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Abstract 

Interdisciplinary research is fuelling a paradigm shift to endow technology-based 

services with a personalised dimension. The main contributors for such innovatory 

change are the surge in data production rate, the proliferation of data generators in 

the form of IoT and other network-connected devices, the incorporation of 

innovative data technologies like Artificial Intelligence, Machine Learning and Big 

Data Analytics, and the advancements in computing powers that are getting closer to 

dethroning MooU¶V laZ and deliYeU moUe pUoceVVing peU XniW Wime. MoUeoYeU, WheUe iV 

an ever-increasing demand for smart and fast-responsive applications such as 

predictive analytics, business analysis and digital marketing. In this thesis, patient-

centric cellular network optimisation is investigated as a promising paradigm that 

can contribute to the personalisation of present and future cellular networks with the 

aim of saving people¶V liYeV ZheUe eYeU\ Vecond coXnWV. This calls for transforming 

current cellular networks from merely being blind tubes that convey data, into a 

conscious, cognitive, and self-optimizing entity that adapts intelligently according to 

Whe XVeUV¶ needV. 

The work carried out in this thesis started by comprehensively exploring the role 

of using big data analytics in network design. Subsequently, we considered 

incorporating the concepts of priority, e-healthcare, Big Data Analytics, and 

UeVoXUce allocaWion in a Vingle V\VWem. The V\VWem¶V goal iV Wo XVe big daWa haUYeVWed 

from out-patient electronic health records and body-connected medical Internet of 

Things sensors to be processed and analysed in a big data analytics engine to predict 

the likelihood of a stroke. This prediction is then used to ensure that the out-patients 

are assigned optimal physical resource blocks that provide good signal to 

interference and noise ratio (SINR) dictated by the severity of their medical state. 

Hence, granting channels of high spectral efficiency to the out-patients, empowering 

them to transmit their critical data to the designated medical facility with minimal 

delay. 

The use of several Machine Learning algorithms residing within the big data 

analytics engine is investigated, namely, a naïve Bayesian classifier, a decision tree 
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classifier, and a logistic regression classifier. Further, the incorporation of the 

aforementioned classifiers in an ensemble system running as a soft voting classifier 

is examined and the performance of all classifiers is compared. The combinatorial 

optimisation problem of maximising Whe V\VWem¶V oYeUall SINR Zhile pUioUiWising 

the OPs in terms of radio resource assignment is solved using Mixed Integer Linear 

Programming and a heuristic. The use of two resource allocation approaches, 

namely, a Weighted Sum Rate Maximisation approach and a Proportional Fairness 

approach is considered and compared in terms of fairness and the attained SINRs. 

The proposed system was extended from a single-tier (homogenous) LTE-A 

network, to multi-tier Heterogeneous Networks employing spectrum partitioning 

strategy, and finally to a multi-tier Heterogeneous Network with no interference-

mitigation strategies emplo\ed. ThXV, enabling a fXUWheU VWXd\ of Whe V\VWem¶V 

performance over different networks and interference strategies. 
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Introduction 

1.1  Background 

Prior to the emergence of big data, decisions were made relying on data samples. 

Consequently, the decisions were semi-optimum. Those ill-informed decisions 

spanned over different areas from marketing to law enforcement, sports, and 

healthcare. The powerful capability of big data analytics (BDA) in analysing 

massive amounts of data and inferring knowledge from it has brought about better 

predictions paving the way for better decisions. 

HealWhcaUe iV a YiWal VXbjecW dXe Wo iWV Uole in people¶V liYeV. The conWinXoXV 

increase in the world population and other factors, like insufficient healthcare 

budgets, has resulted in crowded hospitals, over-worked medical staff, and extended 

queuing times for the patients. Given the global nature of the problem, researchers 

are developing new approaches to improve the level of care delivered by healthcare 

providers while ensuring a reduction in all previously mentioned points. BDA can 

be used to ensure medical service is reaching those most in need, in a timely 

manner. Brain strokes are one of the rising health issues and though they might 

cause significant disabilities to the patient, immediate treatment can effectively 

increase recovery chances. According to statistics from England, Wales and 

Northern Ireland for 2016-2017, one-third of stroke patients arrived at the hospital 

unaware of the date and time their symptoms began. The severity of this matter is 

even starker when knowing that the average waiting time for a patient from the start 

of symptoms until hospital admission is 7.5 hours, with an additional 55 minutes for 

door-to-needle time (the time between arriving at an emergency department and 

having an anaesthetic administered). Adding to all that, the patient is loses 1.9 

million neurons each minute until the treatment begins. Thus, a proactive and timely 

diagnosis is vital. 

BDA and machine learning (ML) methods can be optimally utilized to process 

diVpaUaWe daWa VXch aV paWienW¶V elecWUonic healWh UecoUd (EHR), dieW, geneWic daWa and 
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their daily routine, and produce a quick and accurate diagnosis can be time-

consuming and require a certain level of expertise to be carried out by medical 

personnel. Thus, saving lives, improving the level of care, and lowering costs. It 

worth mentioning that BDA is reportedly being used to diagnose and predict future 

complications in patients. Acquiring this diagnosis beforehand gave the medical 

professionals a head start to address these complications. 

In the healthcare sector, there are many sources of big data, for example; medical 

IoT sensors, wearable sensors, and smartphone medical applications. What the 

above-mentioned data generators have in common is their reliance on network 

connectivity. Maintaining this connectivity and ensuring its quality is a dilemma that 

many researchers tried to solve optimally. In this work, Whe OP¶V big daWa can pla\ a 

double role. In addition to diagnosis, it can guide the network operator to the OPs 

with the most pressing needs, Hence, radio resources can be allocated to them. We 

believe that ensuring high-quality connectivity between the patient-linked 

peripherals and their healthcare provider is an important step towards highly 

personalized e-healthcare services and applications. 

A wireless connection is preferred over a wired one for what it has to offer in 

terms of mobility. Consequently, cellular and Wi-Fi are the most popular 

connectivity technologies. The level of freedom (mobility-wise) varies between 

wireless technologies, for example, Wi-Fi may provide an adequate data rate, 

nevertheless, it forces an Out-Patient (OP) that needs to keep their medical IoT 

sensor (e.g. IoT pacemaker) connected, to stay within a relatively small coverage 

area (i.e., indoors mainly). Utilizing the already-existing cellular networks can 

provide much-needed freedom to that OP. However, cellular connections can 

experience channel fading and path loss where the connection can become 

unreliable or cannot be established due to a very low signal to interference plus 

noise ratio (SINR). A slow fading channel may indicate that the signal level is 

inadequate at the inVWance(V) Zhen an OP¶V cUiWical daWa mXVW be conYe\ed XUgenWl\ 

to the healthcare provider. 

Big data is portrayed in as a next-generation tool that can be used to find an 

optimal trade-off problem between resource sharing, allocation, and optimisation in 

wireless networks. Nevertheless, optimizing cellular networks in a user-centric style 
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is still underexplored. In this work, we contend that maintaining a high-quality 

connecWion beWZeen Whe OP¶V medical IoT and Whe medical pUoYideU iV a VWep WoZaUdV 

transforming conventional cellular networks into a cognitively personalized e-

healthcare-centric service. Building self-adaptive, intelligent, and self-aware 

neWZoUk iV an opeUaWoU¶V high-level objective. Therefore, BDA can endow the 

network the capability of learning from experience and improving its performance. 

Thus, BDA can transform the network from being reactive to predictive. we 

introduce for the first time OP-conscious approaches optimizing the uplink side of a 

multi-cell Orthogonal Frequency Division Multiple Access (OFDMA) network. In 

these models, the objective function prioritises the OPs by maximising their SINR 

received at the Base Station (BS) while keeping the goal of maximising the 

neWZoUk¶V oYeUall SINR. 

The network that serves the OPs can either be a dedicated or a non-dedicated 

network. We chose to optimise a non-dedicated cellular network for several reasons. 

Firstly, a non-dedicated network can be deployed at a fraction of the cost of a 

dedicated one and such a network requires much lower commissioning time to be 

operational. Secondly, the proposed approach can help provide the same level of 

VeUYice Wo oWheU XVeUV Zhile impUoYing Whe OPV¶ SINRV. ThiUdl\, XVing an 

established operational network can facilitate the adoption of the proposed approach 

and the idea of providing such service can be appealing to operators and regulators 

as it is for the benefit of patients. Fourthly, a dedicated network can limit the 

mobiliW\ of Whe OPV Wo ZiWhin Whe neWZoUk¶V coYeUage, Zhile XVing Whe pUopoVed 

approach can provide nation-wide (if not more) freedom, especially if it was 

standardized and regulated. 

The models comprise an assignment scheme powered by BDA where OPs are 

assigned Physical Resource Blocks (PRBs) with powers proportional to their current 

medical situation. Fairness was incorporated to minimise the negative impact of 

such assignment on other users. It worth noting that topics that discusses patient 

monitoring, radio resource allocation, prioritisation, fairness, and ensemble-aided 

disease risk prediction are popular in the literature across several disciplines. 

However, proposing a cellular network optimisation framework that incorporates all 

the above is, to the extent of our knowledge, unique. 
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1.1.1  Using Big Data Analytics for Cellular Networks Resource 

Allocation 

The topic of utilising BDA in network design was thoroughly discussed in a 

previous work where we observed that the highest number of papers in this area are 

in the wireless field [1]. Significant effort is dedicated currently to endowing 

wireless cellular networks with the ability to seamlessly prioritise users and serve 

them accordingly. Previous work in this area includes the work in [2] who proposed 

the use of configuration, alarm, and log files and processing the mentioned data 

using a big data processing environment, thus identifying the behaviour of both the 

user and the network. The goal is to solve the problem of radio resource allocation to 

users in the Radio Access Network (RAN) in a manner that ensures minimal delay 

between resource request and assignment. Another idea was presented by the 

authors of [3] to manage the network resources in Heterogeneous Networks 

(HetNets). This was achieved through the utilisation of sentimental and behavioural 

analysis of data collected from social networks, along with communication network 

data. The latter was exploited to predict sudden increases in the usage of the mobile 

network. The aim was to achieve minimal service disruption by servicing the right 

place at the right time. 

1.1.2  Using Big Data Analytics in Healthcare 

Several approaches have attempted to address the riddle of employing BDA to 

accomplish the task of OP monitoring. A system that has a real-time response when 

an emergency case arises was proposed by the authors in [4]. The system is capable 

of processing data collected from millions of Wireless Body Area Network 

(WBAN) sensors. The authors of [5] investigated the challenges associated with 

designing and implementing big data services that utilise data harvested from 

medical sensors as well as other IoT applications. They also considered the 

requirement of processing this data in real-time. Another approach to help patients 

ZiWh PaUkinVon¶V diVeaVe ZaV pUopoVed b\ Whe aXWhoUV of [6]. The system monitors 

the loss of flexibility as it is a sign of disease progression. This is done by analysing 

big data collected from the body and 3D sensors, such as the Microsoft Kinect 

sensor system. The disease development and treatment effectiveness can both be 

observed by the patients as well as their healthcare providers in real-time. A survey 
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conducted by the authors in [7] summarised different approaches to detect heart 

disease at an early stage. The common theme among those approaches is that they 

are all based on data mining, machine learning (ML), and BDA techniques. 

1.1.3  Missing Piece of the Jigsaw 

All the approaches mentioned in the previous subsection assumed networks with 

ideal connectivity. However, in a real-world scenario, opposing elements like 

channel fading and noise need to be taken into consideration. Our approach exploits 

BDA for the purpose of optimising the RAN side of a Long Term Evolution-

Advanced (LTE-A) network to serve a specific category of people, in this case, the 

OPs. Our approach ensures service availability to OPs, especially at times when they 

aUe in deVpeUaWe need foU iW. We aUgXe WhaW b\ anal\Ving Whe OPV¶ big data we can 

predict the ones that are at high risk of having a stroke. It should be noted that 

strokes are the medical condition studied in this thesis, however our network 

optimisation frame is general and can be used to cater for other types of patients, 

with single or multiple long term conditions so long as they can be prioritised 

depending on the severity of their conditions (using machine learning for example). 

Consequently, OPs will be prioritised oYeU noUmal XVeUV and Whe neWZoUk¶V aWWenWion 

(in terms of the quality of the assigned resources) can be shifted towards them. In 

the US, about 795 thousand people suffer a stroke annually [8]. This is equivalent 

to 1.5 stroke incidents per minute on average which is significant and frequent. In 

England, Northern Ireland and Wales, a third of stroke patients went to the hospital 

during 2016-2017 not knowing what time their symptoms commenced [9]. The 

problem is serious given an average time from the start of the symptoms till 

admission to a hospital of 7.5 hours, with another 55 minutes door-to-needle time 

(duration between arrival at the emergency department and administering an 

anaesthetic) and the fact that a stroke patient is loses on average 1.9 million 

neurons each minute before treatment commence [9]. The use of our proposed 

system can have a tremendous impact on minimising this time since patients are 

prioritised and given reliable resources. Moreover, the increase in the SINR will 

result in an increase in the spectral efficiency hence fewer resources are required to 

transmit the same amount of data [10]. The proposed system can also help in 

providing reliable connectivity to medical IoT devices when transmitting the 
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paWienW¶V YiWal VignV Wo Whe healWhcaUe pUoYideU. In addiWion, iW can help ZiWh eaUl\ 

detection of symptoms and facilitate early emergency admittance to the hospital to 

help VaYe paWienWV¶ liYeV. If oWheU foUmV of ill healWh aUe inclXded, Whe pUopoVed 

system will be called upon even more frequently. It should be noted that the delay 

component from the collection of outpaWienW¶V cXUUenW VWaWe Will Whe pUoceVVing of daWa 

in the cloud is negligible in comparison to the 7.5 hours and 55 minutes figures 

quoted earlier, hence, it is not considered in this thesis. 

In terms of the need to respond fast to the channel variation and the changes in 

paWienWV¶ needV, Ze ZoXld like Wo noWe WhaW Whe MILP iV XVed onl\ Wo eVWabliVh Whe 

optimal solution, while the simple heuristic developed is used to provide the fast 

response needed (at the cost of sub-optimal, but good performance).  

The wireless channel might change in a fast way, nevertheless, for optimisation 

purposes, the coherence time of the wireless network in a slow-fading channel is 

assumed to be longer than the duration of one transmission time interval (TTI) as 

observed in the literature [11-14]. Thus, the channel state remains essentially 

constant for the duration of one TTI. Despite the time constraints, the use of MILP 

to find the optimal resource allocation is for reference only. MILP is a popular tool 

for optimising many real-time problems, including the uplink and downlink of 

cellular networks. Many examples of such use cases can be found in the literature. 

The authors in [15] used MILP (and a heuristic) to jointly minimise network power 

consumption and transmission delay in an LTE network. Fairness of dynamic 

channel allocation was investigated by [16]. The authors in [17] used MILP to 

minimise the number of femtocells in an enterprise environment while guaranteeing 

a minimum threshold SINR. The authors in [18] proposed a MILP model and a near-

optimal metaheuristic to maximise the SINR subject to user power and subcarrier 

assignment constraints in the uplink of an OFDMA network. The authors of [19] 

proposed a MILP-based optimisation framework to study the optimal performance 

of the uplink in HetNets. Several admission control policies for uplink WiMAX 

networks were proposed by the authors in [20]. The authors employed MILP and a 

heuristic for that purpose. 

AW Whe paWienW¶V end, Whe aXWhoUV in [21] emphasised that home-measured blood 

pressure has stronger predictive power than conventional blood pressure 



7 

 

measurements. Additionally, the authors concluded that while there is no specific 

threshold (within the range of 1-14) for the number of measurements, they suggested 

as many as 14 or more measurements per day can enhance the prediction of a stroke. 

Taking the worst-case scenario by doubling this number (i.e., 28 

measurements/day), the proposed system still only performs measurements and 

predictions every 50 minutes which is more than sufficient. 

Lastly, we would like to draw attention to the fact that what we have integrated 

ZiWh oXU pUopoVed appUoach Whe abiliW\ Wo acceVV OP¶V YiWal VignV, classify their 

medical state, and optimise the network in light of this state while taking into 

consideration other (healthy) users. 

1.2  Research Objectives 

The primary research objectives of this thesis can be summarised as follows: 

1- To develop a framework that uses BDA to endow cellular networks with the 

ability to prioritise users (i.e., OPs) and serve them accordingly, while 

keeping the impact on other network users to a minimum.  

2- To quantify the likelihood of a stroke in an OP as a risk factor using BDA 

methods and transform this likelihood into a priority granted to the OPs 

during the radio resource assignment stage. 

3- To develop an approach to maximise Whe OPV¶ SINRV along ZiWh the total 

system SINR by maximising the individual sum-UaWeV of Whe XVeUV¶ SINRV. 

4- To investigate the wireless network response to OP prioritisation in an LTE-A 

network comprised of Macro BSs. 

5- To inspect the performance of the prioritisation approaches in a HetNet 

environment where inter-tier interference is present. 

6- To examine the system response over time using different probabilities of 

stroke. 

1.3  Original Contributions 

The main contributions of this thesis are as follows: 
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1- Surveyed the role BDA can play in wireless and wired network design. As a 

result, we made the following contributions: (i) helping academic researchers 

save much effort by understanding the state-of-the-art and identifying the 

opportunities, as well as the challenges facing the use of BDA in network 

design; (ii) in addition to academic approaches, we surveyed network 

equipment manufacturing companies highlighting network solutions based on 

BDA; (iii) we also identified the common areas of interest among these 

solutions, and thus the conducted survey can benefit both academic and 

industrial-oriented readers.  

2- Developed MILP models to prioritise the OPs in terms of radio resource 

allocation in an LTE-A network. As a result, we made the following 

contributions: (i) the introduction of an interdisciplinary approach to optimise 

the uplink of a LTE-A network while prioritising cellular-connected-OPs 

using BDA and MILP optimisation to grant the OPs suitable PRBs according 

to their current health condition; (ii) the development of method to determine 

the likelihood of a stroke using a naïve Bayesian classifier and real patient big 

data sets; (iii) we developed, using MILP, two approaches to maximise the 

OPV¶ SINRV, namel\, Whe ZeighWed VXm-rate maximisation (WSRMax) 

approach and the (proportional fairness) PF approach and compared them in 

terms of the fairness achieved between the users and the increase in the SINR. 

3- Developed a MILP model to prioritise the OPs in terms of radio resource 

allocation in uplink HetNets where inter-cell interference is mitigated by 

employing a spectrum partitioning strategy and thus made the following 

contributions: (i) investigated the system response over seven different 

current states resulting in different priority levels granted to the OPs. A 

current state refers to a feature vector of several values acquired by medical 

and IoT sensors (e.g., total cholesterol and blood pressure) that we run 

through the classifier to determine stroke probability; (ii) examined the 

system response in HetNets with activated spectrum partitioning strategy in 

terms of fairness and the percentage of maximised OPV¶ SINRV oYeU 300 

instances representing different network realisations. 

4- Developed a MILP model to prioritise the OPs in terms of radio resource 

allocation in uplink HetNets: (i) extending the aforementioned work to 
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include a larger dataset, incorporating the decision tree (DT), the logistic 

regression (LR), and the naïve Bayesian (NB) classifiers in an ensemble 

system where a voting classifier resides; (ii) rigorously scrutinising the 

claVVifieUV¶ peUfoUmance b\ condXcWing YaUioXV WeVWV of accXUacy, recall, 

specificity, false-positive rate, false-negative rate, negative prediction rate, 

precision, and F1 score. Furthermore, reporting the cross-validation test 

scores for all datasets; (iii) extending the aforementioned work to study the 

effects of inter-cell and intra-cell interference in HetNets and added a 

reliability-aware aspect to the PF approach; (iv) testing the fairness among 

users, and conducting the required sensitivity analysis over 300 instances. 

1.4  Related Publications 

This work resulted in the following journal and conference papers that have been 

published: 

1- M. S. Hadi, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani, "Big Data 

Analytics for Wireless and Wired Network Design: A Survey," Computer 

Networks, 2018. 

2- M. S. Hadi, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani, "Patient-

Centric Cellular Networks Optimization using Big Data Analytics," IEEE 

Access, vol. 7, pp. 49279-49296, 2019. 

3- M. Hadi, A. Lawey, T. El-Gorashi, and J. Elmirghani, "Using Machine 

Learning and Big Data Analytics to Prioritize Outpatients in HetNets," in 

IEEE INFOCOM 2019 - IEEE Conference on Computer Communications 

Workshops (INFOCOM WKSHPS), 2019, pp. 726-731 

4- M. S. Hadi, A. Q. Lawey, T. E. El-Gorashi, and J. M. Elmirghani, "Patient-

centric HetNets Powered by Machine Learning and Big Data Analytics for 

6G Networks," IEEE Access, vol. 8, pp. 85639-85655, 2020. 

1.5  Thesis Structure 

The relationship between the chapters is presented as follows; a literature review 

is presented in Chapter 2 where we illustrated the various types of ML algorithms 
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and discussed their role in the subject of radio resource allocation. In Chapter 3, we 

presented a literature review showing how the power of prediction provided by 

various BDA frameworks is employed in wireless network design and optimisation. 

We laid the foundation of our proposed work in Chapter 4 where we developed a 

naïve Bayesian classifier using MILP formulation and we trained it using a dataset 

of 30 entries. The work of this chapter served as the core of our BDA engine for 

Chapter 5 and Chapter 6. In Chapter 5, we considered using MILP to develop two 

optimisation models for the allocation of radio resources in the uplink of an LTE-A 

network. The OPs were allocated PRBs with powers relative to the seriousness of 

Whe OPV¶ medical VWaWe and Ze Wackled Whe concepW of faiUneVV dXUing WhaW allocaWion. 

Further, we developed a heuristic using MATLAB to validate the MILP models and 

provide a semi-opWimal bXW faVWeU UeVXlW. AddiWionall\, Whe V\VWem¶V compXWaWional 

complexity was calculated. We expanded our work in Chapter 6 to study the impact 

of OP prioritisation in two-tier HetNets with mitigated inter-tier interference using 

spectrum partitioning strategy. Moreover, we considering several measurements 

(current states) to UeflecW a change in Whe OPV¶ cXUUenW healWh condiWion. ThXV, 

observing the system response over time. Our work was further extended in Chapter 

7 to include HetNets with existing inter-tier interference. Further, aiming for high-

confidence predictions, we developed a soft-voting classifier where the predictions 

of three ML algorithms, namely, a naïve Bayesian classifier, a decision tree 

classifier, and a logistic regression classifier are combined to produce high-

confidence predictions. Furthermore, we scrutinised the soft-voting classifier (i.e., 

our BDA engine) through several performance metrics and cross validation tests and 

using an expanded dataset of 200 entries. Finally, A third optimisation model with 

the concept of reliability is introduced and compared to against the other two 

models. The thesis concludes with Chapter 8 where conclusions are drawn, the 

major contributions of this work are summarised, and we highlight the proposed 

future directions. A summary for the above structure is illustrated in Figure 1-1. 
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Figure 1-1:  Thesis structure
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Role of Machine Learning in Wireless Network Optimisation  

2.1  Introduction 

More intelligence is required to overcome the current limitations imposed upon 

cellular networks. Given its ability to predict a future incident and maximising a 

reward by learning a certain policy from historical data, whether this data was 

labelled or not, Machine Learning is, for this reason, a crucial element to enable 

networks full automation in areas like radio resource optimisation, network 

management, cache optimisation, backhaul optimisation, capacity and user mobility 

patterns discovery, coverage optimisation, and spectrum learning in cognitive radio. 

In this chapter, we conduct a brief literature review of the field of Machine 

Learning. In this review, we describe the important concepts in this vital field, the 

well-known algorithms, and illustrate its growing role in communication networks 

design.  

2.2  Machine Learning Types 

Learning, by definition, is the process of getting better results carrying out a 

certain task through practice. Thus, we can have a simple broad definition for 

Machine Learning (ML) as the process where a computer program improves its 

performance in upcoming tasks through experience gained from observed data [22]. 

The main field of ML is divided into three subfields as shown in Figure 2-1. The 

main branches are supervised learning, unsupervised learning and reinforcement 

learning. Although ML is not a newly devised field, however its current popularity 

is due to the large amount of generated data and the high computational power 

supplied by available now in modern-day computers. 
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2.2.1  Supervised Learning 

This type of machine learning relies on the existence of a labelled dataset. This 

means that for every feature (or independent) variable, there is a class (dependent or 

target) variables. In this type of learning, the right outcomes are already known 

during the model training and they are provided by a supervisor. The learning target 

is to learn a mapping from the input feature variables to the output class variables. 

This trained model is then used to predict the outcome of future (unseen) data. The 

term supervised refers to the dataset where the class (target) variables are already 

known. This type of ML can be further divided into two subcategories; 

classification, where the model uses previous observations (training dataset) to 

predict the categorical class of a new vector of feature variables (i.e. instance), and 

regression, where the class (outcome) is a number (i.e., continuous value) [23, 24]. 

There are a number of algorithms classified as supervised learning algorithms, the 

most popular are K-nearest Neighbours (K-NN), Naïve Bayes (NB), Support Vector 

 

Figure 2-1: Machine Learning Types 
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Machines (SVM), Logistic Regression (LR), Linear Regression, DT, and Artificial 

Neural Networks (ANN). 

2.2.2  Unsupervised Learning 

In this type of learning, there is no supervisor. Hence, the outcome (class) 

variable are unknown and the data are unlabelled or of unknown structure. The task 

in unsupervised learning is to extract meaningful information by exploring the 

structure of the training data without supervision (i.e., unknown outcome variable 

with no reward function). This type of learning can be further divided into two 

subcategories; clustering, which enables the organisation of data objects in the form 

of meaningful subgroups or clusters. It should be noted that objects within the 

cluster share some similarities and are more different to the objects belonging to 

other clusters (groups). The other subcategory is dimensionality reduction, which 

takes a dataset of high-dimensionality (i.e., high number of feature variables) and 

finds a way to remove noise from data (remove unimportant feature variables). This 

leaUning VXbgUoXp iV XVefXl Wo enhance Whe algoUiWhm¶V pUedicWion peUfoUmance b\ 

lowering the storage and computational requirements of ML algorithms. Algorithms 

falling into this type of learning include [23, 24]; K-means, hidden Markov Model, 

Principal Component Analysis (PCA), density-based spatial clustering of 

applications with noise (DBSCAN), Non-Negative Matrix Factorisation (NMF), 

Agglomerative Clustering (AC).  

2.2.3  Reinforcement Learning  

The goal in this type of learning is to develop a system (agent) that learns to 

maximise a UeZaUd giYen b\ a UeZaUd fXncWion meaVXUing Whe agenW¶V inWeUacWion 

with the environment via trial and error. This type of ML is somewhat linked to 

supervised learning. However, it differs from it in that the feedback received by the 

agent is not a class label or a certain class value, but rather it is a reward (e.g., win or 

lose) [23]. Algorithms of this type of learning include; Q-Learning, State-Action-

Reward-State-Action (SARSA), Deep Q Network (DQN), and Deep Deterministic 

Policy Gradient (DDPG). 

A visual representation of the types of ML, their learning subcategories, and 

common applications is illustrated in Figure 2-2. 
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Figure 2-2: ML algorithms, subcategories, and applications [25] 

2.3  Learning Tools 

ML algorithms can be virtually programmed using the majority of programming 

languages. In this section, we illustrate the most common tools that can be used to 

build and run ML algorithms. We can classify ML tools into two categories; 

programming-based tools and Graphical User Interface (GUI)-based tools 

2.3.1  Programming-Based Tools 

2.3.1.1  R 

This open source tool is a combination of both a language and an environment. 

Created by Ross Ihaka and Robert Gentleman, R can be described as a dedicated 

tool for statistical purposes that helps data scientists create codes with less 

programming requirements [26].  

2.3.1.2  Python [27] 

Python is described as the lingua franca for a major number of data science 

applications as it joins ease of use of domain-specific scripting language (e.g., R and 
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MATLAB) with the power of being a general-purpose programming language. 

P\Whon¶V poZeUfXl libraries support data scientists with both general and specific-

purpose libraries. Furthermore, it can be integrated with existing systems. Python 

benefits from scikit-learn, which is a widely used in both academic and industrial 

communities and a constantly-developed and improved open source ML library with 

a very active user community. 

2.3.1.3  TensorFlow [23] 

Developed by Google Brain team of engineers and researchers, TensorFlow is a 

scalable multi-platform programming interface. The fast training of ML models 

using this tool is due to the utilisation of both the Central Processing Unit (CPUs) 

and Graphics Processing Units (GPUs). This programming interface uses application 

programming interfaces (APIs) to support a number of programming languages 

mainly C++ and Python. 

2.3.2   Graphical User Interface-Based Tool 

In addition to programming-based tools, there are a number of GUI-based tools 

that provide ease-of-use to the state-of-the-art ML algorithms. A number of the 

common GUI-based ML tools are presented in the following sections. 

2.3.2.1  Weka [28] 

First introduced in 1992, the Waikato Environment for Knowledge Analysis 

(WEKA) is regarded as a unified workbench running ML algorithms with wide 

acceptance from academia and the industry. WEKA was not only as a ML toolbox, 

but also as a framework aimed for researchers to develop new algorithms without 

being restricted by a supporting infrastructure for data manipulation and scheme 

evaluation. 

2.3.2.2  Orange [29] 

Introduced in the late 1990s, Orange is an open source software and one of the 

oldest ML and data mining tools. It can use both Python scripting and visual 

programming through its GUI interface, offering a learning flexibility to both 

experienced and unexperienced users. 
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2.3.2.3  RapidMiner 

First introduced in 2001 at the University of Dortmund under the name YALE 

(Yet Another Learning Environment). The name was changed more than once 

before becoming known as RapidMiner. RapidMiner is a widely-spread open source 

tool for ML, statistical methods, and data mining [30]. It is worth noting that Gartner 

placed this software for the sixth year in the leader quadrant of its Magic Quadrant 

for Data Science & Machine Learning Platforms [31]. 

2.4  ML as a tool in Network Design 

Given the predictive abilities of ML algorithms, the availability of computing 

resources, and data, recent years have witnessed a rise in the number of papers 

employing ML to perform inference from historical data or to propose a certain 

strategies that reduce a penalty. Consequently, there are a number of review papers 

in the literature that strive to cover the state-of-the-art approaches. The authors of 

[32] surveyed a number of review papers in the ML subfield of deep learning. 

Although it was limited to this subfield, it gave a clear view on the vastness of the 

deep learning field. Further, the authors in [33] presented a comprehensive survey of 

a number of ML-powered, self-organised cellular networks. They classified the 

surveyed papers according to the optimisation objectives. However, the survey was 

limited to 4G cellular networks. Surveying the learning problems in the topic of 

cognitive radio was addressed by the authors in [34]. Nevertheless, now it can be 

considered dated due to new developments and proposed solutions. A brief review 

by the authors in [35] surveyed the rudimentary concepts of ML and proposed their 

utilisation in a number of applications working in 5G networks. However, their work 

was limited in terms of the number of surveyed papers. In this chapter, we will focus 

on the literature where ML is employed as part of radio resource optimisation 

systems in a cellular network. Thus, committing to the most relevant part given the 

work in this thesis. 
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2.5  ML in Radio Resource Allocation  

With the ever-increasing demand for bandwidth, the proliferation of wireless-

connected devices, and the growing interference from other mobile users, resource 

allocation is becoming a more challenging problem. In this section, we present the 

role of ML in solving the resource allocation problem in wireless networks. 

2.5.1  Supervised-Learning-based Approaches 

2.5.1.1  Network Planning 

The use of ML techniques in conjunction with optimisation methods in the 

wireless field is gaining a momentum. The authors in [36] used support vector 

machines (SVM) and genetic algorithms to develop a network planning tool. The 

metric they wanted to minimise is the number of physical resource blocks (PRB) per 

mega bit (Mb), PRB/Mb, which will allow serving users with the minimum amount 

of resources possible while maintaining the QoS. The authors reported that 

improving the metric (PRB/Mb) they used, caused the system to provide resources 

effectively in a way to ensure all outage users are recovered. The genetic algorithm 

served all the users at the 20th generation and was able to increase the resource 

efficiency as it evolved. 

The same authors proposed in [37] the use of different ML algorithms (KNN, 

NN, SVM, and DT). Additionally, ensemble methods (Bagging and AdaBoost) are 

used for enhancing the learners' accuracy of prediction. The goal is to propose a 

network planning tool capable of predicting a specific QoS metric that associates the 

interest of the users with that of the operators (i.e., PRB/Mb). The proposed 

prediction assists in future dense deployments in wireless networks. Thus, radio 

measurements are employed to develop correlative statistical models predicting the 

QoS to improve QoS-based network planning. 

2.5.1.2  Using historical decisions to reduce optimisation time 

The authors in [38] proposed a solution to minimise the time consumed by 

traditional optimisation methods. The proposed solution employs a cloud-based ML 

framework to extract similarities from a huge number of historical scenarios. The 

optimal or near-optimal solutions for these scenarios are then searched offline and 
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stored to function as a dataset for the supervised learning algorithm to work on. A 

feature vector comprised of measured data for a newly arriving scenario is then 

compared to the training data and the adopted solution is the one with the most 

amount of similarities. The authors used the proposed solution to allocate beams to 

users in a massive multi-input multi-output (MIMO) system using the KNN 

algorithm to compare to other methods which include Exhaustive Search and the 

low-complexity beam allocation (LBA) method. The proposed method was able to 

reach a solution in less time than the exhaustive reach. Further, it outperformed the 

LBA in terms of the average sum-rate as the size of the training set grew larger than 

1000 instances. 

2.5.1.3  Self-adaptive flexible transmission time interval 

Taking the opportunity of standardisation of new numerology technologies and 

5G new radio (NR), the authors in [39] proposed a self-adaptive flexible 

transmission time interval (TTI) scheduling strategy aimed at satisfying the service 

requirements in a scenario where both ultra-Reliable Low Latency Communications 

(uRLLC) and enhanced Mobile Broadband (eMBB) coexist. The proposed 

scheduling strategy is implemented using Random Forest based Ensemble where the 

TTI length is chosen for each service according to channel conditions and BS 

features. The proposed system was compared to the existing ML methods, namely, 

SVM, NN, and random forests (RF) where it showed better accuracy. The results 

reported a reduced packet loss and delay for the uRLLC services as the eMBB 

requirements are guaranteed. 

2.5.1.4  5G uplink grant-free transmission 

Signalling overhead caused by handshaking-based scheduling is one of 

challenges facing massive machine-type communication (mMTC). Grant-free access 

enables devices in the wireless network to transmit without waiting for the BS to 

grant them radio resources. Active user identification and channel estimation are 

required in grant-free uplink transmission. This is due to the fact that the receiver in 

a grant-free uplink transmission is oblivious to the channel information and the 

active user identification. The authors in [40] proposed to use asynchronous sparse 

Bayesian learning (ASBL) and SVM algorithms for channel estimation and active 

user identification/classification, respectively.  
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Performance evaluation was carried out using link-level simulation, the 

performance of both the channel estimation and active user identification was 

compared to other compressed sensing-based methods where it showed that the 

proposed receiver has a better detection performance and suitability for uplink grant-

free asynchronous non-orthogonal multiple access (NOMA) transmission. 

2.5.1.5  Traffic and flow control in LTE-A 

To alleviate the allocation process, control the transmission of recently served 

application, and reduce the overall load, a cross-layer communication approach is 

implemented between the media access control (MAC) and the application layers in 

the downlink scheduling procedure of an LTE-A network. A solution presented by 

the authors in [41] constitutes an added stage where traffic is classified before a 

conventional scheduling procedure takes part. The classified traffic is either sent to 

the scheduling stage or rejected where it is prevented from transmission over a 

period of time. A KNN-based supervised machine learning algorithm is used 

towards that end where traffic is classified according to average bit rate and delay 

features. The simulation results show effective resource allocation for real time 

applications measured in terms of fairness, packet lose and delay. However, the 

proposed approach did not investigate the throughput. 

2.5.1.6  Bandwidth reservation to reduce termination 

Tackling the problem of connection drop during handoff, the authors in [42] 

proposed a self-adaptive bandwidth reservation scheme to reduce the termination 

probability. The proposed scheme employed a support vector machine algorithm to 

compute the amount of reserved bandwidth at the target cell. The SVM algorithm 

utilises existing data at the BS to predict the moving direction of a mobile terminal. 

The simulation results report a reduction in the call dropping probability and call 

blocking probability. The bandwidth utilisation, on the other hand, witnessed better 

performance under heavy traffic loads by other schemes, namely, the schemes 

without (NO) reservation (NR). 
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2.5.1.7  Optimising spectrum allocation, route selection, and peer discovery in 

vehicular networks  

Content distribution in cooperative vehicular networks was investigated by the 

authors in [43]. The objective is to optimise spectrum allocation, route selection, and 

peer discovery from a delay perspective. To this end, they proposed to utilise big 

data generated by a geographic positioning system (GPS) and a geographic 

information system (GIS) to predict the vehicle trajectories using a combination of 

interacting multiple model (IMM) estimation with multi-Kalman filter (MKF). The 

optimisation part was formulated as a coalition formation game and was compared 

against two heuristic schemes; the non-cooperative content distribution scheme and 

the random group formation based content distribution scheme and the simulation 

results showed that the proposed approach achieved better performance. 

2.5.2  Unsupervised-learning-based approaches  

2.5.2.1  Traffic prediction in base stations 

Aiming to predict data traffic volume at BSs, the authors in [44] proposed to use 

k-means algorithm to cluster the BSs into groups of geographically adjacent BSs 

with correlated traffic flows. Subsequently, the time series traffic data is pre-

processed by decomposing them into high-frequency and low-frequency 

components using a wavelet decomposition method. Finally, and after 

reconstructing both frequency parts to time series components by wavelet 

reconstruction, an Elman neural network (ENN) is used on each of the time series 

components to predict the traffic flow. 

2.5.2.2  User Clustering for downlink beams 

The authors in [45] proposed to use K-means algorithm to group users in 

downlink 3G cellular systems adaptive cell Sectorisation. Thus, users are grouped 

according to their spatial characteristics into clusters using ML and used as a 

reference to shape antenna beams to enable the minimisation of specific features 

(e.g., interference, power). 
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2.5.2.3  Supporting cooperative spectrum sensing 

The authors in [46] used ML techniques to propose cooperative spectrum sensing 

algorithms for cognitive radio networks.  The goal is to determine (i.e., classify) the 

channel availability (i.e. class) by classifying an energy vector (i.e., feature vector) 

comprised of the energy levels reported by all secondary users. Supervised (i.e. 

SVM and KNN) and unsupervised algorithms (i.e. K-means and Gaussian Mixture 

Model) classification techniques are used for that purpose. The authors used the 

average training time, receiver operating characteristic performance, and sample 

delay classification to quantify the classifiers' performance for comparison purposes. 

Further, the authors compared their proposed schemes to the Fisher Linear 

Discriminant method. The results showed that SVM achieved the highest detection 

performance with the K-means following very closely in terms of the receiver 

operating characteristic (ROC) performance. The weighted KNN required the least 

amount of training time. Therefore, it is very suitable for channel spectrum sensing 

as it requires an on-the-fly update for its training vectors. 

2.5.3  Reinforcement-learning-based approaches 

2.5.3.1  Dynamic resource allocation in LTE-U networks 

Solving the problem of LTE unlicensed (LTE-U) and Wi-Fi coexistence in the 

unlicensed spectrum was the focus of the authors in [47]. They proposed a scheme 

where blank subframes are dynamically allocated using a Q-learning algorithm. The 

number of subframes within a frame is kept but the subframe length is reduced 

signifying less transmission time and guaranteeing that a percentage of the 

subframes are blank subframes. The authors proposed sharing the transmission-

related information so that the LTE-U decides when to allocate blank subframes, 

and when to allocate dynamically adjusted blank subframe numbers proportional to 

the Wi-Fi traffic size. The results showed that the proposed approach improved the 

overall system spectrum utilisation. 

2.5.3.2  Spectrum Monitoring for cloud-based RAN 

A reinforcement learning method was employed by the authors in [48] to propose 

an approach for faster dynamic spectrum allocation decisions in a cloud-based RAN 

(C-RAN). The proposed system uses regression analysis to operate on big data 
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collected by a monitoring system at Sofia Airport to predict spectrum occupancy and 

usage activity in a predefined frequency band. The authors introduced a frequency-

time resource indicator to act as a measure for spectrum usage. The authors reported 

that the prediction accuracy of their system is proportional the amount of collected 

data and outlined the "accuracy vs latency" trade-off problem solvable through the 

use of cloud-based generic processing architecture. 

2.5.3.3  Increasing throughput and fairness for users in HetNets 

The work in [49] considered semi- and uncoordinated deployment of small cells 

and proposed combining Q-learning with mobile users' geographical locations. To 

improve the dynamic allocation of radio resources, a game theoretical dimension is 

added by attributing roles relative to the interference at the BSs with the objective of 

enabling cells to cooperate even when indirectly communicating to each other. The 

results reported that combining user locations and Q-learning resulted in an increase 

in cell throughput while maintaining an acceptable user throughput. A further 

improvement in terms of system performance and fairness among users with an 

increase in the average cell throughput can be attained when incorporating the game 

theoretical approach. 

2.5.3.4  Energy-efficient resource management in HetNets 

A HetNet architecture was presented by the authors in [50]. Combining radio 

frequency (providing wide coverage area) and visible light communication 

(providing high data rate) to guarantee different QoS requirements. The joint 

uplink/downlink energy-efficient resource management decision making problem 

was formulated as a Markov decision process. The objective was to maximise the 

network energy efficiency while ensuring that the QoS requirements are met for 

Industrial-IoT or IoT devices. The proposed architecture is to function in an 

industrial IoT network setting where Ultra-Reliable Low-Latency performance is 

required. A reinforcement learning method was proposed by the authors to attain an 

optimal policy for resource management, named post-decision state (PDS) based 

experience replay and transfer (PDS-ERT). The simulation results showed that 

better performance can be attained through the proposed approach comparing it to 

Deep PDS and Q-learning algorithm with knowledge transfer (QKT)-learning 

algorithms. 



24 

 

2.5.3.5  Distributed resource allocation in asynchronous networks 

The problem of allocating resources in downlink LTE-licence assisted access 

(LAA) network is tackled in [51]. Assuming limited channel state information (CSI) 

exchange, the objective is to maximise the proportional fairness of the users 

summed rate. Using a reinforcement-based approach through a fully connected 

neural network where random seeds are employed, the learning target is the seed 

with the highest in-cell proportional fairness. The simulation results reported that the 

in-cell proportional fairness contributed to the maximisation of the overall 

proportional fairness. Comparing the proposed algorithm to another (fairness 

allocation scheme) showed that the proposed approach attained 6.8% higher 

geometric mean. 

2.5.3.6  Spectrum auction in cognitive radio networks 

Using spectrum sensing to detect available frequency bands, the authors in [52] 

proposed to employ Q-learning-based bidding algorithm for spectrum auction by the 

secondary users to allocate them the available bands. The algorithm enables 

secondary users to learn from the competitors so that they can automatically place 

better bids for the available frequency bands. Secondary users who win multiple 

bids can utilise multiple bands per time slot. Hence, they can send their data using 

multiple frequency bands simultaneously in one time slot. The results show that the 

proposed approach managed to allocate the frequency bands efficiently, 

automatically and in a fair manner. 

2.5.3.7  Circumstance independent policy for resource allocation 

It is worth stressing the fact that network circumstances (e.g., number of users 

and QoS requirements) are generally key for reinforcement learning policy structure. 

Thus the policies are circumstance-dependant and this can hinder the policy 

implementation in practical systems. The authors in [53] proposed the use of a 

circumstance-independent policy for resource allocation in wireless networks to 

function on different network circumstances and developed a deep reinforcement 

learning algorithm to learn it. The proposed approach can be applied in practical 

systems over different circumstances. The proposed policy was compared against 
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the circumstance-depended policy where it attained close performance for each 

circumstance. 

2.5.3.8  Spectrum sharing and spatial reuse  

To address the problem of underutilised spectrum in the millimetre-wave band, 

ultra-dense networks, the authors in [54] proposed a generalised temporal-spatial 

spectrum sharing scheme, establishing a dynamic spectrum sharing model where the 

same channel is utilised by several shared links at the same slot. A non-cooperative 

game between devices is formulated as the spectrum utilisation problem, and is 

proven to be an ordinary potential game. Thus, a Nash Equilibrium (NE) is 

guaranteed. A novel decentralised Q-learning is used to help the secondary users 

learn the environment and adapt to achieve NE with partial feedback information 

and by depending on action-reward history. The action, and reward of each 

secondary user are channel selection and channel capacity, respectively. The new Q-

learning algorithm defines the actions over Q values instead of the legacy state-

action pair. Thus, each action correlates with a Q value updated as the weighted sum 

of the current Q-value and the instant reward whilst the Q values of the other actions 

remain unchanged. The results of evaluating the proposed approach against other 

schemes showed a faster and more stable convergence. Further, an improvement to 

network throughput is witnessed promoting the increase of 5G-connected devices. 

2.5.4  Novel approaches 

2.5.4.1  Delay-Aware Brain-Centric Radio Resource Optimisation 

The authors in [55] developed a framework to manage resources in wireless 

networks while considering the delay perception in the human brain. Based on the 

brain features, a probabilistic model is developed using a probability distribution 

identification (PDI) learning method to predict the delay perceived by the human 

users and quantify the reliability of this prediction. They defined a closed-form 

expression that identifies the relationship linking wireless physical layer metrics and 

system reliability. Using the aforementioned relationship and a developed learning 

method named PDI consisting of two, supervised and unsupervised learning parts, 

the authors proposed a Lyapunov-based brain-aware optimisation approach to 

allocate human users with radio resources. The results show that the brain-aware 
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approach yielded up to 78% power savings when compared to another system that 

considered the QoS metrics exclusively. 

2.6  Chapter Summary 

This chapter provided a review of ML types and algorithms. Further, it shed light 

on the role played by ML in the design of current and future cellular networks. 

Given the chance to summarise the literature, we highlight the fact that the majority 

of the paper reviewed fall within the supervised and reinforcement learning types. 

Unsupervised learning had a smaller share in the literature due to the topic in hand 

(i.e., radio resource allocation). Thus, the use of labelled data and the employment of 

an agent to discover the environment are the most common features in the 

optimisation process. Nonetheless, we highlighted several unsupervised learning use 

cases. An extension to this survey can include all other wireless network design and 

optimisation aspects that incorporates ML algorithms. 
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Literature Review ± Using Big Data Analytics in Network Design 

3.1  Background 

Networks generate traffic in rapid, large, and diverse ways, which leads to an 

estimate of 2.5 exabytes created per day [56]. There are many contributors to the 

increasing size of the data. For instance, scientific experiments can generate lots of 

daWa, VXch aV CERN¶V LaUge HadUon CollideU (LHC) WhaW geneUaWeV oYeU 40 

petabytes each year [57]. Social media also has its share, with over 1 billion users, 

spending an average 2.5 hours daily, liking, tweeting, posting, and sharing their 

interests on Facebook and Twitter [58]. It is without a doubt that using this activity-

generated data can affect many aspects, such as intelligence, e-commerce, 

biomedical, and data communication network design. However, harnessing the 

powers of this data is not an easy task. To accommodate the data explosion, data 

centres are being built with massive storage and processing capabilities, an example 

of which is the National Security Agency (NSA) Utah data centre that can store up 

to 1 yottabyte of data [59], and with a processing power that exceeds 100 petaflops 

[60]. Due to the increased needs to scale-up databases to data volumes that exceeded 

processing and/or storage capabilities of simple computer systems, systems that ran 

on computer clusters started to emerge. Perhaps the first milestone took place in 

June 1986 when Teradata [61] used the first parallel database system (hardware and 

software), with one terabyte storage capacity, in Kmart data warehouse to have all 

their business data saved and available for relational queries and business analysis 

[62, 63]. Other examples include the Gamma system of the University of Wisconsin 

[64] and the GRACE system of the University of Tokyo [65]. 

In lighW of Whe aboYe, Whe WeUm ³Big DaWa´ emeUged, and iW can be defined aV high-

volume, high-velocity, and high-variety data that provides substantial opportunities 

for cost-effective decision-making and enhanced insight through advanced 

processing which extracts information and knowledge from data [66]. Another way 

to define big data is by saying it is the amount of data that is beyond traditional 



28 

 

technology capabilities to store, manage, and process in an efficient and easy way 

[67]. Big data is already being employed by digital-born companies like Google and 

Amazon to help these companies with data-driven decisions [68]. It also helps in the 

development of smart cities and campuses [69], as well as in other fields like 

agriculture, healthcare, finance [70], and transportation [71].  

3.2  Big Data Characteristics 

Big data is better defined through its characteristics, which are: 

Volume: This is a representation of the data size [72]. 

Variety: Generating data from a variety of sources results in a range of data types. 

These data types can be structured (e.g. e-mails), semi-structured (e.g. log files data 

from a webpage); and unstructured (e.g. customer feedback), and hybrid data [73]. 

Velocity: Is an indication of the speed of the data when being generated, 

streamed, and aggregated [74]. It can also refer to the speed at which the data has to 

be analysed to maintain relevance [72]. 

Depending on the research area and the problem space, other terms or Vs can be 

added. For example, is this data of any value? How long can we consider this an 

accurate and valid data? Since we are conducting a survey, we find it compelling to 

briefly introduce other Vs as well. Typically, the number of analysed Vs is 3 to 7 in 

a single study (e.g. 6V+C [75]), where C represents Complexity, however, different 

papers analyse different sets of Vs and the union (sum) of all the analysed Vs among 

all surveyed papers is 8V and a C, as shown in Table 3-1. 

 Value: Is a measure of data usefulness when it comes to decision making [74], or 

how much added-value is brought by the collected data to the intended process, 

activity, or predictive analysis/hypothesis [76].  

Veracity: Refers to the authenticity and trustworthiness of the collected data 

against unauthorised access and manipulation [76, 77].  

Volatility: An indication of the period in which the data can still be regarded as 

valid and for how long that data should be kept and stored [78]. 
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Validity: This might appear similar to veracity; however, the difference is that 

validity deals with data accuracy and correctness regarding the intended usage. 

Thus, certain data might be valid for an application but invalid for another. 

Variability: This refers to the inconsistency of the data. This is due to the high 

number of distributed autonomous data sources [79]. Other researchers refer to the 

variability as the consistency of the data over time [77]. 

Complexity: A measure of the degree of interdependence and inter-connectedness 

in big data [75]. Such that, a system may witness a (substantial, low, or no) effect 

due to a very small change(s) that ripples across the system [74]. Also, complexity 

can be considered in terms of relationship, correlation and connectivity of data. It 

can further manifest in terms of multiple data linkages, and hierarchies. Complexity 

and its mentioned attributes can however help better organise big data. It should be 

noted that complexity was included among the big data attributes (Vs) in [75] where 

big data was characterised as having 6V + complexity. This is how we will arrange 

it in Table 3-1. 
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Table 3-1: Various big data dimensions  

No. of 

Vs 
References 

Dimensions (Characteristics) 

Volume Velocity Variety Veracity Value Variability Volatility Validity Complexity 

3Vs [80-86] ¥ ¥ ¥       

4Vs 
[59, 87-89] ¥ ¥ ¥ ¥      

[90-94] ¥ ¥ ¥  ¥     

5Vs 
[58, 66, 76, 95, 

96] 
¥ ¥ ¥ ¥ ¥    

 

6Vs [75, 77, 79, 97] ¥ ¥ ¥ ¥ ¥ ¥   ¥ 

7Vs [78, 98] ¥ ¥ ¥ ¥ ¥ 
 

 
¥ ¥ 
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3.3  BDA tools 

The process of extracting hidden, valuable patterns, and useful information from 

big data is called Big Data Analytics [99]. This is done through applying advanced 

analytics techniques on large data sets [83]. Before commencing the analytics 

process, data sets may comprise certain consistency and redundancy problems 

affecting their quality. These problems arise due to the diverse sources from which 

the data originated. Data pre-processing techniques are used to address these 

problems. The techniques include integration, cleansing (or cleaning), and 

redundancy elimination, and they were discussed by the authors in [94]. 

BDA can be carried out using a number of frameworks (shown below) that 

usually require an upgradeable cluster dedicated solely for that purpose [72]. Even 

if the cluster can be formed using a number of commodity servers [100], however, 

this still forms an impediment for limited-budget users who want to analyse their 

data. The solution is presented through the democratisation of computing. This 

made it possible for any-sized company and business owners to analyse their data 

using cloud computing platforms for BDA. Consequently, the use of BDA is not 

limited to enterprise-level companies. Furthermore, business owners do not have to 

heavily invest in an expensive hardware dedicated to analysing their data [56]. 

Ama]on iV one of Whe companieV WhaW pUoYide µcloXd-compXWed¶ BDA foU iWV 

customers. The service is called Amazon EMR (Elastic MapReduce), and it 

enables users to process their data in the cloud with a considerably lower cost in a 

pay-as-you-use fashion. The user is able to shrink or expand the size of the 

computing clusters to control the data volume handled and response time [56, 101] 

Dealing with big amounts of data is not an easy task, especially if there is a 

certain goal in mind since data arrives in a fast manner, it is vital to provide fast 

collection, sorting, and processing speeds. Apache Hadoop was created by Doug 

Cutting [102] for this purpose. It was later adopted, developed, and released by 

Yahoo [103]. Apache Hadoop can be defined as a top-level, java-written, open 

source framework. It utilises clusters of commodity hardware [104]. 

Hadoop V1.x (shown in Figure 3-1) consists of two parts: the Hadoop 

Distributed File System (HDFS) that consists of a storage part, and a data 
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processing and management (MapReduce) part. The master node has two 

processes, a Job Tracker that manages the processing tasks and a Name Node that 

manages the storage tasks [105]. 

When a Job Tracker takes job requests, it splits the accepted job into tasks and 

pushes them to the Task Trackers located in the slave nodes [106]. The Name Node 

resembles the master part, while the Data Nodes represent the slave part [67]. 

Many projects were developed in a quest to either complement or replace the 

above parts, and not all projects are hosted by the Apache Software Foundation, 

which is the reason for the emergence of the term Hadoop ecosystem [102]. 

 

Figure 3-1: Hadoop V1.x architecture 
Hadoop V2.x is viewed as a three-layered model. These layers are classified as 

storage, processing, and management, as shown in Figure 3-2. The current Hadoop 

project has four components (modules), which are MapReduce, the HDFS, Yet 

Another Resource Negotiator (YARN), and Common utilities [72]. 
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Figure 3-2: Hadoop V2.x architecture 
MapReduce: As a programming model, MapReduce is used as a data processing 

engine and for cluster resource management. With the emergence of Hadoop v2.0, 

Whe UeVoXUce managemenW WaVk became YARN¶V UeVponVibiliW\ [72]. WordCount is 

an example illustrating how MapReduce works. As the name implies, it calculates 

the number of times a specific word is repeated within a document. Tuples ⟨𝑤, 1⟩ 

are produced by the map function, where 𝑤 and 1 represents the word and the 

times it appeared in the document respectively. The reduce function groups the 

tuples that share the same word and sums their occurrences to reach the concluding 

result [61]. 

HDFS: HDFS represents the storage file-system component in the Hadoop 

ecosystem. Its main feature is to store huge amounts of data over multiple nodes 

and stream those data sets to user applications at high bandwidth. Large files are 

split into smaller 128 MB blocks, with three copies of each block of data to 

achieve fault tolerance in case of disk failure [72, 107, 108].  
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YARN: YARN was introduced in Hadoop version 2.0, and it simply took over 

the tasks of cluster resource management from MapReduce and separated it from 

the programming model, thus making a more generalised Hadoop capable of 

selecting programming models, like Spark [109], Storm [110], and Dryad [111, 

112].  

Common utilities: To opeUaWe Hadoop¶V VXb-projects or modules, a set of 

common utilities or components are needed. Shared libraries support operations 

like error detection, Java implementation for compression codes, and I/O utilities 

[72, 113]. 

Over the last few years, researchers in telecommunication networks started to 

consider BDA in their design toolbox. Characterised by hundreds of tuneable 

parameters, wireless network design informed by BDA received most of the 

attention, however, other types of networks received increasing attention as well.  

The vast amount of data that can be collected from the networks, along with the 

distributed modern high-performance computing platforms, can lead to new cost-

effective design space (e.g. reducing total cost of ownership by employing 

dynamic Virtual Network Topology adaptation) when compared to classical 

approaches (i.e. static Virtual Network Topologies) [114]. This new paradigm is 

promising to convert networks from being sightless tubes for data into insightful 

context-aware networks. 

3.4  Case studies of the use of BDA for wireless and wired 

networks 

3.4.1  Detection of Sleeping Cells in 5G SON 

A wireless cell may cease to provide service with no alarm triggered at the 

Operation and Maintenance Centre (OMC) side. Such cells are referred to as 

sleeping cells in self organising networks (SON). The authors in [115] tackled this 

problem and presented a case study on the identification of the sleeping cells (SC). 

The simulation scenario comprised of 27 macro sites each with three sectors. The 

user equipment (UE) is configured to send radio measurement and cell 

identification data of the serving and neighbouring cells to the BS, in addition to 
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event-based measurements. The simulation considered two scenarios; reference (a 

normally-operating network) and SC. The latter was simulated by dropping the 

antenna gain from 15 dBi (reference scenario) to -50 dBi (SC scenario). The 

reference scenario provided measurements used by an anomaly detection model 

based on KNN algorithm to provide a network model with normal behaviour. 

Multidimensional Scaling (MDS) is used to produce a minimalistic Key 

Performance Index (KPI) representation. Thus the interrelationship between 

Performance Indexes (PIs) is reflected and an embedded space is constructed. 

Consequently, similar measurements (i.e. normal network behaviour) lie within 

close distances while dissimilar measurements (i.e. anomalous network behaviour) 

are far-scattered and hence easily identified. The model attained 94 percent 

detection accuracy with 7 minutes training time. 

3.4.2  An Architecture for Fully Automated MNO Reporting System. 

Mobile Network Operators (MNOs) collect vast amounts of data from a number 

of sources as it can offer actionable plans in terms of service optimisation. 

Visibility and availability of information is vital for MNOs due to its role in 

decision making. Employing a reporting system is pivotal to transform data to 

information, knowledge, and lastly to actionable plans. The authors in [116] 

presented a case study for the potential role of BDA in the development a fully 

automated reporting system. A Moroccan MNO is to benefit from the alternative 

architecture. The authors highlighted the shortcomings of the existing automatic 

reporting system that uses traditional technologies. Moreover, they inferred that 

using BDA can provide the opportunity to overcome those shortcomings. The 

authors chose the Apache Flink [116] in their proposed architecture to serve as 

their BDA framework. 

3.4.3  Network Anomaly Detection using NetFlow Data 

BDA can support the efforts in the subject of network anomaly and intrusion 

detection. To that end, the authors in [117] proposed an unsupervised network 

anomaly detection method powered by Apache Spark cluster in Azure HDInsight. 

The proposed solution uses a network protocol called NetFlow that collects traffic 

information that can be utilised for the detection of network anomalies. The 
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procedure starts by dividing the NetFlows data embedded in the raw data stream 

into 1-minute intervals. NetFlows are then aggregated according to the source IP, 

and data standardisation is carried out. Afterwards, a k-means algorithm is 

employed to cluster (according to normal or abnormal traffic behaviour) the 

aggregated NetFlows. The authors considered a dataset containing 4.75 hours of 

records captured from CTU University to analyse botnet traffic. The proposed 

approach attained 96% accuracy and the results were visualised in 3D after 

employing Principal Component Analysis (PCA) to attain dimension reduction. 

3.5  Role of BDA in Cellular Network Design 

In this section, we review the research done on the use of BDA for the design of 

cellular networks. Compared to other network design topics, we observed that the 

wireless field has received the highest attention, as measured by its share of 

research papers. These papers can be classified according to the application or area 

under investigation. Consequently, we have classified those papers into the 

following: 

1- Counter-failure-related: This includes fault tolerance (i.e. detection and 

correction), prediction, and prevention techniques that use BDA in 

cellular networks. 

2- Network monitoring: This illustrates how BDA can be beneficial as a 

large-scale tool for data traffic monitoring in cellular networks. 

3- Cache-related: Investigates how BDA can be used for content delivery, 

cache node placement and distribution, location-specific content 

caching, and proactive caching. 

4- Network optimisation: BDA can be involved in several topics including 

predictive wireless resource allocation, interference avoidance, 

optimising the network in light of Quality of Experience (QoE), and 

flexible network planning in light of consumption prediction. 

It should be noted that Table 3-2 provides further detailed classification, with 

the chance to compare the role played by BDA across different network types and 

applications 
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3.5.1  Failure Prediction, Detection, Recovery, and Prevention 

3.5.1.1  Inter-technology Failed Handover Analysis using BDA 

One of the most frustrating encounters happens when a mobile subscriber gets 

surprised by a sudden call drop. Many of these incidents occur when the user is at 

the edge of a coverage area and moving towards another, technologically-different 

area, e.g., moving from a 3G BS to a 2G BS. The common solutions to address 

such shortcomings are by either conducting drive tests or performing network 

simulation. However, another solution that leverages the power of big data was 

proposed by the authors in [118]. The proposed solution uses BDA (Hadoop 

platform) to analyse the Base Station System Application Part (BSSAP) messages 

exchanged between the Base Station Subsystem (BSS) and Mobile Switching 

Centre (MSC) nodes. Location updates (only those involved in the inter-

technology handover) are identified and the geographic locations where the 3G-

service disconnections occur are identified by relying on the provided target Cell 

ID. 

The results of the above method were then compared with a drive test (which is 

an expensive and time-consuming approach) results, where coherence between the 

two results was demonstrated. Another comparison was conducted with the Key 

Performance Index (KPI)-based approach and the results were in favour of the 

proposed approach. 

3.5.1.2  Signalling Data-based Intelligent LTE Network Optimisation 

By utilising the combination of all-around signalling and user and wireless 

environment data, combined with Self-Organised Network technologies (SON), 

full-scale automatic network optimisation could be realised. 

The authors of [82] developed an intelligent cellular network optimisation 

platform based on signalling data. This system involves three main stages: 

1- Defining network performance indicators through the extraction of XDR 

keywords: The External Data Representation (XDR) contains the key 

information of the signalling (e.g., the causes of the process failures and 

signalling types). The status of a complete signalling process can also be 

identified by the XDR (e.g., the success or failure of signalling 
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establishment and release). A number of performance indicators are defined 

by relying on this information. Querying these indicators is possible from 

multiple dimensions and levels (e.g., user, cell, and grid level). 

2- Problem discovery: Service establishment rate, the handover success rate, 

and drop rate are among the network signalling-plane statuses that can be 

reflected by the XDR-based network performance indicators. Network 

equipment with unsatisfactory performance indicators can be further 

analysed, and this can be done by conducting a further excavation of the 

coUUeVponding indicaWoUV¶ oUiginal Vignalling. 

3- Providing best practice solutions: Identified and solved problems can 

provide an optimisation experience. As a consequence, a variety of network 

problems can be verified. For example, when a cell has a low handover 

success rate, according to the definition of the associated indicators, the 

reason is suggested to be the low success rate of the handover preparation. 

The solution would be to adjust the overlapping coverage areas formed 

between the source and the target cells and the parameters (e.g., the 

decision threshold offset and the handover initiation).  

A recommended solution can be provided when a deteriorating indicator 

surfaces, and this is simply done by clicking the index query that caused the 

deterioration 

3.5.1.3  Anomaly Detection in Cellular Networks 

When a certain problem occurs in the cellular network, the user would usually 

be the first who feels the service disruption and suffers the impact. An abnormal 

and disrupted service may be identified by examining the Call Detail Record 

(CDR) of the users in a specific area. CDR files are generated upon making a call, 

and include, among other information, the caller and called numbers, the call 

duration, the caller location, and the cell ID where the call was initiated or 

received. 

A CDR based Anomaly Detection Method (CADM) was proposed by the 

authors in [119]. CADM was used to detect the anomalous behaviour of user 

movements in a cellular network. This was done, first, with the CDR data being 

collected from the network nodes and stored in a mediation department. Then, the 
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second phase starts by distributing the collected CDRs to the relevant departments 

(e.g., data warehouse, billing, and charging departments). After that, the Hadoop 

platform is used to detect the anomalies. The discovered anomalies are then fed-

back to the mediation department for adequate actions. 

The use of BDA was essential in this case. Large datasets that require 

distributed processing across computer clusters were processed by the Hadoop 

Platform. The result was an improved system that is able to detect location-based 

anomalieV and impUoYe Whe cellXlaU V\VWem¶V peUfoUmance. 

3.5.1.4  Self-healing in Cellular Networks 

The idea of developing a system that is capable of monitoring itself, detecting 

the faults, performing diagnoses, issuing a compensation procedure, and 

conducting a recovery is very appealing. However, the self-healing process has 

another factor to keep in mind, which is time. The process should be carried out 

within a reasonable amount of time so it would not degrade the quality of the 

delivered services. 

Three use cases were presented by the authors in [120] for a self-healing 

process in cellular networks: 

1- Data Reduction: The Operation and Maintenance (O&M) database can be 

used for troubleshooting purposes. However, the database size is relatively 

large as it contains the data related to both normal and degraded intervals, 

which makes it difficult to process. Separating the intervals to just keep the 

degraded intervals will help in reducing that size. The authors proposed 

parallelising this process independently by analysing each BS separately. 

They chose the degraded interval detection algorithm of [121] (a degraded 

interval is the time where the BS behaviour is degraded), and these intervals were 

deWecWed b\ compaUing Whe BS¶V KPIV Wo a ceUWain WhUeVhold. This algorithm was 

parallelised by implementing it as a map function, a field is added to identify each 

BS, and all the fields are added by a reduce function. 

2- Detecting Sleeping Cells: Cell outage or sleeping cells is a common 

problem in mobile networks. Users are directed to neighbouring cells 

instead of the nearest and optimal cell. According to the algorithm 
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described in [122], sleeping cells can be detected through the utilisation of 

neighbouring BS measurements hence calculating the impact of the 

sleeping cell outage. The detection process relies on the Resource Output 

Period (ROP), where each BS produces Configuration Management (CM), 

Fault Management (FM), and Performance Management (PM) data every 

15 minutes. For each BS, incoming handovers from neighbouring BSs are 

aggregated for the current and previous ROP. If the number of handovers 

VXddenl\ dUopped Wo ]eUo, and a malfXncWion iV indicaWed b\ Whe cell¶V 

Performance Indicators (PIs), the cell is regarded as a sleeping cell.  

The authors in [120] proposed the use of the above-mentioned algorithm under 

the big data principle. They proposed to divide the terrain into partitions that are 

the maximum distance between neighbours, where each BS within the partitioned 

area is sequentially tested by an instance of the algorithm, and this is done by 

examining the data of its neighbours. 

This approach was compared to other methods (e.g., lack of KPIs and 

availability of KPIs), and most of the simulated outages were detected (5.9% false 

negatives and 0% false positives). While a lack of KPIs and availability of KPIs 

methodologies showed a high percentage of false negatives. 

3- KPI Correlation-Based Diagnosis: The authors in [120] used a method that 

utilises most correlated KPIs to identify the problem cause. To simplify the 

analysis task, the algorithm considers the PIs of both the affected BS and 

the neighbouring sectors. 

MapReduce was used to implement this algorithm in a parallelised manner, the 

correlation process and the creation of a PIs list arranged by correlation were 

implemented as map and reduce functions, respectively. 

3.5.1.5  Cell-site Equipment Failure Prediction 

A sudden outage of services might have serious consequences, and this is why 

keeping communication equipment, like cell sites, in a good working state is of 

high importance. The challenge identified by the authors in [123] is to analyse the 

XVeU¶V bandZidWh on Whe cell leYel. ETXipmenW(V) failXUe and infUaVWUXcture faults 

can be predicted by analysing the bandwidth trends in a particular cell. 
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Due to the size and diversity of the collected data, it is essential to use BDA to 

pUoceVV iW. ThXV, Whe cXVWomeUV¶ UeceiYed bandZidWh can be acTXiUed oYeU a 

particular time period (i.e., month or year, etc.). Next the data from diverse data 

sources are integrated and then analysed to know the bandwidth trends. 

3.5.2  Network Monitoring 

3.5.2.1  Large-scale Cellular Network Traffic Monitoring and Analysis 

Large cellular networks have relatively high data rate links and high 

requirements to meet. Usually these networks use a high-performance and large 

capacity server to perform traffic monitoring and analysis. 

However, with the continuous expansion in data rates, data volumes, and the 

requirements for detailed analysis, this approach seems to have a limited 

scalability. Hence, the authors of [124] proposed a system to undertake that task, 

utilising the Hadoop MapReduce, HDFS, and HBase (a distributed storage system 

that manages the storage of structured data and stores them in a key/value pair) as 

an advanced distributed computing platform. They exploited its capability of 

dealing with large data volumes while operating on commodity hardware. The 

proposed system was deployed in the core side of a commercial cellular network, 

and it was capable of handling 4.2 TB of data per day supplied through 123 Gbps 

links with low cost and high performance. 

3.5.2.2  Mobile Internet Big Data Operator 

China Unicom, China¶V LaUgeVW WCDMA 3G mobile opeUaWoU ZiWh 250 million 

subscribers in 2012, introduced an industry ecosystem. The researchers in [125] 

highlighted this as a telecom operator-centric ecosystem that is based on a big data 

platform. 

The above-mentioned big data platform is developed for retrieving and 

analysing data generated by mobile Internet users. With the aim of optimising the 

storage, enhancing the performance, and accelerating the database transactions, the 

authors proposed a platform that uses HDFS for distributed storage. The cluster 

had 188 nodes used to store data, perform statistical data analyses, and act as 

management nodes. The approximate storage space was 1.9 PB. HBase has the 
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role of a distributed database, with a writing rate that can reach 145k records per 

second; HBase stores the structured data located on the HDFS. 

Compared with the Oracle database, it is noted that the system achieved four 

times lower insertion rate. The query rate was compared to an Oracle database as 

well, and the HBase showed better performance when taking into consideration the 

impact of Whe UecoUdV¶ Vi]e. 

3.5.3  Cache and Content Delivery 

3.5.3.1  Optimised Bandwidth Allocation for Content Delivery 

Mobile networks, usually, have a large number of users, and with the increase in 

Internet-based applications, it has become essential to allocate the required 

bandwidth that meets the user expectations, as well as to ensure a competitive level 

of service quality. Cellular networks can provide Internet connectivity to their 

users at any time; however, video (especially high quality) contents are still slow 

and relatively expensive. From the BS¶V poinW of YieZ, Whe impacW of foUZaUding 

the same video content to several users on the same BS is massive. The LTE 

system addressed this through multicast techniques. However, multicast is still 

regarded as a big challenge in cellular networks. To overcome the above problem, 

the authors of [81] proposed a solution that can dynamically allocate bandwidth. 

The idea is based on sharing the BS¶V wireless channel by a user cluster that 

wishes to download the contents. Thus, saving the BS resources, as well as 

providing a better data rate for the clustered users, and providing an opportunity 

for the users who did not join the cluster to benefit from the saved resources 

(bandwidth). It should be noted that the clustered users can receive the contents 

from the cluster head by using short range communication techniques like Wi-Fi 

Direct [126] and Device to Device (D2D) communication. 

Two conditions must be satisfied before forming a user cluster. First, the users 

who request the same content are the ones who form the cluster. Second, the users 

should either be at the time (or will be) within a short range of each other. For that 

reason, the aXWhoUV VXggeVWed XVing BDA Wo idenWif\ Whe XVeUV¶ cloVeneVV and Wo 

group the users into cluster(s). A cluster head is then selected among the nearby 

users, and the process is repeated among the BS users until there is either a cluster 
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of users or a free (un-clustered) user(s). The simulation was carried for a single BS 

network and the results showed faster content delivery and improved throughput at 

the user level. 

3.5.3.2  Improve Cache Node Determination, Allocation, and Distribution 

Accuracy in Cognitive Radio Networks 

In cognitive radio networks, Secondary Users (SU) have to leave the licensed 

spectrum when their activity starts to affect the QoS level of the licensed users. 

This move would require the existence of a cache node to compensate for the 

interrupted data transactions during the SU switch to the unlicensed spectrum. The 

author of [127] proposed the use of BDA to process the data accumulated over 

time within the nodes. The goal was to utilise this data to reach a decision on the 

cache node distribution in a cluster network. The author selected two out of three 

categories (open and selectively open systems) of cognitive radio networks. For the 

selectively open systems, the SU selectively shares its information with either 

some cache nodes, with the cluster head for a particular time interval, or with 

specific SUs in a cluster. This results in a variable amount of shared data, thus 

resulting in variable accuracy. 

3.5.3.3  Tracking and Caching Popular Data 

The number of social network (i.e., Facebook and Twitter) users is massive. The 

multimedia contents of these networks are normally shared between common 

interest groups. However, big and important events attract a lot of attention and 

consequently a lot of content is shared across these networks. When a certain video 

or event goes viral, this sharing will eventually burden the network as the 

requested content would have to travel along the network on its way to the servers. 

A solution to such a problem was suggested by the authors of [123]. They 

suggested monitoring popular and social media websites, analysing the data, 

identifying if there is a growing interest in certain content, by which age category, 

and caching the popular data for a specific BS. BDA can be of major use in this 

situation by employing it to do the required analysis. The result would be cached 

content available to the users faster (reduced provisioning delay) and without 

burdening the network. 
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3.5.3.4  Proactive Cashing in 5G Networks 

Cache-enabled BS can serve cellular subscribers. This is done by predicting the 

most strategic contents and storing them in their cache. Thus, minimising both the 

amount of time and the consumed network bandwidth, which can payoff in other 

ways (i.e., less congestion and less resource utilisation). 

An approach, proposed by the authors in [89], used BDA and ML is to develop 

a proactive caching mechanism by predicting the popularity distribution of the 

content in 5G cellular networks. They demonstrated that this approach can achieve 

efficient utilisation of network resources (backhaul offloading) and an enhanced 

user experience. After collecting the raw data, i.e., the user traffic, the big data 

platform (Hadoop) has the task of predicting the user demands by extracting the 

useful information, like Location Area Code (LAC), Hyper Text Transfer Protocol 

(HTTP) request-Uniform Resource Identifier (URI), Tunnel Endpoint Identifier 

(TEID)-DATA, and TEID for control and data planes. Then using this information 

to evaluate the content popularity from the previously collected raw data. 

Experimentally testing this work on 16 BSs, as part of an operational cellular 

network, resulted in 100% request satisfaction and 98% backhaul offloading. 

3.5.4  Network Optimisation 

3.5.4.1  Big data-driven Mobile Network Optimisation Framework 

When thinking about optimising a cellular network, it is important to collect as 

much information as possible. Large networks, as well as their users, generate a 

plethora of data, for which the use of BDA is vital to analyse the colossal amount 

of data generated. 

The authors in [3] proposed a mobile network optimisation framework that is 

Big Data Driven (BDD). This framework includes several stages, starting from the 

collection of big data, managing storage, performing data analytics, and the last 

stage of the process is the network optimisation. 

Three case studies were used to show that the proposed framework could be 

used for mobile network optimisation. 

1- Managing resources in HetNets: 
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The Mobile Network Operators (MNOs) may use big data to provide real time 

and history analysis across users, mobile networks, and service providers. MNOs 

can benefit from BDD approaches in the operation and deployment of their 

network, and this can be done in several stages: 

A) Network Planning: Due to a deficiency in the level of sufficient statistical 

data, evolved Node B (eNB) sites are not optimally optimised. BDA can help 

MNOs reach better decisions concerning the deployment of eNB in the mobile 

network. The authors in [3] suggested the use of the network and anonymous 

XVeUV¶ daWa (e.g., d\namic poViWion infoUmaWion and oWheU VeUYice feaWXUeV). 

Providing a relation between the data and their events can offer a better 

understanding of the traffic trends. 

B) Predictive Resource Allocation: Resource requirements change depending on 

the density and usage patterns of mobile network subscribers. Predicting where 

and when mobile users are using the network can help in preparing for sudden 

significant traffic fluctuations. The authors in [3] suggested the use of BDA to 

examine behavioural and sentiment data from social networks and other 

sources and to predict the traffic in highly populated areas. Using the cloud 

RAN architecture [128], the right place at the right time can be served through 

the predictive resource allocation keeping a minimal service disruption. 

C) Interference Coordination: HetNets with small cells can be used to conduct 

interference coordination among macro and small cells. This coordination has 

to be carried out in the time domain instead of the frequency domain.   

Schemes like the enhanced Inter-Cell Interference Coordination (eICIC) in 

LTE-Advanced [129] efficiently enable resource allocation among interfering 

cells. eICIC allows interference to be avoided between Macro cells evolved 

Node B (MeNB) and its neighbouring Small cell eNBs (SeNBs) by having data 

transmitted in isolated subframes called the Almost Blank Subframe (ABS). 

The ABS subframes carries minimum (and most essential) control information, 

transmitted with reduced power [129], so that the network operator can control 

the configuration of that subframe. 

Many factors contribute to the determination of the ABS ratio of the macro cell 

to the small cell, such as the traffic load in a specific area, the service type, and so 
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on. The deployment of BDD optimisation functions at the MeNB would enable 

them to collect and analyse eNB-originated raw big data and enable a quick 

response. As a result, the performance optimisation of each cell and the users can 

be fulfilled. Optimising ICIC parameters (e.g., ABS ratio) can be achieved by 

processing raw data in a periodic manner. Furthermore, the location and user 

traffic demands of multiple eNBs can be optimised, offering the deactivation of a 

SeNB due to elevated Signal-to-Interference-plus-Noise Ratio (SINR) to avoid the 

interference caused by a nearby SeNB that would also result in reducing the energy 

consumption.  

2- Deployment of cache server in mobile CDN 

Popular content (e.g., movies) can be delivered through a Content Delivery 

Network (CDN), which is a method that is considered efficient by many MNOs. 

Distributed cache servers should be located near the users to achieve a fast 

response as well as to reduce the delivery cost. In hierarchical CDN, it is vital to 

place cache servers in an optimal location. Due to the unique features that RAN 

has, it was the primary interest of the authors in [3].  

It is expected that there will be an enhanced backhaul capability in 5G 

networks, and this would result in minimising the concerns related to the latency 

and traffic load of backhaul transmissions. Therefore, not all MeNBs would 

require a dedicated distributed cache server. In addition, a SeNB can have a 

distributed cache server. Optimal cache server placement depends on several 

factors, such as the features and load of traffic in a given area, as well as the cost of 

storage and streaming equipment. To help the MNOs decide where to deploy their 

cache servers, data analytics methods can be regarded as a feasible solution. 

However, this would require the collection of all the above-mentioned factors over 

a long period in the related coverage area. 

3- QoE modelling for the support of network optimisation: 

The authors of [3] believed that the management of services and applications 

needed more than just relying on the QoS parameters. Instead, they suggested 

taking the quality (i.e., QoE), as perceived by the end users, to be regarded as the 

optimisation objective. Accurate and automatic real time QoE estimation is 
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important to realise the optimisation objective. In addition to the technical factors, 

non-technical factors (e.g., user emotions, habit, and expectations, etc.) can affect 

the QoE. A profile for each particular user is composed comprising the above non-

technical factors. This can be assembled by installing a profile collection engine on 

Whe XVeUV¶ mobile deYiceV. UVeU acWiYities are compared and tracked to recognise 

differences and similarities, and then stored in a database for additional processing. 

After profiling, the following step constitutes the use of ML to identify the 

relationship between QoE and the influencing factors. Data analytics can be used 

Wo diVcoYeU ZhaW impacWV Whe QoE in XVeUV¶ deYiceV, aV Zell aV Whe VeUYiceV and 

network resources. The next step is for network optimisation functions to react to 

determining what caused the problem and select the optimal action accordingly. 

3.5.4.2  Improve QoS in Cellular Networks through Self-configured Cells and 

Self-optimised Handover 

Cellular networks have a crucial element on which the concept of mobility 

depends. This element is the handover success rate, which ensures call continuity 

while the user moves from one cell to another. Failing in that particular element 

would impact the quality of the service, thus putting the operator into a 

questionable situation. Operators try to make sure that each cell has a list of 

manually configured and optimised neighbour cells. Hence, it is vital to note the 

high probability of these cells failing to adapt when a rapid response is required 

due to a sudden network change. The authors in [130] presented two methods that 

used BDA to introduce a self-configured and self-optimised handover process, the 

first was associated with newly introduced cells, while the latter was concerned 

with the already existing cells. The analysis started by collecting and archiving 

predefined handover KPIs. A dispatcher process is run after the collection period, 

and its aim is to check the files to see if they were marked as new cells (where 

Self-Configuration Analytics is started) or not (where Self-Optimisation Analytics 

is started): 

1. NCL self-configuration for new cells: 

Newly installed BSs require Neighbour Cell List (NCL) to be configured on the 

new cells. The selection process takes into consideration the antenna type, the 

azimuth angle (for directional cells), the geographic location of the candidate cells, 
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and the process concludes by selecting cells with a minimum distance and 

maximum traffic load to be the top candidate cells. The NCL is configured via 

Network Management System (NMS) Configuration Management (CM) tools.      

2. NCL self-optimisation for existing cells: 

The process starts by collecting KPI measurement statistics for the failed and 

successful handovers, and this task is done by the Performance Management (PM) 

or the NMS. Cells with a handover failure rate below a predefined threshold are 

excluded from the NCL, while unlisted neighbouring cells with a successful rate 

above a predefined threshold are considered as new neighbouring cells. 

3.5.4.3  Optimising the Resource Allocation in LTE-A/5G Networks 

The overall system performance evaluation in advanced wireless systems, like 

LTE, depends on KPIs. In a quest to enhance the user experience, the authors of 

[2] proposed an approach that utilises user and network data, such as configuration 

and log files, alarms, and database entries/updates. This approach relies on the use 

of BDA to process the above-mentioned data. The ultimate goal is to provide an 

optimal solution to the problem of allocating radio resources to RAN users and 

guarantee a minimal latency between requesting the resource and allocating it. This 

is done through user and network behaviour identification, which is a task well-

matched for BDA.  

 The proposed framework involves three stages:  

First stage: This process is carried out in the eNB system, processing the data 

from the cellular and core network side. Binary values are acquired by comparing 

cellular level KPIs to their respective threshold values, thus keeping the binary 

matrix updated. This procedure is repeated at fixed intervals.  

Second stage: Repeat the same steps as in the first stage. However, this process 

is carried out on subscriber level data to acquire subscriber KPI, and maintain a 

binary matrix.  

Third stage: This is activated when a user initiates a resource allocation request. 

A binary pattern is generated based on the user requirements. This pattern is later 

handed over to stage 2 to update the binary matrix (if required) and incorporate the 
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new values in the row that represents the requested bandwidth. After generating 

the updated row, it is transferred to the first stage for comparisons with the current 

Physical Resource Block (PRB) groups. To identify which PRBs suit the user, the 

fuzzy binary pattern-matching algorithm [131] was used for that purpose. Using 

this algorithm, the execution time increased linearly for an exponential increase in 

the number of comparison patterns. 

3.5.4.4  Framework Development for Big Data Empowered SON for 5G 

The authors of [115] proposed a framework called Big data empowered SON 

(BSON) for 5G cellular networks. Developing an end-to-end network visibility is 

the core idea of BSON. This is realised by employing appropriate ML tools to 

obtain intelligence from big data. 

According to the authors, what makes BSON distinct from SON are three main 

features: 

x Having complete intelligence on the status of the current network. 

x Having the ability to predict user behaviour. 

x Having the ability to link network response and network parameters. 

The proposed framework contains operational and functional blocks, and it 

involves the following steps: 

1- Data Gathering: An aggregate data set is formed from all the information 

sources in the network (e.g., subscriber, cell, and core network levels). 

2- Data Transformation: This involves transforming the big data to the right 

data. This process has several steps, starting from: 

a.  Classifying the data according to key Operational and Business 

Objectives (OBO), such as accessibility, retainability, integrity, 

mobility, and business intelligence. 

b. Unify/diffuse stage, and the result of this stage is more significant 

KPIs, which are obtained by unifying multiple Performance 

Indicators (PIs). 

c. According to the KPI impact on each OBO, the KPIs are ranked. 

d. Filtration is performed on the KPIs impacting the OBO less than a 

pre-defined threshold. 
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e. Relate, for each KPI and find the Network Parameter (NP) that 

affects it. 

f. Order the associated NP for each KPI according to their association 

strength. 

g. Cross-correlate each NP by finding a vector that quantifies its 

association with each KPI. 

3- Model: Learn from the right data acquired in step 2 that will contribute to 

the development of a network behaviour model. 

4- Run SON engine: New NPs are determined and new KPIs are identified 

using the SON engine on the model. 

5- Validate: If a new NP can be evaluated by expert knowledge or previous 

operator-experience, proceed with the changes. Otherwise, the network 

simulated behaviour for new NPs is determined. If the simulated behaviour 

tallies with the KPIs, proceed with the new NPs. 

6- Relearn/improve: If the validation in step 5 was unsuccessful, feedback to 

the concept drift [132] block, which will update the behaviour model. To 

maintain model accuracy, concept drift can be triggered periodically even if 

there was a positive outcome in the validation step. 

3.5.4.5  Network Flexibility using Consumption Prediction 

Consumption analysis is concerned with two factors: customer locations and 

type of service. Consumption trends can be classified in a timely manner into long-

term, seasonal, and short-term. To reach an accurate prediction, the authors in 

[123] implied that user data (e.g., GPS location and service usage) can be 

correlated with other data (e.g., news, social network, events, and weather 

conditions). Using BDA to analyse these correlations, operators would be able to 

decide when and where to place WheiU nodeV ZiWhoXW affecWing Whe VXbVcUibeUV¶ 

satisfaction. 

Finally, a summary for the surveyed research topics is depicted in Table 3-2. 
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Table 3-2: Research summary 

Network 

Type 

Research 

Category 
Ref. Proposed or Deployed Technique 

W
ire

le
ss

 

Failure 

Prediction, 

Detection, 

Recovery, and 

Prevention 

[118] Analysed inter-technology (2G-3G) failed handovers. 

[82] Used XDR data to discover network failures and present a solution advice. 

[119] Developed CADM which uses CDRs to identify anomalous sites. 

[120] Presented three case studies of self-healing using BDA. 

[123] Suggested the analysis of the bandwidth trends to predict equipment failure. 

Network 

Monitoring 

[124] Developed a Hadoop-based system to monitor and analyse network traffic. 

[125] 
Developed a solution powered by big data platforms with distributed storage and distributed database 

to solve the issues of data analysis and acquisition. 

Cache and 

Content 

Delivery 

[81] Utilised big data to form a cluster made up of nearby users that share the BS¶V wireless channel. 

[127] 
Analysed the data that resides within the cache nodes to enhance the determination, allocation, and 

distribution of cache nodes. 

[123] Suggested monitoring and analysing social media and popular sites, to predict and cache certain 

contents, according to age category, at the predicted locations where these contents are highly 
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demanded. 

[89] Proposed the use of BDA and ML techniques to proactively cache popular content in 5G networks. 

Network 

Optimisation 

 

[3] 

Presented three case studies in which a proposed network optimisation framework is efficiently 

utilised. In particular, the work suggested: 

1) The use of BDA to manage resources in HetNets. This is done in three stages (network planning, 
resource allocation, and interference coordination). 
2) The deployment of cache servers in mobile CDN. 
3) The optimisation of networks with QoE in mind. 

[130] 
Proposed NCL self-configuration/optimisation algorithms to achieve an automatic, self-optimised 

handover. The work relied on the processing of CM and PM KPIs using BDA platform. 

[2] 
Developed a three-stage framework that utilises the network and user KPIs to reach an optimal 

allocation of radio resources (PRBs). 

[115] 
Presented a framework that uses big data collected from the cellular network to empower SON. They 

also presented a case study on how to detect sleeping cells using this framework. 

[123] 
Correlated location data, service usage, and other contextual data to predict the consumption trends 

and select the optimal node location. 
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3.6  BDA in the Industry 

There are several companies that offer network solutions based on BDA. These 

companies and solutions are highlighted in Table 3-3. It should be noted that these 

solutions are enabled by research conducted in their corresponding areas. We have 

added academic research papers related to each solution in Table 3-3. 

Due to the proprietary nature of industrial products, the exact algorithms or 

methods behind these products is not available in the open literature. Therefore, 

academic papers with related concept(s) are cited. NetReflex IP and NetReflex 

MPLS utilises BDA [3, 82, 133] to provide services like anomaly analysis and 

traffic analysis. Nokia provided several solutions targeting the wireless field. For 

example, Traffica introduces itself as a real-time traffic monitoring tool that 

analyses user behaviour to gain network insights, similar approaches were 

presented in academia by the authors of [124, 134]. The Wireless Network 

Guardian detects user anomalies in mobile networks where a comparable topic 

was discussed in [135]. Preventive Complaint Analysis makes use of BDA to 

detect behavioural anomalies in mobile network elements where the authors in 

[136] provided a similar approach. Predictive Care utilises BDA to identify 

anomalies in network elements before affecting the user, a comparable academic 

approach is presented in [135, 137]. HP presented Vertica, a solution that exploits 

CDRs for network planning, optimisation, and fault prediction purposes. 

The authors in [119, 138] UeVeaUched akin appUoacheV. Amdoc¶V Deep Network  

Analyzer provides predictive maintenance and proactive network deployment 

for cellular networks. The authors in [139] presented a similar approach. Log 

anal\WicV can be XVed foU a YaUieW\ of pXUpoVeV. ApUeYi¶V ARLAS solution provided 

real-time collection and storage of network logs. Related academic research was 

presented by the authors in [140-142]. 

Examining the above solutions, one can note that the majority of the solutions 

are in the wireless field. This, in fact, coincides with the orientation of the 

academically-researched topics. Sampling through the offered solutions, we 

noticed the increased interest in anomaly prediction and network node deployment. 
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Thus, offering the customer a service that is as close to optimal as possible, while 

minimising network expansion expenditures. 
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Table 3-3: BDA-powered industrial solutions 

No. 
Manufactur

er 
Solution 
Name 

Related Academic 
Papers 

Usage, Functions and Capabilities 

1 Juniper 

NetReflex IP 

[3, 82, 133] 

Eliminates network errors. 

Monitors QoS/QoE. 

Capacity planning, traffic routing, caching, and other optimisations. 

NetReflex 
MPLS 

Segment and trend MPLS and VPN usage to plan for congestion. 

Identifies traffic utilisation and trends to optimise operational cost. 

Ability to slice network performance according to VPN, Cost of Service 
(CoS), and Provider Edge (PE)-PE enabling more efficient planning. 

2 Nokia 

Traffica [124, 134] 
Real-time issues detection and network troubleshooting. 

Gain real-time, end-to-end insight on traffic, network, devices, and 
subscribers. 

Wireless 
Network 
Guardian 

[135] 

Improves end-to-end network analytics and reporting with real-time 
subscriber-level information. 

Detects anomalies and reports airtime, signalling, and bandwidth resource 
consumption. 

Proactive detection of issues, including automatic detection of user 
anomalies and low QoE score alerts. 

Preventive 
Complaint 

[136] 
DeWecWV neWZoUk elemenWV¶ behaYioXr anomalies. 

Predicting where customer complaints might arise and prioritises network 
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Analysis optimisation accordingly. 

Predictive 
Care 

[135, 137] 

Used for network elements, and proved its effectiveness by helping Shanghai 
Mobile become more agile and responsive. 

Accuracy of the simplified alerts is around 98 percent, reducing operational 
workload. 

3 
HP 

(HPE) 
Vertica [119, 138] 

Provides CDR analysis that can help Communication Service Provides 
(CSPs). 

Examines dropped call records and other maintenance data to determine 
where to invest in infrastructure. 

Failure prediction and proactive maintenance. 

4 Amdocs 
Deep 

Network 
Analytics 

[139] 
Combines RAN information with BSS and customer data to deploy the 
network proactively. 

Predictive maintenance. 

5 Apervi 

ApeUYi¶V 
Real-time 

Log 
Analytics 
Solution 

(ARLAS) 

[140-142] Collects, aggregates, and stores log data in real-time. 
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3.7  BDA-powered Design Cycle and Challenges 

In this section, we highlight a common theme among most of the surveyed 

papers. This can be summarised as depicted in Figure 3-3. Also, we illustrate the 

challenges facing the implementation of BDA in network design and operation. 

3.7.1  BDA Design Cycle 

The quest for a well-designed communication network is never-ending. 

Researchers in the big data era rely on the capabilities offered by BDA to transform 

the way networks are designed. This includes employing BDA to predict and 

minimise the bandwidth utilisation, anticipate and prepare for upcoming failures, 

and predict the precise energy requirements. Hence, creating a network with fewer 

outages, higher user satisfaction, and an enhanced performance. 

The network design process using big data can be outlined as shown in Figure 

3-3. Big data is collected from the network, stored, and processed in a big data 

cluster to extract useful information, such as trends, patterns, and correlations (step 

1). The resulting information is then transferred to the decision-making platforms 

where a new design decision for the network is evaluated by algorithms based on the 

inward inferred knowledge (step 2). Finally, the new design decision is sent as 

feedback configuration parameters to the network where re-configuration is 

implemented (step 3). It should be noted that the duration of the above-mentioned 

cycle might vary depending on the application type of the network, e.g., enterprise, 

healthcare, agriculture, or transportation. For instance, enterprise networks can 

generate large amounts of data over a short period and usually configuration faults 

could be undone anytime. On the other hand, healthcare networks usually generate 

less monitoring data over time, and they should not be re-configured until there is 

sufficient data available, as frequent reconfigurations may result in failures with 

severe impacts on peopleV¶ healWh. 
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Figure 3-3: BDA-powered network design cycle 

3.7.2  Challenges facing the use of BDA in Network Design 

3.7.2.1  Network size vs BDA gains 

Depending on the network size, the ease of redesigning a network through the 

feedback cycle we mentioned in Figure 3-3 is highly affected by the number of 

nodes. For instance, large data streams can be generated from the mass deployment 

of small Wireless Sensor Networks (WSNs) nodes and IoT [143]. The collected data 

may not carry a meaningful value until it is effectively analysed. However, 

analysing or mining that immense amount of data demands on finely tuned big data 

analytical capabilities, which turns out to be a challenging task [144]. Furthermore, 

these massive amounts of data require hierarchal communication and data 

processing solutions. The planning of such deployments in conjunction with the data 

processing framework is a challenging task [143]. 

Comparing optical to IoT networks, the former has a small number of nodes, 

hence they are easier to redesign, while the latter has a larger number of connected 

objects, and that can impose a problem. 

3.7.2.2  Security and Privacy 

UVeUV¶ common paWWeUnV can be of gUeaW help. NeWZoUk XVeUV can VhaUe ceUWain 

patterns, like downloading some popular videos, retweeting about some certain 

upcoming game that would take place downtown, or even checking the same online 

channels. This information can be of a great value when used for network planning 
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or optimisation. However, to use this information, access to user data has to be 

obtained, which is a thought that may cause unrest for many. When dealing with 

user data, there is always a flag raised, and that flag carries two issues: these issues 

are the security and the privacy of the data. This is why big data has to be protected 

from unauthorised access and release [90]. 

Big daWa VecXUiW\ iV a YiWal Wopic. If Ze ZanW Wo label a V\VWem aV ³VecXUed´, iW 

must meet the data security requirements, which are [145]:  

1- Confidentiality: This implies the means to protect the data from unapproved 

disclosure. 

2- Integrity: This implies the measures taken to protect the data from being 

modified improperly or without permission. 

3- Availability: ThiV iV Whe V\VWem¶V abiliW\ Wo pUeYenW and UecoYeU fUom 

hardware as well as software failures that might result in the database system 

being unavailable.      

Privacy of data is an increasing concern. As a matter of fact, having accessible 

data does not mean it is ethical to access it [146]. Electronic health records have 

strict laws that precisely identify what can and cannot be accessed.  

AV an e[ample, a XVeU¶V locaWion information can be tracked through cell towers 

and afWeU a Zhile, ³a WUail of cUXmbV´ iV going Wo be lefW b\ Whe XVeU WhaW coXld be 

used to link the user to their residence or office location, and to eventually determine 

Whe XVeU¶V idenWiW\, pUiYaWe healWh information (e.g., attending a cancer treatment 

centre) or religious preferences (e.g., attending a church) may be discovered by 

WUacking Whe XVeU¶V moYemenW oYeU Wime [147], especially when we take into 

conVideUaWion Whe cloVe coUUelaWion beWZeen an indiYidXal¶V idenWiW\ and WheiU 

movement patterns [148]. Some user data can be very valuable, for example, the 

estimated value of all global personal location data could reach $100 billion in 

revenue during the next 10 years for service providers, and when it comes to 

consumers and business end users, that figure can reach up to $700 billion [94]. 

With no obvious and secure way to handle the collected user data, BDA cannot 

be considered a reliable system. The security issues related to BDA can be divided 

into four concerns, starting with an input (e.g., handheld device, sensor, or even IoT 
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device) where protecting the sensors from being compromised by attacks is regarded 

as an important security issue, as well as the other areas of data analysis, output, and 

communication with other systems [149]. It should be noted that these concerns are 

present in all steps throughout the design cycle shown in Figure 3-3. 

A solution that was designed to address the big data security and privacy 

challenge is the integrated Rule-Oriented Data System (iRODS [150]). This novel 

technology was designed to ensure security and privacy in big data, and it has some 

technological features such as federated data grid or "intelligent clouds", distributed 

UXle engine, ³iCAT´ meWadaWa caWalogXe, VWoUage acceVV la\eU WhaW faciliWaWeV 

common access, two ways of interfacing graphical and command line, and APIs to 

interact with the iRODS data grid [90, 150]. 

In a position paper, the authors of [151] noted a number of privacy-preserving 

challenges in the realm of BDA, and these challenges are classified as follows: 

1- IndiYidXalV¶ InWeUacWion: 

a. Transparency: BDA is mostly associated with information collection 

and pUoceVVing of Vpecific indiYidXalV¶ daWa. HoZeYeU, WhiV meanV WhaW 

each individual is entitled to know about the data processing operations 

conducted on his/her data, and the challenging part is in allocating that 

specific piece of information linked Wo WhaW peUVon¶V idenWiW\   

b. IndiYidXal¶V CRnVenW: According to many privacy laws, an individual is 

entitled to the right to be asked for his/her informed consent, and such 

consent is a way of ensuring the individual is aware of the type of 

processing that is conducted. This type of consent, along with the 

explanation it requires is in fact considered challenging.  

c. Consent Cancellation and Discarding Personal Data: Granting 

consent, on one hand, should also allow the right of revoking it. 

However, if an individual wished for his/her consent to be cancelled, 

then this means all personal data has to be erased as well. This is a 

challenging requirement when considering the fact that the data might 

have been spread to various data collectors and data analysts. 
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2- Re-IdenWificaWion AWWackV: A XVeU¶V idenWiW\ ma\ be compUomiVed Zhen 

correlating different types of datasets, and this type of attack was further 

classified: 

a. Correlation Attacks. 

b. Arbitrary Identification Attacks. 

c. Targeted Identification Attacks. 

3- Probable vs. Provable Results: Different results can be produced by different 

queries conducted upon datasets. In this way, a provable link can turn out to be 

merely a probable one.    

4- Economical Outcomes: Providing huge amounts of datasets in advance is 

essential for BDA to work. One way to provide such datasets is by buying 

Whem fUom daWa pUoYideUV Zho offeU Wo Vell WheiU XVeUV¶ daWa Wo WheiU cXVWomeUV, 

thus privacy threats might appear. Context faults along with confusion and 

distraction are just two examples of other threats (i.e., fraud, censorship, and 

surveillance). 

3.7.2.3  Data Centre Scalability 

In the big data paradigm, data centres are not only a platform to concentrate data 

storage, but can also carry out further responsibilities, such as acquiring, managing, 

organising, processing and leveraging data values and functions. That would 

encourage the growth of the infrastructure and related software [91]. 

The continuous expansion in data volume, coupled with the ever greater demand 

for faster processing speeds, and the increasing complexity of Relational Database 

Management System (RDBMS) are considered the main elements to motivate the 

hunt for expandable (scalable) data centres to handle the data volume and parallel 

processing requirements; hence, a number of technical challenges have to be taken 

into consideration when we try to design a scalable data centre that can efficiently 

store, process, and analyse big data, these challenges can be mapped to the middle 

octagon (big data cluster) shown in Figure 3-3 and they are: 

1. Taking into consideration the variety and sheer volume of the disparate data 

sources, just collecting and integrating data with scalability from scattered 

locations is a difficult task to accomplish. 
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2. Massive datasets must be mined by BDA at different levels and in either a 

real time or near real time fashion. 

3. Massive and heterogeneous datasets are to be stored and managed by big data 

systems while providing the function and performance guarantees needed in 

terms of fast retrieval, scalability, and privacy protection. Facebook is a clear 

example, in that particular matter as it needs to store, access, and analyse over 

30 petabytes of user-generated data [94].  

Although some might claim that the current problem is not about storage (large 

volume), but it is about the online processing ability [66], a scalable data centre 

should also incorporate the ability to have a scalable storage system. Non-volatile 

memory (NVM) technologies are expected to have a promising role in future 

memory/storage designs [152]. An ideal storage platform has three vital points 

(constraints) to meet: it should support efficient data access in case of failure 

(network partitions and node failures), offer its clients a consistent view of the data, 

and provides high-availability. HoZeYeU, accoUding Wo BUeZeU¶V CAP WheoUem [153], 

this ideal system cannot exist, which is due to the fact that it is impossible for the 

consistency to be guaranteed and for high-availability to be offered in the presence 

of network partitions. As a result, one of the above constraints has to be relaxed by 

distributed storage systems [152]. When it comes to securing the required processing 

speed, Chip Multiprocessors (CMPs) are expected to be the computational plotter 

for BDA [152]. Targeting the emerging trend, Datacentre-on-Chip (DoC) 

architectures were proposed by the authors of [94], with four usage models that 

depend on the state of the consolidating applications, if they were cooperating or 

not. Key scalability challenges were identified and addressed by cache hierarchies 

and shortage in performance isolation [152, 154]. 

3.8  Chapter Summary 

There are many areas in which BDA can be utilised in the network design 

process. The concept of gathering network data and correlating them with user 

trends and service requirements can indeed create an adaptive and user-centric 

network design. Due to the subject at hand, we focused on the field of wireless 

communication networks design using big data. Delving deeper reveals that the field 
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of 5G iV geWWing Whe majoUiW\ of Whe UeVeaUcheUV¶ aWWenWion dXe to the new 

opportunities it has to offer. Furthermore, industrial efforts toward optimising 

networks based on BDA reflect the increasing trend toward employing AI-like 

approaches, such as pattern recognition and ML for network design. Some of the 

considered solutions handle big data in a batch manner while others are capable of 

performing real-time processing. Handling big data in a batch mode can offer more 

accurate information at the expense of delayed results due to the size of the 

processed data, while real-time processing offers fast results at the expense of 

accuracy. Hence, it would be an application-dependent decision whether to choose 

the former or the latter option.  

We predict that the field of network design based on BDA will continue to 

flourish in the near future as more data are collected from the networks and 

processed to extract useful information regarding network behaviour. In the far 

future, or maybe quite soon, as some claim, employing quantum computing for ML 

purposes could help in dethroning MooU¶V laZ and pUoYide moUe pUoceVVing Vpace 

per unit time. This extra space can be harnessed for BDA employed in network 

design. 
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Data Preparation and Big Data Analytics Engine 

4.1  Introduction 

Our goal is the prioritisation of OPs connected to a cellular network covering an 

urban environment. The OP prioritisation we seek to achieve is based on the severity 

of Whe OP¶V medical VWaWXV. Big daWa haUYeVWed fUom Whe OPV¶ medical UecoUdV, along 

with current readings from their body-connected medical IoT sensors are processed 

and analysed to predict the likelihood of a life-threatening medical condition, for 

instance, an imminent stroke. The OP prioritisation procedure is divided into two 

main parts; data analytics part, and the MILP-aided cellular optimisation part. In this 

chapter, we present the first part, illustrating the dataset preparation stages, the 

method used to calculate the stroke likelihood where the set of mathematical 

programming formulations that will be adopted throughout Chapter 5, Chapter 6, 

and Chapter 7 are presented. Finally, we outline the approach we employed to 

interpret the stroke likelihood as an effective user priority (i.e., weight) in the later 

optimisation stage. 

4.2  BDA Engine 

We consider an urban environment covered by a cellular network. A BDA engine 

is responsible for calculating the stroke likelihood of the OPs residing in the cellular 

network¶V coYeUage aUea. The goal iV Wo pUioUiWiVe Whe OPV oYeU noUmal XVeUV in WeUmV 

of radio resource allocation. OPs with a higher likelihood of stroke must transmit 

their data as soon as possible. However, if the OP was assigned a channel with a low 

SINR, the required medical response may not arrive in time.  

The OPV¶ daWa iV anal\Ved in a cloXd-located BDA engine running a naïve 

Ba\eVian (NB) claVVifieU, one of BDA¶V algoUiWhmV [155]. The role of the NB 

classifier is illustrated in Figure 4-1. This engine is used to predict the stroke 

likelihood for an OP. Based on this likelihood, the OPs are assigned proportional 
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weights (i.e. priorities) to grant them PRBs with an optimal SINR favouring them 

over normal (i.e., healthy) users.  

 

4.2.1  The NB Classifier 

We used the NB classifier to determine the likelihood of occurrence of a certain 

incident 𝑐 (e.g., a stroke) relying on a given set of independent feature variables 𝑓௜ 

obWained fUom Whe OPV¶ big daWa (i.e., medical UecoUdV). Given, a current state of a 

certain OP, the classifier can use the training dataset (medical record) to determine 

 

Figure 4-1: BDA Engine / OP Priority Calculation Procedure 
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the likelihood that this OP would suffer a stroke and quantify it as a risk factor. 

These feature variables represent the vital readings (e.g., Systolic and Diastolic 

blood pressure, total cholesterol, and smoking rate) that can be collected by body-

attached IoT sensors and fed to the BDA where the NB classifier resides. It is worth 

noting that this classifier is termed naïve due to the assumption it makes that the 

feature variables are conditionally independent [22].  

4.2.2  TKH NB COaVVLILHU¶V TUaFN RHFRUG 

The NB classifier is preferred over other classifiers due to the following reasons; 

(i) The claVVifieU¶V lineaUiW\ [156] facilitates its direct joint use with the MILP while 

it exerts less computational burden due to its low complexity. Employing nonlinear 

classifiers imposes the use of additional linearisaWion pUocedXUeV hence Whe model¶V 

comple[iW\ incUeaVeV. ThiV XlWimaWel\ impedeV fXUWheU Whe V\VWem¶V deYelopmenW. 

Non-linear algorithms (e.g. artificial neural networks) can be computationally 

intensive by nature. Additionally, this can slow future model developments and 

scalable expansions; (ii) In a comprehensive study in [157], the authors stated that it 

is complicated to select a single tool for all types of disease analysis and they chose 

the NB classifier for heart disease problems; (iii) According to [158], the NB 

classifier was used for cardiovascular disease risk discovery and it was validated by 

a number of cardiologists where more than 80% of the respondents agreed with the 

claVVifieU¶V accXUac\; (iY) IWV confiUmed compeWiWiYeneVV Zhen compaUed Wo oWheU 

algorithms including NN and DT [22]; (v) The NB classifier requires a small 

training dataset [159]; (vi) It was the choice of many other researchers in 

cardiovascular disease risk prediction as in [159-166]; (vii) In the field of e-

healthcare and disease risk prediction, the NB classifier proved to be one of the 

optimal (and sometimes the optimal) for such task, its accuracy surpassed DT, KNN 

and NN as discussed in [167]. The classifier gave higher accuracy when compared 

with DT in [168]. An intelligent heart disease prediction system was proposed in 

[169], the authors compared NB classifier, NN, and DT. The NB classifier proved to 

be the most effective as it had the highest percentage of correct predictions; (viii) it 

is optimal for any two-class concept with nominal features [160]. 
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4.2.3  MILP Definitions 

The following sets, parameters, and variables are defined to represent the 

developed MILP-compliant NB classifier. 

Table 4-1: System Sets and Parameters 

Sets 

क Set of users. 

ऎ Set of days. 

ऐ Set of features in learning dataset. 

𝑪 Set of classes in learning dataset. 

𝑽𝑭𝒊
𝒓  Set of values feature  𝐹௜ can take in the learning dataset. 

𝑽𝑪𝒊
𝒓  Set of values a class variable 𝐶௜ can take in the learning dataset. 

ओ Set of features and class variables. 

त Set of outpatient users,ሺࣴ ⊂ ࣥ). 

Parameters 

𝑪𝑷𝒊,𝒗
𝒄,𝒛 The conditional probability that input feature 𝑖 takes the value 𝑣  given 

that outpatient  𝑧  has class  𝐶  considering input feature 𝑖 of value 𝑣 given 
class 𝑐 for outpatient 𝑧. 

𝑪𝑺𝒊 The current state of the patient in feature i (e.g. Cholesterol value). 

𝑽𝑭𝒊
𝑪𝑺𝒊,𝒛 𝐶𝑆௜

௧௛ value taken by feature 𝐹௜ for patient 𝑧. 

𝑽𝑪𝒊

𝑪𝑺𝒊,𝒛 𝐶𝑆௜
௧௛ value taken by class 𝐶௜ for patient 𝑧. 

𝑬𝑭𝒊
𝒋,𝒅,𝒛 Binary variable, 𝐸ி೔

௝,ௗ,௭ ൌ 1 if feature 𝐹௜ takes the 𝑗௧௛ value on day 𝑑 for 
outpatient 𝑧, 0 otherwise. 

𝑮𝑪𝒊
𝒓,𝒅,𝒛 Binary variable, 𝐺஼೔

௥,ௗ,௭ ൌ 1 if class 𝐶௜ takes the 𝑟௧௛ value on day 𝑑 for 
outpatient 𝑧, 0 otherwise. 

𝑺𝑭𝒊𝑪𝒊

𝒋,𝒓,𝒅,𝒛  Binary variable, 𝑆ி೔஼೔
௝,௥,ௗ,௭ ൌ 1 if 𝐸ி೔

௝,ௗ=1 and 𝐺஼೔
௥,ௗ,௭=1 (Logical AND 

operation). 

𝑼𝑷𝒌 User priority (𝑈𝑃௞ =1 for normal users whereas  
𝑈𝑃௞ ൐ 1 is granted for OPs depending on their risk factor). 

𝑷𝑺𝒛,𝒓 The probability of stroke of outpatient 𝑧. 
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Į Tuning factor. 

𝑵𝑼 The total number of normal users. 

  

4.2.4  Calculating the Stroke Likelihood 

Developing the NB to work jointly with the MILP requires the reformulation of 

the stroke likelihood calculation method. The primary, MILP-noncompliant, 

mathematical formulation on which the NB classifier is based is depicted in 

equations (4-1) and (4-2). 

Given a dataset comprised of a set of independent variables, called the feature 

variables, and a set of dependent variables, called the class variables. The likelihood 

of 𝐹 given 𝐶 is given as: 

𝑝ሺ𝐹௜ ൌ 𝑓௜|𝐶 ൌ 𝑐ሻ ൌ
∑ ሺ𝐶 ൌ 𝑐 ⋀ 𝐹௜ ൌ 𝑓௜ሻ௡

௜ୀଵ
∑ ሺ𝐶௜ ൌ 𝐶௜ሻ௡

௜ୀଵ
 (4-1) 

The NB claVVifieU¶V posterior probability can be expressed as shown in equation 

(4-2). 

𝑝ሺ𝐶 ൌ 𝑐|𝐹௜ ൌ 𝑓௜ሻ ൌ 𝑃ሺ𝐶 ൌ 𝑐ሻ ෑ 𝑃ሺ𝐹𝑖 ൌ 𝑓𝑖 |𝐶 ൌ 𝑐ሻ
௡

௜ୀଵ

 (4-2) 

where 𝑃ሺ𝐶 ൌ 𝑐ሻ represents the prior probability of stroke, in other words, it is 

the number of days in which a stroke occurred over the total number of days (i.e., 

observation period). While ∏ 𝑃ሺ𝐹𝑖 ൌ 𝑓𝑖 |𝐶 ൌ 𝑐ሻ௡
௜ୀଵ  represents the joint probability.   

A dataset comprised of five columns is depicted in Table 4-2. The monitored 

body readings are stored in four columns represented by the feature variables 

 𝑓ଵ, … 𝑓ସ reflecting the recorded state of each feature, whereas the fifth column 

represents the class variable 𝐶 that registers whether a stroke (or a critical state) 

occurred in the corresponding day.  
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Table 4-2: Out-Patient Medical Record (Sample) 

Day 

Total 

Cholesterol 

 

𝒇૚ 

Systolic 

Blood 

Pressure 

𝒇૛ 

Diastolic 

Blood 

Pressure 

𝒇૜ 

Smoking 

Rate 

 

𝒇૝ 

Stroke 

indicator 

 

𝑪 

1 Normal Normal Low Heavy Yes 

2 High Normal 
High 

Hypertension 
Moderate No 

«
 

«
 

«
 

«
 

«
 «

 

30 Optimal 
High 

Hypertension 

Pre-

hypertension 
Light Yes 

(current state) 

X High 
High 

Hypertension 

High 

Hypertension 
Light ? 

 

The total number of rows represents the observation period for each OP and in 

this work, it is 30 which stands for 30 days. The total number of medical records is 

equivalent to the number of OPs, which in this thesis is three OPs. It should be noted 

that since the dataset is text-based with no multimedia components, its size is 

measured in kilobytes of data and this is harmonious with other datasets as in [170]. 

The claVVifieU UeadV Whe OP¶V medical record (check Table 4-2) and uses the OP¶V 

current state (the lower part in Table 4-2) to predict the likelihood of an upcoming 

stroke. This likelihood is to be converted later (in the upcoming subsection) into a 

risk factor used to calculate the weight given to each OP to be prioritised among 

other users during PRB assignment which is implemented in this work using a MILP 

and a heuristic, as explained in the subsequent chapter. We also note that the terms 

³XVeU ZeighW´ and ³XVeU pUioUiW\´ aUe XVed inWeUchangeabl\ WhUoXghoXW WhiV WheViV. 
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4.2.4.1  The Framingham Dataset 

Since pUeVeUYing Whe paWienW¶V pUiYac\ iV of XWmoVW impoUWance foU healWhcaUe 

providers, it was not possible to acquire cardiovascular disease datasets of patients 

monitored over an extended period of time. The available datasets either reported 

statistics or were acquired through a collaboration with a medical institute that 

provided them with such datasets. Unfortunately, such datasets were not publicly 

accessible as in [158]. Thus, instead of generating a random dataset and risk having 

non-medically-compliant readings, we are fortunate in that the Framingham heart 

study in [171] has a big dataset that covers the features we needed. We populated 

our dataset by segmenting rows from the Framingham dataset and assigned each 

segment to an OP. Thus, the resulting dataset represents an observational period of 

30 readings for each OP. It is worth noting that the Framingham cardiovascular 

cohort study started in 1948, and targeted adults residing in the town of 

Framingham, Massachusetts. The study is ongoing, and a new phase has started in 

2002 with the enrolment of the third generation of participants [172]. The above±

mentioned OP data has the characteristics of big data; hence, BDA algorithms can 

be used to predict the likelihood of occurrence of a certain incident (i.e. a stroke in 

our case). 

4.2.4.2  Data Pre-processing  

It should be noted that data reduction, data cleansing, and data generalisation are 

the data preparation steps that had to be carried out before applying the NB classifier 

to the Framingham dataset. Data preparation (or data pre-processing) is a vital stage 

to prepare the dataset before the use of BDA/ML algorithms [173], [174]. Moreover, 

having the dataset ready is a one-time process (i.e. before running the analysis 

[175]) as the rest of the procedure is for the NB to read the current state and to run 

its classification pUocedXUe againVW Whe oXWpaWienW¶V medical UecoUd (i.e. daWaVeW) 

which is not time-consuming as we stated earlier. A similar process is done in 

relation to new incoming data (i.e., feature vector) from the outpatient. This feature 

YecWoU iV labelled ³current state´ in Table 4-2, which is only one row of data per 

user. Thus, the preparation time is negligible. As for adding the newly acquired 

readings to the dataset, those readings are added periodically: 

1- Data Reduction 
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In this process, particular features are retained while others are excluded. There 

are three reasons for this; firstly, reducing the number of features has a direct effect 

on the dataset dimensions, thus, reducing the processor and memory utilisation 

Zhile impUoYing Whe claVVifieU¶V accXUac\ [176]. This can be a crucial element in 

UedXcing Whe MILP¶V e[ecXWion Wime. Secondl\, in WhiV ZoUk, Ze aUe WaUgeWing Whe 

main stroke contributors. Thus, according to [177, 178], Hyperlipidaemia (i.e. Total 

Cholesterol), blood pressure, and smoking are among the main contributors to a 

stroke. Thirdly, since each OP has a dataset comprised of their own readings, the 

inclusion of other fixed and very slowly-changing feature variables like weight, 

gender, age, and body mass index (BMI) can be avoided, hence, the selected 

features in this thesis (Cholesterol, blood pressure, and smoking). However, the 

impact of feature selection/ranking is to be investigated as a future extension to this 

work.  

2- Data Cleansing 

Incomplete, erroneous, and inconsistent entries were omitted. Thus, the resulting 

dataset is error-free and has a complete set of values across all entries. 

3- Data Generalisation 

The discretisation of data converts large numbers of continuous feature values 

into smaller ones. The purpose is to find concise data representations as categories 

[179]. The authors of [180] and [181] VhoZed WhaW Whe NB modelV¶ accXUac\ can be 

positively impacted by discretisation. Moreover, it is considered a data reduction 

mechanism because it reduces data from a large domain of numeric values to a 

subset of values that fall in categories [182].  

Given the medical nature of the application and to stay in line with the medically-

accredited ranges in the data discretisation stage, the ranges defined by the 

American National Institute of Health and the British Stroke Association in [183], 

[184] and [185] were adopted for the Systolic and Diastolic blood pressure values 

and total Cholesterol, respectively. As for the smoking rate, we categorised it into 

the levels: light, moderate, and heavy, respectively as in [186]. Consequently, the 

continuous values of the Framingham dataset were categorised as observed in Table 

4-2 and according to their medically-accredited ranges shown in Table 4-3. 
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It should be noted that upon further examination we found that data can be 

discretised according to the European standards. However, investigating this is 

beyond the scope of this thesis. 

Table 4-3: Feature Values and Their Corresponding Level 

Feature Range Level 

Total cholesterol Level (mg/dl) [185]* 

<200 Optimal 

200-239 Normal 

240+ High 

Systolic BP (mmHg) [183] [184] ** 

<120 Normal 

120-139 Pre-hypertension 

140+ High Hypertension 

Diastolic BP (mmHg) [183] [184]** 

<80 Normal 

80-89 Pre-hypertension 

90+ High Hypertension 

Smoking rate (Cig/Day) [186] 

1 - 10 Light 

11 - 19 Moderate 

20+ Heavy 

* Ranges adopted were according to the American National Institute of 
Health [185]. 
** Ranges adopted were according to the American National Institute of 
Health and the British Stroke Association [183] [184]. 

 

4.2.5  CaOFXOaWLQJ WKH OP¶V PULRULW\ XVLQJ MILP-Compliant NB 

Formulation  

We developed the following formulations to include the NB classifier within the 

MILP model, where it calculates the stoke likelihood  𝑃𝑆௭ given a certain current 

state 𝐶𝑆௜. The model then transforms this likelihood into an updated user priority 

(weight) 𝑈𝑃௞ indicated in equation (4-7). 

Rewriting equation (4-1) in a mathematical programming formulation gives: 
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𝐶𝑃௜,௩
௖,௭ ൌ  𝑃൫𝐹௜ ൌ 𝑉ி೔

௝,௭ห𝐶௜ ൌ 𝑉஼೔
௥,௭൯ ൌ ෍ ෍ ෍

𝑆ி೔஼೔
௝,௥,ௗ,௭ 

𝐺஼೔
௥,ௗ,௭

஼ி

|஽|

ௗୀଵ

      

(4-3) 
∀ 𝑖 ∈ ࣣ, 𝑐 ∈ 𝐶,  𝑧 ∈ ࣴ 

where equation (4-3)is used to calculate the conditional probability 𝑃ሺ𝐹௜|𝐶௜ሻ in 

the MILP model. The nominator represents the total number of days where the 

outpatient 𝑧 has a certain reading 𝑉ி೔
௝,௭ that we want to test, and a stroke (indicated 

by 𝑉஼భ
ଵ,௭) where 𝐶ଵ depicts the class stroke and 𝑟 ൌ 1 registers the stroke occurrence. 

The denominator represents the total number of stroke days.  

𝑆ி೔஼೔
௝,௥,ௗ,௭ ൒ 0 

(4-4) 
∀ 𝑧 ∈ ࣴ, 𝑖 ∈ ࣣ, 𝑑 ∈ ࣞ 

 

𝑆ி೔஼೔
௝,௥,ௗ,௭ ൌ 𝐸𝐹𝑖

𝑗,𝑑,𝑧 ൅ 𝐺஼೔
௥,ௗ,௭ െ 1 

(4-5) 
∀ 𝑧 ∈ ࣴ, 𝑖 ∈ ࣣ, 𝑑 ∈ ࣞ 

Equations (4-4) and (4-5) achieve a logical AND operation in which the binary 

variable 𝑆ி೔஼೔
௝,௥,ௗ,௭ ൌ 1  when both binary variables 𝐸ி೔

௝,ௗ,௭𝑎𝑛𝑑 𝐺஼೔
௥,ௗ,௭ are equal to 1. 

This variable indicates that outpatient 𝑧 with the 𝑗௧௛ value of feature 𝐹௜ has the 𝑟௧௛ 

value of class 𝐶௜ in day 𝑑. 

Rewriting equation (4-2) gives:  

𝑃𝑆௭,௥ ൌ ቎෍
𝐺஼೔

௥,ௗ,௭

|𝐷|

|஽|

ௗୀଵ

቏ ෑ 𝑃ቀ𝐹௜ ൌ 𝑉ி೔

஼ௌ೔,௭ቚ𝐶௜ ൌ 𝑉஼೔

஼ௌ೔,௭ቁ
ࣣ

௜ୀଵ

 
(4-6) 

∀ 𝑧 ∈ ࣴ 

Equation (4-6) represents the formulation we used to determine the probability of 

stroke 𝑃𝑆𝑧,𝑟. Given a current state 𝐶𝑆௜ , all feature variables 𝐹௜ are considered. This 

means 𝑖 has the range 𝑖 ൑ |ࣣ| (in this work 𝑖 ൌ 1, . . ,4ሻ. The L.H.S. represents the 

posterior probability that outpatient 𝑧 has a stroke. The first term on the R.H.S. 

represents the prior probability of stroke and the second term on the R.H.S. 
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represents the joint probability that patient 𝑧 has the given values of the features. 

The multiplication of the two terms on the R.H.S. shows the naïve nature of the NB 

estimate in this case where the features are assumed independent. 

4.3  Results 

Since the NB classifier produces probabilities of small magnitude, we multiplied 

the overall probability of stroke (𝑃𝑆௭,௥) by a tuning factor 𝛼 to produce an effective-

yet-reasonable weight, which drives the objective function into favouring the 

imperilled outpatients. The user weight 𝑈𝑃௞ is calculated as shown in equation 

(4-7). 

𝑈𝑃௞  ൌ  1 ൅  𝛼 ∙ 𝑃𝑆௭,௥  
(4-7) 

∀ 𝑘 ∈ ࣥ: 𝑧 ൌ 𝑘, 𝑘 ≻ 𝑁𝑈 

The NB calcXlaWed Whe OPV¶ VWUoke likelihood 𝑃𝑆௭,௥ of 0.0032, 0.0064, and 

0.00208 for users 8, 9, and 10, respectively in a 10 user scenario. The use of tuning 

factor 𝛼 yielded 1.104 ൑ 𝑈𝑃௞ ൑ 1.32, 1.208 ൑ 𝑈𝑃௞ ൑ 1.64, 1.312 ൑ 𝑈𝑃௞ ൑

1.96𝑚, 1.52 ൑ 𝑈𝑃௞ ൑ 2.6, 2.04 ൑ 𝑈𝑃௞ ൑ 4.2 user priorities according to tuning 

factor values of 50, 100, 150, 250 and 500, respectively. 

In oUdeU Wo WeVW Whe claVVifieU¶V accXUac\, Ze emplo\ed Whe Wenfold cUoVV-validation 

meWhod. The NB claVVifieU¶V accXUac\ and pUeciVion ZeUe calcXlaWed foU all 

oXWpaWienWV¶ daWaVeWV. The NB claVVifieU VcoUed an accXUac\ of 60%, 63.3%, and 

63.3% and precision of 65.2%, 66% and 71.6% for users 8, 9 and 10 (i.e., OP 1, 2, 

and 3), respectively. 

4.4  Chapter Summary 

This chapter illustrated the role of BDA in this thesis. It also gave an overview of 

the dataset used in this thesis, along with the data pre-processing stages the dataset 

underwent before the NB classifier can operate. Further, the reasons behind 

chooVing Whe NB claVVifieU Wo calcXlaWe Whe OP¶V VWUoke likelihood were illustrated. 

Moreover, the MILP-compliant NB mathematical formulations were given, and the 

mathematical formula used to transform the stroke likelihood into a meaningful 
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priority asserting the favouring of the OPs over normal users in the optimisation 

process was pUeVenWed. Finall\, Whe claVVifieU¶V peUfoUmance was inspected in terms 

of accuracy and precision. 
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Patient-Centric Cellular Network Optimisation using Big Data 

Analytics 

5.1  Introduction 

BDA is one of the state-of-the-art tools to optimise networks and transform them 

from blind tubes that convey data, into cognitive, conscious, and self-optimising 

entities that can intelligently adapt according to the needs of their users. This, in 

fact, can be regarded as one of the highest forthcoming priorities of future networks. 

In this chapter, we propose a system for OP centric single-tier homogenous LTE-A 

network optimisation. The predicted stroke likelihood that is calculated in Chapter 4 

is employed in this chapter to ensure that the OPs are assigned optimal LTE-A PRBs 

to transmit their critical data to their healthcare provider with minimal delay. To the 

best of our knowledge, this is the first time BDA are utilised to incorporate the 

topics of resource allocation, patient monitoring, disease risk prediction, and 

prioritisation to optimise a cellular network in an OP-conscious manner. The PRBs 

assignment is optimised using MILP and verified using a heuristic. Two approaches 

are proposed, a WSRMax approach and a PF approach. The approaches increased 

Whe OPV¶ aYeUage SINR b\ 26.6% and 40.5%, UeVpecWiYel\. The WSRMa[ appUoach 

incUeaVed Whe V\VWem¶V WoWal SINR Wo a leYel higheU Whan WhaW of Whe PF appUoach, 

however, the PF approach reported higher SINRs for the OPs, better fairness and a 

lower margin of error. 

5.2  System Model 

We consider an urban environment covered by an LTE-A cellular network. The 

area is populated with a number of users scattered at random distances from the BSs 

(between 300 and 600 meters). The users fall into two categories; normal (healthy) 

users and OPs as shown in Figure 5-1. As we previously indicated, cellular networks 

can provide an optimal way for OPs to have a connection when compared to Wi-Fi 

or wired connections. Since the OPs are randomly-located, different power levels 
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(signal strengths) will be received from their mobile devices. We are assuming a 

system with a slow fading channel where the channel gain remains constant within 

one TTI. Thus, the coherence time is assumed to be greater than the duration of a 

TTI. To this end, the objective function of our optimisation model guarantees the 

allocation of high gain PRBs to the OPs and according to their likelihood of stroke. 

Aiming at maximising the total SINR received at the BS. Thus, enabling them to 

transmit their data as soon as possible, while preserving fairness among users to 

ensure such a resource allocation scheme will not negatively impact other users. We 

noWe WhaW Whe WeUmV µhealWh\ XVeU¶ and µnoUmal XVeU¶ aUe XVed inWeUchangeabl\ 

throughout the thesis. 

 

The system will undergo the following stages, Further, we demonstrate those 

stages in a timeline as shown in   and will have the timeline  

1- The Data Collection VWage; ZheUe Whe OP¶V EHR and UeadingV fUom Whe bod\ 

attached medical IoT sensors are being aggregated, cleansed, and 

normalised. Erroneous and null entries are deleted in this stage and the 

dataset is prepared to be used to train a ML model. 

 

Figure 5-1: Patient-Centric Cellular Network 
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2- The training stage; this is where the data collected from the previous stage is 

used to train the classifier(s) or the ML model(s). This stage takes place in a 

cloud-based BDA engine. 

3- The prediction stage; It should be noted that this stage takes place in the 

cloXd ZheUe each OP Zill haYe a dedicaWed claVVifieU WUained on Whe OP¶V 

own dataset. The output of this stage is the stroke likelihood for that OP. 

4- The network optimisation VWage; UeViding in Whe opeUaWoU¶V coUe neWZoUk Vide, 

the system utilises the stroke likelihoods acquired from the previous stage to 

convert them into priorities used during the radio resource allocation stage. 

5- The update and review stage; in case it is no longer required to monitor a 

specific OP, or if the OP is still under monitoring, a periodic update to the 

OPV¶ EHR and WhXV Whe WUaining daWaVeW Zill Wake place. Hence, Whe 

claVVifieU¶V inWUodXced in Whe WhiUd VWage mXVW be UeWUained using the updated 

dataset. However, it should be noted that the frequency of the dataset update 

and classifier retraining is beyond the scope of this work and it is the subject 

of a future work. 

IW VhoXld be noWed WhaW Whe V\VWem¶V compXWaWional complexity is divided into two 

parts; post-operation and operational computational overheads. The former has no 

effecW on Whe V\VWem¶V peUfoUmance aV iW WakeV place befoUe Whe V\VWem opeUaWion (i.e., 

applies to stages 1, 2, and 5 in Figure 5-2) timeline. Whereas the latter takes place 

during stages 3 and 4 in Figure 5-2 and it equals to 𝑂ሺ𝑁ସ log 𝑁ሻ as we shall 

illustrate in detail in Section 5.5.3. 
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5.3  Problem Formulation 

We developed the following MILP models to optimise the cellular system 

resource allocation for OPs and normal users. We consider the OPs monitoring 

system to operate in a scenario of an LTE-A network comprising 𝐵 BSs represented 

by set ࣜ ൌ  ሼ1, … , 𝐵ሽ, operating at channels with 1.4 MHz bandwidth. Each BS 𝑏 

has 𝑁 PRBs represented by set ࣨ ൌ  ሼ1, … , 𝑁ሽ. The network serves 𝐾 users (normal 

and OPs) represented by set ࣥ ൌ ሼ1, … , 𝐾ሽ by allocating PRB 𝑛 to connect to BS 𝑏 

in an instant in time. The goal is to optimise the uplink of the LTE-A network, so 

that the OPs are prioritised over normal users; thus, allocating them high-powered 

PRBs. 

We formalise this problem as a MILP model. Table 5-1 defines the sets, 

parameters, and variables used in the network optimisation problem formulation. 

 

 

Figure 5-2: System Timeline and Operation Stages 
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Table 5-1: System Sets, Parameters, And Variables 

Sets 

क Set of users. 

घ Set of physical resource blocks. 

ऌ Set of base stations. 

𝑪 Set of classes in learning dataset. 

त Set of outpatient users,ሺࣴ ⊂ ࣥ). 

Parameters 

𝑼𝑷𝒌 User priority (𝑈𝑃௞ =1 for normal users whereas  
𝑈𝑃௞ ൐ 1 is granted for OPs depending on their risk factor). 

𝑸𝒌,𝒏
𝒃  Power received from user 𝑘 using PRB 𝑛 at base station 𝑏. 

𝑯𝒌,𝒏
𝒃  Rayleigh fading with zero mean and a standard deviation equal to 1 

experienced by user 𝑘 using PRB 𝑛 at base station 𝑏.  

𝑨𝒌
𝒃 Signal attenuation experienced by user 𝑘 connected to base station 𝑏. 

𝑷𝑴 Maximum power allowed per uplink connection. 

𝑷 Power consumed to utilise PRB 𝑛 to connect user 𝑘 to base station 𝑏. 

𝝀 An arbitrary, large positive value. 

𝒌,𝒏࣌
𝒃  Additive White Gaussian Noise (AWGN) power in watts experienced by 

user 𝑘 using PRB 𝑛 at base station 𝑏. 

𝑷𝑺𝒛,𝒓 The probability of stroke of outpatient 𝑧 on the 𝑟௧௛ value of class 
variable 𝑐 

𝒎𝒚,𝒌 

𝒉𝒚,𝒌 
Piecewise linearisation equation coefficients for line 𝑦 of user 𝑘. 

𝜶 Tuning factor. 

𝑵𝑼 The total number of normal users. 

Variables 

𝑿𝒌,𝒏
𝒃  Binary decision variable 𝑋௞,௡

௕ ൌ 1 if user 𝑘 is assigned PRB 𝑛 in base 
station 𝑏, otherwise 𝑋௞,௡

௕ ൌ 0. 

𝑻𝒌,𝒏
𝒃  The SINR of user 𝑘 utilising PRB 𝑛 at base station 𝑏. 

ࣘ𝒎,𝒏,𝒌
𝒘,𝒃  Non-negative linearisation variable where 𝜙௠,௡,௞

௪,௕ ൌ 𝑇௞,௡
௕ 𝑋௠,௡

௪ . 
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𝑺𝒌 SINR of user 𝑘. 

𝑳𝒌 Logarithmic SINR of user 𝑘. 

  

A XVeU¶V SINR aW Whe Xplink Vide of an OFDMA neWZoUk can be e[pUeVVed aV 

[18]. 

𝑇௞,௡
௕ ൌ  

𝑆𝑖𝑔𝑛𝑎𝑙
𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ൅ 𝑁𝑜𝑖𝑠𝑒

ൌ
𝑄௞,௡

௕ 𝑋௞,௡
௕

∑ ∑ 𝑄୫,௡
௕ 𝑋୫,௡

௪
௠∈ࣥ
௠ஷ௞

௪∈ࣜ
௪ஷ௕

൅ 𝜎௞,௡
௕  (5-1) 

Examining the numerator (i.e. signal), 𝑄௞,௡
௕ 𝑋௞,௡

௕  represents the signal power 

received at the BS side from user 𝑘. The binary decision variable 𝑋௞,௡
௕ ൌ 1 indicates 

that user 𝑘 is connected to BS 𝑏 and occupies PRB 𝑛. The power received at BS 𝑏 

from the interfering user(s) 𝑚, 𝑚 ് 𝑘, on the same PRB is 𝑄୫,௡
௕ 𝑋୫,௡

௪ ; while 𝑋୫,௡
௪  

indicates that the interfering user(s) 𝑚 is connected to another BS 𝑤, 𝑤 ് 𝑏 on 

PRB 𝑛. The AWGN is annotated as 𝜎௞,௡
௕ . A graphical illustration of equation (5-1) is 

shown in Figure 5-3. 

Rewriting equation (5-1): 

෍ ෍ 𝑇௞,௡
௕ 𝑄୫,௡

௕ 𝑋୫,௡
௪ ൅ 𝑇௞,௡

௕ 𝜎௞,௡
௕ ൌ 𝑄௞,௡

௕ 𝑋௞,௡
௕

௠∈ࣥ
௠ஷ௞

௪∈ࣜ
௪ஷ௕

 

(5-2) 

∀ 𝑘 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑏 ∈ ࣜ 
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The first term in (5-2) is nonlinear (quadratic) as it involves the multiplication of 

two variables (Continuous 𝑇௞,௡
௕  and Binary 𝑋୫,௡

௪ ). Therefore, linearisation is 

essential to solve the NP-hard model using a linear solver such as CPLEX, where 

the linearisation is given in (5-5) to (5-8).  

We have developed two approaches to solve the resource allocation problem. The 

first approach uses an objective function that maximises the Weighted Sum-Rate of 

the SINRs experienced by the users. The second approach introduces fairness among 

the users by employing a Proportionally Fair (PF) objective function.  

5.3.1  MILP Formulation for the WSRMax approach  

The objecWiYe iV Wo ma[imiVe Whe V\VWem¶V oYeUall SINR. ThiV can be UealiVed 

through the maximisation of the individXal XVeUV¶ SINRV. 

5.3.1.1  Before Prioritising the OPs 

The OPV¶ UiVk facWoUV inWUodXced in Whe pUeYioXV chapWeUV aUe Vcaled inWo pUioUiWieV 

(i.e. weights) and used to prioritise the OPs over other users. The MILP model is 

formulated as follows:  

 

Figure 5-3: User Interference 
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Objective: Maximise 

෍ ෍ ෍ 𝑇௞,௡
௕

௕∈ࣜ௡∈ࣨ 

𝑈𝑃௞
௞∈ࣥ

 
(5-3) 

The objective given in (5-3) aimV Wo ma[imiVe Whe ZeighWed VXm of Whe XVeUV¶ 

SINRs. These weights (i.e. priorities) are higher for OPs compared to healthy users 

and proportional to the OPs calculated risk factor. Note that 𝑈𝑃௞ has an initial value 

of 1 for all users as shown in (5-4). However, the OPs will have updated values 

according to their risk factor. This will ultimately drive the system into prioritising 

the OPs over the healthy users during PRB assignment. The mathematical 

formulations related to the OP weight (priority) calculation were illustrated in 

Chapter 4. 

𝑈𝑃௞ ൌ 1 
(5-4) 

∀ 𝑘 ∈ ࣥ 

Constraints: 

To mainWain Whe model¶V lineaUiW\ Zhile peUfoUming Whe mXlWiplicaWion of Whe floaW 

variable 𝑇௞,௡
௕  by the binary variable 𝑋௠,௡

௪ , we follow [187], and define a variable 

𝜙௠,௡,௞
௪,௕  that includes all the indexes of both aforementioned (i.e., float and binary) 

variables as in equation (5-5). Constraints (5-6), (5-7), and (5-8) govern the 

multiplication procedure. As a result, the only two values satisfying the constraints 

are either zero (when x =0) or T (when x=1). It should be noted that ᅑ is a large 

enough number where ᅑ >>T: 

Subject to: 

𝜙௠,௡,௞
௪,௕ ൒ 0 

(5-5) 

Replacing the quadratic term 𝑇௞,௡
௕ 𝑋௠,௡

௪  with the linearisation variable 𝜙௠,௡,௞
௪,௕  that 

incorporates all the indexes of the multiplied variables. 

𝜙௠,௡,௞
௪,௕  ൑ 𝜆𝑋௠,௡

௪  
(5-6) 

∀ 𝑘, 𝑚 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑤, 𝑏 ∈ ࣜ , ሺ𝑚 ് 𝑘, 𝑏 ് 𝑤ሻ 
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𝜙௠,௡,௞
௪,௕  ൑ 𝑇௞,௡

௕  
(5-7) 

∀ 𝑘, 𝑚 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑤, 𝑏 ∈ ࣜ , ሺ𝑚 ് 𝑘, 𝑏 ് 𝑤ሻ 

 

𝜙௠,௡,௞
௪,௕  ൒ 𝜆𝑋௠,௡

௪ ൅ 𝑇௞,௡
௕ െ 𝜆 

(5-8) 
∀ 𝑘, 𝑚 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑤, 𝑏 ∈ ࣜ , ሺ𝑚 ് 𝑘, 𝑏 ് 𝑤ሻ 

After replacing 𝑇௞,௡
௕ 𝑋௠,௡

௪  with 𝜙௠,௡,௞
௪,௕ , equation (5-2) can thus be rewritten as in 

(5-9).  𝜙௠,௡,௞
௪,௕ ൌ 𝑇௞,௡

௕ 𝑋௠,௡
௪  is equal to the SINR of user 𝑘 connected to BS 𝑏 with 

PRB 𝑛 if there is an interfering user 𝑚 connected to the other BS 𝑤 with the same 

PRB 𝑛; it is zero otherwise. 

෍ ෍ 𝑄୫,௡
௕ 𝜙௠,௡,௞

௪,௕ ൅ 𝑇௞,௡
௕ 𝜎௞,௡

௕ ൌ 𝑄௞,௡
௕ 𝑋௞,௡

௕

௠∈ࣥ
௠ஷ௞

௪∈ࣜ
௪ஷ௕

 

(5-9) 

∀ 𝑘 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑏 ∈ ࣜ 

 

෍ 𝑃
௡∈ࣨ

𝑋௞,௡
௕  ൑ 𝑃𝑀 

(5-10) 

∀ 𝑘 ∈ ࣥ, 𝑏 ∈ ࣜ 

Constraint (5-10) ensures that the users do not exceed their maximum available 

amount of power per uplink connections (in case more than one PRB is utilised by 

the same user 𝑘). In the current work, the user is allowed a single PRB. 

෍ 𝑋௞,௡
௕

௞∈ࣥ

 ൑ 1 
(5-11) 

∀ 𝑛 ∈ ࣨ, 𝑏 ∈ ࣜ 

Constraint (5-11) limits the assignment of each PRB to one user only. 

෍ ෍ 𝑋௞,௡
௕

௡∈ࣨ ௕∈ࣜ

 ൒ 1 
(5-12) 

∀ 𝑘 ∈ ࣥ 
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Constraint (5-12) guarantees that each user is assigned at least one PRB from any 

BS. Thus, no user is left without service. Additionally, this prevents the MILP from 

blocking interfering users to maximise the total SINR. 

5.3.1.2  After Prioritising the OPs 

In WhiV appUoach, OPV¶ UiVk facWoUV inWUodXced in Whe pUeYioXV chapWeU aUe Vcaled 

into weights to prioritise the OPs over other users. The MILP model is formulated in 

the same way as mentioned in the previous subsection. However, equation (5-13) is 

inclXded in WhiV model Wo UepUeVenW Whe OPV¶ ZeighWV (i.e. pUioUiWieV) aV folloZV: 

𝑈𝑃௞  ൌ  1 ൅  𝛼 ∙ 𝑃𝑆௭,௥  
(5-13) 

∀ 𝑘 ∈ ࣥ: 𝑧 ൌ 𝑘, 𝑘 ≻ 𝑁𝑈 

while (5-4) is replaced by (5-14) to cover the normal users only. 

𝑈𝑃௞ ൌ 1 
(5-14) 

∀ 𝑘 ∈ ࣥ: 1 ൑ 𝑘 ൑ 𝑁𝑈 

5.3.2  MILP Formulation for the PF Approach 

In WhiV appUoach, Whe objecWiYe iV Wo ma[imiVe Whe logaUiWhmic VXm of Whe XVeU¶V 

SINRs. Due to the nature of the natural logarithm, a slight decrease in the overall 

SINR might be observed but to the expense of preserving fairness among normal 

users.  

5.3.2.1  Before Prioritising the OPs 

In this case, all users are treated equally, thus there is no prioritisation in terms of 

resource allocation. However, keeping fairness among users still holds as a 

necessity. Since the only part that we are dealing with is the value of the individual 

XVeU¶V SINR, and Wo Vimplif\ Whe manipXlaWion of Whe eTXaWion befoUe adding Whe 

natural logarithm part, we present the optimisation variable 𝑆௞, to serve as the SINR 

for each user 𝑘. 

𝑆௞ ൌ  ෍ ෍ 𝑇௞,௡
௕

௕∈ࣜ௡∈ࣨ

 
(5-15) 

∀ 𝑘 ∈ ࣥ 
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Equation (5-15) replaces the three-indexed variable 𝑇௞,௡
௕  with a single-indexed 

variable 𝑆௞. 

𝐿௞ ൌ ln 𝑆௞ 
(5-16) 

∀ 𝑘 ∈ ࣥ 

Equation (5-16) calculates 𝐿௞  aV a logaUiWhmic fXncWion of Whe XVeU¶V SINR 𝑆௞.  

 The objective is as shown in (5-17): 

Constraints: 

In addition to constraints (5-5)-(5-12) from the previous model, the PF satisfies 

the following constraint 

Subject to: 

𝐿௞ ൑ 𝑚௬,௞ ∗ 𝑆௞ ൅ ℎ௬,௞ (5-18) 

∀ 𝑘 ∈ ࣥ 

Constraint (5-18) represents a set of piecewise linearisation relations 

implemented to linearize the concave function in equation (5-16). Note that 

constraint (5-18) corresponds to the line equation 𝑦 ൌ 𝑚𝑥 ൅ ℎ where the line 

coefficients (i.e. 𝑚௬,௞ and ℎ௬,௞) are selected as in [188]. It should be noted that the 

number of constraints used in the linearisation procedure is dictated by the total 

number of lines used to cover the linearized interval.  

5.3.2.2  After Prioritising the OPs 

In this case, the outpatients are prioritised. Equation (5-16) is rewritten to reflect 

the change.  

𝐿௞ ൌ ln 𝑆௞ 
(5-19) 

∀ 𝑘 ∈ ࣥ: 1 ൑ 𝑘 ൑ 𝑁𝑈 

Objective: Maximise 

 ෍ 𝐿௞
௞∈௄

 
(5-17) 
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Equation (5-19) shows that the log function is applied to normal users only. The 

OPs, on the other hand, are assigned weights instead.  

Objective: Maximise 

෍ 𝐿௞
௞∈௄,ଵஸ௞ஸே௎

൅ ෍ 𝑆௞𝑈𝑃௞
௞∈௄,௞≻ே௎

 
(5-20) 

The multi-objective function in (5-20) (i) maximises the sum of the SINRs 

allocated to all users, (ii) Assigns OPs priority by allocating OPs PRBs with high 

SINRs that reflect their relative priority, and (iii) Implements Fairness: by assigning 

healthy users PRBs with comparable SINRs. These objectives were implemented by 

adding boWh Whe VXmmaWion of a log fXncWion of Whe healWh\ XVeUV¶ SINRV (i.e. 

PUopoUWional FaiUneVV) and Whe ZeighWed VXm of Whe OPV¶ SINRV (OPV pUioUiW\). 

Constraints: 

The model satisfies constraint (5-5)-(5-12) from the previous approach. In 

addition to equation (5-14) and: 

𝐿௞ ൑ 𝑚௬,௞ ∗ 𝑆௞ ൅ ℎ௬,௞ 
(5-21) 

∀ 𝑘 ∈ ࣥ, 𝑘 ൑ 𝑁𝑈 

Constraint (5-21) represents the same set of equations for the piecewise 

linearisation that was used in constraint (5-18), however, the difference is in the 

range of users it is applied to. 

5.3.3  Calculating the Received Power  

The received signal power (in Watts) 𝑄௞,௡
௕  varies according to the channel 

conditions and the distance between the user and the BS. Considering Rayleigh 

fading denoted by 𝐻௞,௡
௕  and  distance dependent path loss denoted by 𝐴௞,௡

௕  [19], the 

received signal power is given as: 

𝑄௞,௡
௕ ൌ 𝑃 𝐻௞,௡

௕ 𝐴௞
௕  (5-22) 

where 𝐻௞,௡
௕  denotes Rayleigh fading and 𝐴௞

௕ represents power loss due to 

attenuation (distance dependent path loss) and is given in (5-23) [19]: 
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To unify the units, equation (5-24) is used to convert the power to Watts. 

𝐴 ሺm𝑤ሻ ൌ 10
஺ሺௗ஻௠ሻ

ଵ଴  (5-24) 

5.4  Heuristic 

To provide a method to validate the MILP operation we developed a heuristic 

appUoach opWimiVing Whe PRBV aVVignmenW baVed on Whe XVeU¶V pUioUiW\. The heuristic 

uses simple rules and therefore can be used in the cellular network control plane to 

carry out resource allocation in real time. The heuristic, as shown in the flowchart in 

Figure 5-4, starts by initialising the data parameters, sets, variables and reads the 

received power (Q) values from a separate file. A check for user prioritisation takes 

place. ThiV affecWV Whe XVeUV¶ admiWWance oUdeU Wo Whe V\VWem. If XVeU pUioUiWisation is 

ON (i.e. BDA is used), the OPs will be arranged according to their priority such that 

the most critical OP will be served first. This kind of check is vital at this stage due 

to the sequential nature of the heuristic, thus, the first few users will be granted high 

SINRs due to the higher number of available channels. OPs do not compete with 

each other over the available PRBs, i.e. their interfering candidates are normal users 

only. Finding the PRB at which a user achieves a relatively-high SINR is done by 

assigning a PRB where interference is attributed to a subset of |ࣜ|-1 interferers with 

minimum interfering power to that user at its PRB, where |ࣜ| is the number of BSs 

(the cardinality of ࣜ). As the heuristic continues to run, the PRB availability is 

reduced. Once the PRBs are allocated to the OPs, the total number of allocated 

PRBs will equal to ሺ2 ∗ ࣴሻ. On the other hand, the number of free PRBs (FPRB) 

will be equal to ሾࣜ ∗ ࣨሿ െ ሾ2 ∗ ࣴሿ giving a total of  2ி௉ோ஻combinations. Finding an 

interfering user with the minimum power on each RB (i.e. maximum SINR) results 

in reducing the above number of combinations. Accordingly, a pool with the length 

|𝐹𝑃𝑅𝐵| comprised of the highest achievable SINR on each PRB will be formed. The 

heuristic follows a semi-greedy approach [189]. Thus, one SINR will be randomly 

selected from the pool of best SINRs. The reasons behind this selection criterion are 

(i) to establish local fairness between the user and its interferer so that the interferer 

𝐴 ሺ𝑑𝐵𝑚ሻ ൌ 128 ൅ 37.6 logଵ଴
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝑚𝑒𝑡𝑒𝑟𝑠ሻ

1000
 (5-23) 
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does not endure a huge impact by being assigned a very low-powered PRB; 

moUeoYeU, (ii) Wo confoUm Wo Whe objecWiYe fXncWion in Zhich each indiYidXal XVeU¶V 

SINR is maximised while maximising the overall system-wide SINR. Once the user 

is assigned a SINR, the corresponding PRB(s) is assigned to the user and the 

interferer. The heuristic repeats the above procedure for the remaining users. Due to 

iWV VeTXenWial naWXUe, WhiV heXUiVWic ZaV iWeUaWed 1000 WimeV, UandomiVing Whe XVeUV¶ 

admission order (serving sequence) to the system in each iteration, while 

maintaining the semi-deWeUminiVWic naWXUe of Whe inWeUfeUeU¶V PRB aVVignmenW VWage. 

The XVeUV¶ aYeUage SINRV aUe When calcXlaWed. ThXV, appl\ing WhiV heXUiVWic oYeU 

different realisations of the network adds fairness among users in the long run. 

Sensitivity analysis was carried out to calculate the 95% confidence interval. To that 

end, the heuristic was applied to over 100 files each containing different values 

representing the powers received from the BS. Concurring results between the 

heuristic and the MILP model operation can be observed, as will be shown in the 

results section. 

It is of interest to compare the performance of the MILP which leads to the 

optimal solution with the performance of the heuristic which is sequential in nature 

and sub-optimal. In our optimisation model, the objective is to maximise the overall 

V\VWem¶V SINR b\ ma[imiVing Whe SINRV of all indiYidXal XVeUV while prioritising 

outpatient users over the healthy ones. This proceeds by allocating to user-A PRB-X 

at BS-1 which has a relatively high received power among the unassigned PRBs on 

that BS while choosing an unassigned interfering user-B to utilise the same PRB-X 

where the received power on BS-1 is one of the lowest. Such a scheme will be 

approached differently by the MILP and the heuristic as their method of operation 

differs in the following manner: 

Given a certain objective and a number of constraints, the MILP produces a 

feasible region bounded by the constraints defined in the optimisation problem. All 

points within that region can satisfy the objective. However, only one point typically 

represents the optimal solution. The MILP tries all the points at the boundary of the 

feasible region for all the possible user-interferer combinations and chooses the 

optimal result which best satisfies the objective (i.e. either attaining the maximum or 

the minimum). 
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The heuristic, on the other hand, works on a sequential basis. In our case, it 

admits and examines the users and the interferers one by one (i.e., sequentially). The 

user admitted first will have the advantage of being able to select from a wide range 

of resource blocks that correspond to different potential interferers. This range 

decreases as PRBs are assigned to the users one by one. Therefore, first-served users 

have the highest SINRs. To assert fairness between users, we have randomised the 

user admission order to the system in each iteration and this fairness is demonstrated 

when comparing the heuristic and the MILP results in Figure 5-5, Figure 5-6, Figure 

5-8, Figure 5-9, Figure 5-10, and Figure 5-12. 
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Figure 5-4: The heuristic flowchart 
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5.5  Results and Discussion 

Before delving into the results of the MILP model and heuristic, the parameters 

indicated in Table 5-2 should be noted. We consider a cellular network that operates 

in an urban environment, hence Rayleigh fading channel model with path loss. The 

results evaluate two scenarios; the first represents the state of the network before 

using BDA to prioritise the OPs. In this case, all the users were given equal base 

priority (i.e. weight) of 1. The second scenario represents the network state after 

XVing BDA ZheUe Whe OPV¶ pUioUiWieV aUe XpdaWed accoUding Wo WheiU UiVk facWoU and 

the value of the tuning factor D.  

The proposed system assumes a cloud-based setup with each OP having their 

own dataset comprised of their daily observations. The proposed system employs a 

dataset of daily observations over the course of a month, with a requirement to 

append additional observations periodically. In this work, we have assumed that the 

update frequency is daily. Additionally, the proposed system considers a system that 

is in operation. Here the dataset and the trained model are operational and the OP 

current reading is utilised by the NB classifier with the dataset to evaluate their 

cXUUenW medical condiWion. MoUeoYeU, Ze ZoXld like Wo highlighW WhaW Whe claVVifieU¶V 

role in this thesis is to calculate the probability of stroke. Since the outpatients are 

all under continuous monitoring, they are favoured according to their probability of 

VWUoke aV long aV Whe V\VWem iV opeUaWional. The OPV¶ VWUoke likelihood 𝑃𝑆௭,௥ were 

0.0032, 0.0064, and 0.00208 for users 8, 9, and 10, respectively. 

We have employed the tenfold cross-YalidaWion meWhod. The claVVifieU¶V accXUac\ 

and preciVion ZeUe calcXlaWed foU all oXWpaWienWV¶ daWaVeWV. The claVVifieU VcoUed an 

accuracy of 60%, 63.3%, and 63.3% and precision of 65.2%, 66% and 71.6% for 

users 8, 9 and 10 (i.e., OP 1, 2, and 3), respectively. The use of equation (5-13) 

produced 1.104 ൑ 𝑈𝑃௞ ൑ 1.32, 1.208 ൑ 𝑈𝑃௞ ൑ 1.64, 1.312 ൑ 𝑈𝑃௞ ൑ 1.96𝑚,

1.52 ൑ 𝑈𝑃௞ ൑ 2.6, 2.04 ൑ 𝑈𝑃௞ ൑ 4.2  user priorities according to tuning factor 

values of 𝛼 of 50, 100, 150, 250 and 500, respectively. 
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Table 5-2: Model Parameters 

Parameter Description 

LTE-A system bandwidth  1.4 MHz 

Channel Model 
Path Loss [19] and Rayleigh fading 
[18] 

No. of BS 2 

Number of PRBs per BS 5 

Number of users  10 

Number of normal users (𝑁𝑈) 7 

Number of OPs 3 

AWGN ( 𝜎௞,௡
௕ )  -162 dBm/Hz [19] 

The distance between user 𝑘 and BS 𝑏 (300 - 600) m 

Maximum transmission power per 
connection 𝑃𝑀 

23 dBm [19] 

UE transmission power per PRB  17 dBm 

Base (i.e. normal user priority) weight 1 

Outpatient priority 𝑈𝑃௞ calculation 
method 

Naïve Bayesian classifier 

OP observation period 30 Days 

Tuning factor (i.e., 𝛼 ) values  50, 100, 150, 250, and 500 

  

5.5.1  The WSRMax Approach 

5.5.1.1  Before Prioritising the OPs 

In this scenario, BDA is not employed to prioritise the OPs, i.e., all users have 

equal weights equivalent to the base user weight (i.e. 1). Observing Figure 5-5, it 

can be seen that the OPs (represented by users 8, 9, and 10, in both the MILP and 

heuristic results) are assigned PRBs with near average SINR as the MILP and 

heuristic strive to maximise the overall SINR. 
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Analogous SINR values can be observed in Figure 5-5 for both the MILP and the 

heuristic. The average SINRs computed through the heuristic and the MILP 

approaches are comparable at around 5.4 and 5.5, respectively.  

As a measure of fairness, i.e. to quantify how close the SINR values are to the 

mean, Ze conVideUed accenWXaWing Whe SWandaUd DeYiaWion (SD) foU Whe XVeUV¶ 

SINRs. The results are 0.4 and 0.3 for the heuristic and the MILP, respectively. 

Thus, the results confirm that the heuristic can approach the MILP and provide an 

acceptable level of fairness among the users by implementing the described 

permutation over independent realisations of the channel, at the expense of slightly 

sacrificing the overall SINR. An extensive sensitivity analysis was carried out, and 

95% confidence inWeUYalV foU each XVeU¶V SINRV aUe depicWed in Figure 5-5. The 

average SINR lied between 5.1 and 6 for the MILP results, and between 4.5 and 5.7 

for the heuristic results. 

 

5.5.1.2  After Prioritising the OPs 

In this scenario, the use of BDA resulted in assigning OPs higher priority than 

normal users by means of the NB classifier. The results shown in Figure 5-6 clearly 

 

Figure 5-5: UVeUV¶ SINR befoUe XVing BDA (WSRMa[ AppUoach) 
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demonstrate that all the OPs (users 8, 9, and 10) were assigned PRBs with high 

SINRs compared to their previous SINRs in Figure 5-5. The system-wide 

performance is a trade-off (optimally selected) between the task of assigning higher 

SINRS to OPs versus a reduction in the average SINR in this scenario (between 

0.3% (𝛼=50) and 6% (𝛼=500)) compared to the average SINR in the first scenario. 

This reduction in the average SINR is due to the fact that the system was forced to 

choose a PRB assignment scheme that prioritises the maximisaWion of OPV¶ 

individual SINRs over the total SINR. The results also show that the heuristic 

approaches the MILP performance, with a very comparable SINRs, however, the 

heuristic mostly displayed a marginally higher OP SINRs. This is due to the 

sequential nature of the heuristic which forced the system to serve the OPs first after 

further arranging them according to their priorities. This challenge was mitigated by 

preparing a list of highest achievable SINRs and randomly selecting one. The 

selection criterion of the user and its interferer was conducted on a sequential and a 

semi-deterministic manner, respectively to adds fairness between users as illustrated 

in Section 5.4  .  

 

The results in Figure 5-6 depict an agreement in terms of the average SINR 

between the heuristic (5.1) and the MILP (ranged from 5.3 to 5.6 depending on the 

 

Figure 5-6: UVeUV¶ SINR afWeU XVeU pUioUiWisation (WSRMax Approach) 
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value of D ). This approach slightly impacted the fairness between normal users as 

will be shown in the upcoming subsection. In this approach, the impact of 

converting the probability of stroke 𝑃𝑆௭,௥ (<<1) into a risk factor using 𝛼 can be 

Veen Zhen compaUing Whe XVeUV¶ aYeUage SINRV Zhen 𝛼=50 to the ones associated 

with 𝛼=500. An OP (user 10) was granted an average SINR value very comparable 

to other healthy users (as in user 7) and sometimes less than the SINR of healthy 

users as the case with users 1, 4, 5, and 7. While that same OP had an average SINR 

higher than all healthy users when 𝛼 ൌ 500 is used. 

The average SINR of an individual user ranged between 4 and 7.6 for the MILP 

(D =500), and between 3.7 and 7.9 for the heuristic. A clearer illustration can be 

observed in Figure 5-6 ZheUe Whe confidence inWeUYal foU each indiYidXal XVeU¶V 

SINRs is shown. 

5.5.1.3  The Impact of 𝜶 on Fairness and SINR 

The proposed model can be fine-tuned using the parameter D (i.e. tuning factor) 

introduced in equation (5-13). This parameter enables the reciprocity between the 

achievable fairness among users quantified by the SD and the average SINR. We 

examined the effect on the average SINR and the SD of using different values of D 

as illustrated in Figure 5-7 and in Figure 5-8. 
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Increasing the value of D directs the system to focus more on the OPs; 

consequently, a trade-off WakeV place UeVXlWing in loZeU YalXeV of Whe V\VWem¶V 

average SINR as seen in Figure 5-8 to increase the SINR of the selected users (i.e. 

the OPs), negatively affecting fairness as illustrated by the increasing SD in Figure 

5-7. 

It should be noted that the individual SINRs for the OPs correspond to the 

weights given to each OP using the NB Classifier. Sorting the users according to 

these weights produces an order that conforms to the values depicted in 

Figure 5-8. The highest SINR was granted to user 9 which is the OP with the 

highest probability of stroke; thus, the highest priority, while the lowest among the 

three OPs was user 10 who also happened to be the one with the least priority among 

the OPs (nevertheless still higher than the normal users). 

 

Figure 5-7: The effects of changing D on fairness and average SINR (WSRMax 
Approach) 
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5.5.2  The PF Approach 

5.5.2.1  Before Prioritising OPs 

The objective function in (5-17) is applied to this scenario. The goal is to 

maximise Whe VXmmaWion of Whe log of Whe XVeUV¶ SINRV Zhile enVXUing faiUneVV 

without prioritising a certain subset of users. The results shown in  

Figure 5-9 show a trend similar to the one depicted in Figure 5-5. However, due 

to the nature of the log function used in the objective function, fairness was 

maintained between the users (SD of 0.3 and 0.4 for the MILP and the heuristic, 

respectively), while the total SINR was reduced by 7% compared to the one 

produced by the MILP in the WSRMax approach.  

The average SINRs for the heuristic and the MILP approaches are comparable at 

around 5.1 and 5.3, respectively. Sensitivity analysis was performed (95% 

confidence interval) where the average SINR achieved by the MILP ranged between 

4.4 and 6.1, and between 4.1 and 6.4 for the heuristic results. 

 

Figure 5-8: The impacW of Į on boWh XVeU and average SINRs (WSRMax) 
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5.5.2.2  After Prioritising OPs 

In WhiV VcenaUio, Whe OPV¶ pUioUiWies (i.e. weights) are updated according to the 

stroke likelihood determined through the use of BDA. The objective function in 

(5-20) is used; consequently, the model grants the OPs high powered PRBs as can 

be noted in Figure 5-10. Comparing the PF approach to the WSRMax approach, it is 

evident that this approach grants the OPs higher SINRs (traded off with the other 

users). Furthermore, this approach shows higher conformance between the heuristic 

and MILP than the previous one. However, this was accomplished by trading off the 

average SINR. The MILP scored an average SINR between 5.2 (𝛼 ൌ 50) and 4.9 

(𝛼 ൌ 500) as can be seen in Figure 5-10, Zhile Whe heXUiVWic¶V aYeUage SINR iV 5.1. 

In this approach, the impact of different risk factor values on the OPs is less in 

comparison with the WSRMax approach due to the use of the natural logarithm 

causing the SINR to reduce in favour of the OPs. Nevertheless, an increase in the 

average SINR can also be noted among the OPs as depicted in Figure 5-10. 

Narrower confidence intervals can be noted when employing this approach. As a 

matter of fact, this is a good indication of the precision of the approach in hand, thus 

producing results with narrower margins of error than the previous approach. 

 

Figure 5-9: UVeUV¶ SINR befoUe XVeU pUioUiWisation (PF Approach) 
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5.5.2.3  The Impact of 𝜶 on Fairness and SINR 

Increasing the weights allocated to the OPs in this approach has similar effects to 

the ones in the previous section as shown in Figure 5-11 and in Figure 5-12. The 

reduction in the SINR is around 4%. However, the OPs were assigned higher SINRs. 

Furthermore, better fairness was reported among healthy users with an SD between 

0.27-0.32 (depending on the value of D ). Thus, offering a more stable approach. 

 

Figure 5-10: UVeUV¶ SINR afWeU XVeU pUioUiWisation (PF Approach) 
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Further analysis of Figure 5-6 and Figure 5-10 reveals that the SINR sum 

achieved by the WSRMax approach is larger than that of the PF approach.  

 

 

Figure 5-11: The effects of changing D on fairness and average SINR (PF 
Approach) 
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Figure 5-12: The impacW of Į on boWh XVeU and aYeUage SINRV (PF AppUoach) 
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Since the WSRMax target is to maximise the sum rate (which is what an 

unregulated operator tries to do) while the PF approach introduces fairness, hence 

resources are not all allocated to the user with the best channel. The PF approach 

improves fairness but reduces the sum rate (which is the case of a regulated 

operator).  

5.5.3  THVWLQJ WKH HHXULVWLF¶V SFaOabLOLW\ 

Employing higher LTE-A system bandwidths enables the operator to serve more 

users creating a challenge for the developed heuristic to allocate resources to OPs 

with minimum delay to serve their urgent needs. To evaluate the scalability of the 

heuristic, elapsed time is considered.  

We considered a scenario with six cases where the system operates at bandwidths 

of 1.4, 3, 5, 10, 15, and 20 MHz and increased the number of users, where all PRBs 

are occupied. For each case, we measured the time it takes the heuristic to allocate 

all users appropriate PRBs. The heuristic elapsed time was measured using the 

MATLAB functions tic and toc. Time calculation was carried out using two 

platforms: a Windows 10 computer equipped with Intel core i5-4460 3.2 GHz quad-

core processor and 16 GB of RAM, and cloud-based MATLAB provided by 

MathWorks. The latter offers a measurement reference where calculations are made 

by relying on cloud-based resources, where such cloud resources are expected to 

play a key role in the control of future cellular networks. Given that it can take a 

stroke-suffering OP up to 8 hours before being administered with an anaesthetic, this 

heXUiVWic¶V performance meets the requirements of this application. However, testing 

Whe heXUiVWic¶V VcalabiliW\ in WeUmV of oWheU, moUe Wime-critical, applications is 

beyond the scope of this work. Figure 5-13 illXVWUaWeV Whe heXUiVWic¶V WoWal elapVed 

time (in seconds) for both calculation methods versus the number of users. It should 

be noted that the worst-case scenarios are also considered and depicted in Figure 

5-13. 

The proposed heuristic tries to serve 𝐾 users to be allocated to 𝐾/2 PRBs on each 

of the two BSs with another loop dedicated to interferer allocation. The first run 

contains a search of total 𝐾 possible interferers (before satisfying the condition 𝑘 ്

𝑚). This means it requires 𝑂ሺ𝑁 ∗ ே
ଶ

∗ 2 ∗ 𝑁ሻ time. Additionally, the MATLAB sort 
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function requires 𝑂ሺ𝑁 log 𝑁ሻ time [190]. Thus, the overall complexity 

is 𝑂ሺ𝑁ସ log 𝑁ሻ. The proposed heuristic provided a reduction in the run time to solve 

the NP-Hard problem [18] with a slight sacrifice in the accuracy of the results.  

 

5.6  Chapter Summary 

This chapter introduced a system that employs the power of BDA to optimise the 

uplink of an LTE-A cellular network. OP¶V medical UecoUd and UeadingV fUom 

medical IoT sensors are processed in a BDA engine to find the likelihood of a stroke 

for an OP.  The goal is to target OP users within the network to ensure they can 

always have access to the best wireless resources when in need. The proposed 

system achieves that with minimal impact on the wireless system-wide performance 

and SINR levels among healthy users in the network, thus improving the network 

utility for telecom operators while saving human lives and preserving fairness 

among normal users. Two approaches (WSRMax and PF) were presented and 

compared in terms of the average SINRs and fairness. The WSRMax approach 

impUoYed Whe OPV¶ aYeUage SINR b\ Xp Wo 26.6%, ZheUeaV Whe PF appUoach 

increased them by 40.5%. The average SINR for normal users ranged between 5.5 

and 4.6 using the WSRMax approach while the PF approach reported a range 

between 4.6 and 4 (depending on D ሻ. Fairness among users was quantified using 

SD. The WSRMax approach granted the healthy users SINRs with an SD between 

 

Figure 5-13: The HeXUiVWic¶V ScalabiliW\ 

Cloud elapsed time

Cloud worst case

PC elapsed time

PC worst case

0

5

10

15

20

10
30

50
100

150
200

0.05
0.11

0.3 1.61 5

110.06
0.134 0.41 2.64

7.145

15.79

0.06 0.08 0.41 2.4

7.5

17.4

0.07 0.175 0.51
3.7

8

19.7

TI
M

E 
(S

EC
)

NUMBER OF USERS



104 

 

0.47 and 0.56 (depending on D ) while the PF approach ranged between 0.24 and 0.3 

SD. Furthermore, we developed a heuristic to verify the MILP operation. The 

heuristic achieved comparable results to the MILP, and finally we demonstrated the 

heXUiVWic¶V VcalabiliW\. 
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 Using Machine Learning and Big Data Analytics to 

Prioritise Outpatients in HetNets 

6.1  Introduction 

In this chapter, we extend the work presented in the previous chapter by 

investigating the role of BDA to prioritise OPs according to their current health state 

in HetNet. Thus, providing, to the best of our knowledge, a novel incorporation of 

the topics of resource allocation, patient monitoring, disease risk prediction, and 

prioritisation in an optimisation model transforming HetNets to function in an OP-

conVcioXV manneU. We XVe NB claVVifieU Wo anal\Ve daWa acTXiUed fUom OPV¶ medical 

records, alongside data from medical IoT sensors that provide the current state of the 

OP. We use this ML algorithm to calculate the likelihood of a life-threatening 

medical condition, in this case an imminent stroke. An OP is assigned high-powered 

PRBs according to the seriousness of their current health state, enabling them to 

remain connected and send their critical data to the designated medical facility with 

minimal delay. Using a MILP formulation, we present two approaches to optimising 

the uplink of a HetNet in terms of user-PRB assignment: a WSRMax approach and a 

PF approach. Using these approaches, we illustrate the utility of the proposed system 

in terms of providing reliable connectivity to medical IoT sensors, enabling the OPs 

to maintain the quality and speed of their connection. Moreover, we demonstrate 

hoZ V\VWem UeVponVe can change accoUding Wo alWeUaWionV in Whe OPV¶ medical 

conditions. 

6.2  System Model 

We consider a HetNet comprised of a macro BS (MBS) and two neighbouring 

Pico BSs (PBSs) operating in an urban environment with a range of 40-100 meters. 

We assume that the network employs a spectrum partitioning strategy [191], and 

accordingly MBS users are not interfering with PBS users, hence, we consider here 

the intra-tier interference caused by users operating within the PBS range The users 

are randomly scattered and fall within two categories: healthy (normal) users, and 
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OPs as illustrated in Figure 6-1. Due to placing the users at random distances from 

the PBS, different power levels are received at the PBS from their UEs. If a low 

SINR channel is assigned to the OP, the health care provider may not be notified and 

the response may not arrive in time. 

The goal is to allocate high-gain PRBs to OPs proportional to the severity of their 

medical status (i.e., stroke likelihood) as calculated in a cloud-located BDA engine 

according to the steps shown in Figure 6-2 (thus prioritising the OPs over normal 

users). OPs with high SINR values have greater spectral efficiency for their 

connection, because spectral efficiency is directly proportional to throughput, and 

the OPs will be able to send their data faster, hence minimising the delay. 

 

Figure 6-1: Patient-Aware HetNet 
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6.3  Problem Formulation and Model Parameters 

We developed a model to optimise PRB allocation in HetNets using MILP. Our 

scenario comprises a HetNet consisting of one MBS and two PBS. It is assumed that 

the network follows a spectrum partitioning strategy where Pico and macro users are 

on different PRBs (i.e., mitigating uplink inter-cell interference). Hence, interference 

occurs among Pico users only. Consequently, B PBSs are represented by the set ࣜ ൌ

 ሼ1, … , 𝐵ሽ. Each PBS has a total of 𝑁 PRBs depicted by the set ࣨ ൌ  ሼ1, … , 𝑁ሽ. A 

total of 𝐾 users, both normal and OPs, represented by the set ࣥ ൌ ሼ1, … , 𝐾ሽ are to 

be served in an instant of time by the PBSs using PRB n on PBS b. The target is to 

optimise the uplink of the network by maximising the overall system SINR while 

prioritising the OPs by allocating them high-gain PRBs. 

We formalise this problem as a MILP model. Table 6-1 defines the sets, 

parameters, and variables used in the network optimisation problem formulation 

Table 6-1: System Sets, Parameters, And Variables 

Sets 

क Set of users. 

घ Set of physical resource blocks. 

ऌ Set of base stations. 

 

Figure 6-2: Outpatient Priority Calculation Procedure 
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त Set of outpatient users,ሺࣴ ⊂ ࣥ). 

Parameters 

𝑪𝑺𝒊 The current state of the patient in feature i (e.g. Cholesterol value). 

𝑼𝑷𝒌 User priority (𝑈𝑃௞ =1 for normal users whereas  
𝑈𝑃௞ ൐ 1 is granted for OPs depending on their risk factor). 

𝑸𝒌,𝒏
𝒃  Power received from user 𝑘 using PRB 𝑛 at base station 𝑏. 

𝑯𝒌,𝒏
𝒃  Rayleigh fading with zero mean and a standard deviation equal to 1 

experienced by user 𝑘 using PRB 𝑛 at base station 𝑏.  

𝑨𝒌
𝒃 Signal attenuation experienced by user 𝑘 connected to base station 𝑏. 

𝑷𝑴 Maximum power allowed per uplink connection. 

𝑷 Power consumed to utilise PRB 𝑛 to connect user 𝑘 to base station 𝑏. 

𝝀 An arbitrary, large positive value. 

𝒌,𝒏࣌
𝒃  Additive White Gaussian Noise (AWGN) power in watts experienced by 

user 𝑘 using PRB 𝑛 at base station 𝑏. 

𝑷𝑺𝒛,𝒓 The probability of stroke of outpatient 𝑧. 

𝒎𝒚,𝒌 

𝒉𝒚,𝒌 
Piecewise linearisation equation coefficients for line 𝑦 of user 𝑘. 

𝜶 Tuning factor. 

𝑵𝑼 The total number of normal users. 

Variables 

𝑿𝒌,𝒏
𝒃  Binary decision variable 𝑋௞,௡

௕ ൌ 1 if user 𝑘 is assigned PRB 𝑛 in base 
station 𝑏, otherwise 𝑋௞,௡

௕ ൌ 0. 

𝑻𝒌,𝒏
𝒃  The SINR of user 𝑘 utilising PRB 𝑛 at base station 𝑏. 

ࣘ𝒎,𝒏,𝒌
𝒘,𝒃  Non-negative linearisation variable where 𝜙௠,௡,௞

௪,௕ ൌ 𝑇௞,௡
௕ 𝑋௠,௡

௪ . 

𝑺𝒌 SINR of user 𝑘. 

𝑳𝒌 Logarithmic SINR of user 𝑘. 

  

The SINR 𝑇௞,௡
௕  of user 𝑘 connecting to PBS 𝑏 using PRB 𝑛 is given as: 

𝑇௞,௡
௕ ൌ  

𝑆𝑖𝑔𝑛𝑎𝑙
𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ൅ 𝑁𝑜𝑖𝑠𝑒

ൌ
𝑄௞,௡

௕ 𝑋௞,௡
௕

∑ ∑ 𝑄୫,௡
௕ 𝑋୫,௡

௪
௠∈ࣥ
௠ஷ௞

௪∈ࣜ
௪ஷ௕

൅ 𝜎௞,௡
௕  (6-1) 
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The numerator in (6-1) depicts the signal part of the equation, whereas the 

denominator consists of two parts, interference received from users connected to 

other PBSs on the same PRB calculated as 𝑄୫,௡
௕ 𝑋୫,௡

௪  while the AWGN noise is 

represented by 𝜎௞,௡
௕ . 𝑋௞,௡

௕  is a binary variable equal to 1 when user 𝑘 is connected to 

the PBS 𝑏 using PRB 𝑛; 𝑚, 𝑚 ് 𝑘 and 𝑤, 𝑤 ് 𝑏 denote the interfering user(s) and 

interfering PBS(s), respectively. However, in our case there is a single interfering 

PBS. Rewriting equation (6-1): 

෍ ෍ 𝑇௞,௡
௕ 𝑄୫,௡

௕ 𝑋୫,௡
௪ ൅ 𝑇௞,௡

௕ 𝜎௞,௡
௕ ൌ 𝑄௞,௡

௕ 𝑋௞,௡
௕

௠∈ࣥ
௠ஷ௞

௪∈ࣜ
௪ஷ௕

 

(6-2) 

∀ 𝑘 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑏 ∈ ࣜ 

The first term in (6-2) is nonlinear (quadratic) as it involves the multiplication of 

two variables (Continuous 𝑇௞,௡
௕  and Binary 𝑋୫,௡

௪ ). Therefore, linearisation is 

essential to solve the NP-hard model using a linear solver such as CPLEX, where 

the linearisation is given in (6-5) to (6-8). 

We have developed two approaches to solve the resource allocation problem. The 

first approach uses an objective function that maximises the Weighted Sum-Rate of 

the SINRs experienced by the users. The second approach introduces fairness among 

the users by employing a PF objective function.  

6.3.1  MILP Formulation for the WSRMax Model 

The objecWiYe iV Wo ma[imiVe Whe V\VWem¶V overall SINR. This can be realised 

WhUoXgh Whe ma[imiVaWion of Whe indiYidXal XVeUV¶ SINRV. 

6.3.1.1  Before Prioritising the OPs 

The OPV¶ UiVk factors introduced in the previous chapters are scaled into priorities 

(i.e. weights) and used to prioritise the OPs over other users. The MILP model is 

formulated as follows:  

Objective: Maximise 

෍ ෍ ෍ 𝑇௞,௡
௕

௕∈ࣜ௡∈ࣨ 

𝑈𝑃௞
௞∈ࣥ

 
(6-3) 
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The objective given in (6-3) aimV Wo ma[imiVe Whe ZeighWed VXm of Whe XVeUV¶ 

SINRs. These weights (i.e. priorities) are higher for OPs compared to healthy users 

and proportional to the OPs calculated risk factor. Note that 𝑈𝑃௞ has an initial value 

of 1 for all users as shown in (6-4). However, the OPs will have updated values 

according to their risk factor. This will ultimately drive the system into prioritising 

the OPs over the healthy users during PRB assignment. The mathematical 

formulations related to the OP weight (priority) calculation was illustrated in 

Chapter 3. 

𝑈𝑃௞ ൌ 1 
(6-4) 

∀ 𝑘 ∈ ࣥ 

Constraints: 

To mainWain Whe model¶V lineaUiW\ Zhile peUfoUming Whe mXlWiplicaWion of Whe floaW 

variable 𝑇௞,௡
௕  by the binary variable 𝑋௠,௡

௪ , we follow [187], and define a variable 

𝜙௠,௡,௞
௪,௕  that includes all the indexes of both aforementioned (i.e., float and binary) 

variables as in (6-5). Constraints (6-6), (6-7), and (6-8) govern the multiplication 

procedure. As a result, the only two values satisfying the constraints are either zero 

(when x =0) or T (when x=1). It should be noted that ᅑ is a large enough number 

where ᅑ >>T: 

Subject to: 

𝜙௠,௡,௞
௪,௕ ൒ 0 

(6-5) 

Replacing the quadratic term 𝑇௞,௡
௕ 𝑋௠,௡

௪  with the linearisation variable 𝜙௠,௡,௞
௪,௕  that 

incorporates all the indexes of the multiplied variables. 

𝜙௠,௡,௞
௪,௕  ൑ 𝜆𝑋௠,௡

௪  
(6-6) 

∀ 𝑘, 𝑚 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑤, 𝑏 ∈ ࣜ , ሺ𝑚 ് 𝑘, 𝑏 ് 𝑤ሻ 

 

𝜙௠,௡,௞
௪,௕  ൑ 𝑇௞,௡

௕  
(6-7) 

∀ 𝑘, 𝑚 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑤, 𝑏 ∈ ࣜ , ሺ𝑚 ് 𝑘, 𝑏 ് 𝑤ሻ 
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𝜙௠,௡,௞
௪,௕  ൒ 𝜆𝑋௠,௡

௪ ൅ 𝑇௞,௡
௕ െ 𝜆 

(6-8) 
∀ 𝑘, 𝑚 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑤, 𝑏 ∈ ࣜ , ሺ𝑚 ് 𝑘, 𝑏 ് 𝑤ሻ 

After replacing 𝑇௞,௡
௕ 𝑋௠,௡

௪  with 𝜙௠,௡,௞
௪,௕ , equation (6-2) can thus be rewritten as in 

(6-9).  𝜙௠,௡,௞
௪,௕ ൌ 𝑇௞,௡

௕ 𝑋௠,௡
௪  is equal to the SINR of user 𝑘 connected to BS 𝑏 with 

PRB 𝑛 if there is an interfering user 𝑚 connected to the other BS 𝑤 with the same 

PRB 𝑛; it is zero otherwise. 

෍ ෍ 𝑄୫,௡
௕ 𝜙௠,௡,௞

௪,௕ ൅ 𝑇௞,௡
௕ 𝜎௞,௡

௕ ൌ 𝑄௞,௡
௕ 𝑋௞,௡

௕

௠∈ࣥ
௠ஷ௞

௪∈ࣜ
௪ஷ௕

 

(6-9) 

∀ 𝑘 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑏 ∈ ࣜ 

 

෍ 𝑃
௡∈ࣨ

𝑋௞,௡
௕  ൑ 𝑃𝑀 

(6-10) 

∀ 𝑘 ∈ ࣥ, 𝑏 ∈ ࣜ 

Constraint (6-10) ensures that the users do not exceed their maximum available 

amount of power per uplink connections (in case more than one PRB is utilised by 

the same user 𝑘). In the current work, the user is allowed a single PRB. 

෍ 𝑋௞,௡
௕

௞∈ࣥ

 ൑ 1 
(6-11) 

∀ 𝑛 ∈ ࣨ, 𝑏 ∈ ࣜ 

Constraint (6-11) limits the assignment of each PRB to one user only. 

෍ ෍ 𝑋௞,௡
௕

௡∈ࣨ ௕∈ࣜ

 ൒ 1 
(6-12) 

∀ 𝑘 ∈ ࣥ 

Constraint (6-12) guarantees that each user is assigned at least one PRB from any 

BS. Thus, no user is left without service. Additionally, this prevents the MILP from 

blocking interfering users to maximise the total SINR. 
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6.3.1.2  After Prioritising the OPs 

In WhiV appUoach, OPV¶ UiVk facWoUV inWUodXced in Whe pUeYioXV chapWeU aUe Vcaled 

into weights to prioritise the OPs over other users. The MILP model is formulated in 

the same way as mentioned in the previous subsection. However, equation (6-13) is 

inclXded in WhiV model Wo UepUeVenW Whe OPV¶ ZeighWV (i.e. pUioUiWieV) aV folloZV: 

𝑈𝑃௞  ൌ  1 ൅  𝛼 ∙ 𝑃𝑆௭,௥  
(6-13) 

∀ 𝑘 ∈ ࣥ: 𝑧 ൌ 𝑘, 𝑘 ≻ 𝑁𝑈 

while (6-4) is replaced by (6-14) to cover the normal users only. 

𝑈𝑃௞ ൌ 1 
(6-14) 

∀ 𝑘 ∈ ࣥ: 1 ൑ 𝑘 ൑ 𝑁𝑈 

6.3.2  MILP formulation for the PF Model 

In WhiV appUoach, Whe objecWiYe iV Wo ma[imiVe Whe logaUiWhmic VXm of Whe XVeU¶V 

SINRs. Due to the nature of the natural logarithm, a slight decrease in the overall 

SINR might be observed but to the expense of preserving fairness among normal 

users.  

6.3.2.1  Before Prioritising the OPs 

In this case, all users are treated equally, thus there is no prioritisation in terms of 

resource allocation. However, keeping fairness among users still holds as a 

necessity. Since the only part that we are dealing with is the value of the individual 

XVeU¶V SINR, and Wo Vimplif\ Whe manipXlaWion of Whe eTXaWion befoUe adding Whe 

natural logarithm part, we present the optimisation variable 𝑆௞, to serve as the SINR 

for each user 𝑘. 

𝑆௞ ൌ  ෍ ෍ 𝑇௞,௡
௕

௕∈ࣜ௡∈ࣨ

 
(6-15) 

∀ 𝑘 ∈ ࣥ 

Equation (6-15) replaces the three-indexed variable 𝑇௞,௡
௕  with a single-indexed 

variable 𝑆௞. 

𝐿௞ ൌ ln 𝑆௞ (6-16) 



113 

 

∀ 𝑘 ∈ ࣥ 

Equation (6-16) calculates 𝐿௞  aV a logaUiWhmic fXncWion of Whe XVeU¶V SINR 𝑆௞. 

Since the natural log is a concave function, and to preserve the linearity of our 

model, piecewise linearisation was used as depicted in constraint (6-18). 

 The objective is as shown in (6-17): 

 Constraints: 

In addition to constraints (6-5)-(6-12) from the previous model, the PF satisfies 

the following constraint 

Subject to: 

𝐿௞ ൑ 𝑚௬,௞ ∗ 𝑆௞ ൅ ℎ௬,௞ (6-18) 

∀ 𝑘 ∈ ࣥ 

Constraint (6-18) represents a set of piecewise linearisation relations 

implemented to linearise the concave function in equation (6-16). Note that 

constraint (6-18) corresponds to the line equation 𝑦 ൌ 𝑚𝑥 ൅ ℎ where the line 

coefficients (i.e. 𝑚௬,௞ and ℎ௬,௞) are selected as in [188]. It should be noted that the 

number of constraints used in the linearisation procedure is dictated by the total 

number of lines used to cover the linearised interval. 

6.3.2.2  After Prioritising the OPs 

In this case, the outpatients are prioritised. Equation (6-16) is rewritten to reflect 

the change.  

𝐿௞ ൌ ln 𝑆௞ 
(6-19) 

∀ 𝑘 ∈ ࣥ: 1 ൑ 𝑘 ൑ 𝑁𝑈 

Equation (6-19) shows that the log function is applied to normal users only. The 

OPs, on the other hand, are assigned weights instead.  

Objective: Maximise 

 ෍ 𝐿௞
௞∈௄

 
(6-17) 
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Objective: Maximise 

෍ 𝐿௞
௞∈௄,ଵஸ௞ஸே௎

൅ ෍ 𝑆௞𝑈𝑃௞
௞∈௄,௞≻ே௎

 
(6-20) 

The multi-objective function in (6-20) (i) maximises the sum of the SINRs 

allocated to all users, (ii) Assigns OPs priority by allocating OPs PRBs with high 

SINRs that reflect their relative priority, and (iii) Implements Fairness: by assigning 

healthy users PRBs with comparable SINRs. These objectives were implemented by 

adding boWh Whe VXmmaWion of a log fXncWion of Whe healWh\ XVeUV¶ SINRV (i.e. 

PUopoUWional FaiUneVV) and Whe ZeighWed VXm of Whe OPV¶ SINRV (OPV pUioUiW\). 

Constraints: 

The model satisfies constraint (6-5)-(6-12) from the previous approach. In 

addition to equation (6-14) and: 

𝐿௞ ൑ 𝑚௬,௞ ∗ 𝑆௞ ൅ ℎ௬,௞ 
(6-21) 

∀ 𝑘 ∈ ࣥ, 𝑘 ൑ 𝑁𝑈 

Constraint (6-21) represents the same set of equations for the piecewise 

linearisation that was used in constraint (6-18), however, the difference is in the 

range of users it is applied to 

6.3.3  Calculating the received power 

The received signal power (in Watts) 𝑄௞,௡
௕  varies according to the channel 

conditions and the distance between the user and the BS. Considering Rayleigh 

fading denoted by 𝐻௞,௡
௕  and  distance dependent path loss denoted by 𝐴௞,௡

௕  [19], the 

received signal power is given as: 

𝑄௞,௡
௕ ൌ 𝑃 𝐻௞,௡

௕ 𝐴௞
௕  (6-22) 

where 𝐻௞,௡
௕  denotes Rayleigh fading and 𝐴௞

௕ represents power loss due to 

attenuation (distance dependent path loss) and is given in (6-23) [19]: 

To unify the units, equation (6-24) is used to convert the power to Watts. 

𝐴 ሺ𝑑𝐵𝑚ሻ ൌ 140.7 ൅ 36.7 logଵ଴
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝑚𝑒𝑡𝑒𝑟𝑠ሻ

1000
 (6-23) 
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𝐴 ሺm𝑤ሻ ൌ 10
஺ሺௗ஻௠ሻ

ଵ଴  (6-24) 

6.4  Results and Discussion 

In this section, we used the parameters in Table 6-2 for a scenario of a network 

employing a spectrum partitioning strategy. The results illustrate two approaches to 

identifying the resource allocation problem: the WSRMax and the PF. The first 

appUoach WaUgeWV Whe ma[imiVaWion of Whe ZeighWed VXm UaWe of all XVeUV¶ SINRV, 

with its objective in (6-3). The second, however, enforces fairness among users 

through its objectives in (6-17) and (6-20) by maximising the logarithmic sum of the 

XVeUV¶ SINRV. The MILP opWimiVaWion ZaV peUfoUmed XVing AMPL/CPLEX 

software running version 12.5 on a PC with 16 GB RAM and a core i5 CPU. 

Table 6-2 : Model Parameters 

Parameter Description 

System bandwidth  3 MHz 

Total number of RBs 15 

Channel Model    Path Loss [19] and Rayleigh fading 

[18] 

Number of MBS 1 

Number of PBS 2 

Number of PRB per MBS 10 

Number of PRBs per PBS 5 

Number of users 10 

Number of normal users (𝑁𝑈) 7 

Number of OPs 3 

AWGN ( 𝜎௞,௡
௕ )  -162 dBm/Hz [19]  

Distance between user 𝑘 and BS 𝑏 (40 - 100) m 

Maximum transmission power per 

connection  

23 dBm [19] 

UE transmission power per PRB  17 dBm  

Base (i.e. normal user priority) weight 1 
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Outpatient priority 𝑈𝑃௞ calculation 

method 

Naïve Bayesian classifier 

OP observation period 30 Days 

WeighW PaUameWeU (Į) 50, 500, and 1000 
 

Furthermore, we considered seven different current states in terms of input 

feature variables, as displayed in Table 6-3. We run each model over all seven 

different current states foU 400 daWa fileV each UepUeVenWing UandomiVed XVeUV¶ 

locations (i.e., random received power levels at the PBSs in each data file) 

simulating 400 instances and showing the average SINR. The seven current states 

produce different probabilities of strokes. These probabilities, along with different 

weight parameter α values, will be reflected as different SINR levels as shown in 

Figure 6-4 and Figure 6-6, respectively. 

Table 6-3: Outpatient Current States 

In
st

an
ce

 

Features Class 

Total 
Cholesterol 

Systolic Blood 
Pressure 

Diastolic 
Blood Pressure 

Smoking 
rate 

Stroke 

𝒇૚ 𝒇૛ 𝒇૜ 𝒇૝ 𝑪 

1 Normal 
Pre-

hypertension 
Normal Heavy ? 

2 High 
High 

Hypertension 
Normal Light ? 

3 Normal 
High 

Hypertension 
High 

Hypertension 
Moderate ? 

4 High 
High 

Hypertension 
High 

Hypertension 
Heavy ? 

5 Normal 
High 

Hypertension 
Pre-

hypertension 
Light ? 

6 Normal 
High 

Hypertension 
High 

Hypertension 
Light ? 

7 High 
High 

Hypertension 
High 

Hypertension 
Light ? 
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It should be noted that to simplify the SINR calculation, we converted all 

logarithmic units (i.e., dBm) into linear scale (i.e., m Watt), hence the resulting 

average SINR values in Figure 6-3, Figure 6-4, Figure 6-5, and Figure 6-6 are unit 

less. 

6.4.1  The WSRMax Approach 

6.4.1.1  Before Prioritising the OPs 

In this scenario, all users have equal priority (i.e., 𝑈𝑃௞ ൌ 1). The average SINR is 

830 (i.e., around 29 dB). However, observing the OPs (i.e., users 8, 9, and 10) in 

Figure 6-3, one can note that they have comparable SINRs to other (healthy) users, 

and sometimes actually lower, such as when comparing OPs 8 and 9 to user 7.  

 

6.4.1.2  After Prioritising the OPs 

The OPs were granted high-gain PRBs according to their priority level. A 

negligible drop (0.3) in the average SINR is observed when selecting the weight 

parameter 𝛼 ൌ 50.  However, all OPs were granted above-average SINRs as shown 

in Figure 6-4 (A), (B), and (C). The OPV¶ SINRV incUeaVe ZiWh a focXV on the OP 

with the highest priority in each state; moreover, we can notice that for 𝛼 ൒ 500 all 

 

Figure 6-3: UVeUV¶ SINRV befoUe XVeU pUioUiWisation (WSRMax Approach) 

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10

SI
NR

 

USER ID



118 

 

OPs are assigned SINRs above the average, with 9% and 16% maximum SINR 

decrease when 𝛼 ൌ500 and 1000, respectively. 
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(A) WSRMa[ ZiWh Į=50 

 

(B) WSRMax ZiWh Į=500 

 

(C) WSRMa[ ZiWh Į=1000 

Figure 6-4: UVeUV¶ SINRV AfWeU XVeU pUioUiWiVaWion (WSRMa[ AppUoach) 
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6.4.2  The PF Approach 

6.4.2.1  Before Prioritising the OPs 

The average SINR in this scenario is equal to 320 (around 25 dB) as illustrated in 

Figure 6-5. Users 9 and 10 are assigned less than the average SINR. A difference in 

the SINR levels can be observed between the two approaches. This is due to the use 

of the natural logarithm as well as the location of users with proximity to the PBS. 

When compared with the results in the previous chapter, we can clearly observe that 

the effect of the log differs. However, converting the SINRs to their logarithmic 

form (i.e., dB) shows that the SINR is still within the optimal range of operation. 

 

6.4.2.2  After Prioritising the OPs 

In WhiV VcenaUio, Whe V\VWem¶V aYeUage SINR haV incUeaVed dXe Wo Whe facW WhaW onl\ 

the normal users remain subjected to the logarithmic function. On the other hand, 

the OPs have high SINR levels, as shown in Figure 6-6 (A), (B), and (C). It should 

be noted that the effect of the increase of weight parameter 𝛼 is minimal compared 

to the WSRMax approach. 

 

Figure 6-5: UVeUV¶ SINRV befoUe XVeU pUioUiWisation (PF Approach) 
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(A) PF ZiWh Į=50 

 

(B) PF ZiWh Į=500 

 

(C) PF with Į=1000 

Figure 6-6: UVeUV¶ SINRV AfWeU XVeU pUioUiWiVaWion (PF AppUoach) 
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6.5  Chapter Summary 

This chapter offered two multidisciplinary frameworks for patient-centric 

optimisation of HetNets. A BDA/ML algorithm was embedded in resource 

allocation optimisation and provided patient prioritisation in the e-health setting 

studied. The target is to prioritise stroke outpatients in HetNets according to their 

current medical condition based on readings acquired from body-attached and 

nearby IoT sensors. As a result, the developed ML-driven resource allocation 

frameworks granted these patients high-gain PRBs to ensure that they are always 

connected and can send their data with minimum delay. To that end, the WSRMax 

and PF approaches were presented and compared. The WSRMax approach 

ma[imiVeV Whe OPV¶ SINRV ZiWh leVV impacW on noUmal XVeUV Zhen compaUed Wo Whe 

PF approach. The PF appUoach ma[imiVeV Whe OPV¶ SINRV Wo a gUeaWeU e[WenW Whan 

the WSRMax approach, while a noticeable impact can be observed on normal users. 

With a false positive rate of 0.36, the current classifier can be further enhanced and 

compared to other algorithms Wo aVVeVV a paWienW¶V VWaWe, Zhile Whe inWegUaWion of 

more feature variables in a larger data set constitutes a basis for future work. 

Furthermore, investigating inter-cell interference as part of a larger model is 

currently being considered as a future direction. 
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Beyond 5G: Patient-centric HetNets 

7.1  Introduction 

Having a cognitive and self-optimising network that proactively adapts not only 

to channel conditions, but also accoUding Wo iWV XVeUV¶ needV can be one of Whe higheVW 

priorities of future HetNets. In this chapter, we introduce an interdisciplinary 

approach linking the concepts of e-healthcare, priority, radio resource optimisation, 

and BDA in a multi-tier 5G network. We employ three ML algorithms, namely, NB 

classifier, linear regression (LR), and decision trees (DT), working within an 

ensemble system to analyse historical medical records of stroke OPs and readings 

from body-attached IoT sensors to predict the likelihood of an imminent stroke. We 

convert the stroke likelihood into a risk factor functioning as a priority in MILP 

optimisation model. Hence, the task is to optimally allocate PRBs to HetNet users 

while prioritising OPs by granting them high gain PRBs according to the severity of 

their medical state. Thus, empowering the OPs to send their critical data to their 

healthcare provider with minimised delay. To that end, two optimisation approaches 

are proposed, the WSRMax approach and the PF approach. The proposed 

appUoacheV incUeaVed Whe OPV¶ aYeUage SINR b\ 57% and 95%, UeVpecWiYel\. The 

WSRMa[ appUoach incUeaVed Whe V\VWem¶V WoWal SINR Wo a leYel higheU Whan WhaW of 

the PF approach, nevertheless, the PF approach yielded higher SINRs for the OPs, 

better fairness and a lower margin of error. The notion behind employing multiple 

ML algorithms is to; (i) check if the findings are consistent across different ML 

algorithms, (ii) select the optimal ML algorithm or set them to work together (which 

is what we proposed in the form of an ensemble system), (iii) the DT classifier fit 

the problem discrete nature, and (iv) the LR classifier is selected as it offers higher 

discrimination. However, it can have high sensitivity to feature vector noise, hence 

voting classifier is used. 
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7.2  System Model 

In this work, we are considering a scenario of a HetNet consisting of a MBS and 

two neighbouring PBS operating in an urban environment. The MBS coverage range 

is 300-600 meters whilst the PBS has a range of 40-100 meters. In a previous work 

in [192], we assumed the adoption of a spectrum partitioning strategy [191] to 

mitigate the inter-tier interference on the PBS users caused by the MBS users. In this 

work, we are considering the effects of the inter-tier interference. The users belong 

to two categories: healthy (normal) users, and OPs as illustrated in Figure 7-1. As in 

a real-life scenario, the users are randomly scattered around the BSs at different 

distances which results in different received power levels at the BS from its UEs. If 

an OP is assigned a low-level SINR channel, the healthcare provider may not be 

notified and the response will be delayed. Here, a patient suffering a stroke loses 1.9 

million neurons/min before the treatment starts [9]. Therefore, the objective is to 

assign high-gain PRBs to the OPs according to the severity of their medical status 

(i.e., stroke likelihood). The latter is computed in a cloud-based BDA engine 

according to the procedure shown in Figure 7-2. Thus, OPs that are prioritised over 

normal users will have higher spectral efficiency due to their high SINR values. 

This, in turn, will yield higher throughput (since spectral efficiency is directly 

proportional to throughout). Hence, the OPs will be able to send their data with 

minimal delay. 
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In this work, we use an ensemble system comprising three supervised learning 

classifiers, namely, a NB classifier, a DT classifier, and a LR classifier that work on 

Whe OP¶V daWaVeW and feed WheiU pUedicWed pUobabiliWieV of VWUoke Wo a VofW YoWing 

classifier. Given a certain feaWXUe YecWoU (UepUeVenWing Whe OP¶V cXUUenW VWaWe), each 

of the aforesaid classifiers yields a probability of stroke. Using ensemble learning, 

those classifiers can be combined into a single predictive model with higher 

accuracy, and thus, higher confidence is achieved in the predicted results. 

 

Figure 7-1: Patient-Aware HetNet 
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7.2.1  Naïve Bayesian Classifier 

The NB classifier is a probabilistic statistical classifier which uses a number of 

independent feature variables 𝑓௜ (e.g. total Cholesterol and Blood pressure levels) 

obWained fUom a hiVWoUical daWaVeW (i.e., Whe OP¶V medical UecoUd) Wo deWeUmine Whe 

likelihood of an incident 𝑐 (i.e. a stroke) as shown in Figure 7-2. The classifier is 

termed naïve because it assumes the feature variables are unrelated to each other 

[22]. This classifier is chosen for the following reasons; (i) it has a track record in 

disease risk prediction as in [158] and [193], (ii) its low complexity incur less 

computational burden, (iii) it is an ideal choice for any two-class concept with 

nominal features [160], (iv) it has proven accuracy in Cardio Vascular Disease 

(CVD) prediction compared to other approaches [166, 194], (v) it does not require 

large training datasets [159].  

The claVVifieU¶V posterior probability is given as 

 

Figure 7-2: Out-Patient Priority Calculation Procedure 
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 𝑃ሺ𝐶 ൌ 𝑐|𝐹௜ ൌ 𝑓௜ሻ ൌ 𝑃ሺ𝐶 ൌ 𝑐ሻ ෑ 𝑃ሺ𝐹𝑖 ൌ 𝑓𝑖 |𝐶 ൌ 𝑐ሻ
௡

௜ୀଵ

 (7-1) 

where 𝑃ሺ𝐶 ൌ 𝑐ሻ represents the prior probability of stroke, and the likelihood of 𝐹 

given 𝐶 is given in (7-2)  

𝑃ሺ𝐹௜ ൌ 𝑓௜|𝐶 ൌ 𝑐ሻ ൌ
∑ ሺ𝐶 ൌ 𝑐 ⋀ 𝐹௜ ൌ 𝑓௜ሻ௡

௜ୀଵ
∑ ሺ𝐶௜ ൌ 𝐶௜ሻ௡

௜ୀଵ
 (7-2) 

where the term ∏ 𝑃ሺ𝐹𝑖 ൌ 𝑓𝑖 |𝐶 ൌ 𝑐ሻ௡
௜ୀଵ  depicts the joint probability.  

7.2.2  Logistic Regression Classifier 

The main distinctions between the NB classifier and the LR classifier is that it; (i) 

fast and a large change in response to the feature vector, (ii) it allows for large 

discrimination (i.e., a change in one feature may cause large effect). However, this 

also means that it suffers from high sensitivity to feature vector values. This 

classifier is a popular tool in disease prediction as in [195-197]. A logistic model is 

based on a mathematical form called the logistic function given in (7-3). This 

function equals zero when 𝑥 is -�, ZheUeaV Whe fXncWion eTXalV 1 Zhen 𝑥 iV + �. 

𝑓ሺ𝑥ሻ ൌ  
1

1 ൅ 𝑒ି௫ (7-3) 

This range is the primary reason for selecting the logistic model to estimate the 

probability. The index of combined features is 𝑥 and it is given as a linear sum as 

shown in (7-4). 

𝑥 ൌ  𝛽଴  ൅  𝛽ଵ𝑓ଵ  ൅  𝛽ଶ𝑓ଶ൅. . . ൅ 𝛽௡𝑓௡ (7-4) 

where 𝛽଴ represents the 𝑦 intercept and 𝛽ଵ . . 𝛽௡ are the regression coefficients, 

𝑓ଵ, … 𝑓୬ depict the feature variables, and 𝑛 is the total number of features in the 

prediction model (in this work, 𝑛 ൌ 4) [198]. The conditional probability can be 

written as:  

𝑃ሺ𝐶 ൌ 𝑐|𝐹௜ ൌ  𝑓௜ሻ ൌ
1

1 ൅ 𝑒ିሺఉబା∑ ఉ೔௙೔
೙
೔సభ ሻ (7-5) 

where 𝑃ሺ𝐶 ൌ 𝑐|𝐹௜ ൌ  𝑓௜ሻ represents the conditional probability of a certain class 

variable 𝐶 ൌ 𝑐 given a feature vector 𝐹𝑉. Therefore, if 𝐶 ൌ 1 then the conditional 

probability for 𝐶 ൌ 0 is 𝑃ሺ𝐶 ൌ 0|𝐹௜ ൌ  𝑓௜ሻ ൌ 1 െ 𝑃ሺ𝐶 ൌ 1|𝐹௜ ൌ  𝑓௜ሻ. The values of 
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the line coefficients (i.e., 𝛽଴ . . 𝛽௡) cannot be solved analytically, therefore, we have 

to use solvers to navigate the search space. 

7.2.3  Decision Trees Classifier  

The DT construction procedure is done by splitting the dataset into descendant 

subsets. The splitting continues on repeated splits of the descendant subsets. The 

notion behind the tree methods is to have a set of partitions so that the best class can 

be determined. The partitions are performed so as to choose the splits in a way that 

guarantees that the leaves are purer than the parent node [199]. DT classifies vectors 

by sorting them, starting at the root of the tree down to some leaf nodes. In this tree, 

each node specifies a test of some input feature of the vector, and each branch 

descending from that node corresponds to one of the possible values for this feature 

The reasons for choosing DTs are; (i) their ability to implicitly perform feature 

selection or variable screening [168, 195, 200], (ii) they are uncomplicated to 

understand, interpret and, visualise, (iii) tree performance is not affected by 

nonlinear relationships between parameters, (iv) their track record in the stroke 

prediction literature as in [169, 201, 202] is good, where, in some cases, DTs yielded 

the highest accuracy. 

The purity is measured using a Gini index which is used as an attribute selection 

measure where the ranking per attribute is given. The feature (attribute) with the 

best score is selected as the splitting feature for the given data subset. Splitting is 

done according to an impurity test conducted on a feature and a splitting subset (e.g., 

selecting two levels out of three ሼ𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, ℎ𝑒𝑎𝑣𝑦ሽ ⊂ 𝑠𝑚𝑜𝑘𝑖𝑛𝑔 

or ሼ𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, ℎ𝑒𝑎𝑣𝑦ሽ ⊂ 𝑉ிర
௥  to be on a leaf while the remaining ሼ𝑙𝑜𝑤ሽ ⊂ 𝑉ிర

௥  level 

is assigned to the other leaf). The binary split resulting in the maximum reduction in 

impurity (i.e., highest information gain) is selected as the splitting criterion. The 

Gini measure is given in (7-6). 

 𝐺𝑖𝑛𝑖ሺ𝛾ሻ ൌ 1 െ ෍ሺ𝑝௜
ఊ

௠

௜ୀଵ

ሻଶ (7-6) 

where 𝑝௜
ఊ depicts the probability of a feature vector in training dataset 𝛾 

belonging to class 𝐶௜
ఊof a total number of 𝑚 classes. The probability of an outcome 

of a certain class is given in (7-7) and the sum is calculated over 𝑚 classes [203]. 
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𝑝௜
ఊ ൌ

ห𝐶௜
ఊห

|𝛾|  (7-7) 

It should be noted that the possible number of subsets is 2 ௏ಷ೔
ೝ

െ 2 (excluding the 

empty subset and the all  𝑉ி೔
௥  subset), where  𝑉ி೔

௥  represents the number of distinct 

values of feature 𝐹௜ can have. However, in binary splits, this number is further 

reduced by omitting the cases where certain values are not included (e.g., assigning  

ሼ𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒ሽ ⊂ 𝑉ிర
௥  to one leaf and ሼ ℎ𝑒𝑎𝑣𝑦ሽ ⊂ 𝑉ிర

௥  to another leaf and leaving the 

value ሼ𝑙𝑜𝑤ሽ ⊂ 𝑉ிర
௥  unassigned. the weighted sum of the impurity is calculated for 

each resulting partition. Thus, if a feature 𝐹௜ partitions the dataset 𝛾 into 𝛾ଵ and 𝛾ଶ, 

then the Gini index of 𝛾 is given in (7-8). 

𝐺𝑖𝑛𝑖௙೔
ሺ𝛾ሻ ൌ

|𝛾ଵ|
|𝛾| 𝐺𝑖𝑛𝑖ሺ𝛾ଵሻ ൅

|𝛾ଶ|
|𝛾| 𝐺𝑖𝑛𝑖ሺ𝛾ଶሻ (7-8) 

The subset with the minimum impurity (i.e., Gini) for that feature is selected as 

its splitting subset. The same strategy is employed when using features with 

continuous values where each possible splitting point must be considered. Thus, 

extra computational resources will be required compared to the prior case. 

The impurity reduction incurred by the binary split on feature 𝐹௜ is given in (7-9). 

𝛥𝐺𝑖𝑛𝑖ሺ𝑓௜ሻ ൌ 𝐺𝑖𝑛𝑖ሺ𝛾ሻ െ 𝐺𝑖𝑛𝑖ி೔ሺ𝛾ሻ (7-9) 

After forming the DT for an outpatient, the probability of a given vector of 

medical measurements is evaluated by tracing the decisions down the tree till the 

leaf where this vector belongs is reached. The probability in a given leaf is then 

evaluated as in (7-10). 

𝑃ሺ𝐶 ൌ 𝑐|𝐹௜ ൌ  𝑓௜ሻ ൌ
 𝛤௭,஼೔

∑  𝛤௭,஼೔
௡
௜ୀଵ

 (7-10) 

where  𝛤௭,஼೔ denotes the number of samples in a leaf belonging to outpatient 𝑧 

having class 𝐶௜. The denominator represents the total number of samples of all 

classes in a given leaf. 
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7.2.4  Ensemble model 

Ensemble methods train multiple learners on the same dataset to classify the 

same feature vector(s). The original goal of using ensemble systems is comparable 

to the way a person seeks advice from several trusted individuals. Hence, this 

reinforces the confidence that the decision made was the right one. Similarly, an 

ensemble of classifiers can be employed to increase the classification accuracy. 

Ensemble systems provide a method to incorporate various opinions, sometimes 

weighing them differently before reaching a concluding verdict. Individual 

classifiers may have different errors, however, they generally agree in terms of their 

their classification decision. Therefore, averaging the classifiers' outputs results in 

averaging the error component, and consequently reducing the classification error 

[204, 205] and balancing out the individual weaknesses of equally well-performing 

models [206]. The ensemble architecture of a soft voting (SV) classifier that we 

employed in this work is illustrated in Figure 7-3. The NBC, LR, and DT serve as 

base classifiers and their probabilities are then averaged to produce the voted 

probability denoted by 𝑃௩௢௧௜௡௚. To calculate this probability, let the probability 

yielded by each base classifier 𝐶𝐿𝐹௜ given in (7-1), (7-5), and (7-10) to be annotated 

as 𝑃஼௅ிభ, 𝑃஼௅ிమ and 𝑃஼௅ிయ, respectively. Since all base classifiers are treated evenly, 

the soft voting classifier calculates the probability as in (7-11). 

𝑃௩௢௧௜௡௚ ൌ
1

|𝐶𝐿𝐹௜|
෍ 𝑃஼௅ி೔

ሺ𝐶 ൌ 𝑐|𝐹௜ ൌ  𝑓௜ሻ
|஼௅ி೔|

௜ୀଵ

 (7-11) 

where 𝑃௩௢௧௜௡௚ denotes the ensemble-calculated, averaged-conditional-

probabilities. 

In order to provide weights to the MILP so that the OPs are assigned higher gain 

PRBs, a base user priority 𝑈𝑃௞ of 1 is assigned to normal users while OPs are 

assigned the base weight plus another weight derived from the multiplication of a 

weight parameter 𝛼 by the voted stroke likelihood  𝑃௩௢௧௜௡௚ thus, granting an 

effective-yet-reasonable priority. 

𝑈𝑃௞  ൌ  1 ൅  𝛼 ∙ 𝑃௩௢௧௜௡௚  
(7-12) 

∀ 𝑘 ∈ ࣥ: 𝑧 ൌ 𝑘, 𝑘 ≻ 𝑁𝑈 
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The OP¶V updated priority is given in (7-12). Using different values of 𝛼 impacts 

Whe V\VWem UeVponVe accoUdingl\ in WeUmV of Whe OPV¶ SINR leYelV aV VhoZn in Whe 

results section. 

 

7.3  Problem Formulation 

We developed the following MILP models to optimise the cellular system 

resource allocation for OPs and normal users. We consider the OPs monitoring 

system to operate in a scenario of a HetNet covered by 𝐵 BSs denoted by the 

set ࣜ ൌ  ሼ1, … , 𝐵ሽ including both MBS and PBS types, operating at channels with 

1.4 MHz bandwidth. Each BS 𝑏 has 𝑁 PRBs depicted by the set ࣨ ൌ  ሼ1, … , 𝑁ሽ. 

 

Figure 7-3: Ensemble Architecture 
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The network serves a total of 𝐾 users (normal and OPs) denoted by set ࣥ ൌ

ሼ1, … , 𝐾ሽ by allocating PRB 𝑛 to connect to BS 𝑏 in an instant in time. The goal is 

to optimise the uplink of the HetNet, so that the OPs are prioritised over healthy 

users; hence, allocating them high-gain PRBs. 

We formulate this problem as a MILP model. Table 7-1 defines the sets, 

parameters, and variables used in the network optimisation problem formulation. 

Table 7-1: System Sets, Parameters, And Variables 

Sets 

क Set of users. 

घ Set of physical resource blocks. 

ऌ Set of base stations. 

ऎ Set of days. 

ऐ Set of features in the learning dataset. 

𝑪 Set of classes in the learning dataset. 

त Set of outpatient users,ሺࣴ ⊂ ࣥ). 

𝑪𝑳𝑭𝒊 Set of base classifiers 

𝑽𝑭𝒊
𝒓  Set of values that feature  𝐹௜ can have in the learning dataset. 

𝑽𝑪𝒊
𝒓  Set of values a class variable 𝐶௜ can take in the learning dataset. 

Parameters 

𝑪𝑺𝒊 The current state of the patient in feature i (e.g. Cholesterol value). 

𝑼𝑷𝒌 
User priority (𝑈𝑃௞ =1 for normal users whereas  

𝑈𝑃௞ ൐ 1 is granted for OPs depending on their risk factor). 

𝑸𝒌,𝒏
𝒃  Power received from user 𝑘 using PRB 𝑛 at base station 𝑏. 

𝑯𝒌,𝒏
𝒃  

Rayleigh fading with zero mean and a standard deviation equal to 1 

experienced by user 𝑘 using PRB 𝑛 at base station 𝑏.  
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𝑨𝒌
𝒃 Signal attenuation experienced by user 𝑘 connected to base station 𝑏. 

𝑷𝑴 Maximum power allowed per uplink connection. 

𝑷 Power consumed to utilise PRB 𝑛 to connect user 𝑘 to base station 𝑏. 

𝝀 An arbitrary, large positive value. 

𝒌,𝒏࣌
𝒃  

Additive White Gaussian Noise (AWGN) power in watts experienced by 

user 𝑘 using PRB 𝑛 at base station 𝑏. 

𝑷𝒗𝒐𝒕𝒊𝒏𝒈 The probability of stroke calculated at the voting classifier. 

𝒎𝒚,𝒌 

 𝒉𝒚,𝒌 
Piecewise linearisation equation coefficients for line 𝑦 of user 𝑘. 

Į Tuning factor. 

𝑵𝑼 The total number of normal users. 

 .The minimum SINR level ࣒

Variables 

𝑿𝒌,𝒏
𝒃  

Binary decision variable 𝑋௞,௡
௕ ൌ 1 if user 𝑘 is assigned PRB 𝑛 in base 

station 𝑏, otherwise 𝑋௞,௡
௕ ൌ 0. 

𝑻𝒌,𝒏
𝒃  The SINR of user 𝑘 utilising PRB 𝑛 at base station 𝑏. 

ࣘ𝒎,𝒏,𝒌
𝒘,𝒃  Non-negative linearisation variable where 𝜙௠,௡,௞

௪,௕ ൌ 𝑇௞,௡
௕ 𝑋௠,௡

௪ . 

𝑺𝒌 SINR of user 𝑘. 

𝑳𝒌 Logarithmic SINR of user 𝑘. 

The XVeU¶V uplink SINR of an OFDMA network can be expressed as [18]: 

𝑇௞,௡
௕ ൌ

𝑄𝑘,𝑛
𝑏 𝑋𝑘,𝑛

𝑏

∑ ∑ 𝑄m,𝑛
𝑏 𝑋m,𝑛

𝑤 ൅ 𝜎𝑘,𝑛
𝑏

𝑚∈ࣥ
𝑚്𝑘

𝑤∈ࣜ
𝑤്𝑏

 (7-13) 

Examining the numerator (i.e. signal), 𝑄௞,௡
௕ 𝑋௞,௡

௕  signifies the signal power 

received at the BS from user 𝑘. 𝑋௞,௡
௕  is a binary decision variable, 𝑋௞,௡

௕ ൌ 1 denotes 

the connection of user 𝑘 to PRB 𝑛 in BS 𝑏. The power received at BS 𝑏 from the 
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interfering user(s) 𝑚, 𝑚 ് 𝑘, on the same PRB is 𝑄୫,௡
௕ 𝑋୫,௡

௪ ; while 𝑋୫,௡
௪  indicates an 

interfering user(s) 𝑚 connected to another BS 𝑤, 𝑤 ് 𝑏 on PRB 𝑛. The AWGN is 

annotated as 𝜎௞,௡
௕ . 

Rewriting equation (7-13): 

෍ ෍ 𝑇௞,௡
௕ 𝑄୫,௡

௕ 𝑋୫,௡
௪ ൅ 𝑇௞,௡

௕ 𝜎௞,௡
௕ ൌ 𝑄௞,௡

௕ 𝑋௞,௡
௕

௠∈ࣥ
௠ஷ௞

௪∈ࣜ
௪ஷ௕

 

(7-14) 

∀ 𝑘 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑏 ∈ ࣜ 

The first term in (7-14) is nonlinear (quadratic) as it includes the multiplication of 

two variables (Binary 𝑋୫,௡
௪  and Continuous 𝑇௞,௡

௕ ). Hence, linearisation is vital to 

solve the model using a linear solver such as CPLEX, where the linearisation 

constraints are given in (7-17) - (7-20).  

We have developed two approaches to solve the resource allocation problem. The 

first approach, named WSRMax, uses an objective function that maximises the 

Weighted Sum-Rate of the SINRs experienced by the users. The second approach 

implements fairness among cellular users by adopting a Proportionally Fair (PF) 

objective function. 

7.3.1  Problem formulation for the WSRMax Model 

In WhiV appUoach, Whe objecWiYe iV Wo ma[imiVe Whe V\VWem¶V oYeUall SINR. ThiV 

can be done by maximising the SINRs of individual users. 

7.3.1.1  Before Prioritising the OPs 

The OPV¶ UiVk facWoUV inWUodXced in Whe pUeYioXV VecWion aUe Vcaled inWo pUioUiWieV 

(i.e. weights) and used to grant the OPs priority over other users. The MILP model is 

formulated as follows:  

Objective: Maximise 

෍ ෍ ෍ 𝑇௞,௡
௕

௕∈ࣜ௡∈ࣨ 

𝑈𝑃௞
௞∈ࣥ

 
(7-15) 

The objective in (7-15) aimV Wo ma[imiVe Whe ZeighWed VXm of Whe XVeUV¶ SINRV. 

The OPs have higher weights (i.e. priorities) than other healthy users and these 

ZeighWV aUe UelaWiYe Wo Whe OPV¶ calcXlaWed UiVk facWoU. 
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Note that all the users share the same initial priority (i.e., 𝑈𝑃௞ ൌ 1) as in (7-16). 

However, the OPs will have updated values according to their risk factor. This will 

ultimately drive the system into prioritising the OPs over healthy users during PRB 

assignment. The mathematical formulations related to the OP weight (priority) 

calculation was illustrated in Subsection 7.2.1  . 

At this stage, all the users share the same initial priority (i.e., weight) as in (7-16). 

𝑈𝑃௞ ൌ 1 
(7-16) 

∀ 𝑘 ∈ ࣥ 

Constraints: 

To ensure that the model holds its linearity while carrying out the multiplication 

of the binary variable 𝑋௠,௡
௪  by the float variable 𝑇௞,௡

௕ , we follow [187], and define a 

variable 𝜙௠,௡,௞
௪,௕  that includes all the indexes of both aforementioned (i.e., binary and 

float) variables as in (7-17). Constraints (7-18), (7-19), and (7-20) govern the 

multiplication procedure. As a result, the only two values satisfying the constraints 

are either zero (when x =0) or T (when x=1). Note that ᅑ is a large enough number 

where ᅑ >>T: 

Subject to: 

𝜙௠,௡,௞
௪,௕ ൒ 0 

(7-17) 

The quadratic term 𝑇௞,௡
௕ 𝑋௠,௡

௪  is replaced with the linearisation variable 𝜙௠,௡,௞
௪,௕  that 

incorporates all the indexes in the prior term. 

𝜙௠,௡,௞
௪,௕  ൑ 𝜆𝑋௠,௡

௪  
(7-18) 

∀ 𝑘, 𝑚 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑤, 𝑏 ∈ ࣜ, ሺ𝑚 ് 𝑘, 𝑏 ് 𝑤ሻ 

 

𝜙௠,௡,௞
௪,௕  ൑ 𝑇௞,௡

௕  
(7-19) 

∀ 𝑘, 𝑚 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑤, 𝑏 ∈ ࣜ, ሺ𝑚 ് 𝑘, 𝑏 ് 𝑤ሻ 

 

𝜙௠,௡,௞
௪,௕  ൒ 𝜆𝑋௠,௡

௪ ൅ 𝑇௞,௡
௕ െ 𝜆 (7-20) 
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∀ 𝑘, 𝑚 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑤, 𝑏 ∈ ࣜ, ሺ𝑚 ് 𝑘, 𝑏 ് 𝑤ሻ 

After replacing 𝑇௞,௡
௕ 𝑋௠,௡

௪  with  𝜙௠,௡,௞
௪,௕ , equation (7-14) is rewritten as in (7-21). 

 𝜙௠,௡,௞
௪,௕ ൌ 𝑇௞,௡

௕ 𝑋௠,௡
௪  equates the SINR of user 𝑘 with PRB 𝑛 connected to BS 𝑏 if 

there is an interfering user 𝑚 connected to the other BS 𝑤 with the same PRB 𝑛; 

otherwise, it is zero. 

෍ ෍ 𝑄୫,௡
௕ 𝜙௠,௡,௞

௪,௕ ൅ 𝑇௞,௡
௕ 𝜎௞,௡

௕ ൌ 𝑄௞,௡
௕ 𝑋௞,௡

௕

௠∈ࣥ
௠ஷ௞

௪∈ࣜ
௪ஷ௕

 

(7-21) 

∀ 𝑘 ∈ ࣥ, 𝑛 ∈ ࣨ, 𝑏 ∈ ࣜ 

 

෍ 𝑃
௡∈ࣨ

𝑋௞,௡
௕  ൑ 𝑃𝑀 

(7-22) 

∀ 𝑘 ∈ ࣥ, 𝑏 ∈ ࣜ 

Constraint (7-22) ensures that the users do not exceed their maximum allocated 

power per uplink connection (in case more than one PRB is utilised by the same 

user 𝑘). 

෍ 𝑋௞,௡
௕

௞∈ࣥ

 ൑ 1 
(7-23) 

∀ 𝑛 ∈ ࣨ, 𝑏 ∈ ࣜ 

Constraint (7-23) restrict the allocation of each PRB to only one user. 

෍ ෍ 𝑋௞,௡
௕

௡∈ࣨ ௕∈ࣜ

 ൒ 1 
(7-24) 

∀ 𝑘 ∈ ࣥ 

Constraint (7-24) guarantees that each user is allocated at least one PRB from any 

BS. Thus, no user is left without service. Furthermore, this stops the MILP from 

blocking interfering users to maximise the overall (network-wide) SINR. 

7.3.1.2  After Prioritising the OPs 

In WhiV appUoach, OPV¶ UiVk facWoUV inWUodXced in Whe pUeYioXV VecWion aUe scaled 

into weights to prioritise the OPs over other users. The MILP model is formulated in 
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the same way as mentioned in the previous subsection. However, equation (7-12) is 

inclXded in WhiV model Wo UepUeVenW Whe OPV¶ ZeighWV (i.e. pUioUiWieV) Zhile (7-16) is 

replaced by (7-25) to cover the normal users only. 

𝑈𝑃௞ ൌ 1 
(7-25) 

∀ 𝑘 ∈ ࣥ: 1 ൑ 𝑘 ൑ 𝑁𝑈 

7.3.2  Problem formulation for the PF Model 

Ma[imiVing Whe logaUiWhmic VXm of Whe XVeU¶V SINRV iV Whe objecWiYe in WhiV 

approach. A slight decrease in the overall SINR might be observed (due to the 

nature of the natural logarithm) but with the benefit of preserving fairness among 

normal users. 

7.3.2.1  Before Prioritising the OPs 

All users, in this case, are treated evenly, thus there is no prioritisation in 

allocating the radio resources. However, keeping fairness among users still holds as 

a necessity. Since the only part that we are dealing with is the value of the individual 

XVeU¶V SINR, and Wo Vimplif\ Whe manipXlaWion of Whe eTXaWion befoUe adding Whe 

natural logarithm part, we introduce the optimisation variable 𝑆௞, to serve as the 

SINR for each user 𝑘. 

𝑆௞ ൌ  ෍ ෍ 𝑇௞,௡
௕

௕∈ࣜ௡∈ࣨ

 
(7-26) 

∀ 𝑘 ∈ ࣥ 

Equation (7-26) introduces single-indexed variable 𝑆௞ which replaces the three-

indexed variable 𝑇௞,௡
௕ . 

𝐿௞ ൌ ln 𝑆௞ 
(7-27) 

∀ 𝑘 ∈ ࣥ 

 Calculating 𝐿௞  aV a logaUiWhmic fXncWion of Whe XVeU¶V SINR 𝑆௞ is indicated in 

(7-27). Since the natural log is a concave function, and to maintain the linearity of 

our model, piecewise linearisation was employed as in constraint (7-29). 

The objective of this approach is given in (7-28): 
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Constraints: 

In addition to constraints (7-17)-(7-24) from the previous model, the PF satisfies 

the following constraint 

Subject to: 

𝐿௞ ൑ 𝑚௬,௞ ∗ 𝑆௞ ൅ ℎ௬,௞ (7-29) 

∀ 𝑘 ∈ ࣥ 

Constraint (7-29) represents a set of piecewise linearisation relations 

implemented to linearize the concave function in (7-27). It should be noted that 

constraint (7-29) follows the linear relation  𝑦 ൌ 𝑚𝑥 ൅ ℎ  where the line coefficients 

(i.e., 𝑚௬,௞ and ℎ௬,௞) are selected as in [188]. It is worth noting that the number of 

constraints used in the linearisation procedure is dictated by the total number of lines 

used to cover the linearised interval. 

7.3.2.2  After Prioritising the OPs 

The outpatients are prioritised in this case, and equation (7-27) is rewritten to 

reflect the change. 

𝐿௞ ൌ ln 𝑆௞ 
(7-30) 

∀ 𝑘 ∈ ࣥ: 1 ൑ 𝑘 ൑ 𝑁𝑈 

Equation (7-30) shows that the log function is applied to normal users only. The 

OPs, on the other hand, are assigned weights instead. 

Objective: Maximise 

෍ 𝐿௞
௞∈௄,ଵஸ௞ஸே௎

൅ ෍ 𝑆௞𝑈𝑃௞
௞∈௄,௞≻ே௎

 
(7-31) 

The multi-objective function in (7-31) (i) Assigns OPs priority by allocating the 

OPs PRBs with high SINRs reflecting their relative priority, (ii) maximises the sum 

of the SINRs assigned to all users, and (iii) achieves fairness: by assigning healthy 

Objective: Maximise 

 ෍ 𝐿௞
௞∈௄

 
(7-28) 
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users PRBs with comparable SINRs. These objectives were implemented by adding 

boWh Whe VXmmaWion of a log fXncWion of Whe healWh\ XVeUV¶ SINRV (i.e. PUopoUWional 

FaiUneVV) and Whe ZeighWed VXm of Whe OPV¶ SINRV (OPV pUioUiW\). 

Constraints: 

The model satisfies constraints (7-17)-(7-24) from the previous approach. In 

addition to equation (7-25) and: 

𝐿௞ ൑ 𝑚௬,௞ ∗ 𝑆௞ ൅ ℎ௬,௞ 
(7-32) 

∀ 𝑘 ∈ ࣥ, 𝑘 ൑ 𝑁𝑈 

Constraint (7-32) represents the same set of equations for the piecewise 

lineariation that was used in constraint (7-29), however, the difference is in the 

range of users it is applied to. 

7.3.3  Calculating the Received Power  

The received signal power (in Watts) 𝑄௞,௡
௕  varies according to two elements. 

Namely, the distance between the user and the BS and the channel conditions. The 

received signal power at the BS is given in (7-33):  

𝑄௞,௡
௕ ൌ 𝑃 𝐻௞,௡

௕ 𝐴௞
௕  (7-33) 

where 𝐻௞,௡
௕  denotes Rayleigh fading and 𝐴௞

௕ represents power loss due to 

attenuation (distance-dependent path loss) [19] and is given by equations (7-34) and 

(7-35), for the MBS and PBS, respectively. 

 

Equation (7-36) is used to unify the units by converting the power to Watts, thus 

𝐴 ሺm𝑤ሻ ൌ 10
஺ሺௗ஻௠ሻ

ଵ଴  (7-36) 

𝐴 ሺ𝑑𝐵𝑚ሻ ൌ 128 ൅ 37.6 logଵ଴
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑀𝐵𝑆ሺ𝑚𝑒𝑡𝑒𝑟𝑠ሻ

1000
 (7-34) 

𝐴 ሺ𝑑𝐵𝑚ሻ ൌ 140.7 ൅ 36.7 logଵ଴
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑃𝐵𝑆ሺ𝑚𝑒𝑡𝑒𝑟𝑠ሻ

1000
 (7-35) 
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7.4  Results and Discussion 

We consider a HetNet serving an urban environment, hence the Rayleigh fading 

channel model with path loss. The results evaluate two scenarios; the first depicts 

the HetNet state before prioritising the OPs. In this scenario, equal base priority (i.e., 

weight) of 1 is granted to all users. The second scenario shows the HetNet state after 

prioritising the OP through the updated priorities according to the value of the 

tuning factor 𝛼 and their voted stroke likelihood. 

A cloud-based arrangement is assumed where each OP has their personal dataset 

constructed from their medical history and daily observations over the course of 200 

days, with the requirement to periodically extend the dataset by appending recent 

observations. Moreover, the proposed approach assumes a system that is in 

operation and the outpatient is being assessed by the voting system where multiple 

classifiers reside. We divided our dataset into two parts, a training set and a testing 

set, the training set comprised of 140 entries used to train/fit the classifiers, and the 

WeVW VeW iV 60 enWUieV XVed Wo compaUe and YeUif\ Whe claVVifieUV¶ peUfoUmance. 

FXUWheUmoUe, Ze ZoXld like Wo bUing Wo Whe UeadeU¶V aWWenWion WhaW Whe enVemble¶V 

role in this work is to report the soft-voted stroke likelihood. Since the outpatients 

are all under continuous monitoring, they are favoured according to their probability 

of VWUoke aV long aV Whe V\VWem iV opeUaWional. The OPV¶ VWUoke likelihood 

𝑃௩௢௧௜௡௚ were 0.42, 0.84, and 0.65 for users 8, 9 and 10 (i.e., OP 1, 2, and 3), 

respectively. Moreover, the use of equation (7-12) produced 1.42 ൑ 𝑈𝑃௞ ൑

1.84,  1.84 ൑ 𝑈𝑃௞ ൑ 2.68, 3.1 ൑ 𝑈𝑃௞ ൑ 4.25, 5.2 ൑ 𝑈𝑃௞ ൑ 9.4 user priorities 

according to tuning factor values of 𝛼 of 1, 2, 5, and 10, respectively. 

7.4.1  Classifiers Comparison and Evaluation 

In this section, we investigate the performance of the methods described in the 

previous section. There are several performance matrices for ML algorithms and 

certain metrics are known by more than one name. Since we have a binary 

classification problem, Ze UefeU Wo a pUedicWion aV ³poViWiYe´ if a claVVifieU 

predicted 𝑃ሺ𝐶 ൌ 𝑐|𝐹௜ ൌ  𝑓௜ሻ ൒ 0.5 , indicating the occurrence of an event (e.g., 

stroke). Alternatively, if 𝑃ሺ𝐶 ൌ 𝑐|𝐹௜ ൌ  𝑓௜ሻ ൏ 0.5 then the classifier predicted a no-

event (e.g., no VWUoke), hence iV WUanVlaWed aV a ³negaWiYe´ pUedicWion. In oUdeU Wo 
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inYeVWigaWe Whe claVVifieUV¶ peUfoUmance, Ze XVe a WeVW daWaVeW of 60 enWUieV ZheUe Whe 

outcome of all entries (i.e., feature vectors) are known (i.e., observed) to us and 

register the prediction results. Consequently, there will be four outcomes; (i) a 

correct positive prediction, named true positive (TP), indicating 𝑃ሺ𝐶|𝐹௜ሻ ൒ 0.5 and 

an observed output of 1, (ii) an incorrect positive prediction, named false positive 

(FP), indicating 𝑃ሺ𝐶|𝐹௜ሻ ൒ 0.5 and an observed output of 0, (iii) a correct negative 

prediction, named true negative (TN), indicating 𝑃ሺ𝐶|𝐹௜ሻ ൏ 0.5 and an observed 

output of 0, and (iv) an incorrect negative prediction, named false negative (FN), 

indicating 𝑃ሺ𝐶|𝐹௜ሻ ൏ 0.5 and an observed output of 1. The following matrices are 

computed through the use of these outcomes. 

1. Accuracy, which is the ratio of true (i.e., correct) predictions to the total 

number in the dataset and is given in (7-37). Accuracy measures how well the 

classifier did in predicting the occurrence of an event as well as no-event. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
ൈ 100% (7-37) 

 

2. Sensitivity, true positive rate, or recall, iV Whe claVVifieU¶V abiliW\ Wo pick an 

event of interest. Thus, accurately classifying actual positive values by 

labelling them as TP (i.e., stroke=1), and it is given in (7-38). In this work, it 

meaVXUeV Whe claVVifieU¶V abiliW\ Wo coUUecWl\ claVVif\ an indiYidXal aV at-risk. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
ൈ 100% (7-38) 

Sensitivity is a vital measure when the cost of FN prediction is high, in our case, 

if a high-risk outpatient is misclassified as low-risk (i.e.𝑠𝑡𝑟𝑜𝑘𝑒 ൌ 0). Hence, the 

cost will be extremely high. 

 

3. Specificity or true negative rate, iV Whe claVVifieU¶V abiliW\ Wo pick Whe 

occurrence of a no-event of interesW. In oWheU ZoUdV, iW iV Whe claVVifieU¶V abiliW\ 

to accurately identify actual negatives (i.e., stroke=0) in the test dataset. Thus, 

accurately classify an individual as risk-free. 
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𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑃
ൈ 100% (7-39) 

 

4. Precision or positive predictive value (PPV), it answers the question of how 

many of those who we predicted as at risk are actually at risk? Thus, it is the 

ratio of accurate positive predictions to the total number of positively-

classified feature vectors, as in (7-40). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
ൈ 100% (7-40) 

Precision is a vital measure when the FP's cost is high. In our case, granting a 

priority to an outpatient that is not really in a high risk. 

5. Negative predictive value (NPV), it answers the question of how many of 

those who we predicted as at no risk are actually not at risk? Thus, it is the 

ratio of feature vectors accurately classified as negative (i.e., TN) to the total 

number of classifications belonging to class 𝑠𝑡𝑟𝑜𝑘𝑒 ൌ 0, as denoted in (7-41). 

𝑁𝑃𝑉 ൌ
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑁
ൈ 100% (7-41) 

 

6. False-positive rate (FPR) or false alarm ratio represents the rate of 

misclassifying a class 𝑠𝑡𝑟𝑜𝑘𝑒 ൌ 0 as 𝑠𝑡𝑟𝑜𝑘𝑒 ൌ 1. It measures the frequency 

of false alarm and it is given in (7-42).  

𝐹𝑃𝑅 ൌ
𝐹𝑃

𝐹𝑃 ൅ 𝑇𝑁
ൈ 100% (7-42) 

 

7. False-negative rate (FNR) is a measure telling how erroneous a classifier can 

be in missing events (i.e., stroke=1). It is the ratio of misclassified positives to 

the total number of positives, as in (7-43). 

𝐹𝑁𝑅 ൌ
𝐹𝑁

𝐹𝑁 ൅ 𝑇𝑃
ൈ 100% (7-43) 
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8. F1 Score is a function of both precision and recall values given in (7-40) and 

(7-38), respectively. This score is a measure of the balance between precision 

and recall as the former highly focuses on TPs, whilst the latter focuses on 

TNs. Thus, providing an equal weight for both precision and recall as it is the 

average (i.e., harmonic mean) of the two rates as given in (7-44). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 ൌ
2. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑟𝑒𝑐𝑎𝑙𝑙

 (7-44) 

 

It should be noted that since there are three separate datasets (one per outpatient), 

hence, there are not only four classifiers to investigate, but also to examine the 

performance of these classifiers over three datasets as illustrated in Table 7-2. 

The proposed SV classifier achieved higher accuracy compared to the other 

classifiers. Moreover, it had the lowest combined FPR and FNR which motivates its 

employment in this work. We further scrutinised the proposed SV classifier for the 

three OPV¶ daWaVeWV XVing 10-folds cross-validation and the results yielded 87.5%, 

85.5%, and 88.5%, respectively. 

 

Table 7-2: Comparing the machine learning methods. 

OP#1 Training Dataset 
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NB 82 76 88.5 90 74 11.5 24 83 

LR 88 85 92 94 82.7 7.7 15 89 

DT 90 88 92 94 86 7.6 11 91 

SV 90 88 92 94 86 7.6 11 91 

OP#2 Training Dataset 
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NB 76.7 68 84.4 79 75 15.6 32 73 

LR 80 75 84.4 81 79 15.6 25 78 

DT 80 64 94 90 75 6.2 36 75 

SV 81.7 75 87.5 84 80 12.5 25 79 

OP#3 Training Dataset 
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NB 86.6 76 94.3 90 84.6 5.7 24 83 

LR 90 88 91.4 88 91.4 8.6 12 88 

DT 91.7 84 97.1 95 89.5 2.8 16 89 

SV 93 88 97.1 96 92 2.8 12 92 

 

7.4.1.1  Demystifying Performance Matrices 

While it is significant to scrutinise the classifiers at hand and verify their 

performance. However, given the nature of our work, there are several performance 

matrices that are more vital than others. Hence we are highlighting their importance 

in this section. Accuracy is an important metric to our work due to the fact that it 

giYeV a balanced inVighWV on Whe claVVifieU¶V oYeUall peUfoUmance. FNR iV Whe moVW 

impoUWanW meWUic fUom Whe poinW of YieZ of VaYing a paWienW¶V life, i.e., it tells us the 

proportion of ill people who is miss-classified. The F1-score takes misclassified 

entries (i.e., FP and FN) into account. Depending on the application, it can be 

equally as important as accuracy as in our case. F1-score gives   
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Before proceeding into the results of the MILP model, it worth noting that we 

used the parameters indicated in Table 7-3. 

Table 7-3: Model Parameters 

Parameter Description 

LTE-A system bandwidth  1.4 MHz 

Channel Model Path Loss [19] and Rayleigh fading [18] 

No. of MBS 1 

No. of PBS 2 

Number of PRBs per BS 5 

Number of users  10 

Number of normal users (𝑁𝑈) 7 

Number of OPs 3 

AWGN ( 𝜎௞,௡
௕ )  -162 dBm/Hz [19] 

The distance between user 𝑘 and MBS 
𝑏 

(300 - 600) m 

The distance between user 𝑘 and PBS 𝑏 (40-100) m 

Maximum transmission power per 
connection 𝑃𝑀 

23 dBm [19] 

UE transmission power per PRB  17 dBm 

Minimum SINR defined for the 
reliability-aware PF approach (𝜓) 

21 dB [207] 

Base (i.e. normal user priority) weight 1 

Outpatient priority 𝑈𝑃௞ calculation 
method 

Soft Voting Classifier 

OP observation period 200 Days 

𝛼 values 1, 2, 5, and 10 
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7.4.2  The WSRMax Approach 

7.4.2.1  Before Prioritising the OPs 

This scenario mimics the operation of a conventional HetNet where all users 

share the same base user weight (i.e. priority) of 1. The results in Figure 7-4 indicate 

that the OPs (represented by users 8, 9, and 10) are assigned PRBs of comparable 

gains resulting in near-average SINRs. This is due to the fact that the MILP¶V aim is 

aiming to maximiVe Whe HeWNeW¶V oYeUall SINR. In oUdeU Wo meaVXUe faiUneVV, Ze 

conVideUed accenWXaWing Whe SWandaUd DeYiaWion (SD) of Whe XVeUV¶ SINRV, hence, Wo 

quantify how close the calculated SINR values are to the mean, in this case, the SD 

was 195. Moreover, an extensive sensitivity analysis was carried out for the 300 

independent realisations of the channel and the results with 95% confidence 

intervals per user are indicated in Figure 7-4. The average SINR lied between 2166 

and 2691. 

 

7.4.2.2  After Prioritising the OPs 

The goal in this scenario is to utilise BDA/ML to prioritise the OPs over normal 

users by means of the ensemble system. As a result, high gain PRBs will be 

allocated to the OPs according to their risk factor, and guaranteeing them high-level 

SINRs. Comparing Figure 7-4 and Figure 7-5 clearly highlights that the OPs (i.e., 

 

Figure 7-4: User SINR before OP Prioritisation (WSRMax Approach) 
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users 8, 9, and 10) were granted PRBs with high SINRs. The overall system 

performance is a trade-off (optimally-selected) between guaranteeing the assignment 

of high SINRs to the OPs versus the decrease in the average SINR (between 2% ( ∝

ൌ 1) and 19% (∝ൌ 10) in comparison to the SINR in the first scenario. The 

reduction in the average SINR is due to the system being was enforced to a PRB 

assignment scheme where the maximisation of the OPV¶ indiYidXal SINRV iV 

prioritised over the total SINR. Fairness between normal users was marginally 

impacted in this approach as will be shown in the following subsection. The impact 

of converting the probability of stroke to a risk factor and using several values of the 

tuning factor (i.e.𝛼 ൌ 1,2,5, 𝑎𝑛𝑑 10) can be observed by comparing the increase in 

Whe OPV¶ aYeUage SINRV. Taking the case of user 9 (the most critical user with a 

probability of 0.84) having an SINR lower than users 1, 3, 8, and 10, the average 

SINR witnessed an increase from 17% (𝛼 ൌ 1) to 57% (𝛼 ൌ 10) granting this user 

an average SINR higher than all users. Individual users had an average SINR 

ranging from 1042 to 3776 for 𝛼 ൌ 10. 

 

 

Figure 7-5: User SINR after OP Prioritisation (WSRMax Approach) 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10

Av
er

ag
e 

SI
N

R

User ID

α=1 α=2 α=5 α=10



148 

 

7.4.2.3  TKH IPSaFW RI Į RQ FaLUQHVV aQG SINR 

The parameter 𝛼 is a tuning factor that is used to convert the minute value of the 

voted probability (i.e., 𝑃௩௢௧௜௡௚) of stroke acquired from the ensemble system to a 

risk factor as depicted in equation (7-12). Moreover, this parameter enables the 

reciprocity between the average SINR and the attainable fairness among the users 

quantified by the SD. We used different values of 𝛼 to study the effects on the SD 

and the average SINR. We examined the effects of using different vales of 𝛼 on the 

SD and the average SINR as shown in Figure 7-6 and in Figure 7-7. 

Increasing the value of 𝛼  forced the system to concentrate on the OPs. 

AccoUdingl\, Whe V\VWem¶V oYeUall SINR ZaV opWimall\ WUaded-off to increase the 

OPV¶ SINRV Zhile minimally impacting fairness among users as shown in Figure 

7-6. IW VhoXld be noWed WhaW e[amining Whe OPV¶ SINRV and compaUing Whem againVW 

their corresponding risk factor values reveals an increase in the SINR in an order 

conforming to that depicted in Figure 7-7, where the PRB assignment granting the 

highest SINR was allocated to user 9 which is the user with the highest risk factor 

(priority). Furthermore, user 8 which has the lowest risk factor among the three OPs 

ZaV giYen Whe loZeVW SINR among Whe OPV and YeU\ cloVe Wo Whe V\VWem¶V aYeUage 

SINR. As the value of 𝛼 increased (i.e., 𝛼 ൌ 5, 10), user 8 is granted higher SINRs 

in comparison against other healthy users. 
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Figure 7-6: EffecWV of changing Į on aYeUage SINR and faiUneVV (WSRMa[ 
Approach) 
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Figure 7-7: The impacW of Į boWh XVeU and aYeUage SINR (WSRMax Approach) 
 

500

1000

1500

2000

2500

3000

3500

4000

500

1000

1500

2000

2500

3000

3500

4000

α=1 
1.42<UP<1.84

α=2 
1.84<UP<2.68

α=5 
3.1<UP<5.25

α=10 
5.2<UP<9.4

Sy
st

em
's

 A
ve

ra
ge

 S
IN

R

O
P'

s 
Av

er
ag

e 
SI

N
R

User Priority (UP) 

User#8 User#9 User#10 System's Average SINR



150 

 

7.4.3  The PF Approach 

7.4.3.1  Before Prioritising the OPs 

In WhiV VcenaUio, Whe goal iV Wo ma[imiVe Whe logaUiWhmic VXm of Whe XVeU¶V SINRV. 

Thus, no priority is given to any user in particular. Fairness is applied as a 

consequence due to the nature of the natural log in the objective function in (7-26. 

The results depicted in Figure 7-8 are in agreement with the ones depicted in Figure 

7-4. However, a 46% reduction in the SD is reported when comparing this scenario 

and the one in Subsection 7.4.2.1  . The average SINR ranged between 1905 and 

2251. Sensitivity analysis was implemented over 300 different realisations of the 

HetNet. The results with a 95% confidence interval are illustrated in Figure 7-8.  

 

7.4.3.2  After Prioritising the OPs 

In this approach, the OPs are prioritised according to their risk factors using the 

objective function in (7-31). Therefore, the OPs are granted high-gained PRBs 

resulting in high SINRs as illustrated in Figure 7-9. The OPV¶ SINRV ZaV booVWed b\ 

up to 95% observed by user 9 with 𝛼 ൌ 10 . However, the average system SINR 

ranged between 1093 (𝛼 ൌ 1) and 1113 (𝛼 ൌ 10). The healthy users were 

noticeably affected by the intrinsic nature of the natural log, and the exclusion of the 

OPs from the logarithmic term in the objective function resulted in granting the 

 

Figure 7-8: User SINR before OP Prioritisation (PF Approach) 
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healthy user lower SINRs in comparison to Whe OPV¶ SINRV. Figure 7-10 depicts the 

aYeUage XVeUV¶ SINR in a logaUiWhmic Vcale ZheUe naUUoZeU confidence inWeUYalV can 

be observed in this approach. 

 

 

Figure 7-9: User SINR after OP Prioritisation in linear Scale (PF Approach) 
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7.4.3.3  The IPSaFW RI Į RQ FaLUQHVV aQG SINR 

IncUeaVing Whe OPV¶ pUioUiW\ b\ adjXVWing Whe WXning facWoU 𝛼 has similar effects to 

the ones observed in Subsection 7.4.2.3  . Using the PF approach, boosts Whe OPV¶ 

SINRs by up to 95%, but has resulted in reducing the overall system SINR by up to 

48% while maintaining a good fairness interpreted as a stable and very low SD as 

illustrated in Figure 7-11. Observing Figure 7-12, it can be clearly seen WhaW Whe OPV¶ 

are granted SINRs approximately three times Whe V\VWem¶V aYeUage SINR. 

Furthermore, the analogy between the priorities (weights) granted to the OPs and the 

corresponding increase in their SINRs is highlighted.  

 

Figure 7-10: User SINR after OP Prioritisation in logarithmic Scale (PF 
Approach) 
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 It should be noted that user 9, despite having a higher priority than user 10, it was 

assigned an SINR very close to the SINR of user 10 when 𝛼 ൌ 1 , 2. This is due to 

the fact that user 10 has already better channel conditions than user 9 as indicated in 

Figure 7-8. Thus, it would require higher values of the tuning factor 𝛼 to bias the 

system towards user 9 and this can be seen in 𝛼 ൌ 5, 10 in Figure 7-12.  

 

 

 

Figure 7-11: EffecWV of changing Į on average SINR and fairness (PF Approach) 
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7.4.4  Reliability-aware PF Approach 

In this approach, we are enhancing the SINR values for the normal users that are 

impacted by the logarithmic sum. This is done by setting a minimum SINR where 

the users that are subjected to this constraint will have a guaranteed reliable service 

levels [207]. 

7.4.4.1  Before Prioritising the OPs 

This approach shares the same objective of the PF approach in section 7.4.3.1  . 

However, a constraint is added to the model guaranteeing a minimum SINR of 21 

dB for all users. The results depicted in Figure 7-13 shows a similar trend to the 

ones illustrated in Figure 7-8. However, preserving a minimum SINR level with no 

prioritisation means there will be a slight impact on the system-wide SINR. Thusly, 

Ze UegiVWeUed a 5% decUeaVe in Whe V\VWem¶V aYeUage SINR foU Whe PF appUoach 

before and after introducing reliability. 

𝑆௞ ൒ 𝜓 
(7-45) 

∀ 𝑘 ∈ ࣥ 

 

 

Figure 7-12: The impacW of Į boWh XVeU and aYeUage SINR (PF Approach) 
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7.4.4.2  After Prioritising the OPs 

The impact of the natural logarithm on healthy users motivated the inclusion of a 

constraint guaranteeing the minimum SINR level as in [207]. This results in an 

additional level of reliability with fairness in the PF approach.  

𝑆௞ ൒ 𝜓 
(7-46) 

∀ 𝑘 ∈ ࣥ: 1 ൑ 𝑘 ൑ 𝑁𝑈 

 

Constraint (7-46) works under the objective in (7-31) to guarantee a minimum 

SINR level specified by the parameter 𝜓. The result of introducing this constraint is 

shown in Figure 7-14. 

The OPV¶ SINRV aUe booVWed b\ Xp Wo 23% obVeUYed b\ XVeU 9 with 𝛼 ൌ 10. 

HoZeYeU, Whe OPV¶ SINRV aUe noZ UedXced in compaUiVon ZiWh Whe pUeYioXV 

scenario before introducing reliability as shown in Figure 7-9. The results show 

narrower confidence intervals than under the WSRMax approach indicating a further 

reduction in the error values. 

 

Figure 7-13: User SINR before OP Prioritisation (Reliability-aware PF 
Approach) 
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7.4.4.3  The Impact of Į RQ FaLUQHVV aQG SINR 

Introducing the reliability aspect to the PF approach resulted in improving the 

V\VWem¶V average SINR with a marginal increase in the SD. However, better fairness 

is observed when increasing the tuning factor 𝛼 as indicated in Figure 7-15. 

Furthermore, the average SINR is increased by 32% in comparison to the reliability-

unaware PF approach. 

 

Figure 7-14: User SINR after OP Prioritisation (Reliability-aware PF Approach) 
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The OPV¶ SINRV ZiWnessed a 30% increase when employing the reliability-aware 

PF approach as shown in Figure 7-16. Moreover, the OPs were granted SINRs that 

are appUo[imaWel\ 70% higheU Whan Whe V\VWem¶V aYeUage SINR. 

 

 

Figure 7-15: EffecWV of changing Į on aYeUage SINR and faiUneVV (ReliabiliW\-
aware PF Approach) 
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Figure 7-16: The impacW of Į boWh Xser and average SINR (Reliability-aware PF 
Approach) 
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7.5  Chapter Summary  

This work introduced two interdisciplinary approaches to transform conventional 

HetNets by endowing them with a user-centric dimension. To that end, a BDA-

powered framework was proposed to play part in uplink radio resource allocation 

optimisation model of a HetNet. The target is to prioritise stroke outpatients within 

the HetNet to provide them with the optimal wireless resources. Moreover, the 

assigned resources should be proportional Wo Whe VeYeUiW\ of Whe paWienWV¶ medical 

state (i.e., stroke likelihood), which is predicted using an ensemble system 

classifying readings of vital signs acquired from body-attached and nearby IoT 

sensors. Two approaches, namely, the WSRMax and the PF are presented and 

compared in terms of fairness and in terms of the average SINR (both at the system 

and the XVeU leYel). The WSRMa[ appUoach enhanced Whe OP¶V aYeUage SINR b\ Xp 

to 57%, whereas the PF approach improved them by up to 95%. Depending on the 

value of tuning factor 𝛼, normal users reported an average SINR ranging between 

2163 and 1263 using the WSRMax approach, while the reliability-aware PF 

approach attained an SINR ranging from 1089 to 1066 (depending on 𝛼). Using the 

SD to quantify fairness among users, the WSRMax scored between 104 and 156, 

while the reliability-aware PF approach ranged between 44 and 74. Furthermore, to 

add confidence in the estimated probability of stroke, the ensemble system is 

examined and the voting classifier yielded up to 93% accuracy, a false positive rate 

of 2.8% and a false negative rate of 11%. 
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Conclusions and Future Work 

This chapter summarises the work presented in this thesis and specifies the 

original contributions. In addition, this chapter suggests potential new directions for 

future research that could be conducted as a result of the work presented in this 

thesis. 

8.1  Conclusions 

This section summarises the work that has been performed in the present thesis 

and states its original contributions. This thesis investigates the use of BDA and ML 

algorithms in the design, operation, and optimisation of cellular networks. Thus, a 

new paradigm of user-centric cellular networks powered by BDA is introduced. We 

focus in this work on stroke patients due to the significance of their medical status 

and the intrinsic time requirements. In this thesis, we introduce an interdisciplinary 

approach to optimise the uplink in cellular networks while prioritising cellular-

connected-OPs using BDA and MILP optimisation to grant the OPs suitable PRBs 

accoUding Wo WheiU cXUUenW healWh condiWion. A dXal Uole foU Whe OP¶V daWa iV 

envisioned, along with diagnosis, it guides the network operator to the OPs with the 

most urgent needs in order that resources can be directed towards them. We argue 

that ensuring high-quality connectivity between the OP-linked peripherals and their 

medical provider represents an important step toward highly personalised e-

healthcare-centric services and applications. 

A number of contributions are introduced in this thesis, starting with Chapter 2, 

we surveyed the role of ML in the radio resource optimisation of wireless networks. 

We highlighted the fact that most of the research relied on supervised as well as 

reinforcement learning methods and that the field of ML is receiving increased 

interest and is being incorporated in wireless network design for emerging 

WechnologieV like 5G¶V neZ Uadio (NR) and cogniWiYe Uadio. In Chapter 3, we 

surveyed the role BDA can play in wireless network design. Throughout our survey, 
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we noticed a lot of focus on the field of 5G where it is getting most of the 

UeVeaUcheUV¶ conVideUaWion dXe Wo Whe neZ pUoVpecWV iW haV Wo offeU. The conWUibXWionV 

of this chapter helped identify the challenges and the opportunities facing the use of 

BDA in wireless network design. Thus, this chapter can help academic researchers 

save effort and time. Further, we also surveyed network equipment manufacturing 

companies offering network solutions using BDA. In Chapter 4, where we 

developed a seamless integration of the NB classifier that is jointly programmed 

with the MILP model used to optimise the uplink of the considered cellular network. 

This classifier uses real patient big data sets to determine the likelihood of a stroke. 

NB classifier scored an accuracy of 60%, 63.3%, and 63.3% and precision of 65.2%, 

66% and 71.6% for users 8, 9 and 10 (i.e., OP 1, 2, and 3), respectively. In Chapter 

5, we introduced a novel interdisciplinary approach incorporating the topics of 

resource allocation, disease risk prediction, patient monitoring, and prioritisation to 

optimise the uplink of a single-tier homogenous LTE-A network while prioritising 

cellular-connected-OPs using BDA and MILP optimisation to grant the OPs suitable 

PRBs according to their current health situation. Moreover, using MILP, two 

appUoacheV Wo ma[imiVe Whe OPV¶ SINRV ZeUe deYeloped, namel\, Whe WSRMa[ 

approach and the PF approach. We compared the approaches in terms of the fairness 

achieved between the users and the percentage increase in the SINR. Furthermore, 

we developed a heuristic to verify the MILP results and we studied the 

computational complexity of this heuristic. We considered a high number of 

instances to reflect different network realisations and presented the results indicating 

a 95% confidence inWeUYal. The appUoacheV incUeaVed Whe OPV¶ aYeUage SINR b\ 

26.6% and 40.5%, UeVpecWiYel\. The WSRMa[ appUoach incUeaVed Whe V\VWem¶V WoWal 

SINR to a level higher than that of the PF approach, however, the PF approach 

reported higher SINRs for the OPs, better fairness and a lower margin of error. The 

work was extended in Chapter 6 to include a two-tier HetNet employing the 

spectrum partitioning strategy. Thus, mitigating the inter-tier interference. 

Moreover, we extended this work by considering higher number of instances. Thus, 

studying the system performance over an extended period of time. and testing the 

system response over different current states for each OP. The WSRMax and the PF 

approaches were considered, and the results were compared in terms of fairness and 

the overall system SINR where it is shown that the WSRMax approach can increase 
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Whe OP¶V SINRV b\ Xp Wo 16%, and Whe PF can achieYe higheU Whan What but with a 

higheU impacW on Whe noUmal XVeUV¶ SINRV. 

In Chapter 7, we studied the system performance under inter-and-intra-tier 

interference in a two-tier HetNet. We expanded the dataset to 200 entries and 

incorporated the concept of ensemble system (i.e., soft voting classifier) where DT, 

LR, and the NB classifiers were jointly used. Furthermore, we examined the 

claVVifieUV¶ peUfoUmance b\ condXcWing YaUioXV WeVWV of accXUac\, VpecificiW\, Uecall, 

false-positive rate, false-negative rate, negative prediction rate, precision, and F1 

score. Furthermore, reporting the cross-validation test scores for all datasets. 

Moreover, we added a reliability-aware aspect to the PF approach. Further, we 

tested the fairness among users, and conducted the required sensitivity analysis over 

300 inVWanceV. The UeVXlWV VhoZ WhaW Whe WSRMa[ appUoach enhanced Whe OP¶V 

average SINR by up to 57%, whereas the PF approach improved the SINR by up to 

95%. Depending on Whe YalXe of WXning facWoU Į, noUmal XVeUV UepoUWed an aYeUage 

SINR ranging between 2163 and 1263 using the WSRMax approach, while the 

reliability-aware PF approach attained an SINR ranging from 1089 to 1066 

(depending on Į). UVing Whe SD Wo TXanWif\ faiUneVV among XVeUV, Whe WSRMa[ 

scored between 104 and 156, while the reliability-aware PF approach ranged 

between 44 and 74. Furthermore, to add confidence in the estimated probability of 

stroke, the ensemble system is examined and the voting classifier yielded up to 93% 

accuracy, a false positive rate of 2.8% and a false negative rate of 11%. 

8.2  Future Research Directions 

8.2.1  Choosing the Decision-making Entity  

Choosing the optimal type and location of computing (e.g. cloud, fog, etc.) is a 

separate optimisation problem. Additionally, this may depend on other factors (or 

variables) like the ratio of OPs to normal users. 

8.2.2  Testing the impact of the Feature Ranking Techniques 

The current system treats the feature variables on an equal basis. However, we 

plan to further study the impact of each feature and correspondingly employ a 
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suitable feature ranking technique. The impact of this technique can then be verified 

with clinical help. 

8.2.3  Routing within Small Cells in 5G Networks with Privacy 

The proposed solution can be integrated with 5G networks. Optimised routing 

algorithms can be developed Wo caUU\ Whe OPV¶ WUaffic WhUoXgh Whe Vmall cellV ZiWh 

minimXm laWenc\. In addiWion, iW iV YiWal Wo pUoWecW Whe OPV¶ pUiYac\ WhUoXgh Whe 

WUaYeUVed hopV. ThiV can be addUeVVed b\ claVVif\ing Whe OPV¶ daWa in a Uanking 

system, where the highest rank is treated as the most private medical data. Hence, a 

specific (secure) route is selected. 

8.2.4  Impact of OP Mobility 

Grouping the OPs into clusters with common mobility patterns allows the 

operator to know in advance if there are some areas with high OP density. Hence, 

prepare the network. This means deploying more nodes so that these OPs do not 

severely impact the network operation. In addition, our current system works on a 

given realisation of the patient data and channel conditions (although consideration 

is given to many realisations). However, in a real-world scenario, there is a constant 

change in the number of users accessing and leaving the BS coverage. Such dynamic 

behaviour should be addressed, possibly by OP weighted beamforming and 

beamsteering. 

8.2.5  Use of Infrastructure Sharing and Game Theory 

The use of infrastructure sharing can help ensure the widest coverage since the 

UeVXlWing aUea iV Whe combinaWion of all Whe local (oU naWional) opeUaWoUV¶ coYeUage aW 

a reduced cost. To encourage the operators to participate, game theory can be used 

to establish coalitions, such that, for example, the higher the number of OPs, the 

more revenue is awarded to the operator, e.g., reduced taxes. 

8.2.6  Wireless energy transfer for Remote Drug Injection 

Ensuring high-energy transfer in the downlink might be integrated with our 

approach to power the body sensors or to actuate a drug-injection mechanism. This 

can be used in the case of a sudden degradation in the health parameters especially 

in the case of critical conditions such as diabetes. The reliability of such an approach 



163 

 

should be evaluated and improved. Moreover, the delay component from the time of 

data collection until administering the injection is crucial and has to be considered in 

the model. 

8.2.7  Testing other Discretisation values 

The current model uses three ranges to categorise the continuous feature values 

of the Framingham dataset according to medical entities like the American National 

Institute of Health and the British Stroke Association. However, other medical 

entities such as the European Society of Hypertension (ESH) and the European 

Society of Cardiology (ESC) [208] offer further discretisation ranges. In addition to 

comparing classification results, the use of different discretisation techniques can be 

expected to affect the classification bias and variance of generated NB classifiers 

[209]. 

8.2.8  Using other types of NB classifiers and increasing the number of 

features 

Since feature selection can have a direct impact on the performance of a 

prediction model, we recommend a future expansion for the current work to include 

more feature variables. Upon which, a further system examination can be carried out 

investigating the classifieUV¶ peUfoUmance. FXUWheUmoUe, future work may consider 

and compare other ML methods especially NB-variant classifiers such as the semi-

naïve Bayesian classifier [210] or the locally weighted NB classifier [211]. 

8.2.9  Investigating the system response to other fading models 

Studying other fading models can further enrich the proposed system. The use of 

different fading models in the current optimisation framework will simulates 

different working conditions and environments. Rician fading that has less severity 

than Rayleigh fading due to a dominant multi-path component (normally a light-of-

Sight component) can be considered. Alternatively, Nakagami fading which is more 

general can be considered [212].  

8.2.10  Examining the Impact of Network densification Multi-tier HetNet 

The current model can be further extended to investigate the effect of network 

densification. Network densification techniques not only improve capacity and 
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coverage but also enable carriers to maximise spectral efficiency. However, 5G cells 

may not be able to maintain the classic ³always on´ routine. Rather, an operational 

strategy for most 5G cells might be ³turn on when required´. Therefore, the current 

system can be extended to examine the effects of ³turn-on when needed´ techniques. 
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