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Abstract 
This work presents the design and development of a near infrared thermal imaging system 

specifically designed for process monitoring of additive manufacturing. The overall aims of 

the work were to use in situ thermal imaging to develop methods for monitoring process 

parameters of additive manufacturing processes. The main motivations are the recent 

growth in use of additive manufacturing and the underutilisation of near infrared camera 

technology in thermal imaging. The combination of these two technologies presents 

opportunities for unique process monitoring methods which are demonstrated here.  

A thermal imaging system was designed for monitoring the electron beam melting process 

of an Arcam S12. With this system a new method of dynamic emissivity correction based 

on tracking the melted material is shown. This allows for the automatic application of 

emissivity values to previously melted areas of a layer image. This reduces the potential 

temperature error in the thermal image caused by incorrect emissivity values or the 

assumption of a single value for a whole image. Methods for determining materials 

properties such as porosity and tensile strength from the in situ thermal imaging are also 

shown. This kind of analysis from in situ images is the groundwork for allowing part 

properties to be tuned at build time and could remove the need for post build testing that 

would determine if it is suitable for use. 

The system was also used to image electron beam welding and gas tungsten arc welding. 

With the electron beam welding of dissimilar metals, the thermal images were able to 

show the preheating effect that the melt pool had on the materials, the suspected reason 

for the process’s success. For the gas tungsten arc welding process analysis methods that 

would predict weld quality were developed, with the aim of later integrating these into the 

robotic welding process. Methods for detecting the freezing point of the weld bead and 

tracking slag spots were developed, both of which could be used as indicators of weld 

quality or defects. A machine learning algorithm was also applied to images of pipe 

welding on this process. The aim of this was to develop an image segmentation algorithm 

that could be used to measure parts of the weld in process and inform other analysis, like 

those above. 
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1 Thesis Overview 
1.1 Background and Motivation 
This work was motivated by the increase in use of additive manufacturing (AM) processes 

and methods in industrial settings over the recent years and the availability of high speed 

thermal imaging cameras. After its invention in the 1960s AM has been developed into 

many different technologies and over the last 20 years these have become mature enough 

for use in industrial manufacturing. Manufacturers have now had time to evaluate the 

technology and engineers are learning how to take full advantage of the design freedoms it 

brings, compared to traditional processes. This means the use of AM has spread out of the 

research divisions to become a tool available to everyone, with businesses being built 

around it as a sole manufacturing method. 

The growth in AM usage has also started to show its weaknesses and the gaps in our 

understanding of the technology. Part of this is due to the need for different design 

methodology when targeting an additive process compared to a subtractive one. For 

example, the need to include drainage holes in a hollow part when using powder or resin 

based processes, or the need to limit the angle of overhanging faces with and FDM 

process. These problems have been discovered and the field of design for AM has matured 

but the processes themselves, although functional, are not run in an optimal way; due to 

lack of visibility into the process and therefor lack of understanding. This lack of visibility is 

where thermal imaging and other sensing methods can be applied to AM to learn more 

about the process and the parts it produces. 

In a similar time fame to the development and adoption of AM the development of remote 

sensing technologies has also flourished due to the advances in electronics. This saw 

thermal imaging technologies go from line scanning based cameras that would take 10s of 

minutes to capture a low resolution image. To modern cameras capable of capturing 

hundreds of frames a second at multi megapixel resolutions. This has made them much 

more suitable for high speed analysis of processes such as AM. 

Even with the field of process monitoring growing to try and fill the gaps in the knowledge 

of AM processes thermal imaging had not been used here until very recently. Both AM and 

thermal imaging contain many different technologies however, near infrared (NIR) thermal 

imaging cameras had not been used before, with any existing research using lower 

wavelength IR technologies. NIR thermal imagers are a very good match to the needs of 

AM process monitoring bringing higher capture speed and resolution compared to longer 

wavelength cameras.  
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1.2 Aims and Objectives 
The main aim of this work was to demonstrate the use of a near infrared thermal imaging 

system for process monitoring on AM processes. The design and creation of such a system 

would be required and would be focused towards the electron beam melting process of 

the Arcam S12. The system would take advantage of modern imaging technology to 

provide a high speed and high resolution view into the process. This means being able to 

capture at speeds and resolutions on the same scale as the process itself, or closer to them 

than existing monitoring systems. The electron beam in the S12 can be moved at up to 

1000 mm/s with up to 50 µm feature sizes being created, ideally a system can capture the 

process on this scale. This would likely require custom solutions for optics and mounting, 

however, if the system can be realised with minimal modifications to the machine that 

would be best and make the work more relevant to industry. 

With a system in place the aim was to use it to allow process monitoring for the EBM 

process and if possible, process feedback and control. This would mean the creation of 

new analysis techniques, both to analyse the process and the instruments in situ 

measurement capabilities. Process analysis methods that are able to relate features 

observed in the thermal data to physical changes in the part are of particular interest. 

These could aid other research and are likely to be metrics required for industrial 

monitoring of the AM processes. One element that will affect the instrument is emissivity, 

corrections for this will need to be incorporated into analysis techniques. Automation of 

the capture process and analysis was also an aim because an EBM build can take many 

hours and will generate huge amounts of data in that time. It would not be feasible to 

capture data manually for a full build. 

Due to problems with the Arcam S12 machine the aims had to be changed to include work 

on a different process using the same technology. Working on the automated welding 

process the aims were to develop analysis techniques that could, in the future, be built 

into the feedback control mechanisms for the machine. This work would try to transfer 

some of the learnings from the EBM work, whilst still having the goals of learning about 

the welding process. 

1.3 Thesis Structure 
The structure of this thesis follows the development of the thermal imaging system 

created for the Arcam electron beam melting AM system and the analysis techniques 

designed around its output. It goes on to conclude with the application of the same 

technology in a welding AM process and development of analysis techniques for that 

application. 

Chapter 2 is an introduction to the background and theory related to thermal imaging and 

thermal detectors and additive manufacturing. It outlines a brief history of both fields and 
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explores some of the technologies within each. It provides context within each field then 

expands on the specific technologies used in this work, by explaining the operation of 

CMOS thermal imagers and the electron beam melting (EBM) AM process. Finally, it 

presents existing work from both commercial and research projects in the area of process 

monitoring in additive manufacturing.  

Chapter 3 details the design, calibration and initial testing of the NIR camera system on the 

EBM process. The design decisions relating to camera technology choice are discussed as 

well as some initial testing to verify that using a silicon sensor and near infrared 

wavelengths would be appropriate for the application. With the camera selected it then 

discusses some of the optical considerations for this system and how they compare to 

systems working at different wavelengths. The system is then calibrated to provide a 

temperature conversion for the images captured. The method used is based on that for 

single point infrared radiation thermometers because appropriate methods do not yet 

exist for camera based systems. Finally, this chapter shows the first use of the system on 

the Arcam S12 EBM machine it was designed for and its ability to detect temperature 

differences that could be related to defects in parts. 

Chapter 4 continues with the work on in situ process monitoring of EBM. It explores 

analysis techniques developed around the outputs of the thermal imaging system and its 

use in predicting material properties. Analysis methods for emissivity tracking and build 

stage identification are shown. Emissivity tracking aims to improve the accuracy of a 

thermal image taken during an EBM build by selectively applying different emissivity values 

to different areas of an image based on whether that areas has been melted yet. The build 

stage identification process uses machine learning to detect the different stages of the 

EBM process with a single layer. This was developed to increase the potential for 

automation of the image capture process. Thermal images taken during builds are also 

analysed to investigate the links between cooling rates and tensile strength and also melt 

pool size and porosity. To conclude, the system is used to image electron beam welding of 

dissimilar metals and is able to show indicators for the reason this process succeed. 

Chapter 5 moves on to using the NIR imaging system for process monitoring on a gas 

tungsten arc welding process. The automation of this process is currently being researched 

and the thermal imager is investigated as an analysis tool that could feed into the 

automation process. Two analysis techniques are shown for freezing point detection of a 

weld bead and slag detection on the molten weld pool. Both of these techniques could be 

used to indicate weld quality and be used in a feedback system. Finally, a neural network is 

used designed for pixel wise segmentation of the welding images. The purpose of this was 

to detect areas of the image for further analysis where traditional image processing 

methods struggled. 
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Finally, in chapter 6 conclusions of the work are drawn and its impact is discussed relative 

to existing process monitoring. Further work is also presented discussing when could be 

done to continue this work and areas that would need to be focused on to continue to 

advance thermal imaging in the process monitoring field. 
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2 Introduction and Theory 
2.1 Introduction to Infrared Camera Technology and Infrared 

Temperature Measurement 

2.1.1 Brief History of Infrared Camera Technology 
The history of non-contact temperature measurement dates back to the 19th century with 

the discovery of the thermo-electric effect by Thomas Seebeck in 1821. This discovery was 

made in search of a more sensitive detector than the liquid in glass thermometer to assist 

with investigations into the solar spectrum and thermal radiation. The term solar spectrum 

refers to what is now known as the blackbody spectrum. Using the thermo-electric effect 

Macedonio Melloni created the Thermomultiplicator in 1833 which was the first device 

capable of contactless temperature measurement, able to “indicate the radiation of a 

person at 25-35ft”[1]. This was the first example of a thermopile, a technology still in use 

today. 

The next technological development in infrared detection was the bolometer, by Samuel 

Pierpont Langley in 1880. This improved on the speed, detection range and precision, 

being able to detect temperature changes of 10-5 °C[2]. With further developments in the 

coming years by Langley and his assistant Charles Greeley Abbot. The bolometer elements 

were reduced in size resulting in detection cells between 1 and 10 µm in width. This 

allowed for even more accurate investigation into the solar spectrum when accompanied 

with a prism and used like a modern spectrometer. 

The next development towards modern infrared camera technology used for remote 

sensing came from an early leap in television. The Hungarian inventor Kalman Tihanyi 

patented the Radioskop in 1929[3]. This technology had similarities to the Cathode Ray 

Tube television technology that later succeeded, but was much more advanced than the 

mechanical televisions being developed and manufactured at the time. A version of this 

system capable of infrared detection was developed by Tihanyi and the British military as 

part of research into remote controlled aircraft. The infrared television system would give 

the remote pilots night vision capabilities[4]. This technology was recognised by the US 

military and was developed by Radio Corporation of America (RCA) and deployed in World 

War 2[5]. 

The US Military continued developing infrared detection technology after the war and in 

partnership with Texas Instruments (TI); developing the first infrared line scanners in the 

early 1950s. These were designed for military reconnaissance among other applications. 

The line scanner systems were developed and deployed on aircraft to provide extra 

sensing capabilities for crew and were termed Forward Looking Infrared systems, gaining 

the acronym FLIR. Early line scanners were slow both because of their detection and 
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scanning methods (bolometers and scanning mirrors); taking up to 20 minutes to capture 

an image. 

The first commercial cameras became available in the 1960s using the same principles as 

those developed by TI and the military. AGA’s Thermovision line was the first commercially 

available IR camera and was used in medical imaging and by power companies to perform 

predictive maintenance on their power lines amongst other applications[6]. These used a 

liquid nitrogen cooled Indium Antimonide detector for the short wave (3-5 µm) and a 

Mercury Cadmium Telluride detector for the long wave (8-14 µm) versions[7]. 

The first IR focal plane arrays (FPA) were developed following the invention of the CCD 

detector in 1970[5]. An FPA is a 2D detector allowing the capture of an image without 

optical or mechanical scanning. Because of the close link to CCD technology infrared FPAs 

took advantages of the rapid developments in this technology to become quicker, higher 

resolution and less noisy. CCD and IR CCD technology led the industry for years and by 

1995 mass production of IR FPAs was taking place with uncooled detectors being 

developed[5].  

Uncooled detectors were the next step towards modern IR camera technology. Under 

development at TI from the mid-1970s uncooled FPA were considered ready for 

publication and production in 1992[8]. These took advantage of CMOS readout technology 

and worked at room temperature because of the composition of the sensor. This reduced 

the cost and complexity of the technology and enabled its more widespread use, for 

example in infrared CCTV security cameras. 

Uncooled FPAs were the first move in the latest developments in IR cameras. The use of 

CMOS readout technology came with many advantages over CCD especially when moving 

into a more digital world. Images sensors with CMOS readout circuitry convert the charge 

from the photodetector into a voltage at the pixel level rather than at the row based 

readout level like in CCDs. Being a newer technology, this initially came with higher noise 

and image quality problems but as the technology developed this was reduced. One of the 

advantages of using a pixel level voltage readout is that image processing can be 

integrated into the camera or even sensor. This was not previously possible on sensor 

because of the size and speed of the readout circuitry. It also lends itself to being digitised 

on the sensor allowing even smaller packaging possibilities and easier system integration 

vs a CCD needing external analogue to digital conversion. 

The improvement in CMOS technology in other areas of the industry has been taken 

advantage of to manufacture increasingly higher performance infrared FPAs. Pixel pitches, 

for example, have decreased from 45µm in the year 2000 to 12µm in 2010 [5]. This has 

allowed higher resolution FPAs to become available with the speed advantages the mature 

CMOS technology gives. Also, with the advancements in CMOS and semiconductor 
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processing in general multispectral two colour detectors have become available. These 

FPAs stack 2 detectors on top of each other at the silicon level, allowing 2 images at 

different wavelengths to be produced in one exposure. However, this technology is not yet 

at the stage of single colour FPAs, with large pixel pitches and lower resolutions. 

Current commercial detector technologies for IR FPAs are grouped by wavelength range 

SWIR (Short Wavelength Infrared), MWIR (Mid Wavelength Infrared) and LWIR (Long 

Wavelength Infrared) which operate at 0.9-1.7 µm, 3-5 µm and 8-12 µm respectively. The 

SWIR range is primarily made up of InGaAs detectors and have a resolution of up to 

640x512 with a pixel pitch of around 15 µm. SWIR is used for inspection, anti-

counterfeiting and surveillance as well as temperature measurement in an application like 

process control. MWIR FPAs made from InSb detectors have seen more development than 

SWIR FPAs due to their use in military applications. This has caused higher resolution 

1280x1024 sensors to be commercially available in cameras. MWIR also has industrial uses 

in gas detection and inspection, for example. MWIR devices are often cooled making them 

bulkier and more costly than other technologies. LWIR devices have also seen 

development because of military applications but, are also heavily used in medical 

applications. HD resolution (1920x1080) LWIR cameras can be found and this resolution is 

taken advantage of in many applications like person detection in rescue situations, ball 

detection in sports and lower temperature industrial process monitoring.  

One range of wavelengths lesser used, especially when thermal imaging is considered, is 

the Near Infrared (NIR) at 0.7-1.4 µm. This band does cross with the SWIR wavelengths 

but, when considering wavelength bands in relation to detector technologies NIR is often 

shortened to 0.7-1 µm and SWIR to 1-1.7 µm. This fits with the sensitivity range of silicon 

at 0.3-1 µm. Silicon FPAs are used for visible wavelength detectors so have seen the most 

development. State of the art silicon sensors reach multiple 10s up to 100 megapixel 

resolutions with pixel pitches of around 4 µm. However, these sensors are optimised for 

use in the visible range, sensors with a greater responsivity in the NIR wavelengths often 

reach only multi megapixel resolutions. 

2.1.2 Principles of Infrared Detection 

2.1.2.1 Planck’s Law 
Planck’s law is the fundamental rule on which all infrared temperature measurement is 

based. Derived in 1900 by Max Planck it describes the spectral energy density of radiation 

emitted by a blackbody at a given temperature. 

The blackbody spectrum described by Planck's law is the maximum energy an object can 

emit per unit area and unit wavelength. It therefore assumes a perfect blackbody, which is 

defined as a body with an emissivity of 1 at all wavelengths and absorbs all radiation 

incident upon it. Emissivity is the ratio of the radiation an object emits compared to that of 
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a perfect blackbody at the same temperature. In reality objects with an emissivity of 1 do 

not exist so the emissivity value is used to apply Planck's law to the real world. 

 𝐵(ఒ,்) =
2ℎ𝑐ଶ

𝜆ହ

1

𝑒


ఒ் − 1

 
2.1 

 
Where: 

𝐵(ఒ,்) is spectral radiance with respect to wavelength and temperature 
ℎ is the Planck constant 
𝑐 is the speed of light in m/s 
𝜆 is the wavelength in m 
𝑘 is the Boltzmann constant 
 𝑇 is the blackbody temperature in K 

 

Figure 2.1 Example blackbody spectrum for 800 °C 

In IR temperature measurement Planck's law is used to model the theoretical radiance of 

an object at a given temperature and wavelength or band of wavelengths. This allows the 

calibration and characterisation of instruments when they are used to measure an 

approximate blackbody source (with an emissivity of 0.99 or greater). 

2.1.2.2 Wien’s Distribution and Displacement Laws  
The Wien distribution law (also now called the Wien approximation) was the best model of 

blackbody radiation prior to Planck's law. Derived in 1896 by Wilhelm Wien it was designed 

to describe the full blackbody spectrum but was not accurate at long wavelengths. 
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𝑘 is the Boltzmann constant 
𝑇 is the blackbody temperature in K 
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The Wien approximation is still used because of its simpler form when working at short 

wavelengths. The Wein approximation is valid for wavelengths shorter than the peak 

wavelength of the blackbody spectrum for a given temperature.  

Wien’s displacement law defines the peak blackbody emission at a given temperature and 

was derived by Wien in 1893. Through this law the peak emission wavelengths can be seen 

to decrease as temperature increases. 

 𝜆 =
2.898

𝑇
 

2.3 

 

Where: 
𝜆  is the peak wavelength in m  
𝑇 is the blackbody temperature in K 

2.1.2.3 Sakuma Hattori Equation 
The Sakuma Hattori equation was developed by Fumihiro Sakuma and Susumu Hattori in 

1982 to fit detector output to the Planck equation for calibration purposes. It is used to 

model detector output for a given temperature with the use of fitting variables that can be 

related to the characteristics of the measurement device. It is also used in its inverse form 

once the device has been characterised to relate device output to temperature. 

 𝑆(்) =
𝐶

𝑒


்ା − 1

 
2.4 

 
Where: 

𝑆(்) is the device output with respect to temperature 
𝑇 is temperature in K 
ℎ is the Planck constant 
𝑐 is the speed of light in m/s 
𝑘 is the Boltzmann constant 
𝐴, 𝐵 and 𝐶 are the fit variables 

The expanded form is shown here to relate to the full form of the Planck equation (2.1) but 
it is often used with the second radiation constant 𝑐ଶ =




= 0.014387752 m/K. The 

equation can be used directly in this form when considering narrow band measurement 

devices or can be used with broadband devices by integrating over the wavelength band 

required. The A and B parameters of the equation can be related to physical properties of 

the device being characterised and calculated values and be used for a starting point on a 

fit or, to tie the fit back to the properties of the device. A is generally accepted to be close 

to the central wavelength of the spectral response of the device[9], and B related to the 

defining spectral characteristics of the device e.g. the primary filter bandwidth[10] using 

the below equations. 
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Where: 
𝑐ଶ is the second radiation constant 
𝜆is the centre wavelength in m 
𝐹𝑊𝐻𝑀 is the Full Width Half Maximum of the defining filter in m 

2.1.3 Operating Principles of an Infrared Camera 
Most infrared cameras are based on one of 3 detection technologies depending on 

sensitive wavelength (discussed above) and corresponding electronics to create a usable 

output signal for another device. CCD and CMOS based cameras will be described here, 

however microbolometer cameras work in a very similar way. Charge Coupled Devices 

(CCD) sensors and Complementary Metal Oxide Semiconductor (CMOS) sensors both work 

in the silicon wavelengths (0.3-1 µm), but the technology can be extended to the full SWIR 

range with the use of InGaAs photodetectors paired with either of the two readout 

methods. 

CCD is the older technology of the two with most modern silicon based image sensors 

using CMOS, however CCD is still used in certain scientific applications where CMOS has 

not yet been proven to have a low enough noise level. The differences between the two 

technologies lie in how and where charge from the photodetector is converted into a 

voltage. These differences lead to the defining characteristics of the FPAs and the cameras 

as a whole. 

CCD sensors rely on moving charge around the sensor, giving them their name. Each pixel 

on a CCD sensor contains an area of photosensitive material that will create charge (also 

termed photoelectrons) from the light incident upon them. This charge is accumulated in a 

potential well under one of the electrodes laid on top of each pixel. There are 3 electrodes 

on each pixel which allows the charge to be clocked out from each pixel in turn along a row 

or column. By activating each electrode in turn, the charge from the pixel will move under 

that electrode and form a shift register to move the charges along. When a charge reaches 

the end of the row or column it is then shifted using the same method in the other 

dimension to reach the conversion and readout electronics in the corner of the FPA[11], 

[12]. 

The conversion electronics on a CCD consist of a capacitor to convert the charge from the 

photodetector into a voltage and an amplifier to amplify this voltage to a useful level. The 

readout electronics then either digitise this voltage using an analogue to digital converter 

(ADC) to create a digital output or it is passed through more analogue circuitry to create an 

analogue waveform corresponding to the image data. 
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The single set of readout electronics give a CCD based camera its main advantages and 

disadvantages. The advantage of having only one set is that CCDs traditionally produce less 

noise and more uniform images because there is only one point for the signal to be 

affected by outside factors like temperature. However, using a single set of readout 

electronics limits the speed of the device because the device can only be clocked so fast 

whist still allowing time for light collection and time to shift out every pixel sequentially. 

CCDs also suffer from ‘blooming’ where charge will spill out from pixels with a lot of 

incident light onto those around it. 

A CMOS sensor works in a similar way using a photodetector in each pixel to convert 

incident light into charge, however rather than moving that charge to a single set of 

conversion electronics each pixel has conversion electronics to create a voltage. This 

voltage is then sampled row by row where it is digitised by a corresponding number of 

ADCs the read off the FPA digitally [12]. This process is fundamentally the same as a CCD 

but with greater complexity. Each pixel in a CMOS array will contain multiple transistors 

and in newer designs even ADC capabilities.  

This architecture leads to CMOS sensors being much quicker to read out because whole 

rows are read at once; and multiple sets of readout electronics can be used to read out sub 

arrays of the sensor in parallel. However, it also means that there is more variability in the 

readout process, if each set of readout circuitry is not exactly matched fixed pattern noise 

can be introduced. This is where some columns will read out different values for the same 

pixel voltage. With multiple amplifiers and ADCs temperature variability across the sensor 

will also affect the readout of individual pixels or columns by having a different effect on 

the noise introduces to each device. It is because of these disadvantages that CMOS 

adoption was slow for scientific devices. However, manufacturing processes have 

improved to lessen these affects and some cameras now also contain electronics to correct 

for these effects before presenting the image to the user. 

After an image has been read from the sensor an algorithm or lookup is performed to 

transform the raw image data into a temperature. The raw data will either be in the form 

of a digital level (DL) for each pixel for an analogue voltage. The conversion algorithm or 

lookup will be defined in the calibration process of the instrument. This which will usually 

involve measuring the devices output at defined temperatures then creating a model to 

interpolate these points and create a full range of temperature values for the devices 

output. 

2.2 Introduction to Additive Manufacturing 

2.2.1 Brief History of Additive Manufacturing 
Additive manufacturing (AM) is an overarching term that refers to all additive 

manufacturing processes, opposed to subtractive ones. It is defined by ISO/ASTM 52900 as 
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the “process of joining materials to make parts from 3D model data, usually layer upon 

layer, as opposed to subtractive manufacturing and formative manufacturing 

methodologies”[13].  This means additive processes are differentiated from more 

traditional manufacturing processes like milling, turning, casting or forging; these 

techniques would fall into the subtractive (milling, turning) and formative (casting, forging) 

categories. 

Additive manufacturing, also known as 3D printing, is considered by most a relatively 

recently developed technology, however, its research dates back to the 1960s. The 

research conducted in the late 1960s used multiple lasers at different wavelengths to cure 

a photosensitive resin in a vat[14]. At the time this was called photochemical machining 

but is the predecessor of the technology known today as vat polymerisation. This 

technology was developed and patented by different organisation throughout the 1970s. 

These developments are often overlooked because of the differences to today’s 

technologies. 

The person often credited with the invention of 3D printing is Hideo Kodama of the Nagoya 

Municipal Industrial Research Institute in Japan. In 1980 he filed a patent application for a 

technology called stereolithography, this technology although similar to those before it 

was much simpler; using a single laser to cure a single layer of photosensitive resin at a 

time. The prototypes for this machine can be seen in his 1981 paper “Automatic method 

for fabricating a three-dimensional plastic model with photo-hardening polymer”[15] and 

was the first process to work layer wise and driven from 3D model data from a PC. This is 

the same way most of today’s AM processes are driven, which is likely the reason he is 

often cited as the inventor of AM and 3D printing. Kodama’s process used a UV curable 

resin and could reach layer resolutions of 0.1 mm. The first model shown in the paper is of 

a house consisting of 27 layers at 2 mm thickness with 10 minutes cure time for each layer, 

the full model taking 4.5 hours to complete. 

Other companies worked on stereolithography systems and development through the 

early 1980s, but most were abandoned, or came to nothing until Charles Hull formed 3D 

Systems in 1984 and patented the stereolithography apparatus (SLA) technology[16]. 3D 

Systems were the first company to commercialise and have success with 3D printing with 

their SLA-1 machine. The process worked in fundamentally the same way as the one 

Kodama demonstrated, curing layers of UV sensitive resin with a laser. This process started 

the AM industry with the stereolithography process being developed heavily throughout 

the 1980s and 1990s and continues to be one of the leading technologies for polymer 

based AM today. 

In the early 1990s other polymer processes started to be introduced into the market. In 

1992 Statasys introduced fused deposition modelling (FDM) technology with its first 
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product the 3D Modeler[17]. FDM technology works in layers, like stereolithography, 

however rather than using a laser to cure resin, it uses a nozzle to extrude molten polymer. 

Also in 1992 Selective Laser Sintering (SLS) was introduced by DTM (now part of 3D 

Systems)[18]. SLS uses a laser to selectively fuse areas of powder layer by layer and form 

the 3D object. Both of these technologies were successful and are still widely used today. 

Later in the 1990s and early 2000s metal AM systems started to be commercialised with 

EOS developing Direct Metal Laser Sintering (DMLS) in 1994[18], Optomec releasing Laser 

Engineered Net Shaping (LENS) machines in 1998[19] and Arcam releasing Electron Beam 

Melting (EBM) machines in 2002[20]. These 3 products represent 3 different methods of 

metal AM; DMLS and EBM are similar in that they are both powder bed fusion (PBF) 

systems. In PBF systems a layer of metal powder is laid down on top of a build plate, the 

energy source for the system then draws the layer, fusing it to the bed or previous layer 

then the bed is moved down by the layer height and the process repeated. The technology 

for this style of AM was developed at the Fraunhofer Institute[21]. Both of these processes 

create fully dense part by melting the powder; other approaches also exist that sinter the 

powder, rather than melting, which requiring post processing. The difference between the 

two systems is their energy source; DMLS uses a laser and EBM an electron beam. The 

LENS system, developed by Optomec, is an example of direct energy disposition (DED) and 

works by using a moving head to deposit and melt metal powder along a path. The powder 

is deposited onto the bed or previous layer and instantly melted by a laser. These systems 

are all still in use and development today. They are some of the most popular metal AM 

processes, as well as metal SLS. 

In the mid to late 2000s the 3D printing market began to grow, one of the possible reasons 

for this is the RepRap project from the University of Bath[22]. This open source project 

generated a lot of consumer and hobbyist interest in AM, which has also translated into 

the industrial world through engineering and public interest. The global AM market was 

worth $1 billion in 2009[23] and has continued to grow to $9.3 billion in 2018[24].  

Current AM technologies can be classified into 7 areas; material extrusion, powder bed 

fusion, material jetting, binder jetting, vat polymerisation, sheet lamination and direct 

energy deposition[25]. Some of these technologies have been discussed above (material 

extrusion, vat polymerisation, powder bed fusion and direct energy disposition) and 

represent some of the major advances in their specific areas and the overall AM 

development history. The principles of the other methods will be described, and example 

uses cases given for all methods.  

The material and binder jetting processes are similar but have a fundamental difference. 

Both of these technologies use moveable print heads with deposition nozzles that 

resemble traditional 2D ink jet print heads. The difference is in what each process deposits 
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from the print head, the material jetting technology directly deposits the printable 

material, often mixed with a suitable solvent, onto a substrate. Binder jetting however 

deposits a binder substance onto a bed of the printable material, selectively binding areas 

of that material together. The material here is usually in powder form. Both of these 

processes, depending on the setup, can require post processing steps such as curing of the 

binder or evaporation of the solvent, for example. An example of material jetting is 

Optomec’s Aerosol Jetting technology[26], this technology is used for 3D printed 

electronics by depositing layers of conductive and semiconductor materials. HP’s range of 

3D printers are examples of binder jet technology[27] and work with both metals and 

polymers. This process if often very high resolution and is used for high quality prototyping 

and small run production parts in various industries. 

Sheet lamination processes create objects using thin sheets of metal (or other materials 

that can be formed into sheets or rolls) that are bonded together layer by layer, with the 

part geometry being cut from each sheet by a laser or knife. There can be post processing 

required to remove excess sheet material after cutting, depend on the exact process and 

material. This process can be very cheap depending on the material used but cannot be 

used for structural parts because the bonding method used tends to be weak. This means 

the technology is used for cosmetic objects and quick turnaround non-functioning 

prototypes[28].  

Material extrusion processes, such as FDM, are primarily used for polymers and are used in 

many industrial applications as well as being the primary technology for consumer 3D 

printers. Depending on the exact polymer and machine used parts produced with material 

extrusion can be mechanically strong[29]. Therefore, they can be used as structural parts 

and often have good enough resolution to be used for visual mock-ups and modelling. 

Powder bed fusion processes work with both metal and polymer powders and can produce 

fully dense parts. This means parts can be used structurally because they have properties 

close to that of the solid material. The Aerospace and automotive industries are heavily 

investigating the use of this technology because it could provide them more design 

freedom and weight saving. It is also actively being used in the medical industry to create 

custom implants for joint replacements[30]. 

Vat polymerisation technologies, like stereolithography, can achieve levels of details that 

other technologies cannot. This in combination with being able to produce solid parts 

lends itself to being used in areas with needs for high detail on a small scale. Industries 

that are applying this technology include robotics and medicine[31]. 

Direct energy deposition technologies can be used to build fully dense parts, like powder 

bed processes for example, but they also have the ability to build on existing parts to 

perform repairs. This is one of the main advantages of the technology and it is being used 
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in the aerospace industry to automate the repair of turbine blades for example[32]. The 

process can also be used to deposit coatings of different metals onto parts to give them 

different finishes or qualities the base material would not have.  

2.2.2 Operating Principles of Electron Beam Melting 
This work is primarily based around the Electron Beam Melting (EBM) process by Arcam, 

this section will describe in more detail the powder bed fusion (PBF) process and 

specifically EBM. The PBF process uses selective sintering or melting of powders to create 

freeform geometry in a layer by layer process. With EBM metal powders are used and the 

powder is fully melted but both polymer and sintering PBF processes do exist. This means 

the EBM process can produce fully dense parts, requiring little to no further processing 

depending on the application and finish required. 

A diagram of the Arcam S12 used in this work can be seen in Figure 2.2. The first step of a 

build is to evacuate the build chamber down to a pressure of approximately 1x10-5 mbar. 

This is done to ensure the electron beam reaches the build plate with as few collisions with 

particles in the chamber’s atmosphere as possible, passing the maximum amount of 

energy into the plate or powder. Next the electron gun voltage is raised to 60 kV, this high 

voltage is passed through a tungsten filament at the top of the beam column to generate 

electrons. The electrons are accelerated, steered and focused by a series of 

electromagnets lower in the beam column. This produces a focused high-power beam of 

electrons that can be aimed anywhere on the build plate. The current passed through the 

filament is used to control the number of electrons generated and therefore the total 

power of the beam. 

 

Figure 2.2 Arcam S12 system diagram 

Before any powder is laid down the build plate is preheated to ~600 ºC using the electron 

beam. This is done with the beam deliberately defocused to spread the beams energy out 
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so not to risk damaging the build plate by melting it. The purpose of the preheat step is to 

slow the cooling of the first layers of the build; if powder was melted straight onto a cold 

build plate it would experience extreme cooling because of the heat sinking effect of the 

plate. This would cause stress in the material, potentially causing cracks in the part or 

undesirable material structure. 

Once the preheat is completed the build begins by lowering the build plate by the height of 

the first layer (usually 70 µm but is variable depending on the build). A layer of powder is 

then deposited on the bed by the rake which rakes powder from the hoppers on either 

side of the bed. 3 or more passes of the rake are usually performed to ensure an even 

layer of powder. A second preheat will then take place lightly sintering all the powder in 

the build area. This is done with a lower power, defocused beam compared to the melting 

power and helps to keep powder from being ejected from the bed when it is hit with the 

full power electron beam. 

The layer pattern is then melted into the sintered powder. This pattern is defined in the 

build preparation step where the 3D model is transformed into a series of layers. The 

standard process of melting a layer will contour the part first, melting the outside walls, 

then melt the internal structure of the part with a hatch or raster pattern, defined in the 

preparation stage. This process is variable depending on the part being built or the 

material used. The beam can travel at different speeds and with different powers and 

focus ratios to define the amount of energy put into the powder and different algorithms 

can be used to define the route of the beam. These as well as other parameters can be 

tuned to the material, part, or even desired material structure and heat treatments. 

After a layer is completed, the powder deposition and melting steps are repeated for every 

layer defined for the build. This leaves a built part welded to the build plate and 

surrounded by sintered powder in the build tank. To remove the part the build plate is 

raised back to its starting level so the plate can be removed. To remove the sintered 

material around the part high pressure air is used to blast raw powder at the block and 

break it down, the sintered powder can be further broken down, sieved and then reused. 

Finally, wire erosion is used to remove the part from the build plate. 

EBM has certain advantages and disadvantages over other PBF processes. The fact EBM 

requires a vacuum can be both; it enables EBM to use materials some other processes 

cannot because of oxidisation concerns at high temperatures for example. It also means 

that, when coupled with the heating of every layer, cooling rates can be much lower than 

other processes. Depending on the material and desired structure this can again be either 

advantageous; allowing a wider range of materials to be built successfully, or a 

disadvantage because builds take longer, and some material properties and structures are 

harder to control. Also because of the sintering of each layer of the powder bed the 
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external surface finish of EBM parts tends to be very rough in comparison to non-sintering 

processes. 

2.3 Process Monitoring and Control in Additive Manufacturing 
Most AM processes are entirely computer controlled however, very few incorporate any 

feedback or process monitoring. Most AM systems rely on highly tuned models of the 

process and open loop control, with little to no feedback when running. The machines will 

work in this way however, they cannot detect when something has happened in the 

process that does not match its model. This means that anomalies in a build can build up 

and cause a catastrophic failure of a build which could damage the machine.  

One example of this in EBM could be too much energy input into melting a material 

causing it to swell. If this happens over consecutive layers the solidified part could start to 

protrude above the level of the powder bed. The next time a new layer of powder is 

deposited the part will catch on the rake and damage it. On further layers the rake will 

now deposit an uneven layer of powder as shown in Figure 2.3. This will worsen the 

swelling in the area, because there is more powder to melt, or could scatter powder 

around the chamber if it does not sinter properly. The scattering of powder is a problem 

because if powder gets close to the electrodes used to create the electron beam it can 

cause arcing between them or an electrical short circuit. This would require the build to be 

stopped and the electrodes to be cleaned or replaced.  

 

Figure 2.3 Diagram showing how swelling on a part could cause uneven powder distribution. Here 
the rake is moving left to right and has been damaged by the swelling on the part due to excess 

energy input 

If these AM processes are to be truly adopted by industry issues like this must be rare or 

predictable so they can be mitigated with maintenance. The example given above would 

cause a build to fail and take hours to fix, this is not acceptable in a manufacturing 

environment.   

The Arcam S12, focused on in this work, does have 3 potential systems for feedback and 

process monitoring; powder sensors positioned either side of the bed, a thermocouple in 

the build plate and a greyscale camera looking at the powder bed from above. These 

sensors only have limited use for process monitoring, if they are used at all. The powder 
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sensors detect when the rake has successfully deposited a new layer across the bed, 

however, they often do not detect powder falling through them. This means the controller 

automatically rakes the bed again to ensure a layer has been deposited, ignoring the 

sensor input. The thermocouple is used to monitor the build plate temperature during 

preheating. However, after this step is finished it becomes of little use to system because it 

gets further away from the current layer as the build progresses. The camera is also not 

used by the control system, instead it is just presented to the operator for manual 

inspection. 

It is not only the Arcam machines that operate like this, machines from other 

manufactures are similar and have not progressed over time to include monitoring 

features. Newer machines and manufacturers, like Aconity 3D[33] for example, do include 

more sensors that are designed to be part of the process control algorithm for the system. 

However, they are not currently integrated in a way to provide real time feedback. The 

Aconity systems provide high speed cameras and pyrometers that are mounted coaxially 

on the laser path, allowing them to view the melt pool. The data from these sensors is 

available to the system and the operator and can be recorded or monitored, but they are 

not currently used by the control systems to implement any kind of feedback or 

verification. 

This level of sensor integration is progress and while it may not help with the 

manufacturing application of these machines, it does assist those actively developing 

processes and powders for use with PBF AM processes. This is one of the other use cases 

for process monitoring in AM, until now powder development and process refinement has 

largely been a trial and error process with a long feedback loop. Whether the application is 

new powder development, build parameter optimisation or material characterisation; 

having the relevant sensors on the AM process helps to shorten the feedback loop and 

provide more information to the operator. 

2.3.1 Commercial Process Monitoring Systems 
Commercial examples of process monitoring systems for AM do exist. Some have been 

developed by machine manufacturers specifically for their machines, others developed for 

a specific application and designed to integrate with machines. One example of a 

manufacturer solution is Arcams LayerQam system[34]. This system is marketed for defect 

detection in Arcams EBM process and is available for Arcam A2 models and newer. This 

system tracks the porosity of a part throughout its build via a camera system but does not 

feedback into the machine for correction purposes. LayerQam is installed by default on the 

latest Q series machines showing Arcam recognises that this kind of technology is required 

in the AM field, although it is not yet integrated into the control algorithms. Being a 

proprietary technology there is little information on how the LayerQam system works. 
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Another manufacturer solution developed by Laser Concept for their SLM machines is the 

QM Meltpool 3D system[35]. This system uses a CMOS camera and a photodiode mounted 

in the optical path of the laser to monitor the melt pool. Melt pool monitoring on SLM 

systems are much more commonplace than on EBM and other AM processes because the 

existing laser optical path can be used and is always focused on the melt pool. The QM 

Meltpool 3D system is capable of measuring melt pool size, with the camera, and average 

melt pool intensity, with the photodiode. This is correlated with data from the machine 

control system to create a stack of images that relate to each layer of the build and contain 

the melt pool size and intensity data. This again allows potential defect areas to be 

detected but relies on manual analysis of the output data by an operator. Therefore, this 

system can offer a history of a parts build process but no feedback without manual, offline 

intervention. 

Other commercial monitoring system exists, mainly for laser based processes, but are 

based around the same technologies used in the QM Meltpool 3D system and provide 

similar outputs. Newer AM machines are integrating more sensors with on axis 

photodiodes and cameras becoming more common on SLM and other laser based 

technologies. However, even though the sensors are being included on machine more 

often, they are still not being used for more than is described above. Most cameras are 

being used to provide visual feedback to operators, but this data is not recorded and is 

often only from a low speed, low bit-depth visible light camera, so would be of little use for 

analysis. 

2.3.2 Research Based Process Monitoring 
There are more process monitoring projects still at the research stage focused around 

different AM processes. Some of these exist only on custom machines designed specifically 

for development of process monitoring or AM metrology techniques. However, others are 

based on existing commercial AM machines that have been modified to varying degrees. 

Most systems in the research stages have not developed fully into process control systems 

but are still at the stage of process monitoring. They are used to inform further 

development of the systems themselves as well as the machines, strategies and materials 

used in the processes.  

In a review of process monitoring in metal AM Tapia and Elwany[36] highlight the primary 

advantage of using an infrared thermometry based monitoring system as, in theory, any 

surface within the field-of-view of the sensor can have its temperature monitored in a 

contactless way. This makes this approach well suited for AM processes like EBM as it 

allows a moving melt pool to be monitored with only a single sensor or imager array for 

example. It also means that neither the part nor build process will have to be modified to 

accommodate appropriate areas for measurement. They do, however, state that infrared 
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thermometry does have some drawbacks. For example; the cost of equipment and the 

need for high frame rates to properly capture a process like EBM at full speed and in the 

amount of detail required, which will further increase the cost of equipment. This is 

especially true of infrared cameras with the technology used in MWIR, most likely to be 

based on thermal detection or 3-5 µm semiconductors and have slow read out speeds or 

low spatial resolution. However, silicon detectors do not have these drawbacks and in the 

time since this review was written both silicon and longer wavelength camera technology 

has matured and dropped in price. 

In a later review of AM monitoring techniques Everton et. al.[37] highlight the recognition 

from industry that process monitoring in AM will be a required feature in the future to 

ensure part quality. They go on to say that current techniques are not at the stage that 

they can fully replace traditional offline part verification and non-destructive testing (NDT). 

But, there is a significant effort from research institutions in this field which is being 

supported by industry. They again highlight the use of imagers as advantageous for many 

AM techniques, especially powder bed based systems. 

Industry is actively working with research institutions to develop monitoring techniques 

and in a NIST workshop[38] directly highlighted the need for in process monitoring and 

NDT methods for AM processes. Systems were identified as lacking real time 

measurement, high speed video and thermal imaging and detection of build anomalies 

such as thermal gradients. Off the back of this call from industry NIST started research on 

the metrology of AM and how process monitoring could be achieved using thermal 

imagers. Lane et. al.[39] show the calibration procedure of a high magnification SWIR 

system using commercial off-the-shelf parts. This paper focuses heavily on the metrology 

and is unlikely to be a feasible setup for a commercial or industrial system, but it does start 

to explore the level of detail required for accurate measurements in AM via thermal 

imaging. Methods are shown in the above paper for dealing with emissivity and the 

cameras optical system. They suggest that corrections at the level of image deconvolution 

with the point spread function (PSF) will be necessary to accurately measure the small 

feature sizes seen in some AM processes, even with a high magnification camera. 

In a review of the measurement science need for real time control in AM from NIST, Mani 

et. al.[40] discuss current control systems based on cameras and photodiodes that are 

mainly used to provide similar information to those of the commercial options above. 

Camera systems are also being used to monitor layer geometry and match it to layer data 

generated in the build setup process. Based on the differences between the live build data 

captured by the camera and the model data the authors can correct for shrinkage in parts 

by changing build themes[41]. Based on the existing work like this and others Mani et. al. 

identify the need for process signatures to be identified in specific AM processes before 
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the measurement challenges can really be addressed. The relationships between process 

inputs, the process signatures and part quality and properties need to be found. This will 

lead to more tightly integrated control schemes in the future that can directly control built 

part properties, by controlling the process signatures in real time. Currently this leaves a 

wide area open for research in finding the relationships and creating accurate methods to 

monitor the signatures. Mani et. al. do suggest some relationships between process 

signatures and part properties based on existing research but note that more investigation 

will need to take place. 

Specifically in EBM, efforts for detecting process anomalies and the effect of process 

parameters are being made. Schwerdtfeger et. al.[42] show via the use of a LWIR camera 

that it was possible to detect inclusions in EBM parts based off correlation with thermal 

images captured during the build. The defects appear hotter to the camera in the thermal 

images, which they suggest is likely an effect of the increased emissivity of the cavity. With 

some image processing steps they are able to detect the size and shape of the defects and 

suggest that this data would be useful in a feedback system. If this data can be created in 

real-time, then the authors suggest that re-melting of the layer could occur for small 

defects and repeating the whole layer process for larger ones. 

In two papers Cheng, Price, Lydon et. al.[43], [44] explore modelling of the EBM process 

and the speed factor process parameter, which are validated by the use of an NIR camera 

mounted on the machine. Accurate modelling of EBM and other AM processes could, in 

the future, lead to more accurate pre-processing of builds to create accurate parts first 

time. It could also allow further exploitation of AM processes with strategies and 

geometries not yet considered possible. However, because of the complex nature of AM 

processes, current models in development are restricted to specific features of AM builds. 

This model was used for investigating melt pool temperatures at different layer heights 

and the effect powder porosity has on the melt pool. Using the NIR camera Cheng et. al. 

were able to validate the melt pool temperature distributions from the model against 

builds in an Arcam S12. Via this method they found that the model was sufficient to predict 

melt pool sizes with an average error of 32% compared to those seen on the thermal 

camera. They also found that the powder porosity was a critical component in the model 

and that changing the porosity from 0.35 to 0.65 increased the peak melt pool 

temperature by 260 ºC and size by 0.45 mm. This had previously not been a consideration 

in EBM but at least in simulation is shown to have a big effect on the process. 

In their second paper[44] Price et. al. use the same NIR setup to investigate the speed 

factor (SF) parameter of the Arcams control system and compare it with an extension to 

the model discussed above. The SF parameter is a function of beam speed and current, so 

should therefore control the power being input into an area of a layer. Through the 
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investigation of building part with different speed factors they found many part properties 

that were affected. These included surface finishes and grain sizes within the material. The 

grain size can also be linked to the melt pool size and peak temperature changes seen with 

the different speed factors. Analysing these effects with the help of thermal imaging and 

modelling allowed the previous model to be developed to produce simulations that agreed 

with the data from the camera at different speed factors. This meant a relationship 

between the input parameter of speed factor and process signature of melt pool size and 

temperature could be developed. This had previously been an unknown due to the 

proprietary nature of Arcams build preparation and control algorithms. This kind of 

research can be developed into the relationships that Mani et.al discussed for linking 

specific input parameters with output part qualities. 

Rodriguez et. al.[45] developed an LWIR camera system for use with EBM. They 

demonstrate their calibration process and experimental feedback mechanism to achieve 

uniform temperatures across the melted parts of a layer. This was done in an offline way 

by building the parts with a standard build theme and imaging each layer after the melt 

cycle had finished. The images were then analysed, and the build parameters modified to 

achieve more uniform temperatures in the next build. The effect of the grouping of parts 

was also investigated here, this added to the unevenness of the melt temperatures across 

all melted surfaces. By modifying the speed factor and beam current between builds the 

authors were able to reduce the temperature difference between parts in a group from 57 

ºC to 27 ºC. With knowledge of other studies this variance in temperature across parts is 

likely to affect the part properties, specifically material microstructure. When using AM in 

a production environment, producing parts with consistent properties will be crucial. Initial 

experiments into the effect parts have on each other in a build like this begins to inform 

the types of feedback that will be necessary in future production ready AM processes. 

Rodriguez et. al. also used a novel method of calibration for their thermal camera. Rather 

than calibrate the camera externally then compensate for the effects of the machine 

environment, the calibration was done in place. A cavity was created using the EBM 

machine that could be placed in the chamber and heated with the electron beam whilst 

being viewed by the camera. The shape of the cavity was designed to replicate an 

integrating sphere that may be used in a traditional calibration setup. This created a high 

emissivity area within the cameras field-of-view that could be used as a calibration point, 

with the temperature based off a thermocouple embedded in the cavity. This method will 

have corrected for some of the environment of the machine but not reflections from the 

heat shields or material emissivity. 

In further work Rodriguez et. al.[46] continued with the calibration method working to 

obtain an absolute temperature within the EBM chamber. Here they considered the effect 
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of the heat shields and emissivity of the Ti-6Al-4V powder. Using thermocouple 

temperature measurements of the heat shields and calculating the view factors of the heat 

shield onto a region on interest, they were able to calculate the amount of energy seen by 

the camera from the heat shields. This allowed a correction to be made to the radiance 

value of the surface and remove the effect of the heat shield from the area. Emissivity was 

calculated by using the cavity described above with a known temperature from the heated 

cavity and the apparent temperature from the top surface of the cavity block. To verify the 

corrections being made to the IR camera data a thermocouple was melted into a block by 

mounting it protruding from the build plate. When comparing corrected temperature 

values from the camera to the thermocouple a < 0.3% difference was seen. 

Another calibration process for Inconel powder in EBM by Dinwiddie et. al.[47] used a built 

cavity to create a high emissivity area for an in situ camera to view. This took the form a 

long cylindrical hole in an EBM built Inconel cube. Using the electron beam to heat the 

cube and embedded thermocouples to measure temperature, the authors were able to 

calculate an emissivity for the as built surface of the Inconel. This was based on the 

radiance seen by the camera from the high emissivity cavity and from an area of the top 

face of the cube. This measurement was also completed for powder surrounding the cube. 

The results gave a fixed emissivity for the powder and a linearly increasing emissivity with 

temperature for the as built surface. Emissivity correction for a material like Inconel will be 

required for accurate IR temperature measurement as its emissivity is known to fluctuate 

with both temperature and wavelength in traditional manufacturing processes. This 

method of calibration is useful in AM because geometries like this and the one above can 

be created easily. But, to be most useful they would need to be constructed as a part of 

build, to provide a real-time in scene high emissivity reference for an IR camera. This way 

parts of a build could be directly compared with the high emissivity temperature source. 

However, this would be challenging because of the environment and build process, for 

example; a contact temperature method would be needed close to the cavity at all times, 

but if it is embedded into a part the further away from the current layer it becomes the 

less accurate it will be. 

2.4 Summary 
This chapter details the history, basic use cases and principles of infrared camera and 

additive manufacturing technologies. These two fields are brought together in this work 

where the recent advances in IR camera technology is put to use in an AM context. 

Infrared technology and specifically cameras have long been used in monitoring 

applications. The principles of IR detection and camera technology were key when 

designing and operating the instrument created in this work; informing decisions on 

technology selection as well as providing the background scientific theory for infrared 

signal to temperature conversion. Knowledge of AM processes also fed into the system 
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design and the development of uses and analysis methods for the system This relied on 

specific knowledge of the EBM process and its intricacies.  

Finally, this chapter discussed the current commercial and academic work around process 

monitoring in AM. This sets the landscape in which this work was completed and shows 

the interest in the area from both industrial and academic points of view. The industry 

needs advances in monitoring technology to improve their products and AM has opened 

many new areas of scientific research. The development of new research focused 

instruments is the joining of the two and will lead to the improved monitoring the AM 

industry requires.  
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3 Camera System Design and Calibration for Arcam EBM 
Imaging 

3.1 Introduction 
This chapter details the design and calibration of a thermal imaging camera system for use 

on an Arcam S12 Electron Beam Meting (EBM) Additive Manufacturing (AM) machine. This 

will involve camera selection, an overview of the lens design and moving onto the 

implementation of the system and its calibration. The capabilities of the system will also be 

demonstrated with some initial investigations which will be continued in later chapters. 

3.2 Camera and Technology Selection  
The first step to creating a system for EBM monitoring was to select an imaging 

technology. Working in the infrared wavelengths and with the different IR wavelength 

bands, as discussed earlier, each band has different detection technologies. Each 

technology is suited for detection of different temperature ranges, this is because different 

temperatures have a different peak emission wavelength as defined by Wiens Law. As the 

temperature gets higher the peak emission wavelength gets lower; meaning shorter 

wavelength detectors are more suited to detection of high temperatures and vice versa. 

When selecting a technology, and therefore wavelength band, to work with for this 

application the identification of the temperature range required was crucial. Two known 

temperature points from the EBM process are the preheat temperature of 450 – 600 °C 

and the melting point of the commonly used Ti-6Al-4V powder of ~1600 °C[1]. Using Wiens 

Law to calculate the peak wavelength of the blackbody emission for these two 

temperatures (Table 3.1), shows that that the peak wavelengths lie in the short to mid 

wavelength IR ranges. This would suggest a short or mid wavelength IR camera would be 

best here. However, there was more to consider than just the peak emission wavelength, 

each detection technology has different advantages. 

Table 3.1 Temperature points of interest from the EBM process and their peak blackbody 
emission wavelengths 

 Temperature / °C Peak wavelength of emission / µm 

Preheat 450 4 

Preheat 600 3.32 

Ti-6AL-4V Melting point 1600 1.55 

The blackbody spectra of these temperatures are a starting point for deciding which 

technologies would be suitable for the application. However, they show a broad spectrum 

(Figure 3.1) for all temperatures; where any of the common technologies would work. 

Therefore, the technology can be selected on the advantages it would bring to the EBM 

monitoring application. Acquisition speed is one such advantage that would be useful for 

EBM monitoring; the beam speed of the S12 is quoted as >1000 m/s [2]. This means to be 
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able to acquire clear images of the melt pool a low exposure time was required and ideally 

a high frame rate to match. Both of these parameters depended on the detector 

technology; SWIR or MWIR is likely to provide sufficient signal levels at the low 

temperatures and allow shorter exposure times to be used. However, the readout speeds 

from these technologies are slower than NIR because of less advanced electronics, 

meaning higher frame rates from NIR. 

 

Figure 3.1 Blackbody spectra for 450 °C, 600 °C and 1600 °C (1600 °C shown on secondary axis) 

Another feature that differed between technologies is available resolutions. High 

resolution was key in this application because the system will be mounted to view the 

build platform as a whole, opposed to just the melt pool as is common in laser systems. 

The main reason for this is that with the Arcam using an electron beam there are no 

traditional optics in the beam path that could be used to mount a system coaxially with the 

beam. This is in comparison to Laser Powder Bed Fusion (LPBF) systems where optical 

elements that are used to focus and steer the laser can also be used by a camera for 

monitoring. To achieve similar levels of detail around the melt pool, which is likely to be an 

area of interest, a high-resolution imager was required. NIR cameras are available with 

higher resolutions than SWIR and MWIR devices. This is because NIR cameras use silicon 

focal plane arrays (FPAs); which are a much more mature technology compared to InGaAs 

(SWIR) or InSb (MWIR), because of their use in visible light cameras. The development 

around silicon detector technology has driven the resolution and frame rates up and noise 

levels down. 

The 2 key factors of speed and resolution as well as readout noise, cost, availability and 

others made a silicon NIR imager a good fit for this application. There may be a slight trade 

off in signal levels, especially at the lower temperatures compared to SWIR or MWIR 

technologies but the superior speed, resolution and lower cost will be more beneficial. A 

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

8.00E+01

9.00E+01

1.00E+02

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

0 1 2 3 4 5 6 7 8 9 10

Po
w

er
 /

 W
 n

m
-1

 m
-2

Po
w

er
 /

 W
 n

m
-1

m
-2

Wavelength / µm

450°C 600°C 1600°C



Camera System Design and Calibration for Arcam EBM Imaging 
 

 
Nicholas Boone  38 

silicon based camera will be trialled to confirm the trade-offs before making the decision 

to choose NIR over SWIR or MWIR. 

3.2.1 Silicon Camera Experiment 
To perform a trial of a silicon camera on the EBM process a Sony SSC-M188CE security 

camera was repurposed. This device is an analogue video security camera containing a PAL 

resolution (500 x 582 pixels after digital conversion) Sony ICX405AL silicon FPA. The sensor 

is optimised for visible wavelengths, but the responsivity curve shows it is still responsive 

to wavelengths up to 1 µm although at a low efficiency (Figure 3.2). Newer sensors are 

likely to be more efficient overall and some have been designed to have enhanced 

response at NIR wavelengths, so this will be representative of silicon, but better 

performance can be expected from a more recent and mature FPA technology[3]. 

 

Figure 3.2 Sony ICX405AL responsivity curve 

A digitiser from The Imaging Source was used to capture the analogue output of the 

camera and create an 8-bit digital signal at a resolution of 500 x 582 pixels and 25 Hz[4].  

This is not ideal, especially being only an 8-bit signal because a system with a higher bit 

depth readout was eventually selected to achieve higher resolution temperature readings 

and wider ranges as is detailed in section 3.2.2. This data was enough for proof of concept 

on a silicon based system though. Using the capture devices SDK, a piece of software was 

written to provide basic camera functionality and also real-time temperature conversion 

and false colouring for easy viewing of the data. 

With silicon sensors being most sensitive in the visible wavelengths, a filter needed to be 

fitted to the camera so only NIR wavelengths were detected and temperature could be 

measured. For simplicity and to maximise the signal available from the low efficiency NIR 

end of the camera’s responsivity curve an 850 nm long pass filter was used. This was 

mounted behind the lens directly in front of the sensor. A lens with an electronically 
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variable aperture was used to provide some signal level control because the exposure time 

or gain could not be controlled on the camera. 

Using a fixed aperture size the camera was calibrated to a temperature range of 600 – 

825°C. This temperature range was within the preheat range of an EBM build. A single 

point calibration using Planck’s Law was planned however this was not possible because 

there were too many unknowns associated with the camera because it was not designed 

for this use. For example, optical throughput and any signal conditioning done in the 

camera; like auto brightness or pixel correction. Instead the camera was set to view the 

opening of a blackbody calibration furnace and a series of average pixel values were 

recorded for a range of temperatures. A curve was then fit to map from pixel value to 

temperature based on these measurements (Figure 3.3). 

 

Figure 3.3 Sony camera calibration curve 

The camera was tested by mounting it on the Arcam in place of the inspection camera on 

top of the build chamber. This location gave the best view of all the available ports into the 

chamber; allowing the full build plate to be seen without any obstruction and for the 

camera to be as perpendicular to the build plate as possible. When a build was started and 

the camera running on the preheat stages it was immediately obvious that there was more 

NIR radiation than expected. The camera saturated even at low temperatures according to 

the build plate thermocouples. This can be seen in Figure 3.4, where the orange circle in 

the image is the build plate and reads 191 DLs, the level at which this setup saturated.  
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Figure 3.4 Sony camera test during preheat stages of the build. The build plate is saturated 
despite only being ~500 °C. Reflections from the heat shield can also be seen (visible reflections 

marked with arrows) 

The levels of saturation at much lower temperatures (~500 °C in the image) than seen in 

the calibration were unexpected but were a promising sign for the use of a silicon camera, 

as long as they can be explained. They show that more energy is being received by the 

camera than from the blackbody furnace. A likely explanation for this, and one that can be 

seen in Figure 3.4, is reflections from the heatshields that sit around the build plate. The 

heat shields are necessary for the EBM process to keep the build area at a high 

temperature without constant energy input and are designed to reflect heat back down 

onto the build plate. This would make the build plate appear hotter than it is because the 

camera will detect the reflected radiation as well as the emission from plate itself. 

To continue with the test the voltage on the aperture of the cameras lens was adjusted to 

close the aperture more and further images were treated as radiance images. This means 

the images can only show relative changes in temperature, relative to the coldest object in 

frame. Therefore, no temperature information could be determined from the rest of the 

images, but they did give an idea of what could be seen of the EBM process with a silicon 

imager of this resolution. This was good enough for testing because the biggest problem 

was likely to be low signal, which was already ruled out. The two images in Figure 3.5 were 

taken after the aperture was reduced in size and show two different parts of the build; 

Figure 3.5.A is still in the preheat stage but here the scan lines of the electron beam are 

visible as they raster across the build plate. Figure 3.5.B shows the contour stage where 

the outside edges of the part are melted. Here multiple saturated melt pools can be seen 

because of the relatively long exposure time of the camera and the persistence of vision 

effect. This image is particularly interesting because it is representative of the kind of 

images expected from the real system. From images like this lots of different analysis could 

occur, melt pools could be tracked, part geometries segmented from the image and more. 
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Figure 3.5 A. Build plate showing electron beam scan lines. B. First layer of build showing 
contouring build step. 

Although no radiometric images were obtained from the trail of the silicon camera the test 

was considered successful. It was proven that even with an older, less efficient sensor the 

signal levels were high enough to provide good contrast from the cold background at least. 

Also, even at the relatively low resolution of this camera and with a small build area 

features of the build could be identified. These were the main aims for the test, but it has 

also shown some of the difficulties that will need to be addressed with the final system. 

The biggest one identified here is stray radiation and reflections from inside the build 

chamber, this will have been made worse in the test by the non-optimal optics and 

mounting used, but it will still be present even if these are addressed. 

3.2.2 Final Camera Selection 
With the success of the silicon camera trial the decision was made to use a silicon camera 

for the final system. This will allow the system to take advantage of the more mature 

silicon CMOS technology compared to InGaAs or InSb for example. As mentioned in the 

previous section the application takes advantage of the higher resolutions and faster 

acquisition rates of this technology.  

Cameras with scientific CMOS (sCMOS) FPAs were rating highly when comparing near 

infrared camera models[5]–[7]. The sCMOS branding is a sign the FPA has been optimised 

for radiometric used, whether it be in the NIR or visible wavelengths. It signifies the 

cameras FPA and readout electronics have been designed with low noise and repeatability 

in mind. The FPAs in these cameras often also have enhanced responsivity outside of the 

visible wavelength range. They are often marketed at life science applications for high 

resolution, low noise microscopy[8]. However, with enhanced responsivity in the NIR they 

were also a very good fit for this application.  

As an example of the of the benefits an sCMOS sensor will bring to an NIR imaging 

application like this, Figure 3.6 shows the comparison between two Hamamatsu FPAs 

responsivity curves[5], [8]. The CMOS FPA is quoted as having much wider wavelength 

A B 
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response but the sCMOS’s quantum efficiency is more than double the CMOS’s at 

wavelengths longer than visible wavelengths.  

 

Figure 3.6 Comparison between sCMOS and CMOS responsivity 

A factor that was important when considering any camera was the bit depth of the 

sensor/readout electronics. This is the maximum number of digital levels (DLs) that can be 

read from a single pixel and therefore defines the resolution of the intensity measurement. 

In this application it then maps to the available temperature resolution. This means the 

higher the bit depth of the camera the higher resolution temperature measurements can 

potentially be made. However, because the relationship between temperature and 

intensity is nonlinear it will also affect the range of temperatures that can be measured at 

a given wavelength with a given exposure time. For example, if a maximum change in 

temperature of 5 °C/DL allowed (minimum temperature resolution of the camera), the 

dynamic range will be much larger for a 16-bit camera compared to an 8-bit camera. This is 

calculated using Planck’s law with a scaling factor to scale to DLs and is shown in Figure 3.7 

below. 

Using the ranges seen for each bit depth in Figure 3.7 as a guide it was clear that a high bit 

depth camera was necessary to achieve the temperature ranges required. Ideally a single 

exposure time would be able to capture the whole range from preheat to melt, however, 

this was likely be challenging and would sacrifice temperature resolution. But it was 

acceptable to get close to the full range and be able to adjust the exposure time to focus 

on the extreme high or low areas as required. 
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Figure 3.7 Camera bit depth comparison, showing the temperature ranges of 8 and 16 bit cameras 

Based predominantly on the factors presented in the last sections the decision was made 

to use a Hamamatsu Orca Flash 4 V2 C11440-22CU[6] camera. This is a 4 megapixel, 16-bit 

sCMOS camera, its key parameters are summarised in Table 3.2. 

Table 3.2 Hamamatsu C1140-22CU Key Specifications 

Hamamatsu C11440-22CU Key Specifications 

Sensor Technology Scientific CMOS  

Resolution 2048x2048 

Pixel Pitch 6.5 µm 

Frame Rate 100 fps at full resolution  

25655 fps at 2048x8 resolution 

Sensor Bit Depth 16-bit 

Exposure Time Range 1 ms to 10s at full resolution 

38.96 µs to 10s with sub array 

The C11440-22CU was a good choice because it takes advantage of sCMOS technology. 

This brought with it the benefits of high resolution and high bit depth, as well as wide 

exposure time ranges and a variable readout window. The variable sub array size allows 

higher frame rate imaging that would normally be associated with more expensive and less 

sensitive (in terms of wavelengths and QE in the NIR) cameras. This allowed high speed 

melt pool imaging whilst also having the capability to image the full bed. 

3.3 Imaging System Design 
The design of the imaging system needed to fit within the existing Arcam enclosure, with 

minimal modifications. This was a physical design constraint meaning a custom lens was 

required. However, this would likely have always been the case because mounting 

positions on the machine and space near any ports in the vacuum chamber was limited. 
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Using an off-the-shelf lens would have been bulky and may have not been optimal for the 

system. This was because the field-of-view needed to be relatively narrow to make the 

most of the resolution when mapped to the build plate. Also, if using an off-the-shelf lens, 

it would not be optimised for the correct wavelengths which could cause more distortion 

and reflections than a lens designed to work in the NIR. 

The same port in the vacuum chamber was used as when performing the tests with the 

Sony camera. This was the port where the existing inspection camera was mounted, 

proving there was a good view of the build plate and space on the outside of the chamber. 

It is also the port closest to being perpendicular to the build plate. Ideally the camera 

would be mounted perpendicular and centred relative to the build plate however, because 

of the electron gun column this is not possible. Having the port as close to perpendicular as 

possible will minimise the skew of the image and reduce the effect of reflections from the 

heat shield panels.  

With the location and the required field-of-view known a custom lens could be designed. A 

borescope style lens was designed to account for the small space and mounting difficulty 

of the camera in the machine. This is a long thin multi element lens that was able to allow 

the camera to mount away from the port on a shelf in the machine enclosure. The 

borescope design consisted of eleven lenses and a mirror, four of the lenses were custom 

designed, with the remainder acquired from a catalogue supplier. The design was 

completed by another member of the group, C. Zhu, and is shown in Figure 3.8. The 

borescope had an f number of 6 and a field-of-view covering 230 mm in diameter. The 

design consisted of an outer housing which held the lenses, with the lenses separated by 

sections of lens tube according to the spacing required by the design. The assembled 

borescope with its side cover removed is shown in Figure 3.9. 

 

Figure 3.8 Borescope optical design showing 3 chief rays propogating through the optical system, 
from input (left) to camera sensor (top right) 
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Figure 3.9 Assembled borescope (shown in the same orientation as optical design above) 

The borescope was angled approximately 20° from vertical, with some adjustment, and 

the 230 mm diameter field-of-view allowed the whole build plate to be visible in frame 

with the focal point set at the centre of the build plate. With a 400 mm working distance 

the effective pixel radius on the build plate was 66 µm at the centre, increasing to a 

maximum of 79 µm at the furthest point from centre. All the elements in the borescope 

were antireflective coated for the NIR wavelengths. 

To accommodate the borescope design a modified mount was created for the vacuum 

chamber. This needed to include a film feed system and a mounting point for the windows 

into the vacuum chamber. These were crucial elements of the existing mount and made 

imaging of the process possible. The chamber window was the element which sealed 

against an O-ring on the outer chamber wall and made pulling a vacuum in the chamber 

possible with the camera mounted. The glass used in the window was leaded glass and 

was used to block x-rays generated in the process by the high energy impacts of the 

electron beam into the powdered metal. With the system mounted on the machine the 

window was directly in front of the lens, therefore it needed to be optically characterised 

to account for any transmission losses. This was done using a monochromator to obtain a 

transmission curve across a wavelength range of 700-1300 nm (Figure 3.10). This was a 

wider range than the camera was operating at, but it was done to get an understanding of 

the effect it would have across the NIR wavelengths. The camera works within the 850-

1100 nm range and as can be seen in Figure 3.10 the leaded glass has a transmission of 

approximately 0.91 over this range. The flatness of the transmission in this region was 

useful as it could be considered constant in any later calibrations. The transmission of the 

window in the NIR is also much higher than the MIR as found by Dinwiddie et al. [9] using a 

3-5 µm camera only saw a transmission value of 0.0108 over that range. 
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Figure 3.10 Leaded glass window and Kapton film transmission spectrums 

The film feed system protected the window from metallisation caused by the process. It 

does this by feeding a strip of Kapton film across the leaded glass window on the inside of 

the chamber. This way any metal released from the melting process settles on the film 

which can be advanced to keep the window clean for the camera. This would be a problem 

because the metallisation of the window caused its transmission to change and affect the 

amount of energy reaching the camera. This would lead to a lower temperature reading 

without any correction. This whole part of the mounting system even though being outside 

the chamber is under vacuum so the film can be fed through to the process side of the 

window. This meant special attention needed to be paid to the redesign of this part when 

accommodating the borescope. All the mating surfaces were precision machined and 

polished to make good vacuum seals. The design allowed the camera and borescope to be 

removed and positioned with the machine under vacuum, which was needed to allow 

proper alignment. Because the Kapton film was also in the optical path it was analysed for 

transmission in the same way as the window. Like the window the transmission was flat 

across the region of interest in the NIR and the overall transmission of the window and film 

was approximately 0.8 as shown in Figure 3.10.  

The high level of transmission of both the leaded glass and film made it possible to use this 

system continuously throughout the process. This has not been possible for other systems 

where longer wavelength cameras have been used [9], but their advantage in the amount 

of energy available to those wavelengths was negated somewhat by the transmission of 

the window. Other methods of keeping the window clean have also been used such as 

using a shutter [10] but this prevents continuous imaging of the process, which is 

especially useful when trying to get insight into the metallurgical properties of parts during 

a build. 
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The last part of the system to be modified to accept the borescope was the mounting 

flange on the camera. The borescope was not designed with a standard C-mount fitting for 

camera mounting because this would have made it difficult to mount the camera in situ, 

and also meant there would be a need for other mechanical components in the lens to 

allow for focusing. Instead the lens was made fixed focus with a square mounting piece on 

the back, a corresponding flange was machined for the camera to accept this. Because 

there was no thread on the mounting piece the camera could be smoothly adjusted in 

relation to the back of the lens to focus the image. The camera could then be locked in 

place using set screws. The full system is shown in Figure 3.11 and Figure 3.12 mounted in 

place on the Arcam. 

 

Figure 3.11 Final camera system with borescope mounted to camera 

 

Figure 3.12 Camera system fitted to Arcam S12 
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3.4 Calibration 
With the final lens designed and manufactured the calibration and characterisation of the 

system could be started. A thorough characterisation of the camera system was needed as 

a starting point to learn about the environment in the Arcam and therefore make accurate 

temperature measurements of the process. The calibration and characterisation 

procedures for a single point infrared thermometer (IRT) were used as a base for this 

process. Some of the procedures and measures of accuracy for an IRT are not directly 

transferable to an FPA based system, however, they provide a good starting point and a 

method of comparison with existing instruments. 

3.4.1 Temperature Calibration 
The temperature calibration process was based on IRT calibration methods. For any 

instrument a calibration process is the process of defining how the instrument performs 

compared to a standard or theoretical model. For an IRT, or any IR temperature 

measurement device, this is no different; the calibration is the process of defining how the 

instrument responds to an ideal blackbody input[11]. From this a model can be used to 

interpolate between calibration points and create a model of the instrument that can be 

used to convert signal into temperature. This was the process used here, a combination of 

theoretical models and practical measurements were used to define the conversion model 

for the camera, as well as other parameters. 

3.4.1.1 Setup and Method 
The calibration process relies on a known standard of IR radiation or an instrument to 

provide calibrated measurements of an IR source for comparison. In this case the process 

is based upon a transfer standard R-type thermocouple (Isotech milliK thermometer[12] 

and UKAS calibrated thermocouple[13]) and a blackbody calibration tube furnace (Land 

Instruments LandCal P1200B[14]). Using the milliK and calibrated thermocouple as a 

transfer standard the P1200B furnace could be used as a source to calibrate the camera 

against. This is a common method used for industrial calibration where using primary or 

secondary temperature standard sources is impractical. 

This combination of equipment provides a measurement traceable back to a standard 

source via the UKAS calibrated thermocouple. The camera was placed in front of the 

furnace aperture at 400 mm to replicate the working distance of the system in situ and to 

focus the camera at the correct distance. The thermocouple was placed in the furnace’s 

calibration port, this placed the end of the thermocouple directly in contact with (and 

surrounded by) the back of the metal target of the tube furnace. This cavity is assumed to 

be isothermal and at the same temperature as the furnace target. This gives an accurate 

measure of the temperature being measured by the camera observing the front side of the 

target along the tube of the furnace. The setup is shown in Figure 3.13. 
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Figure 3.13 Calibration setup diagram, showing cross section of furnace and camera system 
position 

Using this setup images can be captured with the camera to be used as calibration images. 

When capturing calibration images, the lead glass and Kapton film were placed in front of 

the borescope to allow the calibration to account for transmission of the materials. The 

centre of the borescope lens is aligned coaxially with the aperture of the furnace. This is 

not how the camera viewed the bed when in situ on the Arcam, but for calibration it is 

required to minimise the view of the tube walls in the measurement and maximise the 

view of the target. If the tube walls are visible in the measurement spot it can change the 

effective emissivity of the furnace, adding error to the measurement. The measurement 

position used for calibration was the pixel in the centre of the furnace aperture as defined 

by the bright circle of the furnace aperture on the calibration image. 

Calibration points were taken between 450 ºC and 1200 ºC using the setup descried above. 

This is not an ideal temperature range for calibration because the process being imaged 

will contain temperatures above this (the melting point of Ti-6Al-4V at ~1600 ºC and 

beyond). However, this was the highest temperature achievable with this calibration setup 

that will produce a traceable measurement. For higher temperature values the model was 

used for extrapolation, this can be done because of the known linear response of silicon to 

increased incident radiation[15]. 

To collect a dataset for calibration the camera and thermocouple were setup as described 

above. The furnace was then set to heat to the desired temperature setpoint, once this 

was reached and the initial instability had settled the furnace was left for 90 minutes to 

settle. This settling time is to ensure a constant temperature over the measurement 

period. According to the furnace specifications, and previous testing using the milliK, 90 

minutes is suitable for the furnace to settle to a temperature change within ±0.2 ºC over an 

hour. After 90 minutes 100 images were captured sequentially using HCImage (the 

manufacturer provided capture software) and saved to provide the dataset for that 

temperature point. At the same time as the capture the temperature from the milliK was 
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logged to act as the temperature datapoint. This was repeated for multiple exposure times 

for each temperature. 

To process a dataset a dark image was first subtracted from each image. This is done to 

remove any constant signal introduced by the camera from the images. Using a dark image 

versus using a fixed dark offset value accounts for fixed pattern noise/offset on the image 

sensor which could lead to certain pixels having a higher or lower dark value compared to 

those around it. A dark image is captured by blocking all light sources from entering the 

lens. CMOS cameras, especially sCMOS have a lot less fixed pattern noise/offset compared 

to the older CCD technology[16]. However, a dark signal still exists so correcting for it in 

this way corrected for both problems. A set of dark images were collected for each 

exposure time, and a mean image created from the 100 image set. 

After the mean dark image had been subtracted from each image a mean image is created 

of the dataset. This is done to lessen the effect of noise on the calibration point. From the 

mean image the centre of the furnace aperture is found in the frame. This was done using 

row and column profiles to find the row and column with the largest number of 

consecutive pixels over a threshold. Given the aperture was circular the row and column 

found by this method was the centreline of the aperture horizontally and vertically. 

Therefore, the intersection of these two lines is the centre of the aperture. The pixel value 

from the mean image at the intersection was then recorded as the single datapoint to be 

used in the calibration. If multiple rows or columns were found using this method the one 

closest to the centre of the frame was used if there were an even number returned and 

the middle one used if an odd number were returned. 

Once this process has been completed for the dataset at every temperature point a model 

is fit to interpolate the data and create a DL to temperature calibration curve. The Sakuma 

Hattori method[17] is used to do this. This method was developed to work with a single 

point silicon detector; however, it still applies to a camera where the output from the 

device is measured in DL rather than photocurrent (A/W). The inverse of the Planckian 

form of the equation is used here (3.1), making temperature the output. An unconstrained 

fit is used to optimise the fitting parameters and produce the calibration equation. From 

this a lookup table is produced evaluating the equation for all the possible signal values 

(100-65535). A minimum value of 100 is used here as the average dark value, this value is 

defined by the manufacturer and also verified during the calibration. 

 𝑇 =
𝑐ଶ

𝐴 𝑙𝑛 ቀ
𝐶

𝐶𝑜 + 1ቁ
−

𝐵

𝐴
 

3.1 

 
Where: 

𝑐ଶ is the second radiation constant 
𝐴, 𝐵 and 𝐶 are fit parameters 
𝐶𝑜 is camera signal 
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3.4.1.2 Filter Selection 
Filter selection for the system was crucial to maximise the detectable temperature range 

of the system. Initially an 850 nm long pass filter was used to produce a calibration curve. 

The 850 nm filter, like the experiments earlier with the Sony camera, was used to evaluate 

the responsivity of the detector in the NIR and the environment in the Arcam. A much 

higher level of signal was found with this testing, leading to a maximum temperature range 

of 526 – 998 ºC when using the above method with an exposure time of 1 ms. An OD 2 

neutral density (ND) filter was added to the optical setup to reduce the amount of light 

reaching the detector, this also increased the range of detection because of the nonlinear 

nature of blackbody radiation defined by Planck’s law[18]. This resulted in a temperature 

range of 602-1308 ºC at 1 ms. The calibration curves for the 850 nm long pass and OD 2 ND 

filter can be seen below in Figure 3.14 and the summary of the temperature ranges 

achieved with the different exposure times in Table 3.3 

Table 3.3 850 nm Long pass filter with OD 2 ND filter calibration ranges 

 

 

Figure 3.14 850 nm Long pass filter with OD 2 ND filter calibration curves 

These ranges were more useful for investigating different parts of a build but still did not 

reach the melting point of the powder. The longer exposure time (50 ms) was suitable for 

bed preheating and the cooling of sintered powder and also the flow of heat from the part 

to the sintered powder. However, even with the ND filter the shortest exposure time (1.1 

ms) the camera saturates approximately 300 ºC below the melting point of the powder. 
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This was a problem because the melt pool and surrounding area during a build were of 

much more interest than the bed preheating. To address this a series of narrow band 

filters were evaluated. Using a narrow band filter will also address the modelling problems 

with using a long pass filter and therefore an upper wavelength only defined by the FPAs 

responsivity. The upper wavelength, however, was not well defined because the 

manufacturer only provided responsivity data up to 1µm, though silicon is sensitive up to 

approximately 1.1 µm. 

Modelling was used to evaluate 4 band pass filters between 850 nm and 1 µm. This was 

accomplished by using the Planck’s Law to model the blackbody radiation at a given 

temperature, the transmission model for the filter was the used to simulate the losses in 

the optical system. The detector quantum efficiency (QE) curve was the used to account 

for the detector efficiency at each wavelength. The resulting curve was the integrated over 

the detectors wavelength range and multiplied by the etendue and a gain factor. The 

model is shown in equations 3.2 and 3.3. 

The conversion between power incident on the detector and the counts output by the 

analogue to digital converters was not known, this is the reason for the gain factor. This 

parameter was determined experimentally by modelling the 850 nm long pass filter with 

OD 2 ND filter for which the camera output was already known. The etendue represents 

the area over which the optical system accepted light from the blackbody source. The 

values used for gain and etendue were 0.025 and 0.2097 respectively. 

 𝑆(𝜆) = 𝐵𝐵(𝜆) ∙ 𝜀(𝜆) ∙ 𝐹𝑡(𝜆) ∙ 𝑄𝐸(𝜆) 

3.2 

 

 𝐶𝑜 = 𝑔 ∙ 𝑒 ∙ න 𝑆(𝜆)
ఒ௫

ఒ

 𝑑𝜆 
3.3 

 
Where: 
 𝑆(𝜆) is signal  
 𝐵𝐵(𝜆) is the blackbody spectrum according to Planck’s Law 
 𝜀(𝜆) is the emissivity function  
 𝐹𝑡(𝜆) is the filter transmission function 
 𝑄𝐸(𝜆) is the detectors QE function 
 𝑔 is the gain factor 
 𝑒 is the etendue 
 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 are the detectors minimum and maximum detectable wavelengths 
 𝐶𝑜 is the camera output in DLs 

The filters chosen to be evaluated using this model were 4 band pass filters with a full 

width half maximum (FWHM) band of 10 nm. The centre wavelengths of the filters were 

870 nm, 900 nm, 960 nm, 990 nm. These were chosen to evaluate the trade-off between 

increasing energy levels at the longer wavelengths and the decrease in detector QE. Figure 

3.15 shows the modelled camera output for each of the filters with the 850 nm long pass 

as for reference. 
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Figure 3.15 Filter temperature range comparison 

The 960 nm and 990 nm filters were the only filters evaluated to have a larger temperature 

range than the existing setup, this demonstrates the increase in radiation from a hot 

source at these wavelengths much outweighs the decrease in detector QE. To verify the 

results of the modelling calibrations were completed with the 960 nm and 990 nm filters. 

Table 3.4 shows the temperature ranges achieved with the 2 filters. The 990 nm filter was 

chosen to be used as the main filter for the system and the calibration results are analysed 

more in the next section. 

Table 3.4 960 nm and 990 nm Filter calibration ranges 

Filter Centre 

Wavelength / nm Exposure Time / ms 

Minimum 

Temperature / ºC 

Maximum 

Temperature / ºC 

960 1.1 577 1368 

 10 490 1092 

 50 445 927 

990 1.1 577 1407 

 10 493 1141 

 50 446 959 

3.4.1.3 Calibration Fit Analysis 
With the 990 nm 10 nm FWHM selected, the fit to the calibration points using the Sakuma 

Hattori method was evaluated. This was used to evaluate the quality of the fit and 

therefore the uncertainty of the temperature measurement due to the fitting of the 

Sakuma Hattori model to the calibration data. As mentioned above an unconstrained fit 
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was used which is shown to produce a better fit than a constrained fit where the A and B 

parameters are calculated based on spectral response[19]. 

Table 3.5 Sakuma Hattori fit parameters for 990nm band pass filter with goodness of fit measures 

 Fit Parameters Goodness of Fit Measures 

Exposure Time / ms A B C R2 SSE RMSE 

50 9.604E-7 1.833E-7 8.27E9 0.9999 32.75 1.908 

10 9.525E-7 1.833E-7 1.825E9 0.9999 54.3 2.044 

1.1 8.297E-7 7.34E-5 4.68E8 0.9999 88.5 2.609 

The fits at the 3 exposure times used in calibration are shown below (Figure 3.16) as well 

as the fit residuals. Each exposure time was fit separately to ensure the best fit possible, 

although with only exposure times changing only the C parameter should change between 

fits. This was because the DLs output by the camera will change linearly with exposure 

time. Table 3.5 shows the fit parameter values, A and B remain relatively constant across 

the 50 ms and 10 ms fits but change with at 1.1 ms. This was likely due to the very low 

value of the first calibration point, the mean DL of the measurement at 457 ºC is 0.25. 

Being at the very low end of the cameras range this measurement will be heavily affected 

by noise from the sensor.  

The fits all have a high R2 values showing the fit represents the calibration data well, more 

importantly the also have low root mean squared error (RMSE) values and low sum of 

squares error (SSE) values in comparison to the datapoints. This value does increase as 

exposure time gets lower; this was likely because of the same reason as the parameters 

changing for the 1.1 ms exposure time. With the lower exposure time more of the 

calibration points are closer to the noise floor of the camera and are therefore more 

heavily affected by noise. However, when the system was used at shorter exposure times 

there will be less focus on the lower temperature values because of the lower resolution 

offered lower in the range. For example, between the first 2 calibration points for the 1.1 

ms exposure time there is less than 1DL representing 50 ºC. 

These were the fits and conversion curves used throughout the rest of the work. Other 

exposure time values were sometimes required when investigating parts of a build that did 

not fill the full range of one of these exposure times. To create conversion curves for other 

exposure times the linearity of the DL change with exposure time was used. The DL values 

for each temperature were interpolated for the required exposure time, then a new fit 

created for that data. 
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Figure 3.16 Calibration curves and fit residuals for 3 the main exposure times used 

3.5 Initial Investigations 
To prove the imaging system functioned as expected builds were imaged to test the 

calibrations, recording setup and initial image processing steps. More details on the other 

parts of the setup and image capture process are detailed in later chapters; here the 

outputs from those build will be presented. 

3.5.1 Overhang Test Build 
To demonstrate the capability of the imaging system and illustrate some of the potential 

problems with EBM that could be detected by using an IR process monitoring system a 

build with 4 cross shapes was designed. The cross shapes in the build were designed to 

demonstrate the ability of EBM to successfully melt overhanging faces when the build 
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parameters are properly tuned. The general shape of the 4 pieces being built can be seen 

in Figure 3.17. Each part differed by the level of support structures included under the 

horizontal overhanging face.  

 

Figure 3.17 Cross overhang test part drawing (dimensions in mm) 

Using these shapes, the build demonstrated the need for thermal management in the EBM 

process. The support structures automatically placed beneath the horizontal faces by the 

build pre-processor do little to actually support the material being melted above them. 

Their main purpose is to draw heat away from the layer currently being melted. When 

melting overhanging features on parts some or all of the feature will not be directly above 

previously melted powder. This is a problem because the thermal conductivity from 

molten material to sintered powder is much less than to previously melted material [20]. 

Because the algorithm controlling the beam power does not take this into account it often 

leads to too much energy being input into an overhanging area. The potential effects of 

excess energy input were discussed in section 2.3. 

This build was part of a series of build where the parameters controlling the beam speed 

and power were being optimised to allow parts to be built without support structures and 

with minimal overheating. This made it a perfect candidate for thermal imaging, because 

the thermal effects of overheating on the overhangs with unoptimized parameters should 

be visible on the images. 
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Figure 3.18 Sample images from overhang test build. Images A-F in order show the progression of 
the layer, building 4 of the test pieces. 

Figure 3.18 shows sample frames from this build, it shows 4 parts orientated with the 

completely horizontal overhanging face towards the bottom of the frame. Images A-F 

show a progression through the layer from the contour of the first part to the completion 

of the last. In Figure 3.18.A 4 parts can be clearly seen in the images even though the 

current layer has not yet been melted. This shows the temperature difference between the 

part and the sintered surrounding and the affect the previous layers have on powder laid 

down on top of them. All the images presented of this build are taken from the first layer 

of the horizontal overhang, this should demonstrate the worst-case scenario for heat 

transfer back through the rest of the part. The top left part in this build has support 

A B 

C D 

E F 
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structures for comparison with the other 3 parts that do not, these 3 have different 

changes made to the melt strategy to try and produce the best build without supports. 

In Figure 3.18 across all 6 images the residual heat in the parts after melting can be seen, 

especially on the 30º and 40º overhanging faces. This is exactly the kind of issues that it 

was hoped could be identified with in situ thermal imaging.  

3.6 Conclusion 
This chapter has shown the selection, calibration and first experiments with a silicon 

sCMOS thermal imaging camera for use in additive manufacturing. Silicon detectors are an 

uncommon choice for thermal imaging due to their limited detection range in the NIR and 

therefore are only able to resolve high temperature objects. This is not an issue in AM and 

makes the sCMOS camera is a very good fit due to its high speed and resolution. Although 

this was the first experiment with the system it shows that it is capable of producing higher 

resolution thermal images of an AM process than previously published systems. It showed 

the system working in situ and able to detect features of the build in progress and 

potential defect areas. This makes it a good platform to work on for further work on AM 

process monitoring. It is also something that has not been shown before, the use of high 

resolution sCMOS NIR imaging in AM. The advantages this system brings have the potential 

to be used to give more insights into EBM and shed light on parts of the process that were 

previously very hard to capture. 
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4 Process monitoring of Electron Beam Melting with 
Thermal Imaging 

4.1 Introduction 
In this chapter the capabilities of the thermal imaging system detailed in the previous 

chapter are explored. Processing techniques for the images are shown and are developed 

into applications of the system. These include material property investigation, emissivity 

tracking and build stage identification; amongst others. These processes are demonstrated 

and their use in an AM/EBM workflow discussed. 

4.2 In Situ Part Property Investigation 
One of the driving forces behind the current trend towards AM in industry is the ability to 

manufacture freeform geometry not possible with traditional manufacturing methods. 

With the ability of the machines, like the Arcam EBM, to build parts to near net shape it 

should also reduce the time and cost involved in the manufacture of these freeform parts. 

However, moving to a new process means leaving behind many years of experience in 

traditional manufacturing methods for industry. Trust and experience in AM techniques 

needs to be built up so large industry can have the quality assurance in their parts that 

they currently do with traditional processes [1]. 

Due to the additive nature of AM processes they offer a much greater potential for in situ 

process monitoring versus some traditional processes. With AM processes, especially 

additive layer processes like EBM, a view into the part is available to every stage of the 

process. With a subtractive process like milling or turning the outside surface and 

geometry can be monitored, but most of the focus for in process monitoring is around 

monitoring of the tools used to make the part, and not the part itself [2], [3]. This leaves 

testing processes to inspect the parts after manufacture to assure quality, often adding 

another step to the process. Integrating the part inspection into the AM process starts to 

solve the two problems of trust and quality control [4]. 

An experiment to investigate the mechanical and metallurgic properties of Ti-6Al-4V parts 

produced with EBM was designed. This experiment was interested in the variation of 

properties seen within one large volume part. It was theorised that over a large volume 

the properties would differ due to the heating and cooling characteristics of the EBM 

process. A large solid block (120 x 120 x 60 mm) was built to facilitate this investigation. 

This may not be a common part for an AM process, but it was designed to produce a large 

area to investigate the heating and cooling patterns in different locations within the build 

chamber and on the part. This was investigated with post build analysis on mechanical test 

coupons created from the block. These were cut as per Figure 4.1 below using electron 

discharge machining (EDM) and allowed tensile testing in both orientations and different 

locations in X, Y and Z after being machined according to ASTM E8 [5].  
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Figure 4.1 Positions of test coupons cut from the solid block 

Cooling rates were the main focus of this investigation so an exposure time of 50 ms was 

used to balance temporal resolution against temperature range. It was important to be 

able to capture as much of the cooling profile as possible, down to the steady state 

temperature that the material reached between layers. The 50 ms exposure time allowed 

this with a calibrated temperature range of 400-1000 °C.  

During the build the thermal imaging setup was used to monitor layers every 0.49 mm (7 

layers) for the first 10 mm. This allowed a view into the thermal properties of the first row 

of cuboids in multiple locations. From this data the bottom 4 cuboids were inspected 

(between the B and C markers in Figure 4.1), and this data used to investigate trends for 

the rest of the block. To allow this investigation 9 locations across the block were 

evaluated in detail, 3 along each edge and one in the centre (forming a 3x3 grid of points 

across the part). From close inspection of these locations patterns in the cooling rate 

across the build plate should be identifiable. There was the expectation that any effects 

seen would be symmetrical between the left and right sides of the build plate. This is due 

to the nature of the heat shields in the Arcam being symmetrical left to right but not front 

to back. The heat shields play a crucial part in the energy input when melting. When they 

become dulled, due to heat cycling and condensation of vaporised metals from the 

process, builds will quickly begin to fail because they absorb too much heat rather than 

reflecting it back down to the powder bed. 

Using the 9 locations described above, the mean of a small 10x10 pixel area at each 

location was used to calculate an average temperature for each area, reducing the effect 

of pixel to pixel noise on the measurement. Temperature and cooling rate plots were 

created from these data points and used as the main analysis tools in this process. When 
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plotting all 9 areas on a single axis the individual stages of the layer can easily be identified. 

Figure 4.2 shows this and also highlights one of the flaws in the current design of the 

system.  

 

Figure 4.2 Radiance temperature plot from a single layer at 10.01 mm. All stages of the build can 
be seen; preheat - rapid changes at the start and end, melt - large peaks at each of the locations in 
order (it is eveident this layer melted from left to right), new powder deposition - rapid decreases 
toward the end when the rake passes through the areas of interest. The advancing of the film can 

be seen between frames 350-400 and 700-750. 

The large changes in apparent temperature around the film being advanced shows the 

flaw. The large change in temperature was due to the metallisation build up on the film in 

front of the window.  The advancing of the film is a manual process and is not continuous, 

therefore during the melt the transmission of the window changes and because of the very 

large melt area of the layers in this build noticeable changes can be seen in the 

temperature plots in a single layer. The step changes in the curves are the film being 

advanced and full transmission being restored. The film was advanced just before the start 

of melting of each point of interest to ensure reliable temperature data from these areas. 

Cooling rates were the focus of this investigation, this is because the cooling rate of a 

material can define a lot about its properties. The rate at which a material cools through 

certain temperatures will define grain size and type which will go on to affect the materials 

mechanical properties. The mechanical properties of Ti-6AL-4V parts are already well 

known and have been evaluated with different production methods [6], [7]. They show 

that especially with the temperatures seen in the EBM process, higher cooling rates mean 
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higher tensile strength. When the coupons cut from the block were tested, this is what was 

seen, especially with coupons created from the cuboids parallel to the build plate. 

When the cooling rate across layers were examined for each area of interest the trends 

show groupings of locations (Figure 4.3). The cooling rates of the 4 corners were similar, 

both front and back, and left and right sides are similar, and the centre lies on its own. This 

matches with the expectations going into the experiment and with the results of the 

tensile tests and showed more symmetry than expected. This means the heat shields have 

less of an effect on the cooling rate than previously thought.  

 

Figure 4.3 Cooling rate trends across all layers imaged. 

The cooling rate across all areas of interest increases with layer height, this shows the 

effect the build plate had on the lower layers. The lower cooling rate here was likely due to 

the energy input into the build plate by the preheating and these layers having the lowest 

amount of cool powder around them to dissipate the heat into. 

With the cooling rates seen by the imager correlating to the tensile strength of the 

coupons in both the X/Y plane and the Z axis, this was progress toward being able to 

predict the mechanical properties of parts based on thermal imaging alone. Work like this 

will start to remove the barriers seen by manufacturers when looking to move to AM parts. 

4.3 Emissivity Tracking 
The nature of the EBM process and its goal of creating solid free form geometry from 

metal alloy powders provides a challenging environment for a thermal imager. The state 

changes of the powder within just a single layer of a build leads to multiple surface 
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changes and different surfaces within a single image, this leads to differing emissivity 

across a single image and for a given area across a series of images.  

When the powder is freshly dispensed and raked from the hopper it will be considerably 

cooler and is likely to have a different packing than the layer below; due to the melting and 

sintering that has occurred previously on that layer. The preheat phase of the new layer 

will then lightly sinter the new powder, inputting heat and changing the surface topology. 

The melting phase will then melt areas of powder, once again changing the surface of the 

layer visible to the imager. This is shown in Figure 4.4 below.  

 

Figure 4.4 Image annotated with areas of different emissivity. Outside of the area marked red is 
unsintered as deposited powder, inside the red area the powder has been lightly sintered by 

preheat, inside the blue area the powder has been melted. Heat transfer from the previous layer 
is also apparent in this image, because only one part has been melted but multiple part outlines 

can be seen. 

The changes in the surface visible to the imager provide an almost constantly changing 

emissivity to account for when making temperature measurements. Emissivity is an area 

that is often overlooked in thermal imaging and is especially relevant in an application like 

this where it can fluctuate greatly. Using the method shown by Sih & Barlow [8] the 

emissivity of the unsintered powder bed can be estimated as follows.  

The total emissivity of the powder bed is a function of the emissivity of the solid powder 

particles 𝜀ௌ, and of the holes in the surface of the bed created by the random packing of 

the powder 𝜀ு. This is because the geometry of the holes will create an emissivity 

enhancement and could make the holes have an emissivity approaching 1. 
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 𝜀 = 𝐴ு𝜀ு + (1 − 𝐴ு)𝜀ௌ 4.1 

Where: 
𝐴ு  is the fractional area of the surface covered by holes 
𝜀 is the total emissivity of the bed as a whole. 

 𝐴ு =
0.908𝜑ଶ

1.908𝜑ଶ − 2𝜑 + 1
 

4.2 

 

𝜀ு =

𝜀ௌ ቈ2 + 3.082 ቀ
1 − 𝜑

𝜑 ቁ
ଶ



𝜀ௌ ቈ1 + 3.082 ቀ
1 − 𝜑

𝜑 ቁ
ଶ

 + 1

 4.3 

Where: 
𝜑 is the fractional porosity of the powder bed. 

From the datasheet for the titanium alloy from Arcam [9] used in the builds (Ti-6Al-4V) the 

particle size is quoted as 45-100 µm. Using this as a guide for particle size a fractional 

porosity value of 0.075 for 76 µm particles was used from Heim et al. [10]. A value of 0.35 

for 𝜀ௌ was used based on work by González-Fernández et al. [11]. Calculating the area of 

holes, 𝐴ு, and the hole emissivity 𝜀ு using equations 4.2 and 4.3 produces the following 

values: 

 𝐴ு = 0.00593  

 𝜀ு = 0.996  

Therefore, the estimated emissivity of the surface using equation 4.1 is: 

 𝜀 = 0.354  

The effect of the holes on the emissivity of the powder bed surface is small, this is due to 

the high packing efficiency of the small powder particles, as demonstrated by Heim, 

leaving the area of the bed containing the holes at only 7.5%. If this is revaluated with the 

larger particle size of 98 µm, towards the higher end of particle sizes in the powder, and 

therefore a larger 𝜑 of 0.159 𝜀 increases to 0.370.  

This may be an apparently small change in emissivity, however, because of the non-linear 

DL to temperature conversion performed large changes will be seen especially at higher DL 

values. Shown in Table 4.1 is the evaluation of a temperature conversion, using the 

Sakuma Hattori method, with the two emissivity values above and no emissivity 

correction. The minimum and maximum detectable temperatures are shown. At low DL 

values the radiance temperature is ~50 ºC below the temperature with emissivity 

correction applied and this rises to ~250 ºC at the top end of the detectable range. The 

difference in emissivity corrected temperatures shows the sensitivity of this correction; 

with a difference in emissivity of 0.016 resulting in a maximum temperature difference of 

12.83 ºC. 
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Table 4.1 Comparison of emissivity corrections for a 650 us temperature conversion curve 

 Radiance 

Temperature / ºC 

Corrected 

Temperature / ºC  

 𝜀 = 0.354  

Corrected 

Temperature / ºC 

𝜀 = 0.370   

Minimum 533.54 584.43 582.15 

Maximum 1677.84 1946.49 1933.48 

The powder bed emissivity is one of the more fixed emissivity’s when looking at an in-

progress layer of an EBM build. The molten metal will have a much wider range of values 

because of its almost constantly changing temperature and surface. The heating and 

cooling rates are high in EBM; the large energy input can cause the powder to melt and 

solidify in ~20 ms. Giving heating and cooling rates of ~3000 °C/s (calculated from radiance 

temperatures on a high speed 500 fps imaging run). In the same amount of time the 

surface visible to the camera also changes greatly. The powder bed, although raked flat, is 

full of small holes because of the packing of the powder as discussed above. Once the 

powder is heated through its melting point to a liquid state the surface finish changes 

again and the surface shape is also affected by the electron beam. This could create 

geometric features in the melt pool. Then once the material has solidified the surface 

finish and shape will settle.  

To account for the constantly changing surface visible to the imager a dynamic emissivity 

correction would be required. This is difficult to realise because of the multiple parameters 

that calculating the emissivity relies on, especially when one of those is temperature which 

is also the measurement of interest. This means when making corrections some 

assumptions must be made if no other information is available on the temperature or 

surface topology of the powder bed. Providing additional information is difficult in this 

process because a temperature measurement that is not affected by emissivity, for 

example a contact temperature measurement, is not possible; hence the use of thermal 

imaging. Also predicting the surface of a given section of the build is difficult because of 

the different build parameters of each build and how each part of a given build will be 

affected by the geometry of the whole build.  With this in mind a constant emissivity is 

assumed before melting and after freezing in the rest of this section. 

To begin to address the changing emissivity detailed above an emissivity tracking algorithm 

was developed. This tracked the melt pool across a single layer of a build and applied 

different emissivity values based on previously detected melted areas. This allowed for 

dynamic emissivity correction on a frame by frame basis, outputting thermal images with a 

corrected temperature.  

The algorithm was built into the existing MATLAB image processing software, written to 

convert the raw DL output of the camera into temperature images, along with other image 
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processing features. Both global and local emissivity correction has been implemented; the 

global correction is used for applying a single emissivity to the whole image, for example, 

when only imaging a small area on cooldown, the local correction is described here. 

The local correction worked by using thresholding, blob detection and morphological 

image processing techniques. The purpose of the processing on each frame is to create a 

mask selecting only the melt pool in each image. Depending on the build and camera 

exposure settings there can be multiple apparent melt pools in an image even though 

there is only one being created by the electron beam. This was because of the persistence 

of vision effect on longer exposure times and the multibeam setting being used on the 

build theme. The multibeam setting changes how the machine melts the contour of the 

part; rather than melting one continuous contour it splits the contour into up to 10 

segments and melts each one in stages of a set length. A diagram of how this works is 

shown below in Figure 4.5, the contour is split into 4 segments as shown by the blue lines, 

the other coloured lines show the equal length stages that each segment is split into and 

the numbers represent the melt order.  

 

Figure 4.5 Example of contour melt order with multibeam enabled 

The local correction was designed to handle the multibeam contour setting, with up to 10 

melt pools present in the image. Each melt pool could appear at a different point in time 

within one exposure therefore, the brightness seen in one frame can vary for each melt 

pool. The detection process accounts for this, with the threshold creating a binary image 

that contains all the possible locations of the melt pool, then the blob detection and 

morphological closing select which are of the expected size and shape.  The expected melt 

pool area and diameter can be set individually when processing the files because these will 

vary depending on the current build theme and camera setup.  

Blob detection is an image processing technique used on binary masks to identify 

connected regions of pixels and then calculate their properties. A connected region is 
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defined for this algorithm as a group of pixels that are joined by at least 1 pixel in their 

neighbouring 8 pixels. Each group of pixels that are detected have their centroid, major 

and minor lengths and angle calculated. This information was used to redraw the melt pool 

blobs onto a new image as ellipses. This was done to smooth the detected areas, as well as 

account for the effect of seeing multiple melt pools of different intensity in one image 

(Figure 4.6.C) as described above. Without the redrawing step there would be holes in the 

melt pool mask at the end of layer, where from inspection of the final part, it was clear 

powder had been successfully melted. 

The final step of the detection process was to use a morphological closing operation on the 

mask of redrawn melt pools (Figure 4.6.D). A morphological close of a binary mask is the 

process of performing a dilation and erosion on that mask using the same structuring 

element. A structuring element is a small mask of pixels that is used to convolve an image, 

here a disk-shaped structuring element with a diameter the size of the expected melt pool 

diameter was used, usually in the region on 10s of pixels. To dilate a binary image the 

centre of the structuring element is superimposed over every background pixel, a 0 pixel in 

a binary image, if any pixel under the structuring element is a foreground pixel, a binary 1, 

the current pixel of interest is set to 1. This has the effect of growing the boundaries of 

foreground regions by the size of the structuring element. Morphological erosion is the 

inverse of this operation; the structuring element is superimposed over each foreground 

pixel and if there are any background pixel under the structuring element the current pixel 

is set to 0 and the foreground mask is shrunk. 

Combining these processes into a closing operation has the effect of closing any holes in 

the foreground mask and removing foreground regions that are smaller than the 

structuring element, all whilst keeping the shape of the original mask intact. This means 

that any detected regions that are smaller than the expected melt pool diameter are 

removed and small holes in the mask closed. Examples of a mask at each step in this 

process is shown in Figure 4.6. 
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Figure 4.6 Examples of states within the emissivity correction process. A. Input image B. Input 
mask (from previous layers) C. Mask after initial meltpool detection and redrawing process D. 

Mask after morphological operations E. Emissivity image F. Output image 

The mask of each frame was then added to all the masks that have been created before it 

to create a mask of the melted areas so far on that layer. The mask of each frame was also 

recorded and used to calculate other melt pool properties described later in this chapter. 

To apply an emissivity correction to the current frame the foreground pixels of the melted 

mask were set to the melted emissivity and the background pixels to the unmelted 

emissivity, creating an ‘emissivity image’ (Figure 4.6.E). The raw DL image was then divided 

by this ‘emissivity image’ to correct for the differing emissivities of the two areas. An 

example of the mask build up images and emissivity corrected images are shown in Figure 

4.7. The MATLAB code that implements the emissivity tracking function is listed in 

appendix 7.1. 

 

Figure 4.7 Emissivity correction applied to an image. A. Uncorrected image B. Mask image created 
by the emissivity correction alogrithm C. Image with emissivity correction This ia an image from 
later in the same layer shown in Figure 4.6 where the squares internals are being melted from 

right to left 

As well as providing the emissivity correction which was necessary for accurate 

temperature measurement this process makes manual visual inspection of the images 

much easier once a suitable colour map was applied. This was because the emissivity 
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correction increases the dynamic range of the image, which once converted to a 

temperature can be as low as 200 digital levels.  

4.4 Melt Pool Sizing Analysis for Porosity Measurement 
The melt pool detection techniques developed for emissivity tracking have proven to be 

useful for more than just emissivity tracking. As an automated way of detecting the melt 

pool location across the whole build area, position and size information can be extracted 

from the output of the detection process on each image. This was used in work on 

determining the porosity of metal 3D printed parts, an important characteristic if AM parts 

are to be trusted by manufacturers. This work was conducted as a continuation of the 

work by Thompson et al. [12] into analysing the porosity of EBM parts using post analysis 

X-ray Computed Tomography (XCT). In this paper the authors find, by analysing individual 

weld lines, that melt pool width can be an indicator for porosity. This conclusion was 

drawn from manual analysis of surface weld lines and the authors comment that 

automated measurement would be desirable in the future.  

Melt pool size measurements were extracted from the internal melt pool detection step 

not previously used in the emissivity tracking. This was possible because of how the 

emissivity tracking method detects the melt pool in each image. After detection position 

and width measurements were taken from the individual image mask before it was added 

to the historical mask image.  

The in-situ measurement method of thermal imaging has key advantages over the ex-situ 

XCT. The primary being the ability to image throughout the build and provide 

measurements on subsurface layers or surfaces that would be obscured by the final 

geometry without having to use destructive analysis techniques. This was used in both sets 

of tests that were carried out, the first using a standard build theme that rotates the melt 

direction by 90° each layer, where the ability to measure in-situ, layer by layer allowed 

each melt direction to be measured independently. The individual layers for each direction 

would be very difficult to locate for ex-situ measurement, likely meaning the build 

parameters would need to be forced to only melt in one direction per part; making the 

parts unrepresentative of real builds. In the second test different melt parameters were 

evaluated across 3 parts in the same build, the in-situ measurement here allowed the 

measurements to take place at varying heights in the build, approximately every 1 mm, 

and for the exact layer of each measurement to be known.  

The analysis of the parts is still ongoing but initial results showed higher levels of porosity 

towards the edges and corners of the parts. This matched with smaller sized melt pools 

detected by the tracking algorithm in these locations. 
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4.5 Visualisation 

4.5.1 High bit Depth Images 
When dealing with high bit depth, high resolution data (in this case 16-bit, 2048x2048) 

visualisation is a problem. Standard computer monitors are only 8-bits per colour, meaning 

single colour images, traditionally greyscale, can only display 256 levels on screen. The 

dynamic range of 16-bit image data is 256 times this, a normal person also struggles to 

differentiate many different shades of the same colour in a small space. This problem has 

traditionally been solved with the use of colourmaps, where >8-bit data is mapped into the 

RGB colour space, where 16M colours are available. There are many different colourmaps 

that are used for different image data as well as generic ones. One criticism of mapping a 

greyscale image to colour for viewing is that colourmaps can change the viewers 

perception of the data and promote misinterpretation. For example, a colourmap running 

from blue through green and yellow to red, as the default MATLAB colourmap Jet does, 

can exaggerate small changes in the data at the high end. This is where the colourmap runs 

from green through yellow to red and because the human eye is much more sensitive to 

green light changes in this range are easier to detect for the viewer[13]. 

For this reason, it was important to select a colourmap that did not exaggerate small 

changes in radiance, which there are a lot of in this data. The Clube Helix colourmap [14] 

was selected and has been used for a majority of the images processed. This colourmap, 

originally designed for use with astronomical data, is designed to provide a linear increase 

in perceived brightness across its range of colours. This solved the main problem described 

above with other colourmaps. The MATLAB implementation was used [15] with the 

initialisation parameters in Table 4.2, producing the colourmap shown in Figure 4.8. When 

used with an appropriate scale this colourmap has been interpreted easily and accurately 

by most viewers of the thermal images coloured with it. 

 

Figure 4.8 Cube Helix colourmap 

Table 4.2 Cube Helix initialisation paramaters 

Number of points Start Colour Rotations Saturation Gamma 

Temperature max – 

temperature min 

0.5 -1.5 1.29 1 

 

4.5.2 3D Visualisation 
Representing data from a single image is not the only challenge presented by datasets 

collected from EBM. Individual layer data can be represented as a video showing the 
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progression of the layer with time, however because EBM is ultimately a 3D process as 

soon as the machine advances to the next layer all information about previous layers 

becomes invisible when the data is represented like this. A lot of analysis can be done on a 

single layer of data especially when layers are compared from multiple heights in the build, 

however, this work can only be done in the X, Y plane and no 3 dimensional, or Z data, can 

be considered. 

To visualise the datasets fully in 3D a workflow using Qt [16], Open CV [17] and ParaView 

[18] was developed. This process allowed a build to be visualised in 3D by using the melt 

pool detection provided by the emissivity tracking process above. Using knowledge of 

where on a layer (the X, Y plane) has been melted and layer height data can be stacked in 

the Z direction and selectively displayed to show solid areas as layers progress or data over 

time for the final solid build volume. This allowed layers to be visualised as they were built 

or can be used to easily look for patterns over different layers. Each voxel (3D pixel) can 

also be coloured according to temperature recorded on that layer. Examples of these 

visualisations can be seen below in Figure 4.9. 

The process to create these visualisations starts with processing the raw images output 

from the camera with a version of the image processing scripts used in the rest of this 

work but rewritten in C++ and Open CV to take advantage of the speed improvements and 

parallelism versus MATLAB. This was done because processing large multilayer datasets in 

MATLAB can be very memory intensive and time consuming. The first step was to run the 

local emissivity correction algorithm detailed above and create a set of mask images for 

the layer. These mask images are binary masks showing where the emissivity correction 

algorithm determined the powder has been melted in an image. The mask images were 

used by the next step of the process to create a ParaView dataset containing the melted 

area and temperature data for each image.  

The process of creating the ParaView dataset first crops the mask to the extents of the 

melted area on the final image of the layer, this minimises the output size whilst ensuring 

no data loss because the last image from the layer will contain all the melted points on 

that layer. It then recorded the voxel coordinates of each voxel inside the cropped area as 

well scalar information containing the temperature of each voxel into a VTK data file used 

by ParaView. This step can be run on multiple layers from the same build and will 

automatically stack layers inside the VTK data files based on layer heights. This conversion 

step was the main reason for recreating the process outside of MATLAB because the 

processing of each image does not rely on the last it can be easily parallelised. In this case 

the map feature of the Qt Concurrent library in the Qt framework was used to distribute 

the work between all processing cores of the computer and provide a speedup 

approximately equal to the number of cores.  
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The data was then imported into ParaView and a processing pipeline used to select the 

data to be visualised and how to display it, e.g. colour maps, 2D/3D. This can be in a time-

based mode which will show the progression of the layers as they were built, with or 

without temperature colouring. Another way is to visualise the whole melted volume as it 

was at the end of the build and have temperature information represented on this 3D 

model as colour, here layers can either be played back as they were created (layer by 

layer) or simultaneously, synchronising the start times of each layer. This visualisation 

method proved useful for finding areas of interest that occurred through multiple layers, 

for example, swelling or multilayer unmelted powder defects.  

 

Figure 4.9 Example frames from a 3D visualisation video 

4.6 Build Stage Identification 
One of the challenges identified early with this setup was the amount of data that was 

generated because of the high speed, high resolution nature of the thermal imaging setup. 

When running with a camera link connection the camera can generate up to 800Mb/s; well 

over the write speed of leading SSDs, rated at 550Mb/s [19]. This meant saving all frames 

to disk as they are captured was not possible. Therefore, for work that has required the 

camera to be in high data rate mode (most of the work presented here) incoming image 

data had to be buffered to RAM before being saved. This in turn limits the number of 

images that can be captured because of the comparatively limited capacity of RAM. For 

example, the capture PC used was equipped with 32Gb RAM, 500Gb SSD and a 1Tb HDD. A 

3 step system was used when capturing large amounts of data; images would be buffered 

into RAM then written to the SSD to take advantage of the high write speeds and allow the 

next capture to start as soon as possible. Full datasets would then be moved to the HDD 

for longer term storage before backup. 

4.6.1 Custom Acquisition Software 
The limitations of the setup meant that it was often impossible to capture successive 

layers and even limited the capture time of a single layer depending on the required 

settings. To begin to address this problem some custom capture software was created to 

be used instead of HCImage Live, provided by Hamamatsu with the camera. This software 

written in C++ with the Qt framework and Hamamatsu SDK implemented all the basic 

features required to capture images and adjust relevant camera settings such as exposure 

time and frame size. It also added features like a real time temperature conversion and a 
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frame rate limiter for when longer data acquisitions were more advantageous versus high 

speed capture. Being written solely for the research task also allowed it to be extendable 

and accommodate other inputs or processes where required. 

The main reason for its creation however, was to change how incoming frames were 

recorded to disk, HCImage Live created a buffer at the start of a capture and waited until it 

was full to write it to disk and end the acquisition. This meant that even if the data rate 

was only just over the disk write speed only the number of frames that would fit into 

available RAM could be acquired. The custom software changes this to split available 

memory up into a pool of smaller buffers at the start of an acquisition. During the capture 

data was written to one of the smaller buffers and asynchronously written to disk when 

that buffer was full, at which point the next buffer is activated and the process repeats. If a 

buffer is completely written to disk before the acquisition ended the buffer is returned to 

the pool of available buffers, allowing it to be used again. This meant that if the disk write 

speed was high enough to write portions of the dataset to disk during the capture a larger 

dataset can be captured overall. The number of buffers can be tuned for the incoming data 

rate and disk write speed to maximise overall acquisition size. 

The custom acquisition software worked well in extending the size of dataset that could be 

captured in one acquisition, however, depending on the build being imaged and the 

required camera parameters it still wasn’t always sufficient. Builds with complex single 

layers can often take >60 s to complete which is the approximate time offered by an 

acquisition to RAM with full camera resolution. This was where being able to extend the 

software to incorporate other processes or sensors became useful. Up until now all 

acquisitions had been manually triggered, using the live preview of the build chamber to 

look for the end of the preheat step and trigger the capture. When the acquisition window 

was only just big enough to fit the full layer, this was problematic. Automated trigger 

mechanisms that plugged into the acquisition software were explored to solve this. The 

ideal way for this to happen was signal from the EBM control software running on the 

machine, but no suitable signal could be found. 

4.6.2 Integrating Arcam Sensors 
Integrating into the Arcam hardware to detect layer start and end was explored first. 

Multiple sensors that could provide this information were examined for suitability and the 

powder sensors were selected. The powder sensors sit on either side of the build plate and 

detect when powder has been raked from the hopper across the build plate. The actual 

sensor sits in a tube below the build area and detects fresh powder falling through it 

(Figure 4.10). 
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Figure 4.10 Powder sensors on the Arcam S12 used as inputs for layer tracking, mounted on the 
left and right of the build tank 

The process of detecting a layer start was to connect into the outputs of the two powder 

sensors in the electrical cabinet on the Arcam; each sensor would pulse an input of the 

control system when it was activated. A microcontroller was connected to these outputs 

that would detect the pulses and report them to the acquisition PC. A piece of LabView 

code was written to take serial input from the microcontroller and pattern match it to the 

known sequence of powder sensor activations that would signal a new layer had just been 

raked and was about to start being melted. The acquisition software would be waiting for a 

signal from the LabView code to start the capture. A delay could be introduced between 

the signal from LabView and the start of the capture to avoid imaging the preheat step if it 

was not of interest. 

This method worked well in simulated builds however, not as well once it was applied on 

the real machine. The hardware and software worked as expected triggering an acquisition 

when a powder sensor pattern was found (left, right, left for example; the bed is often 

raked 3 times). However, when used in situ the signal would often be sent at the wrong 

time, meaning the full layer was not captured. This was because during a build the powder 

sensors would misfire or not fire at all even when powder had been raked. The machines 

control system was able to detect this because of the other sensors at its disposal and 

would re-rake the bed or continue but this could not be detected from the powder sensors 

alone. Another issue with this method was that because the trigger was only seen just 

before the layer started, acquisitions would overrun and image the time between layers 

until the acquisition memory was full or another trigger was seen. This meant unnecessary 

data was captured and layers missed because the data could not be recorded quick 

enough to instantly restart an acquisition. 

Powder Sensors 
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4.6.3 Machine Learning Image Recognition 
To address the problems with the powder sensor triggering a new approach was taken and 

the camera input itself used to look for when to start recording data. The EBM process in 

the Arcam has well defined stages to a layer during a build; powder distribution, preheat, 

contouring and infill, with some dead time in between each.  When reviewing images of a 

full layer each step can be easily identified by an experienced operator and is how datasets 

have been pruned throughout this work. The powder distribution step is seen on a thermal 

image as the cold rake passing over the hot build area from the last layer. In all but the 

highest framerate captures the preheat step appears as a series of lines moving across the 

entire build area. The contouring step appears as multiple melt pools moving in lines to 

melt the outside walls of a part. And the infill or melt step is one melt pool moving back 

and forth across the cross section of the part in one direction. Because of the distinct 

appearance of each step it was likely a machine could be trained to recognise each one 

and the transitions between them. Examples of each step are shown below in Figure 4.11, 

these show that each stage is visually distinct but not so much so that they are easily 

differentiated with standard image processing. 

Build Stage Classification Example Images 
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Figure 4.11 Example images from each class used to traing the machine learning algorithm. All 
images are raw radience (DL) images, shown with the colour maps set to the full 16-bit range. 

Machine learning (ML) for image recognition is now quite an established field with current 

state or the art moving onto image segmentation and individual pixel classification versus 

full image classification. This means that there are multiple methods for image 

classification, however, it does not appear to have been applied for this purpose before 

and is only recently starting to be investigated for use in AM [20]. Machine learning image 

classification is the processes of using ML techniques to categorise images based on what 

appears in them. This is often a supervised machine learning process, where data is 

manually labelled with the correct classification and is fed into the ML algorithm which 

creates the function to transform the input to the output; in this case the image to the 

category. 

Machine learning was applied to the problem in two stages, the algorithm was first trained 

on the data and after a suitable model has been devised it can be exported for use as a 

standalone classifier. These two steps are often separate, meaning once a model is trained 

it does not get changed. However, if more data is collected a model can be retrained using 

the previous model as a starting point. Models can also be run in a more online way with 

their classifications constantly being fed back to improve them, this is referred to as 

reinforcement learning [21]. Here the trained model is used on its own, but there is 

possibility for future retraining with more data. Models are often run this way because the 
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training portion of the ML process is much more compute and time intensive than 

classification. Meaning models can be run quicker and potentially on lesser hardware once 

they are trained. This is because the training process is constantly changing the algorithm 

parameters to optimise the output and is a multi-pass process; whereas once these 

parameters are defined only a single pass through the algorithm is needed for 

classification. 

The first step to training the algorithm was to prepare a dataset for it to train on. A large 

set of images (between 500 and 1000) for each category were collated into a labelled 

folder structure. It was important the images came from different builds with different 

camera and build parameters, to ensure the algorithm did not focus on specific features 

that will only appear in one set of images. This is termed overfitting and means that a ML 

algorithm will perform well on a training dataset but much worse on real, unseen, data 

where more generic features are consistently seen. The image classifiers used here do not 

directly work on image data, instead they rely on feature descriptors to identify features of 

an image. A SURF feature detector [22] was run over each of the image categories in the 

training dataset. This searches for features in the images and records their descriptions in a 

way that is not affected by scale or rotation, allowing them to be easily matched to other 

features in the future. The strongest features from each category are then used to create a 

‘vocabulary’ to describe each image category. This is done by k-means clustering to group 

features by the image category they represent, in this case the strongest 250 features from 

each cluster were selected to create the vocabulary of each image category.  

With the vocabulary created MATLABs classification learner was used to evaluate different 

classification methods in search of accuracy and speed, because the final algorithm will be 

used on real time data and the quicker the classification the more likely it is to capture all 

the useful parts of a layer. All available classifiers were evaluated initially, but a Support 

Vector Machine (SVM) quickly showed to be the most suitable classifier with > 80% 

accuracy on the training dataset. With further training and modification to the SVMs 

parameters; i.e. the features it favoured and how those features were represented to the 

model, an accuracy of > 95% was achieved on the training dataset. The accuracy of each 

category can be seen in the confusion matrix in Figure 4.12. 

After training the model was compressed and exported to be used as a standalone 

classifier. The process of classifying an image with this model works in two stages. First the 

image direct from the camera was encoded into a set of features, these features are then 

matched using the SVM to the features in the image categories. Using this process, the 

image was labelled with one of the categories and a confidence score for each category 

was output. The label assigned to the image was the one the algorithm has the highest 

confidence in. The scores for the other categories can be used to see how the algorithm 
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was misinterpreting the images and can start to indicate features that are common to 

multiple categories and should be removed to increase accuracy.  

 

Figure 4.12 Confusion matrix of the trained SVM. This represents the prediction accuracy of each 
category by comparing the number of correct predictions to the categories of the incorrect 

predictions. 

To test the algorithm for speed and accuracy, it was evaluated against pre-recorded image 

sequences containing full layers of an EBM build. The images were fed to into classification 

algorithm and the classification time and label for each image recorded. Through 

observation of the outputs of these tests a pattern for detecting the start and end of a 

layer was developed. The start of the contour phase and the end of the melt phase of the 

build is where the images from a real build would need to be captured. The algorithm 

would often detect a ‘wait’ state in between the preheat and contour phases of the build, 

so this was built into the pattern for detecting layer start.  For layer end the algorithm 

would correctly identify a large number of wait states after the melt phase had finished, a 

series of 10 of these was chosen as the pattern to signal layer end. This was because during 

slight pauses between melting steps in the build the algorithm would also detect wait 

states. 
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Figure 4.13 Build stage classification testing in MATLAB 

With these patterns defined the real time classification and layer start and end detection 

was tested on the pre-recorded image sequences. In this test the classification time was 

taken into account to simulate the data that would be fed to the algorithm from the real 

system. With a mean classification time of ~0.2 s the effective framerate of classification 

was 5 fps. Therefore, with the pre-recorded data being captured at 100 fps every 20th 

frame was passed to the algorithm. In these tests the algorithm was able to correctly 

detect the start points of the layers within 2s of the true start and points, that had been 

determined manually. Figure 4.14 shows an example sequence with manual classifications 

and the ML classifications, the manually identified recording start and end points are 

marked (frames 44 and 149) as well as where the algorithm started and ended the 

recording (frames 51 and 158). 

 

Figure 4.14 Build stage classifier output example versus manual classification of each frame. 
Manual versus ML record start and stop frame numbers plotted in dashed lines. 
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The delay in recording start and end can be expected because a pattern of at least 5 

frames was being searched for in the image labels. This meant that the start of the contour 

phase can be detected, and a capture started by the algorithm within 200 frames of it 

happening in a build. It is possible to cache this number of frames in real time so even if 

the algorithm missed the start of the contour it can be recorded from the first image in 

which it was detected. Missed detections are less of a problem at the end of a layer, but 

they do need to be detected to allow as much time as possible to write the frames to disk 

during layer change. This meant that when the end is detected using the longer pattern 

and the capture stopped, any frames recorded after the last frames detected as a part of 

the melt can be deleted and not recorded to reduce write times. Unless the final cooling of 

the layer is needed for the experiment. 

The now trained and tested SVM was integrated into the custom capture software, this 

was accomplished using the MATLAB Engine interface, which allows a C++ program to 

create and control an instance of MATLAB. Ideally the MATLAB code would be compiled 

directly to C++ and run natively but some MATLAB features used stopped this. The 

interface was initialised before a build was started which will start MATLAB and load the 

model and other required variables. The C++ code was then able to pass images to the 

classification function in MATLAB and a label for that image is returned. The pattern 

detection for starting and ending a capture was done in C++ to reduce the amount of time 

that was spent in MATLAB and the amount of data that was transferred, because of the 

associated overheads. 

The ML system integrated into the capture software was tested with a build, but 

unfortunately no useful data was acquired due to the build being stopped in the early 

layers because of a problem causing arc trips on the Arcam. The system did however 

identify build stages correctly in real time before this happened. Further in situ testing was 

not able to be completed because of the long-term downtime of the machine after this 

failure. 

4.7 Dissimilar Metals Welding 
The EBM process shares a lot of similarities with Electron Beam Welding (EBW) a process 

that uses an accelerated electron beam to join materials. Like EBM, EBW is traditionally 

completed in a vacuum chamber; to allow the highly charged electron beam a clear path to 

the material without air to deflect or absorb the beams energy. Also like EBM, the position 

of the workpiece in a vacuum chamber allows processing of more exotic materials and 

alloys, such as titanium alloys, because of the tendency of such alloys to oxidise at the high 

temperatures needed for the welding process when conducted in air. The EBW process is 

used in industrial spaces such as aerospace where titanium alloys are used heavily because 

of their high strength to weight ratios. The degree of control over the EBW process and 
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small beam spot that causes very localised heating are very advantageous in such 

industries because parts can be welded to final size or very close to it without causing 

damage or stress to the areas around the weld zone. 

Despite the advantages that the EBW process provides, there has been limited success in 

welding dissimilar metals. Experiments conducted in the literature often show brittle joins 

that would be unsuitable for practical use [23]. Despite this successful welding of titanium 

(Ti-6Al-4V) to vanadium was shown using the EBM process. To complete this, two titanium 

and vanadium plates were clamped together (Figure 4.15) and placed on the lowered build 

plate, to align them with the standard powder bed level. Using the beam alignment 

settings the electron beam was aligned with the boundary between the two plates in the X 

direction on the machine. The positioning in the build chamber was also optimal for 

imaging because of how the frame can be narrowed to achieve higher frame rates on the 

Hamamatsu camera. An exposure time of 650 µs was used with a frame size of 2048x128 

allowing a frame rate of 1530 fps. 

 

Figure 4.15 Clamped and welded and Vandium (top) and Titanium (bottom) plates. 

The thermal imaging setup was used here to give insights into the weld track in progress. 

This was a difficult process to image because of the multiple materials and phase changes 

involved, as well as the intermetallic area where the two metals join, in the area of 

interest. These factors cause an even larger uncertainty in emissivity values versus a 

standard EBM build; therefore, a fixed emissivity value based on that of titanium was used 

(ε=0.75).  

The interesting observations from this series of imaging were the size of the melt pool and 

temperatures of the area surrounding it, as well as temperature profiles of the weld line. 

The melt pool size and shape were of interest to further verify that the welding process 

worked as expected within the Arcam system. A pear-shaped melt pool is expected with 
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EBW and EBM processes and after applying the emissivity tracking process explained 

previously to the images, this is what was seen (Figure 4.16).  

 

Figure 4.16 Emissivity correction alogrithm manually applied to welding image. Showing 
comparison of different threshold values and the 'bumps' seen purpendicular to the direction of 

travel. 

Across the different weld tracks images melt pool widths of 2-4 mm were found from 

analysis of the thermal images, this agreed with cross section images of the welds created 

in post processing. The melt pool shapes that were extracted from the images were very 

irregular in shape, this has also been seen in some EBM builds when imaging at sufficient 

frame rates. It hasn’t been possible to fully prove the reason for seeing these ‘bumps’ 

perpendicular to the direction of travel of the e-beam; but in this case it is possible that 

they are reflections of the point the beam is interacting with in the melt pool from the 

surface of the molten pool because of its concave shape (seen in the cross section images 

in Figure 4.17). These areas were not counted when making measurements of the melt 

pool in this case. 
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Figure 4.17 Weld cross sections for various beam currents a) 31 mA, b) 33 mA, c) 35 mA and d) 37 
mA, all using 7 mm/s beam speed 

The temperature profiles running through the melt pool along the length of the weld were 

also of interest. A profile run along the weld from a single image gives a snapshot of the 

state of the weld and the change from the pre-weld area through the melt pool, to the 

cooling welded area can be investigated. The pre and post melt pool areas are of particular 

interest in this case. To achieve good quality in this kind of weld the material needs to be 

heated prior to being welded by the e-beam. In other areas and processes this is done with 

a dedicated preheat treatment or the overall power of the welding method is enough to 

suitably preheat the material in place before it is welded [24]. The profiles from the 

thermal imaging showed that this was also the case in this experiment. On the profiles 

shown in Figure 4.18 an area of approximately 3-4 mm can be seen to be heated before 

the plateau of the melt pool.  

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60 70

Ra
di

en
ce

 T
em

pe
ra

tu
re

 /
°C

mm
Image 1 Image 2000 Image 4000

Figure 4.18 Welding images with temperature profiles 
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Even without knowing the exact temperatures because of emissivity uncertainties the fact 

a heated area ahead of the melt pool can be identified was a very good indication that the 

EBM process is performing well when used as EBW and that a good weld was taking place.  

In the future, with more weld samples, the thermal imaging setup on the Arcam will be 

able to assist the development of dissimilar metal welding. The in-situ information that can 

be collected using the thermal imaging setup can assist with beam parameter tuning, 

meaning better melt pool parameters such as size and shape and ultimately a better weld. 

4.8 Conclusion 
This chapter has shown further development of the imaging system designed and tested in 

the previous chapter. Analysis methods for part property investigation and in situ porosity 

measurement have been shown based on thermal images captured with the system. These 

are some of the analysis types that would be possible with this kind of thermal imaging 

data. With more refinement and development, the accuracy of the techniques could be 

improved, and the analysis run in real time for immediate feedback to an operator or 

process control system. One of the key challenges to thermal imaging in an AM 

environment was addressed with the emissivity tracking algorithm. This is able to correct 

for emissivity on a frame by frame basis based on the state of the material at all locations 

in frame. The algorithm is able to reduce the effect of the biggest source of error for a 

thermal imager. Integration of the imaging system with the EBM machine was also shown; 

a machine learning algorithm was developed to detect key events in a build and trigger 

image capture based on them. This will help decrease the amount of data captured by only 

recording important parts of the build, it could also be used in the future to inform 

analysis. Finally, this chapter discusses dissimilar metals welding via electron beam welding 

and how with the use of the thermal imaging setup the preheat zone could be identified. 

This preheat is key to the performance of EBW especially when welding dissimilar metals. 

The identification of the preheat zone was an indication of a good weld and would not 

have been possible without this kind of in situ monitoring.  
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5 Gas Tungsten Arc Welding Thermal Imaging and Analysis 
5.1 Introduction 
This chapter details the experiments involving thermal imaging as a sensor input for a 

robotic welding system. It draws on work done in previous chapters with electron beam 

melting, using a very similar camera setup. Multiple welding setups are shown with 

analysis of the thermal data that could be useful in an automated welding setup as a 

feedback mechanism. The analysis techniques are working towards full automated 

detection of thermal events that would inform in situ weld quality measurements and real 

time feedback. 

5.2 Turbine Blade Imaging 
As with recent commercial increase of the use of Electron Beam Melting (EBM), Gas 

Tungsten Arc Welding (GTAW) is increasingly being used as an AM process. Here it was 

used for the repair of turbine blades on aerospace jet engines. There is research underway 

to automate the repair process, traditionally completed by highly skilled welders. The 

reason for automation was the current high rate of defects and repairs failures, meaning 

turbine blades cannot be reused. The repair process involves the welding of new layers of 

material onto the blade tips, where the wear takes place. It is then machined to match the 

original blade profile and heat treated and coated ready for reuse. Approximately 85% of 

blades recovered from service can be repaired, however only 50% of those blade repairs 

are successful[1]. The research into automation aims to use sensor systems tightly 

integrated with robotic welding to decrease this failure rate. 

Thermal imaging has been evaluated as a potential sensor for input into the control system 

for the robotic welding. As a part of this process thermal imaging has been tested on 

turbine blade blanks. The use of blanks was required because of the expense and relative 

scarcity of the Inconel blade components. The representative blanks were made from a 

similar austenitic nickel-chromium based steel alloy, 316L stainless steel and were formed 

into the profile of the blade. The remainder of the welding setup was kept the same as 

would be used on real components. 

The thermal imaging setup was of particular interest to this application because of its 

ability to monitor a large number of points over an area versus contact or single point 

contactless solutions. The blade repair process requires very specific heat input from the 

welding system in order not to damage the blade. The thin tip of the blade requires a low 

rise in temperature so not to detrimentally effect the properties of the tip where large 

forces are seen during use. The welding setup was designed to minimise heat build-up by 

using a high frequency pulsed DC GTAW welding system. This system monitors and closely 

controls the weld current in conjunction with its heat management system. Depending on 

the investigation being carried out the thermal imaging system could be configured to 
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monitor a large area of the blade tip or to focus on the weld bead, allowing the potential 

for simultaneous monitoring of blade temperature and weld temperatures. 

The robotic welding setup used a fixed position for the GTAW torch and moved the 

workpiece therefore, the camera was easily positioned externally and perpendicular to the 

direction of travel of the workpiece. It was focused on the tip of the torch and the 

surrounding area. The setup can be seen in Figure 5.1. A longer working distance and 

smaller field-of-view were required than with the EBM setup so an off the self DSLR lens 

with a focal distance of 180 mm was used. This achieved a field-of-view of 12 mm x 6 mm 

using a resolution of 1024x512 pixels, the reduced resolution was used to increase the 

framerate of the camera and to reduce dataset size. A 950 nm centre wavelength, 10 nm 

wide bandpass filter was used to block non NIR wavelengths and was selected to be in a 

low emission area of the welding arc [2]. To protect the lens and camera setup a piece of 

shade 9 welding shield was used. When measured this was transparent at the cameras 

working wavelengths but was included in any calibrations for completeness. 

 

Figure 5.1 GTAW thermal imaging camera setup 

The camera and lens setup was calibrated for a radiance temperature range of 700-1500 

°C, with the full range being 700-2400 °C, (calibration curve shown in Figure 5.2) using the 

procedure detailed in chapter 3. A 5 mm aperture was used on the furnace opening after a 

lot of reflections were found when using this lens with large bright areas. This was found 

when running the size of source effect (SSE) measurements for the setup. Whereas an SSE 

curve would normally flatten and tend to the true radiance value with the larger the object 

it measured, here the apparent radiance continued to rise. This could be an effect of 

reflections due to the size and glass of the lens used. The lens was chosen for the field-of-

view it could produce from the working distance required. In this respect the off-the-shelf 

availability and standard mounting type worked well, however, it is designed for use in the 

visible wavelengths, not the near infrared. This means the anti-reflective (AR) coating that 
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was applied may not be effective at the 950 nm working wavelength used here. The 

incorrect AR coating could cause more light at the working wavelength to be reflected 

internally within the lens, between optical elements [3]. When reflecting back towards the 

sensor some of this light will pass through the lens and hit the sensor, because of the 

internal reflections it will hit the senor in a different location. This can cause ghost images, 

or in this case a ‘blurring’ of the image where bright spots appear larger and more defuse.  

 

Figure 5.2 GTAW turbine blade camera calibration curve 

 

Figure 5.3 GTAW camera setup size of source effect plot 

The SSE measurement is traditionally used with a single point detector to determine the 

effect the size of a bright object has on apparent radiance values. It is used here to 

determine the smallest area of pixels that should be trusted as a true radiance 

measurement, but also shows the effect of internal reflections. The SSE data in Figure 5.3 

flattens between 60 and 170 pixels, this flattening is the expected behaviour; the rise in DL 

values above this is the effect of reflections. The drop off below 34 pixels shows the effect 

of a small sources energy being spread over an area of the sensor because of the non-ideal 

optical setup. This occurs in all real optical systems, with only a perfect system achieving a 
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flat line in this test. In terms of imaging this shows that small objects < 34 pixels in 

diameter will appear cooler and objects > 170 pixels will appear hotter. 

A selection of thermal images can be seen below in Figure 5.4, these are frames with 

interesting features selected from a single weld. Images A and B show the formation of a 

bubble of molten material on the blank before any filter material is introduced. Also, in 

these two frames spots of slag can be seen on the surface of the molten material, the 

movement of these spots show the currents within the molten material. In image C the 

blank has started to move and filter material is starting to be introduced, the cooled 

bubble from A and B can also been seen. Image D is mid weld and shows the cooling 

profile of the weld in steady state. Images E and F show the end of the weld, with the filler 

added in E and the cooling of the weld in F.  

  

  

  
Figure 5.4 Turbine blade image example thermal images. Colourmap scale 1300-2200 ºC 
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5.2.1 Freezing Point Detection 
One metric that was investigated with analysis of the thermal images is the freezing point 

of the weld. The freezing point of a material can reveal information about its properties 

such as its composition and grain structure. The freezing points of some pure metals are 

well known and used to define the ITS-90 temperature scale and are used to calibrate 

infrared instruments to that scale [4]. The freezing point of a material can be identified in a 

thermal measurement by finding the freezing plateau in a cooling curve. When a material 

transitions from liquid to solid phase there is a release of energy caused by the transition. 

This latent heat of solidification is caused by the making of bonds to form a solid [5]. This 

release is apparent when observing the cooling curve and seen as either a plateau in 

cooling or a slight rise in temperature when the material solidifies. Whether there will be a 

temperature plateau or rise depends on the materials molar heat of solidification and the 

rate at which the freezing point is transitioned through [6].  

 

Figure 5.5 Location of cooling profiles on weld bead 

  

Figure 5.6 Comparison of cooling profiles, showing possible freezing plateau location 

When using thermal imaging cooling rate images can be created by using the difference in 

temperature between each frame from a sequence of images; these would be analogous 
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to a cooling rate curve from a single point IR measurement device for each pixel. However, 

in the turbine blade images because the workpiece was moving in frame and heated in a 

constant location the entire cooling region can be seen in one frame. Therefore, a cooling 

profile and cooling rate curve can be obtained by sampling pixels along the direction of 

travel. Figure 5.5 shows this location on a thermal image and Figure 5.6 show the 

corresponding temperature plot. The cooling of the weld happed from right to left on the 

image and this was seen on the temperature curves, these curves have been low pass 

filtered to remove high frequency pixel to pixel noise. Neither of these curves show strong 

signs of a freezing plateau, even though by observation of the thermal image sequence the 

weld was known to solidify in the region. This was shown further by the cooling rate plot 

(gradient of the temperature profile) in Figure 5.7, a 0 or positive value here would be an 

indication of freezing. Other than at the extremes of the data only the top (blue) line has a 

slight positive gradient (location marked with arrow), this was a weak indication of freezing 

but there was nothing on the lower line (red). One reason for there being a more 

pronounced freezing location towards the top of the weld would be the greater heat 

sinking effect of the blade on the weld at the bottom compared to the top. There is also 

argon purge gas blown on the part from below which only occurs near the torch head on 

top. 

 

Figure 5.7 Comparison of cooling rates along the two profiles 

The method of looking for a plateau in a single point temperature measurement plot is 

primarily designed for use with contact or single point IR measurements. A more robust 

way of finding the freezing point was developed by leveraging the amount of data 

captured in a thermal image. The relatively large area of the image that was filled by the 

cooling weld was used to implement a multiple threshold method of detecting the freezing 

point.  

The method works by; cropping the image to the area containing the cooling weld, 

removing the very bright electrode and cool areas surrounding the workpiece (Figure 
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5.8.A). A threshold was applied to this area every 5 °C (thresholds every 10 °C shown in 

Figure 5.8.B for clarity), this created a series of binary threshold images with temperatures 

between the threshold value and the maximum selected. The number of pixels in the 

selected area in each threshold image was calculated and plot against the temperature 

range from which the threshold was created. The gradient of this curve was calculated and 

any peaks in it identified (Figure 5.8.B, selected peak identified in red). A peak in this curve 

was an identifier for a potential freezing point location in the same way as a positive 

gradient on the cooling rate curve above is. If the curve has multiple peaks, they are 

evaluated by calculating the absolute value of the top of the peak and its proximity to the 

last detected freezing point (on the previous image). With the proximity to the last freezing 

point used to weight the absolute values of the peaks, the lowest value peak was 

determined as the freezing point. The weighting with the relative distance to the last peak 

was used because the camera is run at a sufficiently high frame rate that versus the travel 

of the workpiece that unless there is an anomaly in the weld or external factors the 

position of the freezing point should be relatively constant. 

  

 

 

 
Figure 5.8 Freezing point identification steps; A: region of interest, B: thresholding by 

temperature, C: identification of temperature gradient peak, D: selected peak threshold image, E: 
processed freezing point overlayed in position on original thermal image 
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Using the most likely peak the threshold image to be used was determined (Figure 5.8.D). 

The left edge of the selected area in the threshold image was used as a starting point for 

the identification of the solidification point. A series of morphological operations are 

performed on the mask to remove noise and smooth the edge; fill, close and erode 

operations are performed. These remove any areas that may have been selected 

incorrectly by the threshold, for example, those that aren’t connected to the main area on 

the right. This process was important as the left most pixel on each row was selected as 

being the freezing point on that row. The freezing points for each row are then filtered 

with a moving average to remove high frequency components that are likely artefacts of 

the image processing and any remaining noise. The final freezing point line can be seen 

overlaid on the image in Figure 5.8.E. A flow chart of this process is show at the end of the 

section in Figure 5.11. The MATLAB code that implements the freezing point detection 

algorithm is listed in appendix 7.2. 

Using this analysis technique, the image sequence showing the full weld track was 

analysed. This gave a history along the full weld track of the detected freezing point, with 

the work piece moving approximately 22.5 µm between each frame. From this data a 

location of the freezing point in the image coordinate space can be calculated. The mean X 

value of the curve in the image coordinate space was then used to plot the location of the 

freezing point with time. This data was lowpass filtered to remove high frequency spikes in 

the location caused by the algorithm detecting the edges of slag floating on top of the 

molten pool as the freezing point because of the apparent high change in temperature 

(Figure 5.9). 

 

Figure 5.9 Position of freezing point along the weld with time (measured from torch X location) 

The low starting point on the data is an artefact of the lowpass filter used. When analysing 

the frequency content of the mean X location data peaks a 1 Hz and 2 Hz are seen. This 

frequency correlates to 0.9-1.8 mm movement of the blank. This scale of feature can be 

seen on the weld bead in multiple places across the test blanks (Figure 5.10). 
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Figure 5.10 Picture of weld bead showing 0.9 mm features correlating to the frequencies seen in 
the position of the freezing point 

As can be seen in Figure 5.10 the majority of the weld bead, especially towards the top 

edge, is smooth; this is considered a good visual indicator for a good weld. However, 

towards the lower edge and across the full bead in places ripples can be seen, which is an 

indicator of a possible weld defect. The ripples corresponded to the size of feature 

detected by the freezing point analysis. This show potential defects being detected with 

this analysis method. There are multiple reasons why a ripple can form in a weld bead, 

most of which relate to the imbalance of pressure in the molten weld pool. There have 

been multiple explanations for this ranging from the composition of the molten material at 

that specific point, power supply oscillations and variations, variations in solidification 

growth rate due to thermal variation [7], [8].  

With the identification of potential defect locations high speed thermal imaging will be a 

valid option for online weld analysis and control. This system has already started to be 

incorporated into future robotic welding setups focused on developing real time control. 

When combined with other real time sensors, such as current and voltage meters, this kind 

of imaging setup could identify the effects of power supply variations on weld quality. It 

has also been used as a valuable real time feedback mechanism for the operator running 

welding trials whilst setting up these robotic welding systems. A real time temperature 

image of a weld bead in progress can inform someone much more than a view through a 

welding visor. 
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Figure 5.11 Flow chart of freezing point detection process 
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5.3 Pipe Welding Slag Detection and Tracking 
GTAW is commonly used in industrial processes to join pipe sections and create pipe 

networks like fuel distribution systems. Here thermal imaging was used to image the weld 

pool on a robotic pipe welding system similar to that used in the section above. The 

camera was positioned to have a view of the side profile of the weld and the cross section 

of the pipe. The focus of the imaging was high resolution, high speed thermal imaging of 

the weld pool to look at the dynamics of the molten material. 

To gain insight into how the weld pool was behaving and how the weld was moving whist 

still molten areas of slag floating on top of the weld were used. Slag is formed on a weld 

bead when impurities are encountered along the weld track; this could be on the surface 

of the work piece, such as surface oxidisation, or pockets of impurities in the work piece 

itself. Another reason is the flux used to prevent oxidisation during the weld, the flux, with 

proper technique, should rise to the top of the molten weld pool and depending on the 

amount form a layer over the top of the weld when cooled. The slag rising to the top of the 

molten pool is the process relied on for this method. Slag spots can also be indicators of 

impurities in the weld and tracking them in this way could give insight into the quality of 

the weld[9].  

 

Figure 5.12 Pipe welding thermal imaging setup 

To capture thermal images with a framerate as high as possible the camera was set up 

with a 2048x512 region of interest and a 2.5 ms exposure time. The same 950 nm filter 

was used as above but with an f/7.1 aperture, allowing a temperature range of 700-2190 

ºC. The 2.5 ms exposure time allowed a 400 frames per second capture. 

A selection of example thermal images captured from a single run using this setup are 

shown in Figure 5.13. Image pairs A, B and C, D each show filler being added to the weld 

pool. In images A and C, the molten tip of the filler rod can be seen and in A specifically its 

reflection can be seen on the surface of the weld pool. In images B and D, the interaction 
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between the filler and the weld pool can be seen. The shape of the pool changes 

considerably during this period, becoming longer and flatter due to the surface tension of 

the molten material. Mainly in image C and D, the cooling of the weld pool can be seen as 

the pip rotates anticlockwise. In all 4 images slag can be seen floating on top of the weld 

pool, which of interest for this analysis. 

  

  
Figure 5.13 Example pipe welding thermal images. Colourmap scale 1000-2000 ºC 

A section of 100 images was used to develop the analysis technique. This is a small sample 

considering the framerate, but the sample was visually representative of the features 

across a whole dataset. The analysis was developed with the intention of being run on a 

full dataset and was shown to work on other samples as well as the development dataset. 

A region of interest was manually selected for the analysis which contained just the weld 

pool, this could be automated in the future with, for example, the process shown in 

section 5.4. Figure 5.14 shows an annotated example of the cropped region. 

The analysis technique revolved around tracking the floating slag on the weld pool. 

However, due to the dynamic nature of the weld pool any other movement also needed to 

be accounted for. To detect the whole weld pool a threshold was applied, this simple 

technique worked because the weld pool was much hotter than the background. This 

created a mask that could be used as a region of interest for further operations. Next, 

differential images were created by selecting only areas that changed between 2 

consecutive images, these were also thresholeded to find only rapidly changing areas. This 

was done in both directions creating 2 sets of images one that highlighted rapid positive 

changes in temperature and one negative. Using the rapid temperature changes in both 
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positive and negative was what made the method robust against other movement and 

interactions or hot spots. 

 

Figure 5.14 Cropped region of interest showing the weld pool and slag feature to be tracked for 
the analysis 

On each of these sets of images a blob detection algorithm was run to find the first 

location of the slag spot on the surface of the weld pool. The parameters for the shape and 

size were manually tuned but could be automated in the future with methods like that 

presented in 5.4. Once the first location of the slag spot was found further detection was 

limited to a small area around that location. This was done by cropping the image around 

the centroid of the detected spot in the last image. This limited the tracking to only one 

spot at once but accounted for the amount a spot should move between frames and made 

it robust to the spot moving through other bright areas, like the reflection of the electrode 

tip. 

Once a list of potential slag spot centroids had been created for each of the two 

thresholeded differential image sets they were compared to create a track of the actual 

spot moving on the weld pool. This step made sure only the moving slag spot was the 

object being tracked. By comparing the location of a centroid from the negatively 

thresholeded images with the centroid from the next frame of the positively thresholeded 

set, only an object moving along the same track in both sets of images is detected. If the 

locations of the centroids were within a 10-pixel radius of each other then, the location 

was added to the track. If they were within a 50-pixel radius then an extra check was 

performed to check for the shape of the spot and it was only added if the perimeter 

shapes matched within 50 pixels. This second check was added to catch valid detections 

when the spot would interact with the edge of the weld pool and was obscured from view. 

This would move the centroid more than expected, but the visible portion of the spot 

would be the same shape as the last. A flow chart of this process is shown below in Figure 

5.15. The MATLAB code the implements the slag detection and tracking algorithm is listed 

in appendix 7.3. 

Floating slag 

Molten  
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An example track progression is shown in Figure 5.16. From this track data the velocity of 

the spot could be calculated using the time between frames and the number of pixels 

moved. Pixel size was calibrated using the electrode diameter because this was a known 

and well-defined size within the image. With a inter frame time of 2.5 ms and pixel 

Repeat for positive and 
negative datasets 

No 

Detect weld pool using 
threshold and crop all images 

Create difference images by 
subtracting image n-1 from n 

Threshold difference images 
to remove small changes 

Use blob detection to find 
location of spot in image n 

Crop image n+1 around 
centroid of spot 

Compare centroids between 
positive and negative datasets 

Repeat by incrementing 
n and for both positive 
and negative datasets 

 Is the difference < 50 
pixels and blob shapes 

match? 

 Is the difference 
< 10 pixels? 

Repeat for all pairs 
of centroids 

Discard 

Add to track 

Add to track 

Yes 

Yes 

No 

Figure 5.15 Flow char of slag detection process 



Gas Tungsten Arc Welding Thermal Imaging and Analysis 
 

 
Nicholas Boone  103 

calibration of 72.2 pixels/mm velocities of up to 0.22 m/s were calculated. The values 

ranged from 0.03-0.22 m/s on all the sample sequences tested, with mean velocity being 

0.09 m/s. These values are slightly lower than simulated values of weld pool fluid velocity 

in literature which range from 0.18-032 m/s[10]. However, the weld conditions simulated 

were not exactly the same as this test, the simulated voltage was lower and current higher. 

    

    

Figure 5.16 Slag tracking example frames; showing the path a small area of floating slag takes on 
the weld pool surface 

With more experimentation and refining of the tracking technique this analysis method, 

provided by thermal imaging, could give more insight into the dynamic welding process 

and allow models to be validated again real-world testing. 

5.4 Machine Learning for Automated Detection and Measurement 
Machine learning, as already presented in earlier chapters, is becoming an increasingly 

useful tool for data analysis and point of interest identification. It is being applied in a large 

number of areas, many of which include image analysis in some form. In a previous 

chapter an SVM was used to classify EBM thermal images to automate camera 

acquisitions. This section expands on that to employ ML as an analysis technique, that 

could be integrated as a part of a feedback mechanism into robotic welding. The setup 

using in this work was the same as in the previous section, with the focus on ‘end on’ 

thermal images from the pipe welding GTAW setup. These images were captured with a 

view to analysing the weld pool at high speeds. 

The machine learning technique used before, an SVM, is a technique used to classify data 

as a whole into categories, applied to images. A different technique will be used here that 

can be applied in more versatile ways. Neural networks and deep learning have become 

increasingly common techniques in ML recently due to advances in availability of 

computing power and in turn algorithm development.  A neural network based pixel level 

classification system was designed and tested for image segmentation on pipe welding 
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images. This would allow analysis on specific image areas or the size and shape of 

identified areas of interest in an image. 

This technique was chosen because of the difficulty in getting successful image 

segmentation with traditional image processing methods. Traditional methods were 

successful previously in this chapter because of the limited areas they worked on and the 

limited amount of information that was trying to be extracted using the process, e.g. 

location of a single blob. When the whole image is considered there are too many areas 

with similar features that belong to different segments of the image. This was found not 

only with the welding images, but also when trying to segment the images captured from 

the EBM system. In both cases very subtle changes in brightness on an image, both 

spatially and temporally, can indicate a feature. This then makes algorithm development 

more difficult because making the processing methods sensitive enough to detect these 

changes also makes them very noisy. Trying to differentiate between the noise and the 

features is then hard because the features are out of context and they all fit the same rule 

used to detect initially. 

The challenges of designing a ML based image processing system are very different to 

those of designing a traditional image processing pipeline. In an ML based system, 

especially a NN, the individual processing steps are almost invisible to both the user and 

designer. Rather than designing each individual image processing operation when using a 

NN the inputs, outputs and structure of the network are defined. The structure of the 

network is the main design problem; the single layer size and depth of the network need to 

be selected and tuned for the task. After the network has been designed it is trained and 

evaluated on a large dataset, during this process the algorithm optimises the weightings of 

the network nodes. This is the process that ultimately defines the processing steps that are 

used within the network. 

5.4.1 First Neural Network Design 
The types of networks that can be used for tasks are often defined by the input data and 

the amount of data available. Here a relatively shallow 13 layer network was designed first, 

consisting of 11 internal layers, an image input layer and a pixel classification output layer.  

Figure 5.17 shows the layer diagram. The internal layers of the network are configured to 

downsample in the first half of the network then upsample the outputs of those layers in 

the second half to match the output size. This has the overall effect of getting the network 

to focus on larger features in the image; which should be more generic to the dataset as a 

whole rather than the specific training images. 

The downsampling layers in the first half of the network are made up of 2 groups of 3 

layers with each group consisting up of a 2D fully convolutional layer, a ReLU layer and a 

max pooling layer. The 2D fully convolutional layer was the layer that contains the image 
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processing steps. These layers were configured with 64 3x3 filters, or kernels, a stride of 1 

in both x and y directions and padding of 1 pixel on all edges. These settings make the layer 

fully convolutional by creating the same sized output as the input in the x and y dimension. 

Each kernel is convolved with the input to create an ‘activation image’ containing the 

output from the convolution, therefore the output from this layer will be the same size and 

the input in the x and y dimension but will contain 64 images in the z dimension.  

 
Figure 5.17 Network layer diagram of first design, showing layer transform types and sizes after 
each layer. 1st line is downsampling layers, 2nd upsampling layers, (central layer (64@128x275) 

repeated for clarity) [11] 

The next layer, a Rectified Linear Unit (ReLU), is an activation function layer. There are 

multiple different types of activation functions but the purpose of all of them is to add 

non-linearity to the network. Non-linearity is what differentiates neural networks from 

other ML techniques like SVMs[12]. Non neural network style ML algorithms fit and solve a 

linear regression problem to map from input to output, whereas a neural networks fit and 

solution is non-linear; this is what allows their application on more complex problems. The 

ReLU function is designed to more closely resemble biological neurons, whist keeping the 

ease of linear gradient optimisation in the network [13]. This is because the ReLU function 

(Figure 5.18) has a nonlinear effect but is a piecewise linear function, with 2 parts meeting 

at 0, meaning its evaluation is very fast. 

 

Figure 5.18 ReLU function example, for all input values < 0 (X axis) 0 is output and for value > 0 
the input value is returned 
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The next layer, a max pooling layer, was a layer designed to modify the output of the 

previous 2 layers by summarising an area of the output in a specific way. The max pooling 

layer was the layer in this set of 3 that does the down sampling, it was configured here 

with a 2x2 size and a stride of 2 in both directions. This means that the output from this 

layer will be half the size in both width and height of the input. Each value on the output 

will be the maximum of the 2x2 area it represents on the input. Pooling layers are included 

in a network to select features from previous layers and make the network more robust to 

small changes in the input, in terms of the input values and the locations of those values. 

For example max pooling layers have shown to be good for image recognition tasks and 

similar because they will remove noise from the network and preserve the relative 

locations of features [14]. 

These layers are repeated twice to make the downsampling portion of the network. In the 

centre of the network the size of the output is a quarter that of the input, in x and y, and 

64 in z as a result of the convolutional layers with 64 filters each. This means with an input 

image size of 1100x512x1 the size after the downsampling layers will be 275x128x64. By 

this point in the network there should be a representation of larger features within the 

image created by the filters in the convolutional layers. 

The second half of the network uses this distilled information about the input image to 

make the ‘decision’ on the classification of each pixel. This is done in two stages; first the 

output from the first half of the network is upscaled to match the input size, then the 

classification is made. The first stage is, like the downsampling, completed with 2 groups of 

2 layers; a transposed convolutional layer, then a ReLU layer. In the second stage the pixel 

classification was handled by 3 layers, a convolutional layer, a softmax layer and a pixel 

classification layer. 

The upsampling stage here was essentially the same as scaling an image, the transposed 

convolutional layers perform the inverse of the convolution that occurred in the first half 

of the network. This can be called a deconvolution, and in certain network designs these 

layers are deconvolutional layers, however the difference is that deconvolution does not 

perform any interpolation. A deconvolution will convolve its input and pad with a fixed 

value, normally 0, this has the effect of spreading the input data out according to the size 

of the kernel. This means there is a one-to-one relationship between the input and output, 

whereas to truly perform the inverse of a convolution there should be a one-to-many 

relationship. 

The transposed convolutional layers here were configured with 64 kernels, a kernel size of 

4x4, a stride of 2 in both directions and will crop the output by 1 pixel along all edges. 

These parameters have the effect of, over 2 iterations, upsampling to the original image 

input size so the classification layers can classify every pixel. As mentioned above the 
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transposed deconvolutional layers interpolate the input data to create an output value at 

every location. The interpolation here was the learned element; rather than being set to a 

predefined interpolation method, like bi-cubic or linear, the values of the 4x4 kernels are 

optimised in training. This was why the ReLU layer after the transposed convolutional 

layers was introduced, it again adds non-linearity to the network. 

The first layer of the classification stage was another convolutional layer, configured with 7 

kernels, a kernel size of 1x1 and a stride of 1 in both directions. The purpose of this layer 

was to condense the 64 output activation images from the previous images into 7 that will 

represent each possible classification. After this layer the 7 activation images contain the 

activations of the network for each pixel for each of the 7 classes. At this point they are 

raw outputs from the previous convolutions, the next layer, a softmax layer, transforms 

this raw output into weightings for each class. This will be represented in the form of a 

probability across all 7 classes. The softmax layer is an extension of logistic regression and 

allows the network to work with more than 2 classes.  

The final layer in the network was a pixel classification layer and uses the probability 

output from the softmax layer to output a class for each pixel. This layer can also take into 

account class weightings, these will weight the probabilities from the softmax layer before 

choosing an output class. The purpose of weighting the classes is to try and remove bias 

from the training dataset. Ideally the training data would contain the exact same number 

of samples for each category; however, this is not practical, especially for a pixel level 

classification working on real world images. To fulfil this requirement each image would 

need to be crafted with perfectly segmented regions and no noise. Here the class 

weightings were set to the inverse of their number of appearances in the training dataset. 

This should mean that each class is represented equally to the network. The MATLAB code 

for creating, training and evaluating the networks is listed in appendix 7.4. 

5.4.2 First Network Training & Results 
With the design of the network completed, the next step was to train the network. This 

was the process of optimising the weightings of the network nodes; in relation to the 

layers described above this means optimising the values of the convolution kernels. This is 

done using back propagation, a process where the output of the network is compared 

against the correct category and the difference used to correct each layer in turn. The goal 

here is to reduce the difference in the output verses the ground truth for that input to 0, 

this difference is termed the ‘loss’ of the network. A loss of 0 means the network predicted 

every pixel correctly across the whole dataset. This is the optimisation problem the 

network is designed to solve and generally uses a form of gradient decent to do so. In this 

case a SGDM (stochastic gradient descent with momentum) solver was used. 
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For a training dataset 100 sample images from a welding run were annotated with labels 

for every pixel. These were picked to represent all states of the weld during a run, from 

before any filler was melted onto the pipe, through to a completed revolution. These were 

manually annotated for the 7 categories using MATLABs Image Labeller application. The 

categories chosen for segmentation were; torch, filler, molten filler, weld pool, solidified 

weld, torch glare and background. These were numbered from 1 to 7 to be represented as 

pixel values in ground truth images (examples Figure 5.19). These categories were selected 

to represent all potential areas of interest in the welding images, with particular interest in 

the weld pool and solidified weld categories. Statistics on these areas of the image can 

inform a lot about the current state of the weld and if they can be segmented well by the 

network, this could be a valuable analysis tool.  

    

    

    

          

Figure 5.19 Example training images and corrisponding ground truth images with labeled areas 
coloured 

Training was completed with the 100 image training dataset for approximately 6000 

iterations; using MATLABs multi CPU parallel trainer over approximately 36 hours. The 

training dataset was small here for a machine learning dataset problem, but this was the 

best practical dataset size achievable. The size of the dataset will affect the training of the 

algorithm and could cause it to over train because the dataset was not varied enough. 
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Strategies to mitigate this will be explored in later iterations. During the training the 

trainer was set to save its progress every epoch (3 iterations). In Figure 5.20 below the 

global accuracy of the network at each epoch can be seen. Training was interrupted at 

epoch 800 and restarted, that was what caused the large drop in accuracy. 

The drop-in accuracy at the start can be explained by the random initialisation of the 

network node values. This was the training algorithm starting to change the values and 

because of the nature of the optimisation it will not always head in the correct direction to 

start with before it finds a positive gradient. After 1949 epochs the global accuracy was 

approximately 0.335, training was stopped here because the accuracy of the network had 

flattened out and it was apparent it was not going to improve.  

 

Figure 5.20 Global accuracy of the first network design over the whole training period 

  

 

      
Figure 5.21 Example segmentation images from first neural network itteration. Corrisponding 3 

images from Figure 5.19 
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When evaluating the images segmented with the final network iteration there was a lot of 

confusion between certain categories of pixels. Especially with pixels being classified as 

background when they should not be. The network was likely detecting small changes in 

the background intensities from reflections or other artefacts between the images and 

using them as features for that category. This was what was expected, but the problem lies 

in the weighting of the categories. The background features are weighted as highly as all 

the foreground features to the algorithm, therefore when outputs from the network are 

very similar for each category pixel was just as likely to be classified as background as any 

other. In an ideal sense this is correct, but with a network that was not going to predict all 

pixel classifications perfectly it would be better to bias the network away from the 

background class. This would put more emphasis on it correctly predicting the other 

foreground classes that are of more interest.  

Another reason for this could be the shallow nature of the network. It may be identifying 

strong features from each class but might not be able to properly relate them to each 

other and their location in the full image. The shallowness of the network would cause this 

because at its smallest the input image is described by a 275x128x64 tensor. Which is a 

large number of data points when only using a 3x3 kernel. At this level 1 node in the tensor 

only contains information from a 5x5 area in the original image. 

5.4.3 Second Network Design  
To address the problems seen with the first iteration of the network the layers and kernel 

sizes were adjusted for the second iteration. In the down sampling layers the convolution 

kernel size was increased to 5x5 and the number of kernels reduced to 50. This was an 

effort to increase the field-of-view of each node at the centre of the network had of the 

input image; and also try to focus more on the larger features within the image. The 

number of down sampling layer sets was also increased from 2 to 3, which further 

increased the effective area the centre nodes have ‘seen’ of the original image.  

The stride of the convolution was kept at 1 in both directions but the padding around the 

edge of the image needed to be increased to fit the kernel size and stride to the to the 

input image size. The input image was padded with 2 rows along the top and bottom and 4 

columns along the left and right. These extra pixels were set to 0’s which will cause some 

distortion in the segmentation around the edges of the image. This is because at the edges 

of the image the padded areas will influence the convolution of the pixels up to 2 

rows/columns into the real image. This was acceptable for this application as the main 

areas of interest will not lie close to the edges of the image. The max pool and ReLU layers 

remained the same. 

The upsampling half of the network remained largely the same from the first iteration. The 

number of kernels was changed to 50 to match the down sampling layers. The cropping 
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needed to change to 1 row top and bottom and 3 columns left and right to account for the 

padding added by the down sampling layers. The stride remained at 2 in both directions 

and the kernel size at 4x4.  

The final classification layers remained the same apart from the class weightings on the 

pixel classification layer. Here the weightings were biased away from the background class, 

this was to discourage the network from predicting pixels as background because it was 

the biggest class when it was unsure. The rest of the class weights were still based on the 

frequency of their occurrence in the input dataset. The completed network diagram can be 

seen in Figure 5.22. 

 

Figure 5.22 Network layer diagram of second design, showing layer transform types and sizes 
after each layer. 1st line is downsampling layers, 2nd upsampling layers (central layer (50@64x137) 

repeated for clarity) [11] 

5.4.4 Second Network Training & Results 
The training strategy for this iteration was changed compared to the first network. With 

the first network the learning rate was constant. But for this iteration it was started high 

and decreased over time. The aim of this was to the mimic the human learning process, 

the big picture of the subject can be learnt quickly and easily to start with, resulting in 

large jumps in knowledge. The finer points are then learnt more slowly because they 

require a deeper understanding. This is what changing the learning rate for the network 

does. The learning rate sets the size of the steps in the optimisation stage; the larger the 

step size the more likely the algorithm is to get close to the best solution, rather than 

getting stuck at a local minimum. Decreasing the learning rate then allows the algorithm to 

home in on the optimum solution.  

This process was also assisted by starting with a reduced dataset and increasing its size. 30 

images were chosen for the first stage of training, making sure to include images from 

varying points in the process. In this first stage a small set of validation images were also 

used. This was a set of 7 images that the network was tested against every 50 training 

iterations, these were separate from the images it was trained on. This was useful to 
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monitor progress on the limited dataset because the point of training the network this way 

was that its accuracy will increase quickly, but that was only on the training dataset. 

Validation gave insight as to whether that accuracy score will be applicable to the full 

dataset. 

After 600 training iterations with the first training dataset as described above the network 

was evaluated against the full 100 image training dataset. At this point a global accuracy of 

0.778 was achieved, this shows the training strategy was working. 

Ground Truth Images Segmented Images 

  

  

  

  

           
Figure 5.23 Example of second neural network output. Showing ground truth and output images 

The training was continued for another 1000 iterations before increasing the dataset size 

to 50 images and removing the validation set. After 1500 iterations training with 50 

images, the full dataset was included, and the learning rate reduced to a constant 0.0001. 

The final version of this network had been trained for 9000 iterations and reach a global 
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accuracy of 0.83 and mean accuracy of 0.927 when evaluated against the full dataset. This 

included 40 new images that the network had never seen before. Mean accuracy takes 

into account the accuracy of individual image classes whereas the global accuracy is the 

ratio of correctly predicted pixels to incorrectly predicted pixels, regardless of class. This 

resulted in images like shown in Figure 5.23. 

A third iteration of the network was designed to take advantages of what was learnt in 

designing and training the first 2. The network structure stayed the same as the second 

network with 3 downsample and upsample layer sets, however the number of convolution 

kernels was increased to 64. This should allow the network to increase the complexity of 

the segmentation versus the second network and the training methodology from the 

second network has been proven for this dataset and was used again.  

When trained the third network design only achieved a global accuracy of 0.745 and a 

mean accuracy of 0.493. This was significantly lower than the previous network and shows 

that the training method used matched well to the number of kernels used in the second 

iteration and the dataset size. It was likely that the dataset size was too small to properly 

train more kernels than used in the previous iteration. A dataset size of 100 images was 

also very small for a neural network. 

5.4.5 Neural Network Segmentation Evaluation 
When evaluating the results of the segmentation of the second network the real 

challenges of the problem become apparent. When comparing the sections that were 

correctly segmented versus the raw data of those areas the input data looks very similar 

locally even though they are being expressed as raw 16-bit images. This means that small 

kernels and a low number of layers as used in this design will struggle to identify larger 

segments; especially those that are not very well differentiated from the surrounding 

segments. The third network design was an effort to account for this but as mentioned 

above it is likely the case that the input training dataset was also starting to limit the 

potential at this size. 

Shown in Figure 5.24 is an image segmented with the best iteration of the second network 

along with the corresponding ground truth and input image. The background of this image 

demonstrates the problem with small kernels, the small areas identified as solidified 

material towards the top left of the image are the jaw of the chuck passing though the 

image. The edges of the jaw are creating features in the image that are illuminated by the 

reflections from torch arc and weld pool. These are incorrectly identified as solidified 

material because on the scale of the view area of a single pixel has at the network centre 

(7x7 pixels of the original image) they fit the model it has learnt for that class. However, if 

this area was much larger it would be evident that it was only a small area that properly 

satisfies the characteristics of the class and not the large area that the network was trained 
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on and really identifies solid material. This kind of problem is one of the reasons for the 

increase in use of deep neural networks, for example Noh et.al [15] uses 13 convolutional 

layers for segmentation. 

The areas in the images there are segmented correctly are very close to the ground truths 

the network was trained with in terms of size, shape and locations of the segments. This 

was the case for images from the original training dataset as well as images not included in 

training. This shows that this solution is capable of the goal of segmentation of images to 

detect the weld pool and other features in end on pipe welding thermal images. With 

more training data and time this technique could be refined and applied to a real time 

camera input to enable intelligent measurements of weld pool size for example. This could 

then lead to extra measurements enabled by thermal imaging such as those shown as part 

of a manual process in earlier sections or examples like weld pool temperature and the 

cooling rate of the solidification process. 

 
 

 

 
Figure 5.24 Example output from neural network, showing input, ground truth and output 

5.5 Conclusion 
This chapter has shown the application of the system and knowledge developed in the 

previous two chapters to gas tungsten arc welding. Analysis techniques based on thermal 

images of turbine blade welding and pipe welding were developed; based on freezing 

point detection and slag tracking in the weld pool. Both techniques could be further 
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developed into weld quality indicators with the view to them being used as such in real-

time feedback systems for robotic welding. Use of thermal imaging in robotic welding 

applications has not been widely demonstrated, especially in this application. The freezing 

point analysis is something that could leverage existing research on weld dynamics to 

provide insight that previously may have only been possible with destructive analysis. A 

neural network was also developed for image segmentation of the pipe welding thermal 

images. While at this stage the network does not produce perfect results this level of 

segmentation has not been applied in this context before. However, the network can 

detect important parts of the thermal image and could be used for rough size 

measurement as well as informing other analysis techniques which sections of an image 

should be used for their analysis.  
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6 Conclusion and Further Work 
6.1 Summary of Work 
This work has introduced and developed a thermal imaging system for use in monitoring 

additive manufacturing processes. Specifically, it has demonstrated the use of silicon 

sCMOS detectors in electron beam melting and gas tungsten arc welding. Silicon sensors 

are a lesser used technology in the area of thermal imaging, and it has been shown that 

AM is a very good application for them. The high temperature nature of metal AM 

processes allows sCMOS to be used to begin with and the other traits of AM, such as high 

speed, high cooling rates and small feature size mean the sCMOS sensors can really be 

taken advantage of. 

Chapter 3 began by showing the design and calibration process for the imaging system. 

The design aim was to create a system specifically for AM monitoring and the combination 

of an sCMOS camera and the custom designed lens system fulfilled this. The calibration 

followed the process of single point infrared thermometer calibration as a guide which 

allowed radiance temperatures to be monitored. The whole imaging system was designed 

to require no modification to the essential parts of the Arcam S12 EBM machine and 

minimal modifications overall. With the system in place and using the film feed system to 

keep the window free of metallisation, it was shown that the system could monitor the AM 

process without interruption. With a variable exposure time and multiple calibrations, the 

temperature range of interest could be set from a range that focused on the low range 

cooling effects and powder bed, up to high contrast imaging of the molten material in the 

melt pool. The chapter finished by showing the potential of the system to begin to detect 

problem areas and defects within AM builds. 

Chapter 4 looked at linking what is seen in thermal images to materials properties and 

what is possible with analysis of real time images from the system. Cooling rates were used 

as a predictor for material grain structure. This is already established knowledge but, using 

thermal images from layers at different heights of the build the observed cooling rates 

were able to be correlated with the materials structure and properties of that location. 

This was done by post processing analysis, but it shows that this system can be used to 

predict these properties without destructive testing of parts. The melt pool size within a 

build was also investigated and its relationship to part porosity, initial results showed that 

where smaller melt pools were seen porosity increased. 

An emissivity tracking system was built to provide tracking of melted parts of a build and 

allow the application of different processing or calibration dependant on location. Tracking 

the melted sections of a layer allowed different emissivities to be applied given the likely 

surface finish and composition of that area. This allows more accurate emissivity 

correction and therefore more accurate temperatures from the thermal images. This 



Conclusion and Further Work 
 

 
Nicholas Boone  118 

system was initially designed only for this purpose but also proved a useful tool for extra 

visualisation and analysis of builds by allowing the melted areas to be automatically 

extracted from images. 

To increase automation and effectiveness of the system, in terms of data collection, an 

effort was made into integrate the image capture process with the Arcam. Due to lack of 

access to the machines control system and unpredictable sensors triggering captures on 

layer start was not reliable. To provide another solution machine learning was used to 

create a system to trigger the capture based on the real time analysis of the thermal 

images. This system was able to detect and trigger a capture within 200 frames of the layer 

start and was able to stop the capture at the end of a layer. This fully automated the 

capture process and reduced the number of empty frames captured. 

Finally, this chapter looked at electron beam welding of dissimilar metals. With the use of 

the thermal imaging system on the Arcam the weld pool temperature could be analysed in 

situ. This allowed an area of heating in front of the weld pool to be identified. The 

preheating effect was identified as one of the main factors for the dissimilar weld being 

possible in this process. Without the thermal imaging system this kind of analysis would 

not have been possible. 

Chapter 5 showed this technology in a different AM context, Gas Tungsten Arc Welding. 

Appling the same sCMOS camera as previous chapters with off the shelf optics allowed 

high speed imaging of the GTAW welding process and weld pool. The setup was 

recalibrated for the application to focus primarily on the high temperature weld pool. An 

analysis technique for detecting the freezing point of the weld was created based on the 

detection of the freezing plateau in the cooling weld bead. The high spatial resolution of 

the system was used here to give a high-resolution view of the cooling of the weld. With 

this analysis potential defect locations were able to be detected based on the frequency of 

the movement of the freezing point along the weld bead. Finally, machine learning was 

used to detect features in the welding images. A network was designed and trained to 

perform a pixel wise segmentation of the images, aiming to identify 7 different classes 

within each image. The network was able to detect position size and shape of the weld 

pool and other features in an image. 

The combination of sCMOS hardware and the types of analysis shown here are a good 

match for AM applications and start to show the potential for this kind of system. As 

discussed in the first chapter a motivation for this kind of system is the lack of knowledge 

and trust in AM processes, compared to traditional manufacturing processes. With this 

kind of thermal imaging system analysis can take pace during a build and in areas that 

would not have been possible with other techniques, or without destructive testing. This 
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can then lead to a better understanding of AM processes and how to best take advantages 

of them to create parts accurately and with the desired properties. 

6.2 Conclusions 
The main conclusion from this work has been that silicon sCMOS imaging technologies are 

suitable for use as thermal imagers in high temperature applications such as additive 

manufacturing. Currently this technology is sparsely used in the field of thermal imaging 

and this is its first use in AM. The advantages of using silicon have been shown and how 

they benefit the application of AM monitoring. Besides the greater speed and resolution 

that silicon sensors bring their wider availability and specification diversity is an advantage 

if they are to be used in the future on commercial monitoring products for example.  

Although currently standardised methods for calibration do not exist, they are being 

worked on by others in the field. However, this work has shown that using the calibration 

method from a single point device can produce representative temperature images, even 

if it doesn’t account for all the effects that will be present on an image sensor compared to 

a single detector. Specific to the analysis methods applied to AM here it was also evident 

that relative temperatures are still of interest. They can still be used to draw useful 

conclusions around the links between the thermal conditions during a build and materials 

properties. 

The demonstration of the emissivity tracking system is the first attempt to provide 

dynamic emissivity correction in an AM monitoring system. Emissivity is known to often be 

the biggest source of error in any IR temperature measurement system. This process will 

reduce that error by accounting for the emissivity change from the powder to solid 

material change. This will be further improved by better understanding of the emissivity 

changes of materials in AM. This kind of emissivity correction will be required for any 

thermal imaging system used in AM that hopes to provide anything more than radiance 

temperatures. 

The monitoring system as a whole has provided insights in the EBM process that would not 

have been possible without it. The links between materials properties and the thermal 

characteristics of a part could have been inferred based on knowledge of the materials. 

However, in situ monitoring throughout a build allows the important temperature 

transitions to be pinpointed and conclusions drawn about whole parts without destructive 

testing. The potential for using systems similar to this in the future for part verification is 

huge and could be something that allows the widespread adoption of metal AM. 

The use of thermal imaging as a non-destructive testing and observation method for 

welding is also something that could be a valuable tool in this field. When conducting this 

research one of the researchers working on the welding setup commented how much 

more useful a real time temperature view of the weld was, opposed to a view through a 
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welding visor. The automated detection of defects based on analysis like that presented 

with the freezing point analysis could remove steps from the post weld processing. It could 

also allow parts to be tested that previously could not because of prohibitive cost or other 

complications. In both cases and with the EBM work machine learning elements could 

augment existing analysis and provide new analysis opportunities. 

6.3 Further Work 
This work has shown the initial development of a silicon sCMOS based thermal imaging 

system for AM. There are areas of the system itself and the analysis built on top of it that 

can be further developed to produce more accurate temperatures, tighter integration and 

more instantly relevant outputs. 

Emissivity is an issue with all infrared measurement techniques and has started to be 

addressed with the emissivity tracking system shown in this work. However, this system 

only currently considers 2 possible states of the material in a given area, melted or not 

melted. This could be extended with more potential states taken into account; molten 

material and different levels of sinter for example. This would require more processing 

techniques to detect these states in the image, or potentially this could be another 

application for a ML model like shown in chapter 4. This would also require more in-depth 

studies of the emissivity of the alloys used in the process; current literature does not give 

an appropriate set of emissivities or emissivity model for these alloys in the various states 

they are found within the EBM process. If an emissivity model for the process can be 

created there is a big improvement in measurement accuracy and uncertainty to be made.  

One of the challenges in creating and applying an emissivity model will be the temperature 

dependence of the emissivity of the Ti-6AL-4V alloy commonly used in EBM and other AM 

processes. With the emissivity changing not only with surface finish and material state but 

also its temperature an emissivity independent temperature measurement would be 

required to fully apply an emissivity model like this. An independent measurement would 

be very hard to create with a contactless method, and if it was done with high resolution 

could replace the CMOS measurement system itself. Another, more practical, way to 

achieving this could be to use a model of the process and part being built to predict 

temperatures at a given point and time within a build, this could then be used to inform 

the emissivity model and provide a correction. 

The discrete state detection and correction via machine learning may be a more practical 

and achievable solution with the current state of the technology and modelling. If this 

were to be undertaken a large set of images with areas of known qualities would need to 

be created and labelled accordingly. The sample would need to be much larger than the 

100 images used in chapter 5, because, as discussed in that section, the neural network 
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already appeared to be hitting the limits of the training dataset. This method would also be 

subject to the uncertainties caused by temperature dependant emissivity. 

Integration of the imaging system into the process would also be an area for further work 

in both the EBM and GTAW setups. One of the aims of this work was to create a system 

that could be used as a sensor input for a process control system, however this was not 

achieved. Further integration with the Arcam EBM system is possible, starting with and 

building on the automated capture system shown in chapter 4. Being a propriety system 

the Arcam software may be difficult to interface with for control over the process, 

however other systems allow for programmable access to the control system and 

parameters. Any techniques developed with the system on the EBM setup could be 

transferred onto machines with this capability.  

On the GTAW setup the opportunities to hook into the control system are much greater 

with the systems being bespoke for the application. Here high magnification imaging of the 

weld pool, electrode and surrounding area could be used to feedback data to the control 

system. This may take the form of information about the weld pool size and temperature, 

the effect gas flow is having on the melt pool and the effect the weld is having on the 

surrounding material. This last point will be of interest when welding materials at risk of 

microstructural changes because of high temperature changes local to the weld. 

Minimising the amount of heat build-up in these parts is crucial to providing a good weld 

that does not affect the structural integrity of the part as whole. Control algorithms are 

already used to minimise this effect, but with the addition of real time feedback of the 

temperature and size of the heat affected zone around the weld improvements could be 

made. 

One issue that effects all imaging systems and becomes important when they are relied on 

for measurement is the quality of the optical system. A real-world optical system cannot 

perfectly represent the scene it is viewing, any given system will have a transfer function 

that describes how it transforms the image. A full transfer function will consider any 

aberrations and the size of the measurement field of view (MFOV) for a given pixel. This 

will take the form of a point spread function (PSF), which could be different for each pixel 

of an array and describes how the optical system distributes the energy received from a 

MFOV. This means that not all the energy received from a given area of the scene will be 

received by its corresponding pixel on the imager array; therefore, in the case of a thermal 

imaging system objects will appear cooler than they should. Creating this PSF for every 

pixel is not trivial but would be needed to fully correct for the optical system in an imager. 

Corrections for this would further decrease the measurement uncertainty for an imaging 

system and would be particularly useful in AM monitoring because of the small size of 

interesting features in an image.  
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7 Appendices 
7.1  Emissivity Tracking Code 
Below is a listing of the meltpoolTrack MATLAB function which implements the emissivity 

tracking and is used as a part of a larger image processing workflow in MATLAB. 

function [meltedMask, emissivityImage, correctedImage] = 
meltpoolTrack(mask, image, in) 
  
  thresholdImage = imbinarize(image, (in.threshold / 65536)); 
  
  [~,centroids, ~, major, minor, orientation] = 
in.hblob(thresholdImage); 
  
  if ~isempty(centroids) 
    [m, ~] = size(centroids); 
    for blobNo = 1:m 
      mask = ellipseMatrix(centroids(blobNo,2), ... 
      centroids(blobNo, 1), major(blobNo)/2, minor(blobNo)/2, ... 
      orientation(blobNo), mask, 1, 0, 0); 
    end 
  end 
  
  se = strel('disk', in.meltpoolDiameter); 
  mask = imclose(mask, se); 
  
  emissivityImage = ones(size(image)); 
  emissivityImage(mask) = in.emissivityMelted; 
  emissivityImage(~mask) = in.emissivityUnmelted; 
  
  correctedImage = double(image) ./ emissivityImage; 
 
  meltedMask = mask;  

end 

This function is called in the large image processing loop that increments through a set of 

images to be processed. The input parameter mask contains the emissivity mask which is 

the previous output of the function is it has been run, or a matrix the same size as the 

input image containing all zeros. The image input parameter contains the current raw 

image being processed. The in parameter contains the input setting for the image 

processing code. The function returns meltedMask - a binary mask of melted areas on that 

layer, emissivityImage – an image containing an emissivity value for each pixel in the image 

and the corrected and correctedImage – the emissivity mask applied to the input image. 

The blob detector in.hblob is setup using the below code outside the function. 

in.hblob = vision.BlobAnalysis(... 
'CentroidOutputPort', true, 'BoundingBoxOutputPort', 
true, ...                  'MajorAxisLengthOutputPort', 
true, ...            'MinorAxisLengthOutputPort', true, 
'OrientationOutputPort', ... true, 'MinimumBlobArea', 
in.meltpoolArea, 'MaximumCount', 10); 
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7.2 Freezing Point Detection Code 
Below is a listing of the MATLAB script used to implement the freezing point detection 

algorithm, the parameters for the run shown in this work are defined at the top of the 

script. 

clear; 
imgFolder = 'imagePathRemoved'; 
imgRange = 930:3860; 
row = 140:380; 
col = 90:600; 
lineAvgSize = 10; 
tempIncrement = 5; 
minTemp = 1440; 
maxTemp = 1590; 
smoothingHeight = 2; 
smoothingWidth = 5; 
colourMin = 1300; 
colourMax = 2200; 
 
video = 0; 
videoPath = [pwd '\']; 
videoName = 'Freezing Point Video Thresh With Peaks Full'; 
framerate = 10; 
figureSize = [0, 0, 1920, 1080]; 
 
colourMap = cubehelix(colourMax - colourMin,0.5,-1.5,1.29,1, 
[0,1]); 
 
img = imread([imgFolder num2str(imgRange(1)) '.tif']); 
[imgH, imgW] = size(img); 
 
fig = figure('Position', figureSize); 
 
se = strel('rectangle', [smoothingHeight, smoothingWidth]); 
 
if video == 1 
  vid = VideoWriter([videoPath videoName ' ' datestr(now,'dd-mmmm-
yy HH.MM.SS')], 'Motion JPEG AVI');  
  vid.FrameRate=framerate; 
  vid.Quality = 100; 
  open(vid); 
end 
 
lastBest = 0; 
weight = 0.003; 
choice = []; 
meanChoiceX = []; 
 
for i=imgRange 
  disp(i) 
  img = imread([imgFolder num2str(i) '.tif']); 
  for j=minTemp:tempIncrement:maxTemp 
    dataRow = ((j - minTemp) / tempIncrement) + 1; 
    threshData(dataRow, 1) = j; 
    thresh(:, :, dataRow) = imbinarize(img(row, col), j/65536); 
    threshData(dataRow, 2) = nnz(thresh(:, :, dataRow)); 
  end 
  grad = gradient(threshData(:, 2)); 
     
  [bestGrad, bestPoint] = findpeaks(grad);   
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  % if cant find any peaks use the last point 
  if isempty(bestGrad) 
    bestPoint = lastBest; 
    bestGrad = grad(bestPoint); 
  end 
     
  %plot raw threshold counts data 
  subplot(2, 2, 2); 
  plot(threshData(:, 1), threshData(:, 2)) 
  title('Threshhold area, peaks highlighted') 
  n = 1:size(bestPoint, 1); 
  if size(n, 2) == 0 
    [~, bestPoint] = min(abs(grad(2:end))); 
    n = 1:size(bestPoint, 1); 
  end 
  %plot peaks of gradient on the raw data curve 
  hold on; 
  for j = n 
    plot(threshData(bestPoint(j), 1), threshData(bestPoint(j), 2), 
'm-o') 
  end 
  hold off; 
 
  for j=n 
    mask(:, :, n) = imfill(thresh(:,:, bestPoint(n)), 'holes'); 
    mask(:, :, n) = imclose(mask(:, :, n), se); 
    mask(:, :, n) = imerode(mask(:, :, n), se); 
  end 
     
  for k = n 
    for j=row 
      rowNum = (j - row(1)) + 1; 
      if isempty(find(mask(rowNum, :, k), 1)) 
        curve(rowNum, k) = row(end); 
      else 
        curve(rowNum, k) = find(mask(rowNum, :, k), 1); 
      end 
    end 
    curve(:, k) = curve(:, k) + col(1); 
    curve(:, k) = movingAvg(curve(:, k), lineAvgSize); 
  end 
     
  %plot image and all potential best lines 
  subplot(2, 2, 1); 
  colourImg = ind2rgb(img - colourMin, colourMap); 
  imshow(colourImg); 
  colormap(colourMap); 
  bar = colorbar; 
  ax = gca; 
  ax.CLim = [colourMin, colourMax]; 
  bar.Limits = [colourMin, colourMax]; 
  title('Temperature image with possible freezing points(blue), 
selected freezing point(pink)'); 
  hold on; 
  for j = n 
    plot(curve(:, j), row', 'b-', 'linewidth', 1.5); 
  end 
    
  % if we have more than 1 result compare the potential points to 
the 
  % last an penilise for being futher away 
  if lastBest > 0  
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    multiplier = 1 - (abs(bestPoint - lastBest) * weight); 
    bestGrad = bestGrad ./ multiplier; 
    multiGrad = grad; 
    multiGrad(bestPoint) = bestGrad; 
    [~, nearest] = max(bestGrad); 
  else 
    [~, nearest] = max(bestGrad); 
  end 
     
  % plot grad curve 
  subplot(2, 2, 4);  
  if lastBest > 0 
    % plot weighted grad curve and winning point 
    plot(threshData(:, 1), multiGrad, 'g'); 
    hold on; 
    plot(threshData(bestPoint(nearest), 1), 
multiGrad(bestPoint(nearest)), 'm-o'); 
  end 
  plot(threshData(:, 1), grad); 
  title('Gradient of threshold area curve; unwieghted(blue), 
wighted(green), selected point(pink)'); 
  hold off;    
    
  lastBest = bestPoint(nearest); 
     
  % plot best on image 
  subplot(2, 2, 1); 
  hold on; 
  plot(curve(:, nearest), row', 'm-', 'linewidth', 1.5); 
  hold off; 
     
  %record and plot choice 
  choice((i - imgRange(1)) + 1, :) = threshData(bestPoint(nearest), 
1)'; 
  meanChoiceX((i - imgRange(1)) + 1) = mean(curve(:, nearest)); 
  subplot(2, 2, 3); 
  plot(choice); 
  title('History of selected temperatures of freezing point'); 
  hold off; 
  drawnow; 
 
  if video == 1 
    writeVideo(vid, getframe(fig)); 
  end 
end 
 
if video == 1 
  close(vid); 
end 
 
function avg = movingAvg(data, avgSize) 
  if size(data, 1) > size(data, 2) 
    avg = zeros(size(data, 1) + (avgSize *2), 1); 
  else 
    avg = zeros(size(data, 2) + (avgSize *2), 1); 
  end 
  avg(1:avgSize) = data(1); 
  avg(end - avgSize +1: end) = data(end); 
  avg(avgSize +1:end - avgSize) =  data; 
  avg = filter((1/avgSize)*ones(1,avgSize), 1, avg); 
  avg = avg(avgSize+1:end - avgSize); 
end 
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This code runs on a folder full of thermal images, as well as running the algorithm it also 

displays a live output for the user as each image is processed and saves a video of the 

resulting plots. This was useful when tuning the parameters of the algorithm. 

7.3 Slag Detection Code 
Below is a listing of the MATLAB scrip used to implement the pipe welding slag detection, 

the parameters for the run shown in this work are defined at the top of the script. 

clearvars; 
imageDir = 'imagePathRemoved'; 
imagePrefix = 'Meltpool floater'; 
imagePadding = 4; 
imageExtension = '.tif'; 
imageRange = 10:99; 
 
detectionBlobArea = 30; 
detectionRadius = 50; 
backgroundThresh = 1300; 
lowThresh = -100; 
highThresh = 100; 
 
centroidRange = 10; 
centroidRange2 = 50; 
 
pxPmm = 72.2; 
frameTime = 2.5e-3; 
 
for i = imageRange 
  j = (i - imageRange(1)) + 1; 
  images(:, :, j) = imread([imageDir imagePrefix num2str(i, ['%0' 
num2str(imagePadding) 'd']) imageExtension]); 
  images(:, :, j) = images(:, :, j) .* uint16((images(:, :, j) > 
backgroundThresh)); 
end 
 
images = double(images); 
 
for i = 2:size(images, 3) 
  imageDiff(:, :, i) = images(:, :, i) - images(:, :, i-1); 
end 
 
imageDiff = imageDiff .* double(imageDiff < backgroundThresh / 2); 
imageDiff = imageDiff .* double(imageDiff > -backgroundThresh / 2); 
 
blobby = vision.BlobAnalysis('CentroidOutputPort', true, ... 
    'BoundingBoxOutputPort', false, 'MajorAxisLengthOutputPort', 
true, ... 
    'MinorAxisLengthOutputPort', true, 'OrientationOutputPort', 
true, ... 
    'MinimumBlobArea', detectionBlobArea, 'MaximumCount', 1, ... 
    'ExcludeBorderBlobs', false); 
 
lowDiff = imageDiff < lowThresh; 
highDiff = imageDiff > highThresh; 
 
centroidsL = zeros(size(lowDiff, 3), 2); 
centroidsH = zeros(size(highDiff, 3), 2); 
lowOffsets = zeros(size(centroidsL, 1), 2); 
highOffsets = zeros(size(centroidsH, 1), 2); 
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for i = 2:size(imageDiff, 3) 
  %crop image to stop detecting the whole meltpool moving 
  if sum(centroidsL(i-1, :), 2) > 1 
    [lowOffsets(i, 1), lowOffsets(i, 2), tempImage] =  ... 
         cropImageAroundPoint(floor(centroidsL(i-1, 1)), 
floor(centroidsL(i-1, 2)), lowDiff(:, :, i), detectionRadius); 
    %imshow(tempImage); 
    %pause; 
  else 
    tempImage = lowDiff(:, :, i); 
  end 
  if ~isempty(blobby(tempImage)) 
    [AreaL(i), centroidsL(i, :), majorL(i), minorL(i), 
orientationL(i)] = blobby(tempImage); 
    centroidsL(i, :) = centroidsL(i, :) + lowOffsets(i, :); 
  end 
     
  %crop image to stop detecting the whole meltpool moving 
  if sum(centroidsH(i-1, :), 2) > 1 
    [highOffsets(i, 1), highOffsets(i, 2), tempImage] = ... 
cropImageAroundPoint(floor(centroidsH(i-1, 1)), floor(centroidsH(i-
1, 2)), highDiff(:, :, i), detectionRadius); 
    %imshow(tempImage); 
    %pause; 
  else 
    tempImage = highDiff(:, :, i); 
  end 
  if ~isempty(blobby(tempImage)) 
    [AreaH(i), centroidsH(i, :), majorH(i), minorH(i), 
orientationH(i)] = blobby(tempImage); 
    centroidsH(i, :) = centroidsH(i, :) + highOffsets(i, :); 
  end 
end 
 
centroidDiff = abs([0, 0; centroidsH(1:end-1, :)] - centroidsL); 
validDetection = sum(centroidDiff, 2) < centroidRange & 
sum(centroidDiff, 2) > 0; 
validDetection = validDetection |  sum(centroidDiff, 2) < 
centroidRange2 & sum(centroidDiff, 2) > 0; 
validDetection = validDetection(2:end); 
 
for i = 1:size(validDetection) 
  if validDetection(i) == 1 
    centroid = floor(centroidsH(i, :)); 
    images(centroid(2):centroid(2)+1, centroid(1):centroid(1)+1, i) 
= 800; 
    centroidList(i, :) = centroid; 
  end 
end 
 
%remove leading 0s 
imageStart = 0; 
while sum(centroidList(1, :), 2) < 1 
  centroidList = centroidList(2:end, :); 
  imageStart = imageStart + 1; 
end 
%duplicated entries when no detection 
for i = 1:size(centroidList, 1) 
  if sum(centroidList(i, :), 2) < 1 
    centroidList(i, :) = centroidList(i-1, :); 
  end 
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end 
 
lastI = 1; 
for i = 1:size(validDetection, 1) 
  if validDetection(i) == 1 
    cI = i - imageStart; 
    if cI > 1 
      dx = abs(centroidList(cI, 1) - centroidList(cI-1, 1));  
      dy = abs(centroidList(cI, 2) - centroidList(cI-1, 2)); 
      distancePx(cI) = sqrt((dx ^ 2) + (dy ^ 2)); 
      distanceM(cI) = distancePx(cI) / (pxPmm * 1000); 
      speedMs(cI) = distanceM(cI) / (frameTime * (cI - lastI)); 
      %disp(['i: ' num2str(i) ' frames since detection: ' 
num2str(cI - lastI)]); 
      end 
      lastI = cI; 
  end 
end 
         
figure 
montage(images) 
caxis([800 2000]); 
colormap(parula); 
 
f = figure; 
for i = 1:size(centroidList, 1) 
  imshow(images(:, :, i + imageStart)) 
  hold on; 
  plot(centroidList(1:i, 1), centroidList(1:i, 2), '-r'); 
  caxis([800 2000]); 
  colormap(parula); 
  imagesC(:, :, :, i) = getframe(gcf); 
  hold off; 
end 
close(f); 
implay(imagesC) 
 
figure; 
plot(speedMs); 

This code runs on a folder full of thermal images, as well as running the algorithm it also 

displays a live output for the user as each image is processed. When finished displays an 

animation of the track progression and a plot of the speed along the track. This was useful 

when tuning the parameters of the algorithm. 

7.4 Neural Network Training Code  
Below is a listing of the MATLAB script used to create and train the final iteration of the 

neural network. 

load('groundTruths.mat'); 
 
%Setup Datasets 
imDir = fullfile('pathToImagesRemoved'); 
pxDir = fullfile('pathToLabelDataRemoved'); 
 
imDs = imageDatastore(imDir); 
pxDs = pixelLabelDatastore(gTruth); 
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% Create NN 
inputSize = [512 1100]; 
imgLayer = imageInputLayer(inputSize); 
 
filterSize = 5; 
numFilters = 64; 
conv = convolution2dLayer(filterSize, numFilters, 'Padding', [2, 
4]); 
relu = reluLayer(); 
 
poolSize = 2; 
maxPoolDownsample2x = maxPooling2dLayer(poolSize, 'Stride', 2); 
 
downsamplingLayers = [conv, relu, maxPoolDownsample2x, ... 
    conv, relu, maxPoolDownsample2x, conv, relu, 
maxPoolDownsample2x]; 
 
filterSize = 4; 
transposedConvUpsample2x = transposedConv2dLayer(filterSize, 
numFilters, 'Stride', 2, 'Cropping', [1, 3]); 
 
upSamplingLayers = [transposedConvUpsample2x, relu, ... 
    transposedConvUpsample2x, relu, transposedConvUpsample2x, 
relu]; 
 
numClasses = size(gTruth.LabelDefinitions, 1); 
conv1x1 = convolution2dLayer(1, numClasses); 
 
%calculate wieghts for final layer based on number of pixels in 
each class 
tbl = countEachLabel(pxDs); 
totPx = sum(tbl.PixelCount); 
freq = tbl.PixelCount / totPx; 
classWeights = 1 ./ freq; 
 
finalLayers = [conv1x1, softmaxLayer(), ... 
    pixelClassificationLayer('Classes', tbl.Name, 'ClassWeights', 
classWeights)]; 
 
layers = [imgLayer, downsamplingLayers, upSamplingLayers, 
finalLayers]; 
 
% Train Network 
allTrainingData = pixelLabelImageDatastore(imDs, pxDs); 
 
%trainingInd = randi(100, 20, 1); 
%trainingData = partitionByIndex(allTrainingData, trainingInd); 
 
%validationInd = randi(100, 5, 1); 
%validationData = partitionByIndex(allTrainingData, validationInd); 
 
%[trainSet, valiSet, TestSet] = splitEachLabel(trainingData, 0.8, 
0.1); 
 
opts = trainingOptions('sgdm', 'InitialLearnRate', 0.001, ... 
    'MaxEpochs', 1000, 'MiniBatchSize', 10, 'Shuffle', 'every-
epoch', ... 
    'Plots', 'training-progress', 'ExecutionEnvironment', 
'parallel', ... 
    'ValidationData', validationData, 'CheckpointPath', ... 
    'checkpointPathRemoved'); 
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net = trainNetwork(trainingData, layers, opts); 
 
%% Contuinue training  
%select network checkpoint 
[file, path] = uigetfile; 
load([path, file]); 
 
trainingInd = randi(100, 30, 1); 
trainingData = partitionByIndex(allTrainingData, trainingInd); 
 
validationInd = randi(100, 7, 1); 
validationData = partitionByIndex(allTrainingData, validationInd); 
 
%[trainSet, valiSet, TestSet] = splitEachLabel(trainingData, 0.8, 
0.1); 
 
opts = trainingOptions('sgdm', 'InitialLearnRate', 0.001, ... 
    'MaxEpochs', 200, 'MiniBatchSize', 10, 'Shuffle', 'every-
epoch', ... 
    'Plots', 'training-progress', 'ExecutionEnvironment', 
'parallel', ... 
    'ValidationData', validationData, 'CheckpointPath', ... 
    'checkpointPathReomved'); 
 
net = trainNetwork(trainingData, net.Layers, opts); 

 

The below code was also used to evaluate networks at each of their checkpoints with an 

unseen dataset. 

nndir = 'patheToNetworkCheckpointsRemoved'; 
imDir = fullfile(pathToUnseenImagesRemoved'); 
pxDir = fullfile('pathToUnseenLabelsRemoved'); 
 
load('.\Test Data\groundTruthTestData.mat'); 
 
imDs = imageDatastore(imDir); 
pxDs = pixelLabelDatastore(pxDir, 
table2cell(gTruth.LabelDefinitions(:, 1)), 
table2cell(gTruth.LabelDefinitions(:, 3))); 
 
nets = dir([nndir '*.mat']); 
[~,ind] = sort([nets.datenum]); 
nets = nets(ind); 
 
allMetrics = []; 
 
for i = 1:size(nets, 1) 
  load([nndir, nets(i).name]); 
  disp(['Evaluating ' nets(i).name]); 
     
  pxDsRes = semanticseg(imDs, net, 'WriteLocation', '.\Temp\', 
'UseParallel', true, 'ExecutionEnvironment','cpu'); 
     
  metrics = evaluateSemanticSegmentation(pxDsRes, pxDs, 
'UseParallel', true); 
  allMetrics = [allMetrics; metrics.DataSetMetrics]; 
end 
 
save('checkpointEvaluations.mat', allMetrics); 


