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Abstract

Interdisciplinary research is fuelling a paradigm shift to endow technology-based
services with a personalised dimension. The main contributors for such innovatory
change are the surge in data production rate, the proliferation of data generators in
the form of IoT and other network-connected devices, the incorporation of
innovative data technologies like Artificial Intelligence, Machine Learning and Big
Data Analytics, and the advancements in computing powers that are getting closer to
dethroning Moor’s law and deliver more processing per unit time. Moreover, there is
an ever-increasing demand for smart and fast-responsive applications such as
predictive analytics, business analysis and digital marketing. In this thesis, patient-
centric cellular network optimisation is investigated as a promising paradigm that
can contribute to the personalisation of present and future cellular networks with the
aim of saving people’s lives where every second counts. This calls for transforming
current cellular networks from merely being blind tubes that convey data, into a
conscious, cognitive, and self-optimizing entity that adapts intelligently according to

the users’ needs.

The work carried out in this thesis started by comprehensively exploring the role
of using big data analytics in network design. Subsequently, we considered
incorporating the concepts of priority, e-healthcare, Big Data Analytics, and
resource allocation in a single system. The system’s goal is to use big data harvested
from out-patient electronic health records and body-connected medical Internet of
Things sensors to be processed and analysed in a big data analytics engine to predict
the likelihood of a stroke. This prediction is then used to ensure that the out-patients
are assigned optimal physical resource blocks that provide good signal to
interference and noise ratio (SINR) dictated by the severity of their medical state.
Hence, granting channels of high spectral efficiency to the out-patients, empowering
them to transmit their critical data to the designated medical facility with minimal

delay.

The use of several Machine Learning algorithms residing within the big data

analytics engine is investigated, namely, a naive Bayesian classifier, a decision tree

i



classifier, and a logistic regression classifier. Further, the incorporation of the
aforementioned classifiers in an ensemble system running as a soft voting classifier
is examined and the performance of all classifiers is compared. The combinatorial
optimisation problem of maximising the system’s overall SINR while prioritising
the OPs in terms of radio resource assignment is solved using Mixed Integer Linear
Programming and a heuristic. The use of two resource allocation approaches,
namely, a Weighted Sum Rate Maximisation approach and a Proportional Fairness
approach is considered and compared in terms of fairness and the attained SINRs.
The proposed system was extended from a single-tier (homogenous) LTE-A
network, to multi-tier Heterogeneous Networks employing spectrum partitioning
strategy, and finally to a multi-tier Heterogeneous Network with no interference-
mitigation strategies employed. Thus, enabling a further study of the system’s

performance over different networks and interference strategies.
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Chapter 1

Introduction

1.1 Background

Prior to the emergence of big data, decisions were made relying on data samples.
Consequently, the decisions were semi-optimum. Those ill-informed decisions
spanned over different areas from marketing to law enforcement, sports, and
healthcare. The powerful capability of big data analytics (BDA) in analysing
massive amounts of data and inferring knowledge from it has brought about better

predictions paving the way for better decisions.

Healthcare is a vital subject due to its role in people’s lives. The continuous
increase in the world population and other factors, like insufficient healthcare
budgets, has resulted in crowded hospitals, over-worked medical staff, and extended
queuing times for the patients. Given the global nature of the problem, researchers
are developing new approaches to improve the level of care delivered by healthcare
providers while ensuring a reduction in all previously mentioned points. BDA can
be used to ensure medical service is reaching those most in need, in a timely
manner. Brain strokes are one of the rising health issues and though they might
cause significant disabilities to the patient, immediate treatment can effectively
increase recovery chances. According to statistics from England, Wales and
Northern Ireland for 2016-2017, one-third of stroke patients arrived at the hospital
unaware of the date and time their symptoms began. The severity of this matter is
even starker when knowing that the average waiting time for a patient from the start
of symptoms until hospital admission is 7.5 hours, with an additional 55 minutes for
door-to-needle time (the time between arriving at an emergency department and
having an anaesthetic administered). Adding to all that, the patient is loses 1.9
million neurons each minute until the treatment begins. Thus, a proactive and timely

diagnosis is vital.

BDA and machine learning (ML) methods can be optimally utilized to process

disparate data such as patient’s electronic health record (EHR), diet, genetic data and
1



their daily routine, and produce a quick and accurate diagnosis can be time-
consuming and require a certain level of expertise to be carried out by medical
personnel. Thus, saving lives, improving the level of care, and lowering costs. It
worth mentioning that BDA is reportedly being used to diagnose and predict future
complications in patients. Acquiring this diagnosis beforehand gave the medical

professionals a head start to address these complications.

In the healthcare sector, there are many sources of big data, for example; medical
IoT sensors, wearable sensors, and smartphone medical applications. What the
above-mentioned data generators have in common is their reliance on network
connectivity. Maintaining this connectivity and ensuring its quality is a dilemma that
many researchers tried to solve optimally. In this work, the OP’s big data can play a
double role. In addition to diagnosis, it can guide the network operator to the OPs
with the most pressing needs, Hence, radio resources can be allocated to them. We
believe that ensuring high-quality connectivity between the patient-linked
peripherals and their healthcare provider is an important step towards highly

personalized e-healthcare services and applications.

A wireless connection is preferred over a wired one for what it has to offer in
terms of mobility. Consequently, cellular and Wi-Fi are the most popular
connectivity technologies. The level of freedom (mobility-wise) varies between
wireless technologies, for example, Wi-Fi may provide an adequate data rate,
nevertheless, it forces an Out-Patient (OP) that needs to keep their medical [oT
sensor (e.g. IoT pacemaker) connected, to stay within a relatively small coverage
area (i.e., indoors mainly). Utilizing the already-existing cellular networks can
provide much-needed freedom to that OP. However, cellular connections can
experience channel fading and path loss where the connection can become
unreliable or cannot be established due to a very low signal to interference plus
noise ratio (SINR). A slow fading channel may indicate that the signal level is
inadequate at the instance(s) when an OP’s critical data must be conveyed urgently

to the healthcare provider.

Big data is portrayed in as a next-generation tool that can be used to find an
optimal trade-off problem between resource sharing, allocation, and optimisation in
wireless networks. Nevertheless, optimizing cellular networks in a user-centric style
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is still underexplored. In this work, we contend that maintaining a high-quality
connection between the OP’s medical loT and the medical provider is a step towards
transforming conventional cellular networks into a cognitively personalized e-
healthcare-centric service. Building self-adaptive, intelligent, and self-aware
network is an operator’s high-level objective. Therefore, BDA can endow the
network the capability of learning from experience and improving its performance.
Thus, BDA can transform the network from being reactive to predictive. we
introduce for the first time OP-conscious approaches optimizing the uplink side of a
multi-cell Orthogonal Frequency Division Multiple Access (OFDMA) network. In
these models, the objective function prioritises the OPs by maximising their SINR
received at the Base Station (BS) while keeping the goal of maximising the

network’s overall SINR.

The network that serves the OPs can either be a dedicated or a non-dedicated
network. We chose to optimise a non-dedicated cellular network for several reasons.
Firstly, a non-dedicated network can be deployed at a fraction of the cost of a
dedicated one and such a network requires much lower commissioning time to be
operational. Secondly, the proposed approach can help provide the same level of
service to other users while improving the OPs’ SINRs. Thirdly, using an
established operational network can facilitate the adoption of the proposed approach
and the idea of providing such service can be appealing to operators and regulators
as it is for the benefit of patients. Fourthly, a dedicated network can limit the
mobility of the OPs to within the network’s coverage, while using the proposed
approach can provide nation-wide (if not more) freedom, especially if it was

standardized and regulated.

The models comprise an assignment scheme powered by BDA where OPs are
assigned Physical Resource Blocks (PRBs) with powers proportional to their current
medical situation. Fairness was incorporated to minimise the negative impact of
such assignment on other users. It worth noting that topics that discusses patient
monitoring, radio resource allocation, prioritisation, fairness, and ensemble-aided
disease risk prediction are popular in the literature across several disciplines.
However, proposing a cellular network optimisation framework that incorporates all

the above is, to the extent of our knowledge, unique.
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1.1.1 Using Big Data Analytics for Cellular Networks Resource

Allocation

The topic of utilising BDA in network design was thoroughly discussed in a
previous work where we observed that the highest number of papers in this area are
in the wireless field [1]. Significant effort is dedicated currently to endowing
wireless cellular networks with the ability to seamlessly prioritise users and serve
them accordingly. Previous work in this area includes the work in [2] who proposed
the use of configuration, alarm, and log files and processing the mentioned data
using a big data processing environment, thus identifying the behaviour of both the
user and the network. The goal is to solve the problem of radio resource allocation to
users in the Radio Access Network (RAN) in a manner that ensures minimal delay
between resource request and assignment. Another idea was presented by the
authors of [3] to manage the network resources in Heterogeneous Networks
(HetNets). This was achieved through the utilisation of sentimental and behavioural
analysis of data collected from social networks, along with communication network
data. The latter was exploited to predict sudden increases in the usage of the mobile
network. The aim was to achieve minimal service disruption by servicing the right

place at the right time.
1.1.2 Using Big Data Analytics in Healthcare

Several approaches have attempted to address the riddle of employing BDA to
accomplish the task of OP monitoring. A system that has a real-time response when
an emergency case arises was proposed by the authors in [4]. The system is capable
of processing data collected from millions of Wireless Body Area Network
(WBAN) sensors. The authors of [5] investigated the challenges associated with
designing and implementing big data services that utilise data harvested from
medical sensors as well as other IoT applications. They also considered the
requirement of processing this data in real-time. Another approach to help patients
with Parkinson’s disease was proposed by the authors of [6]. The system monitors
the loss of flexibility as it is a sign of disease progression. This is done by analysing
big data collected from the body and 3D sensors, such as the Microsoft Kinect
sensor system. The disease development and treatment effectiveness can both be

observed by the patients as well as their healthcare providers in real-time. A survey
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conducted by the authors in [7] summarised different approaches to detect heart
disease at an early stage. The common theme among those approaches is that they

are all based on data mining, machine learning (ML), and BDA techniques.
1.1.3 Missing Piece of the Jigsaw

All the approaches mentioned in the previous subsection assumed networks with
ideal connectivity. However, in a real-world scenario, opposing elements like
channel fading and noise need to be taken into consideration. Our approach exploits
BDA for the purpose of optimising the RAN side of a Long Term Evolution-
Advanced (LTE-A) network to serve a specific category of people, in this case, the
OPs. Our approach ensures service availability to OPs, especially at times when they
are in desperate need for it. We argue that by analysing the OPs’ big data we can
predict the ones that are at high risk of having a stroke. It should be noted that
strokes are the medical condition studied in this thesis, however our network
optimisation frame is general and can be used to cater for other types of patients,
with single or multiple long term conditions so long as they can be prioritised
depending on the severity of their conditions (using machine learning for example).
Consequently, OPs will be prioritised over normal users and the network’s attention
(in terms of the quality of the assigned resources) can be shifted towards them. In
the US, about 795 thousand people suffer a stroke annually [8]. This is equivalent
to 1.5 stroke incidents per minute on average which is significant and frequent. In
England, Northern Ireland and Wales, a third of stroke patients went to the hospital
during 2016-2017 not knowing what time their symptoms commenced [9]. The
problem is serious given an average time from the start of the symptoms till
admission to a hospital of 7.5 hours, with another 55 minutes door-to-needle time
(duration between arrival at the emergency department and administering an
anaesthetic) and the fact that a stroke patient is loses on average 1.9 million
neurons each minute before treatment commence [9]. The use of our proposed
system can have a tremendous impact on minimising this time since patients are
prioritised and given reliable resources. Moreover, the increase in the SINR will
result in an increase in the spectral efficiency hence fewer resources are required to
transmit the same amount of data [10]. The proposed system can also help in

providing reliable connectivity to medical IoT devices when transmitting the
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patient’s vital signs to the healthcare provider. In addition, it can help with early
detection of symptoms and facilitate early emergency admittance to the hospital to
help save patients’ lives. If other forms of ill health are included, the proposed
system will be called upon even more frequently. It should be noted that the delay
component from the collection of outpatient’s current state till the processing of data
in the cloud is negligible in comparison to the 7.5 hours and 55 minutes figures

quoted earlier, hence, it is not considered in this thesis.

In terms of the need to respond fast to the channel variation and the changes in
patients’ needs, we would like to note that the MILP is used only to establish the
optimal solution, while the simple heuristic developed is used to provide the fast

response needed (at the cost of sub-optimal, but good performance).

The wireless channel might change in a fast way, nevertheless, for optimisation
purposes, the coherence time of the wireless network in a slow-fading channel is
assumed to be longer than the duration of one transmission time interval (TTI) as
observed in the literature [11-14]. Thus, the channel state remains essentially
constant for the duration of one TTI. Despite the time constraints, the use of MILP
to find the optimal resource allocation is for reference only. MILP is a popular tool
for optimising many real-time problems, including the uplink and downlink of
cellular networks. Many examples of such use cases can be found in the literature.
The authors in [15] used MILP (and a heuristic) to jointly minimise network power
consumption and transmission delay in an LTE network. Fairness of dynamic
channel allocation was investigated by [16]. The authors in [17] used MILP to
minimise the number of femtocells in an enterprise environment while guaranteeing
a minimum threshold SINR. The authors in [18] proposed a MILP model and a near-
optimal metaheuristic to maximise the SINR subject to user power and subcarrier
assignment constraints in the uplink of an OFDMA network. The authors of [19]
proposed a MILP-based optimisation framework to study the optimal performance
of the uplink in HetNets. Several admission control policies for uplink WiMAX
networks were proposed by the authors in [20]. The authors employed MILP and a

heuristic for that purpose.

At the patient’s end, the authors in [21] emphasised that home-measured blood
pressure has stronger predictive power than conventional blood pressure
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measurements. Additionally, the authors concluded that while there is no specific
threshold (within the range of 1-14) for the number of measurements, they suggested
as many as 14 or more measurements per day can enhance the prediction of a stroke.
Taking the worst-case scenario by doubling this number (i.e., 28
measurements/day), the proposed system still only performs measurements and

predictions every 50 minutes which is more than sufficient.

Lastly, we would like to draw attention to the fact that what we have integrated
with our proposed approach the ability to access OP’s vital signs, classify their
medical state, and optimise the network in light of this state while taking into

consideration other (healthy) users.

1.2 Research Objectives

The primary research objectives of this thesis can be summarised as follows:

1- To develop a framework that uses BDA to endow cellular networks with the
ability to prioritise users (i.e., OPs) and serve them accordingly, while
keeping the impact on other network users to a minimum.

2- To quantify the likelihood of a stroke in an OP as a risk factor using BDA
methods and transform this likelihood into a priority granted to the OPs
during the radio resource assignment stage.

3- To develop an approach to maximise the OPs’ SINRs along with the total
system SINR by maximising the individual sum-rates of the users’ SINRs.

4- To investigate the wireless network response to OP prioritisation in an LTE-A
network comprised of Macro BSs.

5- To inspect the performance of the prioritisation approaches in a HetNet
environment where inter-tier interference is present.

6- To examine the system response over time using different probabilities of

stroke.

1.3 Original Contributions

The main contributions of this thesis are as follows:



1-

Surveyed the role BDA can play in wireless and wired network design. As a
result, we made the following contributions: (i) helping academic researchers
save much effort by understanding the state-of-the-art and identifying the
opportunities, as well as the challenges facing the use of BDA in network
design; (i) in addition to academic approaches, we surveyed network
equipment manufacturing companies highlighting network solutions based on
BDA; (iii) we also identified the common areas of interest among these
solutions, and thus the conducted survey can benefit both academic and
industrial-oriented readers.

Developed MILP models to prioritise the OPs in terms of radio resource
allocation in an LTE-A network. As a result, we made the following
contributions: (i) the introduction of an interdisciplinary approach to optimise
the uplink of a LTE-A network while prioritising cellular-connected-OPs
using BDA and MILP optimisation to grant the OPs suitable PRBs according
to their current health condition; (ii) the development of method to determine
the likelihood of a stroke using a naive Bayesian classifier and real patient big
data sets; (iii) we developed, using MILP, two approaches to maximise the
OPs’ SINRs, namely, the weighted sum-rate maximisation (WSRMax)
approach and the (proportional fairness) PF approach and compared them in
terms of the fairness achieved between the users and the increase in the SINR.
Developed a MILP model to prioritise the OPs in terms of radio resource
allocation in uplink HetNets where inter-cell interference is mitigated by
employing a spectrum partitioning strategy and thus made the following
contributions: (i) investigated the system response over seven different
current states resulting in different priority levels granted to the OPs. A
current state refers to a feature vector of several values acquired by medical
and IoT sensors (e.g., total cholesterol and blood pressure) that we run
through the classifier to determine stroke probability; (i) examined the
system response in HetNets with activated spectrum partitioning strategy in
terms of fairness and the percentage of maximised OPs’ SINRs over 300
instances representing different network realisations.

Developed a MILP model to prioritise the OPs in terms of radio resource

allocation in uplink HetNets: (i) extending the aforementioned work to



include a larger dataset, incorporating the decision tree (DT), the logistic
regression (LR), and the naive Bayesian (NB) classifiers in an ensemble
system where a voting classifier resides; (ii) rigorously scrutinising the
classifiers’ performance by conducting various tests of accuracy, recall,
specificity, false-positive rate, false-negative rate, negative prediction rate,
precision, and F1 score. Furthermore, reporting the cross-validation test
scores for all datasets; (iii) extending the aforementioned work to study the
effects of inter-cell and intra-cell interference in HetNets and added a
reliability-aware aspect to the PF approach; (iv) testing the fairness among

users, and conducting the required sensitivity analysis over 300 instances.

1.4 Related Publications

This work resulted in the following journal and conference papers that have been

published:

1-

M. S. Hadi, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani, "Big Data
Analytics for Wireless and Wired Network Design: A Survey," Computer
Networks, 2018.

M. S. Hadi, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani, "Patient-
Centric Cellular Networks Optimization using Big Data Analytics," IEEE
Access, vol. 7, pp. 49279-49296, 2019.

M. Hadi, A. Lawey, T. El-Gorashi, and J. Elmirghani, "Using Machine
Learning and Big Data Analytics to Prioritize Outpatients in HetNets," in
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), 2019, pp. 726-731

M. S. Hadi, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani, "Patient-
centric HetNets Powered by Machine Learning and Big Data Analytics for
6G Networks," IEEE Access, vol. 8, pp. 85639-85655, 2020.

1.5 Thesis Structure

The relationship between the chapters is presented as follows; a literature review

is presented in Chapter 2 where we illustrated the various types of ML algorithms
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and discussed their role in the subject of radio resource allocation. In Chapter 3, we
presented a literature review showing how the power of prediction provided by
various BDA frameworks is employed in wireless network design and optimisation.
We laid the foundation of our proposed work in Chapter 4 where we developed a
naive Bayesian classifier using MILP formulation and we trained it using a dataset
of 30 entries. The work of this chapter served as the core of our BDA engine for
Chapter 5 and Chapter 6. In Chapter 5, we considered using MILP to develop two
optimisation models for the allocation of radio resources in the uplink of an LTE-A
network. The OPs were allocated PRBs with powers relative to the seriousness of
the OPs’ medical state and we tackled the concept of fairness during that allocation.
Further, we developed a heuristic using MATLAB to validate the MILP models and
provide a semi-optimal but faster result. Additionally, the system’s computational
complexity was calculated. We expanded our work in Chapter 6 to study the impact
of OP prioritisation in two-tier HetNets with mitigated inter-tier interference using
spectrum partitioning strategy. Moreover, we considering several measurements
(current states) to reflect a change in the OPs’ current health condition. Thus,
observing the system response over time. Our work was further extended in Chapter
7 to include HetNets with existing inter-tier interference. Further, aiming for high-
confidence predictions, we developed a soft-voting classifier where the predictions
of three ML algorithms, namely, a naive Bayesian classifier, a decision tree
classifier, and a logistic regression classifier are combined to produce high-
confidence predictions. Furthermore, we scrutinised the soft-voting classifier (i.e.,
our BDA engine) through several performance metrics and cross validation tests and
using an expanded dataset of 200 entries. Finally, A third optimisation model with
the concept of reliability is introduced and compared to against the other two
models. The thesis concludes with Chapter 8 where conclusions are drawn, the
major contributions of this work are summarised, and we highlight the proposed

future directions. A summary for the above structure is illustrated in Figure 1-1.
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Chapter 1

Chapter 2

O

Chapter7----------__o

Chapter 8

Introduction, contributions, and thesis structure.

Surveyed Machine Learning algorithms and their role in wireless
network design and optimisation.

Litrature review of Big Data Analytics frameworks and their role
in wireless network design and optimisation.

Developed a naive Bayesian classifier using MILP formulation
and trained it using real patients' datasets.

Used MILP to develop two optimisation models that allocates
radio resources in the uplink of an LTE-A network, and validated
the MILP model using a real time heuristic.

Studied the impact of OP prioritisation in two-tier HetNets with
mitigated inter-tier interference and the system performance
over time.

Studied the system performance in HetNets with inter-tier
interference, developed a soft-voting classifier for high-
confidence predictions, expanded the datasets, and proposed a
third, reliability-aware, optimisation model.

Thesis conclusions are drawn, contributions are summerised, and
highlighted future research directions.

Figure 1-1: Thesis structure
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Chapter 2

Role of Machine Learning in Wireless Network Optimisation

2.1 Introduction

More intelligence is required to overcome the current limitations imposed upon
cellular networks. Given its ability to predict a future incident and maximising a
reward by learning a certain policy from historical data, whether this data was
labelled or not, Machine Learning is, for this reason, a crucial element to enable
networks full automation in areas like radio resource optimisation, network
management, cache optimisation, backhaul optimisation, capacity and user mobility
patterns discovery, coverage optimisation, and spectrum learning in cognitive radio.
In this chapter, we conduct a brief literature review of the field of Machine
Learning. In this review, we describe the important concepts in this vital field, the
well-known algorithms, and illustrate its growing role in communication networks

design.

2.2 Machine Learning Types

Learning, by definition, is the process of getting better results carrying out a
certain task through practice. Thus, we can have a simple broad definition for
Machine Learning (ML) as the process where a computer program improves its
performance in upcoming tasks through experience gained from observed data [22].
The main field of ML is divided into three subfields as shown in Figure 2-1. The
main branches are supervised learning, unsupervised learning and reinforcement
learning. Although ML is not a newly devised field, however its current popularity
is due to the large amount of generated data and the high computational power

supplied by available now in modern-day computers.
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Figure 2-1: Machine Learning Types

2.2.1 Supervised Learning

This type of machine learning relies on the existence of a labelled dataset. This
means that for every feature (or independent) variable, there is a class (dependent or
target) variables. In this type of learning, the right outcomes are already known
during the model training and they are provided by a supervisor. The learning target
is to learn a mapping from the input feature variables to the output class variables.
This trained model is then used to predict the outcome of future (unseen) data. The
term supervised refers to the dataset where the class (target) variables are already
known. This type of ML can be further divided into two subcategories;
classification, where the model uses previous observations (training dataset) to
predict the categorical class of a new vector of feature variables (i.e. instance), and
regression, where the class (outcome) is a number (i.e., continuous value) [23, 24].
There are a number of algorithms classified as supervised learning algorithms, the

most popular are K-nearest Neighbours (K-NN), Naive Bayes (NB), Support Vector
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Machines (SVM), Logistic Regression (LR), Linear Regression, DT, and Artificial
Neural Networks (ANN).

2.2.2 Unsupervised Learning

In this type of learning, there is no supervisor. Hence, the outcome (class)
variable are unknown and the data are unlabelled or of unknown structure. The task
in unsupervised learning is to extract meaningful information by exploring the
structure of the training data without supervision (i.e., unknown outcome variable
with no reward function). This type of learning can be further divided into two
subcategories; clustering, which enables the organisation of data objects in the form
of meaningful subgroups or clusters. It should be noted that objects within the
cluster share some similarities and are more different to the objects belonging to
other clusters (groups). The other subcategory is dimensionality reduction, which
takes a dataset of high-dimensionality (i.e., high number of feature variables) and
finds a way to remove noise from data (remove unimportant feature variables). This
learning subgroup is useful to enhance the algorithm’s prediction performance by
lowering the storage and computational requirements of ML algorithms. Algorithms
falling into this type of learning include [23, 24]; K-means, hidden Markov Model,
Principal Component Analysis (PCA), density-based spatial clustering of
applications with noise (DBSCAN), Non-Negative Matrix Factorisation (NMF),
Agglomerative Clustering (AC).

2.2.3 Reinforcement Learning

The goal in this type of learning is to develop a system (agent) that learns to
maximise a reward given by a reward function measuring the agent’s interaction
with the environment via trial and error. This type of ML is somewhat linked to
supervised learning. However, it differs from it in that the feedback received by the
agent is not a class label or a certain class value, but rather it is a reward (e.g., win or
lose) [23]. Algorithms of this type of learning include; Q-Learning, State-Action-
Reward-State-Action (SARSA), Deep Q Network (DQN), and Deep Deterministic
Policy Gradient (DDPG).

A visual representation of the types of ML, their learning subcategories, and

common applications is illustrated in Figure 2-2.
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Figure 2-2: ML algorithms, subcategories, and applications [25]
2.3 Learning Tools

ML algorithms can be virtually programmed using the majority of programming
languages. In this section, we illustrate the most common tools that can be used to
build and run ML algorithms. We can classify ML tools into two categories;
programming-based tools and Graphical User Interface (GUI)-based tools

2.3.1 Programming-Based Tools

23.1.1 R

This open source tool is a combination of both a language and an environment.
Created by Ross Thaka and Robert Gentleman, R can be described as a dedicated
tool for statistical purposes that helps data scientists create codes with less

programming requirements [26].
2.3.1.2 Python [27]

Python is described as the /ingua franca for a major number of data science

applications as it joins ease of use of domain-specific scripting language (e.g., R and
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MATLAB) with the power of being a general-purpose programming language.
Python’s powerful libraries support data scientists with both general and specific-
purpose libraries. Furthermore, it can be integrated with existing systems. Python
benefits from scikit-learn, which is a widely used in both academic and industrial
communities and a constantly-developed and improved open source ML library with

a very active user community.
2.3.1.3 TensorFlow [23]

Developed by Google Brain team of engineers and researchers, TensorFlow is a
scalable multi-platform programming interface. The fast training of ML models
using this tool is due to the utilisation of both the Central Processing Unit (CPUs)
and Graphics Processing Units (GPUs). This programming interface uses application
programming interfaces (APIs) to support a number of programming languages

mainly C++ and Python.
2.3.2 Graphical User Interface-Based Tool

In addition to programming-based tools, there are a number of GUI-based tools
that provide ease-of-use to the state-of-the-art ML algorithms. A number of the

common GUI-based ML tools are presented in the following sections.
2.3.2.1 Weka [28]

First introduced in 1992, the Waikato Environment for Knowledge Analysis
(WEKA) is regarded as a unified workbench running ML algorithms with wide
acceptance from academia and the industry. WEKA was not only as a ML toolbox,
but also as a framework aimed for researchers to develop new algorithms without
being restricted by a supporting infrastructure for data manipulation and scheme

evaluation.
2.3.2.2 Orange [29]

Introduced in the late 1990s, Orange is an open source software and one of the
oldest ML and data mining tools. It can use both Python scripting and visual
programming through its GUI interface, offering a learning flexibility to both

experienced and unexperienced users.
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2.3.2.3 RapidMiner

First introduced in 2001 at the University of Dortmund under the name YALE
(Yet Another Learning Environment). The name was changed more than once
before becoming known as RapidMiner. RapidMiner is a widely-spread open source
tool for ML, statistical methods, and data mining [30]. It is worth noting that Gartner
placed this software for the sixth year in the leader quadrant of its Magic Quadrant

for Data Science & Machine Learning Platforms [31].

2.4 ML as a tool in Network Design

Given the predictive abilities of ML algorithms, the availability of computing
resources, and data, recent years have witnessed a rise in the number of papers
employing ML to perform inference from historical data or to propose a certain
strategies that reduce a penalty. Consequently, there are a number of review papers
in the literature that strive to cover the state-of-the-art approaches. The authors of
[32] surveyed a number of review papers in the ML subfield of deep learning.
Although it was limited to this subfield, it gave a clear view on the vastness of the
deep learning field. Further, the authors in [33] presented a comprehensive survey of
a number of ML-powered, self-organised cellular networks. They classified the
surveyed papers according to the optimisation objectives. However, the survey was
limited to 4G cellular networks. Surveying the learning problems in the topic of
cognitive radio was addressed by the authors in [34]. Nevertheless, now it can be
considered dated due to new developments and proposed solutions. A brief review
by the authors in [35] surveyed the rudimentary concepts of ML and proposed their
utilisation in a number of applications working in 5G networks. However, their work
was limited in terms of the number of surveyed papers. In this chapter, we will focus
on the literature where ML is employed as part of radio resource optimisation
systems in a cellular network. Thus, committing to the most relevant part given the

work in this thesis.
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2.5 ML in Radio Resource Allocation

With the ever-increasing demand for bandwidth, the proliferation of wireless-
connected devices, and the growing interference from other mobile users, resource
allocation is becoming a more challenging problem. In this section, we present the

role of ML in solving the resource allocation problem in wireless networks.
2.5.1 Supervised-Learning-based Approaches
2.5.1.1 Network Planning

The use of ML techniques in conjunction with optimisation methods in the
wireless field is gaining a momentum. The authors in [36] used support vector
machines (SVM) and genetic algorithms to develop a network planning tool. The
metric they wanted to minimise is the number of physical resource blocks (PRB) per
mega bit (Mb), PRB/Mb, which will allow serving users with the minimum amount
of resources possible while maintaining the QoS. The authors reported that
improving the metric (PRB/Mb) they used, caused the system to provide resources
effectively in a way to ensure all outage users are recovered. The genetic algorithm
served all the users at the 20th generation and was able to increase the resource

efficiency as it evolved.

The same authors proposed in [37] the use of different ML algorithms (KNN,
NN, SVM, and DT). Additionally, ensemble methods (Bagging and AdaBoost) are
used for enhancing the learners' accuracy of prediction. The goal is to propose a
network planning tool capable of predicting a specific QoS metric that associates the
interest of the users with that of the operators (i.e., PRB/Mb). The proposed
prediction assists in future dense deployments in wireless networks. Thus, radio
measurements are employed to develop correlative statistical models predicting the

QoS to improve QoS-based network planning.
2.5.1.2 Using historical decisions to reduce optimisation time

The authors in [38] proposed a solution to minimise the time consumed by
traditional optimisation methods. The proposed solution employs a cloud-based ML
framework to extract similarities from a huge number of historical scenarios. The

optimal or near-optimal solutions for these scenarios are then searched offline and
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stored to function as a dataset for the supervised learning algorithm to work on. A
feature vector comprised of measured data for a newly arriving scenario is then
compared to the training data and the adopted solution is the one with the most
amount of similarities. The authors used the proposed solution to allocate beams to
users in a massive multi-input multi-output (MIMO) system using the KNN
algorithm to compare to other methods which include Exhaustive Search and the
low-complexity beam allocation (LBA) method. The proposed method was able to
reach a solution in less time than the exhaustive reach. Further, it outperformed the
LBA in terms of the average sum-rate as the size of the training set grew larger than

1000 instances.
2.5.1.3 Self-adaptive flexible transmission time interval

Taking the opportunity of standardisation of new numerology technologies and
5G new radio (NR), the authors in [39] proposed a self-adaptive flexible
transmission time interval (TTI) scheduling strategy aimed at satisfying the service
requirements in a scenario where both ultra-Reliable Low Latency Communications
(uRLLC) and enhanced Mobile Broadband (eMBB) coexist. The proposed
scheduling strategy is implemented using Random Forest based Ensemble where the
TTI length is chosen for each service according to channel conditions and BS
features. The proposed system was compared to the existing ML methods, namely,
SVM, NN, and random forests (RF) where it showed better accuracy. The results
reported a reduced packet loss and delay for the uRLLC services as the eMBB

requirements are guaranteed.
2.5.1.4 5G uplink grant-free transmission

Signalling overhead caused by handshaking-based scheduling is one of
challenges facing massive machine-type communication (mMTC). Grant-free access
enables devices in the wireless network to transmit without waiting for the BS to
grant them radio resources. Active user identification and channel estimation are
required in grant-free uplink transmission. This is due to the fact that the receiver in
a grant-free uplink transmission is oblivious to the channel information and the
active user identification. The authors in [40] proposed to use asynchronous sparse
Bayesian learning (ASBL) and SVM algorithms for channel estimation and active

user identification/classification, respectively.
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Performance evaluation was carried out using link-level simulation, the
performance of both the channel estimation and active user identification was
compared to other compressed sensing-based methods where it showed that the
proposed receiver has a better detection performance and suitability for uplink grant-

free asynchronous non-orthogonal multiple access (NOMA) transmission.
2.5.1.5 Traffic and flow control in LTE-A

To alleviate the allocation process, control the transmission of recently served
application, and reduce the overall load, a cross-layer communication approach is
implemented between the media access control (MAC) and the application layers in
the downlink scheduling procedure of an LTE-A network. A solution presented by
the authors in [41] constitutes an added stage where traffic is classified before a
conventional scheduling procedure takes part. The classified traffic is either sent to
the scheduling stage or rejected where it is prevented from transmission over a
period of time. A KNN-based supervised machine learning algorithm is used
towards that end where traffic is classified according to average bit rate and delay
features. The simulation results show effective resource allocation for real time
applications measured in terms of fairness, packet lose and delay. However, the

proposed approach did not investigate the throughput.
2.5.1.6 Bandwidth reservation to reduce termination

Tackling the problem of connection drop during handoff, the authors in [42]
proposed a self-adaptive bandwidth reservation scheme to reduce the termination
probability. The proposed scheme employed a support vector machine algorithm to
compute the amount of reserved bandwidth at the target cell. The SVM algorithm
utilises existing data at the BS to predict the moving direction of a mobile terminal.
The simulation results report a reduction in the call dropping probability and call
blocking probability. The bandwidth utilisation, on the other hand, witnessed better
performance under heavy traffic loads by other schemes, namely, the schemes

without (NO) reservation (NR).
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2.5.1.7 Optimising spectrum allocation, route selection, and peer discovery in

vehicular networks

Content distribution in cooperative vehicular networks was investigated by the
authors in [43]. The objective is to optimise spectrum allocation, route selection, and
peer discovery from a delay perspective. To this end, they proposed to utilise big
data generated by a geographic positioning system (GPS) and a geographic
information system (GIS) to predict the vehicle trajectories using a combination of
interacting multiple model (IMM) estimation with multi-Kalman filter (MKF). The
optimisation part was formulated as a coalition formation game and was compared
against two heuristic schemes; the non-cooperative content distribution scheme and
the random group formation based content distribution scheme and the simulation

results showed that the proposed approach achieved better performance.
2.5.2 Unsupervised-learning-based approaches
2.5.2.1 Traffic prediction in base stations

Aiming to predict data traffic volume at BSs, the authors in [44] proposed to use
k-means algorithm to cluster the BSs into groups of geographically adjacent BSs
with correlated traffic flows. Subsequently, the time series traffic data is pre-
processed by decomposing them into high-frequency and low-frequency
components using a wavelet decomposition method. Finally, and after
reconstructing both frequency parts to time series components by wavelet
reconstruction, an Elman neural network (ENN) is used on each of the time series

components to predict the traffic flow.
2.5.2.2 User Clustering for downlink beams

The authors in [45] proposed to use K-means algorithm to group users in
downlink 3G cellular systems adaptive cell Sectorisation. Thus, users are grouped
according to their spatial characteristics into clusters using ML and used as a
reference to shape antenna beams to enable the minimisation of specific features

(e.g., interference, power).
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2.5.2.3 Supporting cooperative spectrum sensing

The authors in [46] used ML techniques to propose cooperative spectrum sensing
algorithms for cognitive radio networks. The goal is to determine (i.e., classify) the
channel availability (i.e. class) by classifying an energy vector (i.e., feature vector)
comprised of the energy levels reported by all secondary users. Supervised (i.e.
SVM and KNN) and unsupervised algorithms (i.e. K-means and Gaussian Mixture
Model) classification techniques are used for that purpose. The authors used the
average training time, receiver operating characteristic performance, and sample
delay classification to quantify the classifiers' performance for comparison purposes.
Further, the authors compared their proposed schemes to the Fisher Linear
Discriminant method. The results showed that SVM achieved the highest detection
performance with the K-means following very closely in terms of the receiver
operating characteristic (ROC) performance. The weighted KNN required the least
amount of training time. Therefore, it is very suitable for channel spectrum sensing

as it requires an on-the-fly update for its training vectors.
2.5.3 Reinforcement-learning-based approaches
2.5.3.1 Dynamic resource allocation in LTE-U networks

Solving the problem of LTE unlicensed (LTE-U) and Wi-Fi coexistence in the
unlicensed spectrum was the focus of the authors in [47]. They proposed a scheme
where blank subframes are dynamically allocated using a Q-learning algorithm. The
number of subframes within a frame is kept but the subframe length is reduced
signifying less transmission time and guaranteeing that a percentage of the
subframes are blank subframes. The authors proposed sharing the transmission-
related information so that the LTE-U decides when to allocate blank subframes,
and when to allocate dynamically adjusted blank subframe numbers proportional to
the Wi-Fi traffic size. The results showed that the proposed approach improved the

overall system spectrum utilisation.
2.5.3.2 Spectrum Monitoring for cloud-based RAN

A reinforcement learning method was employed by the authors in [48] to propose
an approach for faster dynamic spectrum allocation decisions in a cloud-based RAN
(C-RAN). The proposed system uses regression analysis to operate on big data
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collected by a monitoring system at Sofia Airport to predict spectrum occupancy and
usage activity in a predefined frequency band. The authors introduced a frequency-
time resource indicator to act as a measure for spectrum usage. The authors reported
that the prediction accuracy of their system is proportional the amount of collected
data and outlined the "accuracy vs latency" trade-off problem solvable through the

use of cloud-based generic processing architecture.
2.5.3.3 Increasing throughput and fairness for users in HetNets

The work in [49] considered semi- and uncoordinated deployment of small cells
and proposed combining Q-learning with mobile users' geographical locations. To
improve the dynamic allocation of radio resources, a game theoretical dimension is
added by attributing roles relative to the interference at the BSs with the objective of
enabling cells to cooperate even when indirectly communicating to each other. The
results reported that combining user locations and Q-learning resulted in an increase
in cell throughput while maintaining an acceptable user throughput. A further
improvement in terms of system performance and fairness among users with an
increase in the average cell throughput can be attained when incorporating the game

theoretical approach.
2.5.3.4 Energy-efficient resource management in HetNets

A HetNet architecture was presented by the authors in [50]. Combining radio
frequency (providing wide coverage area) and visible light communication
(providing high data rate) to guarantee different QoS requirements. The joint
uplink/downlink energy-efficient resource management decision making problem
was formulated as a Markov decision process. The objective was to maximise the
network energy efficiency while ensuring that the QoS requirements are met for
Industrial-IoT or IoT devices. The proposed architecture is to function in an
industrial IoT network setting where Ultra-Reliable Low-Latency performance is
required. A reinforcement learning method was proposed by the authors to attain an
optimal policy for resource management, named post-decision state (PDS) based
experience replay and transfer (PDS-ERT). The simulation results showed that
better performance can be attained through the proposed approach comparing it to
Deep PDS and Q-learning algorithm with knowledge transfer (QKT)-learning

algorithms.
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2.5.3.5 Distributed resource allocation in asynchronous networks

The problem of allocating resources in downlink LTE-licence assisted access
(LAA) network is tackled in [51]. Assuming limited channel state information (CSI)
exchange, the objective is to maximise the proportional fairness of the users
summed rate. Using a reinforcement-based approach through a fully connected
neural network where random seeds are employed, the learning target is the seed
with the highest in-cell proportional fairness. The simulation results reported that the
in-cell proportional fairness contributed to the maximisation of the overall
proportional fairness. Comparing the proposed algorithm to another (fairness
allocation scheme) showed that the proposed approach attained 6.8% higher

geometric mean.
2.5.3.6 Spectrum auction in cognitive radio networks

Using spectrum sensing to detect available frequency bands, the authors in [52]
proposed to employ Q-learning-based bidding algorithm for spectrum auction by the
secondary users to allocate them the available bands. The algorithm enables
secondary users to learn from the competitors so that they can automatically place
better bids for the available frequency bands. Secondary users who win multiple
bids can utilise multiple bands per time slot. Hence, they can send their data using
multiple frequency bands simultaneously in one time slot. The results show that the
proposed approach managed to allocate the frequency bands -efficiently,

automatically and in a fair manner.
2.5.3.7 Circumstance independent policy for resource allocation

It is worth stressing the fact that network circumstances (e.g., number of users
and QoS requirements) are generally key for reinforcement learning policy structure.
Thus the policies are circumstance-dependant and this can hinder the policy
implementation in practical systems. The authors in [53] proposed the use of a
circumstance-independent policy for resource allocation in wireless networks to
function on different network circumstances and developed a deep reinforcement
learning algorithm to learn it. The proposed approach can be applied in practical

systems over different circumstances. The proposed policy was compared against
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the circumstance-depended policy where it attained close performance for each

circumstance.
2.5.3.8 Spectrum sharing and spatial reuse

To address the problem of underutilised spectrum in the millimetre-wave band,
ultra-dense networks, the authors in [54] proposed a generalised temporal-spatial
spectrum sharing scheme, establishing a dynamic spectrum sharing model where the
same channel is utilised by several shared links at the same slot. A non-cooperative
game between devices is formulated as the spectrum utilisation problem, and is
proven to be an ordinary potential game. Thus, a Nash Equilibrium (NE) is
guaranteed. A novel decentralised Q-learning is used to help the secondary users
learn the environment and adapt to achieve NE with partial feedback information
and by depending on action-reward history. The action, and reward of each
secondary user are channel selection and channel capacity, respectively. The new Q-
learning algorithm defines the actions over Q values instead of the legacy state-
action pair. Thus, each action correlates with a Q value updated as the weighted sum
of the current Q-value and the instant reward whilst the Q values of the other actions
remain unchanged. The results of evaluating the proposed approach against other
schemes showed a faster and more stable convergence. Further, an improvement to

network throughput is witnessed promoting the increase of 5G-connected devices.
2.5.4 Novel approaches
2.5.4.1 Delay-Aware Brain-Centric Radio Resource Optimisation

The authors in [55] developed a framework to manage resources in wireless
networks while considering the delay perception in the human brain. Based on the
brain features, a probabilistic model is developed using a probability distribution
identification (PDI) learning method to predict the delay perceived by the human
users and quantify the reliability of this prediction. They defined a closed-form
expression that identifies the relationship linking wireless physical layer metrics and
system reliability. Using the aforementioned relationship and a developed learning
method named PDI consisting of two, supervised and unsupervised learning parts,
the authors proposed a Lyapunov-based brain-aware optimisation approach to

allocate human users with radio resources. The results show that the brain-aware
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approach yielded up to 78% power savings when compared to another system that

considered the QoS metrics exclusively.

2.6 Chapter Summary

This chapter provided a review of ML types and algorithms. Further, it shed light
on the role played by ML in the design of current and future cellular networks.
Given the chance to summarise the literature, we highlight the fact that the majority
of the paper reviewed fall within the supervised and reinforcement learning types.
Unsupervised learning had a smaller share in the literature due to the topic in hand
(i.e., radio resource allocation). Thus, the use of labelled data and the employment of
an agent to discover the environment are the most common features in the
optimisation process. Nonetheless, we highlighted several unsupervised learning use
cases. An extension to this survey can include all other wireless network design and

optimisation aspects that incorporates ML algorithms.
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Chapter 3

Literature Review — Using Big Data Analytics in Network Design

3.1 Background

Networks generate traffic in rapid, large, and diverse ways, which leads to an
estimate of 2.5 exabytes created per day [56]. There are many contributors to the
increasing size of the data. For instance, scientific experiments can generate lots of
data, such as CERN’s Large Hadron Collider (LHC) that generates over 40
petabytes each year [57]. Social media also has its share, with over 1 billion users,
spending an average 2.5 hours daily, liking, tweeting, posting, and sharing their
interests on Facebook and Twitter [58]. It is without a doubt that using this activity-
generated data can affect many aspects, such as intelligence, e-commerce,
biomedical, and data communication network design. However, harnessing the
powers of this data is not an easy task. To accommodate the data explosion, data
centres are being built with massive storage and processing capabilities, an example
of which is the National Security Agency (NSA) Utah data centre that can store up
to 1 yottabyte of data [59], and with a processing power that exceeds 100 petaflops
[60]. Due to the increased needs to scale-up databases to data volumes that exceeded
processing and/or storage capabilities of simple computer systems, systems that ran
on computer clusters started to emerge. Perhaps the first milestone took place in
June 1986 when Teradata [61] used the first parallel database system (hardware and
software), with one terabyte storage capacity, in Kmart data warehouse to have all
their business data saved and available for relational queries and business analysis
[62, 63]. Other examples include the Gamma system of the University of Wisconsin

[64] and the GRACE system of the University of Tokyo [65].

In light of the above, the term “Big Data” emerged, and it can be defined as high-
volume, high-velocity, and high-variety data that provides substantial opportunities
for cost-effective decision-making and enhanced insight through advanced
processing which extracts information and knowledge from data [66]. Another way

to define big data is by saying it is the amount of data that is beyond traditional
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technology capabilities to store, manage, and process in an efficient and easy way
[67]. Big data is already being employed by digital-born companies like Google and
Amazon to help these companies with data-driven decisions [68]. It also helps in the
development of smart cities and campuses [69], as well as in other fields like

agriculture, healthcare, finance [70], and transportation [71].

3.2 Big Data Characteristics

Big data is better defined through its characteristics, which are:
Volume: This is a representation of the data size [72].

Variety: Generating data from a variety of sources results in a range of data types.
These data types can be structured (e.g. e-mails), semi-structured (e.g. log files data

from a webpage); and unstructured (e.g. customer feedback), and hybrid data [73].

Velocity: Is an indication of the speed of the data when being generated,
streamed, and aggregated [74]. It can also refer to the speed at which the data has to

be analysed to maintain relevance [72].

Depending on the research area and the problem space, other terms or Vs can be
added. For example, is this data of any value? How long can we consider this an
accurate and valid data? Since we are conducting a survey, we find it compelling to
briefly introduce other Vs as well. Typically, the number of analysed Vs is 3 to 7 in
a single study (e.g. 6V+C [75]), where C represents Complexity, however, different
papers analyse different sets of Vs and the union (sum) of all the analysed Vs among

all surveyed papers is 8V and a C, as shown in Table 3-1.

Value: Is a measure of data usefulness when it comes to decision making [74], or
how much added-value is brought by the collected data to the intended process,

activity, or predictive analysis/hypothesis [76].

Veracity: Refers to the authenticity and trustworthiness of the collected data

against unauthorised access and manipulation [76, 77].

Volatility: An indication of the period in which the data can still be regarded as
valid and for how long that data should be kept and stored [78].
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Validity: This might appear similar to veracity; however, the difference is that
validity deals with data accuracy and correctness regarding the intended usage.

Thus, certain data might be valid for an application but invalid for another.

Variability: This refers to the inconsistency of the data. This is due to the high
number of distributed autonomous data sources [79]. Other researchers refer to the

variability as the consistency of the data over time [77].

Complexity: A measure of the degree of interdependence and inter-connectedness
in big data [75]. Such that, a system may witness a (substantial, low, or no) effect
due to a very small change(s) that ripples across the system [74]. Also, complexity
can be considered in terms of relationship, correlation and connectivity of data. It
can further manifest in terms of multiple data linkages, and hierarchies. Complexity
and its mentioned attributes can however help better organise big data. It should be
noted that complexity was included among the big data attributes (Vs) in [75] where
big data was characterised as having 6V + complexity. This is how we will arrange

it in Table 3-1.
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Table 3-1: Various big data dimensions




3.3 BDA tools

The process of extracting hidden, valuable patterns, and useful information from
big data is called Big Data Analytics [99]. This is done through applying advanced
analytics techniques on large data sets [83]. Before commencing the analytics
process, data sets may comprise certain consistency and redundancy problems
affecting their quality. These problems arise due to the diverse sources from which
the data originated. Data pre-processing techniques are used to address these
problems. The techniques include integration, cleansing (or cleaning), and

redundancy elimination, and they were discussed by the authors in [94].

BDA can be carried out using a number of frameworks (shown below) that
usually require an upgradeable cluster dedicated solely for that purpose [72]. Even
if the cluster can be formed using a number of commodity servers [100], however,
this still forms an impediment for limited-budget users who want to analyse their
data. The solution is presented through the democratisation of computing. This
made it possible for any-sized company and business owners to analyse their data
using cloud computing platforms for BDA. Consequently, the use of BDA is not
limited to enterprise-level companies. Furthermore, business owners do not have to
heavily invest in an expensive hardware dedicated to analysing their data [56].
Amazon is one of the companies that provide ‘cloud-computed” BDA for its
customers. The service is called Amazon EMR (Elastic MapReduce), and it
enables users to process their data in the cloud with a considerably lower cost in a
pay-as-you-use fashion. The user is able to shrink or expand the size of the

computing clusters to control the data volume handled and response time [56, 101]

Dealing with big amounts of data is not an easy task, especially if there is a
certain goal in mind since data arrives in a fast manner, it is vital to provide fast
collection, sorting, and processing speeds. Apache Hadoop was created by Doug
Cutting [102] for this purpose. It was later adopted, developed, and released by
Yahoo [103]. Apache Hadoop can be defined as a top-level, java-written, open

source framework. It utilises clusters of commodity hardware [104].

Hadoop V1.x (shown in Figure 3-1) consists of two parts: the Hadoop

Distributed File System (HDFS) that consists of a storage part, and a data
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processing and management (MapReduce) part. The master node has two
processes, a Job Tracker that manages the processing tasks and a Name Node that

manages the storage tasks [105].

When a Job Tracker takes job requests, it splits the accepted job into tasks and
pushes them to the Task Trackers located in the slave nodes [106]. The Name Node
resembles the master part, while the Data Nodes represent the slave part [67].

Many projects were developed in a quest to either complement or replace the
above parts, and not all projects are hosted by the Apache Software Foundation,

which is the reason for the emergence of the term Hadoop ecosystem [102].
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Figure 3-1: Hadoop V1.x architecture
Hadoop V2.x is viewed as a three-layered model. These layers are classified as
storage, processing, and management, as shown in Figure 3-2. The current Hadoop
project has four components (modules), which are MapReduce, the HDFS, Yet
Another Resource Negotiator (YARN), and Common utilities [72].

32



MapReduce
(Distributed Computing)

HDFS
(Distributed Storage)

AN

YARN Framework Common
(Resource Management) (Utilities)

//—\

Figure 3-2: Hadoop V2.x architecture

MapReduce: As a programming model, MapReduce is used as a data processing
engine and for cluster resource management. With the emergence of Hadoop v2.0,
the resource management task became YARN’s responsibility [72]. WordCount is
an example illustrating how MapReduce works. As the name implies, it calculates
the number of times a specific word is repeated within a document. Tuples (w, 1)
are produced by the map function, where w and 1 represents the word and the
times it appeared in the document respectively. The reduce function groups the
tuples that share the same word and sums their occurrences to reach the concluding

result [61].

HDFS: HDFS represents the storage file-system component in the Hadoop
ecosystem. Its main feature is to store huge amounts of data over multiple nodes
and stream those data sets to user applications at high bandwidth. Large files are
split into smaller 128 MB blocks, with three copies of each block of data to

achieve fault tolerance in case of disk failure [72, 107, 108].
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YARN: YARN was introduced in Hadoop version 2.0, and it simply took over
the tasks of cluster resource management from MapReduce and separated it from
the programming model, thus making a more generalised Hadoop capable of
selecting programming models, like Spark [109], Storm [110], and Dryad [111,
112].

Common utilities: To operate Hadoop’s sub-projects or modules, a set of
common utilities or components are needed. Shared libraries support operations
like error detection, Java implementation for compression codes, and I/O utilities

[72, 113].

Over the last few years, researchers in telecommunication networks started to
consider BDA in their design toolbox. Characterised by hundreds of tuneable
parameters, wireless network design informed by BDA received most of the

attention, however, other types of networks received increasing attention as well.

The vast amount of data that can be collected from the networks, along with the
distributed modern high-performance computing platforms, can lead to new cost-
effective design space (e.g. reducing total cost of ownership by employing
dynamic Virtual Network Topology adaptation) when compared to classical
approaches (i.e. static Virtual Network Topologies) [114]. This new paradigm is
promising to convert networks from being sightless tubes for data into insightful

context-aware networks.

3.4 Case studies of the use of BDA for wireless and wired

networks

3.4.1 Detection of Sleeping Cells in SG SON

A wireless cell may cease to provide service with no alarm triggered at the
Operation and Maintenance Centre (OMC) side. Such cells are referred to as
sleeping cells in self organising networks (SON). The authors in [115] tackled this
problem and presented a case study on the identification of the sleeping cells (SC).
The simulation scenario comprised of 27 macro sites each with three sectors. The
user equipment (UE) is configured to send radio measurement and cell

identification data of the serving and neighbouring cells to the BS, in addition to
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event-based measurements. The simulation considered two scenarios; reference (a
normally-operating network) and SC. The latter was simulated by dropping the
antenna gain from 15 dBi (reference scenario) to -50 dBi (SC scenario). The
reference scenario provided measurements used by an anomaly detection model
based on KNN algorithm to provide a network model with normal behaviour.
Multidimensional Scaling (MDS) is used to produce a minimalistic Key
Performance Index (KPI) representation. Thus the interrelationship between
Performance Indexes (PIs) is reflected and an embedded space is constructed.
Consequently, similar measurements (i.e. normal network behaviour) lie within
close distances while dissimilar measurements (i.e. anomalous network behaviour)
are far-scattered and hence easily identified. The model attained 94 percent

detection accuracy with 7 minutes training time.
3.4.2 An Architecture for Fully Automated MNO Reporting System.

Mobile Network Operators (MNOs) collect vast amounts of data from a number
of sources as it can offer actionable plans in terms of service optimisation.
Visibility and availability of information is vital for MNOs due to its role in
decision making. Employing a reporting system is pivotal to transform data to
information, knowledge, and lastly to actionable plans. The authors in [116]
presented a case study for the potential role of BDA in the development a fully
automated reporting system. A Moroccan MNO is to benefit from the alternative
architecture. The authors highlighted the shortcomings of the existing automatic
reporting system that uses traditional technologies. Moreover, they inferred that
using BDA can provide the opportunity to overcome those shortcomings. The
authors chose the Apache Flink [116] in their proposed architecture to serve as

their BDA framework.
3.4.3 Network Anomaly Detection using NetFlow Data

BDA can support the efforts in the subject of network anomaly and intrusion
detection. To that end, the authors in [117] proposed an unsupervised network
anomaly detection method powered by Apache Spark cluster in Azure HDInsight.
The proposed solution uses a network protocol called NetFlow that collects traffic

information that can be utilised for the detection of network anomalies. The
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procedure starts by dividing the NetFlows data embedded in the raw data stream
into 1-minute intervals. NetFlows are then aggregated according to the source IP,
and data standardisation is carried out. Afterwards, a k-means algorithm is
employed to cluster (according to normal or abnormal traffic behaviour) the
aggregated NetFlows. The authors considered a dataset containing 4.75 hours of
records captured from CTU University to analyse botnet traffic. The proposed
approach attained 96% accuracy and the results were visualised in 3D after

employing Principal Component Analysis (PCA) to attain dimension reduction.

3.5 Role of BDA in Cellular Network Design

In this section, we review the research done on the use of BDA for the design of
cellular networks. Compared to other network design topics, we observed that the
wireless field has received the highest attention, as measured by its share of
research papers. These papers can be classified according to the application or area
under investigation. Consequently, we have classified those papers into the

following:

1- Counter-failure-related: This includes fault tolerance (i.e. detection and
correction), prediction, and prevention techniques that use BDA in
cellular networks.

2- Network monitoring: This illustrates how BDA can be beneficial as a
large-scale tool for data traffic monitoring in cellular networks.

3- Cache-related: Investigates how BDA can be used for content delivery,
cache node placement and distribution, location-specific content
caching, and proactive caching.

4- Network optimisation: BDA can be involved in several topics including
predictive wireless resource allocation, interference avoidance,
optimising the network in light of Quality of Experience (QoE), and

flexible network planning in light of consumption prediction.

It should be noted that Table 3-2 provides further detailed classification, with
the chance to compare the role played by BDA across different network types and

applications

36



3.5.1 Failure Prediction, Detection, Recovery, and Prevention
3.5.1.1 Inter-technology Failed Handover Analysis using BDA

One of the most frustrating encounters happens when a mobile subscriber gets
surprised by a sudden call drop. Many of these incidents occur when the user is at
the edge of a coverage area and moving towards another, technologically-different
area, e.g., moving from a 3G BS to a 2G BS. The common solutions to address
such shortcomings are by either conducting drive tests or performing network
simulation. However, another solution that leverages the power of big data was
proposed by the authors in [118]. The proposed solution uses BDA (Hadoop
platform) to analyse the Base Station System Application Part (BSSAP) messages
exchanged between the Base Station Subsystem (BSS) and Mobile Switching
Centre (MSC) nodes. Location updates (only those involved in the inter-
technology handover) are identified and the geographic locations where the 3G-
service disconnections occur are identified by relying on the provided target Cell

ID.

The results of the above method were then compared with a drive test (which is
an expensive and time-consuming approach) results, where coherence between the
two results was demonstrated. Another comparison was conducted with the Key
Performance Index (KPI)-based approach and the results were in favour of the

proposed approach.
3.5.1.2 Signalling Data-based Intelligent LTE Network Optimisation

By utilising the combination of all-around signalling and user and wireless
environment data, combined with Self-Organised Network technologies (SON),

full-scale automatic network optimisation could be realised.

The authors of [82] developed an intelligent cellular network optimisation

platform based on signalling data. This system involves three main stages:

1- Defining network performance indicators through the extraction of XDR
keywords: The External Data Representation (XDR) contains the key
information of the signalling (e.g., the causes of the process failures and
signalling types). The status of a complete signalling process can also be

identified by the XDR (e.g., the success or failure of signalling
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establishment and release). A number of performance indicators are defined
by relying on this information. Querying these indicators is possible from
multiple dimensions and levels (e.g., user, cell, and grid level).

2- Problem discovery: Service establishment rate, the handover success rate,
and drop rate are among the network signalling-plane statuses that can be
reflected by the XDR-based network performance indicators. Network
equipment with unsatisfactory performance indicators can be further
analysed, and this can be done by conducting a further excavation of the
corresponding indicators’ original signalling.

3- Providing best practice solutions: Identified and solved problems can
provide an optimisation experience. As a consequence, a variety of network
problems can be verified. For example, when a cell has a low handover
success rate, according to the definition of the associated indicators, the
reason is suggested to be the low success rate of the handover preparation.
The solution would be to adjust the overlapping coverage areas formed
between the source and the target cells and the parameters (e.g., the

decision threshold offset and the handover initiation).

A recommended solution can be provided when a deteriorating indicator
surfaces, and this is simply done by clicking the index query that caused the

deterioration
3.5.1.3 Anomaly Detection in Cellular Networks

When a certain problem occurs in the cellular network, the user would usually
be the first who feels the service disruption and suffers the impact. An abnormal
and disrupted service may be identified by examining the Call Detail Record
(CDR) of the users in a specific area. CDR files are generated upon making a call,
and include, among other information, the caller and called numbers, the call
duration, the caller location, and the cell ID where the call was initiated or

received.

A CDR based Anomaly Detection Method (CADM) was proposed by the
authors in [119]. CADM was used to detect the anomalous behaviour of user
movements in a cellular network. This was done, first, with the CDR data being

collected from the network nodes and stored in a mediation department. Then, the
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second phase starts by distributing the collected CDRs to the relevant departments
(e.g., data warehouse, billing, and charging departments). After that, the Hadoop
platform is used to detect the anomalies. The discovered anomalies are then fed-

back to the mediation department for adequate actions.

The use of BDA was essential in this case. Large datasets that require
distributed processing across computer clusters were processed by the Hadoop
Platform. The result was an improved system that is able to detect location-based

anomalies and improve the cellular system’s performance.
3.5.1.4 Self-healing in Cellular Networks

The idea of developing a system that is capable of monitoring itself, detecting
the faults, performing diagnoses, issuing a compensation procedure, and
conducting a recovery is very appealing. However, the self-healing process has
another factor to keep in mind, which is time. The process should be carried out
within a reasonable amount of time so it would not degrade the quality of the

delivered services.

Three use cases were presented by the authors in [120] for a self-healing

process in cellular networks:

1- Data Reduction: The Operation and Maintenance (O&M) database can be
used for troubleshooting purposes. However, the database size is relatively
large as it contains the data related to both normal and degraded intervals,
which makes it difficult to process. Separating the intervals to just keep the
degraded intervals will help in reducing that size. The authors proposed

parallelising this process independently by analysing each BS separately.

They chose the degraded interval detection algorithm of [121] (a degraded
interval is the time where the BS behaviour is degraded), and these intervals were
detected by comparing the BS’s KPIs to a certain threshold. This algorithm was
parallelised by implementing it as a map function, a field is added to identify each

BS, and all the fields are added by a reduce function.

2- Detecting Sleeping Cells: Cell outage or sleeping cells is a common
problem in mobile networks. Users are directed to neighbouring cells

instead of the nearest and optimal cell. According to the algorithm
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described in [122], sleeping cells can be detected through the utilisation of
neighbouring BS measurements hence calculating the impact of the
sleeping cell outage. The detection process relies on the Resource Output
Period (ROP), where each BS produces Configuration Management (CM),
Fault Management (FM), and Performance Management (PM) data every
15 minutes. For each BS, incoming handovers from neighbouring BSs are
aggregated for the current and previous ROP. If the number of handovers
suddenly dropped to zero, and a malfunction is indicated by the cell’s

Performance Indicators (PIs), the cell is regarded as a sleeping cell.

The authors in [120] proposed the use of the above-mentioned algorithm under
the big data principle. They proposed to divide the terrain into partitions that are
the maximum distance between neighbours, where each BS within the partitioned
area is sequentially tested by an instance of the algorithm, and this is done by

examining the data of its neighbours.

This approach was compared to other methods (e.g., lack of KPIs and
availability of KPIs), and most of the simulated outages were detected (5.9% false
negatives and 0% false positives). While a lack of KPIs and availability of KPIs

methodologies showed a high percentage of false negatives.

3- KPI Correlation-Based Diagnosis: The authors in [120] used a method that
utilises most correlated KPIs to identify the problem cause. To simplify the
analysis task, the algorithm considers the PIs of both the affected BS and

the neighbouring sectors.

MapReduce was used to implement this algorithm in a parallelised manner, the
correlation process and the creation of a Pls list arranged by correlation were

implemented as map and reduce functions, respectively.
3.5.1.5 Cell-site Equipment Failure Prediction

A sudden outage of services might have serious consequences, and this is why
keeping communication equipment, like cell sites, in a good working state is of
high importance. The challenge identified by the authors in [123] is to analyse the
user’s bandwidth on the cell level. Equipment(s) failure and infrastructure faults

can be predicted by analysing the bandwidth trends in a particular cell.
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Due to the size and diversity of the collected data, it is essential to use BDA to
process it. Thus, the customers’ received bandwidth can be acquired over a
particular time period (i.e., month or year, etc.). Next the data from diverse data

sources are integrated and then analysed to know the bandwidth trends.
3.5.2 Network Monitoring
3.5.2.1 Large-scale Cellular Network Traffic Monitoring and Analysis

Large cellular networks have relatively high data rate links and high
requirements to meet. Usually these networks use a high-performance and large

capacity server to perform traffic monitoring and analysis.

However, with the continuous expansion in data rates, data volumes, and the
requirements for detailed analysis, this approach seems to have a limited
scalability. Hence, the authors of [124] proposed a system to undertake that task,
utilising the Hadoop MapReduce, HDFS, and HBase (a distributed storage system
that manages the storage of structured data and stores them in a key/value pair) as
an advanced distributed computing platform. They exploited its capability of
dealing with large data volumes while operating on commodity hardware. The
proposed system was deployed in the core side of a commercial cellular network,
and it was capable of handling 4.2 TB of data per day supplied through 123 Gbps

links with low cost and high performance.
3.5.2.2 Mobile Internet Big Data Operator

China Unicom, China’s Largest WCDMA 3G mobile operator with 250 million
subscribers in 2012, introduced an industry ecosystem. The researchers in [125]
highlighted this as a telecom operator-centric ecosystem that is based on a big data

platform.

The above-mentioned big data platform is developed for retrieving and
analysing data generated by mobile Internet users. With the aim of optimising the
storage, enhancing the performance, and accelerating the database transactions, the
authors proposed a platform that uses HDFS for distributed storage. The cluster
had 188 nodes used to store data, perform statistical data analyses, and act as

management nodes. The approximate storage space was 1.9 PB. HBase has the
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role of a distributed database, with a writing rate that can reach 145k records per

second; HBase stores the structured data located on the HDFS.

Compared with the Oracle database, it is noted that the system achieved four
times lower insertion rate. The query rate was compared to an Oracle database as
well, and the HBase showed better performance when taking into consideration the

impact of the records’ size.
3.5.3 Cache and Content Delivery
3.5.3.1 Optimised Bandwidth Allocation for Content Delivery

Mobile networks, usually, have a large number of users, and with the increase in
Internet-based applications, it has become essential to allocate the required
bandwidth that meets the user expectations, as well as to ensure a competitive level
of service quality. Cellular networks can provide Internet connectivity to their
users at any time; however, video (especially high quality) contents are still slow
and relatively expensive. From the BS’s point of view, the impact of forwarding
the same video content to several users on the same BS is massive. The LTE
system addressed this through multicast techniques. However, multicast is still
regarded as a big challenge in cellular networks. To overcome the above problem,
the authors of [81] proposed a solution that can dynamically allocate bandwidth.
The idea is based on sharing the BS’s wireless channel by a user cluster that
wishes to download the contents. Thus, saving the BS resources, as well as
providing a better data rate for the clustered users, and providing an opportunity
for the users who did not join the cluster to benefit from the saved resources
(bandwidth). It should be noted that the clustered users can receive the contents
from the cluster head by using short range communication techniques like Wi-Fi

Direct [126] and Device to Device (D2D) communication.

Two conditions must be satisfied before forming a user cluster. First, the users
who request the same content are the ones who form the cluster. Second, the users
should either be at the time (or will be) within a short range of each other. For that
reason, the authors suggested using BDA to identify the users’ closeness and to
group the users into cluster(s). A cluster head is then selected among the nearby

users, and the process is repeated among the BS users until there is either a cluster
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of users or a free (un-clustered) user(s). The simulation was carried for a single BS
network and the results showed faster content delivery and improved throughput at

the user level.

3.5.3.2 Improve Cache Node Determination, Allocation, and Distribution

Accuracy in Cognitive Radio Networks

In cognitive radio networks, Secondary Users (SU) have to leave the licensed
spectrum when their activity starts to affect the QoS level of the licensed users.
This move would require the existence of a cache node to compensate for the
interrupted data transactions during the SU switch to the unlicensed spectrum. The
author of [127] proposed the use of BDA to process the data accumulated over
time within the nodes. The goal was to utilise this data to reach a decision on the
cache node distribution in a cluster network. The author selected two out of three
categories (open and selectively open systems) of cognitive radio networks. For the
selectively open systems, the SU selectively shares its information with either
some cache nodes, with the cluster head for a particular time interval, or with
specific SUs in a cluster. This results in a variable amount of shared data, thus

resulting in variable accuracy.
3.5.3.3 Tracking and Caching Popular Data

The number of social network (i.e., Facebook and Twitter) users is massive. The
multimedia contents of these networks are normally shared between common
interest groups. However, big and important events attract a lot of attention and
consequently a lot of content is shared across these networks. When a certain video
or event goes viral, this sharing will eventually burden the network as the
requested content would have to travel along the network on its way to the servers.
A solution to such a problem was suggested by the authors of [123]. They
suggested monitoring popular and social media websites, analysing the data,
identifying if there is a growing interest in certain content, by which age category,
and caching the popular data for a specific BS. BDA can be of major use in this
situation by employing it to do the required analysis. The result would be cached
content available to the users faster (reduced provisioning delay) and without

burdening the network.
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3.5.3.4 Proactive Cashing in 5G Networks

Cache-enabled BS can serve cellular subscribers. This is done by predicting the
most strategic contents and storing them in their cache. Thus, minimising both the
amount of time and the consumed network bandwidth, which can payoff in other

ways (i.e., less congestion and less resource utilisation).

An approach, proposed by the authors in [89], used BDA and ML is to develop
a proactive caching mechanism by predicting the popularity distribution of the
content in 5G cellular networks. They demonstrated that this approach can achieve
efficient utilisation of network resources (backhaul offloading) and an enhanced
user experience. After collecting the raw data, i.e., the user traffic, the big data
platform (Hadoop) has the task of predicting the user demands by extracting the
useful information, like Location Area Code (LAC), Hyper Text Transfer Protocol
(HTTP) request-Uniform Resource Identifier (URI), Tunnel Endpoint Identifier
(TEID)-DATA, and TEID for control and data planes. Then using this information
to evaluate the content popularity from the previously collected raw data.
Experimentally testing this work on 16 BSs, as part of an operational cellular

network, resulted in 100% request satisfaction and 98% backhaul offloading.
3.5.4 Network Optimisation
3.5.4.1 Big data-driven Mobile Network Optimisation Framework

When thinking about optimising a cellular network, it is important to collect as
much information as possible. Large networks, as well as their users, generate a
plethora of data, for which the use of BDA is vital to analyse the colossal amount

of data generated.

The authors in [3] proposed a mobile network optimisation framework that is
Big Data Driven (BDD). This framework includes several stages, starting from the
collection of big data, managing storage, performing data analytics, and the last

stage of the process is the network optimisation.

Three case studies were used to show that the proposed framework could be

used for mobile network optimisation.

1- Managing resources in HetNets:
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The Mobile Network Operators (MNOs) may use big data to provide real time

and history analysis across users, mobile networks, and service providers. MNOs

can benefit from BDD approaches in the operation and deployment of their

network, and this can be done in several stages:

A) Network Planning: Due to a deficiency in the level of sufficient statistical

B)

9

data, evolved Node B (eNB) sites are not optimally optimised. BDA can help
MNOs reach better decisions concerning the deployment of eNB in the mobile
network. The authors in [3] suggested the use of the network and anonymous
users’ data (e.g., dynamic position information and other service features).
Providing a relation between the data and their events can offer a better
understanding of the traffic trends.

Predictive Resource Allocation: Resource requirements change depending on
the density and usage patterns of mobile network subscribers. Predicting where
and when mobile users are using the network can help in preparing for sudden
significant traffic fluctuations. The authors in [3] suggested the use of BDA to
examine behavioural and sentiment data from social networks and other
sources and to predict the traffic in highly populated areas. Using the cloud
RAN architecture [128], the right place at the right time can be served through
the predictive resource allocation keeping a minimal service disruption.
Interference Coordination: HetNets with small cells can be used to conduct
interference coordination among macro and small cells. This coordination has
to be carried out in the time domain instead of the frequency domain.
Schemes like the enhanced Inter-Cell Interference Coordination (eICIC) in
LTE-Advanced [129] efficiently enable resource allocation among interfering
cells. eICIC allows interference to be avoided between Macro cells evolved
Node B (MeNB) and its neighbouring Small cell eNBs (SeNBs) by having data
transmitted in isolated subframes called the Almost Blank Subframe (ABS).
The ABS subframes carries minimum (and most essential) control information,
transmitted with reduced power [129], so that the network operator can control

the configuration of that subframe.

Many factors contribute to the determination of the ABS ratio of the macro cell

to the small cell, such as the traffic load in a specific area, the service type, and so
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on. The deployment of BDD optimisation functions at the MeNB would enable
them to collect and analyse eNB-originated raw big data and enable a quick
response. As a result, the performance optimisation of each cell and the users can
be fulfilled. Optimising ICIC parameters (e.g., ABS ratio) can be achieved by
processing raw data in a periodic manner. Furthermore, the location and user
traffic demands of multiple eNBs can be optimised, offering the deactivation of a
SeNB due to elevated Signal-to-Interference-plus-Noise Ratio (SINR) to avoid the
interference caused by a nearby SeNB that would also result in reducing the energy

consumption.
2- Deployment of cache server in mobile CDN

Popular content (e.g., movies) can be delivered through a Content Delivery
Network (CDN), which is a method that is considered efficient by many MNOs.
Distributed cache servers should be located near the users to achieve a fast
response as well as to reduce the delivery cost. In hierarchical CDN, it is vital to
place cache servers in an optimal location. Due to the unique features that RAN

has, it was the primary interest of the authors in [3].

It is expected that there will be an enhanced backhaul capability in 5G
networks, and this would result in minimising the concerns related to the latency
and traffic load of backhaul transmissions. Therefore, not all MeNBs would
require a dedicated distributed cache server. In addition, a SeNB can have a
distributed cache server. Optimal cache server placement depends on several
factors, such as the features and load of traffic in a given area, as well as the cost of
storage and streaming equipment. To help the MNOs decide where to deploy their
cache servers, data analytics methods can be regarded as a feasible solution.
However, this would require the collection of all the above-mentioned factors over

a long period in the related coverage area.
3- QoE modelling for the support of network optimisation:

The authors of [3] believed that the management of services and applications
needed more than just relying on the QoS parameters. Instead, they suggested
taking the quality (i.e., QoE), as perceived by the end users, to be regarded as the

optimisation objective. Accurate and automatic real time QoE estimation is
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important to realise the optimisation objective. In addition to the technical factors,
non-technical factors (e.g., user emotions, habit, and expectations, etc.) can affect
the QoE. A profile for each particular user is composed comprising the above non-
technical factors. This can be assembled by installing a profile collection engine on
the users” mobile devices. User activities are compared and tracked to recognise
differences and similarities, and then stored in a database for additional processing.
After profiling, the following step constitutes the use of ML to identify the
relationship between QoE and the influencing factors. Data analytics can be used
to discover what impacts the QoE in users’ devices, as well as the services and
network resources. The next step is for network optimisation functions to react to

determining what caused the problem and select the optimal action accordingly.

3.5.4.2 Improve QoS in Cellular Networks through Self-configured Cells and

Self-optimised Handover

Cellular networks have a crucial element on which the concept of mobility
depends. This element is the handover success rate, which ensures call continuity
while the user moves from one cell to another. Failing in that particular element
would impact the quality of the service, thus putting the operator into a
questionable situation. Operators try to make sure that each cell has a list of
manually configured and optimised neighbour cells. Hence, it is vital to note the
high probability of these cells failing to adapt when a rapid response is required
due to a sudden network change. The authors in [130] presented two methods that
used BDA to introduce a self-configured and self-optimised handover process, the
first was associated with newly introduced cells, while the latter was concerned
with the already existing cells. The analysis started by collecting and archiving
predefined handover KPIs. A dispatcher process is run after the collection period,
and its aim is to check the files to see if they were marked as new cells (where
Self-Configuration Analytics is started) or not (where Self-Optimisation Analytics
is started):

1. NCL self-configuration for new cells:

Newly installed BSs require Neighbour Cell List (NCL) to be configured on the
new cells. The selection process takes into consideration the antenna type, the

azimuth angle (for directional cells), the geographic location of the candidate cells,
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and the process concludes by selecting cells with a minimum distance and
maximum traffic load to be the top candidate cells. The NCL is configured via

Network Management System (NMS) Configuration Management (CM) tools.
2. NCL self-optimisation for existing cells:

The process starts by collecting KPI measurement statistics for the failed and
successful handovers, and this task is done by the Performance Management (PM)
or the NMS. Cells with a handover failure rate below a predefined threshold are
excluded from the NCL, while unlisted neighbouring cells with a successful rate

above a predefined threshold are considered as new neighbouring cells.
3.5.4.3 Optimising the Resource Allocation in LTE-A/5G Networks

The overall system performance evaluation in advanced wireless systems, like
LTE, depends on KPIs. In a quest to enhance the user experience, the authors of
[2] proposed an approach that utilises user and network data, such as configuration
and log files, alarms, and database entries/updates. This approach relies on the use
of BDA to process the above-mentioned data. The ultimate goal is to provide an
optimal solution to the problem of allocating radio resources to RAN users and
guarantee a minimal latency between requesting the resource and allocating it. This
is done through user and network behaviour identification, which is a task well-

matched for BDA.
The proposed framework involves three stages:

First stage: This process is carried out in the eNB system, processing the data
from the cellular and core network side. Binary values are acquired by comparing
cellular level KPIs to their respective threshold values, thus keeping the binary

matrix updated. This procedure is repeated at fixed intervals.

Second stage: Repeat the same steps as in the first stage. However, this process
is carried out on subscriber level data to acquire subscriber KPI, and maintain a

binary matrix.

Third stage: This is activated when a user initiates a resource allocation request.
A binary pattern is generated based on the user requirements. This pattern is later

handed over to stage 2 to update the binary matrix (if required) and incorporate the
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new values in the row that represents the requested bandwidth. After generating
the updated row, it is transferred to the first stage for comparisons with the current
Physical Resource Block (PRB) groups. To identify which PRBs suit the user, the
fuzzy binary pattern-matching algorithm [131] was used for that purpose. Using
this algorithm, the execution time increased linearly for an exponential increase in

the number of comparison patterns.
3.5.4.4 Framework Development for Big Data Empowered SON for 5G

The authors of [115] proposed a framework called Big data empowered SON
(BSON) for 5G cellular networks. Developing an end-to-end network visibility is
the core idea of BSON. This is realised by employing appropriate ML tools to

obtain intelligence from big data.

According to the authors, what makes BSON distinct from SON are three main

features:

e Having complete intelligence on the status of the current network.
e Having the ability to predict user behaviour.

e Having the ability to link network response and network parameters.

The proposed framework contains operational and functional blocks, and it

involves the following steps:

1- Data Gathering: An aggregate data set is formed from all the information
sources in the network (e.g., subscriber, cell, and core network levels).

2- Data Transformation: This involves transforming the big data to the right
data. This process has several steps, starting from:

a. Classifying the data according to key Operational and Business
Objectives (OBO), such as accessibility, retainability, integrity,
mobility, and business intelligence.

b. Unify/diffuse stage, and the result of this stage is more significant
KPIs, which are obtained by unifying multiple Performance
Indicators (PIs).

c. According to the KPI impact on each OBO, the KPIs are ranked.

d. Filtration is performed on the KPIs impacting the OBO less than a
pre-defined threshold.
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e. Relate, for each KPI and find the Network Parameter (NP) that
affects it.

f.  Order the associated NP for each KPI according to their association
strength.

g. Cross-correlate each NP by finding a vector that quantifies its
association with each KPI.

3- Model: Learn from the right data acquired in step 2 that will contribute to
the development of a network behaviour model.

4- Run SON engine: New NPs are determined and new KPIs are identified
using the SON engine on the model.

5- Validate: 1f a new NP can be evaluated by expert knowledge or previous
operator-experience, proceed with the changes. Otherwise, the network
simulated behaviour for new NPs is determined. If the simulated behaviour
tallies with the KPIs, proceed with the new NPs.

6- Relearn/improve: If the validation in step 5 was unsuccessful, feedback to
the concept drift [132] block, which will update the behaviour model. To
maintain model accuracy, concept drift can be triggered periodically even if

there was a positive outcome in the validation step.
3.5.4.5 Network Flexibility using Consumption Prediction

Consumption analysis is concerned with two factors: customer locations and
type of service. Consumption trends can be classified in a timely manner into long-
term, seasonal, and short-term. To reach an accurate prediction, the authors in
[123] implied that user data (e.g., GPS location and service usage) can be
correlated with other data (e.g., news, social network, events, and weather
conditions). Using BDA to analyse these correlations, operators would be able to
decide when and where to place their nodes without affecting the subscribers’

satisfaction.

Finally, a summary for the surveyed research topics is depicted in Table 3-2.
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Table 3-2: Research summary

Network Research
Ref. Proposed or Deployed Technique
Type Category
[118] | Analysed inter-technology (2G-3G) failed handovers.
Failure
. [82] Used XDR data to discover network failures and present a solution advice.
Prediction,
Detection, [119] | Developed CADM which uses CDRs to identify anomalous sites.
ETRvETY, AT [120] | Presented three case studies of self-healing using BDA.
Prevention
[123] | Suggested the analysis of the bandwidth trends to predict equipment failure.
[124] | Developed a Hadoop-based system to monitor and analyse network traffic.
Network
o Developed a solution powered by big data platforms with distributed storage and distributed database
Monitoring [125]
to solve the issues of data analysis and acquisition.
[81] Utilised big data to form a cluster made up of nearby users that share the BS’s wireless channel.
Cache and (1271 Analysed the data that resides within the cache nodes to enhance the determination, allocation, and
3 Content distribution of cache nodes.
5 Delivery — . : ; ) ) :
= [123] Suggested monitoring and analysing social media and popular sites, to predict and cache certain
=

contents, according to age category, at the predicted locations where these contents are highly

N
—_




demanded.

[89] Proposed the use of BDA and ML techniques to proactively cache popular content in 5G networks.
Presented three case studies in which a proposed network optimisation framework is efficiently
utilised. In particular, the work suggested:
[3]
1) The use of BDA to manage resources in HetNets. This is done in three stages (network planning,
resource allocation, and interference coordination).
2) The deployment of cache servers in mobile CDN.
3) The optimisation of networks with QoE in mind.
130] Proposed NCL self-configuration/optimisation algorithms to achieve an automatic, self-optimised
Network ) ) .
handover. The work relied on the processing of CM and PM KPIs using BDA platform.
Optimisation
0] Developed a three-stage framework that utilises the network and user KPIs to reach an optimal
allocation of radio resources (PRBs).
Presented a framework that uses big data collected from the cellular network to empower SON. They
[115] . . .
also presented a case study on how to detect sleeping cells using this framework.
[123] Correlated location data, service usage, and other contextual data to predict the consumption trends

and select the optimal node location.
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3.6 BDA in the Industry

There are several companies that offer network solutions based on BDA. These
companies and solutions are highlighted in Table 3-3. It should be noted that these
solutions are enabled by research conducted in their corresponding areas. We have

added academic research papers related to each solution in Table 3-3.

Due to the proprietary nature of industrial products, the exact algorithms or
methods behind these products is not available in the open literature. Therefore,
academic papers with related concept(s) are cited. NetReflex IP and NetReflex
MPLS utilises BDA [3, 82, 133] to provide services like anomaly analysis and
traffic analysis. Nokia provided several solutions targeting the wireless field. For
example, Traffica introduces itself as a real-time traffic monitoring tool that
analyses user behaviour to gain network insights, similar approaches were
presented in academia by the authors of [124, 134]. The Wireless Network
Guardian detects user anomalies in mobile networks where a comparable topic
was discussed in [135]. Preventive Complaint Analysis makes use of BDA to
detect behavioural anomalies in mobile network elements where the authors in
[136] provided a similar approach. Predictive Care utilises BDA to identify
anomalies in network elements before affecting the user, a comparable academic
approach is presented in [135, 137]. HP presented Vertica, a solution that exploits

CDRs for network planning, optimisation, and fault prediction purposes.
The authors in [119, 138] researched akin approaches. Amdoc’s Deep Network

Analyzer provides predictive maintenance and proactive network deployment
for cellular networks. The authors in [139] presented a similar approach. Log
analytics can be used for a variety of purposes. Aprevi’s ARLAS solution provided
real-time collection and storage of network logs. Related academic research was

presented by the authors in [140-142].

Examining the above solutions, one can note that the majority of the solutions
are in the wireless field. This, in fact, coincides with the orientation of the
academically-researched topics. Sampling through the offered solutions, we

noticed the increased interest in anomaly prediction and network node deployment.
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Thus, offering the customer a service that is as close to optimal as possible, while

minimising network expansion expenditures.
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Table 3-3: BDA-powered industrial solutions

Manufact Soluti Related Academi .
No. anuiactur ouHon crated Acadetmic Usage, Functions and Capabilities
er Name Papers
Eliminates network errors.
NetReflex IP Monitors QoS/QoE.
Capacity planning, traffic routing, caching, and other optimisations.
1 Juniper [3, 82, 133] Segment and trend MPLS and VPN usage to plan for congestion.
NetReflex Identifies traffic utilisation and trends to optimise operational cost.
MPLS Ability to slice network performance according to VPN, Cost of Service

(CoS), and Provider Edge (PE)-PE enabling more efficient planning.
Real-time issues detection and network troubleshooting.

Traffica [124, 134] Gain real-time, end-to-end insight on traffic, network, devices, and
subscribers.
Improves end-to-end network analytics and reporting with real-time
subscriber-level information.

2 Nokia Wireless . - . . .

Detects anomalies and reports airtime, signalling, and bandwidth resource

Network [135] consumption

Guardian ption.
Proactive detection of issues, including automatic detection of user
anomalies and low QoE score alerts.

Preventive 136] Detects network elements’ behaviour anomalies.

Complaint Predicting where customer complaints might arise and prioritises network
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Analysis optimisation accordingly.
Used for network elements, and proved its effectiveness by helping Shanghai
Predictive (135, 137) Mobile become more agile and responsive.
Care ’ Accuracy of the simplified alerts is around 98 percent, reducing operational
workload.
Provides CDR analysis that can help Communication Service Provides
(CSPs).
HP ) - - .
3 (HPE) Vertica [119, 138] Examines dropped call records and other maintenance data to determine
where to invest in infrastructure.
Failure prediction and proactive maintenance.
Deep Combines RAN information with BSS and customer data to deploy the
4 Amdocs Network [139] network proactively.
Analytics Predictive maintenance.
Apervi’s
Real-time
5 Apervi Log [140-142] Collects, aggregates, and stores log data in real-time
P Analytics > ABBIEEAES, 8 '
Solution
(ARLAS)
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3.7 BDA-powered Design Cycle and Challenges

In this section, we highlight a common theme among most of the surveyed
papers. This can be summarised as depicted in Figure 3-3. Also, we illustrate the

challenges facing the implementation of BDA in network design and operation.
3.7.1 BDA Design Cycle

The quest for a well-designed communication network is never-ending.
Researchers in the big data era rely on the capabilities offered by BDA to transform
the way networks are designed. This includes employing BDA to predict and
minimise the bandwidth utilisation, anticipate and prepare for upcoming failures,
and predict the precise energy requirements. Hence, creating a network with fewer

outages, higher user satisfaction, and an enhanced performance.

The network design process using big data can be outlined as shown in Figure
3-3. Big data is collected from the network, stored, and processed in a big data
cluster to extract useful information, such as trends, patterns, and correlations (step
1). The resulting information is then transferred to the decision-making platforms
where a new design decision for the network is evaluated by algorithms based on the
inward inferred knowledge (step 2). Finally, the new design decision is sent as
feedback configuration parameters to the network where re-configuration is
implemented (step 3). It should be noted that the duration of the above-mentioned
cycle might vary depending on the application type of the network, e.g., enterprise,
healthcare, agriculture, or transportation. For instance, enterprise networks can
generate large amounts of data over a short period and usually configuration faults
could be undone anytime. On the other hand, healthcare networks usually generate
less monitoring data over time, and they should not be re-configured until there is
sufficient data available, as frequent reconfigurations may result in failures with

severe impacts on peoples’ health.
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Figure 3-3: BDA-powered network design cycle
3.7.2 Challenges facing the use of BDA in Network Design

3.7.2.1 Network size vs BDA gains

Depending on the network size, the ease of redesigning a network through the
feedback cycle we mentioned in Figure 3-3 is highly affected by the number of
nodes. For instance, large data streams can be generated from the mass deployment
of small Wireless Sensor Networks (WSNs) nodes and [oT [143]. The collected data
may not carry a meaningful value until it is effectively analysed. However,
analysing or mining that immense amount of data demands on finely tuned big data
analytical capabilities, which turns out to be a challenging task [144]. Furthermore,
these massive amounts of data require hierarchal communication and data
processing solutions. The planning of such deployments in conjunction with the data

processing framework is a challenging task [143].

Comparing optical to [oT networks, the former has a small number of nodes,
hence they are easier to redesign, while the latter has a larger number of connected

objects, and that can impose a problem.
3.7.2.2 Security and Privacy

Users’ common patterns can be of great help. Network users can share certain
patterns, like downloading some popular videos, retweeting about some certain
upcoming game that would take place downtown, or even checking the same online

channels. This information can be of a great value when used for network planning
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or optimisation. However, to use this information, access to user data has to be
obtained, which is a thought that may cause unrest for many. When dealing with
user data, there is always a flag raised, and that flag carries two issues: these issues
are the security and the privacy of the data. This is why big data has to be protected

from unauthorised access and release [90].

Big data security is a vital topic. If we want to label a system as “secured”, it

must meet the data security requirements, which are [145]:

1- Confidentiality: This implies the means to protect the data from unapproved
disclosure.

2- Integrity: This implies the measures taken to protect the data from being
modified improperly or without permission.

3- Availability: This is the system’s ability to prevent and recover from
hardware as well as software failures that might result in the database system

being unavailable.

Privacy of data is an increasing concern. As a matter of fact, having accessible
data does not mean it is cthical to access it [146]. Electronic health records have

strict laws that precisely identify what can and cannot be accessed.

As an example, a user’s location information can be tracked through cell towers
and after a while, “a trail of crumbs” is going to be left by the user that could be
used to link the user to their residence or office location, and to eventually determine
the user’s identity, private health information (e.g., attending a cancer treatment
centre) or religious preferences (e.g., attending a church) may be discovered by
tracking the user’s movement over time [147], especially when we take into
consideration the close correlation between an individual’s identity and their
movement patterns [148]. Some user data can be very valuable, for example, the
estimated value of all global personal location data could reach $100 billion in
revenue during the next 10 years for service providers, and when it comes to

consumers and business end users, that figure can reach up to $700 billion [94].

With no obvious and secure way to handle the collected user data, BDA cannot
be considered a reliable system. The security issues related to BDA can be divided

into four concerns, starting with an input (e.g., handheld device, sensor, or even [oT
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device) where protecting the sensors from being compromised by attacks is regarded
as an important security issue, as well as the other areas of data analysis, output, and
communication with other systems [149]. It should be noted that these concerns are

present in all steps throughout the design cycle shown in Figure 3-3.

A solution that was designed to address the big data security and privacy
challenge is the integrated Rule-Oriented Data System (iRODS [150]). This novel
technology was designed to ensure security and privacy in big data, and it has some
technological features such as federated data grid or "intelligent clouds", distributed
rule engine, “iICAT” metadata catalogue, storage access layer that facilitates
common access, two ways of interfacing graphical and command line, and APIs to

interact with the iRODS data grid [90, 150].

In a position paper, the authors of [151] noted a number of privacy-preserving

challenges in the realm of BDA, and these challenges are classified as follows:

1- Individuals’ Interaction:

a. Transparency: BDA is mostly associated with information collection
and processing of specific individuals’ data. However, this means that
each individual is entitled to know about the data processing operations
conducted on his/her data, and the challenging part is in allocating that
specific piece of information linked to that person’s identity

b. Individual’s Consent. According to many privacy laws, an individual is
entitled to the right to be asked for his/her informed consent, and such
consent is a way of ensuring the individual is aware of the type of
processing that is conducted. This type of consent, along with the
explanation it requires is in fact considered challenging.

c. Consent Cancellation and Discarding Personal Data: Granting
consent, on one hand, should also allow the right of revoking it.
However, if an individual wished for his/her consent to be cancelled,
then this means all personal data has to be erased as well. This is a
challenging requirement when considering the fact that the data might

have been spread to various data collectors and data analysts.
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2- Re-Identification Attacks: A wuser’s identity may be compromised when
correlating different types of datasets, and this type of attack was further
classified:

a. Correlation Attacks.
b. Arbitrary Identification Attacks.
c. Targeted Identification Attacks.

3- Probable vs. Provable Results: Different results can be produced by different
queries conducted upon datasets. In this way, a provable link can turn out to be
merely a probable one.

4- Economical Outcomes: Providing huge amounts of datasets in advance is
essential for BDA to work. One way to provide such datasets is by buying
them from data providers who offer to sell their users’ data to their customers,
thus privacy threats might appear. Context faults along with confusion and
distraction are just two examples of other threats (i.e., fraud, censorship, and

surveillance).
3.7.2.3 Data Centre Scalability

In the big data paradigm, data centres are not only a platform to concentrate data
storage, but can also carry out further responsibilities, such as acquiring, managing,
organising, processing and leveraging data values and functions. That would

encourage the growth of the infrastructure and related software [91].

The continuous expansion in data volume, coupled with the ever greater demand
for faster processing speeds, and the increasing complexity of Relational Database
Management System (RDBMS) are considered the main elements to motivate the
hunt for expandable (scalable) data centres to handle the data volume and parallel
processing requirements; hence, a number of technical challenges have to be taken
into consideration when we try to design a scalable data centre that can efficiently
store, process, and analyse big data, these challenges can be mapped to the middle

octagon (big data cluster) shown in Figure 3-3 and they are:

1. Taking into consideration the variety and sheer volume of the disparate data
sources, just collecting and integrating data with scalability from scattered

locations is a difficult task to accomplish.
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2. Massive datasets must be mined by BDA at different levels and in either a
real time or near real time fashion.

3. Massive and heterogeneous datasets are to be stored and managed by big data
systems while providing the function and performance guarantees needed in
terms of fast retrieval, scalability, and privacy protection. Facebook is a clear
example, in that particular matter as it needs to store, access, and analyse over

30 petabytes of user-generated data [94].

Although some might claim that the current problem is not about storage (large
volume), but it is about the online processing ability [66], a scalable data centre
should also incorporate the ability to have a scalable storage system. Non-volatile
memory (NVM) technologies are expected to have a promising role in future
memory/storage designs [152]. An ideal storage platform has three vital points
(constraints) to meet: it should support efficient data access in case of failure
(network partitions and node failures), offer its clients a consistent view of the data,
and provides high-availability. However, according to Brewer’s CAP theorem [153],
this ideal system cannot exist, which is due to the fact that it is impossible for the
consistency to be guaranteed and for high-availability to be offered in the presence
of network partitions. As a result, one of the above constraints has to be relaxed by
distributed storage systems [152]. When it comes to securing the required processing
speed, Chip Multiprocessors (CMPs) are expected to be the computational plotter
for BDA [152]. Targeting the emerging trend, Datacentre-on-Chip (DoC)
architectures were proposed by the authors of [94], with four usage models that
depend on the state of the consolidating applications, if they were cooperating or
not. Key scalability challenges were identified and addressed by cache hierarchies

and shortage in performance isolation [152, 154].

3.8 Chapter Summary

There are many areas in which BDA can be utilised in the network design
process. The concept of gathering network data and correlating them with user
trends and service requirements can indeed create an adaptive and user-centric
network design. Due to the subject at hand, we focused on the field of wireless
communication networks design using big data. Delving deeper reveals that the field
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of 5G is getting the majority of the researchers’ attention due to the new
opportunities it has to offer. Furthermore, industrial efforts toward optimising
networks based on BDA reflect the increasing trend toward employing Al-like
approaches, such as pattern recognition and ML for network design. Some of the
considered solutions handle big data in a batch manner while others are capable of
performing real-time processing. Handling big data in a batch mode can offer more
accurate information at the expense of delayed results due to the size of the
processed data, while real-time processing offers fast results at the expense of
accuracy. Hence, it would be an application-dependent decision whether to choose

the former or the latter option.

We predict that the field of network design based on BDA will continue to
flourish in the near future as more data are collected from the networks and
processed to extract useful information regarding network behaviour. In the far
future, or maybe quite soon, as some claim, employing quantum computing for ML
purposes could help in dethroning Moor’s law and provide more processing space
per unit time. This extra space can be harnessed for BDA employed in network

design.
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Chapter 4
Data Preparation and Big Data Analytics Engine

4.1 Introduction

Our goal is the prioritisation of OPs connected to a cellular network covering an
urban environment. The OP prioritisation we seek to achieve is based on the severity
of the OP’s medical status. Big data harvested from the OPs’ medical records, along
with current readings from their body-connected medical IoT sensors are processed
and analysed to predict the likelihood of a life-threatening medical condition, for
instance, an imminent stroke. The OP prioritisation procedure is divided into two
main parts; data analytics part, and the MILP-aided cellular optimisation part. In this
chapter, we present the first part, illustrating the dataset preparation stages, the
method used to calculate the stroke likelihood where the set of mathematical
programming formulations that will be adopted throughout Chapter 5, Chapter 6,
and Chapter 7 are presented. Finally, we outline the approach we employed to
interpret the stroke likelithood as an effective user priority (i.e., weight) in the later

optimisation stage.

4.2 BDA Engine

We consider an urban environment covered by a cellular network. A BDA engine
is responsible for calculating the stroke likelihood of the OPs residing in the cellular
network’s coverage area. The goal is to prioritise the OPs over normal users in terms
of radio resource allocation. OPs with a higher likelihood of stroke must transmit
their data as soon as possible. However, if the OP was assigned a channel with a low

SINR, the required medical response may not arrive in time.

The OPs’ data is analysed in a cloud-located BDA engine running a naive
Bayesian (NB) classifier, one of BDA’s algorithms [155]. The role of the NB
classifier is illustrated in Figure 4-1. This engine is used to predict the stroke

likelihood for an OP. Based on this likelihood, the OPs are assigned proportional
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weights (i.e. priorities) to grant them PRBs with an optimal SINR favouring them

over normal (i.e., healthy) users.
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Figure 4-1: BDA Engine / OP Priority Calculation Procedure

4.2.1 The NB Classifier

We used the NB classifier to determine the likelihood of occurrence of a certain
incident ¢ (e.g., a stroke) relying on a given set of independent feature variables f;
obtained from the OPs’ big data (i.e., medical records). Given, a current state of a

certain OP, the classifier can use the training dataset (medical record) to determine
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the likelihood that this OP would suffer a stroke and quantify it as a risk factor.
These feature variables represent the vital readings (e.g., Systolic and Diastolic
blood pressure, total cholesterol, and smoking rate) that can be collected by body-
attached IoT sensors and fed to the BDA where the NB classifier resides. It is worth
noting that this classifier is termed naive due to the assumption it makes that the

feature variables are conditionally independent [22].
4.2.2 The NB Classifier’s Track Record

The NB classifier is preferred over other classifiers due to the following reasons;
(1) The classifier’s linearity [156] facilitates its direct joint use with the MILP while
it exerts less computational burden due to its low complexity. Employing nonlinear
classifiers imposes the use of additional linearisation procedures hence the model’s
complexity increases. This ultimately impedes further the system’s development.
Non-linear algorithms (e.g. artificial neural networks) can be computationally
intensive by nature. Additionally, this can slow future model developments and
scalable expansions; (ii) In a comprehensive study in [157], the authors stated that it
is complicated to select a single tool for all types of disease analysis and they chose
the NB classifier for heart disease problems; (iii) According to [158], the NB
classifier was used for cardiovascular disease risk discovery and it was validated by
a number of cardiologists where more than 80% of the respondents agreed with the
classifier’s accuracy; (iv) Its confirmed competitiveness when compared to other
algorithms including NN and DT [22]; (v) The NB classifier requires a small
training dataset [159]; (vi) It was the choice of many other researchers in
cardiovascular disease risk prediction as in [159-166]; (vii) In the field of e-
healthcare and disease risk prediction, the NB classifier proved to be one of the
optimal (and sometimes the optimal) for such task, its accuracy surpassed DT, KNN
and NN as discussed in [167]. The classifier gave higher accuracy when compared
with DT in [168]. An intelligent heart disease prediction system was proposed in
[169], the authors compared NB classifier, NN, and DT. The NB classifier proved to
be the most effective as it had the highest percentage of correct predictions; (viii) it

is optimal for any two-class concept with nominal features [160].
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4.2.3 MILP Definitions

The following sets, parameters, and variables are defined to represent the

developed MILP-compliant NB classifier.

Table 4-1: System Sets and Parameters

Sets

x Set of users.

D Set of days.

F Set of features in learning dataset.

C Set of classes in learning dataset.

F, | Setof values feature F; can take in the learning dataset.

¢; | Setofvalues a class variable C; can take in the learning dataset.

7 Set of features and class variables.

Z Set of outpatient users,(Z c X).

Parameters

CPE’If The conditional probability that input feature i takes the value v given
that outpatient z has class C considering input feature i of value v given
class c¢ for outpatient z.

CS; | The current state of the patient in feature i (e.g. Cholesterol value).

V,C,fi’z CS;*" value taken by feature F; for patient z.

ngi'z CS;*" value taken by class C; for patient z.

E{;?’Z Binary variable, E g;d'z = 1 if feature F; takes the j" value on day d for
outpatient z, 0 otherwise.

G'&’id’z Binary variable, Gcri'd'z =1 if class C; takes the r* value on day d for

outpatient z, 0 otherwise.

Sjp':g’z Binary variable, Sélrcldz =1if EI{-"idZI and Gglfd’ZZI (Logical AND

operation).

UP, | User priority (UP, =1 for normal users whereas
UP;, > 11is granted for OPs depending on their risk factor).

PS*" | The probability of stroke of outpatient z.
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o Tuning factor.

NU | The total number of normal users.

4.2.4 Calculating the Stroke Likelihood

Developing the NB to work jointly with the MILP requires the reformulation of
the stroke likelihood calculation method. The primary, MILP-noncompliant,
mathematical formulation on which the NB classifier is based is depicted in

equations (4-1) and (4-2).

Given a dataset comprised of a set of independent variables, called the feature
variables, and a set of dependent variables, called the class variables. The likelihood
of F given C is given as:

i=1(C=cNF;=f;)
?zl(Cl' = Ci)

pFy=filC=0c) = (4-1)

The NB classifier’s posterior probability can be expressed as shown in equation

(4-2).

p(C=clF=f)=PC=0)| |PEi=filc=0) (4-2)
i=1

where P(C = c) represents the prior probability of stroke, in other words, it is
the number of days in which a stroke occurred over the total number of days (i.e.,

observation period). While [T, P(Fi = fi |C = c) represents the joint probability.

A dataset comprised of five columns is depicted in Table 4-2. The monitored
body readings are stored in four columns represented by the feature variables
fi, - fa reflecting the recorded state of each feature, whereas the fifth column
represents the class variable C that registers whether a stroke (or a critical state)

occurred in the corresponding day.
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Table 4-2: Out-Patient Medical Record (Sample)

1 Normal Normal Low Heavy Yes
) High
2 High Normal _ Moderate No
Hypertension
. High Pre- )
30 | Optimal ) ) Light Yes
Hypertension | hypertension

Hypertension | Hypertension

The total number of rows represents the observation period for each OP and in
this work, it is 30 which stands for 30 days. The total number of medical records is
equivalent to the number of OPs, which in this thesis is three OPs. It should be noted
that since the dataset is text-based with no multimedia components, its size is

measured in kilobytes of data and this is harmonious with other datasets as in [170].

The classifier reads the OP’s medical record (check Table 4-2) and uses the OP’s
current state (the lower part in Table 4-2) to predict the likelihood of an upcoming
stroke. This likelihood is to be converted later (in the upcoming subsection) into a
risk factor used to calculate the weight given to each OP to be prioritised among
other users during PRB assignment which is implemented in this work using a MILP
and a heuristic, as explained in the subsequent chapter. We also note that the terms

“user weight” and “user priority” are used interchangeably throughout this thesis.
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4.2.4.1 The Framingham Dataset

Since preserving the patient’s privacy is of utmost importance for healthcare
providers, it was not possible to acquire cardiovascular disease datasets of patients
monitored over an extended period of time. The available datasets either reported
statistics or were acquired through a collaboration with a medical institute that
provided them with such datasets. Unfortunately, such datasets were not publicly
accessible as in [158]. Thus, instead of generating a random dataset and risk having
non-medically-compliant readings, we are fortunate in that the Framingham heart
study in [171] has a big dataset that covers the features we needed. We populated
our dataset by segmenting rows from the Framingham dataset and assigned each
segment to an OP. Thus, the resulting dataset represents an observational period of
30 readings for each OP. It is worth noting that the Framingham cardiovascular
cohort study started in 1948, and targeted adults residing in the town of
Framingham, Massachusetts. The study is ongoing, and a new phase has started in
2002 with the enrolment of the third generation of participants [172]. The above—
mentioned OP data has the characteristics of big data; hence, BDA algorithms can
be used to predict the likelihood of occurrence of a certain incident (i.e. a stroke in

our case).
4.2.4.2 Data Pre-processing

It should be noted that data reduction, data cleansing, and data generalisation are
the data preparation steps that had to be carried out before applying the NB classifier
to the Framingham dataset. Data preparation (or data pre-processing) is a vital stage
to prepare the dataset before the use of BDA/ML algorithms [173], [174]. Moreover,
having the dataset ready is a one-time process (i.e. before running the analysis
[175]) as the rest of the procedure is for the NB to read the current state and to run
its classification procedure against the outpatient’s medical record (i.e. dataset)
which is not time-consuming as we stated earlier. A similar process is done in
relation to new incoming data (i.e., feature vector) from the outpatient. This feature
vector is labelled “current state” in Table 4-2, which is only one row of data per
user. Thus, the preparation time is negligible. As for adding the newly acquired
readings to the dataset, those readings are added periodically:

1- Data Reduction
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In this process, particular features are retained while others are excluded. There
are three reasons for this; firstly, reducing the number of features has a direct effect
on the dataset dimensions, thus, reducing the processor and memory utilisation
while improving the classifier’s accuracy [176]. This can be a crucial element in
reducing the MILP’s execution time. Secondly, in this work, we are targeting the
main stroke contributors. Thus, according to [177, 178], Hyperlipidaemia (i.e. Total
Cholesterol), blood pressure, and smoking are among the main contributors to a
stroke. Thirdly, since each OP has a dataset comprised of their own readings, the
inclusion of other fixed and very slowly-changing feature variables like weight,
gender, age, and body mass index (BMI) can be avoided, hence, the selected
features in this thesis (Cholesterol, blood pressure, and smoking). However, the
impact of feature selection/ranking is to be investigated as a future extension to this

work.
2- Data Cleansing

Incomplete, erroneous, and inconsistent entries were omitted. Thus, the resulting

dataset is error-free and has a complete set of values across all entries.
3- Data Generalisation

The discretisation of data converts large numbers of continuous feature values
into smaller ones. The purpose is to find concise data representations as categories
[179]. The authors of [180] and [181] showed that the NB models’ accuracy can be
positively impacted by discretisation. Moreover, it is considered a data reduction
mechanism because it reduces data from a large domain of numeric values to a

subset of values that fall in categories [182].

Given the medical nature of the application and to stay in line with the medically-
accredited ranges in the data discretisation stage, the ranges defined by the
American National Institute of Health and the British Stroke Association in [183],
[184] and [185] were adopted for the Systolic and Diastolic blood pressure values
and total Cholesterol, respectively. As for the smoking rate, we categorised it into
the levels: light, moderate, and heavy, respectively as in [186]. Consequently, the
continuous values of the Framingham dataset were categorised as observed in Table

4-2 and according to their medically-accredited ranges shown in Table 4-3.
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It should be noted that upon further examination we found that data can be
discretised according to the European standards. However, investigating this is

beyond the scope of this thesis.

Table 4-3: Feature Values and Their Corresponding Level

Feature Range Level

<200 Optimal

Total cholesterol Level (mg/dl) [185]* 200-239 Normal

240+ High
<120 Normal

Systolic BP (mmHg) [183] [184] ** 120-139 Pre-hypertension
140+ High Hypertension
<80 Normal

Diastolic BP (mmHg) [183] [184]** 80-89 Pre-hypertension
90+ High Hypertension
1-10 Light

Smoking rate (Cig/Day) [186] 11-19 Moderate
20+ Heavy

* Ranges adopted were according to the American National Institute of
Health [185].

** Ranges adopted were according to the American National Institute of
Health and the British Stroke Association [183] [184].

4.2.5 Calculating the OP’s Priority using MILP-Compliant NB

Formulation

We developed the following formulations to include the NB classifier within the
MILP model, where it calculates the stoke likelihood PS, given a certain current
state cs;. The model then transforms this likelihood into an updated user priority

(weight) UPy, indicated in equation (4-7).

Rewriting equation (4-1) in a mathematical programming formulation gives:
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(D] jrdz
SJ...

= remla =) =S S

d=1 F C C;

(4-3)
ViedcelC, zeZ

where equation (4-3)is used to calculate the conditional probability P(F;|C;) in
the MILP model. The nominator represents the total number of days where the
outpatient z has a certain reading VF]lZ that we want to test, and a stroke (indicated
by V(}f) where C; depicts the class stroke and r = 1 registers the stroke occurrence.

The denominator represents the total number of stroke days.

sg;gid'z >0

(4-4)
VzZEZ i€ dED
Stz = ey o -1

(4-3)

VzeZ,i€eJ,deD

Equations (4-4) and (4-5) achieve a logical AND operation in which the binary

]rdz

variable S, =1 when both binary variables E g’id’zand Gad'z are equal to 1.

This variable indicates that outpatient z with the j* value of feature F; has the rt"
value of class C; in day d.
Rewriting equation (4-2) gives:

|D| Gr,d,z J

psr= ) || [P(re= v ec= i)
d=1 (4-6)

i=1

VzeZ
Equation (4-6) represents the formulation we used to determine the probability of
stroke PS™". Given a current state CS; , all feature variables F; are considered. This

means i has the range i < |7| (in this work i = 1,..,4). The L.H.S. represents the
posterior probability that outpatient z has a stroke. The first term on the R.H.S.

represents the prior probability of stroke and the second term on the R.H.S.
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represents the joint probability that patient z has the given values of the features.
The multiplication of the two terms on the R.H.S. shows the naive nature of the NB

estimate in this case where the features are assumed independent.

4.3 Results

Since the NB classifier produces probabilities of small magnitude, we multiplied
the overall probability of stroke (PS*") by a tuning factor « to produce an effective-
yet-reasonable weight, which drives the objective function into favouring the
imperilled outpatients. The user weight UP, is calculated as shown in equation
(4-7).

UP, =1+ a-PS*"
(4-7)
VkeXK:z=k k> NU

The NB calculated the OPs’ stroke likelihood PS%" of 0.0032, 0.0064, and
0.00208 for users 8, 9, and 10, respectively in a 10 user scenario. The use of tuning
factor a yielded 1.104 < UP, < 1.32,1.208 < UP, < 1.64, 1.312 < UP, <
1.96m, 1.52 < UP, < 2.6, 2.04 < UP, < 4.2 user priorities according to tuning
factor values of 50, 100, 150, 250 and 500, respectively.

In order to test the classifier’s accuracy, we employed the tenfold cross-validation
method. The NB classifier’s accuracy and precision were calculated for all
outpatients’ datasets. The NB classifier scored an accuracy of 60%, 63.3%, and
63.3% and precision of 65.2%, 66% and 71.6% for users 8§, 9 and 10 (i.e., OP 1, 2,

and 3), respectively.

4.4 Chapter Summary

This chapter illustrated the role of BDA in this thesis. It also gave an overview of
the dataset used in this thesis, along with the data pre-processing stages the dataset
underwent before the NB classifier can operate. Further, the reasons behind
choosing the NB classifier to calculate the OP’s stroke likelihood were illustrated.
Moreover, the MILP-compliant NB mathematical formulations were given, and the

mathematical formula used to transform the stroke likelihood into a meaningful
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priority asserting the favouring of the OPs over normal users in the optimisation
process was presented. Finally, the classifier’s performance was inspected in terms

of accuracy and precision.
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Chapter 5
Patient-Centric Cellular Network Optimisation using Big Data

Analytics

5.1 Introduction

BDA is one of the state-of-the-art tools to optimise networks and transform them
from blind tubes that convey data, into cognitive, conscious, and self-optimising
entities that can intelligently adapt according to the needs of their users. This, in
fact, can be regarded as one of the highest forthcoming priorities of future networks.
In this chapter, we propose a system for OP centric single-tier homogenous LTE-A
network optimisation. The predicted stroke likelihood that is calculated in Chapter 4
is employed in this chapter to ensure that the OPs are assigned optimal LTE-A PRBs
to transmit their critical data to their healthcare provider with minimal delay. To the
best of our knowledge, this is the first time BDA are utilised to incorporate the
topics of resource allocation, patient monitoring, disease risk prediction, and
prioritisation to optimise a cellular network in an OP-conscious manner. The PRBs
assignment is optimised using MILP and verified using a heuristic. Two approaches
are proposed, a WSRMax approach and a PF approach. The approaches increased
the OPs’ average SINR by 26.6% and 40.5%, respectively. The WSRMax approach
increased the system’s total SINR to a level higher than that of the PF approach,
however, the PF approach reported higher SINRs for the OPs, better fairness and a

lower margin of error.

5.2 System Model

We consider an urban environment covered by an LTE-A cellular network. The
area is populated with a number of users scattered at random distances from the BSs
(between 300 and 600 meters). The users fall into two categories; normal (healthy)
users and OPs as shown in Figure 5-1. As we previously indicated, cellular networks
can provide an optimal way for OPs to have a connection when compared to Wi-Fi

or wired connections. Since the OPs are randomly-located, different power levels
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(signal strengths) will be received from their mobile devices. We are assuming a
system with a slow fading channel where the channel gain remains constant within
one TTI. Thus, the coherence time is assumed to be greater than the duration of a
TTL To this end, the objective function of our optimisation model guarantees the
allocation of high gain PRBs to the OPs and according to their likelihood of stroke.
Aiming at maximising the total SINR received at the BS. Thus, enabling them to
transmit their data as soon as possible, while preserving fairness among users to
ensure such a resource allocation scheme will not negatively impact other users. We

note that the terms ‘healthy user’ and ‘normal user’ are used interchangeably

throughout the thesis.
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Figure 5-1: Patient-Centric Cellular Network

The system will undergo the following stages, Further, we demonstrate those

stages in a timeline as shown in and will have the timeline

1- The Data Collection stage; where the OP’s EHR and readings from the body

attached medical IoT sensors are being aggregated,

cleansed, and

normalised. Erroneous and null entries are deleted in this stage and the

dataset is prepared to be used to train a ML model.
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The training stage; this is where the data collected from the previous stage is
used to train the classifier(s) or the ML model(s). This stage takes place in a
cloud-based BDA engine.

The prediction stage; It should be noted that this stage takes place in the
cloud where each OP will have a dedicated classifier trained on the OP’s
own dataset. The output of this stage is the stroke likelihood for that OP.

The network optimisation stage; residing in the operator’s core network side,
the system utilises the stroke likelihoods acquired from the previous stage to
convert them into priorities used during the radio resource allocation stage.
The update and review stage; in case it is no longer required to monitor a
specific OP, or if the OP is still under monitoring, a periodic update to the
OPs’ EHR and thus the training dataset will take place. Hence, the
classifier’s introduced in the third stage must be retrained using the updated
dataset. However, it should be noted that the frequency of the dataset update
and classifier retraining is beyond the scope of this work and it is the subject

of a future work.

It should be noted that the system’s computational complexity is divided into two

parts; post-operation and operational computational overheads. The former has no

effect on the system’s performance as it takes place before the system operation (i.e.,

applies to stages 1, 2, and 5 in Figure 5-2) timeline. Whereas the latter takes place

during stages 3 and 4 in Figure 5-2 and it equals to O(N*logN) as we shall

illustrate in detail in Section 5.5.3.
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Figure 5-2: System Timeline and Operation Stages

5.3 Problem Formulation

We developed the following MILP models to optimise the cellular system
resource allocation for OPs and normal users. We consider the OPs monitoring
system to operate in a scenario of an LTE-A network comprising B BSs represented
by set B = {1, ..., B}, operating at channels with 1.4 MHz bandwidth. Each BS b
has N PRBs represented by set ' = {1, ..., N}. The network serves K users (normal
and OPs) represented by set K = {1, ..., K} by allocating PRB n to connect to BS b
in an instant in time. The goal is to optimise the uplink of the LTE-A network, so
that the OPs are prioritised over normal users; thus, allocating them high-powered

PRB:s.

We formalise this problem as a MILP model. Table 5-1 defines the sets,

parameters, and variables used in the network optimisation problem formulation.
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Table 5-1: System Sets, Parameters, And Variables

Sets
x Set of users.
N | Set of physical resource blocks.
B Set of base stations.
C Set of classes in learning dataset.
Z Set of outpatient users,(Z c X).
Parameters
UP, | User priority (UP, =1 for normal users whereas

UP, > 1is granted for OPs depending on their risk factor).

Qﬁm Power received from user k using PRB n at base station b.

Hz,n Rayleigh fading with zero mean and a standard deviation equal to 1

experienced by user k using PRB n at base station b.

Az Signal attenuation experienced by user k connected to base station b.

PM | Maximum power allowed per uplink connection.

Power consumed to utilise PRB n to connect user k to base station b.

A An arbitrary, large positive value.

0-2 Additive White Gaussian Noise (AWGN) power in watts experienced by
user k using PRB n at base station b.

PS*" | The probability of stroke of outpatientz on ther®™ value of class
variable ¢

Piecewise linearisation equation coefficients for line y of user k.

a Tuning factor.

NU | The total number of normal users.

Variables

X,’:'n Binary decision variable X ,lc’,n =1 if user k is assigned PRB n in base

station b, otherwise X ,lc’,n =0.

T ﬁ‘n The SINR of user k utilising PRB n at base station b.

w‘b . . . . . W’b _ b w
Drni | Non-negative linearisation variable where ¢, . = Tie nXmn-
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Sk SINR of user k.

Ly, | Logarithmic SINR of user k.

A user’s SINR at the uplink side of an OFDMA network can be expressed as
[18].

Signal Q ,lz’nX ,’("n

Interference + Noise ~ Ywes Ymex Qo X%, + ol 1)
w#b m=#k ' ' '

b _
Tk,n -

Examining the numerator (i.e. signal), Q,l("nX ,’c’,n represents the signal power
received at the BS side from user k. The binary decision variable X ,’C"n = 1 indicates
that user k is connected to BS b and occupies PRB n. The power received at BS b
from the interfering user(s) m, m # k, on the same PRB is er,’n,anﬁ,n; while X} ,
indicates that the interfering user(s) m is connected to another BS w,w # b on
PRB n. The AWGN is annotated as 0',3 n- A graphical illustration of equation (5-1) is

shown in Figure 5-3.

Rewriting equation (5-1):

b b w b b _ Nnb b
Tk,an,nXm,n + Tk,no-k,n - Qk,nXk,n
WEB meX
w#b m*k (5'2)

VkeEK,neN,beB
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Figure 5-3: User Interference

The first term in (5-2) is nonlinear (quadratic) as it involves the multiplication of
two variables (Continuous T,g nand Binary X} ). Therefore, linearisation is
essential to solve the NP-hard model using a linear solver such as CPLEX, where

the linearisation is given in (5-5) to (5-8).

We have developed two approaches to solve the resource allocation problem. The
first approach uses an objective function that maximises the Weighted Sum-Rate of
the SINRs experienced by the users. The second approach introduces fairness among

the users by employing a Proportionally Fair (PF) objective function.
5.3.1 MILP Formulation for the WSRMax approach

The objective is to maximise the system’s overall SINR. This can be realised

through the maximisation of the individual users’ SINRs.
5.3.1.1 Before Prioritising the OPs

The OPs’ risk factors introduced in the previous chapters are scaled into priorities
(i.e. weights) and used to prioritise the OPs over other users. The MILP model is

formulated as follows:
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Objective: Maximise

PPN -

kEX neEN bEB

The objective given in (5-3) aims to maximise the weighted sum of the users’
SINRs. These weights (i.e. priorities) are higher for OPs compared to healthy users
and proportional to the OPs calculated risk factor. Note that UP,, has an initial value
of 1 for all users as shown in (5-4). However, the OPs will have updated values
according to their risk factor. This will ultimately drive the system into prioritising
the OPs over the healthy users during PRB assignment. The mathematical
formulations related to the OP weight (priority) calculation were illustrated in

Chapter 4.

UPk=1
(5-4)
VkeX

Constraints:

To maintain the model’s linearity while performing the multiplication of the float

variable T,gn by the binary variable X;;, ,, we follow [187], and define a variable

¢X:ﬁ,k that includes all the indexes of both aforementioned (i.e., float and binary)
variables as in equation (5-5). Constraints (5-6), (5-7), and (5-8) govern the
multiplication procedure. As a result, the only two values satisfying the constraints
are either zero (when x =0) or T (when x=1). It should be noted that A is a large

enough number where A >>T:

Subject to:
) (3-5)
¢m:n,k =0
Replacing the quadratic term T,ﬁ"nan with the linearisation variable ¢%:z,k that
incorporates all the indexes of the multiplied variables.
Brmie < AKX
(5-6)

VkmeXKX,neN,wbeB,(m+kb+w)
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,b b
¢W < Tk,n

mnk —
(5-7)
VkmeKXneN,wbeB,(m*kb+w)
¢m’2k = AXm,n + Tlgn -1
(5-8)

VkmeKXneN,wbeB,(m+kb+w)

After replacing T,anm’n with qbn"z:z’k, equation (5-2) can thus be rewritten as in
(5-9). ﬁjﬁ,k = T,f'nX,",‘{,n is equal to the SINR of user k connected to BS b with
PRB n if there is an interfering user m connected to the other BS w with the same

PRB n; it is zero otherwise.

E E b w,b b b _ Nnb b
Qm,n¢m,n,k + Tk,nak,n - Qk,nXk,n
WEB meX
w#b m#k (5'9)

VkeEKX,neN,beB

Z PXP, <PM
nenN (5-10)

VkeX,beB

Constraint (5-10) ensures that the users do not exceed their maximum available
amount of power per uplink connections (in case more than one PRB is utilised by

the same user k). In the current work, the user is allowed a single PRB.

KEXK (5-11)
VneN,beB
Constraint (5-11) limits the assignment of each PRB to one user only.
Z Z Xp, =1
bEB nEN (5-12)

VkeXK
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Constraint (5-12) guarantees that each user is assigned at least one PRB from any
BS. Thus, no user is left without service. Additionally, this prevents the MILP from

blocking interfering users to maximise the total SINR.
5.3.1.2 After Prioritising the OPs

In this approach, OPs’ risk factors introduced in the previous chapter are scaled
into weights to prioritise the OPs over other users. The MILP model is formulated in
the same way as mentioned in the previous subsection. However, equation (5-13) is

included in this model to represent the OPs’ weights (i.e. priorities) as follows:

UP, =1+ a-PS*"

(5-13)
VkeXK:z=kk>NU
while (5-4) is replaced by (5-14) to cover the normal users only.
UrP, =1
(5-14)

VkEkeEXK:1<k<NU

5.3.2 MILP Formulation for the PF Approach

In this approach, the objective is to maximise the logarithmic sum of the user’s
SINRs. Due to the nature of the natural logarithm, a slight decrease in the overall
SINR might be observed but to the expense of preserving fairness among normal

users.
5.3.2.1 Before Prioritising the OPs

In this case, all users are treated equally, thus there is no prioritisation in terms of
resource allocation. However, keeping fairness among users still holds as a
necessity. Since the only part that we are dealing with is the value of the individual
user’s SINR, and to simplify the manipulation of the equation before adding the
natural logarithm part, we present the optimisation variable Sy, to serve as the SINR

for each user k.

Se= ), ) Thn

neN beB (5-15)

VkeX
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Equation (5-15) replaces the three-indexed variable T,gn with a single-indexed

variable Sj,.

Lk:lnSk
(5-16)
VkeX

Equation (5-16) calculates L; as a logarithmic function of the user’s SINR S,.

The objective is as shown in (5-17):

Objective: Maximise
5-17
Z}k (5-17)
keK
Constraints:

In addition to constraints (5-5)-(5-12) from the previous model, the PF satisfies

the following constraint
Subject to:
Ly Smyp * S+ hyy (5-18)
VkeX

Constraint (5-18) represents a set of piecewise linearisation relations
implemented to linearize the concave function in equation (5-16). Note that
constraint (5-18) corresponds to the line equationy = mx + h where the line
coefficients (i.e. my ; and h,, ) are selected as in [188]. It should be noted that the
number of constraints used in the linearisation procedure is dictated by the total

number of lines used to cover the linearized interval.
5.3.2.2 After Prioritising the OPs

In this case, the outpatients are prioritised. Equation (5-16) is rewritten to reflect
the change.
Lk =In Sk

(5-19)
VkeX:1<k<NU
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Equation (5-19) shows that the log function is applied to normal users only. The

OPs, on the other hand, are assigned weights instead.

Objective: Maximise
(5-20)
Ly + z SeUPy
k€EK,1<sks<NU keEK,k>NU

The multi-objective function in (5-20) (i) maximises the sum of the SINRs
allocated to all users, (ii) Assigns OPs priority by allocating OPs PRBs with high
SINRs that reflect their relative priority, and (iii) Implements Fairness: by assigning
healthy users PRBs with comparable SINRs. These objectives were implemented by
adding both the summation of a log function of the healthy users’ SINRs (i.e.
Proportional Fairness) and the weighted sum of the OPs’ SINRs (OPs priority).

Constraints:

The model satisfies constraint (5-5)-(5-12) from the previous approach. In

addition to equation (5-14) and:

Lk < my,k * Sk + hy,k
(5-21)
VkeXK, k< NU

Constraint (5-21) represents the same set of equations for the piecewise
linearisation that was used in constraint (5-18), however, the difference is in the

range of users it is applied to.
5.3.3 Calculating the Received Power

The received signal power (in Watts) Q,l(’,n varies according to the channel
conditions and the distance between the user and the BS. Considering Rayleigh
fading denoted by H,‘g,n and distance dependent path loss denoted by Aﬁ'n [19], the

received signal power is given as:
Qin = P Hign Ay (5-22)

where H,l(’,n denotes Rayleigh fading and AY represents power loss due to

attenuation (distance dependent path loss) and is given in (5-23) [19]:
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distance(meters)

= ) 5-23
A (dBm) = 128 + 37.6 logy, 1000 (5-23)
To unify the units, equation (5-24) is used to convert the power to Watts.
A(dBm)
A(mw) =10 10 (5-24)

5.4 Heuristic

To provide a method to validate the MILP operation we developed a heuristic
approach optimising the PRBs assignment based on the user’s priority. The heuristic
uses simple rules and therefore can be used in the cellular network control plane to
carry out resource allocation in real time. The heuristic, as shown in the flowchart in
Figure 5-4, starts by initialising the data parameters, sets, variables and reads the
received power (Q) values from a separate file. A check for user prioritisation takes
place. This affects the users’ admittance order to the system. If user prioritisation is
ON (i.e. BDA is used), the OPs will be arranged according to their priority such that
the most critical OP will be served first. This kind of check is vital at this stage due
to the sequential nature of the heuristic, thus, the first few users will be granted high
SINRs due to the higher number of available channels. OPs do not compete with
each other over the available PRBs, i.e. their interfering candidates are normal users
only. Finding the PRB at which a user achieves a relatively-high SINR is done by
assigning a PRB where interference is attributed to a subset of |B|-1 interferers with
minimum interfering power to that user at its PRB, where |B| is the number of BSs
(the cardinality of B). As the heuristic continues to run, the PRB availability is
reduced. Once the PRBs are allocated to the OPs, the total number of allocated
PRBs will equal to (2 * Z). On the other hand, the number of free PRBs (FPRB)
will be equal to [B * V'] — [2 = Z] giving a total of 2FPRBcombinations. Finding an
interfering user with the minimum power on each RB (i.e. maximum SINR) results
in reducing the above number of combinations. Accordingly, a pool with the length
|FPRB| comprised of the highest achievable SINR on each PRB will be formed. The
heuristic follows a semi-greedy approach [189]. Thus, one SINR will be randomly
selected from the pool of best SINRs. The reasons behind this selection criterion are

(1) to establish local fairness between the user and its interferer so that the interferer
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does not endure a huge impact by being assigned a very low-powered PRB;
moreover, (ii) to conform to the objective function in which each individual user’s
SINR is maximised while maximising the overall system-wide SINR. Once the user
is assigned a SINR, the corresponding PRB(s) is assigned to the user and the
interferer. The heuristic repeats the above procedure for the remaining users. Due to
its sequential nature, this heuristic was iterated 1000 times, randomising the users’
admission order (serving sequence) to the system in each iteration, while
maintaining the semi-deterministic nature of the interferer’s PRB assignment stage.
The users’ average SINRs are then calculated. Thus, applying this heuristic over
different realisations of the network adds fairness among users in the long run.
Sensitivity analysis was carried out to calculate the 95% confidence interval. To that
end, the heuristic was applied to over 100 files each containing different values
representing the powers received from the BS. Concurring results between the
heuristic and the MILP model operation can be observed, as will be shown in the

results section.

It is of interest to compare the performance of the MILP which leads to the
optimal solution with the performance of the heuristic which is sequential in nature
and sub-optimal. In our optimisation model, the objective is to maximise the overall
system’s SINR by maximising the SINRs of all individual users while prioritising
outpatient users over the healthy ones. This proceeds by allocating to user-A PRB-X
at BS-1 which has a relatively high received power among the unassigned PRBs on
that BS while choosing an unassigned interfering user-B to utilise the same PRB-X
where the received power on BS-1 is one of the lowest. Such a scheme will be
approached differently by the MILP and the heuristic as their method of operation

differs in the following manner:

Given a certain objective and a number of constraints, the MILP produces a
feasible region bounded by the constraints defined in the optimisation problem. All
points within that region can satisfy the objective. However, only one point typically
represents the optimal solution. The MILP tries all the points at the boundary of the
feasible region for all the possible user-interferer combinations and chooses the
optimal result which best satisfies the objective (i.e. either attaining the maximum or

the minimum).
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The heuristic, on the other hand, works on a sequential basis. In our case, it
admits and examines the users and the interferers one by one (i.e., sequentially). The
user admitted first will have the advantage of being able to select from a wide range
of resource blocks that correspond to different potential interferers. This range
decreases as PRBs are assigned to the users one by one. Therefore, first-served users
have the highest SINRs. To assert fairness between users, we have randomised the
user admission order to the system in each iteration and this fairness is demonstrated
when comparing the heuristic and the MILP results in Figure 5-5, Figure 5-6, Figure
5-8, Figure 5-9, Figure 5-10, and Figure 5-12.
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5.5 Results and Discussion

Before delving into the results of the MILP model and heuristic, the parameters
indicated in Table 5-2 should be noted. We consider a cellular network that operates
in an urban environment, hence Rayleigh fading channel model with path loss. The
results evaluate two scenarios; the first represents the state of the network before
using BDA to prioritise the OPs. In this case, all the users were given equal base
priority (i.e. weight) of 1. The second scenario represents the network state after
using BDA where the OPs’ priorities are updated according to their risk factor and

the value of the tuning factor a.

The proposed system assumes a cloud-based setup with each OP having their
own dataset comprised of their daily observations. The proposed system employs a
dataset of daily observations over the course of a month, with a requirement to
append additional observations periodically. In this work, we have assumed that the
update frequency is daily. Additionally, the proposed system considers a system that
is in operation. Here the dataset and the trained model are operational and the OP
current reading is utilised by the NB classifier with the dataset to evaluate their
current medical condition. Moreover, we would like to highlight that the classifier’s
role in this thesis is to calculate the probability of stroke. Since the outpatients are
all under continuous monitoring, they are favoured according to their probability of
stroke as long as the system is operational. The OPs’ stroke likelihood PS*" were

0.0032, 0.0064, and 0.00208 for users 8, 9, and 10, respectively.

We have employed the tenfold cross-validation method. The classifier’s accuracy
and precision were calculated for all outpatients’ datasets. The classifier scored an
accuracy of 60%, 63.3%, and 63.3% and precision of 65.2%, 66% and 71.6% for
users 8, 9 and 10 (i.e., OP 1, 2, and 3), respectively. The use of equation (5-13)
produced 1.104 < UP, < 1.32,1.208 < UP, < 1.64, 1.312 < UP, < 1.96m,

1.52 < UP, < 2.6,2.04 < UP, < 4.2 user priorities according to tuning factor
values of a of 50, 100, 150, 250 and 500, respectively.
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Table 5-2: Model Parameters

Parameter

Description

LTE-A system bandwidth

1.4 MHz

Path Loss [19] and Rayleigh fading

Channel Model (18]

No. of BS 2

Number of PRBs per BS 5

Number of users 10

Number of normal users (NU) 7

Number of OPs 3

AWGN (a{,) -162 dBm/Hz [19]
The distance between user k and BS b (300 - 600) m
i\;[re:;(ir;?:rll P;rwansmission power per 23 dBm [19]
UE transmission power per PRB 17 dBm

Base (i.e. normal user priority) weight 1

Outpatient priority UP, calculation
method

Naive Bayesian classifier

OP observation period

30 Days

Tuning factor (i.e., a ) values

50, 100, 150, 250, and 500

5.5.1 The WSRMax Approach

5.5.1.1 Before Prioritising the OPs

In this scenario, BDA is not employed to prioritise the OPs, i.e., all users have
equal weights equivalent to the base user weight (i.e. 1). Observing Figure 5-5, it
can be seen that the OPs (represented by users 8, 9, and 10, in both the MILP and
heuristic results) are assigned PRBs with near average SINR as the MILP and

heuristic strive to maximise the overall SINR.
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Analogous SINR values can be observed in Figure 5-5 for both the MILP and the
heuristic. The average SINRs computed through the heuristic and the MILP

approaches are comparable at around 5.4 and 5.5, respectively.

As a measure of fairness, i.e. to quantify how close the SINR values are to the
mean, we considered accentuating the Standard Deviation (SD) for the users’
SINRs. The results are 0.4 and 0.3 for the heuristic and the MILP, respectively.
Thus, the results confirm that the heuristic can approach the MILP and provide an
acceptable level of fairness among the users by implementing the described
permutation over independent realisations of the channel, at the expense of slightly
sacrificing the overall SINR. An extensive sensitivity analysis was carried out, and
95% confidence intervals for each user’s SINRs are depicted in Figure 5-5. The
average SINR lied between 5.1 and 6 for the MILP results, and between 4.5 and 5.7

for the heuristic results.

9.00
8.00
7.00
6.00 %{‘
5.00

4.00

AVERAGE SINR

3.00

2.00

1.00

0.00
USERID

E MILP [ Heuristic

Figure 5-5: Users’ SINR before using BDA (WSRMax Approach)

5.5.1.2 After Prioritising the OPs

In this scenario, the use of BDA resulted in assigning OPs higher priority than

normal users by means of the NB classifier. The results shown in Figure 5-6 clearly
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demonstrate that all the OPs (users 8, 9, and 10) were assigned PRBs with high
SINRs compared to their previous SINRs in Figure 5-5. The system-wide
performance is a trade-off (optimally selected) between the task of assigning higher
SINRS to OPs versus a reduction in the average SINR in this scenario (between
0.3% (a=50) and 6% (a=500)) compared to the average SINR in the first scenario.
This reduction in the average SINR is due to the fact that the system was forced to
choose a PRB assignment scheme that prioritises the maximisation of OPs’
individual SINRs over the total SINR. The results also show that the heuristic
approaches the MILP performance, with a very comparable SINRs, however, the
heuristic mostly displayed a marginally higher OP SINRs. This is due to the
sequential nature of the heuristic which forced the system to serve the OPs first after
further arranging them according to their priorities. This challenge was mitigated by
preparing a list of highest achievable SINRs and randomly selecting one. The
selection criterion of the user and its interferer was conducted on a sequential and a
semi-deterministic manner, respectively to adds fairness between users as illustrated

in Section 5.4 .
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Figure 5-6: Users’ SINR after user prioritisation (WSRMax Approach)

The results in Figure 5-6 depict an agreement in terms of the average SINR

between the heuristic (5.1) and the MILP (ranged from 5.3 to 5.6 depending on the
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value of «). This approach slightly impacted the fairness between normal users as
will be shown in the upcoming subsection. In this approach, the impact of
converting the probability of stroke PS*" (<<l) into a risk factor using a can be
seen when comparing the users’ average SINRs when a=50 to the ones associated
with a=500. An OP (user 10) was granted an average SINR value very comparable
to other healthy users (as in user 7) and sometimes less than the SINR of healthy
users as the case with users 1, 4, 5, and 7. While that same OP had an average SINR
higher than all healthy users when a = 500 is used.

The average SINR of an individual user ranged between 4 and 7.6 for the MILP
(a=500), and between 3.7 and 7.9 for the heuristic. A clearer illustration can be

observed in Figure 5-6 where the confidence interval for each individual user’s

SINRs is shown.
5.5.1.3 The Impact of a on Fairness and SINR

The proposed model can be fine-tuned using the parameter « (i.e. tuning factor)
introduced in equation (5-13). This parameter enables the reciprocity between the
achievable fairness among users quantified by the SD and the average SINR. We
examined the effect on the average SINR and the SD of using different values of «

as illustrated in Figure 5-7 and in Figure 5-8.
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Figure 5-7: The effects of changing « on fairness and average SINR (WSRMax
Approach)

Increasing the value of o directs the system to focus more on the OPs;
consequently, a trade-off takes place resulting in lower values of the system’s
average SINR as seen in Figure 5-8 to increase the SINR of the selected users (i.e.
the OPs), negatively affecting fairness as illustrated by the increasing SD in Figure

5-7.

It should be noted that the individual SINRs for the OPs correspond to the
weights given to each OP using the NB Classifier. Sorting the users according to

these weights produces an order that conforms to the values depicted in

Figure 5-8. The highest SINR was granted to user 9 which is the OP with the
highest probability of stroke; thus, the highest priority, while the lowest among the
three OPs was user 10 who also happened to be the one with the least priority among

the OPs (nevertheless still higher than the normal users).
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Figure 5-8: The impact of a on both user and average SINRs (WSRMax)

5.5.2 The PF Approach
5.5.2.1 Before Prioritising OPs

The objective function in (5-17) is applied to this scenario. The goal is to
maximise the summation of the log of the users’ SINRs while ensuring fairness

without prioritising a certain subset of users. The results shown in

Figure 5-9 show a trend similar to the one depicted in Figure 5-5. However, due
to the nature of the log function used in the objective function, fairness was
maintained between the users (SD of 0.3 and 0.4 for the MILP and the heuristic,
respectively), while the total SINR was reduced by 7% compared to the one
produced by the MILP in the WSRMax approach.

The average SINRs for the heuristic and the MILP approaches are comparable at
around 5.1 and 5.3, respectively. Sensitivity analysis was performed (95%
confidence interval) where the average SINR achieved by the MILP ranged between
4.4 and 6.1, and between 4.1 and 6.4 for the heuristic results.
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Figure 5-9: Users’ SINR before user prioritisation (PF Approach)

5.5.2.2 After Prioritising OPs

In this scenario, the OPs’ priorities (i.e. weights) are updated according to the
stroke likelihood determined through the use of BDA. The objective function in
(5-20) is used; consequently, the model grants the OPs high powered PRBs as can
be noted in Figure 5-10. Comparing the PF approach to the WSRMax approach, it is
evident that this approach grants the OPs higher SINRs (traded off with the other
users). Furthermore, this approach shows higher conformance between the heuristic
and MILP than the previous one. However, this was accomplished by trading off the
average SINR. The MILP scored an average SINR between 5.2 (¢ = 50) and 4.9
(a = 500) as can be seen in Figure 5-10, while the heuristic’s average SINR is 5.1.
In this approach, the impact of different risk factor values on the OPs is less in
comparison with the WSRMax approach due to the use of the natural logarithm
causing the SINR to reduce in favour of the OPs. Nevertheless, an increase in the

average SINR can also be noted among the OPs as depicted in Figure 5-10.

Narrower confidence intervals can be noted when employing this approach. As a
matter of fact, this is a good indication of the precision of the approach in hand, thus

producing results with narrower margins of error than the previous approach.
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Figure 5-10: Users’ SINR after user prioritisation (PF Approach)

5.5.2.3 The Impact of a on Fairness and SINR

Increasing the weights allocated to the OPs in this approach has similar effects to
the ones in the previous section as shown in Figure 5-11 and in Figure 5-12. The
reduction in the SINR is around 4%. However, the OPs were assigned higher SINRs.
Furthermore, better fairness was reported among healthy users with an SD between

0.27-0.32 (depending on the value of « ). Thus, offering a more stable approach.
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Further analysis of Figure 5-6 and Figure 5-10 reveals that the SINR sum
achieved by the WSRMax approach is larger than that of the PF approach.
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Figure 5-12: The impact of o on both user and average SINRs (PF Approach)
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Since the WSRMax target is to maximise the sum rate (which is what an
unregulated operator tries to do) while the PF approach introduces fairness, hence
resources are not all allocated to the user with the best channel. The PF approach
improves fairness but reduces the sum rate (which is the case of a regulated

operator).
5.5.3 Testing the Heuristic’s Scalability

Employing higher LTE-A system bandwidths enables the operator to serve more
users creating a challenge for the developed heuristic to allocate resources to OPs
with minimum delay to serve their urgent needs. To evaluate the scalability of the

heuristic, elapsed time is considered.

We considered a scenario with six cases where the system operates at bandwidths
of 1.4, 3,5, 10, 15, and 20 MHz and increased the number of users, where all PRBs
are occupied. For each case, we measured the time it takes the heuristic to allocate
all users appropriate PRBs. The heuristic elapsed time was measured using the
MATLAB functions tic and toc. Time calculation was carried out using two
platforms: a Windows 10 computer equipped with Intel core 15-4460 3.2 GHz quad-
core processor and 16 GB of RAM, and cloud-based MATLAB provided by
MathWorks. The latter offers a measurement reference where calculations are made
by relying on cloud-based resources, where such cloud resources are expected to
play a key role in the control of future cellular networks. Given that it can take a
stroke-suffering OP up to 8 hours before being administered with an anaesthetic, this
heuristic’s performance meets the requirements of this application. However, testing
the heuristic’s scalability in terms of other, more time-critical, applications is
beyond the scope of this work. Figure 5-13 illustrates the heuristic’s total elapsed
time (in seconds) for both calculation methods versus the number of users. It should
be noted that the worst-case scenarios are also considered and depicted in Figure

5-13.

The proposed heuristic tries to serve K users to be allocated to K/2 PRBs on each
of the two BSs with another loop dedicated to interferer allocation. The first run

contains a search of total K possible interferers (before satisfying the condition k #

m). This means it requires O(N * g * 2 x N) time. Additionally, the MATLAB sort
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function requires O(NlogN) time [190]. Thus, the overall complexity
is O(N*log N). The proposed heuristic provided a reduction in the run time to solve

the NP-Hard problem [18] with a slight sacrifice in the accuracy of the results.
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Figure 5-13: The Heuristic’s Scalability

5.6 Chapter Summary

This chapter introduced a system that employs the power of BDA to optimise the
uplink of an LTE-A cellular network. OP’s medical record and readings from
medical [oT sensors are processed in a BDA engine to find the likelihood of a stroke
for an OP. The goal is to target OP users within the network to ensure they can
always have access to the best wireless resources when in need. The proposed
system achieves that with minimal impact on the wireless system-wide performance
and SINR levels among healthy users in the network, thus improving the network
utility for telecom operators while saving human lives and preserving fairness
among normal users. Two approaches (WSRMax and PF) were presented and
compared in terms of the average SINRs and fairness. The WSRMax approach
improved the OPs’ average SINR by up to 26.6%, whereas the PF approach
increased them by 40.5%. The average SINR for normal users ranged between 5.5
and 4.6 using the WSRMax approach while the PF approach reported a range
between 4.6 and 4 (depending on « ). Fairness among users was quantified using

SD. The WSRMax approach granted the healthy users SINRs with an SD between
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0.47 and 0.56 (depending on « ) while the PF approach ranged between 0.24 and 0.3
SD. Furthermore, we developed a heuristic to verify the MILP operation. The
heuristic achieved comparable results to the MILP, and finally we demonstrated the

heuristic’s scalability.
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Chapter 6 Using Machine Learning and Big Data Analytics to

Prioritise Qutpatients in HetNets

6.1 Introduction

In this chapter, we extend the work presented in the previous chapter by
investigating the role of BDA to prioritise OPs according to their current health state
in HetNet. Thus, providing, to the best of our knowledge, a novel incorporation of
the topics of resource allocation, patient monitoring, disease risk prediction, and
prioritisation in an optimisation model transforming HetNets to function in an OP-
conscious manner. We use NB classifier to analyse data acquired from OPs’ medical
records, alongside data from medical IoT sensors that provide the current state of the
OP. We use this ML algorithm to calculate the likelihood of a life-threatening
medical condition, in this case an imminent stroke. An OP is assigned high-powered
PRBs according to the seriousness of their current health state, enabling them to
remain connected and send their critical data to the designated medical facility with
minimal delay. Using a MILP formulation, we present two approaches to optimising
the uplink of a HetNet in terms of user-PRB assignment: a WSRMax approach and a
PF approach. Using these approaches, we illustrate the utility of the proposed system
in terms of providing reliable connectivity to medical IoT sensors, enabling the OPs
to maintain the quality and speed of their connection. Moreover, we demonstrate
how system response can change according to alterations in the OPs’ medical

conditions.

6.2 System Model

We consider a HetNet comprised of a macro BS (MBS) and two neighbouring
Pico BSs (PBSs) operating in an urban environment with a range of 40-100 meters.
We assume that the network employs a spectrum partitioning strategy [191], and
accordingly MBS users are not interfering with PBS users, hence, we consider here
the intra-tier interference caused by users operating within the PBS range The users

are randomly scattered and fall within two categories: healthy (normal) users, and
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OPs as illustrated in Figure 6-1. Due to placing the users at random distances from
the PBS, different power levels are received at the PBS from their UEs. If a low
SINR channel is assigned to the OP, the health care provider may not be notified and

the response may not arrive in time.
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Figure 6-1: Patient-Aware HetNet

The goal is to allocate high-gain PRBs to OPs proportional to the severity of their
medical status (i.e., stroke likelihood) as calculated in a cloud-located BDA engine
according to the steps shown in Figure 6-2 (thus prioritising the OPs over normal
users). OPs with high SINR values have greater spectral efficiency for their
connection, because spectral efficiency is directly proportional to throughput, and

the OPs will be able to send their data faster, hence minimising the delay.
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Figure 6-2: Outpatient Priority Calculation Procedure

6.3 Problem Formulation and Model Parameters

Disstolic | Smoking } Swoke Stroke Likelyhood Out-Patient Priority
BP Rate likelihood
M

L | L < PS=* = User Priority +
Hypertens foderate Yor AN

Risk Factor

We developed a model to optimise PRB allocation in HetNets using MILP. Our

scenario comprises a HetNet consisting of one MBS and two PBS. It is assumed that

the network follows a spectrum partitioning strategy where Pico and macro users are

on different PRBs (i.e., mitigating uplink inter-cell interference). Hence, interference

occurs among Pico users only. Consequently, B PBSs are represented by the set B =

{1, ..., B}. Each PBS has a total of N PRBs depicted by the set V' = {1,...,N}. A

total of K users, both normal and OPs, represented by the set X = {1, ..., K} are to

be served in an instant of time by the PBSs using PRB n on PBS 5. The target is to

optimise the uplink of the network by maximising the overall system SINR while

prioritising the OPs by allocating them high-gain PRBs.

We formalise this problem as a MILP model. Table 6-1 defines the sets,

parameters, and variables used in the network optimisation problem formulation

Table 6-1: System Sets, Parameters, And Variables

Sets

x Set of users.

N | Set of physical resource blocks.

B Set of base stations.
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Z Set of outpatient users,(Z c K).
Parameters
CS; | The current state of the patient in feature 7 (e.g. Cholesterol value).
UP, | User priority (UP, =1 for normal users whereas
UP, > 1is granted for OPs depending on their risk factor).
Qz'n Power received from user k using PRB n at base station b.
HY | Rayleigh fading with zero mean and a standard deviation equal to 1
experienced by user k using PRB n at base station b.
Az Signal attenuation experienced by user k connected to base station b.
PM | Maximum power allowed per uplink connection.
P Power consumed to utilise PRB n to connect user k to base station b.
An arbitrary, large positive value.
o-zn Additive White Gaussian Noise (AWGN) power in watts experienced by
user k using PRB n at base station b.
PS*" | The probability of stroke of outpatient z.
e . . :
Piecewise linearisation equation coefficients for line y of user k.
hy
a Tuning factor.
NU | The total number of normal users.
Variables
X,’z,n Binary decision variable X ,lc’,n =1 if user k is assigned PRBnin base
station b, otherwise X ,lc”n =0.
T 2,,1 The SINR of user k utilising PRB n at base station b.
q),“,’l’,l,’l’k Non-negative linearisation variable where qb;’,vlfl' k= TP X0 .
Sk SINR of user k.
L, | Logarithmic SINR of user k.

The SINR T,g n of user k connecting to PBS b using PRB n is given as:

b _
Tk,n -
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The numerator in (6-1) depicts the signal part of the equation, whereas the
denominator consists of two parts, interference received from users connected to
other PBSs on the same PRB calculated as Qr%‘an"'r{,n while the AWGN noise is
represented by 0,3 ne X f("n is a binary variable equal to 1 when user k is connected to
the PBS b using PRB n; m,m # k and w,w # b denote the interfering user(s) and
interfering PBS(s), respectively. However, in our case there is a single interfering
PBS. Rewriting equation (6-1):

b b w b b _ Nnb b
Tk,an,nXm,n + Tk,nak,n - Qk,nXk,n

WEB meXK
w#b m*k (6'2)

VkeEKX,neN,beB

The first term in (6-2) is nonlinear (quadratic) as it involves the multiplication of
two variables (Continuous T,gn and Binary X}¥,). Therefore, linearisation is
essential to solve the NP-hard model using a linear solver such as CPLEX, where

the linearisation is given in (6-5) to (6-8).

We have developed two approaches to solve the resource allocation problem. The
first approach uses an objective function that maximises the Weighted Sum-Rate of
the SINRs experienced by the users. The second approach introduces fairness among

the users by employing a PF objective function.
6.3.1 MILP Formulation for the WSRMax Model

The objective is to maximise the system’s overall SINR. This can be realised

through the maximisation of the individual users’ SINRs.
6.3.1.1 Before Prioritising the OPs

The OPs’ risk factors introduced in the previous chapters are scaled into priorities
(i.e. weights) and used to prioritise the OPs over other users. The MILP model is

formulated as follows:

Objective: Maximise

DI -

kEX neN beB
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The objective given in (6-3) aims to maximise the weighted sum of the users’
SINRs. These weights (i.e. priorities) are higher for OPs compared to healthy users
and proportional to the OPs calculated risk factor. Note that UP,, has an initial value
of 1 for all users as shown in (6-4). However, the OPs will have updated values
according to their risk factor. This will ultimately drive the system into prioritising
the OPs over the healthy users during PRB assignment. The mathematical
formulations related to the OP weight (priority) calculation was illustrated in
Chapter 3.

UP, =1

(6-4)
VkeX

Constraints:

To maintain the model’s linearity while performing the multiplication of the float

variable T,gn by the binary variable X;;, ,, we follow [187], and define a variable

fl%ﬁ,k that includes all the indexes of both aforementioned (i.e., float and binary)
variables as in (6-5). Constraints (6-6), (6-7), and (6-8) govern the multiplication
procedure. As a result, the only two values satisfying the constraints are either zero
(when x =0) or T (when x=1). It should be noted that A is a large enough number
where A >>T:
Subject to:
(6-5)
Prni 2 0

Replacing the quadratic term T,anT","l,n with the linearisation variable (;bx'l:z’k that

incorporates all the indexes of the multiplied variables.

w,b w
¢m,n,k < AX mn

(6-6)
VkmeXKX,neN,wbeB,(m+*kb+w)
G < Tion

(6-7)

VkmeKXneN,wbeB,(m+kb+*w)

110



oor . = AXW  + T, — A

mnk =

(6-8)
VkmeKXneN,wbeB,(m*kb+w)

After replacing Tk nXmn With qun x> €quation (6-2) can thus be rewritten as in
(6-9). qunk = TP, X% . is equal to the SINR of user k connected to BS b with

PRB n if there is an interfering user m connected to the other BS w with the same

PRB n; it is zero otherwise.

Z Qm n¢mnk + Tk nakn Qllz,nXIlcj,n

WEB meX
w#b m#k (6-9)

VkeEK,neN,beB

nen (6-10)

Constraint (6-10) ensures that the users do not exceed their maximum available
amount of power per uplink connections (in case more than one PRB is utilised by

the same user k). In the current work, the user is allowed a single PRB.
kex (6-11)

Constraint (6-11) limits the assignment of each PRB to one user only.
Z Z Xp, =1
bEB neN (6-12)
VkeX

Constraint (6-12) guarantees that each user is assigned at least one PRB from any
BS. Thus, no user is left without service. Additionally, this prevents the MILP from

blocking interfering users to maximise the total SINR.
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6.3.1.2 After Prioritising the OPs

In this approach, OPs’ risk factors introduced in the previous chapter are scaled
into weights to prioritise the OPs over other users. The MILP model is formulated in
the same way as mentioned in the previous subsection. However, equation (6-13) is

included in this model to represent the OPs’ weights (i.e. priorities) as follows:

UP, = 1+ a- PS>

(6-13)
VkeXK:z=kk>NU
while (6-4) is replaced by (6-14) to cover the normal users only.
UPk =1
(6-14)

VkEkeEXK:1<k<NU

6.3.2 MILP formulation for the PF Model

In this approach, the objective is to maximise the logarithmic sum of the user’s
SINRs. Due to the nature of the natural logarithm, a slight decrease in the overall
SINR might be observed but to the expense of preserving fairness among normal

users.
6.3.2.1 Before Prioritising the OPs

In this case, all users are treated equally, thus there is no prioritisation in terms of
resource allocation. However, keeping fairness among users still holds as a
necessity. Since the only part that we are dealing with is the value of the individual
user’s SINR, and to simplify the manipulation of the equation before adding the
natural logarithm part, we present the optimisation variable Sy, to serve as the SINR

for each user k.

Se= ), ) Thn

neEN beB (6-15)
VkeX

Equation (6-15) replaces the three-indexed variable T,gn with a single-indexed

variable Sy.
Ly =1nS; (6-16)
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VkeX

Equation (6-16) calculates L, as a logarithmic function of the user’s SINR S.
Since the natural log is a concave function, and to preserve the linearity of our

model, piecewise linearisation was used as depicted in constraint (6-18).
The objective is as shown in (6-17):

Objective: Maximise
6-17
z L, (6-17)
keK

Constraints:

In addition to constraints (6-5)-(6-12) from the previous model, the PF satisfies

the following constraint
Subject to:
Ly <myp xS+ hyy (6-18)
VkeX

Constraint (6-18) represents a set of piecewise linearisation relations
implemented to linearise the concave function in equation (6-16). Note that
constraint (6-18) corresponds to the line equationy = mx + h where the line
coefficients (i.e. my ; and h,, ) are selected as in [188]. It should be noted that the
number of constraints used in the linearisation procedure is dictated by the total

number of lines used to cover the linearised interval.
6.3.2.2 After Prioritising the OPs

In this case, the outpatients are prioritised. Equation (6-16) is rewritten to reflect

the change.
Lk = lnSk

(6-19)
VkeEXK:1<k<NU

Equation (6-19) shows that the log function is applied to normal users only. The

OPs, on the other hand, are assigned weights instead.
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Objective: Maximise

(6-20)
Ly + Z S UP,

keK,1<k<NU keK k>=NU
The multi-objective function in (6-20) (i) maximises the sum of the SINRs
allocated to all users, (ii) Assigns OPs priority by allocating OPs PRBs with high
SINRs that reflect their relative priority, and (iii) Implements Fairness: by assigning
healthy users PRBs with comparable SINRs. These objectives were implemented by
adding both the summation of a log function of the healthy users’ SINRs (i.e.
Proportional Fairness) and the weighted sum of the OPs” SINRs (OPs priority).

Constraints:

The model satisfies constraint (6-5)-(6-12) from the previous approach. In

addition to equation (6-14) and:

Lk < my,k * Sk + hy,k
(6-21)
VkeX,k<NU

Constraint (6-21) represents the same set of equations for the piecewise
linearisation that was used in constraint (6-18), however, the difference is in the

range of users it is applied to
6.3.3 Calculating the received power

The received signal power (in Watts) Q,Iz,n varies according to the channel
conditions and the distance between the user and the BS. Considering Rayleigh
fading denoted by H,lc”n and distance dependent path loss denoted by Az'n [19], the

received signal power is given as:
Qkn = P HE AR (6-22)

where H,l(’,n denotes Rayleigh fading and AY represents power loss due to

attenuation (distance dependent path loss) and is given in (6-23) [19]:

distance(meters)

A (dBm) = 140.7 + 36.7 logy, 000

(6-23)

To unify the units, equation (6-24) is used to convert the power to Watts.
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A(dBm)
A (mw) =10 o (6-24)

6.4 Results and Discussion

In this section, we used the parameters in Table 6-2 for a scenario of a network
employing a spectrum partitioning strategy. The results illustrate two approaches to
identifying the resource allocation problem: the WSRMax and the PF. The first
approach targets the maximisation of the weighted sum rate of all users’ SINRs,
with its objective in (6-3). The second, however, enforces fairness among users
through its objectives in (6-17) and (6-20) by maximising the logarithmic sum of the
users’ SINRs. The MILP optimisation was performed using AMPL/CPLEX
software running version 12.5 on a PC with 16 GB RAM and a core i5 CPU.

Table 6-2 : Model Parameters

Parameter Description
System bandwidth 3 MHz
Total number of RBs 15
Channel Model Path Loss [19] and Rayleigh fading
[18]
Number of MBS 1
Number of PBS 2
Number of PRB per MBS 10
Number of PRBs per PBS 5
Number of users 10
Number of normal users (NU) 7
Number of OPs 3
AWGN (o) -162 dBm/Hz [19]
Distance between user k and BS b (40-100) m
Maximum transmission power per 23 dBm [19]
connection
UE transmission power per PRB 17 dBm
Base (i.e. normal user priority) weight 1
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Outpatient priority UP), calculation Naive Bayesian classifier

method

OP observation period 30 Days

Weight Parameter (o) 50, 500, and 1000

Furthermore, we considered seven different current states in terms of input
feature variables, as displayed in Table 6-3. We run each model over all seven
different current states for 400 data files each representing randomised users’
locations (i.e., random received power levels at the PBSs in each data file)
simulating 400 instances and showing the average SINR. The seven current states
produce different probabilities of strokes. These probabilities, along with different
weight parameter a values, will be reflected as different SINR levels as shown in

Figure 6-4 and Figure 6-6, respectively.

Table 6-3: Outpatient Current States

Features Class
§ Total Systolic Blood Diastolic Smoking Stroke
% Cholesterol Pressure Blood Pressure rate

f1 f2 f3 fa C
Pre-
1 Normal . Normal Heavy ?
hypertension
High
2 High e Normal Light ?
Hypertension
High High
3 Normal '8 ) 8 : Moderate ?
Hypertension | Hypertension
High High
4 High '8 . '8 . Heavy ?
Hypertension | Hypertension
High Pre-
5 Normal '8 ) e ) Light ?
Hypertension | hypertension
High High
6 Normal N B Light
Hypertension | Hypertension
High High
7 High 8 & Light
Hypertension | Hypertension
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It should be noted that to simplify the SINR calculation, we converted all
logarithmic units (i.e., dBm) into linear scale (i.e., m Watt), hence the resulting
average SINR values in Figure 6-3, Figure 6-4, Figure 6-5, and Figure 6-6 are unit

less.
6.4.1 The WSRMax Approach
6.4.1.1 Before Prioritising the OPs

In this scenario, all users have equal priority (i.e., UP, = 1). The average SINR is
830 (i.e., around 29 dB). However, observing the OPs (i.e., users 8, 9, and 10) in
Figure 6-3, one can note that they have comparable SINRs to other (healthy) users,

and sometimes actually lower, such as when comparing OPs 8§ and 9 to user 7.

1000
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SINR

400

200

USER ID

Figure 6-3: Users’ SINRs before user prioritisation (WSRMax Approach)

6.4.1.2 After Prioritising the OPs

The OPs were granted high-gain PRBs according to their priority level. A
negligible drop (0.3) in the average SINR is observed when selecting the weight
parameter @ = 50. However, all OPs were granted above-average SINRs as shown
in Figure 6-4 (A), (B), and (C). The OPs’ SINRs increase with a focus on the OP

with the highest priority in each state; moreover, we can notice that for « = 500 all
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OPs are assigned SINRs above the average, with 9% and 16% maximum SINR

decrease when a =500 and 1000, respectively.
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Figure 6-4: Users’ SINRs After user prioritisation (WSRMax Approach)



6.4.2 The PF Approach
6.4.2.1 Before Prioritising the OPs

The average SINR in this scenario is equal to 320 (around 25 dB) as illustrated in
Figure 6-5. Users 9 and 10 are assigned less than the average SINR. A difference in
the SINR levels can be observed between the two approaches. This is due to the use
of the natural logarithm as well as the location of users with proximity to the PBS.
When compared with the results in the previous chapter, we can clearly observe that
the effect of the log differs. However, converting the SINRs to their logarithmic
form (i.e., dB) shows that the SINR is still within the optimal range of operation.
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Figure 6-5: Users’ SINRs before user prioritisation (PF Approach)

6.4.2.2 After Prioritising the OPs

In this scenario, the system’s average SINR has increased due to the fact that only
the normal users remain subjected to the logarithmic function. On the other hand,
the OPs have high SINR levels, as shown in Figure 6-6 (A), (B), and (C). It should
be noted that the effect of the increase of weight parameter a is minimal compared

to the WSRMax approach.
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Figure 6-6: Users’ SINRs After user prioritisation (PF Approach)
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6.5 Chapter Summary

This chapter offered two multidisciplinary frameworks for patient-centric
optimisation of HetNets. A BDA/ML algorithm was embedded in resource
allocation optimisation and provided patient prioritisation in the e-health setting
studied. The target is to prioritise stroke outpatients in HetNets according to their
current medical condition based on readings acquired from body-attached and
nearby IoT sensors. As a result, the developed ML-driven resource allocation
frameworks granted these patients high-gain PRBs to ensure that they are always
connected and can send their data with minimum delay. To that end, the WSRMax
and PF approaches were presented and compared. The WSRMax approach
maximises the OPs’ SINRs with less impact on normal users when compared to the
PF approach. The PF approach maximises the OPs’ SINRs to a greater extent than
the WSRMax approach, while a noticeable impact can be observed on normal users.
With a false positive rate of 0.36, the current classifier can be further enhanced and
compared to other algorithms to assess a patient’s state, while the integration of
more feature variables in a larger data set constitutes a basis for future work.
Furthermore, investigating inter-cell interference as part of a larger model is

currently being considered as a future direction.
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Chapter 7
Beyond 5G: Patient-centric HetNets

7.1 Introduction

Having a cognitive and self-optimising network that proactively adapts not only
to channel conditions, but also according to its users’ needs can be one of the highest
priorities of future HetNets. In this chapter, we introduce an interdisciplinary
approach linking the concepts of e-healthcare, priority, radio resource optimisation,
and BDA in a multi-tier 5G network. We employ three ML algorithms, namely, NB
classifier, linear regression (LR), and decision trees (DT), working within an
ensemble system to analyse historical medical records of stroke OPs and readings
from body-attached IoT sensors to predict the likelihood of an imminent stroke. We
convert the stroke likelihood into a risk factor functioning as a priority in MILP
optimisation model. Hence, the task is to optimally allocate PRBs to HetNet users
while prioritising OPs by granting them high gain PRBs according to the severity of
their medical state. Thus, empowering the OPs to send their critical data to their
healthcare provider with minimised delay. To that end, two optimisation approaches
are proposed, the WSRMax approach and the PF approach. The proposed
approaches increased the OPs’ average SINR by 57% and 95%, respectively. The
WSRMax approach increased the system’s total SINR to a level higher than that of
the PF approach, nevertheless, the PF approach yielded higher SINRs for the OPs,
better fairness and a lower margin of error. The notion behind employing multiple
ML algorithms is to; (i) check if the findings are consistent across different ML
algorithms, (i1) select the optimal ML algorithm or set them to work together (which
is what we proposed in the form of an ensemble system), (ii1) the DT classifier fit
the problem discrete nature, and (iv) the LR classifier is selected as it offers higher
discrimination. However, it can have high sensitivity to feature vector noise, hence

voting classifier is used.
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7.2 System Model

In this work, we are considering a scenario of a HetNet consisting of a MBS and
two neighbouring PBS operating in an urban environment. The MBS coverage range
is 300-600 meters whilst the PBS has a range of 40-100 meters. In a previous work
in [192], we assumed the adoption of a spectrum partitioning strategy [191] to
mitigate the inter-tier interference on the PBS users caused by the MBS users. In this
work, we are considering the effects of the inter-tier interference. The users belong
to two categories: healthy (normal) users, and OPs as illustrated in Figure 7-1. As in
a real-life scenario, the users are randomly scattered around the BSs at different
distances which results in different received power levels at the BS from its UEs. If
an OP is assigned a low-level SINR channel, the healthcare provider may not be
notified and the response will be delayed. Here, a patient suffering a stroke loses 1.9
million neurons/min before the treatment starts [9]. Therefore, the objective is to
assign high-gain PRBs to the OPs according to the severity of their medical status
(i.e., stroke likelihood). The latter is computed in a cloud-based BDA engine
according to the procedure shown in Figure 7-2. Thus, OPs that are prioritised over
normal users will have higher spectral efficiency due to their high SINR values.
This, in turn, will yield higher throughput (since spectral efficiency is directly
proportional to throughout). Hence, the OPs will be able to send their data with

minimal delay.
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Figure 7-1: Patient-Aware HetNet

In this work, we use an ensemble system comprising three supervised learning
classifiers, namely, a NB classifier, a DT classifier, and a LR classifier that work on
the OP’s dataset and feed their predicted probabilities of stroke to a soft voting
classifier. Given a certain feature vector (representing the OP’s current state), each
of the aforesaid classifiers yields a probability of stroke. Using ensemble learning,
those classifiers can be combined into a single predictive model with higher

accuracy, and thus, higher confidence is achieved in the predicted results.
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Figure 7-2: Out-Patient Priority Calculation Procedure

7.2.1 Naive Bayesian Classifier

The NB classifier is a probabilistic statistical classifier which uses a number of
independent feature variables f; (e.g. total Cholesterol and Blood pressure levels)
obtained from a historical dataset (i.e., the OP’s medical record) to determine the
likelihood of an incident ¢ (i.e. a stroke) as shown in Figure 7-2. The classifier is
termed naive because it assumes the feature variables are unrelated to each other
[22]. This classifier is chosen for the following reasons; (i) it has a track record in
disease risk prediction as in [158] and [193], (ii) its low complexity incur less
computational burden, (iii) it is an ideal choice for any two-class concept with
nominal features [160], (iv) it has proven accuracy in Cardio Vascular Disease
(CVD) prediction compared to other approaches [166, 194], (v) it does not require
large training datasets [159].

The classifier’s posterior probability is given as
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P(C=c|F,=f)=P(=c) HP(FL' =filC =c¢) (7-1)
i=1

where P(c = ¢) represents the prior probability of stroke, and the likelihood of F
given C is given in (7-2)

L(C=cAF=f)

P(F = filC = ©) = ¥

(7-2)

where the term [[L; P(Fi = fi |C = c) depicts the joint probability.
7.2.2 Logistic Regression Classifier

The main distinctions between the NB classifier and the LR classifier is that it; (i)
fast and a large change in response to the feature vector, (ii) it allows for large
discrimination (i.e., a change in one feature may cause large effect). However, this
also means that it suffers from high sensitivity to feature vector values. This
classifier is a popular tool in disease prediction as in [195-197]. A logistic model is
based on a mathematical form called the logistic function given in (7-3). This

function equals zero when x is -0, whereas the function equals 1 when x is + .

(7-3)

fe) = 1+e™*

This range is the primary reason for selecting the logistic model to estimate the
probability. The index of combined features is x and it is given as a linear sum as

shown in (7-4).

x = Bo + Bifi + Bofot.. .t Bufn (7-4)

where 3, represents the y intercept and S ..[, are the regression coefficients,
fi, - fn depict the feature variables, and n is the total number of features in the
prediction model (in this work, n = 4) [198]. The conditional probability can be
written as:

1
1 + e~ Bo+EiZ; Bifd)

P(C=clFi= fi) = (7-5)

where P(C = c|F; = f;) represents the conditional probability of a certain class
variable C = c given a feature vector FV. Therefore, if C = 1 then the conditional
probability for C = 0 is P(C =0|F; = f;) =1 — P(C = 1|F; = f;). The values of
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the line coefficients (i.e., B, .. [5,) cannot be solved analytically, therefore, we have

to use solvers to navigate the search space.
7.2.3 Decision Trees Classifier

The DT construction procedure is done by splitting the dataset into descendant
subsets. The splitting continues on repeated splits of the descendant subsets. The
notion behind the tree methods is to have a set of partitions so that the best class can
be determined. The partitions are performed so as to choose the splits in a way that
guarantees that the leaves are purer than the parent node [199]. DT classifies vectors
by sorting them, starting at the root of the tree down to some leaf nodes. In this tree,
each node specifies a test of some input feature of the vector, and each branch
descending from that node corresponds to one of the possible values for this feature
The reasons for choosing DTs are; (i) their ability to implicitly perform feature
selection or variable screening [168, 195, 200], (ii) they are uncomplicated to
understand, interpret and, visualise, (iii) tree performance is not affected by
nonlinear relationships between parameters, (iv) their track record in the stroke
prediction literature as in [169, 201, 202] is good, where, in some cases, DTs yielded

the highest accuracy.

The purity is measured using a Gini index which is used as an attribute selection
measure where the ranking per attribute is given. The feature (attribute) with the
best score is selected as the splitting feature for the given data subset. Splitting is
done according to an impurity test conducted on a feature and a splitting subset (e.g.,
selecting two levels out of three {moderate, heavy} c smoking
or {moderate, heavy} c Vg, to be on a leaf while the remaining {low} c Vg, level
is assigned to the other leaf). The binary split resulting in the maximum reduction in
impurity (i.e., highest information gain) is selected as the splitting criterion. The

Gini measure is given in (7-6).
m
Gini(y) =1- ) (@]’ (7-6)
i=1

where pl?/ depicts the probability of a feature vector in training dataset y
belonging to class Ciy of a total number of m classes. The probability of an outcome

of a certain class is given in (7-7) and the sum is calculated over m classes [203].
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Ict]

(7-7)
[yl

pl =

It should be noted that the possible number of subsets is 2 Vi — 2 (excluding the

empty subset and the all Vg subset), where Vi represents the number of distinct

values of feature F; can have. However, in binary splits, this number is further
reduced by omitting the cases where certain values are not included (e.g., assigning

{moderate} c Vi, to one leaf and { heavy} c Vg, to another leaf and leaving the
value {low} c Vi, unassigned. the weighted sum of the impurity is calculated for

each resulting partition. Thus, if a feature F; partitions the dataset y into y; and y,,

then the Gini index of y is given in (7-8).

Ginis (y) = |_ Gini(y,) + m Gini(y,) (7-8)

The subset with the minimum impurity (i.e., Gini) for that feature is selected as

VA ly2|
14

its splitting subset. The same strategy is employed when using features with
continuous values where each possible splitting point must be considered. Thus,

extra computational resources will be required compared to the prior case.
The impurity reduction incurred by the binary split on feature F; is given in (7-9).
AGini(f;) = Gini(y) — Ginig,(v) (7-9)

After forming the DT for an outpatient, the probability of a given vector of
medical measurements is evaluated by tracing the decisions down the tree till the
leaf where this vector belongs is reached. The probability in a given leaf is then

evaluated as in (7-10).

I",Ci
P(C =c|F; = f) = e

7-10
i=1 I—‘Z,Ci ( )

where [, denotes the number of samples in a leaf belonging to outpatient z
having class C;. The denominator represents the total number of samples of all

classes in a given leaf.
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7.2.4 Ensemble model

Ensemble methods train multiple learners on the same dataset to classify the
same feature vector(s). The original goal of using ensemble systems is comparable
to the way a person seeks advice from several trusted individuals. Hence, this
reinforces the confidence that the decision made was the right one. Similarly, an
ensemble of classifiers can be employed to increase the classification accuracy.
Ensemble systems provide a method to incorporate various opinions, sometimes
weighing them differently before reaching a concluding verdict. Individual
classifiers may have different errors, however, they generally agree in terms of their
their classification decision. Therefore, averaging the classifiers' outputs results in
averaging the error component, and consequently reducing the classification error
[204, 205] and balancing out the individual weaknesses of equally well-performing
models [206]. The ensemble architecture of a soft voting (SV) classifier that we
employed in this work is illustrated in Figure 7-3. The NBC, LR, and DT serve as
base classifiers and their probabilities are then averaged to produce the voted
probability denoted by Pyo¢ing. To calculate this probability, let the probability
yielded by each base classifier CLF; given in (7-1), (7-5), and (7-10) to be annotated
as Pcrr,, Perr, and Peyp,, respectively. Since all base classifiers are treated evenly,

the soft voting classifier calculates the probability as in (7-11).

|CLF;]|

1
onting = m Zl PCLFi(C = ClFi = fl) (7-11)
1=

where  P,otng  denotes  the ensemble-calculated, averaged-conditional-

probabilities.

In order to provide weights to the MILP so that the OPs are assigned higher gain
PRBs, a base user priority UP, of 1 is assigned to normal users while OPs are
assigned the base weight plus another weight derived from the multiplication of a
weight parameter @ by the voted stroke likelihood Pyoping thus, granting an
effective-yet-reasonable priority.

UP, = 1+ a-Pysting

(7-12)
VkeXK:z=k k> NU
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The OP’s updated priority is given in (7-12). Using different values of a impacts

the system response accordingly in terms of the OPs’ SINR levels as shown in the

results section.

Test Data [ Feature Vector

\_ J

Training Data

Probability#3

Probability#2
P(LF,_(C=C I FV)

Probability#1

Par(C=c | FV) Pars(C=c | FV)

Voting Classifier

2.CLF(FV)
ICLF|

*

( Voted Proiil'll'ﬁ

Figure 7-3: Ensemble Architecture

7.3 Problem Formulation

We developed the following MILP models to optimise the cellular system

resource allocation for OPs and normal users. We consider the OPs monitoring

system to operate in a scenario of a HetNet covered by B BSs denoted by the

set B = {1, ..., B} including both MBS and PBS types, operating at channels with
1.4 MHz bandwidth. Each BS b has N PRBs depicted by the set N' = {1,...,N}.
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The network serves a total of K users (normal and OPs) denoted by set K =
{1, ..., K} by allocating PRB n to connect to BS b in an instant in time. The goal is
to optimise the uplink of the HetNet, so that the OPs are prioritised over healthy

users; hence, allocating them high-gain PRBs.

We formulate this problem as a MILP model. Table 7-1 defines the sets,

parameters, and variables used in the network optimisation problem formulation.

Table 7-1: System Sets, Parameters, And Variables

Set of users.

Set of physical resource blocks.

Set of base stations.

Set of days.

A 8 8w 2 K

Set of features in the learning dataset.

C | Setofclasses in the learning dataset.

Z | Set of outpatient users,(Z < K).

CLF; Set of base classifiers

V};i Set of values that feature F; can have in the learning dataset.

¢; | Setofvalues a class variable C; can take in the learning dataset.

CS; | The current state of the patient in feature i (e.g. Cholesterol value).

UP User priority (UP, =1 for normal users whereas
k
UP,, > 11is granted for OPs depending on their risk factor).

an Power received from user k using PRB 7 at base station b.

Rayleigh fading with zero mean and a standard deviation equal to 1

experienced by user k using PRB n at base station b.
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Az Signal attenuation experienced by user k connected to base station b.
PM | Maximum power allowed per uplink connection.
P | Power consumed to utilise PRB n to connect user k to base station b.
A | An arbitrary, large positive value.

Additive White Gaussian Noise (AWGN) power in watts experienced by

user k using PRB n at base station b.
Potin, The probability of stroke calculated at the voting classifier.

my,k

Piecewise linearisation equation coefficients for line y of user k.

hy

o | Tuning factor.
NU | The total number of normal users.
Y | The minimum SINR level.
Variables

) Binary decision variable X ,lc”n =1 if user k is assigned PRBnin base
Xk,n . . b
station b, otherwise X}/, = 0.

Tﬁ’n The SINR of user k utilising PRB n at base station b.

W,b . . . . . w,b _ b w
@ n i Non-negative linearisation variable where ¢, . = Ty nXmn-

Sk | SINR of user k.
L, | Logarithmic SINR of user k.

The user’s uplink SINR of an OFDMA network can be expressed as [18]:

b b
T — QunXien (7-13)
kn — -
Ywes Tmex Qon Ximn + 00,
w#b m¥*k

Examining the numerator (i.e. signal), Q,l{’_nX ,lc’,n signifies the signal power
received at the BS from user k. X ,l("n is a binary decision variable, X ,l(’,n = 1 denotes

the connection of user k to PRB n in BS b. The power received at BS b from the
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interfering user(s) m, m # k, on the same PRB is le‘an‘;‘{‘n; while X} ,, indicates an
interfering user(s) m connected to another BS w,w # b on PRB n. The AWGN is

annotated as a,?,n.

Rewriting equation (7-13):

b b w b b _ Nnb b
Tk,an,nXm,n + Tk,no-k,n - Qk,nXk,n
WEB meX

w#b m#k (7'14)

VkeEKX,neN,beB

The first term in (7-14) is nonlinear (quadratic) as it includes the multiplication of
two variables (Binary X}y, and Continuous T,?_ n)- Hence, linearisation is vital to

solve the model using a linear solver such as CPLEX, where the linearisation

constraints are given in (7-17) - (7-20).

We have developed two approaches to solve the resource allocation problem. The
first approach, named WSRMax, uses an objective function that maximises the
Weighted Sum-Rate of the SINRs experienced by the users. The second approach
implements fairness among cellular users by adopting a Proportionally Fair (PF)

objective function.
7.3.1 Problem formulation for the WSRMax Model

In this approach, the objective is to maximise the system’s overall SINR. This

can be done by maximising the SINRs of individual users.
7.3.1.1 Before Prioritising the OPs

The OPs’ risk factors introduced in the previous section are scaled into priorities
(i.e. weights) and used to grant the OPs priority over other users. The MILP model is

formulated as follows:

Objective: Maximise

>3 Yo -

kEX neEN beB

The objective in (7-15) aims to maximise the weighted sum of the users’ SINRs.
The OPs have higher weights (i.e. priorities) than other healthy users and these

weights are relative to the OPs’ calculated risk factor.
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Note that all the users share the same initial priority (i.e., UP, = 1) as in (7-16).
However, the OPs will have updated values according to their risk factor. This will
ultimately drive the system into prioritising the OPs over healthy users during PRB
assignment. The mathematical formulations related to the OP weight (priority)

calculation was illustrated in Subsection 7.2.1 .
At this stage, all the users share the same initial priority (i.e., weight) as in (7-16).

UpP, =1
(7-16)
VkeX

Constraints:

To ensure that the model holds its linearity while carrying out the multiplication

of the binary variable X3, ,, by the float variable T,gn, we follow [187], and define a
variable qufl’k that includes all the indexes of both aforementioned (i.e., binary and

float) variables as in (7-17). Constraints (7-18), (7-19), and (7-20) govern the
multiplication procedure. As a result, the only two values satisfying the constraints
are either zero (when x =0) or T (when x=1). Note that A is a large enough number

where A >>T:

Subject to:
(7-17)
¢W,b > 0

mnk =

The quadratic term T,ﬁ’_ nXmn is replaced with the linearisation variable qu:g' x that

incorporates all the indexes in the prior term.

Ommie < AXin

(7-18)
VkmeKX,neN,wbeB (m=*kb+w)
Gmmie < Tion

(7-19)
VkmeXKX,neN,wbeB (m=*kb+w)
(px‘flk = Axm,n + Tlgn —A (7-20)
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VkmeKX,neN,wbeB (m=*kb+w)

After replacing TP, Xy, with e

mn ke €quation (7-14) is rewritten as in (7-21).

q,')w'b = T,f,nX,","l,n equates the SINR of user k with PRB n connected to BS b if

mnk

there is an interfering user m connected to the other BS w with the same PRB n;

otherwise, it is zero.

b w,b b b _ Nnb b
Qm,n¢m,n,k + Tk,nak,n - Qk,nXk,n
WEB meX
w#b m=k (7'21)

VkeEKX,neN,beB

z PX?, <PM
new (7-22)

VkeEX,beB
Constraint (7-22) ensures that the users do not exceed their maximum allocated

power per uplink connection (in case more than one PRB is utilised by the same

user k).
Z Xp, <1
icex (7-23)
VneN,b B

Constraint (7-23) restrict the allocation of each PRB to only one user.
Z Z Xp, =1
bEB neEN (7-24)
VkeX

Constraint (7-24) guarantees that each user is allocated at least one PRB from any

BS. Thus, no user is left without service. Furthermore, this stops the MILP from

blocking interfering users to maximise the overall (network-wide) SINR.
7.3.1.2 After Prioritising the OPs

In this approach, OPs’ risk factors introduced in the previous section are scaled

into weights to prioritise the OPs over other users. The MILP model is formulated in
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the same way as mentioned in the previous subsection. However, equation (7-12) is
included in this model to represent the OPs’ weights (i.e. priorities) while (7-16) is
replaced by (7-25) to cover the normal users only.

UPk = 1

(7-25)
VkeX:1<k<NU

7.3.2 Problem formulation for the PF Model

Maximising the logarithmic sum of the user’s SINRs is the objective in this
approach. A slight decrease in the overall SINR might be observed (due to the
nature of the natural logarithm) but with the benefit of preserving fairness among

normal users.
7.3.2.1 Before Prioritising the OPs

All users, in this case, are treated evenly, thus there is no prioritisation in
allocating the radio resources. However, keeping fairness among users still holds as
a necessity. Since the only part that we are dealing with is the value of the individual
user’s SINR, and to simplify the manipulation of the equation before adding the
natural logarithm part, we introduce the optimisation variable Sy, to serve as the

SINR for each user k.

Se= ), ) Thn

neEN beB (7-26)
VkeX

Equation (7-26) introduces single-indexed variable S, which replaces the three-

indexed variable T,gn.

Lk = lnSk
(7-27)
VkeX

Calculating L, as a logarithmic function of the user’s SINR Sj is indicated in
(7-27). Since the natural log is a concave function, and to maintain the linearity of

our model, piecewise linearisation was employed as in constraint (7-29).

The objective of this approach is given in (7-28):
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Objective: Maximise

Z L (7-28)

k€K

Constraints:

In addition to constraints (7-17)-(7-24) from the previous model, the PF satisfies

the following constraint
Subject to:
Ly <myp xS+ hyy (7-29)
VkeXK

Constraint (7-29) represents a set of piecewise linearisation relations
implemented to linearize the concave function in (7-27). It should be noted that
constraint (7-29) follows the linear relation y = mx + h where the line coefficients
(i.e., my y and h,, ;) are selected as in [188]. It is worth noting that the number of
constraints used in the linearisation procedure is dictated by the total number of lines

used to cover the linearised interval.
7.3.2.2 After Prioritising the OPs

The outpatients are prioritised in this case, and equation (7-27) is rewritten to
reflect the change.
Lk =In Sk
(7-30)
VEkeEXK:1<k<NU
Equation (7-30) shows that the log function is applied to normal users only. The

OPs, on the other hand, are assigned weights instead.

Objective: Maximise

(7-31)
L + Z S UP,

KkeK,1<k<NU keK k>=NU
The multi-objective function in (7-31) (i) Assigns OPs priority by allocating the
OPs PRBs with high SINRs reflecting their relative priority, (i1)) maximises the sum

of the SINRs assigned to all users, and (iii) achieves fairness: by assigning healthy
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users PRBs with comparable SINRs. These objectives were implemented by adding
both the summation of a log function of the healthy users’ SINRs (i.e. Proportional
Fairness) and the weighted sum of the OPs’ SINRs (OPs priority).

Constraints:

The model satisfies constraints (7-17)-(7-24) from the previous approach. In
addition to equation (7-25) and:

Lk < my'k * Sk + hy,k
(7-32)
VkeEXK,k<NU

Constraint (7-32) represents the same set of equations for the piecewise
lineariation that was used in constraint (7-29), however, the difference is in the

range of users it is applied to.
7.3.3 Calculating the Received Power

The received signal power (in Watts) Q,’j}n varies according to two elements.

Namely, the distance between the user and the BS and the channel conditions. The

received signal power at the BS is given in (7-33):
Qicn = P HicnAk (7-33)
where H ,’c’,n denotes Rayleigh fading and AP represents power loss due to

attenuation (distance-dependent path loss) [19] and is given by equations (7-34) and
(7-35), for the MBS and PBS, respectively.

distance to MBS (meters)
1000

A (dBm) = 128 + 37.6 log, (7-34)

distance to PBS(meters)

7-35
1000 ( )

Equation (7-36) is used to unify the units by converting the power to Watts, thus

A(dBm)
A (mw) = 10~ 10~ (7-36)
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7.4 Results and Discussion

We consider a HetNet serving an urban environment, hence the Rayleigh fading
channel model with path loss. The results evaluate two scenarios; the first depicts
the HetNet state before prioritising the OPs. In this scenario, equal base priority (i.e.,
weight) of 1 is granted to all users. The second scenario shows the HetNet state after
prioritising the OP through the updated priorities according to the value of the

tuning factor a and their voted stroke likelihood.

A cloud-based arrangement is assumed where each OP has their personal dataset
constructed from their medical history and daily observations over the course of 200
days, with the requirement to periodically extend the dataset by appending recent
observations. Moreover, the proposed approach assumes a system that is in
operation and the outpatient is being assessed by the voting system where multiple
classifiers reside. We divided our dataset into two parts, a training set and a testing
set, the training set comprised of 140 entries used to train/fit the classifiers, and the
test set is 60 entries used to compare and verify the classifiers’ performance.
Furthermore, we would like to bring to the reader’s attention that the ensemble’s
role in this work is to report the soft-voted stroke likelihood. Since the outpatients
are all under continuous monitoring, they are favoured according to their probability
of stroke as long as the system is operational. The OPs’ stroke likelithood
Pyoting were 0.42, 0.84, and 0.65 for users 8, 9 and 10 (i.e., OP 1, 2, and 3),
respectively. Moreover, the use of equation (7-12) produced 1.42 < UP, <
1.84, 1.84 < UP, <2.68, 3.1 < UP, <425, 52<UP, <94 user priorities

according to tuning factor values of a of 1, 2, 5, and 10, respectively.
7.4.1 Classifiers Comparison and Evaluation

In this section, we investigate the performance of the methods described in the
previous section. There are several performance matrices for ML algorithms and
certain metrics are known by more than one name. Since we have a binary
classification problem, we refer to a prediction as “positive” if a classifier
predicted P(C = c|F; = f;) = 0.5, indicating the occurrence of an event (e.g.,
stroke). Alternatively, if P(C = c|F; = f;) < 0.5 then the classifier predicted a no-
event (e.g., no stroke), hence is translated as a “negative” prediction. In order to
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investigate the classifiers’ performance, we use a test dataset of 60 entries where the
outcome of all entries (i.e., feature vectors) are known (i.e., observed) to us and
register the prediction results. Consequently, there will be four outcomes; (i) a
correct positive prediction, named true positive (TP), indicating P(C|F;) = 0.5 and
an observed output of 1, (ii) an incorrect positive prediction, named false positive
(FP), indicating P(C|F;) = 0.5 and an observed output of 0, (iii) a correct negative
prediction, named true negative (TN), indicating P(C|F;) < 0.5 and an observed
output of 0, and (iv) an incorrect negative prediction, named false negative (FN),
indicating P(C|F;) < 0.5 and an observed output of 1. The following matrices are

computed through the use of these outcomes.

1. Accuracy, which is the ratio of true (i.e., correct) predictions to the total
number in the dataset and is given in (7-37). Accuracy measures how well the

classifier did in predicting the occurrence of an event as well as no-event.

A = o+ TN x 100% (7-37)
CCUratY = TP ¥ TN+ FP + FN 0

2. Sensitivity, true positive rate, or recall, is the classifier’s ability to pick an
event of interest. Thus, accurately classifying actual positive values by
labelling them as TP (i.e., stroke=1), and it is given in (7-38). In this work, it
measures the classifier’s ability to correctly classify an individual as at-risk.

TP
Sensitivity = o X 100% (7-38)

Sensitivity is a vital measure when the cost of FN prediction is high, in our case,
if a high-risk outpatient is misclassified as low-risk (i.e.stroke = 0). Hence, the

cost will be extremely high.

3. Specificity or true negative rate, is the classifier’s ability to pick the
occurrence of a no-event of interest. In other words, it is the classifier’s ability
to accurately identify actual negatives (i.e., stroke=0) in the test dataset. Thus,

accurately classify an individual as risk-free.
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TN
Sp@CifiCity = m X 100% (7-39)

4. Precision or positive predictive value (PPV), it answers the question of how
many of those who we predicted as at risk are actually at risk? Thus, it is the
ratio of accurate positive predictions to the total number of positively-
classified feature vectors, as in (7-40).

TP
jsion = ——— X 0 7-40
Precision TP + FP 100% ( )

Precision is a vital measure when the FP's cost is high. In our case, granting a

priority to an outpatient that is not really in a high risk.

5. Negative predictive value (NPV), it answers the question of how many of
those who we predicted as at no risk are actually not at risk? Thus, it is the
ratio of feature vectors accurately classified as negative (i.e., TN) to the total
number of classifications belonging to class stroke = 0, as denoted in (7-41).

TN
— _ 0 7-41
NPV TN+FN><100/0 (7-41)

6. False-positive rate (FPR) or false alarm ratio represents the rate of
misclassifying a class stroke = 0 as stroke = 1. It measures the frequency
of false alarm and it is given in (7-42).

FP
— X 0, 7-42
FPR P TN 100% (7-42)

7. False-negative rate (FNR) is a measure telling how erroneous a classifier can
be in missing events (i.e., stroke=1). It is the ratio of misclassified positives to

the total number of positives, as in (7-43).

FNR x 100% (7-43)

“FN +TP
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8. F1 Score is a function of both precision and recall values given in (7-40) and

(7-38), respectively. This score is a measure of the balance between precision

and recall as the former highly focuses on TPs, whilst the latter focuses on

TNs. Thus, providing an equal weight for both precision and recall as it is the

average (i.e., harmonic mean) of the two rates as given in (7-44).

F1 Score =

2.precision.recall

precision + recall

(7-44)

It should be noted that since there are three separate datasets (one per outpatient),

hence, there are not only four classifiers to investigate, but also to examine the

performance of these classifiers over three datasets as illustrated in Table 7-2.

The proposed SV classifier achieved higher accuracy compared to the other

classifiers. Moreover, it had the lowest combined FPR and FNR which motivates its

employment in this work. We further scrutinised the proposed SV classifier for the

three OPs’ datasets using 10-folds cross-validation and the results yielded 87.5%,
85.5%, and 88.5%, respectively.

Table 7-2: Comparing the machine learning methods.

OP#1 Training Dataset

NB 82 76 88.5 90 74 11.5 24 83

LR 88 85 92 94 82.7 7.7 15 89

DT 90 88 92 94 86 7.6 11 91

SV 90 88 92 94 86 7.6 11 91
OP#2 Training Dataset
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2 = 37 §3) $5) > o =4 n

= 3 3 2 2 e —

@) :C) A 2 2» Z = E &2
NB 76.7 68 84.4 79 75 15.6 32 73
LR 80 75 84.4 81 79 15.6 25 78
DT 80 64 94 90 75 6.2 36 75
SV 81.7 75 87.5 84 80 12.5 25 79

OP#3 Training Dataset

@ = 87 RS} S > & %)

E 3] a ) 3 g 2 _

O < & 2 & Z B £ 3
NB 86.6 76 94.3 90 84.6 5.7 24 83
LR 90 88 91.4 88 91.4 8.6 12 88
DT 91.7 84 97.1 95 89.5 2.8 16 89
SV 93 88 97.1 96 92 2.8 12 92

7.4.1.1 Demystifying Performance Matrices

While it is significant to scrutinise the classifiers at hand and verify their
performance. However, given the nature of our work, there are several performance
matrices that are more vital than others. Hence we are highlighting their importance
in this section. Accuracy is an important metric to our work due to the fact that it
gives a balanced insights on the classifier’s overall performance. FNR is the most
important metric from the point of view of saving a patient’s life, i.e., it tells us the
proportion of ill people who is miss-classified. The Fl-score takes misclassified
entries (i.e., FP and FN) into account. Depending on the application, it can be

equally as important as accuracy as in our case. F1-score gives
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Before proceeding into the results of the MILP model, it worth noting that we

used the parameters indicated in Table 7-3.

Table 7-3: Model Parameters

Parameter

Description

LTE-A system bandwidth

1.4 MHz

Channel Model Path Loss [19] and Rayleigh fading [18]
No. of MBS 1

No. of PBS 2

Number of PRBs per BS 5

Number of users 10

Number of normal users (NU) 7

Number of OPs 3

AWGN (o) -162 dBm/Hz [19]
The distance between user k and MBS (300 - 600) m

b

The distance between user k and PBS b (40-100) m
Maximum transmission power per 23 dBm [19]
connection PM

UE transmission power per PRB 17 dBm
Minimum SINR defined for the 21 dB[207]
reliability-aware PF approach (1)

Base (i.e. normal user priority) weight 1

Outpatient priority UP, calculation Soft Voting Classifier
method

OP observation period 200 Days

a values 1,2,5,and 10

145




7.4.2 The WSRMax Approach
7.4.2.1 Before Prioritising the OPs

This scenario mimics the operation of a conventional HetNet where all users
share the same base user weight (i.e. priority) of 1. The results in Figure 7-4 indicate
that the OPs (represented by users 8, 9, and 10) are assigned PRBs of comparable
gains resulting in near-average SINRs. This is due to the fact that the MILP’s aim is
aiming to maximise the HetNet’s overall SINR. In order to measure fairness, we
considered accentuating the Standard Deviation (SD) of the users’ SINRs, hence, to
quantify how close the calculated SINR values are to the mean, in this case, the SD
was 195. Moreover, an extensive sensitivity analysis was carried out for the 300
independent realisations of the channel and the results with 95% confidence
intervals per user are indicated in Figure 7-4. The average SINR lied between 2166
and 2691.
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Figure 7-4: User SINR before OP Prioritisation (WSRMax Approach)

7.4.2.2 After Prioritising the OPs

The goal in this scenario is to utilise BDA/ML to prioritise the OPs over normal
users by means of the ensemble system. As a result, high gain PRBs will be
allocated to the OPs according to their risk factor, and guaranteeing them high-level

SINRs. Comparing Figure 7-4 and Figure 7-5 clearly highlights that the OPs (i.e.,
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users 8, 9, and 10) were granted PRBs with high SINRs. The overall system
performance is a trade-off (optimally-selected) between guaranteeing the assignment
of high SINRs to the OPs versus the decrease in the average SINR (between 2% ( &
=1) and 19% (x= 10) in comparison to the SINR in the first scenario. The
reduction in the average SINR is due to the system being was enforced to a PRB
assignment scheme where the maximisation of the OPs’ individual SINRs is
prioritised over the total SINR. Fairness between normal users was marginally
impacted in this approach as will be shown in the following subsection. The impact
of converting the probability of stroke to a risk factor and using several values of the
tuning factor (i.e.a = 1,2,5,and 10) can be observed by comparing the increase in
the OPs’ average SINRs. Taking the case of user 9 (the most critical user with a
probability of 0.84) having an SINR lower than users 1, 3, 8, and 10, the average
SINR witnessed an increase from 17% (a = 1) to 57% (a = 10) granting this user
an average SINR higher than all users. Individual users had an average SINR

ranging from 1042 to 3776 for a = 10.

4500

4000

3500

3000

2500

2000

Average SINR

1500
1000

500

3 4 5 6 7
User ID

Hoa=1 Wa=2 =a=5 a=10

Figure 7-5: User SINR after OP Prioritisation (WSRMax Approach)
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7.4.2.3 The Impact of a on Fairness and SINR

The parameter « is a tuning factor that is used to convert the minute value of the
voted probability (i.e., Pyoting) Of stroke acquired from the ensemble system to a
risk factor as depicted in equation (7-12). Moreover, this parameter enables the
reciprocity between the average SINR and the attainable fairness among the users
quantified by the SD. We used different values of a to study the effects on the SD
and the average SINR. We examined the effects of using different vales of a on the

SD and the average SINR as shown in Figure 7-6 and in Figure 7-7.

Increasing the value of a forced the system to concentrate on the OPs.
Accordingly, the system’s overall SINR was optimally traded-off to increase the
OPs’ SINRs while minimally impacting fairness among users as shown in Figure
7-6. It should be noted that examining the OPs’ SINRs and comparing them against
their corresponding risk factor values reveals an increase in the SINR in an order
conforming to that depicted in Figure 7-7, where the PRB assignment granting the
highest SINR was allocated to user 9 which is the user with the highest risk factor
(priority). Furthermore, user 8 which has the lowest risk factor among the three OPs
was given the lowest SINR among the OPs and very close to the system’s average
SINR. As the value of « increased (i.e., « = 5,10), user 8 is granted higher SINRs

in comparison against other healthy users.
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Figure 7-6: Effects of changing a on average SINR and fairness (WSRMax

Approach)
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Figure 7-7: The impact of a both user and average SINR (WSRMax Approach)
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7.4.3 The PF Approach
7.4.3.1 Before Prioritising the OPs

In this scenario, the goal is to maximise the logarithmic sum of the user’s SINRs.
Thus, no priority is given to any user in particular. Fairness is applied as a
consequence due to the nature of the natural log in the objective function in (7-26.
The results depicted in Figure 7-8 are in agreement with the ones depicted in Figure
7-4. However, a 46% reduction in the SD is reported when comparing this scenario
and the one in Subsection 7.4.2.1 . The average SINR ranged between 1905 and
2251. Sensitivity analysis was implemented over 300 different realisations of the

HetNet. The results with a 95% confidence interval are illustrated in Figure 7-8.
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Figure 7-8: User SINR before OP Prioritisation (PF Approach)

7.4.3.2 After Prioritising the OPs

In this approach, the OPs are prioritised according to their risk factors using the
objective function in (7-31). Therefore, the OPs are granted high-gained PRBs
resulting in high SINRs as illustrated in Figure 7-9. The OPs’ SINRs was boosted by
up to 95% observed by user 9 with @ = 10 . However, the average system SINR
ranged between 1093 (¢ =1) and 1113 (a = 10). The healthy users were
noticeably affected by the intrinsic nature of the natural log, and the exclusion of the

OPs from the logarithmic term in the objective function resulted in granting the
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healthy user lower SINRs in comparison to the OPs’ SINRs. Figure 7-10 depicts the
average users’ SINR in a logarithmic scale where narrower confidence intervals can

be observed in this approach.
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Figure 7-9: User SINR after OP Prioritisation in linear Scale (PF Approach)
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Figure 7-10: User SINR after OP Prioritisation in logarithmic Scale (PF
Approach)

7.4.3.3 The Impact of a on Fairness and SINR

Increasing the OPs’ priority by adjusting the tuning factor a has similar effects to
the ones observed in Subsection 7.4.2.3 . Using the PF approach, boosts the OPs’
SINRs by up to 95%, but has resulted in reducing the overall system SINR by up to
48% while maintaining a good fairness interpreted as a stable and very low SD as
illustrated in Figure 7-11. Observing Figure 7-12, it can be clearly seen that the OPs’
are granted SINRs approximately three times the system’s average SINR.
Furthermore, the analogy between the priorities (weights) granted to the OPs and the

corresponding increase in their SINRs is highlighted.
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Figure 7-11: Effects of changing o on average SINR and fairness (PF Approach)

It should be noted that user 9, despite having a higher priority than user 10, it was
assigned an SINR very close to the SINR of user 10 when @ = 1, 2. This is due to
the fact that user 10 has already better channel conditions than user 9 as indicated in
Figure 7-8. Thus, it would require higher values of the tuning factor a to bias the

system towards user 9 and this can be seen in @ = 5, 10 in Figure 7-12.
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Figure 7-12: The impact of a both user and average SINR (PF Approach)

7.4.4 Reliability-aware PF Approach

In this approach, we are enhancing the SINR values for the normal users that are
impacted by the logarithmic sum. This is done by setting a minimum SINR where
the users that are subjected to this constraint will have a guaranteed reliable service

levels [207].
7.4.4.1 Before Prioritising the OPs

This approach shares the same objective of the PF approach in section 7.4.3.1
However, a constraint is added to the model guaranteeing a minimum SINR of 21
dB for all users. The results depicted in Figure 7-13 shows a similar trend to the
ones illustrated in Figure 7-8. However, preserving a minimum SINR level with no
prioritisation means there will be a slight impact on the system-wide SINR. Thusly,
we registered a 5% decrease in the system’s average SINR for the PF approach

before and after introducing reliability.

Sk =y

VkeX

(7-45)
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Figure 7-13: User SINR before OP Prioritisation (Reliability-aware PF
Approach)

7.4.4.2 After Prioritising the OPs

The impact of the natural logarithm on healthy users motivated the inclusion of a
constraint guaranteeing the minimum SINR level as in [207]. This results in an
additional level of reliability with fairness in the PF approach.

Se =

(7-46)
VkeXK:1<k<NU

Constraint (7-46) works under the objective in (7-31) to guarantee a minimum

SINR level specified by the parameter y. The result of introducing this constraint is

shown in Figure 7-14.

The OPs’ SINRs are boosted by up to 23% observed by user 9 with a = 10.
However, the OPs’ SINRs are now reduced in comparison with the previous
scenario before introducing reliability as shown in Figure 7-9. The results show

narrower confidence intervals than under the WSRMax approach indicating a further

reduction in the error values.
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Figure 7-14: User SINR after OP Prioritisation (Reliability-aware PF Approach)

7.4.4.3 The Impact of a on Fairness and SINR

Introducing the reliability aspect to the PF approach resulted in improving the
system’s average SINR with a marginal increase in the SD. However, better fairness
is observed when increasing the tuning factor @« as indicated in Figure 7-15.

Furthermore, the average SINR is increased by 32% in comparison to the reliability-

unaware PF approach.
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Figure 7-15: Effects of changing o on average SINR and fairness (Reliability-
aware PF Approach)

The OPs’ SINRs witnessed a 30% increase when employing the reliability-aware
PF approach as shown in Figure 7-16. Moreover, the OPs were granted SINRs that
are approximately 70% higher than the system’s average SINR.
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Figure 7-16: The impact of a both user and average SINR (Reliability-aware PF
Approach)
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7.5 Chapter Summary

This work introduced two interdisciplinary approaches to transform conventional
HetNets by endowing them with a user-centric dimension. To that end, a BDA-
powered framework was proposed to play part in uplink radio resource allocation
optimisation model of a HetNet. The target is to prioritise stroke outpatients within
the HetNet to provide them with the optimal wireless resources. Moreover, the
assigned resources should be proportional to the severity of the patients’ medical
state (i.e., stroke likelihood), which is predicted using an ensemble system
classifying readings of vital signs acquired from body-attached and nearby IoT
sensors. Two approaches, namely, the WSRMax and the PF are presented and
compared in terms of fairness and in terms of the average SINR (both at the system
and the user level). The WSRMax approach enhanced the OP’s average SINR by up
to 57%, whereas the PF approach improved them by up to 95%. Depending on the
value of tuning factor &, normal users reported an average SINR ranging between
2163 and 1263 using the WSRMax approach, while the reliability-aware PF
approach attained an SINR ranging from 1089 to 1066 (depending on ). Using the
SD to quantify fairness among users, the WSRMax scored between 104 and 156,
while the reliability-aware PF approach ranged between 44 and 74. Furthermore, to
add confidence in the estimated probability of stroke, the ensemble system is
examined and the voting classifier yielded up to 93% accuracy, a false positive rate

of 2.8% and a false negative rate of 11%.
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Chapter 8

Conclusions and Future Work

This chapter summarises the work presented in this thesis and specifies the
original contributions. In addition, this chapter suggests potential new directions for
future research that could be conducted as a result of the work presented in this

thesis.

8.1 Conclusions

This section summarises the work that has been performed in the present thesis
and states its original contributions. This thesis investigates the use of BDA and ML
algorithms in the design, operation, and optimisation of cellular networks. Thus, a
new paradigm of user-centric cellular networks powered by BDA is introduced. We
focus in this work on stroke patients due to the significance of their medical status
and the intrinsic time requirements. In this thesis, we introduce an interdisciplinary
approach to optimise the uplink in cellular networks while prioritising cellular-
connected-OPs using BDA and MILP optimisation to grant the OPs suitable PRBs
according to their current health condition. A dual role for the OP’s data is
envisioned, along with diagnosis, it guides the network operator to the OPs with the
most urgent needs in order that resources can be directed towards them. We argue
that ensuring high-quality connectivity between the OP-linked peripherals and their
medical provider represents an important step toward highly personalised e-

healthcare-centric services and applications.

A number of contributions are introduced in this thesis, starting with Chapter 2,
we surveyed the role of ML in the radio resource optimisation of wireless networks.
We highlighted the fact that most of the research relied on supervised as well as
reinforcement learning methods and that the field of ML is receiving increased
interest and is being incorporated in wireless network design for emerging
technologies like 5G’s new radio (NR) and cognitive radio. In Chapter 3, we

surveyed the role BDA can play in wireless network design. Throughout our survey,
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we noticed a lot of focus on the field of 5G where it is getting most of the
researchers’ consideration due to the new prospects it has to offer. The contributions
of this chapter helped identify the challenges and the opportunities facing the use of
BDA in wireless network design. Thus, this chapter can help academic researchers
save effort and time. Further, we also surveyed network equipment manufacturing
companies offering network solutions using BDA. In Chapter 4, where we
developed a seamless integration of the NB classifier that is jointly programmed
with the MILP model used to optimise the uplink of the considered cellular network.
This classifier uses real patient big data sets to determine the likelihood of a stroke.
NB classifier scored an accuracy of 60%, 63.3%, and 63.3% and precision of 65.2%,
66% and 71.6% for users 8, 9 and 10 (i.e., OP 1, 2, and 3), respectively. In Chapter
5, we introduced a novel interdisciplinary approach incorporating the topics of
resource allocation, disease risk prediction, patient monitoring, and prioritisation to
optimise the uplink of a single-tier homogenous LTE-A network while prioritising
cellular-connected-OPs using BDA and MILP optimisation to grant the OPs suitable
PRBs according to their current health situation. Moreover, using MILP, two
approaches to maximise the OPs’ SINRs were developed, namely, the WSRMax
approach and the PF approach. We compared the approaches in terms of the fairness
achieved between the users and the percentage increase in the SINR. Furthermore,
we developed a heuristic to verify the MILP results and we studied the
computational complexity of this heuristic. We considered a high number of
instances to reflect different network realisations and presented the results indicating
a 95% confidence interval. The approaches increased the OPs’ average SINR by
26.6% and 40.5%, respectively. The WSRMax approach increased the system’s total
SINR to a level higher than that of the PF approach, however, the PF approach
reported higher SINRs for the OPs, better fairness and a lower margin of error. The
work was extended in Chapter 6 to include a two-tier HetNet employing the
spectrum partitioning strategy. Thus, mitigating the inter-tier interference.
Moreover, we extended this work by considering higher number of instances. Thus,
studying the system performance over an extended period of time. and testing the
system response over different current states for each OP. The WSRMax and the PF
approaches were considered, and the results were compared in terms of fairness and

the overall system SINR where it is shown that the WSRMax approach can increase
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the OP’s SINRs by up to 16%, and the PF can achieve higher than that but with a

higher impact on the normal users’ SINRs.

In Chapter 7, we studied the system performance under inter-and-intra-tier
interference in a two-tier HetNet. We expanded the dataset to 200 entries and
incorporated the concept of ensemble system (i.e., soft voting classifier) where DT,
LR, and the NB classifiers were jointly used. Furthermore, we examined the
classifiers’ performance by conducting various tests of accuracy, specificity, recall,
false-positive rate, false-negative rate, negative prediction rate, precision, and F1
score. Furthermore, reporting the cross-validation test scores for all datasets.
Moreover, we added a reliability-aware aspect to the PF approach. Further, we
tested the fairness among users, and conducted the required sensitivity analysis over
300 instances. The results show that the WSRMax approach enhanced the OP’s
average SINR by up to 57%, whereas the PF approach improved the SINR by up to
95%. Depending on the value of tuning factor a, normal users reported an average
SINR ranging between 2163 and 1263 using the WSRMax approach, while the
reliability-aware PF approach attained an SINR ranging from 1089 to 1066
(depending on a). Using the SD to quantify fairness among users, the WSRMax
scored between 104 and 156, while the reliability-aware PF approach ranged
between 44 and 74. Furthermore, to add confidence in the estimated probability of
stroke, the ensemble system is examined and the voting classifier yielded up to 93%

accuracy, a false positive rate of 2.8% and a false negative rate of 11%.

8.2 Future Research Directions

8.2.1 Choosing the Decision-making Entity

Choosing the optimal type and location of computing (e.g. cloud, fog, etc.) is a
separate optimisation problem. Additionally, this may depend on other factors (or

variables) like the ratio of OPs to normal users.
8.2.2 Testing the impact of the Feature Ranking Techniques

The current system treats the feature variables on an equal basis. However, we

plan to further study the impact of each feature and correspondingly employ a
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suitable feature ranking technique. The impact of this technique can then be verified

with clinical help.
8.2.3 Routing within Small Cells in 5G Networks with Privacy

The proposed solution can be integrated with 5G networks. Optimised routing
algorithms can be developed to carry the OPs’ traffic through the small cells with
minimum latency. In addition, it is vital to protect the OPs’ privacy through the
traversed hops. This can be addressed by classifying the OPs’ data in a ranking
system, where the highest rank is treated as the most private medical data. Hence, a

specific (secure) route is selected.
8.2.4 Impact of OP Mobility

Grouping the OPs into clusters with common mobility patterns allows the
operator to know in advance if there are some areas with high OP density. Hence,
prepare the network. This means deploying more nodes so that these OPs do not
severely impact the network operation. In addition, our current system works on a
given realisation of the patient data and channel conditions (although consideration
is given to many realisations). However, in a real-world scenario, there is a constant
change in the number of users accessing and leaving the BS coverage. Such dynamic
behaviour should be addressed, possibly by OP weighted beamforming and

beamsteering.
8.2.5 Use of Infrastructure Sharing and Game Theory

The use of infrastructure sharing can help ensure the widest coverage since the
resulting area is the combination of all the local (or national) operators’ coverage at
a reduced cost. To encourage the operators to participate, game theory can be used
to establish coalitions, such that, for example, the higher the number of OPs, the

more revenue is awarded to the operator, e.g., reduced taxes.
8.2.6 Wireless energy transfer for Remote Drug Injection

Ensuring high-energy transfer in the downlink might be integrated with our
approach to power the body sensors or to actuate a drug-injection mechanism. This
can be used in the case of a sudden degradation in the health parameters especially

in the case of critical conditions such as diabetes. The reliability of such an approach
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should be evaluated and improved. Moreover, the delay component from the time of
data collection until administering the injection is crucial and has to be considered in

the model.
8.2.7 Testing other Discretisation values

The current model uses three ranges to categorise the continuous feature values
of the Framingham dataset according to medical entities like the American National
Institute of Health and the British Stroke Association. However, other medical
entities such as the European Society of Hypertension (ESH) and the European
Society of Cardiology (ESC) [208] offer further discretisation ranges. In addition to
comparing classification results, the use of different discretisation techniques can be
expected to affect the classification bias and variance of generated NB classifiers

[209].

8.2.8 Using other types of NB classifiers and increasing the number of

features

Since feature selection can have a direct impact on the performance of a
prediction model, we recommend a future expansion for the current work to include
more feature variables. Upon which, a further system examination can be carried out
investigating the classifiers’ performance. Furthermore, future work may consider
and compare other ML methods especially NB-variant classifiers such as the semi-

naive Bayesian classifier [210] or the locally weighted NB classifier [211].
8.2.9 Investigating the system response to other fading models

Studying other fading models can further enrich the proposed system. The use of
different fading models in the current optimisation framework will simulates
different working conditions and environments. Rician fading that has less severity
than Rayleigh fading due to a dominant multi-path component (normally a light-of-
Sight component) can be considered. Alternatively, Nakagami fading which is more

general can be considered [212].
8.2.10 Examining the Impact of Network densification Multi-tier HetNet

The current model can be further extended to investigate the effect of network

densification. Network densification techniques not only improve capacity and
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coverage but also enable carriers to maximise spectral efficiency. However, 5G cells
may not be able to maintain the classic “always on” routine. Rather, an operational
strategy for most 5G cells might be “turn on when required”. Therefore, the current

system can be extended to examine the effects of “turn-on when needed” techniques.
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