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Abstract

Research in distributional semantics has made good progress in capturing

individual word meanings using contextual frequencies obtained from a large

corpus. While vocabulary of a language is limited, its generative power for

combinatorial expressions is nonrestrictive, and so lexical semantic methods

cannot be applied directly to phrasal or sentential semantics irrespective of

the corpus size. Any distributional model that aims to describe a language

adequately needs to address the issue of compositionality.

Very recently, a new field called Compositional Distributional Semantics

(CDS) emerged, stretching the boundaries of distributional semantics from

word level meaning representation to higher levels such phrasal and senten-

tial semantic representations. CDS models deal with the task of composing

the meaning of a phrase/sentence from the distributional meaning of its

constituents.

Polysemy of words have been a major focus in distributional semantics. The

challenges posed at lexical level make a transition to phrasal and higher

levels, making polysemy a major threat to CDS models. In this thesis, we

aim to build better CDS models by performing sense disambiguation. We

test our hypothesis, sense disambiguation benefits compositional models, on

different compositionality based evaluation tasks.

The evaluation of compositional models is an uncertain topic. Since we

humans do not know the way we compose semantics of expressions, it is

hard to prepare datasets for evaluation, thus making the evaluation of CDS

models a challenging topic. In this thesis, we focus on evaluation methods

for compositional models and develop a dataset with a novel annotation

scheme.
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Chapter 1

Introduction

1.1 Compositional Semantics

How do humans comprehend utterances in natural language? How do we

sum up the meaning of each component in an utterance and arrive at the

right meaning? Can machines imitate this? While humans are highly com-

petent in understanding multi word units like phrases, it still remains a

herculean task for machines. Recent progress in semantic technologies like

search engines has had an immense effect on human life, yet these technolo-

gies are scratching the surface of human language at word level. The impact

of semantic technologies at higher levels like phrases is far beyond the reach

of existing systems. Potential applications include, but are not limited to:

intelligent search engines, automatic answer grading, bio-medical applica-

tions, question answering, textual entailment, and summarization.

Research in lexical semantics has made good progress in capturing individual

word meanings. However, the same methods cannot be applied directly to

model the semantics of phrases due to data sparsity. While vocabulary

of a language is limited, its generative power for combinatorial expressions

is nonrestrictive, and so lexical semantic methods fail to model phrasal or

sentential semantics in-spite of how much ever data we use. Any model

which aims capture language should be generative. But how do we make

use of existing research in lexical semantics and advance further to phrasal

or sentential semantics? The answer comes from Compositional Semantics.

17



18 1. Introduction

Compositional semantics involves the study of the meaning of an expression

in relation with the meaning of its parts. The Principle of Compositionality

[Pelletier, 1994, page. 313] states that the meaning of an expression is a

function of, and only of, the meaning of its parts and the way in which the

parts are combined. While humans are gifted with this function, formaliz-

ing its true mathematical structure will be a miracle, which is the goal of

compositional models.

1.2 Challenges

Many factors such as the polysemy of constituent words, the role of syntactic

structure, semantic preferences of constituents, idiomatic and metaphoric

usages, play an important role in molding the meaning of an expression.

Cracking the way in which humans process these components to arrive at a

meaning will be a major breakthrough in computational linguistics. Below,

we discuss some of the challenges in brief.

1.2.1 Polysemy of Constituent Words

Polysemy of words have been a major focus of lexical semantics. The chal-

lenges posed at lexical level make a transition to phrasal and higher levels,

making polysemy a major threat to compositional semantics. While the

efforts of lexical sense disambiguation methods have not seen real benefits

[Navigli, 2009], the effect of polysemy on compositional semantics is yet to

be studied. Take an example phrase bank balance. In the WordNet [Fell-

baum, 1998], bank and balance have 10 and 12 senses respectively. But, only

one sense of bank and one sense of balance are relevant in the phrase bank

balance, and choosing a correct sense for each constituent is critical for a

good compositional model.

The questions, how do you make use of sense disambiguation? Is sense

disambiguation really useful for compositional models?, still remains unan-

swered and have to be explored.
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1.2.2 Syntactic Structure

The semantic interpretation of an expression changes with a change in its

syntactic structure. For example, the semantics of phrases formed by the

combinations of house and rent differ. The phrase house rent means the

rent to be paid for a house whereas the phrase rent house means a house

which is available on periodic rental basis. Syntactic structure guides the

information flow in arriving at the correct interpretation of an expression.

A good compositional model should take syntactic structure into account.

1.2.3 Semantic Preferences

Experimental studies on human sentence processing reveal that humans not

only use lexical and syntactic information but also semantic preferences

when processing a sentence [Padó et al., 2009]. For example, given an un-

completed sentence such as “Among all the fruits, John likes to eat a/an ”,

a human processing model starts expecting a fruit in the blank, lets say or-

ange. Perhaps the reasons for choosing orange is because the preferences

of other words in the sentence expects an edible fruit and the properties

of orange such as taste, juice, pulp makes it edible. Given that humans

use semantic preferences in sentence processing, it is necessary for any good

compositional model to take this information into consideration. Semantic

preferences capture subtle properties beyond syntactic relations. For exam-

ple, the semantic preferences of laser in the phrases laser light and laser

treatment are different though the syntactic relation is the same (modifier).

In laser light, the meaning gets transformed into a specific type of light, and

in laser treatment the meaning becomes a treatment using laser. In each

phrase, the properties picked up due to semantic preferences of words are

completely different. Semantic preferences of words help to choose relevant

properties of words required for composition.

1.2.4 Idiomatic and Metaphoric usages

As the name compositional in compositional models indicate, compositional

models are designed to build semantics compositionally from the meaning

of their parts. But compositional interpretation may not be possible with



20 1. Introduction

idiomatic and metaphoric usages which are known to be non-compositional.

In idiomatic expressions, the semantic interpretation of an expression is

beyond the superficial meaning of its constituents e.g. he was born with

a silver spoon, here the meaning of silver spoon is not literally meant but

idiomatically meant to be rich. Most idioms can only be interpreted by

knowing the meaning of the idiom beforehand. Metaphors on the other

can be understood if one has enough cultural background e.g. Juliet is the

sunshine in Romeo’s life, here it is meant Juliet means a lot to Romeo. It

is uncertain if compositional models are expected to model the semantics

of non-compositional expressions. However, a good compositional model

should be able to distinguish compositional meaning from non-compositional

meaning.

1.2.5 Other Challenges

Metonymy is a phenomenon in which a foreign word stands on behalf of

a target word, the foreign word representing the semantics of the target

word, e.g. everybody reads Shakespeare at school, here Shakespeare stands

for his books rather than himself 1. Metonymy poses a major challenge

to compositional semantics. In order to interpret metonymy, compositional

models should make use of the clues from higher levels of semantic processing

like discourse.

How do we formally represent semantics of words, phrases and text? Many

frameworks exist for representing semantics. The most common ones in

compositional semantics are formal semantics, and distributional semantics.

Each framework has its own pros and cons. We will describe them in the

coming sections. Depending on the framework we use, additional challenges

creep in. We use distributional framework for all our compositional models,

thus our research of interest is compositional distributional semantics.

How do we make use of information from all the above sources and compose

the semantics of an expression? Each semantic framework has its own way of

using the above information. Composition functions are the most common

which take constituent words and structure as input arguments, and the

resultant semantic composition of the expression as the output.

1I took this example from my discussions with Percy Liang
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The evaluation of compositional models is an uncertain topic. Since we hu-

mans do not know the way we compose semantics of expressions, it is hard

to prepare datasets for evaluation, thus making the evaluation of compo-

sitional models a challenging topic. Most evaluation methods are external

application-based.

1.3 What is thesis about?

In this thesis, we pursue some of the challenges described above. We aim

to explore the effect of polysemy in compositional models. Our hypothe-

sis is that sense disambiguation improves the performance of compositional

models. Our focus is also on evaluation methods for compositional mod-

els (Chapter 2). We create a compositionality dataset using Mechanical

Turkers, and based on the dataset, we perform a study on the relation be-

tween constituent words and phrase compositionality, revealing interesting

facts about compositionality in language (Chapter 3). We evaluate sense

disambiguation-based composition models using three evaluation methods,

two application based and one an internal evaluation. We show improve-

ments in performance due to sense disambiguation over standard models

which do not perform disambiguation, thus validating our initial hypothesis

(Chapter 4, 5, 6). Finally we discuss interesting findings from our observa-

tions (Chapter 7).

1.4 Background

In this section we describe the background required to follow the upcoming

chapters.

1.4.1 Representation of Semantics

In compositional semantics, two different frameworks have become popu-

lar for representing semantics - (1) formal semantics and (2) distributional

semantics.
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1.4.1.1 Formal Semantics

In formal semantics, semantics of an expression is represented in formal logic

based on the grammatical structure while the meanings of words are sym-

bolic with no rigid definition. According to Montague [1970] view of formal

semantics, a human language can be modeled within a mathematically pre-

cise theory. The advantage of formal semantics is its generative power. A

formal semantic model can be represented by a grammar which translates

(parses) a given expression into formal logic. Formal semantic models are

known for their wide coverage.

The semantic representation of the sentence every man walks, according to

Montague [1973], is defined as ∀u[man(u) =⇒ walk(u)]. Some of the for-

mal semantic methods include [Baldridge and Kruijff, 2002; Ge and Mooney,

2005; Copestake et al., 2005; Kate and Mooney, 2007; Chen and Mooney,

2008; Liang et al., 2011; Kwiatkowski et al., 2011]. Language processing

applications can make use of formal representation and reason on it.

The major drawback of formal representation is that it only deals with truth

or falsity of meanings of an expression, but do not say anything about how

to compare two different meanings. Formal semantic models deal more with

syntax not worrying about lexical ambiguity. Since our focus is on lexical

ambiguity, formal semantics is not our topic of interest in this thesis.

1.4.1.2 Distributional Semantics

Distributional hypothesis [Harris, 1954] states that words that occur in sim-

ilar contexts tend to have similar meanings. Firth [1957] states it as you

shall know a word by the company it keeps. Distributional hypothesis is the

backbone of statistical semantics, also called as distributional semantics.

In distributional semantics, a word is represented by a distribution of its

contexts. For a given word, the distribution of its contexts can be learned

from the co-occurrence frequency of the contexts and the target word. Two

words are said to be similar if they have similar distribution of contexts.

For example, house and flat frequently occur with context words like rent,

bedroom, sale etc, giving a clue to computational models that house and

flat may be similar. Context of a word can be defined as its neighboring
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words in a fixed size window, their part-of-speech categories or the syntactic

information or the combinations of any of these.

Similar to the representation of a word, an expression can be also repre-

sented as a distribution of contexts. The goal of compositional distributional

semantic models is to predict this distribution for an expression from the

distributional representation of its constituents.

Ambiguity of words is well studied in distributional semantics. So we choose

distributional framework to test our hypothesis. The most common imple-

mentation of distributional models are vector space models (described in the

next section).

The main advantage of distributional models is their ability to give a quan-

titative assessment on the similarity between meanings. However, distribu-

tional models are not generative like formal semantic models. It is highly

challenging to encode structure of an expression into a distributional rep-

resentation. It is also challenging to decode the structure of an expression

from its distributional meaning.

1.4.2 Vector space model of meaning

Vector Space Models (VSM) of distributional semantics [Turney and Pantel,

2010] have become a standard framework for representing a word’s meaning.

Typically these methods [Schütze, 1998; Pado and Lapata, 2007; Erk and

Padó, 2008] utilize a bag-of-words model or syntactic dependencies such as

subject/verb, object/verb relations, so as to extract the features which serve

as the dimensions of the vector space. Each word is then represented as a

vector of the extracted features, where the frequency of co-occurrence of the

word with each feature is used to calculate the vector component associated

with that feature. Phrases can also be represented as vectors by treating

a phrasal unit to like a single word. Figure 1.1 provides a sample vector

space representation of a phrase and its constituents assuming bag-of-words

model.

Our VSM settings: The lemmatised context words along with their part of

speech category around a target word in a window of size 100 are treated as

its co-occurrences, e.g. evidence-n, fire-v etc. Concordances of words from
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vector dimensions
evidence-n memo-n health-n pistol-n fire-v

−−−−−−→
smoking 〈 9 2 181 4 37 〉
−−→gun 〈 10 3 5 98 270 〉
−−−−−−−−−−→
smoking gun 〈 83 33 6 0 6 〉

Figure 1.1: Co-occurrence vectors of smoking gun and its constituents

ukWaC corpus [Ferraresi et al., 2008] are used to compute co-occurrence

frequencies of context words. The top 10000 frequent content words in

ukWaC corpus (along with their part-of-speech category) are only treated

as co-occurrences i.e. the vector dimensions. Vector of a word is built from

its concordances in ukWaC. To measure the similarity between two vectors,

we use cosine similarity (sim).

sim(
−→
v1,
−→
v2) =

−→
v1 ·
−→
v2

||
−→
v1|| ||

−→
v2||

Following Mitchell and Lapata [2008], the context words in the vector are

set to the ratio of probability of the context word given the target word to

the overall probability of the context word2.

1.4.3 Compositional Distributional Semantics

Compositional Distributional Semantics (CDS) models deal with the task of

composing the meaning of a phrase/sentence from the distributional mean-

ing of its constituents and the structure. These models define composition

function (⊕), which takes constituent word vectors and structure as input,

and gives the resultant semantic composition as output. Below, we discuss

some of the composition functions.

Mitchell and Lapata [2008] use simple addition and simple multiplication

of constituent word vectors to compose phrasal semantics. For example, for

the phrase house hunting

• Simple addition: ⊕(house hunting) = a
−−−−→
house + b

−−−−−−→
hunting where a

and b are scalars.

2This is similar to point-wise mutual information without logarithm
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• Simple multiplication: ⊕(house hunting) =
−−−−→
house

−−−−−−→
hunting where

⊕(house hunting)i =
−−−−→
housei *

−−−−−−→
huntingi

The resulting composition does not take structure into account, e.g.
−−−−→
house⊕

−−−−−−→
hunting looks the same as

−−−−−−→
hunting ⊕

−−−−→
house (if a=b).

The background should be enough by now to understand the rest

of the thesis. Readers can skip to Chapter 2. Interested readers

on composition functions may proceed.

Erk and Padó [2008] make the above model structure sensitive by using

selectional preferences of constituents. Figure 1.2 displays the composition

procedure. To compose the semantics of the phrase
−−−→
catch← obj −

−−→
ball,

the semantic preference vector of catch formed by all its objects filter the

contexts of
−−→
ball, and similarly the semantic preference vector of ball formed

by all its inverse objects filter the contexts of
−−−→
catch, and these filtered

vectors are used for composition. In this setting, the composition of house

hunting and hunting house differs.

Widdows [2008] use tensor product to account for word order. The com-

position of house hunting is defined as

⊕(house hunting) =
∑

i,j

−−−−→
housei ∗

−−−−→
housej [

−−−−→
housei ×

−−−−−−→
huntingi]

If the initial vector space is n-dimensional, the resultant vector space of

⊕(house hunting) is n2 dimensions.

Guevara [2010] propose additive and multiplicative models which look

slightly similar to [Mitchell and Lapata, 2008].

• Additive Model: ⊕(house hunting) = A
−−−−→
house + B

−−−−−−→
hunting where

A and B are matrices.

• Multiplicative Model: ⊕(house hunting) = A
−−−−→
house

−−−−−−→
hunting, where

A is a matrix.

The matrices account for structure making the composition word order sen-

sitive.

Socher et al. [2011] proposed a similar model to Guevara [2010] where syn-



26 1. Introduction

Figure 1.2: Composition using Structured vector space model. Courtesy:
[Erk and Padó, 2008]

tactic relation between words is represented using a neural network (sigmoid-

like function) which takes argument word vectors as input, and gives the

resultant phrase composition vector as output.

Clark and Pulman [2007] aim to capture structure of a phrase/sentence

by representing compositional meaning in a higher-order dimensional space

using tensor product operation ⊗. Take an example sentence “the boy ate a

juicy orange”. The structure can be represented as boy –subj→ ate ←obj–

orange ←mod– juicy. Composition of this sentence is defined as:

−−→
boy ⊗

−−−→
subj⊗ (

−→
ate⊗

−−→
obj⊗ (

−−−→
juicy ⊗

−−−→
mod⊗−−−−−→orange))

Sentences with different lengths are located in different higher-order dimen-

sional spaces making it infeasible to measure the similarity between two

unequal sentences. Dimensions of the space increase exponentially with in-

crease in sentence length. The vector representation of a dependency relation

is unclear. There is no experimental implementation of this work yet.

Grefenstette and Sadrzadeh [2011] assume that words belong to differ-

ent type-based categories, and different categories exist in different dimen-

sional spaces. The category of a word is decided by the number of adjoints



1.4. Background 27

(arguments) it can take. The composition of a sentence results in a final

vector which exists in sentential space. The vectors of verbs, adjectives

and adverbs act as relational functions which modify the properties of noun

vectors. For example, “the boy ate a juicy orange” results in a composition

−→
ate⊙ (

−−→
boy ⊗ (

−−−→
juicy ⊙−−−−−→orange))

where ⊙ is point-wise multiplication acting as a filtering operator and ⊗

is a tensor operator which is taking structure (order) into consideration.

The above equation can be interpreted as: The selectional preferences of

the relational words (here ate, and juicy) are filtering the noise in their

corresponding arguments (nouns).

Let the category of a noun be n. Noun is assumed not to demand any

arguments. The category of a relational word (verb, adjective, adverb) is

decided by the number of arguments (adjoints) it takes and the category of

the resultant output after combining with its arguments. For example, the

adjoint of an adjective is noun (nr) (located right) and the category after

combining with noun is a noun n (adjective combines with a noun resulting

in a noun(-phrase)). So the category is adj = nnr. Similarly, lets say a verb

can take at most two adjoints one on the left (subj nl ) and one on the right

(object nr), and the category of the output when the verb is combined with

subject and object is a sentence s. So the category of verb is defined as

v = nlsnr. Similarly category of an adverb is adv = vlv. These categories

decide the vector space in which corresponding words live.

All the resulting sentential vectors exist in the same space which is remark-

able. However, the main limitations are

• As the number of adjoints of a word increase, the space in which it

lives increases exponentially.

• It is always a prerequisite to have a verb to compute sentential seman-

tics.

• The method is not designed for phrases.

• Similarity between words in different categories cannot be computed

since they exist in different vector spaces e.g. the noun running and

the verb run.





Chapter 2

Evaluation Methods

The aim of CDS models is to predict the semantics or the semantic behavior

of the phrase from the constituents. But how do we say the predictions are

correct? To date, the evaluation of CDS models is still a very uncertain

issue. In this chapter, we give an overview of existing evaluation methods,

their advantages and limitations.

There have been multiple proposals on evaluating CDS models. Most of

them evaluate semantic behavior of the phrase rather than the evaluating

the predicted semantics. Semantic behavior is evaluated on the basis of

models’ performance in reproducing human annotations on external tasks.

Evaluating the predicted semantics require a comparison with the true se-

mantics. The true semantics of phrases is not straightforward to capture,

after all the goal of CDS is to predict this. However, distributional rep-

resentation of the phrase obtained from a large corpus gives us an idea of

its true semantics. CDS models are evaluated on their ability to reproduce

this distributional representation observed from a corpus. This evaluation

is considered to be an internal evaluation task.

External evaluation tasks include, but are not limited to, paraphrasing,

compositionality detection, lexical substitution, summarization. Recently,

a couple of these tasks have been integrated into a single shared task, and

is being organized as a SemEval 2013 shared task 1.

In the followings sections, we describe three evaluation methods which are

1http://www.cs.york.ac.uk/semeval-2013/task5/

29
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Annotator N N’ rating

4 phone call committee meeting 2
25 phone call committee meeting 7
11 football club league match 6
11 health service bus company 1
14 company director assistant manager 7

Table 2.1: Evaluation dataset of [Mitchell and Lapata, 2010]

of particular interest to us.

2.1 Paraphrasing or Phrasal Similarity

Given a phrase, paraphrasing is the task of choosing alternative phrases

which are similar to the given phrase. Paraphrasing datasets are prepared

by human annotators. Humans generate paraphrases of a given phrase and

also rank them based on the similarity with the given phrase. A good CDS

model should correlate well with human rankings of paraphrases. The task

can also be called as phrasal similarity task.

Mitchell and Lapata [2010] prepared a dataset which contains pairs of com-

pound nouns and their similarity judgments. The dataset consists of 108

compound noun pairs with each pair having 7 annotations from different

annotators who judge the pair for similarity in the range of score 1-7. A

sample of 5 compound pairs is displayed in Table 2.1.

For each pair of the compound nouns, we take the mean value of all its human

annotations as the final similarity judgment of the compound. Let N and N ′

be a pair. To evaluate a model, we calculate the cosine similarity between the

composed vectors
−−−→
⊕(N) and

−−−−→
⊕(N′) obtained from the composition, where

⊕() denotes composition function. These similarity scores are correlated

with human mean scores to judge the performance of a model. Higher the

correlation, better is the CDS model.

Mitchell and Lapata [2008] also prepared a similar dataset for subject-verb

phrases. Each phrase is paired with two landmark verbs, the synonyms of

the reference verb in the phrase. The landmarks represent distinct word

senses of the reference verb, one compatible with the reference phrase and

the other incompatible e.g, for The face glowed, the landmarks burned and
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Noun Reference High Low

The fire glowed burned beamed
The face glowed beamed burned

The child strayed roamed digressed
The discussion strayed digressed roamed

The sales slumped declined slouched
The shoulders slumped slouched declined

Table 2.2: Example Stimuli with High and Low similarity landmarks. Cour-
tesy: Mitchell and Lapata [2008]

beamed are synonyms of glowed representing different senses of glowed while

beamed is compatible with the reference phrase, burned is incompatible. A

good CDS model should be able to compose the semantics of the phrase such

that the phrasal vector is similar (closer) to the high-similarity landmark

and different (farther) to the low-similarity landmark. Table 2.2 displays a

sample from [Mitchell and Lapata, 2008] dataset.

In SemEval-2013, a shared task called Identifying semantically similar phrases

in context is being organized based on idea of paraphrasing. For a given

phrase, the participating systems should predict best similar phrases from

very large corpora. Later, these phrases will be ranked by humans for phrase

similarity. The evaluation method is kind-of reverse program to [Mitchell

and Lapata, 2010].

The advantages of all the above methods in this evaluation are

• Since the final goal is only to predict or rank similar phrases of a given

phrase, the evaluation method is independent of the dimensional space

used by the CDS models.

• The evaluation method is easy to interpret and have many practical

applications in natural language generation.

While the disadvantages are

• The evaluation is “external” since the actual composition task is not

evaluated but evaluated on a different task.

• The evaluation method involves human annotations making the task

expensive.
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2.2 Compositionality Detection

A phrase is compositional if its meaning can be interpreted from the meaning

of its constituents e.g. swimming pool. Not all phrases in a language are

compositional. For example, the meaning of couch potato is hard to interpret

from the meaning of couch and potato. Such phrases are non-compositional.

Some phrases fall in-between compositional and non-compositional e.g. rush

hour. The task of compositionality detection involves in identifying phrases

which are compositional and non-compositional2.

It is unclear if compositional models are expected to compose the semantics

of non-compositional phrases. Pelletier [1994] presents arguments in favor of

and against the notion of compositional models (compositionality principle)

modeling the semantics of non-compositional phrases. Many existing meth-

ods [Schone and Jurafsky, 2001; Baldwin et al., 2003; Giesbrecht, 2009] for

compositionality detection assume compositional meaning from CDS mod-

els is completely different from non-compositional meaning. If a phrase is

non-compositional, a good CDS model should compose the semantics of the

phrase such that it is father from its actual meaning. If the phrase is com-

positional, the composition should lead to a meaning closer to the actual

meaning. Based on this assumption, CDS models are evaluated on compo-

sitionality detection tasks.

In this evaluation, human annotate datasets with compositionality judg-

ments. CDS models are evaluated based on their ability in reproducing

human compositionality judgments of the annotated phrases. Recently Bie-

mann and Giesbrecht [2011] organized a shared task based on the composi-

tionality detection criteria.

There are many existing datasets marked with compositionality judgments.

All the existing datasets are type-based evaluation datasets and are not

context based evaluations. For example, red carpet have both compositional

and non-compositional meaning. Type-based evaluation datasets are an-

notated only for the most frequent compositional behavior of the phrase

(and therefore red carpet is non-compositional) and not context-dependent

variation (In The floor is covered with red carpet, red carpet is com-

2For a deeper linguistic classification of phrases (multiwords), please refer to [Sag et

al., 2002]
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positional). In SemEval 2013, a shared task is proposed on the idea of

context-based evaluation of compositionality.

Existing type-based evaluation datasets either classify phrases into differ-

ent classes or have scores demonstrating the degree of composition. Ban-

nard et al. [2003] found moderate inter-annotator agreements in classifying

the compounds into discrete classes, depicting the task is hard even for

humans. Instead, McCarthy et al. [2003] suggests that compositionality

exhibits a continuum, and created a dataset marked with compositionality

scores rather than discrete classes.

In the next chapter, we discuss about existing type-based evaluation datasets

and point out their limitations. We propose an annotation scheme differ-

ent from the existing approaches and create a compositionality dataset for

compound nouns. Our dataset is found to exhibit the continuum of compo-

sitionality.

The advantages of compositionality detection based evaluations are

• CDS models are evaluated both for compositionality and non-compositionality.

• The evaluation method is independent of the dimensional space used

by the CDS models.

• The task may lead to creating better language understanding models.

However, the main disadvantages are

• The task is hard even for humans to classify phrases into compositional

and non-compositional.

• The dataset is expensive to prepare.

• The evaluation is “external” since CDS models are evaluated on a task

different to the actual task.

2.3 Similarity with Gold Phrasal Vectors (GPV

metric)

In this evaluation metric, we evaluate compositional models by measuring

the similarity between the distributional vector of a phrase built from the
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corpus (Gold Phrasal Vectors) and the composed vector predicted by the

models. A similar evaluation metric is proposed by Guevara [2011]. The

evaluation is considered an internal evaluation metric since the evaluation

is assessing the performance of CDS models on the actual semantic compo-

sition task and not an external task.

Given a set of n phrases, gold distributional vectors
−→
G1,

−→
G2 . . . of the

phrases are constructed using corpus instances of the phrases by treating the

phrase as a single word unit, similar to building constituent word vectors.

Let A and B be two CDS models. CDS model A is said to be better than B,

if A’s composed vectors
−→
A1,

−→
A2 . . . of the given phrases are closer to

−→
G1,

−→
G2 . . . than B ’s composed vectors

−→
B1,

−→
B2 . . ..

Let a1, a2 . . ., where ai = sim(
−→
Ai,
−→
Gi), be the cosine similarities of model

A’s composed vectors and gold vectors. Similarly, b1, b2 . . ., where bi =

sim(
−→
Bi,
−→
Gi), be the cosine similarities of model B ’s composed vectors and

gold vectors. Model A performance is measured by calculating its overall

similarity defined as

GPV (A) =

∑n
1 ai

n

Similarly Model B’s overall similarity is defined as GPV (B) =
∑n

1 bi
n

. The

model which gives higher overall similarity is a better compositional model

than the one which gives lower similarity score. An ideal model should give

an overall similarity score of 1.

The advantages of this model are

• The method does not require human annotated data, thus is less ex-

pensive and faster to create.

• “Internal” evaluation metric which evaluates the actual task.

However, the limitations are

• The method is badly affected by data sparsity as the length of the

phrase increases.

• The method does not work for low frequency phrases even if the phrasal

length is small.
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• The predicted compositional vector should exist in the same space,

thereby restricting the semantic composition functions that can be

used.

• Method cannot be applied to phrases which do not occur in general

language.

• It is unclear how to evaluate non-compositional phrases

2.4 Summary

In the above sections we discussed evaluation methods for CDS models and

described three such methods in detail. There is no hard-and-fast rule in

choosing an evaluation method. It mainly depends on the implementation of

the CDS model and the task of interest. For example, GPV metric (Section

2.3) cannot be used if the composition vectors exist in different dimensional

space than the gold vectors. In the coming chapters, we use the above

mentioned evaluation methods to evaluate our CDS models.

In the next chapter we discuss the evaluation metric Compositionality De-

tection in detail. We propose a new annotation scheme for annotating com-

positionality judgments, describe an experimental setup for collecting an-

notations from many annotators, and evaluate computational methods for

compositionality detection on our dataset.





Chapter 3

An Empirical Study on

Compositionality

In the previous chapter we introduced compositionality detection evaluation

method (Section 2.2). In this chapter, we collect and analyze the com-

positionality judgments for a range of compound nouns using Mechanical

Turk to create a new compositionality detection dataset. Unlike existing

compositionality datasets, our dataset has judgments on the contribution of

constituent words as well as judgments for the phrase as a whole. We use this

dataset to study the relation between the judgments at constituent level to

that for the whole phrase. We introduce simple models of compositionality

detection and evaluate them on our new dataset.

The past decade has seen interest in developing computational methods for

compositionality detection [Lin, 1999; Schone and Jurafsky, 2001; Baldwin

et al., 2003; Bannard et al., 2003; McCarthy et al., 2003; Venkatapathy and

Joshi, 2005; Katz and Giesbrecht, 2006; Sporleder and Li, 2009]. Recent

developments in vector-based semantic composition functions [Mitchell and

Lapata, 2008; Widdows, 2008] have also been applied to compositionality

detection [Giesbrecht, 2009]. All these methods use constituent word seman-

tics in contrast with the phrasal semantics to determine the compositionality

of the phrase.

While the existing methods of compositionality detection use constituent

word level semantics, the evaluation datasets are not particularly suitable

37
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to study the contribution of each constituent word to the semantics of the

phrase. Existing datasets [McCarthy et al., 2003; Venkatapathy and Joshi,

2005; Katz and Giesbrecht, 2006; Biemann and Giesbrecht, 2011] only have

the compositionality judgment of the whole expression without constituent

word level judgment, or they have judgments on the constituents without

judgments on the whole [Bannard et al., 2003]. Our dataset allows us to

examine the relationship between the two rather than assume the nature of

it.

We collect judgments of the contribution of constituent nouns within noun-

noun compounds (Section 3.1) alongside judgments of compositionality of

the compound. We study the relation between the contribution of the parts

with the compositionality of the whole (Section 3.2). We propose various

constituent based models (Section 3.3.2) which are intuitive and related to

existing models of compositionality detection (Section 3.3.1) and we evaluate

these models in comparison to composition function based models. All the

models discussed in this chapter are built using a distributional word-space

model approach [Sahlgren, 2006].

3.1 Compositionality in Compound Nouns

In this section, we describe the experimental setup for the collecting compo-

sitionality judgments of English compound nouns. All the existing datasets

focused either on verb-particle, verb-noun or adjective-noun phrases. In-

stead, we focus on compound nouns for which resources are relatively scarce.

In this chapter, we only deal with compound nouns made up of two words

separated by space.

3.1.1 Annotation setup

In the literature [Nunberg et al., 1994; Baldwin et al., 2003; Fazly et al.,

2009], compositionality is discussed in many terms including simple decom-

posable, semantically analyzable, idiosyncratically decomposable and non-

decomposable. For practical NLP purposes, Bannard et al. [2003] adopt a

straightforward definition of a compound being compositional if “the overall

semantics of the multi-word expression (here compound) can be composed
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from the simplex semantics of its parts, as described (explicitly or implic-

itly) in a finite lexicon”. We adopt this definition and pose compositionality

as a literality issue. A compound is compositional if its meaning can be

understood from the literal (simplex) meaning of its parts. Similar views of

compositionality as literality are found in [Lin, 1999; Katz and Giesbrecht,

2006]. In the past there have been arguments in favor/disfavor of composi-

tionality as literality approach (e.g. see [Gibbs, 1989; Titone and Connine,

1999]). The idea of viewing compositionality as literality is also motivated

from the shared task organized by Biemann and Giesbrecht [2011]. From

here on, we use the terms compositionality and literality interchangeably.

We ask humans to score the compositionality of a phrase by asking them

how literal the phrase is. Since we wish to see in our data the extent that the

phrase is compositional, and to what extent that depends on the contribution

in meaning of its parts, we also ask them how literal the use of a component

word is within the given phrase.

For each compound noun, we create three separate tasks – one for each con-

stituent’s literality and one for the phrase compositionality. Tasks for the

compound noun “sacred cow” are displayed in the Figure 3.1. The moti-

vation behind using three separate tasks is to make the scoring mechanism

for each task independent of the other tasks. This enables us to study the

actual relation between the constituents and the compound scores without

any bias to any particular annotator’s way of arriving at the scores of the

compound w.r.t. the constituents.

There are many factors to consider in eliciting compositionality judgments,

such as ambiguity of the expression and individual variation of annotator

in background knowledge. To control for this, we ask subjects if they can

interpret the meaning of a compound noun from only the meaning of the

component nouns where we also provide contextual information. All the

possible definitions of a compound noun are chosen from WordNet [Fell-

baum, 1998], Wiktionary or defined by ourselves if some of the definitions

are absent. Five examples of each compound noun are randomly chosen

from the ukWaC [Ferraresi et al., 2008] corpus and the same set of examples

are displayed to all the annotators. The annotators select the definition of

the compound noun which occurs most frequently in the examples and then

score the compound for literality based on the most frequent definition.
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Phrase: sacred cow

Definitions:

1. a person unreasonably held to be immune to criticism
2. A cow which is worshipped

Examples:

1. we told our director , Kenneth Loach , that none of the sacred cows of television
drama need stand in his way

2. Meles Zenawi said in an interview that there were no sacred cows in a war on
corruption

3. many of the sacred cows will have to be sacrificed to fund digitization
4. you will find any number of sacred cows which are regarded as an intrinsic part of

the teachings. Think of reincarnation, chakras, karma
5. TOTP has finally become the latest sacred cow to be slaughtered by the BBC

Instructions:

• Select the definition of sacred cow which occurs most of the times in the above
examples. Ignore other definitions. Based on the definition chosen, score below
tasks

• Scoring guidelines: Enter a number between 0 and 5
– 0 means: Not to be understood literally at all
– 5 means: To be understood very literally
– Use values in between to grade your decision

Note: Each task below is dispalyed separately to different annotators.
Task1: Score of 0-5 for how literal is the phrase sacred cow

Task2: Score of 0-5 for how literal is the use of sacred in the phrase sacred cow

Task3: Score of 0-5 for how literal is the use of cow in the phrase sacred cow

Figure 3.1: Sample annotation tasks for sacred cow

We have two reasons for making the annotators read the examples, choose

the most frequent definition and base literality judgments on the most fre-

quent definition. The first reason is to provide a context to the decisions and

reduce the impact of ambiguity. The second is that distributional models

are greatly influenced by frequency and since we aim to work with distri-

butional models for compositionality detection we base our findings on the

most frequent sense of the compound noun. In this work we consider the

compositionality of the noun-noun compound type without token based dis-

ambiguation which we leave for future work.

3.1.2 Compound noun dataset

We could not find any compound noun datasets publicly available which

are marked for compositionality judgments. Korkontzelos and Manandhar

[2009] prepared a related dataset for compound nouns but compositional-
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ity scores were absent and their set contains only 38 compounds. There are

datasets for verb-particle [McCarthy et al., 2003], verb-noun judgments [Bie-

mann and Giesbrecht, 2011; Venkatapathy and Joshi, 2005] and adjective-

noun [Biemann and Giesbrecht, 2011]. Not only are these not the focus of

our work, but also we wanted datasets with each constituent word’s literality

score. Bannard et al. [2003] obtained judgments on whether a verb-particle

construction implies the verb or the particle or both. The judgments were

binary and not on a scale and there was no judgment of compositionality

of the whole construction. Ours is the first attempt to provide a dataset

which have both scalar compositionality judgments of the phrase as well as

the literality score for each component word.

We aimed for a dataset which would include compound nouns where: 1) both

the component words are used literally, 2) the first word is used literally but

not the second, 3) the second word is used literally but not the first and 4)

both the words are used non-literally. Such a dataset would provide stronger

evidence to study the relation between the constituents of the compound

noun and its compositionality behaviour.

We used the following heuristics based on WordNet to classify compound

nouns into 4 above classes.

1. Each of the component word exists either in the hypernymy hierarchy

of the compound noun or in the definition(s) of the compound noun.

e.g. swimming pool because swimming exists in the WordNet defini-

tion of swimming pool and pool exists in the hypernymy hierarchy of

swimming pool

2. Only the first word exists either in the hypernymy hierarchy or in the

definition(s) of the compound and not the second word. e.g. night owl

3. Only the second word exists either in the hypernymy hierarchy or in

the definition(s) of the compound and not the first word. e.g. zebra

crossing

4. Neither of the words exist either in hypernymy hierarchy or in the

definition(s) of the compound noun. e.g. smoking gun

The intuition behind the heuristics is that if a component word is used

literally in a compound, it would probably be used in the definition of the

compound or may appear in the synset hierarchy of the compound. We
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changed the constraints, for example decreasing/increasing the depth of the

hypernymy hierarchy, and for each class we randomly picked 30 potential

candidates by rough manual verification. There were fewer instances in the

classes 2 and 4. In order to populate these classes, we selected additional

compound nouns from Wiktionary by manually inspecting if they can fall

in either class.

These heuristics were only used for obtaining our sample, they were not used

for categorizing the compound nouns in our study. The compound nouns in

all these temporary classes are merged and 90 compound words are selected

which have at least 50 instances in the ukWaC corpus. These 90 compound

words are chosen for the dataset.

3.1.3 Annotators

Snow et al. [2008] used Amazon mechanical turk (AMT) for annotating

language processing tasks. They found that although an individual turker

(annotator) performance was lower compared to an expert, as the number

of turkers increases, the quality of the annotated data surpassed expert level

quality. We used 30 turkers for annotating each single task and then retained

the judgments with sufficient consensus as described in Section 3.1.4.

For each compound noun, 3 types of tasks are created as described above:

a judgment on how literal the phrase is and a judgment on how literal each

noun is within the compound. For 90 compound nouns, 270 independent

tasks are therefore created. Each of these tasks is assigned to 30 annotators.

A task is assigned randomly to an annotator by AMT so each annotator

may work on only some of the tasks for a given compound.

3.1.4 Quality of the annotations

Recent studies1 shows that AMT data is prone to spammers and outliers.

We dealt with them in three ways. a). We designed a qualification test2

which provides an annotator with basic training about literality, and they

1A study on AMT spammers http://bit.ly/e1IPil
2The qualification test details are provided with the dataset. Please refer to footnote

3.
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No. of turkers participated 260
No. of them qualified 151
Turkers with ρ <= 0 21
Turkers with ρ >= 0.6 81
No. of annotations rejected 383
Avg. submit time (sec) per task 30.4

highest ρ avg. ρ
ρ for phrase compositionality 0.741 0.522
ρ for first word’s literality 0.758 0.570
ρ for second word’s literality 0.812 0.616
ρ for over all three task types 0.788 0.589

Table 3.1: Amazon Mechanical Turk statistics

can participate in the annotation task only if they pass the test. b). Once all

the annotations (90 phrases * 3 tasks/phrase * 30 annotations/task = 8100

annotations) are completed, we calculated the average Spearman correlation

score (ρ) of every annotator by correlating their annotation values with

every other annotator and taking the average. We discarded the work of

annotators whose ρ is negative and accepted all the work of annotators

whose ρ is greater than 0.6. c). For the other annotators, we accepted their

annotation for a task only if their annotation judgment is within the range

of ±1.5 from the task’s mean. Table 3.1 displays AMT statistics. Overall,

each annotator on average worked on 53 tasks randomly selected from the

set of 270 tasks. This lowers the chance of bias in the data because of any

particular annotator.

Spearman correlation scores ρ provide an estimate of annotator agreement.

To know the difficulty level of the three types of tasks described in Section

3.1, ρ for each task type is also displayed in Table 3.1. It is evident that

annotators agree more at word level than phrase level annotations. Thus,

providing literality scores at component word level is an additional advan-

tage of our dataset compared to the existing datasets on compositionality

judgments.

For each compound, we also studied the distribution of scores around the

mean by observing the standard deviation σ. All the compound nouns along

with their mean and standard deviations are shown in Table 3.2.

Ideally, if all the annotators agree on a judgment for a given compound or a

component word, the deviation should be low. Among the 90 compounds, 15

of them are found to have a deviation > ±1.5. These are displayed in Table
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Compound Word1 Word2 Phrase Compound Word1 Word2 Phrase

climate change 4.90±0.30 4.83±0.38 4.97±0.18 engine room 4.86±0.34 5.00±0.00 4.93±0.25
graduate student 4.70±0.46 5.00±0.00 4.90±0.30 swimming pool 4.80±0.40 4.90±0.30 4.87±0.34
speed limit 4.93±0.25 4.83±0.38 4.83±0.46 research project 4.90±0.30 4.53±0.96 4.82±0.38
application form 4.77±0.42 4.86±0.34 4.80±0.48 bank account 4.87±0.34 4.83±0.46 4.73±0.44
parking lot 4.83±0.37 4.77±0.50 4.70±0.64 credit card 4.67±0.54 4.90±0.30 4.67±0.70
ground floor 4.66±0.66 4.70±0.78 4.67±0.60 mailing list 4.67±0.54 4.93±0.25 4.67±0.47
call centre 4.73±0.44 4.41±0.72 4.66±0.66 video game 4.50±0.72 5.00±0.00 4.60±0.61
human being 4.86±0.34 4.33±1.14 4.59±0.72 interest rate 4.34±0.99 4.69±0.53 4.57±0.90
radio station 4.66±0.96 4.34±0.80 4.47±0.72 health insurance 4.53±0.88 4.83±0.58 4.40±1.17
law firm 4.72±0.52 3.89±1.50 4.40±0.76 public service 4.67±0.65 4.77±0.62 4.40±0.76
end user 3.87±1.12 4.87±0.34 4.25±0.87 car park 4.90±0.40 4.00±1.10 4.20±1.05
role model 3.55±1.22 4.00±1.03 4.11±1.07 head teacher 2.93±1.51 4.52±1.07 4.00±1.16
fashion plate 4.41±1.07 3.31±2.07 3.90±1.42 balance sheet 3.82±0.89 3.90±0.96 3.86±1.01
china clay 2.00±1.84 4.62±1.00 3.85±1.27 game plan 2.82±1.96 4.86±0.34 3.83±1.23
brick wall 3.16±2.20 3.53±1.86 3.79±1.75 web site 2.68±1.69 3.93±1.18 3.79±1.21
brass ring 3.73±1.95 3.87±1.98 3.72±1.84 case study 3.66±1.12 4.67±0.47 3.70±0.97
polo shirt 1.73±1.41 5.00±0.00 3.37±1.38 rush hour 3.11±1.37 2.86±1.36 3.33±1.27
search engine 4.62±0.96 2.25±1.70 3.32±1.16 cocktail dress 1.40±1.08 5.00±0.00 3.04±1.22
face value 1.39±1.11 4.64±0.81 3.04±0.88 chain reaction 2.41±1.16 4.52±0.72 2.93±1.14
cheat sheet 2.30±1.59 4.00±0.83 2.89±1.11 blame game 4.61±0.67 2.00±1.28 2.72±0.92
fine line 3.17±1.34 2.03±1.52 2.69±1.21 front runner 3.97±0.96 1.29±1.10 2.66±1.32
grandfather clock 0.43±0.78 5.00±0.00 2.64±1.32 lotus position 1.11±1.17 4.78±0.42 2.48±1.22
spelling bee 4.81±0.77 0.52±1.04 2.45±1.25 silver screen 1.41±1.57 3.23±1.45 2.38±1.63
smoking jacket 1.04±0.82 4.90±0.30 2.32±1.29 spinning jenny 4.67±0.54 0.41±0.77 2.28±1.08
number crunching 4.48±0.77 0.97±1.13 2.26±1.00 guilt trip 4.71±0.59 0.86±0.94 2.19±1.16
memory lane 4.75±0.51 0.71±0.80 2.17±1.04 crash course 0.96±0.94 4.23±0.92 2.14±1.27
rock bottom 0.74±0.89 3.80±1.08 2.14±1.19 think tank 3.96±1.06 0.47±0.62 2.04±1.13
night owl 4.47±0.88 0.50±0.82 1.93±1.27 panda car 0.50±0.56 4.66±1.15 1.81±1.07
diamond wedding 1.07±1.29 3.41±1.34 1.70±1.05 firing line 1.61±1.65 1.89±1.50 1.70±1.72
pecking order 0.78±0.92 3.89±1.40 1.69±0.88 lip service 2.03±1.25 1.75±1.40 1.62±1.06
cash cow 4.22±1.07 0.37±0.73 1.56±1.10 graveyard shift 0.38±0.61 4.50±0.72 1.52±1.17
sacred cow 1.93±1.65 0.96±1.72 1.52±1.52 silver spoon 1.59±1.47 1.44±1.77 1.52±1.45
flea market 0.38±0.81 4.71±0.84 1.52±1.13 eye candy 3.83±1.05 0.71±0.75 1.48±1.10
rocket science 0.64±0.97 1.55±1.40 1.43±1.35 couch potato 3.27±1.48 0.34±0.66 1.41±1.03
kangaroo court 0.17±0.37 4.43±1.02 1.37±1.05 snail mail 0.60±0.80 4.59±1.10 1.31±1.02
crocodile tears 0.19±0.47 3.79±1.05 1.25±1.09 cutting edge 0.88±1.19 1.73±1.63 1.25±1.18
zebra crossing 0.76±0.62 4.61±0.86 1.25±1.02 acid test 0.71±1.10 3.90±1.24 1.22±1.26
shrinking violet 2.28±1.44 0.23±0.56 1.07±1.01 sitting duck 1.48±1.48 0.41±0.67 0.96±1.04
rat race 0.25±0.51 2.04±1.32 0.86±0.99 swan song 0.38±0.61 1.11±1.14 0.83±0.91
gold mine 1.38±1.42 0.70±0.81 0.81±0.82 rat run 0.41±0.62 2.33±1.40 0.79±0.66
nest egg 0.79±0.98 0.50±0.87 0.78±0.87 agony aunt 1.86±1.22 0.43±0.56 0.76±0.86
snake oil 0.37±0.55 0.81±1.25 0.75±1.12 monkey business 0.67±1.01 1.85±1.30 0.72±0.69
smoking gun 0.71±0.75 1.00±0.94 0.71±0.84 silver bullet 0.52±1.00 0.55±1.10 0.67±1.15
melting pot 1.00±1.15 0.48±0.63 0.54±0.63 ivory tower 0.38±1.03 0.54±0.68 0.46±0.68
cloud nine 0.47±0.62 0.23±0.42 0.33±0.54 gravy train 0.30±0.46 0.45±0.77 0.31±0.59

Table 3.2: Compounds with their constituent and phrase level
mean±deviation scores
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brass ring brick wall cheat sheet china clay
cutting edge fashion plate fine line firing line
game plan head teacher sacred cow silver screen
search engine silver spoon web site

Table 3.3: Ambiguous Compounds with σ > ±1.5
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Figure 3.2: Mean values of phrase-level compositionality scores

3.3. We used this threshold to signify annotator disagreement. The reasons

for annotator disagreement vary. From our analysis, some of the compounds

are found to be compositionally ambiguous displaying both compositional

and non-compositional nature at the same time. For e.g. silver screen in

the example, “Mike Myers talk about the improved technology used to bring

Shrek 2 to the silver screen” some think silver screen means film industry and

others think in the meaning cinema screen which is actually silver in color.

Some examples like brass ring, though compositionally not ambiguous, they

exhibit equal chances of compositional and non-compositional usage in the

corpus. This was evident when the random examples picked from the corpus

are analyzed. For others such as search engine some think engine has only

a little to do with search engine and the others disagree.

Overall, the inter annotator agreement (ρ) is high and the standard deviation

of most tasks is low (except for a few exceptions). So we are confident that

the dataset can be used as a reliable gold-standard with which we conduct

experiments. The dataset is publicly available for download3.

3Annotation guidelines, Mechanical Turk hits, qualification test, annotators demo-
graphic and educational background, and final annotations are downloadable from http:

//sivareddy.in/downloads
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3.2 Analyzing the Human Judgments

By analyzing the mean values of phrase level annotations, we found that

compounds displayed a varied level of compositionality. For some com-

pounds annotators confirm that they can interpret the meaning of a com-

pound from its component words and for some they do not. For others they

grade in-between. Figure 3.2 displays the mean values of compositional-

ity scores of all compounds. Compounds are arranged along the X-axis in

increasing order of their score. The graph displays a continuum of compo-

sitionality [McCarthy et al., 2003]. We note that our sample of compounds

is selected to exhibit a range of compositionality.

3.2.1 Relation between the constituents and the phrase com-

positionality judgments

The dataset allows us to study the relation between constituent word level

contributions to the phrase level compositionality scores.

Let w1 and w2 be the constituent words of the compound w3. Let s1, s2

and s3 be the mean literality scores of w1, w2 and w3 respectively. Using

a 3-fold cross validation on the annotated data, we tried various function

fittings f over the judgments s1, s2 and s3.

• ADD: a.s1 + b.s2 = s3

• MULT: a.s1.s2 = s3

• COMB: a.s1 + b.s2 + c.s1.s2 = s3

• WORD1: a.s1 = s3

• WORD2: a.s2 = s3

where a, b and c are coefficients.

We performed 3-fold cross validation to evaluate the above functions (two

training samples and one testing sample at each iteration). The coefficients

of the functions are estimated using least-square linear regression technique

over the training samples. The average Spearman correlation scores (ρ) over

testing samples are displayed in Table 3.4. The goodness of fit R2 values

when trained over the whole data are also displayed in Table 3.4.
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Function f ρ R2

ADD 0.966 0.937
MULT 0.965 0.904
COMB 0.971 0.955
WORD1 0.767 0.609
WORD2 0.720 0.508

Table 3.4: Correlations between functions and phrase compositionality
scores

Results (both ρ and R2) clearly show that a relation exists between the con-

stituent literality scores and the phrase compositionality. Existing composi-

tionality approaches on noun-noun compounds such as [Baldwin et al., 2003;

Korkontzelos and Manandhar, 2009] use the semantics of only one of the

constituent words (generally the head word) to determine the composition-

ality of the phrase. But the goodness of fit R2 values show that the functions

ADD, COMB and MULT which intuitively make use of both the constituent

scores fit the data better than functions using only one of the constituents.

Furthermore, COMB and ADD suggest that additive models are preferable

to multiplicative. In this data, the first constituent word plays a slightly

more important role than the second in determining compositionality.

Overall, this study suggests that it is possible to estimate the phrase level

compositionality scores given the constituent word level literality scores. This

motivates us to present constituent based models (Section 3.3.2) for compo-

sitionality score estimation of a compound. We begin the next section on

computational models with a discussion of related work.

3.3 Computational Models

3.3.1 Related work

Most methods in compositionality detection can be classified into two types

- those which make use of lexical fixedness and syntactic properties of the

MWEs, and those which make use of the semantic similarities between the

constituents and the MWE.

Non compositional MWEs are known to have lexical fixedness in which the
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component words have high statistical association. Some of the methods

which exploit this feature are [Lin, 1999; Pedersen, 2011]. This property does

not hold always because institutionalized MWEs [Sag et al., 2002] are known

to have high association even though they are compositional, especially in

the case of compound nouns. Another property of non-compositional MWEs

is that they show syntactic rigidness which do not allow internal modifiers or

morphological variations of the components, or variations that break typical

selectional preferences. Methods like [Cook et al., 2007; McCarthy et al.,

2007; Fazly et al., 2009] exploit this property. This holds mostly for verbal

idioms but not for compound nouns since the variations of any compound

noun are highly limited.

Other methods like [Baldwin et al., 2003; Sporleder and Li, 2009] are based

on semantic similarities between the constituents and the MWE. Baldwin et

al. [2003] use only the information of the semantic similarity between one

of the constituents and the compound to determine the compositionality.

Sporleder and Li [2009] determine the compositionality of verbal phrases

in a given context (token-based disambiguation) based on the lexical chain

similarities of the constituents and the context of the MWE. Bannard et al.

[2003] and McCarthy et al. [2003] study the compositionality in verb parti-

cles and they found that methods based on the similarity between simplex

parts (constituents) and the phrases are useful to study semantics of the

phrases. These findings motivated our constituent based models along with

the findings in Section 3.2.1.

In addition to the constituent based models (Section 3.3.2), there are compo-

sition function based vector models [Mitchell and Lapata, 2008; Widdows,

2008] which make use of the semantics of the constituents in a different

manner. These models are described in Section 3.3.3 and are evaluated in

comparison with the constituent-based models.

All our models discussed in this thesis are based on the vector space model

described in Section 1.4.2.

3.3.2 Constituent based models

Given a compound word w3 with the constituents w1 and w2, constituent

based models determine the compositionality score s3 of the compound by
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first determining the literality scores s1 and s2 of w1 and w2 respectively

(Section 3.3.2.1) and then using one of the functions f (described in Sec-

tion 3.2.1), the compositionality score s3 is estimated using s3 = f(s1, s2)

(Section 3.3.2.2).

3.3.2.1 Literality scores of the constituents

If a constituent word is used literally in a given compound it is highly likely

that the compound and the constituent share common co-occurrences. For

example, the compound swimming pool has the co-occurrences water, fun

and indoor which are also commonly found with the constituents swimming

and pool. In the compound smoking gun (see Figure 1.1), the co-occurrences

of the constituents and the compound differ which show that either smoking

or gun are not meant literally in the compound.

We define the literality of a word in a given compound as the similarity

between the compound and the constituent co-occurrence vectors i.e. if

the number of common co-occurrences are numerous then the constituent is

more likely to be meant literally in the compound.

Let
−→
v1,
−→
v2 and

−→
v3 be the co-occurrence vectors of w1, w2 and w3. The

literality scores s1 and s2 of w1 and w2 in the compound w3 are defined as

s1 = sim(
−→
v1,
−→
v3)

s2 = sim(
−→
v2,
−→
v3)

where sim is the cosine similarity between the vectors.

3.3.2.2 Compositionality of the compound

Given the literality scores s1 and s2 of the constituents, we can now compute

the compositionality score s3 of the compound w3 using any of the functions

f defined in Section 3.2.1.

s3 = f(s1, s2)
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3.3.3 Composition function based models

In these models [Schone and Jurafsky, 2001; Katz and Giesbrecht, 2006;

Giesbrecht, 2009] of compositionality detection, firstly a vector for the com-

pound is composed from its constituents using a compositionality function

⊕. Then the similarity between the composed vector and true co-occurrence

vector of the compound is measured to determine the compositionality: the

higher the similarity, the higher the compositionality of the compound. Gue-

vara [2011] observed that additive models performed well for building com-

position vectors of phrases from their parts whereas Mitchell and Lapata

[2008] found in favor of multiplicative models. We experiment using both

the compositionality functions simple addition4 and simple multiplication,

which are the most widely used composition functions, known for their sim-

plicity and good performance.

Vector
−→
v1 ⊕

−→
v2 for a compound w3 is composed from its constituent word

vectors
−→
v1 and

−→
v2 using simple addition a

−→
v1+b

−→
v2 and simple multiplication

−→
v1
−→
v2 where the ith element of

−→
v1⊕

−→
v2 is defined as

(a
−→
v1+ b

−→
v2)i = a

−→
v1i + b

−→
v2i

−→
v1
−→
v2i =

−→
v1i .

−→
v2i

The compositionality score of the compound is then measured using s3 =

sim(
−→
v1⊕

−→
v2,
−→
v3) where

−→
v3 is the co-occurrence vector of the compound built

from the corpus. For more details of these models please refer to [Mitchell

and Lapata, 2008; Giesbrecht, 2009].

3.3.4 Evaluation

We evaluated all the models on the dataset developed in Section 3.1. Since

our dataset has constituent level contributions along with phrase compo-

sitionality judgments, we evaluated the constituent based models against

both the literality scores of the constituents (Section 3.3.2.1) and the phrase

4Please note that simple additive model [Mitchell and Lapata, 2008] is different from
the additive model described in [Guevara, 2011]. In [Mitchell and Lapata, 2008] the
coefficients are real numbers whereas in [Guevara, 2011] they are matrices.
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first constituent second constituent

s1 0.616 –
s2 – 0.707

Table 3.5: Constituent level correlations

Model ρ R2

Constituent Based Models

ADD 0.686 0.613
MULT 0.670 0.428
COMB 0.682 0.615
WORD1 0.669 0.548
WORD2 0.515 0.410

Compositionality Function Based Models

a
−→
v1+ b

−→
v2 0.714 0.620

−→
v1
−→
v2 0.650 0.501

RAND 0.002 0.000

Table 3.6: Phrase level correlations of compositionality scores

level judgments (Section 3.3.2.2). The composition function models are

evaluated only on phrase level scores following [McCarthy et al., 2003;

Venkatapathy and Joshi, 2005; Biemann and Giesbrecht, 2011]: higher cor-

relation scores indicate better compositionality predictions.

Constituent based models evaluation

Spearman’s ρ correlations of s1 and s2 with the human constituent level

judgments are shown in Table 3.5. We observed that the predictions for the

second constituent are more accurate than those for the first constituent.

Perhaps these constitute an easier set of nouns for modelling but we need

to investigate this further.

For the phrase compositionality evaluation we did a 3-fold cross validation.

The parameters of the functions f (Section 3.3.2.2) are predicted by least

square linear regression over the training samples and optimum values are

selected. The average Spearman correlation scores of phrase composition-

ality scores with human judgments on the testing samples are displayed in

Table 3.6. The goodness of fit R2 values when trained over the whole dataset

are also displayed.
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It is clear that models ADD and COMB which use both the constituents

are better predictors of phrase compositionality compared to the single word

based predictors WORD1 and WORD2. Both ADD and COMB are com-

petitive in terms of both the correlations (accuracy) and goodness of fit

values. The model MULT shows good correlation but the goodness of fit

is lower. First constituent (model WORD1 i.e. sim(
−→
v1,
−→
v3)) was found to

be a better predictor of phrase compositionality than the second (WORD2)

following the behaviour of the mechanical turkers as in Table 3.4.

Composition function based models evaluation

These models are evaluated for phrase compositionality scores. As with the

constituent based models, for estimating the model parameters a and b of

the composition function based models, we did a 3-fold cross validation.

The best results of additive model on the training samples are found at

a=0.60 and b=0.40. Average Spearman correlation scores of both addition

and multiplication models over the testing samples are displayed in Table

3.6. The goodness of fit R2 values when trained over the whole dataset are

also displayed.

Vector addition has a clear upper hand over multiplication in terms of both

accuracy and goodness of fit for phrase compositionality prediction.

Winner between constituent and composition function based mod-

els

For phrase compositionality prediction (Table 3.6), both constituent based

and compositionality function based models are found to be competitive,

though compositionality function based models perform slightly better. The

reason could be because while constituent based models use contextual in-

formation of each constituent independently, composition function models

make use of collective evidence from the contexts of both the constituents

simultaneously.

The notion, “contexts salient to both the constituents are important for com-

position”, is fundamental behind our idea of Dynamic Prototypes discussed

in Chapter 4.
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All the model results, both constituent and composition function based mod-

els, when compared with random baseline model (RAND in Table 3.6) which

assigns a random compositionality score to a compound, are highly signifi-

cant.

3.4 Summary

In this chapter we examined the compositionality judgments of noun com-

pounds and also the literality judgments of their constituent words. Our

study reveals that both the constituent words play a major role in decid-

ing the compositionality of the phrase. We showed that the functions which

predict the compositionality using both the constituent literality scores have

high correlations with compositionality judgments. Based on this evidence

we proposed constituent based models for compositionality detection. We

compared constituent based models with compositionality function based

models. The additive compositionality function based model is the best per-

forming of all, however the performance of constituent based models (ADD

and COMB) is comparable.

All the 8100 annotations collected in this work are released publicly. We

hope the dataset can reveal more insights into the compositionality in terms

of the contribution from the constituents.

Future directions of this work include context based compositionality de-

tection of phrases, and designing sophisticated constituent based models.

Extending this study on other kinds of phrases such as adjective-noun, verb

particle, verb-noun phrases may throw more light into our understanding of

compositionality.

In this chapter we did not deal with the polysemy of constituents or phrase.

For example in the phrase bank account, we represented bank using all its

corpus instances without worrying about the polysemy of bank, and deter-

mined the compositionality of bank account. In the coming chapters we focus

on the polysemy of constituent words, and aim to build better compositional

models by performing sense disambiguation of constituents.





Chapter 4

Dynamic and Static

Prototoypes

The goal of this chapter is to answer the question: Does sense disambigua-

tion improve semantic composition? In the previous chapter, the semantic

behavior of a phrase is predicted using the co-occurrence vectors of its con-

stituent words. A co-occurrence vector of a constituent word is built by

conflating all the corpus instances of the constituent, which essentially is

equivalent to conflating all the senses of the constituent word. However, not

all the senses of the constituents are relevant when composing the semantics

of the compound.

For example, take the compound house hunting. Figure 4.1 displays the

co-occurrence vectors of the words house and hunting built from all the

corpus instances of house and hunting respectively. Using the composition

functions a
−→
v1 + b

−→
v2 and

−→
v1
−→
v2 defined in the previous chapter (Section

3.3.3), the meaning of house hunting can be composed from the vectors

of house and hunting. Figure 4.2 displays the composed vectors of house

vector dimensions
animal buy apartment price rent kill

−−−−→
house 〈 30 60 90 55 45 10 〉
−−−−−−→
hunting 〈 90 15 12 20 33 90 〉

Figure 4.1: A hypothetical vector space model.

55
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vector dimensions
animal buy apartment price rent kill

−−−−→
house 〈 30 60 90 55 45 10 〉
−−−−−−→
hunting 〈 90 15 12 20 33 90 〉
−−−−→
house+

−−−−−−→
hunting 〈 120 75 102 75 78 100 〉

−−−−→
house

−−−−−−→
hunting 〈 2700 900 1080 1100 1485 900 〉

Figure 4.2: Composition using simple addition and simple multiplication
operators

hunting. As can be observed from figure 4.2, the resulting composed vectors

do not reflect the correct meaning of the compound house hunting due to

the presence of irrelevant co-occurrences such as animal or kill. These co-

occurrences are relevant to one sense of hunting, i.e. (the activity of hunting

animals), but not to the sense of hunting meant in house hunting, i.e. the

activity of looking thoroughly. Given that hunting has been associated with

a single prototype (vector) by conflating all of its senses, the application of

any composition function ⊕ is likely to include irrelevant co-occurrences in
−−−−→
house⊕

−−−−−−→
hunting.

A potential solution to this problem would involve the following steps:

1. build separate prototype vectors for each of the senses of house and

hunting

2. select the relevant prototype vectors of house and hunting and then

perform the semantic composition.

In this chapter we present two methods (section 4.2) for carrying out the

above steps on noun-noun compounds. The first one (section 4.2.1) applies

Word Sense Induction (WSI) to identity different senses (also called static

multi prototypes) of the constituent words of a compound noun and then

applies composition by choosing the relevant senses. The second method

(section 4.2.2) does not identify a fixed set of senses. Instead, it represents

each constituent by a prototype vector which is built dynamically (also called

as a dynamic prototype) by activating only those contexts considered to be

relevant to the constituent in the presence of the other constituent, and

then performs the composition on the dynamic prototypes. For performing

composition, we use vector composition functions.
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Our evaluation (section 4.4) on a task for rating similarity between noun-

noun compound pairs shows: (1) sense disambiguation of constituents im-

proves semantic composition and (2) dynamic prototypes are better than

static multi prototypes for semantic composition.

4.1 Related work

Relevant to our work is the work of Erk and Padó [2008] who utilize a struc-

tured vector space model. The prototype vector of a constituent word is

initially built, and later refined by removing irrelevant co-occurrences with

the help of the selectional preferences of other constituents. The refined

vectors are then used for the semantic composition of the compound noun.

The results are encouraging showing that polysemy is a problem in vector

space models. Our approach differs to theirs in the way we represent mean-

ing - we experiment with static multi prototypes and dynamic prototypes.

Our vector space model is based on simple bag-of-words which does not re-

quire selectional preferences for sense disambiguation and can be applied to

resource-poor languages.

There are several other researchers who tried to address polysemy for im-

proving the performance of different tasks but not particularly to the task

of semantic composition. Some of them are Navigli and Crisafulli [2010]

for web search results clustering, Klapaftis and Manandhar [2010b] for tax-

onomy learning, Reisinger and Mooney [2010] for word similarity and Ko-

rkontzelos and Manandhar [2009] for compositionality detection. In all cases,

the reported results demonstrate that handling polysemy lead to improved

performance of the corresponding tasks. This motivates our research for

handling polysemy for the task of semantic composition using two different

methods described in the next section.

4.2 Sense Prototype Vectors

In this section we describe two approaches for building sense specific pro-

totype vectors of constituent words in a noun-noun compound. The first

approach performs WSI to build static multi prototype vectors. The other
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builds a single dynamic prototype vector for each constituent by activat-

ing only the relevant exemplars of the constituent with respect to the other

constituent. An exemplar is defined as a corpus instance of a target word.

These sense specific prototype vectors are then used for semantic composi-

tion. Let N be a compound noun with constituents n and n′. Our aim is to

select the relevant senses of n and n′.

4.2.1 Static Multi Prototypes Based Sense Selection

In the first stage (section 4.2.1.1), a WSI method is applied to both n and

n′. The outcome of this stage is a set of clusters (senses). Each of these

clusters is associated with a prototype vector taking the centroid of the

cluster. Following Reisinger and Mooney [2010] we use the terminology

multi prototype vectors in the meaning of sense clusters. Let S(n) (resp.

S(n′)) be the set of prototypes of n, where each sni ∈ S(n) denotes the ith

sense of the noun n. Since these prototypes of constituents are static and

do not change when the compound changes we refer to them as static multi

prototypes.

In the next stage (section 4.2.1.2), we calculate all the pairwise similarities

between the clusters of n and n′, so as to select a pair of clusters with

the highest similarity. The selected clusters are then combined using a

composition function, to produce a single vector representing the semantics

of the target compound noun N .

4.2.1.1 Graph-based WSI

Word Sense Induction is the task of identifying the senses of a target word

in a given text. We apply a graph-based sense induction method, which

creates a graph of target word instances and then clusters that graph to

induce the senses. We follow the work of Klapaftis and Manandhar [2010a]

for creating the graph and apply Chinese Whispers (CW) [Biemann, 2006],

a linear graph clustering method that automatically identifies the number

of clusters.

Figure 4.3 provides a running example of the different stages of the WSI
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Figure 4.3: Running example of WSI

method. In the example, the target word mouse appears with the electronic

device sense in the contexts A, C, and with the animal sense in the contexts

B and D.

Corpus preprocessing: Let bc denote the base corpus consisting of the

contexts containing the target word tw. In our work, a context is defined

by a set of words in a window of size 100 around the target.

The aim of this stage is to capture words contextually related to tw. In the

first step, the target word is removed from bc and part-of-speech tagging is

applied to each context. Only nouns and verbs are kept and lemmatised. In

the next step, the distribution of each word in the base corpus is compared

to the distribution of the same noun in a reference corpus using the log-

likelihood ratio (G2) [Dunning, 1993]. Words that have a G2 below a pre-

specified threshold (parameter p1) are removed from each context of the base

corpus. The result of this stage is shown in the upper left part of Figure 4.3.

Graph creation & clustering: Each context ci ∈ bc is represented as a

vertex in a graph G. Edges between the vertices of the graph are drawn

based on their similarity, defined in Equation 4.1, where smcl(ci, cj) is the

collocational weight of contexts ci, cj and smwd(ci, cj) is their bag-of-words

weight. If the edge weight W (ci, cj) is above a prespecified threshold (pa-

rameter p3), then an edge is drawn between the corresponding vertices in



60 4. Dynamic and Static Prototoypes

the graph.

W (ci, cj) =
1

2
(smcl(ci, cj) + smwd(ci, cj)) (4.1)

Collocational weight: The limited polysemy of collocations is exploited

to compute the similarity between contexts ci and cj . In this setting, a

collocation is a juxtaposition of two words within the same context. Given

a context ci, a total of
(

N
2

)

collocations are generated by combining each

word with any other word in the context. Each collocation is weighted

using the log-likelihood ratio (G2) [Dunning, 1993] and is filtered out if the

G2 is below a prespecified threshold (parameter p2). At the end of this

process, each context ci of tw is associated with a set of collocations (gi)

as shown in the upper right part of Figure 4.3 . Given two contexts ci and

cj , the Jaccard coefficient is used to calculate the similarity between the

collocational sets, i.e. smcl(ci, cj) =
|gi∩gj |
|gi∪gj |

.

Bag-of-words weight: Estimating context similarity using collocations

may provide reliable estimates regarding the existence of an edge in the

graph, however, it also suffers from data sparsity. For this reason, a bag-

of-words model is also employed. Specifically, each context ci is associated

with a set of words (gi) selected in the corpus preprocessing stage. The

upper left part of Figure 4.3 shows the words associated with each context

of our example. Given two contexts ci and cj , the bag-of-words weight is

defined to be the Jaccard coefficient of the corresponding word sets, i.e.

smwd(ci, cj) =
|gi∩gj |
|gi∪gj |

.

Finally, the collocational weight and bag-of-words weight are averaged to

derive the edge weight between two contexts as defined in Equation 4.1. The

resulting graph of our running example is shown on the bottom of Figure 4.3.

This graph is the input to CW clustering algorithm. Initially, CW assigns

all vertices to different classes. Each vertex i is processed for an x number

of iterations and inherits the strongest class in its local neighborhood LN

in an update step. LN is defined as the set of vertices which share a direct

connection with vertex i. During the update step for a vertex i: each class

Ck receives a score equal to the sum of the weights of edges (i, j), where j

has been assigned class Ck. The maximum score determines the strongest

class. In case of multiple strongest classes, one is chosen randomly. Classes
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Parameter Range
G2 word threshold (p1) 15,25,35,45
G2 collocation threshold (p2) 10,15,20
Edge similarity threshold (p3) 0.05,0.09,0.13

Table 4.1: WSI parameter values.

are updated immediately, which means that a node can inherit classes from

its LN that were introduced in the same iteration.

Experimental setting The parameters of the WSI method were fine-tuned

on the nouns of the SemEval-2007 word sense induction task [Agirre and

Soroa, 2007] under the second evaluation setting of that task, i.e. supervised

(WSD) evaluation. We tried various parameter combinations shown in Table

4.1. Specifically, we selected the parameter combination p1=15, p2=10, p3=

0.05 that maximized the performance in this evaluation. We use ukWaC

[Ferraresi et al., 2008] corpus to retrieve all the instances of the target words.

4.2.1.2 Cluster selection

The application of WSI on the nouns n ∈ N and n′ ∈ N results in two sets

of clusters (senses) S(n) and S(n′). Cluster S(n) is a set of contexts of the

word n. Each context is represented as an exemplar −→e , a vector specific

to the context. Only the 10000 most frequent words in the ukWaC (along

with their part-of-speech category) are treated as the valid co-occurrences

i.e. the dimensionality of the vector space is 10000. For example, the ex-

emplar of hunting in the context “the-x purpose-n of-i autumn-n hunting-n

be-v in-i part-n to-x cull-v the-x number-n of-i young-j autumn-n fox-n” is

〈 purpose-n:1, autumn-n:2, part-n:1, cull-v, number-n:1, young-j:1, fox-n:1 〉

For every cluster sni in S(n) we construct a prototype vector
−→
vsn

i by taking

the centroid of all the exemplars in the cluster. Following Mitchell and

Lapata [2008], the context words in the prototype vector are set to the

ratio of probability of the context word given the target word to the overall

probability of the context word1.

The next step is to choose the relevant sense of each constituent for a given

compound. We assume that the meaning of a compound noun can be ap-

1This is similar to pointwise mutual information without logarithm
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proximated by identifying the most similar senses of each of its constituent

nouns. Accordingly all the pairwise similarities between the
−→
vsn

i and
−−→
vsn

′

i

are calculated using cosine similarity and the pair with maximum similarity

is chosen for composition.

followed by huge tarpon that like to use the light of your torch to help them hunt. At the
the Christmas trade this year or the lights will be off, probably for ever. The Merrymen

embrace better health - but doing so in the light of real and trusted information about the
present your organisation in a professional light and in a way our all our clients value.

continues to be significant, together with other light industries such as electrical engineering
and near-infrared light, along with red light emitted by hydrogen atoms and green light

Figure 4.4: Six random sentences of light from ukWaC

4.2.2 Dynamic Prototype Based Sense Selection

Kilgarriff [1997] argues that representing a word with a fixed set of senses

is not a good way of modelling word senses. Instead word senses should be

defined according to a given context. We propose a dynamic way of building

word senses for the constituents of a given compound.

We use an exemplar-based approach to build the dynamic sense of a con-

stituent with the help of other constituent. In exemplar-based modelling

[Erk and Padó, 2010; Smith and Medin, 1981], each word is represented by

all its exemplars without conflating them into a single vector. Depending

upon the purpose, only relevant exemplars of the target word are activated.

Exemplar-based models are more powerful than just prototype based ones

because they retain specific instance information. As described in the pre-

vious section, an exemplar is a vector that represents a single instance of a

given word in the corpus.

Let En be the set of exemplars of the word n. Given a compound N with

constituents n and n′, we remove irrelevant exemplars in En creating a

refined set En′

n ⊂ En with the help of the other constituent word n′. The

prototype vector
−→
nn′

of n is then built from the centroid of the refined

exemplar set En′

n . The vector
−→
nn′

represents the relevant prototype vector

(sense) of n in the presence of the other constituent word n′. Unlike the

static prototypes defined in the previous section, the prototype vectors of n

and n′ are built dynamically based on the given compound. Therefore, we

refer to them as dynamic prototype vectors.
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4.2.2.1 Building Dynamic Prototypes

We demonstrate our method of building dynamic prototypes with an ex-

ample. Let us take the compound traffic light. Let
−−−−→
Traffic,

−−−→
Light and

−−−−−−−−−→
TrafficLight denote the prototype vectors of traffic, light and traffic light

respectively. Word light occurs in many contexts such as quantum theory,

optics, lamps and spiritual theory. In ukWaC, light occurs with 316,126 ex-

emplars. Figure 4.4 displays 6 random sentences of light from ukWaC. None

of these exemplars are related to the target compound traffic light. When a

prototype vector of light is built from all its exemplars, irrelevant exemplars

add noise increasing the semantic differences between traffic light and light

and thereby increasing the semantic differences between
−−−−−−−−−→
TrafficLight and

−−−−→
Traffic ⊕

−−−→
Light. This is not desirable. The cosine similarity sim(

−−−→
Light,

−−−−−−−−−→
TrafficLight) is found to be 0.27.

We aim to remove irrelevant exemplars of light with the help of the other

constituent word traffic and then build a prototype vector of light which

is related to the compound traffic light. Our intuition and motivation for

exemplar removal is that it is beneficiary to choose only the exemplars of

light which have context words related to traffic since the exemplars of traffic

light will have context words related to both traffic and light. For example

car, road, transport will generally be found within the contexts of all the

words traffic, light and traffic light.

We rank each exemplar of light with the help of collocations of traffic. Col-

locations of traffic are defined as the context words which frequently occur

with traffic, e.g. car, road etc. The exemplar of light representing the sen-

tence “Cameras capture cars running red lights . . .” will be ranked higher

than the one which does not have context words related to traffic. We use

Sketch Engine2 [Kilgarriff et al., 2004] to retrieve the collocations of traffic

from ukWaC. Sketch Engine computes the collocations using Dice metric

[Dice, 1945]. We build a collocation vector Trafficcolloc from the colloca-

tions of traffic.

We also rank each exemplar of light using the distributionally similar words

to traffic i.e. words which are similar to traffic e.g. transport, flow etc. These

distributionally similar words helps to reduce the impact of data sparseness

2Sketch Engine http://www.sketchengine.co.uk
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and helps prioritize the contexts of light which are semantically related to

traffic. Sketch Engine is again used to retrieve distributionally similar words

of traffic from ukWaC. Sketch Engine ranks similar words using the method

of Rychlý and Kilgarriff [2007]. We build the vector Trafficsimilar which

consists of the similar words of traffic.

Every exemplar e from the exemplar set Elight
3 is finally ranked by

sim(e,Trafficcolloc) + sim(e,Trafficsimilar)

We choose the top n% of the ranked exemplars in Elight to construct a

refined exemplar set Etraffic
light . A prototype vector

−−−−−−−−→
LightTraffic is then built

by taking the centroid of Etraffic
light .

−−−−−−−−→
LightTraffic denotes the sense of light in

the presence of traffic. Since sense of light is built dynamically based on the

given compound (here traffic light), we define
−−−−−−−−→
LightTraffic as the dynamic

prototype vector. The similarity sim(
−−−−−−−−→
LightTraffic,

−−−−−−−−−→
TrafficLight) is found

to be 0.47 which is higher than the initial similarity 0.27 of
−−−→
Light and

−−−−−−−−−→
TrafficLight. This shows that our new prototype vector of light is closer

to the meaning of traffic light.

Similarly we build the dynamic prototype vector
−−−−−−−−→
TrafficLight of traffic with

the help of light. The dynamic prototypes
−−−−−−−−→
TrafficLight and

−−−−−−−−→
LightTraffic are

used for semantic composition to construct
−−−−−−−−→
TrafficLight ⊕

−−−−−−−−→
LightTraffic

4.3 Composition functions

Given a compound, we perform composition using the sense based proto-

types selected in the above section. We use the composition functions simple

addition (ADDITION) and simple multiplication (MULTIPLICATION) de-

scribed in Section 3.3.3.

3In Elight, we do not include the sentences which have the compound noun traffic light

occurring in them.
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ADDITION:
−−−→
⊕(N) = a −→n + b

−→
n′

i.e.
−−−→
⊕(N)i = a −→n i + b −→n ′

i

MULTIPLICATION:
−−−→
⊕(N) =

−→
nn′

i.e.
−−−→
⊕(N)i =

−→n i .
−→n ′

i

(4.2)

where a and b are real numbers.

For the function ADDITION, we use equal weights for both constituent

words i.e. a = b = 1. For the function MULTLIPLICATION there are no

parameters.

4.4 Evaluation

In this section we present the evaluation dataset, evaluation scheme and the

models evaluated. We use the evaluation scheme Phrasal Similarity (Section

2.1) described in Chapter 2. For convenience, we present a brief description

of the dataset and evaluation scheme again.

4.4.1 Dataset

Mitchell and Lapata [2010] prepared a dataset4 which contains pairs of com-

pound nouns and their similarity judgments. The dataset consists of 108

compound noun pairs with each pair having 7 annotations from different

annotators who judge the pair for similarity. A sample of 5 compound pairs

is displayed in Figure 4.5.

4.4.2 Evaluation Scheme

For each pair of the compound nouns, the mean value of all its annotations

is taken to be the final similarity judgment of the compound.

Let N and N ′ be a pair. To evaluate a model, we calculate the cosine

similarity between the composed vectors
−−−→
⊕(N) and

−−−−→
⊕(N′) obtained from

4We would like to thank Jeff Mitchell and Mirella Lapata for sharing the dataset.
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Annotator N N’ rating

4 phone call committee meeting 2
25 phone call committee meeting 7
11 football club league match 6
11 health service bus company 1
14 company director assistant manager 7

Figure 4.5: Evaluation dataset of [Mitchell and Lapata, 2010]

the composition on sense based prototypes generated by the model. These

similarity scores are correlated with human mean scores to judge the per-

formance of the model.

4.4.3 Models Evaluated

We evaluate all the models w.r.t. the composition functions ADDITION

and MULTIPLICATION.

Static Single Prototypes: This model does not perform any sense disam-

biguation and is similar to the method described in [Mitchell and Lapata,

2008]. The prototype vector of each constituent formed by conflating all its

instances is used to compose the vector of the compound.

Static Multi Prototypes: In the method described in section 4.2.1, word

sense induction produces a large number of clusters i.e. static multi proto-

types. We tried various parameters like choosing the target prototype of a

constituent only from the top 5 or 10 large clusters.

Static Multi Prototypes with Guided Selection: This is similar to

Static Multi Prototypes model except in the way we choose the relevant

prototype for each constituent. In section 4.2.1.2 we described an unsuper-

vised way of prototype selection from multi prototypes. Unlike there, here

we choose the constituent prototype (sense) which has the highest similarity

to the prototype vector of the compound. This is a guided way of sense

selection since we are using the compound prototype vector which is built

from the compound’s corpus instances. The performance of this model gives

us an idea of the upper boundary of multi prototype models for semantic

composition.
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Dynamic Prototypes: In the method described in section 4.2.2, the dy-

namic prototype of a constituent is produced from the top n% exemplars

of the ranked exemplar set of the constituent. We tried various percent

activation (n%) values - 2%, 5%, 10%, 20%, 50%, 80%.

Compound Prototype: We directly use the corpus instances of a com-

pound to build the prototype vector of the compound. This method does

not involve any composition. Ideally, one expects this model to give the best

performance.

4.5 Results and Discussion

All the above models are evaluated on the dataset described in section 4.4.1.

Table 4.2 displays the Spearman correlations of all these models with the

human annotations (mean values).

The results of Static Single Prototypes model are consistent with the previ-

ous findings of Mitchell and Lapata [2010], in which MULTIPLICATION

performed better than ADDITION.

All the parameter settings of Dynamic Prototypes outperformed Static Sin-

gle Prototypes. This shows that selecting the relevant sense prototypes of

the constituents improve semantic composition. We also observe that the

highest correlation is achieved by including just the top 2% exemplars for

each constituent. It seems that as the sample of exemplars increases, noise

increases as well, and this results in a worse performance.

The comparison between Static Single Prototypes and Static Multi Proto-

types shows that the former performs significantly better than the latter.

This is not according to our expectation. The possible reason for poor per-

formance could be because of the sense selection process (section 4.2.1.2)

which might have failed to choose the relevant sense of each constituent

word.

However, Static Multi Prototypes with Guided Sense Selection still fail to

perform better than Static Single Prototypes. Therefore, we can conclude

that the lower performance of Static Multi Prototypes cannot be attributed

to the sense selection process only. Despite that, the applied graph clustering
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Parameter Description ADDITION MULTIPLICATION

Static Single Prototypes

0.5173 0.6104

Static Multi Prototypes

Top 5 clusters 0.1171 0.4150
Top 10 clusters 0.0663 0.2655

Static Multi Prototypes with Guided Selection

Top 5 clusters 0.2290 0.4187
Top 10 clusters 0.2710 0.4140

Dynamic Prototypes

Top 2 % exemplars 0.6261 0.6552
Top 5 % exemplars 0.6326 0.6478
Top 10 % exemplars 0.6402 0.6515
Top 20 % exemplars 0.6273 0.6359
Top 50 % exemplars 0.5948 0.6340
Top 80 % exemplars 0.5612 0.6355

Compound Prototype

0.4152

Table 4.2: Spearman Correlations of Model predictions with Human Pre-
dictions

method results in the generation of a very large number of clusters, some

of which refer to the same word usage with subtle differences. Hence, our

future work focuses on a selection process that chooses multiple relevant

clusters of a constituent word. Additionally, our ongoing work suggests that

the use of verbs as features in the graph creation process (section 4.2.1.1)

causes the inclusion of noisy edges and results in worse clustering.

Our evaluation also shows that Dynamic Prototypes provide a better se-

mantic composition than Static Multi Prototypes. The main reason for this

result stems from the fact that Dynamic Prototypes explicitly identify the

relevant usages of a constituent word with respect to the other constituent

and vice versa, without having to deal with a set of issues that affect the

performance of Static Multi Prototypes such as the clustering and the sense

selection process.
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The performance of Compound Prototype is lower than the compositional

models. The reason could be due to the data sparsity. Data sparsity is

known to be a major problem for modelling the meaning of compounds. In

a way, the results are encouraging for compositional models.

In all these models, the composition function MULTIPLICATION gave a

better performance than ADDITION.

4.6 Summary

This chapter presented two methods for dealing with polysemy when mod-

eling the semantics of a noun-noun compound. The first one represents

senses by creating static multi prototype vectors, while the second represents

context-specific sense of a word by generating a dynamic prototype vector.

Our experimental results show that: (1) sense disambiguation improves se-

mantic composition, and (2) dynamic prototypes are a better representation

of senses than static multi prototypes for the task of semantic composition.

Future direction of this work include using all or some of the multiple static

prototypes similar to [Reisinger and Mooney, 2010] rather than selecting a

single prototype for composition. This gives a better idea if at all static

prototypes are useful for composition. It will also be interesting to test

Dynamic prototypes on the traditional word sense disambiguation tasks.

Dynamic prototypes present a different mechanism for sense representation

unlike traditional methods.

In the coming chapters, we will present additional experiments with Dy-

namic prototypes on other evaluation tasks presented in Chapter 2. In the

conclusions chapter, we present a bigger picture on the possible reasons why

dynamic prototypes perform better than static prototypes.





Chapter 5

Compositionality Detection

with Dynamic Prototypes

In the previous chapter, we pointed out that polysemy is a problem in CDS

models, and showedDynamic Prototypes improve the performance of phrasal

similarity based composition task by performing sense disambiguation. In

this chapter, we will discuss the problems due to polysemy in compositional-

ity detection methods, and experiment with dynamic prototypes for improv-

ing compositionality detection. We participated with dynamic prototype-

based systems in the ACL 2011 shared task on compositionality detection

[Biemann and Giesbrecht, 2011]. Our systems were ranked the best in two

evaluation criteria and the second best in two other evaluation criteria. The

organizers Biemann and Giesbrecht [2011] claimed our system as the most

robust among all the participating systems.

5.1 Problems due to polysemy in Compositional-

ity Detection

Distributional methods of compositionality detection make use of both dis-

tributional hypothesis [Harris, 1954] and the principle of compositionality

[Partee, 1995, page. 313] to detect compositionality. The idea is described

in the following paragraphs.

71
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The distributional hypothesis (dh) states that words that occur in similar

contexts tend to have similar meanings. Vector space model (vsm) described

in Section 1.4.2 is based on this hypothesis that the similarity between two

meanings is the closeness (proximity) between the vectors. A compound

word can be represented as a co-occurrence vector using all the corpus in-

stances where the compound occurs. This is one way of representing the

meaning of a compound.

The other way of representing the meaning of a compound is based on the

principle of semantic compositionality (psc). psc states that the meaning

of a compound word is a function of, and only of, the meaning of its parts

and the way in which the parts are combined. The composition functions

described in Section 4.3 are based on this principle. If the meaning of a part

is represented in a vsm using the distributional hypothesis, then the principle

can be applied to compose the distributional behaviour of a compound word

from its parts without actually using the corpus instances of the compound.

We refer to this as a psc-based vector. So a psc-based is composed of

component dh-based vectors.

Both of these two mechanisms are capable of determining the meaning vec-

tor of a compound word. For a given compound, if a dh-based vector and a

psc-based vector of the compound are projected into an identical space, one

would expect the vectors to occupy the same location i.e. both the vectors

should be nearly the same. However the principle of semantic compositional-

ity does not hold for non-compositional compounds, which is actually what

the existing vsms of compositionality detection exploit [Giesbrecht, 2009;

Katz and Giesbrecht, 2006; Schone and Jurafsky, 2001]. The dh-based and

psc-based vectors are expected to have high similarity when a compound is

compositional and low similarity for non-compositional compounds.

All these methods represent a word by a single prototype vector conflating all

its corpus instances. These prototype-based vectors do not distinguish the

instances according to the senses of a target word. Since most compounds

are less ambiguous than single words, there is less need for distinguishing

instances in a dh-based prototype vector of a compound. However the

constituent words of the compound are more ambiguous. When dh-based

vectors of the constituent words are used for composing the psc-based vector

of the compound, the resulting vector may contain instances and therefore
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contexts, that are not relevant for the given compound. These noisy contexts

effect the similarity between the psc-based vector and the dh-based vector

of the compound. Basing compositionality judgments on a such a noisy

similarity value is not reliable.

In this chapter, we address this problem of polysemy of constituent words by

building compositionality detection models using the Dynamic Prototypes

proposed in the previous chapter. We have evaluated our models on the

validation data released in the shared task [Biemann and Giesbrecht, 2011].

Based on the validation results, we have chosen three systems for public

evaluation and participated in the shared task [Biemann and Giesbrecht,

2011].

5.2 Related Work

Let w1w2 be a compound with constituent words w1 and w2.
−→
w1,

−→
w2 and

−→
w3 be the co-occurrence vectors of w1, w2 and w1w2 respectively built from

a corpus. sim denotes cosine similarity. As described above, most distribu-

tional models for compositionality detection measure the similarity between

the distributional vector
−−−−→
w1w2 of the compound and the composed vector

−→
w1⊕

−→
w2, where ⊕ denotes a compositionality function. If the similarity is

high, the compound is treated as compositional or else non-compositional.

Giesbrecht [2009]; Katz and Giesbrecht [2006]; Schone and Jurafsky [2001]

obtained the compositionality vector of w1w2 using vector addition a
−→
w1 +

b
−→
w2 (refer equation 4.2). In this approach, if sim(

−→
w1⊕

−→
w2,
−−−−→
w1w2) > γ, the

compound is classified as compositional, where γ is a threshold for deciding

compositionality. Global values of a and b were chosen by optimizing the

performance on the development set. It was found that no single threshold

value γ held for all compounds. Changing the threshold alters performance

arbitrarily. This might be due to the polysemous nature of the constituent

words which makes the composed vector
−→
w1⊕

−→
w2 filled with noisy contexts

and thus making the judgment unpredictable.

In the above model, if a=0 and b=1, the resulting model is similar to that of

Baldwin et al. [2003]. They also observe similar behaviour of the threshold

γ. We try to address this problem by addressing the polysemy in vsms using
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dynamic prototypes.

Bannard et al. [2003]; McCarthy et al. [2003] observed that methods based

on distributional similarities between a phrase and its constituent words help

when determining the compositionality behaviour of phrases. We therefore

also use evidence from the similarities between each constituent word and

the compound.

5.3 Dynamic Prototype-based Compositionality De-

tection Models

Our approach works as follows. Firstly, given a compound w1w2, we build

its dh-based prototype vector w1w2 from all its corpus instances. Secondly,

we build the dynamic prototypes
−−−→
w1w2 and

−−−→
w2w1, which represent sense

specific prototypes relevant in the given context (for each word in a phrase,

other constituent word is its context). Using these dynamic prototypes,

we build the psc-based composed vector of w1w2 using composition func-

tions. The vector similarities between dh and psc based vectors are used

for compositionality detection.

5.3.1 Vector Space Model

Our vector space model is similar to as described in section 1.4.2. The

only difference is that instead of using 10000 top frequent content words,

we used only top 2000 top frequent content words to make our models run

faster.
−−−−→
w1w2 is built in this vsm using all its corpus instances. In addition,

the exemplars of w1 and w2 are also represented in this vsm. Using these

exemplars, the dynamic prototypes
−−−→
w1w2 and

−−−→
w2w1 are built as described

in section 4.2.2.1. These vectors are used for composition.

5.3.2 Building Compositional Vectors

We use the compositionality functions, simple addition and simple multi-

plication to build compositional vectors (Section 4.3). In model addition,

a
−→
w1 + b

−→
w2, all the previous approaches use static values of a and b.
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Instead, we use dynamic weights computed from the participating vectors

using a = sim(
−−−−→
w1w2,

−→
w1)

sim(
−−−−→
w1w2,

−→
w1)+sim(

−−−−→
w1w2,

−→
w2)

and b = 1 − a. These weights differ

from compound to compound.

5.3.3 Compositionality Judgment

To judge if a compound is compositional or non-compositional, previous

approaches (see Section 5.2) base their judgment on a single similarity value.

As discussed, we base our judgment based on the collective evidences from

all the similarity values using a linear equation of the form

α(
−−−→
w1w2,

−−−→
w2w1) = a0 + a1.sim(

−−−−→
w1w2,

−−−→
w1w2)

+ a2.sim(
−−−−→
w1w2,

−−−→
w2w1) (5.1)

+ a3.sim(
−−−−→
w1w2, a

−−−→
w1w2 + b

−−−→
w2w1)

+ a4.sim(
−−−−→
w1w2,

−−−→
w1w2

−−−→
w2w1)

where the value of α denotes the compositionality score. The range of α is

in between 0-100. If α ≤ 34, the compound is treated as non-compositional,

34 < α < 67 as medium compositional and α ≥ 67 as highly compositional.

The parameters ai’s are estimated using ordinary least square regression by

training over the training data released in the shared task [Biemann and

Giesbrecht, 2011]. For the three categories – adjective-noun, verb-object

and subject-verb – the parameters are estimated separately.

Note that if a1 = a2 = a4 = 0, the model bases its judgment only on

addition. Similarly if a1 = a2 = a3 = 0, the model bases its judgment only

on multiplication.

We also experimented with combinations such as α(
−−−→
w1w2,

−→
w2) and α(

−→
w1,
−−−→
w2w1)

i.e. using refined vector for one of the constituent word and the unrefined

prototype vector for the other constituent word.
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5.3.4 [Biemann and Giesbrecht, 2011] Shared Task Dataset

Biemann and Giesbrecht [2011] prepared a compositionality dataset using

Mechanical Turk. The dataset contains 144 ADJ-NN, 74 V-SUBJ, 133 V-

OBJ phrases marked with compositionality score. Each phrase is annotated

by 4 Amazon Mechanical Turkers. Each turker is presented with 4-5 ran-

dom sentences containing a target phrase and the annotator annotates the

compositionality score in the range of 0-10. Scores from all the annotators

are averaged for each phrase and the final score is normalized in the range

of 0-100.

In addition, phrases are divided into three classes based on the composition-

ality score - high in compositional (score > 75), medium in compositional (62

> score > 38) and low in compositional (25 > score > 0). These phrases are

labeled with corresponding class labels, also called as coarse labels. There

are 102 ADJ-NN, 56 V-SUBJ, 96 V-OBJ phrases which have scores in the

defined score range. All other phrases are not classified and are not included

in evaluation for coarse-grained labels.

The final dataset is divided into 40% training, 10% validation and 50% test

datasets.

5.3.5 Selecting the best model

To participate in the shared task, we have selected the best performing

model by evaluating the models on the validation data released in the shared

task. Table 5.1 displays the results on the validation data. The average

point difference (APD) is calculated by taking the average of the difference

in a model’s score α and the gold score annotated by humans, over all

compounds. The lower the APD score, the better is the model. Table 5.1

also displays the overall accuracy of coarse grained labels – low, medium

and high.

Best performance for verb(v)-object(o) compounds is found for the combi-

nation α(
−→
vo,
−→
ov) of Equation 5.1. For subject(s)-verb(v) compounds, it is

for α(
−→
sv,
−→
vs) and a3 = a4 = 0. For adjective(j)-noun(n) compounds, it is

α(
−→
jn ,−→n ). We are not certain of the reason for this difference, perhaps there

may be less ambiguity of words within specific grammatical relationships
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Model APD Acc.

Dyn-Best 13.09 88.0
Sta-Addn 15.42 76.0
Sta-Mult 17.52 80.0
Sta-Best 15.12 80.0

Table 5.1: Average Point Difference (APD) and Coarse Grained Accuracy
(Acc.) of Compositionality Judgments on validation data

or it may be simply due to the actual compounds in those categories. In

ADJ-NN, it may be the case that ADJ is not a good disambiguator of NN

whereas NN is a good disambiguator of ADJ. We combined the outputs of

these category-specific models to build the best model Dyn-Best.

For comparison, results of standard (static) models prototype addition (Sta-

Addn) and prototype-multiplication (Sta-Mult) are also displayed in Table

5.1. Sta-Addn can be represented as α(
−→
w1,
−→
w2) with a1 = a2 = a4 = 0.

Sta-Mult can be represented as α(
−→
w1,
−→
w2) with a1 = a2 = a3 = 0. Sta-Best

is the best performing model in prototype-based modeling. It is found to be

α(
−→
w1,
−→
w2). (Note: Depending upon the compound type, some of the ai’s

in Sta-Best may be 0).

Overall, dynamic prototype-based modeling excelled in both the evaluations,

average point difference and coarse-grained label accuracies. The systems

Dyn-Best and Sta-Best were submitted for public evaluation in the shared

task. All the model parameters were estimated by regression on the task’s

training data separately for the 3 compound types as described in Section

5.3.3 in order to maximize performance.

5.4 Shared Task Results

Table 5.2 displays Spearman ρ and Kendalls τ correlation scores of all the

models. TotPrd stands for the total number of predictions. Rand-Base is

the baseline system which randomly assigns a compositionality score for a

compound. Our model Dyn-Best was the best performing system compared

to all other systems in this evaluation criteria. SharedTaskNextBest is the

next best performing system apart from our models. Due to lemmatization

errors in the test data, our models could only predict judgments for 169
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TotPrd Spearman ρ Kendalls τ

Rand-Base 174 0.02 0.02
Dyn-Best 169 0.35 0.24
Sta-Best 169 0.33 0.23
SharedTaskNextBest 174 0.33 0.23

Table 5.2: Correlation Scores

All ADJ-NN V-SUBJ V-OBJ

Rand-Base 32.82 34.57 29.83 32.34
Zero-Base 23.42 24.67 17.03 25.47
Dyn-Best 16.51 15.19 15.72 18.6
Sta-Best 16.79 14.62 18.89 18.31
SharedTaskBest 16.19 14.93 21.64 14.66

Table 5.3: Average Point Difference Scores

out of 174 compounds.

Table 5.3 displays average point difference scores. Zero-Base is a baseline

system which assigns a score of 50 to all compounds. SharedTaskBest is the

overall best performing system. Dyn-Best was ranked second best among

all the systems. For ADJ-NN and V-SUBJ compounds, the best performing

systems in the shared task are Sta-Best and Dyn-Best respectively. Our

models did less well on V-OBJ compounds, and exploring the reasons for

this will be our future work.

Table 5.4 displays coarse grained scores. As above, similar behaviour is

observed for coarse grained accuracies. Most-Freq-Base is the baseline sys-

tem which assigns the most frequent coarse-grained label for a compound

based on its type (ADJ-NN, V-SUBJ, V-OBJ) as observed in training data.

Most-Freq-Base outperforms all other systems.

All ADJ-NN V-SUBJ V-OBJ

Rand-Base 0.297 0.288 0.308 0.30
Zero-Base 0.356 0.288 0.654 0.25
Most-Freq-Base 0.593 0.673 0.346 0.65
Dyn-Best 0.576 0.692 0.5 0.475
Sta-Best 0.567 0.731 0.346 0.5
SharedTaskBest 0.585 0.654 0.385 0.625

Table 5.4: Coarse Grained Accuracy
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5.5 Summary

In this chapter, we examined the effect of polysemy in compositional models

of compositionality detection. We experimented with dynamic prototypes to

eliminate noisy contexts which arrive due to polysemy. Overall, the perfor-

mance of the dynamic prototype-based models of compositionality detection

is found to be superior to standard (static) prototype-based models. This

shows 1). polysemy is a problem for compositionality detection 2). Dynamic

Prototypes perform better than their static counterparts.

In the next chapter, we will evaluate dynamic prototypes on our final eval-

uation metric, namely the GPV metric (Section 2.3).





Chapter 6

Dynamic Prototypes on an

Internal Evaluation Task

In the previous chapters, we discussed the effect of polysemy in composi-

tion models, and demonstrated dynamic prototypes are better at dealing

with polysemy by evaluating compositional models on external tasks such

as phrasal similarity and compositionality detection. In this chapter, we

will evaluate dynamic prototype based composition models on an internal

evaluation task, the similarity with Gold Phrasal Vectors (GPV metric)

introduced in section 2.3.

In the following sections we will describe our experimental setup, evaluation

dataset, and present our evaluation results.

6.1 Experimental Setup

We use the vector space model described in section 1.4.2 in all our experi-

ments described in this chapter. Let w1w2 be a compound with constituent

words w1 and w2. The prototype vectors
−→
w1,

−→
w2,

−−−−→
w1w2 are built using

corpus instances of w1, w2 and w1w2 respectively.
−−−−→
w1w2 is the gold phrasal

vector. The dynamic prototypes
−−−→
w1w2 and

−−−→
w2w1 are also built as described

in section 4.2.2.1.

Using the composition models, simple addition (ADDITION) and simple

81
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multiplication (MULTIPLICATION), described in section 4.3, we construct

the composed vectors
−−−−−−−→
⊕(w1w2) of w1w2. We aim to test two models -

a static prototype model (STATIC) and a dynamic prototype model (DY-

NAMIC).

In the model STATIC, we build composed vector
−−−−−−−→
⊕(w1w2) using

−→
w1⊕

−→
w2

from the prototypes
−→
w1 and

−→
w2, where ⊕ represents either the composition

operator addition or multiplication. Similarly in the model DYNAMIC, we

build
−−−−−−−→
⊕(w1w2) using

−−−→
w1w2 ⊕

−−−→
w2w1 from the dynamic prototypes

−−−→
w1w2

and
−−−→
w2w1.

For each model, we measure its GPV metric (Equation 6.1) over n phrases

P1, P2, P3 . . . , Pn. Higher the value, better is the compositional model.

∑n
1 sim(

−→
Pi,
−−−→
⊕(Pi) )

n
(6.1)

6.2 Dataset

It is unclear if compositional models are expected to compose the semantics

of non-compositional and medium compositional phrases. Instead of deal-

ing with all types of phrases, for this task, we only deal with compositional

phrases to make credible observations from the results. In Chapter 3 we

developed a new compound noun dataset annotated with compositionality

scores in the range 0-5 (refer to Table 3.2). We only take the compounds

whose phrasal composition score is greater than 3 and treat them as com-

positional compounds (all the compounds above and including face value in

Table 3.2). The filtered dataset consists of 37 compound nouns. We evaluate

above models on this filtered dataset.

6.3 Results and Discussion

Table 6.1 displays the evaluation results of models STATIC and DYNAMIC

on the above dataset. In the model DYNAMIC, we have experimented dif-

ferent percent exemplar activations (refer Section 4.2.2.1 and Section 4.4.3).
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ADDITION MULTIPLICATION

Model STATIC 0.4639 0.4697

Model DYNAMIC

Top 2 % exemplars 0.4844 0.3451
Top 5 % exemplars 0.5162 0.3777
Top 10 % exemplars 0.5313 0.4005
Top 20 % exemplars 0.5328 0.4250
Top 50 % exemplars 0.5235 0.4439
Top 70 % exemplars 0.5108 0.4497

Table 6.1: GPV metric results

With respect to the composition function ADDITION, model DYNAMIC

outperforms model STATIC with 14.85% additional improvement, showing

that dynamic prototypes are better than static prototypes for semantic com-

position. The models perform their best at a= 0.45 and b= 0.55, where a

and b are the scalars in the addition composition function a
−→
w1 + b

−→
w2. In

the model DYNAMIC, the best performance is achieved by selecting the top

20% exemplars and the next best being top 10%. This observation is slightly

similar to as observed in Chapter 4 for the task of phrasal similarity. With

increase in number of exemplars after a certain point (≈ 20% activation),

the performance starts decreasing, which means irrelevant exemplars start

adding noisy contexts.

With respect to composition function MULTIPLICATION, the results are

rather unexpected. STATIC model performs better than DYNAMIC. With

increase in number of exemplars, the performance increases. We think the

reason behind lower performance of DYNAMIC model is because of the co-

sine similarity metric. In the dynamic prototypes (
−−−→
w1w2 and

−−−→
w2w1) most

vector components have zero frequency compared to static prototypes (
−→
w1

and
−→
w2). When an operator like vector multiplication is performed be-

tween two dynamic prototypes, many more components will become zero in

the resultant composition vector
−−−→
w1w2

−−−→
w2w1. On the other hand, the co-

occurrence vector of the compound
−−−−→
w1w2 and the composed vector

−→
w1
−→
w2

have many non-zero components (due to noise). In the study of Weeds et

al. [2004], cosine similarity is known to prefer collocates which have high

frequencies (which equivalently means collocates having many non-zero vec-

tor components), which might be the reason of
−−−−→
w1w2 preferring

−→
w1
−→
w2 over

−−−→
w1w2

−−−→
w2w1.



84 6. Dynamic Prototypes on an Internal Evaluation Task

6.4 Summary

In this chapter, we experimented with dynamic prototypes in comparison

with standard prototypes on an internal evaluation task of semantic com-

position. Overall, the performance of additive dynamic prototype-model

outperformed all other models. Therefore, dynamic prototypes are the win-

ner in this evaluation metric.



Chapter 7

Discussion

The dominant theme of the thesis has been to exlpore the hypothesis – sense

disambiguation benefits compositional distributional semantic (CDS) models.

Our experimental results (Chapters 4, 5 and 6) on three compositionality

based evaluation tasks (Chapter 2) confirm that sense disambiguation im-

proves the performance of CDS models.

We first started off with two simple compositional models (Chapter 3) –

constituent-based (inspired by our study on human annotations) and com-

position function based models (inspired from existing research) – to assess

the performance of CDS models without any sense disambiguation. Based

on the relative performance between the two models, we have chosen com-

position function models as our main framework to test our hypothesis.

We have proposed two types of sense disambiguation methods (Chapter 4),

static multi prototype-based and dynamic prototype-based . On the task of

phrasal similarity, compositional models using dynamic prototypes are found

to outperform standard (single) prototypes which do not perform any sense

disambiguation. This strengthens our hypothesis that sense disambiguation

leads to better composition. Surprisingly, the performance of static multi

prototypes is found to be worse than standard prototypes, showing that tra-

ditional methods of sense disambiguation are not suitable for compositional

models (as is the case with other tasks [Navigli, 2009]). In the later experi-

ments, we only evaluated dynamic prototypes in comparison with standard

prototypes, discarding static multi prototypes.
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Our additional experiments on compositionality detection (Chapter 5) and

an internal evaluation task (Chapter 6) reveal that dynamic prototypes are

better than standard prototypes which do not perform any disambiguation,

strengthening our hypothesis further.

We therefore conclude the following statements from this thesis.

• Sense disambiguation benefits compositional distributional models.

• Dynamic prototypes are better than static (multi and single) proto-

types for compositional tasks.

In the following sections, based on the observations from our experiments,

we discuss subtle aspects of dynamic prototypes in comparison with static

prototypes, the composition function simple addition in comparison with

simple multiplication, and external evaluation tasks in comparison with in-

ternal evaluation tasks.

7.1 Dynamic vs Static Prototypes

Why do Dynamic Prototypes perform better than Static Prototypes on dif-

ferent evaluation tasks? Perhaps it could be due to the difference in the

features activated by different methods. A dynamic prototype of a word

in a given context, activate all the fine grained features that are common

between the word and the context along with the features of the word that

co-occur with the commonly shared features. In the static single prototypes

(standard prototypes) all the features of a word are used for composition and

the composition model has to deal with noisy features by itself. While static

multi prototypes try to deal with noise, they overdo it by throwing away

fine grained features that might be relevant. In static multi prototypes, each

prototype represents a spectrum of meaning (a cluster of instances) which

in turn represents certain dominant features. When one of these prototypes

is selected for composition, several other features, though important in the

given context but are not represented by the cluster, are left behind. A

better way would be to activate many clusters relevant to the given context.

However, most common clustering algorithms are hard classification meth-

ods based on coarse-grained features whereas from dynamic prototypes we

understand that composition models benefit from fine grained features.
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Recently, Reisinger and Mooney [2011] experimented with soft clustering

methods based on fine grained features and evaluated them on various dis-

tributional tasks. In this method, every pair of clusters may share a different

subset of features and a cluster represents a fine grained usage of a word.

In the future, it might be fruitful to perform composition using static multi

prototypes built using soft clustering techniques combined with multiple

prototype activation. It would also be interesting to study the performance

of dynamic prototypes represented by coarse grained topics obtained from

techniques like LDA [Blei et al., 2003].

In the current work, we focused only on phrases with length two. Also, our

methods are not highly sensitive to word order (though slightly sensitive in

the implementation). A challenging direction of this work would be to build

dynamic prototypes when the context size is greater than one, to account

for word order, and to use structured vector space models. The option

of building dynamic prototypes from standard prototypes directly without

using exemplars can also be explored.

7.2 Simple Addition vs Simple Multiplication

In all our experiments, we have used simple addition and simple multipli-

cation composition functions. While simple addition performed better on

compositionality detection (Table 3.6) and internal evaluation (Table 6.1)

tasks, simple multiplication performed better on phrasal similarity (Table

4.2). Similar results are observed by earlier researchers. Giesbrecht [2009]

and Guevara [2011] observed addition to perform better than multiplica-

tion on compositionality detection and internal evaluation tasks respectively,

whereas Mitchell and Lapata [2010] observed multiplication to perform bet-

ter on phrasal similarity. It is hard to decide a winner among addition

and multiplication. From our results, we observe that additive models are

superior to multiplicative models if sense-based prototypes are used for com-

position, else multiplicative models are superior. The composition function

multiplication acts as a disambiguation operator, and if sense based proto-

types are used for composition, the operation becomes severe filtering out

relevant features too.
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We preferred to experiment with addition and multiplication over complex

composition operators [Widdows, 2008] since addition and multiplication

are found to competitive [Giesbrecht, 2009] and are also easy to interpret.

Some composition functions inherently include noise removal (sense disam-

biguation) e.g. [Erk and Padó, 2008] use selectional preferences of words

participating in the composition. With our approach of dynamic prototypes,

composition functions have an advantage of not worrying much about pol-

ysemy of participants, and thus can concentrate on the main composition

task.

7.3 External vs Internal Evaluation tasks

In this thesis, all our observations are based on three compositionality based

evaluation tasks (Chapter 2), phrasal similarity and compositionality detec-

tion tasks being external, and GPV metric being internal evaluation task.

While external tasks require human annotation, internal task requires large

data. We think external tasks are more reliable than internal task since in-

ternal task requires gold phrasal vectors which are difficult to obtain. Gold

phrasal vectors may not represent the true semantics of phrases (as is the

case observed with compound prototype model in Section 4.4.3). As the

length of the phrase increases, data becomes sparser and sparser making it

infeasible to build gold phrasal vectors.

7.4 Conclusions

The main contribution of the thesis are the experiments to strengthen the

hypothesis that sense disambiguation benefits compositional distributional

models. We introduced the Dynamic Prototypes which represent context

sensitive meaning of words. Dynamic prototypes are found to be better

than conventional representation of word senses. Using dynamic prototypes

we were able to build better systems for compositionality detection and

phrasal similarity compared to the existing systems evaluated in this thesis.

The other main contribution of our work is the compositionality dataset,

which exhibits the continuum of compositionality without any bias to spe-
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cific compositional classes. Our study on this dataset revealed interesting

facts about the relation between the semantics of constituent words and

phrases.

Until now, distributional models of compositional semantics focused on mod-

eling phrasal semantics. Bigger challenges are posed at higher levels like

sentential and document level semantics. We believe that sense disambigua-

tion using dynamic representation of meaning is a fruitful direction to look

at for building these systems.
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cient algorithm for building a distributional thesaurus (and other sketch

engine developments). In Proceedings of the 45th Annual Meeting of the

ACL on Interactive Poster and Demonstration Sessions, ACL ’07, pages

41–44, Stroudsburg, PA, USA, 2007. Association for Computational Lin-

guistics.

[Sag et al., 2002] Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann A.

Copestake, and Dan Flickinger. Multiword expressions: A pain in the

neck for nlp. In Proceedings of the Third International Conference on

Computational Linguistics and Intelligent Text Processing, CICLing ’02,

pages 1–15, London, UK, 2002. Springer-Verlag.

[Sahlgren, 2006] Magnus Sahlgren. The Word-Space Model: Using distri-

butional analysis to represent syntagmatic and paradigmatic relations be-

tween words in high-dimensional vector spaces. PhD thesis, Stockholm

University, 2006.

[Schone and Jurafsky, 2001] Patrick Schone and Daniel Jurafsky. Is

knowledge-free induction of multiword unit dictionary headwords a solved

problem? In Proceedings of the Conference on Empirical Methods in Nat-

ural Language Processing, EMNLP ’01, 2001.

[Schütze, 1998] Hinrich Schütze. Automatic Word Sense Discrimination.

Computational Linguistics, 24(1):97–123, 1998.

[Smith and Medin, 1981] Edward E. Smith and Douglas L. Medin. Cate-

gories and concepts / Edward E. Smith and Douglas L. Medin. Harvard

University Press, Cambridge, Mass. :, 1981.



98 BIBLIOGRAPHY

[Snow et al., 2008] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and

Andrew Y. Ng. Cheap and fast—but is it good?: evaluating non-expert

annotations for natural language tasks. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing, EMNLP ’08, pages

254–263, Stroudsburg, PA, USA, 2008. Association for Computational

Linguistics.

[Socher et al., 2011] Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng,

and Christopher D. Manning. Parsing Natural Scenes and Natural Lan-

guage with Recursive Neural Networks. In Proceedings of the 26th Inter-

national Conference on Machine Learning (ICML), 2011.

[Sporleder and Li, 2009] Caroline Sporleder and Linlin Li. Unsupervised

recognition of literal and non-literal use of idiomatic expressions. In Pro-

ceedings of the 12th Conference of the European Chapter of the Associa-

tion for Computational Linguistics, EACL ’09, pages 754–762, Strouds-

burg, PA, USA, 2009. Association for Computational Linguistics.

[Titone and Connine, 1999] Debra A. Titone and Cynthia M. Connine. On

the compositional and noncompositional nature of idiomatic expressions.

Journal of Pragmatics, 31(12):1655 – 1674, 1999. Literal and Figurative

Language.

[Turney and Pantel, 2010] Peter D. Turney and Patrick Pantel. From fre-

quency to meaning: Vector space models of semantics. JOURNAL OF

ARTIFICIAL INTELLIGENCE RESEARCH, 37:141, 2010.

[Venkatapathy and Joshi, 2005] Sriram Venkatapathy and Aravind K.

Joshi. Measuring the relative compositionality of verb-noun (v-n) col-

locations by integrating features. In Proceedings of the joint conference

on Human Language Technology and Empirical methods in Natural Lan-

guage Processing, pages 899–906, Vancouver, B.C., Canada, 2005.

[Weeds et al., 2004] Julie Weeds, David Weir, and Diana McCarthy. Char-

acterising measures of lexical distributional similarity. In Proceedings of

Coling 2004, pages 1015–1021, Switzerland, 2004. COLING.

[Widdows, 2008] Dominic Widdows. Semantic vector products: Some initial

investigations. In Second AAAI Symposium on Quantum Interaction,

Oxford, March 2008.


