)  128 
Mean.CP.Obes.cs.sam1 <- cbind(Sim = "mean", 129 
                              Mean.CP.Obes.cs.sam1[, c("Time", "Sex", "O.t")], 130 
                              prob = 0)  # initialise probs with 0 131 
## CP obesity - cross-time 132 
Mean.CP.Obes.ct.sam1 <- expand.grid(O.t = c(0, 1), D.tminus1 = c(0, 1), 133 
                                    O.tminus1 = c(0, 1), Sex = c(0, 1), 134 
                                    Time = Time.sam[-1])  135 
Mean.CP.Obes.ct.sam1 <- cbind(Sim = "mean", 136 
                              Mean.CP.Obes.ct.sam1[, c("Time", "Sex", "O.tminus1", "D.tminus1", 137 
"O.t")], 138 
                              prob = 0)  # initialise probs with 0 139 
## CP diabetes - cross-sectional 140 
Mean.CP.Diab.cs.sam1 <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), 141 
                                    Sex = c(0, 1), Time = Time.sam)  142 
Mean.CP.Diab.cs.sam1 <- cbind(Sim = "mean", 143 
                              Mean.CP.Diab.cs.sam1[, c("Time", "Sex", "O.t", "D.t")], 144 
                              prob = 0)  # initialise probs with 0 145 
## CP diabetes - cross-time 146 
Mean.CP.Diab.ct.sam1 <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), 147 
                                    D.tminus1 = c(0, 1), Sex = c(0, 1), 148 
                                    Time = Time.sam[-1])  149 
Mean.CP.Diab.ct.sam1 <- cbind(Sim = "mean", 150 
                              Mean.CP.Diab.ct.sam1[, c("Time", "Sex", "D.tminus1", "O.t", "D.t")], 151 
                              prob = 0)  # initialise probs with 0 152 
## Transition parameters 153 
Mean.TP.sam1 <- cbind.data.frame(Sim = "mean", 154 
                                 Parameter = c(paste0("a", 0:7), paste0("b", 0:7)), 155 
                                 value = 0)  # initialise values with 0 156 
 157 
### (d) Functions -------------------------------------------------------------- 158 
 159 
#### (i) SampleV function ------------------------------------------------------ 160 
 161 
# samplev() function 162 
# efficient implementation of the rMultinom() function of the Hmisc package 163 
# from Krijkamp et al (2018) 164 
samplev <- function(probs, m) { 165 
  d <- dim(probs)  # (dimensions of probability matrix) 166 
  n <- d[1]  # (number of rows, i.e. individuals) 167 
  k <- d[2]  # (number of columns, i.e. states) 168 
  lev <- dimnames(probs)[[2]]  # (names of columns, i.e. state values) 169 
  if (!length(lev))  170 
    lev <- 1:k 171 
  ran <- matrix(lev[1], ncol = m, nrow = n) 172 
  U <- t(probs) 173 
  for(i in 2:k) { 174 
    U[i, ] <- U[i, ] + U[i - 1, ] 175 
  } 176 
  if (any((U[k, ] - 1) > 1e-05)) 177 
    stop("error in multinom: probabilities do not sum to 1") 178 
   179 
  for (j in 1:m) { 180 
    un <- rep(runif(n), rep(k, n)) 181 
    ran[, j] <- lev[1 + colSums(un > U)] 182 
  } 183 
  ran 184 
} 185 
 186 
#### (ii) Calculate prevalence proportions ------------------------------------- 187 
 188 
# Calculate Obesity prevalence 189 
# args: group = subgroup, freqtable = frequency table (numeric) 190 
# returns single number (prevalence) 191 
CalculatePrevObesityT <- function (group, freqtable) { 192 
   193 
  if (group == "overall") { 194 
     195 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & O.t == 1)$freq) /  196 
      N.i.sam  197 
    return(prevalence) 198 
     199 
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  } else if (group == "female") { 200 
     201 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0 & O.t == 1)$freq) / 202 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0)$freq) 203 
    return(prevalence) 204 
     205 
  } else if (group == "male") { 206 
     207 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1 & O.t == 1)$freq) /  208 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1)$freq) 209 
    return(prevalence) 210 
     211 
  } 212 
   213 
}  # (close function loop) 214 
 215 
 216 
# Calculate Diabetes prevalence 217 
# args: group = subgroup, freqtable = frequency table (numeric) 218 
# returns single number (prevalence) 219 
CalculatePrevDiabetesT <- function (group, freqtable) { 220 
   221 
  if (group == "overall") { 222 
     223 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & D.t == 1)$freq) /  224 
      N.i.sam  225 
    return(prevalence) 226 
     227 
  } else if (group == "female") { 228 
     229 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0 & D.t == 1)$freq) / 230 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 0)$freq) 231 
    return(prevalence) 232 
     233 
  } else if (group == "male") { 234 
     235 
    prevalence <- sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1 & D.t == 1)$freq) /  236 
      sum(subset(freqtable, Sim == s & Time == (t-1) & Sex == 1)$freq) 237 
    return(prevalence) 238 
     239 
  } 240 
   241 
}  # (close function loop) 242 
 243 
#### (iii) Calculate conditional probabilities --------------------------------- 244 
 245 
# Calculate conditional probability table at time t 246 
# args: dv = dependent variable, iv = independent variable(s), dataset = data frame (factorised) 247 
# returns conditional probability table (cprob.t) 248 
CalculateCPT <- function(dv, iv, dataset) { 249 
   250 
  # Define formula for use in cpt function (from HydeNet package) 251 
  formula <- as.formula(paste(dv, paste(iv, collapse = " + "), sep = " ~ ")) 252 
   253 
  # Create conditional probability table 254 
  cprob.t <- cbind(Time = (t-1), am_adt(cpt(formula, data = dataset))) 255 
   256 
  return(cprob.t) 257 
   258 
} 259 
 260 
# Function for converting multidimensional arrays to tables 261 
# (from https://github.com/Rdatatable/data.table/issues/1418) 262 
am_adt <- function(inarray) { 263 
  if (!is.array(inarray)) stop("input must be an array") 264 
  dims <- dim(inarray) 265 
  if (is.null(dimnames(inarray))) { 266 
    inarray <- provideDimnames(inarray, base = list(as.character(seq_len(max(dims))))) 267 
  } 268 
  FT <- if (any(class(inarray) %in% "ftable")) inarray else ftable(inarray)  269 
  out <- data.table(as.table(ftable(FT))) 270 
  nam <- names(out)[seq_along(dims)] 271 
  setorderv(out[, (nam) := lapply(.SD, type.convert), .SDcols = nam], nam)[] 272 
} 273 
 274 
 275 
 276 
################################################################################ 277 
## (2) MSM: AUTOCORRELATION STRUCTURE 1 ---------------------------------------- 278 
 279 
# Set seed 280 
set.seed(101) 281 
 282 
### (a) Define conditional probabilities at time t ----------------------------- 283 
 284 
#### (i) Obesity --------------------------------------------------------------- 285 
 286 
# Function to calculate P(Obesity = 1 | Sex, Prev obesity, Prev diabetes) at time t 287 
 288 
CalculateProbObesityT <- function(Sex, PrevObes, PrevDiab) { 289 
   290 
  # Incident probability (PrevObes = 0): a0 + (a2-a0)*Sex + (a1-a0)*PrevDiab + (a3-a2-291 
a1+a0)*Sex*PrevDiab 292 
  # Prevalent probability (PrevObes = 1): a4 + (a6-a4)*Sex + (a5-a4)*PrevDiab + (a7-a6-293 
a5+a4)*Sex*PrevDiab 294 
   295 
  p.obes.t <- a0 + (a2-a0)*Sex + (a1-a0)*PrevDiab + (a3-a2-a1+a0)*Sex*PrevDiab +  296 
    PrevObes*((a4-a0) + (a6-a2-(a4-a0))*Sex + (a5-a1-(a4-a0))*PrevDiab + (a7-a6-a5-a3+a2+a1+(a4-297 
a0))*Sex*PrevDiab) 298 
  return(p.obes.t) 299 
   300 
}  301 
 302 



- 199 - 
 

 

# (a0,...,a7 will be estimated from sample of population for each simulation run... 303 
# ... using EstimateTransitionProbs function) 304 
 305 
#### (ii) Diabetes ------------------------------------------------------------- 306 
 307 
# Function to calculate P(Diabetes = 1 | Sex, Obesity, Prev diabetes) at time t 308 
 309 
CalculateProbDiabetesT <- function(Sex, PrevDiab, Obes) { 310 
   311 
  # Incident probability: b0 + (b2-b0)*Sex + (b1-b0)*Obes + (b3-b2-b1+b0)*Sex*Obes 312 
  # Prevalent probability: b4 + (b6-b4)*Sex + (b5-b4)*Obes + (b7-b6-b5+b4)*Sex*Obes 313 
   314 
  p.diab.t <- b0 + (b2-b0)*Sex + (b1-b0)*Obes + (b3-b2-b1+b0)*Sex*Obes + 315 
    PrevDiab*((b4-b0) + (b6-b2-(b4-b0))*Sex + (b5-b1-(b4-b0))*Obes + (b7-b6-b5-b3+b2+b1+(b4-316 
b0))*Sex*Obes) 317 
  return(p.diab.t) 318 
   319 
}  320 
 321 
# (b0,...,b7 will be estimated from sample of population for each simulation run... 322 
# ... using EstimateTransitionProbs function) 323 
 324 
#### (iii) Calculate parameters governing transition probabilities ------------- 325 
 326 
# Function to estimate transition probabilities from a sample of individuals for time 1 - will 327 
change based on autocorrelation structure 328 
# args: sampledata = individual-level sample dataset (numeric) 329 
 330 
EstimateTransitionProbs <- function(sampledata) { 331 
   332 
  # Create dataframe for sample data (baseline & time 1) 333 
  vars <- c("Sex", "O.t0", "D.t0", "O.t1", "D.t1")  # define variables 334 
  sampledata.t1 <- data.frame(sampledata[, vars]) 335 
  names(sampledata.t1) <- c("Sex", "O.tminus1", "D.tminus1", "O.t", "D.t")  # rename variables 336 
  sampledata.t1 <- data.frame(apply(sampledata.t1, 2, factor))  # convert vars to factors 337 
   338 
  # Calculate cross-time conditional probabilities & define transition parameters 339 
  # (1) Obesity  340 
  var.d <- "O.t"  # define dependent variable 341 
  var.i <- c("Sex", "O.tminus1", "D.tminus1")  # define independent variables 342 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 343 
  CP.Obes <- data.frame(am_adt(cpt(formula, data = sampledata.t1))) 344 
  CP.Obes <- rename(CP.Obes, replace = c("N" = "prob"))  # rename prob column 345 
  CP.Obes <- subset(CP.Obes, O.t == "1")  # remove 'complement' rows 346 
  CP.Obes <- subset(CP.Obes, select = -O.t)  # remove O.t column 347 
  a0 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 348 
                   CP.Obes[, "Sex"] == 0 & 349 
                   CP.Obes[, "D.tminus1"] == 0, "prob"] 350 
  a1 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 351 
                   CP.Obes[, "Sex"] == 0 & 352 
                   CP.Obes[, "D.tminus1"] == 1, "prob"] 353 
  a2 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 354 
                   CP.Obes[, "Sex"] == 1 & 355 
                   CP.Obes[, "D.tminus1"] == 0, "prob"] 356 
  a3 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 357 
                   CP.Obes[, "Sex"] == 1 & 358 
                   CP.Obes[, "D.tminus1"] == 1, "prob"] 359 
  a4 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 360 
                   CP.Obes[, "Sex"] == 0 & 361 
                   CP.Obes[, "D.tminus1"] == 0, "prob"] 362 
  a5 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 363 
                   CP.Obes[, "Sex"] == 0 & 364 
                   CP.Obes[, "D.tminus1"] == 1, "prob"] 365 
  a6 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 366 
                   CP.Obes[, "Sex"] == 1 & 367 
                   CP.Obes[, "D.tminus1"] == 0, "prob"] 368 
  a7 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 369 
                   CP.Obes[, "Sex"] == 1 & 370 
                   CP.Obes[, "D.tminus1"] == 1, "prob"] 371 
  # (2) Diabetes 372 
  var.d <- "D.t"  # define dependent variable 373 
  var.i <- c("Sex", "D.tminus1", "O.t")  # define independent variables 374 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 375 
  CP.Diab <- data.frame(am_adt(cpt(formula, data = sampledata.t1))) 376 
  CP.Diab <- rename(CP.Diab, replace = c("N" = "prob"))  # rename prob column 377 
  CP.Diab <- subset(CP.Diab, D.t == "1")  # remove 'complement' rows 378 
  CP.Diab <- subset(CP.Diab, select = -D.t)  # remove D.t column 379 
  b0 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 380 
                   CP.Diab[, "Sex"] == 0 & 381 
                   CP.Diab[, "O.t"] == 0, "prob"] 382 
  b1 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 383 
                   CP.Diab[, "Sex"] == 0 & 384 
                   CP.Diab[, "O.t"] == 1, "prob"] 385 
  b2 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 386 
                   CP.Diab[, "Sex"] == 1 & 387 
                   CP.Diab[, "O.t"] == 0, "prob"] 388 
  b3 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 389 
                   CP.Diab[, "Sex"] == 1 & 390 
                   CP.Diab[, "O.t"] == 1, "prob"] 391 
  b4 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 392 
                   CP.Diab[, "Sex"] == 0 & 393 
                   CP.Diab[, "O.t"] == 0, "prob"] 394 
  b5 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 395 
                   CP.Diab[, "Sex"] == 0 & 396 
                   CP.Diab[, "O.t"] == 1, "prob"] 397 
  b6 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 398 
                   CP.Diab[, "Sex"] == 1 & 399 
                   CP.Diab[, "O.t"] == 0, "prob"] 400 
  b7 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 401 
                   CP.Diab[, "Sex"] == 1 & 402 
                   CP.Diab[, "O.t"] == 1, "prob"] 403 
   404 
} 405 



- 200 - 
 

 

 406 
### (b) Simulation ------------------------------------------------------------- 407 
 408 
# Initialise obesity (a) and diabetes (b) parameters with 0 409 
a0 <- a1 <- a2 <- a3 <- a4 <- a5 <- a6 <- a7 <- 0 410 
b0 <- b1 <- b2 <- b3 <- b4 <- b5 <- b6 <- b7 <- 0 411 
 412 
# Draw N.sim random numbers from N.i.sam  413 
# These represent the random samples that will be drawn from the population 414 
select <- matrix(nrow = N.i.sam, ncol = N.sim, 415 
                 dimnames = list(paste0("ind", 1:N.i.sam), 416 
                                 paste0("sample", 1:N.sim))) 417 
for (s in 1:N.sim) { 418 
  select[, s] <- sample(x = c(1:N.i.pop), size = N.i.sam, replace = FALSE) 419 
} 420 
 421 
# Record start time of simulation 422 
v <- Sys.time()  423 
 424 
# (1) Loop through natural history & interventions ----------------------------- 425 
# (v = 0 represents natural history, v = 1-6 represent interventions 1-6) 426 
for (z in 0:N.int) { 427 
   428 
  # Reset summary tables 429 
  # (each intervention (or natural history) has a separate summary table) 430 
  Frequency.cs.sam1 <- Frequency.cs.sam1[0, ] 431 
  Obes.prev.sam1 <- Obes.prev.sam1[0, ] 432 
  Diab.prev.sam1 <- Diab.prev.sam1[0, ] 433 
  CProbability.Obes.cs.sam1 <- CProbability.Obes.cs.sam1[0, ] 434 
  CProbability.Diab.cs.sam1 <- CProbability.Diab.cs.sam1[0, ] 435 
  CProbability.Obes.ct.sam1 <- CProbability.Obes.ct.sam1[0, ] 436 
  CProbability.Diab.ct.sam1 <- CProbability.Diab.ct.sam1[0, ] 437 
  TransitionParameters.sam1 <- TransitionParameters.sam1[0, ] 438 
   439 
  # (2) Loop through simulation runs  440 
  for (s in 1:N.sim) { 441 
     442 
    # Sample N.i.sam individuals from population 443 
    # Store data in Sample dataframe (all longitudinal vars in order) 444 
    Sample <- Population[select[, s], ] 445 
     446 
    # Estimate transition probabilities (for natural history) using Sample dataframe 447 
    EstimateTransitionProbs(sampledata = Sample) 448 
     449 
    # Define transition probabilities for obesity under Interventions 1-6 450 
    if (z != 0) { 451 
      if (z == 1) {  # under Intervention 1, no individuals may be obese 452 
        a0 <- a1 <- a2 <- a3 <- a4 <- a5 <- a6 <- a7 <- 0 453 
      } else if (z == 2) {  # under Intervention 2, all individuals are obese 454 
        a0 <- a1 <- a2 <- a3 <- a4 <- a5 <- a6 <- a7 <- 1 455 
      } else if (z == 3) {  # under Intervention 3, no individuals may become obese 456 
        a0 <- a1 <- a2 <- a3 <- 0 457 
      } else if (z == 4) {  # under Intervention 4, reduce incident prob of obesity by 15% 458 
        a0 <- 0.85*a0; a1 <- 0.85*a1; a2 <- 0.85*a2; a3 <- 0.85*a3 459 
      } else if (z == 5) {  # under Intervention 5, reduce prevalent prob of obesity by 10% 460 
        a4 <- 0.9*a4; a5 <- 0.9*a5; a6 <- 0.9*a6; a7 <- 0.9*a7 461 
      } else if (z == 6) {  # under Intervention 6, reduce incident prob of obesity by 15% & 462 
prevalent prob of obesity by 10% 463 
        a0 <- 0.85*a0; a1 <- 0.85*a1; a2 <- 0.85*a2; a3 <- 0.85*a3 464 
        a4 <- 0.9*a4; a5 <- 0.9*a5; a6 <- 0.9*a6; a7 <- 0.9*a7 465 
      } 466 
    } 467 
     468 
    # Record parameters governing transition probabilities 469 
    par.t <- cbind.data.frame(Sim = s,  470 
                              Parameter = c(paste0("a", 0:7), paste0("b", 0:7)),  471 
                              value = c(a0, a1, a2, a3, a4, a5, a6, a7, b0, b1, b2, b3, b4, b5, b6, 472 
b7)) # create parameter table for time t 473 
    TransitionParameters.sam1 <- rbind.data.frame(TransitionParameters.sam1, par.t)   474 
     475 
    # Fill Sex.sim, Obes.sim, & Diab.sim matrices with baseline data 476 
    Sex.sam1[, "Sex"] <- Sample[, "Sex"] 477 
    Obes.sam1[, "O.t0"] <- Sample[, "O.t0"] 478 
    Diab.sam1[, "D.t0"] <- Sample[, "D.t0"] 479 
     480 
    # (3) Loop through time points 481 
    for (t in 1:N.t.sam) { 482 
       483 
      ## Record summary data at baseline 484 
      if (t == 1) { 485 
         486 
        # Record summary data -------------------------------------------------- 487 
         488 
        # Bind variables from time t and baseline together 489 
        Sample.t <- data.frame(cbind(Sex.sam1[, 1], Obes.sam1[, t], Diab.sam1[, t])) 490 
        vars.cs <- c("Sex", paste0(c("O.t", "D.t"), (t-1)))  # define variables 491 
        names(Sample.t) <- vars.cs 492 
         493 
        # (a) Cross-sectional frequency table ---------------------------------- 494 
         495 
        freq.t <- cbind(Sim = s, Time = (t-1), count(Sample.t[, vars.cs]))   496 
        names(freq.t) <- names(Frequency.cs.sam1)   497 
        Frequency.cs.sam1 <- rbind(Frequency.cs.sam1, freq.t)   498 
         499 
        # (b) Prevalence ------------------------------------------------------- 500 
         501 
        ## Obesity 502 
        prev.O <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev", 503 
                                   prev = CalculatePrevObesityT("overall", Frequency.cs.sam1))   504 
        prev.O.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.f", 505 
                                     prev = CalculatePrevObesityT("female", Frequency.cs.sam1))   506 
        prev.O.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.m", 507 
                                     prev = CalculatePrevObesityT("male", Frequency.cs.sam1))   508 
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        Obes.prev.sam1 <- rbind.data.frame(Obes.prev.sam1, prev.O, prev.O.f, prev.O.m)   509 
         510 
        ## Diabetes 511 
        prev.D <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev", 512 
                                   prev = CalculatePrevDiabetesT("overall", Frequency.cs.sam1))   513 
        prev.D.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.f", 514 
                                     prev = CalculatePrevDiabetesT("female", Frequency.cs.sam1))   515 
        prev.D.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.m", 516 
                                     prev = CalculatePrevDiabetesT("male", Frequency.cs.sam1))   517 
        Diab.prev.sam1 <- rbind.data.frame(Diab.prev.sam1, prev.D, prev.D.f, prev.D.m)   518 
         519 
        # (c) Conditional probabilities ---------------------------------------- 520 
         521 
        # Convert variables in Sample.t dataset to factors 522 
        # (requred for calculating conditonal probabilties) 523 
        Sample.t <- data.frame(lapply(Sample.t, factor, levels = c("0", "1"))) 524 
         525 
        ## (i) Cross-sectional ------------------------------------------------- 526 
         527 
        ## Obesity 528 
        var.d <- paste0("O.t", (t-1))  # (define dependent variable) 529 
        var.i <- "Sex"  # (define independent variable) 530 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 531 
        names(cprob.t) <- names(CProbability.Obes.cs.sam1)  # rename columns to match CP table 532 
        CProbability.Obes.cs.sam1 <- rbind.data.frame(CProbability.Obes.cs.sam1, cprob.t)   533 
         534 
        ## Diabetes 535 
        var.d <- paste0("D.t", (t-1)) 536 
        var.i <- c("Sex", paste0("O.t", (t-1))) 537 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 538 
        names(cprob.t) <- names(CProbability.Diab.cs.sam1) 539 
        CProbability.Diab.cs.sam1 <- rbind(CProbability.Diab.cs.sam1, cprob.t) 540 
         541 
         542 
      } else {  ## Update time-varying characteristics & record summary data at time t 543 
         544 
        # Update time-varying characteristics ---------------------------------- 545 
         546 
        # (a) Obesity ---------------------------------------------------------- 547 
        p.obes.t <- cbind(1 - CalculateProbObesityT(Sex = Sex.sam1[, 1],  548 
                                                    PrevObes = Obes.sam1[, (t-1)],  549 
                                                    PrevDiab = Diab.sam1[, (t-1)]),  550 
                          CalculateProbObesityT(Sex = Sex.sam1[, 1],  551 
                                                PrevObes = Obes.sam1[, (t-1)],  552 
                                                PrevDiab = Diab.sam1[, (t-1)])) 553 
        Obes.sam1[, t] <- samplev(probs = p.obes.t, m = 1) 554 
        Obes.sam1[, t] <- Obes.sam1[, t] - 1  # (factor levels should be 0 and 1) 555 
         556 
        # (b) Diabetes --------------------------------------------------------- 557 
        p.diab.t <- cbind(1 - CalculateProbDiabetesT(Sex = Sex.sam1[, 1],  558 
                                                     PrevDiab = Diab.sam1[, (t-1)],  559 
                                                     Obes = Obes.sam1[, t]),  560 
                          CalculateProbDiabetesT(Sex = Sex.sam1[, 1],  561 
                                                 PrevDiab = Diab.sam1[, (t-1)],  562 
                                                 Obes = Obes.sam1[, t])) 563 
        Diab.sam1[, t] <- samplev(probs = p.diab.t, m = 1) 564 
        Diab.sam1[, t] <- Diab.sam1[, t] - 1  # (factor levels should be 0 and 1) 565 
         566 
        # Record summary data -------------------------------------------------- 567 
         568 
        # Bind variables from time t, time t-1, and baseline together  569 
        Sample.t <- data.frame(cbind(Sex.sam1[, 1], Obes.sam1[, (t-1)], Diab.sam1[, (t-1)]), 570 
                               Obes.sam1[, t], Diab.sam1[, t]) 571 
        vars.cs <- c("Sex", paste0(c("O.t", "D.t"), (t-1)))   572 
        vars.ct <- c("Sex", paste0(c("O.t", "D.t"), (t-2)), paste0(c("O.t", "D.t"), (t-1)))   573 
        names(Sample.t) <- vars.ct 574 
         575 
        # (a) Cross-sectional frequency table ---------------------------------- 576 
        freq.t <- cbind(Sim = s, Time = (t-1), count(Sample.t[, vars.cs]))   577 
        names(freq.t) <- names(Frequency.cs.sam1)  # rename columns to match Frequency table 578 
        Frequency.cs.sam1 <- rbind(Frequency.cs.sam1, freq.t)   579 
         580 
        # (b) Prevalence ------------------------------------------------------- 581 
         582 
        ## Obesity 583 
        prev.O <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev", 584 
                                   prev = CalculatePrevObesityT("overall", Frequency.cs.sam1))   585 
        prev.O.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.f", 586 
                                     prev = CalculatePrevObesityT("female", Frequency.cs.sam1))   587 
        prev.O.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Obes.prev.m", 588 
                                     prev = CalculatePrevObesityT("male", Frequency.cs.sam1))   589 
        Obes.prev.sam1 <- rbind.data.frame(Obes.prev.sam1, prev.O, prev.O.f, prev.O.m)   590 
         591 
        ## Diabetes 592 
        prev.D <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev", 593 
                                   prev = CalculatePrevDiabetesT("overall", Frequency.cs.sam1))   594 
        prev.D.f <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.f", 595 
                                     prev = CalculatePrevDiabetesT("female", Frequency.cs.sam1))   596 
        prev.D.m <- cbind.data.frame(Sim = s, Time = (t-1), Subgroup = "Diab.prev.m", 597 
                                     prev = CalculatePrevDiabetesT("male", Frequency.cs.sam1))   598 
        Diab.prev.sam1 <- rbind.data.frame(Diab.prev.sam1, prev.D, prev.D.f, prev.D.m)   599 
         600 
        # (c) Conditional probabilities ---------------------------------------- 601 
         602 
        # Convert variables in Sample.t dataset to factors 603 
        # (requred for calculating conditonal probabilties) 604 
        Sample.t <- data.frame(lapply(Sample.t, factor, levels = c("0", "1"))) 605 
         606 
        ## (i) Cross-sectional ------------------------------------------------- 607 
         608 
        ## Obesity 609 
        var.d <- paste0("O.t", (t-1))  # (define dependent variable) 610 
        var.i <- "Sex"  # (define independent variable) 611 
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        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 612 
        names(cprob.t) <- names(CProbability.Obes.cs.sam1)  # rename columns to match CP table 613 
        CProbability.Obes.cs.sam1 <- rbind.data.frame(CProbability.Obes.cs.sam1, cprob.t)   614 
         615 
        ## Diabetes 616 
        var.d <- paste0("D.t", (t-1)) 617 
        var.i <- c("Sex", paste0("O.t", (t-1))) 618 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 619 
        names(cprob.t) <- names(CProbability.Diab.cs.sam1) 620 
        CProbability.Diab.cs.sam1 <- rbind(CProbability.Diab.cs.sam1, cprob.t) 621 
         622 
        ## (ii) Cross-time ----------------------------------------------------- 623 
         624 
        ## Obesity 625 
        var.d <- paste0("O.t", (t-1))   626 
        var.i <- c("Sex", paste0(c("O.t", "D.t"), (t-2)))   627 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 628 
        names(cprob.t) <- names(CProbability.Obes.ct.sam1)   629 
        CProbability.Obes.ct.sam1 <- rbind.data.frame(CProbability.Obes.ct.sam1, cprob.t)   630 
         631 
        ## Diabetes 632 
        var.d <- paste0("D.t", (t-1)) 633 
        var.i <- c("Sex", paste0("D.t", (t-2)), paste0("O.t", (t-1)))  634 
        cprob.t <- cbind(Sim = s, CalculateCPT(dv = var.d, iv = var.i, dataset = Sample.t)) 635 
        names(cprob.t) <- names(CProbability.Diab.ct.sam1) 636 
        CProbability.Diab.ct.sam1 <- rbind.data.frame(CProbability.Diab.ct.sam1, cprob.t) 637 
         638 
      } 639 
       640 
      # Display progress of simulation 641 
      cat('\r', paste(round((t / N.t.sam * 100), 0),  642 
                      "% done of simulation", s, "of", N.sim, "of Intervention", z, "of", N.int, "    643 
", sep = " ")) 644 
       645 
    }  # (close time loop - 3) 646 
     647 
  }  # (close simulation run loop - 2) 648 
   649 
  # Calculate mean trends for Intervention z ----------------------------------- 650 
   651 
  # (a) Cross-sectional frequencies -------------------------------------------- 652 
   653 
  # Use expand.grid function to create full frequency table 654 
  # (Frequency table doesn't show combinations with empty cells) 655 
  f <- expand.grid(D.t = c(0, 1), O.t = c(0, 1), Sex = c(0, 1), Time = Time.sam,  656 
                   Sim = seq(from = 1, to = N.sim, by = 1)) 657 
  f <- cbind(f[, c("Sim", "Time", "Sex", "O.t", "D.t")], freq = 0)  # initialise frequencies with 0 658 
  # Fill f with data from (incomplete) Frequency table 659 
  for (i in 1:nrow(Frequency.cs.sam1)) { 660 
     661 
    sim <- Frequency.cs.sam1[i, "Sim"] 662 
    time <- Frequency.cs.sam1[i, "Time"] 663 
    sex <- Frequency.cs.sam1[i, "Sex"] 664 
    o.t <- Frequency.cs.sam1[i, "O.t"] 665 
    d.t <- Frequency.cs.sam1[i, "D.t"] 666 
    freq <- Frequency.cs.sam1[i, "freq"] 667 
     668 
    f[f[, "Sim"] == sim & 669 
        f[, "Time"] == time & 670 
        f[, "Sex"] == sex & 671 
        f[, "O.t"] == o.t & 672 
        f[, "D.t"] == d.t,  673 
      "freq"] <- freq 674 
     675 
  } 676 
   677 
  # Overwrite incomplete Frequency table 678 
  Frequency.cs.sam1 <- f; rm(f) 679 
   680 
  # Calculate mean frequency at each time 681 
  for (i in 1:nrow(Mean.frequency.sam1)) { 682 
     683 
    time <- Mean.frequency.sam1[i, "Time"] 684 
    sex <- Mean.frequency.sam1[i, "Sex"] 685 
    o.t <- Mean.frequency.sam1[i, "O.t"] 686 
    d.t <- Mean.frequency.sam1[i, "D.t"] 687 
     688 
    avg <- mean(subset(Frequency.cs.sam1, Time == time &  689 
                         Sex == sex &  690 
                         O.t == o.t &  691 
                         D.t == d.t)$freq) 692 
     693 
    Mean.frequency.sam1[Mean.frequency.sam1[, "Time"] == time & 694 
                          Mean.frequency.sam1[, "Sex"] == sex & 695 
                          Mean.frequency.sam1[, "O.t"] == o.t & 696 
                          Mean.frequency.sam1[, "D.t"] == d.t, 697 
                        "freq"] <- avg 698 
     699 
  } 700 
   701 
  # (b) Prevalence ------------------------------------------------------------- 702 
   703 
  # Calculate mean obesity prevalence at each time 704 
  for (i in 1:nrow(Mean.obes.prev.sam1)) { 705 
     706 
    time <- Mean.obes.prev.sam1[i, "Time"] 707 
    sub <- Mean.obes.prev.sam1[i, "Subgroup"] 708 
     709 
    avg <- mean(subset(Obes.prev.sam1, Time == time & Subgroup == sub)$prev) 710 
     711 
    Mean.obes.prev.sam1[Mean.obes.prev.sam1[, "Time"] == time & 712 
                          Mean.obes.prev.sam1[, "Subgroup"] == sub, 713 
                        "prev"] <- avg 714 
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     715 
  } 716 
   717 
  # Calculate mean diabetes prevalence at each time 718 
  for (i in 1:nrow(Mean.diab.prev.sam1)) { 719 
     720 
    time <- Mean.diab.prev.sam1[i, "Time"] 721 
    sub <- Mean.diab.prev.sam1[i, "Subgroup"] 722 
     723 
    avg <- mean(subset(Diab.prev.sam1, Time == time & Subgroup == sub)$prev) 724 
     725 
    Mean.diab.prev.sam1[Mean.diab.prev.sam1[, "Time"] == time & 726 
                          Mean.diab.prev.sam1[, "Subgroup"] == sub, 727 
                        "prev"] <- avg 728 
     729 
  } 730 
   731 
  # (c) Conditional probabilities ---------------------------------------------- 732 
   733 
  ## (i) Cross-sectional ------------------------------------------------------- 734 
   735 
  # Calculate mean CP of obesity at each time point 736 
  for (i in 1:nrow(Mean.CP.Obes.cs.sam1)) { 737 
     738 
    time <- Mean.CP.Obes.cs.sam1[i, "Time"] 739 
    sex <- Mean.CP.Obes.cs.sam1[i, "Sex"] 740 
    o.t <- Mean.CP.Obes.cs.sam1[i, "O.t"] 741 
     742 
    avg <- mean(subset(CProbability.Obes.cs.sam1, Time == time &  743 
                         Sex == sex &  744 
                         O.t == o.t)$prob) 745 
     746 
    Mean.CP.Obes.cs.sam1[Mean.CP.Obes.cs.sam1[, "Time"] == time & 747 
                           Mean.CP.Obes.cs.sam1[, "Sex"] == sex & 748 
                           Mean.CP.Obes.cs.sam1[, "O.t"] == o.t, 749 
                         "prob"] <- avg 750 
     751 
  } 752 
   753 
  # Calculate mean CP of diabetes at each time point 754 
  for (i in 1:nrow(Mean.CP.Diab.cs.sam1)) { 755 
     756 
    time <- Mean.CP.Diab.cs.sam1[i, "Time"] 757 
    sex <- Mean.CP.Diab.cs.sam1[i, "Sex"] 758 
    o.t <- Mean.CP.Diab.cs.sam1[i, "O.t"] 759 
    d.t <- Mean.CP.Diab.cs.sam1[i, "D.t"] 760 
     761 
    avg <- mean(subset(CProbability.Diab.cs.sam1, Time == time &  762 
                         Sex == sex &  763 
                         O.t == o.t & 764 
                         D.t == d.t)$prob) 765 
     766 
    Mean.CP.Diab.cs.sam1[Mean.CP.Diab.cs.sam1[, "Time"] == time & 767 
                           Mean.CP.Diab.cs.sam1[, "Sex"] == sex & 768 
                           Mean.CP.Diab.cs.sam1[, "O.t"] == o.t & 769 
                           Mean.CP.Diab.cs.sam1[, "D.t"]== d.t, 770 
                         "prob"] <- avg 771 
     772 
  } 773 
   774 
  ## (ii) Cross-time ----------------------------------------------------------- 775 
   776 
  # Calculate mean CP of obesity at each time point 777 
  for (i in 1:nrow(Mean.CP.Obes.ct.sam1)) { 778 
     779 
    time <- Mean.CP.Obes.ct.sam1[i, "Time"] 780 
    sex <- Mean.CP.Obes.ct.sam1[i, "Sex"] 781 
    o.tminus1 <- Mean.CP.Obes.ct.sam1[i, "O.tminus1"] 782 
    d.tminus1 <- Mean.CP.Obes.ct.sam1[i, "D.tminus1"] 783 
    o.t <- Mean.CP.Obes.ct.sam1[i, "O.t"] 784 
     785 
    avg <- mean(subset(CProbability.Obes.ct.sam1, Time == time &  786 
                         Sex == sex &  787 
                         O.tminus1 == o.tminus1 & 788 
                         D.tminus1 == d.tminus1 & 789 
                         O.t == o.t)$prob) 790 
     791 
    Mean.CP.Obes.ct.sam1[Mean.CP.Obes.ct.sam1[, "Time"] == time & 792 
                           Mean.CP.Obes.ct.sam1[, "Sex"] == sex & 793 
                           Mean.CP.Obes.ct.sam1[, "O.tminus1"] == o.tminus1 & 794 
                           Mean.CP.Obes.ct.sam1[, "D.tminus1"] == d.tminus1 & 795 
                           Mean.CP.Obes.ct.sam1[, "O.t"] == o.t, 796 
                         "prob"] <- avg 797 
     798 
  } 799 
   800 
  # Calculate mean CP of diabetes at each time point 801 
  for (i in 1:nrow(Mean.CP.Diab.ct.sam1)) { 802 
     803 
    time <- Mean.CP.Diab.ct.sam1[i, "Time"] 804 
    sex <- Mean.CP.Diab.ct.sam1[i, "Sex"] 805 
    d.tminus1 <- Mean.CP.Diab.ct.sam1[i, "D.tminus1"] 806 
    o.t <- Mean.CP.Diab.ct.sam1[i, "O.t"] 807 
    d.t <- Mean.CP.Diab.ct.sam1[i, "D.t"] 808 
     809 
    avg <- mean(subset(CProbability.Diab.ct.sam1, Time == time &  810 
                         Sex == sex &  811 
                         D.tminus1 == d.tminus1 & 812 
                         O.t == o.t & 813 
                         D.t == d.t)$prob) 814 
     815 
    Mean.CP.Diab.ct.sam1[Mean.CP.Diab.ct.sam1[, "Time"] == time & 816 
                           Mean.CP.Diab.ct.sam1[, "Sex"] == sex & 817 
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                           Mean.CP.Diab.ct.sam1[, "D.tminus1"] == d.tminus1 & 818 
                           Mean.CP.Diab.ct.sam1[, "O.t"] == o.t & 819 
                           Mean.CP.Diab.ct.sam1[, "D.t"] == d.t, 820 
                         "prob"] <- avg 821 
     822 
  } 823 
   824 
  # (d) Transition parameters -------------------------------------------------- 825 
   826 
  # Calculate mean TP at each time point 827 
  for (i in 1:nrow(Mean.TP.sam1)) { 828 
     829 
    par <- Mean.TP.sam1[i, "Parameter"] 830 
     831 
    avg <- mean(subset(TransitionParameters.sam1, Parameter == par)$value) 832 
     833 
    Mean.TP.sam1[Mean.TP.sam1[, "Parameter"] == par, 834 
                 "value"] <- avg 835 
     836 
  } 837 
   838 
  # Save summary tables for Intervention z ------------------------------------- 839 
   840 
  # Define file location 841 
  if (z == 0) {  # (natural history) 842 
    path <- paste0("./Microsimulation models/Time 1 transition probs/MSM 1/Natural history/") 843 
  } else {  # (intervention z) 844 
    path <- paste0("./Microsimulation models/Time 1 transition probs/MSM 1/Intervention ", z, "/") 845 
  } 846 
   847 
  # Define file names 848 
  if (z == 0) {  # (natural history) 849 
    file.freq <- paste0("Sam1Freq.csv")  # frequency 850 
    file.prev.o <- paste0("Sam1ObesPrev.csv")  # obesity prevalence 851 
    file.prev.d <- paste0("Sam1DiabPrev.csv")  # diabetes prevalence 852 
    file.cpcs.o <- paste0("Sam1ObesCPcs.csv")  # CP obesity (cross-sectional) 853 
    file.cpct.o <- paste0("Sam1ObesCPct.csv")  # CP obesity (cross-time) 854 
    file.cpcs.d <- paste0("Sam1DiabCPcs.csv")  # CP diabetes (cross-sectional) 855 
    file.cpct.d <- paste0("Sam1DiabCPct.csv")  # CP diabetes (cross-time) 856 
    file.tp <- paste0("Sam1TP.csv")  # transition parameters 857 
    file.m.freq <- paste0("Sam1FreqMean.csv")  # mean frequency 858 
    file.m.prev.o <- paste0("Sam1ObesPrevMean.csv")  # mean obesity prevalence 859 
    file.m.prev.d <- paste0("Sam1DiabPrevMean.csv")  # mean diabetes prevalence 860 
    file.m.cpcs.o <- paste0("Sam1ObesCPcsMean.csv")  # mean CP obesity (cross-sectional) 861 
    file.m.cpct.o <- paste0("Sam1ObesCPctMean.csv")  # mean CP obesity (cross-time) 862 
    file.m.cpcs.d <- paste0("Sam1DiabCPcsMean.csv")  # mean CP diabetes (cross-sectional) 863 
    file.m.cpct.d <- paste0("Sam1DiabCPctMean.csv")  # mean CP diabetes (cross-time) 864 
    file.m.tp <- paste0("Sam1TPMean.csv")  # mean transition parameters 865 
  } else {  # (intervention z) 866 
    file.freq <- paste0("Sam1FreqInt", z, ".csv")  # frequency 867 
    file.prev.o <- paste0("Sam1ObesPrevInt", z, ".csv")  # obesity prevalence 868 
    file.prev.d <- paste0("Sam1DiabPrevInt", z, ".csv")  # diabetes prevalence 869 
    file.cpcs.o <- paste0("Sam1ObesCPcsInt", z, ".csv")  # CP obesity (cross-sectional) 870 
    file.cpct.o <- paste0("Sam1ObesCPctInt", z, ".csv")  # CP obesity (cross-time) 871 
    file.cpcs.d <- paste0("Sam1DiabCPcsInt", z, ".csv")  # CP diabetes (cross-sectional) 872 
    file.cpct.d <- paste0("Sam1DiabCPctInt", z, ".csv")  # CP diabetes (cross-time) 873 
    file.tp <- paste0("Sam1TPInt", z, ".csv")  # transition parameters 874 
    file.m.freq <- paste0("Sam1FreqMeanInt", z, ".csv")  # mean frequency 875 
    file.m.prev.o <- paste0("Sam1ObesPrevMeanInt", z, ".csv")  # mean obesity prevalence 876 
    file.m.prev.d <- paste0("Sam1DiabPrevMeanInt", z, ".csv")  # mean diabetes prevalence 877 
    file.m.cpcs.o <- paste0("Sam1ObesCPcsMeanInt", z, ".csv")  # mean CP obesity (cross-sectional) 878 
    file.m.cpct.o <- paste0("Sam1ObesCPctMeanInt", z, ".csv")  # mean CP obesity (cross-time) 879 
    file.m.cpcs.d <- paste0("Sam1DiabCPcsMeanInt", z, ".csv")  # mean CP diabetes (cross-sectional) 880 
    file.m.cpct.d <- paste0("Sam1DiabCPctMeanInt", z, ".csv")  # mean CP diabetes (cross-time) 881 
    file.m.tp <- paste0("Sam1TPMeanInt", z, ".csv")  # mean transition parameters 882 
  } 883 
   884 
  # Export frequency table 885 
  write.csv(Frequency.cs.sam1, file = paste0(path, file.freq), row.names = FALSE) 886 
   887 
  # Export prevalence tables 888 
  write.csv(Obes.prev.sam1, file = paste0(path, file.prev.o), row.names = FALSE) 889 
  write.csv(Diab.prev.sam1, file = paste0(path, file.prev.d), row.names = FALSE) 890 
   891 
  # Export conditional probability tables 892 
  write.csv(CProbability.Obes.cs.sam1, file = paste0(path, file.cpcs.o), row.names = FALSE) 893 
  write.csv(CProbability.Obes.ct.sam1, file = paste0(path, file.cpct.o), row.names = FALSE) 894 
  write.csv(CProbability.Diab.cs.sam1, file = paste0(path, file.cpcs.d), row.names = FALSE) 895 
  write.csv(CProbability.Diab.ct.sam1, file = paste0(path, file.cpct.d), row.names = FALSE) 896 
   897 
  # Export transition parameter tables 898 
  write.csv(TransitionParameters.sam1, file = paste0(path, file.tp), row.names = FALSE) 899 
   900 
  # Export mean trend tables 901 
  write.csv(Mean.frequency.sam1, file = paste0(path, file.m.freq), row.names = FALSE) 902 
  write.csv(Mean.obes.prev.sam1, file = paste0(path, file.m.prev.o), row.names = FALSE) 903 
  write.csv(Mean.diab.prev.sam1, file = paste0(path, file.m.prev.d), row.names = FALSE) 904 
  write.csv(Mean.CP.Obes.cs.sam1, file = paste0(path, file.m.cpcs.o), row.names = FALSE) 905 
  write.csv(Mean.CP.Obes.ct.sam1, file = paste0(path, file.m.cpct.o), row.names = FALSE) 906 
  write.csv(Mean.CP.Diab.cs.sam1, file = paste0(path, file.m.cpcs.d), row.names = FALSE) 907 
  write.csv(Mean.CP.Diab.ct.sam1, file = paste0(path, file.m.cpct.d), row.names = FALSE) 908 
  write.csv(Mean.TP.sam1, file = paste0(path, file.m.tp), row.names = FALSE) 909 
   910 
}  # (close intervention loop - 1) 911 
 912 
comp.time <- Sys.time() - v; comp.time  # print total simulation time  913 
# (~39 seconds per simulation run of 20000 individuals) 914 
# (~30 mins per 100 simulation runs of 20000 individuals) 915 
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Note that the above code relates to AS1 (i.e. the true data-generating process of the 

population); for all other autocorrelation structures, the function which estimates the 

transition probabilities at time 𝑡 from a sample of individuals from the population (lines 331 – 

405) changes based on the autocorrelation structure that is modelled. For AS2, this function is:  

 

EstimateTransitionProbs <- function(sampledata) { 331 
   332 
  # Create dataframe for sample data (baseline & time 1) 333 
  vars <- c("Sex", "O.t0", "D.t0", "O.t1", "D.t1")  # define variables 334 
  sampledata.t1 <- data.frame(sampledata[, vars]) 335 
  names(sampledata.t1) <- c("Sex", "O.tminus1", "D.tminus1", "O.t", "D.t")  # rename variables 336 
  sampledata.t1 <- data.frame(apply(sampledata.t1, 2, factor))  # convert vars to factors 337 
   338 
  # Calculate cross-time conditional probabilities & define transition parameters 339 
  # (1) Obesity  340 
  var.d <- "O.t"  # define dependent variable 341 
  var.i <- c("Sex", "O.tminus1")  # define independent variables 342 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 343 
  CP.Obes <- data.frame(am_adt(cpt(formula, data = sampledata.t1))) 344 
  CP.Obes <- rename(CP.Obes, replace = c("N" = "prob"))  # rename prob column 345 
  CP.Obes <- subset(CP.Obes, O.t == "1")  # remove 'complement' rows 346 
  CP.Obes <- subset(CP.Obes, select = -O.t)  # remove O.t column 347 
  a0 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 348 
                   CP.Obes[, "Sex"] == 0, "prob"] 349 
  a2 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 0 & 350 
                   CP.Obes[, "Sex"] == 1, "prob"] 351 
  a4 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 352 
                   CP.Obes[, "Sex"] == 0, "prob"] 353 
  a6 <<- CP.Obes[CP.Obes[, "O.tminus1"] == 1 & 354 
                   CP.Obes[, "Sex"] == 1, "prob"] 355 
  # (2) Diabetes 356 
  var.d <- "D.t"  # define dependent variable 357 
  var.i <- c("Sex", "D.tminus1", "O.t")  # define independent variables 358 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 359 
  CP.Diab <- data.frame(am_adt(cpt(formula, data = sampledata.t1))) 360 
  CP.Diab <- rename(CP.Diab, replace = c("N" = "prob"))  # rename prob column 361 
  CP.Diab <- subset(CP.Diab, D.t == "1")  # remove 'complement' rows 362 
  CP.Diab <- subset(CP.Diab, select = -D.t)  # remove D.t column 363 
  b0 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 364 
                   CP.Diab[, "Sex"] == 0 & 365 
                   CP.Diab[, "O.t"] == 0, "prob"] 366 
  b1 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 367 
                   CP.Diab[, "Sex"] == 0 & 368 
                   CP.Diab[, "O.t"] == 1, "prob"] 369 
  b2 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 370 
                   CP.Diab[, "Sex"] == 1 & 371 
                   CP.Diab[, "O.t"] == 0, "prob"] 372 
  b3 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 0 & 373 
                   CP.Diab[, "Sex"] == 1 & 374 
                   CP.Diab[, "O.t"] == 1, "prob"] 375 
  b4 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 376 
                   CP.Diab[, "Sex"] == 0 & 377 
                   CP.Diab[, "O.t"] == 0, "prob"] 378 
  b5 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 379 
                   CP.Diab[, "Sex"] == 0 & 380 
                   CP.Diab[, "O.t"] == 1, "prob"] 381 
  b6 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 382 
                   CP.Diab[, "Sex"] == 1 & 383 
                   CP.Diab[, "O.t"] == 0, "prob"] 384 
  b7 <<- CP.Diab[CP.Diab[, "D.tminus1"] == 1 & 385 
                   CP.Diab[, "Sex"] == 1 & 386 
                   CP.Diab[, "O.t"] == 1, "prob"] 387 
   388 
} 389 

For AS3, this function is:  

EstimateTransitionProbs <- function(sampledata) { 331 
   332 
  # Create dataframe for sample data (time 1) 333 
  vars <- c("Sex", "O.t1", "D.t1")  # define variables 334 
  sampledata.t1 <- data.frame(sampledata[, vars]) 335 
  names(sampledata.t1) <- c("Sex", "O.t", "D.t")  # rename variables 336 
  sampledata.t1 <- data.frame(apply(sampledata.t1, 2, factor))  # convert vars to factors 337 
   338 
  # Calculate cross-time conditional probabilities & define transition parameters 339 
  # (1) Obesity  340 
  var.d <- "O.t"  # define dependent variable 341 
  var.i <- "Sex"  # define independent variable 342 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 343 
  CP.Obes <- data.frame(am_adt(cpt(formula, data = sampledata.t1))) 344 
  CP.Obes <- rename(CP.Obes, replace = c("N" = "prob"))  # rename prob column 345 
  CP.Obes <- subset(CP.Obes, O.t == "1")  # remove 'complement' rows 346 
  CP.Obes <- subset(CP.Obes, select = -O.t)  # remove O.t column 347 
  a0 <<- CP.Obes[CP.Obes[, "Sex"] == 0, "prob"] 348 
  a2 <<- CP.Obes[CP.Obes[, "Sex"] == 1, "prob"] 349 
  # (2) Diabetes 350 
  var.d <- "D.t"  # define dependent variable 351 
  var.i <- c("Sex", "O.t")  # define independent variables 352 
  formula <- as.formula(paste(var.d, paste(var.i, collapse = " + "), sep = " ~ ")) 353 
  CP.Diab <- data.frame(am_adt(cpt(formula, data = sampledata.t1))) 354 
  CP.Diab <- rename(CP.Diab, replace = c("N" = "prob"))  # rename prob column 355 
  CP.Diab <- subset(CP.Diab, D.t == "1")  # remove 'complement' rows 356 
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  CP.Diab <- subset(CP.Diab, select = -D.t)  # remove D.t column 357 
  b0 <<- CP.Diab[CP.Diab[, "Sex"] == 0 & 358 
                          CP.Diab[, "O.t"] == 0, "prob"] 359 
  b1 <<- CP.Diab[CP.Diab[, "Sex"] == 0 & 360 
                          CP.Diab[, "O.t"] == 1, "prob"] 361 
  b2 <<- CP.Diab[CP.Diab[, "Sex"] == 1 & 362 
                          CP.Diab[, "O.t"] == 0, "prob"] 363 
  b3 <<- CP.Diab[CP.Diab[, "Sex"] == 1 & 364 
                          CP.Diab[, "O.t"] == 1, "prob"] 365 
   366 
} 367 

The output from each simulation is then saved to its subfolder (‘MSM 2’ and ‘MSM 3’, 

respectively). 

C.2.3 Sensitivity analyses 

In this subsection, we provide details relating to the sensitivity analyses performed, which are 

described in Section 6.4.4. We describe the simulation parameters for all sensitivity analyses 

(§C.2.3.1), and we present the results of all sensitivity analyses (§C.2.3.2). 

C.2.3.1 Simulation parameters  

Five sensitivity analyses were performed, in which simulation parameters governing the 

natural history of the population were altered. 

In Sensitivity analysis 1, baseline diabetes prevalence was increased by three times across all 

subgroups. In Sensitivity analysis 2, diabetes incidence was increased by four times across all 

subgroups. In sensitivity analysis 3, the effect of previous diabetes on obesity was increased 

fifteen times for non-obese individuals and two times for obese individuals. Sensitivity analysis 

4 combined the changes of Sensitivity analyses 1 and 2, whereas Sensitivity analysis 5 

combined the changes of Sensitivity analyses 2 and 3. 

Parameters describing the distribution of sex, obesity, and diabetes at baseline (i.e. 𝑡 = 0) for 

all sensitivity analyses are given in Table C.4. Parameters describing the evolution of the 

baseline population (i.e. the transition parameters) for all subsequent time points (i.e. time 𝑡, 

for 1 ≤ 𝑡 ≤ 10) for all sensitivity analyses are given in Table C.5. 
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C.2.3.2 Results 

Here, we present the results obtained by using the g-formula and microsimulation to estimate 

the causal effects of each intervention for Sensitivity analyses 1 through 4 (the results of 

Sensitivity analysis 5 are presented in Chapter 6, Section 6.4.4.2). 

Tables which compare the true causal effect of each intervention to those estimated by the g-

formula and microsimulation, for each of AS1 through AS3), are shown in Table C.6 (Sensitivity 

analysis 1), Table C.7 (Sensitivity analysis 2), Table C.8 (Sensitivity analysis 3), and Table C.9 

(Sensitivity analysis 4).  
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