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Atom interferometry allows for new precision limits in measurement and a key com-
ponent of it is the beam-splitter. In this thesis we look at the properties of an all
optical beam-splitter, which is created by the overlap of two Gaussian laser beams,
which also function as waveguides for the Bose-Einstein condensate. For this mainly
the split-step Fourier method is used to model the propagation of a low density Bose-
Einstein condensate of atoms. The two main areas of interest are the splitting and
recombination properties.
The splitting is studied both in two and one dimensions. For the one-dimensional
case both standing and propagating waves are used to find the ideal splitting con-
ditions of a balanced splitting and transmission. The result of these methods are
in general agreement with the exception that for the propagating wave some of the
atoms can become localised inside the beam-splitter. For the propagation it was
found that the splitting is not perfectly coherent as the outputs are slightly deformed.
However, when looking at the two-dimensional case we see that the splitting is not
even close to being coherent. This is because the beam-splitter excites the incom-
ing wave into higher transverse modes of the waveguides. To compensate for this
the depth of the waveguides was lowered and the width narrowed to reduce the
potential kinetic energy that the atoms could acquire and to increase the separation
between the eigenstates to lower the probability of excitation into higher modes, re-
spectively. Nonetheless, these investigations improved the splitting balance but it
is still not coherent. Another method investigated was the introduction of a third
laser which acts as a filling to reduce the depth of the potential well where the lasers
generate the beam-splitter. This approach does not improve the splitting.
Hence instead of recombining single mode waves we used a multimode approach.
For this we found that the mirror position is crucial for certain parameters as the lon-
gitudinal momentum is not necessarily the same in the reflection and transmission
waveguide. Our investigations have generated interference fringes in this model
system with a fractional height up to 33%.
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Chapter 1

Introduction

It has been nearly a century since Schrödinger published his paper on the quanti-
sation of eigenvalue problems[1], which revolutionised our perception of the fun-
damental behaviour of particles. Since then our knowledge of such fundamental
behaviour has increased drastically and is now close to creating practical devices
outside the laboratories in the areas such as quantum computing[2–4], quantum
imaging[5–7], quantum communication[4, 8] and quantum metrology[9–14].
A very important discovery and achievement has been that of the Bose-Einstein con-
densate(BEC), which is the state of matter where all integer spin atoms, bosons, oc-
cupy the ground state, which can not happen for half spin atoms called fermions
as they are bound by the Pauli exclusion principle. It was first predicted by A. Ein-
stein[15] using the statistical tool from S. Bose[16]. The first experimental realisation
of it was done by Anderson et al. using using Rb[17], which was achieved by a mix-
ture of laser and evaporative cooling. Beside the case for rubidium there are have
been other atoms used for the creation of a BEC, such as Na[18], Li[19] and H[20].
Having all of the atoms in a single momentum state gives rise to incredible coherence
for atoms and thus the desire to exploit this behaviour to create the atom analogue to
the laser, the atom laser, producing a coherent atom beam. It was firstly realised by
Mewes et al.[21], which creates the atom-laser by using radio frequency output cou-
pling. This frequency is applied to transition from a state that is trapped inside the
potential to one that is free, which then could get pulled away by gravity or some
other external force. The pulses for this atom laser come from fluctuations of the
trap, which were compensated by using radio frequency pulses, reducing the coher-
ence length, which is the distance over which the atom laser stays coherent. These
issue can be fixed by using a very stable trap, which was demonstrated by Bloch et
al.[22]. Besides radio frequency output coupling, there exist others like the Raman
output coupling, which uses photon Raman transitions of the atoms and gives the
BEC a momentum kick. It was first achieved by Hagley et al.[23]. However, there
are still a major issues with the atom laser and that is that eventually the BEC runs
out during the output coupling process and therefore it is necessary to develop a
dumping method to have a continuous atom laser[24, 25].
Such atom lasers are especially useful for atom interferometry, which a sub-topic of
quantum metrology which utilises coherent manipulation of both the translational
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and internal state of the matter wave[26, 27]. Atom interferometers are devices that
are able to measure the interference patterns of matter waves and thus allow the user
to study any external forces that generate phase shift in the interferometer. This is
done by splitting up the incoming matter wave beam through a beam-splitter and
letting it evolve along at least two different paths, which are recombined in the end.
The different evolution of the paths will create the phase difference which can be
measured in the intensity pattern. From this interference pattern we can deduce
conclusions about the external forces. One of the earliest examples of matter-wave
interferometry was performed by Marton for electrons[28]. The first interferome-
ter for atoms followed later by Carnal et al. using a double slit [29] and Keith et
al. with three nano-structured gratings[30]. Atom interferometers have a high sen-
sitivity compared to their light counterparts due to the nature that atoms travel a
lot slower leaving them exposed to the external forces for longer[31]. Thus they
could be used to measure the rotation of the atom interferometer due to the phase
shifts between the two paths. Thus, they can make excellent gyroscopes for navi-
gation[32–34]. Another application is the study of gravity because each of the arms
could be subjected to different gravitational fields, which leads to a phase difference
between the two arms[35–41]. They could also be used to gain insight on funda-
mentals like dark matter[42], dark energy[43–46], gravitational waves [47] or funda-
mental constants[48]. One of the most important parts of an atom interferometer is
the beam-splitter, which can take many forms, like the splitting of a waveguide, a
nanostructure or of optical lattices[26, 27, 49–55].

1.1 Background

1.1.1 Bose-Einstein Condensate

The ideal BEC consists of integer spin atoms called bosons and has a thermodynam-
ical phase transition, which does not occur from particle interaction but from the
particle statistics, for our purposes we are only we are only going to discuss a homo-
geneous BEC in this thesis. The average number of atoms, 〈Nk〉, occupying a specific
state is given by Bose-Einstein distribution for non-degenerate energy levels results

〈Nk〉 =
1

eβ(εk−µ) − 1
, (1.1)

where

β =
1

kBT
, (1.2)

T is the temperature, kB is Boltzmann constant, εk is the energy of the specific state
and µ is the chemical potential of this many-particle system. This phase transition
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happens at the critical temperature,

Tc =
2π~2

kBm

( ρa
2.612

) 2
3
, (1.3)

where m is the mass of an atom and ρa is the density[56, 57]. The population of all
the excited states goes to zero at this temperature and the fraction of atoms in the
ground state reaches almost unity, Fig. 1.1, which results in the phase transition.
The number of atoms in the ground state for a homogeneous BEC is

〈N0〉
N

= 1−
(
T

Tc

) 3
2

, (1.4)

where N is the total number of atoms. The remarkable properties of the ideal BEC
are that the atoms do not interact with each other and are not governed by the Pauli
exclusion principle[56, 57]. Leading to the fact that all the particles in a BEC behave
essentially in the same way allowing one to create an atom laser, which can be used
for atom interferometry.
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FIGURE 1.1: Schematic one-dimensional depiction of the atom probability
densities that begin independently(A) and get cooled down. Cooling them
down increases their wavelength and thus they start overlapping(B). The fur-
ther cooled down it gets the bigger the overlap(C) until it goes below the

critical temperature and become a Bose-Einstein condensate(D).
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To create a BEC one needs to bring the atoms below the critical temperature. This
can be achieved by a combination of laser cooling and potential trapping. The first
step is to apply a laser towards the trapped atoms so that the emitted photons are
absorbed with a high percentage when the atoms are travelling in the opposite di-
rection of the photons instead of travelling in the same direction. These different
absorption rates are gained from the Doppler shift, where the photons moving in
the opposite direction get blue-shifted towards the atom’s resonance frequency and
the ones travelling in the same direction get red-shifted away[57–61], see Fig.1.2 .
However, there is a limit to this due to spontaneous emission of the excited atoms.
Thus this method can only reach temperatures of

TR =
~2k2

2mkB
, (1.5)

wherem is the mass of the atoms and k is the spontaneously emitted photon wavenum-
ber[62]. It is called the recoil temperature.
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FIGURE 1.2: These figure depict the process of laser cooling. The laser is so
detuned that atoms travelling in the same direction as the photon, red de-
tuned, are less likely to absorb the photon(A) while photons travelling in the
opposite direction have a higher absorption rate(B). When a blue detuned
photon is absorbed and the momentum of the atom is reduced(C). It then
spontaneously emits the photon in a random direction(D), on average reduc-

ing its overall velocity.

After laser cooling to TR, evaporative cooling is then effected by steadily reducing
the strength of the potential trap so that atoms with higher energy can escape the
trap until only atoms below the critical temperature remain trapped [56, 57]. How-
ever, this could take a considerable time. Hence, it is more common to induce the
evaporative process with a radio frequency to flip the spin of the atoms allowing
higher energy atoms to escape. The forming of the BEC can be seen in Fig. 1.3.
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(A) (B)

FIGURE 1.3: These figures show the trapped atoms in a one-dimensional po-
tential against the position(A) and how it start to evaporate when the bound-

ary is lowered(B) to create the BEC.

Lastly, the ideal BEC has no interaction with itself, though this is not the case for
a real one[63]. The BEC can then be used for the creation of an atom laser. By
output-coupling the BEC. There are several different ways to do this though only ra-
dio frequency and Raman output-coupling will be discussed here. Radio frequency
output-coupling works by switching a trapped mode inside the BEC to a free one,
which then get pulled away by a force, such as gravity. However, this method re-
quires the use of weak radio frequency fields, where the transition to the unbound
state goes via Zeeman transitions [25, 64], as BECs are generally trapped in magnetic
traps, which cause Zeeman splitting of levels.. For these weak fields the flux of the
atoms is roughly proportional to the field strength[65]. If the the field becomes too
strong bound states start to appear[66, 67]. Thus disabling the atom laser. Nonethe-
less, it is possible to use a strong field as shown by Bolpasi et al.[64], where they used
the field to deform the trap to let the atoms spill out of a hole, created by lowering
the potential height in the region of the hole. Another coupling method is the Ra-
man output-coupling, which is based on Raman transitions[23, 25, 68, 69]. For this
method two detuned lasers are pointed at the atoms where the first one excites an
atom from the ground state to an excited state, and the second one induces stimu-
lated emission to a lower state which is not trapped and from which it also gets a
momentum kick[25, 69].

1.1.2 Difference between Optics and Atom Optics

To understand the difference between light and atom interferometers we first need
to consider their underlying equations. The equations which govern the wave prop-
erties of light are Maxwell’s equations

∇ ·D (r, t) = ρe, (1.6)

∇ ·B (r, t) = 0, (1.7)



1.1. Background 31

∇×E (r, t) = −∂B (r, t)

∂t
, (1.8)

∇×H (r, t) = J (r, t) +
∂D (r, t)

∂t
, (1.9)

where E (r, t) is the electric field, B (r, t) is the magnetic flux density, D (r, t) is
the electric flux densityH (r, t) is the magnetic field, J is the electric current density
and ρe is the electric charge density. For a linear isotropic material they are related by
D (r) = εrε0E (r) and B (r) = µrµ0H (r), where ε0, εr, µ0 and µr are the vacuum
permittivity, relative permittivity, vacuum permeability and relative permeability,
respectively. These can be rewritten into the wave-equations for light

(
∇2 − n2

c2
0

∂2

∂t2

)
E (r, t) = 0, (1.10)

(
∇2 − n2

c2
0

∂2

∂t2

)
B (r, t) = 0, (1.11)

where n =
√
εrµr denotes the refractive index of the propagation medium, and c0

is the speed of light in vacuum[27]. The equation which governs the behaviour of
nonrelativistic matter waves is the Schrödinger equation

(
− ~2

2m
∇2 + V

)
ψ (r, t) = i~

∂

∂t
ψ (r, t) , (1.12)

withm being the mass of the atom and V being the potential. The difference between
the equations governing the electromagnetic wave and matter wave is the order of
time derivatives[27], which would suggest that matter and light wave behave fun-
damentally differently. However, for a time-independent problem, like the propaga-
tion of the matter wave through a time-independent potential V (r), the Schrödinger
equation can be simplified by substituting ψ(r, t) = ψ(r)e−i

Et
~ , E denoting the total

energy, which is used for time-independent problems set equal to a constant. Thus,
leaving us with the time-independent Schrödinger equation(

− ~2

2m
∇2 + V (r)− E

)
ψ(r) = 0. (1.13)

On the other hand using E (r, t) = E (r) e−iωt for linear polarised light gives(
∇2 +

n2ω2

c2

)
E (r) = 0. (1.14)

Thus time-independent matter waves behave similarly to time-independent light.
If identical boundary conditions are allied to time-independent matter waves and
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light wave problems, they will yield the same results. However, additional atomic
non-linearities, from self-interactions, can be rather larger than those of light. In
most media non-linear effects for light are negligible. This intrinsic non-linearity
of matter waves has a simple description in the region of weak interaction, which
is the case if the mean particle spacing is much larger than a, where a is the mean
scattering distance and ρ is the density. Its internal interaction can be modelled using
mean field theory and thus gives rise to the Gross-Pitaevskii equation[27, 63, 70](

− ~2

2m
∇2 + V (r, t) +

4π~a
m
|ψ(r, t)|2

)
ψ(r, t) = i~

∂

∂t
ψ(r, t). (1.15)

This is the Schrödinger equation with a nonlinear term describing the self-interaction
between the atoms. This equation is especially relevant for a BEC trapped in a po-
tential or waveguide. In the case where the BEC is free, the dispersion,due to the
standard Schroedinger evolution, is generally fast enough so that the self-interaction
can be neglected.

Optical Dipole Trap

When dealing with atoms one of the important aspects is to keep them confined to
be able to control them. There are several different ways to trap neutral atoms like
resonance or magnetic trapping[59, 69, 71–73]. The one that is going to be discussed
here is the optical dipole trap. This works by the creation of an induced electrical
dipole when the atoms are placed inside a laser beam. Due to this dipole the atoms
feel the potential

UODP (r) =
3πc2

0

2ω2
0

Γ

∆
I(r), (1.16)

where

∆ = ω − ω0, (1.17)

is the detuning of the laser with a driving frequency of ω from the resonant frequency
of the atom ω0. The damping rate for a two-level system is

Γ =
ω3

0

3πε0~c2
0

〈e|µ|g〉 , (1.18)

which is also the rate of spontaneous emission and can be approximated, where µ
is the dipole matrix element between the excited state |e〉 and the ground state |g〉.
Lastly, there is the intensity of the laser beam[72]

I(r) = 2ε0c0|E(r)|2, (1.19)
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If the light is far detuned into the red the potential will give rise to an attractive
potential while if it is detuned to the blue it will be reflective. Allowing it to be
used for a waveguide[74]. However, it should be noted that these waveguides have
the problem that they heat the atoms due to photon recoil from scattered laser light,
there are proposals and experiments to reduce this by introducing cooling lasers[75].

Beam-Splitter

BS

Input
Beam

Transmitted
Beam

Reflected
Beam

Vacuum
Input

FIGURE 1.4: Schematic of a beam-splitter

One of the most important operations in interferometry is the coherent splitting of
the incoming atom beams. This splitting is done via a beam-splitter, which splits the
incoming beam into at least two, see Fig. 1.4. The incoming wave into the beam-
splitter is in the transverse ground state of the waveguide, which is orthogonal to
the direction of the waveguide, and in the longitudinal momentum state k long the
waveguide direction, |g, k〉 while in the other is vacuum |0, 0〉. Our desire is to split
the beam coherently so that atoms occupy the transverse ground state and the lon-
gitudinal momentum state of their respected waveguide, such as

|g, k; 0, 0〉 → 1√
2

(|g, k; 0, 0〉+ |0, 0; g, k〉) , (1.20)

which clearly shows that occupied modes get entangled with the vacuum. For clas-
sical light interferometers this is easily achieved by the use of partially reflecting
mirrors. However, there is not such a convenient case for atom optics. Hence,
it is necessary to build an atomic beam-splitter using the diffraction properties of
waves, where diffraction describes how a the matter wave’s amplitude and phase
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are changed when it interacts with an object, as the early case of the double slit ex-
periment for electrons carried out by C. Jönsson demonstrates[76, 77]. Diffraction
gratings are periodic diffraction areas, which modulate the spatial components of
the propagating wave. Giving rise to constructive interference in a particular direc-
tion defined by the grating condition

mrλdb = d sin θn, (1.21)

where λdb = h
p is the deBroglie wavelength for a atom of the momentum p, d is the

grating spacing and mr is an integer specifying the diffraction order. There are a
generally speaking two types of grating with the first one being based on the mod-
ulation of the amplitude. An example of this would be a multi-slit nanostructure
for this case it is necessary that the deBroglie wavelength is bigger than the grating
spacing so that the diffraction happens from multiple slits[26, 27, 59, 78, 79]. The
other approach is to modulate the phases by keeping the wave together travelling
through the grating, where its phase is then modulated locally depending on the re-
gion of the grating. An example of this would be the optical lattice[26, 27, 51, 80–82].
These lattices are produced by the crossing of two light beams whose interference
with each other creates a standing wave with a reciprocal lattice vector G = k1 − k2

and G = 2π/d, where k1 is the wave vector of the first laser and k2 of the second
laser. Diffraction gratings create several different momentum components shifted
by

p = ±mr~G, (1.22)

[26, 27]. For an optical grating this can be understood to come from stimulated
emission, where the atom absorbs a photon from one of the beams and emits it into
the other one[59]. The light beams used to define the grating are classical beams, of
uncertain photon number.
Optical lattices function either as thick or thin optical devices and have thus different
scattering properties. In the case of thin gratings we can neglect the influence of the
lattice along the axis of propagation. In this limit the behaviour follows the grating
condition Eq. 1.21, where the diffraction splits the incoming wave into many mo-
mentum states and it is called Kapitza-Dirac diffraction[26, 27], see Fig. 1.5, which
was firstly observed for BECs by Ovchinnikov et al. [80]. However, it should be
noted that for matter waves their diffraction pattern can be blurred due to sponta-
neous emission from the atoms[59]. This can be mitigated by detuning the lasers
far from the resonance frequencies of the atoms, which leads also to a reduction of
interaction strength between the atoms and the lattice. This splitting is undesirable
for us as we only want two momentum states.
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FIGURE 1.5: Depiction of Kapitza-Dirac diffraction, which splits the incom-
ing atoms into several momentum states.

Hence we will focus on the thick optical lattices. For these lattices it its neces-
sary to consider the whole propagation of the beam. Due to the long interaction
time, atoms in them will undergo multiple optical transitions, where they experi-
ence Bragg diffraction if the potential of the lattice is weak in comparison to the
characteristic energy of the grating

EG =
~2G2

2m
, (1.23)

while the potential needs to be higher than this for channelling[26, 27], where the
atoms are guides through the optical lattice and interfere afterwards[26]. Continu-
ing, we will focus on the thick optical lattices which have Bragg scattering because
they are more suitable to work as a beam-splitter because we only want two output
states. The Bragg diffraction only occurs at specific angles, θB , which are defined by
the Bragg condition

mrλdB = 2dsinθB. (1.24)

If this condition is fulfilled the initial momentum from the propagating wave, pin,
is transferred to a new momentum state pin = pin + ~G[26, 27, 83]. This can also
occur for a higher order Bragg diffraction which will transform the momentum by a
multiple of ~G, see Fig. 1.6. One example for this type of Bragg scattering example
is achieved by Fabre et al.[51] and the first one was observed by Martin et al. [52].
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FIGURE 1.6: Simple depiction of a thick optical lattice splitting the incoming
beam into two momentum states.

1.1.3 Contrast

To gain better control over the splitting properties of an optical lattice it is also nec-
essary to control the fringe amplitude of these lattices. For this we look at the case
where two electric fields

E1 = A1e
ikz, (1.25)

E2 = A2e
−ikz, (1.26)

are interfere and create an intensity

I ≈|E1 +E2|2 = |E1|2 + |E2|2 +E∗1 ·E2 +E1 ·E∗2 , (1.27)

= 〈I〉+A1 ·A2

(
e2ikz + e−2ikz

)
, (1.28)

= 〈I〉 (1 + Cε cos 2kz) , (1.29)

where the interference contrast is

C =
2A1A2

A2
1 +A2

2

, (1.30)

the average intensity

〈I〉 = A2
1 +A2

2 (1.31)
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and

ε = cos θ, (1.32)

which comes from the polarisation angle difference between the two fields and is
simply labelled as the polarisation in this thesis. It comes from the angle between
the two polarisations. This allows for the control of the amplitude of the lattice
fringes by controlling the the polarisation difference.

1.1.4 Interferometer

Atom interferometers are devices which create a superposition of the propagation
wave and measure it through a final intensity pattern. This is often done by measur-
ing the number of atoms in the outputs[27]. The the incoming wave, ψ, is split up
into into at least two different states, ψ1, ψ2, ...,

ψin → ψ1 + ψ2, (1.33)

which evolve along different paths, develop a phase difference ϕ

ψ1 + ψ2 → ψ1 + eiϕψ2, (1.34)

and are then recombined into ψout [26, 27]. From which the measured interference
can be seen as fringes on the intensity pattern

I = |ψout|2 =
∣∣ψ1 + ψ2e

iϕ
∣∣2 ,

=A2
1 +A2

2 + 2A1A2 cos(ϕ),

= 〈I〉 (1 + C cos(ϕ)), (1.35)

whereA1 = |ψ1|,A2 = |ψ2| are the amplitudes and the notation is chosen to highlight
the similarities to the electric field example discussed in the previous section. This
allows one to fully express the interference via the phase ϕ and by a combination
following two properties: the amplitude 2A1A2, the average intensity 〈I〉 = A2

1 +A2
2

or its contrast C, which is described by

C =
2A1A2

A2
1 +A2

2

. (1.36)

An explicit example would we be that of the coherent state of an optical mode |α〉,
as described by C. C. Gerry and P. L. Knight[84], which can be written as a superpo-
sition of the photon number states, |n〉,

|α〉 = e
|α|2

2

∞∑
n=0

αn√
n!
|n〉 (1.37)



38 Chapter 1. Introduction

that gets split using a 50:50 beam-splitter to

|0〉 |α〉 → | iα√
2
〉 | α√

2
〉 , (1.38)

where |0〉 is the vacuum. This now experiences a phase shift

| iα√
2
〉 | α√

2
〉 → | ie

iϕα√
2
〉 | α√

2
〉 . (1.39)

These states are then recombined at a second 50:50 beam-splitter

| ie
iϕα√
2
〉 | α√

2
〉 → |

i
(
eiϕ + 1

)
α

√
2

〉 |
(
1− eiϕ

)
α

√
2

〉 . (1.40)

The two output modes can then be measured using the detectors for the number op-
erator D̂a = â†â and D̂b = b̂†b̂, where â† is the creation operator and â is the annihila-
tion operator. They work on the number state such that â† |n〉 =

√
n+ 1 |n+ 1〉 and

â |n〉 =
√
n |n− 1〉. Correspondingly for the b operators in the other mode. Com-

bining the detector outputs Ô = D̂a − D̂b, which is a operator giving the difference
number between the outputs and has the expectation value 〈Ô〉 = |α|2 cosϕ. From
this one can see that a beam-splitter with 50:50 the transmissions can be complete so
that that the output can end up entirely in one arm or the other, depending on the
phase. There are several different ways to implement this [26, 27, 50, 82, 85–87]. The
Michelson[88], see Fig. 1.7b and Mach-Zehnder interferometer[88], Fig. 1.7a. The
Michelson splits the beam which evolves along two different paths and then gets
reflected backwards into the same beam-splitter. The disadvantage of this method
is that the atoms going into the input from which they came are not measured and
contribute to the loss and that there will be interactions between the atoms going to-
wards the mirror and the ones coming back, creating noise. For Mach-Zehnder the
beams is split as well and evolves along two different paths which then get reflected
into another beam-splitter. It is harder to implement than the Michelson but allows
for two independent inputs as ideally the waveguides enter the second beam-splitter
with the same angle.
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FIGURE 1.7: These Figures show the depiction of a Mach-Zehnder(A) and
Michelson(B) interferometer. For both cases the beam gets split by a beam-
splitter(BS) and evolves along two different path. The main difference is that
they are recombined using the same beam-splitter for the Michelson and a

different for the Mach-Zehnder.

1.1.5 Shot Noise Limit

Typically, interferometers measure the number of particles at their respective out-
puts, where forN atoms the probability of finding the number of atoms in an output
is dependent on the phase difference. For this we recap the arguments from Schaff
et al. [27], where the mean number of atoms inside an output is

〈no〉 =
N

2
(1 + sinϑ) , (1.41)

where for ϑ = 0 the probability of finding the atoms in one output or the other is
50:50, which has a variance for a single atom, N = 1, of

V ar
(
〈no〉(1)

)
= Ex

((
〈no〉(1)

)2
)
− Ex

((
〈no〉(1)

))2

=
02

2
+

12

2
−
(

1

2

)2

=
1

4
, (1.42)

where Ex is the function for the expectation value. From which forN > 1 atoms can
be calculated via

V ar (〈no〉) = NV ar
(
〈no〉(1)

)
=
N

4
= ∆n2

o. (1.43)

Thus the sensitivity

∆ϑ =
∆n

∂〈n〉
∂ϑ

∣∣∣
ϑ=0

=
1√
N

, (1.44)
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which is the shot noise limit. In this derivation the atoms are uncorrelated and thus
this limit can be beaten. The ultimate sensitivity limit for interferometry is consid-
ered to be theHeisenberg limit [89],

∆ϑ =
1

N
. (1.45)

However, there have been arguments presented by Zwierz et al. [90] that it might
not be the limit due to Heisenberg’s uncertainty[91] but stemming from the the
Margolus-Levitin bound[92], which is the lower bound of time it takes to change
a state into an orthogonal one[90]. As there have been reported schemes to go below
it[93]. However if one does the proper accounting for all the available resources,
the results come back to agreement with the Heisenberg limit[10], as shown by M.
Zwierz et al. [90].

1.1.6 Units

It is more convenient for our purposes to work in non-SI units, which are based on
the wavelength of our lasers, which are called recoil units. The starting point for
these units is the wavenumber of the laser:

kR =
2π

λ
. (1.46)

From this one can calculate the recoil energy

ER =
~2k2

R

2m
, (1.47)

the position

xR =
1

kR
, (1.48)

the velocity

vR =
kR~
m

, (1.49)

and angular frequency

ωR = kRvR =
k2
R~
m

. (1.50)

More associated definitions could be made but these are the ones used in this thesis.
A conversion from them into SI units can be seen in Tab. 1.1b for two different laser
beams.
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SI λ = 1064nm λ = 720nm

1/µm 0.169kR 0.115kR
1ev 120GER 54GER
1µm 5.9xR 8.7xR

1mm/s 0.23vR 0.16vR
1/µs 35ωR 18ωR

(A) SI to Recoil

Recoil λ = 1064nm λ = 720nm

1kR
5905
mm

8726
mm

1ER 8.3pev 18.3pev

1xR 169nm 115nm

1vR 4.3mm/s 6.4mm/s

1ωR 28482/s 55648/s

(B) Recoil to SI

TABLE 1.1: Conversion table for SI to Recoil units(A) and the reverse(B).

1.2 This Thesis

In this thesis we will model a novel beam-splitter for all-optical waveguides, which
is created by the interference of the waveguides themselves[94], giving rise to con-
tinuous splitting instead of the need to use pulses. Furthermore, this also reduces
the size required to create the interferometer as only the waveguides are necessary
as the mirror and beam-splitters are created by their interference. Our desire is to
find parameters for which the beam-splitter exhibits quasi Bragg scattering where
the properties of the propagating matter wave and optical lattice need to be tuned
so that the two scattered waves have equal probability. For this we will look at the
splitting abilities in one dimension, chapter 3, two dimensions, chapter 4 and its
ability to recombine the beams, chapter 5. Beside the modelling there are experi-
ments carried out by Prof. Yuri B. Ovchinnikov’s group at the National Physical
Laboratory(NPL,UK)[95], the fixed parameters are chosen in connection with their
capabilities and needs. The overall goal is the creation of a Mach-Zehnder style in-
terferometer where the waveguides cross at 90◦ to give it a small area. However,
to model and analyse the recombination ability we will use a Michelson style in-
terferometer. Additionally, it should be noted that only low density BECs are used
for the modelling allowing the neglect of the nonlinear terms in the Gross-Pitaevskii
equation. However, this reduces the precision limits for both the shot noise and the
Heisenberg as both these limits are dependent on the number of atoms.
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Chapter 2

Methods

This chapter is focused on the derivation of the novel beam-splitter and methods to
analyse its behaviour.

2.1 Beam-Splitter

The optical lattices which we are using come from the experiment conducted at the
National Physical Laboratory(NPL), which consists of a wave package travelling
along a waveguide towards a potential, functioning as a beam-splitter [94, 95]. The
potential which functions as the splitter is created by two Gaussian beams with an
electric field of the form

E(x, y) = E0
ω0

ω(x)
e
− y2

ω(x) e−ikRxe
−ikR y2

2R(x) eiξ(x), (2.1)

whereE0 is the peak amplitude of the beam, ω(x) is the beam radius, ω0 is the radius
at the beam waist, kR is the recoil wavevector, R(x) is the curvature of the beam and
ξ(x) is the Gouy phase[96],see Fig. 2.1 for a Sketch of the profile and . Furthermore,
we can make the assumption that ω0 � 2π

kR
, resulting in w(x) ∼ w0, R(x) � ω0 and

ξ(x) ∼ 0.

  

ω 0xω(x)

(A)

  

ω0 E 0

(B)

FIGURE 2.1: A shows the change of the beam waist in regards to the position
and B shows the 1D electric field profile.

The two beams are crossing at an angle θ, resulting in the electric field for the respec-
tive beams
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E1(x, y) =E0e
− y

2

ω2
0 e−ikRx, (2.2)

E2(x, y) =E0e
− (cos(θ)y−sin(θ)x)2

ω2
0 e−ikR(cos(θ)x−sin(θ)y). (2.3)

Defining the normalized beam intensity as

I(x, y) ≡
∣∣∣∣E1(x, y) + E2(x, y)

E0

∣∣∣∣2 . (2.4)

Into this we substitute Eq. 2.2 and Eq. 2.3 and perform a change of coordinates via a
rotation of θ2 which is described by

(
x′

y′

)
=

(
cos
(
θ
2

)
sin
(
θ
2

)
− sin

(
θ
2

)
cos
(
θ
2

))(x
y

)
. (2.5)

This is done to simplify the normalized intensity to

I(x′, y′) =2e
− (1−cos(θ) cos(2θ))x′2+(1+cos(θ) cos(2θ))y′2

ω2
0

×
[
2 cos

(
2 sin (θ)

x′y′

ω2
0

)
+ ε cos

(
2 sin

(
θ

2

)
kRy

′
)]

, (2.6)

where the effective wavevector is keffR (θ) = 2 sin
(
θ
2

)
kR and its associated effective

recoil energy EeffR (θ) = 2 (1− cos (θ))ER. Also, the polarisation ε, Sec. 1.1.3 which
depends on the relative polarization of the two beams has been included. Now
the potential for the scattering can be calculated via its relation to the normalized
intensity

U(x′, y′) = − 1

2ε0c
α|E0|2I, (2.7)

where α is the polarizability, c the speed of light and ε0 is representing the permit-
tivity of free space. Thus the beam splitter potential takes the form

U(x′, y′) = −UG(x′, y′)[A(x′, y′) + ε cos(keffR (θ)y′)], (2.8)

where

UG(x′, y′) =
1

ε0c
α|E0|2e

− (1−cos(θ) cos(2θ))x′2+(1+cos(θ) cos(2θ))y′2

ω2
0 , (2.9)
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and

A(x′, y′) = 2 cos

(
2 sin (θ)

x′y′

ω2
0

)
. (2.10)

The beams at the current NPL experiment cross at an angle of θ = π
2 changing Eq.

2.9 and Eq. 2.10 to

UG(x′, y′) =
1

ε0c
α|E0|2e

x′2+y′2

ω2
0 , (2.11)

and

A(x′, y′) = 2 cos

(
2
x′y′

ω2
0

)
. (2.12)

respectively. The effective wavevector can now be written as keffR =
√

2 kR. Follow-
ing from here the task is to analyse the beam-splitter properties of this potential.

2.2 Band-Gap Analysis

One way to analyse the splitting behaviour of the beam-splitter is by analysing its
band-gap structure, as shown by Damon et al.[97]. For this analysis the atoms can
be described by starting with the Bloch formalism for a quantum state in a periodic
potentialU(z+d) = U(z), where d is the period. This is described by the Schrödinger
equation,

Ĥψ(z) =

(
P̂

2m
+ U(z)

)
ψ(z) = Eψ(z). (2.13)

According to the Bloch theorem[83] we can write the eigenstates of a periodic Hamil-
tonian as a product plane wave function with wave vector q and a function un,q with
the same periodicity as the potential:

ψn,q(z) = eiqzun,q(z), (2.14)

and

un,q(z + d) = un,q(z). (2.15)

The eigenenergiesEn(q) are periodic,En(q) = En(q+qR), with qR = 2π
d . Substituting

Eq. 2.14 into Eq. 2.13 yields

Ĥk =
(p̂+ ~q)2

2m
+ U(z). (2.16)
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We can expand the periodic Bloch functions from Eq. 2.15 as a Fourier series into

ψn,q(z) = eiqzun,q(z) =
∞∑

l=−∞
vq+lqRe

i(q+lqR)z, (2.17)

and similarly for the potential:

U(z) =
∞∑

p=−∞
Ũpe

ipqRz, (2.18)

where l and p are integers. Substituting Eq. 2.17 and 2.18 into 2.13 we get

~2

2m
(q + lqR)2vq+lqR +

∑
p

Ũpvq+(l−p)qR = Evq+lqR . (2.19)

The 1D case of the potential can be approximated into

U(z) = −UG[A+ ε cos(qRz)], (2.20)

where qR ≡ keffR (θ) and z ≡ y′. This approximation is feasible because we have
assumed that the radius of the beam waist is ω0 � 2π

kR
. Using Eq. 2.19 we can turn

the Schrödinger equation into an eigenvalue equation as shown by Damon et al.[97]

M ·V = EV, (2.21)

where V is the vector representation of v and the matrix M is chosen so that it fulfils
the Eq. 2.19. Hence ~2

2m(q + lqR)2 corresponds only to the diagonal of the matrix,
while we need to calculate Ũp using

Ũp =
1

2π

∫ π

−π
U(z)e−ipzdz, (2.22)

making it easier for us to choose the right integration limit for the Fourier series as
this function will be periodic from −π to π. We evaluate the Fourier coefficient as

Ũp =
1

2π

∫ π

−π
(−UG[A+ ε cos(z)])e−ipzdz. (2.23)

This can be easily solved by rearranging to

Ũp =
1

4π

∫ π

−π
−UGε(ei(1−p)z + e−i(1+p)z)dz +

1

2π

∫ π

−π
(−UGA)e−ipzdz, (2.24)
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which we can then integrate to give

Ũp =
−UGε

2π

(
ei(1−p)π − e−i(1−p)π

2i(1− p)
+
e−i(1+p)π − ei(1+p)π

−2i(1 + p)

)
+
−UGA
π

eipπ − e−ipπ

−2ip
,

(2.25)

and simplified to

Ũp =
−UGε

2π

(
sin((1− p)π)

(1− p)
+

sin((1 + p)π)

(1 + p)

)
+
−UGA
π

sin(pπ)

p
. (2.26)

Now we need to calculate the coefficient for specific values of the integer p starting
with 0 giving us

ŨG =
−UGε

2π
(sin(π) + sin(π)) + lim

p→0

−UGA
π

sin(pπ)

p
. (2.27)

For which we need to apply L’Hôpital’s rule

lim
z→0

g1(z)

g2(z)
= lim

z→0

g′1(z)

g′2(z)
, (2.28)

to solve it. Using this we can solve now Eq. 2.27 to gain

Ũ0 = lim
p→0

−UGA
π

π cos(pπ)

1
= −UGA. (2.29)

We can do this as well for p = 1

Ũ1 = lim
p→1

−UGε
2π

sin((1− p)π)

(1− p)
= lim

p→1

−UGε
2π

π cos((1− p)π)

1
=
−UGε

2
, (2.30)

and for p = −1

Ũ−1 = lim
p→−1

−UGε
2π

sin((1 + p)π)

(1 + p)
= lim

p→−1

−UGε
2π

π cos((1 + p)π)

1
=
−UGε

2
. (2.31)

For all other values of p

Ũp = 0 for |p| > 1. (2.32)

Now we can create the matrix

M =



b−N u

u b−N+1 u
. . . . . . . . .

u bN−1 u

u bN


, (2.33)
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with bl = EQ(q/qR + l)2 − UGA, u = −UGε/2 and EQ = ~2q2
R/2m = 4ERsin

2
(
θ
2

)
.

This then needs to be rearranged into

AM ·V = 0, (2.34)

with

AM =



1 ξ−N

ξ−N+1 1 ξ−N+1

. . . . . . . . .

ξN−1 1 ξN−1

ξN 1


, (2.35)

where ξl = −UGε

2EQ

((
κ
qR

+l
)2
−ζ
) , ζ = UGA+E

EQ
and κ is Mathieu characteristic exponent.

The solution for this equation is

cos

(
2πκ

qR

)
= 1−∆ (0)

(
1− cos

(
2π
√
ζ
))

, (2.36)

where ∆ (0) = det(AM (κ = 0))[98]. Real solutions of this equation provide the
equations for the energy bandsE(q), while those with an imaginary part account for
the evanescent modes in the gaps. These gaps are regions of forbidden energy. The
transmission probability T (E) of the these band-gaps in the interval [z1 : z2]can be
calculated via

T (E) = e
−2
∫ z1
z2

Im[κ(z,E)dz]
, (2.37)

as shown by Damon et al.[97]. This analysis will be used in Sec. 3.1.

2.3 Computational Method

2.3.1 Discrete Fourier Transform

The numerical time evolution of the atoms will be calculated to understand the be-
haviour and performance of the beam-splitter and interferometer. The algorithm
to model the time evolution is based on series of Fourier transforms. However, a
computer only deals with discrete values and it is thus necessary to determine an
approximation for numerical analyses. It can be approximated by something resem-
bling a Fourier series on a time interval of 0 < t < T [99]. The exponential Fourier
series for this interval has the form of

f(t) =

∞∑
n=−∞

cne
i2πn t

T , (2.38)
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with its coefficients defined by the integral

cn =
1

T

∫ T

0
f(t)e−i2πn

t
T dt. (2.39)

This function is periodic in t with period T . To make it more similar to the Fourier
transform let us define

∆ω =
2π

T
. (2.40)

The Eq. 2.39 can now be approximated by the trapezoid rule[99], allowing us to
define the discrete Fourier transform as

g(n∆ω) =
N−1∑
m=0

f(m∆t)e−in∆ωm∆t =
N−1∑
m=0

f(m∆t)e−i2πn
m
N . (2.41)

It has an inherent periodicity from the Fourier series. Furthermore, n and m are
always positive as well as ∆ω and ∆t and thus it is only viable in positive ranges,
where ∆ω = 2π

T and Ω = N∆ω are the interval of the frequencies. Its inverse can be
calculated exactly via orthogonality relations between the two transforms:

f(m∆t) =
1

N

N−1∑
n=0

g(n∆ω)ei2πm
n
N . (2.42)

2.3.2 Relationship between the Fourier Transform and the Discrete Fourier
Transform

In the previous section we defined the discrete Fourier transforms using the relation-
ship between time and frequencies. Now we change to position and wavenumber.
In addition, it is necessary to explore its relation to the analytical Fourier transform
to see how one can deal with negative positions and wavenumbers[100, 101] Starting
off with the Fourier transform over a finite dimension

ψ̃(k, t) = F(ψ(x, t)) =
1√
2π

∫ xmax

xmin

ψ(x, t)e−ikxdx. (2.43)

This expression can be approximated as a sum of N terms

ψ̃(k, t) ' 1√
2π

N−1∑
m=0

ψ(xm, t)e
−ikxm∆x, (2.44)

where ∆x = xmax−xmin
N and xm = xmin + m∆x. Defining ∆k = 2π

N∆x and kn =

kmin + n∆k allows one to rewrite it as
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ψ̃(kn, t) '
1√
2π

N−1∑
m=0

ψ(xm, t)e
−iknxm∆x. (2.45)

Substituting the expressions for ∆x, xm, km and ∆k gives

ψ̃(kn, t)e
inxmin∆k ' 1√

2π

N−1∑
m=0

∆xψ(xm, t)e
−ikminxme−i2πn

m
N . (2.46)

The exponential term e−i2πn
m
N shifts the original starting point away from zero to-

wards kmin, which represents the lower limit of the wavevector space. Similar anal-
ysis can be applied to the inverse Fourier transform

ψ(x, t) = F−1(ψ̃(k, t)) =
1√
2π

∫ kmax

kmin

ψ̃(k, t)eikxdk, (2.47)

resulting in

∆x√
2π

ψ(xm, t)e
−ikminxm '

N−1∑
n=0

ψ̃(kn, t)e
inxmin∆kei2πm

n
N . (2.48)

Comparing the two Fourier transforms, one finds that the continuous Fourier trans-
form has a corresponding pair of

ψ(x, t)⇐⇒ ψ̃(k, t), (2.49)

while the pair of the discrete Fourier transforms have extra terms due to normal-
ization and the shift of the lower limit of the spaces in order to adjust them to the
problem at hand[100, 101]:

∆x√
2π

ψ(xm, t)e
−ikminxm ⇐⇒ ψ̃(kn, t)e

inxmin∆k. (2.50)

2.3.3 The Split-Step Fourier Method for the Schrödinger Equation

The algorithm used to solve the nonlinear quantum mechanics equation like the
Gross–Pitaevskii equation, is called the split-step Fourier method[100–102]. How-
ever, before applying it to a nonlinear equation we test it out on the Schrödinger
equation. The reason for this is that it allows us to test the algorithm using problems
which have analytical solutions. The numerical solutions from the algorithm and the
analytical ones can then be compared to get a better understanding of the numerical
errors. Beginning with the Schrödinger equation,

i~
∂ψ(x, t)

∂t
=
−~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t), (2.51)
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and the Schrödinger equation in k-space

i~
∂ψ̃(k, t)

∂t
=

~2k2

2m
ψ̃(k, t) + V

(
i
∂

∂k

)
ψ̃(k, t). (2.52)

These two equations are to be solved separately. The normal Schrödinger equation is
used to model the effects of the potential on the wave function, while the kinematics
are neglected for this case. This results in a simplified version

i~
∂ψ(x, t)

∂t
= V (x)ψ(x, t), (2.53)

with the analytical solution of

ψ(x, t+ ∆t) = ψ(x, t)e−iV (x) ∆t
~ . (2.54)

Similarly, in the k-space the effects of the potential are neglected and the Eq.2.52
takes the form

i~
∂ψ̃(k, t)

∂t
=

~2k2

2m
ψ̃(k, t). (2.55)

The solution of this equation is

ψ̃(k, t+ ∆t) = ψ̃(k, t)e−i~k
2 ∆t

2m . (2.56)

The algorithm for modelling the evolution is as follows for a single step[100–102]

ψ(x, t+ ∆t) = F−1
(
F
(
ψ(x)e−iV (x) ∆t

2~

)
e−i~k

2 ∆t
2m

)
e−iV (x) ∆t

2~ . (2.57)

The reason behind the splitting of the step in position space is to reduce the error
from O(∆t2) to O(∆t3)[102], giving us the symmetric split-step Fourier Method.
This can be seen by Taylor expanding the proper unity operator responsible for the
time evolution

eh(Â+B̂) = Î + h(Â+ B̂) +
h2

2!
(Â2 + B̂2 + ÂB̂ + B̂Â)

+
h3

3!
(Â3 + B̂3 + Â2B̂ + B̂2Â+ ÂB̂Â+ B̂Â2 + ÂB̂2 + B̂ÂB̂) + . . . , (2.58)

and compare it with the split operator firs

ehÂehB̂ = (Î + h(Â) +
h2

2!
(Â2) +

h3

3!
(Â3) + . . .)

(Î + h(B̂) +
h2

2!
(B̂2) +

h3

3!
(B̂3) + . . .)

= Î + h(Â+ B̂) +
h2

2!
(Â2 + B̂2 + 2!ÂB̂) + . . . . (2.59)
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This shows clearly that the error is of O(∆t2). Now doing in the same for the sym-
metric split-step method

e
h
2
ÂehB̂e

h
2
Â = (Î + h

1

2
(Â) +

h2

2!

1

4
(Â2) +

h3

3!

1

8
(Â3) + . . .)

(Î + h(B̂) +
h2

2!
(B̂2) +

h3

3!
(B̂3) + . . .)

(Î + h
1

2
(Â) +

h2

2!

1

4
(Â2) +

h3

3!

1

8
(Â3) + . . .)

= Î + h(Â+ B̂) +
h2

2!
(Â2 + B̂2 + ÂB̂ + B̂Â)+

h3

3!
(Â3 + B̂3 +

3

2
ÂB̂2 +

3

2
B̂2Â+

3

4
Â2B̂ +

3

4
B̂Â2 +

3

2
ÂB̂Â) + . . . , (2.60)

shows the improved error ofO(∆t3). The desired time can be archived by repetition.
From this method animations showing the probability density are created and only
chosen time stamps of them are shown in the thesis, where to find the full animations
list is explained in appendix A.

Evolution of a free Gaussian Particle

The first test for the algorithm is the evolution of a free Gaussian wave packet de-
scribed as

ψ(x, 0) =
1√
σ
√
π

e−
(x−x0)2

2σ2 eik0x, (2.61)

where σ is the variance of the Gaussian wave packet, x0 the starting position and
k0 the initial wave number. The straightforward way to solve it analytically is by
solving the Schrödinger equation in k-space where the initial wave function is

ψ̃(k, 0) =

√
σ√
π

e−
(k−k0)2σ2

2 eix0(k−k0) (2.62)

The potential for a free Gaussian wave packet is zero and the evolution is therefore
described by Eq. 2.55. The result is

ψ̃(k, t) =

√
σ√
π

e−
(k−k0)2σ2

2 eix0(k−k0)e−i~k
2 ∆t

2m , (2.63)

which then needs to be inverse Fourier transformed. Leaving us with the final result
of[103]

ψ̃(x, t) =

√
σ

α
√
π

e−
β2

α eik0xe−i~k
2
0
t

2m , (2.64)

where

α = σ2 + i~
t

m
, (2.65)
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and

β = x0 − x+ k0~
t

m
. (2.66)

Eq. 2.64 shows that the wave packet moves and diffuses over time. Following from
here we use the split-step Fourier method to solve this case numerically, see Fig. 2.2.
In this case the Gaussian wave packet of 87Rb starts of at x0 = −0.0001m, with a
velocity v = 0.005ms−1 and a variance σ = 10−5m represented by a red solid line.
The evolution of the analytical solution, blue dotted line, and the numerical, green
dashed line, are nearly identical after a propagation time of 0.1s.

0.0005 0.0000 0.0005
x[m]

0

10000

20000

30000

40000

50000

60000

|Ψ
(x
,t

)
|2

numerical

analytical

startingposition

FIGURE 2.2: The initial wave function starts of at x0 = −0.0001m, with a
velocity v = 0.005m/s and a variance σ = 10−5m(red solid line) and is then
numerically evolved via time steps of the size of ∆t = 10−6s giving the final
numerical result after 0.1s(green dashed line). This is then compared with

the analytical solution from Eq. 2.64.

The absolute difference between these two solutions can be seen in Fig. 2.3. It can be
clearly seen that the difference is minimal. Another way to analyse the difference is
to determine the inner product of these two, which turns out to be close to unity. The
time step for this calculation is ∆t = 10−6s, the initial wave function is discretized
into 100000 data points evenly distributed and a k-range with kmax = −kmin. The
same calculations have been done for a variety of systems, producing similar re-
sults.We therefore conclude that the method works well for a free wave packet.
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FIGURE 2.3: This figure depicts the absolute difference of the numerical, rep-
resented by ψN (x, t) and the analytical solution, ψA(x, t). For a Gaussian
wave function starting with x0 = −0.0001m, with a velocity v = 0.005m/s,
a variance σ = 10−5m, time step size ∆t = 10−6s and a propagation time

t = 0.1s. The maximum of this peak lies around 1.3× 10−8.

Evolution of a Coherent State in a Harmonic Oscillator

The next test for the split-step Fourier method is the evolution of a coherent state in a
harmonic oscillator. The evolution of the coherent state inside a harmonic oscillator:

|α(t)〉 = e−iω
t
2 e−

|α0|
2

2

∑
n

αn0e
−inωt
√
n!

|n〉 , (2.67)

where, ω is the frequency and t the time [84, 103]. They resemble very closely to
the behaviour of classical systems in the sense that the expectation values for the
position and momentum oscillate in a quantum harmonic oscillator similarly to how
momentum and position change with time in a classical harmonic oscillator.The real
part of a coherent state represents its position and the imaginary part its momentum.
In a harmonic oscillator with the potential

V (x) =
1

2
mω2x̂2, (2.68)
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where m is the mass of the particle and x̂ the position operator, the wave function
for the coherent state in position space can be written as

ψ(x, t) = eiθα(t)
(mω
π~

) 1
4
ei
x〈P (t)〉

~ e
−
[
x−〈X(t)〉

2∆

]2
, (2.69)

where the phase θα(t) is described by

eiθα = e
α∗(t)2−α(t)

4 , (2.70)

the mean momentum by

〈P (t)〉 =

√
2~
mω

Re
[
α0e
−iωt] , (2.71)

and the mean position

〈X(t)〉 =
√

2~mω Im
[
α0e
−iωt] . (2.72)
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FIGURE 2.4: The evolution of the coherent state with |α| = 10 in the x-space
is depicted in a harmonic oscillator with an angular frequency of ω = 1rad/s.
The red solid line shows the initial position of the coherent state starting α =
10 ∗ ei

π
4 . This is then numerically evolved with a time step size ∆t = 10−6s

over a period of 1.5s. Resulting in the wave function shown as the green
dashed dotted line which is very close to the analytical solution, the blue

dotted line.
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Now starting of with an initial coherent state of α = 10ei
π
4 , an angular frequency of

ω = 1 rad/s and a mass of 87Rb atom, we discretize the initial wave function into
100000 data points and let it evolve via a time step size of ∆t = 10−6s for a period
of 1.5s. The Fig. 2.4 shows the numerical solution as a green dashed line and the
analytical one as a blue dotted line. Like for the free Gaussian wave packet these
two are nearly identical neglecting the numerical error.
The absolute difference is shown in Fig.2.5 which is not bigger than 4 × 10−8. This
shows that this algorithm is suitable to model the evolution of wave functions which
are interacting with a potential. Also, the inner product between the analytical so-
lution and the numerical one is very close to unity. The same calculations have
been carried out for a variety of times and coherent states, leading to similar solu-
tions. Thus the split-step Fourier method is a good way so solve the Schrödinger
and Gross–Pitaevskii equation.
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FIGURE 2.5: This figure shows the absolute difference between the numer-
ical, ψN (x, t) and analytical solution, ψA(x, t). The maximum difference is

approximately 3.6× 10−8.

Free Gaussian

Another example to test the split-step Fourier method is the evolution of two free
Gaussian wave packets moving in opposite directions. Starting with the normalised
wave-function for a single moving Gaussian

ψ(x, 0) =
1√
σ
√
π

(
e−

(x−x0)2

2σ2 eik0x

)
, (2.73)
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from which we create a superposition of two Gaussians with one starting at x0 with
a wavenumber k0 and the other with −x0 and −k0.

Ψ(x, 0) =
1√

2σ
√
π

(
e−

(x−x0)2

2σ2 eik0x + e−
(x+x0)2

2σ2 e−ik0x

)
. (2.74)

For this case it is easier to calculate the evolution in k-scape and thus the Fourier
transform of wave-function is

Ψ̃(k, 0) =

√
σ

2
√
π

(
e−

(k−k0)2

2σ2 e−i(k−k0)x0 + e−
(k+k0)2

2σ2 ei(k+k0)x0

)
. (2.75)

This wave-function obeys the Schrödinger equation and evolves according to

Ψ̃(k, t) = Ψ̃(k, 0)e−
i~k2t
2m , (2.76)

into which we substitute our wave-function to get

Ψ̃(k, t) = e−
i~k2t
2m

√
σ

2
√
π

(
e−

(k−k0)2σ2

2 e−i(k−k0)x0 + e−
(k+k0)2σ2

2 ei(k+k0)x0

)
. (2.77)

As this is is already the solution in k-space we just need to Fourier transform it back
into position space to obtain

Ψ(x, t) =

√
σ

2α
√
π

e
−i~k2

0t

2m

e−
(
x−x0−

k0~t
m

)2

2α eik0x + e−

(
x+x0+

k0~t
m

)2

2α e−ik0x

 , (2.78)

where

α =

(
σ2 +

i~t
m

)
. (2.79)

Now that we have our analytical solution, we are comparing to the numerical one.
For this we set m = 1, k0 = 1, ~ = 1, σ = 1 and π = 1, simplifying our wave function
to

Ψ(x, t) =

√
1

2 (1 + it)
e
−it
2

(
e
− (x−x0−t)

2

2(1+it) eix + e
− (x+x0+t)2

2(1+it) e−ix
)
. (2.80)

The other parameter we use for testing are the run time of t = 6 the starting position
of x0 = 6, the number of data points Nx = 10000, the step size in time δt = 10−4

and the area of our simulation ranging from xmin = −20 to xmax = 20. They are
unitless for these calculations. Looking at Fig. 2.6, we see the starting position of
a red dotted line and the final form at the end of the simulation for the split-step
Fourier method in a green dashed line and the analytical solution in a blue dotted
line for compression.
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FIGURE 2.6: The overlap of two free Gaussian wave-packets that started off at
x0 = 6(red solid line) and then evolved moving towards each other finishing
at t = 6 with an analytical(blue dotted line) and numerical solution(green

dashed line), where all variables are unitless.

The analytical and numerical solution overlap extremely well as seen by the errors
in Fig. 2.7. The error in the error graph show period behaviour. This comes from the
nature of the discrete Fourier transform and its periodic boundaries. Hence it is clear
to see that these errors come from the remnants of the numerical solution that left the
boundary on one site and entered the simulation back on the other side. Hence, from
this we can see that we need to give sufficient space between the wave-function and
the boundary to avoid such error. As long as we satisfy this boundary constraint,
we conclude that our numerical method works well for wave-functions comprising
packets with different motions. Furthermore, their are potential boundaries around
the simulation in the subsequent chapters, in the shape of Gaussian barriers to avoid
this behaviour, which are referred to as the cage.
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FIGURE 2.7: The error between the numerical and analytical solution for two
free overlapping Gaussian.

Cat State

The last example we are looking at will be the cat state[102] in a harmonic oscillator.
Starting off with the wave-function for a coherent state,

ψα(x, t) = 〈x|α〉 = eiθα(t)

(mω
π~

) 1
4
e
−
(
x−〈X〉α(t)

2∆X

)2

ei〈K〉α(t)x, (2.81)

where

eiθα(t) = e
α∗2(t)−α2(t)

4 , (2.82)

〈X〉α(t) =

√
2~
mω

Re (α (t)) , (2.83)

〈K〉α(t) =

√
2mω

~
Im (α (t)) , (2.84)

∆X =

√
~

2mω
, (2.85)

∆K =

√
mω

2~
, (2.86)

α (t) = α (0) e−iωt, (2.87)
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From this we can create a cat state via the superposition of coherent states as

|cat〉 =
1√

2
(
1 + e−2|α|2

) (|α〉+ |−α〉) , (2.88)

which takes the form in position space of

ψcat(x, t) =
1√

2
(
1 + e−2|α|2

) (ψα(x, t) + ψ−α(x, t)) ,

=
1√

2
(
1 + e−2|α|2

) (mωπ~ ) 1
4
eiθα(t)

(
ee
−
(
x−〈X〉α(t)

2∆X

)2

ei〈K〉α(t)x

+ e
−
(
x−〈X〉−α(t)

2∆X

)2

ei〈K〉−α(t)x

)
. (2.89)

Now we can compare this analytical solution with the numerical one, using only
unitless parameters. For this we setm = 1, ω = 1 and ~ = 1 as we are only concerned
about how well the numerical matches the analytical, leading to

ψcat(x, t) =
1√

2
(
1 + e−2|α|2

) eiθα(t)

(
e−

(x−
√

2 Re(α(t)))2

2 ei
√

2 Im(α(t))x

+ e−
(x+
√

2 Re(α(t)))2

2 e−i
√

2 Im(α(t))x

)
. (2.90)

From this we can now do a comparison between our numerical method and our
analytical solution for a cat state in a harmonic oscillator. For this we set the other
parameters in our simulation to a run time of t = 4.5π, the starting α position of
α0 = 5, the number of data points Nx = 10000, the step size in time ∆t = 10−4 and
the area of our simulation ranging from xmin = −15 to xmax = 15. This can be seen
in Fig. 2.8, where the red line is the starting position and the position at the end of
the simulation is in green dotted for the numerical and blue dotted for the analytical
solution. The time of t = 4.5π is chosen as this allows for more than two whole
rotations of the cat state letting it finish at an 90◦ angle from its starting position and
thus showing us the expected fringes. Furthermore, the error between numerical
and analytical are very small as seen in Fig. 2.9.
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FIGURE 2.8: The evolution of at cat state starting of from α0 = 5(red solid
line) and finishing at an 90◦ angle after a run time of t = 4.5π(green dashed)

and the analytical solution as a comparison. Using unitless parameters
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FIGURE 2.9: The error between the analytical and numerical solution for a
run time of t = 4.5π, the starting α position of α0 = 5, the number of data
points Nx = 10000, the step size in time ∆t = 10−4 and the area of our

simulation ranging from xmin = −15 to xmax = 15



2.3. Computational Method 61

2.3.4 Shooting Method

The shooting method is a method for the calculations of eigenstate energies and their
respective wave-functions[99]. Starting off with the time-independent Schrödinger
equation

~2

2m

∂2ψ (x)

∂x2
+ (E − V (x))ψ (x) = 0, (2.91)

which can be rewritten into

∂ψ (x)

∂x
= z (x) = f1 (ψ, x, z) , (2.92)

∂2ψ (x)

∂x2
=
∂z (x)

∂x
= −2m

~2
(E − V (x))ψ (x) = f2 (ψ, x, z) . (2.93)

Using the Euler Method[99] to solve it with step size ∆z we get

ψi+1 = ψi + f1 (ψ, x, z)h = ψi + zi∆z (2.94)

zi+1 = zi + f2 (ψ, x, z)h = zi −
2m

~2
(E − V (x))ψ (x) ∆z, (2.95)

with the boundary condition for an even function being

ψ(0) = ψ0 = R, (2.96)

∂ψ(0)

∂x
= z0 = 0, (2.97)

and for an odd function

ψ(0) = ψ0 = 0, (2.98)

∂ψ(0)

∂x
= z0 = R, (2.99)

where R is a random number. Its value is not important as it will be changed due to
normalisation. The other boundary condition is that the ψ(∞) = 0 or for a numerical
case it should approach zero far away from the centre as possible. To find the ground
state we start off at a random value for E which is chosen to be less than the energy
of the actual ground state, by setting it to the minimum of the potential, and the
boundary condition for an even state. Then we integrate numerically from the centre
to see if the wave-function converges at the boundary. If not, we note whether the
wave-function diverges positively or negatively, and store this information. Then
we increase the initial estimate of the energy by a small amount ∆E and repeat this
process until we achieve convergence of the wave-function, or we observe a change
in the direction of the divergence. If it the direction changes we will go back to the
previous energy estimate and increase this by ∆E/2 instead of just ∆E. These steps
will be repeated until our wave-function converges. From this we could calculate
the first excited state by choosing the boundary condition of an odd state and have
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the energy for the first estimate slightly above the ground state. All other eigenstates
could be found in a similar fashion if desired. To increase precision one could reduce
∆z or go from Euler method to a more precise like Runge-Kutta[99]. This is used in
Sec. 4.2.

2.3.5 Transmission Probability for Arbitrary Potentials

The previously discussed band-gap method, gives us a detailed look into the split-
ting properties of our beam-splitter. However, it relies on a certain number of fringes
and fringe density, which is not always the case. Hence, we will discuss an al-
ternative method for calculating the transmission probability, as demonstrated by
Rundquist[104]. For this we will have three potential regions: the first on with
VI = 0, the second region where VII = V (x) is the actual potential of our beam-
splitter and the third region with VIII = 0. These calculations are performed using
standing waves, where the wave-function for the first region is

ψI = Aeikx +Be−ikx, (2.100)

and its first derivative

dψI
dx

= ikAeikx − ikBe−ikx. (2.101)

The same can be done for region three, where the wave-function has the form

ψIII = Ceikx, (2.102)

and its derivative is

dψIII
dx

= ikCeikx. (2.103)

The wave number for both wave-functions is

k =

√
2m2

~2
(E − VIII) . (2.104)

To calculate the transmission probability we need to integrate backwards from the
boundary between region II and III to the boundary between region I and II .
The rationale behind integrating backwards instead of forwards is that forwards
integration would require us to have some understanding about the phase differ-
ence between the incoming wave Aeikx and the reflected one Be−ikx. Any phase
in regards to the transmitted wave Ceikx would be a global one and hence would
not alter the transmission probability. Therefore we can simply set its coefficient to
C = 1. For this calculation we are using recoil units as these allow us to simplify the
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procedure. Starting off with the initial values

dψ (x)

dx
= gψ(ψ, z, x) = z (x) , (2.105)

ψ (L) = eikL, (2.106)

dz (x)

dx
= gz(ψ, z, x) = (V (x)− E)ψ (x) , (2.107)

z (L) = ikeikL. (2.108)

From here on we will take a step backwards to calculate the previous values of ψ
and z. The step size is given by ∆x and it must be ∆x > 0. We will be using the
Runge-Kutta method which is generally referred to as "RK4" to do this[99]. Using,

ψn−1 = ψn − (k1 + k2 + k3 + k4) , (2.109)

zn−1 = zn − (l1 + l2 + l3 + l4) , (2.110)

where

k1 = ∆xgψ(ψn, zn, xn), (2.111)

l1 = ∆xgz(ψn, zn, xn), (2.112)

k2 = ∆xgψ

(
ψn −

k1

2
, zn −

l1
2
, xn −

∆x

2

)
, (2.113)

l2 = ∆xgz

(
ψn −

k1

2
, zn −

l1
2
, xn −

∆x

2

)
, (2.114)

k3 = ∆xgψ

(
ψn −

k2

2
, zn −

l2
2
, xn −

∆x

2

)
, (2.115)

l3 = ∆xgz

(
ψn −

k2

2
, zn −

l2
2
, xn −

∆x

2

)
, (2.116)

k4 = ∆xgψ(ψn − k3, zn − l3, xn −∆x), (2.117)

l4 = ∆xgz(ψn − k3, zn − l3, xn −∆x). (2.118)

These steps are repeated until the boundary between region I and region II is
reached. From this we can calculate the transmission probability via

T =

∣∣∣∣CA
∣∣∣∣2 =

∣∣∣∣ 1

A

∣∣∣∣2 . (2.119)

To do this we need to determine the value of |A| which can be done by evaluating
Eq. 2.100 and 2.101 at the boundary,∣∣∣∣ψI (xb)−

i

k

dψI (xb)

dx

∣∣∣∣ =
∣∣∣2Aeikxb∣∣∣ = 2|A|, (2.120)
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where xb is the position of the boundary. Now substituting Eq. 2.120 into 2.119
yields,

T =
4∣∣∣ψI (xb)− i
k
dψI(xb)
dx

∣∣∣2 . (2.121)

This method can be used for arbitrary potentials. However, to number of datapoints
required can vary greatly between different problems. The total error of "RK4" is
O∆x4. This is used in Sec. 3.2. As an example, we could recreate a test from
Rundquist[104] by calculating the tunnelling probability through a parabolic poten-
tial, which is limited to the central region with the potential

V (x) =

10(x− 1)2, if 0 < x < 2.

0, otherwise,
(2.122)

which has eigenstates energies for the non-truncated case of

En =

(
n+

1

2

)
1.232eV where n = 0, 1, 2, . . . . (2.123)

The transmission probability can be seen in Fig. 2.10. It clearly shows that we always
observe total transmission at the eigenstate energies. However, for lower energy one
needs to hit the eigenstate energy nearly exactly to see any transmission, while for
higher energy the range energies is broader. This is because at lower energy the
wave needs to tunnel through a thicker barrier.
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FIGURE 2.10: The tunnelling probability for the parabolic potential.
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Chapter 3

Beam-Splitter Properties in
One-Dimension

This chapter is focused on the beam-splitter properties in one dimension, see Fig.
3.1. This figure shows the 2D potential(A) and its corresponding 1D potential(B).
The pattern inside the beam-splitter are the fringes of the optical lattice. For this
we will investigate the band-gap structure of our beam-splitter, solving the time-
independent Schrödinger equation for a standing wave and calculating its trans-
mission probability. Lastly, we are going to solve the time-dependent Schrödinger
equation for a Gaussian wave packet. These three methods will be applied to beam-
splitter with the same parameter and their solution will be compared. This is done
to counter check the validity of each solution as some of them require that a certain
type of approximation is fulfilled.
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FIGURE 3.1: 2D(A) and 1D(B) potential of the beam-splitter.

3.1 Band-Gaps Calculations

The first step to analyse the splitting behaviour of our beam-splitter in one dimen-
sions is to calculate the band-gaps, for which the method is shown in Sec. 2.2[49, 97]
where the solution for the Mathieu characteristic exponent, κ, is given in Eq. 2.36
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which for a angle of θ = 90◦, is in recoil units defined in the Sec.1.1.6

κ(x) =
arccos(1−∆ (κ = 0, x)

(
1− cos

(
2π
√
ζ(x)

))
)

√
2 π

, (3.1)

where

∆ (0, x) = det(AM (κ = 0), x), (3.2)

AM =



1 ξ−N

ξ−N+1 1 ξ−N+1

. . . . . . . . .

ξN−1 1 ξN−1

ξN 1


, (3.3)

using

ξl(x) =
−UG(x)ε

4

((
κ√
2

+ l
)2
− ζ(x)

) , (3.4)

and

ζ(x) =
UG(x)A(x) + E

2
, (3.5)

where E is the energy. For UG(x) and A(x) we look at the cross-section of the beam-
splitter, Eq. 2.8 which is given by

U(x) = −UG(x)[A(x) + ε cos(kRx)], (3.6)

where

UG(x) = −2U0e
−
(
x2

ω2
0

)
, (3.7)

A(x) = cosh

(
x2

w2
0

)
. (3.8)

From these expressions we can calculate the band-gaps as these are the imaginary
solutions for κ, which correspond to barriers through which the atoms must tunnel.
Also, we need to calculate det(AM (κ = 0), x) where AM is a very large matrix, see
Fig. 3.2 for an example of how the determinant is calculated over a variety of l
values. However, the solution can be approximated by giving it a finite size as the
solution for the matrix starts to converge for increasing its size. Thus it has been
found that it is enough to let l for ξl(x) vary from l = −10 to l = 10.
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FIGURE 3.2: Shows an example solution of det(AM (κ = 0), x) for increasing
matrix sizes. This parameters are for this example are v = 1vR, ε = 0.25,
U0 = −20ER and ω0 = 15µm. The solution starts to converge before l = 10.

3.1.1 Band-Gaps’ Structure

It is now necessary to look at the parameters that will vary in our calculations. These
are the velocity of the atoms and the polarisation of the lasers. The velocity of the
atoms is varied from v = 0 to v = 6vR with a step size of 0.1vR given us 61 different
velocities. The same is done for the polarisation which goes from ε = 0 to ε = 1 in
0.05 steps having 21 different values. The energy of the atoms is E = T + V , where
T is the kinetic energy and V the potential. For the incident wave the kinetic energy

is T =
k2

0~2

2m , which is in recoil units T =
k2
0~2

2m
ER

= k2

k2
R

= v2

v2
R

, allowing us to easily
calculate it from just the atom velocity. The potential energy comes from the depth
of the waveguide U0, which is U0 = −20ER for this case. The other laser parameters
are the wavelength of λ = 1064nm and the variance of the beam ω0 = 15µm.



68 Chapter 3. Beam-Splitter Properties in One-Dimension

200 0 200
x/xR

0

1

2

3

4

5

6
v/
v R

0.000
0.046
0.092
0.138
0.184
0.230
0.276
0.322
0.368
0.414

Im
(κ

)/
k
R

(A) Band-Gap Structure for ε = 0.25
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(B) Band-Gap Structure for ε = 0.5
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(C) Band-Gap Structure for ε = 0.75
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(D) Band-Gap Structure for ε = 1

FIGURE 3.3: These Figures show the band-gap structure for ε = 0.25(A),
ε = 0.5(B), ε = 0.75(C) and ε = 1 (D). By increasing the polarisation we
increase the strength, width and number of band-gaps. The other parameters
for these figures are a potential depth of U0 = −20ER, a laser variance of
ω0 = 15µm, a wavelength for the lasers of λ = 1064nm and angle of θ = 90◦.

From these values, we can calculate now the band-gaps via Eq. 3.1. Selected exam-
ples of these solutions, together with their potentials can be seen in Fig. 3.3. The ex-
amples show four different band-gaps structures for polarisation of ε = 0.25(3.3a),
ε = 0.5(3.3b), ε = 0.75(3.3c) and ε = 1(3.3d). For ε = 0.25 the band-gaps are the
strongest for velocities ranging from v = 0 to roughly v = 1vR as there are 8 dis-
tinct band-gaps through which atoms need to tunnel. Furthermore, none of these
band-gaps are in the centre of the beam-splitter. Thus leading to non-central split-
ting. However, central splitting is preferable as this allows for easier recombination.
Hence, the best position for splitting would be roughly for v = 2vR or v = 5vR. How-
ever, it is also undesirable for the atoms to travel through more than one band-gap
as this will lead to atoms being reflected back and forth between the band-gaps and
thus creating distortion in the outcoming atomic wave-packet and thus only v = 5vR

is a good choice. The next polarisation is ε = 0.5. Looking at this it is becoming clear
that the band-gaps for the lower polarisation have become stronger and new ones
have appeared. A velocity of v = 5vR is the preferred solution for this case as well.
From looking at ε = 0.75 and ε = 1 we see that the number and strength of the
band-gaps are directly related to the polarisation. However, for band-gaps already
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present at lower velocities their position does not really change, only their width
changes and strength. Thus a good choice of splitting velocity for our chosen region
would be v = 5vR. From this, we need to calculate the transmission probability via
Eq. 2.37, which can be seen in Fig. 3.4.
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FIGURE 3.4: The transmission probability as a function of the atom velocity
v and the polarisation ε calculated directly from the band-gaps. The parame-
ters for these figures are a potential depth of U0 = −20ER, a laser variance of
ω0 = 15µm, a wavelength for the lasers of λ = 1064nm and angle of θ = 90◦.

This figure clearly demonstrates the increased strength and width of the band-gaps
as we increase the polarisation, which leads to a reduction in the transmission prob-
ability. Also, the spike structure comes clearly from the areas in the band-gap struc-
ture where there are only weak band-gaps. To find the most suitable splitting pa-
rameters we need to use the band-gap structure, Fig. Fig. 3.3 and the transmission
probability together Fig. 3.4. By picking suitable parameters for a roughly 50 : 50

of the input probability, two examples would v = 5vR and ε = 0.5 and v = 4vR

and ε = 0.75. Next, we look at the band-structure to see the position and number
of the band-gaps. The most desired band-gap is a single central one. An example
would be in Fig. 3.3c for the velocity v = 5vR and polarisation ε = 0.5, where the
splitting would happen at the bottom of the v shape band-gap. Hence these param-
eters would make the ideal splitting choices, while the splitting from the parameters
v = 4vR and ε = 0.75 would go through 3 band-gaps, see Fig. 3.3d each of which
split the wave, thus creating a multitude of smaller waves.
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3.1.2 Band-Gaps with Filling

Besides the previously discussed beam-splitter we can also create a beam-splitter
with an additional third laser. The reasoning behind this is going to be discussed in
the next chapter in Sec 4.7. However, to analyse the band-gaps we first need to look
at our beam-splitter potential, where we set UG(x) to UG, A(x) to A and f(x) to f ,
where f is the potential from the third laser, as they vary little locally in comparison
to the fringes which create the band-gaps, with

f(x) = −FU0e
−2 x

2

w2
0 , (3.9)

and F is the strength of the third laser and it can be varied between 0 and 1. Giving
us

U(z) = −UG[A+ ε cos(qRz)] + f =
∑
p

Ũpe
ipqRz. (3.10)

To solve this we need to make a change in variables to z′ = qRz

U(z′) = −UG[A+ ε cos(z′)] + f =
∑
p

Ũpe
ipz′ , (3.11)

where

Ũp =
1

2π

∫ π

−π
U(z)e−ipz

′
dz′, (3.12)

which is solved like the case without filling in Sec. 2.2. Giving us for p = 0

Ũ0 = −UGA+ f, (3.13)

p = 1

Ũ1 =
−UGε

2
, (3.14)

and p = −1

Ũ−1 =
−UGε

2
. (3.15)

For all other values of p

Ũp = 0 for |p| > 1. (3.16)
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Now we can create the Matrix to solve Eq. 2.21

M =



b−N u

u b−N+1 u
. . . . . . . . .

u bN−1 u

u bN


, (3.17)

with bL = EQ(q/qR+ l)2−UGA+f , u = −UGε/2 andEQ = ~2q2
R/2m = 4ER sin2

(
θ
2

)
.

The matrix Eq. 3.17 is then arranged into

AM ·V = 0, (3.18)

with

AM =



1 ξ−N

ξ−N+1 1 ξ−N+1

. . . . . . . . .

ξN−1 1 ξN−1

ξN 1


, (3.19)

where ξl = −UGε

2EQ

((
κ
qR

+l
)2
−ζ
) , ζ = UGA−f+E

EQ
. This can also be written in recoil units

ξl = UGε

8 sin2( θ2)

( κ

4 sin2( θ2)
+l

)2

−ζ

 , ζ = UGA−f+E

4 sin2( θ2)
. The solution for this equation is Eq.

3.1 for θ = 90◦. Using U(x) and A(x), given by Eq. 3.7 and 3.8, we can calculate the
band-gaps, for the potential depth of U0 = −20ER, the laser width ω0 = 15µm and
the laser wavelength of λ = 1064nm. The velocity of the atoms is varied from v = 0

to v = 6vR in 0.1vR increments, while the polarisation is varied from ε = 0 to ε = 0

in 0.05 increments and the filling goes from F = 0 to F = 1 in 0.1 steps. To see how
the band-gaps themselves change we set the polarisation constant to ε = 0.5. The
result of these band-gaps can be seen in Fig. 3.5. In A(3.5a) we see the band-gaps
for F = 0.1 and when we increase this to F = 0.2 as seen in B(3.5b), we notice that
the strength and area of the band-gap structure increases for the lower half of the
velocity. If we increase the filling even more the band-gaps start to merge. However,
their overall shape also changes which can best be seen in the V shaped band-gaps
in the upper spectrum the the observed velocity which have been forced together
for high fillings as seen in Fig. 3.5f.
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(B) F = 0.2
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(C) F = 0.4
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(D) F = 0.6
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(E) F = 0.8
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FIGURE 3.5: These figures show how the band-gap structure changes when
the filling is increased. The overall shape changes significantly from filling as
the band-gaps for lower velocities merge while the ones for higher velocity
get squished, allowing only narrower areas for the atoms to travel trough.
The parameters for these calculations are potential depth of U0 = −20ER,
the laser width ω0 = 15µm, the laser wavelength of λ = 1064nm and a

polarisation of ε = 0.5.

From these we can then calculate the transmission probabilities as shown in Fig. 3.6.
In these we see that the areas of equal transmission and reflection get reduced when
the filling is increased. Instead we see a stronger contrast between total reflection
and total transmission with a smaller viable parameter range for equal splitting.
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(B) F = 0.2
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(C) F = 0.4
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(D) F = 0.6
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(E) F = 0.8
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FIGURE 3.6: These figures show how the transmission probabilities change
when filling is introduced. The filling generally changes the areas of the re-
flection and transmission. Furthermore, it reduces the area of equal splitting

drastically. Leaving, only narrow margins for a high filling.

3.2 Standing Waves

The calculations for the band-gaps requires a sufficient number of fringes in the
beam-splitter to work. However, as this is parameter dependent on the laser wave-
length, we might not have of them. Therefore, we are using the method described
in the Sec. 2.3.5 to calculate the transmission probability for standing waves and
compare them to the cases discussed in the previous section to see if the band-gap
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method is suitable for our parameters[104]. The wavenumber of the transmitted
wave is given by Eq. 2.104 which is in recoil units and a potential depth U0

k =
√

(E + U0) . (3.20)

From this we will integrate backwards through the beam-splitter with has the po-
tential

U(x) = 2U0e
−
(
x
ω0

)2
(

cosh

((
x

ω0

)2
)

+ ε cos(x)

)
− FU0e

−2
(
x
ω0

)2

, (3.21)

which is a one-dimensional cut through the two-dimensional potential, Eq. 2.8,
where the lasers cross at θ = 90◦ in recoil units. Thus our f and g functions to
integrate backwards via the Runge–Kutta method are

gψ(ψ, z, x) = z (x) , (3.22)

gz(ψ, z, x) = (U(x)− E)ψ (x) , (3.23)

(3.24)

where the energy of the atoms is

E = v2 + U0, (3.25)

in recoil units. The numerical value of the wave number and the velocity are the
same when one uses recoil units. From this we calculate now the transmission prob-
ability via Eq. 2.121.

3.2.1 Parameters: U0 = −20ER and ω0 = 15µm

The first case we are looking at is the one where the depth of the laser beam potential
is U0 = −20ER, their variance is ω0 = 15µm, filling of F = 0 and their wavelength is
λ = 1064nm. For these calculations we vary the velocity of our atoms from v = 0vR

to v = 6vR in a step size of 0.1vR and the polarisation is also varied from ε = 0 to ε =

1 with a step size of 0.01. This leads to the transmission probability as shown in Fig.
3.7. This figure clearly shows that there is a generally linear correlation for areas of
good splitting probabilities with regards to the velocity and polarisation. However,
the region of approximate 50:50 splitting is not smooth. Nonetheless, due to this
nature a Gaussian wave-packet should smooth out the transmission probability as it
can be understood as a sum of standing waves and thus its transmission probability
can be thought of as an average over all the relevant standing wave transmission
probabilities. Comparing this result with the one from the band-gaps we see a stark
contrast as they are distinct. Thus we assume that this beam-splitter has insufficient
fringes to actually calculate the transmission probability via the band-gaps.
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FIGURE 3.7: This figure shows the transmission probability for a standing for
the parameters U0 = −20ER, ω0 = 15µ, F = 0 and λ = 1064nm. The areas
of total transmission and total reflection are separated by an approximately
linear boundary containing fine-grained features of intermediate reflection

and transmission.

Furthermore, we have only looked at the case with no filling. Therefore we are going
to look at the transmission probabilities for the same parameters except that we vary
the filling from F = 0 to F = 1 in 0.1 increments. The result of this can be seen in
Fig. 3.8. The sub figures of it are Fig. 3.8a for F = 0.2. It is still very similar to
F = 0. However, a small spike forms in the top right and corner around v = 5vR

and ε = 0.9. From here with increasing f we see that the number, and distinctiveness
of these spikes increase as shown by the Fig.3.8b, 3.8c, and 3.8d, which have the
fillings of F = 0.4, F = 0.6 and F = 1.0 respectively. Another difference is that the
regions for total transmission and total reflection stop being separated by a straight
line and become separated by a curve. As seen when one compares Fig. 3.8d and
Fig. 3.7. This is due to the nature of the filling, which is a Gaussian potential. As
such its effects are stronger in the central region than the edges of the beam-splitter.
Therefore, the linear separation becomes curved as different regions inside the beam-
splitter have a different impact on the transmission probability depending on the
velocity of the atoms.
These spikes have a similar to the example of the parabolic potential, see Fig. 2.10.
Hence they could be understood to come from resonant frequencies.
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(C) F = 0.6
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FIGURE 3.8: These figures show the transmission probabilities for the filling,
F = 0.2(A), F = 0.4(B), F = 0.6(C) and F = 1.0(D). They show clearly that
by increasing the the filling the linear boundary between total reflection and
total transmission starts developing spikes and the separation between the
areas becomes rounded. The other parameters are U0 = −20ER, ω0 = 15µm

λ = 1064nm.

3.2.2 Atoms Inside the Beam-Splitter

Further, we could calculate the probability of the wave-function inside the beam-
splitter via

BS =

∫ xmax

−xmin
ψ∗(x)ψ(x)dx. (3.26)

It should be noted that we are dealing with plane waves and thus this probability
would not be normalised. Nonetheless, we could gain some information by com-
paring it with the probability of the incident wave over the same area without a
potential, which is labelled as PI . From this ratio, we could see an increase or de-
crease of the number of atoms inside the beam-splitter. Looking at the corresponding
graph, see Fig. 3.9 and comparing to the one for the transmission Fig. 3.7 we see that
the area of total transmission is homogeneous, which is to be expected as the wave
simply travels through the beam-splitter without being altered. More interesting is
the region for total reflection. Cases with a value below unity can be understood to
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have the wave reflected shortly after entering the beam-splitter, while values above
unity indicated later and/or more complex reflection behaviour from various areas.
Furthermore, the spike pattern that was only becoming visible for higher filing is
shown here, showing a resonance depending on the velocity of the atoms and the
fringe spacing of the optical lattice. However, these calculations do not provide any
additional information regarding the determination of suitable splitting parameters
and thus are will not be investigated further.

FIGURE 3.9: This figure shows the increase of the wave inside the beam-
splitter for the parameters U0 = −20ER, ω0 = 15µ, F = 0 and λ = 1064nm.

3.2.3 Narrower Waveguides

Besides the filling there are other methods to change the splitting behaviour. For
this we change the depth U0, width ω0 and the wavelength of our λ = 720nm. The
reasons behind these changes can be found in Sect. 4.5. It is not possible to use the
band-gap method for these parameters as the numbers of fringes will be reduced
drastically and it is one of the reasons for the need to solve the transmission proba-
bility for arbitrary potentials, discussed previously in this section.
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Parameters: U0 = −2ER and ω0 = 1µm

The first case we are focusing on is the case where U0 = −2ER and ω0 = 1µm. For
these calculations we are going to vary the velocity from v = 0vR to v = 5vR, the
polarisation from ε = 0 to ε = 1 and the filling F = 0 to F = 1, which are in-
creased in 0.5vR, 0.05 and 0.1 increments respectively. Resulting in the transmission
probabilities seen in Fig. 3.10, where A is for F = 0, it shows a very roughly linear
relation for areas of 50:50 splitting. When of is increased this relation becomes more
rounded as seen in B, C, and D which are the transmission probabilities for F = 0.4,
F = 0.6 and F = 1 respectively. They also have spike that form for higher filling
values but not as strong as in the previous case with U0 = −20ER, ω0 = 15µm and
λ = 1064nm. Furthermore, there are smaller regions of total transmission inside the
total reflection are due to resonant frequencies.
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FIGURE 3.10: These figures show the transmission probability for U0 =
−2ER and ω0 = 1µm, for the filling, F = 0(A), F = 0.4(B), F = 0.6(C),
F = 1.0(D). There is a rough straight line separating the case where F = 0.
This becomes more curved when the filling is increased as shown by com-
paring A and F directly. The other parameters are U0 = −2ER, ω0 = 1µm

λ = 720nm.
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Parameters: U0 = −2ER and ω0 = 1.5µm

For the next case we increase the width from ω0 = 1µm to ω0 = 1.5µm. The rest of
the parameters stay the same. For this case as well we will vary the velocity v = 0vR

to v = 5vR, the polarisation from ε = 0 to ε = 1 and the filling F = 0 to F = 1, with
the step size for the velocity being v = 0.5vR, for the polarisation 0.05 and the filling
0.1. Giving us the splitting probabilities in Fig. 3.11. The splitting probabilities do
not change drastically from the case, where ω0 = 1.5µm. For this case as well the
boundary between the total transmission and total reflection regions starts off linear
and then becomes curved for increasing filling.
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FIGURE 3.11: The transmission probabilities for the fillings, F = 0, F =
0.4, F = 0.6 and F = 1 are shown in A to E prospectively, while the other
parameters are U0 = −2ER, ω0 = 1.5µm λ = 720nm. There is a linear
septation between the transmission in A which becomes a curved one when

the filling is increased.

Parameters: U0 = −5ER and ω0 = 1µm

In the previous case we increased the laser width from ω0 = 1µ to ω0 = 1.5µ. In
this case we go back to ω0 = 1µ but increase the potential depth of our beam-splitter
from U0 = −2ER to U0 = −5ER. The rest of the fixed and variable parameters stay
the same. Giving us the transmission probabilities seen in Fig. 3.12. In comparison
to the previous case this example allows for overall higher velocities for splitting. It
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also has a linear separation for the reflection and transmission and low filling which
becomes curved for higher fillings.
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FIGURE 3.12: A to D show the transmission probabilities for the fillingsF = 0
F = 0.4, F = 0.6 and F = 1. The other parameters are U0 = −2ER, ω0 =
1.5µm λ = 1064nm. Here as well the see that the linear boundary between

the transmission and reflection area becomes curved for higher filling.

3.3 Split-Step Fourier Method

Additionally, to the band-gaps analysis and the standing wave we can also calcu-
late the propagation of a wave-packet through the beam-splitter, via the split-step
Fourier method described in Sec. 2.3.3[100–102]. For this method we need to define
a few parameters. Firstly, we need to set the limits of our simulation area so that the
wave-function has enough room to properly propagate through the beam-splitter,
which depends on the starting width of the wave-packet, position and velocity. The
velocity is one of the main factors to determine how long the simulation will run.
The others are the approximate final width, which comes from the diffusion of the
free wave-packet and the requirement that the wave packet has left the beam-splitter
region completely. The step size for the time is ∆t = 0.5µs. Furthermore, the starting
position of the wave-packet is chosen to be far enough away from the beam-splitter
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that any overlap is negligible, but not too far away as this would result in an in-
crease of the runtime. We also need to make sure that the k-space for our calculation
is sufficiently large by considering the starting momentum and the maximum mo-
mentum it could get from the potential depth in the beam-splitter. Additionally, the
separation between the datapoints in the position space is chosen so that there are at
least 10 points for every period in the fringes.
The reflection,R and transmission,T probabilities can be obtained by integrating the
probability density over the regions before and after the beam-splitter. In compari-
son to the standing wave some of the atoms can be trapped inside the beam-splitter,
BS. Thus there are three regions to take into consideration to find the a viable re-
gion for splitting, the region for transmission, the beam-splitter and the region for
the reflection. However, the overall probability of finding the wave in all the regions
should be unity and thus we actually only need two. Hence it is a good way to check
by calculating all three and make sure that they add to unity.

3.3.1 Splitting

For the splitting we begin with defining the actual parameters for our calculations.
As in the previous sections our beam-splitter has a depth of U0 = −20ER, ω0 =

15µm, λ = 1064nm and θ = 90◦. However, additionally to those we also need to
examine the starting form of our wave-packet, which is a Gaussian of the form

ψ(x) =
1

σ
√√

π
e−

(x−x0)2

2σ2 eikx, (3.27)

where k is the wavenumber which has the same numerical value as the velocity
in recoil units, x0 is the starting position, and σ is the variance of Gaussian. The
starting position is automatically calculated by our program and this procedure will
be shown in the appendix A. The variance for this calculation will be 10µm. From
these we can calculate now the propagation of a wave though the beam-splitter,
where an example is given in Fig. 3.13 for v = 3vR and ε = 0.6.
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FIGURE 3.13: These figures show the evolution of the wave-packet through
a beam-splitter, where the parameters are v = 3vR, ε = 0.6, U0 = −20ER,
ω0 = 15µm, λ = 1064nm, θ = 90◦, F = 0 and σ = 10µm. The wave starts off
in A and then travels forwards until it reaches the beam-splitter at B. From
this point on it propagates through the beam-splitter as shown in C, D, E and
leaves it in F. The exiting wave-packets are slightly distorted but their overall
shape is still reasonable. The reflected packet is more distorted and looks a
bit like a superposition of multiple packets, whereas the transmitted packet

is much more like a single packet.

In this A shows the starting position of the wave, which moves forward and starts in-
teracting with the beam-splitter at B. Afterwards it travels through the beam-splitter
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as seen in C,D,E, where the splitting starts to become visible at D. Finally leaving the
beams-splitter at F. The exciting wave-packets are slightly distorted but have still
overall Gaussian shapes. However, some of the wave gets stuck inside the beam-
splitter. Similarly, to this example we will repeat this calculation for varying values
of the velocity and polarisation, ranging from v = 0.5vR to v = 5vR and ε = 0 to
ε = 1, respectively. The velocity is increased in 0.5vR increments and the polari-
sation in 0.1 ones. From this we can compute the transmission probability and the
probability of the atoms being trapped inside the beam-splitter shown in Fig. 3.14.
This trapping is different to the standing wave as this is the probability of the atoms
being getting trapped inside the beam splitter, while the one for the standing wave
shows only an increase of atoms depending on the atom density of the input. Thus
they cannot be compared. The part for the transmission look similar to the one from
the standing wave seen in Fig. 3.7. Due to the nature of a Gaussian wave-packet
being an superposition of standing waves the edges between transmission and re-
flection are smoothed out. Nonetheless, this is not the only factor that creates this
smoother edge, the other one is the wide separation of datapoints. However, be-
sides the transmission probability we need to take the fraction of trapped atoms into
consideration and from this we see that the best value for the polarisation is in the
region of ε = 0.6 to ε = 0.8. The corresponding velocity can then be picked from the
transmission probability plot.
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FIGURE 3.14: These figures shows the transmission probability and the prob-
ability of trapped atoms for the a travelling wave-packet with the parameters,
σ = 10µm, U0 = −20ER, ω0 = 15µm, λ = 1064nm, θ = 90◦, F = 0. The
areas of total transmission and reflection are separated linearly, where one
would find the 50:50 splitting ratio. The other tapped atoms show which ar-
eas to avoid and thus the best splitting without having atoms being stuck

inside the beam-splitter is between ε = 0.6 and ε = 0.8.

3.3.2 Filler

We can expand on these calculation by introducing the the filling, which we will
vary between F = 0 to F = 1 in 0.1 increments. For this we will then calculate
the transmission probabilities via allowing the wave-packet to propagate through
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the beam-splitter using the the split-step Fourier method. An example of this can be
seen in Fig. 3.15, where we set the velocity to v = 5vR, the polarisation to ε = 0.6 and
the filling to F = 1. The wave-function is starts off in A and then travels towards
the beam-splitter, B. Afterwards, it travels through the beam-splitter in C,D,E and
leaves it in F. The exciting wave-functions have overall good shapes.
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FIGURE 3.15: The wavefuntion propagates through the beam-splitter in al-
phabetical order: A→B→C→D→E→F. For the parameters v = 5vR, ε = 0.6
σ = 10µm, U0 = −20ER, ω0 = 15µm, λ = 1064nm, θ = 90◦ and F = 1. The
splitting is not equal in this case. However, the overall shape of the exiting

wave-functions appear to be Gaussian.
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From these we can calculate the transmission probabilities for a broad range of ve-
locities, polarisation and fillings as discussed before. Giving us the Fig. 3.16f. These
graphs show similarities to the standing waves case Fig. 3.8. Both of which show
that the linear boundary between transmission and reflection becomes a curve when
the filling is increased. However, it does not have the spikes due to the Gaussian and
broad data points separation, as mentioned before.
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FIGURE 3.16: These figures show how the splitting behaviour for σ = 10µm,
U0 = −20ER, ω0 = 15µm, λ = 1064nm and θ = 90◦, change when the
filling is increased. The separation between transmission and reflection starts

of linear and becomes more and more curved for higher filling.
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Additionally, we also need to examine how many atoms are trapped inside the
beam-splitter, see Fig. 3.17. In this we see that the area for which atoms are trapped
gets reduced as we increase the filling, which is to be expected as the filling is there
to reduce the potential depth and thus the atoms can exit the beam-splitter more
easily.
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FIGURE 3.17: These figures shows the probability of atoms being trapped
inside the beam-splitter for the parameters σ = 10µm, U0 = −20ER, ω0 =
15µm, λ = 1064nm and θ = 90◦. The difference between these figures and
goes from F = 0.1, F = 0.2, F = 0.4, F = 0.6, F = 0.8 and F = 1 in
alphabetical orders. Regions of significant atom-trapping should be avoided

for a beam-splitter.
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3.3.3 Shallower and Narrower Waveguides
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FIGURE 3.18: The transmission probability for different filling levels are
depicted in these figures for different filling levels mentioned below the
respected figures. The separation between transmission and reflection is
roughly a straight line and F = 0 and becomes curved for higher filling.
The other parameters are σ = 0.73µm, U0 = −2ER, ω0 = 1µm, λ = 720nm

and θ = 90◦.

The next step for us is now to apply the split-step Fourier method to the cases with
lower waveguide depth and width. Starting off with the depth of U0 = −2ER, the
laser width ω0 = 1µm, its wavelength of λ = 720nm and the crossing angle of
θ = 90◦. For our wave-packet the variance will be 0.73µm. The velocity will be
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varied from v = 0.5vR to 5v = vR, the polarisation from ε = 0 to ε = 1 and the
filling F = 0 to F = 1, increments of 0.5vR, 0.1 and 0.1, respectively. This allows us
to calculate the transmission probabilities, see Fig. 3.18. Again, these are similar to
the standing wave, where the reflection and transmission are linearly divided and
this division becomes a curve when we increase the filling. Additionally, we need to
look at the trapped atom in the band-gaps, see Fig. 3.19, for which it becomes clear
that the areas of most trapped atoms are not in regions of 50:50 splitting.
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FIGURE 3.19: These figures show the amount of atoms being trapped for
different filling level, F = 0, F = 0.2, F = 0.4, F = 0.6, F = 0.8 F =
1, as shown in A, B, C, D, E and F, respectively. The other parameters are
σ = 0.73µm, U0 = −2ER, ω0 = 1µm, λ = 720nm and θ = 90◦. The area
of significant trapped atoms has generally no real overlap with the areas of

50:50 splitting.
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FIGURE 3.20: The transmission probabilities for a travelling Gaussian wave-
packet though our beam-splitter for the parameters σ = 0.73µm, U0 =
−2ER, ω0 = 1.5µm, λ = 720nm. In this case as well the separation be-
tween the reflection and transmission starts of linearly for low filling as seen
in A and becomes round when the filling is increased see B→C→D→E→F.

The difference between this case and ω0 = 1µm is small.

From here we will increase the with of the waveguides to ω0 = 1.5µm and keep all
other parameters the same. Giving us the transmission probabilities as seen in Fig.
3.20. These also correspond well with the ones from the standing waves 3.11. The
boundary between transmission is smoothed out but otherwise they show a very
similar splitting behaviour. As for this case the regions for total transmission and
total reflection are divided by a straight line for F = 0 that becomes curved when
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the filling is increased.
The regions in which the atoms are trapped does not overlap significantly with good
splitting region and thus does not play a significant role in finding the right param-
eters, see Fig. 3.21. However, it is to be expected that the amount of trapped atoms
slightly increases for a wider laser beam as this is seen here.
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FIGURE 3.21: The amount of trapped atoms for a travelling Gaussian wave-
packet is depicted for different filling levels, with the other parameters being
σ = 0.73µm, U0 = −2ER, ω0 = 1.5µm, λ = 720nm. The overlap of trapped

atoms and equal splitting is minimal.

Our last case focuses on a deeper waveguide with a depth ofU0 = −5ER and a width
of ω0 = 1µm. All the other parameters stay the same. For which we see the splitting
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probabilities in Fig. 3.22. Overall these parameters would allow us to use higher
velocities for 50:50 splitting in comparison to the case of U0 = −2ER. Otherwise it is
quite similar with same pattern of having a linear boundary between total reflection
and total transmission at lower fillings which becomes curved in favour of reflection
for higher filling.
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FIGURE 3.22: The transmission probabilities for different fillings for the pa-
rameters are depicted by these figures for the parameters σ = 0.73µm,
U0 = −5ER, ω0 = 1µm, λ = 720nm. For this case as well the separation
between transmission and reflection is linear and becomes curved for higher

fillings in favour for reflection.

In addition to the transmission we also calculated the probability of atoms being



92 Chapter 3. Beam-Splitter Properties in One-Dimension

trapped inside the beam-splitter, see Fig. 3.23. In connection with the transmission
probability we see that the overlap of equal splitting probabilities and trapped atoms
in minimal. Hence, it is not a deciding factor for velocities, polarisation and filling to
choose. However, as this beam-splitter is deeper than the one for U0 = −2ER, more
atoms get trapped.

0.00 0.25 0.50 0.75 1.00
ε

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

v/
v R

0.000
0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120
0.135

B
S

(A) F = 0

0.00 0.25 0.50 0.75 1.00
ε

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

v/
v R

0.000
0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120
0.135

B
S

(B) F = 0.2

0.00 0.25 0.50 0.75 1.00
ε

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

v/
v R

0.000
0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120
0.135

B
S

(C) F = 0.4

0.00 0.25 0.50 0.75 1.00
ε

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

v/
v R

0.000
0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120
0.135

B
S

(D) F = 0.6

0.00 0.25 0.50 0.75 1.00
ε

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

v/
v R

0.000
0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120
0.135

B
S

(E) F = 0.8

0.00 0.25 0.50 0.75 1.00
ε

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

v/
v R

0.000
0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120
0.135

B
S

(F) F = 1

FIGURE 3.23: These figures show the probabilities of atoms being trapped
inside the beam-splitter for different filling levels for the parameters σ =
0.73µm, U0 = −5ER, ω0 = 1µm, λ = 720nm. None of these overlap signifi-

cantly with the region of desired splitting probabilities.
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3.4 Summary

In this chapter we discussed and analysed the splitting probabilities for our one-
dimensional beam-splitter, which is just the cross-section of our two dimensional
one. Firstly, we used the band-gap method. For this we calculated the individual
band-gaps and transmission probabilities and these band-gaps act as regions of for-
bidden energy and thus atoms need to tunnel through them. We only looked at the
parameters of the potential depth of U0 = −20ER, the laser width ω0 = 15µm and
the laser wavelength of λ = 1064nm and expanded on this with a filling parameter,
the reason for which will be discussed in the next chaster. However, our lattice does
not have enough fringes to actually calculate the band-gaps, which was shown by
the contradictory picture provided by the next two methods.
The next method used was for standing waves, where by integrating backwards
through the beam-splitter we calculated the transmission probabilities. For U0 =

−20ER, the laser width ω0 = 15µm, the laser wavelength of λ = 1064nm and a
filling of F = 0 we saw that the transmission and reflection areas were linearly di-
vided and when we increased the filling this division becomes curved on favour of
reflection with spikes. This is due to atoms with different velocities being reflected
by different regions inside the beam-splitter. The Gaussian shape of the filling, fills
the central region stronger than the outer, leading to a curved shape between the
boundaries. Additionally, we look at how the number of atoms inside the beam-
splitter changed depending on velocity and polarisation. Unfortunately, the results
do not allow us to narrow down the parameters. Afterwards, we changed the width,
depth and wavelength of our laser to U0 = −2ER, ω0 = 1µm and λ = 720nm, respec-
tively. It also started of with a linear divide which become curved when the filling
was increased. However, it did not have formation of new spikes. Additionally,
to this we also looked at cases with the parameters of U0 = −5ER, ω0 = 1µm and
λ = 720nm and U0 = −2ER, ω0 = 1.5µm and λ = 720nm. Also, there were regions
of total transmission inside the region of total reflection due to resonant frequencies.
Both of which shows similar behaviour to the previous mentioned case.
The last method we used is the split-step Fourier method for a Gaussian wave-
packet travelling though the beam-splitter. We used the same cases as before and
saw that they agree with the previous one, for which we calculated the transmission
via integrating backwards. The main difference between them is that the border
between total reflection and transmission is smoothed out. There are two primary
reasons behind this. The first being less data points as the split-step Fourier method
takes longer to calculate. The other one being that the Gaussian wave-packet can be
written as a sum of standing waves and thus its transmission probability comes from
summing the transmission probabilities of different individual standing waves.
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Chapter 4

Beam-Splitter Properties in
Two-Dimensions

In the previous chapter we have discussed the properties of the beam-splitter in one
dimension. Following from there we are looking at the two dimensional properties
in this chapter, see Fig. 4.1 for an example potential of the beam-splitter with waveg-
uides labelled for their functions. For this we will discuss in this chapter the Fourier
transform in two dimensions, the transverse ground state we use for the starting
wave-packet of the atoms, how we calculate the splitting probabilities from the final
numerical wave-function. Afterwards we will look at different parameters for our
beam-splitter to find desirable splitting probabilities.

  

Atom Input Refle
ction

Transmission

Vacu
um In

put

FIGURE 4.1: An example potential of the beam-splitter with the individual
waveguides labelled after their function.
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4.1 2D Fourier Transform

As we will be working with two dimensional waves from now on we will need to
modify the the split-step Fourier method [100–102], Sec. 2.3.3, for this case. Starting
off with the definition of the 2D Fourier transform

ψ̃(kx, ky, t) =
1

2π

∫ ymax

ymin

∫ xmax

xmin

ψ(x, y, t)e−i(kxx+kyy)dxdy, (4.1)

which is in effect two separate 1D Fourier transforms for each of the coordinates,

ψ̃(kx, ky, t) = Fx (Fy (ψ(x, y, t))) . (4.2)

This is similar to the discrete Fourier transform which is also only two 1D transforms
over each coordinate

g(n∆ω1, l∆ω2) =

L−1∑
q=0

N−1∑
m=0

f(m∆t1, q∆t2)e−i2πn
m
N e−i2πl

q
L . (4.3)

Now we need to change our two continuous Fourier transforms into a discrete form

ψ̃(kx,n, ky,l, t) '
1

2π

L−1∑
q=0

N−1∑
m=0

ψ(xm, yq, t)e
−ikx,nxme−iky,lyq∆x∆y, (4.4)

which we will rearrange to fit our discrete Fourier transform,

[
ψ̃(kx,n, ky,l, t)e

inxmin∆kxeilymin∆ky
]
'
L−1∑
q=0

N−1∑
m=0

[
∆x∆y

2π
ψ(xm, yq, t)e

−ikx,minxme−iky,minyq
]

× e−i2πn
m
N e−i2πl

q
L . (4.5)

This equation show us how to modify our wave-functions to use the 2D discrete
Fourier transform to compute the continuous Fourier transform. The same can be
done for the inverse, where we begin with the 2D continuous inverse Fourier Trans-
form

ψ(x, y, t) =
1

2π

∫ ky,max

ky,min

∫ kx,max

kx,min

ψ̃(kx, ky, t)e
i(kxx+kyy)dkxdky, (4.6)

that will be written into a discrete form

ψ(xm, yq, t) '
1

2π

L−1∑
l=0

N−1∑
n=0

ψ̃(kx,n, ky,l, t)e
ikx,nxmeiky,lyq∆kx∆ky. (4.7)

Now we need the 2D inverse discrete Fourier transform
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f(m∆t1, q∆t2) =
1

NL

L−1∑
l=0

N−1∑
n=0

g(n∆ω1, l∆ω2)ei2πm
n
N ei2πq

l
L , (4.8)

to rearrange the Eq. 4.7 into

[
∆x∆y

2π
ψ(xm, yq, t)e

−ikx,minxme−iky,minyq
]
'
N−1∑
n=0

[
ψ̃(kx,n, ky,l, t)e

inxmin∆kxeilymin∆ky
]

× ei2πm
n
N ei2πq

l
L . (4.9)

Now we have a way to solve the continuous Fourier transform and its inverse in
two dimensions, which allows us to use the split-step Fourier method to investigate
the splitting probabilities of our beam-splitter. The algorithm is roughly the same as
given in Sec. 2.3.3, where we have now changed the Fourier transforms to solve the
2D problems. For this the initial wave-function and the potential are now set to 2D.
A brief overview for the one-dimensional case can be seen in appendix B.

4.2 Ground State

The waveguides in the two dimensional problems restrict the movement of the
atoms along their transverse direction only allowing longitudinal movements . For
our simulation we assume that the atoms are in the transverse ground state of the
waveguides. A reasonable assumption for the ground state in our Gaussian waveg-
uide would be to set it equal to the ground state in a harmonic oscillator, where
the errors of ground state will only be in the tail of the Taylor expansion where the
magnitude of the wave-function is very small,

ψ0(x) =
(mωHMO

π~

) 1
4
e−

mωHMOx
2

2~

=
1√
σ
√
π

(
e−

x2

2σ2

)
, (4.10)

where the variance of the wave-function is

σ =

√
~

mωHMO
. (4.11)

To obtain the angular frequency for this approximation to work we need to Taylor
expand the potential for our waveguide

U(x) = U0e
− x

2

ω2 ≈ U0

(
1− x2

ω2

)
+ · · · . (4.12)
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We need to compare this equation with the one from the harmonic oscillator, which
is

UHMO(x) =
1

2
mω2

HMOx
2. (4.13)

From this can get now

1

2
mω2

HMOx
2 = |U0|

x2

ω2
, (4.14)

which needs to be rearranged into

ωHMO =

√
2|U0|
mω2

, (4.15)

leading to the variance of

σ =

√
~ω√
m2|U0|

. (4.16)

This approximation can be justified by comparing to the numerical results from the
shooting method[99], Sec. 2.3.4, to calculate the fidelity of the approximation with
the numerical result. For example the fidelity between the approximation and the
shooting method is 〈ψapprox|ψshoot〉 = 0.99140 for the parameters θ = 90◦, ω0 = 1µm,
U0 = −5ER and λ = 720nm.

4.3 Variables for the Simulations

Before we start to discuss the 2D simulations we need to explain the general param-
eters of the calculations. Firstly, the step size in time for our calculations is set to
∆t = 0.5µs, while the overall time for the simulations mainly dependence on the ve-
locity of the atoms and the diffusions of their wave-function to make sure they can
propagate through the whole beam-splitter. Furthermore, we need to make sure that
the potential has enough data points to give a decent image for the fringes. There-
fore, the minimum separation between the points is ∆x = d/10, where d is the an-
ticipated length of one fringe period Sec. 2.3.3. The dimension of the position space
is so that the wave-function can be completely inside a waveguide without coming
into contact with the beam-splitter or the edges of the simulation area. However,
this is only the condition in position space. Hence, we need to make sure that there
are enough data points available to allow for the momentum change of the wave-
function in the beam-splitter. Remembering that the length of the k-space is directly
dependent on ∆x via K = 2π

∆x , where K is the total length of the k-space with a sep-
aration of the data points being ∆kx = 2π

Nx∆x . This relation comes directly from the
discrete Fourier transform and thus the only way for us to increase the size k-space
is to reduce ∆x by increasing the number of data points and keeping X the same.
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Additionally, the discretisation of the Fourier transforms via the approximation of
the integral as ∫

dx ≈
∑

∆x, (4.17)

is rather crude. Therefore, we need to have a way of determining when this leads to
errors. A good way to do this is to look at variables which should stay constant over
the whole simulation. Leading us to the use of the normalisation in position-space,∫ ymax

ymin

∫ xmax

xmin

ψ(x, y, t)ψ∗(x, y, t)dxdy = 1, (4.18)

in k-space ∫ ky,max

ky,min

∫ kx,max

kx,min

ψ̃(kx, ky, t)ψ̃
∗(kx, ky, t)dkxdky = 1 (4.19)

and the expectation of the energy

〈E〉 = 〈ψ|V̂ + T̂ |ψ〉 = 〈ψ|V̂ |ψ〉+ 〈ψ|T̂ |ψ〉

=

∫ ymax

ymin

∫ xmax

xmin

ψ∗(x, y, t)U(x, y)ψ(x, y, t)dxdy

+

∫ ky,max

ky,min

∫ kx,max

kx,min

ψ̃(kx, ky, t)
(k2
x + ky2)~2

2m
ψ̃∗(kx, ky, t)dkxdky, (4.20)

T̂ is the operator for the kinetic energy and V̂ is the operator for the potential energy.
A significant change in any of these values will indicate that errors are growing in
the calculations, which therefore need further investigation an example of this is
given in Fig. 4.2.
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FIGURE 4.2: Figure A depicts the normalisation and its change in time and B
shows the energy of the atoms and its change in time. The biggest changes
come from numerical errors. They are used to find issues with the simulation
and as long as they do not show any significant change they can be neglected.
This example is given for the parameters θ = 90◦, ω0 = 15µm, σx = 10µm,

U0 = −20ER, λ = 1064nm, v = 4vR, ε = 0.5
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4.3.1 Probability Calculations

From here onwards we also need to define how we calculate the probabilities of
finding the atoms in a specific arms. This will be done by simply integrating over a
certain region inside our simulation area,

P =

∫ y+

y−

∫ x+

x−

ψ(x, y, t)ψ∗(x, y, t)dxdy. (4.21)

For example to calculate the transmission probability we would set the lower limit
x− to be the end of the beam-splitter and the upper limit x+ to be the limit of the
position space xmax. The limits for y are chosen to be ±1.5ω0, where ω0 is the waist
of the waveguide. A smaller range in y can exhibit probability oscillations, due to
transverse oscillations of the wave-packet in the wave-guide that develop during
the evolution (as will be discussed in Sec. 4.4). The range of y is therefore chosen
so that probability does not oscillate transversely out of the range. This method
allows us to define 6 regions over, which we can integrate: The input waveguide for
the atoms, normally labelled as I1, the vacuum input I2, the reflection waveguide,
R, the transmission guide, T , the beam-splitter, BS and finally the area outside the
bounds of the waveguides and beam-splitter, which we define as loss. Additionally,
it is of importance to determine the coherence of our outputs. As a reminder, our
definition of the coherence is that atoms occupy the transverse ground state and
the longitudinal momentum state of their respective waveguide, given by Eq. 1.20
which is

|g, k; 0, 0〉 → 1√
2

(|g, k; 0, 0〉+ |0, 0; g, k〉) , (4.22)

where |g, k〉 is the states with the atom in the longitudinal ground state and the
momentum state corresponding to the wave-number k. For this notation, |0, 0〉 is the
vacuum. During our simulation, we constantly monitored the number of atoms in
the longitudinal ground state in their respective waveguides. For this, we calculated
the probability amplitude between the state and the ground state

A(x, t) =

∫ y+

y−

ψ∗0(y)ψ(x, y, t)dy, (4.23)

where ψ0(y) is the wave-function of the ground state. From this, we get the proba-
bility density as a function of x via

ρ(x, t) = |A(x, t)|2. (4.24)
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Integrating over the length of the waveguides gives the probability of finding the
atoms in the ground state of their respected waveguides,

P0(t) =

∫ x+

x−

|A(x, t)|2dx. (4.25)

However, this value is for the total wave-function and thus we will only give its
ratio with regard to the probability of finding the atoms in the waveguide regardless
of their state. This value will give information about the splitting quality with the
desired values of P0(normalised by the total probability) being unity.

4.4 Beam-Splitter Simulations
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FIGURE 4.3: These plots depict the probability of finding the atoms in the re-
spected waveguides, where A is the input into which the atoms are scattered
back if they do not have enough kinetic energy. To have a good functioning
beam-splitter any back-scattering into the atom input should be negligible.
B shows the vacuum input. In the ideal case it should be mostly empty and
thus any significant scattering probability into it is unfavourable for the de-
sired splitting. The transmission probability is depicted in C and it should
be chosen to be roughly 50%. Lastly, D shows the reflection and it should be

similar to the transmission probability to have an even split.
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Now that we have discussed the necessary definitions we will present selected re-
sults from our simulations, all the animation can be found as described in appendix
A. The two parameters for the simulations that are the easiest to control are the
velocity of the atoms, v and the polarisation of the beams, ε, while the other pa-
rameters are kept constant. These parameters are the angle at which the Gaussian
beams cross, θ = 90◦, their width ω0 = 15µm, the variance of the incoming wave-
packet along the longitudinal direction σx = 10µm, the transverse direction is in
the ground state of the waveguide, the depth of the waveguide U0 = −20ER and
the wavelength of the Gaussian beams λ = 1064nm, Sec. 2.1. Our aim is to find a
suitable region for coherent and balanced splitting as such we will investigate the
velocity over a range of 1vR to 5vR, using the a step size of 0.5vR and epsilon will be
varied from 0.1 to 0.7 with the step size of 0.1. During these runs we will measure
the probability of finding the wave-packet in the respective waveguides to deter-
mine the the reflection and transmission probabilities. In the case of an vacuum in
the waveguide it is defined as 0. Additionally, it will be refereed to the coherent.
The plot for them can be seen in Fig. 4.3, where A(4.3a) is the probability of the
atoms being reflected back into their input. Any substantial probability of this hap-
pening means that these parameters are not suitable for the desired splitting prop-
erties of the beam-splitter. Next we have the sub figure B(4.3b), which is the vac-
uum input and thus it should stay a vacuum for the entire splitting process and any
non-negligible scattering into it is unsuitable for the beam-splitter. Next we have
the transmission and reflection probability, C(4.3c) and D(4.3d) respectively. These
should have roughly a 50:50 splitting for an ideal beam-splitter.
Nonetheless, the shape of the wave-function after the splitting is still as important
as the ratio, as they are going to re-interfere in a interferometer. For this we need to
take a look at the simulation of the wave through the beam-splitter. Looking at Fig.
4.3, we choose the appropriate values for a roughly even split, which in this case are
a velocity of v = 4vR and ε = 0.5, which can be seen in Fig. 4.4, where the probability
density of the wave-function is depicted at different selected points in time, while it
is traversing through the beam-splitter, in alphabetic order respectively. The wave-
function for these properties gets excited into higher transverse modes of the waveg-
uides. In the reflection band it forms a number of individual smaller wave-packets
which disperse and recombine while travelling through the waveguide, which can
be seen in E(4.4e) and F(4.4f) . On the other hand, the wave in the transmission
waveguide stays more contiguous than in the reflected case. However, it is split in
two distinct wave-packages and it is elongated compared to the reflected case and it
also has a stronger longitudinal momentum than it. This will make it harder to have
interference when the wave-functions are recombined as only certain parts of both
wave-functions will be recombined in the beam-splitter instead of having a perfect
overlap between these two.
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FIGURE 4.4: These figures illustrate the atoms with a velocity of 4vR moving
through a beam-splitter with a polarisation of ε = 0.5, to have a roughly
even split. The atoms travel through the optical waveguide until they reach
the beam-splitter at A. From there they propagate through the beam-splitter
as shown in B, C, and D and finally leave the beam-splitter at E with the last

time stamp of the simulation shown at F.

Additionally, we looked at the percentage of finding the atoms in the ground state of
the transmission(blue dotted line) and reflection(red dashed line) waveguides after
the splitting, see Fig. 4.5. Interestingly, even though the wave inside the reflection
waveguide is split into more smaller wave-packets, they stay close together and thus
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roughly 40% of the wave is in the ground state. Furthermore, while the wave in the
transmission guide is more contiguous here is no significant part of it that is in the
ground state.
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FIGURE 4.5: Shows the per cent of the wave inside the transmission(blue dot-
ted line) and reflection(red dashed line) waveguides being inside the ground
state after the splitting. For a wave-function with a velocity of v = 4vR and a

polarisation of ε = 0.5.

Similar behaviour could be seen in all simulations, where the majority is scattered
into the reflection and transmission waveguides. Due to, the splitting is non-central
and takes part not just in one region of the beam-splitter, which leads to the mul-
titude of smaller Gaussian wave-packets in the transmission and reflection waveg-
uides. This is especially true for the reflection waveguide as most of the smaller
wave-packets get reflected inside it while the packet in the transmission waveguide
stays more together with a different direction of the momentum. In regards to the
momentum change of the atom and the conservation of momentum, the momentum
is conserved in the sense that the change of its direction can be accounted for in the
momentum of the optical lattice and the photons. This recoil is however negligible
for the lattice, as the optical lattice state is effectively a classical state of uncertain
photon number containing a very large average photon number, and thus we can
treat the potential of the optical lattice seen by the atoms as constant.
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FIGURE 4.6: These figures depict cases with undesirable splitting probabil-
ities where in case for A the velocity is v = 1vR and ε = 0.1 and for B

v = 1.5vR and ε = 0.2.
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(D) All Waveguides and the Beam-Splitter

FIGURE 4.7: The plot in A shows the combination of reflection and trans-
mission probability. It should be around unity for a decent beam-splitter. B
shows the combination of reflection, and transmission and scattering back
into the input. There are major probability gaps in here which come from
atoms being trapped in the beam-splitter, as shown in C. Lastly, we add up
the probability of finding the atoms in the waveguides and the beam-splitter.

The discrepancy here comes from atoms escaping.

For cases where the initial velocity is insufficient for the packet to travel through
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the beam-splitter we get that the majority is reflected back into the input. However,
additionally to getting reflected back into the waveguide, a part of the wave-function
gets trapped. As seen in Fig. 4.6, which depicts two cases of this happening. In sub
Fig. 4.6a most of the wave-function get reflected back into the atom input and only
some of it gets trapped. However, in sub Fig. 4.6b we see that some parts of the
wave escapes into the reflection guide. Hence, we always need to consider the form
of the wave in addition to the splitting. Nonetheless, we can use this as a criterion
to filter out ineffective splitting behaviour by checking how much of the packet is
still in the beam-splitter, see Fig. 4.7. In this Figure we see the combination of the
reflection and transmission probabilities A(4.7a), which is then combined with the
input probability, B(4.7b), the probability of finding the atoms in the beam-splitter
can be seen in C(4.7c) and the loss, D(4.7d). These figures in combination with Fig.
4.3 gives a good ansatz to find suitable splitting parameters. However, none of the
observed splitting have been coherent and thus the overall fringe quality will be
lowered. Nonetheless, they could be used in an multi mode atom interferometer if
desired.

4.5 Changes to the Beam-Splitter

The chosen parameters of the last section did not lead to any desirable splitting val-
ues, mainly due to the excitation of the wave-packet into higher transverse states. An
effect that gives rise to this is the large number of transverse modes in our waveg-
uides, which have relatively close eigen energies. The biggest gap in energy sep-
aration between the eigenstates is between the ground state and the first excited
state, which is comparable to the one found in the harmonic oscillator. Unlike the
harmonic oscillator, the level separation then decreases with increasing energy[105],
making transitions to higher states easier to occupy several different eigen states.
Additionally, the atoms receive additional kinetic energy when they enter the beam-
splitter due to its potential depth, which is created by the overlap of the two Gaus-
sian lasers. This extra kinetic energy could facilitate the occupation of higher energy
states inside the beam-splitter, as the energy levels, there are lower than those of the
waveguides. Making it easier for the beam-splitter to excite the atoms into higher
eigenstates due to non-coherent splitting. From which they get transferred to the
higher eigenstates of the waveguide when leaving the beam-splitter. This reduces
the kinetic energy along the longitudinal directions of the outputs in comparison to
the input.This can be reduced by narrowing our waveguides, which then raises the
energy separation between the the modes[105], and also reducing the depth of the
potential. This would reduce the energy the atoms could gain from the depth of the
beam-splitter and thus would make it harder for the atoms to reach higher trans-
verse energy levels. A schematic for this can be seen in Fig. 4.8. The combination of
two modifications could potentially improve the splitting probabilities[106].
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FIGURE 4.8: A representation of the transverse energy levels and their rela-
tion to the form of the waveguide. Generally speaking a narrower waveguide
has bigger spacing separation between the energy levels and hence less en-

ergy levels.

4.5.1 Parameters: U0 = −2ER and ω0 = 1µm

From here on we start changing the the width of our waveguides to ω0 = 1µm and
their depth to U0 = −2ER. However, we also change the wavelength of the laser
beams to 720nm to accommodate more fringes in the beam-splitter. For this cases
we will look at a range of velocity between v = 0.4vR and v = 1.4vR, the epsilon
varies between 0.1 to 0.5 and their step sizes are 0.2vR and 0.1 respectively. From
these individual runs we can obtain valuable insight for suitable splitting parame-
ters. Fig. 4.9 shows how many atoms are in the inputs for atoms(A) and the vac-
uum(B), the reflection probability(C), transmission probability(D), the probability of
atoms being trapped in the beam-splitter(E) and the combination of reflection and
transmission(F). The plots show us that the velocity must be above v = 1.2vR and
the polarisation value must be above ε = 0.3.
Two examples for this would be v = 1.2vR and ε = 0.4, and the other one could
be v = 1.4vR and ε = 0.5, which can be seen in Fig. 4.10. The form of the wave-
function in the transmission guide is similar for both cases. However, more of the
wave-function get trapped in the cases where v = 1.2vR and ε = 0.4. On the other
hand Fig. 4.10b has a higher loss, as more of the wave-functions escape.
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FIGURE 4.9: These figures show the probabilities of finding the atoms at the
end of the simulations in atom input (A), vacuum input (B), reflection waveg-
uide(C), reflection(D), beam-splitter(E) and reflection and transmission to-
gether(F). All of these together determine areas of interest for potentially suit-

able splitting regions.

However, looking at Fig. 4.11 we see that the coherence has improved due to shrink-
ing and narrowing the waveguides. This is especially noticeable for the transmission
wave(blue dotted line and green dash-dotted), which was previously minuscule, see
Fig. 4.5. Also, the coherence of the reflection improved for both cases, while for
v = 1.2vR and ε = 0.4 it only went up slightly(red dashed line) for the v = 1.4vR and
ε = 0.5 it improved greatly(cyan solid).
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FIGURE 4.10: These figures show the wave-function at the end of the simula-
tion. The constant parameters for these calculations are , θ = 90◦, ω0 = 1µm,
σx = 0.73µm, U0 = −2ER, λ = 720nm. The individual parameters are
v = 1.2vR and ε = 0.4 for A and v = 1.4vR and ε = 0.5 for B. The forms of the
wave-functions that get scattered into the reflection and transmission guide
are similar for both. However, they differ in that more atoms get trapped in

A while more can escape in B.
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FIGURE 4.11: Plots showing the percentage of the wave-function inside trans-
mission and reflection waveguide being in the ground state as the wave
travels inside them after the splitting. For the cases with v = 1.2vR and
ε = 0.4(reflection red dashed and transmission blue dotted) and v = 1.4vR

and ε = 0.5(reflection green dot-dashed and transmission solid cyan)

Nonetheless, the splitting should still be improved, because the recombination will
reduce the output quality further for an interferometer. Additionally, the number
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of fringes in the beam-splitter has been reduced so dramatically that we are now
dealing with splitting behaviour due to potential barriers of each fringe, instead of
due to lattices. Hence, we increase the width of the waveguide to ω0 = 1.5µm, see
Fig. 4.12.
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FIGURE 4.12: Plots showing the cross-section of the potential for a U0 =
−2ER, θ = 90◦, ε = 0.5, λ = 720nm ω0 = 1µm(A) and ω0 = 1.5µm(B).

4.5.2 Parameters: U0 = −2ER and ω0 = 1.5µm

The splitting probabilities for an increase in the Gaussian laser beam’s width to
ω0 = 1.5µm can be seen in Fig. 4.13. From these graphs we can deduce that the
parameters necessary for decent splitting probabilities. A suitable combination of
parameters would be v = 1.4vR and ε = 0.4. A velocity of 1.2vR has too much
of the wave being trapped inside the beam-splitter. However, we can also use this
to directly compare how the change in the width of the waveguides influences the
splitting probabilities. The first point to notice is that more atoms get reflected back
into the input, which is to be expected as there are more fringes for 1.5µm, mak-
ing is harder for the atoms to tunnel through. On the other hand, the fringes in the
beam-splitter are aligned at an 45◦ angle in comparison to the waveguide, thus extra
fringes reduce the number of atoms that get scattered into the vacuum input. This
can also be seen in the transmission and reflection probability, where the probabili-
ties for transmission is reduced while the reflection probability is increased.
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FIGURE 4.13: Probabilities of finding the atoms in specific regions of the sim-
ulations. The parameters for these calculations are U0 = −2ER, θ = 90◦,

ε = 0.5, λ = 720nm and ω0 = 1µm.

After having calculated the probabilities, it is important to have a direct look at the
wave-functions for suitable candidate splitting probabilities. Fig. 4.14 shows the
absolute square of the wave-functions for different parameters at the end of the sim-
ulation and Fig. 4.15 shows the percentage of the wave-function inside the reflection
and transmission waveguide being in the ground state.
Fig. 4.14 show the wave-functions of four different simulations, where Fig. 4.14a
is for v = 1.2vR and ε = 0.4. From this, it is clearly visible that some of the wave-
function gets trapped inside the beam-splitter. It is only marginally better than the
case for ω0 = 1µm, seen Fig. 4.12a. Also, the coherence in this instant is not the best
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especially for the transmission, see red dashed line Fig. 4.15. Increasing the polari-
sation from this to ε = 0.5 can be seen in Fig. 4.14b, which is very similar to to the
previous polarisation. This can also be seen in the coherence, see the blue dotted
line in Fig. 4.15, which overlaps with the line for v = 1.2vR and ε = 0.4. This is due
to the relationship of the fringe hight to the potential depth of the waveguide. This
means that an increase of the polarisation of 0.1 increase the fringe hight only min-
imally and unless the wave travels through a fringe now instead of over it we will
not see any significant difference. On the other hand, when the velocity is increased
to v = 1.4vR the wave-function in the transmission waveguide slightly decreases,
see Fig. 4.14c and green dash-dotted line Fig. 4.15. Lastly, we look at the case with
increased polarisation and velocity, being ε = 0.5 and v = 1.4vR, respectively, see
solid cyan line Fig. 4.15, which is figurative identical to line of with a lower polar-
isation. Hence, the best cases for the parameters used were ε = 0.4 and v = 1.2vR

and ε = 0.5 and v = 1.2vR. However, both of these still have a significant amount of
loss which can also be seen in their wave-function.
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FIGURE 4.14: The wave-function at the end of the simulations, where A is
v = 1.2vR and ε = 0.4, B is v = 1.2vR and ε = 0.5, C is v = 1.4vR and ε = 0.4
and lastly, D is v = 1.4vR and ε = 0.5. The other parameters are U0 = −2ER,

θ = 90◦, λ = 720nm ω0 = 1.5µm.
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FIGURE 4.15: A shows the percentage of the atom being in the ground
state of the transmission waveguide and B shows the same for the reflection
waveguide for the cases v = 1.2vR and ε = 0.4(red dashed), v = 1.2vR
and ε = 0.5(blue dotted) v = 1.4vR and ε = 0.4(green dash-dotted)
and, v = 1.4vR and ε = 0.5(cyan solid), with the other parameters being

U0 = −2ER, θ = 90◦, λ = 720nm ω0 = 1.5µm.

4.5.3 Parameters: U0 = −5ER and ω0 = 1.0µm

A way of reducing this loss is the increasing of the waveguide depth. However,
we may not want to increase it too much as this energy could lead to even higher
transverse excitations in the splitting. Therefore, we will change it from U0 = −2ER

to U0 = −5ER and go back to ω0 = 1.µm for the width of the waveguides. The
variable parameters for this run will be a velocity with the range of 0.6vR to 3.0vR,
going in 0.2vR steps. The other parameters stay the same. From this we calculate
the splitting probabilities: probability of finding the atoms in their input, Fig. 4.16a,
in the vacuum input, Fig. 4.16b, in the reflection probability, Fig. 4.16c, transmis-
sion probability, Fig. 4.16d, atoms trapped inside the beam-splitter, Fig. 4.16e and
the combination of reflection and transmission probabilities, Fig. 4.16f. From these
plots we see that the minimum velocity should be v = 2vR and the minimum for the
polarisation is ε = 0.3.
Hence, sets of parameters for desirable splitting behaviour are v = 2vR and ε = 0.4

and v = 2vR and ε = 0.5. For these, we take a closer look at their wave-functions.
Additionally, we could compare them with the example wave-functions for the cases
whereU0 = −2ER. The outputs can be seen in Fig. 4.17, where Fig. 4.17a has a veloc-
ity of v = 1.2 and a polarisation of ε = 0.4. The wave-function gets scattered into all
waveguides with the biggest proportion going into the reflection. This is quite differ-
ent from the case with U = −2ER, seen in Fig. 4.10a, where most got either reflected
or transmitted and only some got trapped inside the beam-splitter. This difference
comes from the increased beam-splitter fringe size. The size of these fringes is de-
pendent on the depth of the beam-splitter and the polarisation and hence increasing
the depth increase the fringe height, making it harder for the wave-function to tunnel
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through. Additionally, looking at red dashed and blue dotted line for the coherence
of the reflection of the transmission perspectively in Fig. 4.18a shows us that overall
coherence decreased when compared with the calculation for U0 = −2ER, see Fig.
4.11. The same behaviour can bee seen in Fig. 4.17b and the green dash-dotted and
solid cyan line in Fig. 4.18a , which has a velocity of v = 1.4 and a polarisation
of ε = 0.5, where the U = −2ER counterpart can be seen in Fig. ?? and the green
dash-dotted and solid cyan line in Fig. 4.11.
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FIGURE 4.16: The probabilities of finding the atoms in the waveguides for,
A atom input, B vacuum input. C displays the reflection probability, D the
transmission probability, E shows the percentage of atoms being trapped in-
side the beam-splitter and F combines reflection and transmission probabil-
ity. The other parameters used are ω0 = 1.µm, U = −5ER, θ = 90◦ and

λ = 720nm.
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FIGURE 4.17: The wave-function at the end of the simulations for A ε = 0.4
and v = 1.2vR, B ε = 0.5 and v = 1.4vR, C ε = 0.4 and v = 2.0vR and D
ε = 0.5 and v = 2.0vR. The other parameters are ω0 = 1.µm, U = −5ER,

θ = 90◦ and λ = 720nm.

Lastly, we are looking at the cases which have the most desirable splitting properties
in our parameter space v = 2vR and ε = 0.4, v = 2vR and ε = 0.5, these can be seen
in Fig. 4.17c and Fig. 4.17d, respectively. Their coherence can be seen in Fig. 4.18b.
The first one has more balanced splitting than the second. However, in both cases,
the reflected wave-function is still distorted. The coherence for parameters with a
more even splitting is worse.
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FIGURE 4.18: A shows the percentage of the atoms being in the reflection and
transmission waveguide, for ε = 0.4 and v = 1.2vR(red dashed for reflection
and blue dotted for transmission) and ε = 0.5 and v = 1.4vR(green dash-
dotted for reflection and cyan solid for transmission). B shows the same for
ε = 0.4 and v = 2.0vR(magenta dashed for reflection and cyan dotted for
transmission) and ε = 0.5 and v = 2.0vR(yellow dash-dotted for reflection
and black solid for transmission). For the parameters ω0 = 1.µm, U = −5ER,

θ = 90◦ and λ = 720nm.
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FIGURE 4.19: The figures depict the potential(A) for ω0 = 1.µm, U = −5ER,
θ = 90◦, ε = 0.5, λ = 720nm and its the cross-section(B).

Having looked at the a crossing angle of θ = 90◦ for low potential depth in the
last section, we are not able to find coherent splitting for any of the parameters.
The low energy narrow beam-splitter had overall only a few fringes and thus the
splitting behaviour can be mostly directly attributed to tunnelling instead of inter-
actions with a optical lattice. However, to have Bragg diffraction we will need more
fringes.One way to increase the number of fringes would be to increase the width of
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the waveguides, which we intentionally tried to reduce, to increase the energy spac-
ing between the transverse eigenstates. However, we can also increase the number
of fringes by changing the crossing section between our Gaussian laser beams to
θ = 170◦. Additionally, to just increase the fringe number, such a beam-splitter has
also the advantage of not changing the direction of the momentum too drastically
compared to the θ = 90◦ case. The potential for the beam-splitter can be seen in Fig.
4.19a with its cross-section in Fig. 4.19b, for the parameters ω0 = 1.µm, U = −5ER,
θ = 90◦, ε = 0.5 and λ = 720nm.
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FIGURE 4.20: These are the probabilities for finding the atoms in the atom
input(A), vacuum input(B), reflection waveguide(C), transmission waveg-
uide(D), beams-splitter(E) and a combination of the reflection and reflec-
tion(E). For the parameters ω0 = 1µm,U = −5ER, θ = 170◦, and λ = 720nm.
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FIGURE 4.21: The Figures show the propagation of the atoms through the
beam-splitter for for parameters of v = 1.8vR and ε = 0.1 ω0 = 1.µm, U =

−5ER, θ = 90◦, and λ = 720nm.

Similarly, to previous simulations we will alter the velocity from v = 0.6vR to v =

2.4vR in 0.2vR intervals. The polarisation also ranges from ε = 0.1 to ε = 0.7, going
in 0.2 intervals. Up until now we have defined the top waveguide as the reflection
one due to the shape of the fringes as they are positioned at an 45◦ angle allowing
for the atoms to be reflected into upwards into the top waveguide, for the Gaussian
beams cross at θ = 90◦ angle. However, for θ = 170◦ angle that is not necessarily
the case as getting reflected back into the upper waveguide would result in a much
stronger directional change for the momentum. Keeping that in mind we stick to the
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previous definition but we look now at the vacuum input as a potential reflection
and thus it does not necessarily needs to be close to zero. Setting the other variables
to ω0 = 1µm, U = −2ER, θ = 170◦, and λ = 720nm, we get the probabilities seen in
Fig. 4.20, where we can see that there is a substantial reflection backwards into the
atom input for nearly all parameters, see Fig. 4.20a. Additionally, a lot of the wave
gets trapped inside the beam-splitter.
One of the few possible possible value ranges for which we can potentially achieve
good splitting would be a velocity of v = 1.6vR to v = 1.8vR and ε = 0.1 to ε = 0.2.
For this case, the vacuum input would be the reflection output. Looking at the spe-
cific case v = 1.8vR and ε = 0.1, we see the propagation through the beam-splitter
in Fig. 4.21. Starting at Fig. 4.21a the wave travels through the waveguide until it
reaches the beam-splitter Fig. 4.21b. From here on out it propagates through the
beam-splitter, Fig. 4.21c, 4.21d, 4.21e, and is separated. Leaving the wave-function
in the state seen in Fig. 4.21f. Unfortunately, this does not improve the overall coher-
ence of wave, see Fig. 4.22 as the wave-packet is still oscillating inside the waveg-
uide. Similar behaviour can be seen for the other potential parameters. The increase
of the angle would increase the area of the final atom interferometer. However, in-
ferring from the wave-function shape it does not provide a substantial benefit.
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FIGURE 4.22: Plots showing the percentage of the wave being in the ground
state of transmission(blue dotted) and reflection(red dashed line) waveguide
after the splitting for v = 1.8vR, θ = 170◦, ε = 0.1, ω0 = 1µm, σx = 0.73µm,

U0 = −5ER, λ = 1064nm and F = 1.



4.7. Modifications to the Beam-Splitter via a Third Beam 119

4.7 Modifications to the Beam-Splitter via a Third Beam

Our beam-splitter potential has a Gaussian dip in its centre due to the nature of the
two over-lapping Gaussian beams, Sec. 2.1[94, 107]. The size of this dip can lead
to a momentum shift in the atoms, which is a potential cause for the excitation of
the higher transverse modes after the splitting. This could well be cancelled out
by the overlap of a third Gaussian beam which would be blue-detuned[72, 106],
in comparison to the two red-detuned beams that provide the wave-guides. This
blue-detuned beam would work as a reflector (and so provide positive potential) as
opposed to an attractor (negative potential). This will only be done to the case, where
the angle between the two original beams is 90◦, as this is the case with the most
symmetrical potential. For our simulation we will simply add a counter potential,
that fills in the Gaussian well so that the cross-section of the potential is zero for the
case with no fringes. To find this potential we look at our original beam-splitter, Eq.
2.8 and set y = 0, ε = 0 and θ = 90◦, giving us

x′ = cos(
π

4
)x, (4.26)

y′ = − sin(
π

4
)x, (4.27)

U0(x′, y′) = −2U0e
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1

ω2
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)
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, (4.28)

A(x′, y′) = cosh(2 sin(
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2
)

(
x′y′
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)
), (4.29)

which can be simplified to

U0(x′, y′) = −2U0e
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(
x
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)2

, (4.30)

A(x′, y′) = cosh(
x2

w2
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These can then be substituted into the equation for the potential

U(x′, y′) = −U0(x′, y′)A(x′, y′), (4.32)

to gain
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+ U0. (4.35)
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From this we can see that the potential to counter the dip must be

−U0e
−2
(
x
ω0

)2

, (4.36)

as the second term only shows the depth of the potential from one of the Gaussian
beams. Following from here we can write our new 1D beam-splitter potential as

U(x′, y′) = 2U0e
−
(
x
ω0

)2 (
cosh(

x2

w2
0

) + ε

(
2πy′

d

))
− FU0e

−2
(
x
ω0

)2

, (4.37)

and for the 2D case
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x′ = cos(
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4
)x+ sin(
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4
)y, (4.41)

y′ = − sin(
π

4
)x+ cos(

π

4
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and F is a new coefficient, introduced so we can vary the degree of filling. It is thus
directly correlated with the intensity of the third Gaussian beam that is responsible
for the filling.
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FIGURE 4.23: These Figures depict the cross-section of the beam-splitter with
F = 0 (A) and F = 1 (B). The potential with the filling is symmetric around
the energy value of −20ER as this is the depth of the waveguides. Addi-
tionally, in the case with filling there will be more reflection coming directly
from tunnelling through the fringes instead of reflection from a well. The
rest of parameters for this graphs are θ = 90◦, ω0 = 15µm, U0 = −20ER,

λ = 1064nm.

However, it should be noted that this filling only applies to the case where the beams
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cross at 90◦. The change in potential can be seen in Fig. 4.23, where we show two
cross-sections for the beam-splitter potential one with F = 0 and the other one with
F = 1. The filling lifts up the fringes so there will be more reflection coming directly
from tunnelling through the fringes instead of reflection from a well.

4.7.1 Full-Filling Beam-Splitter
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FIGURE 4.24: These graphs show the evolution of the wave-packet through
the beam-splitter, for the parameter of v = 5vR, θ = 90◦, ε = 0.5, ω0 = 15µm,
σx = 10µm, U0 = −20ER, λ = 1064nm and F = 1. Our wave travels
through the waveguide until it comes into contact with the beam-splitter at
A. Now the wave starts to travel through the beam-splitter, where it is being
split in B,C and D Finishing with the wave-packet leaving the beam-splitter

at E and F.
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After we have derived the expression for the filling of our beam-splitter, we perform
a systematic search over several velocity ranging from 1vR to 6vR separated by a
step size of 1vR. The same is done for the polarisation, ε, which varies from 0 to 0.7

with a step size of 0.1. The other parameters for this are kept constant and are the
following: θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER, λ = 1064nm and F = 1.
An example of this splitting can be seen in Fig. 4.24, where the velocity and polari-
sation are v = 5vR and ε = 0.5, respectively. The wave-packet then evolves through
the beam-splitter as shown in A, B, C, D and E. Leaving, the beam-splitter at F. The
splitting via this beam-splitter is not coherent, see Fig. 4.25, as the wave is split into a
multitude of modes. However, this does not mean that it cannot be used for interfer-
ometers. This kind of interferometer would be one that uses more than one mode for
recombination. Nonetheless, it would be inferior in comparison to one that would
only split the packet into the ground state mode of each waveguide.
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FIGURE 4.25: Plots showing the percentage of the wave-function inside trans-
mission(blue dotted) and reflection(red dashed line) waveguide being in the
ground state after the splitting for v = 5vR, θ = 90◦, ε = 0.5, ω0 = 15µm,

σx = 10µm, U0 = −20ER, λ = 1064nm and F = 1.

In the same manner as we have done for the simulation depicted Fig. 4.24, we are
simulating over the aforementioned range of velocity and polarisation 1vR − 6vR

and 0 − 0.7, respectively. We can deduce the probability of finding the atoms in
each waveguide by integrating over each of them separately after the simulation has
finished. Leaving us not only with the transmission and reflection probability, but
also the information of how much is in the input arms, Sec. 4.3.1. This is presented
in Fig. 4.26, where A(4.26a) is the atom input with the wave-packet in it, B(4.26b)
is the vacuum input, C(4.26c) is the transmission probability and D(4.26d) is the
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reflection probability. If the velocity is too low with respect to the polarisation it will
get reflected back into the atom input. Once we get over that threshold, we see that
the beam-splitter is splitting the incoming wave into the reflection and transmission
arms. However, the area for 50;50 splitting is not smooth. This comes from the
change of resonant frequency. Nonetheless, we observed something similar with the
one-dimensional numerical calculation for the transmission and reflection, which
also generated these regions of decent splitting probabilities.
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FIGURE 4.26: These graphs show the probability of finding the atoms af-
ter the splitting in the input from where the atoms started(A), the vacuum
input(B), the transmission probability(C) and the reflection probability(D).
From this we see that if the the velocity is too low for certain polarisation
it will get reflected backwards into the waveguide where it came from. Ad-
ditionally, nearly nothing gets scattered into the vacuum input, as desired.
The boundary between total transmission and total reflection is more ragged

which comes from the shift in the resonant frequencies.

Besides looking at the probabilities individually we can also add them together to
see how closely they sum to unity, and thus how much atom loss is present. This
is done to see potential loss of atoms. Looking at Fig. 4.27, where A(4.27a) is the
probability of reflection and transmission added together and B(4.27b) where we
have additionally added the probability of atom input. From these plot we see that
we are missing a substantial fraction of the atoms, up to roughly 20%. This is due
to the loss of atoms inside the beam-splitter, as the third-laser beam has lowered the
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potential boundary around the edges of the beam-splitter, allowing for more atoms
to escape. This can also bee seen in Fig. 4.24 in G(4.24f), where a part of the wave
escapes in between the waveguides. From all this information we are able to to infer
useful velocity and polarisation values for use in interferometers.
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FIGURE 4.27: A shows the combination of the transmission and reflection
probability and B shows the compilation of the probabilities for transmis-
sion, reflection and atom input waveguide. Nonetheless, in some cases these
probabilities do not add up to unity, which is due to some atoms being lost,
because the added filling potential has lowered the boundary potential of the

beam-splitter making it easier for atoms to escape.

4.7.2 Beam-Splitter for Different Fillings

In the last section we have varied the velocity and the polarisation. However, we
could also vary the degree of filling by adjusting F . It is varied in the range from
0 to 1 in 0.05 increments. The other parameters are as follow: v = 5vR, θ = 90◦,
ε = 0.5, ω0 = 15µm, σx = 10µm, U0 = −20ER and λ = 1064nm. We already have
an example with F = 1 in the last section, see Fig. 4.24, hence we will be refer-
ring back to it in this section. In addition to this, we will have a closer look at the
case of F = 0.5, to get a better picture of how the beam-splitter splits the wave-
function, instead of just looking at the splitting probabilities, see Fig. 4.28. In this
simulation the wave-function goes through the beam-splitter in A(4.28a), B(4.28b),
C(4.28c),D(4.28d) and exits into the respective waveguides from the beam-splitter
in E(4.28e), F(4.28f). However, it is not coherent, see Fig. 4.29. A main difference
between different F values lies in the shape of the wave-packet exiting the beam-
splitter into the transmission waveguide. Looking at the case where F = 0 we
see that most of the wave tunnels through the beam-splitter creating two distinct
wave-packets in the transmission waveguide. One of which stays approximately the
transverse ground state, while the other bounces around in the waveguide, due to
transverse excitation. When the F value is increased, the reflection probability also
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rises, as expected. However, the ratio between the two wave-packets in the trans-
mission arm changes, from mostly being in the ground state to the one occupying
higher modes, until it is the only wave-packet at F = 1.
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FIGURE 4.28: The evolution of the wave-packet through the beam-splitter is
depicted by these figures, for the parameter of v = 5vR, θ = 90◦, ε = 0.5,
ω0 = 15µm, σx = 10µm, U0 = −20ER, λ = 1064nm and F = 0.5. The
wave-function starts at A from which it evolves in chronological order A →

B → C → D → E → F.

After having looked at the form of the wave-packet we will now look at the trans-
mission and reflection probability over the aforementioned F values. Looking at
Fig. 4.30 we see that transmission is overall decreasing and reflection is increasing
for increasing F values, which is to be expected. The rising of the fringes reduces
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FIGURE 4.29: Showing the percentage of the wave-function inside trans-
mission(blue dotted) and reflection(red dashed line) waveguide being in the
ground state after the splitting for v = 5vR, θ = 90◦, ε = 0.5, ω0 = 15µm,

σx = 10µm, U0 = −20ER, λ = 1064nm and F = 0.5.

the difference between the energy of the atoms and the peaks of the fringes until
they eventually lead into tunnelling. Thus increasing the reflection probability, sim-
ilarly to the behaviour seen from a potential well. Additionally, we also see direct
tunnelling through the fringes now that they have been raised. However, the prob-
ability plots are not monotonic and have local minima and maxima as a function of
F . This come from the change in the resonance frequencies. A similar behaviour
has also been observed in the one dimensional time-independent case for standing
waves. It should be easy to find a decent splitting condition for certain F parameters.
However, anything between the value of 0 and 1 for F creates a substantial super-
position in the transmission waveguide. This superposition will make it harder for
fringes to appear in an interferometer as it would be hard to have interference be-
tween the wave-packet in the reflection waveguide and both wave-packets in the
transmission as they are more spread out. Hence, only a smaller portion of them
would have overlap and thus interference which would reduce the overall fringes
in the final interferometer measurement.
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FIGURE 4.30: This figure shows the change of transmission probability(red
dash), reflection probability(blue dot) and their combination (green dash-
dot), in correspondence to a change in the filling level F . The functions for
the transition are not monotonic and have local maxima and minima, which

can be attributed to changes in the position of resonances.

4.8 Summary

In this chapter we discussed the probabilities of splitting in two dimensions. For this
we expanded our step-split Fourier method into a form for two dimensions. For the
simulations in two dimensions we had to make sure the the incoming atoms were in
the transverse ground state of the waveguide which can roughly be approximated
by the ground state of the harmonic oscillator.
Afterwards we then considered several cases for the beam-splitter. As our desire is
to create a generally compact interferometer we mostly focussed on the cases where
the crossing section between the two laser beams is at θ = 90◦. The first case be-
ing for the fixed parameters of θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER,
λ = 1064nm. The velocity and polarisation were varied until roughly 50:50 splitting
were observed. One of those parameters is the velocity of 4vR and the polarisa-
tion of ε = 0.5. Even though these parameters had decent splitting probabilities
the splitting itself was not coherent and the out-coming atoms occupied higher level
transverse modes in the reflection and transmission waveguides.
To improve the coherence we reduced the depth of the waveguides and their width.
This was done because reducing the width increases the energy spacing between
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the eigenstates and reducing the depth would reduce the potential energy available
for the atoms to occupy higher energy levels. For this regime we examined three
cases. The first being the one where the fixed parameters were θ = 90◦, ω0 = 1µm,
σx = 0.73µm, U0 = −2ER, λ = 720nm. We varied the velocity and polarisation
for this and the most suited parameters were v = 1.4vR and ε = 0.5. The overall
coherence was improved however, it is still likely inadequate for interference in a
full interferometer. Further, due to the lower depth of the waveguides some atoms
were able to escape and the number of fringes was reduced drastically due to the
width of the waveguides. To counter this we reduced the wavelength of the lasers to
λ = 720nm. For the next case we increased the width to ω0 = 1.5µm to have some-
thing more similar to an optical lattice. The best splitting for this case was observed
to be for v = 1.2vR and ε = 0.4. Nonetheless, the consistency did not decrease com-
pared to the case with a width of ω0 = 1µm. The last case we investigated is the
one where we increased the depth of the waveguide a little to reduce the number of
atoms being able to escape. The width for this case was ω0 = 1µm. The increase in
the depth did decrease the coherence of the atoms further but it reduced the loss of
the atoms. Regardless, we still do not have coherent splitting.
The next step was to change the angles to increase the interaction region between
the two Gaussian laser beam by letting them cross at a narrow angle of θ = 170◦.
This bigger interaction area increases the number of fringes drastically and due to
the narrow angle the momentum change in the atoms would be less drastically. An
example for a good splitting parameter for this case would be v = 1.8vR and ε = 0.1.
However, this did not improve the coherence and as our goal is to create a interfer-
ometer with a small area we will no longer discuss this case in the next chapter.
As the aforementioned approaches did not improve the splitting too much we re-
turned to our original parameter values and introduced a third laser beam. This
laser is tuned in such a way that it acts as a reflector for atoms and thus allows us to
fill the dip in the beam-splitter, which is created by the overlap of the two Gaussian
beams. Similarly to the reduced depth of the waveguides, this allows us to reduce
the energy that is available for the atoms from the depth of Gaussian dip of the
beam-splitter to reach higher energy levels. The degree of filling can be controlled
by varying the intensity of the third beam. For our case we simply give it an F value
from 0 to 1, where the case of 0 means that their is no filling from the third beam and
the case, where F = 1 means that the cross-section is completely filled.
The cases which we studied the most were the extremal cases of F = 0 and F = 1.
The F = 0 case is the same as the one without the third laser and thus will not be
discussed again. On the other hand the case where F = 1 provides a good range
of decent splitting probabilities. An example of this would be v = 5vR and ε = 0.5.
This was chosen because the atoms have a slower overall velocity, allowing for a
longer interaction time with the signal. Nonetheless, even for the case of F = 1 the
coherence did not improve. Furthermore, the third laser beam reduces the boundary
potential for the beam-splitter, making it easier for atoms to escape. Additionally, the
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parameter region of decent splitting is more ragged than the one for the case without
the third laser. This is similar to the 1D case with standing waves.
Lastly we varied the F value while the other parameters stayed fixed, where these
parameters were θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER, λ = 1064nm,
v = 5vR and ε = 0.5. We noticed that increasing the F value generally decreases the
transmission probability, as one would expect. On the other hand the function de-
scribing the transmission probability is not monotonic due to resonance shift. How-
ever, increasing F generally does not improve the coherence in splitting.
All the cases we have looked at have shown that the beam-splitter does not split the
atoms coherently. Nonetheless, it is possible to to create a multi mode atom interfer-
ometer, which we will discuss in the next chapter.
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Chapter 5

Interferometer

In this chapter we are going to discuss the combining properties of our beam-splitter.
As discussed in Sec. 1.2, the overall aim is to create a Mach-Zehnder[26, 27, 88] in-
terferometer with a continuous atom laser for the input. However, to study the
combining properties with numerical simulations it is more convenient to use the
Michelson interferometer[88, 108] as its implementation is easier. As has be seen
in chapter 4, our splitting is not coherent so we need to create a multimode inter-
ferometer[109, 110]. Furthermore, this Michelson interferometer requires a smaller
area for the simulation and thus more computational runs can be accomplished at
the same time. We simulate the phase shift by moving the mirror in the respective
arms of the interferometer, see Fig. 5.1, where xmr and xmt are the mirror positions
in the reflection and transmission waveguide. At the output, we will measure the
atom number depending on the mirror position. The most desired output would be
a periodic pattern that ranges from 0 to 1, which are the measurement fringes.

  

BSAtom Input

Vacu
um In

put

TransmissionRefle
ction xmt

x mr

FIGURE 5.1: Schematic of our Michelson interferometer and how we create
artificial phases by moving the mirror positions where xmr and xmt.
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5.1 Mirror Types

For the creation of a Michelson interferometer a mirror is needed which is a type of
potential barrier in our case. There are three types considered. The first one being
a linear potential. To test the behaviour of the mirror we set one wave-packet into
the transmission guide, which then travels towards the mirror and gets reflected
back into the beam-splitter. This can be seen in Fig. 5.2, where the wave starts
at A, travels towards and interacts with mirror potential in B, gets reflected and
travels backwards towards, C, the beam-splitter and then interacts with it, D. This
is done for example for the parameters v = 2vR, ε = 0, λ = 720nm, ω0 = 1µm,
U0 = −5ER and σx = 0.73µm. The mirrors for these simulations are positioned at
60% of the distance from the centre of the simulation to the edge (which is defined as
x0). Hence, they are located at xmr = xmt = 0.6|x0| in their respected waveguides.
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FIGURE 5.2: Mirror test example where the wave starts at A, travels towards
and interacts with mirror potential in B, gets reflected and travels backwards
towards, C, the beam-splitter and then interacts with it, D. This is done for
the parameters v = 2vR, ε = 0, λ = 720nm, ω0 = 1µm, U0 = −5ER and

σx = 0.73µm.

Looking just at the wave-function suggests that everything is working fine. How-
ever, when we look at the energy we see that something is wrong, see Fig. 5.3. The
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total energy is increased after the interaction with mirror, while the normalization
stays constant. This comes from the discontinuity in the gradient of the potential
seen by the atoms. As the energy is increased mainly during the period where the
wave-packet interacted with the mirror.
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FIGURE 5.3: These figures depict the energy(A) and normalization(B) for a
linear mirror, for v = 2vR, ε = 0, λ = 720nm, ω0 = 1µm, U0 = −5ER and

σx = 0.73µm, which increases due to the discontinuity.

The next mirror tested is a quadric mirror, where the energy and normalisation are
seen in Fig. 5.4. The dips in the energy show the times the wave-packet interacted
with the potential of the mirror, beam-splitter and the cage, which surrounds the
simulation to prevent the wave coming in contact with the edge of the simulation.
These dips in energy are overall negligible due to their size.
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FIGURE 5.4: These figures show the mean energy(A) and normalisation(B) for
a quadric mirror, where the dips come from the interaction with the mirror,

cage and beam-splitter.

The last mirror is created by a Gaussian reflective potential.It shows similar dips in
energy at the same points as the quadratic mirror, which are again therefore negli-
gible on the overall scale of the energy, see Fig. 5.5. This potential is chosen to be
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the one used in the simulation, as it is both continuous (in potential and potential
gradient) and it could be possibly implemented by the use of a blue-detuned[72]
Gaussian laser beam.
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FIGURE 5.5: These figure shows the mean energy(A) and normalisation(B)
for a Gaussian shaped potential acting as a mirror.

5.2 Mirror Position

As our beam-splitter excites the atoms to higher transverse states in the waveguides
we need to examine the mirror position. The reason for this is that the two wave-
packets exiting the beam-splitter are not necessarily excited in the same fashion and
hence might have slightly different average velocity and path length. As such it is
important to investigate the positions of the mirrors relative to the beam-splitter. For
this we will use coarse movement of the mirrors to adjust interfering packet overlap
and to achieve a good fringe height. Then fine mirror movement away from these
set positions can be used to produce the phase shift to vary the output probabilities.

5.2.1 Filling

We begin with the case where we have full filling with F = 1, θ = 90◦, ω0 = 15µm,
σx = 10µm, U0 = −20ER and λ = 1064nm. We start off by setting our mirrors at
60% of the length of the reflections and transmission waveguides and allow the one
in the transmission to be moved. This movement will create a path difference twice
the distance that the mirror has moved. The atoms have a velocity of 5vR and the
fringes are ε = 0.5. This movement ranges from−0.48λDB to 0.43λDB , where λDB is
the De Broglie wavelength of the atoms in regard to their average velocity, and the
potential fringes can be seen in Fig. 5.6, where the fringes in the atom input can be
seen Fig. 5.6a and for the vacuum input in Fig. 5.6b. From these we see that there
are only tiny fringes in the atom input. However, there are no fringes in the vacuum
input. The mirror position in the reflection guide will be labelled as xmr and the one
in the transmission xmt.
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FIGURE 5.6: The probabilities of finding the atoms in the atom input(A) and
vacuum input(B) in regards to additional path difference, where the other
parameters of this simulations are F = 1, θ = 90◦, ω0 = 15µm, σx = 10µm,
U0 = −20ER, λ = 1064nm, v = 5vR, ε = 0.5 and xmt = xmr = 0.6|x0|.

As for the reason why this is happening we need to examine the simulation directly.
Looking at Fig. 5.7, we that the wave-function travels through the beam-splitter in
A. Following this the split packets evolve in their respective outputs and are then
reflected backwards to the beam-splitter via the Gaussian mirror potentials, see in B
and C. Furthermore, in C we also see that the wave in the reflection waveguide has
already arrived at the beam-splitter, while the one in the transmission is still travel-
ling. In D the wave from the reflection get split, while the transmission just arrives
at the the beam-splitter. Following from here the wave from the transmission gets
split but most of it goes directly input the vacuum input and lastly F shows the final
wave-function of the simulation. From this we see that the two do not recombine
as they arrive at significantly different times and hence the fringes seen in the atom
input, Fig. 5.6a, come most likely only from the interference of the outer areas of the
wave-function. These fringes are so small that they are dominated by other effects
in the vacuum input Fig. 5.6b.
To investigate this behaviour further we perform full evolution simulations for dif-
ferent static mirror positions chosen in the range −31.83λDB to −6.37λDB . This can
be seen in Fig. 5.8, where Fig. 5.8a shows the probabilities of finding the atoms in
the input in regards to the mirror position and Fig. 5.8b depicts the same for the
vacuum input. From these we can see that the position of the mirrors is important.
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FIGURE 5.7: This series of figures shows the atomic wave-packet evolving in
a Michelson interferometer. The atoms start off at A and then get split by the
beam-splitter in B and A. Following from here they get reflected back into the
beam-splitter at B, where the wave in the reflection arms reaches the beam-
splitter first in C and gets split in D, while the wave from the transmission
guide just arrives. This wave then gets as well split by the beam-splitter in E
with the final form of the overall wave-function seen in F. The parameters for
this simulation are F = 1, θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER,
λ = 1064nm, v = 5vR, ε = 0.5, and xmt = xmr = 0.6|x0|. As both waves
return at significantly different times the wave are not combined but have

two independent splittings.
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FIGURE 5.8: Figure A depicts the probability of finding the atoms in the atom
input in regards to path difference from the mirror position, while B shows
the same for the vacuum input. The mirror is moved over a distance from
−31.83λDB to −6.37λDB, staying static for each run. Even though the mir-
ror moves over this long distance the ration between the output constantly

increases. Hence is mirror position is important to finding good splitting.
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FIGURE 5.9: These Figures show the changes in the probability of finding the
atoms in the, atom input(A) and the vacuum input(B) depending on the path
difference from the mirror position in the transmission arm. The probability

of finding the atoms in these two waveguides is combined 85%.

Now we examine the case where the mirrors are both moved by −31.83λDB closer
to the beam-splitter and the mirror inside the transmission band is moved from
−0.32λDB to 0.48λDB . Fig. 5.9 clearly shows that the measured fringes have in-
creased significantly to 5%. Furthermore, when the fringes in the two inputs are are
summed, the total probability remains constant at around 85%, where the rest is lost
due to being either trapped inside the beam-splitter, reflected back into the reflection
and transmission waveguide or the atom escaped the waveguide during the simu-
lation.
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FIGURE 5.10: These figures show the recombination of two wave-packets
already split into two which then get reflected backwards into the beam-
splitter(A). They travel then towards the beam-splitter(B), get combined(C
and D) leave. The other parameters are F = 1, θ = 90◦, ω0 = 15µm,
σx = 10µm, U0 = −20ER, λ = 1064nm, v = 5vR, ε = 0.5, and xmr =

xmt = 0.6|x0| − 31.83λDB .

To find the reasons for this we need investigate the wave-function for this case, see
Fig. 5.10. The wave-function has already been split for the first step in Fig. 5.10a
and gets reflected in Fig. 5.10b. From here the two waves gets combined starting
with Fig. 5.10c, where most of the wave-function from the reflection has already
been propagated through the beam-splitter while the wave from the transmission
just arrives. This then enters the beam-splitter where it slightly overlaps with the
small part from the reflection wave. The waves then start to leave the beam-splitter
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in Fig. 5.10d and the form of the wave-function can be seen Fig. 5.10d. The main
difference to the previous one is that there is now a small overlap in the waves while
in the first case, Fig. 5.8, the wave-functions have virtually no overlap.
Even from this slight overlap we managed to increase the fringes drastically. Moving
the two mirrors even further to 39.79λDB we see again a decrease in the fringe visi-
bility, see Fig. 5.11. The fringe height falls from 5% to 1.5%, but the total probability
in the output waveguides is the same as before 85%.
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FIGURE 5.11: The probability of finding the atoms in the atom(A) or vac-
uum(B) input after the end of the simulation as a function of path difference
due to the mirror shift in the transmission guide for the parameters F = 1,
θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER, λ = 1064nm, v = 5vR,
ε = 0.5, and xmt = xmr = 0.6|x0| − 39.79λDB . Both of these probabilities

add up to 85%.

To understand the differences we need to have another look at the wave-function
where we start off the with the waves already being split by the beam-splitter, see
Fig. 5.12a, which then gets reflected back by the mirror in Fig. 5.12b and enters the
beam-splitter in Fig. 5.12c, where the wave-function from the reflection waveguide
is already halfway through while the transmission waves just enters it. However,
source of the difference between cases 31.83λDB and 39.79λDB can be seen in Fig.
5.12d. For the 31.83λDB case parts of the reflection and transmission waves overlap,
while for 39.79λDB they only cross with a smaller overlap and this having a smaller
area for interference. This then leads to the smaller fringes seen in 5.11.
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FIGURE 5.12: These figures shows the recombination of two wave-packets.
They begin separated(A) and being reflected back by the mirrors(B), where
they recombine(C and D) and exit the beam-splitter(E and F), for the param-
eters F = 1, θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER, λ = 1064nm,

v = 5vR, ε = 0.5, and xmt = xmr = 0.6|x0| − 39.79λDB .

These observations show that we need to increase the overlapping area to increase
the fringes. Normally, the mirrors are equal distance from the beam-splitter. How-
ever, if we were to move the one in the transmission band closer so we could in-
crease the overlap. For this we will move both mirrors to −31.83λDB and the mirror
in the transmission will be moved for an additional −71.62λDB in 3.98λDB inter-
vals. Using this we can determine the values that provide the most useful overlap.
The two solutions which appear to be most useful from an initial inspection are case
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(i)−71.62λDB and case (ii) −75.6λDB , see Fig. 5.13 and Fig.5.15 ,respectively.
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FIGURE 5.13: The recombination of two wave-packets is shown by the figures
for the mirror in the reflection being at xmr = 0.6|x0|−31.83λDB and the one
in transmission in xmt = 0.6|x0| − 103.45λDB . The wave-function starts off
split and being reflected by the mirror(A), which then gets recombined(B and
C) and leaves the beam-splitter(D). The other parameters are F = 1, θ = 90◦,
ω0 = 15µm, σx = 10µm, U0 = −20ER, λ = 1064nm, v = 5vR and ε = 0.5.

For case (i) the wave-function from the transmission and reflection band enter the
beam-splitter for recombination in Fig. 5.13a. From which they then progress into
in Fig. 5.13b, combine Fig. 5.13c and leave Fig. 5.13d. From these calculations we
can then obtain the the fringes by varying the mirror inside the transmission guide
by an additional −0.48λDB to 0.43λDB . Creating the fringes seen in Fig. 5.14. In
these we can see the the fringes observed have been reduced to no visible fringes in
our observation frame. The probability in these two waveguides is 88%. The reason
for this is mostly due to the nature of our beam-splitter. Meaning that the split-
ting is non-central inside the beam-splitter and thus the combining is non-central as
well. Hence, even though the beams combined, each of them experienced the most
important steps of the splitting process individually and they were then combined
afterwards.
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FIGURE 5.14: These figures show the probability of finding the atoms in the
atom input(A) and vacuum input(B) for the parameters F = 1, θ = 90◦, ω0 =
15µm, σx = 10µm, U0 = −20ER, λ = 1064nm, v = 5vR, ε = 0.5, the position
of the mirror in the reflection waveguide at xmr = 0.6|x0| − 31.83λDB and
the one in transmission at xmt = 0.6|x0| − 103.45λDB . The probabilities for

this case add up to 88%.
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FIGURE 5.15: The figures demonstrate the process of recombination for the
parameters F = 1, θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER,
λ = 1064nm, v = 5vR, ε = 0.5, the position of the mirror in the reflec-
tion waveguide at xmr = 0.6|x0| − 31.83λDB and the one in transmission at
xmt = 0.6|x0| − 107.43λDB . Starting off with the split wave-function travel-
ling back towards the beam-splitter(A), where they get recombined(B and C)

and finally leave the beam-splitter(D).
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Case (ii) is when we move the mirror by an additional value of −75.6λDB com-
pared to the on in the reflection. So its position would be moved by −107.43λDB in
comparison to the −31.83λDB . The wave-function starts off being split and reflected
backwards into the mirror at Fig. 5.15a. From there the individual parts travel into
the beam-splitter and seemingly come into contact in the centre, in Fig. 5.15b. There
they combine, Fig. 5.15c and leave Fig. 5.15d.
For this case as well we see that there are no fringes in the chosen area which ranges
from −0.48λDB to 0.43λDB , see Fig. 5.16. The reason for this is the non-central
splitting as well which is more visible in this case looking at Fig. 5.15b. The wave-
packets meet in the centre but split before they come into direct contact. Thus the
most crucial area for the splitting is the entrance area of the beam-splitter.
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FIGURE 5.16: The probability of finding the atom in the atom input(A) and
vacuum input(B) for the parameters F = 1, θ = 90◦, ω0 = 15µm, σx =
10µm, U0 = −20ER, λ = 1064nm, v = 5vR, ε = 0.5, the position of the
mirror in the reflection waveguide at xmr = 0.6|x0| − 31.83λDB and the one
in transmission at xmt = 0.6|x0| − 107.43λDB . There are no fringes for this
case. Meaning their was not a recombination but an independent splitting of

the two different splitting.

Lastly, we are going back to the case where we observed the best fringes for a filled
beam-splitter. The case where both mirrors are moved by−31.83λDB . However, this
time the mirror is moved in the reflection waveguide from−0.48λDB to 0.43λDB , cre-
ating the fringes seen in Fig. 5.17, which has the same fringe separation and high as
the one in the transmission waveguide see Fig. 5.9. The probability of finding atoms
in the two waveguides stays the same as well, 85%. However, it should be noted the
fringe length is not 1λDB . This stems from the beam-splitter exciting the wave into
higher transverse modes of the waveguide and thus lowering their velocity, along
the waveguide propagation direction. This is due to the conservation of energy. The
kinetic energy from the atoms is transferred to allow atoms to reach higher trans-
verse modes. The momentum change has been discussed in Sec. 4.4. Therefore, they
have a different wavelength than the one they started with. Our shifts are based on
the starting wavelength and therefore a change in their wavelength will result in a
different fringe period length than expected.
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FIGURE 5.17: The probability of finding the atoms in the atoms and vacuum
inputs is shown by these figures as a function of the path difference from
the mirror shift inside th reflection waveguide for the parameters parameters
F = 1, θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER, λ = 1064nm, v =
5vR, ε = 0.5, the position of the mirror xmt = xmr = 0.6|x0|.The probabilities

for this case add up to 85%.

5.2.2 No Filling

After having looked at the case of F = 1, we are now looking at F = 0, where
the other parameters are θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER and
λ = 1064nm. In Sec. 4.4 we found that the best parameters for even splitting are
v = 4vR and ε = 0.5 which we will use for the simulations. Our mirrors will again
be put at 60% of the distance between the centre and the edge of the simulation. Thus
the first issue that needs to be addressed is how the wave-functions overlap for these
parameters, which can be seen in Fig. 5.18, where the wave-function starts off split,
A, and then reflected by the mirrors in B. The wave-packet enters the beam-splitter
in C while the one from transmission enters later in D. E and F show the waves leav-
ing the beam-splitter and the last time stamp of the simulation respectively.
However, looking at these it becomes clear that the wave-function overlap is negli-
gible between the two wave-packets. Hence we started to move both mirrors simul-
taneously. However, we did not find positions where we could make the packets
overlap. Therefore, instead of moving both mirrors only the one in the transmis-
sion waveguide was moved. The position that was then decided on is −103.45λDB ,
which can be seen in Fig. 5.19. The wave-function starts off at being split and re-
flected back by the mirrors(5.19a) backwards into the beam-splitter, where the one
of the transmission enters the beam-splitter(5.19b) and then gets split by it travelling
through the upper part of it(5.19c). The wave-packet from the reflection enters after-
wards(5.19d). The two wave-packets then leave the beam-splitter(5.19e and 5.19f).
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FIGURE 5.18: The propagation of a wave-function through the beam-splitter
and subsequent reflection by the mirror and second interaction with the
beam-splitter is shown. A shows the splitting of the wave-function which
then leaves the beam-splitter in B. Afterwards it gets reflected by the mir-
ror in C. From which it re-enters the beams-splitter in D and then leaves in
E and F. For the parameters F = 0, θ = 90◦, ω0 = 15µm, σx = 10µm,
U0 = −20ER, λ = 1064nm, v = 4vR, ε = 0.5, the position of the mirrors

xmt = xmr = 0.6|x0|.
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FIGURE 5.19: For the parameters F = 0, θ = 90◦, ω0 = 15µm, σx = 10µm,
U0 = −20ER, λ = 1064nm, v = 4vR, ε = 0.5, the position of the mirror
inside the reflection guide 0.6|x0| and the one in transmission at 0.6|x0| −
103.45λDB . The wave-packet begins to split and then gets reflected back(A),
where the wave-packet from the transmission guide reaches the beam-splitter
first(B) and travels long through the are of the beam-splitter closes to the
reflection guide it upper preliminary, while the reflection just enters(C). Then
both waves get split more or less individually(D and E) and leave the beam-

splitter(F).

The reason we have chosen these parameters is the wave-packet from the reflec-
tion waveguides starts splitting before it reaches the centre. Hence, to have interfer-
ence between these two it is necessary that the wave-function from the transmission
waveguide travels along the upper-side of the beam-splitter. This is possible to due
to the wave-packet bouncing around the transmission waveguide while still staying
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relatively compact instead of forming several smaller independent wave-packets.
Allowing it to come into contact with the beam-splitter at different angles.
Afterwards, the mirror in the reflection guide needs adjusting. Two possible shifts
were observed. The first one at −47.75λDB for which the recombination can be seen
in Fig. 5.20. The wave-function starts off split and gets reflected back into the mir-
ror(5.20a). The wave-packet from the transmission guide enters first and travels
along the upper side of the beam-splitter(5.20b) and thus it allows for the combi-
nation with the wave-packet from the reflection guide(5.20c). Finally, leaving the
beam-splitter((5.20d)).
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FIGURE 5.20: Starting off with a split wave that get reflected backwards by
the mirrors(A), where the wave-packets then re-enter the beam-splitter(B)
and then get recombined(C). Following with the departure towards the out-
put(D) for the parameters v = 5vR, ε = 0.5, F = 0, θ = 90◦, ω0 = 15µm,
σx = 10µm, U0 = −20ER, λ = 1064nm, v = 4vR, ε = 0.5, the position
of the mirror inside the reflection guide 0.6|x0| − 47.75λDB and the one in

transmission at 0.6|x0| − 103.45λDB .

Now the mirror in the transmission guide is varied from −0.48λDB to 0.44λDB cre-
ating the fringes pattern seen in Fig. 5.21. The fringes size in these is roughly 8%

and the combined probability is 91%
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FIGURE 5.21: The figures show the fringes in the atom and vacuum input for
v = 4vR, ε = 0.5, F = 0, θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER,
λ = 1064nm, v = 5vR, ε = 0.5, the position of the mirror inside the reflection
guide 0.6|x0|−47.75λDB and the one in transmission at 0.6|x0|−103.45λDB .
Where the highest fringe high is about 8% and the total probability in the two

waveguides add up to 91%.
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FIGURE 5.22: These figures depict the evolution of two wave-packets after
they have been split and reflected backwards into the beam-splitter(A), where
the recombine(B and C) and leave(D). For the parameters v = 5vR, ε = 0.5,
F = 0, θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER, λ = 1064nm, v =
4vR, ε = 0.5, the position of the mirror inside the reflection guide 0.6|x0| −

55.7λDB and the one in transmission at 0.6|x0| − 103.45λDB .



148 Chapter 5. Interferometer

The other possible position for the mirror in the reflection waveguide is −47.75λDB ,
see Fig. 5.22. The wave-function starts off split into two different wave-packets
inside the reflection and transmission waveguide, respectively, that get reflected
back to the beam-splitter by the mirrors(5.22a). Then they get recombined(5.22b
and (5.22c)) and leave the beam-splitter((5.22d)).
From these we can get the fringes as seen in Fig. 5.23. They have a maximum height
of 10% and which is thus better than the 8% from the case with a shift of−47.75λDB ,
the combined probability is still 91%.
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FIGURE 5.23: The fringes in the atom input(A) and vacuum input(B) are
depicted here, where the fringes high is roughly 10% for the parameters
v = 4vR, ε = 0.5, F = 0, θ = 90◦, ω0 = 15µm, σx = 10µm, U0 = −20ER,
λ = 1064nm, v = 5vR, ε = 0.5, the position of the mirror inside the reflection
guide 0.6|x0| − 55.7λDB and the one in transmission at 0.6|x0| − 103.45λDB .

The probability of the two waveguides sum up to 91%.

5.3 Combining

The mirror position has proven important for a waveguide with a depth of U0 =

−20ER and a width of ω0 = 15µm. However, the main factor for this was that the
wave-packet inside the transmission guide is bouncing inside of it, due to excitation
to higher lateral modes causing transverse movement of the packet, and the splitting
is heavily not central. However, this not as significant for both the narrower and
shallower waveguides. For this reason we will investigate over a broader range of
parameters for recombination.

5.3.1 Parameters: U0 = −2ER and ω0 = 1µm

The first case will be the one where the width of our waveguides is ω0 = 1µm and
their depth is U0 = −2ER. The other parameters are a filling of F = 0, the crossing
angle of the laser beams θ = 90◦, the width of the wave-packet in the longitudinal
direction σx = 0.73µm, the wave-length of the lasers λ = 720nm and the the position
of the mirrors xmr = xmt = 0.6|x0|. For this case the velocity is going to be varied
from v = 1.5vR to v = 4.0vR varied with a step size of 0.5vR. As this is the region
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we could trust and below v = 1.5vR we would have significant reflection back into
the input. The polarisation is going from ε = 0.3 to ε = 0.6 with 0.1 increments and
lastly the mirror in the transmission band is varied from −0.48λDB to 0.48λDB in
0.04λDB increments. From these we can calculate the fringes and from these we can
then determine the highest fringe size in the atom input and plot this as a function
of the velocity and polarisation as done in Fig. 5.24.
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FIGURE 5.24: These figures show the height of the fringes as a function of
the velocity and polarisation. The highest fringes were seen at v = 1.5vR
and ε = 0.5 for the parameters. F = 0, θ = 90◦, ω0 = 1µm, σx = 0.73µm,

U0 = −2ER, λ = 720nm and xmr = xmt = 0.6|x0|.

1.0 0.5 0.0 0.5 1.0
λDB

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

I1

(A) Atom Input

1.0 0.5 0.0 0.5 1.0
λDB

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

I2

(B) Vacuum Input

FIGURE 5.25: The fringes for atom and vacuum inputs for the velocity
v = 1.5vR and ε = 0.5, with the highest fringes being around 32%. The

probabilities in the output waveguides add up to 78%.
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FIGURE 5.26: These figures depict the evolution of the wave-function
through the beam-splitter, where the wave-function begins(A) travelling to-
wards the beam-splitter(B) and gets split by it(C). Eventually, leaving the
beam-splitter with some loss(D). Afterwards it gets reflected back into it by
the mirror(E), where it recombines and(F and G) and finally leaves(H). The
parameters for this simulation are v = 1.5vR, ε = 0.5, F = 0, θ = 90◦,
ω0 = 1µm, σx = 0.73µm, U0 = −2ER, λ = 720nm and xmr = xmt = 0.6|x0|.

From it we see that the biggest fringes can be found for the parameters of v = 1.5vR

and ε = 0.5, where the actual fringe pattern can be seen Fig. 5.25. They show a fringe
height up to 32%, which is significantly greater than the typical values we were able
to find for the waveguide discussed in the previous sections. The probability of
finding the atoms in the atom and vacuum input combined is 78%.
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Lastly, it is worth to have a look at the evolution of the wave-function itself for these
parameters. The example chosen is for the case where there is no shift in the mirror,
see Fig. 5.26. The wave-functions gets by the beam-splitter split((5.26a)) and leaves
at (5.26b), where it can be seen that some of the wave-function escapes creating loss.
Now the wave-packets get reflected backwards into the beam-splitter(5.26c), where
they recombine closer relative close to the centre((5.26d) and (5.26e)). Lastly, the
interfering wave-packets exit the beam-splitter(5.26f).

5.3.2 Parameters: U0 = −2ER and ω0 = 1.5µm

The next case we examine is the one where the width of the waveguide is widened to
ω0 = 1.5µm. The other parameters stay the same. For this case as well we will vary
the velocity from v = 1.5vR to v = 4.0vR with a step size of 0.5vR. The polarisation is
going from ε = 0.3 to ε = 0.6 with 0.1 increments and the mirror in the transmission
band is altered from −0.48λDB to 0.48λDB by 0.04λDB increments.
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FIGURE 5.27: This graph depicts the maximum observed fringe size in the
atom input, for a moving mirror in the transmission guide, which moves
from −3λDB to 3λDB by 0.25λDB . The highest fringes were seen for v =
1.5vR and ε = 0.4 and the other parameters are F = 0, θ = 90◦, ω0 = 1.5µm,

σx = 0.73µm, U0 = −2ER, λ = 720nm and xmr = xmt = 0.6|x0|.

For these properties we can calculate the maximum fringes in the atom input, Fig.
5.30. From this we see that the highest fringes can be seen for the velocity of v =

1.5vR the polarisation ε = 0.4. The fringes for these can be seen in Fig. 5.28. They
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have a maximum height of 33% and thus they are the best ones observed so far, with
the summed up probability of the relevant waveguides being 90%.
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FIGURE 5.28: The fringes in the atom(A) and vacuum(B) input for the veloc-
ity v = 1.5vR and ε = 0.4, with the highest fringes being around 33% and the

summation of the probabilities being 90%.
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FIGURE 5.29: The propagation of a wave-function through the beam-splitter
for case with the highest fringes for the parameters v = 1.5vR, ε = 0.4, F = 0,
θ = 90◦, ω0 = 1.5µm, σx = 0.73µm, U0 = −2ER, λ = 720nm and xmr =
xmt = 0.6|x0|. In A the wave-function starts starts by getting reflected from
the mirrors, where some loss can be seen due to the splitting. Afterwards, the
wave-packets travel back to the beam-splitter, where they get recombined in

B and C. Finally, leaving towards the outputs in D.
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The last thing to examine for this case is the propagating wave through the beam-
splitter at the recombination, see Fig. 5.29. Starting off the with the wave-function
being split with some losses, to be reflected by the mirrors(5.29a). They then travel
back into the beams-splitter an get recombined5.29b and 5.29c). Lastly, the outputs
leave the beam-splitter5.29d). The wave-packet consistency is still a lot better than
for the case with U0 = −20ER and ω0 = 15µm.

5.3.3 Parameters: U0 = −5ER and ω0 = 1µm

The last case is the one where the depth of the lasers is U0 = −5ER and their width
is ω0 = 1µm. The other parameters stay the same. The other variable range for
the velocity from v = 1.5vR to v = 4.0vR with an increment size of 0.5vR. The
polarisation ranges from ε = 0.3 to ε = 0.6 with 0.1 increments and the mirror in
the transmission band is moved from −0.48λDB to 0.48λDB in 0.04λDB increments.
From this the height of the fringes in the atom input can be calculated giving us Fig.
5.30, where the highest fringes can be found at v = 3vR and ε = 0.6.
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FIGURE 5.30: Showing the fringe height for the atom input at the end of the
simulation, where the highest fringes are found to be around v = 3vR and
ε = 0.6. The other parameters are F = 0, θ = 90◦, ω0 = 1µm, σx = 0.73µm,

U0 = −5ER, λ = 720nm and xmr = xmt = 0.6|x0|.

For this case the fringes are seen in Fig. 5.31, with a height of 22%, which is thus
lower than the two previous cases. For this case as well the fringes are not a de
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Broglie wavelength long due to the excitation of the atom into higher transverse
modes and thus lowering the overall velocity in the propagation direction of the
waveguide.
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FIGURE 5.31: The fringes for the atom(A) and vacuum(B) input for the ve-
locity v = 3vR and the polarisation ε = 0.6, with the highest fringes being

around 22%. The sum of these two waveguides sums up to 89%.
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FIGURE 5.32: The wave-function leaves the beam-splitter with some loss to
be reflected back by the mirror in A. B shows the wave re-entering the beam-
splitter to be recombined in C and then exiting in D. The other parameters
are v = 3vR, ε = 0.6, F = 0, θ = 90◦, ω0 = 1µm, σx = 0.73µm, U0 = −5ER,

λ = 720nm and xmr = xmt = 0.6|x0|.



5.4. Summary 155

The last thing to examine is the propagation of the wave-function, Fig. 5.32. The
atom starts off leaving the beam-splitter with some loss to get reflected backwards
by the mirrors(5.32a). Afterwards, it reaches the beam-splitter(5.32b) and gets re-
combined (5.32c)). Leaving the beam-splitter with some additional loss(5.32d). Also,
the output is again more coherent than the one for a deeper and wider waveguide,
this can be inferred from looking at the probability density.

5.4 Summary

In this chapter we investigated the recombination abilities of our beam-splitter by
creating a Michelson interferometer where the mirrors are reflective Gaussian po-
tentials that could be created by lasers. One of the mirrors was moved between each
run to create artificial fringes.
The first examination was focused on the importance of the mirror position for the
case. For this we use coarse movement of the mirrors to adjust interfering packet
overlap, and fine movement to produce the phase shift to vary the output proba-
bilities. The parameters that were shared in these investigation were σx = 10µm,
U0 = −20ER, λ = 1064nm, ε = 0.5 and xmr = xmt = 0.6|x0|. Using this we in-
vestigated two cases of the filling of the potential well in the beam-splitter, F = 1

and F = 0. Beginning with F = 1 with a velocity of v = 5vR, the mirrors are
moved coarsely in parallel until a point was found were the two wave-packets over-
lapped an example being at−31.83λDB . At this point we then performed fine mirror
movements in the transmission waveguide to create artificial fringes by rerunning
the simulation for each position separately. Giving us the fringe height of 5% with
85% of the wave being in both output waveguides. When both mirrors were slightly
moved further to 39.8λDB the fringe height collapsed to 1.5% with the combined
probability of the waveguides staying the same. Afterwards, we set the mirrors back
to −31.83λDB and moved only the transmission guide mirror coarsely to an addi-
tional −71.62λDB and −75.6λDB as the wave-packet seemed to meet in the centre.
However, beam-splitter recombination is non-central and starts at the edges. Thus
when the wave-packets meet in the centre they already have gone through partially
being split. Lastly, for this case we varied the mirror in the reflection guide instead
of the translation guide to create artificial fringes and these were the same height as
for the ones in the transmission waveguide.
The next case was for F = 0 with a velocity of v = 4vR. For this case it was not
possible to overlap the wave-packets with both mirrors moved simultaneously. As
such the mirror in the transmission band was moved so that the wave-packets travel
through the upper region of the beam-splitter. Afterwards, the mirror in the reflec-
tion was set so that the wave-packet from it could be combined with that from the
transmission guide. There were two possible cases found for which we investigated
the fringes. These are the ones where the reflection mirror is shifted by −47.74λDB
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and the one in the transmission by −103.45λDB , giving fringes of 8% with a sum-
mation of the probabilities being 91%. The other one is −55.7λDB for the reflection
mirror and−103.45λDB for the mirror inside the translation waveguide. These gave
a fringe height 10% with a combined probability of 91%. Nonetheless, it should be
noted that the wavelength of the recombined wave-packets is increased as the av-
erage speed of the packet along the waveguide direction really is lowered by the
excitation of transverse modes in the waveguide and so there is then less transla-
tional kinetic energy in the waveguide propagation direction.
Afterwards, we looked at the cases where the waveguides are narrower and shal-
lower, having the shared parameters xmr = xmt = 0.6|x0| and λ = 720nm. As these
kinds of beam-splitter are less sensitive to non-central splitting we fixed the mirror
and varied the velocity and polarisation over a range of parameters recording the
fringe height for each case. Through this investigation we found that for a potential
depth of−2ER and a width of ω0 = 1µm the heights fringes are 32% and a combined
probability at both outputs of 78%. The next one was a potential depth of −2ER and
a width of ω0 = 1.5µm. For this case the fringe height was 33% with a probability at
both outputs of 90%. These are the highest fringes that were observed. The last case
is for a potential depth of −5ER and a width of ω0 = 1µm with fringes of the height
of 22% and a probability of 89% to find the atoms at the outputs. Furthermore, for
all these cases the wavelength was larger after the splitting. However, it was not
massively increased. Hence these parameters would be easier to optimise for than
the ones for a deeper depth and a wider width waveguide. Additionally one could
potentially infer information about the coherence of the split wave-packets from the
wavelength observed at the output. If this is very close to the input wavelength
there will be minimal excitation into higher transverse modes in the waveguides
and the splitting will be coherent. If the wavelength decreases significantly this will
be linked to excitation into higher transverse modes and the splitting will be less
coherent.
The maximum sensitivity of an interferometer can be archived by having the output
without an unknown phase shift being at the maximum of the slope. Hence it is
important to have a feedback system that returns the output to this position. This is
done by applying a controlled shift to compensate and return the system to where
it was. The unknown phase shift is then the negative of the shift that was applied
to remove it. For this process to work it the interferometer must be calibrated, so
a known shift can be applied to keep the interferometer output position and the
maximum of the slope[111].
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Chapter 6

Conclusion

This thesis has focused on the modelling of the beam-splitting properties of an all
optical beam-splitter, where the beam-splitter is created by the overlap of two red-
detuned Gaussian laser beams that also function as the waveguides for the atomic
Bose-Einstein experimental investigations on this system that have been undertaken
in the group of Professor Yuri Ovchinnikov at the National Physical Laboratory
(NPL) [95]. Throughout, the modelling parameters used in this thesis have been
chosen to be compatible with the experimental capabilities, so as to investigate the
potential for such interferometers as practical devices. In the simulations we have
employed a low density condensate and thus it is only necessary to solve the time
dependent Schrödinger equation. However, this also has the disadvantage of being
restricted by the Shot noise limit, which is dependent on the number of atoms[27].
The beam-splitting was firstly analysed in one-dimension, where we used the method
from Daemon et al. to calculate the band-gap structure[97] and from this the trans-
mission probability for the atoms as a function of velocity and polarisation ε. How-
ever, for our chosen parameters did not have enough fringes to work these results
were not compatible with those of two other methods which we used to calculate
the transmission probability.
Following this, we calculated the transmission probability as a function of velocity
and ε by integrating backwards through the beam-splitter for four different cases[104].
The first one being the case being for U0 = −20ER, ω = 15µm, λ = 1064nm and
a variety of filling levels. For these parameters the regions of total reflection and
total transmission were initially linearly divided. However, when the filling was
increased the separation becomes curved. This is due to the nature of the filling,
which is a Gaussian potential. As such its effects are stronger in the central region
than the edges of the beam-splitter. Therefore, the linear separation becomes curved
as different regions inside the beam-splitter have a different impact on the transmis-
sion probability depending on the velocity of the atoms. The other cases were for a
λ = 720nm, U0 = −2ER, ω = 1µm, U0 = −2ER, ω = 1.5µm U0 = −5ER, ω = 1µm. In
all of these cases the same phenomenon happened, where the separation was linear
for no filling then became curved when filling was added. These three cases are gen-
erally very similar where the difference between them is the due to their resonant
frequencies which enhances the transmission probability for certain velocities.
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The last method that we used was the split-step Fourier method. Furthermore, as
these simulations investigated the propagation of the wave-function through the
beam-splitter, we found that it is possible that atoms become localised, or trapped,
inside the beam-splitter, which is not desirable. In this method we investigated var-
ious examples, again starting with the one where U0 = −20ER, ω = 15µm. Addi-
tional to previous parameters our incoming wave-packet as a width of σ = 10µm.
The resulting transmission probabilities agreed significantly with the ones from the
standing wave calculations, with the caveat that the transition areas between to-
tal transmission and total reflection are smoothed out. This comes from the nature
that a Gaussian wave-packet is a superposition of monochromatic travelling waves
and thus the observed transmission is related to the superposition of the individ-
ual transmission probabilities. Additionally, the propagating wave-function could
be directly observed and thus how its shape changes due to the action of the beam-
splitter. The wave-packets after the splitting are not perfectly Gaussian but reason-
ably so, indicating a relatively coherent splitting in one-dimension. Indicating a rel-
ative coherent splitting in one Dimensions. However, regions of approximate 50:50
splitting were found to have significant overlap with evolutions that resulted in sig-
nificant trapping probabilities. As for the other three cases U0 = −2ER, ω = 1µm

U0 = −2ER, ω = 1.5µm U0 = −5ER, ω = 1µm. The width of the wave-packet used in
these was σ = 0.73µm. The results from these calculations agreed with those from
the standing wave calculations as well, and the observed splittings appeared a little
more coherent. Also, the areas of significant atom trapping do not overlap much
with those for approximate 50:50 splitting.
After having investigated the one-dimensional properties of the beam-splitter, the
second step undertaken was to analyse the propagation of a wave-packet through
the beam-splitter in two-dimension,s using the split-step Fourier method. Given
two dimensions, there was more scope for the wave-packet propagation to various
regions, which are the waveguides for the atom input, vacuum input, reflection,
transmission, beam-splitter and outside the waveguides and beam-splitter, which
will be counted as a loss of atoms. Our ideal splitting probabilities would be a 50:50
split, with an insignificant number of atoms inside the atom input, vacuum input
and beam-splitter as these could potentially lead to additional noise, when these
would interact with the atoms coming directly from the atom laser. Therefore hav-
ing atoms in these regions is used as an execution criteria, while atom loss due to es-
caped atoms is not ideal as this would lower the precision due to the shot noise limit
[27]. The cases studied in two-dimensions were the same as those in one-dimension
with the exception that the filling was only used for U0 = −20ER, ω = 15µm. Thus
for the case with U0 = −20ER, ω = 15µm, the probabilities for finding the atoms in
the respective regions were calculated, and the best values were found to be v = 4vR

and ε = 0.5 for balanced splitting with no filling. However, the splitting itself is not
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coherent and excites the incoming wave-packet over a range of transverse modes in-
side the waveguides. Therefore the wave-packets stay generally within the waveg-
uides, but exhibit transverse motion (bouncing) due to the excitation. However, the
wave-packet inside the reflection region does not stay together but splits into a sig-
nificant number of smaller wave-packets bouncing inside the waveguide. To counter
this the width and depth of the waveguides were reduced, to lower the beam-splitter
potential energy that could increase the kinetic energy of the atoms inside it, and to
increase the separation energy between the eigenstates, respectively. Thus making
it harder for the atoms to occupy higher modes. This led to the investigation of the
cases U0 = −2ER, ω = 1µm U0 = −2ER, ω = 1.5µm U0 = −5ER, ω = 1µm. In these
cases the splitting was still not coherent enough, but was improved. The transmitted
wave-packet stays roughly inside the centre of the waveguide but the wave-packet
inside the reflection guide was still split into several wave-packets, but significantly
fewer in number. However, the disadvantage to this approach is that the atoms can
more easily escape due to inelastic intra-trap collisions[72]. Our next investigation
to improve the splitting was with a smaller crossing angle between the beams, in or-
der to reduce the momentum direction change. Despite this reasoning, there was no
useful improvement, as the wave-packets still occupy higher states. The last method
that was investigated to improve the splitting was the introduction of a third laser
beam to act as a reflector[72], which is the source of the above mentioned filling.
However, for the case where U0 = −20ER, ω = 15µm it did not improve the coher-
ence. Additionally, it should be mentioned that the splitting generated is non-central
within the beam-splitter region, especially for U0 = −20ER, ω = 15µm.
In general our results have shown that the beam-splitting is not coherent and excites
higher modes inside the waveguides. However, it can still be used for recombina-
tion as a multimode interferometer[109, 110], which is similar to the white light case
in optics. The final experimental and technological goal (and thus also modelling
goal) is the creation of a Mach-Zehnder interferometer. However it was easier for
the present level of modelling investigations to implement a Michelson interferom-
eter to test recombination. For the mirrors Gaussian potentials were used as these
could be implemented by blue-detuned Gaussian laser beams[72]. For U0 = −20ER,
ω = 15µm with zero filling no region could be found to create an interferometer
with both mirrors equidistant from the beam-splitter, because the packets in the two
wave-guides exhibited different longitudinal speeds. As so both mirror need to be
at different positions. Furthermore, as the splitting is mostly non-central it was nec-
essary to choose the mirror position inside the transmission waveguide so that the
wave-packet from it is guided to interfere with the wave-packet from the reflection
inside the upper part of of the beam-splitter. The best interference fringes found
for these parameters exhibited a fringe height of 10%. The next investigations were
made for parameters of U0 = −20ER, ω = 15µm with F = 1 filling. For this case the
best fringes were found with height of 5% for the case of both mirrors equidistant
from the beam-splitter. Detailed investigations for narrower waveguides were then
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undertaken. For the cases the splitting was more central as such instead of look-
ing for mirror position we investigated over a wide parameter space for the largest
fringe height, where the highest fringes for U0 = −2ER, ω = 1µm, U0 = −2ER,
ω = 1.5µm and U0 = −5ER, ω = 1µm are 32% 33% and 22%, respectively. Thus
there is a change that could be used to build an interferometer depending on the
laboratory results. It should also be mentioned that due to the excitation in the split-
ting the fringes have a longer period the atom are slowed done due to be excited into
higher modes.
However, even though this is the end of the content of this thesis there is still much
work that could be done. One interesting development would be the implementa-
tion of the Gross-Pitaevskii equation into the split-step Four method with further
optimisation of the code[112–122], as this would allow to study higher density BECs
allowing for higher precision due to the atom number depends for the shot noise
and Heisenberg limit. Furthermore, thus far the mirror position has only been var-
ied for U0 = −20ER and ω = 15µm. But it could also be varied for the other
cases. Additionally, to date only a Michelson interferometer has been simulated.
For a closer model to the envisaged experimental scenarios, expansion towards a
Mach-Zehnder arrangement would be desirable. However, this would require a sig-
nificantly larger modelling region to capture the complete evolution of the atomic
wave-packet through the complete system. Also, the simulations presented here
only demonstrate an artificial interference pattern, generated through a phase shift
produced by fine movement of one mirror. Thus it would be desirable to simulate
more practical applications, by generating the phase shift through rotation (using
some form of time-dependent potential) or inclusion of some realistic phase-shifting
material in one arm of the interferometer.
Significant further developments that could be pursued, both from the modelling
and the experimental perspectives, could build on the current work to include major
additional physics[123, 124]. One direction would be the introduction of noise and
other environmental effects using techniques of open quantum systems, and poten-
tially including feedback and control. Another would be the use of non-classical
states, for example employing squeezing or entanglement, to push the limits of
atomic interferometry and metrology towards the ultimate Heisenberg limit of sen-
sitivity[10, 12, 85, 89, 125–130].
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Appendix A

Animations

In addition to the thesis a zip file(AppendixA.zip) has been submitted to give all the
relevant background animations. For this we have arranged the animations inside a
folder structure A.1. The four sub folders are thesis, which contain all the animations
highlights shown in the thesis where the animations are labelled with the number of
the figure ,aka "Fig 2.13.pdf". The subfolder Chapter 3 contains all the background
animations in subfolders labelled after the appropriate plots, in chapter 3. If one
set of animations was used to create several plots it will be labelled by the figure
with the lowest number. The same is the case for the folder Chapter 4 and Chap-
ter 5. It should be noticed that they only contain the animations that are from the
split-step Fourier method. These animations are generally labelled as such 11.0:E=-
20.0_epsilon=0.5_w=15.0_sigx=10.0_v=5.0_theta=90.0_lambda=1064.0_shift=0.0_fill
=0.50.mp4, where the first number is a counting integer in the simulation, followed
by the energy in ER, the polarisation ε, the waist of the Gaussian beams in µm, the
variance of the wave-packet in µm, the velocity in vR, the angel between the beams
in degrees, the wavelength of the laser beams in nm, the shift of one of the mirrors
to create the artificial fringes in 1/k where k is the wavenumber of the incoming
wave-packet, lastly the same integer number as to can also be at the end instead of
the beginning.

Appendix

Thesis Chapter 3 Chapter 4 Chapter 5

FIGURE A.1: Folder Structure
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Appendix B

Code

The appendix contains a general overview of my code for the split-step Fourier
method in one-dimensions. The main function iterates over the variable parame-
ters as seen and the number of datapoints needed in k-space, in Fig. B.1.

FIGURE B.1: This is the main function which gives the variable parameters to
for each run.

The individual runs are handled by the subroutine sub, beginning by defining the
fixed parameters, size of the simulation area and simulation time in Fig. B.2. The
other variables like the steps in position and momentum space to evolve the wave-
function.
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FIGURE B.2: Defining the fixed parameters, simulation time and simulation
area.

FIGURE B.3: Sets the variables to evolve the wave-function and determines
the number of required datapoints.
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Then the wave-function is evolved taking snapshots of it and related information at
times spaced by set intervals, see Fig. B.4.

FIGURE B.4: Shows the saving of the data at certain times

The split-step algorithm is in the subroutine ssfm, see Fig. B.5which uses the "Fastest
Fourier Transform in the West" (FFTW) for the discrete Fourier transform[131], to
follow the method descriptive in Sec. refCha2: The Split-Step Fourier Method for
the Schrödinger Equation.
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FIGURE B.5: Implementation of the Split-Step Fourier Method Algorithm
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