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Renewable energy technologies can be used for clean electricity generation, rapid 

rural electrification and cost-effective supply of reliable electricity. In this thesis, the 

study of the effect of integrating biomass and photovoltaic generators for rural 

electrification will involve survey and modelling of rural households load profiles, 

investigation of the optimal combination of PV, biomass and battery energy systems 

for reliable supply of electricity and a power flow study of the impact of load 

aggregation on the operation of a regional grid. The studied location solar radiation 

and biomass availability data are used when selecting the optimal combination of 

components in the hybrid renewable energy system (HRES) design space.  

An occupancy-based stochastic load profile model is developed with the use of 

survey data on the number of bedrooms in a household, household population and 

classification, occupant’ activity schedule and appliance ownership. Analysis of 

simulated load profiles show that the studied location average daily energy 

consumption was 3.13 kWh. During solar radiation assessment, performance 

evaluation of meteorological parameters used for constructing solar radiation 

estimation models show that temperature is an important meteorological 

parameter that should be used to estimate studied location solar radiation. Whilst, 

the minimum required duration of measured data to estimate past solar radiation 

shows that 2 years of recent data is required to achieve R2 greater than 0.75, and 

more than 5 years of recent solar radiation data is required to achieve R2 greater 

than 0.9. Biomass availability assessment shows that the quantity of recoverable 

household and animal bio-waste in the studied location is limited. To reduce the 

quantity of outsourced bio-waste and minimize anaerobic digester volume, biogas 

generator is only used when energy demand is greater than 50% of its rated 

capacity. Study on how different combinations of PV, biogas generator and battery 

systems affect the optimal sizing of battery shows that an optimally designed HRES 

requires a much smaller battery capacity than when a biogas generator and battery 

or a PV and battery are integrated for rural electrification in the studied location. 

Techno-economic analysis of the HRES shows that for 0% loss of power supply 

probability (LPSP), the levelized cost of energy (LCOE) is $0.1657/kWh, but the 



v 

 

LCOE for a diesel alone energy system was $0.62/kWh. Despite the national grid 

unreliability, its 2019 residential customers reflective tariff (i.e., a tariff without 

subsidizes) for the studied location was $0.164/kWh. HRES analysis also shows that 

if the HRES LPSP is increased to 3.7%, its LCOE is reduced to $0.1623/kWh. So, for 

a LPSP of 3.7%, the HRES LCOE is less than the LCOE of the national grid. Power flow 

study of the effect of aggregating 5 regional loads show that load aggregation 

reduced the 5 regions peak load by 23%. Furthermore, power flow study of the 

regional grid shows that power losses minimization will be achieved when installed 

generators are not centralized but distributed in terms of the amount of apparent 

power drawn by each of the regional grid load buses. Overall, this study shows that 

integrated biomass and photovoltaic generators can be used for rural electrification 

because the HRES guarantees the supply of clean and sustainable electricity and its 

LCOE can compete with national grid LCOE. Meanwhile, future work will profit from 

the development of an electricity pricing plan that allows for the shifting of peak 

loads and a study of how the electricity pricing plan affects LCOE.  
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This chapter introduce the research works performed in this thesis. The chapter 

begins by presenting a background to the research, then the motivation for the 

research and a clear definition of the scope of the research. Next, the research aim 

and research objectives are presented. But before the research objectives are 

presented in this chapter, a series of un-answered research questions are presented. 

Finally, this chapter ends with an outline of the research focus of the remaining 

chapters. 

 

 

Energy is a vital instrument that enables sustainable economic prosperity and 

improves the standard of living of a nation. The desire for energy can be expressed 

by the continuous growth in world energy consumption. According to British 

Petroleum (BP) 2018 international energy outlook, global primary energy demand 

will increase from 13.276 billion tonnes of oil equivalent (btoe) in 2016 to 17.983 

btoe in 2040 [1]. Therefore, global primary energy demand increased at a rate of 

1.27% per annum (p.a.). The key energy demand drivers used to underpin projected 

growth in primary energy demand are energy demand trends data, population 

growth data, and global prosperity data [1]. Past and projected growth in primary 

energy demand is presented in Fig. 1.1. 
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Fig. 1.1. Global primary energy demand (billion toe) [1] 

Fig. 1.1 shows that the rise in global primary energy demand is linked to fast-

growing emerging economies increased demand for energy. By 2040, Asia Pacific 

countries (i.e., China, India and other emerging Asia countries) will account for two-

thirds of the growth in global primary energy demand [1]. This is because Asia 

Pacific countries primary energy demand increase by 57% between 2016 and 2040. 

Fig. 1.1 also shows that Organization for Economic Co-operation and Development 

(OECD) countries has a flat primary energy demand growth during the projected 

period. 

Non-OECD countries strong economic growth and the desire by these countries to 

improve their standard of living are responsible for the rapid growth in primary 

energy demand [1]. International Monetary Fund (IMF) economic growth chart 

shows that since the millennium, non-OECD countries have maintained a faster 

economic growth rate in comparison to the economic growth rate of the world and 

OECD economies [2]. Specifically, 2018 IMF report shows that the economic growth 

rate – as measured by the gross domestic product (GDP) – for non- OECD countries 
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is 4.9%, while the economic growth rate for the world and OECD countries are 3.9% 

and 2.5% respectively [2]. 

 

Electricity is the world fastest-growing form of end-use energy [1]. Electricity plays 

an important role in the development and industrialization of a country. As the 

world continues to electrify, the rapid increase in electricity generation (specially in 

developing countries) is motivated by the desire to supply electricity to growing 

demand and/or the desire to improve electricity access. BP 2018 international 

energy outlook reports that global electricity consumption will rise from 64942 

terawatt hour (TWh) in 2017 to 102507 TWh by 2040 [1]. The rise in electricity 

consumption is at a rate of 1.9% per annum (p.a.). Over this period, the growth in 

electricity demand will be three times more than the growth in other end-use energy 

demands [1].  

International energy agency (IEA) 2018 report shows that global electricity demand 

experienced a rapid growth in 2017 because global electricity demand grew by 3.1% 

or 780 terawatt hours (TWh) over the previous year [3]. IEA 2018 report also show 

that in 2017, global energy demand grew by 2.1%, the energy demand of non-OECD 

countries grew by 2.5% and the energy demand of OECD countries (with more 

matured infrastructure and relatively slow or declining population growth) grew by 

1.2% [3]. The higher growth rate recorded in 2017 for global electricity demand in 

comparison to global energy demand was because of the increased demand for 

electricity. Cleaner electricity generation resources such as renewable energy 

sources, natural gas, and nuclear power are expected to make substantial 

contribution in meeting the increase demand for electricity [1]. Past and projected 

share of generation resources that are used to supply global electricity is presented 

in Fig. 1.2. 
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Fig. 1.2. 1970 – 2040 global share of electricity generation resources [1]. 

Due to global environmental concerns and the desire to reduce global greenhouse 

gas (GHG) emissions, Fig. 1.2 shows that there will be more drastic shift towards the 

use of renewables for electricity generation. Over the projected period, half of the 

newly installed generators will be powered by renewables, therefore, global 

percentage use of renewables for electricity generation will increase from 7% in 

2016 to a quarter in 2040. 

It is evident from Fig. 1.2 that the increase in renewables will have the most impact 

on the usage of coal because in comparison to the previous 35 years where coal 

accounts for 40% of newly installed generators, coal will account for 13% of newly 

installed generators in the projected period [1]. The continuous rise experienced 

over the past 35 years in natural gas share will be affected by renewables usage 

during the projected period because natural gas share will flatten during this period.  

 

The pace of progress in universal electricity access has accelerated, resulting in the 

number of people without electricity access falling from 1.6 billion people in 2000 
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to about 1.1 billion for the first time in 2016, and with nearly 1.2 billion people 

having gained access since 2000 [4]. Despite the impact of growing world 

population, global desire to ensure access to affordable, reliable and modern energy 

for all by 2030 will generally be successful in most regions, due to the pace of 

progress in universal electricity access [4]. Between 2000 and 2016, global progress 

made and the progress made by some locations with high number of people without 

electricity is presented in Fig. 1.3.  

 

Fig. 1.3. Aggregates of electricity access, (a) Electrification access in the world and 
some developing nations/regions, (b) 2016 electricity access in urban and rural 
areas in the world and some developing nations/regions. Data source: [5] 

Trends in global electricity access collected from IEA database shows that significant 

progress has been made globally. For example, nearly 1.2 billion people have gained 

access to electricity between 2000 and 2016, out of which 870 million people gained 

access in developing Asia, with India alone accounting for 500 million of those that 

gained access [4]. As a result, many countries in developing Asia are on course in 

reaching universal electricity access by 2030, while India is on course in reaching 
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the global goal of having 100% electricity access by the early 2020s. However, 674 

million people of global population are expected to remain without electricity access 

in 2030 because of growing population, and sub-Saharan Africa (SSA) is where 90% 

of them will live [4]. It is worrying that SSA projected percentage contribution to the 

population without electricity access will increase from 50% in 2016 to 90% in 

2030. 

Meanwhile, electricity access rate is not low for all SSA countries because in 

countries such as Mauritius, Seychelles, Cape Verde and Gabon, national electricity 

access rate was more 90% as at 2016 [5]. Significant progress have also been made 

in improving the rate of electricity access by many SSA countries because between 

2000 and 2016, Fig. 1.3 shows that electricity access rate in SSA grew by 87%. 

Continuous growth in SSA electricity access rate has made its annual increase to 

outpace its fast growing population rate since 2014 [4]. Due to rapid growth in 

population, electricity access rate in many SSA countries is uneven and slow, hence, 

there were more people without electricity in 2016 (588 million people) than there 

were in 2000 (516 million people) [5]. The use of electricity access rate for 

comparing the electrification levels of countries might be a misleading because the 

number of people without electricity access in a country can be more than in another 

country despite having a higher electricity access rate than the other country. 

In Nigeria (this study country of focus), although the percentage of people with 

electricity access grew from 40% in 2000 to 61% in 2016, there are still more people 

without electricity in 2016 than there were in 2000 because Nigeria population 

grew from 122 million in 2000 to 190 million in 2016 [5]. Other challenges with 

Nigeria drive towards universal access for all is the poor quality of electricity supply 

to customers [6], and the uneven electricity distribution between Nigeria urban and 

rural areas. Whilst it is far from complete, Fig. 1.3 shows 2016 uneven electricity 

distribution between urban and rural areas in Nigeria. Low electricity access rate in 

rural areas is a global concern because 84% of the 1.06 billion people without 

electricity access in 2016 live in rural areas [4].  

The wide disparity between urban and rural areas electricity access rate is evident 

in many SSA countries. For example, 90% of Gabonese had electricity access in 2016, 
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but the percentage of urban and rural dwellers with electricity access were 97% and 

38% respectively [5]. Similarly, Fig. 1.3 shows that 61% of Nigerians had electricity 

access in 2016, but the percentage of urban and rural dwellers with electricity 

access were 86% and 34% respectively. Because rural areas are usually least 

electrified, research on rural electrification solutions can help achieve universal 

electricity access for all. 

 

Direct and indirect benefits of rural electrification spurs rural development because 

it creates an avenue for increase income generation, greater educational attainment, 

improve health services, higher quality of life, access to information, increased 

gender equality, and several other social welfare benefits required for sustainable 

economic and social development [7]–[15]. Daily benefits of rural electrification are 

evident in different sectors of life. In the agricultural sector, rural electrification 

directly spurs high productivity with the use of electric motors and pumps driven 

machines, and the indirect benefit of rural electrification includes the use of 

information received from television and radio to make informed planning decisions 

on weather conditions and crop prices. Despite the many benefits of rural 

electrification, the rate of rural electrification in developing countries is still slow 

[13]. Lack of commitment by many developing countries is often seen as responsible 

for the slow progress in rural electrification [16]. 

Regional crises such as development imbalance, excessive rural to urban migration 

and rapid failure of existing infrastructures, that arise from population growth can 

be mitigated by rural electrification, therefore, overloading of the already stressed 

electricity network can be avoided [17], [18]. Scaling up electricity access in 

developing economies is an enormous responsibility [16]. More so, it makes less 

business sense to supply electricity to a country’s poorest population. An 

understanding of the diverse challenges affecting rapid rural electrification is 

important for spurring rapid rural electrification growth in many developing 

countries.  
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Several factors have been reported as responsible for the slow progress in rural 

electrification. For example, Yadoo and Cruickshank [19] reported that there are 

usually limited financial investment on rural electrification because rural 

electrification projects often offer little or no market incentives to profit-seeking 

private companies. Some other barriers that limits rapid rural electrification include 

low population density, roughness of terrains, low load densities, low economic 

activities, irregular subsidies, poor performance on the part of contractors, little or 

no supervision, and procurement difficulties [9], [12], [13], [20]–[23]. These 

challenges can be grouped into technical, financial, institutional and governance 

barriers [24]. Meanwhile, different country-wide studies on rural electrification 

emphasise that there are no short-cut solutions, therefore, the ideal pathway for 

providing electricity services in rural areas involves the design of a well-structured 

local context-based support schemes that offers financial, training and advisory 

support at a micro-level, and offers broader level support, by ensuring that there is 

favourable policy environment, an effective regulatory mechanisms that considers 

diversity in local needs and wider institutional level subsidies is appropriate [13], 

[19], [25], [26]. 

Design of a localised rural electrification scheme is vital because it can enable energy 

system cost reduction, accurate load prediction, and the deployment of renewable 

energy technologies. For example, lessons from successful rural electrification 

programs show that optimal design and sizing of an energy system can reduce the 

energy system cost by 20-30% [27]. Therefore, technical strategy of a rural 

electrification program is important for the optimal design of an energy system 

because the total losses of an energy system influence its unit cost of energy. For 

example, World Bank (with a history of several successful planned, designed and 

commissioned rural electrification projects) have reported that technical related 

issues can make up to 50% of the total energy generated by a system to be lost; as 

was the experience in Albania and Rajasthan in India [11]. Typically, grid extension 

and off-grid systems are the two technical approaches for increasing the rate of 

electricity access in rural area. Also, the two design options for off-grid 

electrification are communal grids and stand-alone/individual microgeneration 

systems. The selection of the most suitable approach for rural electrification is 
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dependent on several factors such as the closeness of the rural area from the 

national grid, the surrounding terrain of the area, and load density [11], [28].  

Generally, grid extensions are recommended when the rural area has high load 

density, when it is close to the high voltage (HV) national transmission lines (Tx) 

and when its surrounding terrain is economically viable to extend the national grid 

lines [28]. Unlike grid extension, where an HV transmission line architecture is 

required, communal grid or small autonomous electricity network requires a low 

voltage (LV) power architecture to supply electricity that can be used for productive 

engagement. Furthermore, communal grid is recommended when there are clusters 

of loads, there is no nearby national grid lines and the surrounding terrain is not 

viable for national grid extension. Stand-alone microgeneration systems are small 

power off-grid systems, and are recommended for rural areas, where potential 

electricity customers are few, dispersed and their main electricity use is domestic 

lighting [28]. 

Despite the urge upfront investment of centralised energy systems, many 

developing countries selects grid extension as their preferred option for rural 

electrification, because centralised energy systems can offer a better economies of 

scale [29]. Therefore, off-grid systems are sometimes less appealing in many 

countries [30]. However, off-grid systems are the quickest approach to achieve 

United Nation’s Sustainable Energy for All (SE4ALL) initiative because of the 

challenges of electrify many remote areas by grid extension. Sometimes, off-grid 

systems compliment the national grid, by ensuing that in remote areas, electricity is 

available many years in advance and there is the existence of an energy customer 

base [11]. 

To spur rapid rural electrification, decentralised electricity infrastructures can use 

available renewable energy resources in a rural area to generate useable electricity. 

One of the advantages of a decentralised electricity infrastructures is that they can 

be interconnected. This implies that electrical load aggregation and local energy 

control can be performed on the network. Globally, for easy integration of 

decentralised technologies into existing centralized energy system, many 

governments have made urge investment so that centralized grid infrastructure are 
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retrofit into decentralized energy system, [31]. Meanwhile, in rural areas with 

unreliable electricity supply or no access to electricity, decentralized energy 

systems can compete technically and economically against centralized energy 

systems.  

 

Communal grid is a localised electricity infrastructure. In rural areas, it can be 

deployed because of its flexible design architecture. As a decentralised installation, 

communal grids generates electricity near customer load, therefore, it can spur the 

growth of rural areas economy, aggregation of loads, energy system reliability, 

environmental sustainability and mitigates electricity supply imbalance in a country 

[28].  

 

Typically, grid-extension electrification solutions are used for electrifying many 

countries rural areas but grid-extension electrification solutions will be less 

desirable when the cost of transmitting electricity to rural areas exceeds 

decentralised solutions [28]. Also, grid-extension electrification solutions are 

associated with a higher transmission and distribution (T&D) line losses, therefore, 

there is an increase in the unit of electricity. For instance, Kenya average cost for 

connecting a household to the grid is $1900 (USD), but the cost of connecting remote 

and sparsely populated areas to the grid is much higher [32]. Therefore, due to the 

high cost of transmitting electricity to remote and sparsely populated areas, 

communal grid can be a cost effective solution for rural areas electrification [33], 

[34]. 

Furthermore, communal grid system has comparative advantage over other 

decentralized technologies such as solar home systems (SHS), because their flexible 

architecture allows for load aggregation. Also, larger electrical network can be 

created by either integrating a communal gird and the national grid or integrating 

communal grids [14]. Therefore, there is an opportunity for the integrated grids to 

sell their excess generated electricity in a larger network and avoid less profitable 

electricity generation by buying electricity from the larger network. Apart from 
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buying and selling generated electricity in a larger network, electrical load 

aggregation in a larger network unlocks greater economies of scale and provide an 

opportunity for better management of generated electricity. Meanwhile, because of 

communal grid architectural flexibility, there can be an improvement in energy 

system security if the energy system is designed with the required functionality that 

allows it operate in islanded mode whenever it is interconnected [14]. So, the 

prevalent blackouts that occurs when electricity is supplied by an unreliable 

national grid can be mitigated by operating the decentralized energy system in 

islanded mode. 

 

In rural areas, national grid-quality electricity generated by communal grid energy 

systems can be applied for productive energy use or to drive sustainable 

development. However, pseudo-electricity generated by decentralized energy 

technologies such as SHS, cannot be applied to drive sustainable development. 

Because national grid-quality electricity has the potential to drive poverty 

alleviation and food self-sufficiency in rural areas, some developing countries like 

India, recommends the use of communal grid energy systems for rural 

electrification [8]. 

Report on lighting electrification experience show that SHS initiatives can be used 

to spur rapid lighting electrification of rural areas. For example, between 2012 and 

2016, a company called M-KOPA, electrified 300,000 homes in East Africa through 

the use of their small 8W SHS initiative [35]. The 8W SHS initiative was designed to 

supply electricity to LED lights, a cell phone charger, and a radio. However, 

electricity generated by the small SHS initiatives is limited, therefore, the pseudo-

electricity generated cannot be used to power productive engagements such as 

refrigeration, mills and food processing, sewing machines, and electric tools for 

carpentry and construction, that stimulate rural economies and enable poverty 

reduction [14]. Another advantage of grid-quality electricity generated by 

communal grid energy systems is that it helps to avert extreme customer 

dissatisfaction that would accompany decentralised energy installations in the 
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future when grid-quality electricity is supplied to a nearby location from the 

national grid [36].  

 

Globally, there is growing concern that human activities, especially burning fossil 

fuels, results in the increase of the level of carbon dioxide (CO2) and other 

greenhouse gas (GHG) in the atmosphere. Increasing the level of GHG emission leads 

to rising temperature of the Earth’s atmosphere, ocean, and land surface. Most of the 

GHG release from human activities are from the energy sector [37]. For example, it 

is reported that 2018 global energy-related CO2 emission was 1.7% higher than 

2017 global energy-related CO2 emission, therefore, reaching a historic high of 33.1 

giga tonnes (Gt) of CO2 [3]. The power sector was responsible for 67% of the CO2 

emitted in 2018 because there was an increase in the use of fossil fuels for electricity 

generation [3]. 

The amount of GHG emitted by developing countries is usually low when compared 

to developed countries, but if developing countries are to use fossil fuel-based 

solutions for supplying electricity to their growing energy demands, global 

environment concerns with climate change will be exacerbated by the continuous 

growth in developing countries energy demand [38]. Currently, developing 

countries are facing the greatest consequences of climate change because they are 

less prepared to combat the impact of climate change [14]. The use of communal 

grid energy systems for rural electrification can mitigate CO2 emission from 

centralized energy system, because the design architecture of communal grid 

energy systems allows the use of local renewable energy resources such as wind, 

solar, small hydropower and biomass systems. Consequently, the use of renewable 

energy technologies by communal grid energy systems provides an opportunity for 

the supply of environmentally friendly and grid-quality electricity for rural 

electrification.  

 

Nigeria is Africa most populous nation and the 7th most populous nation in the world 

[39]. The country is a developing nation with a rising population growth. In 2018, 
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the population of Nigeria was 195.9 million [6]. Based on current population growth 

rate, Nigeria is projected to move from the 7th most populous country in 2018 to the 

3rd most populous country by 2050 [40]. Nigeria population are spread across the 

country six geo-political zone or across the 36 states and federal capital territory of 

the country. A map showing Nigeria 36 states and federal capital territory is 

presented in Fig. 1.4.  

 

Fig. 1.4. Map of Nigeria showing 36 states and the Federal Capital Territory (FCT) 
[41] 

As earlier mentioned, there is fast growth in Nigeria population, but there has not 

been corresponding growth in developmental infrastructures like electricity 

generation. For instance, a study on the electricity consumption per capital of 21 

African countries shows that Nigeria with an electricity consumption per capital of 

164 kWh is at the lower end of the spectrum in Africa [42]. In rural areas where 

about 51% of the population live in 2017 [6], electricity consumption per capital will 

be lower because these areas of the country has much lower electricity assess rate 

[5].  
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Rapid electrification of rural areas through grid extension is less likely in Nigeria, 

because it is perhaps more techno-economically sensible for a national grid operator 

to channel most, if not all, of the available electricity to urban areas with high load 

density and greater economy potentials than to rural areas with difficult terrain and 

low demand density. Transmission energy losses during national grid extension will 

aggravate the pressure on the deplorable power network. It is a serious concern 

because Nigeria electricity transmission losses is high (i.e. a network transmission 

loss of 7.4% loss as compared to the benchmark of 2 – 6% for developing countries) 

[43]. Nigeria power network is also confronted by incessant energy system failures, 

and this is a critical operational challenge affecting the efficient supply of electricity 

from the national grid [43]. Beyond the incessant system failures, the growing gap 

between electricity generation capacity and demand, has increases the pressure on 

Nigeria power network. For example, over the past two decades, the national grid 

supplies unstable and epileptic electricity to household for less than 6 hours per 

daily [44].  

Currently, 85% of the total electricity generated in the national grid is from fossil 

fuel [43]. From an environmental perspective, electricity generation from unclean 

energy sources and extending the national grid to rural areas with no electricity 

access, will increase the amount of GHG emitted from the country power sector. So, 

if the national grid were to be extended to rural areas with no electricity access, it 

will be difficult to comply with international donors request that clean energy 

resources (with low CO2 emission) are used for rural electrification because the 

integration of renewable energy technologies into the national grid comes at a 

higher cost. 

Nigeria large population without access to electricity and/or low electricity 

consumption per capital, and the national grid deplorable state, shows that the 

country power sector is in a crisis. Research on the benefits of using alternative 

electrification solution for rapid rural electrification is necessary because the 

unreliable national grid is perhaps not an efficient way for rapid rural electrification 

in Nigeria. Off-grid energy systems are viable electrification options for rapid rural 

electrification, and they also allows for easy deployment of cleaner energy 
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technologies [14], [26], [45], [46]. As earlier mentioned, communal grid energy 

system is a more viable off-grid option for rural electrification than other off-grid 

energy systems because the national grid-quality electricity it supplies can be 

applied for productive energy use (i.e. beyond lighting) and to drive sustainable 

development. 

 

Rural electrification with renewable energy technologies is used to drive 

environment sustainability since rural areas of developing countries are least 

prepared to combat the challenges of climate change. Furthermore, financial 

incentives required to spur rapid rural electrification can be secured because many 

international donors prefer rural electrification with renewable energy 

technologies. Evidence from literature show that renewable energy technologies 

can be used to drive rural electrification because they can compete with 

conventional energy technologies [47]–[49]. To resolve Nigeria power sector crises 

and minimise the release of GHG emission, there is growing clamour for the 

deployment of renewable energy technologies into the country energy mix. 2016 

report on the roadmap to solving Nigeria’s power sector crises state that 

incremental growth in electricity capacity is achievable when all generated 

megawatts of electricity are efficiently harnessed and distributed to customers, then 

after, the push for steady supply of electricity, and finally the supply of 

uninterrupted electricity [50].  

In Nigeria, the agency responsible for the electrification of rural and unserved 

communities is called Nigerian Rural Electrification Agency (REA). To achieve 

incremental growth in electricity capacity, REA also recommends that all generated 

megawatts of electricity are efficiently harnessed and distributed to customers. Urge 

progress has been made by REA on the deployment of renewable energy 

technologies for rural electrification [51]. Furthermore, to provide electricity access 

to economic clusters such as markets, shopping complexes and 

agricultural/industrial clusters, REA has recently launched the energizing 

economies initiative (EEI) [51]. REA mainly emphasises the use of PV systems for 

electricity generation [51].  
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In literature, many authours support the use of renewable energy technologies for 

electricity generation. For example, Shaaban and Petinrin [52] recommended that 

renewable energy technologies should be deployed for the supply of reliable 

electricity to rural areas and to avoid the immenient collapse of the power network 

because the available fossil fuel used for national grid electricity generation is near 

depletion. Due to Nigeria rapid population growth, increase need for industrial 

growth and rising energy consumption levels, Agbongiarhuoyi [53] recommended 

that renewable energy technologies should be deployed into Nigeria energy mix in 

order to avoid the devastating environmental pollution and survive current 

economic realities.  

Despite clamour for increase deployment of renewable energy technologies, its 

integration into Nigeria energy mix is still in its nascent stage [53]. The reason for 

the slow deployment of renewable energy technologies is attributed to 

technological and economic drawbacks, as well as deep rooted policy inertia [52]–

[54]. Despite renewable energy technologies slow deployment, Nigeria renewable 

energy master plan provide the required assurance that federal government of 

Nigeria (FGN) is committed towards the deployment of solar, wind, hydro-power 

and biomass resources in the short, medium and long term [55], [56]. A brief 

assessment of Nigeria’s solar, hydro, wind and biomass resources are presented 

below: 

Nigeria lies within a high sunshine belt [57], [58]. Therefore, the deployment of PV 

energy systems has the potential of improving Nigeria energy security and 

reliability as well as enlarging Nigeria solar market. Several studies states that PV 

energy system is technically and economically viable energy technology for rural 

electrification [59]–[61]. Furthermore, authors such as Chakrabarti and Chakrabarti 

[62] and Moharil and Kulkarni [63] have argued that when the unit cost of national 

grid electricity is low, the deployment of off-grid PV energy system can be justified 

on the basis of its indirect benefits in the social, economic and environmental 

spheres. 
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Large hydropower systems account for 15% of Nigeria national grid generation 

capacity [43]. The current large hydropower system installed capacity in Nigeria can 

be increased by adequate mapping of available water resources into large and small 

hydropower system [64], [65]. Annual rainfall is about 3400mm depth in the south 

central shores of the Niger Delta, about 1400mm around the Plateau in the mid-belt 

region and about 500mm over the northern boundaries of the country [55]. 

Precipitation last over 8 months of the year in the southern areas, whereas at the 

extreme north annual rainfall duration can be less than 3 months. Small hydropower 

(SHP) has the potential of driving rapid rural electrification, but its deployment in 

Nigeria is limited because it is drought-sensitive, weather and season dependent, 

and requires site specific design [55]. Therefore, if SHP are deployed for rural 

electrification in Nigeria, it can only operate all year round in the southern and the 

south-eastern regions of Nigeria because their rivers and streams flows are 

perennial [55]. 

Nigeria wind speed is generally low. Peak wind speed for most locations in Nigeria 

occurs between April and August [57]. Nigeria annual wind resource is dependent 

to the rain-bearing south-western winds that blow strongly from the month April to 

the month of October and the dry and dusty north-east trade winds which blow 

strongly from the month of November to the month of March [55]. Because of 

Nigeria low wind speed, wind power is projected to contribute the least amount of 

renewable energy into Nigeria energy mix [57]. In Nigeria, the drawbacks with the 

deployment of wind power for rural electrification are wind power intermittency 

and the country low wind speed, therefore, all year electricity generation in many 

locations is either unlikely or very expensive [55]. 

Biomass energy resources includes fuelwood, animal wastes, agricultural residues, 

and energy crops [57]. Nigeria biomass resources assessment shows that biomass 

can be used to increase Nigeria electricity generation capacity and supply clean 

domestic cooking fuel [66], [67]. Large deposits of biomass resources are 

distributed across Nigeria different regions [68]. When the water content of bio-

waste is high, anaerobic digester is the most suitable technology for producing 

biogas [52]. For efficient anaerobic digestion, all necessary system inputs and 
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outputs such as feedstock (bio-waste) and digester waste (i.e. for fertilizer 

production) should be coordinated to avoid inefficient biogas production and the 

disruption of living things food supply chain. 

 

Most of the people without access to electricity live in rural areas. For example, 84% 

of the 1.06 billion people without electricity access in 2016 live in rural areas [4]. 

Low electricity access rate is usually experience in rural areas because they are the 

least electrified areas of developing countries. Therefore, development of rural 

electrification solutions is required to guarantee universal electricity access for all. 

In developing countries like Nigeria, alternative solution to national grid extension 

is required because the national grid is in a deplorable state and incessant blackout 

is experienced in the power network. Communal grid energy systems are attractive 

off-grid energy solutions because they can be used for supplying grid-quality 

electricity, the deployment of renewable energy technologies and the aggregation of 

load [14], [34], [36]. 

In literature, studies on the viability of renewable energy driven communal grid 

energy systems have been conducted [47]–[49], but the development of a stochastic 

load profile that is representative of the energy consumption behaviour of rural 

areas occupants was not existent, nor was the investigation of the impact of load 

aggregation on a communal or regional grid considered in these studies. So, it will 

be useful to develop a household occupancy demand model for rural areas, before 

calculating the minimum cost of supplying clean energy to rural households and 

studying the effect of load aggregation in a communal and regional grid. It is 

therefore hoped that outcomes from this research will contribute to on-going 

research geared towards the development of clean alternative solutions for rapid 

rural electrification. 

 

This research studies the optimal combination of PV, biomass and battery energy 

systems that guarantees reliable supply of electricity to rural households at 
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minimum system cost. To simulate the energy consumption pattern of rural 

households, a household survey that investigate occupants’ activity schedule is 

performed so that the effect of occupancy behaviour on energy consumption 

patterns can be predicted. In this research, high-resolution models are developed 

because of the stochastic nature of load profiles and solar radiation data. The effect 

of load aggregation on a communal grid and a regional grid is also investigated in 

this thesis. 

In this study, Nigeria is selected as the reference country. Although located within a 

high sunshine belt [57], [58], the amount of solar radiation that can be harnessed 

from different locations in Nigeria varies widely. Out of Nigeria 36 states and federal 

capital territory, research data collected from Edo state are used in this study, 

because Edo state is one of the states with the least solar radiation potentials in the 

country. Household occupancy and appliance ownership survey is carried out in 

Esan North-East local government area (LGA) of Edo state. Biomass availability is 

assessed by calculating the quantity of recoverable household and animal bio-waste 

in the studied location. Household and animal bio-waste were selected because they 

are usually disposed indiscriminately in rural areas. Therefore, the use of household 

and animal bio-waste for energy production will not disrupt living things food 

supply chain. Household and animal bio-waste has high moisture content, so, 

anaerobic digester is the most suitable technology for converting these bio-wastes 

into biogas [52].  

 

To study the effect of integrating biomass and photovoltaic generators for rural 

electrification, the aim of this research is the survey and modelling of households 

load profiles, investigation of the optimal combination of PV, biomass and battery 

energy systems for reliable supply of electricity and a power flow study of the 

impact of load aggregation on the operation of a regional grid.  

To formulate this thesis research objectives, relevant research questions were 

considered. For the research questions and research objectives presented below, 

the research questions align one-to-one with the research objectives. 
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i) What is Nigeria renewable energy potential and how does Nigeria energy 

policies influence the deployment of renewable energy technologies? 

ii) What is the energy consumption behaviour of rural areas? 

iii) What is the amount of solar radiation that can be received in the studied 

location when a PV panel is permanently fixed horizontally, permanently 

fixed at its optimal annual angle, or adjusted seasonally to its optimal angle? 

iv) What is the studied location biomass potential? 

v)  Can the integrated PV, biomass, and battery energy system LCOE compete 

with the LCOE of a diesel only energy system and the LCOE of the national 

grid? 

vi) What is the effect of load aggregated on a regional grid? 

 

i) An assessment of Nigeria renewable energy potential and evaluation of how 

Nigeria energy policies influence the deployment of renewable energy 

technologies. 

ii) Survey of rural household’s energy consumption patterns and development 

of a stochastic household load profile model. 

iii) Estimation of the studied location hourly global solar radiation data and 

evaluation of the minimum time span of measured meteorological dataset 

that is required to estimate the solar radiation of the studied location. 

iv) Assessment of the studied location biomass potential  

v) Investigation of the optimal size of PV, biogas generator and battery 

capacities that should be integrated in order to guarantee cost-effective 

supply of reliable electricity. 

vi) Study of the effect of load aggregated on a regional grid and evaluation of the 

best approach for siting generators in a regional grid in order to ensure 

power losses minimization. 
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Some of the specific contributions of this thesis can be summarized as: 

i) Survey and development of an occupancy-based stochastic load model. The 

developed load model can be used to simulate the load profiles of households 

when measured national time use data is not available in developing 

countries.  

ii) Evaluation of the minimum time span of measured meteorological dataset 

that is required to accurately estimate hourly global solar radiation.  

iii) Development of a power flow study model that can study the effect of load 

aggregated on a regional-grid and evaluate the best approach for siting 

generators in a regional grid in order to ensure power losses minimization.  

 

This thesis is divided into 8 chapters, and the thesis structure is such that it follows 

a normal step by step progression, from problem formulation to the presentation of 

research findings. 

Chapter 1 presents an introduction of the research work discussed in this thesis. It 

sets out with an overview of the background of the research problem, in order to 

provide a justification for the research. The chapter clearly articulates the problem 

and purpose statements, as well as the research questions that emanate from the 

research problem. This chapter also presents the research objectives and concludes 

with an outline of the remaining chapters in this thesis.  

Chapter 2 sets out with an overview of renewable energy potential in Nigeria, to 

ascertain renewable resource potential in supplying electrical demand beyond 

lighting. Also, it contains the review of the existing renewable energy potential and 

policies, in order to determine the driver and drawback of using renewable 

technologies in Nigeria’s energy mix. 

Chapter 3 build on Chapter 1 and Chapter 2 by providing a critical review of 

literature in relation to the research context and method used in this thesis. The 
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literature review covers the review of the different forms of hybrid renewable 

energy system configurations, the review of the general operating characteristic of 

PV technology and the different approaches for modelling solar radiation, the review 

of anaerobic digestion process and anaerobic digester design, the review of techno-

economic characterization of energy storage systems, the review of load profile 

modelling approaches, the review of different hybrid energy systems design 

indicators, and the review of the different hybrid energy system design and 

simulation optimization techniques. 

Chapter 4 build on Chapter 3 by presenting the methodology adopted in designing 

the hybrid energy sub-systems. This chapter also presents the methodology 

employed for generating some of the hybrid energy sub-system synthetic inputs 

such as load consumption input data, and solar radiation input data. Furthermore, 

boundary conditions, assumptions and limitations applied in the design of the 

hybrid energy system are also presented in this chapter. 

Chapter 5 the methodology for constructing a stochastic occupancy-based load 

profile model presented in Chapter 4 was applied. Therefore, the survey outcomes 

for household occupancy behaviour and appliance ownership, and the modelling 

outcomes for households and community load profiles were presented in this 

chapter. 

Chapter 6, assessment of the hourly global solar radiation that can be harnessed for 

photovoltaic application is performed. This involves a study to determine if there are 

mathematical expressions and meteorological parameters that should be 

considered when developing a new solar radiation estimation model. The duration 

of data to purchase from a weather station or the duration that an installed weather 

station should monitor data to guarantee accurate estimation of solar radiation is 

calculated. Assessment of the optimal angle to position panels for maximum solar 

radiation yield was also performed.  

In Chapter 7, the studied community daily biogas production is estimated. Then, the 

estimated daily biogas production, modelled community residential load profile in 

Chapter 5, and estimated hourly global solar radiation in Chapter 6 are to study how 
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an integrated PV, biomass and battery storage community project can compete 

economically against a diesel only system, and against a subsidized and unreliable 

national grid, as well as to study how the aggregation of communities’ residential 

loads affects the sizing and operation of a regional grid. 

Finally, Chapter 8 summarizes the work done in this thesis. Therefore, research 

outcomes from the study of Nigeria renewable energy market, survey of rural 

household’s energy consumption patterns, development of household load model, 

estimation of hourly global solar radiation, evaluation of the minimum time span of 

measured meteorological dataset required to estimate solar radiation, assessment 

of the studied location bio-waste potential, investigation of the optimal size of PV, 

biogas generator and battery capacities that should be integrated, study of the effect 

of load aggregated on a regional grid and evaluation of the best approach for siting 

generators in a regional grid were summarized in this chapter. Recommendations 

of future works to be carried out were also presented in this chapter. 
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In this chapter, Nigeria’s renewable energy potential is studied, and existing 

renewable energy policy is reviewed in order to determine the possibility of using 

renewable energy technologies to resolve existing energy crises in the country. In 

this chapter, the studied renewable energy technologies are selected based on the 

country renewable energy master plan.  

 

Globally, conventional technologies that burns fossil fuel are still commonly used for 

electricity generation because fossil fuel has high energy capacity and can easily be 

transported from one location to another [1], [3], [69]. However, the drawback to 

the continuous use of fossil fuel for electricity generation include its negative 

contribution to ozone depletion, acid rain and global warming [70], [71]. Renewable 

energy resources can be used to generate clean and affordable electricity, therefore, 

it can serve as a viable alternative to fossil fuel [69], [72]–[74]. For example, it is 

reported that over 17 countries generated more than 90% of their annual electricity 

consumption in 2017 from renewable energy technologies [75]. Studies have shown 

that the use of renewable energy technologies is a technically developed option 

[76]–[79]. Some other studies performed from a social, economic and 

environmental perspectives have also reported that the use of renewable energy 

technologies for electricity generation is a viable alternative to conventional 

technologies [73], [80], [81]. 

Some of the advantages of using renewable energy technologies for electricity 

generation is to guarantee energy security and promote economic advancement 

[74], to minimise fossil fuel running costs and conserve its finite fuel deposit [72], to 

develop a sustainable approach for meeting growing global energy demand [82], 

and to enable environmental sustainability [73]. Therefore, the favorable 

deployment of renewable energy technologies in Nigeria can be a clean and 

sustainable way of developing Nigeria energy sector. However, because current 
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trends in Nigeria population show that there is rapid increase in the country 

population growth and there are few installations of new technologies into the 

country national grid, existing crises in the country energy sector might not be 

resolved soon without a committed effort by all energy players.  

Nigeria rural areas are the most affected, with 65% of the people having no access 

to electricity in 2016 [5]. This does not suggest that Nigeria urban areas; with a 

higher percentage of electricity access, are exempted since electricity supply from 

the country national grid is very unreliable, that is electricity supplied from the 

national grid is characterized by long-duration of no electricity availability. For 

example, survey outcomes of a research carried out in the urban area of Ibadan, 

shows that over 50% of grid-connected households received less than 4 hours of 

electricity on a daily basis [83]. Because national grid-supplied electricity is 

unreliable, many persons use diesel generators to generate their electrical energy 

despite the high negative environmental and social impact that arises from fumes 

and noise produced during the operation of diesel generators. From an economic 

perspective, Nigerian government recent removal of subsidy from the sales of diesel 

fuel has made the use of diesel generator for electricity generation less desirable in 

the country because diesel generator users will have to pay for the high diesel fuel 

cost [84]. In fact, Ohijeagbon and Ajayi [85] reported that because of the high cost of 

purchasing diesel fuel, the levelized cost of energy of a diesel standalone systems is 

0.62 USD/kWh. 

 

The Federal Government of Nigeria (FGN) has identified the use of renewable 

energy technologies as a means of addressing Nigeria’s energy crises. Consequently, 

the renewable energy master plan (REMP) was developed in 2005 with set targets 

to drive the deployed of renewable energy technologies [55]. Table 2.1 outlines the 

proposed renewable power targets that are expected to contribute to overcoming 

Nigeria power shortage. 
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Table 2.1. Nigeria renewable power targets [56], [86]  

Resources Short term (MW) Medium term (MW) Long term (MW) 

  (2008) (2015) (2030) 

PV 5 120 36,750 

Wind 1 20 50 

Large Hydro 1930 5930 11,250 

Small Hydro 100 734 3,500 

Biomass 1 100 1,300 

Total 2,038 6,906 68,350 

As shown in Table 2.1 there is a renewable power target frame work in Nigeria, but 

actualization of renewable energy expectation has remained unfilled or slowly be 

met over the years based on international renewable energy agency (IRENA) 

renewable energy capacity statistics [87]. Therefore, this research will benefit from 

studying the renewable energy resources presented in Table 2.1 and from a review 

of Nigeria current renewable energy support system, since the progress in the 

country renewable energy system is slow when compared with the progress made 

by many countries. Reduction in manufacturing cost, technology improvements and 

the deployment of favourable policies are some of the factors that have spurred a 

fast pace increase in global renewable power generation capacity. 2011 – 2017 

global installed renewable power generation capacity is presented in Fig. 2.1. 

 

Fig. 2.1. Global renewable power generation capacity [87]  
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Current trends show that annual growth of about 8.3% was experienced in 2017, as 

global renewable power generation capacity increased by 167 GW and reached 

2,179 GW worldwide [87]. 

 

Biomass is a chemically biodegradable material with the characteristic of producing 

energy carriers, which can be transformed into electricity, heat or fuel. Bioenergy1 

is a versatile energy source because, in comparison to other energy sources, biomass 

can be converted into solid, liquid and gaseous fuels. Globally, biomass is the largest 

renewable contributor to total final energy consumption (TFEC) as well as the 4th 

largest primary energy source, providing nearly 13% of the final energy 

consumption in 2017 [75]. Traditional use of biomass in developing countries (for 

cooking and heating) accounts for almost 8% of the total, and modern use accounts 

for the remaining 5%. Specifically, modern use of bioenergy for electricity 

generation experienced an annual increase of 11% in 2017 [75]. Globally, Brazil, 

USA, China, India, and Germany are taking the lead in the use of bioenergy for 

electricity generation, with a combined share of about 53% of the 109,213 MW total 

generation capacity in 2017 [87]. Whilst African nations are not part of the leading 

nations in the use of bioenergy for power generation, however, substantial progress 

has been made in Ethiopia, South Africa, and Sudan, with a combined share of 38% 

within the region [87].  

In Nigeria, according to statistics on world bank development indicators, biomass 

accounts for above 80% of TFEC [6], but biomass consumption is mainly through 

traditional means. Specifically, for electricity generation, a 2018 report by the 

international renewable energy agency (IRENA) shows that bioenergy is currently 

not a part of Nigeria energy mix for grid power generation [87]. However, there is 

the possibility of harvesting significant amount of modern bioenergy from the 

 

 

1 Bioenergy is the energy derived from biofuels, which are fuels derived from biomass 
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country’s biomass energy resources which includes agricultural crop and residues, 

animal waste, forest waste and municipal solid waste [56], [86]. In terms of 

electricity generation, Nigeria renewable energy master plan offers the assurance 

that bioenergy has the potentials to contribute to improving Nigeria electricity 

sector. Therefore, the government of Nigeria believe that electricity generated from 

biomass can be as high as 13,140 GWh by 2035 [88]. 

 

Agricultural crop residues are organic matters, which are produced either by 

harvesting or processing of agricultural products. As an agrarian nation, Nigeria has 

the potential of generating substantial quantities of agricultural crop residues from 

their large arable land. According to statistics from World Bank development 

indicators, the country has 34 million hectares of arable land, which is about 48% of 

their agricultural land [6]. Despite the fact that crop residues are usually generated 

at different stages of a crop production cycle, residues are usually discarded, mostly 

by onsite burning or allowed to rot, with consequent release of greenhouse gases 

[89]. Within a household, some of the crop residues generated from crop processing 

activities are used as domestic fuel, especially in rural communities. For example, 

for direct burning in a traditional 3-stone scheme. While the remaining portion, 

which makes up a fraction of domestic municipal solid waste, are disposed at formal 

and informal dump sites [67]. Annual production quantity of different crops in 

Nigeria varies significantly from one crop to another, which means that the quantity 

of residue produced by different crops also varies. So, Food and Agriculture 

Organization (FAO) of the United Nations’ statistics on the production quantity (in 

kg) of Nigeria main crop residues between 2000 and 2016 are presented in Table 

2.2.
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Table 2.2. Production quantity (kg) of Nigeria main crops residues [90] 

Year Maize Millet Rice Sorghum Soybeans 

2000 43,958,883 73,044,550 67,544,402 1.25E+08 9,838,695 

2001 48,125,988 65,079,930 61,749,748 1.16E+08 9,923,136 

2002 50,311,670 69,207,068 64,411,625 1.23E+08 10,414,611 

2003 53,434,388 73,371,372 66,345,071 1.27E+08 10,852,511 

2004 56,188,023 78,265,880 70,669,303 1.32E+08 11,526,157 

2005 59,558,468 83,468,352 75,262,510 1.39E+08 12,013,027 

2006 69,409,450 89,651,855 83,353,435 1.44E+08 12,703,310 

2007 66,773,772 93,956,448 71,490,605 1.44E+08 12,580,781 

2008 72,321,253 104,453,187 77,862,609 1.43E+08 12,333,422 

2009 68,987,063 58,013,217 62,549,900 85,576,642 10,704,553 

2010 74,740,008 61,262,762 81,102,794 1.01E+08 6,503,661 

2011 89,221,865 16,943,648 79,069,980 87,721,445 11,366,929 

2012 89,101,876 15,439,523 96,776,652 93,221,397 13,546,978 

2013 87,122,360 11,545,946 93,346,750 92,978,118 12,538,579 

2014 1.02E+08 16,926,703 1.05E+08 1.07E+08 12,902,375 

2015 1.07E+08 17,962,134 1.08E+08 1.10E+08 12,315,847 

2016 1.05E+08 17,933,737 1.04E+08 1.08E+08 12,353,150 

The data presented in Table 2.2 shows that substantial crop residues are generated 

annually in Nigeria. With the year 2016 statistics taken from Table 2.2 as the base 

year, Table 2.3 summarise the energy potential of the base year crops residues 

Table 2.3. Energy potential of crops residues for 2016  

Crop 
Residue 
(103 kg) 

Residue 

type 
Moisture 
content (%) 

Energy content 

(MJkgdry_matter
−1 ) 

Energy  

potential (TJ) 

Maize 105,262a Stalk 15b 19.66b 1759 

Millet 17,934a Straw 15b 12.38b 189 

Rice 104,236a Straw 12.71b 16.02b 1458 

Sorghum 108,312a Straw 15b 12.38b 1140 

Soybeans 12,353a Straw 15b 12.38b 130 

Source: a [90] b [66]  where kgdry_matter
−1  is the mass of dry matter 
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From this empirical analysis in Table 2.3, the total estimated energy potential for 

these five crops residues is 4676 TJ. Currently, there is an increased use of 

agricultural residues such as bagasse (sugarcane residue) in cogeneration plants to 

increase electricity generation. Successful cases have been recorded in Asia (e.g. 

India) and in countries such as Mauritius, Kenya, and Ethiopia in Africa, where there 

is government supported policy [75]. Also, evidence from Brazil’s agricultural 

residues usage shows that out of the 49 TWh electricity generated from their 14.6 

GW total bioelectricity capacity in 2017, bagasse (sugarcane residue) accounts for 

nearly 80% of the biofuel employed [75]. Apart from bagasse, other agricultural 

residues have also been used in countries with substantial residue deposit. For 

example, a 1.8 MW plant fuelled with rice residue (rice husk) is being developed in 

the Ayeyarwady region of Myanmar [75]. The increased use of agricultural residues 

for electricity generation can generally be attributed to the fact that modern energy 

production has little or no threat to food security as well as the fact that bioenergy 

systems are becoming more cost competitive [89]. 

In Nigeria, agricultural residues fuelled power plants is currently not common, 

especially for rural household electrification, due to economic and technological 

constraints [91]. However, for industrial purpose, a 32 kW demonstration off-grid 

power plant fuelled by rice husk was established in Ebonyi State, by United Nation 

Industrial Organisation (UNIDO) in collaboration with the Ebonyi state government 

to supply electricity to a palm kernel processing outfit, information and 

communication technology (ICT) centre, local cottage health centre, and for street 

lighting [92]. Consequently, the Ebonyi state government intends to implement a 5 

MW power plant project worth $ 14.6 million (USD) in the state [92]. However, due 

to economic and technological bottlenecks the 5 MW plant is yet to be implemented. 

In view of the substantial deposit of agricultural residue in Nigeria coupled with the 

advances made worldwide in its use for power generation, it, therefore, means that 

research-based policies can reduce the economic and technological bottlenecks 

restraining the use of agricultural residues for power generation.
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Animals waste are obtained in the process of animal husbandry as well as during 

livestock consumption. In general, daily animal wastes are generated from animal 

dungs as well as from abattoirs in Nigeria. The quantity of manure produced from 

livestock usually depends on the type of feed consumed, the quality of the feed, and 

the weight of the animal [66]. The main livestock reared in Nigeria are cattle, pigs, 

goats, chicken, and sheep [54]. In rural areas of Nigeria, livestock rearing is one of 

the main sources of income, with most rural households having at least 3 different 

types of these common domesticated animals [67]. Food and Agriculture 

Organization (FAO) of the United Nations statistic for the quantity of livestock 

production in Nigeria since 2000 is presented in Fig. 2.2.  

 

Fig. 2.2. Nigeria livestock production. Data source: [90] 

It is evident from Fig. 2.2 that apart from chicken, there were noticeable increment 

in the population of the livestock between 2000 and 2016. For the chicken, 

noticeable incremental growth was also mainly experience except for the years 

between 2009 and 2013. Using 2016 as the reference year, the energy potential from 

Nigeria livestock can be estimated as follow: 
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For the reference year (2016), the population of livestock were 3,193,334 (cattle), 

212,335,000 (chicken), 25,167,866 (goat), 6,139,547 (pig), and 17,141,531 (sheep). 

The equivalent dry dung output in kilograms per head per day are 1.8 (cattle), 0.06 

(chicken), 0.4 (goat), 0.8 (pig), and 0.4 (sheep) [67]. While the corresponding caloric 

values for cattle, chicken, goat, pig and sheep are 18.5 GJt−1, 11.0 GJt−1, 14.0 GJt−1, 

11.0 GJt−1, and 14.0 GJt−1 respectively [67]. Thus, the total energy potentials for 

cattle, chicken, goat, pig and sheep for the reference year corresponds to 38.8 PJ, 

51.2 PJ, 51.4 PJ, 19.7 PJ and 35 PJ respectively. It is evident from the FAO statistics 

and the empirical analysis that Nigeria’s goat and chicken population of 25,167,866 

and 212,335,000 respectively, have greater potentials for producing manure. 

However, Cattle, generates the highest total energy per tonnes, therefore, greater 

energy potentials can be derived from cattle when they are reared in larger 

numbers.  

For modern energy generation purposes, the manure is best utilized by first 

converting it to a methane-rich fuel called biogas through anaerobic digestion [93], 

[94]. Anaerobic digestion is a matured technology and it is well suited for treating 

the organic matter from animals during energy production, despite animal waste 

high moisture content [94]. This is because it has the potential for manure 

stabilization, sludge reduction, odour control, and energy production [95]. In the 

anaerobic digestion process, biogas is produced alongside anaerobically organic 

manure. The manure produced is often very rich fertilizers and they can be applied 

to an agricultural field after drying [96], [97]. The biogas can either be used for 

household cooking or for generating heat and electricity in a combined heat and 

power (CHP) plant, as widely used in European countries. 

Anaerobic digestion is different from the traditional approach of burning livestock 

waste for heat energy production, a practice that is widely used in Nigeria [67]. 

Although traditional approach of drying and burning animal residues in locally 

constructed three-stone stoves for a direct source of energy is common, 

experimental evidence from comparative analysis of the traditional approach 

(direct burning) and anaerobic digestion, reveals that the traditional approach 

produces about 2.5 times lesser final heat energy than anaerobic digestion [98]. 
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Because of the high moisture content, he traditional approach of direct burning has 

very low conversion efficiency (10% to 20%) [89]. Therefore, efficient utilization of 

livestock waste through modern approaches is required.  

To optimise the amount of biogas produced in rural areas, centralised anaerobic 

digestion (CAD) scheme can be adopted [99], since it might not make techno-

economic sense for all households to have a digester. Thus, taking advantage of CAD 

scheme, because it has the potential benefits of technological improvement, effective 

management of the digester by more skilled personnel within or outside the 

community as well as the fact that large bio-digesters benefit from economies of 

scale [100], [101]. Also, CAD affords the opportunity for the digester to be operated 

as a corporative scheme [102], which reduce the capital expenses of a biogas plant 

investment as well as supply a large number of consumers at domestic level or to 

run a bigger generator for electricity production. 

In Nigeria rural areas, where households engage in animal husbandry that involves 

more than 3 different forms of domesticated animals [67], substantial waste can be 

generated from a corporative scheme operating CAD system. The corporative 

scheme is such that many farmers combine in feeding a single, large-scale digester 

with a single or varieties of substrates [99], [102]. The process of combining 

different feedstocks for the operation of CAD is known as a co-digestion process. 

Apart from wider reach to feedstock, co-digestion increases biogas yield in 

comparison with single digestion, by enhancing the biodegradation of long chain 

fatty acid, increasing the rate of organic loading, synergistically effecting micro-

organisms as well as improving buffer capacity and the balance of nutrients [96], 

[103], [104]. 

 

Forest biomass is another biomass resource for bioenergy generation. The most 

recent World Bank documentation on Nigeria development indicators reveals that, 

in 2015, Nigeria forest area covers 7.4% (69,930 km2) of the country’s land area [6]. 

Woods can be generated from diverse forest products (e.g. branches, stump, roots, 

low-grade and/or decayed wood, slashing etc.) as well as from different industrial 
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activities such as sawmilling, plywood production, and particleboard production. 

Typically, several forms of wood, such as fuelwood, industrial round wood, and 

sawn wood are used for bioenergy production. Fuelwood is the most used resource 

for cooking as well as the most widely used bioenergy resource in Nigeria [105], 

[106]. It is estimated that fuelwood is used by over 70% of Nigerians living in the 

rural areas and the country use more 50 million tonnes of fuelwood annually [105]. 

Mohammed et al. [91] argued that the high reliance on conventional biomass for 

energy stems from Nigeria’s energy crises, which has forced millions of people to 

depend directly on forest-based biomass thereby causing adverse effect on the 

ecosystem.  

Despite the use of forest-based biomass for bioenergy production, the worrying rate 

of deforestation arising from the excessive harvesting of fuelwood, coupled with 

illegal logging, mining, and seasonal fire is a major concern to the current levels of 

dissertation in the country, since reforestation is estimated at only about 10% of the 

deforestation rate [105]. This is because development indicators statistics reveals 

that the country’s forest area has reduced drastically from 172,340 km2 in 1990 to 

69,930 km2 in 2015 and specifically from 74,026 km2 in 2014 to 69,930 km2 in 2015 

[6], at a deforestation rate of 3.54% and 5.53% respectively. Thus, with the 

assumption that the country’s population remains the same, annual deforestation of 

forest area remains 4096 km2, and that there is a commitment to ensure annual 

reforestation of 10% of 2015 deforested area, Nigeria might have no forest area as 

early as 2035, If the current trends of deforestation persist. 

The high reliance on forest-based biomass is the major cause of the unsustainable 

rate of deforestation, therefore, more sustainable solutions should be provided in 

order to limit or address the current devastating effect of desertification on the 

country’s environment [107]. Similarly, Oyedepo [105] has argued that the sourcing 

of fuelwood for domestic and commercial uses is a major cause of desertification in 

the arid-zone states and erosion in the southern part of Nigeria. Therefore, to 

combat environmental degradation arising from the high reliance on conventional 

forest-based biomass for bioenergy generation, rapid reforestation and 

afforestation should be emphasized along with the push for the use of alternative 
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(modern) bioenergy generation technologies with little or no impact on the 

environment. 

 

Municipal solid waste (MSW) is another biomass resource, with the potential of 

generating a substantial amount of bioenergy from the country’s household, 

commercial, and industrial sectors. It is estimated that approximately 74,428.85 

tonnes of MSWs are generated in Nigeria daily, which has the potential of generating 

2.04 million m3 of biogas daily [108]. However, these solid wastes are disposed 

indiscriminately or in landfills, from which biogenic waste methane and CO2 are 

emitted uncontrollably into the atmosphere, as the biodegradable fraction of the 

waste decomposes anaerobically [91], [106], [108]. Renewable energy recovery 

technology options have become a sustainable mitigating solution in developed and 

developing economies for improving waste management and energy generation, as 

well as the potential of controlling anthropogenic gases emissions from MSW [75], 

[91].  

In China, for improved waste management, producing energy from waste is a 

common practice, and the deployment of waste-to-energy plants in other parts of 

Asia and in Africa is on the increase [75]. For example, in Addis Ababa, Ethiopia, 

construction of a waste-to-energy plant that will process 1,400 tonnes of waste per 

day and generate 185 GWh of electricity annually began in 2017 [75]. Specifically 

for electricity generation, in 2017, solid waste was used for generating 89,992 MW 

of electricity worldwide, which was 82.4% of the total bioenergy generating capacity 

for the same year [87]. Also, in 2017, global annual electricity generating capacity 

from solid waste increased by 5% [87]. Thus, accounting for 90.44% of the total 

increase in bioenergy generating capacity for the same year. 

In Nigeria, studies have shown that substantial energy can be generated from the 

solid waste, in resolving the country’s energy crises. For example, by using 0.53 

kgcap−1day−1 as the average MSW generation, Somorin et al. [109] showed that 

electricity generating potential from MSW in Nigeria is 3,053 MW. An amount that 

is about one-quarter of the total grid installed capacity of 12,522 MW [43]. The 
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electricity generating potential was calculated with the assumption that 

incineration with energy recovery was the preferred choice of thermal treatment 

[109]. Because of the low industrial activities in Nigeria, there is also high methane 

generating potential from the country’s highly biodegradable waste [110]. For 

instance, it is reported that 87% of Nigeria MSWs are biodegradable [66]. 

Mohammed et al. [91] showed that 913.44 Gg of methane is the estimated amount 

of methane that can be emitted from Nigeria major cities landfill sites and at a plant 

efficiency of 30%, 482.4 MW of electrical power can be generated from the landfill 

sites [91]. However, sustainable management and utilization of Nigeria MSWs that 

can boost the country’s bioenergy generation have been limited by drawbacks such 

as poor legal framework, unclear vision and strategies, and imbalance of 

corporation between the various entities of government [106], [108], [109]. 

 

Hydropower is the process of harnessing energy from falling water to create 

electricity. This is achieved by controlling the flow of water through a turbine, 

thereby rotating the turbine blades. The capacity of the hydropower plant is a 

function of the height of fall and the volume of water discharged. Thus, run-of-the-

river (ROR) are used for small-scale hydropower plants while for large-scale 

hydropower plants dams are constructed to confine a large volume of water within 

a barrage. Hydroelectric power is the largest and most used renewable resource for 

electricity generation by a wide margin. In 2017, 22 GW of hydropower was added 

worldwide, bringing total capacity to about 1,270 GW, thereby accounting for 58% 

of global renewable power capacity for 2017 [87]. China remained the perennial 

leader in commissioning new hydropower capacity, accounting for about 40% of 

new installations in 2017, and was followed by Brazil, India, Angola and Turkey [75], 

[87]. The commissioning of new hydropower systems in China and other emerging 

and/or developing economies will enable the increase in the utilization of global 

untapped hydropower technical potential. 

In developed countries, there is the extensive implementation of hydropower (over 

50% utilization of the technically feasible hydropower potential) in comparison to 
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emerging economies were about 20% to 30% of technically feasible hydropower 

potential has been utilized [111]. Therefore, there is a possibility for more utilization 

of hydropower technology in developing than in developed economies. Africa is an 

extreme case of the uneven development of hydropower technical potential, where 

only 7% of economically feasible hydropower potential has been developed (see Fig. 

2.3 ).  

 

Fig. 2.3. Regional development of hydropower as a percentage of hydropower 
potential [111] 

Therefore, since developed countries have already exploited most of their 

hydropower potential, emphasis on hydropower utilization can be directed towards 

emerging and/or developing countries with more hydropower utilization 

potentials. Nigeria is significantly endowed with hydropower resources from a 

topographical and hydrological perspective [112]–[114]. The development of 

hydropower systems has a great economic prospect in the country due to its high 

system efficiency, and long lifespan [91]. The rivers Niger and Benue and their 

several tributaries constitute the core of the Nigerian river system. River Niger is 

Africa third longest river and fifth largest in terms of discharge, and it flows across 
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several regions of the country ( such that about two-thirds of the country lies in its 

watershed) before it empties into the Atlantic in the Niger Delta region [44].  

Kainji, Jebba, and Shiroro power stations are Nigeria hydropower stations and they 

commenced operation in 1968, 1985 and 1900 respectively [91]. These stations 

account for the entire 1,930 MW of hydroelectric power connected to Nigeria 

national grid [42], [43], [115]. This constitutes about 15% of the country's total 

installed capacity of 12,522 MW [43]. However, based on assessments of the 

potential of the different sites across the Nigerian river basins for small and large-

scale hydropower, only a small fraction of the country’s potential for hydropower 

generation has been utilized [65], [112], [114]. According to energy commission of 

Nigeria (ECN), although the total exploitable hydropower potential for large and 

small systems are estimated at about 14,120 MW and 3,500 MW respectively, only 

about 13.5% and 1.7% of the estimated potential for large and small systems have 

been developed [57].  

The rate of development of hydropower system in Nigeria has been slow and this is 

due to challenges such as the lack of local research and development strategies, lack 

of technical knowledge for equipment manufacturing, difficulties in financing 

energy infrastructure, lack of intensive feasibility studies [91]. Although large 

hydropower systems have been mostly used in Nigeria because of its economies of 

scale, small hydropower system which is geographically dispersible systems can 

enable rapid electrification of rural areas [65], [113]. The deployment of small 

hydropower (SHP) for rural electrification offers the possibility for the supply of 

power for productive engage, which in turn spur development. Also, SHP has the 

potential limiting ecological and environmental footprint associated with large 

hydropower systems [116]. Whilst from a social and ecological perspective, SHP 

reduces operational issues such as those associated with large hydropower plants 

(e.g. loss of habitat by several plant and animal species, displacement of human 

population, soil erosion, a difference in oxygen levels and water warmth) that could 

potentially create an imbalance in the ecosystem. Furthermore, in comparison to 

large hydropower, SHP enables the reduced production of methane gas, a highly 

potent greenhouse gas [65], [113].
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Solar energy is the energy produced from the sun’s radiant light and heat energy. 

Thus, a substantial amount of solar energy strikes the surface of the earth crust on 

daily basis. However, the magnitude of solar energy received at a point on the earth 

surface (i.e. solar radiation), depends on parameters such as the sunshine duration, 

cloud cover index, geographical location of the receiving spot and atmospheric 

absorption or reflection behaviours [117]–[119]. Solar energy can be converted into 

thermal or electrical energy depending on the system of conversion available and 

the purpose of utilization. Examples of suitable technologies for converting solar 

energy to thermal or electrical energy includes solar thermal technologies, solar 

architectural system, and solar photovoltaic module. On a global scale, solar energy 

applications have increased over the past decade. Specifically, electricity generating 

solar photovoltaic (PV) capacity grew from about 8 GW in 2007 to 402 GW in 2017 

(see Fig. 2.4).  

 

Fig. 2.4. PV global capacity and annual additions [75] 

In 2017, the world witnesses a landmark capacity addition of 98 GW, increasing total 

capacity to nearly one-third of the capacity of 2016, which was more than the 

addition from any other type of power generating technology. In fact, more PV was 

installed in 2017 than the net capacity additions of fossil fuels and nuclear power 

combined [75]. The global acceptance of solar energy was again echoed by the fact 
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that by the end of 2017, every continent had installed at least 1 GW and at least 29 

countries had 1 GW or more of capacity [75]. Despite the significant market increase 

in new installations in Asia (about 75% of global additions), and the market 

doubling recorded in China and India to be specific, so, the leading countries for PV 

capacity per inhabitant in 2017 remains Germany, Japan, Belgium, Italy and 

Australia [75]. 

By Nigeria’s position (9.0820 °N, 8.6753 °E) near the equator, the country is in a high 

sunshine belt, with the potential of exploiting a substantial amount of solar energy. 

Nigeria irradiation values varies from north to south (See Fig. 2.5). Specifically, the 

north-eastern axis of Nigeria has the highest global irradiation potential, while the 

south-south has the lowest global irradiation potential.  

 

Fig. 2.5. Nigeria global horizontal irradiation [120] 

Nigeria solar radiation varies from one location to another. Based on long term 

average global horizontal irradiation (GHI) data, Fig. 2.5 shows that average annual 
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GHI ranges between 1534 and 2264 kWh m−2. Therefore, for a PV system of 1 kWP 

and a performance ratio1 of 0.75, electricity between 1150 and 1700 kWh kWP
−1 can 

be generated annually. Several factors such as PV panel temperature, inefficient 

system components, PV panel soiling, and PV panel shading affect the performance 

ratio (PR) of PV systems [121]–[124]. In this study, PR of 0.75 was selected because 

Nigeria has high temperature, the potential of accumulating dust on PV panels and 

the potential of using substandard system installation components such as wires 

and inverters. 

In literature, there are noticeable discrepancies in Nigeria reported GHI values. For 

example, Nigerian renewable energy master plan reported that Nigeria daily GHI is 

3.5 – 7.0 kWh m−2 day−1 [55], but in [119], it was reported that Nigeria daily GHI is 

3.5 – 6.5 kWh m−2 day−1, while Fig. 2.5 shows that Nigeria daily GHI is 4.2 – 6.2 

kWh m−2 day−1. These discrepancies also exist in the values reported for average 

daily GHI. For example, the average daily GHI for Nigeria was estimated in [84], 

[125] as 5.25 kWh m−2 day−1, while in [48] it was estimated as 5.75 

kWh m−2 day−1. Despite these discrepancies in reported GHI values, Nigeria has 

substantially high solar potential, and when adequately deployed, it can improve 

Nigeria’s deplorable state of electricity. So, for a PV system PR of 0.75, a solar panel 

efficiency of 17% and a daily averaged GHI of 4.2 kWh m−2 day−1, more than 4 times 

the current peak operational generation of 4811MW can be generated from 0.1% of 

Nigeria’s land area of 910,770 km2 [6].  

Although the commitment of all energy players (i.e. the government, policymakers, 

investors and researchers) is necessary for optimum utilization of solar energy 

technology, solar assessment of the energy potential of a location is important 

because it helps authorities make informed policy and investment decisions as well 

 

 

1 Performance ratio (PR) is a quality factor that compare the energy output of a power 
system with that of other systems by calculating the overall effect of energy losses on a 
system output. PR is independent of the system location and it is defined by the ratio 
between an energy system final yield and its reference yield. 
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as to underscore the techno-economic and environmental benefits of solar energy 

technology. In Nigeria were the government intends to disburse $225 million (USD) 

out of the $350 million (USD) electricity fund received from world bank in 2018 on 

solar technology related off-grid electricity project [126], [127], accurate 

assessment of the country solar radiation has the potential to spur increased access 

to rural electrification. Consequently, estimation of the studied rural community 

solar radiation will be carried out in Chapter 6 in order to ensure accurate design. 

 

Wind turbines convert the kinetic energy of moving air to electricity by rotating the 

turbine blades. Wind turbines are scalable and substantially space efficient. Thus, 

depending on the available wind speed, electricity is generated from a single turbine 

or from a group of turbines in a wind farm. Wind power had its third strongest year 

ever in 2017, with more than 52 GW added (29% of newly installed renewable 

power capacity in 2017, thus occupying the 2nd position behind PV) to the year total 

install capacity to 539 GW [75]. Specifically, European and India achieved wind 

power installation record year in 2017, while at least 13 countries – including Costa 

Rica, Nicaragua and Uruguay, and several countries in Europe – met 10% or more of 

their electricity consumption with wind power during 2017 [75].  

Onshore wind power has become one of the most competitive sources of new 

generation, with the levelized cost of energy (LCOE) of onshore wind power projects 

falling to as low as USD 0.03 per kWh in locations with excellent resources and low 

installation cost, while global weighted average was USD 0.06 per kWh [75], [128]. 

The margin between the minimum and maximum weighted LCOE attest to the tie 

between the cost viability of wind power and the potential wind resource that can 

be harvested from a location. Thus, the basis for carrying out wind resource 

assessment before implementing wind power generation. In Nigeria, a reasonable 

amount of work has been carried out on the characterization of wind speed and 

pattern in order to identify the best locations for wind energy conversion. Studies 

on the country's wind resource assessment can be classified into regional and 

countrywide investigations.  
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Ohunakin [129] carried out a wind assessment of 5 sites (Bauchi, Nguru, Maiduguri, 

Yola, and Potiskum) in the North-Eastern geopolitical zone of Nigeria using 

measured data by Nigerian meteorological agency (NiMet) at a height of 10m, for a 

period of 37 years. He reported that although the wind speeds for the 5 sites range 

from 3.18 to 7.04 ms−1, the average annual wind speed in Bauchi, Nguru, Maiduguri, 

Yola, and Potiskum were 4.83, 4.12 ms−1, 5.31 ms−1, 4.16 ms−1, and 4.80 ms−1 

respectively. In addition, Ohunakin [129] suggested that the probability of 

harvesting a wind speed of over 4 ms−1 all through a year in Maiduguri, Potiskum, 

Nguru, and Yola was 100%, 75%, 50%, and 50% respectively. While for Bauchi, the 

probability of harvesting over 4 ms−1 was reported as 80% and 100% in a dry and 

rainy season respectively. In a separate study within the same geopolitical zone, 

based on a NiMet measured data over a 15 years period, Ngene et al. [131] reported 

that the annual wind speed for Maiduguri was 5.3 ms−1. A wind speed value that 

corroborated Ohunakin [129] reported wind speed for Maiduguri. 

In Sokoto, North-Western geopolitical zone of Nigeria, Ngene et al. [131] reported 

that from their analysis of NiMet measured data over a period of 15 years, the annual 

average wind speed at a height of 10 m was 7.2 ms−1. For the same region, Ohunakin 

[132] studied seasonal variation in wind speed data recorded by NiMet over a period 

of 37 years, and reported that the average annual wind speed for Gusau, katsina, 

Kaduna and Kano were 6.093 ms−1, 7.446 ms−1, 5.274 ms−1 and 7.767 ms−1 

respectively. Despite noticeable seasonal variation in the studied locations wind 

speed data, Ohunakin [132] stated that wind turbines installed at a height of 10 m 

can guarantee an all year electricity generation in Katsina and Kano, but in Gasau, 

wind turbines installed at a height slightly greater than 10 m guarantees an all year 

electricity generation, while in Kaduna, wind turbines installed at a height of 10 m 

can only guarantee occasional supply of electricity in some seasons of a year.  

Wind speed assessment of 5 sites in North-Central geopolitical zone of Nigeria was 

carried by Adaramola et al. [133] based on data recorded by NiMet over a period of 

37 years, and concluded that the annual average wind speed for these sites (Bida, 

Ilorin, Lokoja, Makurdi, and Minna) were 2.75 ms−1, 4.39 ms−1, 3.16 ms−1, 4.57 

ms−1 and 4.29 ms−1 respectively. Ngene et al. [131] corroborated the research of 
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Adaramola et al. [133] when they reported that the average wind speed for Bida is 

2.6 ms−1. In this geopolitical zone, the wind speed of Jos (Nigeria Plateau region) 

was studied at an elevation of 10 m by Ohunakin and Akinnawonu [134] and Ajayi 

et al. [135]. Whilst Ohunakin and Akinnawonu [134] stated that the average annual 

wind speed for Jos was 8.6 ms−1, Ajayi et al. [135] stated that the average annual 

wind speed for Jos ranges between 6.7 ms−1 and 11.8 ms−1. 

In South-Eastern geopolitical zone of Nigeria, Oriaku et al. [136] investigated data 

recorded by Statistics Department of National Root Crops Research Institute 

(NRCRI) over a period of 10 years, at a height of 10 m for Umudike, and reported 

that the average wind speed for Umudike was 2.31 ms−1, with a 98% chance of 

obtaining a 2.0 ms−1 hourly wind speed. By investigating the same data measured 

by NRCRI over a period of 10 years, Asiegbu and Iwuoha [137] corroborated the 

findings of Oriaku et al. [136], when they reported that the average wind speed for 

Umudike at a height of 10 m is 2 ms−1. Wind speed assessment of Owerri an Onitsha 

in South-Eastern Nigeria was performed by Oyedepo et al. [138]. By analysing data 

collected by NiMet at a height of 10m over a 24 years period, Oyedepo et al. [138] 

reported that the annual average wind speeds at Owerri and Onitsha were 3.36 

ms−1 and 3.59 ms−1 respectively.  

Amoo [139] carried wind assessment of Abeokuta and Ijebu Ode, South-Western 

geopolitical zone of Nigeria, and reported from the analysis of NiMet collected data 

over a period of 37 years that the average wind speed for Abeokuta and Ijebu Ode 

were 2.54 ms−1 and 3.44 ms−1 respectively. Similarly, Ajayi et al. [140] 

corroborated the findings of Amoo [139] by reporting that the average wind speed 

for Abeokuta and Ijebu Ode at an elevation of 10m were 2.5 ms−1 and 3.4 ms−1 

respectively. In Akure, South-West Nigeria, based on analysis of data recorded by 

NiMet at a height of 10m over a period of 11 years (1999 – 2009), Okeniyi et al. [141] 

reported that the annual average wind speed for Akure was 2.7 ms−1. Metrological 

data collected by Statistics Department of International Institute of Tropical 

Agriculture (IITA) at a height of 10 m over a period of 10 years (1995 – 2004) in 

Ibadan was investigated by Fadare [142], and he reported that the annual average 

wind speeds at Ibadan were 2.75 ms−1.  
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In Calabar, South-Southern Nigeria, Na et al. [143] presented data recorded by NiMet 

at a height of 10m over a period of 4 years and reported that the annual average 

wind speed in Calabar was 3.2 ms−1. The neighbouring city of Uyo, Ohunakin [144] 

investigated data recorded by NiMet at a height of 10m over a period of 21 years 

(1986 – 2007) and reported that the average wind speed for Uyo was 3.17 ms−1. 

Within the same region, Adaramola et al. [133] reported that the annual average 

wind speed in Warri was 3.08 ms−1 while Ngene et al. [131] reported that the annual 

average wind speed in Benin was 3.2 ms−1. Nationally, the annual wind speed 

regime at an elevation of 10 m above the ground is reported to have a mean wind 

speed value of 5.88 ms−1, 4.34 ms−1, 4.00 ms−1, 3.16 ms−1, 3.50 ms−1 and 3.00 ms−1 

in the country’s North-East, North-West, North-Central, South-East, South-West and 

South-South region respectively [112]. 

It is evident from the literature review that there are noticeable discrepancies in the 

measurement duration of data used to estimate Nigeria wind speed, and this can 

lead to misleading presentation of national estimated wind speed data [112]. To 

avoid misleading presentation of estimated wind speed, a normalised graphical 

representation of estimated wind speed regime in Nigeria is presented in Fig. 2.6.  

 

Fig. 2.6. Wind speed (𝐦𝐬−𝟏) regime in Nigeria locations [112] 
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Brimmo et al. [112] calculated the normalised wind speed data in Fig. 2.6 by 

applying weights that were based on the measurement duration of data used to 

estimate wind speed. Meanwhile, an update to Fig. 2.6 might be required in future 

studies because NiMet measured dataset are mainly used for estimating Nigeria 

wind speed. The challenge with NiMet measured wind speed dataset is that its wind 

speed dataset can be less accurate because NiMet measured wind speed synoptically 

at a very low frequency, i.e., a couple readings a day, with a cup-generator 

anemometer [134]. Although this claim was refuted by the work of Adaramola et al 

[145] who presented hourly wind speed data from the same source, it is possible 

that the frequency of measurement of wind speed in a NiMet weather station varies 

across its 43 stations [112].  

Based on international electrotechnical commission (IEC) standards for classifying 

the wind regime, evidence from literature show that Nigeria wind regime is 

classified as low in the south and moderate in the north; with peak values found in 

the north-western and plateau part of the country. Despite the possibility of 

moderate wind regime locations to generate substantial amount of energy, the pace 

of development of wind energy system in moderate wind regime location has been 

slow [91], [147]. Meanwhile, terrain features such as tall buildings and up-rise 

infrastructures can impede the flow of wind into a wind farm and then limit the 

power capacity of the wind turbine [146]. So, it is perhaps more profiting to deploy 

wind technology for rural electrification in locations with moderate wind regimes 

because tall buildings and up-rise infrastructures are not common features of a rural 

areas. 

Unlike developed and emerging economies, such Germany, USA, UK and China that 

are actively promoting and developing electricity generation from wind energy [75], 

[87], the few visible wind power project in the country includes a 5 kW and power 

system installed in Sayya Gidan-Gada (Sokoto state) and a 0.75 kW power system 

installed in Danjuwa (Sokoto state), while about 1 kW of wind power system is 

installed in Bauchi (Kedada) and Katsina (Goronyo) for water pumping [91], [148]. 

On a larger scale, a pilot scale wind farm with a generating capacity of 10 MW that 

was conceptualised in 2007 is still under construction in Katsina state [112], [148]. 



 
 

- 47 - 

 

Currently, Nigeria government is determined to deliver the project by the last 

quarter of 2019 [149]. Whilst it is hoped that at the completion and operation of the 

pilot scale wind farm would encourage the development of wind power technology 

in locations with moderate wind energy generating potentials, there are 

fundamental challenges restricting the penetration of wind power into the country’s 

energy mix. Some of these challenges include low financing, lack of awareness and 

encouragement to embrace wind technologies and technical capacities [147], [148]. 

However, it expected that increased financing as well as more specific 

developmental policies and regulations, that is flexible, and research-driven would 

assist in addressing some of the mentioned challenges. 

 

Nigeria renewable energy resource assessment in Section 2.2 has shown that 

renewable energy resources have the potential to resolve the rising environmental 

challenges as well as the country’s energy crises. To enhance the deployment of 

renewable energy into Nigeria’s energy mix, a national renewable energy 

masterplan (REMP) has been developed since 2005 [55]. To reduce the high initial 

cost of investment associated with renewables, the 2005 REMP was revised and a 

new REMP draft that covered economic and financial incentives that would 

stimulate renewable energy deployment was proposed in November 2012 [56]. 

Unfortunately, the targets, supportive and regulatory policies proffered in the new 

REMP is not yet binding as the new REMP draft still requires to be approved by the 

National assembly and signed into law by the Executive Government. However, a 

National Energy Policy called National Renewable Energy and Energy Efficiency 

Policy (NREEEP), with the aim of adopting renewable energy technologies and 

energy efficiency best practices in Nigeria was developed in 2014 [57] and was 

approved by the country Federal Executive Council (FEC) in 2015. 

Nigeria is not lacking energy policies and implementation strategies, as several 

energy policies and implementation strategies to spur rapid renewable energy 

deployment have been developed over time [88], [150]. However, these policies 

have either not connected with the issues limiting the deployment of renewable 
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energy technologies into the country’s energy mix or lack sufficient implementation 

regulations [151], [152], thereby failing to develop an action plan that will stimulate 

renewable energy deployment. For example, the government keeps offering 

subsidies to fossil fuel rather than discouraging fossil-fuel driven technologies as 

means of penalizing fossil-fuel negative externalities, as well as the high-risks stigma 

and high initial capital cost attached to renewable energy investments by financial 

institution, makes the deployment of clean technologies in a free market driven by 

demand and supply impossible.  

On a more specific perspective note, the short-coming in government’s financial 

commitment towards NREEEP document was highlighted by Ozoegwu et al. [153]. 

They argued that although NREEEP initiated strategies for supporting investment in 

renewable energy, the policy document lacked obligatory quantitative figures of 

government commitment in the policy [153]. Consequently, as an off-shoot of the 

poorly framed energy policies and implementation strategies, deployment of 

renewable energy technologies in Nigeria have been stymied by financial 

constraints, organizational and managerial weaknesses, lack of technological 

capabilities, and adverse political and economic contextual factors [91], [147]. 

Therefore, well-tailored renewable energy policy will be required to drive 

renewable energy deployment into the country energy mix. 

In countries with rapid renewable energy deployment, the growths are simulated 

by well-tailored national renewable energy policy or support systems, with a clearly 

defined financial and regulatory obligation from the government [75]. The different 

support systems provided to renewable energy-sourced electricity (RES-E) 

worldwide can be classified mainly as a price-based system (feed-in system) and 

quantity-based system (quota system). The difference between these two support 

systems is that the price-based system set the price of RES-E unit and thus leave the 

determination of the RES-E quantity to the market, while the quantity-based system 

set an obligation upon consumers or utilities to consume/generate to a certain 

amount of RES-E, leaving the determination of its price to the market [75]. Thus, the 

quantity-based system appears to be more compatible with the liberalisation of the 

electricity market. Although the support system adopted by the different national 
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and sub-national government are usually motivated by political and economic 

needs, the feed-in systems seem to have encouraged higher RES-E deployment and 

technology diversity than quota system [154]. The reason while feed-in system 

encourages higher RES-E deployment can be explained by the perceived belief that 

it offers safer investment, better predictability, and a more stable policy framework, 

as well as lower projection transaction costs. 

Evidence from the European market has shown that a feed-in system has proven to 

have the highest impact in promoting solar technology in Germany and Italy in 

particular [119]. In fact, Schallenberg-Rodriguez [154] reported that amongst 

member states of the European Union, countries with the higher efficiency and 

deployment status tendency adopts the feed-in system. However, a quota system is 

also a successful support system based on the level of renewable energy penetration 

in countries such as USA, UK, Belgium, and Australia that employs the quota system 

as their main support system. For example, USA with a renewable energy capacity 

of 229,913 MW is the second highest worldwide [87]. Also, Belgium and Australia 

are the 3rd and 5th leading countries for PV capacity per inhabitant [75].  

The choice of a support system is not always restricted to either feed-in system and 

quota system as different countries such as US, UK Canada, China, and India have 

integrated both the feed-in system and quota system to differentiate among RES-E 

technologies or size [155]. In 2010, the UK introduced a feed-in tariff (FIT) system 

for small-scale renewable energy producers (up to 5 MW). Lessons from India’s with 

a co-existing support system shows that beyond the support system nomenclature, 

well-tailored legislation and government policy, that emphasise renewable 

purchase obligation to obligated entities is vital in enhancing renewable energy 

development [75]. Therefore, to spur rapid renewable energy deployment in 

Nigeria’s abysmal energy system, a co-existing support system that can stimulate 

rapid rural electrification as well as enable the actualisation of the on-going 

liberalisation of the electricity market.  

To help the government develop relevant renewable purchase obligation in rural 

areas, this study through subsequent chapters will contribute to the on-going 
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discourse by studying what is the expected LCOE in areas with the least solar 

potential. The choice of PV is based on its substantial availability across all region in 

the country as well as the fact that PV systems can leverage on the government 

financial commitment and policy direction. Currently, PV is receiving the most of 

government commitment towards renewable energy technologies development. 

For example, based on Nigeria renewable power target (see Table 2.1), the projected 

installed capacity for PV by 2030 is 36,750 MW, a capacity that accounts for 54% of 

the total projected renewable electricity supply by 2030. Again, in securing approval 

of a $350 million (USD) loan from World Bank to boost the country’s clean energy 

infrastructure, the government emphasised that $225 million (USD) out of the $350 

million (USD) electricity fund received from world bank in 2018, will be disbursed 

on solar technology related off-grid electricity project [126], [127].  

In pursuing a country-wide PV electrification scheme, the cost of PV electrification 

is expected to vary, since the lower the solar resource potential, the less competitive 

a PV system becomes. So, for a location with a lower solar radiation potential, the 

use of integrated PV and battery system to supply reliable electricity might not be a 

viable economic option. For example, in south-southern Nigeria, with the least solar 

energy potential (see Fig. 2.5), to pursue 100% solar energy driven renewable 

energy technology for rural electrification, the integration of PV and battery with 

non-intermittent generation technology such as biopower for bio-waste, will 

possibly compete better and reduce the amount of un-met load in the distributed 

network. The conversion of bio-waste into biopower (through anaerobic digestion) 

has the potential to foster corporation amongst rural dwellers and in turn, secure 

commitment since the rural dwellers can benefit from the electricity generated and 

the fertilizer that could be produced from the digestate. 

 

Nigeria pursuit of rapid rural electrification with 100% renewable energy 

technology (mainly solar) can be achieved based on the resource potentials 

highlighted in Section 2.2. However, before the design of solar power technology, 

further assessment study of the solar radiation potential in any reference location is 
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vital. Assessment of solar radiation potential is vital in Nigeria because there is 

discrepancy in literature on Nigeria solar radiation potentials. Also, in regions with 

least solar energy potential, the use of PV and battery system for reliable supply of 

power to electrical load beyond lighting is less competitive and less desirable from 

an economic perspective. Therefore, integration of PV system without renewable 

energy technologies might be useful in these areas. 

Improved energy security and community participation might be achieved by 

integrating anaerobic digester and biogas generator (non-intermittent power 

system) with the PV and battery system, but the performance of the integrated 

system will be dependent on several factors such as the load profile of the 

community, RE resource availability, unit cost of system components, and the 

energy system configuration. Therefore, a detailed study will be required to assess 

how well the newly integrated renewable energy system will compete from a 

techno-economic perspective since it might be misleading to determine the 

performance of the hybrid system based on intuition (spot diagnosis). So, the next 

chapter presents a review of the literature on PV technology and solar radiation 

estimation models, biogas energy generation and anaerobic digester, energy storage 

systems, electrical load models and hybrid energy system design metrics The 

literature review in Chapter 3 is vital because it is expected to further articulate the 

research problem and provide justification approaches adopted in the design 

methodology chapter (Chapter 4) and the subsequent results chapters (Chapter 5 to 

Chapter 7).
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In Chapter 1, an integrated photovoltaic (PV) and biomass energy system was 

proposed as a sustainable means of supplying reliable electricity beyond lighting to 

a rural community. Whilst in Chapter 2, a background study of Nigeria renewable 

energy potential, policies and implementation strategies was performed. Therefore, 

in this chapter literature review of different HRES configurations, HRES 

components, load profile models and approaches that can be used for the optimal 

sizing of HRES will be carried out. Outcomes from the review of literature are 

expected to serve as justification for the design methodology defined in Chapter 4, 

and implement in Chapters 5, Chapter 6, and Chapter 7. 

 

As mentioned in Section 1.6, single source generation and hybrid sources generation 

are the two renewable energy generating options for off-grid electrification. A 

hybrid renewable energy system (HRES) can serve as a viable generating option for 

rural electrification when renewable energy resources are optimally integrated. 

HRES has the potential of overcoming single source renewable energy systems 

challenges such as; the high cost of energy, system inefficiency, and energy 

insecurity [156]–[158]. Recently, the possibility of developing HRES with a high 

energy system efficiency and an increase system flexibility is higher because of 

current development in power converter technology [159]–[164].  

Despite the several advantages of HRES, its design is more complex because it 

requires careful analysis to avoid over-sizing of system components. For example, it 

is more complex to calculate the total annualized capital, maintenance, replacement 

and fuel cost of a HRES than a single source energy system. HRES design complexity 

can also be attributed to the challenges of carrying out resource assessment of its 

energy sources and deciding on the best combination of energy system components 

that will guarantee reliable supply of electricity at minimum cost. 
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Renewable energy technologies power outputs are either alternative current (AC) 

or direct current (DC) outputs. Therefore, the optimal combination of renewable 

energy technologies is vital in minimizing mismatch between the supply and the 

load. Whenever energy storage systems (ESSs) are integrated into HRES, the 

configuration of the HRES is important in ensuring an optimal supply of AC load as 

well as the effective charging of the DC battery storage. The 3 main configurations 

of HRES are DC-coupled, AC-coupled and hybrid-coupled HRES configuration [165]–

[167]. 

 

In DC-coupled HRES configuration of an off-grid, renewable energy technologies and 

storage are connected to the AC load with the aid of a DC bus. A DC/DC power 

converter is used to connect DC renewable energy technologies and battery storage 

to the DC bus while an AC/DC power converter is used to connect AC renewable 

energy technologies to the DC bus. Hence, the expected AC load to be met is supplied 

from the DC bus through a DC/AC converter [166], [167]. A schematic 

representation of a DC-coupled HRES configuration option for an off-grid 

application is presented in Fig. 3.1. 

 

Fig. 3.1. DC-coupled HRES configuration [168]–[171] 
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Some of the advantages of this configuration option include reducing systems 

integration complexities as well as the avoidance of power quality issues, such as 

harmonics and reactive power [166], [167]. The main drawbacks include the 

possibility of the total blackout that would arise in the event of the loss of the DC/AC 

converter and the reduction of overall system efficiency as a result of the conversion 

of AC generators power outputs to DC power before re-converting to AC power to 

supply AC load. However, the issue of total blackout due to failure of DC/AC 

converter can be mitigated by connecting several DC/AC converters in parallel 

[167], [172], but this will lead to an increase in the total system cost, the system 

complexity, and the area occupied [167]. 

 

The architecture of AC-coupled HRES configuration option for off-grid renewable 

energy application is such that renewable energy technologies and storage are 

connected to the integrated communal AC load with the aid of an AC bus. A DC/AC 

power converter is used to connect DC renewable energy technologies and battery 

storage to the AC bus while an AC/AC power converter is used to connect AC 

renewable energy technologies to the AC bus. Hence, period AC loads are met by the 

power supplied to the AC bus [166], [167]. A schematic representation of an AC-

coupled configuration option for an off-grid application is presented in Fig. 3.2. 

 

Fig. 3.2. AC-coupled HRES configuration [173]–[175] 
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This HRES configuration option has been employed for optimal sizing of HRES 

components in the literature [173]–[175]. This configuration option guarantees 

improved energy security in comparison to the DC-coupled configuration option 

because of the direct connection of the load to the AC bus. However, the complexity 

of synchronizing the power generated from renewable energy resources with the 

AC bus as well as power quality issues, such as harmonics and reactive power are 

some of the drawbacks of this HRES configuration option [165]–[167].  

 

Hybrid-coupled configuration option for off-grid renewable energy application has 

both a DC bus and an AC bus in its architecture. A bi-directional converter is used to 

link the DC bus to the AC bus. DC renewable energy technologies and battery storage 

are connected to the DC bus through a DC/DC converter while AC renewable energy 

technologies and the AC loads are connected to the AC bus directly or through an 

AC/AC converter when necessary [176]–[181]. A schematic representation of a 

hybrid-coupled configuration option for an off-grid application is presented in Fig. 

3.3. 

 

Fig. 3.3. Hybrid-coupled energy systems configuration [176]–[181] 

Hybrid-coupled configuration option enables improve system efficiency in 

comparison to the DC and AC coupled configurations [166], [167] since this 

configuration option offers the possibility of connecting AC energy system and DC 
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energy system separately, so, unnecessary energy conversion is avoid. Therefore, it 

results in the reduction in energy conversion losses and the unit cost of energy. In 

terms of the control and energy management of this configuration option, it is the 

most complex option [165], [166]. However, the complexity in hybrid-coupled 

energy systems configuration can be minimized by the recent development in power 

converter technology [159]–[162]. In this study, the hybrid-coupled configuration 

option is selected as the HRES configuration. Therefore, DC renewable energy 

technology, AC renewable energy technology, and energy storage system in Fig. 3.3 

will be PV, Biogas generator, and battery respectively. 

 

As earlier mentioned, PV, biomass generator and battery are the main HRES 

components. Because the effect of integrating HRES in locations with lower solar 

radiation potential is studied here, biomass generator is used to reduce the effect 

that PV intermittent energy supply has on the HRES energy security and to prevent 

excessive battery charge and discharge. This is because the excessive use of the 

battery lead to an increase in energy losses and a reduction in the life span of the 

battery. Therefore, whenever the PV system is unavailable, the biogas generator is 

used to supply the load, while the battery is only used for peak power shaving. 

Furthermore, the local collection of biowaste can encourage the direct participation 

of the community in biogas energy production.  

To calculate the minimal cost of energy generation, a design space search is 

performed to determine the optimal combination of generator capacities. The HRES 

design space can be compared to a 2-D graph. Therefore, “x,y” coordinates in the 

design space represents combinations of PV and biogas generator capacities. The 

peak load is used to estimate the maximum capacity of the PV and the biogas 

generator (i.e. maximum x-axis and y-axis values of the HRES design space). The 

area of the design space whereby combinations of PV and biogas generator, can 

reliably supply the load is the feasible region. While the area of the design space 

whereby combinations of PV and biogas generator cannot reliably supply the load 

is the infeasible region.  
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In the feasible region, the optimal combination of PV and biogas generator is the 

combination with the lowest unit cost of energy. Because energy mismatch arises 

from the variability in solar irradiance and in load profile, the estimation of the 

battery optimal capacity can reduce over-sizing of PV and biogas generator in the 

feasible region. Hence, the optimal battery energy capacity is estimated from the 

maximum cumulative energy deficit between the energy generated and the load 

profile. In the sections of this chapter, literature review is performed on HRES 

components design and operation, load profile models and different modelling 

approaches. 

 

PV are semiconducting materials that convert sunlight into electrical energy. The PV 

system generated electrical energy is dependent on the photo-electric effect of the 

PV material, and on the amount of photons/incident radiations that is received by 

the PV material [117], [182]–[185].  

 

PV semiconductor materials are designed in the form of a p-n junction. Whenever 

incident photons are absorbed by the semiconductor material, electron-hole pairs 

are generated, therefore, when these materials are connected in a closed circuit, the 

excited electrons (electric current) flows through the circuit [117], [183], [184]. The 

electrical output of a PV system is dependent on the design characteristics of the PV 

material/technology. Some of the electrical parameters used by manufacturers to 

define the characteristics of a PV system are presented in Table 3.1. 
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Table 3.1. Definition of PV system electrical parameters [117], [184], [186] 

PV parameters PV parameters definition 

Efficiency, η 
It is defined as the ratio of the energy output from the solar cell to 
the input energy from the sun. So, it is a measure of the percentage 
of received solar energy that a PV panel converts into electricity. 

Open-circuit 
voltage, VOC VOC 

It is defined as the maximum voltage supplied at no-load or no-
current. It’s due to cell junction bias by the light-generating current 

Short-circuit 
current, ISC 

It is defined as PV module supply current when the module voltage 
is zero or short-circuited. Unlike many other electrical generators, 
PV module can be short-circuited. 

Voltage at 
maximum power 
point, VMPP 

It is defined as the PV module voltage for maximum power supply 
or the ideal voltage to generate maximum power 

Current at 
maximum power 
point, IMPP 

It is defined as the PV module current for maximum power supply 
or the ideal current to generate maximum power 

Power at 
maximum power 
point, PMPP 

It is defined as the point in which the highest power can be achieved 
on the PV module I-V characteristic curve or the point whereby the 
PV module can supply maximum power to the load. 

Fill factor, FF 
It is the ratio of the maximum power point power (PMPP) to the 
power obtained by multiplying open-circuit voltage by the short-
circuit current 

Current-voltage (I-V) characteristic curve of a PV module can be used to illustrate 

short-circuit current (I𝑆𝐶), open-circuit voltage (VOC), current at maximum power 

point (IMPP), voltage at maximum power point (VMPP), and power at maximum power 

point (PMPP) of a PV module. For example, from Canadian solar manufactured CS6U-

355 poly crystalline silicon module datasheet [187], the PV module ISC, VOC, IMPP, 

VMPP, and PMPP values are shown in its I-V characteristic curve in Fig. 3.4.  
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Fig. 3.4. CS6U-355 poly crystalline silicon module I-V curve [187]  

The performance characteristics of a PV module I-V characteristic curve are 

measured under standard test conditions (i.e. a cell temperature of 25°𝐶 and an 

irradiance of 1000 Wm−2 at an air mass of 1.5 spectra) [186]. Therefore, the power 

output of a PV panel is dependent on the irradiance received by the PV panel (see 

Fig. 3.4) and on the operating temperature of the PV panel. Fig. 3.4 shows that the 

fill factor defines the rectangularity of the I-V curve because it is the ratio of the 

product of the current and voltage at the maximum power point to the product of 

the short-circuit current and the open-circuit voltage. The fill factor of the PV 

module in Fig. 3.4 was 0.79. The power at maximum power point (PMPP or Pmax) is 

the maximum power a PV panel supply to a load for a given irradiance. So, the energy 

generated by a PV module varies from a zero value to a maximum value, because 

energy generated is dependent on PV module efficiency, PV module area, and on the 

available radiance [185], [186].  

A PV module comprises of several PV cells. Typically, PV cells are connected in series 

within a PV module because the output voltage of a single PV cell is usually too small 
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for meaningful energy application [186]. Similarly, to increase the electricity 

generated from a PV system, the next PV system hierarchy (design) involves the 

aggregation of PV modules into a PV array as shown in Fig. 3.5.  

 

Fig. 3.5. PV system hierarchy 

There are different generations of PV materials, and the performance characteristics 

of the different generations of PV materials have improved over the years. Recent 

progress in PV research and applications has been reported in [188]. Under 

standard test condition (STC), performance characteristics of PV modules which are 

recently manufactured by different generations of PV materials is presented in 

Table 3.2.  

Table 3.2.PV module characteristics at STC [188] 

Module classification  η (%) A (cm−2) VOC (V) ISC (A)  FF (%) 

Crystalline silicon  24.4±0.5 13177da 79.5 5.04 80.1 

Multi-crystalline silicon 19.9±0.4 15143ap 78.87 4.795 79.5 

GaAs thin film 25.1±0.8 866.45ap 11.08 2.303 85.3 

CIGS thin film 19.2±0.5 841ap 48 0.456 73.7 

CdTe thin film 18.6±0.5  7038.8da 110.6 1.533 74.2 

Amorphous silicon 12.3±0.3 14322t 280.1 0.902 69.9 

Perovskite 11.6±0.4 802da 23.79 0.577 68.0 

Organic 8.7±0.3 802da 17.47 0.569 70.4 
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Abbreviations: η – nominal efficiency; A – Area; VOC – open circuit voltage; ISC – short 

circuit current; FF – fill factor; t1- total area; ap2- aperture area; da3- designated 

illumination area; GaAs – gallium arsenide; CIGS – copper indium gallium selenide; 

and CdTe – cadmium telluride.  

The thermal properties of the different generations of PV materials are different, so, 

their operating temperature affects the electrical efficiency of PV panels [185]. The 

nominal operating cell temperature (NOCT) of a PV module is usually specified on a 

PV module datasheet. NOCT is defined as the temperature of the PV panel when it is 

subjected to a solar radiation of 800 Wm−2, air mass of 1.5 spectra, wind speed of 1 

ms−1, ambient temperature of 20℃, and to a no-load operation (i.e. open circuited) 

[117], [184]. Consequently, the operating temperature of a PV panel is dependent on 

several factors, such as ambient temperature, local wind speed, solar radiation, 

glazing cover transmittance, and plate absorptance [117], [185], [189].  

Apart from PV module NOCT, other temperature related characteristics of a PV 

module that are specified in the datasheet of a PV module include temperature 

coefficient of Pmax in %°𝐶−1 the temperature coefficient of VOC in %°𝐶−1, and 

temperature coefficient of ISC in %°𝐶−1. Meanwhile, because Nigeria is a tropical 

country (hot climatic condition), temperature coefficient of Pmax can be used 

determine the impact of temperature on the maximum power output from a PV 

module. Power losses whenever the ambient temperature (℃) is more than PV 

module reference temperature (25℃) [117], [119], [175], [190], [191]. The amount 

of power losses is also dependent on the PV material because temperature 

coefficient of Pmax varies amongst the different generations of PV materials.

 

 

1 Total area is the projected area of the module and this includes the frame area. 

2 Aperture area is the portion of the module total area that takes into account essential 
components such as active materials, and interconnections. Thus, during testing, 
illumination is restricted to this portion of the total area. 

3 Designated illumination area refers to the portion of the module total area, where 
electricity is generated. Therefore, the contacting components are excluded from this area. 
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During the design and evaluation of solar energy technologies, solar radiation data 

is an important input that is required to assess the solar energy potential of the 

studied location. Because of the movement of the earth and the chaotic nature of the 

atmosphere, measurement of solar radiation is a complex process. So, solar 

radiation is measured by satellite image processing or by group measuring 

instruments such as pyranometer or pyrheliometer [192], [193]. Typically, 

measured solar radiation data are not available for many locations in developing 

countries like Nigeria because the measurement and analysis of solar radiation data 

is a tedious and costly exercise [192], [193]. So, in these locations with no ground 

measured solar radiation data, an alternative approach is to estimate the global 

solar radiation data empirically from long-term measured meteorological 

parameters [192]–[195]. 

Several solar radiation estimation models have been developed in the literature 

[193], [196], [197]. Developed solar radiation estimation models can be classified 

based on [195]:  

• Output (global, beam or diffuse radiation) 

•  Input(s) (meteorological data, climatological data or other radiation 

components) 

• Time scale (daily, monthly average daily, hourly, monthly average hourly or even 

minutely basis)  

• Time coverage (all-year or seasonal)  

• Spatial coverage (site-dependent or global model) 

• Methodology (stochastic or time-series modelling)  

• Approach (physical, semi-physical or empirical) 

•  Surface inclination (horizontal, tilted or tracking surfaces)  

• Type of sky (all sky or clear sky conditions)  

• Algorithm used (statistical analysis or machine-learning algorithms).  

Specifically, the input parameters for estimating solar radiation can be categorized 

into [193], [194]:  
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• Astronomical parameters (e.g. solar constant, earth-sun distance, solar 

declination, and hour angle) 

• Geographical parameters (latitude, longitude, and elevation of the site) 

• Geometric parameters (e.g. azimuth angle of the surface, tilt angle of the surface, 

sun elevation angle, sun azimuth angle) 

• Physical parameters (e.g. scattering of air molecules, water vapour content, the 

scattering of dust and other atmospheric constituents such as O2, N2, CO2, O, etc.) 

• Meteorological parameters (e.g. extra-terrestrial solar radiation, sunshine 

duration, ambient temperature, precipitation, relative humidity, effects of 

cloudiness, soil temperature, evaporation, the reflection of the environs). 

The accuracy of the estimated solar radiation data is dependent on the accuracy and 

influence of the estimating parameter(s) employed on the global solar radiation 

since the range of estimation error amongst the different estimation parameters 

varies from one parameter to another [192]. Sunshine duration is the most 

commonly used parameter for estimating global solar radiation [193]. The first 

sunshine duration model for estimating solar radiation was proposed in [198]. In 

this model, the ratio between actual daily horizontal surface global solar radiation 

(Hg) and clear day horizontal surface global solar radiation (H𝑐) was linearly 

correlated to the sunshine fraction (SF). Meanwhile, because of the uncertainty in 

the definition of a clear day, the original correlation developed in [198], was 

modified by replacing the clear day global solar radiation term with horizontal 

surface extra-terrestrial global solar irradiation (Ho).  

Over the years, several authors have also estimated global solar radiation for 

different location by refitted the modified Angstrom model since Angstrom 

coefficients vary significantly with respect to the location and type of climates  [192], 

[194], [195]. Furthermore, to enhance the accuracy of the modified Angstrom model, 

authors have proposed different mathematical expressions (such as quadratic, 

cubic, square root, logarithmic, exponential, and power expressions) to correlate the 

actual daily global horizontal irradiation (Hg) with the horizontal extra-terrestrial 

irradiation (Ho) [194]. Similarly, more complex artificial intelligent techniques such 
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as artificial neural network [199]–[202], fuzzy logic [203]–[205], and support vector 

machine [204], [206]–[208] have also been proposed for estimating solar radiation. 

However, evidence from the error estimation study by Zhang et al. [192] reveals that 

the more complex modelling techniques such as artificial neural network, did not 

show sufficient improvement in comparison to some empirical models but they 

argued that the rate of error of a model increases with respect to the shortness of 

the model life span. Zhang et al. [192] also stated that although artificial intelligence 

techniques have become popular in recent years, there is still the need for careful 

examination of their practical effectiveness and superiority in estimating solar 

radiation.  

For Nigeria, several solar radiation estimation models exist in the literature that are 

either derived with the use of empirical or artificial intelligent technique. Some of 

the empirically derived models for estimating global solar radiation in Nigeria 

include: the modification of Hargreaves and Sammani [209] model to estimate the 

solar radiation of Ibadan [210]. In another study, Kolebaje et al. [211] derived an 

empirical model to estimate the solar radiation of Ikeja and Port-Harcourt by 

correlating global solar radiation with relative humidity and temperature. A multi-

variant parameters solar radiation model that can be applied across Nigeria was 

developed in [212]. Another nation-wide estimation model was proposed by [213] 

by incorporating Garcia model into Angstrom-Prescott model, and the newly 

proposed model offered better performance accuracy compared with Garcia model 

and Angstrom-Prescott model.  

Also, examples of artificial intelligent models developed for estimating global solar 

radiation of localities in Nigeria include: an artificial neural network (ANN) model 

that utilizes sunshine hours, maximum temperature, cloud cover, and relative 

humility daily data to estimate the global solar radiation for Makurdi was proposed 

in [214]. By using adaptive neuro-fuzzy interference approach, Olatomiwa et al. 

[215] derived an artificial intelligence model for estimating the global solar 

radiation of Iseyin. In an another study by the authors, an artificial intelligence 

model that hybridized support vector machine and firefly algorithm was developed 

to estimate the global solar radiation of Iseyin, Maiduguri, and Jos [216]. The 
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hybridized artificial intelligent model was found to offer better performance 

accuracy than both artificial neural network and genetic programme modelling 

techniques. In summary, both empirical and artificial intelligence techniques are 

acceptable approaches for estimating the solar radiation of a location without 

measured solar radiation data. However, when long term meteorological 

parameters are available, the prefer approach for estimating a location solar 

radiation is the empirical estimation technique because the more complex artificial 

intelligence estimation techniques could not guarantee lesser estimation error for a 

study where long term meteorological parameters was available [192].  

Meanwhile, even though solar radiation estimation models are derived from 

meteorological dataset, it is very difficult to determine the rationale and influence 

that measured meteorological parameter(s) have on solar radiation estimation 

models. Also, empirical and artificial intelligence solar radiation estimation models 

for Nigeria are often derived to estimate horizontal surface global solar radiation, 

therefore, these Nigeria derived models might not be suitable to estimate the global 

solar radiation received by a PV panel at an inclined surface. However, solar 

radiation estimation models are not limited to the estimation of horizontal surface 

global solar radiation because many models have been developed for other countries 

to estimate inclined surface global solar radiation [217]–[219]. Despite the fact that 

Nigeria meteorological agency weather stations do not measure diffuse solar 

radiation; which is required by most estimation models to estimate inclined surface 

global solar radiation [220]–[228], in Chapter 4 Olmo et al. [229] estimation model 

which does require diffuse solar radiation data to estimate inclined surface global 

solar radiation is used. An alternative approach is to estimate the diffuse solar 

radiation of the location but most of the estimation models include numerical 

definitions with numerous coefficients, which are mainly valid for a location [230]. 

However, the alternative approach in this study desirable here because it is a more 

complex approach and it requires the use of measured diffuse solar radiation data; 

which is un-available for the location, to derive the modelling coefficients and to 

evaluate the most suitable diffuse solar radiation estimation model for the location. 
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Biogas electricity generation is a 2-stage conversion process. The first conversion 

stage involves the conversion of bio-waste into biogas, while the second conversion 

stage involves the conversion of biogas into electrical energy, with the use of a 

biogas generator. During the conversion of biogas into electrical energy, the 

operation of the biogas generator at full loading condition is essential for the optimal 

operation of the biogas generator [231]–[233] as well as to guarantee healthy 

engine operation and long engine life. This is because the operation of a generator 

at lower load ratio over a long duration of time can lead to exhaust manifold slobber 

or wet stacking [234].  

Bio-waste can be converted into biogas by either a biochemical conversion 

technique or by a thermo-chemical conversion technique [235]. For organic waste 

with high moisture content, biochemical conversion technique is a more suitable 

option for the production of biogas [235]–[237]. The amount of biogas produced is 

dependent on the degradability of the organic waste or the microbial activities 

within the digester [235], [238], [239]. Meanwhile, the design and operation of an 

anaerobic digester for biogas production is dependent on several factors [238], 

[239].  

 

Anaerobic digestion is an environmentally friendly technique used for producing 

biogas that can help to cut down both waste and greenhouse gas emission. 

Anaerobic digestion (AD) is the biological decomposition (fermentation) of organic 

materials by a consortium of microorganisms in the absence of oxygen [240], [241]. 

Anaerobic digestion occurs in a well-controlled enclosure called digester. Biogas (i.e. 

combination of mainly methane and CO2) and digestate (i.e., fibrous end product 

that can serve as a bio-fertilizer) are two main output from an anaerobic digester 

[238], [239]. Whilst, little amount of other gases and trace elements such as 

nitrogen, hydrogen, hydrogen sulfide, ammonia, and water vapour are also 

produced [238]. The biochemical reactions for AD are similar to that of landfill gas, 

but the composition of the produced biogas from AD process is such that there are 
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higher methane composition (50 - 80%) than carbon dioxide (CO2) composition (30 

– 50%) [238], [241], [242]. Typically, the composition of methane (i.e. the actual 

energy constituent in biogas) and CO2 in the produced biogas is dependent on the 

type of feedstock fed to the digester and on the digester operating conditions [238]. 

Anaerobic digestion is currently been used for wide range of applications such as 

the treatment of animals and crop residues, as well as for other industrial and 

commercial waste [241], [243]. In fact, anaerobic digestion has great potential for 

organic waste reduction, biomass energy recovery, as well as for biofuel and bio-

energy production [241], [242]. The process of converting organic matter into 

biogas by microorganisms is achieved through a sequence of conversion phases or 

anaerobic digestion food chain. The conversion phases is carried out in series, such 

that the end products of one phase become the substrate for another phase [244]. 

Because of the dependence of one digestion phase on digestion another, the rate of 

metabolism at each digestion phase is vital for maintaining the stability of the AD 

process and for optimal biogas production [244], [245].  

The four fundamental phases for anaerobic conversion of organic waste into biogas 

are hydrolysis, acidogenesis (combination of hydrolysis and acidogenesis is also 

called fermentation), acetogenesis and methanogenesis [246]–[248]. In the 

hydrolysis phase, complex degradable matters such as proteins, lipids, and organic 

complex carbohydrates (polysaccharides) are hydrolysed and converted into the 

simple or soluble organic substance or monomers such as fatty acids, 

monosaccharides, sugar, amino acids, and alcohols [235], [238]. End-products such 

as acids and simple carbohydrates from the hydrolysis phase are further broken-

down in the acidogenesis phase into hydrogen, carbon dioxide, and simple acids 

[235]. During the acetogenesis, alcohols and volatile fatty acids (VFAs) are 

anaerobically oxidized by hydrogen-producing acetogenic bacteria into acetate, H2, 

and CO2. Acetate can also be formed from H2, and CO2 by hydrogen-oxidizing 

acetogenic bacteria known as homoacetogens [240], [249]. Hydrogen (H2), CO2, and 

acetate are vital for methane formation [235]. 
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In the methanogenesis phase, a consortium of methanogens is responsible for 

methane formation. These methanogens are categorized broadly into acetate-

utilizing (aceticlastic) methanogens and hydrogen-utilizing (hydrogenotrophic) 

methanogens, and acetogens [235]. Aceticlastic methanogens produce methane and 

CO2 whenever their respective methyl and carboxyl groups act upon acetate. 

Hydrogen-utilizing methanogens produce methane by using CO2 and hydrogen as 

an electron acceptor and donor, respectively [235], [238]. 

 

Although the process of anaerobic digestion has been in existence for several 

centuries, but as years went by, several breakthroughs such as the discovery of 

methane, establishment of the chemical constituent of methane, the use of biogas 

for heating and lighting, and the design and operation of different configuration of 

digesters for biogas production were achieved [238], [241], [250]. Apart from more 

complex and technically advance digesters such as anaerobic contact reactor, up-

flow anaerobic sludge blanket reactor, fluidized bed reactor, and anaerobic filters, 

the most efficient form of conventional digesters are fixed dome, floating drum and 

plug flow digester [238], [251], [252]. These 3 forms of conventional digesters are 

mainly used by developing countries [251]. 

Conventional anaerobic digestion system usually comprises of a mixing tank, gas 

holder, inlet pipe, outlet pipe, gas pipeline, and outlet tank [238], [252], [253]. 

Typically, organic waste is mixed in a tank before it is fed into a anaerobic digester 

for microbial activities [252], [253]. During the mixing of organic waste, water is 

added so that a homogenous slurry can be formed from the mixture of organic 

waste. The homogenous slurry flows through the inlet pipe to the digester tank. In 

the digester tank (i.e. anaerobic reactor chamber), the slurry is retained for several 

days (i.e. hydraulic retention time) to undergo microbial digestion [238], [239], 

[251]. On completion of the digestion process, digestate is discharged from the 

chamber through the outlet pipe into the outlet tank and the solid effluent in the 

outlet can be used as fertilizer. While, biogas produced from the digestion process 
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goes into the gas holder of the digester before it is supplied through the biogas 

pipeline to be burnt as fuel for electricity generation.  

The fixed dome digesters are constructed underground. Some of the advantages of 

fixed dome digesters include low initial design cost, long lifespan, space-saving, low 

maintenance, no moving or rusting parts [250], [251], [254]. The drawbacks of fixed 

dome digester include: the need for highly skilled workers during gas-tight 

construction, the challenge of repairing leakages in fixed dome digester, and the 

difficulty of determining the amount of gas produced since the produced gas is not 

immediately visible [250], [251], [254]. 

The operating features of floating dome digesters are like that of fixed dome 

digesters, but a floating gas holder is incorporated, and the gas holder is supported 

by a guide frame [251], [254]. In comparison to fixed dome digester, floating dome 

digesters are easier to construct but their material cost is high and their lifetime is 

shorter, because an extra steel drum is installed as a guide frame, and the steel drum 

will require continuous (regular painting) to avoid corrosion [250], [251], [254].  

The tubular digesters can be constructed underground like fixed dome digesters, 

but they are constructed with polyethylene tubing [251], [254]. A separate 

polyethylene tubing or bag is also used for storing the biogas. The advantages of 

tubular digesters include: lesser need for highly skilled workers during tubular 

digester installation, easier operation of the digester, relatively easier to attain high 

digester temperature and low initial cost [250]–[252], [254]. However, this digester 

main drawbacks are their relatively short lifetime, high susceptibility to damage, 

and little possibility for effective repairs [251], [252], thus, resulting in higher cost 

in the long-run. Consequently, in a rural area, for long-term project construction, 

fixed dome digester is the preferred option because it has no moving or rusting part 

(i.e. it is robust), guarantee longer life span, and it is the cheapest digester 

construction option for a long-term project.  
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Anaerobic digestion of organic waste into biogas is a complex process [238], [239]. 

Therefore, biogas production from an anaerobic digestion process is dependent on 

several parameters such as temperature, pH, carbon to nitrogen (C/N) ratio, organic 

loading rate (OLR), hydraulic retention time (HRT), alkalinity and concentration of 

volatile fatty acid (VFA). Temperature affects the performance of an AD process. 

Detailed explanation on how temperature affects the rate of reaction and the 

stability of an AD process has been reported in [235], [238]. Typically, the 3 

operating temperature regimes of an anaerobic digester are: psychrophilic, 

mesophilic, and thermophilic [235], [238], [239]. For optimum operation, the 

temperature regime for psychrophilic bacteria, mesophilic bacteria, and 

thermophilic bacteria is 12 – 18 ℃, 25 – 40 ℃, and 55 – 65 ℃ respectively [235].  

Mesophilic and thermophilic temperature operating conditions are the most 

suitable for anaerobic digestion [235], [238], [239], [255], [256]. The operation of a 

digester under mesophilic temperature regime guarantees better digester stability, 

bacteria enrichment, and lesser sensitivity to inhibitors, while operation of a 

digester under thermophilic temperature regime guarantees higher solubility of 

organic compounds, faster reaction rates, and higher organic load rate [235], [239], 

[256]. Although, the operation of a digester under thermophilic temperature regime 

will lead to higher biogas production than when the digester is operating under 

mesophilic temperature regime, but because methane is the energy content of 

biogas, and the effect of temperature increase will result in higher CO2 production 

than methane [256], so, the effect of operating a digester under a thermophilic 

temperature regime rather than under a mesophilic temperature regime, might not 

be too significant. In fact, some studies have shown that there is no significant 

difference in methane production when a digester is operating under a thermophilic 

temperature regime rather than under a mesophilic temperature regime [255], 

[256]. For a rural community, the operation of a digester under mesophilic 

temperature regime is perhaps the most preferred option because it requires lesser 

temperature and offers higher robustness to AD process [257]; which is necessary 

for withstanding the complications that might arise from a less controlled digester 
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in a rural area. Furthermore, there is less need for a CHP; which are more expensive 

than a power only generator, because Nigeria temperature is close to mesophilic 

operating temperature regime.  

The pH of a digester affects the growth of microorganism and the subsequent 

methane production [239], [258]. Typically, several microorganisms have a 

preference for neutral pH range [259]. In fact, for optimal operation of a digester, 

the pH value across the four phases of an anaerobic digestion process ranges from 

6.8 – 7.2 [238], [259]. 

The ratio of Carbon to Nitrogen (C/N) affects the quality of nutrients  [235], and it 

essential for the growth and biocatalytic activities of microorganism in a digester 

[238], [239], [259]. C/N ratio for many feedstocks are reported in [96], [259], [260], 

and it is evident that C/N varies from one feedstock to another. For example, a 

protein rich feedstock has high methane and energy generation potential [261], but 

too much total ammonia might be generated that can lead to the instability or 

eventual collapse of the digester process [239], [259]. Co-digestion of feedstocks is 

one of the ways of regulating a digester C/N ratio because the optimum C/N ratio 

for a digester is between of 20 – 30 [239], [259]. The reason why a definite value is 

not used is because a digester C/N ratio is affected by different factors such as the 

feedstock type, composition of trace elements, chemical composition, and 

biodegradability [259]. 

Organic loading rate (OLR) is the daily amount of volatile solids (VS) fed into a 

digester. Its optimal selection is necessary to enhance optimal methane production 

[238], [262], [263], as well as to avoid microbial imbalance or instability of the 

digester process [238], [239], [247]. Typically, anaerobic co-digestion of substrate 

offers greater potentials for increase OLR than single digested system [238], [247], 

[262]. Several OLR values has been reported as the optimum values for an AD 

process [247], [264], but to allow easy flow of feedstock into a low cost anaerobic 

digester, Kinyua et al. [251] recommended that an organic loading rates beyond 2.8 

3.5 – 7.0 kgVS m−3 day−1 is less desirable because the feedstock will likely be 

manually mix in a feed tanks.  
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Hydraulic retention time (HRT) is the average time that a given volume of sludge 

stays in the digester [238], [239], [251]. It is one of the most import design 

parameter that determines the size and cost of the digester. HRT of a digester is 

usually influenced by the microbial growth rate, process temperature, OLR and 

substrate composition [239], [251]. Under mesophilic temperature regime, a 

digester hydraulic retention time is between 15–30 days [239].  

In summary, it is evident from the review of parameters that affects the design and 

operation of an anaerobic digester, that organic loading rate of a digester is 

necessary for evaluating if the available feedstock with the studied location is 

enough to generate the required amount of biogas for the biogas generator, while 

the hydraulic retention time is necessary for calculating the volume of the digester. 

 

An electrical energy storage system is defined as an energy technology that stores 

electrical energy when it is not needed and supply electrical energy when it is 

needed. In the literature, there is a growing research on energy storage systems 

(ESSs), which might be because of the several applications of ESSs [265]. These 

applications of ESSs include: energy management, load leveling or peak shaving, 

remote and vehicle load supply, power bridging, and power quality improvements 

[265]–[267]. Specifically, for renewable energy systems, ESSs are used for storing 

and smoothing renewable energy in order to improve energy security and energy 

reliability of renewable energy systems [267]–[269]. Meanwhile, the growing 

research in ESSs is not driven by only the positive impacts of ESSs on global energy 

mix, but also the need to address the challenges of ESSs. Some of the challenges of 

ESSs include: reduction in efficiency because of the reconversion of energy from one 

form to another, pumped hydro energy storage (PHES) adverse effect on climate 

change; that arise from PHES artificial construction of lakes, and chemical pollution 

from battery storage technologies [265].  

From a historical perspective, the use of energy storage began in the early 20th 

century with the emergence of devices that could store electrical energy in the form 

of charges and conveniently discharge the stored energy when it is needed [270]. 
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The lead-acid accumulator was the first energy storage device to be developed and 

it was used to supply residual loads on a direct current electricity network [270]. 

Over the years, research breakthroughs and technological developments have led to 

the storage of electrical energy in different energy forms such as chemical, 

electrochemical, electrical, mechanical and thermal energy form [265], [267], [271]. 

Therefore, the classification of energy storage systems based on their stored energy 

form is presented in Fig. 3.6. 

 

Fig. 3.6: Energy storage systems classification [265], [267], [271] 

Some of the ESSs presented in Fig. 3.6 are either still technically under development 

or developed but still not widely used for power applications. In literature, the level 

of maturity for different types of ESSs has been presented by Zhao et al. [271], in the 

course of their review of different types of energy storage systems. Again, the 

physics and design features for the different types of ESSs have been presented by 

many authors in the literature [265], [267], [270]–[272], but it is noteworthy to 

mention from a system design level, that ESSs have unique properties and operating 

features that influence their use in different applications. Consequently, the 
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characteristics of ESSs can be defined in terms of capital cost, power rating, 

discharge time, power density, energy density, years, cycles, efficiency, self-

discharge rate and response time [267], [271]. An overview of the techno-economic 

features of ESSs is presented in Table 3.3. 

Table 3.3. Techno-economic features of energy storage systems [267], [271], [273] 

Capacity 

Super-
capacitor 

SMES Flywheel PHSS CAES 
Lead 
acid 

Li-
ion 

NaS VRFB 

Wh to kWh MWh to GWh kWh to GWh (modular) 

Energy 
density 
(Wh/l) 

2 - 20 0.5 -10 20 - 200 
0.27 - 

1.5 
3 - 6 

50 - 
100 

200 -
350 

150 -
250 

20 - 70 

Power 
density 
(Wh/l) 

15000 -
50000 

1000 -
5000 

5000 - 
15000 

0.5 - 
1.5 

0.5 - 2 
10 - 
500 

10 - 
350 

140 - 
180 

<2 

Cycle 
efficiency 

77 - 83 80 - 90 80 - 95 75 - 82 60 - 70 
70 - 
75 

90 - 
99 

68 - 75 70 - 80 

Storage 
duration 

Seconds to minutes Hours to weeks 

Self-
discharge 

rate 
(%/day) 

≈ 10 - 20 10 - 15 70 - 100 
0.005 - 

0.02 
0.5 - 1 

0.1 - 
0.4 

0.1 - 
0.3 

≈ 10 
0.1 - 
0.4 

Response 
time (ms) 

<10 1 - 10 >10 
> 3 
min 

3 - 
10min 

3 - 5 3 - 5 3 - 5 >1sec 

lifetime 
(years) 

15 20 15 ≈ 80 ≈ 25 5 - 15 5 - 20 10 - 15 10 - 15 

Cycle 
lifetime 

(full 
cycles) 

up to 1 
million 

> 1 
million 

> 1 
million 

10000 
- 

30000 

8000 - 
12000

0 

500 - 
2000 

2000 
- 

7000 

5000 - 
10000 

>1000
0 

Costs 
($/kWh) 

10000 - 
20000 

1000 - 
10000 

≈ 1000 5 - 20 40 - 80 
100 - 
250 

300 -
800 

500 - 
700 

300 -
500 

It is evident from the ESSs techno-economic features presented in Table 3.3 that 

because of supercapacitors’ high power density and cycle lifetime, they can be 

employed in applications where the minimization of the effect of fluctuations is 

required but they are only useful for low energy applications. Due to flywheel energy 

storage (FES) high energy and power density, as well as its lightweight, they are 

mainly employed for the starting and braking of locomotives. Wide range electrical 

application of FES is limited by its low energy generating capacity, high self-

discharging rate as well as its relatively high unit cost of energy. Unlike flywheel 

energy storage, compressed air energy storage can be used for large energy 
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application because of its high energy generating capacity, high storage duration 

and low unit cost of energy but its low efficiency and slow response time makes it 

less desirable. Pumped hydro energy storage (PHSS) system is perhaps the most 

effective ESS for large-scale power application because of its high energy generating 

capacity, ideal efficiency, very low self-discharge rate and unit cost of energy. 

However, some of the drawbacks of PHSS include [265]: geographical dependence, 

massive capital cost, soil erosion, land flooding, and silting up of dams.  

Battery energy storage systems (BESSs) is the most technically manured energy 

storage and are available in scalable sizes [267], [271]. Therefore, they can be used 

for either small-scale energy applications or integrated for large-scale energy 

applications (distributed generation systems). BESSs techno-economic features in 

Table 3.3 shows that each of the different battery technologies offer at least a 

comparative advantage over another. Lithium ion battery is usually a more 

expensive battery technology, but from a technical perspective, Table 3.3 shows that 

it offers more comparative advantage that is required for the deployment of 

renewable energy technologies. Over the years, there have been significant 

reduction in the cost of lithium ion battery, and more significant reduction is 

projected to occur in the future [87].  

The different types of ESSs in Table 3.3 can be categorized into 2 groups. The first 

group is made up of ESSs such as supercapacitor, SMES, and FES with high power 

density, high cycle lifetime, and relatively higher efficiency, have low energy 

generation capacity, high self-discharge rate, and short storage duration. Thus, these 

types of ESSs are restricted to mainly high power demand applications, as well as 

for controlling systems with transient and/or fast fluctuating loads. While the 

second group is made up of ESSs such as PHSS, CAES, and BESSs with higher energy 

generation capacity, lower self-discharge rate, and longer storage duration, have 

lesser power density, and lower cycle lifetime. Thus, suitable for large-scale energy 

applications.  

Technically, these 2 groups of ESSs can complement each other. Therefore, their 

hybridization can help optimize the size, improve the efficiency, and elongate the 
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life span of energy storage systems [267], [274], [275]. However, hybrid energy 

storage systems (HESSs) is accompanied by an increase in the complexity of the 

conditioning circuitry [275], which will result in an additional energy system cost. 

In rural areas, with poor technical expertise and limited financial resources, HESSs 

might not be suitable because of the increase complexity in conditioning circuitry 

and less technical manurity of the first of ESSs. Meanwhile, the 3 most technically 

matured ESSs are BESSs, PHSS and CAES [271]. A comparison of these 3 matured 

ESSs, in terms of their respective SWOT1 characteristics, is presented in Table 3.4. 

Table 3.4. SWOT analysis of long-term storage possibilities [265] 

Technology Strengths  Weaknesses Opportunities Threats 

Compressed 
air energy 
storage 
(CAES) 

High capacity, Low 
cost per kWh. Less 
need for power 
electronic converters 

Need for 
underground 
cavities and the 
need for fuel 

Potentials for 
its use as 
distributed 
storage 

The popularity of 
thermal power 
plants 

Pumped 
hydro 
storage 
system 
(PHSS) 

High capacity, Low 
cost per kWh. Less 
need for power 
electronic converters 

Suited for 
centralized 
storage 
application and 
can be 
geographically 
restricted 

Lower 
reservoirs 
under seabed 
will be useful 
in offshore 
wind parks 

Less attractive or 
perhaps it becomes 
obsolete for 
distributed storage 
applications 

Battery 
energy 
storage 
system 
(BESS) 

Good configuration 
and well-suited for 
distributed storage 
applications 

High 
investment 
cost, low cycle 
life, and 
temperature 
dependent 

Can be 
integrated 
with 
emerging 
technologies 

Raw material 
limitations and 
selection issues that 
arise from the 
constant 
development phase 

In summary, BESSs are the most suitable for distributed storage applications. Also, 

because Li-ion battery has very good technical features and require little or no 

maintenance, it is perhaps the best BESS for distributed storage applications.  

 

As earlier mentioned in Chapter 1, load profile study is vital for energy planning as 

well as for evaluating the suitability of renewable energy technologies for rural 

 

 

1 SWOT is an acronym for strength, weakness, opportunity and threat 
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electrification beyond lighting. In this section, review of load profile modelling 

techniques that can be applied to study Nigeria rural communities load profiles is 

performed. Typically, to study domestic load profiles, national time use survey 

(TUS) data is used [276]–[280]. However, national time use survey data on 

electricity consumption is non-existent in some countries like Nigeria, and this 

makes the study of domestic load profiles more restricted and challenging. This is 

because in studies without national TUS data such as presented in [59], [281], fewer 

details are usually captured during survey. Consequently, the developed demand 

models are either un-able to predict households’ energy consumption behaviour or 

there is increase complexity in developing demand model. Review of energy 

consumption drivers and load profile modelling techniques is necessary to ensure 

well-tailored data gathering and the development of a demand model that can 

predict households’ energy consumption behaviour.  

 

In modelling load profiles, knowledge of energy consumption drivers assists model 

construction [277], [282], [283]. Many energy consumption drivers are reported in 

literature. For example, the time it takes to perform an activity, availability of 

appliance, age of a house, and occupants’ behavioural patterns have been listed as 

energy consumption drivers [284]. In another study, the value of a house (worth of 

the house), household income, house age (year the house was built), composition of 

occupants (age variation of household occupants), tenure (owned, rented), social 

status (e.g. skilled, semi-skilled, unskilled etc.), dwelling type (detached, semi-

detached), house location (city versus rural area), and years lived in the house were 

listed as energy consumption drivers [283].  

Based on the frequency of citations in literature, McLoughlin et al. [277] stated that 

the commonly reported dwelling and occupant-related energy consumption drivers 

include dwelling type, household income, appliance holdings, number of occupants, 

location, household composition, appliance rating, head of household (HoH) age, 

floor area, time of use, heating type, weekday/weekend, external/internal 

temperature, dwelling age, number of rooms, employment status, tenure type, 
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dwelling value, disposable income, social group, number of rooms, education level, 

electricity price, dwelling surface area, and period of residency.  

These different households energy consumption drivers can be categorized into 

four major groups: external conditions (e.g. location and weather), physical 

characteristics of dwelling, appliance ownership, and of most importance the 

occupants’ activity schedule [285]–[288]. Although there are many energy 

consumption drivers that influence households’ energy consumption, only few 

energy consumption drivers are selected during load profile modelling. This is 

because the more the number of energy consumption drivers selected, the more the 

complexity of the model design. 

Typically, the research boundary of a proposed load profile model is considered 

when selecting the main energy consumption drivers in literature. For example, 

Huebner et al. [286] argued that when electric powered heating systems are not 

used by the studied households, the main energy consumption drivers for modelling 

load profiles are dwelling size, household population, and appliance ownership and 

usage. For households where electric powered heating systems are used, studies 

have shown that building related variables is a main energy consumption driver. For 

example, Kavousian et al. [287] stated that the main energy consumption driver for 

modelling load profiles are floor area (building related variable), weather, location, 

number of occupants, and high energy consumption appliance such as electric water 

heating. To an extent, Xie et al. [285] collaborated the finding of Kavousian et al. 

[287] because they stated that the number of occupants and floor area are amongst 

the main energy consumption drivers. But they also mentioned that the use of split 

air conditioner during summer months is another main energy consumption driver. 

During the questionnaire design, Huebner et al. [286] main energy consumption 

drivers are selected because Nigeria is in a tropical region, hence, it is unlikely that 

electric powered heating systems will be used by households. So, question on the 

“number of bedrooms in the house” and question on the “number of occupants” in 

the demographic (first) section of the questionnaire, are used to generate the 

dwelling size and the household population respectively. Huebner et al. [286] 

remaining main energy consumption driver, i.e., appliance ownership and usage can 
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be separated into appliance ownership and appliance usage. Here, modelling of 

appliance usage is important because the impact of occupants’ behaviour on energy 

consumption is considered. Also, without appliance usage data, appliance 

ownership data has minimal influence on households’ energy consumption [289]. In 

fact, from a study of 323 households in Netherland, Bedir et al. [290] reported that 

appliance usage resulted in 37% variation in the households’ energy consumption. 

To model how occupants’ behaviour influence household appliance usage, data 

relating to occupants’ activity schedule will be collected from the household 

occupants’ behaviour section and the household activities section of the 

questionnaire. To acquire data on household appliance ownership, a list of 

household appliances was tabulated in the fifth section of the questionnaire. The 

data acquired from the energy usage and power availability (fourth) section of the 

questionnaire are met for the in-direct validation of the developed load profile 

model because existing data to validate the developed load profile model are limited. 

Although the fourth questionnaire section is for model validation and not the model 

design, it is not presented as the last section because the fifth questionnaire section 

was design as a table, it is perhaps more presentable to end the questionnaire design 

with a table. 

 

The science or art of modelling load profiles is a complex process that depends on 

several factors. However, forecasting of load profile is vital to ensure adequate 

demand-supply balancing in the energy industry. Consequently, the design of a load 

model that can mimic the behaviour of the actual load as well as predict future load 

consumption is the underlying motivation for continuous research into load profile 

modelling [291]–[293]. Typically, load models are representations of energy 

consumption patterns and they are designed with the aid of mathematical 

techniques. The design of load models is dependent on several predicting variables 

such as time factor, weather condition, customer factor and economic factor [294]. 

These predicting variables serve as inputs and/or operational elements that 

influences the accuracy of the generated synthetic load data. Therefore, the accuracy 

of load model design is primarily a function of the suitability of the modelling 
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technique adopted, the accuracy of the predicting variable as well as on the 

acceptability of relevant assumptions [295].  

In representing energy consumption patterns, several models have been developed 

in the literature. Over the years, to allow for ease of understanding and ease of 

application of load models, researchers have attempted to classify load models into 

groups and sub-groups, but none of the available forms of load model classifications 

is the best or of universal significance [296]. According to Suganthi and Samuel 

[297] the different load forecasting models can be categorized into traditional 

modelling techniques (e.g. time series, regressions, and autoregressive integrated 

moving average models) and soft computing modelling techniques (e.g. fuzzy logic, 

genetic algorithm, and neural network models). Similarly, based on load models 

development tendency, Hong [298] stated that there are two forms of load 

modelling techniques: traditional and soft computing (artificial intelligent) 

modelling techniques, but Hong [298] also mentioned that another (third) group of 

load models are designed by the hybridization of different statistical and artificial 

intelligence modelling techniques. Apart from the classification of load models 

based on the type of forecasting techniques employed, researchers have also 

attempted to classify load models with more specific attributes of the load models. 

Some of these classifications are presented below: 

An earlier classification in Grubb et al. [299] recommended that energy models 

should be categorized based on research headings such as: top down and bottom up, 

time horizon, sectoral coverage, optimization and simulation techniques, level of 

aggregation and geographical coverage. In [300], the research headings 

recommended for load model classification includes: general and specific purpose, 

structure (internal and external assumptions), analytical approach (top down and 

bottom up approaches), underlying methodology, mathematical approach, 

geographical coverage (global, regional, national, local or project), sectoral 

coverage, time horizon (short, medium and long term) and data requirements. 

Herbst et al. [301] argued that since the design of the load model are usually 

dependent on prediction variables, therefore prediction variables such as the target 

group (policymakers, research bodies or energy companies), intended use 
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(forecasting, simulation, optimization etc.), scope of coverage (regional, national or 

multinational), conceptual framework (top down or bottom up), and availability of 

information (data inputs) should be used for load models classification.  

In literature, because domestic energy consumption patterns are dependent on 

several modelling parameters such as dwelling characteristics, lifestyle, affluence, 

and occupancy [302], authors have attempted to categorize domestic load models 

into groups. For example, Widén et al. [303] stated that since the range of coverage 

of domestic models varies distinctively, domestic load model can be classified in 

terms of the load model’s resolution in space and time. So, Widén et al. [303] 

recommended that domestic load models should be classified as: high time and low 

spatial models (e.g. load forecasting models), high spatial and low time resolution 

models (e.g. econometric models), and high time and high spatial resolution models. 

In this study, because there is no access to extensive electrical load data, the accurate 

design of the rural domestic load model will mainly depend on the determinant used 

for modelling the load profile. So, for accurate load modelling, it will be useful to take 

advantage of the approaches employed in similar studies. These approaches can be 

grouped under the conceptual framework or the analytical modelling approach 

[300], [301]. 

 

The analytical modelling approach is concerned with the way the input data of the 

domestic load model is processed in order to take advantage of the available 

information. Historically, the two traditional approaches employed for modelling 

domestic demand models from input data are top-down (TD) and bottom-up (BU) 

modelling approach [291], [292], [301], [304], [305]. It is important that although 

TD and BU modelling approaches are historical approaches for modelling domestic 

load profiles, over the years, researchers sometimes employs another (third) 

analytical modelling approach called hybrid modelling approach. Typically, when 

load models are built with hybrid modelling approach, the strengths of TD and/or 

BU modelling approaches are usually combined [291], [296]. 
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Top-down models are developed by the fission of macroscopic load input data into 

different housing stocks, in order to analyze the housing stock data more critically 

[292], [304], [306]. TD model construction is less complex than BU model 

construction because they are less reliant on households’ occupancy consumption 

behaviour. TD models take a whole-system view of demand [307]. Thus, they are 

also known as high system-level models and they can be used for determining the 

relationship between the power sector and other top-level functions such as 

macroeconomic indicators (e.g. gross domestic product, and inflation), energy price, 

and general climate [292], [304], [306], [308]. However, because of the variation in 

households’ occupant’s consumption behaviour, TU models are less suitable for 

modelling household load profiles.  

Bottom-up load models are developed by the fusion of microscopic load data of a 

household or group of households, and extrapolate the resultant energy 

consumption to a regional or national housing stock [291], [304], [308], [309]. In 

synthesizing regional or national energy consumption, BU load models are often 

accomplished by the use of weighted average, which are allotted based on the 

representation of the household types [310]. BU load models are sometimes 

referred to as statistical, probabilistic, empirical, time use or building physical 

modelling approaches [291], [304].  

The two BU modelling techniques used for evaluating the energy consumption of 

end-uses are statistical models and engineering models [296], [304], [308]. 

Statistical models apply a variety of statistical techniques to regress the relationship 

between end-uses and energy consumption. Some of the techniques adopted in the 

literature by statistical models includes regression [311], [312], conditional demand 

analysis [313]–[315], and neural networks [316], [317]. Engineering models applies 

information on building characteristics and end-uses to estimate energy 

consumption characteristics. Engineering method can be used to model electricity 

consumption of households’ without relying on historical data on electricity use. 

Strengths and weaknesses of TU models, statistical models and engineering models 

are presented in [296], [304]. Engineering modelling techniques can be classified 

are: distribution [276], [318], archetypes [319], [320], and samples [321], [322].  
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Typically, BU engineering models are more suited for modelling current and 

prospective technological options [296], [304]. This is because each end-use of BU 

engineering models have their respective sub-models, which allows the aggregated 

model to easily track the effect that changes made on any of the sub-models will 

have on the total energy consumption. However, one of the limitations with BU 

engineering models is that occupant behaviour is estimated, which is rather difficult 

as behaviour is unpredictable and can vary greatly [296], [304]. Thus, there is the 

possibility that inaccurate conclusion might be reached. This limitation has 

encouraged researchers to develop engineering models equipped with improved 

occupant behaviour models. For instance, Capasso et al. [276] applied Monte Carlo 

method to capture the relationship between residential energy demand and 

behavioural factors of household occupants. Richardson et al. [323] employed a 

Markov Chain technique to synthesize active occupancy patterns based on the 

survey data on people’s time use in the UK. Highly resolved synthetic demand data 

were created in their study by using a stochastic model that maps occupant activities 

to appliance uses.  

Markov Chain technique was also employed by Widén and Wäckelgård [279] to 

synthesize active occupancy patterns from time use and electricity consumption 

database in Sweden, in order to relate residential power demand to occupancy 

profiles. Widén and Wäckelgård [279] study showed that realistic demand patterns 

can be generated from simulated sequences of human activities. Furthermore, 

Muratori et al. [310] proposed a similar approach, where by Markov process 

technique was integrated with a physics-based engineering heating, ventilation, and 

air conditioning (HVAC) systems. The Markov process technique was used to 

synthesize the activity patterns of households from American Time Use Survey 

(ATUS) data. Muratori et al. [310] study concluded that their synthesized outputs 

were statistically similar to metered residential electricity data.  

Despite the wide use of bottom-up modelling approach for modelling household’s 

energy consumption, the use of bottom-up modelling approach for modelling 

Nigeria households’ energy consumption are rarely reported in the literature. This 

is perhaps because of the lack of national TUS data for Nigeria. For instance, Ayodele 
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et al. [309] assumed that the lifestyle amongst city around the world are similar, so 

that household active occupancy data synthesized by Richardson et al. [323] for the 

United Kingdom could be applied for modelling households’ energy consumption for 

the city of Ibadan, Nigeria. Household occupancy time use survey (TUS) data is an 

essential parameter for modelling households’ energy consumption. For instance, 

Yao and Steemers [324] stated that households’ load profile is highly dependent on 

the occupancy behaviour. This opinion was collaborated by Stokes et al. [325], 

because they reported that when household’s occupancy behaviour is considered in 

a model, there is an improvement in the modelling of diversity. 

 

The ability of bottom-up engineering models to generate synthetic load data without 

relying on observed or historical data of interest in this study. However, since the 

accuracy of the developed load model is dependent on the way the housing input 

data are combined within a hierarchical structure, the resolution of the BU load 

model is vital in accessing the load model complexity as well as its accuracy [278], 

[279], [292]. In the next sub-section, review of some bottom-up load models is 

presented. For ease of representation, the reviewed bottom-up load models are 

classified into low-resolution and high-resolution models. The high-resolution 

models are the more detailed models and are perhaps more preferred. This is 

because more details of the input data can be captured by them in comparison to 

low-resolution models. 

 

Notable amongst the earlier studies on the modelling of domestic load profile with 

bottom-up approach was the study by Capasso et al. [276]. The essence of the study 

was to determine how working days’ electricity consumption influences peak 

winter electricity consumption of the Italian electricity network. Outcomes from this 

study revealed that households’ appliances time of use synthetic data can be 

generated by analyzing the electricity consumption behaviour of household 

occupants. However, due to the amount of input data that is required by Capasso et 

al. [276] model, the model is less practicable.  
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An extensive two-part model was developed in [326], unlike in [276]. The model’s 

input data were gotten from available appliance data and households’ electricity 

consumption statistics. The first part of the demand model is used to captures 

electricity consumption fluctuation as well as store appliance ratings, while the 

second part of the load model is used to generate the individual load curves for each 

appliance. However, due to the underestimation of the mean daily electricity 

consumption during the model construction, the accuracy of the developed model 

was undermined in [326]. Yao and Steemers [324] developed a comprehensive 

bottom-up model called the simple method for formulating load profile (SMLP). This 

model had the flexibility of generating synthetic data for different conditions such 

as building types and occupancy time of use. However, the drawback with the SMLP 

is that its comprehensive nature results in an increase in the amount of input data 

required as well as on modelling complexity. Therefore, SMLP is less suitable for 

modelling load profiles that require several input data. 

 

The high-resolution models or time of use load models makes use of high-resolution 

time steps (i.e. time step lesser 30 minutes) when modelling load profiles [292]. 

Several load models are built on high-resolution times steps and because of the 

increased use of this modelling approach in literature, they should be referred to as 

a separate modelling approach [327]. Amongst the developed time of use models is 

the comprehensive three-step model that was developed with a high time resolution 

in [328]. The developed 3-step Stokes’ model had the potential of determining how 

the number of household occupancy and the size of the floor area affects a load 

profile. Stokes model is regarded as a very extensive load model because of the 

model’s comprehensive nature and ability to generated synthetic data at a high time 

resolution. In fact, Widén et al. [329] stated that Stokes [328] model is arguably the 

most detailed domestic load model.  

Stokes [328] model is not only well acknowledged and used by several researchers 

for generating synthetic load profiles but several authors such as in [293], [330], 

[331] also use Stokes [328] model to validate their developed model. Apart from 

Stokes [328] model, Richardson’s model [278], [323], [332] and Widén’s model 
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[279], [303], [333], are examples of a well-developed high-time resolution load 

models. The two essential building blocks used by Richardson’s model and Widén’s 

models for generating synthetic load profiles are time use survey (TUS) data and 

Markov-chain process. The Markov-chain process is essentially a conditional 

probability-based technique, and it is used to synthesise the missing information in 

a time use survey data. This is achieved by constructing the transition probability 

matrix for households’ active occupancy and the time of use of appliances [279]. One 

of the benefits of using Markov-chain technique to generate extensive occupancy 

behavioural patterns is that it reduces the challenges of acquiring the extensive 

behavioural data used for modelling a high-time resolution load profile. 

 

The hybrid energy system design metrics are performance indicators or control 

apparatus that help energy providers or stakeholders make an informed decision 

during optimum sizing of energy system components. Hybrid energy system design 

metrics are usually employed to determine the reliability and financial viability of a 

system-level energy project design. To determine the operational reliability of an 

energy system, performance indicators such as economic dispatch, and power flow 

analysis are examples of reliability metrics that are used in the literature. 

Description of some of the metrics used for studying hybrid energy systems is 

presented as follow: 

The total annualized system cost (Cann,tot) is an economic criterion, that can be used 

for the optimal sizing of components of an energy project [170], [334]–[336]. It 

compares the different cost functions (i.e., capital cost, replacement cost, operation 

and maintenance cost, and fuel cost) of the energy project in terms of their 

annualized related cost [170]. This criterium is useful because it helps to relate the 

different sub-system cost of an energy project that occurs at the different stages of 

the energy project lifetime. Therefore, the energy project annualized total cost is 

dependent on the energy project annuity factor [168]. Levelized cost of energy 

(LCOE) and net present cost (NPC) are another two useful economic metrics that 

can used to determine the suitability of an energy project, and they can be derived 
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from the energy project total annualized system cost [170], [334]–[336]. LCOE is 

defined as the ratio of the average cost per kilowatt-hour of useful electrical energy 

produced by the energy system or the constant price per unit of energy that ensures 

that the return on investment break even, while the NPC is defined as the summation 

of the discounted present costs throughout the useful lifetime of the energy system 

[85], [170], [177], [334]–[336]. 

The loss of power supply probability (LPSP) is one of the most commonly use 

reliability criteria, and it can be used during energy system to provide a trade-off 

between the reliability and the total cost of an energy project [337]. LPSP is defined 

by the probability that an energy project is unable to continuously supply its 

electrical load because of insufficient power supply, or defined by the ratio of the 

total unmet electrical load of the energy project to the total electrical load of the 

energy project over a period of time [166], [167], [190], [337]. Some other reliability 

metrics that can be used to determine the suitability of an energy project include: 

the expected energy not supplied (EENS), the battery state of charge ( EB/SOC), and 

the level of autonomy (LA).  

The expected energy not supplied (EENS) is used to determine the periodic 

reliability of a stochastic renewable energy source. Therefore, for each time step, 

EENS measures the amount of expected energy that will not be supplied because the 

electrical load exceeds the available electricity supplied [170]. The battery state of 

charge ( EB/SOC) is a reliability criterium that can be used to determine the excess 

energy that can be added or drawn from the battery per time. It can be used to 

determine the optimal size of battery [338]–[340], as well as can be used to calculate 

the expected energy not supplied of an energy project with 0% loss of load 

probability. The level of autonomy (LA) is a reliability criterium that is used to select 

the optimal capacity of an energy storage (back-up energy system) that will be able 

to ensure continuous supply during periods of limited or no energy generation in 

the energy system [49], [171]. 

The reliability criteria mentioned in this section are usually employed to ascertain 

the reliability of design on a system-level basis. However, performance indicators 
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such as economic dispatch, and load flow analysis are measures that are applied in 

literature to ascertain the operational reliability of an energy system. Depending on 

the network operational constraints, economic dispatch is used to determine 

generators unit commitments (generator to turn on) in order to ensure reliable 

supply of electricity at minimum system cost [341]–[345]. Unlike economic dispatch 

study; which is concern with the optimal selection of generators to minimise energy 

system cost, power flow study is concern with the healthy operation of an electrical 

network [346]–[350]. The healthy operation of an energy system will result to more 

saving in the future. Furthermore, power flow studies provide more information 

about the operating characteristics of an energy system. 

Unlike, traditional circuit analysis methods; whose usage are limited as the 

complexity of the power network increases, power flow study are used to analyse 

complex network because it utilizes simplified notations such as one-line diagram 

and per-unit system, to compute power system bus parameters (e.g. reactive, 

apparent, phase angle etc) at steady state condition [350]–[353]. So, power flow 

study can be used to identify power system issues such as low voltage and excessive 

load on the transmission line, in order to correct suspected fault before they escalate 

into a major network problem [350]. Outcome of a power flow study is relevant to 

power system engineers because power flow analysis is performed based on the 

steady-state characteristics of a balanced three-phase power network [354]. 

Furthermore, outcomes from power flow study are used to plan for future expansion 

of the power network and used to determine the best operating approach for the 

existing network [353]. 

Power flow study is a complex numerical analysis, and it is mainly simulated with 

the use of iterative techniques in a computer. Iterative techniques/methods used for 

power flow study simulation include: Jacobi, Gauss-Siedel, and Newton-Raphson 

methods [350], [352]. Gauss-Siedel model and Newton-Raphson method are the two 

commonly used methods [350]. Gauss-Siedel method is used to solves power flow 

equations in rectangular coordinates until the difference in bus voltage from one 

iteration to another is sufficiently small, while Newton-Raphson method can be used 

to solve linear and non-linear problems [350], [352], [353]. Taylor’s series 
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expansion are used in Newton-Raphson method, its power flow equations are 

solved in polar forms, while its optimal solution is reached when real and reactive 

power mismatches (∆P and ∆Q) at all buses are within specified tolerance level 

[350], [352]. Newton-Raphson method is reported as the best iterative method for 

power flow study because it converges in some cases when Jacobi and Gauss-Siedel 

methods diverge [350], [352]. Furthermore, the number of iteration required for 

convergence by Newton-Raphson method is independent of the number of buses in 

the power network, but for Jacobi and Gauss-Siedel methods, the iteration increases 

with increase in the number of buses in the power network [350], [352], [353]. So, 

in terms of computational space savings, Newton-Raphson method is more 

economical. 

Typically, a power network comprises of many network buses. A network bus is a 

node that can interconnect transmission lines, electrical loads and electrical 

generators [350], [353]. The electrical characteristics of a network bus are defined 

by voltage magnitude (V), phase angle (δ°), real or active power (P), and reactive 

power (Q) [350], [353], [355]. In power flow analysis, 2 of these 4 electrical 

parameters of a network bus are specified, while the other 2 un-specified electrical 

parameters of a network bus are simulated [350]. Depending on the 2 electrical 

parameters of a network bus that is specified, a network bus is classified as a swing 

or slack (V < δ°) bus, a voltage controlled (PV) bus, or a load (PQ) bus [350], [352], 

[353]. Characteristics of these 3 classifications of network buses has been presented 

in [350], [353]. 

 

Optimal sizing of a hybrid energy system is required to ensure reliable supply of 

electricity at minimum system cost [356]. Therefore, for reliable supply of electricity 

at minimum system cost, different optimization techniques are used for the design 

and analysis of hybrid energy systems. Optimization techniques are a mathematical 

representation of system component parameters so that the effect of changing 

system component parameters can be observed and analyzed. The different 

optimization techniques used for optimal sizing of hybrid energy system can be 
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classified into: computer software tools, classical (traditional) techniques, and 

artificial intelligent (modern) techniques [166], [167], [357]. Meanwhile, Hybrid 

optimization techniques, which are derived from the combination of optimization 

techniques, are sometimes referred to as another optimization technique 

classification. 

 

In literature, computer software tools are commonly used to simulate the 

performance of a hybrid energy system. This is because computer software tools can 

help reduce the time and the cost spent on the design and analysis of a hybrid energy 

system [356]. Computer software tools that can be used for hybrid energy system 

design and analysis include: H2RES, HOMER, HYBRID2, HYBRIDS, HYDROGEMS, 

iHOGA, INSEL, RETScreen, SOLMIM, SOMES, TYNSYS, etc. The performance of 

computer software tools usually varies in terms of their functionality and 

adaptability [156], [358]. The inputs and outputs, as well as the strengths and 

weakness of some selected hybrid energy system computer software tools are 

presented in Table 3.5 and Table 3.6 respectively. 

Table 3.5. Inputs and outputs of some selected hybrid energy system computer 
software tools [156], [357]–[359]  

Software Input Output 

HOMER  Load demand Optimal unit sizing 
Relevant resource input Cost of energy and net present cost  
Capital, maintenance and replacement 
cost 

Renewable energy fraction 

System control Multi-objective optimization 
HYBRID2 Load demand Unit sizing with cost optimization 

Relevant resource input Cost of energy 
Systems initial investment and O&M 
cost  

Percentage emission of different GHG 

Components details Total payback period of the system 
TRNSYS Inbuilt input and modular structure 

library 
Dynamic simulation of electrical 
output 

Meteorological data input Dynamic simulation of thermal output 
iHOGA  Load data Cost of energy 

Relevant resource input Life cycle emission 
Component and economic details Energy buying and selling analysis 

RETScreen Load data Energy production and saving 
Size of solar array System component and fuel costs 
Product database are required  Comparative reduction in emission  
Climate database Project financial viability  

Project sensitivity and risk analysis 
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Table 3.6. Strength and weakness of some selected hybrid energy system computer 
software tools [156], [356], [357]  

Software Strength Weakness  Developed by: 

HOMER Suitable for optimal sizing of 
all renewable sources along 
with diesel generators, 
battery, or H2 storage for 
both electrical and thermal 
loads. Also, suited for 
technical and economic 
analysis  

It only minimizes a single 
objective (net present cost) 
during optimal sizing. Thus, it 
cannot perform multi-
objective optimization. Its 
simulation flexibility is 
limited (a black-box 
simulation tool) 

U.S National 
Renewable 
Energy 
Laboratory 
(NREL) in 1992; 
www.homerene
rgy.com 

HYBRID2 Useful for performing a 
techno-economic simulation 
of the optimal size of system 
components. Suited for 
accounting for inter time-step 
variations in data with the use 
of probabilistic methods 

It requires a large quantity of 
input data and its simulation 
flexibility is limited (a black-
box simulation tool) 

Uni of 
Massachusetts; 
https://hybrid2
-simulation-
program.softwa
re.informer.com
/ 

TRNSYS Suited for simulating energy 
system behaviours that varies 
with time. Also, it performs 
extensive electrical and 
thermal analysis 

It is more complex and less 
user-friendly than the other 
black-box simulation tools. 

University of 
Wisconsin; 
http://sel.me.wi
sc.edu/trnsys 

IHOGA It can be used to simulate 
both single and multi-
objective problems, that is, 
technical, economic and 
environmental analysis. It 
also has easy user’s 
implementation 
functionalities  

It cannot be used to perform 
sensitivity and probability 
analysis and modification of 
the daily load profile is also 
limited. Its simulation 
flexibility is limited (a black-
box simulation tool) 

University of 
Zaragoza, Spain; 
https://ihoga.un
izar.es/en/desc
arga/ 

RETScreen Suitable for assessing the 
benefit of a comparative 
study between a base (diesel) 
case and a proposed 
(renewable) case. It's also 
useful for carrying out an 
extensive economic and 
environmental study as well 
as for performing risk and 
sensitivity analysis 

Time-series data cannot be 
imported into this software. 
The effect of temperature on 
PV module performance is 
not considered. Its simulation 
flexibility is limited (a black-
box simulation tool) 

National 
resources 
Canada in 1996; 
www.nrcan.gc.c
a/energy/softw
are-tools/7465 

 

They are also known as traditional optimization techniques. They are developed by 

users to optimally size a hybrid energy system or to find the optimum solution of a 

hybrid energy system objective function. Classical optimization techniques can be 

categorized into: graphical method, probabilistic method, analytical method, and 

iterative method [167], [359]. 
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Graphical methods provides a design space solution or graphical solution to 

optimization problems [360]. During the optimal hybrid energy system sizing, 

graphical methods are either used as a single optimization (standalone) tool; such 

as presented in [361]–[363] or combined with other numerical methods to form a 

hybrid optimization tool; such as presented in [339], [340], [364]–[366]. 

Furthermore, during the construction of a graphical simulation model, two decision 

variables are usually considered [171], [367]. For example, a standalone graphical 

tool called outsourced and storage curves was developed to predict the energy 

allocation of a hybrid energy system, determine the minimum outsourced 

electricity, and perform a demand side management [363]. In another study, a 

graphical and numerical integrated visualization tool (hybrid optimization tool) 

called modified extended power pinch analysis (MEPoPA) tool was developed to 

optimally size the energy storage of an integrated renewable energy systems in 

order to minimise the energy system losses [340]. 

 

It is also referred to as statistical method. It is suitable for carrying out hybrid energy 

system variability study with multiple possible outcomes, varying degrees of 

certainty or uncertainty of occurrence [368]. To optimize wind power imbalance 

that results from a varying wind speed, a probabilistic method was used to estimate 

wind reserve and to differentiate between the different categories of wind reserves 

that influence wind power imbalance [369].In another study, probabilistic method 

was used to generate synthetic wind speed data that was used to perform a hybrid 

energy system techno-economic study [370]. Outcomes from the probabilistic study 

shows that the use of battery energy storage can substantially reduce the ramp rate 

of an auxiliary heat generator. 

 

In comparison to other classical optimization techniques, whereby no specified 

route is followed in arriving at an optimal solution, analytical method uses 

computational techniques, such as Fourier transform or introduce series of logical 
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steps that should be followed to determine the optimal size of a hybrid energy 

systems [167], [359]. For optimal sizing of a hybrid energy system component, 

discrete Fourier transform (analytical method) was used to decompose (match) the 

energy generated by time-varying components with time varying cyclic taxonomy 

such as energy market, load following, regulation process [371]. In another study, 

an analytical model was developed to minimize the cost of electricity purchase from 

the grid as well as to minimize the battery energy storage losses, in order to ensure 

reliable supply of demand at minimal hybrid energy system cost [372].  

 

An An iterative method is a recursive procedure that terminates or concludes its 

selection of the optimal combination of a hybrid energy system at the instant when 

the pre-defined decision conditions are met [359], [360], [368]. This optimization 

method simulates the optimal solution of an optimization problem by using linearly 

changing decision variables [360]. An iterative method was used to evaluate a 

standalone hybrid energy system minimum total cost of energy that can supply 

reliable electricity to four regions in Iran [191]. Loss of load expectation (LOLE) and 

loss of energy expectation (LOEE) assessment metrics were used to ensure that the 

expected reliability of the hybrid energy system was met. Similarly, an iterative 

method was also used to determine the minimum cost that a hybrid energy system 

can supply reliable energy to a seawater desalination unit installed in Kerkennah 

Island of Southern Tunisia [373].  

Strength and weakness of all these four traditional optimization methods are 

presented in Table 3.7.
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Table 3.7. Strength and weakness of traditional optimization techniques 

Classical 
techniques 

Strength Weakness References 

Graphical 
method 

It is a simple and quick 
optimization method. 
Simulated output is very 
descriptive 

Few objectives can be 
simulated at a time. It cannot 
be used to simulate specific 
details of a hybrid energy 
system. For example, the tilt 
angle of a PV system 

[171], [339], 
[340], [361]–
[367] 

Probabilistic 
method 

It is a simple and quick 
optimization method. It 
requires only few input data 
because it can use sample data 
to represent a population. 

It often fails to select the best 
possible solution. It cannot be 
used to optimize hybrid 
energy system dynamic 
nature.  

[369], [370], 
[374], [375] 

Analytical 
method 

High simulation precision and 
accuracy   

Increase computational time [371], [372], 

[376], [377] 

 

Iterative 
method 

It is easy to use and 
understand. It is capable of 
tracking modelling defects at 
an early phase. 

Each iteration phase is rigid 
with no overlaps 

[191], [373], 

[378], [379] 

 

Artificial intelligence (AI) techniques are developed intelligent computer programs, 

and they are built by the application of science and engineering procedures in order 

to represent natural occurrence. AI technique can be defined as the ability of a 

machine to perform functions or activities that characterize human thought [359], 

[360]. Examples of AI optimization techniques include: genetic algorithm (GA), 

particle swarm optimization (PSO), simulated annealing (SA), harmony search 

algorithm (HSA), ant colony algorithm (ACA), bacterial foraging algorithm (BFA), 

artificial bee colony (ABC) algorithm, bio-geography based optimization (BBO), 

gravitational search algorithm (GSA) cuckoo search (CS), and a hybrid of different 

AI techniques. One of the advantages of AI methods is their ability to investigate the 

non-linear variations of renewable energy system components and perform multi-

objective optimization, but AI optimization techniques are usually a more complex 

technique to implement than traditional optimization techniques [167], [360], 

[368]. Key features (characteristics, strength, and weakness) of selected artificial 

intelligence optimization techniques are presented in Table 3.8.  
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Table 3.8. Features of artificial intelligent optimization techniques [167], [356], 

[360], [367], [368]  

Techniques Characteristic Strength  Weakness 

Genetic 
Algorithm 

(GA) 

Mimics the different 
processes of natural 
evolution, such as 
inheritance, mutation, 
selection, and 
crossover 

Efficient for finding the 
global optimum and 
suitable for complex 
problems with a great 
number of parameters and 
multiple solutions 

Convergence speed is 
slower than most 
stochastic algorithms. 
There is also no 
assurance of having a 
constant optimization 
response time 

Particle swarm 
optimization 

(PSO) 

Mimics bird and fish 
movement behaviour 

It has a fast convergence 
speed and its coding is also 
simple in comparison with 
most other methods with 
more equations 

Not suitable for non-
coordinate system 
problems. PSO can 
also suffer from 
partial optimism. 

Simulated 
annealing (SA) 

It is a trajectory 
random investigation 
that mimics the way in 
which a metal cools and 
freezes into a minimum 
energy crystalline 
structure (the 
annealing process) 

Analyses non-linear, 
chaotic and noisy data with 
many constraints without 
been trapped in local 
minima. It is also a robust 
technique for determining 
global optimum without 
relying on any restrictive 
property  

The quality of the 
optimal solutions is 
dependent on the 
computation time. 
Fine-tuning of model 
parameters can be 
complicated and it 
does significantly 
affect the quality of 
the outcome 

Ant colony 
algorithm 
(ACA) 

The algorithm is 
inspired by the 
foraging behaviour of 
ants in nature. That is, 
finding the shortest 
path between their 
source and their nests  

Performs a local and global 
search. It is useful for 
carrying out global search 
as well as analyzing 
different optimization 
problems. It has high 
convergence speed 

It is a complex process 
that requires the fine-
tuning of its 
parameters, random 
initialization, and 
long-term memory 
space.  

Artificial bee 
colony (ABC) 
algorithm 

This algorithm is 
inspired by the 
intelligent foraging 
behaviour of honey bee 

Performs a local and global 
search. More so, it can be 
combined with other 
available algorithms and it 
is useful for optimizing 
different problems 

Random initialization, 
as well as fine-turning 
of its several 
parameters, is 
required. Also, a 
probabilistic 
approach is used for 
performing the local 
search 

Harmony 
search 
algorithm 
(HSA) 

 It is a derivative-free, 
real-parameter 
optimization algorithm 
that is inspired by the 
improvisation process 
of jazz musicians 

Performs a global and local 
search. it is free from 
divergence and It does not 
require differential 
gradients, the setting of 
variables initial value and. 
It is also suited for 
discontinuous and 
continuous functions as 
well as for discrete and 
continuous variables.  

Complex solving 
process 
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Table 3.8 continues 

Techniques Characteristic Strength  Weakness 

Biogeography-
based 
optimization 
(BBO) 

Mimics the behaviour 
of species in nature 
against time and space 
by using stochastic and 
iterative approaches to 
find the optimal 
solution of a given 
measure of quality or 
fitness function 

Its computation time is 
fast, and it has a good 
convergence accuracy 

Not suitable for 
selecting the best 
member within each 
generation, thereby 
some of the solutions 
generated might not 
be the optimal 
solution 

Gravitational 
search 
algorithm 
(GSA) 

It is inspired by 
Newton’s law of 
gravitation and 
Newton’s second law of 
motion. GSA’s optimal 
solution is obtained 
from the principle that 
a larger entity or force 
emergences when 
particles attract and 
bond together 

It offers good calculation 
accuracy and faster 
convergence speed 

It sometimes suffers 
from premature 
convergence problem 

Hybrid 
optimization 
techniques 

Developed by using 
two or more 
algorithms 

They are usually more 
robust and offer better 
calculation accuracy for 
multi-objective problems 
than individual methods. 
More so, they sometimes 
converge quickly 

Hybridization of 
algorithms result in 
increased 
optimization 
complexity and the 
difficulty of 
developing the 
algorithm 

 

Literature review in this study began with a review of the characteristics and 

applications of the different forms of hybrid renewable energy system (HRES) 

configuration. In comparison with other HRES configuration options, hybrid-

coupled configuration option was reported to offer to improve system efficiency and 

in turn, increase cost minimization due to the current state of developments in 

converter technologies. Section 3.3 presents a review of the different hybrid energy 

sub-systems. For the photovoltaic (PV) electricity generation, review of the general 

operating characteristic of PV technology, as well as some of the benchmarks used 

by manufacturers in rating different classification of photovoltaics under standard 

test conditions has been emphasized. Furthermore, because the intensity of solar 

radiation for PV electricity generation is location dependent, the different 

approaches for modelling solar radiation was also reviewed.  
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Different stages of converting bio-waste into biogas as well as the different types of 

anaerobic digester design has been reviewed. Also, due to the complexity of 

anaerobic digestion, vital parameters that influence anaerobic digestion of biogas 

production has been reviewed in Section 3.5. Types of energy storage systems 

(ESSs) as well as the techno-economic characterization of the different energy 

storage systems were presented in Section 3.6. An extensive comparative analysis; 

in terms of the strength, weakness, opportunity, and threat, of long-term energy 

storage possibilities was also reviewed. Based on technical and economic 

consideration from the ESSs review, battery storage systems (BSSs), which is the 

most developed ESSs technology, was the most suitable for this study.  

In Section 3.7, load profile review began with an outlook into the different context 

in which load profiles are modelled. However, because of the dearth in information 

on rural load consumption, load profile modelling context in this study was 

narrowed to an analytical modelling approach. Also, the characteristics, strength, 

and weakness of top-down and bottom-up modelling approach; which are the two 

traditional modelling approach for modelling domestic rural load profiles, was also 

reviewed. Furthermore, classification of bottom-up modelling approach; in terms of 

the load profile resolution, into high-resolution and low-resolution bottom-up 

modelling approaches was also presented.  

Section 3.8 presents the literature review of some of the several economic and 

technical indicators used to assess the suitability of a hybrid energy system design. 

While the different hybrid energy system design and simulation optimization 

techniques; which are classified broadly into computer software tools, classical 

techniques, artificial intelligent (modern) techniques, is presented in Section 3.9
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In this chapter theoretical methods used for modelling the hybrid energy system 

components, community households’ energy consumption patterns, and simulating 

the optimal design of the hybrid renewable energy systems are presented. As earlier 

reported in Section 3.2, because of the ability of hybrid-coupled energy system 

configurations to increase the energy efficiency of hybrid energy systems in 

comparison to either DC or AC coupled energy system configuration options [166], 

[167], it is selected here. Fig. 4.1 presents the hybrid-coupled topology applied in 

this study to guarantee reliable supply of clean electricity energy at minimal cost.  

 

Fig. 4.1. Hybrid-coupled energy systems configuration 

The DC bus connects the photovoltaic and the battery storage system, while the AC 

bus connects the biogas generator and the AC loads. Also, the DC bus is linked to the 

AC bus by the bi-directional converter. Charger controller is part of the PV system. 

To demonstrate the energy supply strategy, 2 switches were included in Fig. 4.1. For 

a biogas generator operating under full-loading condition, electricity is first supply 

to the load, and if the supplied energy from the biogas generator exceed the load 
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demand, the battery is charged, and when the battery is charged the excess is sold 

to the grid. Meanwhile, a rural community connected to an un-reliable grid was 

considered here because the possibility to accurately determine households’ energy 

consumption behaviour is higher when a community is connected to an un-reliable 

grid than when the community is un-electrified, However, the un-reliable grid does 

not supply the community because its electricity availability cannot be predicted.  

 

As mentioned in Section 3.7, because of the lack of extensive rural energy 

consumption data from the energy utilities or the national statistical office, a 

bottom-up modelling approach is used for generating a stochastic rural 

household(s) load profile. This achieved by the collection and processing of 

household occupancy-based survey, and the stochastic modelling of the survey 

outcomes. For the credibility of the household consumption survey to be 

guaranteed, the survey questionnaire should be a representation of household(s) 

energy consumption parameters such as household consumption behaviour, and 

households’ appliance characteristics [380]. The design questionnaire can mirror 

surveyed households’ energy consumption because Section 3.7.1 explains that 

questions from the questionnaire can be used to acquire important data that can 

generate occupants’ activity schedule. Then, household’s occupancy behaviour is 

modelled from generated occupants’ activity schedule because an household’s 

energy consumption is highly dependent on its occupancy behaviour [324], [325].  

Apart from modelling households load profile based on energy survey data, 

sometimes load profile modelling input data might be acquired from energy 

monitoring electronic devices [381]–[383]. Meanwhile, because of the variability in 

occupancy energy consumption patterns, to guarantee credible measurement, the 

energy monitoring device should continuously measure energy consumptions for 

several number of days [384]. In Nigeria, it is unlikely for grid-connected 

communities to have electricity continuous for 24 hours. So, the use of energy 

monitoring devices for measuring domestic consumption patterns is less applicable 

here. However, this does not suggest that energy monitoring devices cannot be used 
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when there is improved electricity availability or in similar studies with better 

electricity availability.  

 

The use of surveys for acquiring households’ energy consumption data is generally 

acceptable whenever there is paucity of information and the perception, awareness, 

and acceptance end user are required [385]. Therefore, the survey questionnaire 

has been designed to collate data on household demographics, occupants’ activity 

schedule, appliance ownership, and for in-direct validation of the model. To ensure 

consistency during the collection and analysis of survey data, occupants’ activity 

schedule were restricted to hourly time steps.  

The sample size of a survey is an important parameter that influence the accuracy 

of a survey, and its calculation is dependent on the survey population, the margin of 

error and the confidence level. The margin of error or confidence intervals is defined 

as the acceptable positive and negative deviation between the true population and 

a sample estimate of the true population. Therefore, the margin of error explains 

how truly the survey results reflect the views of the overall population. The 

confidence level is defined as the percentage of the population that lies within the 

boundaries of the margin of error. Mathematically, a survey sample size is defined 

as [386], [387]: 

Nss  =
(Zscore

2 × p × (1 − p)) e2⁄

1 +
((Zscore

2 × p × (1 − p)) e2⁄ ) − 1

Npop

 
(4.1) 

where Nss is the survey sample size, Zscore the value of the confidence level on a Z −

table, p is the proportion of the expected outcome, e is the margin of error, and Npop 

is the population size.  

The population size is estimated based on power holding company of Nigeria 

(PHCN) data on the number of residential customers in the survey location rather 

than national population and housing census data because PHCN identify a 

residential customer (household) as a physical structure(s) with a single electric 
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meter or an assigned electricity bill rather than on the family-tie of the occupants of 

the physical structure. Esan north-east local government area (LGA) in the south-

southern region of Nigeria is selected as the survey location. This is because south-

southern region of Nigeria is reported to have the lowest solar energy potential in 

the country [48], [84]. Therefore, the survey location is suitable for studying the 

effect of integrating HRES in locations with lower solar radiation potential. 

Esan north-east LGA is located on latitude 6.7297°N and longitude 6.3439°E, and it 

has an area of 255.744 km2. Accord to 2006 (the most recent) Nigerian national 

population and housing census report, Esan north-east LGA has a household 

(family) population of 24,532 [388], and the household population is distributed 

amongst 26 residential communities. Electricity supplied to the survey location is 

predominantly consumed by residential customers and a few low energy 

consumption business (commercial) customers. PHCN records shows that 7881 

electricity bill paying residential customer are connected to Esan north-east LGA 

distribution network. However, not all the residential customers in the distribution 

network are currently captured by PHCN. 

It is reported that 36% of PHCN’s dispatched electricity is unaccounted for due to 

electricity collection losses such as un-captured customers and the non-payment of 

electricity bills [43]. One of PHCN major challenges is to reduce the high number of 

un-captured residential customers (households) connected to its distribution 

network. Therefore, it is assumed here that the number un-captured residential 

customers (households) account for the electricity collection losses. By scaling 

PHCN captured residential customers by 36%, the estimated number of residential 

customers (household population size) in the survey location is 10,718. Meanwhile, 

for a household population of 10,718 and by selecting a confidence level and a 

margin of error of 95% and 5% respectively, the survey sample size calculated from 

Eq. (4.1) is 371. So, 380 questionnaires were administered to the surveyed 

community residential customers, but only 297 was received. Of the 297 

questionnaires received, 24 of the questionnaires were discarded because they were 

not thoroughly filled, leaving 273 fully completed questionnaires to be used for data 

analysis.
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The input data used by the developed stochastic demand model can be categorized 

into utility company data, national population and housing census data, and survey 

data. The utility company data is used to estimate the survey location household 

population. National population and housing census data is used as the criterion for 

distributing the housing unit of the survey location into different household classes, 

while survey data are used to determine occupants’ consumption behaviour, 

appliance ownership, and appliance time use. Based on the physical structure of the 

survey households, they are grouped into four household classes: 

• Household class I: Traditional or hut structure, informal or improvised dwelling 

• Household class II: Rooms let in house 

• Household class III: Detached and semi-detached house 

• Household class IV: Flat in block of flats 

Simulation of the load profile of the community is performed by aggregating the 

simulated load profile of the surveyed households weighted by the household 

classes [309]. The assigned weighs to the four household classes were derived from 

Nigerian national population and housing census report on the studied location. An 

illustration of how the developed modelling scheme uses data outcomes from the 

surveyed households to simulates a household load profile, or a community load 

profile is present in Fig. 4.2. 
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Fig. 4.2. Demand model implementation scheme 

The demand model scheme in Fig. 4.2 is used to perform hourly stochastic 

simulation of occupants’ consumption behaviour while simulation of appliance, 

household, and community load profiles are performed minutely. To simulate 

occupants’ consumption behaviour, Markov chain technique is used to generate an 

occupancy state matrix that contains the number of household occupant(s) 

present/absent per occupancy state for each simulation time step. Then, from the 

occupancy state matrix, an active occupancy vector that represent the number of 

active occupant(s) in each time step is generated. To capture how the time when 

active occupants perform their activities affect occupants’ consumption behaviour, 

the active occupancy vector and the occupants’ activities probabilities are combined 

to generate an active occupants’ activity matrix for each time step. 

The usage of all household appliances is not influenced by occupants’ consumption 

behaviour. So, if a unit step function U(t)occ represent the effect of occupants’ 

consumption behaviour on an appliance usage, the value of U(t)occ = 1 whenever 

occupants’ consumption behaviour affects an appliance usage, else the value of 

U(t)occ = 0. If U(t)act_occ represent the present or absent of an active occupant(s), 
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the value of U(t)act_occ = 1 whenever an active occupant is present at a time t, else 

the value of U(t)act_occ = 0. Similarly, if U(t)activity represent the present or absent 

of active occupant(s) in a household activity (i.e., cooking, cleaning or leisure 

activity), the value of U(t)activity = 1 whenever an active occupant is engaged in a 

household activity at time t, else the value of U(t)activity = 0. Furthermore, if 

U(t)non_act_occ represent the unit step function of an appliance such as a refrigerator, 

whose usage is not affected by the absence of active occupants, for all time step, the 

value of U(t)non_act_occ = 1. Therefore, the effect of occupants’ consumption 

behaviour on appliance usage (U(t)occ) is defined by: 

U(t)occ = {

U(t)act_occ  for all active occupant(s) dependent appliance 

U(t)activity for all household activity dependent appliance

1     for all  non − active occupant(s) dependent appliance 

 (4.2) 

where U(t)act_occ is a unit step function that represent the present or absent of an 

active occupant(s) and U(t)activity is a unit step function that represent the present 

or absent of an active occupant(s) in a household activity. 

An appliance type (j) actual time of use (U(t)app_usage,j) is calculated by combining 

the value of U(t)occ with the appliance usage probability (U(t)app,j). Therefore, for 

each time step, U(t)app_usage,j is defined by [278], [309]: 

U(t)app_usage,j = U(t)occ × U(t)app,j (4.3) 

The energy consumption of an appliance (Eapp,j) is defined by [278], [279], [309]: 

Eapp,j   =   Papp,j × Napp,j × U(t)app_usage,j (4.4) 

where Papp,j is power rating of the appliance, Napp,j is the quantity of an appliance in 

a household and U(t)app_usage,j in Eq. (4.4) was defined in Eq. (4.3).  

The operating duration of household appliances are classified into short and long 

operating duration. Short operating duration appliances are appliances such as food 
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blender, electric iron and bedroom bulb whose operating duration is less than an 

hour. Long operating duration appliance are appliances whose operating duration 

is at least 1 hour. Meanwhile, because the model generates load profiles in minutely 

time step, the energy consumption patterns of short operating duration appliances 

are captured.  

A Markov process is a random process X(t) whereby the transition from the present 

time to into the future t, (i.e. {X(t); t0 < t}), is only dependent on its past 

{X(k);  k ≤ t0} through the present value X(t0) [389], [390]. So, a limited amount of 

memory suffices is required to produce a great diversity of behaviours. Therefore, a 

random process does have a Markov property or memoryless property, if the 

process has conditional independence attributes or properties such that 

probabilistic dependence on the past is only through the present state [390], [391]. 

Meanwhile, although there are alternative stochastic methods to Markov chain 

process, and these stochastic methods include: Gibbs fields [392], constrained 

random paths mode [393], self-avoiding walks [394], levy processes [395], [396], 

and multimodal nested sampling [397], but in comparison to Markov chain process, 

many of these methods are considerably more difficult stochastic method to study. 

Application of Markov process is relevant modelling energy consumption behaviour 

of households in this study, because when the present value X(t0) is known, the 

future value of X(t) can be determined without prior knowledge on how the present 

value X(t0) was reached. If X = {X1, X2, X3, … , Xt} is a random process in the discrete 

time space E, and the transition between the states, say from Xi to Xj occurs with a 

probability ℙij(t) that satisfy the Markov property, then, the set of state X is called a 

Markov Chain [389], [390]. ℙij(t) is called the transitional probability, that is, the 

conditional probability that the process is in a state Xj at time t, given that it is in 

state Xi at time t − 1. So, the conditional probability Xj given Xi, which is denoted by 

ℙ[Xj|Xi ] is defined by [389], [390]: 

ℙ[Xj|Xi ] =
ℙ[Xj ∩ Xi ]

ℙ[Xi ]
         ℙ[Xi ] > 0 (4.5) 
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Similarly, the Markov property can be expressed mathematically as [389], [390]: 

ℙ(Xt+1|X1, X2, … , Xt−1, Xt) = ℙ(Xt+1|Xt) (4.6) 

where for every sequence X1, … , Xt, Xt+1 of elements of E and for every t ≥ 1, the left 

hand side of Eq. (4.6) defines the conditional probability of an event that is one step 

into the future while the right-hand side of Eq. (4.6) defines the conditional 

probability of an event in the future when the present value is known. The 

transitional probability matrix (TPM) is expressed as [389], [390]: 

TPM =

[
 
 
 
 
ℙ00 ℙ01  ⋯ ℙ0X

ℙ10 ℙ11  ⋯ ℙ1X

ℙ20 ℙ21  ⋯ ℙ2X

⋮      ⋮        ⋮   ⋮     
ℙX1 ℙX2  ⋯ ℙXX]

 
 
 
 

 (4.7) 

If each row represents all the transitional probabilities from a single initial state, the 

sum of the probabilities will be equal to 1. Also, if a Markov chain has y states and 

an initial condition vector v0, then the transition probability matrix after z steps is 

expressed as [390]: 

v0ℙij
z = ∑ v0(ℙiw

z ℙwj)

y

w=1

 (4.8) 

In summary, when household’s occupancy behaviour is modelled in Chapter 5, these 

Markov chain process equations, i.e., Eqs. (4.5) - (4.8) are used to process data on 

occupants’ activity schedule, so that, a stochastic hourly occupancy state matrix that 

represent household’s occupancy behaviour can be generated. 

 

This section presents the theoretical methods used for modelling biogas generation 

subsystem, battery subsystem, charge controller subsystem, converter subsystem, 

and photovoltaic generation subsystem. 
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As earlier mention in Section 3.5, the operation of a biogas generation at full-loading 

condition is necessary for optimum biogas use and for healthy engine operation 

[231]–[233], therefore, biogas generator hourly electricity generation (EBio) is 

defined as:  

EBio = PBio × ∆t (4.9) 

where PBio is the biogas generator rated capacity, ∆t is the change in time. Biogas 

generator hourly electricity generation (EBio) can also be defined in terms of the 

biogas fuel consumption as [236]:  

EBio =
Ybiogas × bmc × ηbio × HLHV

fenergy
 (4.10) 

where Ybiogas  (m3) is the biogas generator hourly biogas consumption at full-

loading condition, ηbio is the biogas generator electrical conversion efficiency 1; and 

ηbio for a biogas powered generator is between 25% - 40% [336], HLHV (MJ m−3) is 

low heating value. HLHV for methane gas is 37 MJm−3 [236], [237], fenergy 

(MJ kWh−1) is mechanical to electrical energy conversion factor. Therefore, fenergy 

is 3.6 MJ kWh−1. bmc (%) is the biogas methane content of a bio-waste. The bmc of 

many bio-waste is usually between 50% to 70% [398], [399]. So, an average bmc 

value of 60% is selected here. Based on the assumption that the biogas generator 

always operate at full-loading condition, biogas generator hourly biogas 

consumption (Ybiogas) can be defined by [236], [237]: 

Ybiogas =
EBio × fenergy

bmc × ηbio × HLHV
= ko × PBio × ∆t (4.11) 

 

 

1 This is because most of the energy from the biogas will be lost as heat as well as other 
mechanical losses in the biogas powered generator. 
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where ko is the energy to biogas conversion factor (m3 kWh−1). 

Digester (reactor) working volume (Volw) in m3, is defined by [238], [239], [251]:  

VolW = HRT × Qrate (4.12) 

HRT (day ) is the hydraulic retention time and Qrate (m3 day−1 ) is the substrate 

influent flow rate. The substrate influent flow rate (Qrate) can be defined as [158]: 

Qrate =
(∑ YBio

8760
t=1 )

365 × Sbiogas × ρ × Ci
 (4.13) 

where Ci (kg_VS kgwet_weight
−1 ) is the influent volatile solids (VS) content. A feedstock 

influent volatile solids (VS) content is calculated by multiplying its total solid (TS) 

content and its volatile solid (VS) content. TS and VS content of a feedstock are 

measured in terms of the percentage (%) of energy content in a wet weight Also, 

Sbiogas (m3 kg_VS−1) is the specific biogas production, and ρ𝑠 (kg m−3) is the density 

of the substrate. Daily bio-waste quantity or mass (Mwaste) in kg, can be calculated 

by multiplying the substrate influent flow rate (Qrate) and the substrate density (ρ𝑠). 

Digester (reactor) actual volume (Volactual) is calculated as the sum of the digester 

working volume (m3) and the digester non-working volume (m3). The digester non-

working volume (u) is required for improving he digester metabolic activities [158], 

and it is defined as a fractional or percentage (u) of the digester working volume. 

Therefore, digesters actual volume (m3 ) is defined by [158]: 

Volactual  = VolW × (1 + u) (4.14) 

For the optimal design of the digester volume, a value of u = 10% is required [158]. 

In summary, biomass energy system methodology presented in this section shows 

how Eqs. (4.9) – (4.14) are used in Chapter 7 for calculating biogas generator hourly 

electricity generation, daily bio-waste demand and anaerobic digester volume. 
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The battery energy storage is used to ensure reliable supply of electricity to the 

electrical load whenever the PV system and biogas generator are either not 

supplying electricity or can only supply apart of the energy demand. Despite the 

continuous fall in the price of battery energy storage over the years, they are still 

expensive [267], [271], [273]. Therefore, the optimal sizing of the battery storage 

system is required to ensure optimal sizing of an energy system. To avoid oversizing 

of the battery storage system, the optimal size the battery energy storage is 

calculated by using power pinch analysis to optimize the maximum cumulative net 

energy drawn from the battery energy storage [171], [361], [362], [400]–[405].  

To model battery energy storage system, operational properties such as self-

discharge rate, depth of discharge, and round-trip efficiency are considered. In Fig. 

4.1, the battery storage system is connected to the DC bus, so the DC bus periodic 

net energy (EDC_net(t)) is used to determine the size and the state of charge (SOC) of 

the battery energy storage. Meanwhile, the net energy surplus in the DC bus does 

not directly determine the optimal size of the battery, rather it is used to charge the 

battery, and when the battery is fully charged, the remaining net energy surplus 

(excess net energy) in the DC bus is sold to the grid. At the start of the battery storage 

simulation, it is assumed that battery storage system is completely charged, so 

energy is only drawn from the battery energy storage. But for subsequent periods, 

the DC bus net energy can be supplied to or drawn from the battery energy storage. 

The amount of DC bus net energy surplus (EDC_net(t) > 0) used for charging the 

battery energy storage is dependent on its state of charge. Consequently, the battery 

energy storage state of charge is modelled with the charging energy and discharging 

energy of battery energy storage. 

During the battery charging operation, energy discharged due to the battery self-

discharge ( EBSD) is supplied by the DC bus net energy surplus (EDC_net(t) > 0). But 

during the battery discharging operation, the total energy discharge from the 

battery is equal to the sum of the battery self-discharge and the DC bus net energy 

deficit (EDC_net(t) < 0). Furthermore, when sizing the battery energy storage, the 
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state of charge of the battery energy ( EB/SOC) is constrained, so that it does not 

exceed zero (i.e. a non-positive value) [171], [400]. Hence, this sizing technique can 

be referred to as a non-positive battery state of charge technique. Battery self-

discharge (kWh) can be defined in term of the battery state of charge as [366], [400]:  

 EBSD(t) = abs ((EB/SOC(t)) × RBSD) (4.15) 

where EBSS is the battery storage capacity in kWh, and RBSD is the battery self-

discharge rate in %/h.  

The battery charging energy (kWh) can be defined in terms of the battery self-

discharge and DC bus net energy as [366], [400]: 

EB/charging(t) = − EBSD(t − 1) + [EDC_net(t) ≥ 0] × ηrt (4.16) 

where  EBSD(t − 1) is the previous time step battery self-discharge, EDC_net is the DC 

bus net energy surplus and ηrt is the battery energy storage round trip efficiency.  

Similarly, the battery discharging energy (kWh) can be defined in terms of the 

battery self-discharge and DC bus net energy as [366], [400]: 

EB/discharging(t) = − EBSD(t − 1) + [ EDC_net(t) < 0] (4.17) 

 EBSD(t − 1) and  EDC_net in Eq.(4.17) were defined in Eq. (4.16) 

The battery state of charge (kWh) is dependent on the battery charging and 

discharging energy and can be defined as [366], [400], [403]: 

 EB/SOC(t) =

{
 
 

 
 
EB/SOC(t − 1) + EB/charging(t)                if EDC_net(t) ≥ 0 

                                                              and  EB/SOC(t) < 0

EB/SOC(t − 1) + EB/charging(t) = 0       if EDC_net(t) > 0

                                                               and  EB/SOC(t) > 0 

EB/SOC(t − 1) + EB/discharging(t)          if EDC_net(t) < 0

 (4.18) 
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DC bus excess energy ( EDC_excess) or the unused DC bus net energy surplus is 

defined by: 

 EDC_excess(t) = (EDC_net(t) > 0) − EB/charging(t) (4.19) 

To determine the battery storage size (EBSS) or capacity, the non-positive battery 

state of charge technique is used to determine the minimum state of charge of the 

battery. Therefore, battery storage size (EBSS) is defined as [171], [366], [400], 

[403]: 

EBSS =
abs( EB/SOC_min)

DOD
 (4.20) 

where abs mean absolute value,  EB/SOC_min is the state of charge minimum value, 

and DOD is the battery storage system depth of discharge.  

For each time step, an iterative check is performed in order to determine if the 

estimated battery energy storage capacity in the previous time step should be re-

estimated. Furthermore, power pinch analysis technique is applied in the developed 

battery energy storage model, so that a battery state of charge at the start and end 

of the simulation are equal (i. e. , EBSSstart = EBSSend). A scheme that illustrates how 

Eqs. (4.15) - (4.20) are applied to calculate the optimal battery capacity is presented 

in Fig. 4.3. 
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Fig. 4.3. Battery energy storage modelling scheme  

In summary, the battery energy system methodology presented in this section 

shows that for different combinations of PV and biogas generator in the HRES design 

space in Chapter 7, Eqs. (4.15) - (4.20) calculates the optimal size of the battery 

capacity by evaluating the maximum cumulative energy deficit between the energy 

generated and the load profile. 
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The converter in a hybrid-coupled topology is designed to allow a bidirectional flow 

of power. This is because the converter serves as the interface between the AC bus 

and the DC bus. Therefore, the converter is used as an inverter whenever the energy 

generated from the photovoltaic system or discharged from the battery is supplied 

to the load (i.e. transforming DC to AC power), and as a rectifier whenever the excess 

energy generated from the biomass generator is used to charge the battery storage 

system (i.e. transforming AC to DC power). Typically, the capacity of the converter 

is often designed with respect to the peak demand of the AC load. However, due to 

the choice of hybrid-coupled configuration option, the optimal size of the converter 

is determined by the maximum AC/DC net energy (EAC/DC_net) surplus/deficit. 

Furthermore, for optimal design of the converter, the estimated converter size is 

increased by a factor of 20% [406], to account for transient rise in load demand 

conditions that might arise during power system operations as well as to account 

for the reactive power component flowing through the network. Therefore, the size 

of the converter (PConv) is defined by [406]: 

PConv = 1.2 × (
max (abs(EAC/DC_net))

ηConv
) (4.21) 

 

As stated in Section 3.3.1, the output of a photovoltaic (PV) module is dependent on 

several parameters such as the type of material, the PV design cell temperature, and 

the intensity of solar irradiation that falls on the surface of the module. Therefore, 

the PV installation hourly electricity generation (EPV) can be expressed as [407]–

[410]: 

EPV(t) = DFPV × ηPV × APV × Ig × ∆t 
(4.22) 

where in Eq. (4.22), DFPV is the PV installation derating factor. DFPV accounts for the 

PV power reduction due to dust accumulation on the panels, shading, aging and 
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wiring losses [409]. Also, in Eq. (4.22), ηPV is PV panel electrical efficiency, APV (m
2) 

is effective collection area of a PV installation and ∆t is a measure of the change in 

time. Ig (Wm−2) is hourly instantaneous irradiance and this value is location 

dependent. Hourly instantaneous irradiance is not measured by Nigerian 

meteorological agency (NiMet) weather stations. Therefore, a theoretical method is 

used in this study to estimate the hourly instantaneous irradiance of the studied 

location. Meanwhile, an established model for estimating ηPV is [189], [407]: 

ηPV = ηref[1 − ktemp(TPV − Tref) + γo log Ig] (4.23) 

ηref is PV panel manufacturer’s reference efficiency under standard test conditions 

(i.e. at a reference solar irradiance (ISTC) of 1000 Wm−2 and reference temperature 

(TSTC) of 25℃). ktemp (%℃−1) is the temperature power correction coefficient, and 

its value is dependent on the PV panel material. For example, ktemp value range from 

-0.25%℃−1 for CdTe panels to -0.45%℃−1 for Multi-c-Si panels. γo is irradiance 

level correction coefficient and it is also dependent on the material used for making 

the panel. The explicit irradiance term γo log Ig in Eq. (4.23) can be neglected [189], 

[407], [411], [412] because PV temperature (TPV) implicitly account for the 

irradiance effect. Therefore, when ηPV is calculated in Eq. (4.23), the removal of 

γo log I will have insignificant impact on its accuracy [189], [407]. 

TPV (℃) is defined explicitly as [185], [413]–[415]: 

TPV = Ta + kαIg (4.24) 

where Ta (℃) is ambient temperature, Ig is hourly irradiance and kα (℃ m2W−1) is 

the Ross coefficient, that relates solar radiation with the PV temperature. Because 

the PV system considered here is a free standing installation, the PV system will have 

a better ventilation/heat dissipation in comparison to a roof integrated systems and 

its estimated Ross coefficient (kα) is 0.02 ℃ m2W−1 [185], [408], [414]. 

PV installation peak power or rated capacity (PPV) is calculated by multiplying the 

peak power of a meter squared PV panel (PPV,1m2) and the effective area of the PV 
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installation (APV) [413]. Therefore, the calculated value of PPV can be substituted for 

APV in Eq. (4.22) to estimate the periodic energy generated from a PV installation 

(EPV). Furthermore, the total number of PV modules in a PV installation (NPV) is 

calculated as [84], [403]: 

NPV =
APV
Amod

 (4.25) 

where Amod (m
2) in Eq. (4.25) the effective area of a PV module, and this value is 

found in the manufacturer data sheet. 

In summary, photovoltaic energy system methodology presented in this section 

shows how Eqs.(4.22) - (4.25) utilize the studied location hourly global solar 

radiation and ambient temperature data in Chapter 7 to calculate the hourly 

electricity generation and the effective area of the PV installation. 

 

Typically, accurate prediction of the instantaneous global solar radiation for a given 

design location is vital for evaluating the techno-economic feasibility of the solar 

energy project. This is because the estimated global solar radiation data provide 

useful information on the estimated solar energy yield from the given location. 

Meanwhile, the position of the PV panel in relation to the sun’s position is one of the 

factors that influence the eventual estimated energy yield from the PV system. This 

is because the orientation of the solar panel surface can substantially influence the 

solar energy yield from a solar panel [416]. A common approach used in literature 

for estimating global solar radiation is the use of empirical techniques to determine 

the trends in long-term daily local meteorological data for a given location, so as to 

accurately predict the global solar radiation of future years [194], [417]–[419]. 

During the estimation of global solar radiation, evaluation of long-term 

measurement of local/ground meteorological data is preferred for achieving 

accurate estimation in comparison to data collected from satellite observation 

because more site-specific characteristics of a location are measured by local 

meteorological stations [219].  
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Because there is no meteorological station within the rural area, long-term 

measured meteorological data from the nearest Nigerian meteorological agency 

(NiMet) weather station (Benin weather station), will be used to estimate the hourly 

horizontal and inclined surfaces global solar radiation in the location. The use of 

Benin weather station data is suitable for this research because the different load 

centres that will be considered in Chapter 7 during the power flow study will be in 

Edo state, Nigeria. Furthermore, only daily measured horizontal surface global solar 

radiation data is available in the few NiMet’s weather station that measured global 

solar radiation. 

 

In this study, for accurate estimation of daily horizontal surface global solar 

radiation, several empirical modelling approaches will be evaluated, in order to 

ascertain the most accurate empirical model that gives the best representation of 

NiMet’s long-term measured data for the location. In this research, 15 different 

models are evaluated based on the classification of empirical models provided by 

Besharat [194].Therefore, the 15 selected solar radiation estimation models in this 

research comprises of 5 sunshine-based model (Angstrom-Prescott model and its 

variations), 5 temperature-based model (Hargreaves and Sammani model and its 

variations), and 5 hybrid parameter-based model. The mathematical expressions for 

the 15 selected solar radiation estimation models are presented in Table 1 to Table 

3. 

Angstrom-Prescott model 

The general form of Angstrom-Prescott model is expressed by [198], [420]: 

Hg

Ho
= a + b

S

So
 (4.26) 

where 
Hg

Ho
 is the clearness index (KT) and it measures the degree of clearness of the 

sky, Hg (Wm−2) is the average daily global solar radiation on a horizontal surface, ‘a 

and b’ are constant (Angstrom constants), S in hour is the daily average sunshine 
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duration, S0  in hour is the maximum sunshine duration or day length, and H0 

(Wm−2) is the daily extra-terrestrial solar radiation on a horizontal surface.  

Meteorological stations in Nigeria records average daily global solar radiation on a 

horizontal surface (Hg) in MJ m−2 day−1. The daily extra-terrestrial solar radiation 

(H0) on a horizontal surface in MJ m−2 day−1 can be defined by [192], [196], [219], 

[421], [422]: 

H0 =
24 × 3600 × GSC

π
[1 + 0.033 cos (

360 × Nday

365
)]

× [cosϕ cos δ sinωS + (
πωS

180
) sinϕ sin δ] 

(4.27) 

where GSC (kWm−2) is the solar constant 1.367 (kWm−2), Nday is the day number of 

a year (Nday = 1 for 1st January and Nday = 365 for 31st December), ϕ (°) is the 

location latitude, δ (°) is the sun declination angle, and ωS (hour) is the mean sunrise 

hour angle for the given location. The solar declination angle (δ) can be estimated 

with the approximate equation of Cooper [423] or with the approximate equation of 

Spencer [424]. The approximate equation of Spencer [424] is more accurate [117], 

[118]. In this study, Spencer [424] approximate equation is used for estimating the 

solar declination angle (δ). And it is defined as [117], [230], [424]: 

δ = (
180

π
) (0.00692 − 0.399912 cos Γ + 0.070257 sin Γ

− 0.006758 cos 2Γ + 0.000907 sin 2Γ − 0.002697 cos 3Γ

+ 0.00148 sin 3Γ) 

(4.28) 

where the day angle (Γ) in Eq. (4.28) is defined by [117], [230], [424]: 

Γ = (Nday − 1)
360

365
 (4.29) 

Nday in Eq. (4.29) is the day of the year 
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For a location, the sunrise angle (ωS) is a function of the solar declination and the 

latitude and it is defined by [192], [218], [219], [421], [422], [425]: 

ωS = cos−1(− tan(ϕ) tan(δ)) (4.30) 

Because the daily solar declination angle and the latitude for a location are constant, 

the value of ωS for a day is constant. Meanwhile, because the sunrise hour angle is 

the negative value of the sunset hour angle, so, the hourly rotation of the earth about 

its axis is approximately 15°. Therefore, the number of daylight hours (S0) is defined 

as [192], [196], [421], [425], [426]: 

S0 = (
2

15
) × ωS (4.31) 

Table 4.1 presents the mathematical expression for the 5 selected Angstrom-

Prescott empirical model and its variations. 

Table 4.1. Angstrom-Prescott model and its variations 

Model  Model type Model equation 

I Linear [198], [420] Hg

H0
= a + b (

S

S0
) (Angstrom-Prescott model) 

II Quadratic [427] Hg

H0
= a + b (

S

S0
) + c (

S

S0
)
2

  

III Cubic [428] Hg

H0
= a + b (

S

S0
) + c (

S

S0
)
2

+ d(
S

S0
)
3

  

IV Exponential [418] Hg

H0
= ae

b(
S

S0
)
  

V Logarithmic [418] Hg

H0
= a + b log (

S

S0
)  

From Table 4.1, Hg (Wm−2) is the average daily global solar radiation on a horizontal 

surface, ‘a, b, c, and d’ are regression constant (Angstrom constants), S (hour) is the 

daily average sunshine duration in hour, S0 (hour) is the maximum sunshine 

duration or day length, and H0 (Wm−2) is the daily extraterrestrial solar radiation 

on a horizontal surface. 
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Hargreaves and Sammani model 

Hargreaves and Sammani empirical model do not require weather data on the 

sunshine hour to estimate horizontal surface global solar radiation. However, 

Hargreaves and Sammani empirical model is a function of the clearness index and 

the square root of the difference between the maximum and minimum temperature 

values. Hargreaves and Sammani empirical model is defined by [209]:  

Hg

H0
= a + b√∆T (4.32) 

where ∆T in Eq. (4.32) is the difference between the values of maximum 

temperature (Tmax) and minimum temperature (Tmin). Table 4.2 presents the 

mathematical expression for the 5 selected Hargreaves and Sammani empirical 

model and its variations. 

Table 4.2. Hargreaves and Sammani model and its variations 

Model Model type Model equation 

VI Linear [209] 
Hg

H0
= a + b(√∆T) (Hargreaves and Samani model) 

VII 
Quadratic [429] 

Hg

H0
= a + b(√∆T)  + c(∆T) 

VIII Cubic 
Hg

H0
= a + b(√∆T) + c(∆T) + d(∆T)

3

2  

IX Exponential 
Hg

H0
= a + eb(√∆T)  

X Logarithmic 
Hg

H0
= a + b log(√∆T)  

From Table 4.2, ∆T is the difference between the values of maximum temperature 

(Tmax) and minimum temperature (Tmin), and ‘a, b, c, and d’ are regression 

constants. 

Hybrid Models 

Similarly, Table 4.3 presents the mathematical expression for the 5 selected 

variations of the hybrid empirical model.
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Table 4.3. Variations of hybrid empirical model 

Model  Model type Model equation 

XI Integration of SR, Tmin, and P [430] Hg

H0
= a + b (

S

S0
) + c(Tmin) + d(P)  

XII Integration of ∆T, RH, S0, and TR 
[431] 

Hg

H0
= a + b (√

∆T+RH

S0
) + c (

Tmin

Tmax
)  

XIII Integration of SR, TR =
Tmin

Tmax
, Tmax, 

and CR [417] 

Hg

H0
= a + b (

S

S0
) + c (

Tmin

Tmax
) +

d(Tmax) + e(CR )  

XIV Integration of SR, CR, Tmax, and RH 
[432] 

Hg

H0
= a + b (

S

S0
) + c(CR ) + d(Tmax) +

e (
RH

100
)  

XV Integration of cosϕ, cosNday, Tmax, 

SR, RH, and cos2 Nday [212] 

Hg

H0
= a + b(cosϕ) + c(cosNday) +

d(Tmax) + e (
S

S0
) + f (

Tmax

RH
) + g(RH) +

h[(cosϕ) × (cosNday)] + i (
Tmax

cosϕ
) +

j (
Tmax

RH
)
2

+ k(
S

S0
)
2

+ l(cos2 Nday)  

From Table 4.3, P is precipitation, RH is relative humidity, Nday is the day number in 

the year, CR is cloudiness index, ϕ is the latitude of the location, and ‘a, b, c, d, e, f, g, 

h, I, j, k, and l’ are regression constants (Angstrom constants). 

 

Evaluation of the performance of the selected empirical models will be performed 

by analysing how best selected prediction models fit the measured data. The essence 

of performance evaluation of the selected models is to assess how NiMet long-term 

measured meteorological data influences the accuracy of the selected models. So 

that the most accurate prediction model is used to determine a horizontal surface 

annual daily global solar radiation.  

To evaluate the estimation capability of the 15 selected models, 9 widely used 

performance test indicators are selected [196], [197], [418], [419], [422]. The 9 

selected test indicators are: mean absolute error (MAE), root mean square error 

(RMSE), mean percentage error (MPE), mean absolute relative error (MARE), 

relative root mean square error (RRMSE), root mean square relative error (RMSRE), 

maximum absolute relative error (erMAX), uncertainty at 95% (U95 ), and 
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coefficient of determination R2). Mathematical expression for the 9 selected test 

indicators and their preferred values are presented in Table 4.4. 

Table 4.4. Test indicators mathematical expression [196], [197], [422] 

S/N 
Statistical tools Formula 

Preferred 
value 

1 Mean absolute 
error (MAE) MAE =

1

n
×∑(|Hpred(i) − Hmeas(i)|) 

n

i=1

 0 

2 Root mean 
square error 
(RMSE) 

RMSE = √
1

n
×∑(Hpred(i) − Hmeas(i))

2
n

i=1

 0 

3 Mean 
percentage 
error (MPE) 

MPE =
100

n
×∑(

Hmeas(i) − Hpred(i)

Hmeas(i)
) 

n

i=1

 0 

4 Mean absolute 
relative error 
(MARE) 

MARE =
1

n
×∑(|

Hmeas(i) − Hpred(i)

Hmeas(i)
|) 

n

i=1

 0 

5 Relative root 
mean square 
error (RRMSE) RRMSE =

√1
n ×

∑ (Hmeas(i) − Hpred(i))
2

n
i=1

∑ (Hmeas(i)) 
n
i=1

 
0 

6 Root mean 
square relative 
error (RMSRE) 

RMSRE = √
1

n
×∑(

Hmeas(i) − Hpred(i)

Hmeas(i)
)

2n

i=1

  

7 Maximum 
absolute relative 
error (erMAX) 

erMAX = max(|
Hmeas(i) − Hpred(i)

Hmeas(i)
|) 0 

8 Uncertainty at 
95% (U95) U95 = 1.96 × √(SD2 − RMSE2) 0 

9 Coefficient of 
determination 
(R2) 

R2 = 1 − [
∑ (Hmeas(i) − Hpred(i))

2

 n
i=1

∑ (Hmeas(i) − Havgmeas
)
2
 n

i=1

] 1 

 

Many authors have developed models for estimating the hourly global solar 

radiation of a horizontal surface (Ig) [433]–[440]. One of the widely used model for 

estimating long-term hourly global solar radiation is Collares-Pereira and Rabl 

[438] model. Unlike in some other estimation models such as Whillier [433] model 
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and Liu and Jordan [439] model whereby atmospheric effect on global solar 

radiation is assumed as constant, in Collares-Pereira and Rabl (CPR) [438] model, 

atmospheric effect on global solar radiation is dependent on the hour angle (ω). 

Collares-Pereira and Rabl [438] accounted for atmospheric effect on global solar 

radiation by multiplying Liu and Jordan [439] hourly global solar radiation 

estimation model by a hour angle based empirical expression (a + b cosω). 

Therefore, Collares-Pereira and Rabl (CPR) [438] model for estimating horizontal 

surface hourly global solar radiation (kWm−2h−1) from horizontal surface daily 

global solar radiation (kWm−2h−1) is defined as [438]: 

Ig

Hg
= (a + b cosω) ×

π

24
× [

(cosω − cosωs)

sinωs −
πωs

180 cosωs

] = (a + b cosω) × ro (4.33) 

where ωs included in Eq. (4.33) was defined in Eq. (4.30). While a and b are linear 

functions of ωs − 60° and are defined by [438]: 

a = 0.4090 + 0.5016 sin(ωs − 60°)

b = 0.6609 + 0.4767 sin(ωs − 60°)
} (4.34) 

The hour angle (ω) in Eq. (4.34) is an angular measure of time and unlike ωs that 

remain constant in a day, ω changes depending on the hour of the day [219], [416]. 

Based on the rotation of the earth on its axis, ω is defined by the angular 

displacement of the sun east or west of the local meridian due to rotation of the earth 

on its axis at 15° per hour [192], [219], [230], [425]. So, the hour angle varies from 

−180° to +180°; and the usual convention is to measuring the hour angle from noon, 

that is, morning being negative degrees and afternoon positive angles [117], [219]. 

Therefore, the hour angle is defined by [192], [219], [230], [425]: 

ω = 15° × [12 − TS] (4.35) 

where TS in Eq. (4.35) is the solar time. 
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The solar time is also known as local apparent time, and it is dependent on the 

apparent angular motion of the sun across the sky. The solar time of a given location 

is estimated by the difference between the location’s longitude and the meridian of 

its time zone, and the yearly perturbations in the rate of rotation of the earth around 

the sun [117], [219], [416], [425]. Because of the yearly perturbation in the rate of 

rotation of the earth around the sun, the solar time for a location does not coincide 

with the standard or local clock time (Tst) [117], [192], [416], [425]. So, the 

relationship between solar time and standard time is defined by [168], [192], [219], 

[416], [425], [426]: 

TS = Tst ± 4(Lst − Lloc) + Et (4.36) 

Positive/negative sign (±) is applied in Eq. (4.36) because a negative sign is 

applicable for the eastern hemisphere, while positive sign is applicable for the 

western hemisphere [219]. For Nigeria, a negative sign is used because the country 

is in the eastern hemisphere (i.e. east of the prime meridian). Also, in Eq. (4.36), Lst 

is the standard meridian for the local time zone, Lloc is the longitude of the location, 

and E is the equation of time (in minutes). Equation of time (Et) is defined by [117], 

[118], [192], [219], [425]: 

Et = 229.18 × (0.000075 + 0.001868 cos Γ − 0.032077 sin Γ

− 0.014615 cos 2Γ − 0.04089 sin 2Γ) 
(4.37) 

Where day angle (Γ) included in Eq. (4.37) is defined in Eq. (4.29). 

Gueymard [440] slightly modified Collares-Pereira and Rabl [438] model in Eq. 

(4.33), by incorporating a normalising factor (fn) to improve the correction of 

atmospheric effect of global solar radiation suggested. So, the modified Eq. (4.33) is 

defined as [440]: 

Ig

Hg
=
(a + b cosω) × r0

fn
 (4.38) 

where fn parameters in Eq. (4.38) is defined as follow [440]: 
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fn = a + 0.5b [
(
πωs

180 − sinωs cosωs)

sinωs −
πωs

180 cosωs

] (4.39) 

In this study, Gueymard [440] modified Collares-Pereira and Rabl [438] (GCPR) 

model is used for estimating hourly global solar radiation on a horizontal surface. 

This is because the model is reported as amongst the top performing models for 

estimating the hourly global solar radiation of a horizontal surface [416], [441]. 

 

Most of the models for estimating inclined surface global solar radiation requires the 

disintegration of global solar radiation into direct and diffuse solar radiation [220]–

[228]. But because Nigerian meteorological agency weather stations do not measure 

diffuse solar radiation, Olmo et al. [229] estimation model which does require 

diffuse solar radiation data to estimate inclined surface global solar radiation is 

used. As earlier mentioned in Chapter 3, an alternative approach is to estimate the 

diffuse solar radiation of the location but most of the diffuse solar radiation 

estimation models include numerical definitions with numerous coefficients that 

are mainly valid for a location [230]. However, the alternative approach is less 

desirable in this study because it is a more complex approach and it requires the use 

of measured diffuse solar radiation data; which is un-available for the location, to 

derive the modelling coefficients and to evaluate the most suitable diffuse solar 

radiation estimation model for the location. Therefore, after the evaluation of the top 

performing model for estimating the location horizontal surface daily global solar 

radiation and subsequent estimation of the hourly global solar radiation with GCPR 

model, Olmo et al. [229] estimation model is used to estimate the hourly global solar 

radiation of an inclined surface. Olmo et al. [229] estimation model is defined by 

[229]: 

Iγ = Igψofc (4.40) 
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The parameter Ig included in Eq. (4.40) has been defined in Eq. (4.38), while the 

function ψo is the function that converts horizontal surface global solar radiation 

into the tilted surface global solar radiation. ψo is defined by [229]: 

ψo = exp (−Kt [(
πθ

180
)
2

− (
πθz
180

)
2

]) (4.41) 

where Kt in Eq. (4.41) is the clearness index and it is calculated by dividing the 

estimated hourly global solar radiation (Ig) by the hourly extra-terrestrial global 

solar radiation (Io). The expression for calculating hourly extra-terrestrial global 

solar radiation (Io) is [117], [219], [416], [425]: 

I0 = 3600 × GSC [1 + 0.033 cos (
360 × Nday

365
)]

× [sinϕ sin δ + cosϕ cos δ cosω] 
(4.42) 

where the parameters GSC, Nday, and ϕ in Eq. (4.42) are symbol for solar constant, 

day of the year, and the latitude of the location. While δ and ω in Eq. (4.42) are 

symbol declination angle, and hour angle respectively. Expressions for calculating 

δ and ω have been defined in Eq. (4.28) and Eq. (4.35) respectively. Also, θ in Eq. 

(4.41) is the solar incidence angle. θ for a surface oriented in any direction is 

expressed as follow [117], [118], [218], [230]: 

cos θ = sin δ sinϕ cos β − sin δ cosϕ sin β cos γ

+ cos δ cosϕ cos β cosω + cos δ sinϕ sin β cos γ cosω

+ cos δ sin β sin γ sinω 

(4.43) 

where the parameters β and γ in Eq. (4.43) are the symbol for the tilt angle and the 

surface azimuth angle. Nigeria is in the northern hemisphere, and for a surface in 

the northern hemisphere facing south, the surface azimuth angle (γ) is 0° [117], 

[218], [219]. So, Eq. (4.43) is simplified as: 

θ = cos−1([sin δ sin(ϕ − β)] + [cos δ cos(ϕ − β) cosω]) (4.44) 
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For a horizontal surface, the tilt angle (β) is 0°, while the angle of incidence (θ) is 

equal to the solar zenith angle (θz). Substituting β = 0° into Eq. (4.44), the solar 

zenith angle (θz) is defined by [117], [218], [219], [230], [425]: 

θz = cos−1([sin δ sin(ϕ)] + [cos δ cos(ϕ) cosω]) (4.45) 

Meanwhile, the multiplying factor (fc) included in Eq. (4.40) is used to account for 

the effect of anisotropic reflection and it is dependent on the solar incidence angle 

(θ) and on the reflectivity (albedo) of the collector’s surrounding (ρr). So, the 

multiplying factor (fc) is defined as [229]: 

fc = 1 + ρr [sin
2 (
θ

2
)] (4.46) 

The reflectivity or ground albedo is defined as the ratio of the reflected/scattered 

radiation to the incident radiation and it can be estimated by subtracting the 

emissivity of the location surface from one [425]. So, ground albedo is dependent on 

several factors, such as deviations from Lambert’s law of isotropy and variations in 

ground properties [230]. The value of ground albedo commonly used are ρr = 0.2 

for hot and humid tropical location [118], [230], [442], ρr = 0.55 for old snow-

covered ground [442], ρr = 0.85 for fresh snow-covered ground [442]. In Nigeria 

where the presence of snow cover is unlikely, the ground albedo of the collector’s 

surrounding is expected to be low. So, a ground albedo of 0.2 is selected in this study.  

 

The primary objective of performing an optimal sizing of the hybrid energy system 

is to ensure that energy demands are supplied reliably and at the lowest possible 

cost. To achieve reliable supply, more electricity generation will be required, and 

there will be a potential increase in energy system cost. However, the potential high 

system cost of achieving a reliable supply of electricity can be reduced if the hybrid 

system energy losses/wastage is minimized. So, the objective function (OF) for the 

optimal sizing problem is defined by: 
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minimize: OF = {
f(LPSP)

f(Cann,tot)
   (4.47) 

where LPSP is the loss of power supply probability, Cann,tot is total annualized 

system cost. The LPSP is the ratio between the total unmet load and the total load 

within the period under consideration, therefore, it is defined by [190], [337]: 

LPSP =
∑ Edeficit(t)
T
t=1

∑ Eload(t)
T
t=1

 (4.48) 

where Edeficit is the energy deficit, and Eload is electrical load  

A search of the optimal combination of system components is required for the 

optimal sizing of the hybrid energy system, the optimal sizing problem can be 

referred to as a search space problem. Therefore, minimization of the objective 

function is performed with a graphical construction technique called design space 

modelling technique. This modelling technique is selected because it is a quick and 

precise optimization technique and it can be easily understood and replicated [338], 

[365], [403]. The search space simulation is performed by initially separating the 

feasible regions from the non-feasible regions, before a search for the optimal point 

(i.e. point of least cost) in the feasible region of the design search space is 

determined. Poddar and Polley [443] is credited with the concept of design space 

optimization technique [361]. By searching the feasible region of a chemical process 

plant, Poddar and Polley [443] applied design space technique to optimize the 

design of a heat exchanger.  

Currently, design space optimization is not restricted to the optimization of the 

design of heat exchangers, but also to other fields where the concept can be applied 

to a search space problem. For example, in a power system, it has been used for 

energy system components optimal sizing [338]–[340]. In this study, two axes (x-

axis and y-axis) search is carried out within the feasible region of the design search 

space to determine the optimal size of the photovoltaic (PPV) and biogas generator 

(PBio) that should be installed. The feasible region, in this case, is defined by the 
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portion of the design space, whereby selected sizes or combinations of the PV 

system, biogas generator, and battery energy storage system can be used to achieve 

a minimal LPSP. The flowchart that describes the operations of the design space 

optimization modelling technique is presented in Fig. 4.4. 

 

Fig. 4.4. Design space optimization technique 

The sequence of energy balancing presented in Fig. 4.4 represents the technical 

strategy of the hybrid energy system design model. Meanwhile, because Fig. 4.4 will 

be used to simulate the optimal size of system components, the technical design 

strategy illustrated in Fig. 4.4 is linked with the technical strategy for the regional-

grid power distribution as well as the economic strategy for the optimal sizing of the 

hybrid energy system. 

Optimal sized hybrid energy 
system components

For all possible PV generator installed capacities 

For all possible Bio-generator installed capacities 

For time(t)=1,2, ….., 8760 

Hybrid energy system 
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The technical design strategies applied here is categorized into two strategies. The 

first technical design strategies are used to minimize the un-met load within the 

hybrid energy system presented in Fig. 4.1. The second technical design strategy 

emanates from the desire to aggregate electrical load, since load aggregation leads 

to peak demand shaving (lower load diversity factor) [444]. Hence, resulting in the 

reduction of the generator capacity. So, renewable energy system scalability 

advantage [46], [445], [446], can be explore to study if it is a better operating 

strategy to centralize or distribute generators and energy storage when community 

grids are integrated into a regional-grid, in order to minimise the power losses in 

the network. 

 

In this section the technical design strategies are used to minimize the un-met load. 

These technical design strategies are applied to carried out the design space 

optimization presented in Fig. 4.4. The technical design strategy adopted to 

minimize the hybrid energy system conversion losses is such that the AC load in the 

AC bus of the hybrid-coupled topology in Fig. 3.3 is supplied first by the AC 

generator, before the net AC energy (surplus/deficit) is transferred to the DC bus 

through the energy converter. So, the hybrid energy system net AC energy (EAC_net) 

can be defined as [366], [400], [401]: 

EAC_net(t) = EBio(t)  − ELoad(t) (4.49) 

where EBiois the energy supplied by the biogas generator and ELoad is the electrical 

load. 

When the hybrid energy system net AC energy is surplus, the excess AC energy is 

sold to the national grid rather than been used to charge the battery in order to 

minimise energy conversion losses. But when the net AC energy is deficit, the un-

met load will be supplied by the PV system or the battery energy storage connected 

to the DC bus in Fig. 3.3. The supplied energy from the DC bus are transformed from 
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DC to AC by the energy converter in Fig. 3.3. So, the net transformed energy 

surplus/deficit (EAC/DC_net) can be defined as [171], [366], [400], [401], [403]: 

EAC/DC_net(t) = {
EAC_net(t)

ηcon
⁄                          EAC_net(t)  < 0 

EAC_net(t) × ηcon                      EAC_net(t)  ≥ 0
 (4.50) 

where EAC_net(t) included in Eq. (4.50) was defined in Eq. (4.49), while ηcon is the 

converter efficiency and ηcon is used to accounts for the energy transformation 

losses. Similarly, the net energy surplus or deficit within the DC bus (EDC_net) of the 

hybrid-coupled topology in Fig. 4.1 can be defined as [366], [400], [403]: 

EDC_net(t) = EPV(t) + EAC/DC_net(t) (4.51) 

where EAC/DC_net included in Eq. (4.51) was defined in Eq. (4.50), while EPV is the 

energy supplied by the photovoltaic system. The calculation of EDC_net is vital 

because it is required for the optimal sizing the battery energy storage system, so 

that un-met load can be supplied. 

 

To determine the preferred technical design strategy for power distribution with a 

regional-grid, a power flow study will be used to investigate if it is a better operating 

strategy to centralize or distribute generators and energy storage when power is 

distributed in a regional-grid. The power flow study is useful because the resultant 

power losses that emanates from centralizing or distributing generators and energy 

storage in different load buses within the regional-grid distribution network can be 

evaluated. Also, power flow analysis is concerned with the healthy operation of the 

electrical network; thus, enabling potential economic saving in the long run. 

Execution of the power flow study begins with the initialization of assigned power 

network parameters (electrical loads, generation specification and constraints), and 

the subsequent calculation of relevant parameters such as bus admittance matrix, 

bus conductance matrix, and bus susceptance matrix of the power network. The next 

procedure is the use of a mathematical technique (i.e. Newton-Raphson method 
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which was proposed in Section 3.4.8) to simulate the power flow in the network. 

Meanwhile, during the power flow study, simulation of the voltage profiles, power 

flows, and power losses of the power network are performed by ensuring pre-

defined constraints are not violated. A schematic diagram that can be adopted to 

carry out a power flow analysis is presented in Fig. 4.5. 

 

Fig. 4.5. Power flow study modelling scheme 

In executing the power flow study, the underlying electrical circuit is analysed with 

the use of nodal analysis. Therefore, for a power system with several buses, the 

nodal equations that define the admittance (Y), the current (I), and the voltage (V), 

is given by [349], [350], [352]:  
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[
 
 
 
 
I1  
I2  
I3  
⋮   
IN ]

 
 
 
 

=

[
 
 
 
 
Y11  Y12   Y13  ⋯  Y1N
Y21  Y22   Y23  ⋯  Y2N
Y31  Y32   Y33  ⋯  Y3N
⋮       ⋮       ⋮              ⋮

YN1  YN2   YN3  ⋯  YNN]
 
 
 
 

[
 
 
 
 
V1  
V2  
V3  
⋮   
VN ]

 
 
 
 

 (4.52) 

where N in Eq. (4.52) is the number of buses. By using matrix notation, the several 

buses nodal equation in Eq. (4.52) can be expressed in a compact form by: 

I = Ybus × V (4.53) 

From Eq. (4.53), I is the N column vector of source currents injected into each bus, 

V is the N column vector of bus voltages, and Ybus is the bus admittance. One of the 

advantages of representing power flow problems with nodal equations is that from 

the specified parameters of the power system buses, computer programs can be 

used to calculate the required power flow variables. The diagonal element (Ymm) of 

the bus admittance matrix (Ybus) is also known as self-admittance or driving point 

admittance, while the off-diagonal element (Ymn) of the bus admittance matrix 

(Ybus) also known as mutual admittance or transfer admittance. The bus admittance 

matrix (Ybus) is symmetrical (i. e. Ymn = Ynm). The diagonal and the off-diagonal 

elements of the bus admittance matrix (Ybus) can be defined by [350]: 

Ymm = sum of admittances connected to bus m, for (m = 1,2,⋯ , N)

Ymn = −(sum of admittances connected to bus m), for (m ≠ n)         
 (4.54) 

By substituting Ybus in Eq. (4.53) with Eq. (4.54), the current entering a bus m (Im) 

is defined by: 

Im = Ym1V1 + Ym2V2 +⋯+ YmnVn = ∑YmnVn

N

n=1

 (4.55) 

In practice, for a network bus m, the apparent power (Sm) is specified, while the bus 

current (Im) is not specified. Therefore, the apparent power entering into a network 

and its complex conjugate is defined by [350]: 
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Sm = Pm + jQm = VmIm
∗  

Sm∗ = Pm − jQm = Vm∗ Im
 (4.56) 

By substituting (Im) from Eq. (4.55) into the apparent power complex conjugate 

equation in Eq. (4.56), the apparent power complex conjugate (Sm
∗ ) is defined by: 

Sm
∗ = Pm − jQm = Vm

∗ [∑YmnVn

N

n=1

]                    for m = 1,2,⋯ , N (4.57) 

The voltages and the admittance elements in Eq. (4.57) are complex quantities, and 

their corresponding polar and complex notations is defined by: 

Vm
∗ = |Vm| − δ°m = |Vm|(cos δ

°
m − j sin δ°m)

Vn = |Vn| δ
°
n = |Vn|(cos δ

°
n + j sin δ°n)          

  

                                           

Ymn = |Ymn| θmn = |Ymn| cos θmn + |Ymn| sin θmn = Gmn + jBmn

 (4.58) 

where G is the conductance and B is the susceptance in Eq. (4.58). By substituting 

the mutual admittance (Ymn) and the complex conjugate of voltage (Vm
∗ ) of Eq. (4.58) 

into Eq. (4.57), the complex conjugate of the apparent power becomes: 

Pm − jQm = ∑|Vm||Vn|(Gmn cos(δ
°
m − δ°n) + jBmncos(δ

°
m − δ°n)

N

n=1

− jGmn sin(δ
°
m − δ°n)  + Bmn sin(δ

°
m − δ°n) ) 

(4.59) 

Also, by separating the real part of Eq. (4.59) from the imaginary part of the 

equation, the amount of active power (Pm) and reactive power (Qm) flowing into the 

mth bus is defined by: 

Pm = ∑ |Vm||Vn|Gmn cos(δ
°
m − δ°n) + |Vm||Vn|Bmn sin(δ

°
m − δ°n)

N
n=1     

Qm = ∑ −|Vm||Vn|Bmn cos(δ°m − δ°n) + |Vm||Vn|Gmn sin(δ°m − δ°n)
N
n=1

 (4.60) 

Pm and Qm are non-linear functions with several unknowns. Thus, a numerical 

(iteration) method are required for calculating Pm and Qm.  
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Newton–Raphson method is applied to analyse the power flow problem. Newton–

Raphson method is selected because it gives more accurate results within less 

converge time than many other methods such as Gauss-Siedel method and Jacobi 

methods [350], [352], [353]. Newton-Raphson method is developed based on 

Taylor’s series expansion of a function, and it is used for finding successively better 

approximations to the solutions (roots) of a function [350], [351]. Therefore, a 

function is optimized when the difference between the calculated and the scheduled 

values become close to zero. The generalized form of the Newton–Raphson method 

is given by the expression [350]–[352]: 

xp+1 = xp −
f(xp)

f1(xp)
 (4.61) 

For multi-equations function, Eq. (4.61) becomes [350]: 

Xp+1 = X(p) − J−1(Xp)f(Xp) (4.62) 

where x and f are column vectors, and J(Xp) is a matrix known as the Jacobian matrix 

or partial differentiation matrix. When Newton-Raphson’s method is used in power 

flow study, the real and reactive power mismatch between the scheduled and 

calculated power is set at a value close to zero [350]. So, the real power and reactive 

power mismatch are defined by [349], [350]: 

∆P = PSch − Pcalc ≈ 0

∆Q = QSch − Qcalc ≈ 0
 (4.63) 

The x and f column vectors are expressed as follow [350]: 
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x = [δ
°

V
] =

[
 
 
 
 
 
δ°2
⋮  
δ°N  
V2  
⋮   
VN ]

 
 
 
 
 

  

f = [
P
Q
] =

[
 
 
 
 
 
P2
⋮  
PN  
Q2  
⋮   
QN ]

 
 
 
 
 

 

 (4.64) 

The slack bus variables δ°1 and V1 are omitted in the column vectors in Eq. (4.64) 

because they are pre-defined in a slack bus. So, if Newton-Raphson’s method is 

applied to a N-bus power system, the linearized relationship between changes in 

voltage phase angle (∆δ°) and voltage magnitude (∆V) to changes in real power (∆P) 

and reactive power (∆Q), is can be represented by Jacobian matrix as follow [349], 

[350]:  

[
 
 
 
 
 
 
 

  

∆δ°2  
⋮ 

∆δ°N
−−  
∆V2  
⋮ 

∆VN 

  

]
 
 
 
 
 
 
 
(0)

=

[
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 

∂P2

∂δ°2
   ⋯   

∂P2

∂δ°N
⋮      J11        

∂PN

∂δ°2
   ⋯   

∂PN

∂δ°N
−−−−−−−−  
∂Q2

∂δ°2
   ⋯   

∂Q2

∂δ°N
  

⋮      J21          
∂QN

∂δ°2
   ⋯   

∂QN

∂δ°N
 
|

|

|

|

∂P2
∂V2

   ⋯   
∂P2
∂VN

⋮      J12        
∂PN
∂V2

   ⋯   
∂PN
∂VN

−−−−−−−−  
∂Q2

∂V2
   ⋯   

∂Q2

∂VN
  

⋮      J22          
∂QN

∂V2
   ⋯   

∂QN

∂VN
 
]
 
 
 
 
 
 
 
 
 
 
 
 
(0)

]
 
 
 
 
 
 
 
 
 
 
 
 
−1

[
 
 
 
 
 
 
∆P2  
⋮ 
∆PN
− −  
∆Q2  
⋮ 

∆QN 

  

]
 
 
 
 
 
 
(0)

 (4.65) 

The elements of the Jacobian sub-matrix are calculated by carrying out a partial 

differentiation of the real and reactive power equations defined in Eq. (4.60), with 

respect to the voltage magnitude and the voltage phase angle. A summary of the 

partial derivatives for the Jacobian sub-matrix diagonal and off-diagonal elements 

are presented in Table 4.5.
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Table 4.5. Diagonal and off-diagonal elements of Jacobian sub-matrix [349], [350] 

Sub-
matrix 

Partial derivative for the diagonal 

elements (m = n) 

Partial derivative for the off-diagonal 

elements (m ≠ n) 

J
11

 ∂Pm

∂δ°m
= −Q

m
− |Vm||Vm|Bmm cos(δ°m

− δ°m)
= −Q

m
− |Vm|

2Bmm 

∂Pm

∂δ°n
= |Vm||Vn|Gmn cos(δ

°
m − δ°n)

+ |Vm||Vn|Bmn sin(δ
°
m

− δ°n) 

J
12

 ∂Pm

∂|Vm|
=

1

|Vm|
× (Pm − |Vm|

2Gmm)

+ 2|Vm|Gmm

=
Pm

|Vm|
+ |Vm|Gmm 

∂Pm

∂|Vn|
= |Vm|Gmn cos(δ

°
m − δ°n)

+ |Vm|Bmn sin(δ
°
m

− δ°n) = −|Vn|
∂Q

m

∂δ°n
 

J
21

 ∂Q
m

∂δ°m
= Pm − |Vm||Vm|Gmm cos(δ°m

− δ°m)
= Pm − |Vm|

2Gmm 

∂Q
m

∂δ°n
= −|Vm||Vn|Bmn sin(δ

°
m − δ°n)

− |Vm||Vn|Gmn cos(δ
°
m

− δ°n) 

J
22

 ∂Q
m

∂|Vm|
= −

1

|Vm|
× (−Q

m
− |Vm|

2Bmm)

− 2|Vm|Bmm

=
Q
m

|Vm|
− |Vm|Bmm 

∂Q
m

∂|Vn|
= −|Vm|Bmn cos(δ

°
m − δ°n)

+ |Vm|Gmn sin(δ
°
m

− δ°n) 

 

The total system cost of an energy project comprises of initial investment or capital 

cost (Cann,cap), subsequent investment or replacement cost (Cann,rep), operation and 

maintenance cost (Cann,O&M), and fuel cost (Cann,fuel) [170]. The different sub-total 

system costs of an energy project often occur at different stages of the energy project 

lifetime. For example, capital cost occurs at the start of the energy project, while 

replacement cost, operation and maintenance cost, and fuel cost occur at later stages 

of the hybrid energy system project. In this study, fuel cost is associated with the 

amount of biowaste purchased from outside the studied community. So, the total 

annualised system cost of the hybrid energy system is optimized with respect to the 

annualized capital cost, the annualized replacement cost, and the annualized 

operation and maintenance cost, and the annualized fuel cost. Therefore, the hybrid 

energy system total annualized system cost (Cann,tot) is minimized by: 
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Minimize: ∑Cann,tot

m

1

 = ∑(Cann,cap + Cann,rep + Cann,O&M + Cann,fuel)

m

1

 (4.66) 

where Cann,cap is the annualized capital cost, Cann,rep is the annualized replacement 

cost, Cann,O&M is the annualized maintenance cost, Cann,fuel is the annualized fuel 

cost, and m is the number of system components. Photovoltaic system, biogas 

system (i.e., biogas generator and AD system), battery storage system, and converter 

system, are the four core system components in the hybrid energy system in Fig. 4.1. 

So, the equivalent total annualized cost for each of the four system components are 

aggregated to calculate the total annualized system cost of the hybrid energy system. 

The annualized capital cost (Cann,tot) is defined as [168]: 

Cann,tot = Ccap × CRF(ir, n) (4.67) 

where Ccap is the initial capital cost of system components, CRF(ir, n) is the capital 

recovery factor or annuity factor. Capital recovery factor is defined by [170]: 

CRF(ir, n) =
i × (1 + ir)n

(1 + ir)n − 1
 (4.68) 

where n is the useful lifetime of project and ir is the real interest rate. Nigeria real 

interest rate is influenced by the country high inflation rate [119]. So, Fisher’s 

expression is used here to determine Nigeria real interest rate. Fisher’s real interest 

rate (ir) is defined as [119], [170], [191]: 

ir =
irnom − fr
1 + fr

 (4.69) 

where irnom is the nominal interest rate and fr is the inflation rate. To calculate the 

annualized replacement cost (Carep), the present worth of replacing the system 

component and the capital recovery factor required. So, the annualized replacement 

cost (Cann,rep) is defined as [168]: 
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Cann,rep = Ccap × ∑ (
1

1 + ir
)
kn

k=q,r,…,v

× CRF(ir, n) (4.70) 

where k = q, r, … , v are the different system components expected year of 

replacement. Meanwhile, because the initial capital cost of system and the capital 

recovery factor are both functions of the annualized capital cost and the annualized 

replacement cost in Eqs. (4.67) – (4.70) respectively, therefore, the sum of Eq. (4.67) 

and Eq. (4.70) can be re-written in terms of a single payment present worth factor 

as: 

Cann,cap + Cann,rep = Ccap × [1 + ∑
1

(1 + ir)k

n

k=q,r,…,v

] × CRF(ir, n) (4.71) 

Furthermore, if the annualized operation maintenance cost and annualized fuel cost 

for the system components can be estimated, then, the hybrid energy system 

annualised total cost of system is defined as: 

Cann,tot = ∑(Ccap × CRF(ir, n) × [1 + ∑
1

(1 + ir)k

n

k=q,r,…,v

] + Cann,O&M

m

1

+ Cann,fuel) 

(4.72) 

The levelized cost of energy (LCOE) and the net present cost (NPC), which are 

convenient means of comparing different hybrid energy system configuration are 

also used in this research. The levelized cost of energy (LCOE) of an energy project 

is defined as [335], [356]:  

LCOE =
Cann,tot
Esupplied

 (4.73) 

where Cann,tot is the total annualized system cost and Eload is the total electrical 

energy supplied.  
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Whilst, the net present cost (NPC) of an energy project is defined by [85], [170], 

[177], [334]–[336]: 

NPC =
Cann,tot

CRF(ir, n)
 (4.74) 

In summary, economy strategy methodology presented in this section shows how 

the annualized system cost, the net present cost and the levelized cost of energy, are 

calculated with Eq. (4.72), Eq. (4.73) and Eq. (4.74) respectively. In the feasible 

region of the HRES design space, decision on the optimal combinations of system 

components in Chapter 7 is based on their annualized system cost. While net present 

cost and levelized cost of energy are used to evaluate the impact that different loss 

of power supply probabilities (LPSP) have on the HRES cost. 

 

The methodology chapter can be divided into 3 sections. Section 4.1 presents the 

approach used in collecting household energy consumption survey data as well as 

the methodology applied to model a stochastic household occupancy-based load 

profile for a developing country household and rural residential community. 

Specifically, the relevance of residential customers survey data, Nigerian national 

population and housing census data and the electricity utility company data for the 

development of the stochastic household occupancy-based model was also 

highlighted. Furthermore, illustration of Markov chain process and its usage during 

the modelling of household(s) energy consumption behaviour was also presented 

in this section. 

Section 4.2 presents the methodologies and boundary conditions adopted in 

modelling the different energy sub-systems of the hybrid energy system. These 

methodologies include the operation and sizing techniques of the biogas generator 

and anaerobic digester, battery energy storage, converter, and PV system. 

Furthermore, because hourly measured solar irradiation data is not available for 

many locations in developing countries like Nigeria, theoretical methods that can be 

used to estimate the hourly global solar irradiation of a horizontal and an inclined 
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surface was presented. Finally, the last section of the methodology chapter presents 

the design model of the hybrid energy system, the technical strategies adopted to 

perform the optimal sizing of hybrid energy system, the technical strategies applied 

to study if it is a better operating strategy to centralize or distribute generators and 

energy storage when community grids are integrated into a regional-grid, and the 

economic strategies adopted to ensure that electrical demands of the hybrid energy 

system are supplied at minimal cost.
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To assess the electricity consumption patterns in Nigerian rural communities, 

modelling of households’ load profile is carried out here. The scope of this chapter 

is to develop a stochastic occupancy-based model that can be used to simulate the 

load profile of a household or a community (aggregated households) in a developing 

country. In Chapter 7, the simulated load profile of the studied rural community is 

used as an input for the design and analysis of a hybrid energy system. Esan North-

East local government area (LGA) in the south-southern region of Nigeria is selected 

as the survey location. The south-southern region is one of the six geo-political zones 

in Nigeria and the region is reported to have the lowest solar energy potential in the 

country [48], [84]. So, the selected rural residential community can serve as an ideal 

location for carrying out a worst-case solar energy assessment in Chapter 6 as well 

as studying the possibility of using integrated PV, biogas and battery energy storage 

system for rural electrification. 

 

The questions of the household survey questionnaire were grouped into 5 

questionnaire sections or headings. In the household characteristic section, 

household class question will be used to group the surveyed households into the 

four household classes presented in Section 4.1.2. The question on the head of 

household occupation will be used to evaluate if there are links between the head of 

a household and a household energy consumption. While questions on the number 

of bedrooms in the house and the number of occupants will be used to determine 

the dwelling size and the household population respectively.  

As earlier mentioned in Section 3.7.1, household occupants’ behaviour section and 

the household activities section of the questionnaire are used to collate data relating 

to occupants’ activity schedule. Therefore, from these sections, household activity-

based questions such as household occupants’ bedtime, time for work, waking up 

time, leisure time, cooking time and cleaning time will be used to determine the 
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transitions of occupants from one state to another and how active occupants 

perform different household activities. 

In the energy usage and power availability section, questions on the difference in 

weekdays and weekends energy consumption, average daily electricity availability 

and average monthly electricity bill will be used to determine define some of the 

modelling assumptions and validation because existing data to validate the 

developed load profile model are limited. Finally, the list of household appliances 

tabulated in the last section of the questionnaire is used to acquire data on 

household appliance ownership. Due to the survey location insecurity challenges, 

question on appliance wattage was avoid because some survey participant might 

consider this question as too personal. Therefore, a market survey of household 

appliance stores was carried out to determine the power rating of commonly 

purchase appliances in the survey location. 

 

• The lifestyle of households’ occupants in the survey location is modelled with 

survey data on occupants’ activity schedule because the survey sample size is a 

statistical representation of the survey location household population. 

• Household occupants’ daily engagements are grouped into inactive home 

(asleep) state, active home state, away from home state. In the morning, 

household occupants’ transit from asleep state to active home state, then from 

active home state to away from home state. While in the evening, household 

occupants’ transit from away from away from home state to active home state, 

then from active home state to asleep state. 

• The power rating and time of use for an appliance type is assume as the same if 

a household has multiple quantities. Therefore, if there is a bulb in each of the 3 

bedrooms of a household, the power rating and time of use of these bedroom 

bulbs are the same.
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Outcomes from the time use survey are presented in this section of the thesis. The 

occupations of surveyed head of household are captured by a pie-chart in Fig. 5.1. 

 

Fig. 5.1. Head of household occupation in the survey area 

Fig. 5.1 reveals that 99% of the head of the surveyed households were either 

farmers, traders, or drivers. These main head of households’ occupations are 

directly and indirectly linked with farming activities. This is because farmers work 

directly on the farm, while traders that sell farm products in the market and drivers 

that transport the farms' products to the market are indirectly linked to the farm. A 

bar-chart showing the percentage share of different household sizes in the survey 

area is present in Fig. 5.2.  
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Fig. 5.2. Percentage share of household (HH) size in the survey area 

Fig. 5.2 shows that 67% of the surveyed households had between 4 and 9 occupants 

per household, while 92.1% of the surveyed households had a minimum of 4 

persons per household and a maximum of 10 persons per households. The absent of 

a 1 occupant household size in Fig. 5.2 is expected in this study because a household 

has been classified based on the number of individuals or families with the same 

electric bill or metering.  

With respect to the number of bedrooms per household, the pie-chart in Fig. 5.3 

reveals that 59% of the surveyed households had 3 to 4 bedrooms per households, 

while 99% of the surveyed households had a minimum of 2 bedrooms and a 

maximum of 6 bedrooms per households. This is similar to what was reported for 

Esan North-East LGA in 2006 national population and housing census report [388]. 
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Fig. 5.3. Percentage share of bedrooms per household 

Because the number of survey households is a statistical representation of the 

community household population, collated survey data that define occupants’ 

activity schedule are used to model the lifestyle of household occupants in the 

community. To model the behaviour of household occupants, the three occupancy 

states mentioned in Section 5.2, are used to describe the daily engagement of 

household occupants. The possible hourly transition of an occupant in any of three 

occupancy states is captured in Fig. 5.4. 

 

Fig. 5.4. Household occupants’ states transition pathway 
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The black directional arrows in Fig. 5.4 show that an occupant in any of the three 

occupancy states either remains in his/her current state or transit to another state. 

There are 4 transition pathways amongst the three occupancy states. The number 

of occupants that transit through these 4 transition pathways every hour is 

dependent on the hourly conditional probabilities (CP) of CPI, CPII, CPIII and CPIV 

in Fig. 5.4. CPI, CPII, CPIII and CPIV are defined as the conditional probability of 

getting up in the morning given that the occupant is asleep, the conditional 

probability of going to work given that the occupant is awake at home, the 

conditional probability of coming home given that the occupant is away from home 

and the conditional probability of going to sleep given that the occupant is awake at 

home respectively. During load profile modelling, the conditional probabilities of 

CPI, CPII, CPIII and CPIV used to simulate daily engagement of household occupants, 

are calculated with survey data collated from household occupants’ behaviour 

section of the questionnaire. 

Over a 24 hours’ time step, Table 5.1 illustrates how the conditional probabilities 

(CPST) for the household occupants’ states transitions are calculated. A time step of 

5:00 – 6:00 hour was selected for this illustration because during this time step, 

there is the possibility that the occupants of a household might occupy all the three 

occupancy states. 

Table 5.1. Illustration of the calculation of survey area state transition 

Primary 
State 

Transition amongst states 
Transition 
pathway 

Survey-based 
transition 

Conditional 
probabilities 05:00 hours 06:00 hours 

State I 
State I State I No transition 15 15/67 = 0.224 

State I State II CPST I 52 52/67 = 0.776 

State II 

State II State I CPST IV 0 0/206 = 0.000 

State II State II No transition 177 177/206 = 0.859 

State II State III CPST II 29 29/206 = 0.141 

State III 
State III State II CPST III 0 0/0 = 0.000 

State III State III No transition 0 0/0 = 0.000 

Evaluation of Table 5.1 shows that the calculated conditional probabilities derived 

from the survey data are acceptable. For instance, the sum of the survey-based 
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transitions in Table 5.1 was equal to the survey sample size (273), and the calculated 

conditional probabilities within a state was equal to zero or one. Based on the time 

use survey data, the calculated hourly conditional probabilities for the states 

transition (i.e., CPST I, CPST II, CPST III, CPST IV) are presented in Table 5.2. Similarly, 

the probabilities for occupants’ activities and appliance time use were also 

calculated from the collated survey data. The hourly probabilities calculated for 

cleaning, cooking, and leisure activities as well as for appliance time use are 

presented in Table 5.3 and Table 5.4 respectively. Amongst the available electrical 

appliances in the surveyed households, refrigerator/cold appliance and mobile 

phone charger time use were not presented in Table 5.4.  

Refrigerators time use was not presented because its continuous operation is not 

dependent on the presence of an active occupant. Although mobile phone charger 

time use is dependent on the presence (active or inactive at home) of a household 

occupant, its specific time use could not be predicted by most survey participants 

because the charging of a mobile phone is usually performed when its battery is fully 

or partially discharged. Hence, it is assumed that mobile phone batteries are only 

charged at home and that it takes similar time to fully charge and fully discharge a 

mobile phone battery. Therefore, the average time for complete charging and 

discharging of a mobile phone battery are used as part of the parameters for 

modelling the load profile of mobile phone chargers.
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Table 5.2. State transition pathway 

 

Table 5.3. Occupants activity time use 

 

Table 5.4. Appliance time use 

 

Time slot 00hr 01hr 02hr 03hr 04hr 05hr 06hr 07hr 08hr 09hr 10hr 11hr 12hr 13hr 14hr 15hr 16hr 17hr 18hr 19hr 20hr 21hr 22hr 23hr

States 
transition 
pathway

CPST  I 0.000 0.000 0.000 0.000 0.042 0.746 0.774 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.000 0.000

CPST  II 0.000 0.000 0.000 0.000 0.000 0.000 0.142 0.794 0.959 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

CPST  III 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.144 0.179 0.589 0.677 0.700 1.000 0.000 0.000 0.000

CPST  IV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.067 0.224 0.583 1.000

Time slot 00hr 01hr 02hr 03hr 04hr 05hr 06hr 07hr 08hr 09hr 10hr 11hr 12hr 13hr 14hr 15hr 16hr 17hr 18hr 19hr 20hr 21hr 22hr 23hr

Activity

Cleaning 0.000 0.000 0.000 0.000 0.005 0.028 0.390 0.310 0.080 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.020 0.020 0.020 0.020 0.010 0.000 0.000

Cooking 0.000 0.000 0.000 0.000 0.040 0.210 0.530 0.130 0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.050 0.160 0.660 0.880 0.240 0.080 0.020 0.000 0.000

Leisure 0.020 0.000 0.000 0.000 0.030 0.310 0.570 0.430 0.170 0.000 0.000 0.000 0.000 0.000 0.000 0.070 0.130 0.312 0.840 0.920 0.860 0.560 0.090 0.000

Time slot 00hr 01hr 02hr 03hr 04hr 05hr 06hr 07hr 08hr 09hr 10hr 11hr 12hr 13hr 14hr 15hr 16hr 17hr 18hr 19hr 20hr 21hr 22hr 23hr

Food blender 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.125 0.625 0.125 0.000 0.000 0.000 0.000

Electric iron 0.000 0.000 0.000 0.000 0.000 0.120 0.188 0.070 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.063 0.250 0.406 0.344 0.125 0.094 0.000

Television 0.000 0.000 0.000 0.000 0.000 0.054 0.101 0.048 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.204 0.431 0.850 0.898 0.862 0.725 0.050

DVD player 0.000 0.000 0.000 0.000 0.000 0.030 0.050 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.142 0.299 0.634 0.806 0.806 0.097 0.000

Electric iron 0.001 0.001 0.001 0.001 0.070 0.320 0.430 0.340 0.080 0.000 0.000 0.000 0.000 0.000 0.0000:000 0.050 0.137 0.484 0.536 0.412 0.130 0.030 0.000

Bedroom fan 0.050 0.030 0.030 0.030 0.100 0.450 0.100 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.230 0.650 0.930 0.320

Sitting room fan 0.000 0.000 0.000 0.000 0.000 0.075 0.080 0.031 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.528 0.882 0.981 0.920 0.170 0.020

Bedroom bulb 0.000 0.000 0.000 0.000 0.120 0.460 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.060 0.840 0.350 0.015

Sitting room bulb 0.000 0.000 0.000 0.000 0.031 0.230 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.030 1.000 0.920 0.670 0.170 0.020

Security bulb 1.000 1.000 1.000 1.000 1.000 0.725 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.020 1.000 1.000 1.000 1.000 1.000
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96% of the survey households stated that there is no obvious difference between 

weekdays and weekends in their daily time use of electricity. This survey outcome 

can be linked with earlier findings in Fig. 5.2 since 99% of the head of households’ 

occupations were directly and indirectly associated with farming activities. Thus, 

the head of household’s activities is expected to be similar. Due to the relevance of 

the difference between weekdays and weekends daily electricity time use, statistical 

verification was performed by collecting 3 months (January 2019 to March 2019) 

hourly daily electricity dispatch data from Uromi service unit and sorting the data 

into weekdays and weekends before a statistical test for the level of significance was 

performed.  

Daily electricity dispatch data is used for the verification because an electrical load 

is defined as any device that draws electricity from an electrical network [447]. 

Thus, daily electricity dispatch data will substantially mirror the community energy 

consumption time use. d-bar analysis was used to test if there is a significant 

difference between the hourly weekend and weekday data, for a selected critical 

value or level of significance of 5%. The test statistic is calculated by [448]. 

Td =
d^

(STDV √n⁄ )
 (5.1) 

where d^ and STDV are respectively the mean and standard deviation of the hourly 

difference between the weekend and weekday data, while n is the data size (24 

hours). From Eq. (5.1), the calculated Td is 2.154. Based on the degree of freedom 

(df) of the data size, the calculated value of Td was checked on a t-table, in order to 

determine the corresponding level of significant. Calculation df is by subtracting one 

from the data size (i. e., df = n − 1). Consequently, for a df of 23 and a Td value of 

2.154, the corresponding level of significance from a t-table was 2.1% (0.021). This 

value (0.021) is less than the selected critical value (P<0.05) for rejecting the 

hypothesis. Therefore, the difference between weekdays and weekends daily time 

use of electricity is minimal since the difference between their hourly data were 

statistically insignificant. Hence, it is assumed in this research that the daily time use 

for weekdays and weekends are the same. 
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For the daily electricity availability in the community, 91% of the surveyed 

households reported that their daily electricity availability was unpredictable. The 

reason for the unpredictability of daily electricity availability is traceable to the 

practice of load shedding within the national power grid transmission and 

distribution network. The typical average daily electricity availability of the 

surveyed households is presented in Fig. 5.5. 

 

Fig. 5.5. Typical daily electricity availability in the survey area 

The pie-chart in Fig. 5.5 shows that only 8% of the survey area households had more 

than 6 hours daily access to electricity, while 84% of the households had daily access 

to electricity in the range of 3 to 6 hours. But, the surveyed households’ average daily 

access to electricity was 6 hours. Daily power availability survey data was also 

verified with the use of 3 months hourly daily electricity dispatch data collected 

from Uromi service unit. Over the 90 days period, the time and total hours of daily 

electricity dispatched was unpredictable. Also, analysis of the electricity dispatch 

data revealed that there was no electricity dispatch for a total of 9 days within the 

90 days period. Furthermore, the maximum hours of electricity dispatch within a 

day was 9 hours, and this occurred once within the 90 days period. The average daily 

electricity dispatch to the survey area feeders is presented in Fig. 5.6. 
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Fig. 5.6. Daily total electricity dispatch in the survey area 

There are noticeable similarities between Fig. 5.5 and Fig. 5.6, for instance, the 

percentage share for daily electricity availability/dispatch for a total duration of 9-

10 hours was 1% in both pie-charts. While the percentage share for daily electricity 

availability and electricity dispatch for more than a minimum of 6 hours were 8% 

and 9% respectively. However, the total duration of daily electricity availability in 

Fig. 5.5 was slightly over-estimated, because Fig. 5.6 shows that there is a lesser 

chance of having daily electricity dispatched to the community for a total duration 

of 6 hours. In fact, the average daily electricity dispatched over the 90 days period 

was 4 hours. However, the reason for the difference is perhaps because the energy 

consumption survey was carried out about a year before the electricity dispatch 

data was measured.  

Pre-paid, post-paid, and community contribution are the three residential billing 

systems operated in the survey location. The average monthly electricity bill in 

Naira1 of households in the survey area is presented in Fig. 5.7. 

 

 

1 Naira (N) is Nigeria’s currency. 1 U.S dollar is equivalent to N 360 
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Fig. 5.7. Average monthly electricity bill in the survey area 

The pie-chart in Fig. 5.7 shows that 90% of the survey households pay an average of 

about 1000 to 3000 Naira monthly, while 70% of the survey households pay an 

average of about 1500 to 3000 Naira monthly. The relationship between the 

different types of billing systems and the average monthly electricity bill of 

households was carried out. However, no direct link can currently be established 

between the different types of billing systems and the average monthly electricity 

bill of households.  

Community household appliance time use has already been presented in Table 5.4, 

while the percentage share of appliances ownership within the survey area is 

presented in Fig. 5.8. 
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Fig. 5.8. Appliance ownership in the survey area 

The percentage share of each appliance in Fig. 5.8 was calculated based on the 

number of surveyed households that have at least one of the appliance types. 

Furthermore, with respect to households’ ownership of fans, survey outcomes show 

that about 85% of the surveyed household had at least a sitting room fan or a 

bedroom fan, while with respect to households’ ownership of bulbs, the survey 

showed that all the surveyed households had at least a sitting room bulb, a bedroom 

bulb or an external bulb. Similarly, analysis of the electric bulbs revealed that over 

96% of the total surveyed households had at least one incandescent bulb while only 

about 9% of the total surveyed households had at least one energy saving bulbs. 

Based on the four different household classification described in Section 4.1.2, the 

percentage share of appliance ownership in each of the four different household 

classes is presented in Fig. 5.9. 
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Fig. 5.9. Household class appliance ownership in the survey area 

The percentage share of most of the appliances in Fig. 5.9 increases from household 

class I to household class IV, that is, household class I and household IV have the 

lowest and highest percentage share respectively. The reason for this trend is 

perhaps due to the social class difference between the occupants of the different 

household class. For example, building structures for household class IV are mostly 

well-planned and built within the community. Also, it is more expensive to rent a flat 

than to rent a room in a house. For the sitting room fan, the change in the expect 

increasing order between household class I and household class II, might be because 

households in household class II do not always have a dedicated sitting room in the 

house. Similarly, with respect to the electric radio, the reason for the change in the 

expected order might also be connected to social class difference amongst occupants 

of the different household class. For instance, there are perhaps lesser need for 

electric radio by households with higher income. While for a household with low 
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income, it is cheaper to buy an electric radio than to buy a television. In addition, the 

operating duration of household appliances can be categorised into two groups:  

Short operating duration appliances: These are appliances that often operates 

continuous for less than an hour. 

Long operating duration appliances: These are appliances that often operates 

continuous for more than an hour 

For instance, it unlikely for food blender and electric iron to operate continuously 

for an hour, thus, the daily load profile for food blender and electric iron are 

modelled based on their average operating duration within an hour. Outcomes from 

the survey reveal that the operating duration for food blender and electric iron with 

an hour averages at 5 minutes and 10 minutes respectively. A market survey of 8 

electronic stores around the surveyed community revealed that for each household 

appliance, some appliance makes, or models were more purchased than others. The 

sellers attributed the reason for the preference for an appliance model to the cost, 

and the durability of an appliance than on the brand name or quality. However, they 

emphasized that the cost of an appliance was a more dominant factor that influences 

the purchase of an appliance model. Furthermore, with respect to data acquired 

from the market survey, appliance power rating used in this study are presented in 

Table 5.5. 

Table 5.5. Household appliance power rating 

Appliance type Appliance power rating (Watts) 

Refrigerator 140 

Food blender 250 

Electric Iron 1000 

Television 50 

DVD 15 

Electric radio 10 

Mobile phone charger 5 

Electric fan 70 

Incandescent bulb 60 



 
 

- 156 - 

 

 

Based on the bottom-up modelling steps presented in Fig. 4.2 as well as the survey-

based probabilities presented in Table 5.2 and Table 5.3, modelling outcomes on 

household occupants’ transitions or behavioural patterns are presented in this 

section. An eight occupant’s household will be used to illustrate the transitions of 

household occupants in this section because Fig. 5.2 shows that an eight-occupant 

household was the most common household size in the community.  

 

Over a 24 hours period, the transitions or behavioural patterns of household 

occupants in asleep (inactive home) state, active home state, or absent (away from 

home) state are presented in Fig. 5.10.  

 

Fig. 5.10. Simulated household occupants states 

The bars in Fig. 5.10 show the number of household occupants in the different state 

at each time step. As expected, it is evident in Fig. 5.10 that for each time step, the 

sum of household occupants in the three states was equal to the total number of 

household occupants.
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Over a 24 hours period, the number of active occupants performing either cleaning, 

cooking, or leisure activities is presented in Fig. 5.11. 

 

Fig. 5.11. Simulated activities of active occupants. 

It is evident from Fig. 5.10 and Fig. 5.11 that the possibility of performing cleaning, 

cooking, or leisure activities within a time step is dependent on the presence of at 

least an active occupant as well as on occupant’s activity time use presented in Table 

5.3. Meanwhile, because an occupant can be involved in more than one activity at a 

time, therefore, for each time step, the sum of the number of occupants engaged in 

the three activities can be greater than the number of active household occupants. 

This is exemplified in time step 19:00 and 20:00 of Fig. 5.11, whereby the sum of 

household occupants engaged in cooking and leisure activities were 2 occupants and 

1 occupant more than the total number of active household occupants. 

 

Appliance load profiles are modelled by converting the states of operation of 

appliances with their rated power presented in Table 5.5. This is similar to the 

approach used in [279], [308]. The operating states of appliances are simulated 

based on the energy consumption survey time use outcomes presented in Table 5.2, 
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Table 5.3, and Table 5.4. Meanwhile, to ensure that the load profile of short 

operating duration appliances is well captured, the load profiles of all appliances are 

synthesized in minutely time step. 

 

Modelling of the load profile of a refrigerator is not limited to the present or absent 

of an active occupant, therefore, survey data on occupants’ consumption behaviour 

cannot be used to determine the proclivity of using the refrigerator. To capture the 

on-time and off-time of the refrigerator, mean and standard deviation values for its 

on and off operation are calculated from measured data. Then, a normal distribution 

of the refrigerator on and off operation is simulated from the calculated mean and 

standard deviation values. Based on refrigerator measured data presented in [449], 

it is evident that the mean and standard deviation values during the refrigerator on 

operation were 12 minutes and 3 minutes respectively, while during off operation, 

mean and standard deviation values were 24 minutes and 8 minutes respectively. 

Over a 24-hour period, an example of a simulated refrigerator load profile is 

presented in Fig. 5.12. 

 

Fig. 5.12. Simulated load profile for refrigerator 
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Modelling of the energy consumption of food blender is based on the presence of at 

least an active occupant engaging in cooking activity as well as on food blender time 

use presented in Table 5.4. Meanwhile, because food blender is amongst short 

operating duration appliance, it is unlikely that it will be used continuously for an 

hour. Therefore, its short operating duration is considered during its modelling. 

Since evidence from the energy consumption survey reveals that food blender usage 

within an hour average at 5 minutes, during the modelling of the food blender 

energy consumption, it is assumed that food blender is used for 5 minutes within an 

hour. An example of a simulated load profile for food blender is presented in Fig. 

5.13. 

 

Fig. 5.13. Simulated load profile for food blender 

 

Modelling of the energy consumption of electric iron is based on the presence of at 

least an active occupant engaging in cleaning activity as well as on electric iron time 

use presented in Table 5.4. Just like food blender, electric iron is amongst short 

operating duration appliance. Thus, it is unlikely that it will be used continuously for 

an hour. Hence, its short operating duration is considered during its modelling. Since 

evidence from the energy consumption survey reveals that electric iron usage 

within an hour average at 10 minutes, therefore, during the modelling of electric 

iron energy consumption, it is assumed that electric iron operates for 10 minutes 
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within an hour. An example of a simulated load profile for electric iron is presented 

in Fig. 5.14. 

 

Fig. 5.14. Simulated load profile for electric iron 

 

Evidence from the energy consumption survey reveals that the operation of 

television is not limited to the presence of an active occupant in leisure activity but 

rather on the presence of an active household occupant. Therefore, modelling of the 

energy consumption of television is based on the presence of an active occupant as 

well as on television time use presented in Table 5.4. An example of a simulated load 

profile for television is presented in Fig. 5.15. 

 

Fig. 5.15. Simulated load profile for television 
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Evidence from the energy consumption survey reveals that the operation of DVD is 

dependent on the presence of an active household occupant in leisure activity. 

Therefore, modelling of the energy consumption of DVD is based on the presence of 

an active household occupant in leisure activity as well as on DVD time use 

presented in Table 5.4. An example of a simulated load profile for DVD is presented 

in Fig. 5.16. 

 

Fig. 5.16. Simulated load profile for DVD 

 

Just like the television, evidence from the energy consumption survey reveals that 

the usage of electric radio is dependent on the presence of an active household 

occupant at home. Therefore, modelling of the energy consumption of electric radio 

is based on the presence of at least an active occupant as well as on electric radio 

time use presented in Table 5.4. An example of a simulated load profile for electric 

radio is presented in Fig. 5.17. 
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Fig. 5.17. Simulated load profile for electric radio 

 

Mobile phones can be charged whenever there is the presence of an active occupant. 

It is evident from the survey that the average time to fully charge a mobile phone 

battery that was completely discharged is 2 hours. If mobile phones are only charged 

at home, then, whenever there is an active occupant, mobile phone charger daily 

operating duration is randomly selected for 2 hours. Therefore, the load profile of 

mobile phone charger load is calculated from its power rating, its quantity, and its 

daily operating duration. An example of a simulated load profile for a mobile phone 

charger is presented in Fig. 5.18. 

 

Fig. 5.18. Simulated load profile for mobile phone charger 
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A household fan in this study is classified into sitting room fan and bedroom fan. For 

the sitting room fan, evidence from the energy consumption survey reveals that 

sitting room fan energy usage is dependent on the time that active household 

occupants perform leisure activities. Therefore, modelling of the energy 

consumption of sitting room fan is based on the presence of an active household 

occupant in leisure activity as well as on sitting room fan time use presented in Table 

5.4. An example of a simulated load profile for sitting room fan is presented in Fig. 

5.19.  

 

Fig. 5.19. Simulated load profile for sitting room fan 

For the bedroom fan, evidence from the energy consumption survey reveals that 

bedroom fan energy usage is dependent on the time that household occupants’ 

transit to asleep state. Therefore, modelling of the energy consumption of bedroom 

fan is based on the presence of a household occupant in an asleep state as well as on 

bedroom fan time use presented in Table 5.4. An example of a simulated load profile 

for bedroom fan is presented in Fig. 5.20.  
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Fig. 5.20. Simulated load profile for bedroom fan 

The simulated bedroom fan load profile in Fig. 5.20 shows the ability of the 

developed bottom-up model to capture the possibility of using an appliance at 

different time steps in a day. 

 

Household lighting bulbs are classified in this study into sitting room bulb, bedroom 

bulb, and security bulbs. In modelling lighting bulb energy consumption, human 

perception to natural light level from the sun is considered by the lighting bulb end-

use model. This approach has been previously used in [308], [310]. Due to human 

perception to natural light level from the sun, lighting energy usage is affected by 

seasonal and diurnal variation [310], [329], [332]. To account for natural light level 

for the survey location, Eqs. (4.28) – (4.31) are used to calculate the annual daily 

sunrise and sunset time (in minutes) for the survey area. Furthermore, because it is 

unlikely that household occupants will always switch-on their lighting bulbs exactly 

by sunset or dusk and switch-off their lighting bulbs exactly by dawn or sunrise, civil 

twilight1 is used in this study to provide an off-set between dawn and sunrise in the 

morning and an off-set between sunset and dusk in the evening. Over a period of a 

 

 

1Civil twilight is the point in time when the centre of the sun is 6° below the horizon. 
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year, the expected daily time for dawn, sunrise, sunrise, and dusk calculated with 

Eqs. (4.28) – (4.31) for the survey area are presented in Table 5.6. 

Table 5.6. Daily time range for dawn, sunrise, sunset, and dusk  

 Period Earliest Time (hour) Latest time (hour) Average time (hour) 

Dawn 05:25 05:47 05:36 

Sunrise 05:49 06:11 06:00 

Sunset 17:49 18:11 18:00 

Dusk 18:13 18:35 18:24 

Comparison between the survey-based time use for sitting room bulb, bedroom 

bulb, and security bulb in Table 5.4 and the calculated time ranges in Table 5.6, 

shows that there are similarities between the time of switching-on of the lighting 

bulbs in the evening and the time of switching-off of the lighting bulbs in the 

morning. For the sitting room bulb model, since evidence from the energy 

consumption survey reveals that sitting room bulb energy consumption is also 

dependent on the presence of at least an active household occupant in leisure 

activity, modelling of the energy consumption of sitting room bulb is based on 

human perception to natural light level from the sun, the presence of an active 

household occupant in leisure activity, as well as on sitting room bulb time use 

presented in Table 5.4. An example of a simulated load profile for the sitting room 

bulb is presented in Fig. 5.21. 

 

Fig. 5.21. Simulated load profile for sitting room bulb 
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For the bedroom bulb model, evidence from the energy consumption survey reveals 

that bedroom bulb energy consumption is dependent on the time that household 

occupants’ transit to asleep state, and it is often used for short duration, that is, an 

average duration of use of 10 minutes per hour. So, modelling of the energy 

consumption of bed room bulb is based on human perception to natural light level 

from the sun, the presence of at least an occupant in asleep state, as well as on 

bedroom bulb time use presented in Table 5.4. To demonstrate the ability of the load 

model to capture multiple quantities of an appliance type, an example of a simulated 

load profile of a household with four bedroom bulbs is presented in Fig. 5.22.  

 

Fig. 5.22. Simulated load profile for bedroom bulb 

Modelling of security bulb energy consumption is based on household occupants’ 

response towards the level of natural light from the sun. So, households’ occupants 

will switch-on their security bulbs at any time between sunset and dusk (twilight), 

while they switch-off their security lighting bulbs at any time between dawn and 

sunrise (twilight) bulbs in response to the level of natural light from the sun. The 

choice of this modelling approach is because of the similarity between security bulb 

time use in Table 5.4 and the calculated natural light levels time ranges in Table 5.6. 

For example, the number of hourly time steps between zeros conditional 

probabilities (switch-off states) and the ones conditional probability (switching-on 

states) is similar to the number of average hourly time steps between sunrise and 

sunset in Table 5.6. Furthermore, another motivation for using only human 
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perception to natural light level from the sun to model security bulb time use is 

because the potential switching-on and switching-off of security bulbs are 

calculated in minutely time steps. An example of a simulated load profile of a 

household with four security bulbs is presented in Fig. 5.23.  

 

Fig. 5.23. Simulated load profile for security bulb 

In comparison to the time axis of other simulated appliance plots in Fig. 5.13 to Fig. 

5.22, the time axis of Fig. 5.23, has been adjusted to start from 12:00 to 12:00 in 

order to clearly capture the operating time of security bulb. Simulation of the 

security bulb operation revealed that the security bulbs were switched-on by 5:46 

and switched-off by 18:06 on a simulated day. 

 

As showed in the load profile implementation scheme in Fig. 4.2, a household load 

profile is synthesized from the aggregation of all the appliance load profiles within 

a household. An example of a simulated load profile for a household with 

refrigerator, food blender, electric iron, television, DVD, electric radio, mobile 

phone, sitting room fan, bedroom fan, sitting room bulb, bedroom bulb, and security 

bulb is presented in Fig. 5.24. 



 
 

- 168 - 

 

 

Fig. 5.24. Simulated load profile for a household 

It is observed the household load profile in Fig. 5.24 has a high energy consumption 

in the night. Simulation result show that the annual energy consumption for the 

household in Fig. 5.24 is 2385 kWh. The household incandescent bulbs which 

comprise of a sitting room bulb, 4 bed bedroom bulbs, and 4 security bulbs, account 

for 1108 kWh (46.5%) of the annual energy consumption. If each of the 60-watt 

incandescent bulbs with a brightness level of 500 – 700 lumen were replaced by 

compact fluorescent lamp (CFL) and light emitting diode (LED) lamp of similar 

brightness level, that is, by either a CFL of 11-watt or a LED lamp of 7-watt, the 

annual energy consumption for the household will be reduced to 1480 kWh or 1406 

kWh respectively. 

To investigate the impact that this study major energy consumption drivers, i.e., 

occupants’ consumption behaviour, number of bedrooms and number of occupants, 

have on household’s energy consumption patterns, 10 surveyed households load 

profiles are presented in Fig. 5.25. 
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Fig. 5.25. Energy consumption pattern of 10 surveyed households 

In Fig. 5.25, all the 10 household load profiles had characteristic morning and 

evening peaks, as well as noticeable daily variations in their energy consumption 

patterns. The observed daily variations in load profile were directly linked to 

occupants’ consumption behaviour and appliance ownership in a household. 

Furthermore, comparison of households shows that some households with more 

bedrooms had increase energy consumption because they had more quantity of 

some appliances, while some households with more occupants had increase energy 

consumption because they had higher chances of having an active occupant at home 
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daily. This suggest that the number of bedroom and the number of occupants in a 

household have limited influence on energy consumption because their impact on 

household energy consumption is not representative of all households. Therefore, 

occupants’ consumption behaviour and appliance ownership are the major energy 

consumption driver that influence load profile modelling in this study. 

To check if load profile simulated by the developed model is a true representation 

of the questionnaire collated data, the relationship between the annual energy 

consumption of an appliance when it is calculated directly from the questionnaire 

collated data and when it is simulated by the developed load profile model is 

evaluated. For a household, an appliance annual energy consumption is calculated 

from questionnaire collated data by multiplying its power rating, its quantity, and 

its usage duration. For the 273 surveyed households, an appliance total annual 

energy consumption is calculated by aggregating its annual energy consumption in 

each household. Simulated and calculated total annual energy consumption per 

household appliance are presented in Table 5.7. 

Table 5.7. Simulated and calculated total annual appliance consumption 

Appliance 

Simulated total annual 
energy consumption 

 Calculated total annual 
energy consumption 

kWh %  kWh % 

Refrigerator 20273 6.80  20236 6.79 

Food blender 133 0.04  106 0.04 

Electric Iron 1263 0.42  1281 0.43 

Television 17833 5.98  17829 5.98 

Digital video disc 2936 0.98  2895 0.97 

Electric radio 2470 0.83  2462 0.83 

Mobile phone charger 1078 0.36  1037 0.35 

Sitting room fan 16109 5.40  16068 5.39 

Bedroom fan 26932 9.03  26950 9.05 

Sitting rood bulb 21037 7.06  21051 7.07 

Bedroom bulb 4829 1.62  4814 1.62 

Security bulb 183248 61.47  183214 61.49 

Total annual consumption 298121 100.00  221708 100.00 
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From Table 5.7, appliance simulated and calculated total annual energy 

consumption per household is 1092 kWh and 1091 kWh respectively. Despite the 

closeness of these annual energy consumption values, the drawback with calculating 

annual energy consumption directly from questionnaire collate data is that this 

method cannot capture the daily variation in energy consumption. Meanwhile, to 

evaluate the difference between appliance simulated and calculated total annual 

energy consumption, a d-bar analysis was carried here. 5% is selected as for the 

significance level for rejecting the null hypothesis, and the null hypothesis (H0) and 

alternative hypothesis (Ha) are defined as follow: 

H0: There is significant different between appliance simulated and calculated total 

annual energy consumption.  

Ha: There is no significant different between appliance simulated and calculated 

total annual energy consumption. 

When a d-bar analysis of the appliance simulated and calculated total annual energy 

consumption data presented in Table 5.7 was performed, the significant level 

calculated was 2.6%. The calculated significant level is less than the selected critical 

value of 5%, therefore, the null hypothesis is rejected. This implies that the 

difference between appliance simulated and calculated total annual energy 

consumption is statistically insignificant. 

 

In modelling the community load profile, a total of 409 households was selected. The 

selected number of households within the community was calculated by dividing 

the estimated number of residential customers connected to the low voltage 

distribution network in the survey location (10,639) by the number of communities 

in the survey location (26). The number of households (409) required for simulating 

the community load profile is more than the number of completely surveyed 

households (273). To limit simulation bias during the aggregation of households’ 

load profiles, the selection of households from amongst the four residential 

household classes is determined by the ratio in which the housing population was 

distribution amongst the four residential household classes in the survey location. 
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According to national population and housing census data, Esan North-East LGA 

housing population distribution ratio between household Class I, Class II, Class III, 

and Class IV is 0.114:0.253:0.508:0.125 respectively [388]. Therefore, out of the 409 

households load profiles required for simulating the community load profile, 208 

households load profiles should be simulated from within household class III. An 

illustration of a simulated load profile for the surveyed community is present in Fig. 

5.26. 

 

Fig. 5.26. Simulated community load profile for the survey area 

Fig. 5.26 shows that a peak power of about 94 kW and 166 kW were drawn in the 

morning and evening respectively, by the community households. When the bottom-

up model was run for a year, an annual energy of 467858 kWh was consumed by the 

409 community households. So, the average annual (daily) energy consumption per 

household in the community is 1144 kWh (3.13 kWh). The household load profile 

(Fig. 5.24) and the community load profile (Fig. 5.26) are associated with morning 

and evening peaks. For Fig. 5.24, there was a higher power peak in the morning than 

in the evening (unusual). This was because of the power drawn by the electric iron. 

While for Fig. 5.26, there was an expected higher peak in the evening than in the 

evening. This is because the aggregation of households’ load profiles allows for the 

averaging of appliance usage. Typically, more variability in household energy 

consumption; which can lead to power network stability issues or the need for more 

robust network protection [447], [450], is expected from a household load profile 



 
 

- 173 - 

 

than from a community load profile. In fact, the lower variability in community load 

profiles in comparison to household load profiles is one of the benefits of a 

community grid system over a single household or standalone energy system.  

Furthermore, the high energy consumption household in Fig. 5.24, has an annual 

energy consumption value (2385 kWh) that is much higher value than the average 

annual energy consumption per household in the community (1144 kWh). The wide 

difference in annual energy consumption can serve as one of the motivations why 

community households with higher appliance ownership should combine their 

resources and/or partner with governmental and non-governmental institutions in 

establishing a community grid system.  

With respect to household’s monthly electricity bill presented in Fig. 5.7, an indirect 

verification of the survey outcome is carried out with the average annual energy 

consumption per household (1144 kWh). Based on the information provided by 

Uromi service unit, a single-phase line is mainly used to supply electricity to 

households within the survey area. The unit electricity rate (N/kWh) for the sales of 

1kWh of electricity to residential customers connected to a single-phase line is N 

31.26 [451]. Because the average monthly energy consumption per household in the 

survey area is 95 kWh, the equivalent monthly electricity bill for a single-phase 

household with a daily average electricity availability of 4 hours (based on the 

average daily electricity dispatch to the survey area by the utility company) is N 495, 

but if the daily average electricity availability is 6 hours (based on the survey area 

average daily electricity availability that was evaluated from the time use survey), 

the equivalent monthly electricity bill for the single-phase household is N 742. So, 

the monthly electricity bill for households with a daily electricity availability of 

either 4 or 6 hours (i.e. N 495 and N 742 respectively) is less than the amount paid 

for electricity consumption by 90% of the surveyed households (see Fig. 5.7).  

The reason for the difference is perhaps associated with the existing accusation by 

residential customers that they are made to pay more for the energy they consume, 

when estimated billing system are used by energy providers [153]. If permission is 

granted by the utility company to access the monthly generated electricity bills for 
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households in the survey area and the hourly electricity dispatch to the survey area, 

more detailed verification will be performed in future studies. Meanwhile, based on 

the survey outcomes on appliance ownership and the proclivity for appliance use 

presented in Fig. 5.8 and Table 5.4 respectively, the annual energy consumption for 

the different appliances, and the effect of replacing the commonly used incandescent 

bulb in the survey area with either CFL or LED bulb is presented in Table 5.8. 

Table 5.8. Energy saving bulbs influence on total energy consumption 

Appliance 
Incandescent bulb  CFL  LED bulb 

kWh %  kWh %  kWh % 

Refrigerator 63823 13.64  63823 28.79  63823 31.66 

Food blender 177 0.04  177 0.08  177 0.09 

Electric Iron 2091 0.45  2091 0.94  2091 1.04 

Television 26908 5.75  26908 12.14  26908 13.35 

Digital video disc 3971 0.85  3971 1.79  3971 1.97 

Electric radio 3084 0.66  3084 1.39  3084 1.53 

Mobile phone charger 1722 0.37  1722 0.78  1722 0.85 

Sitting room fan 23514 5.03  23514 10.61  23514 11.66 

Bedroom fan 41161 8.80  41161 18.57  41161 20.42 

Sitting rood bulb 28429 6.08  5212 2.35  3317 1.65 

Bedroom bulb 5286 1.13  969 0.44  617 0.31 

Security bulb 267692 57.22  49077 22.14  31231 15.49 

Total annual consumption 467858 100.00  221708 100.00  201615 100.00 

As shown in Table 5.8, when incandescent bulbs are used, 64% of the annual energy 

consumption was for lighting. However, if incandescent bulbs are replaced by CFL 

or LED bulbs, there is an annual reduction in the community energy consumption 

by 53% and 57% respectively. Furthermore, the percentage of annual energy 

consumption that is used for lighting was reduced to 25% and 17% when CFL or 

LED bulbs are used respectively. Despite the enormous reduction in residential 

energy consumption by using energy saving bulbs, it is surprising that there is low 

usage of energy saving bulbs. This challenge is not limited to the surveyed 

community, rather it is a national problem [281], [452]. For the community, the 
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relationship between household classes annual energy consumption and number of 

bedrooms is presented in Fig. 5.27. 

 

Fig. 5.27. Relationship between households’ annual energy consumption and their 
number of bedrooms for each of the household classes 

It is evident from Fig. 5.27 that For the community, the relationship between 

household classes annual energy consumption and number of bedrooms is 

presented in (see Fig. 5.9shows that these households had low appliance ownership. 

Also, because these households are traditional and informal housing structures, the 

maximum number of bedrooms was 3. Household classes percentage distribution 

for different range of annual energy consumption values is presented in Fig. 5.28. 
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Fig. 5.28. Household classes percentage distribution for different range of annual 

energy consumption values 

In general, Fig. 5.28 shows that for the different energy consumption range of values, 

each of the 4 household classes had substantial percentage of their households’ 

annual energy consumption within the 501 - 1000 kWh and 1001 - 1500 kWh range 

of values. Meanwhile, household Class I, Class II, Class III and Class IV had their 

households’ annual energy consumption distributed mostly in 1 - 500 kWh, 501 - 

1000, 1001 - 1500, and 2001 - 2500 range of values respectively. Descriptive 

statistical analysis of the distribution of households’ energy consumption in the 4 

household classes is presented in Table 5.9.
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Table 5.9. Analysis of simulated household class energy consumption 

Indicators Class I Class II Class III Class IV 

Household population 42 89 213 65 

Sum (kWh) 22783 82459 246494 116122 

Maximum (kWh) 1224 2101 2442 2431 

Minimum (kWh) 14 234 150 576 

Mean (kWh) 542 927 1157 1786 

Standard deviation (kWh) 338 361 522 601 

Skewness 0.57 0.52 0.50 -0.72 

Coefficient of variation (%) 62.41 38.99 45.13 33.66 

In Table 5.9, the coefficient of variation shows that there was high relative variability 

in annual energy consumption for all the household classes. Household Class I had 

the highest coefficient of variation value because many of its households’ low annual 

energy consumption are not clustered, therefore, its standard deviation value was 

high when it is compared with its mean value. Household Class IV had the lowest 

coefficient of variation value because many of its households’ high annual energy 

consumption values are clustered, therefore, its standard deviation value was low 

when it is compared with its mean value. Similarly, household Class II coefficient of 

variation was lower than that of household Class III because households Class III 

comprises of many high energy consumption households as well as many low 

energy consumption households than in household Class II. 

 

An indirect approach was used to validate the developed demand model because the 

injection sub-station is the closest point that PHCN measures hourly electricity 

dispatch to residential customers. Therefore, residential customers population and 

hourly electricity dispatch data for the survey location collected from PHCN was 

used to perform the indirect validation of the demand model. Because of data 

protection policy, permission for data collection was granted for only three months 

(January 2019 to March 2019). In the survey location, energy consumption during 

weekend and weekdays are alike, and electricity is daily dispatch for an average of 
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4 hours. Furthermore, the residential customer population is 7881 and the monthly 

average electricity dispatch is 345839. Therefore, calculation of average annual 

electricity consumption per residential customer is presented in Table 5.10.  

Table 5.10. Average annual electricity consumption per residential customer 

Energy Allocation kWh 

Monthly average electricity dispatch  345839a 

Equivalent monthly electricity dispatch for 24 hours daily availability 2075034b 

Monthly electricity dispatch to electricity bills paying customers  1016767c 

Monthly electricity dispatch to electricity bills paying residential 
customer 833749d 

Monthly average electricity consumption per residential customer 106e 

Annual (daily) average electricity consumption per residential customer 
1270 
(3.48) 

a this value correspond to a daily average electricity availability of 4 hours, b for 24 

hours (steady) electricity supply, c this value was calculated by subtracting the total 

estimated energy loss of 51%, that is, 15% due to transmission and distribution 

losses and 36% due to collection losses [43]. d this value was calculated by 

multiplying electricity dispatch to bills paying customers by the percentage of 

residential customers in the survey location. According to PHCN, 82% of the 

customers in the survey location are residential customers, e this value is calculated 

by dividing d by the residential customer population. 

In Table 5.10, the value of 3.48 kWh calculated as residential customers daily 

average energy consumption is close to the simulated value of 3.13 kWh. It is hoped 

that the difference between the calculated and simulated values will reduced if 

energy consumption data were measured more closer to residential customers 

loads. Meanwhile, from a survey on the energy consumption of 480 rural households 

in south-west Nigeria, it was reported that the daily average energy consumption of 

households was 2.32 kWh [59]. Even though the effect of household-occupancy 

behaviour on appliance usage was not considered during the survey in [59], and 

both surveys (i.e., the survey here and the survey in [59]) were performed in 

different region of the country, the difference in daily average energy consumption 
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per household is perhaps link to the rapid growth in electricity demand in 

developing economies [1], [3]. This is because different household energy 

consumption surveys were carried out 17 years apart. 

 

The stochastic occupancy-based demand model was developed with the aid of 

MATLAB. The MATLAB code for the developed demand model is presented in 

appendix C of this thesis. Analysed market and household energy consumption 

survey data used for simulating the load profiles in this study can also be shared, 

provided necessary acknowledgement of this thesis is guaranteed. 

 

A stochastic load model was developed here to generate the load profile of 

households in a developing country. This model combines surveyed households’ 

occupancy behaviour and appliance ownership with census-based household 

classes proportion data and use Markov-chain technique to continuously synthesize 

data that represent household occupants’ activity pattern. Therefore, realistic load 

profiles that can capture diversity between households or group of households, the 

effect of load coincidence, annual and diurnal variation, and short time-scale 

fluctuations is generated by the stochastic model.  

Evaluation of the simulated community load profile shows that incandescent bulbs 

accounts for 64% of the community’s annual energy consumption. But when the 

commonly used incandescent bulbs were replace with CFL and LED bulbs, an annual 

energy savings of 53% (with CFL) or 57% (with LED bulbs) was achieved. Therefore, 

it is recommended that policies and regulations that would encourage the use of 

energy saving bulbs should be implemented because substantial energy savings in 

household energy consumption can be achieved by using energy saving bulbs.  

In-direct validation of the developed stochastic model with utility measured data 

shows that households’ average daily consumption calculated from utility measured 

energy dispatch is 3.48 kWh day−1 and from the developed model, it is 3.13 
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kWh day−1. It is hoped that the difference between the measured and simulated 

values can be reduced if energy consumption data were measured more closer to 

residential customers loads. Therefore, in developing countries without national 

measured time use data, this developed modelling approach can be applied to model 

the load profiles of households and communities. 



 
 

- 181 - 

 

 

Global solar radiation is a measure of the amount of solar energy received by the 

earth’s surface. During the planning of a solar energy project, global solar radiation 

data are used for energy projection and economic viability studies. The amount solar 

energy received is location dependent [212], [213], [417], and due to solar energy 

stochastic natural, there is substantial variation in diurnal and seasonal global solar 

radiation. So, when a solar energy project is evaluated, high-resolution solar 

radiation data should be used because minutely or hourly global solar radiation data 

will guarantee better design accuracy than daily or monthly global solar radiation 

data [230], [441], [453]. Furthermore, load profiles are characterised by daily 

varying energy consumption patterns and peak load (see Fig. 5.25). So, for optimal 

design of a solar energy project, high-resolution global solar radiation data is 

required to carry out an extensive study of the relationship between the solar 

energy supplied and the energy demand. Consequently, hourly solar radiation data 

is used in this study for techno-economic analysis of the solar system in Chapter 7. 

Long-term solar radiation data is required to capture solar radiation seasonal 

variation, but the cost of purchasing long-term hourly solar radiation is expensive. 

An alternative approach is to calculate long-term hourly solar radiation from 

weather station long-term measured daily solar radiation data. In Nigeria, solar 

radiation is measured by only few Nigerian meteorological agency (NiMet) weather 

stations, and amongst the few NiMet weather stations that measures solar radiation, 

only daily global solar radiation received on a horizontal surface is measured. 

In locations without measured solar radiation data, long-term daily measurement of 

other related meteorological parameters can be used to estimate daily horizontal 

surface global solar radiation. In literature, authors have used NiMet’s long-term 

daily measured meteorological parameters such as temperature, sunshine hours, 

relative humidity, cloud cover, and precipitation data to derive solar radiation 

estimation models [212], [417], [418], [427], [431], [454]. Amongst the derived 
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solar radiation estimation models, there are noticeable variations in the model’s 

mathematical formation/expression as well as in the choice of the meteorological 

parameter(s) used for estimating daily horizontal surface global solar radiation. 

Therefore, it is difficult to ascertain the most suitable model as well as the most 

dominant NiMet’s meteorological parameter(s) that can estimate daily horizontal 

surface global solar radiation. Also, the minimum time span that modern data should 

be collected to achieve substantial accuracy during the estimation of daily horizontal 

surface solar radiation is unknown. Due to seasonal variation that arises from the 

revolution of earth round the sun, estimated horizontal surface solar radiation will 

not represent the optimal solar energy yield of a location. Therefore, to estimate the 

hourly optimal solar energy yield of the studied location (Esan North-East LGA in 

Nigeria), the following research work are performed in this chapter: 

1. Performance evaluation of different global solar radiation models as well as 

evaluation of dominant meteorological parameter(s) that influences the estimation 

of daily global solar radiation. 

2. Determination of the minimum time span that modern data should be 

collected to achieve substantial accuracy in estimating the solar radiation of the 

studied location. 

3. Estimation of hourly horizontal global solar radiation from the estimated 

daily horizontal global solar radiation of Esan North-East LGA. 

4. Evaluation of the optimal monthly, quarterly or annual global solar radiation 

produced from a PV panel that is positioned on an angled surface. 

 

In this study, ground measured NiMet's meteorological parameters are acquired. 

The acquired NiMet's measured meteorological parameters serve as input 

parameters for evaluating the performance of global solar radiation estimation 

models as well as evaluating if there are dominant meteorological parameter(s) that 

influences the estimation of daily global solar radiation. 15 global solar radiation 

estimation models are selected for this study. The selected models comprise of 
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linear, polynomial, exponential, logarithmic, and hybrid models. These selected 

global solar radiation estimation models were presented in Table 4.1 to Table 4.3 of 

Chapter 4. 

The top-performing model amongst the selected estimation models is used to model 

the daily global solar radiation of the studied rural community (Esan North-East 

local government area, Edo state, Nigeria) and evaluate the location solar energy 

potential. So, daily recorded meteorological data collected from the nearest NIMet’s 

weather station (Benin weather station) are used for the performance evaluation of 

the selected global solar radiation estimation models. A map showing the location 

of NiMet Benin weather station and Esan North-East local government area, Edo 

state, Nigeria (studied location) is presented in Fig. 6.1. 

 

Fig. 6.1. Map of Edo state, Nigeria [455] 
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The data collected from NiMet’s Benin weather station were input meteorological 

parameters that are required by the 15 selected global solar radiation estimation 

models. Meanwhile, because the estimation error of a global solar radiation 

estimation model is reduced when long-term measured meteorological 

parameter(s) are employed [192], 26 years (1993-2018) daily measured 

meteorological parameter(s) for the 15 selected global solar radiation estimation 

models were acquired from the database of NiMet’s Benin weather station.  

The acquired daily measured NiMet data were checked to ensure that there was no 

day without records of measured meteorological data. If there is a day without a 

measure meteorological data, then the missing meteorological data will be 

interpolated. To use the 26 years long-term measured daily meteorological data sets 

for the design as well as for the performance evaluation of the 15 selected estimation 

models, the acquired and checked meteorological data is divided into two sub-

datasets. This approach has been previously employed in studies such as [194], 

[417]. Furthermore, to generate the daily mean values across a year for both sub-

datasets, the yearly average daily measured meteorological data can be averaged by 

using the same date in every year [117].  

The first sub-dataset used for designing the estimation model comprises of 21-years 

(1993-2003) measured daily meteorological data. Therefore, the estimation models’ 

meteorological parameters were derived by averaging the first sub-dataset daily 

values. To calculate the estimation models’ regression coefficients (Angstrom 

coefficients), regression analysis between the models’ average daily clearness index 

and the models’ average daily meteorological parameters inputs, was performed. 

The calculated Angstrom coefficients for the estimation models are presented in 

Table 6.1. 
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Table 6.1. Estimation models Angstrom coefficients 

Model 
Angstrom coefficients 

a b c d e f g h i j k l 

Model I 0.2668 0.5985 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model II 0.0950 1.5172 -1.1747 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model III 0.5329 -2.1219 8.4991 -8.2610 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model IV -0.0905 0.3987 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model V 0.7174 0.5183 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model VI -0.1822 0.2377 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model VII 0.2822 -0.0961 0.0593 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model VIII 3.6383 -3.7381 1.3664 -0.1550 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model IX 0.2485 0.0137 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model X -0.1916 1.5182 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model XI 0.2968 0.3367 0.0053 -0.0080 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model XII 1.8436 0.0438 -1.9709 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model XIII 1.4715 0.0783 -1.3593 0.0073 -0.3251 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model XIV 0.6142 0.1373 -0.6485 0.0158 -0.2893 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model XV -0.5222 0.0000 0.0571 0.0000 0.3358 2.5061 0.0032 0.0000 -0.0002 -1.9435 -0.3660 0.0180 
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The second sub-dataset used for evaluating the performance of the estimation 

models comprises of 5-years (2014-2018) measured daily meteorological data. 

Similarly, the meteorological parameters annual average daily values were derived 

by averaging the second sub-dataset daily values.  

 

To evaluate the estimation models' performance, statistical test indicators were 

employed. Nine widely used statistical test indicators in the literature have been 

selected in this study and were presented in Table 4.4. As shown in Table 4.4, except 

for the coefficient of determination (R2) value, the closer an estimation model 

statistical test indicator’s value is to zero, the more the accuracy of the estimation 

model. So, whenever an estimation model R2 value is close to one, there is a perfect 

linear relationship between the measured value and estimated value or there is little 

or no variability between the measured value and the estimated value. While, 

whenever an estimation model R2 value is close to zero, there is no linear 

relationship between the measured value and the estimated value. Based on the 

comparison between the 15 selected empirical models daily estimated global solar 

radiation values and the measured daily global solar radiation values, the statistical 

performance of the 15 selected estimation models are presented in Table 6.2. 
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Table 6.2. Evaluation of the solar radiation estimation models 

Model Model Type MAE RMSE MPE MARE RRMSE RMSRE erMAX U95 R2 

Model I Linear (L) 1.596383 1.902967 1.178311 0.090771 0.000292 0.108589 0.299573 2.165561 0.250062 

Model II Quadratic (Q) 1.568139 1.878276 1.135425 0.089452 0.000241 0.108335 0.318671 3.025632 0.269396 

Model III Cubic (C) 1.521178 1.858152 1.110823 0.086422 0.000285 0.106228 0.324872 2.310232 0.284968 

Model IV Exponential (E) 1.612274 1.919019 1.210885 0.091682 0.000295 0.109438 0.294479 2.110443 0.237356 

Model V Logarithmic (Log) 1.584995 1.889323 1.154886 0.090380 0.000290 0.108806 0.311344 2.210978 0.260777 

Model VI Linear (L) 0.603285 0.732081 0.149558 0.001496 0.000112 0.042135 0.135010 4.067222 0.889011 

Model VII Quadratic (Q) 0.575126 0.705140 0.157087 0.032360 0.000108 0.039661 0.128724 4.085467 0.897029 

Model VIII Cubic (C) 0.571913 0.695850 0.151119 0.032225 0.000107 0.039237 0.136351 4.091582 0.899725 

Model IX Exponential (E) 0.590957 0.729468 0.189291 0.033131 0.000112 0.040593 0.120044 4.069025 0.889802 

Model X Logarithmic (Log) 0.638790 0.778714 0.158982 0.036885 0.000120 0.045578 0.140475 4.033812 0.874420 

Model XI Hybrid (H)/L 1.138720 1.424071 0.668024 0.066148 0.000219 0.085469 0.351611 3.287931 0.580022 

Model XII Hybrid (H)/L 0.607070 0.746493 0.170272 0.034626 0.000115 0.042961 0.159585 4.057146 0.884598 

Model XIII Hybrid (H)/L 0.556310 0.692212 0.135310 0.031975 0.000106 0.040221 0.139355 4.093952 0.900770 

Model XIV Hybrid (H)/L 0.716613 0.877302 0.243664 0.040316 0.000135 0.049219 0.128480 3.955307 0.840610 

Model XV Hybrid (H)/L & Q 0.318679 0.410424 0.368167 0.018039 0.000063 0.023188 0.077788 4.237224 0.965116 
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From Table 6.2 it is observed that Model XV had the highest coefficient of 

determination (R2) value of 0.965, while 8 out of the remaining 14 estimation 

models also had an excellent R2 value that was above 0.84. Based on the coefficient 

of determination values in Table 6.2, most of the estimation models had excellent 

performance. However, it is misleading to judge the statistical performance of the 

estimation model on only a single statistical test indicator value [196], [197], [422]. 

Therefore, in relation to the other eight selected statistical test indicators, it is vital 

to assess the performance of the estimation models. 

With respect to the MAE test indicator in Table 6.2, Model XV with the least MAE 

value (0.319 MJ m−2 day−1 or 0.089 kWh m−2 day−1) amongst the solar radiation 

estimation models, is the top-performing estimation model. Apart from R2 and MAE 

statistical test indicators, whereby Model XV was the most accurate estimation 

model amongst the selected estimation models, Model XV with RMSE=0.410 

MJ m−2 day−1, RRMSE=0.00006, RMSRE=0.023, and erMAX=0.078 was also the top-

performing estimation model for these four statistical test indicators.  

Although Model XV was the top performing model in 6 out of the 9 selected 

statistical test indicators in Table 6.2, with respect to MARE and MPE statistical test 

indicators, Model XV performance was ranked the 2nd and the 9th position 

respectively. Also, with respect to U95 statistical test indicators, Model XV was the 

least performing model. With respect to the top-performing models for MARE, MPE, 

and U95 statistical test indicators, Model VI, Model XIII, and Model XI with a value of 

0.0015, 0.135%, and 2.11 MJ m−2 day−1 respectively, are the top performing models 

for these statistical test indicators. Meanwhile, it is difficult to predict from Table 6.2 

the extent of closeness between the models' statistical test indicators values. 

Therefore, the boxplot presented in Fig. 6.2 is used to capture the variations 

amongst models in each of the selected statistical test indicators. 
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Fig. 6.2. Statistical test indicators boxplots 

From Fig. 6.2, the top and bottom tails of the boxplots represent the maximum and 

minimum values of the estimation models, the top and bottom edge of the boxplot 

represent the first and third quartile, and the line across the rectangle is the median 

line. Therefore, the performance of a model in comparison to the general 

performance of other models can easily be inferred from the boxplots. By comparing 

the different boxplots, no obvious relationship between the different boxplots’ first 

and third quartile rectangle, median line, or range tails was identified, but the 

estimation models’ performance values within a boxplot were generally close to 

each other.  

In summary, from Table 6.2, none of the selected solar radiation estimation models 

achieved top performance for all the 9 statistical test indicators. In terms of the 

individual performance of the selected estimation models, Model XV was the top 

performing model in 6 out of the 9 selected test indicators but with respect to U95 

statistical test indicator, Model XV was the worst performing model. Meanwhile, 

Model VI and Model XIII were individually the top performing model once but with 

respect to the 9 statistical test indicators performance evaluation, these models 
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were never the worst performing models. Consequently, it might be misleading to 

automatically rank the Model XV as the best performing model or rank any other 

estimation models has the best performing model since an obvious lead by an 

estimation model in all the 9 selected statistical test indicators could not be 

established. Therefore, a combined ranking of the 15 selected estimation models is 

required. For the combined ranking of the statistical performance of the selected 

estimation models, global performance indicator (GPI) is employed. 

 

In recent studies, global performance indicator (GPI) presented by Despotovic et al. 

[196] is a statistical procedure that has been widely used to evaluate the combined 

performance of an estimation model. One of the advantages of using GPI is that the 

evaluation of the combined performance of a model is unbiased because the 

calculation of the combined performance of a model is not based on the product of 

the individual statistical test indicators [196]. Therefore, in cases whereby the value 

of one or more statistical test indicators is equal to zero, the combined performance 

of the model does not equate to zero. The global performance indicator steps used 

for evaluating the combined statistical performance of the selected solar radiation 

estimation models are explained in detail below: 

The first step for calculating the estimation models global performance indicator 

values is to scale/normalize the statistical test indicators values between of 0 and 1 

(yij) [197], [422]. So, since the least statistical test indicator value is 0 and the 

highest statistical test indicator value is 1, the other statistical test indicator values 

are interpolating between 0 and 1. Based on the MAE statistical test indicator, since 

the lowest value and highest value is 0.319 and 1.596 MJ m−2 day−1respectively, the 

scaled or interpolated MAE value that corresponds to Model I is 0.988. The next step 

is to obtain the difference (yj − yij) by subtracting the scaled values of the statistical 

test indicators (yij) from their scaled median value (yj). Finally, the values obtained 

from (yj − yij) are multiplied by a suitable weighted factor (αj) to obtain the 

selected estimation models GPI values. Therefore, the expression for calculating an 

ith estimation model GPI value is defined by [196], [197]: 
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GPIi = ∑αj(ỹj − yij)

9

j=1

 (6.1) 

  

where from Eq. (6.1), ỹj is the median value of the scaled statistical test indicator j, 

yij is the value of the scaled statistical test indicator j for the estimation model i, and 

αj is the weighted factor of the scaled statistical test indicator j. For all statistical test 

indicators, the value (magnitude) of αj is 1, but the sign of αj is dependent on the 

selected statistical test indicators [196]. Based on the selected statistical test 

indicators in this study, αj is defined as: 

  

αj = {
−1,        for the coefficient of determination (R2)         
+1, for the other selected performance indicator 

 (6.2) 

  

Based on the estimation models calculated GPI values, the ranking of the estimation 

models is performed. The order of ranking the estimation models is such that 

estimation models with higher GPI values (better performing estimation models) 

are ranked higher than estimation models with lower GPI values. Therefore, the 

model with the maximum GPI value is ranked top-most amongst the selected 

estimation models, while other estimation models are ranked accordingly based on 

their calculated GPI values. Estimation models statistical test indicators scaled 

values, estimation models GPI values and ranking of the estimation models are 

presented in Table 6.3. 
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Table 6.3. Estimation models scaled statistical test indicators values as well as their GPI values and ranking 

Model 
Model 

Type 
MAE RMSE MPE MARE RRMSE RMSRE erMAX U95 R2 GPI Rank 

Model I L -0.7403 -0.7452 -0.8690 -0.5975 -0.7452 -0.0630 -0.5810 0.8784 -0.8579 -4.3207 13 

Model II Q -0.7184 -0.7289 -0.8291 -0.5829 -0.5233 -0.0628 -0.6508 0.4740 -0.8314 -4.4534 15 

Model III C -0.6821 -0.7155 -0.8062 -0.5493 -0.7155 -0.0607 -0.6734 0.8104 -0.8100 -4.2023 11 

Model IV E -0.7525 -0.7559 -0.8993 -0.6076 -0.7559 -0.0639 -0.5624 0.9044 -0.8754 -4.3684 14 

Model V Log -0.7315 -0.7362 -0.8472 -0.5932 -0.7362 -0.0632 -0.6240 0.8571 -0.8432 -4.3175 12 

Model VI L 0.0275 0.0309 0.0875 0.3924 0.0309 0.0034 0.0200 -0.0157 0.0201 0.5969 2 

Model VII Q 0.0492 0.0488 0.0805 0.0502 0.0488 0.0059 0.0429 -0.0243 0.0311 0.3330 4 

Model VIII C 0.0517 0.0549 0.0860 0.0517 0.0549 0.0063 0.0151 -0.0272 0.0348 0.3283 5 

Model IX E 0.0370 0.0326 0.0506 0.0416 0.0326 0.0050 0.0746 -0.0166 0.0211 0.2786 6 

Model X Log 0.0000 0.0000 0.0787 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0787 8 

Model XI H/L -0.3865 -0.4278 -0.3945 -0.3245 -0.4278 -0.0399 -0.7711 0.3507 -0.4045 -2.8258 10 

Model XII H/L 0.0245 0.0214 0.0682 0.0250 0.0214 0.0026 -0.0698 -0.0110 0.0140 0.0964 7 

Model XIII H/L 0.0638 0.0573 0.1007 0.0544 0.0573 0.0054 0.0041 -0.0283 0.0362 0.3510 3 

Model XIV H/L -0.0602 -0.0654 0.0000 -0.0380 -0.0654 -0.0036 0.0438 0.0369 -0.0465 -0.1983 9 

Model XV H/L & Q 0.2475 0.2441 -0.1158 0.2090 0.2441 0.0224 0.2289 -0.0956 0.1246 1.1092 1 
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From Table 6.3, Model XV with the highest GPI value of 1.1092 is the 1st ranked 

model (best ranked), while Model II with the lowest GPI value of -4.4534 is the 15th 

ranked model (least ranked). Furthermore, based on the result outcomes in Table 

6.3, the following conclusions have been reached: 

• Although the top-most ranked model (Model XV) in Table 6.3 is a hybrid (linear 

and quadratic type) estimation model, there is no substantial evidence from the 

ranking of the estimation models to suggest that the hybrid estimation model 

type or any other model type is the top performing model type for estimating the 

global solar radiation of the studied location.  

• Assessment of the dominant meteorological parameters that influence the 

performance of the models shows that all the top 10 ranked estimation models 

in Table 6.3 had temperature as one of their meteorological parameters, but the 

least performing models were without temperature. This suggests that 

temperature is the most dominant meteorological parameter for estimating the 

global solar radiation of the studied location. 

• The assertion that temperature is a dominant meteorological parameter for 

estimating the global solar radiation of the studied location is supported by the 

fact that the simple linear and temperature only estimation model (Model VI) 

was the top-most ranked model in Table 6.3 after Model XV. Therefore, for Benin 

or any other location with similar climate conditions, Model VI can be used to 

estimate the global solar radiation whenever there are scarce financial resources 

to purchase NiMet meteorological data. This is because Model VI only requires 

measured temperature to estimate global solar radiation and the measurement 

of temperature is one of the cheapest and widely measured meteorological 

parameter. 

In summary, the performance evaluation of some of the widely recommended 

models for estimating global solar radiation in Nigeria revealed that there is no 

substantial evidence to suggest that the estimation model types influence the 

performance of an estimation model, however, temperature was found to be a 

dominant meteorological parameter that influences the studied location estimated 

horizontal surface global solar radiation. Meanwhile, since all the input 
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meteorological parameters used for the performance evaluation of the 15 selected 

estimation models were NiMet’s ground measured long-term data, the highest 

ranked solar radiation estimation model (Model XV) in Table 6.3 is used here and in 

Chapter 8 to estimate daily global solar radiation of a horizontal surface. 

Furthermore, because Esan North-East LGA have similar climatic conditions as 

NiMet Benin weather station, the best performing empirical model that can be used 

for estimating Esan North-East LGA daily global solar radiation on a horizontal 

surface is: 

  

Hg

H0
= −0.5222 + 0.0571(cosNday) + 0.3358 (

S

S0
) + 2.5061 (

Tmax

RH
)

+ 0.0032(RH) − 0.0002 (
Tmax

cosϕ
) − 1.944 (

Tmax

RH
)
2

− 0.366 (
S

S0
)
2

+ 0.018(cos2 Nday) 

  

where Nday is the day of the year, S is the average daily sunshine duration in hours, 

S0 is the maximum sunshine duration or day length, Tmax is the maximum 

temperature, RH is the relative humidity, and ϕ is the latitude. 

 

As earlier mentioned, NiMet’s long-term solar radiation dataset is unavailable for 

many weather stations and is expensive when available. Long-term measured solar 

radiation dataset is now reconstructed to determine the minimum time span of 

recent data required for the calculation. A pyranometer can be installed at an 

existing weather station to collect the recent short-term solar radiation dataset. The 

most recent 10 years of data is used to calculate regression coefficients using 

periods of the full 10 years, 5 years, 2 years, 1 year, 6 months, 3 months, and 1 month 

measured global solar radiation data. Durations less than a year were included to 

investigate seasonal effects and seasonal variation. Solar radiation is then 

reconstructed over the earlier 16 years period from meteorological parameters 

other than solar radiation, and R2 values calculated for reconstructed solar radiation 

data against measured data. The R2 values using Model XV are shown in Fig. 6.3. 
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Fig. 6.3. R2 for reconstructed against measured solar radiation using regression 
durations of (a) 1 month, (b) 3 months, (c) 6 months, (d) 1 year, (e) 2 years, and (f) 
5 years. 

It is evident from Fig. 6.3 that R2 values increase as the measured solar radiation 

regression duration increases. A weak positive correlation is seen in Fig. 2e and Fig. 

2f, which is likely caused by long-term climate variation or climate change. No 

seasonal effects are evident. A plot of average R2 values for regression duration of 1 

month, 3 months, 6 months, 1 year, 2 years, 5 years, and 10 years, is presented in 

Fig. 6.4. 
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Fig. 6.4. R2 values for different sample durations of measured data 

To achieve accurate estimation of the studied location solar radiation, Fig. 6.4 shows 

that at least 2 years measured solar radiation or meteorological dataset is required 

to achieve a coefficient of determination greater than 0.75 and at least 4 years of 

measured solar radiation or meteorological dataset is required to achieve a 

coefficient of determination greater than 0.9. 

 

As earlier mentioned in this chapter, hourly global solar radiation (Ig) data will be 

used here to carry out techno-economic analysis of the solar energy system in 

Chapter 7. Therefore, hourly global solar radiation (Ig) data is derived from Model 

XV estimated daily horizontal surface global solar radiation (Hg). So, Gueymard 

[440] modified Collares-Pereira and Rabl [438] model (also known as CPRG model) 

that was presented in Section 4.2.6.3 is used to estimate the hourly horizontal 

surface global solar radiation of Esan North-East LGA. Meanwhile, in the literature, 

studies have shown that the CPRG model is usually the top performing model for 

estimating hourly horizontal surface global solar radiation [416], [441]. An 



 

- 197 - 

 

illustration of the modelling details of CPRG model was presented in Section 4.2.6.3 

by Eqs. (4.33) – (4.39). The main input parameters of CPRG model is the studied 

location daily horizontal surface global solar radiation. Monthly average hourly 

global solar radiation generated by CPRD model is presented in Fig. 6.5.  

 

Fig. 6.5. Horizontal surface monthly average hourly global solar radiation for Esan 

North-East LGA 

From Fig. 6.5, there are noticeable variations amongst the different monthly average 

hourly global solar radiation plots, especially during the hours of peak global solar 

radiation. It is observed that peak hourly global solar radiation occurred at 12:00 

noon for the month of September to December, while for the month of January to 

August, peak hourly global solar radiation occurred at 13:00. Furthermore, over a 

year, Fig. 6.5 showed that the month of February had the highest peak average 

hourly solar irradiance of 871.10 Wm−2, while the month of July had the lowest peak 

average hourly solar irradiance of 576.75 Wm−2.  

To in-directly evaluate the performance of CPRG model in estimating horizontal 

surface hourly global solar radiation, graphical and statistical analytical tests is 

performed here. Graphical analytical test is performed by calculating the percentage 
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deviation between the CPRG model estimated hourly global solar radiation (Ig) and 

the daily global solar radiation (Hg) that was used for estimating the hourly global 

solar radiation. An illustration of the graphical relationship between monthly 

average daily Ig values and monthly average Hg values for Esan North-East LGA is 

presented in Fig. 6.6. 

 

Fig. 6.6. Monthly relationship between daily average Ig and Hg 

From Fig. 6.6, a close similarity exists between the daily average hourly global solar 

radiation (Ig) plot and the daily global solar radiation (Hg) plot. Furthermore, the 

maximum and the minimum monthly percentage deviation between the daily 

average hourly global solar radiation values and the daily global solar radiation 

values were 0.15% and 0.02%, respectively. Comparison between the daily average 

Ig values and the Hg values shows that apart from February, whereby the CPRG 

model estimated hourly global solar radiation values were slightly underestimated 

(negative monthly average daily percentage deviation), the CPRG model estimated 

hourly global solar radiation values for other months were slightly overestimated 

(positive monthly average daily percentage deviation). 
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Meanwhile, statistical analysis to evaluate the performance of CPRG model in 

estimating horizontal surface hourly global solar radiation is performed with the 

use of d-bar analysis. The d-bar analysis is a statistical procedure, and it will be used 

to evaluate how significant is the effect of the monthly percentage deviation 

between the daily average hourly global solar radiation values and the daily global 

solar radiation values. Typically, whenever statistical decisions are made to either 

accept or reject the null hypothesis, a critical value or level of significance of 5% is 

widely. So, a critical value of 5% is selected here. For the hypothesis test, the null 

hypothesis (H0) and the alternative hypothesis (Ha) are defined as follow: 

H0: There is a significant difference between the daily average hourly global solar 

radiation values and the daily global solar radiation values.  

Ha: There is no significant difference between the daily average hourly global solar 

radiation values and the daily global solar radiation values.  

Based on the equation for calculating the test statistic (Td) presented in Eq. (5.1), 

the calculated Td is 6.24. Meanwhile, because the data size is 12, the degree of 

freedom (df) is 11. Consequently, for a df of 11 and a Td value of 6.24, the 

corresponding level of significance from a t-table is 0.00317% (0.0000317). Because 

the calculated t-table value (0.0000317) is less than the selected critical value 

(P<0.05), and the null hypothesis should be rejected. Therefore, the difference 

between the daily average hourly global solar radiation values and the daily global 

solar radiation values is statistically insignificant. 

In summary, because a close graphical similarity exists between the daily average 

hourly global solar radiation and the daily global solar radiation plots, and the 

monthly percentage deviation between the daily average hourly global solar 

radiation and the daily global solar radiation values is statistically insignificant, so, 

the CPRG model is therefore a suitable approach for estimating Esan North-East LGA 

horizontal surface hourly global solar radiation. 

 

To evaluate the annual optimal hourly global solar radiation received by a PV panel 

in a location, the amount of global solar radiation received by a PV panel when it is 
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positioned (facing south since the studied location is in the Northern hemisphere) 

at different angles that ranges from 0° to 90° is assessed. Data on the amount of 

global solar radiation received on inclined surfaces are rarely available in 

developing countries like Nigeria. For example, NiMet’s weather stations do not 

measure the global solar radiation received on an inclined surface. There are several 

models derived in the literature for estimating inclined surfaces global solar 

radiation. Most of these derived models requires measured diffuse solar radiation 

data to estimate inclined surfaces global solar radiation of a location. Diffuse solar 

radiation is not measured by NiMet’s weather station. So, Olmo et al. [229] 

estimation model (described by Eqs. (4.40) – (4.46)) which does not require 

disintegrated global solar radiation (direct and diffuse solar radiation) data before 

estimating the global solar radiation of inclined surfaces is used for estimating 

hourly global solar radiation of inclined surfaces in Esan North-East LGA.  

Olmo et al. [229] model is a simple model because the main input parameters 

required by Olmo et al. [229] model to estimate inclined surfaces global solar 

radiation are horizontal surface global solar radiation, sun’s zenith angle, and sun’s 

incident angle. Furthermore, amongst these required input parameters, only 

horizontal surface global solar radiation is measured. Therefore, to maximize the 

annual global solar radiation received by a PV panel in Esan North-East LGA, 

numerical simulation of Olmo et al. [229] model is performed to evaluate the 

required optimal tilt angle to maximize the annual global solar radiation received in 

Esan North-East LGA. 

Based on the assumption that the PV panel is inclined at a fixed angle throughout 

the year, the required optimal tilt angle to maximize the annual of global solar 

received in Esan North-East LGA is 11.6°. If an annual tilt angle of 11.6° is selected 

for Esan North-East LGA, February 5th is the date with the highest peak hourly global 

solar radiation (948 W m−2) and the highest daily global solar radiation 

(6340 W m−2 day−1) in a year. To study the hourly global solar radiation received 

at different tilt angles in Esan North-East LGA, an illustration of the hourly global 

solar radiation received on the 5th of February in Esan North-East LGA at some 

selected annual tilt angles are presented in Fig. 6.7.  
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Fig. 6.7. Hourly global solar radiation received on the 5th of February in Esan North-

East LGA at different annual tilt angles 

Fig. 6.7 shows that on the 5th of February in Esan North-East LGA, a PV panel 

positioned at a tilt angles of 20° or 30° with a peak hourly global solar radiation of 

972  W m−2 and 966  W m−2 respectively and a daily global solar radiation of 

6518 Wh m−2 and 6548 Wh m−2 respectively, received higher peak hourly global 

solar radiation and higher daily global solar radiation than PV panel positioned at a 

tilt angle of 11.6°. So, it is evident from Fig. 6.7 that the hourly global solar radiation 

for Esan North-East LGA can be optimized if the tilt angle of a PV panel is adequately 

adjusted seasonally (monthly or quarterly) to its optimal tilt angle. For an 

illustration, the monthly global solar radiation received in Esan North-East LGA by 

a PV panel positioned at the selected tilt angles in Fig. 6.7 are presented in Table 6.4. 
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Table 6.4. Esan North-East LGA monthly global solar radiation for different tilt angles 

Month 

 Global solar radiation (kWh m−2) 

0°(Hor) 6.34° (lat) 10° 11.6° (Opt) 20° 30° 40° 50° 60°0 70° 80° 90° 

January 176.8 186.6 191.4 193.3 200.9 204.5 201.9 193.4 179.9 162.5 142.8 122.2 

February 165.4 171.4 173.9 174.8 177.5 175.9 169.3 158.3 143.9 127.2 109.6 92.2 

March 177.4 179.2 179.3 179.2 176.5 169.1 157.7 143.3 127.0 109.8 92.9 77.1 

April 157.9 155.9 154.1 153.1 146.7 136.3 123.6 109.5 94.9 80.5 67.1 55.1 

May 150.1 146.0 143.0 141.6 133.1 121.0 107.5 93.5 79.6 66.6 54.7 44.5 

June 132.2 127.9 125.0 123.6 115.6 104.6 92.7 80.5 68.5 57.3 47.3 38.6 

July 125.2 121.8 119.5 118.3 111.8 102.6 92.3 81.6 70.8 60.5 51.0 42.4 

August 127.6 125.5 123.9 123.1 118.1 110.4 101.3 91.2 80.7 70.2 60.2 50.9 

September 137.7 137.7 137.1 136.7 133.6 127.5 119.1 109.0 97.8 86.1 74.4 63.3 

October 156.5 159.9 161.1 161.5 161.9 158.7 151.9 141.9 129.5 115.5 100.8 86.2 

November 164.0 171.6 175.2 176.6 181.8 183.4 179.8 171.4 158.9 143.4 126.1 108.1 

December 173.5 184.0 189.3 191.4 200.2 205.3 204.2 197.0 184.5 167.8 148.3 127.6 

Annual 
(kWh m−2) 1844.4 1867.4 1872.8 1873.3 1857.7 1799.4 1701.5 1570.7 1416.0 1247.4 1075.1 908.1 
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Table 6.4 shows that for the different months, tilt angle 11.6° was never the optimal 

tilt angle for maximizing the amount of monthly global solar radiation received in 

Esan North-East LGA, but a higher annual global solar radiation was received at tilt 

angle 11.6°. Furthermore, it was observed that the tilt angles with maximum 

monthly global solar radiation were influenced by the time of the year. For instance, 

between April and September, maximum monthly global solar radiation was 

received at 0° (low tilt angle), while between November and January, maximum 

global solar radiation was received at 30° (high tilt angle). 

There are two weather seasons (dry and rainy season) in Esan North-East LGA. 

Typically, the core dry season months are from November to February, and the rainy 

season months are from March to October. Therefore, based on the outcomes from 

Table 6.4, higher tilt angles (of about 30°) are suitable for the dry season months 

while lower tilt angles are generally for the rainy season months. Because the 

simulated tilt angle for maximizing the monthly global solar radiation was affected 

by the weather seasons, it is necessary to also analyse the received monthly global 

solar radiation at different tilt angles. However, since the number of days in each 

month is not the same, the monthly evaluation of the global solar radiation received 

at the different tilt angles will be misleading. Therefore, monthly average daily 

global solar radiation received in Esan North-East LGA at the selected tilt angles are 

presented in Fig. 6.8.  
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Fig. 6.8. Tilt angles monthly average daily global solar radiation 

Noticeable trends can be identified from Fig. 6.8 when the received monthly average 

daily global solar radiation at different tilt angles are compared based on the 

weather seasons of Esan North-East LGA. So, it is observed from Fig. 6.8 that the 

monthly average daily global solar radiation received on a PV panel during the dry 

season months is generally increase from the horizontal tilt angle position (0°) to a 

certain angle of inclination, then after, subsequent increment in the PV panel angle 

of inclination results in the reduction of the monthly daily average global solar 

radiation. But during the rainy season months, Fig. 6.8 shows that the monthly 

average daily global solar radiation received on a PV panel generally decreases as 

the angle of inclination increases from the horizontal tilt angle position (0°) to the 

vertical tilt angle position (90°).  

Meanwhile, because the selection of the optimal tilt angle is influenced by the 

weather season, therefore, simulation of the PV panel optimal monthly, seasonal 

(quarterly), and annual tilt angles is vital. The optimal tilt angles simulation was 
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made to start from November (beginning of the core dry season months) in order to 

capture the different weather seasons. Therefore, starting from November, the 

quarterly optimal tilt angle values are calculated by assessing the tilt angle that 

produces the maximum global solar radiation within each quarter (3 months). A plot 

of the simulated optimal monthly, quarterly, and annual tilt angles against the day 

of the year is presented in Fig. 6.9. 

 

Fig. 6.9. Variations of monthly, seasonal, and annual optimum tilt angle for Esan 

North-East LGA 

Fig. 6.9 shows that the 1st quarter (November to January) had the highest quarterly 

tilt angle, while the 3rd quarter (May to July) had the lowest quarterly tilt angle. 

Furthermore, December (mid-dry season month) had the highest optimal monthly 

tilt angle value of 33.2°, while the month of April to August, had the lowest optimal 

monthly tilt angle value of 0°. Meanwhile, the monthly average daily global solar 

radiation received by a PV Panel in Esan North-East LGA when the PV panel is 

positioned horizontally or inclined based on the studied location simulated monthly, 

quarterly, and annual optimal tilt angles, are presented in Table 6.5. 
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Table 6.5. Esan North-East LGA estimated monthly daily average global solar 
radiation at monthly, quarterly, and annual optimal tilt angles 

Month 
Season 
type 

Daily average global solar radiation (kWh m−2) 

βopt_horizontal  βopt_month  βopt_quarter  βopt_ann  

January Dry 5.705 6.598 6.598 6.235 

February Dry 5.908 6.344 6.212 6.245 

March Rainy 5.723 5.786 5.785 5.781 

April Rainy 5.263 5.263 5.135 5.104 

May Rainy 4.843 4.843 4.843 4.567 

June Rainy 4.408 4.408 4.408 4.120 

July Rainy  4.038 4.038 4.038 3.818 

August Rainy 4.115 4.115 4.061 3.972 

September Rainy  4.590 4.594 4.591 4.558 

October Rainy  5.050 5.228 5.145 5.211 

November Dry  5.466 6.118 6.111 5.886 

December Dry 5.597 6.634 6.629 6.174 

Annual yield (kWh m−2) 1844.43 1943.70 1931.40 1873.34 

Annual percentage gain  - 5.38% 4.72% 1.57% 

Table 6.5 shows that whether a PV panel in Esan North-East LGA is fixed or adjusted 

periodically based on its optimal tilt angles, the lowest monthly average daily global 

solar radiation was received in July (mid-rainy season month). Also, Table 6.5 shows 

that when a PV panel is positioned horizontally or fixed at its annual optimal tilt 

angle, the highest monthly average daily global solar radiation was received in 

January, but when the PV panel is adjusted periodically at its monthly, or quarterly 

optimal tilt angles, the highest monthly average daily global solar radiation was 

received in February. Furthermore, the calculated amount of annual global solar 

radiation received when a PV panel is either positioned horizontally (Gγ|β=0
) or 

inclined at its optimal monthly, quarterly, or annual tilt angles (Gγ|β=βopti
) were also 

presented in Table 6.5. So, the global solar radiation percentage gain (%gain) when 

a PV panel is positioned at either its optimal monthly, quarterly, or annual tilt angles 

in comparison to when it is positioned horizontally, is expressed as: 
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%gain = (

Gγ|β=βopti
Gγ|β=0

− 1) × 100 (6.3) 

  

where βopti
 in Eq. (6.3) is either the monthly, seasonal (quarterly), or annual optimal 

tilt angles, while β = 0 means the PV panel is positioned horizontally. 

Based on Eq. (6.3), the annual global solar radiation percentage gained when a PV 

panel is inclined at its monthly, quarterly, or annual optimum tilt angles in 

comparison to when the PV panel is positioned horizontally in Esan North-East LGA 

is 5.38%, 4.72%, or 1.57% respectively. Therefore, there are noticeable annual 

global solar radiation percentage gained when a PV panel is inclined at its monthly, 

quarterly, or annual optimum tilt angles than when it is positioned horizontally in 

Esan North-East LGA. Meanwhile, the annual global solar radiation percentage loss 

(%loss) that would arise from the quarterly or the annual adjustment of PV panels 

rather than the monthly adjustment of PV panels is defined by: 

  

%loss = (1 −

Gγ|β=βoptj

Gγ|βopt(monthly)

)× 100 (6.4) 

  

where βoptj
 in Eq. (6.4) is either the quarterly or annual optimal tilt angles. 

Based on Eq. (6.4), the percentage loss in annual global solar radiation when a PV 

panel is inclined at its monthly optimal tilt angles in comparison to when the PV 

panel is inclined at its quarterly or annual optimal tilt angles is 0.63% or 3.62% 

respectively. Therefore, the percentage loss in in annual global solar radiation is 

more obvious when the PV panel is inclined at its annual optimal tilt angle than 

when it is inclined at its quarterly optimal tilt angles.
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Information on the amount of global solar radiation that can be received by a solar 

energy project is vital for the solar energy project design and operation. However, 

the suitability of available global solar radiation data is location dependent. For 

many locations in developing locations like Nigeria, measured global solar radiation 

data is unavailable, while for locations with measured global solar radiation data, it 

is expensive to purchase the measured data. Therefore, several researchers have 

derived estimation models that utilize long-term measured meteorological 

parameter(s) to estimated global solar radiation, but the rationale for including, and 

the influence that the various meteorological parameter(s) have on the estimation 

models is often unclear. 

In this study, 15 global solar radiation estimation models were selected in this study. 

Long-term measured data (1993-2018) on the required meteorological parameters 

of the 15 selected solar radiation estimation models were sourced from Benin 

weather station NiMet’s archive. To avoid misleading conclusion during the 

performance evaluation of the 15 selected solar radiation estimation models, 9 

statistical test indicators were selected, and the overall performance of the solar 

radiation estimation models were assessed by ranking the performance of the solar 

radiation estimation models based on their global performance indicator (GPI) 

values. Outcome from the study shows that Model XV (hybrid- linear and quadratic 

type- model) with a GPI value of 1.1092, was the best performing model while Model 

II with a GPI value of -4.4534, was the worst performing model. Furthermore, the 

study showed that temperature is a dominant meteorological parameter for 

estimating the global solar radiation of the studied location, but there was no 

substantial evidence to suggest that the hybrid estimation model type (i.e. the model 

type of the best ranked model) or any other model type was the top performing 

model type for estimating the global solar radiation of the studied location. 

To determine the minimum duration of measured data required to calculated past 

solar radiation data, recent long-term measured data were reconstructed. 

Investigation of seasonal effects and seasonal variation that was performed by 

reconstructing less than a year duration of measured data show that seasonal 
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variation has no influence on the calculation of past solar radiation data. A minimum 

of 2 years of recent data should be measured with a pyranometer or purchased from 

a NiMet weather station in order to achieve R2 greater than 0.75, and more than 5 

years of recent solar radiation data is required to achieve R2 greater than 0.9.  

To estimate the hourly global solar radiation that is required for optimal design of 

the HRES, Gueymard modified Collares-Pereira and Rabl model (CPRG model) was 

used. In-direct graphical and statistical analytical test of the suitability of using CPRG 

model to estimate the studied location hourly global solar radiation was performed. 

Outcomes from the graphical analytical test shows that the maximum monthly 

overestimation and underestimation by the CPRG model were 0.15% and 0.02%, 

respectively. While outcomes from the statistical analytical test shows that when 

CPRG model was used, the level of significance from a t-table was 0.0000317. This 

value was less than the selected critical value of 0.05; which is required for the CPRG 

model estimated hourly global solar radiation to be inaccurate (rejected). Therefore, 

CPRG model is suitable for estimating the studied location hourly global solar 

radiation because the deviation or errors observed from the graphical and statistical 

analytical test was insignificant. 

Diffused solar radiation data is usually required by most estimation models to 

determine the optimal inclined angle to position a PV panel in a studied location. But 

because weather stations in Nigeria that measure solar radiation data rarely 

measure diffused solar radiation data, so, the common practice (which might be less 

optimal solution) is to position PV panel based on the studied location latitude. Olmo 

et al. [229] estimation model; which is one of the few models that does not require 

disintegrated global solar radiation (direct and diffuse solar radiation) data before 

estimating the optimal inclined angle to position a PV panel was used here.  

With respect to Nigeria’s two weather seasons (dry and rainy season), it was found 

that during the dry season, maximum global solar radiation was received in the 

studied location at an inclined angle of 30°, while during the rainy season when the 

sun is mostly over cast, maximum global solar radiation was received in the studied 

location at an inclined angle of 0°. Furthermore, there was an increase in the annual 
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global solar radiation received when a PV panel was adjusted monthly to its optimal 

angle than when it was adjusted quarterly or positioned annually at its optimal 

angle. Similarly, more global solar radiation was received annually when a PV panel 

was adjusted quarterly to its optimal angle than when it was positioned annually at 

its optimal angle. However, because of the economics and technicalities of adjusting 

PV panels periodically (i.e., monthly or quarterly), it is perhaps a better option to 

annually position PV panels at its optimal angle when there is scarcity of financial 

resources and/or lack of technical expertise. Therefore, the global solar radiation 

received when a PV panel in the studied location is positioned annually at its optimal 

angle of 11.6° is used in Chapter 7 for the optimal sizing of hybrid energy system. 
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Electricity is vital for improving human’s standard of living. In rural communities of 

developing countries like Nigeria, many people have no access to electricity, while 

others are connected to an un-reliable grid. As earlier presented in Chapter 1, 

communal-grid system; which allows for the aggregation of community loads, is a 

viable approach that can be used to supply reliable electricity to these rural 

communities. Therefore, a techno-economic communal grid model that comprises 

of PV, biogas generator, and battery energy storage is developed here to evaluate 

the cost of using communal grid system to supply reliable electricity to a community 

that is either un-electrified or whose electrical loads are connected to an unreliable 

grid. The developed community load profile model in Chapter 5 and the hourly solar 

radiation data estimated in Chapter 6 are some of the input parameters used by the 

techno-economic model to optimally size the hybrid energy system components, in 

order to guarantee reliable supply of electricity at minimal cost.  

Meanwhile, it is profitable to aggregate several communal or regional electrical 

loads in a regional-grid, but when the aggregated regional loads are not close to each 

other, there will be substantial power losses in the regional-grid. Therefore, a power 

flow study is also carried out in this chapter to determine the benefit of regional load 

aggregation and to evaluate if centralised or distributed generation is the best 

approach to supply electricity to the load buses of a regional-grid in order to 

minimise the power losses in the network and to guarantee the healthy operation of 

the regional-grid.  

 

As earlier mentioned in Chapter 4, a quick, and simplified optimization approach 

called design space optimization approach is used for simulating the optimal size of 

the hybrid energy system components in this study. This is because design space 

optimization approach is a useful approach for providing optimal solution to search 

space problem [338]–[340]. And a search space problem will arise from the 



 

- 212 - 

 

selection of the best combination of energy system components that minimize the 

total annualized cost of system and the amount of un-met load. Although, the 

proposed hybrid system configuration was presented in Fig. 4.1, the modelling 

architecture of the bottom-up demand model and battery energy storage were 

presented in Fig. 4.2 and Fig 4.3 respectively, and the design space modelling 

scheme was presented in Fig. 4.4, a simplified one-line diagram of the operating 

methodology of the hybrid energy system is presented in Fig. 7.1. 

 

Fig. 7.1. One-line diagram of design space optimization approach 

Fig. 7.1 shows that the optimal size of system components is selected by a search of 

the design space for the best combination of PV and biogas generator, and battery 

storage that will guarantee minimal loss of power supply probability (LPSP) is 

achieved at minimal total annualized cost of system. The intermittency in solar 

radiation and the variability in the community load profile is captured by the hourly 

time step simulation performed here. Also, because the community load demand is 

characterized by morning and evening peak power (see Fig. 5.25), to avoid over-

sizing of the PV and biogas generator, and ensure optimal energy balance between 

energy demand and supply at minimal cost of system, the battery energy storage is 

sized with power pinch analysis technique [338]–[340]. 
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The operation of a biogas generator at full-loading condition is vital for the optimal 

operation of the biogas generator [231]–[233] as well as to guarantee healthy 

engine operation and long engine life. This is because the operation of a generator 

at lower load ratio over a long duration of time can lead to exhaust manifold slobber 

or wet stacking [234]. So, the biogas generator here is designed not to operate when 

the load demand is below the selected minimum load ratio1. In this study, a 50% 

minimum load ratio is selected for the biogas generator because this is the lowest 

recommended load ratio for a gas generator [234], [404]. Furthermore, to ensure 

optimal supply and usage of the energy generated from the biogas generator at full 

load, whenever the energy generated exceed the load demand, the excess generated 

energy is sold to the grid, when the battery is fully charged. Therefore, in periods 

when the community electrical load demand is low and the biogas generator is 

switch-off, un-met load will be supplied by the PV generator and the stored energy 

in the battery storage. 

 

To implement the design space optimization approach in Fig. 7.1, the modelling 

inputs and design parameters used for the optimal sizing of the hybrid energy 

system components are presented in this section. A list of the financial inputs and 

some of the design parameters used for modelling the hybrid energy system is 

presented in Table 7.1.

 

 

1 Generator minimum load ratio is the minimum allowable load on the generator, and it is 
defined as a percentage of the generator rated capacity. 
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Table 7.1. System components cost and performance characteristics  

Parameters Values Parameters Values 

Project lifetime (years) 20 Nominal interest rate (%) 13.5 [456] 

Real interest rate (%) 2.2  Inflation rate (%) 11.1 [457] 

Photovoltaic system    

Capital cost ($ kWP
−1) 1260 ab 

Operation and maintenance 

cost ($ kWP
−1year−1) 0.01  b 

Replacement cost ($ kWP
−1) 0 Module efficiency (%) 17.44 c 

Biogas generator    

Capital cost ($ kW−1) 280 b Replacement cost ($ kW−1) 280 b  

Operation and maintenance 

cost ($ kW−1year−1) 0.05 b Biogas methane content (%) 
60 [398], 
[399] 

Biogas heating value 
(MJ kWh−1) 

37 [236], 
[237] Biogas efficiency (%) 

26 [236], 
[237] 

Lifetime (years) 5 c   

Anaerobic digester    

Capital cost ($ m−3) 
470 b 
[458] Total solid (%) 10.2 [459] 

Cost of dry cow dung ($ kg−1) 0.056 b 

Influent volatile solid 

(kgVS kgwet_weight
−1 ) 

0.078 
[459] 

Feedstock density (kg m−3) 
1040 
[158] Replacement cost ($ m−3) 0 

Specific biogas production 
(m3kg_VS−1) 

0.35 
[158] 

Hydraulic retention time 
(days) 42.5 [158] 

Lithium-ion Battery    

Capital cost ($ kWh−1) 530 b  Depth of discharge (%) 80 c 

Replacement cost ($kWh−1) 530 b  Charging efficiency (%) 99  c 

Self-discharge rate (%day−1) 0.2 b Lifetime (years) 5 c 

Converter    

Capital cost ($ kW−1) 350 b  Lifetime (years) 10 c 

Replacement cost ($ kW−1) 350 b Efficiency (%) 90 c 

a Local market capital cost (including the balance of system cost) for a CS6U-340P 
Canadian solar module. 
b Information are acquired locally or country-specific 
c Information from datasheet or professional recommendations 

The lithium ion battery cost and performance characteristics presented in Table 7.1 

are for a lithium iron phosphate (LiFePO4) battery. LiFePO4 is a safe battery 
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technology because of its good chemical and thermal stability. In comparison to 

lithium cobalt dioxide (LiCoO2) battery, that may suffer thermal runaway and heats 

up faster under charging conditions, LiFePO4 are stable under overcharging or short 

circuit conditions (i.e., they don’t get overheated or catch fire) and can withstand 

high temperature without decomposing. Unlike the cathode of LiCoO2 battery, that 

is hazardous in nature, the cathode of the LiFePO4 battery is a nontoxic material, 

therefore, there is no concern with the disposal of LiFePO4 battery. Furthermore, 

they are about 2 times cheaper than lithium titanium battery [87] 

 

Bottom-up modelling of a minutely time step load profile for the studied rural 

community was presented in Chapter 5. However, because of computational 

convenience, an hourly time step simulation of the hybrid energy system is 

performed here. So, the minutely time step simulated load profile is averaged 

hourly. The average hourly time step load profile for the studied rural community is 

presented in Fig. 7.2. 

 

Fig. 7.2. Hourly time step load profile for the studied rural community 

In comparison to the minutely simulated load profile (see Fig. 5.25), the morning 

peak is less evident as shown in Fig. 7.2B. This is because amongst the electrical 
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appliances used in the morning, some of the appliances operating duration in an 

hour is low (e.g. electric iron), hence, their effect is averaged over an hour, while 

some other appliances with relatively high operating duration, their percentage 

ownership within the community (see Fig. 5.8) is low (e.g. refrigerator). Therefore, 

the security/outside incandescent bulbs in the community is responsible for most 

of the energy consumption in the morning. 

 

The approach employed for estimating the hourly solar insolation of a PV panel that 

is positioned annually at its optimal tilt angle is presented in Chapter 6. So, the 

meteorological data for simulating the PV generated energy are the hourly 

estimated solar insolation at an annual tilt angle of 11.6° (i.e. the studied location 

annual optimal tilt angle) and Benin city measured ambient temperature by national 

centre for energy and environment (NCEE). The Benin city measured ambient 

temperature is used in this study because there is no annual measured ambient 

temperature for the studied location, and the ambient temperature of both locations 

are expected to be alike. A plot of the studied location hourly estimated solar 

insolation at optimal annual tilt angle is presented in Fig. 7.3. 

 

Fig. 7.3. Hourly estimated solar insolation at optimal annual tilt angle 

A

B
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Cloudy weather conditions experienced during rainy season months (i.e. between 

March and October) that causes the PV panel to be over-cast is responsible for the 

noticeable dip in the values of the estimated solar insolation in Fig. 7.3A. Detailed 

evaluation of the amount of solar insolation received in the studied location at 

different time of the year as well as when the PV panel is placed horizontally or 

inclined at different angular positions has already been presented in Chapter 6. 

National centre for energy and environment (NCEE) measured ambient 

temperature for Benin, Nigeria, is measured every 5-minutes. But because hourly 

simulation is performed here, hourly average of the measured ambient temperature 

is presented in Fig. 7.4. 

 

Fig. 7.4. Annual measured ambient temperature for Benin, Nigeria 

Over a year, Fig. 7.4A shows that the measured ambient temperature had its lowest 

peak values during the rainy seasons, while over a day, Fig. 7.4B show that the 

measured ambient temperature had its lowest values at night and during the early 

hours of the morning and its higher values in the afternoon and the early hours of 

the evening. Meanwhile, PV panel design parameters are available in the datasheet 

of PV modules. In this study, the design parameters obtained from the datasheet of 

A

B
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Canadian solar manufactured CS6U-340 poly crystalline silicon module are used for 

the simulation. Some important data from  

Table 7.2. CS6U-340P design parameters for a 340 WP module [187] 

Module efficiency (ηref) 17.49% 

Maximum power temperature coefficient (Ktemp) −0.39 %°C−1 

Nominal operating cell temperature (NOCT) 43°C 

Derating factor over 25 years (DFPV) 85 % 

340 WP module effective area 1960x992 mm2 

 

The generated biogas energy is dependent on the rated capacity of the biogas 

generator and the daily biogas production from the bio-digester/reactor. As earlier 

mentioned in Chapter 7.1, under the biogas generator operating condition, the 

biogas generator operate at full-loading condition (i.e. its rated capacity) and when 

the electrical load demand is lesser 50% (minimum load ratio), the biogas generator 

is turn-off. Bio-waste availability and the size of the bio-digester are amongst the 

main external factors that influence daily biogas production. Bio-waste can either be 

gotten locality or outsourced (purchased) from another location. Estimation of the 

bio-waste availability of a studied location is challenging. Therefore, some 

assumptions are made here in estimating the bio-waste availability in the 

community.  

Assumptions for estimating the bio-waste availability in the community: 

• Although co-digestion will likely result in higher biogas yield than a single 

feedstock digestion process [238], [247], [262], but the combinational 

proportion between the co-digested feedstocks must be maintained for optimal 

biogas production to be guaranteed [96], [238], [259]. So, this will result in an 

increase in the complexity of the anaerobic digestion process and the need for 

an expert for the digester operation. But, because the required expertise for the 

day to day operation of an installed anaerobic digester might not be guaranteed 
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in a rural community of a developing country like Nigeria, it is assumed here that 

the selected feedstock in the community are digested individually. 

• Here, the available AD feedstock in the studied community are only from animal 

and household wastes because crop waste serves as animal feeds, and the 

balance are spread crop waste across the farmland as a crude way of improving 

the soil quality ahead of a new planting season. Also, it is assumed that digester 

waste is supply to the community farmland in order to augment the crop waste 

that were used as animal feeds.  

• In the literature, Ogwueleka [68] reported that the average bio-waste generated 

by a rural dweller in Nigeria is 0.44 kgcap−1day−1 or kghead−1day−1. 

Meanwhile, Nigeria population increase from 140.4 million in 2006 [388] to 

195.9 million in 2018 [6], i.e., 1.4 times the population of 2006. So, it is assumed 

that the population of every region in 2018 have increased by 1.4 times their 

population number of 2006. Because the population of Esan North-East local 

government area was 121989 in 2006 [388], then, the population of the area is 

170785 in 2018. The average number of persons in each of the 26 communities 

in Esan North-East LGA is 6569. Assuming that 60% of the daily generated 

household waste were recovered [66], then, the total amount of daily waste 

generated in the community is 1734 kg. Furthermore, the daily specific biogas 

yield per kg of household waste is 0.02740 m3 kg−1day−1 [108], therefore, the 

daily estimated biogas production from household waste in the community is 

47.51 m3.  

• 2016 animal population data (see Fig. 2.2) reported by FAO [90], are assumed to 

be equally distributed amongst Nigeria 774 local government area (LGA). Also, 

animal population in each LGA are also assumed to be equally distributed 

amongst the communities of an LGA. Therefore, estimated amount of biogas that 

can be generated from animal and human waste in the studied community are 

presented in Table 7.3
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Table 7.3. Animals and human potential biogas production in the studied community 

        Biogas yield 

Animal 
species 

Average 
population 
a, b 

Dry dung 
output 
(kg/head 

/day) c, d 

Dry 
dung 
(kg 
/day) 

Available 
fraction 
collected 

d, e 

Total 
solid (kg 
/day) 

Specific 
yield (m3/ 
kg total 

solid) d 

Biogas 
yield 
(m3/ 
day) 

Cattle 159 a 1.8 c 286.2 0.3 d 85.86 0.2 17.17 

Goat 1251 a 0.4 c 500.4 0.4 d 200.16 0.25 50.04 

Sheep 852 a 0.4 c 340.8 0.3 d 102.24 0.25 25.56 

Pig 305 a 0.8 c 244 0.8 d 195.2 0.56 109.31 

Chicken 10551 a 0.06 c 633.06 0.8 d 506.45 0.28 141.81 

Humans 6569 b 0.09 d 591.21 0.125 e 73.90 0.45 33.26 

Total 
      

377.15 

Source: a[90], b[6], [388], c[67], d [66], e [460]. 

Therefore, the annual estimated biogas production from household and animal 

waste in the studied community is 155001 m3. In terms of the cost of purchasing 

cow dung, market survey from 5 sellers of cow dung reveals that the equivalent cost 

of cow dung that can product 1 m3 of biogas is $0.28. Meanwhile. the total size of the 

bio-digester is dependent on the daily amount of feedstock (i.e. gotten locality 

and/or purchased) fed into the digester. 

By applying Eqs. (4.9) – (4.14) in Section 4.2.1 to model the biogas energy system, 

the annual biogas consumption and the anaerobic digester volume of the system can 

be calculated with respect to the size of biogas generator. Therefore, for different 

selected sizes of biogas generators that operate all through a year at full-loading 

condition, the calculated values for annual biogas consumption and anaerobic 

digester volume is presented in Fig. 7.5. 
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Fig. 7.5. Annual biogas consumption and anaerobic digester volume required by 

different biogas generator capacities. 

The biogas energy system modelling outcomes in Fig. 7.5 can be used to make 

important decision during the project planning of a biomass energy system. For 

example, if a 100kW biogas generator is installed in the studied community and it is 

operated continuously throughout the year, the studied community annual biogas 

production of 155001m3 can only supply 28.4% of the biogas consumed by the 

100kW biogas generator. But if the 100kW biogas generator total usage in a year is 

6 months, the studied community annual biogas production can supply 56.8% of the 

biogas consumed by the 100kW biogas generator. Consequently, biogas generator 

should only be used during periods of high energy consumption because continuous 

usage of biogas generator result in excessive demand for bio-waste beyond the 

studied location bio-waste generation capability estimated and anaerobic digester 

volume also increase with continuous biogas generator usage 

 

Section 3.3 explains that the HRES battery is used to supply energy to the load 

whenever selected combinations of PV and biogas generator capacities in the 

feasible region of the HRES design space cannot supply the entire load. By the 
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application of Eqs. (4.15) - (4.20), the battery energy system used here is modelled. 

To supply reliable energy to the surveyed community annual load profile in Fig. 7.2, 

the optimal size of battery capacity that should be integrated with different 

combinations of PV and biogas generator capacities is studied in this section. The 

biogas generator capacities selected here, only operate daily at full-load condition 

from 19:00 in the evening to 6:00 in the morning because about 94% of the daily 

energy demand of the community are consumed during this period and continuous 

operation of biogas generator can increase bio-waste demand beyond the 

community waste generation capacity. Based on this, the optimal size of battery 

capacity that should be integrated with different combinations of PV and biogas 

generator capacities in order to supply reliable energy surveyed community load is 

presented in Fig. 7.6. 

 

Fig. 7.6. Optimal battery capacity for different combinations of PV and Biogas 

generator capacities 

On the x-axis of Fig. 7.6, the rated capacities 0 to 320 kWP and 0 to 200 kW show 

selected capacities of PV and biogas generators respectively. It is evident from Fig. 

7.6 that in the feasible region of HRES design space, there is more demand for 

battery when only PV is selected electricity generation than when only biogas 

generator is selected. Fig. 7.6 also shows that when PV and biogas generator 
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capacities were optimally combined, the required battery capacity is much lower 

than when only biogas generator or only PV is selected for electricity generation.  

 

In this section, the cost of HRES components is considered when calculating the 

optimal combinations of HRES component that will supply reliable energy to the 

load profile in Fig. 7.2. Outcomes from the optimization process is presented and 

discussed. Sensitivity analysis on how different sizing decision criteria affect the 

optimum combination of hybrid system components is also presented. Accurate 

hybrid energy system modelling was ensured by carrying out annual hourly 

simulations. This is because seasonal inputs such as solar radiation and ambient 

temperature vary seasonally over a year. The electrical load demand data presented 

in Fig. 7.2 and meteorological data (hourly solar insolation and ambient 

temperature data) presented in Fig. 7.3 and in Fig. 7.4, and other system component 

design parameters in Table 7.1 are used as the inputs for simulating the optimize of 

hybrid energy system components. A contour plot of annualized system costs that 

were calculated from different combinations of PV and biogas generator capacities 

in the design space is presented in Fig. 7.7. 

 

Fig. 7.7. Design space search of optimal solution 
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To ensure that there is no un-met load (0% loss of load probability), Fig. 7.7 shows 

that the feasible region is separated from the infeasible region by the feasible and 

infeasible region boundary. The variations in the feasible and infeasible region 

boundary is an indication of how the use of battery energy storage for balancing 

energy mismatch in the hybrid energy system influence the selection of PV and 

biogas generator capacities in the feasible region of the design space. Meanwhile, in 

the feasible region of the design space, the point of optimal solution is the point 

whereby the combination of PV, biogas generator, and battery energy storage 

results in the lowest possible system cost (i.e., optimization of system cost).  

Even though the infeasible region is not a useful region in the design space, the high 

system cost at the bottom of the infeasible region is an indication of the impact of a 

high increase in the size of battery energy storage on the system cost, when the rated 

capacity of PV and/or biogas generator is low. Furthermore, the high system cost at 

the bottom right corner of Fig. 7.7 (infeasible region), despite the increase rated 

capacity of biogas generator, is because the biogas generator is not used to supply 

electricity to the community load whenever the load demand is lower than 50% of 

the size of the biogas generator rated. Consequently, a high battery energy storage 

capacity (that result in an increase in system cost) is required to supply electricity 

to the load since the PV rated capacity was low. 

At the point of optimal solution (i.e., the minimum hybrid energy system annualized 

total cost that guarantees 0% loss of power supply probability), the rated capacity 

of PV system, biogas generator, battery energy storage, and converter system were 

40 kWP, 160 kW, 32 kWh, and 24 kW respectively. The hybrid energy system 

annualized total cost at the point of optimal solution in the design space was $78708. 

Furthermore, the hybrid energy system levelized unit cost of energy (LCOE) and net 

present cost (NPC) was $0.1657 kWh⁄  and $1.2634 × 106 respectively. A 

breakdown of the hybrid energy system annualized total cost (Cann,tot) into the PV 

system annualized cost, biogas system annualized cost, battery system annualized 

cost, and converter system annualized cost is presented in Fig. 7.8. 
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Fig. 7.8. Hybrid energy system components annualized cost distribution 

The total annualized capital (Cann,cap), total annualized replacement cost (Cann,rep), 

total annualized operation and maintenance cost (Cann,O&M), and total annualized 

fuel cost (Cann,fuel) in Fig. 7.8, account for 62%, 12%, 3%, and 23% respectively of 

the hybrid energy system annualized total cost of $78708. Furthermore, Fig. 7.8 

shows that PV system, biogas system, battery energy storage system, and converter 

system accounted for 4%, 90%, 5%, and 1% respectively, of the hybrid energy 

system annualized total cost. The design of the converter in terms of the maximum 

power flow between the DC bus and AC bus in Section 4.2.3 rather than on the peak 

load is the reason why the optimal size and annualized total cost of the converter is 

24kW and $944 respectively. The biogas system annualized cost (i.e., a combination 

of the annualized cost of the biogas generator, the anaerobic digester, and the fuel 

cost) account for most of the hybrid energy system annualized total cost because 

when the biogas generator is used (i.e., when the load demand is at least 50% of the 

peak load demand), it supplies most of the community residential load demands 

(see Fig. 7.2). Also, for healthy operation of the biogas generator, it operates under 

full load condition. 

By operating the biogas generator under full load conditon, only 31% of the biogas 

generator supplied electricity was consumed by the community while the rest was 
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sold to the grid. The amount of biogas required to operate the biogas generator 

annually under full load conditon was 4.526 × 105 m3 year−1 , while the anaerobic 

digester volume that is needed to generate the required amount of biogas is 

2.5177 × 103 m3. From Section 7.2.3, the amount of biogas that can be generated 

annually from the community waste was 1.610 × 105 m3 year−1 (i.e., 36% of the 

total required biogas). So, the balance amount of biogas (2.916 × 105 m3) is 

generated from purchased cow dung. Consequently, the quantity of cow dung to be 

purchased annually is 1.458 × 106  kg year−1, while the annual cost of purchasing 

the cow dung is $81648. However, a total of $63847 will be generated by selling the 

excess electricity supplied by the biogas generator to the grid. Therefore, the cost of 

purchasing cow dung (biogas system annualized fuel cost) was reduced to $17801 

as shown in Fig. 7.8.  

To illustrate the supply-demand energy balance (i.e. 0% loss of power supply 

probability) of the hybrid energy system, the hourly relationship between the 

energy demanded and the energy supplied on the 1st of August (i.e. day of the year 

in the community with the least daily solar irradiation) is presented in Fig. 7.9. 

 

Fig. 7.9. Hybrid energy system balance relationship. (a) Community households’ 
electrical load, (b) Bio-energy generation, (c) PV generation, (d) Battery state of 
charge 
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Fig. 7.9 shows that the energy mismatch between the generators supplied electricity 

and the community load demand was met by the battery energy storage. Specifically, 

Fig. 7.9b shows that the biogas generator operated under full-loading condition, and 

it supplied the community electrical load whenever the community electrical load 

was up to 50% of its rated capacity. Whilst, Fig. 7.9d shows that from 6:00 – 8:00 

hours and from 16:00 – 18:00 hours, the battery energy storage supplied either the 

entire or part of the community electrical load. The battery state of charge in Fig. 

7.9d also shows that the battery energy storage was constrained not to discharge 

energy beyond its depth of discharge (DOD). Meanwhile, because the community 

households’ electrical load are non-critical loads, part or the entire community 

households’ electrical load supplied by the battery energy storage in Fig. 7.9d can be 

shifted to the first and last operating hours (i.e., 18:00 and 5:00 hours respectively) 

of the biogas generator, without increasing the rated capacity of the biogas 

generator.  

During demand side management, load shifting techniques can be applied to a load 

profile in order to reduce the optimal size of generators and/or energy storage 

[366], [400], [402], [461]–[463]. With respect to Fig. 7.9, if the community 

households’ electrical load supplied by the battery energy storage at 6:00 hour is 

shifted to 5:00 hour, the battery energy storage capacity is reduced by 51% to 15 

kWh. Also, if the community households’ electrical load supplied by the battery 

energy storage at 6:00 and 17:00 hours are shifted to 5:00 and 18:00 hours 

respectively, the battery energy storage capacity is reduced by 79% to 8 kWh. 

Furthermore, the use of battery energy storage can be avoided by shifting the 

community households’ electrical load supplied by the battery energy storage from 

6:00 – 8:00 hours and from 16:00 – 18:00 hours to 5:00 and 18:00 hours 

respectively. Research on the development of a suitable model that can encourage 

load shifting of the community peak load demand is necessary in future study 

because biogas generator optimal sizing, and the anaerobic digester volume, and the 

biogas fuel consumption is influenced by the peak load demand of the community. 

Meanwhile, assuming that the life style of the community household occupants does 

not support the shifting of the community households’ electrical load, but it is 



 

- 228 - 

 

possible to slightly increase the hybrid energy system 0% loss of power supply 

probability (LPSP), then, the hybrid energy system annual LSPS when the capacity 

of the battery energy storage is reduced to 15 kWh, 8 kWh and 0 kWh (i.e., no battery 

energy storage), is 1.7%, 2.3%, and 3.7% respectively. Therefore, the effect of an 

increase in the loss of power supply probability of the hybrid energy system (i.e., 

from 0% LSPS to 1.7% LSPS, 2.3% LSPS, or 3.7% LSPS) on the net present cost (NPC) 

and levelized cost of energy (LCOE) is presented in Fig. 7.10. 

 

Fig. 7.10. Effect of selected LPSP on NPC and LCOE of the HRES 

Fig. 7.10 shows that when the loss of power supply probability (LPSP) of the hybrid 

energy system was increased in order to reduce the battery energy storage 

annualized system cost, the net present cost (NPC) and the levelized cost of energy 

(LCOE) were reduced. For example, when the hybrid energy system LPSP was 

increased from 0% to 3.7%, the hybrid energy system NPC and LCOE were reduced 

by 5.7% and 2.1% respectively. Therefore, the complete removal of the battery 

energy storage from the hybrid energy system is perhaps the most preferred option 

because despite the increase in the hybrid energy system LPSP, there is the 
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noticeable reduction in NPC and LCOE as well as in the complexity of the hybrid 

energy system. Furthermore, because of the load profile of the community, the 

complete removal of the battery energy storage also takes away the concern that 

part of the battery might easily be stolen, the concern that there might be a need for 

an early battery replacement because its cycle lifetime is limited. Also, an inverter 

and not a bi-directional converter will be required by the hybrid energy system. 

The HRES LCOE presented in Fig. 7.10 can compete with the LCOE of a diesel alone 

energy system and the LCOE of the national grid. For example, at 0% LPSP, LCOE for 

this study HRES was $0.1657/kWh, but the LCOE for a diesel alone energy system 

was $0.62/kWh [85]. Despite the national grid unreliability (see Fig. 5.6), the 

studied location 2019 residential customers reflective tariff (i.e., a tariff without 

subsidizes) was $0.164/kWh [451]. Furthermore, if the HRES LPSP is increased to 

3.7%, its LCOE is reduced to $0.1623/kWh. So, for a LPSP of 3.7%, the HRES LCOE is 

less than the rural area residential customers tariff. Meanwhile, more reduction in 

the hybrid energy system LCOE can be achieved by the development of an energy 

scheme for peak load shifting of the community load profile or by aggregating 

communities’ residential load profiles in a regional grid. Research on the 

development of an energy scheme for peak load shifting of the community load 

profile will be performed in future studies, but a study on the effect of communities’ 

residential load profile aggregation on a regional grid is performed in the next 

section of this chapter. 

 

The aggregation of regional loads in a regional-grid leads to peak demand shaving 

(lower load diversity factor or coincidence factor) [444]. For example, in Chapter 5, 

comparison between a single household load profile in Fig. 5.24 and a community 

load profile in Fig. 5.26 shows that the higher the number of residential customers  
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(electrical loads) connected to an electrical network, the lower the load diversity1 

factor and the estimated size of generators are reduced. When regional electrical 

loads (load bus) are aggregated in a regional grid, it will cost less to supply reliable 

electricity to more people. Meanwhile, if the regional loads (load buses) in a regional 

grid are not close to each other, there will be substantial power losses in the network 

[346]–[349]. Therefore, a power flow study is performed here to evaluate if it is a 

better operating strategy to centralize or distribute generators in order to minimise 

the power losses in the network and to guarantee the healthy operation of the 

regional grid. The modelling approach (flow chart) used in carrying out the power 

flow study is presented in Fig. 4.5, while more detailed explanations on how Fig. 4.5 

sub-system simulations are performed are presented in Eqs. (4.51) – (4.64).  

 

To perform this study, a regional grid that comprises of 5 interconnected loads 

centres is investigated here. Typically, the first step to study a power network 

problem is to convert the power network into a one-line diagram representation, so 

that a simplified power flow study can be performed. This is necessary because 

power flow study input parameters, such as, bus data, transmission line data and 

transformer data can easily be defined/represented in a one-line diagram, hence, 

unusual network conditions, such as low voltage and excessive load on the 

transmission line, can be identified on the one-line diagram and corrected before it 

escalates into a major network problem [350]. Therefore, a one-line diagram 

representation of the regional-grid is presented in Fig. 7.11.  

 

 

1 Load diversity is defined as the total expected power drawn from a power source by a 
device or system of devices during peak period.  
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Fig. 7.11. One-line diagram of a distributed power network 

The 5 load buses in Fig. 7.11 were selected from the 3 senatorial districts in Edo 

state (i.e., Odighi and Ekhor load buses are in Edo south senatorial district, Otuo and 

Aigiere load buses are in Edo north senatorial district, while Idumoza load bus is in 

Edo central senatorial district), so that continuous grid expansion can be achieved. 

Also, Otuo load bus, Aigiere load bus, Idumoza load bus, Odighi load bus, and Ekhor 

load bus are located in Owan East LGA, Etsako East LGA, Esan North-East LGA, Ovia 

North-East LGA, and Uhunmwonde LGA respectively. Furthermore, to guarantee 

energy security, the selected load centres are interconnected by 7 transmission 

lines, that is, each load centre is connected to a minimum of 2 transmission lines. As 

shown in Fig. 4.5, the actual power flow simulation begins with the initialization of 

assigned power network parameters (i.e., electrical loads, generation specifications 

and constraints), then, the subsequent parameters such as bus admittance matrix, 

bus conductance matrix, and bus susceptance matrix of the power network are 

calculated before Newton Raphson method (a mathematical technique) is used to 

simulate the power flow in the power network. 

To determine the electrical load parameters in the 5 load buses, it is assumed that 

each of the 5 load buses in Fig. 7.11 are connected to all the residential electrical 
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loads in their respective local government areas. So, the aggregated residential 

electrical loads in a selected local government area (load bus) is referred to as a 

regional load. Because there are 26 communities in Esan North-East LGA, and the 

studied community had 409 residential customers (see Chapter 5), the total 

residential customers connected to Idumoza bus is 10634. Furthermore, because 

the 5 selected local government areas are in the same states in Nigeria, it is assumed 

that household occupants’ consumption behaviour and appliance ownership in the 

five selected local government areas are alike. Therefore, population and housing 

census data were used to scale the number of residential customers that are 

connected to the other four load buses.  

Based on population and housing census data, the ratio of the number of households 

in Esan North-East LGA to the number of households in Ovia North-East LGA, 

Uhunmwonde LGA, Owan East LGA, and Etsako East LGA is 1:1.13, 1:1.04, 1:1.31, 

and 1:1.22 respectively [388]. So, the estimated number of residential customers in 

Ovia North-East LGA, Uhunmwonde LGA, Owan East LGA, and Etsako East LGA is 

12016, 11059, 13931, and 12973 respectively. Meanwhile, because the 5 load 

centres in Fig. 7.11 are interconnected and it is assumed that their household 

occupants’ consumption behaviour and appliance ownership are alike, the 

aggregated number of residential customers in the regional-grid is 60613. The 

developed stochastic load model in Chapter 5 is used to simulate the regional-grid 

annual load profile. Simulation of the regional-grid annual load profile shows that 

the peak load for the regional-grid is 17.7 MW. A 23% reduction in peak load was 

achieved when compared with the expected peak load if the peak load of 156kW for 

409 residential customers was scaled to represent the peak load of the 60613 

residential customers in the regional grid. The reduction in the regional-grid peak 

load is associated with the higher number of residential customers in the regional-

grid; which leads to a lower load diversity factor [444].  

Consequently, the load profile of the 5 load buses in Fig. 7.11 were estimated by 

using the ratio between the number of households in the 5 local government areas 

to scaled the simulated regional-grid load profile. Therefore, the estimated real 

power drawn at peak load from Otuo bus, Aigiere bus, Idumoza bus, Odighi bus, and 
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Ekhor bus is 4.07 MW, 3.79 MW, 3.10 MW, 3.51 MW, and 3.23 MW respectively. 

Meanwhile, because excess generated energy can be sold to the grid, Nigeria grid 

recommended power factor value of 0.86 is used here to estimate the reactive power 

and the apparent power of the power network. For example, based on the estimated 

real power drawn from the 5 selected buses at peak load, the equivalent reactive 

power drawn at peak load from Otuo bus, Aigiere bus, Idumoza bus, Odighi bus, and 

Ekhor bus is 2.41 MVar, 2.25 MVar, 1.84 MVar, 2.08 MVar, and 1.92 MVar respectively, 

while the equivalent apparent power drawn at peak load from Otuo bus, Aigiere bus, 

Idumoza bus, Odighi bus, and Ekhor bus is 4.73 MVA, 4.41 MVA, 3.61 MVA, 4.08 MVA, 

and 3.76 MVA respectively. 

The developed design space optimization technique presented in Fig. 4.4 and Fig. 

7.1 is used to optimally size the PV, biogas generator, and battery storage. So, with 

the assumption that the meteorological characteristics of the regional-grid are 

similar, and the use of the simulated regional-grid annual load profile, the optimal 

size of the PV, biogas generator, and battery energy storage that is required to 

supply electricity to the regional-grid loads is 2.78 MWP, 17.7 MW (20.58 MVA), and 

1.83 MWh respectively. However, because the removal of the battery energy storage 

will only slightly increase the regional grid LSPS but will lead to reduction of the net 

present cost and levelized cost of energy of the regional grid, it is removed from the 

power flow study.  

Meanwhile, because transmission line apparent power losses benchmark for 

developing countries is 2 – 6 % [43], the simulated values from the optimal sizing of 

PV, and biogas generator is scaled by 6% to 2.95 MWP, 18.76 MW (21.82 MVA) 

respectively. The optimally sized PV, and biogas generators can either be distributed 

or centralized because renewable generators are scalable [46], [445], [446]. In 

practice, most biogas generator are designed to operate with natural gas, while Edo 

state (study location) is one of the locations in Nigeria with large natural gas deposit, 

therefore, challenges with the purchase of the desired amount of bio-waste or the 

construction of large anaerobic digester volume that can affect the reliable supply 

of biogas to the biogas generator can be resolved by the use natural gas, despite its 

less environmental friendly nature. 
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With respect to the transmission lines modelling input parameters, because 79 km 

is the maximum length of all the transmission lines in Fig. 7.11, and the maximum 

length of a short transmission line is 80 km [352], therefore, the characteristics of a 

short transmission line is used to estimate the impedance of the 7 transmission lines 

in the regional-grid. For a regional-grid with short transmission lines, and a 

transmission voltage level of 33 kV is recommended for the transmission of 

electricity amongst load buses of the network [352], [464]. Typically, in Nigeria, the 

conductor size of a 33 kV transmission lines is 150 mm2. Based on the design 

standards of international electrotechnical commission (IEC), the resistance and 

inductive reactance per kilometre for a 33 kV transmission line with a conductor 

size of 150 mm2, is 0.27 Ω km−1 and 0.12 Ω km−1 [464]. So, the impedance of the 79 

km transmission line between Idumoza bus and Ekhor bus is (21.33 + 𝑗9.48) Ω. 

Note that for a short transmission line, the capacitive reactance is negligible [465]. 

To estimate the transformer input modelling parameters, the maximum apparent 

power that can be drawn from the regional grid is used. So, with the assumption that 

the PV, and biogas generator are centralized, all the regional-grid loads will be 

directly or in-directly connected to the load bus with the centralized PV and biogas 

generators. Also, because the maximum apparent power that can be drawn from the 

regional-grid is a function of the maximum apparent power drawn from the 

regional-grid at peak load and the total apparent power losses in the network, the 

maximum apparent power that can be drawn from the regional-grid can be 

estimated by scaling the apparent power drawn from the regional-grid at peak load 

(20.58 MVA) by 6% (i.e., the maximum benchmark for developing countries 

transmission line apparent power losses). Therefore, a transformer rating of 25 

MVA and 11 kV/33 kV is selected here for each of the 5 load buses. Meanwhile, for 

transformers with rated capacity between 6.3 MVA and 25 MVA, the impedance of 

the transformer is estimated by a reactive reactance of 8% [466]. So, reactance of 

the transformers in the regional-grid 5 load buses is 8%.  

As a result of the one-line diagram representation of the power network, the 

transformer reactive reactance of 8% is added to the transmission line impedance 

during the calculation of the power losses in the network. So, the transmission lines 
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estimated power losses are dependent on the transmission lines impedance and the 

transformer impedance. Typically, simulation of power flow studies are performed 

in terms of per-unit (PU) values [346], [347], [349]. Therefore, the per-unit values 

of transmission line impedance and the transformer impedance in power flow 

model are combined. Meanwhile, because the maximum estimated apparent power 

that can be drawn from the regional-grid is 21.82 MVA, and a voltage level of 33 kV 

is selected for the short transmission line network, a base apparent power (Sbase) 

and a base voltage (Vbase) of 25 MVA and 33 kV respectively are used for calculating 

the per-unit values of the power flow model input parameters. Whilst, the base 

impedance (Zbase) is defined in terms of the base apparent power and the base 

voltage as [347], [349]: 

Zbase =
(Vbase)

2

Sbase
=
(kV)2

MVA
= 43.59 Ω (7.1) 

So, the per-unit value for the transmission line impedance is defined by [347], [349]:  

ZTX−PU =
Actual value

Base value
=
ZTX−actual
Zbase

 (7.2) 

The per-unit values for the impedance of the 7 transmission lines in the regional-

grid is presented in Table 7.4. 

Table 7.4. Transmission lines impedance per-unit values 

Sending Bus Receiving Bus Transmission line impedance 

Bus Name Bus No. Bus Name Bus No. Resistance (Ω) Reactance (Ω) 

OTUO 1 AIGIERE 2 0.335 0.149 

OTUO 1 IDUMOZA 3 0.292 0.130 

OTUO 1 ODIGHI 4 0.346 0.154 

AIGIERE 2 IDUMOZA 3 0.240 0.107 

IDUMOZA 3 ODIGHI 4 0.440 0.196 

ODIGHI 3 EKHOR 5 0.489 0.217 

ODIGHI 4 EKHOR 5 0.216 0.096 
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To minimise the transmission losses in the regional-grid, the power flow model 

calculated per-unit or normalized values of the input parameters were used to 

evaluate if centralised or distributed generation is the best approach to supply 

electricity to the load buses in a regional-grid. To carry out the power flow 

evaluation, three different cases were considered. 

• Case 1: Centralization of the generators in the regional grid 

• Case 2: Even distribution of the generators across the 5 load buses of the regional 

grid. 

• Case 3: Distribution of the generators in the terms of the amount of apparent 

power drawn by each load bus of the regional grid. For example, because the 

ratio of apparent power drawn at peak load from Otuo in comparison to 

Odumoza is 1.33:1, the distribution ratio of generators between Otuo and 

Odumoza is 1.31:1. 

Based on the power flow analysis, an illustration of the power flowing in and out of 

the load buses and the transmission line losses in the regional-grid is presented in 

Fig. 7.12. For this illustration, the regional-grid generators were centralized. Also, 

for this illustration, peak load is drawn from the regional-grid, and the PV system is 

not supplying electricity through the inverter to the regional-grid. 
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Fig. 7.12. Illustration of power flow simulation outcome 

The simulated outcomes in Fig. 7.12 shows that the sum of the real power entering 

and leaving a load bus is the same (i.e., the algebraic sum of real power in a load bus 

is zero). Similarly, the algebraic sum of reactive power entering and leaving a load 

bus is zero. Also, Fig. 7.12 shows that the real and reactive power losses in the 

transmission line is affected by the length of the transmission line. The total real 

power losses, reactive power losses, and apparent losses in Fig. 7.12 is 0.40%, 

0.57%, and 0.44% respectively, and these values are equivalent to a power of 70.8 

kW, 59.9 kVar, 90.6 kVA. Furthermore, because the maximum benchmark for 

developing countries transmission losses was used to scale the size of the biogas 

generator, the regional-grid peak load and transmission line power losses were 

supplied by operating the biogas generator at 94.6% loading condition. Meanwhile, 

during the simulation period, the 5 load buses per-unit voltage and angle values are 

presented in Table 7.5. 



 

- 238 - 

 

Table 7.5. Voltage and angle parameters 

Bus name Voltage (Per unit) Angle (radian) 

OTUO 1 0 

AIGERIE 0.9929 -0.3282 

IDUMOZA 0.9963 -0.4320 

ODIGHI 0.9904 -0.0229 

EKHOR 0.9867 -0.2682 

Table 7.5 shows that the maximum voltage deviation from Otuo (slack) bus was 

1.33%, and the maximum voltage deviation value here is less than voltage deviation 

acceptable limit of 5% [352]. For the three cases considered, based on hourly power 

flow simulation of the regional-grid, the maximum percentage apparent power 

losses in the regional-grid is presented in Fig. 7.13. 

  

Fig. 7.13. Regional-grid maximum percentage of apparent power losses for the cases 

considered 

Fig. 7.13 shows that the maximum percentage of apparent power losses for Case 1, 

Case 2, and Case 3 is 0.73%, 0.47%, and 0.34% respectively. Therefore, Case 3 is the 

best approach to supply electricity to the load buses in the regional grid. Although, 

Case 1 is the least favourable approach to supply electricity to the load buses in the 
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regional-grid, the maximum percentage apparent power losses for Case 1 is still 

lesser than the minimum transmission line benchmark of 2% that is acceptable for 

developing countries [43]. For the 3 cases considered, the maximum percentage of 

apparent power losses in the regional grid occurred during periods when the load 

demands were met by the PV system. This is perhaps because there are additional 

losses from the use of the inverter to convert the PV system DC energy to AC energy. 

Note that the regional-grid percentage apparent power losses for Case 1, Case 2, and 

Case 3 is equivalent to an apparent power of 18.92 kVA, 12.18 kVA, and 8.81 kVA 

respectively.  

Comparison of the regional grid apparent power percentage loss at peak load to the 

regional-grid maximum apparent power percentage loss, shows that if the 

maximum apparent power percentage loss does not occur at the time of peak load, 

the use of the maximum apparent power percentage loss to estimate the actual 

amount of apparent power losses in the regional-grid can be misleading. For 

example, hourly power flow simulation of Case 1, show that regional-grid apparent 

power percentage loss at peak load is 0.44%, and this value the is less than 0.74% 

(which is the maximum apparent power percentage loss), but the regional-grid 

actual apparent power loss at peak load is 90 kVA, while for maximum apparent 

power percentage loss, the regional-grid actual apparent power loss is 18.92 kVA.  

In summary, the power flow study performed here shows that the distribution of 

generators in the terms of the amount of apparent power drawn by each load bus of 

the regional-grid (Case 3) is the best approach to supply electricity to the regional-

grid load buses. Hourly simulation of the power flow in a regional-grid is necessary 

for assessing the maximum apparent power loss in a regional-grid. Also, it is 

preferable to assess the regional-grid maximum apparent power losses in terms of 

its actual value (kVA) rather than its percentage values because the estimated value 

for maximum apparent power percentage loss might be misleading if it does not 

occur during the period of peak load.
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Communal/regional grid electrification of rural residential electrical load can serve 

as a viable alternative to national grid electrification because it supports the 

aggregation of electrical loads, as well as serve as a quicker means of electrifying 

communities without electricity access or a means of supplying reliable electricity 

to communities that are connected to an un-reliable national grid. Two studies; 

techno-economic study and power flow study, were carried out in this chapter in 

order to evaluate the unit cost of using a hybrid PV and biogas generator to supply 

reliable electricity to a community residential loads, as well as to study the effect of 

load aggregation on a regional grid. A quick, and simplified optimization technique 

called design space optimization technique was used to optimally size the hybrid 

energy system components, while Newton Raphson method was used to perform 

the power flow study.  

Biomass availability assessment shows that the quantity of recoverable household 

and animal bio-waste in the studied location is limited. To reduce the quantity of 

outsourced bio-waste and minimize anaerobic digester volume, biogas generator is 

only used when energy demand is greater than 50% of its rated capacity. Study on 

how different combinations of PV, biogas generator and battery systems affect the 

optimal sizing of battery shows that an optimally designed HRES requires a much 

smaller battery capacity than when a biogas generator and battery or a PV and 

battery are integrated for rural electrification in the studied location. Outcomes 

from the techno-economic study shows that the optimal size of PV system, biogas 

generator, battery energy storage, and converter system that guaranteed 0% loss of 

power supply probability (LPSP) at minimal hybrid energy system annualized total 

cost were 40 kWP, 160 kW, 32 kWh, and 24 kW respectively. When the hybrid energy 

system supplies reliable electricity to the community at 0% LPSP, its minimal 

annualized total cost (Cann,tot), levelized unit cost of energy (LCOE) and net present 

cost (NPC) was $78708, $0.166 kWh⁄  and $1.26 × 106 respectively.  

Fig. 7.10 shows that the HRES LCOE can compete with the LCOE of a diesel alone 

energy system and the LCOE of the national grid. For example, at 0% LPSP, the HRES 
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LCOE is $0.1657/kWh, but the LCOE for a diesel alone energy system was 

$0.62/kWh [85]. Despite the national grid unreliability (see Fig. 5.6), the studied 

location 2019 residential customers reflective tariff (i.e., a tariff without subsidizes) 

was $0.164/kWh [451]. Furthermore, if the HRES LPSP is increased to 3.7%, its 

LCOE is reduced to $0.1623/kWh. So, for a LPSP of 3.7%, the HRES LCOE is less than 

the LCOE of the national grid. Meanwhile, the HRES LCOE will compete better with 

the LCOE of the national grid if more household loads are aggregated in the regional 

grid. 

Power flow study of the effect of aggregating 5 regional loads show that load 

aggregation reduced the 5 regions peak load by 23%. Furthermore, power flow 

study of the regional grid shows that power losses minimization will be achieved 

when installed generators are not centralized but distributed in terms of the amount 

of apparent power drawn by each of the regional grid load buses. To identify and 

optimally control the regional grid apparent power losses, hourly power flow 

analysis of the regional grid shows that it is preferable to estimate the regional grid 

maximum apparent power losses in terms of its actual value (kVA) rather than its 

percentage values. This is because the calculated maximum apparent power 

percentage loss might not be actual value if it does not occur during the period of 

peak load. Estimation of the maximum apparent power percentage loss is relevant 

for estimating hourly deviation in apparent power losses and ensuring that hourly 

apparent power percentage loss does not exceed the acceptable benchmark for the 

studied location. 
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This chapter summarizes the research performed in this thesis. This includes a 

summary of the research findings, and the recommendations for future research 

work.  

 

Electricity access rate is low, and the pace of rural electrification is slow in many 

sub-Saharan Africa (SSA) countries. For example, it is reported that SSA is were 90% 

those without electricity will live by 2030. For rapid rural electrification of 

communities beyond lighting or to supply reliable electricity to communities with 

electrical loads that are connected to an un-reliable national grid, communal grid is 

a viable approach for the supply of reliable electricity, as well as for the aggregation 

of the community electrical loads. The aim of this research is the design and 

evaluation of the use of clean energy technologies (i.e. integrated PV, biogas 

generator, and battery energy storage technologies) to supply reliable electricity to 

rural communities. A summary of the research carried in this thesis include Nigeria 

renewable energy assessment, reviews of literature on the design and evaluation of 

hybrid energy system, presentation of the methodology used for the design and 

evaluation of the hybrid energy system, occupancy-based survey of households 

energy consumption, stochastic modelling of community households load profiles, 

estimation of global solar radiation for photovoltaic application, optimal sizing of 

hybrid energy system components to guarantee reliable supply of electricity at 

minimal cost, and study of the effect of regional load aggregation on a regional grid.  

 

In presenting the research findings here, the research questions which define the 

research objectives are presented sequentially to show the process applied in 

achieving the research aim. After each research questions, the research procedures 

employed and the corresponding findings from the investigation carried out are also 

presented. 
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What is Nigeria renewable energy potential and how does Nigeria’s energy policies 

influence the deployment of renewable energy technologies? 

The first research question was used to determine if Nigerian government support 

the use of renewable energy technologies for electrical energy generation and to 

assess Nigeria renewable energy resources availability. Therefore, in Chapter 2, 

Nigeria’s position on the use of renewable energy technologies in resolving the 

country’s energy crises was evaluated, and the approach that can be used in 

achieving the Nigeria’s renewable energy target was examined. Assessment of 

Nigeria renewable energy resources and presentation of some factors that can 

influence the increase deployment of renewable energy technologies in Nigeria for 

the supply of reliable electricity beyond light was also presented in Chapter 2. 

Outcomes from the study shows that there is a current drive by Nigeria government 

towards using PV system (i.e. 100% renewable energy technology) for rapid rural 

electrification. For example, Nigeria government plan to disburse 2/3rd of the $350 

million electricity fund received from world bank in 2018 on solar technology 

related off-grid electricity project. Also, it was found that assessment of the 

country’s solar radiation potential was necessary because there was discrepancy in 

the report of the country solar radiation potential. Despite the discrepancy, it was 

evident in the literature that Nigeria’s solar radiation potential varies, therefore, in 

locations with lower solar radiation potential, the use of integrated PV and battery 

system to supply reliable electricity might not be a viable economic option. 

Consequently, integration of PV and battery system with other renewable energy 

resources might be a more viable economic option to supply reliable electricity to 

rural community. Specifically, the integration of PV and biogas systems can 

guarantee improve energy security as well as offer the possibility for improve 

community corporation or participation 
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What is the energy consumption behaviour of rural areas? 

The second research question was asked because an understanding of electricity 

consumption pattern is necessary for cost-effective supply of reliable electricity. 

Household occupants’ energy consumption behaviour influence rural areas energy 

consumption patterns because residential electricity customers are the major 

electricity customers in rural areas. An occupancy-based stochastic load profile 

model is developed with the use of survey data on the number of bedrooms in a 

household, household population and classification, occupant’ activity schedule and 

appliance ownership. The developed load model can be used to simulate load 

profiles that captures diversity between households or group of households, the 

effect of load coincidence, annual and diurnal variation, and short time-scale 

fluctuations is generated by the stochastic model.  

Analysis of simulated load profiles show that incandescent bulbs accounts for 64% 

of the community’s annual energy consumption. But when the commonly used 

incandescent bulbs were replace with CFL and LED bulbs, an annual energy savings 

of 53% (with CFL) or 57% (with LED bulbs) was achieved. Therefore, it is 

recommended that policies and regulations that would encourage the use of energy 

saving bulbs should be implemented because substantial energy savings in 

household energy consumption can be achieved by using energy saving bulbs. 

Furthermore, in-direct validation of the developed stochastic model with utility 

measured data shows that households’ average daily consumption calculated from 

utility measured energy dispatch is 3.48 kWh day−1 and from the developed model, 

it is 3.13 kWh day−1. It is hoped that the difference between the measured and 

simulated values can be reduced if energy consumption data were measured more 

closer to residential customers loads. Therefore, in developing countries without 

national measured time use data, this developed modelling approach can be applied 

to model the load profiles of households and communities. 
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What is the amount of solar radiation that can be received in the studied location when 

a PV panel is either permanently fixed horizontally, permanently fixed at its optimal 

annual angle, or adjusted seasonally to its optimal angle? 

Solar radiation datasets are required for the design and analysis of solar energy 

projects. In developing countries like Nigeria, solar radiation datasets are 

unavailable for many locations. Therefore, estimation models are used to predict the 

global solar radiation of these location. Even though several estimation solar 

radiation models have been developed, the rationale for selecting estimation models 

meteorological parameters and the influence that the selected meteorological 

parameters have on estimation models is often unclear. Meanwhile, performance 

evaluation of meteorological parameters used for constructing solar radiation 

estimation models was carried with 26 years (1993 – 2018) datasets and outcomes 

from the evaluation shows that temperature is an important meteorological 

parameter that should be used to estimate solar radiation in the survey location. 

Assessment of the minimum required duration of measured data to estimate past 

solar radiation shows that 2 years of recent data is required to achieve R2 greater 

than 0.75, and more than 5 years of recent solar radiation data is required to achieve 

R2 greater than 0.9 

Diffused solar radiation data is required by most estimation models to determine 

the optimal angle to position a PV panel in a studied location. But because the few 

NiMet weather stations that measure solar radiation do not measure diffused solar 

radiation, the common practice (even though is not an optimal solution), is to use 

the solar project location latitude to determine PV panel inclination. However, this 

study shows that the annual optimal angel to position a PV panel in order to 

maximize the solar energy potential of the studied location was 11.6° rather than 

the studied location latitude of 6.8°.  
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What is the studied location biomass potential? 

Biomass availability and the size of the bio-digester are two important parameters 

that influence daily bio-energy production. Biomass availability is assessed by 

calculating the quantity of recoverable household and animal bio-waste in the 

studied location. Household and animal bio-waste were selected because they are 

usually disposed indiscriminately in rural areas. Therefore, the use of household and 

animal bio-waste for energy production will not disrupt living things food supply 

chain. Household and animal bio-waste has high moisture content, so, anaerobic 

digester is the most suitable technology for converting these bio-wastes into biogas 

[52]. Biomass availability assessment shows that the quantity of recoverable 

household and animal bio-waste in the studied location is limited. To reduce the 

quantity of outsourced bio-waste and minimize anaerobic digester volume, biogas 

generator is only used when energy demand is greater than 50% of its rated 

capacity. 

 

Can the integrated PV, biomass, and battery energy system LCOE compete with the 

LCOE of a diesel only energy system and the LCOE of the national grid? 

This research question seeks to determine the best combination of hybrid energy 

system components that would guarantee reliable supply of electricity at minimal 

cost. Therefore, an hourly energy balance simulation was performance over a period 

one year to determine the optimum combination of PV, biogas generator and battery 

system. A quick, and simplified optimization technique called design space 

optimization technique was used to carry out the hourly simulation. Study on how 

different combinations of PV, biogas generator and battery systems affect the 

optimal sizing of battery shows that an optimally designed HRES requires a much 

smaller battery capacity than when a biogas generator and battery or a PV and 

battery are integrated for rural electrification in the studied location. 

Outcomes from the techno-economic study shows that the optimal size of PV system, 

biogas generator, battery energy storage, and converter system that will guarantee 
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0% loss of power supply probability (LPSP) at minimal total cost were 40 kWP, 160 

kW, 32 kWh, and 24 kW respectively. Similarly, for a 0% LPSP, the hybrid energy 

system minimal annualized total cost (Cann,tot), levelized unit cost of energy (LCOE) 

and net present cost (NPC) was $78708, $0.166 kWh⁄  and $1.26 × 106 respectively. 

The HRES LCOE can compete with the LCOE of a diesel alone energy system and the 

LCOE of the national grid because at 0% LPSP, HRES LCOE was $0.1657/kWh, but 

the LCOE for a diesel alone energy system was $0.62/kWh. Despite the national grid 

unreliability, the studied location 2019 residential customers reflective tariff (i.e., a 

tariff without subsidizes) was $0.164/kWh [451]. Furthermore, if the HRES LPSP is 

increased to 3.7%, its LCOE is reduced to $0.1623/kWh. So, for a LPSP of 3.7%, the 

HRES LCOE is less than the rural area residential customers tariff. Meanwhile, the 

HRES LCOE will compete better with the LCOE of the national grid if more household 

loads are aggregated in the regional grid. 

 

What is the effect of regional load aggregation on a regional grid?  

The aggregation of regional load leads to peak load shaving (lower load diversity 

factor), but when the regional loads (regional load buses) of a regional grid are not 

close to each other, there will be substantial power losses in the network. Therefore, 

an energy system operating model was developed, and a power flow study was 

performed to evaluate if it is a better operating strategy to centralize or distribute 

generators in order to minimise the power losses in the network and guarantee the 

healthy operation of the regional grid. Power flow study of the effect of aggregating 

5 regional loads show that load aggregation reduced the 5 regions peak load by 23%. 

Furthermore, power flow study of the regional grid shows that power losses 

minimization will be achieved when installed generators are not centralized but 

distributed in terms of the amount of apparent power drawn by each of the regional 

grid load buses. To identify and optimally control the regional grid apparent power 

losses, hourly power flow analysis of the regional grid shows that it is preferable to 

estimate the regional-grid maximum apparent power losses in terms of its actual 

value (kVA) rather than its percentage values. This is because the calculated 

maximum apparent power percentage loss might not be actual value if it does not 
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occur during the period of peak load. Estimation of the maximum apparent power 

percentage loss is relevant for estimating hourly deviation in apparent power losses 

and ensuring that hourly apparent power percentage loss does not exceed the 

acceptable benchmark for the studied country. 

 

In this section, further work possibilities are listed; 

i) Modification of the developed stochastic load model to capture seasonal 

weather variation of locations with extreme weather conditions.  

ii) Assessment of other regions NiMet’s long-term meteorological data, in order 

to investigate if temperature will still be a dominant meteorological 

parameter for estimating solar radiation and to determine the minimum time 

span of meteorological data that is required by other regions to estimate 

solar radiation.  

iii) Development of an electricity pricing plan that allows for the shifting of peak 

loads and a study of how the developed electricity pricing plan affects the 

integrated HRES levelized cost of electricity.
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Household characteristics (demographics) 

1] Household class?  Class _________________________ 
2] Participant name and/or telephone number (optional)? __________________________________ 
3] House head occupation? _________________________ 
4] Number of bed rooms in the house? _________________________ 
5] Number of occupants _________________________ 

Household occupants’ behaviour 

6a] When do household occupants’ go to bed? ______ to ______ 
6b] When do household occupants’ get up from bed? ______ to ______ 
6c] When do household occupants’ go to work? ______ to ______ 
6d] When do household occupants’ get back from work? ______ to ______ 

Household activities 

7a] When is household cleaning activity done? [AM] ______ to ______ [PM] ______ to ______ 
7b] When is household cooking activity done? [AM] ______ to ______ [PM] ______ to ______ 
7c] When is household leisure activity done? [AM] ______ to ______ [PM] ______ to ______ 

Energy usage and power availability 

8a] Is your energy consumption the same for weekdays and weekends? Yes [     ]     No [     ] 
8b] If no, how significant is the difference in terms of the time of use? Yes [     ]     No [     ] 
9] Total daily average electricity supply duration? _________________________ hours 
10] Household average monthly electricity bill? _________________________ hours 

Household electrical appliances and appliance time of use 

Household appliance Quantity 
Appliance 

on time 
(hour) 

Appliance 
off time 
(hour) 

Operating 
duration 

(minutes) 
Sitting room bulb (Incandescent)     
Sitting room bulb (Energy saving)     
Bedroom bulb (Incandescent)     
Bedroom bulb (Energy saving)     
Outside/security bulb (Incandescent)     
Outside/security bulb (Energy saving)     
Mobile phone     
Sitting room fan     
Bedroom fan     
Television     
Digital video/versatile disc (DVD)     
Electric radio     
Refrigerator     
Electric iron     
Food blender     

Kindly list other household appliances and their appliance time of use 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% set up all variables and constants % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

disp('loading data from excel survey file'); 

clear all; 

close all; 

total_number_of_household='enter the number of community residential customer’; 

 

%housing type fractions (from census data) 

fraction_class(1)=0.114; 

fraction_class(2)=0.253; 

fraction_class(3)=0.508; 

fraction_class(4)=0.125; 

 

% house specific parameters 

% the index provides the house class 

survey_occupants_per_household = zeros(4,150); 

survey_occupants_per_household(1,1:31)=xlsread('survey_data',1,'b2:b32')'; 

survey_occupants_per_household(2,1:69)=xlsread('survey_data',2,'b2:b70')'; 

survey_occupants_per_household(3,1:139)=xlsread('survey_data',3,'b2:b140')'; 

survey_occupants_per_household(4,1:34)=xlsread('survey_data',4,'b2:b35')'; 

survey_bedrooms_per_household = zeros(4,150); 

survey_bedrooms_per_household(1,1:31)=xlsread('survey_data',1,'c2:c32')'; 

survey_bedrooms_per_household(2,1:69)=xlsread('survey_data',2,'c2:c70')'; 

survey_bedrooms_per_household(3,1:139)=xlsread('survey_data',3,'c2:c140')'; 

survey_bedrooms_per_household(4,1:34)=xlsread('survey_data',4,'c2:c35')'; 

 

%% cooking activities 

survey_number_of_refrigerator = zeros(4,150); 

survey_number_of_refrigerator(1,1:31) = xlsread('survey_data',1,'d2:d32')'; 
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survey_number_of_refrigerator(2,1:69) = xlsread('survey_data',2,'d2:d70')'; 

survey_number_of_refrigerator(3,1:139)=xlsread('survey_data',3,'d2:d140')' 

survey_number_of_refrigerator(4,1:34) = xlsread('survey_data',4,'d2:d35')'; 

power_of_refrigerator = 140; % in watts 

survey_number_of_food_blender = zeros(4,150); 

survey_number_of_food_blender(1,1:31) = xlsread('survey_data',1,'e2:e32')'; 

survey_number_of_food_blender(2,1:69) = xlsread('survey_data',2,'e2:e70')'; 

survey_number_of_food_blender(3,1:139) = xlsread('survey_data',3,'e2:e140')'; 

survey_number_of_food_blender(4,1:34) = xlsread('survey_data',4,'e2:e35')'; 

power_of_food_blender = 250; % in watts 

mark_of_food_blender = 5;  

space_of_food_blender = 55;  

period_of_food_blender = mark_of_food_blender + space_of_food_blender;  

 

%% cleaning activities 

survey_number_of_electric_iron = zeros(4,150); 

survey_number_of_electric_iron(1,1:31) = xlsread('survey_data',1,'f2:f32')'; 

survey_number_of_electric_iron(2,1:69) = xlsread('survey_data',2,'f2:f70')'; 

survey_number_of_electric_iron(3,1:139)=xlsread('survey_data',3,'f2:f140')' 

survey_number_of_electric_iron(4,1:34) = xlsread('survey_data',4,'f2:f35')'; 

power_of_electric_iron = 1000; % in watts 

mark_of_electric_iron = 10;  

space_of_electric_iron = 50; 

period_of_electric_iron = mark_of_electric_iron + space_of_electric_iron; 

 

%% leisure activities 

survey_number_of_television = zeros(4,150); 

survey_number_of_television(1,1:31) = xlsread('survey_data',1,'g2:g32')'; 

survey_number_of_television(2,1:69) = xlsread('survey_data',2,'g2:g70')'; 

survey_number_of_television(3,1:139) = xlsread('survey_data',3,'g2:g140')'; 

survey_number_of_television(4,1:34) = xlsread('survey_data',4,'g2:g35')'; 

power_of_television = 50;% in watts 

survey_number_of_dvd_player = zeros(4,150); 

survey_number_of_dvd_player(1,1:31) = xlsread('survey_data',1,'h2:h32')'; 
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survey_number_of_dvd_player(2,1:69) = xlsread('survey_data',2,'h2:h70')'; 

survey_number_of_dvd_player(3,1:139) = xlsread('survey_data',3,'h2:h140' )'; 

survey_number_of_dvd_player(4,1:34) = xlsread('survey_data',4,'h2:h35')'; 

power_of_dvd_player = 15; % in watts 

survey_number_of_radio_player = zeros(4,150); 

survey_number_of_radio_player(1,1:31) = xlsread('survey_data',1,'i2:i32')'; 

survey_number_of_radio_player(2,1:69) = xlsread('survey_data',2,'i2:i70')'; 

survey_number_of_radio_player(3,1:139) = xlsread('survey_data', 3,'i2:i140' )'; 

survey_number_of_radio_player(4,1:34) = xlsread('survey_data',4,'i2:i35')'; 

power_of_radio_player = 10; % in watts 

survey_number_of_mobile_phone_charger = zeros(4,150); 

survey_number_of_mobile_phone_charger(1,1:31)=xlsread 
('survey_data',1,'j2:j32')'; 

survey_number_of_mobile_phone_charger(2,1:69)=xlsread 
('survey_data',2,'j2:j70')'; 

survey_number_of_mobile_phone_charger(3,1:139)=xlsread 
('survey_data',3,'j2:j140')'; 

survey_number_of_mobile_phone_charger(4,1:34)=xlsread 
('survey_data',4,'j2:j35')'; 

power_of_mobile_phone_charger = 5; % in watts 

survey_number_of_sitting_room_electric_fan = zeros(4,150); 

survey_number_of_sitting_room_electric_fan(1,1:31)=xlsread 
('survey_data',1,'k2:k32')'; 

survey_number_of_sitting_room_electric_fan(2,1:69)=xlsread 
('survey_data',2,'k2:k70')'; 

survey_number_of_sitting_room_electric_fan(3,1:139)=xlsread 
('survey_data',3,'k2:k140')'; 

survey_number_of_sitting_room_electric_fan(4,1:34)=xlsread 
('survey_data',4,'k2:k35')'; 

power_of_sitting_room_electric_fan = 70; % in watts 

survey_number_of_bed_room_electric_fan = zeros(4,150); 

survey_number_of_bed_room_electric_fan(1,1:31)=xlsread 
('survey_data',1,'l2:l32')'; 

survey_number_of_bed_room_electric_fan(2,1:69)=xlsread 

('survey_data',2,'l2:l70')'; 

survey_number_of_bed_room_electric_fan(3,1:139)=xlsread 
('survey_data',3,'l2:l140')'; 
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survey_number_of_bed_room_electric_fan(4,1:34)=xlsread 
('survey_data',4,'l2:l35')'; 

power_of_bed_room_electric_fan = 70; % in watts 

 

%% lighting activities 

survey_number_of_sitting_room_lights = zeros(4,150); 

survey_number_of_sitting_room_lights(1,1:31)=xlsread('survey_data',1,'m2:m32')'; 

survey_number_of_sitting_room_lights(2,1:69)=xlsread('survey_data',2,'m2:m70')'; 

survey_number_of_sitting_room_lights(3,1:139)=xlsread 
('survey_data',3,'m2:m140')'; 

survey_number_of_sitting_room_lights(4,1:34)=xlsread('survey_data',4,'m2:m35')'; 

power_of_sitting_room_lights = 60; % in watts 

survey_number_of_bed_room_lights = zeros(4,150); 

survey_number_of_bed_room_lights(1,1:31) = xlsread('survey_data',1, 'n2:n32')'; 

survey_number_of_bed_room_lights(2,1:69) =xlsread('survey_data',2, 'n2:n70')'; 

survey_number_of_bed_room_lights(3,1:139)=xlsread('survey_data',3, 'n2:n140')'; 

survey_number_of_bed_room_lights(4,1:34) = xlsread('survey_data',4, 'n2:n35')'; 

power_of_bed_room_lights = 60; % in watts 

mark_of_bed_room_lights = 10; % in minutes 

space_of_bed_room_lights = 50; % in minutes 

period_of_bed_room_lights = mark_of_bed_room_lights + space_of_bed_room_lights; 

survey_number_of_external_lights = zeros(4,150); 

survey_number_of_external_lights(1,1:31) = xlsread('survey_data',1,'o2:o32' )'; 

survey_number_of_external_lights(2,1:69) = xlsread('survey_data',2,'o2:o70' )'; 

survey_number_of_external_lights(3,1:139)=xlsread('survey_data',3, 'o2:o140')'; 

survey_number_of_external_lights(4,1:34) = xlsread('survey_data',4,'o2:o35')'; 

power_of_external_lights = 60; % in watts 

 

%% simulation duration 

number_of_days = 1; 

number_of_hours = number_of_days*24; 

number_of_minutes = number_of_hours * 60; 

number_cooking = zeros(number_of_hours,1); 

number_cleaning = zeros(number_of_hours,1); 

number_leisure = zeros(number_of_hours,1); 
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total_power = zeros(number_of_minutes,1); 

community_power = zeros(number_of_minutes,1); 

 

% appliance power usage initialization 

power_refrigerator = zeros(number_of_minutes,1); 

power_blender = zeros(number_of_minutes,1); 

power_iron = zeros(number_of_minutes,1); 

power_tv = zeros(number_of_minutes,1); 

power_dvd = zeros(number_of_minutes,1); 

power_radio = zeros(number_of_minutes,1); 

power_phone = zeros(number_of_minutes,1); 

power_sr_fan = zeros(number_of_minutes,1); 

power_br_fan = zeros(number_of_minutes,1); 

power_sr_bulb = zeros(number_of_minutes,1); 

power_br_bulb = zeros(number_of_minutes,1); 

power_external_bulb = zeros(number_of_minutes,1); 

 

% applicance states initialization 

tv_state = zeros(number_of_hours,1); 

dvd_state = zeros(number_of_hours,1); 

radio_state = zeros(number_of_hours,1); 

mobile_phone_charging_state = zeros(number_of_hours,1); 

sitting_room_fan_state = zeros(number_of_hours,1); 

bed_room_fan_state = zeros(number_of_hours,1); 

food_blender_state = zeros(number_of_hours,1); 

electric_iron_state = zeros(number_of_hours,1); 

sitting_room_bulb_state = zeros(number_of_hours,1); 

bed_room_bulb_state = zeros(number_of_hours,1); 

external_bulb_state = ones(number_of_minutes,1); 

refrigerator_state= zeros(number_of_minutes,1); 

 

%occupant states and activities 

% occupant states 

% occupant state 1: inactive at home (asleep) 
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% occupant state 2: active at home 

% occupant state 3: away from home  

% activities 

% activity 1: cooking 

% activity 2: cleaning 

% activity 3: leisure 

%% description and loading of the conditional probabilities 

% cp1: this is the probability of getting up in the morning given that he is asleep 

% cp2: this is the probability of going to work given that the occupant is 

% awake at home 

% cp3: this is the probability of coming home given that the occupant is 

% away from home 

% cp4: this is the probability of going to sleep given that the occupant is 

% awake at home 

cp1 = xlsread('survey_data',1,'c151:z151'); 

cp2 = xlsread('survey_data',1,'c152:z152'); 

cp3 = xlsread('survey_data',1,'c153:z153'); 

cp4 = xlsread('survey_data',1,'c154:z154'); 

 

%% description and loading of the activity’s probabilities  

% cpa1: this is the probability of cleaning given that there is one or more active 
occupant 

% cpa2: this is the probability of cooking given that there is one or more active 
occupant 

% cpa3: this is the probability of leisure given that there is one or more active 
occupant 

cpa1 = xlsread('survey_data',1,'c159:z159'); 

cpa2 = xlsread('survey_data',1,'c160:z160'); 

cpa3 = xlsread('survey_data_1100',1,'c161:z161'); 

 

%% description and loading of activities probabilities  

cpfb = xlsread('survey_data',1,'c166:z166'); % food blender time-use probability 

cpei = xlsread('survey_data',1,'c167:z167'); % probability of electric iron time-use 

cptv = xlsread('survey_data',1,'c168:z168'); % probability of tv time-use 

cpdvd = xlsread('survey_data',1,'c169:z169'); % probability of dvd time-use 
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cpradio = xlsread('survey_data',1,'c170:z170'); % probability of radio time-use 

cpbf = xlsread('survey_data',1,'c171:z171'); % bedroom fan time-use probability 

cpsf=xlsread('survey_data',1,'c172:z172'); % sitting room fan time-use probability  

cpbb=xlsread('survey_data',1,'c173:z173'); % bedroom bulb time-use probability 

cpsb=xlsread('survey_data',1,'c174:z174');% sitting room bulb time-use probability 

 

% simulation on refrigerator time-use 

refrigerator_success = 0.30; 

for minute=1:number_of_minutes 

if refrigerator_success > rand 

refrigerator_state(minute)=refrigerator_state(minute)+1; 

end 

end % end of simulation on refrigerator time-use 

 

% daily sunrise and sunset related parameters 

latitude=6.335; %latitude of the location in degrees 

twilight =6/15*60; 

declination_angle = zeros(number_of_days,1); 

solar_angle = zeros(number_of_days,1); 

sunrise = zeros(number_of_days,1); 

sunset = zeros(number_of_days,1); 

on_time = zeros(number_of_days,1); 

off_time = zeros(number_of_days,1); 

 

% check for probabilities that exceed 1 

 if max(cp1) > 1 

disp('error:p1 exceeds 1'); 

 end 

if max(cp3) > 1 

disp('error:p3 exceeds 1'); 

end 

if max(cp2+cp4) > 1 

disp('error: p2 + p4 exceeds 1'); 

end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% calculate occupant states % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

power = zeros(number_of_hours*60,12,total_number_of_household); 

for household = 1:total_number_of_household 

disp(['calculating household ' num2str(household)]); 

 

% select a class based on class fraction data 

r = rand(); 

if r < fraction_class(1)  

class = 1; 

elseif r < (fraction_class(1) + fraction_class(2)) 

class = 2; 

elseif r < (fraction_class(1) + fraction_class(2) + fraction_class(3)) 

class = 3; 

else 

class = 4; 

end % end of the simulation that select a class based on class fraction data 

 

disp(['class ' num2str(class)]); 

 

% select a random house from the survey 

switch class 

case 1 

household_sample = ceil(rand * 31); 

case 2 

household_sample = ceil(rand * 69); 

case 3 

household_sample = ceil(rand * 139); 

case 4 

household_sample = ceil(rand * 34); 

end % end of the selection of a random house from the survey households 

number_of_occupants=survey_occupants_per_household(class,household_sample); 

disp(['number of occupants per household ' num2str( number_of_occupants)]);  
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number_of_bedrooms=survey_bedrooms_per_household(class,household_sample); 

disp(['number of bedrooms ' num2str(number_of_bedrooms)]);  

occupant_state = ones(number_of_occupants,number_of_hours+1); 

 

% allocate number of appliances 

number_of_refrigerator=survey_number_of_refrigerator(class,household_sample); 

number_of_food_blender=survey_number_of_food_blender 
(class,household_sample); 

number_of_electric_iron=survey_number_of_electric_iron 
(class,household_sample); 

number_of_television = survey_number_of_television(class,household_sample); 

number_of_dvd_player = survey_number_of_dvd_player(class,household_sample); 

number_of_radio_player=survey_number_of_radio_player 
(class,household_sample); 

number_of_mobile_phone_charger=survey_number_of_mobile_phone_charger 
(class,household_sample); 

number_of_sitting_room_electric_fan=survey_number_of_sitting_room_electric_fan 
(class,household_sample); 

number_of_bed_room_electric_fan=survey_number_of_bed_room_electric_fan 
(class,household_sample); 

number_of_sitting_room_lights=survey_number_of_sitting_room_lights 
(class,household_sample); 

number_of_bed_room_lights=survey_number_of_bed_room_lights 
(class,household_sample); 

number_of_external_lights=survey_number_of_external_lights 
(class,household_sample); 

 

% determine occupant state for each occupant in each hour 

for occupant = 1:number_of_occupants 

for time = 1:number_of_hours 

hour = rem(time,24); 

if hour == 0 

hour = 24; 

end 

random_number = rand; 

new_state = occupant_state(occupant,time);  

switch occupant_state(occupant,time) 



 

- 294 - 

 

case 1 % inactive at home (asleep) 

if cp1(hour)>random_number 

new_state = 2; 

end 

case 2 % active at home 

if cp2(hour)>random_number 

new_state = 3; 

end 

if (1-cp4(hour))<random_number 

new_state = 1; 

end 

case 3 % away from home 

if cp3(hour)>random_number 

new_state = 2; 

end 

end % end of occupant state simulation 

occupant_state(occupant,time+1) = new_state; 

end % end of simulation for each hourly time step 

end % end of simulation for each household occupant 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% calculate active occupancy % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

active_occupancy = sum(occupant_state(:,:) == 2); 

home_occupancy = sum(occupant_state(:,:) == 1) + sum(occupant_state(:,:) == 2); 

daily_average_hours_with_active_occupant=round 
(((sum(active_occupancy(:)~=0))/number_of_days)); 

mark_of_mobile_phone_charger=round 
((2*60)/daily_average_hours_with_active_occupant);  

space_of_mobile_phone_charger = 60 - mark_of_mobile_phone_charger;  

period_of_mobile_phone_charger=mark_of_mobile_phone_charger+ 
space_of_mobile_phone_charger; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% calculate activities numbers % 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

number_cooking(:) = 0; 

number_cleaning(:) = 0; 

number_leisure(:) = 0; 

for time = 1:number_of_hours 

hour = rem(time,24); 

if hour == 0 

hour = 24; 

end 

if active_occupancy(time) ~= 0 

for occupant = 1:active_occupancy(time) 

if cpa1(hour) > rand   

number_cleaning(time) = number_cleaning(time)+1; 

end 

if cpa2(hour) > rand   

number_cooking(time) = number_cooking(time)+1; 

end 

if cpa3(hour) > rand   

number_leisure(time) = number_leisure(time)+1; 

end 

end % end of simulation on number of occupants per activity 

end % end of simulation on number of active occupancy 

end % end of simulation on the number of active occupants for each time step 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% calculate appliance use % 

%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% simulation of appliances that are turned on per time 

for hour = 1:number_of_hours 

hour_of_day = rem(hour,24); 

if hour_of_day == 0 

hour_of_day = 24; 

end 
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tv_state(hour)=(active_occupancy(hour)>=1)&& (cptv(hour_of_day) 
> rand); 

dvd_state(hour)=(number_leisure(hour)>=1)&& 
(cpdvd(hour_of_day) > rand); 

radio_state(hour)=(active_occupancy(hour)>=1)&& 
(cpradio(hour_of_day)>rand); 

mobile_phone_charging_state(hour)=(active_occupancy(hour) >= 1);  

sitting_room_fan_state(hour)=(number_leisure(hour)>=1)&& 
(cpsf(hour_of_day)>rand); 

bed_room_fan_state(hour) = (cpbf(hour_of_day) > rand); 

food_blender_state(hour)=(number_cooking(hour)>=1)&& 
(cpfb(hour_of_day)>rand); 

electric_iron_state(hour) = (number_cleaning(hour) >=1) && 
(cpei(hour_of_day) > rand); 

sitting_room_bulb_state(hour)=(number_leisure(hour)>=1)&& 
(cpsb(hour_of_day)> rand); 

bed_room_bulb_state(hour)=(active_occupancy(hour)>=1)&& 
(cpbb(hour_of_day)> rand); 

end % end of simulation of appliances that are turned on per time 

 

%%%%%%%%%%%%%%%%%%%%%%%%%% 

% minutely simulation of appliance load profile % 

%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% set some random minute offsets for mark-space appliances to avoid 

% repetition 

minute_offset_fridge = ceil(rand * 60);  

minute_offset_blender = ceil(rand * 60); 

minute_offset_iron = ceil(rand * 60); 

minute_offset_phone = ceil(rand * 60); 

minute_offset_lights = ceil(rand * 60); 

 

minute_offset = ceil(rand * 60) - 30; 

for minute = 1:number_of_minutes 

hour = ceil((minute + minute_offset) / 60); 

if hour == 0 

hour = 1; 
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end 

if hour == (number_of_hours + 1) 

hour = number_of_hours; 

end  

 

%% cooking activities  

% fridge freezer 

power_refrigerator(minute)=power_of_refrigerator*number_of_refrigerato* 
refrigerator_state(minute); 

% food blender 

power_blender(minute)=power_of_food_blender*number_of_food_blender*
((rem(minute+minute_offset_blender,period_of_food_blender)< 
mark_of_food_blender) && (food_blender_ state(hour))); 

 

%% cleaning activities  

% elecric iron 

power_iron(minute)=power_of_electric_iron*number_of_electric_iron* 
((rem(minute+minute_offset_iron,period_of_electric_iron)< 
mark_of_electric_iron) && (electric_iron_state(hour))); 

 

%% effect of leisure activities on demand    

% television 

power_tv(minute)=power_of_television*number_of_television* 
tv_state(hour); 

% dvd player 

power_dvd(minute)=power_of_dvd_player*number_of_dvd_player* 
dvd_state (hour); 

% radio player 

power_radio(minute)=power_of_radio_player*number_of_radio_player* 
radio_state(hour); 

% mobile phone charger 

power_phone(minute)=power_of_mobile_phone_charger* 
number_of_mobile_phone_charger*((rem(minute+ 
minute_offset_phone,period_of_mobile_phone_charger)< 
mark_of_mobile_phone_charger)&&(mobile_phone_charging_state (hour))); 

% sitting room electric fan 

power_sr_fan(minute)=power_of_sitting_room_electric_fan* 
number_of_sitting_room_electric_fan*sitting_room_fan_state(hour); 
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% bed room electric fan 

power_br_fan(minute)=power_of_bed_room_electric_fan* 
number_of_bed_room_electric_fan*bed_room_fan_state(hour); 

 

%% effect of lighting on demand 

% internal lights 

% sitting room bulb 

power_sr_bulb(minute)=power_of_sitting_room_lights* 
number_of_sitting_room_lights*sitting_room_bulb_state(hour); 

% bed room bulb 

power_br_bulb(minute)=power_of_bed_room_lights* 
number_of_bed_room_lights*((rem(minute+ 
minute_offset_lights,period_of_bed_room_lights)<mark_of_bed_room_lights)
&& (bed_room_bulb_state(hour))); 

 

% external lights (outside/security bulbs) 

% minutely simulation of external bulb time-us 

            for day = 1:number_of_days 

             declination_angle(day)=23.43*sin(deg2rad((360/365)*(284+day) )); 

solar_angle(day)=rad2deg(acos((tan(deg2rad 
(declination_angle(day)))*tan(deg2rad(latitude) )))); 

sunrise(day) = ceil((12-((12*solar_angle(day))/180))*60); 

sunset(day) = ceil((12+((12*solar_angle(day))/180))*60); 

on_time = sunset(day)+ceil(rand*twilight)+(day-1)*24*60;  

off_time = sunrise(day)-ceil(rand*twilight)+(day-1)*24*60; 

external_bulb_state(off_time:on_time) = zeros(on_time-off_time+1,1); 

end % end of minutely simulation of external bulb time-use 

power_external_bulb(minute)=power_of_external_lights* 
number_of_external_ lights*external_bulb_state(minute); 

 

end% end of minutely simulation of the load profiles of household appliances 

 

end % end of minutely simulation of the community residential load profile. 


