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Abstract
Super resolution microscopy techniques, which allow live organisms imaging beyond
the di�raction limit, are in the forefront of understanding living systems. Single
Molecule Localisation Microscopy (SMLM) randomly turns on a sparse subset of
photo-switchable molecules at di�erent times, enabling temporal localisations of
molecules otherwise limited by the di�raction barrier of light. Stacks of images,
represented by lattices of intensities, are produced over time making both quantita-
tive analysis (such as counting) and localisation of single molecules, an essential key
to understand biological structures and interactions inside living cells.

In this thesis we introduce a novel set of structural functions named as Single
Molecule Pattern, SiMPa, functions, which describe a molecule's di�raction of in-
tensity across a predetermined neighbourhood based on its position within a pixel.
The di�raction is obtained as a function of the single event intensity, a quantity
directly related to the number of photons emitted by a molecule. An individual
frame inference is presented by considering the SiMPa functions within a probabilis-
tic scheme via a Bayesian approach, to count and localise molecules. This is achieved
with our novel localisation scheme based on structures formed within a moving region
that scans the frame.

We then propose a state-space model to model stacks of frames, that are time related,
where the SiMPa functions are embedded within a Markov switching model. The
latter accounts for the switching behaviour of pixels over time, consisting of active
and de-active states, and their corresponding spatial structure. Additionally, we
present a data generation mechanism to obtain sequences of SMLM frames using
the SiMPa functions and a transition matrix for the states of the molecules. A
thorough sensitivity and evaluation analysis is considered on a synthetic data set,
and a comparison with one of most popular state-o�-the-art alternatives, both on
synthetic and realistic data.
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Chapter 1

Introduction

Single Molecule Localisation Microscopy (SMLM) enables overcoming the di�raction

barrier of light in �uorescence microscopy, where light emitting molecules, called �u-

orophores, are focused within a specimen. A �uorophore's di�raction, commonly

described by the Point Spread function (PSF), can prevent �uorophores in close

proximity from being resolved as a result of overlapping PSFs. STORM involves

the stochastic activation of a sparse subset of �uorophores on distinct time points,

achieving temporal isolation of molecules that were originally spatially indistinguish-

able. Cycles of this procedure generate a stack of frames each one consisting of a few

molecules, mainly di�erent or the same ones due to �uorophore blinking properties,

which corresponds to their capability of cycling between excitation and dark states.

Processing these stack of frames is key in order to determine and retrieve information

on molecules' positions, behaviour and interaction.

In this thesis, we present a novel mathematical model within the Bayesian perspec-

tive in order to process the spatial association on individual frames, also embedded

in a state space model to allow for inference on stacks of frames. The main con-

tribution of this research is providing a method capable of dealing with overlapping

PSFs, thus avoiding the loss of potentially valuable information in the samples, while

1
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propagating uncertainty in a coherent way. This loss corresponds to a signi�cant

amount of information regarding molecular interaction and evolution within cells to

be left unexplored and has a substantial e�ect on both visualisation and quantita-

tive analysis of target structures. Based on a novel probabilistic scheme capable of

accommodating overlapping PSFs, our approach can perform molecule localisation

to provide reconstructions of a specimen, and used as a quantitative mechanism to

provide metrics for the number of molecules.

Chapter 2 o�ers a literature review on current methodologies for super resolution lo-

calisation microscopy, while also focusing on the principles and challenges one should

consider during processing. In the �rst section, we provide a brief introduction on �u-

orescence microscopy highlighting the main features, as well as the major limitations

when imaging goes down to the molecular level. In order to overcome this barrier,

super resolution �uorescence microscopy techniques were developed, from which we

focus on single molecule localisation microscopy (SMLM) and discuss in the second

section. We present and analyse SMLM main principles and properties, with the fol-

lowing section presenting some localisation procedures developed in the past decade.

For each technique we provide brief descriptions and we outline the most commonly

used processing mechanisms, with the last section addressing obstacles we tackle and

overcome with our proposed methodology.

Chapter 3 consists of two main parts. The �rst describes the novel Single Molecule

Pattern (SiMPa) functions, which account for a molecule di�usion of the intensity

across a predetermined region, based on its relative position within a pixel. A detailed

description on their derivation is presented, along with a proposed way of their

application, followed by the individual frame inference via a Bayesian perspective.

This second part relies on a unobserved mechanism, modelled by a Markov random

�eld (MRF), to identify regions of interest (ROI) that potentially contain active

molecules. Molecule counting and localisation from overlapping, or not, PSFs is

performed within a probabilistic scheme based on the novel pattern-con�guration

concept for a moving region which scans the frame. The chapter concludes with an
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implementation on a toy example describing the output of our procedure.

In Chapter 4, our proposed methodology based on the SiMPa functions and the

pattern-con�guration scheme, is embedded within a Markov switching model which

allows processing of entire stack of frames. The �rst section consists of an intro-

duction to the Markov switching model, followed by the appropriate arrangements

to incorporate the SiMPa functions and the probabilistic localisation scheme. We

present the complete Bayesian inference split in two parts, one for parameter updat-

ing and localisation and the second for pixels state (active - de-active) estimation

based on a Forward Filtering Backwards Sampling (FFBS) algorithm. The latter

relies on a transition matrix along with a neighbourhood, with the states being di-

rectly related to the existence of an active molecule, since they identify pixels that

are potentially parts of a PSF. A data generation mechanism for stack of frames us-

ing the SiMPa functions follows, with the chapter concluding on an implementation

of the model on a toy example.

Chapter 5 contains the application and evaluation of our proposed methodology, as

well as comparison against an o�-the-shelf alternative, using a synthetic data set. In

the �rst section we describe the data generation and discuss on the parameter selec-

tion, along with a simple elicitation procedure to obtain prior distributions. Next, we

apply the individual frame inference based on SiMPa functions on a stack of frames,

where we both perform reconstructions of the underlying structure and provide per-

formance metrics to quantitatively evaluate our inference. We obtain similar output

using ThunderSTORM, a popular choice in SMLM, with which we compare our re-

sults. In the following section we conduct a thorough sensitivity analysis on both

the individual and stack of frames models. We investigate alterations in precision

and accuracy our localisation scheme faces under various noise levels, and examine

the e�ect these have on challenging overlapping scenarios. The chapter continues

with an analysis on parameter sensitivities and concludes with applications on real-

istic data used for the Challenge 2013 [Sage et al., 2015] to evaluate current super

resolution localisation techniques and simulated ground truth data using SuReSim
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[Venkataramani et al., 2016].

In Chapter 6 we conclude and summarise the results, while also addressing the main

advantages and issues of our proposed methodology. For the latter, we provide a

detailed discussion on potential considerations for improvement and future work,

regarding numerous parameters and parts of our model.



Chapter 2

Literature Review

2.1 Principles of �uorescence microscopy

Fluorescence is the emission of light of a speci�c wavelength, which takes place in a

brief period of time, after light of generally shorter wavelength has been absorbed.

Distinguishing between the absorbed and emitted light, in terms of considering the

di�erence in their wavelengths [Stokes, 1852], allows visualisation only of molecules

that �uoresce [Valeur, 2003].

The use of �uorescent molecules, or �uorophores, was introduced in biological ex-

periments around the 1930s, initiating the development of �uorescence microscopy,

nowadays one of the most important techniques in cell and molecular biology achiev-

ing insight into the nano-dimension. Fundamentally, �uorophores are chemical com-

pounds or molecules, capable of absorbing light at a speci�c wavelength (excitation

light) and emitting light at a di�erent, usually longer, wavelength (emission light)

[Croney et al., 2001]. More speci�cally, the outermost electron orbitals in the �uo-

rophore regulates the wavelengths of absorption and emission, and when absorbing a

photon that increases the energy levels from its low-energy ground state, de�ne the

potential alteration in any of the electronic, vibrational or rotational states of the

5
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�uorophore [Lichtman and Conchello, 2005]. Fluorescence emission, along with vi-

brational relaxation, are responsible for the subsequent energy decrease which takes

back the �uorophore to the low-energy ground state.

In Figure 2.1.1, the Jablonski diagram [Jablonski, 1933] is presented, displaying the

�uorescence process in terms of the �uorophore's alterations in energy levels between

di�erent states [Sauer et al., 2010]. The ground energy state of the �uorophore before

absorption is S0, with S1, S2 representing the singlet excited states after absorption

and T1 the triplet excited state. For the singlet excited states S1 and S2, the outer

electron jumps into another orbital, whereas for the triplet state T1 there is an ad-

ditional reversal of the electron's spin, that can possibly, however unlikely, occur via

inter-system crossing [Turro, 1991]. The bold horizontal lines on each state corre-

spond to the lowest energy levels of each state respectively, with the grey horizontal

lines the numerous vibrational levels (rotational levels are not displayed here).

Figure 2.1.1: Jablonski diagram showing the di�erent energy levels of a �uorophore
and their association with absorption and �uorescence emission. Reproduced by open
access permission, Copyright© Fereja et al. [2013]
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During excitation, if the amount of energy absorbed by a �uorophore is higher than

needed for exact movement from ground state S0 to lowest energy in singlet excited

state S1, the vibration, rotation or orbital states of the �uorophore will be addition-

ally altered (di�erences in pointing up blue arrows in Figure 2.1.1), with the latter

corresponding to the higher energy singlet excited state S2 (compared to S1). Conse-

quently, there are di�erent wavelengths to excite a �uorophore, each one associated

with alternative orbital, vibrational and/or rotational levels. However, regardless of

the energy reached during excitation for the singlet states, the �uorophore's energy

will eventually decrease to the lowest vibrational state of S1, from which �uorescence

emission will occur (pointing down green arrows in Figure 2.1.1). In the case of the

unlikely inter-system crossing, the �uorophore in the triplet excited state T1 can ei-

ther return to S0 without emission or by �uorescent emission named phosphorescence

(pointing down red dashed arrows in Figure 2.1.1). A more thorough analysis of the

�uorescence process can be found in Lakowicz [2013].

2.2 Super-resolution localisation microscopy

Applications of �uorescence microscopy in biology can provide scientists with valu-

able information about structural details inside cell, tissues and whole organisms

[Meyer and Dworkin, 2007], however, when visible light is used, the spatial resolu-

tion is limited due to the di�raction limit of light. Commonly, resolution refers to the

level of detail that can be distinguished in an image [Cox, 2015]. Abbe [1874] was the

�rst to describe the resolution of an optical system as a function of the wavelength of

light and the angular objective aperture of the microscope. Abbe's lateral and axial

resolution limits are described by the equations,

Resolutionx,y =
λ

2n sin θ
=

λ

2NA
, Resolutionz =

2λ

(n sin θ)2
=

2λ

(NA)2
,

where λ is the wavelength of light, corresponding to excitation light wavelength in

�uorescence, and NA the objective numerical aperture, with θ and n denoting the
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angle and refractive index respectively. These limits correspond to the minimum

resolvable distances where closely located light emitting point sources (here �uo-

rophores) can be distinguished. Under ideal conditions when visible light is used,

the microscope objective's NA can at most be varied between values of 1.3-1.6, lead-

ing to a maximum spatial resolution 200 nm and 500 nm in the lateral and axial

planes respectively [Huang et al., 2009].

A number of techniques were developed to increase resolution, achieving the broadly

known super resolution. In simple words, this describes imaging better or beyond

the di�raction barrier of light. Without much detail, the most popular techniques in-

clude structured illumination microscopy (SIM) [Gustafsson, 2005] [Gustafsson et al.,

2008], stimulated emission depletion (STED) [Hell and Wichmann, 1994] and satu-

rated pattern excitation microscopy (SPEM) [Heintzmann et al., 2002]. Alternatively

and while being of main focus throughout this thesis, a set of techniques referred to

as single molecule localisation microscopy (SMLM) super-resolution imaging, rely on

single molecules along with a key feature which allows them to alternate their state

between 'On' (excited) and 'O�' (ground).

2.2.1 Image formation

Generally, a light emitting point source appears as a di�raction limited spot, or

commonly known Airy disc, when imaged by an optical system. In physics, such a

spot is characterised by the Point Spread Function (PSF) [Rottenfusser, Wilson, and

Davidson], which is the description of the shape of the blur on imaging systems. In

our case, such point sources can be represented by �uorophores, since they are only

of a few nanometers in size with the property of absorbing light to move into the

excited state. This is useful because an image that is formed from the emission of an

active �uorophore can be established in a way by the true PSF of the imaging system,

initially identi�ed by Ambrose et al. [1991]. In order to obtain spatial information

about a �uorophore's location that overcomes the di�raction barrier, the observed

PSF is numerically �tted to a hypothetical model PSF, most often of a Gaussian or
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Airy shape [Wolter et al., 2011], to estimate the position of its center. We speci�cally

focus on a variety of localisation procedures in Section 2.2.3.

In SMLM, obtaining super resolution is based on a key feature allowing only a sparse

subset of �uorophores to stochastically reach the excited state at a speci�c point in

time, with the majority of them remaining at the ground state. This sparsity cor-

responds to a subset of temporally isolated �uorophores, originally closely distanced

and spatially indistinguishable, which are imaged and then localised. Cycles of this

process are repeated until numerous �uorophores are sampled, before the majority

reach the inevitable photo-bleached state [Eggeling et al., 1998] which makes them

no longer able to �uoresce. A super resolution image of the specimen can be obtained

by combining the individual localisations from the acquisition cycles. In Figure 2.2.1

part (a), the SMLM procedure is displayed for a toy ring structure, whereas in part

(b) the di�erent modes to achieve this key property of state switching are presented

[Dempsey et al., 2011].

Figure 2.2.1: Principle of single molecule localisation microscopy (SMLM) and pho-
toswitching features. (a) A ring di�raction limited structure is resolved using SMLM,
by sparsely activating and localising individual �uorophores with high precision. PSFs
for active �uorophores are indicated with the red �lled in circle with yellow crosses in-
dicating their centred positions. (b) Photoswitching and non-photoswitching features
of �uorescent labels. Reprinted by permission from Springer Nature, Dempsey et al.
[2011], © 2011 Nature Methods
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Probably the most popular SMLM techniques, introduced simultaneously but inde-

pendently, each one adapting a di�erent labelling approach to obtain photo-switchable

�uorophores, are Photo-activated Localisation Microscopy (PALM) [Betzig et al.,

2006], Fluorescent Photo-activation Localisation Microscopy (fPALM) [Hess et al.,

2006] and Stochastic Optical Reconstruction Microscopy (STORM) [Rust et al.,

2006]. As mentioned, all of these methods rely on photoswitching �uorophores (Fig-

ure 2.2.1 part (b)), with the choice of appropriate �uorescent labels playing a crucial

role. Reviews and performances for a large number of di�erent �uorophores are

available in Gould et al. [2009] and [Thompson et al., 2010].

2.2.2 Principles of single molecule localisation microscopy

The gain in spatial resolution is one of the main advancements in single molecule

localisation microscopy (SMLM). The main factors contributing to the increase in

resolution include �uorophores localisation precision and the density of �uorophores

that have been localised on the reconstructed image [Shro� et al., 2008], a term

commonly referred to as molecular density. Regarding molecular density, in order to

account for increased resolution, the Nyquist-Shannon sampling theorem [Nyquist,

1928] [Shannon, 1949] adequately describes the in-between connection, requiring at

least two �uorophores localisation within each resolution unit. In case where la-

belling is insu�cient, super resolution reconstruction of structures may be incoher-

ent presenting unre�ned details. In Figure 2.2.2, the e�ect of molecular density on

resolution is presented based on a toy pattern. An insu�cient sampling interval can

create artifacts on the pattern consisting of discontinuities, thus a�ecting the spatial

resolution. Increasing the number of pixels/lines (left to right) while reducing the

number of pixels measured (bottom to top) can lead to an unresolved pattern.
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Figure 2.2.2: Spatial resolution against molecular density in SMLM. The �gure shows
the relationship between the fractions of pixels measured and number of pixels/lines,
with increase displayed from top to bottom and left to right respectively. When increas-
ing the number of pixels/lines while also having a small fraction of pixels measured,
results in an unresolved structure due to an insu�cient sampling interval (Nyquist sam-
pling theorem). Reprinted by permission from Springer Nature, [Shro� et al., 2008],
© 2008 Nature Methods

Regarding localisation precision of any individual localisation estimate, correspond-

ing to the position of a �uorophore associated with an uncertainty level, is mainly

dependent on the number of photons arriving on the detector's pixels during the

�uorophores' emission. We note here that the photon count capabilities can vary

according to the �uorescent probe's choice [Dempsey et al., 2011]. Apart from pho-

ton detection, which has a stochastic nature therefore considered to form a Poisson

process, the size of the detector's pixels and background noise also have a smaller

impact however a�ect the accuracy of localisation, as thoroughly discussed by Ober

et al. [2004] and Thompson et al. [2002]. All the concepts that must be taken into

consideration for �uorophore localisation are discussed next.

We stress again here that the localisation precision of a localisation procedure deter-

mines the level of consistency and reliability of a position estimate, which associated
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with molecular density account for the improvement in resolution. Theoretical res-

olution measures have been already studied [Nieuwenhuizen et al., 2013] [Mukamel

and Schnitzer, 2012], however this is an area still open for improvement. Next, we

discuss numerous features that contribute to the concept of �uorophore localisation,

and make it in some of the cases quite challenging. The main characteristics that

need to be taken into consideration regardless of the localisation procedure, are ad-

dressed to be (i) pixelation (ii) shot noise (iii) background emission (iv) single and/or

multiple �uorophore(s) acquisition (v) PSF misspeci�cation and (vi) camera/readout

noise, as discussed in Small and Stahlheber [2014]. All, or most, of them should be

taken into consideration when performing a localisation algorithm in order to achieve

better accuracy and precision on the �uorophore's position estimates.

Pixelation Pixelation accounts for any asymmetric allocation of photons if the

�uorophore is shifted even by a small fraction from the ideally focused center. Such

asymmetry contains any hidden spatial information which plays a crucial role when

estimating a �uorophore's position. More speci�cally, as analysed by [Small and

Stahlheber, 2014], adding the photons arriving anywhere alongside a pixel form the

observed signal, which is proportional to the integral of the PSF over the pixel region.

If the PSF's width is noticeably larger than the pixel size, then the PSF value at

the center of the pixel can arguably be a good approximation of the observed signal.

In contrast, for a larger pixel size, closer to the PSF's width, the signal must be

considered by integrating the PSF over the pixel region. The latter also applies in

the case where high precision is of main interest.

Shot noise Probably the most important factor a�ecting any localisation approach

has to be the noise coming from the recorded signal during imaging, referred to

as shot noise. A light emitter, usually isotropic, corresponds to the di�raction of

light from a focused point source within the specimen, with the associated spatial

information being essential for estimating the point's position. The recorded signal

is highly dependent on the amount of photons collected around the area of a point

source, a process potentially a�ected by a number of factors related to the imaging
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experiment. As the photon emission has a stochastic nature, translating into their

collection inside pixels to be following a random process, a captured image of a light

emitter will di�er from any chosen or preferred PSF. For instance, one can consider

two separate light emitters where the underlying �uorophores have exactly the same

position within the specimen. Using the same PSF in both cases, could result in

di�erent position estimates due to the stochastic arrival of photons on the detector's

pixels. Typically, the photon arrival is described by a Poisson distribution.

Model misspeci�cation Another factor is considered to be the choice of a suitable

PSF model basically in terms of structure and shape. A particular choice of a

PSF model could provide di�erent position estimates of �uorophores compared to

a di�erently shaped one. In general, misspeci�cation of the PSF model, either in

terms of width, orientation, shape or any structural parameters, can potentially lead

to inaccurate and/or biased localisation estimates. A comparison of di�erent position

estimators, even in misspeci�ed scenarios, is analysed by Abraham et al. [2009].

Background e�ect An issue highly a�ecting the distribution of the photons in

a captured image, as well adding an additional layer of uncertainty regarding esti-

mation of �uorophore's positions, is scattered light or background e�ect from �uo-

rophores that are out of focus. Inevitably, due to the process of �uorophores that

interchange between states, adds a supplementary level of noise coming from �uc-

tuations in the background. Additionally, this scattered light can have an impact

and cause drifts on the average photon position leading to biased position estimates

during localisation. A uniform background, translating into the same average of

background photons on every pixel, tends to drag the average photon position to the

center of the image, whereas a non-uniform background closer to the pixel area with

the highest photon count [Small and Stahlheber, 2014].

Individual and/or multiple �uorophores Arguably one of the most challeng-

ing aspects in a localisation scheme is dealing with �uorophores in close proximity,

translating into overlapping PSFs on di�erent levels. Identifying positions for over-
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lapping PSFs is feasible, however it increases the complexity of the estimation process.

Achieving desirable separation of �uorophores is often quite challenging depending

on the nature of the experiment, and sometimes can result into photo-toxication of

living cells [Cox, 2015]. The capability of a system to capture well isolated �uo-

rophores and not coinciding ones, as well entire �uorophore's activation cycle, is a

concept directly associated with the frame rate of the camera used for imaging and

the blinking rates of the chosen �uorescent probes, a procedure referred to as acqui-

sition scheme. The most commonly used cameras for localisation microscopy are the

Electron Multiplying Charge Coupled Device (EMCCD) and scienti�c Composite

Metal-Oxide Semiconductor (sCMOS) [Huang et al., 2011b], with a comparison of

their capabilities on localisation addressed in Quan et al. [2010]. It should be noted

here that as the �uorophore activation is a stochastic process, there will always be

a probability of spotting light emitters close to each other, resulting in overlapping

patches, even under the most sophisticated set ups.

As mentioned, the blinking rate interaction with the camera frame rate have a sub-

stantial e�ect during imaging. The frame rate refers to the capacity and e�ciency of

the camera in use to capture images of the specimen under investigation. In a sense,

the faster the rate the more reliable the images are in terms of collecting every piece

of information in an excitation cycle. However, this can arguably not always be ideal

for the localisation procedure. The duty cycle is the period of time a �uorophore

remains on the excited state and varies according to the particular �uorescent probe.

As thoroughly discussed by Dempsey et al. [2011], the most accurate determination

of a �uorophore's position would arise from a low duty cycle under a high photon

emission, with low duty cycle being a desirable property in general. Regarding single

molecule localisation, the total amount of �uorophores able to be localised is inversely

proportional to the �uorophore's duty cycle. High photon emission translates into

higher density of the focused �uorophore, hence allows for more accurate localisation

estimates.

Camera/read noise Regardless of the detector alternatives, mainly consisting of
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a camera system capturing blinking cycles of �uorophores, the uncertainty added

during signal transformation needs to be addressed. The photon arrival from a fo-

cused light emitter on a pixelated region of the detector, forms the known optical

signal of a source. Before storing the signal into the pixels, a conversion procedure

onto electrical signal occurs, varying with respect to the associated characteristics of

the camera. Inevitably, such a process would be subject to some kind of conversion

errors, commonly known as read noise, distorting the original signal. In the case

where photon emission of a focused �uorophore is high enough without complicated

background structure, potentially su�cient for a potential accurate localisation, cam-

era noise could be negligible. However, this ideal scenario is not usually the case in

reality.

2.2.3 Current localisation methodologies and algorithms

Precision and accuracy on the position estimates of �uorophores during the stage of

frame processing is key to visualise structures and interactions within a cell. Hence,

localisation techniques have a very if not the most important role, constituting the

basis for inference on super resolution localisation microscopy. Extensive literature

exists on localisation methodologies and/or algorithms, constantly expanding at a

high rate, which can be classi�ed into �ve di�erent groups (i) single (ii) multiple light

emitters localisation methods via �tting PSF models (iii) single (iv) multiple light

emitters localisation algorithms based on deconvolution or other approaches and (v)

mechanistic or probabilistic localisation methodologies. Each localisation technique

on either of the categories has advantages and drawbacks, with usage choices to be

usually related to the nature of the imaging experiment as well as performance on

inference.

The basis of the localisation method in terms of considering either single or multiple

emitters, can be considered highly dependent on the type of data obtained during the

imaging experiment. In principle, SMLM relies on the activation of a sparse subset

of photo-switchable �uorophores, hence leading to images of low density. As a result,
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the majority of the focused emitters correspond to single �uorophores allowing the use

of single molecule localisation methods. However, long acquisition times are required

accompanied with limitations on the spatial resolution of the image, not an ideal

situation when investigating living cells [Cox, 2015]. On the contrary, increasing the

density of active �uorophores (high density data) can allow shorter acquisition times

and improvement on spatial resolution, however translating into more challenging

localisation procedures due to the presence of mostly overlapping �uorophores.

2.2.3.1 Fitting related localisation approaches

Probably the most broadly used approach in super resolution localisation microscopy

follows the concept of �tting a PSF model to the collected data from the focused

light emitters. In a way, �tting a PSF requires minimising the distance of the ob-

served signal and the proposed model, evaluated on all possible combinations of its

associated parameters.

As described by Small and Parthasarathy [2014], a signal from a single isotropic

light emitter can be described using an appropriate PSF model associated with a

few parameters,

I (x, y) = I0 h
(
x− x0, y − y0, τ

)
+ b︸ ︷︷ ︸

expected signal

(2.2.1)

where I0 is a parameter accounting for the detected signal proportional to the pho-

ton count (emission) from the focused emitter, b is a background baseline of each

pixel, where h is the chosen PSF model with (x0, y0) to be denoting the �uorophore's

position and τ is a parameter related to the width of the PSF. Arguably, a Gaussian

model is the most popular PSF model for an isotropic light source, basically due to

its symmetric bell shaped structure. As shown by Stallinga and Rieger [2010] and

Wolter et al. [2011], the two-dimensional (2-D) Gaussian model is a good approxi-

mation of the true PSF of an imaging system, holding when extending to 3D [Zhang
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et al., 2007] , but being noticeably more complicated [Kirshner et al., 2013] . The

2D Gaussian PSF has the general form

PSFG-2D(x, y | φ) =
1

2πσ2
exp

{
−(x− x0)2 + (y − y0)2

2σ2

}
,

with the expected signal from Equation (2.2.1) being

SG-2D(x, y | φ) = I0 PSFG-2D(x, y | φ) + b

=
I0

2πσ2
exp

{
−(x− x0)2 + (y − y0)2

2σ2

}
+ b, (2.2.2)

and φ = {x0, y0, I0, σ2, b}.

Localisation of a �uorophore within a focused di�raction limited region can be per-

formed by �tting the PSF model of the form in Equation (2.2.2). The best �t

corresponds to the set of evaluated parameters in φ which minimise the discrepancy

between the model and the observed signal on the region. In order to obtain the best

�t, the parameters are varied within an optimisation procedure, most frequently car-

ried out through either the Least Squares method (LS) or the maximum likelihood

estimation (MLE), measuring the compatibility of the candidate parameter set.

Ways of identifying the di�raction limited patches on a frame, usually described as

regions of interest (ROI), vary across every localisation techniques in the literature.

This can consist of a threshold, adaptive or not, accompanied with a determined

size for each ROI, or a procedure of identifying local maxima based in a �ltering

approach.

Least-squares (LS) �t The least squares (LS) method basically relies on the

minimisation of the so called error terms in order to obtain the best �t. For every

pixel in a ROI, the error is de�ned as the distance of the observed signal and the

predicted one according to the chosen PSF model. For a entire ROI, the sum of the
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errors is calculated through cycles of varying the parameters until the best �t has

been obtained. It should be mentioned that the LS method does not require any

speci�c information about the noise of the imaging system.

Occasionally, the individual error terms are additionally weighted according to their

expected errors coming from the �tted PSF model, before adding them all together.

The use, or not, of weighting can arguably be a decision based on the chosen PSF

model, as a large error does not necessarily has a negative contribution resulting

in a poor �t, if the corresponding expected error is also large. On the contrary,

if the expected error of the model is small enough even tiny �tting errors have a

noticeable negative e�ect. Therefore, one can claim that the width of the PSF as

well the behaviour in the tails of the distribution contribute in a potential weighting

decision, particularly useful when the variance is unstable. For instance, when the

photon count is considered to follow a Poisson distribution, the expected variance of

the errors is the same as the expected signal, and can be approached with a Gaussian

distribution for a large count, however this is not the case with lower photon counts

[Small and Parthasarathy, 2014]. An early implementation of least squares Gaussian

�tting on individual �uorophores was done by Thompson et al. [2002].

Using the 2D Gaussian PSF model, as in Equation (2.2.2), the best �t using the least

squares method can be obtain by minimizing with respect to the parameters φ,

φ̂ = argmin
φ

 ∑
∀{x,y}∈ROI

wxy

(
S̃(x, y)− SG-2D(x, y | φ)

)2 , (2.2.3)

where S̃(x, y) denotes the observed signal of pixel (x, y) within the focused region

(or the region of interest (ROI)) and wxy the weights of the expected signal, with

wxy = 1 the un-weighted least squares estimates.

Single �uorophore �tting methods using LS [Tang et al., 2015] comprised a

number of steps, involving search for local maxima, smoothing and background esti-
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mation on the photo-electrons counts, a transformation of the observed intensities,

to identify potential single emitters, followed by a 2D Gaussian PSF �tting using the

LS method. A similar approach, named Auto-Bayes, presented by Tang et al. [2016],

where an automatic threshold from a constructed histogram of photo-electron count

accounts for classi�cation of emitters. In 2D, Kechkar et al. [2013] introduced a real-

time localisation algorithm based on a watershed algorithm to extract positions from

a wavelet-based segmented reconstruction, using non-linear LS for 3D PSF �tting.

In a weighted LS �tting scheme, 3D reconstructions on PSF models extracted using

some interpolation techniques was presented by Baddeley et al. [2011].

Multiple �uorophore �tting methods using LS A procedure, known as DAOS-

TORM presented by Holden et al. [2011], is a localisation algorithm for multiple �uo-

rophore �tting on high-density super resolution data. Multiple PSF �tting is carried

out with the use of weighted least squares, where each pixel is weighted according to

the expected photon count of the �tting PSF model. Initial localisation followed by

a repetition of multiple �tting on residual images accounts for the �nal localisation

reconstruction. The PSF model is measured and derived from a procedure using a

set of individual molecules within an image.

Maximum Likelihood estimates (MLE) In order to obtain a maximum like-

lihood estimate (MLE), one has to retain speci�c details about the system under

investigation. In the case of localisation microscopy, this information includes a cho-

sen PSF model which describes the signal coming from focused emitter(s) under the

presence of noise. The likelihood of the parameters in the PSF model given the

observed signal, is associated with the discrepancy between the corresponding model

prediction and the observed signal with respect to the noise system. Conceptually,

small distances will lead to a higher likelihood than any noticeable mismatches as-

sociated with large di�erences. Maximisation of the likelihood with respect to the

model parameters determines the MLE, as in the best �t of the chosen model to the

signal.
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From the statistical and mathematical perspective, the MLE estimate has some ef-

fective properties. Di�erent unbiased estimates can exist, however any one of them

has a minimum achievable variance, or maximum precision similarly, which cannot

be necessarily attained. This variance limit for unbiased estimates is known as the

Cramer-Rao lower bound (CRLB) [Cramér, 2016] [Rao, 1992], with the MLE being

the unbiased estimates achieving maximum precision for a large number of obser-

vations, when this limit is achievable [Kay, 1993]. Ober et al. [2004] introduced

an approach for determination of MLE's localisation accuracy with respect to �u-

orophore's emission and the imaging system, whereas a comprehensive comparison

between the LS and MLE �tting approaches was implemented by Abraham et al.

[2009].

In the general case where the photon count captured by the camera is considered

to arise from a Poisson distribution, accounting for shot noise as described earlier,

with the expected photon count to be described by a 2D Gaussian PSF model as in

Equation (2.2.2), the likelihood of the parameters φ for ∀{x, y} ∈ ROI reads in

L (φ | {x, y} ∈ ROI) =
∏

∀{x,y}∈ROI

SG-2D(x, y | φ)S̃(x,y) exp{−SG-2D(x, y | φ)}
S̃(x, y)

,

with S̃(x, y) being the observed signal. The MLE of φ is aqcuired by maximizing

L (φ | {x, y} ∈ ROI) with respect to φ, or more often done using the log-likelihood,

hence

φ̂ = argmax
φ

`
(
φ
∣∣ ∀{x, y} ∈ ROI

)
with

`
(
φ
∣∣ ∀{x, y} ∈ ROI

)
=

∑
∀{x,y}∈ROI

S̃(x, y) ln
(
SG-2D(x, y | φ)

)
− SG-2D(x, y | φ).

(2.2.4)
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Single �uorophore �tting methods using MLE Numerous localisation meth-

ods exist for estimating �uorophore's positions using the MLE on regions of interest

which contain single �uorophores. Smith et al. [2010a] implemented a 2D (and 3D)

Gaussian MLE localisation using the integrated expected signal of SG-2D(x, y | φ),
formulated with the Gaussian error functions, on pre-selected ROIs. An iterative

mechanism using the Newton-Raphson method [Seiler and Seiler, 1989] accounted

for maximising the likelihood. The separable property of the Gaussian PSF model

allowed an increased localisation speed when estimation performed also with the

integrated 2D Gaussian PSF [Starr et al., 2012]. Brede and Lakadamyali [2012] in-

troduced an open-source software consisting of a variety of features for rendering and

calibrating high resolution images. The main processing method includes identi�ca-

tion of single molecule ROIs based on a threshold, before Gaussian PSF MLE �tting

on a Poisson noise model is performed. Smoothing the frames before determination

of the local maxima, hence the ROIs, followed by �tting Gaussian PSF in both 2D

and 3D for single molecule localisation using either MLE or LS, was proposed by

Wolter et al. [2012].

Multiple �uorophore �tting methods using MLE When high density frames

are obtained from an super resolution imaging experiment, the probability of having

multiple �uorophores on a ROI is considerably high, as a result of overlapping PSFs,

hence the need of localisation procedures which can simultaneously deal with multiple

emitters. Huang et al. [2011a] presented an extension of an MLE �tting procedure for

multiple light emitters, using the integrated expected signal for a single �uorophore

based on the Gaussian error functions [Smith et al., 2010a], implemented on a GPU

hardware allowing for fast processing. Quan et al. [2011] introduced an algorithm in

which the number of active molecules in a focal plane are initially roughly identi�ed

by the use of the Structured Sparse model, before using the BIC criterion in order

to select an optimal model, potentially free of false positives, from multiple �tted

MLE positions. Using GPU parallel computing, the algorithm was extended and

streamlined into a high density localisation method, known as PALMER [Wang
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et al., 2012]. An algorithm for processing high density super resolution images in 3D,

allowing �t of overlapping PSFs of di�erent shapes, modelled as elliptical Gaussian

PSFs in which �attening of the ellipsoids depends on the z position of the focused

emitters, was introduced by Babcock et al. [2012]. Huang et al. [2013] presented

a localisation algorithm based on multi-emitter �tting using MLE, where the super

resolution images were obtained with a sCMOS camera [Huang et al., 2011b].

ThunderSTORM [Ovesn�y et al., 2014], an increasingly popular open source soft-

ware, consists of a large variety of features and di�erent single molecule localisation

methods, similar to the ones described throughout the section. It o�ers a number of

choices for processing SMLM frames both in 2D and 3D, along with a collection of

options for visualisation and analysis in a post-processing manner.

2.2.3.2 Localisation algorithms based on deconvolution or other tech-

niques

Apart from localisation methods based on a PSF model �tting approach, either with

the use of MLE or LS, a variety of algorithmic approaches have been developed in

order to process both low and high density super resolution images. Following a

similar structure as for the �tting approaches, we classify the algorithms into single

and multiple �uorophores approaches, accounting for low and high density super

resolution data respectively, while also having a group for mechanistic approaches.

The latter involves methods attempting to model the �uorophore's dynamics and

properties in a probabilistic manner.

Single �uorophore localisation algorithms A fast algorithmic method adopting

a modi�ed center of mass algorithm for parameter estimation on focused ROIs and

position identi�cation, capable of implemented both in 2D and 3D, presented by

Henriques et al. [2010]. Parthasarathy [2012] used the fact that a line of any point

obtained parallel to that point's intensity gradient will cross the molecule's true

position, if the intensity distribution is radially symmetric. For noisy measurements,
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the true molecule's position can be derived by minimising the distance of true position

and every corresponding line. In a similar manner, by using the radial symmetry, Ma

et al. [2012] calculated the gradient using a function formed by the image gradients

on the x and y directions, obtained as the convolution of the image and gradient

operators, followed by a minimisation step to obtain the best �t for the center of

symmetry. An non-numerical �tting algorithm [Andersson, 2008] uses the location

of a measurement, which is the center of a pixel for a EMCCD camera, and the

potential true position of the molecule to obtain a range equation of the true source.

To determine the estimate of the true position of the source, an approximate least

squares solution is derived from the range equation of multiple measurements. Yu

et al. [2011] used the intensity spectrum derived with a zero padded Fourier transform

to model the intensity of a source, and estimated the position of the molecule using

the approximate phase shift of the intensity spectrum. A reconstruction algorithm,

obtaining molecule's coordinates of local maxima using cubic spline interpolation on

a self calibration set up, followed by a statistical test to get �uorescence patches

introduced by Köthe et al. [2014].

Multiple �uorophore localisation algorithms CSSTORM [Zhu et al., 2012],

an abbreviation for compressed sensing for STORM images, relies on linear pro-

gramming to perform the localisation procedure. Instead of coordinates, a discrete

sub-pixel grid accounts for the molecule's position from a camera's frame signal

with each sub-pixel representing the brightness of a molecule positioned within.

A convex optimisation problem is considered by favouring sparsity priors using a

weighted L1 norm under a Poisson noise constraint. Several patches are analysed

and added together to produce the super resolution image. A similar �rst step was

adapted by Min et al. [2014] to obtain a sparse image, followed by deconvolution

on a �xed spatial support to correct pixel values. Their algorithm, known as FAL-

CON, uses a Taylor approximation for the PSF to re�ne the initial positions over

a continuum, obtained using local maxima from the deconvolution. Mukamel et al.

[2012] created an algorithm named deconSTORM, which uses a stack of frames on
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a adjusted iterative Lucy-Richardson deconvolution algorithm based on a Markov

process accounting for molecules state transition throughout the stack. Using the

Expectation-Maximization (EM) algorithm, the maximum likelihood sample esti-

mate without explicit molecule localisation is obtained, using the sparsity property

of activated �uorophores within a frame. Takeshima et al. [2018] developed a multi-

emitter �tting technique based on a wedge-shaped template matching algorithm,

hence the name wedge template matching WTM, in order to localise molecules with

overlapping PSFs. Template matching is the procedure of matching sectors of an ob-

served image to a template image, whereas WTM depends on partial feature-based

templates. Accounting for both the spatial and temporal aspects of �uorophores,

Cox et al. [2012] developed a Bayesian approach for high density data by taking into

consideration the natural �uorophore processes of blinking and bleaching. Modelling

the entire stack simultaneously, a density map is obtained according to conditional

probabilities, denoting the likelihood of molecules existing on the spatial domain of

an image. The super resolution image is constructed by averaging the density maps

opposed to the most popular super resolution reconstructions using localisations of

point estimates.

2.2.3.3 Quantitative imaging

The importance of localisation microscopy is indisputable since it allows visualisa-

tion and analysis of both structures and molecular behaviour within living cells. Be-

sides the qualitative evaluation of cells, knowledge on quanti�able features is equally

essential and can provide substantial information about intermolecular evolution

and interaction. A valuable component in quantitative imaging relates to molecular

counting, which accounts for accurate identi�cation of the number of molecules on

a specimen under investigation. In a way, super resolution localisation microscopy

provides such a measurement, by relying on mostly well isolated �uorophores imaged

during a stochastic activation process over a period of time, however a number of fac-

tors can a�ect and complicate counting. Some of the main challenges are associated
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with multiple localisations of �uorophores that undergo blinking (over-counting),

missed active �uorophores due to low signal (under-counting) or generally inaccu-

racy on the localisation outcome, thoroughly discussed by Shivanandan et al. [2014]

and Deschout et al. [2014].

In the past years, quantitative imaging is at the forefront of interest along with the

development of localisation procedures, and here we outline a few of the approaches.

Rollins et al. [2015] introduced a stochastic approach by adapting an aggregated

Markov model to study the blinking dynamics. Instead of a temporal threshold to

distinguish between re-activated �uorophores the kinetic rates are an output of the

process, estimated using the maximum likelihood. Hummer et al. [2016] obtained a

functional form for the number of blinking events independent of the photophysics,

called as model-independent counting procedure. Their approach does not require

any speci�c knowledge about the photophysical properties such as states or kinetic

rates, with the corresponding e�ects described by at most three parameters in the

model, depending on the overlapping (or not) of �uorophores. Nino et al. [2017]

considered the distribution of blinking events from a single �uorophore, and used

Bayesian analysis to obtain an estimate for the number of �uorophores conditional

on the observed blinks. An analytical approach providing quantititavive evalua-

tion of super resolution images introduced by Culley et al. [2018]. Their algorithm,

named as SQUIRREL, requires a reference di�raction limited image associated with

a corresponding super resolution one and a representative resolution scaling function

image. Under the assumption of a spatially invariant PSF on the observed image,

convolution of the super resolution image with the representative resolution function

produces an image similar to the observed di�raction limited image. These di�rac-

tion limited images are used to construct a map of errors which can indicate and

identify defects. Although these approaches provide alternatives to quantitative as-

sessment in super resolution imaging, this is an area still open to improvement, with

molecular counting being of particular importance.
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2.3 Motivation of this research

Super resolution localisation microscopy is capable of allowing inference up to the

molecular scale, a case not feasible with common �uorescence imaging alternatives,

thus processing methods are in the forefront of interest. Knowledge on the number

and positions of di�erently labelled molecules within cells can provide substantial in-

formation and give valuable insight not only about cellular structure, but also about

functionality, clustering and molecular behaviour and interaction. Therefore, pro-

cessing schemes should be considered within the area of quantitative imaging, where

localisation procedures can provide both quanti�able features and measurements

apart from visual super resolution reconstructions. From a mathematical point of

view, one can argue that processing super resolution images involves analysing the

spatial association of molecules within a frame as well as the temporal aspects arising

from the nature of the experiment, including the �uorophore's blinking and bleaching

attributes.

Development of localisation methods showed increasing attention since the evolution

of super resolution localisation imaging. As analysed in Section 2.2.3, a vast variety of

alternatives exist for either �tting PSF models to single and/or multiple light emitters

or non-�tting algorithmic processing approaches. The majority of the �tting based

techniques use the MLE approach, proved to be the most accurate tool for single

molecule localisation in terms of precision. The main requirement is knowledge of

the noise model which associated with a respective PSF accounts for modelling the

light emission of a focused source. The noise model can be usually adjusted to the

properties of the imaging system, however the large computational times needed for

these type of approaches cannot be avoided. This can be a crucial issue when it

comes to imaging living organelles. On the other hand, non-�tting approaches can

substantially improve on computing times, however the fact that there is no explicit

determination of a noise model justi�es the decreased reliability on the molecule's

localisation. In a sense, a combination of the positive attributes from these two
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alternatives would be ideal, but unfortunately a potential not necessarily feasible.

One of the main challenges that arise with high density super resolution data is

the higher probability of having overlapping �uorophores, that is closely distanced

molecules having their PSFs coinciding on some level. On high density data, a larger

amount of molecules is allowed to reach their emission state on a single time point,

a matter that can be either controllable or enforced necessity. Depending on the

nature of the experiment and the sample under investigation, the labelling strategy

might di�er, in some of which the ideal sparse �uorophore blinking can be limited,

forming denser �uorescent frames. In such cases, the chosen model should be able

to accommodate overlapping situations. A few methods have been introduced based

on �tting techniques or alternative approaches as discussed on the previous section,

however this is still an area of development and improvement based on the challenging

nature of the process. In a way, we want a method which can allow localisation based

on the number of photons, translated into registered intensities, of �uorophores from

overlapping PSFs, while taking into consideration the relative noise levels of the

system.

Most of the state-of-the-art alternatives rely their localisation on single molecules,

hence they aim to identify regions of well separated �uorophores before a localisation

scheme is applied. Sometimes, these algorithms focus on pixels with the higher pho-

ton count, as potential pixel containing the molecules, without taking into account

the possibility of this pixel being formed from overlapping PSFs. In some cases,

regions of potentially overlapping �uorophores are discarded, due to the incapabil-

ity of the localisation scheme to be reliable and accurate. Therefore, apart from a

procedure capable of dealing with multiple emitters, a sophisticated way of identi-

fying the regions of interest (ROI) is of high importance. In order to isolate regions

of interest, the majority of methods adopt a �xed mechanism without taking into

consideration the uncertainty within the frame. This can either involve an adaptive,

or not, threshold scheme or deterministic choices and formation of windows using

center of mass or brightest pixels, sometimes associated with a �ltering procedure.
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Furthermore, only a few of the current techniques take into consideration the time

dynamics of the �uorophores associated with a SMLM experiment. These dynam-

ics correspond to the blinking cycles, where a �uorophore can interchange between

excited and dark states before exhaustion, leading to the irreversible photo-bleached

state. In a sense, the realisation of whether or not two closely located light emit-

ters captured on separate time points, or di�erent frames within the stack, represent

the same molecule undergoing a blinking cycle, is key if molecule counting is needed.

Quantitatively, counting relates to gaining knowledge on the distribution of identi�ed

molecules within cells as well the scale of the entire population, but also contributes

to acquiring substantial information about intermolecular evolution and interactions.

Hence, my approach aims at building a model that takes into account the di�raction

of light around an active �uorophore and the possible interactions with those close

by, with the capability to perform both qualitative and quantitative inference.



Chapter 3

Frame-wise image analysis

3.1 Introduction

According to SMLM, an individual image of a specimen under investigation consists

of a sparse number of active molecules, i.e. molecules on the light emission state, as

discussed in Section 2.2. These molecules cannot be directly identi�ed and localised,

since their emission is distributed around a neighbourhood of their true positions,

where further complications may arise if these are in close proximity to each other

having their neighbourhoods overlapping. Regardless of the camera system, every

captured image of the specimen is stored to a pixel-based frame, consisting of mea-

surements from corresponding transformations of the recorded signal.

In this chapter, we present a complete Bayesian model which takes into account the

spatial association of an active molecule within a frame and is capable of resolving

closely located, or overlapping, molecules. In Section 3.2, we introduce the novel Sin-

gle Molecule Pattern (SiMPa) functions, a set of functions describing the detected

emission pattern of an emitting molecule in a predetermined pixel region, based on

the position of the molecule within a pixel. A detailed discussion on the derivation of

the functions is provided, as well a proposed way of their application, with the section

29
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concluding on a pseudo-algorithm of single frame generation using the SiMPa func-

tions (Section 3.2.5). In Section 3.3, we present our individual frame inference based

on the SiMPa functions, via a Bayesian approach to allow coherent propagation of

uncertainty (Section 3.3.2). Inference on positions of the molecules within a frame is

performed through our novel probabilistic pattern-con�guration-realisation scheme

(Section 3.3.3), with the entire Bayesian inference scheme for individual frames sum-

marised on a pseudo-algorithm at the end of the section (Section 3.3.5). The chapter

concludes with an implementation of our individual frame inference scheme on a sin-

gle simulated frame, in Section 3.4, where the output of our procedure is displayed

and analysed.

3.2 Single Molecule Pattern (SiMPa) functions

In this section, the novel Single Molecule Pattern, or SiMPa, functions are introduced.

The need of a tool to describe the behaviour of the detected intensities pattern, or

intensities di�raction, when a molecule is on the active state, i.e. when it is emitting

light, is of high importance. These intensities represent the transformed signal of light

as recorded by the corresponding imaging system. Naturally, an individual intensities

di�raction is a blurry representation of an active molecule, or �uorophore, working as

an emitting point source. The di�raction, commonly described by the Point Spread

Function (PSF), does not immediately allow identi�cation of the precise position

of the point source and especially in the case in which two, or more, �uorophores

are really close to each other having their PSFs overlapping, this becomes even more

challenging. The aim of the SiMPa functions is to provide a formal representation for

the behaviour of the PSF of a �uorophore, according to its relative position within

the lattice. This representation is then used in order to extend this procedure to

more di�cult scenarios.

The SiMPa functions are a set of functions that describe the intensities di�ractionof

an active molecule across a predetermined pixel region, based on its position within



3.2. Single Molecule Pattern (SiMPa) functions 31

the central pixel of that region. The main, naturally derived, assumption of the

SiMPa functions comes from the fact that a �uorophore will be positioned somewhere

within a pixel, as the imaging procedure relies on a pixel grid to record emission. Let

a speci�c active molecule exist somewhere within a pixel. We de�ne an origin within

that pixel to be the center of it. The molecule's position is determined by introducing

two di�erent parameters, an angle θ and a distance r from that origin. These two

parameters de�ne the exact position of the molecule within that pixel with respect

to the predetermined origin and are two of the key components that will control the

behaviour of the intensities di�raction. This simply means that di�erent positions of

a molecule within a pixel will result in di�erent spreads across the same �xed region.

These pixel regions or neighbourhoods, as commonly known in lattices, will contain

all the necessary information needed in order to describe the intensity emission of a

molecule on the spatial domain. In the simplest case of the SiMPa functions, these

neighbourhoods obey the second order neighbourhood structure consisting of a 3×3

area of pixels. We de�ne αk(r, θ, c) ≡ αk, to be the SiMPa functions describing the

intensities di�raction on a predetermined neighbourhood, with k being a neighbour-

ing pixel's index, k = 0, ..., 8. The SiMPa functions αk(r, θ, c) depend on the distance

r on direction θ the molecule lies away from the origin, as well as on a parameter c

accounting for the power of the di�raction on the entire neighbourhood.

A graphical representation of how the SiMPa functions behave within the neigh-

bourhood is presented in Figure 3.2.1. On the left panel of the �gure a lattice of

pixels is drawn representing an image of a focused specimen. A number of molecules,

represented by the black dots, have been placed within pixels under di�erent com-

binations of r and θ in accordance with their corresponding origin. These molecules

are wrapped with black circles which denote the spread of the intensities when they

are active, or emitting light. A speci�c region has been marked, with the dashed

black lines, showing the di�raction along the pixel-wise neighbourhood of a molecule

based on the 3 × 3 pixel area. The central pixel of the neighbourhood, in which

the molecule lies onto, is the pixel marked with the thick black lines. The position
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of the molecule using the distance r and angle θ from the predetermined origin, is

presented on a magni�ed version on the middle part of the �gure. The blue solid lines

d1 and d2 are the �xed distances from the origin and l is the side length of the pixel.

These quantities will contribute to the construction of the SiMPa functions which

are shown on the right panel of the �gure along with the corresponding indexing for

each pixel in the neighbourhood.

x

y l

(0, 0)

r
θ

d2

d1

α1

α2α3α4

α5

α6 α7 α8

α0

Figure 3.2.1: Graphical representation of the Single Molecule Pattern (SiMPa) func-
tions. On the left had side of the �gure a lattice of pixels is shown. The black dots
within, denote di�erent molecules with their di�raction denoted by the surrounding
black circles. The dashed lines denote the neighbourhood of a molecule placed within
the bold pixel at the center of it. The middle part of the �gure contains the center
pixel of the neighbourhood showing the position of the molecule with respect to the
distance r and angle θ. The �xed parameters d1, d2 and l are the two �xed distances
from the origin and the length of the side of the pixel respectively. The right hand
side of the �gure illustrates the spatial con�guration of the SiMPa functions of that
molecule.

The SiMPa functions, as introduced, denote how the intensities of an active molecule

are distributed across a predetermined neighbourhood (3 × 3), according to the

molecule's position within the central pixel. They are derived in a structural way, by

taking into consideration the molecule's distance from the nearest edge of each one of

the neighbouring pixels, while a variety of quantities contribute in order to obtain the

appropriate behaviour. We will require the SiMPa functions to be bounded between
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0 and 1, a choice based on our proposed scheme to use them. The boundaries can

be acquired by creating an upper limit for the power of spread parameter c for all

possible combinations of r and θ. Every aspect will be explained in detail throughout

this chapter.

Firstly, we de�ne the SiMPa functions αk(r, θ, c) ≡ αk, k = 0, ..., 8 as

αk =


c

(
d1 − r cos

[
(k − 1)π

4
+ θ

]
g(R, l)

)
, k = 1, 3, 5, 7

c

((
(rg(R, l))2 + d22 + 2d2skr cos

(
(k + 1)π

4
− θ
)
g(R, l)

)1/2
)
, k = 2, 4, 6, 8

0, k = 0

,

(3.2.1)

where l is the side length of the pixel, where without loss of generality l = 1 units,

and the constants d1 and d2 are the �xed distances of the neighbouring pixels from

the origin with d1 =
l

2
and d2 =

l√
2
. These quantities can be graphically seen in

the middle part of Figure 3.2.1 along with distance r and angle θ. The choice of the

indices is based on the �xed distances d1 and d2 from the predetermined origin. The

even numbers k = 2, 4, 6, 8 represent the corner pixels of the neighbourhood based on

the central pixel , which is indexed with k = 0, while the odd numbers k = 1, 3, 5, 7

denote the adjacent pixels to the central one (Right panel of Figure 3.2.1). The polar

coordinate system is used to measure the molecule's position under the appropriate

restrictions. As r is a distance it should be positive, r ≥ 0, and due to the fact that

we allow the molecule to lie anywhere within the pixel, every combination of r and

θ should satisfy the inequalities r| cos(θ)| < l

2
−R and r| sin(θ)| < l

2
−R where R is

the radius of the molecule. These restrictions imply that the distance r a molecule

can be placed on direction θ is bounded by the size of the molecule, measured by its

radius R, with respect to the pixel's side length.

Regarding the quantity R, we make the assumption that the projection of the
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molecule on the 2-dimensional space is a circular object, with the parameter R denot-

ing its radius. We de�ne a function g(R, l) which accounts for identical performance

of the SiMPa functions for di�erent choices of the size of the molecule. It is multiplied

with the chosen distance r in order to achieve this similarity. This function, g(R, l),

takes into account the relative side length of the pixel l and the radius of the molecule

R and de�ned as g(R, l) =
1

1− 2R/l
. When the size of the molecule increases (big-

ger radius) the distance r it can lie within the pixel decreases and g(R, l) works as a

correction mechanism to obtain the same di�raction along the neighbouring pixels.

A more detailed discussion can be found in Section 3.2.3.

Based on the position of the molecule within the central pixel its minimum distance

from the neighboring pixels will be obtained. For our calculation without loss of

generality, we assume that the molecule is a single point, i.e. R = 0, therefore it is

straightforward to get g(R, l) = 1. Let the quantities AO and BO from the SiMPa

functions in Equation (3.2.1) to be:

AO = d1 − r cos
[
(k − 1)π

4
+ θ

]
BO =

(
r2 + d22 + 2d2skr cos

(
(k + 1)π

4
− θ
))1/2

. (3.2.2)

In order to construct the SiMPa functions the minimum distances of the molecule

from the neighboring pixels need to be obtained. These distances, presented in

Figure 3.2.2, correspond to the closer point of a neighbouring pixel to the molecule.

On the left hand side of the �gure the minimum distances of the molecule from the

adjacent pixels to the central one are shown, while on the right panel of the �gure the

minimum distances of the molecule from the corner pixels the central one. For the

adjacent pixels with k = 1, 3, 5, 7, we calculate the distances l1, l3, l5 and l7, as shown

in the Figure 3.2.2 (a), by using polar coordinates and basic trigonometric identities

and shifts. The minimum distances on that case are the ones perpendicular to the
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pixel, therefore:

l1 =
l

2
− r cos(θ)

l3 =
l

2
+ r cos(θ) =

l

2
− r sin(−θ) = l

2
− r cos

(π
2
+ θ
)

l5 =
l

2
+ r cos(θ) =

l

2
− r cos(θ + π)

l7 =
l

2
− r sin(θ) = l

2
− r cos

(π
2
− θ
)
=
l

2
− r cos

(
3π

2
+ θ

)
.
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Figure 3.2.2: Minimum distances of a molecule placed r units with direction θ away
from the origin from the neighbouring pixels. The distances are denoted with the blue
solid lines. (a) Minimum distances of the molecule from the adjacent pixels to the
central pixel, l1, l3, l5 and l7. (b) Minimum distances of the molecule from the corner
pixels of the neighbourhood, l2, l4, l6 and l8.

Putting all of them together by allowing the index of each distance to be k, with

k = 1, 3, 5, 7, we obtain lk = d1−r cos
[
(k − 1)π

4
+ θ

]
≡ AO in Equation (3.2.2), with

k = 1, 3, 5, 7 and d1 = l/2.
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In a similar manner we derive the distances l2, l4, l6 and l8 for the corner pixels

with k = 2, 4, 6, 8, as shown in Figure 3.2.2 (b) using polar coordinates. We apply

Pythagoras theorem along with the sum to product identities for the cosine functions

and some basic co-functions. Only the calculation of the distance l2 is shown while

the calculations of l4, l6 and l8 follow similar steps.

l22 =

(
l

2
− r cos θ

)2

+

(
l

2
+ r sin θ

)2

=
l2

2
+ r2 − rl(cos θ − sin θ)

=
l2

2
+ r2 − rl

(
cos θ − cos

(π
2
− θ
))

=
l2

2
+ r2 + 2rl sin

(π
4

)
sin
(
θ − π

4

)
=

l2

2
+ r2 +

√
2rl cos

(
3π

4
− θ
)
.

Therefore, l2 =
(
r2 + d22 + 2d2r cos

(
3π

4
− θ
))1/2

, with d2 = l/
√
2. Similarly,

l24 =

(
l

2
+ r sin θ

)2

+

(
l

2
+ r cos θ

)2

⇒ l4 =
(
r2 + d22 + 2d2r cos

(π
4
− θ
))1/2

l26 =

(
l

2
+ r cos θ

)2

+

(
l

2
− r sin θ

)2

⇒ l6 =

(
r2 + d22 − 2d2r cos

(
3π

4
− θ
))1/2

l28 =

(
l

2
− r cos θ

)2

+

(
l

2
− r sin θ

)2

⇒ l4 =
(
r2 + d22 − 2d2r cos

(π
4
− θ
))1/2

.

Similarly, we adopt a common index k with k = 2, 4, 6, 8, which sums up these

functions into lk =

(
r2 + d22 + 2d2skr cos

(
(k + 1)π

4
− θ
))1/2

≡ BO in Equation

(3.2.2), with k = 2, 4, 6, 8 and d2 = l/
√
2. The quantity sk appropriately alters the

sign of the cosine function with sk = +1,−1,+1,−1 for k = 2, 4, 6, 8 respectively.
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The parameter c controls the power of the molecule's di�raction. This practically

means that it describes the level of brightness or darkness the entire neighbourhood

will have. High values of c imply that the neighbouring pixels will have higher

values, since αk(r, θ) is boosted when multiplied with c, hence the SiMPa functions

have larger in�uence than when c is small. In terms of intensities as we discuss next,

large values of c correspond to a faster intensity decay within the neighbourhood

compared to smaller ones. The SiMPa functions are bounded between 0 and 1,

achievable by bounding c with 0 < c ≤ 1/2d2, when R = 0 without loss of generality.

The derivation of the boundaries can be found in Section 3.2.4.

Next, we discuss our proposed way to apply the SiMPa functions. This involves

the introduction of a parameter I, which we call the single event intensity. This

parameter has been considered based on the natural implementation of the imaging

technique. During the set up of the imaging procedure a baseline value is chosen to

be the background intensity. When a �uorophore is active, its emission intensity can

be related to the background one in the sense of separating the purely background

values from the higher ones. Practically, we consider the emission intensity to be

proportional to the background or vice versa. The emission intensity is what we call

the single event intensity which we denote with I.

The SiMPa functions, αk, k = 0, ..., 8, are used with respect to the single event

intensity I in a way that they specify the appropriate proportions of I each pixel in

the neighbourhood should have. This will be altered when di�erent positions of a

molecule are applied, according to distances r and angles θ from the predetermined

origin. By construction the SiMPa functions are bounded between 0 and 1, 0 ≤
αk(r, θ, c) ≤ 1, where values close to 0 imply a high in�uence from the choice of r

and θ and values close to 1 a small one. Translating this in�uence into intensities

we allow pixels highly a�ected by (or closer to) the position of the molecule to have

a higher intensity than the pixels less in�uenced (or further away). Therefore, the

appropriate proportions of the single event intensity I for each one of the pixels in the

neighbourhood according to the SiMPa functions are summarised by the quantities
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(1 − αk(r, θ, c))I, k = 0, ..., 8. An illustration for a single molecule's di�raction is

presented in Figure 3.2.3. On the left hand side of that �gure a molecule is placed

on a distance r1 on direction θ1 from the origin. On the right panel of the �gure,

the SiMPa functions are evaluated based on its position, creating the intensities

di�raction for the entire neighbourhood with respect to the single event intensity I.

x

y

(0, 0)

r1 θ1 −→ (1−α0(r1,θ1))I (1−α1(r1,θ1))I

(1−α2(r1,θ1))I(1−α3(r1,θ1))I(1−α4(r1,θ1))I

(1−α5(r1,θ1))I

(1−α6(r1,θ1))I (1−α7(r1,θ1))I (1−α8(r1,θ1))I

Figure 3.2.3: Proposed use of SiMPa functions. On the left hand side of the �gure a
molecule has been placed on a distance r1 with angle θ1 from the origin. On the right
hand side an implementation is presented, with the SiMPa functions constructing the
intensities di�raction with respect to r1 and θ1 and the single event intensity I.

A numeric illustration of the proposed use of the SiMPa functions according to the

single event intensity I can be seen in Figure 3.2.4. A number of r and θ combina-

tions show the e�ect of altering the intensities throughout the neighbourhood. On

part (a) of the �gure, a molecule is placed at the center of the pixel, origin of the

SiMPa functions with r = θ = 0, showing the symmetric di�raction along the neigh-

bourhood. Regarding a di�erent combination of r and θ, on part (d) for instance, a

molecule is placed almost all the distance away from the origin on direction θ = 3π/2.

Comparing to part (a), the closest neighbouring pixels are boosted, in term of hav-

ing higher intensity values, whereas the furthest away ones consist of lower valued
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intensities.
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Figure 3.2.4: Evaluation of the SiMPa functions for di�erent combinations of r and
θ. The side length of the pixel is l = 1 units which mean that each pixel has dimension
1× 1. The radius R of the molecule is R = 0.02, the single event intensity is I = 100
and the parameter c = 0.4 which controls the power of the di�raction. The results
from the SiMPa functions are rounded to the closest integer. Four di�erent positions
of the molecule are used (a) The molecule is centred at the origin of the pixel , r = 0
and θ = 0. (b) The molecule is placed on a distance r = 0.45 with angle θ = π/4.
(c) The molecule is placed on a distance r = 0.35 with θ = 9π/8. (d) The molecule is
placed on a distance r = 0.45 with θ = 3π/2.

3.2.1 Special cases of the SiMPa functions

In this section we present the special cases of the SiMPa functions regarding positions

of molecules that do not fall within a pixel. We address two individual scenarios,
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which can occur when the true position of the molecule is in correspondence with one

of the boundaries of the SiMPa functions. The �rst case corresponds to the molecule

being located on an edge of the central pixel, while the second lying exactly on an

intersection of two edges. The former accounts for a molecule of radius R having its

center precisely placed on an edge of the central pixel, while the latter exactly on

the intersection of two edges. Both cases will be presented in detail, however our

proposed inference, presented later in Section 3.3, relies only on the general form of

the SiMPa functions in Equation (3.2.1). The main reason for this decision is the fact

that the behaviour of the di�raction in either of these cases is embedded within the

general SiMPa functions if the maxima for the distance r is chosen for the appropriate

directions, that is r = (l/2 − R)/| cos θ| or r = (l/2 − R)/| sin θ|. Additionally, the
probability of having a molecule at exactly these points of the continuum can be

considered practically zero.

Molecule on an edge of the central pixel

Here, we discuss the case where the molecule lies on one of the edges of the central

pixel of the general SiMPa functions. When this scenario takes place, the intensities

di�raction is symmetrically distributed with respect to the edge. On Figure 3.2.5

a graphical representation can be seen, including all the quantities needed in order

to de�ne the functions. The intensities di�raction is considered to spread out on

the twelve neighbouring pixels, hence the indexing k = 1, ..., 12, with the functions

denoted with αEk (r, θ, c) ≡ αEk . On the left panel of the �gure, a molecule has been

placed on the origin of this special case which has been de�ned to be the median of

the edge. The molecule can lie anywhere across the edge therefore the only possible

directions with respect to the origin are θ =
π

2
or θ =

3π

2
. On the right panel, an

illustration of a molecule is presented, placed on a distance r1 from the origin with

direction θ1 = π/2.
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Figure 3.2.5: Special case when a molecule lies on one of the edges of the central pixel
of the SiMPa functions. On the left panel of the �gure, the distribution of the functions
is shown along with the �xed distances from the predetermined origin, whereas on the
right an illustration is shown with a molecule placed at a distance r1 on direction
θ1 = π/2 from the origin.

The functions αEk (r, θ, c) ≡ αEk , k = 1, ..., 12 describe the way the intensities of the k

neighbouring pixels will be distributed with respect to the molecule's position along

the edge. As introduced in the SiMPa functions, the position depends on a distance

r under two possible directions θ =
π

2
or θ =

3π

2
away from the origin. In agreement,

we require the functions to be bounded 0 ≤ αEk ≤ 1, and we de�ne them as:

αEk =



c
(
d1 − (−1)kr cos

(π
2
− θ
)
g(R, l)

)
, for k = 1, 2, 3, 4

c

([
d23 + (rg(R, l))2 − (−1)krl cos

(π
2
− θ
)
g(R, l)

]1/2)
, for k = 5, 6, 7, 8

c (d4 − r cos(π − θ)g(R, l)) , for k = 9, 10

0, for k = 11, 12

,(3.2.3)

where the quantities used are similar to the ones used in the SiMPa functions. The

constants d1 =
l

2
, d4 = l and d3 =

√
5l

2
are the �xed distances of the neighbouring

pixels from the origin, with l = 1 units denoting the side length of the pixels.
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As the molecule can lie anywhere along the edge of the pixel, the distance r is

restricted between 0 ≤ r <
l

2
− R where R is the radius of the molecule. The

function g(R, l) =
1

1− 2R/l
is the mechanism accounting for identical performance

of the di�raction regardless of the size of the molecule (details in Section 3.2.3),

and is multiplied with the distance r. The parameter c controls the power of the

di�raction with 0 < c ≤ 1/2d2, when without loss of generality R = 0 (details can

be found in Section 3.2.4).

In correspondence to the SiMPa functions, we adopt a cosine function to describe

the periodic behaviour of the di�raction in terms of the directions. In order to have

agreement, the co-function identity sin(θ) = cos
(π
2
− θ
)
will be used as a tool.

Without loss of generality, we assume the molecule is a point, i.e. R = 0, leading

to g(R, l) = 1. Let the quantities AO, BO and CO, from αEk in Equation (3.2.3) with

g(R, l) = 1,

AO = d1 − (−1)kr cos
(π
2
− θ
)

BO =
[
d23 + r2 − (−1)krl cos

(π
2
− θ
)]1/2

CO = d4 − r cos(π − θ). (3.2.4)

On Figure 3.2.6, the molecule's minimum distance from the neighbouring pixels

is presented. For pixels with k = 2, 4 and k = 1, 3 the distances are l2 and l1

respectively, easily calculated as l1 = l/2 + r sin θ and l2 = l/2 − r sin θ with the

use of polar coordinates. Using the co-function identity we get the quantity AO.

The appropriate sign is assigned by the term (−1)k for k = 1, 2, 3, 4. Regarding the

neighbouring pixels with k = 9, 10, the molecule's minimum distance l9 is constant

and equal to d4 = l with respect to r and θ = π/2 or 3π/2. Therefore, for agreement

across our de�nitions we use r cos(π − θ) which is equal to 0 for θ = π/2 or 3π/2 as

in CO. For the distances l5 and l8 for pixels with k = 5, 6, 7, 8 we have:
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l5 =

(
l

2
+ r sin θ

)2

+ l2 ⇒ l7 =

(
5l2

4
+ r2 + rl

)1/2

l8 =

(
l

2
− r sin θ

)2

+ l2 ⇒ l7 =

(
5l2

4
+ r2 − rl

)1/2

.

These quantities can be summarised as lk =
[
d23 + r2 − (−1)krl cos

(π
2
− θ
)]1/2

, k =

5, 6, 7, 8, as in BO with d3 = (
√
5l)/2. The cosine function cos

(π
2
− θ
)
can only take

the values 1 or -1 when θ = π/2 or 3π/2 while the term (−1)k applies the appropriate
sign for k = 5, 6, 7, 8.
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Figure 3.2.6: Minimum distances on the special case where the molecule lies in on of
the edges of the central pixel. The molecule is placed on an edge of the central pixel.
The blue solid lines named by lk, k = 1, 2, 5, 8, 9, denote the minimum distances of the
molecule from the respective neighboring pixels.

We propose to use this special case of the SiMPa functions in the exact same way

as described previously, according to the single event intensity I. The functions
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αEk , k = 1, ..., 12 will therefore describe the proportion of I each pixel in the neigh-

bourhood should have. As 0 ≤ αEk (r, θ, c) ≤ 1 we can calculate the quantities

(1 − αEk (r, θ, c))I, k = 1, ..., 12, for a speci�c combination of r and θ in order to

obtain the behaviour of the entire neighbourhood. An evaluation for di�erent com-

bination of r and θ can be in Figure 3.2.7, where we use I = 100 and c = 0.4.
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Figure 3.2.7: Implementation of special case when the molecule is placed on an edge
of a pixel. The side length of the pixel is l = 1 units which mean that each pixel has
dimension 1×1. The radius R of the molecule is R = 0.02, the single event intensity is
I = 100 and the power of spread parameter c = 0.4. The results from this special case
are rounded to the closest integer. Four di�erent positions of the molecule are used (a)
r = 0 and θ = 0. (b) r = 0.15 and θ = π/2. (c) r = 0.3 and θ = π/2. (d) r = 0.47 and
θ = 3π/2.



3.2. Single Molecule Pattern (SiMPa) functions 45

Molecule on the intersection of two edges of the central pixel

Here, we address the case where a molecule lies exactly on the intersection of two

edges of the central pixel of the SiMPa functions. This special case is the simplest

one as the molecule cannot be placed anywhere but the intersection of the edges.

Therefore, a predetermined position of the molecule need to be obtained. We assume

this position has r = θ = 0 in order to have agreement with our de�nitions, hence

the intersection works as the origin of the functions. The intensities di�raction is

distributed along the sixteen neighbouring pixels and can only be altered by di�erent

choices of the power of di�raction parameter c. The proportion of the single event

intensity I will be described by the intersection case functions aISk (c) ≡ aISk , k =

1, ..., 16 and will be used in exactly the same way as the SiMPa functions (and the

edge special case). We similarly require 0 ≤ aISk ≤ 1, achieved by bounding c between

0 < c ≤ 1/2d2 (details in Section 3.2.4). The intersection special case can be seen

in Figure 3.2.8 along with the proposed use of the functions using the single event

intensity I. We de�ne this special case with the functions,

aISk =


cd4, for k = 1, ..., 8

cd5, for k = 9, ..., 12

0, for k = 13, ..., 16,

, (3.2.5)

where d4 = l and d5 =
√
2l with l = 1 units to be the side length of the pixel. As can

be seen by the aISk , k = 1, ..., 16 functions there is no contribution of r and θ on this

case as the molecule has a �xed position exactly on the intersection of the edges.
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Figure 3.2.8: Special case when a molecule lies on the intersection of two edges of
the central pixel. On the left panel (a) of the �gure the origin of this case can be seen
along with the �xed distances d4 and d5 from the neighboring pixels. The appropriate
indexing of the αISk , k = 1, ..., 16 is presented. On the right panel (b) of the �gure the
use of these functions in terms of the single event intensity I is implemented.

3.2.2 Extended Single Molecule Pattern (SiMPaX) functions

In this section the extended single molecule pattern (SiMPaX) functions are pre-

sented, which are an extension of the single molecule pattern (SiMPa) functions in

terms of the number of neighbouring pixels. We assume the intensities di�raction

spreads along a larger neighbourhood than the 3×3 pixel region we introduced in the
SiMPa functions. The molecule is still allowed to exist anywhere within the central

pixel and its position is measured based on a distance r and direction θ from the cen-

ter of the central pixel (same origin as in SiMPa functions). The SiMPaX functions

allow the neighbourhood to be a 5× 5 pixel region, which can be graphically seen in

Figure 3.2.9. The exact same usage concept is considered, by introducing the single

event intensity I, with the SiMPaX functions denoting the proportion of I each pixel
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in the neighbourhood is assigned.
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Figure 3.2.9: Extended Single Molecule Pattern (SiMPaX) functions. The molecule
can lie anywhere within the pixel and the intensities di�raction spread along the 5 × 5
pixel neighbourhood. The distribution of the SiMPaX functions ak, k = 0, ..., 24 in the
neighbourhood, is shown, with the origin being the center of the pixel, The quantities
d1, d2, d6 and d7 are the �xed distances from the origin.

The extended single molecule pattern (SiMPaX) functions are denoted by ak(r, θ, c) ≡
ak, k = 0, ..., 24 with the indexing chosen according to the �xed distances of each

neighbouring pixel from the origin. The appropriate distribution of the functions

can be seen in Figure 3.2.9 along with the �xed distances d1, d2, d6, d7 and d8 from

the origin. We similarly require 0 ≤ ak ≤ 1 and we de�ne the SiMPaX as,
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ak =



c

(
d1 − r cos

(
(k − 1)π

4
+ θ

)
g(R, l)

)
, k = 1, 3, 5, 7

c

((
(rg(R, l))2 + d22 + 2d2skr cos

(
(k + 1)π

4
− θ
)
g(R, l)

)1/2
)
, k = 2, 4, 6, 8

c

(
d6 − r cos

(
(k − 1)π

4
+ θ

)
g(R, l)

)
, k = 9, 11, 13, 15

c

([
(rg(R, l))2 + d28 + 3

√
2lskr cos

(
(k + 1)π

4
− θ
)
g(R, l)

]1/2)
, k = 10, 12, 14, 16

c
([

(rg(R, l))2 + d27 + (−1)klr cos (3 cos θ − s?k sin θ) g(R, l)
]1/2)

, k = 17, 18, 19, 20

c
([

(rg(R, l))2 + d27 + (−1)klr cos (cos θ − s?k3 sin θ) g(R, l)
]1/2)

, k = 21, 22, 23, 24

0, k = 0

,

(3.2.6)

where all the parameters are similar to the ones in SiMPa functions from Equation

3.2.1. Recalling from Section 3.2, the constant l = 1 units denotes the side length

of the pixel and R is the radius of the molecule with R < l/2. We require r ≥ 0

with r| cos(θ)| < l

2
−R and r| sin(θ)| < l

2
−R in order for the molecule to lie within

the central pixel. The constants d1, d2, d6, d7 and d8 are the �xed distances of the

neighbouring pixels from the origin with d1 =
l

2
, d2 =

l√
2
, d6 =

3l

2
, d7 =

√
10l

2
and

d8 =

√
18l

2
. The function g(R, l) is the mechanism to maintain similar performance

regardless of the size of the molecule with respect to the pixels' side length, g(R, l) =
1

1− 2R/l
(Section 3.2.3). The parameter c controls the power of di�raction across

the entire neighbourhood and should obey the restriction 0 < c ≤ 1
/
(d8 + d2) when

R = 0 without loss of generality (Section 3.2.4).

Accordingly to the SiMPA functions, the minimum distance of the position of the

molecule within the central pixel and its neighbouring pixels is obtained. For the

matter of calculations, we assume that R = 0 hence g(R, l) = 1, without loss of

generality. Let the quantities AO?, BO?, CO? and DO? from the SiMPaX functions in

Equation (3.2.6) to be:
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AO? = d6 − r cos
(
(k − 1)π

4
+ θ

)
BO? =

[
r2 + d28 + 3

√
2lskr cos

(
(k + 1)π

4
− θ
)]1/2

CO? =
[
r2 + d27 + (−1)klr cos (3 cos θ − s?k sin θ)

]1/2
DO? =

[
r2 + d27 + (−1)klr cos (cos θ − s?k3 sin θ)

]1/2
. (3.2.7)

All these quantities are obtained in a similar manner to the SiMPa functions. We

assume a molecule lies in the central pixel on a distance r units away from the

origin with direction θ. We denote the minimum distance of the molecule from the

neighbouring pixels with lk where k is the respective index of the pixel. The di�erent

distances are presented in Figure 3.2.10.
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α13 α9x
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l14 l16
l15
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l13 l9

(a)
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α24 α23
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l20

l24 l23

l19

(b)

Figure 3.2.10: Minimum distances of the neighboring pixels of a molecule placed r
units on direction θ away from the origin. The distances are denoted with the orange
and blue solid lines from the respective pixels. (a) Minimum distances lk of the molecule
from the corner pixels (blue solid lines) and from pixels with k = 9, 11, 13, 15 (orange
solid lines). (b) Minimum distances lk of the molecule from neighboring pixels with
k = 17, 18, ..., 24 (blue solid lines).
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Regarding the neighbouring pixels with indexes k = 9, 11, 13, 15, the distances lk,

shown with the orange solid lines in part (a) of the Figure 3.2.10, are obtained using

polar coordinates,

l9 =
3l

2
− r cos(θ)

l11 =
3l

2
+ r cos(θ) =

3l

2
− r sin(−θ) = 3l

2
− r cos

(π
2
+ θ
)

l13 =
3l

2
+ r cos(θ) =

3l

2
− r cos(θ + π)

l15 =
3l

2
− r sin(θ) = 3l

2
− r cos

(π
2
− θ
)
=

3l

2
− r cos

(
3π

2
+ θ

)
,

which can be summed up in lk = d6−r cos
(
(k − 1)π

4
+ θ

)
≡ AO? in Equation (3.2.7)

when k = 9, 11, 13, 15, with d6 =
3l

2
.

In order to obtain the minimum distances lk when k = 10, 12, 14, 16, presented with

the blue solid lines in part (a) of Figure 3.2.10, we apply Pythagoras theorem along

with the sum-to-product identity and some basic co-functions. Analytically what we

get for l10,

l210 =

(
3l

2
− r cos θ

)2

+

(
3l

2
+ r sin θ

)2

=
18l2

4
+ r2 − 3rl(cos θ − sin θ)

=
18l2

4
+ r2 − 3rl

(
cos θ − cos

(π
2
− θ
))

=
18l2

4
+ r2 − 3rl

(
−2 sin

(π
4

)
sin
(
θ − π

4

))
=

18l2

4
+ r2 + 3

√
2rl cos

(
3π

4
− θ
)
.
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Therefore, l10 =
(
r2 + d28 + 3

√
2rl cos

(
3π

4
− θ
))1/2

, with d8 =
√
18l/2. Similarly,

l212 =

(
3l

2
+ r sin θ

)2

+

(
3l

2
+ r cos θ

)2

⇒ l12 =
(
r2 + d28 + 3

√
2rl cos

(π
4
− θ
))1/2

l214 =

(
3l

2
+ r cos θ

)2

+

(
3l

2
− r sin θ

)2

⇒ l14 =

(
r2 + d28 − 3

√
2rl cos

(
3π

4
− θ
))1/2

l216 =

(
3l

2
− r cos θ

)2

+

(
3l

2
− r sin θ

)2

⇒ l16 =
(
r2 + d28 − 3

√
2rl cos

(π
4
− θ
))1/2

.

Using a common index k with k = 10, 12, 14, 16 we summarise these functions into

lk =

(
r2 + d28 + 3

√
2lskr cos

(
(k + 1)π

4
− θ
))1/2

≡ BO? in Equation (3.2.7) with

k = 10, 12, 14, 16 and d8 =
√
18l/2. The quantity sk is the same declaring the

appropriate sign of the cosine function with sk = +1,−1,+1,−1 for k = 10, 12, 14, 16

respectively.

Finally, the minimum distances from pixels with k = 17, ..., 24, shown with the blue

solid lines in part (b) of Figure 3.2.10, are calculated as:

l217 =

(
3l

2
− r cos θ

)2

+

(
l

2
+ r sin θ

)2

=
10l2

4
+ r2 − rl(3 cos θ − sin θ)

l218 =

(
3l

2
+ r cos θ

)2

+

(
l

2
+ r sin θ

)2

=
10l2

4
+ r2 + rl(3 cos θ + sin θ)

l219 =

(
3l

2
− r cos θ

)2

+

(
l

2
− r sin θ

)2

=
10l2

4
+ r2 − rl(3 cos θ + sin θ)

l220 =

(
3l

2
+ r cos θ

)2

+

(
l

2
− r sin θ

)2

=
10l2

4
+ r2 + rl(3 cos θ − sin θ)

l221 =

(
l

2
− r cos θ

)2

+

(
3l

2
+ r sin θ

)2

=
10l2

4
+ r2 − rl(cos θ − 3 sin θ)
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l222 =

(
l

2
+ r cos θ

)2

+

(
3l

2
+ r sin θ

)2

=
10l2

4
+ r2 + rl(cos θ + 3 sin θ)

l223 =

(
l

2
− r cos θ

)2

+

(
3l

2
− r sin θ

)2

=
10l2

4
+ r2 − rl(cos θ + 3 sin θ)

l224 =

(
l

2
+ r cos θ

)2

+

(
3l

2
− r sin θ

)2

=
10l2

4
+ r2 + rl(cos θ − 3 sin θ).

Grouping the distances lk of pixels with k = 17, 18, 19, 20 and the ones with k =

21, 22, 23, 24 we end up with lk =
[
r2 + d27 + (−1)klr cos (3 cos θ − s?k sin θ)

]1/2 ≡ CO?

when k = 17, 18, 19, 20 and lk =
[
r2 + d27 + (−1)klr cos (cos θ − s?k3 sin θ)

]1/2 ≡ DO?

when k = 21, 22, 23, 24 in Equation (3.2.7), with s?k = +1,−1,−1,+1 and d7 =

√
10l

2
.

3.2.3 Function of relative side length of pixel l and molecule's

radius R, g(R, l)

In this section, we focus on the function of the relative side length of the pixel l and

the radius of the molecule R which we de�ned as g(R, l) =
1

1− 2R/l
. This function

works as a correction mechanism to maintain identical performance of the SiMPa

functions as the size of the molecule is di�erent. We make the assumption that a

molecule's projection on the 2-dimensional space is a circular object, therefore we

measure its size by its radius. It should be noted that this is not a necessity and

can be relaxed, by using corresponding appropriate function g. In order to achieve

identical behaviour of the SiMPa functions, we want robust performance no matter

what the size of the molecule is, a case achieved by taking into consideration the side

length of the pixel.
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Figure 3.2.11: A molecule with di�erent radius placed on the same position according
to the SiMPa functions. On the left panel the molecule is placed on a distance r = r1
units away from the origin with an angle θ = π/4, which is the maximum it can lie on
in that direction having this size. On the right panel a larger molecule is placed on a
distance r = r2 units away from the origin on the same angle, which is again the larger
distance it can lie accordingly to this angle and its size.

In Figure 3.2.11, two molecules with di�erent radius can be seen placed away from

origin on distances r1 and r2 with same direction θ = π/4. These distances, with

r1 > r2, represent the maximum distances the molecules can lie onto, under direction

θ = π/4 and their corresponding sizes. Therefore, we can state that there is a

dependency on the molecule size and the maximum distance it can be placed in

order to remain within the central pixel. This can also be seen by the restrictions on

di�erent choices of r and θ, where we require r| cos(θ)| ≤ l

2
−R and r| sin(θ)| ≤ l

2
−R.

We introduce the correction function g(R, l), which is multiplied with the distance r

in the SiMPa functions, achieving equivalent performance regardless of the molecule's

size. We de�ne this function to be the ratio of the maximum distance a molecule

can lie onto within a pixel in a arbitrary chosen direction, when its radius is R =

0 (single point), over the maximum distance when its radius is R (a circle with

radius R), that is g(R, l) =
maxθ{r}R=0

maxθ{r}R=R

. The side length of the pixel cannot be

immediately identi�ed but g(R, l) can be expressed as a function of l and R. As r and
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θ are continuous parameters this quantity can be evaluated in a number of di�erent

combinations. However this ratio will be the same no matter what the choice of r

and θ is due to the restrictions described above. Therefore,

g(R, l) =
maxθ{r}R=0

maxθ{r}R=R

=
(l/2)

/
max{| cos(θ)|, | sin(θ)|}

(l/2−R)
/
max{| cos(θ)|, | sin(θ)|}

=
l/2

l/2−R

⇒ g(R, l) =
1

1− 2R/l
, R < l/2. (3.2.8)

This function g(R, l) in Equation (3.2.8) does not dependent either on the angle θ

or the distance r but only on the molecule's size and the side length of the pixel.

3.2.4 Power of di�raction parameter c

In this section, we focus on the di�raction parameter c and form an analysis to study

the limitations existing on its choice. As discussed on Section 3.2, the role of the

SiMPa functions is to specify the proportion of a single event intensity I each pixel in

the predetermined neighborhood is assigned. Therefore, we require these functions to

be bounded, 0 ≤ ak(r, θ, c) ≤ 1, so when the quantities (1−ak(r, θ, c))I are obtained,
they contain the respective intensities for each pixel with k = 0, ..., 8.

The SiMPa functions, as in Equation (3.2.1), depend on the relative position of a

molecule with respect to the predetermined origin, described by the distance r and

direction θ, which is multiplied by the di�raction parameter c. The role of this

parameter is two-fold. It transforms the position of the molecule into a proportion

and adjusts the power of the di�raction across the neighbourhood. Higher values of c

boost the SiMPa functions, hence indicate a faster decay of the intensities di�raction

within the neighbourhood, in contrast to lower values corresponding to a slower

decay. In order for our requirement 0 ≤ ak(r, θ, c) ≤ 1 to hold, c should be bounded,
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since we allow a molecule to lie anywhere within the central pixel. The boundary will

be acquired using the higher distance a molecule can have from every neighbouring

pixel, when it is placed on the furthest distance from the origin under the respective

angle. We will work with the SiMPaX functions as the SiMPa functions are a subset

of them, therefore by recalling from Equation (3.2.6),

αk =



c

A1︷ ︸︸ ︷(
d1 − r cos

(
(k − 1)π

4
+ θ

)
g(R, l)

)
, k = 1, 3, 5, 7

c

A2︷ ︸︸ ︷((
(rg(R, l))2 + d22 + 2d2skr cos

(
(k + 1)π

4
− θ
)
g(R, l)

)1/2
)
, k = 2, 4, 6, 8

c

A3︷ ︸︸ ︷(
d6 − r cos

(
(k − 1)π

4
+ θ

)
g(R, l)

)
, k = 9, 11, 13, 15

c

A4︷ ︸︸ ︷([
(rg(R, l))2 + d28 + 3

√
2lskr cos

(
(k + 1)π

4
− θ
)
g(R, l)

]1/2)
, k = 10, 12, 14, 16

c

A5︷ ︸︸ ︷([
(rg(R, l))2 + d27 + (−1)klr cos (3 cos θ − s?k sin θ) g(R, l)

]1/2)
, k = 17, 18, 19, 20

c

A6︷ ︸︸ ︷([
(rg(R, l))2 + d27 + (−1)klr cos (cos θ − s?k3 sin θ) g(R, l)

]1/2)
, k = 21, 22, 23, 24

0, k = 0

,

where d1 =
l

2
, d2 =

l√
2
, d6 =

3l

2
, d7 =

√
10l

2
and d8 =

√
18l

2
. From the inequality

0 ≤ αk(r, θ, c) ≤ 1 we get that:

0 ≤ αk(r, θ, c) ≤ 1 ⇒ 0 ≤ c ≤ min{1/A1, 1/A2, 1/A3, 1/A4, 1/A5, 1/A6}

⇒ 0 ≤ c ≤ 1/max{A1, A2, A3, A4, A5, A6}. (3.2.9)

Therefore, we are seeking for the combination of r and θ that maximises the quantities
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A1, A2, ..., A6. Then the upper bound for the parameter c is the value that minimises

the quantities 1/A1, 1/A2, ..., A/A6. Without loss of generality, we will search for

this combination of r and θ on the �rst quadrant of our coordinate system, while

additionally assume that the molecule is a single point, hence its radius is R = 0,

leading to g(R, l) = 1. As the SiMPa functions take into consideration the distances

of the molecule from all the neighbouring pixels in the predetermined region, the

maximum value of A1, A2, ..., A6 will be obtained when the molecule is placed the

furthest away from the origin. This corresponds to the highest value r can take under

the appropriate direction θ. According to the restrictions, every combination of r

and θ should satisfy:

r| cos θ| < l/2−R & r| sin θ| < l/2−R R=0⇒ r <
l/2

| cos θ|
& r <

l/2

| sin θ|

⇒ r < min

{
l/2

| cos θ|
,
l/2

| sin θ|

}
,

which means that the maximum value the distance r can take will be obtained when

this boundary is maximised for all possible values of θ, i.e

rmax < max
∀θ

{
min

{
l/2

| cos θ|
,
l/2

| sin θ|

}}
.

By construction of the SiMPa functions, the origin is de�ned to be the center of the

pixel and the molecule is allowed to lie anywhere within that pixel (central pixel).

This implies the maximum distance rmax is obtained when the molecule is placed all

the way up the diagonal line from the origin, as shown in Figure 3.2.12. In terms of

our coordinate system, this is achieved when θ = π/4, therefore

r < max
θ=π/4

{
min

{
l/2

| cos θ|
,
l/2

| sin θ|

}}
= l/
√
2⇒ rUL = l/

√
2.
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Figure 3.2.12: A molecule is placed at the maximum distance on the diagonal line
from the origin of the SiMPaX functions, based on the �rst quadrant of the coordinate
system. This is achieved when θ = π/4.

We evaluate the quantities A1, A2, A3, A4, A5 and A6, by applying rUL under the

direction of θ = π/4 for every k on each quantity respectively. According to Equation

(3.2.9), we are interested in the maximum of these quantities therefore,

max(A1)
θ=π/4,k=1,3,5,7

= d1 + rULmax
θ=π/4

{
− cos

(
(k − 1)π

4
+ θ

)}
= l/2 + (l/

√
2)0.7071

l=1
= 1,

max(A2)
θ=π/4,k=2,4,6,8

=

(
rUL

2 + d22 + 2d2rULmax
θ=π/4

{
sk cos

(
(k + 1)π

4
− θ
)})(1/2)

=
(
(l/
√
2)2 + (l/

√
2)2 + 2(l/

√
2)2
)(1/2)

= 2(l/
√
2)

l=1
= 1.414214,

max(A3)
θ=π/4,k=9,11,13,15

= d6 + rULmax
θ=π/4

{
− cos

(
(k − 1)π

4
+ θ

)}
= 3l/2 + (l/

√
2)0.7071

l=1
= 2,
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max(A4)
θ=π/4,k=10,12,14,16

=

(
rUL

2 + d28 + 3
√
2lrULmax

θ=π/4

{
sk cos

(
(k + 1)π

4
− θ
)})(1/2)

=
(
(l/
√
2)2 + (

√
18l/2)2 + 3

√
2l(l/
√
2)
)(1/2) l=1

= 2.828427,

max(A5)
θ=π/4,k=17,18,19,20

=

(
rUL

2 + d27 + lrULmax
θ=π/4

{
(−1)k(3 cos θ − s?k sin θ)

})(1/2)

=
(
(l/
√
2)2 + (

√
10l/2)2 + l(l/

√
2) ∗ 2.828427

)(1/2) l=1
= 2.236068,

max(A6)
θ=π/4,k=21,22,23,24

= max(A5)
θ=π/4,k=17,18,19,20

l=1
= 2.236068.

Regarding the SiMPa functions in Equation (3.2.1), only the quantities A1 and A2

are considered, that is when k = 1, ..., 8. According to Equation 3.2.9,

0 ≤ αk(r, θ, c) ≤ 1 ⇒ 0 ≤ c ≤ 1/max{A1, A2}

⇒ 0 ≤ c ≤ 1/max{ max(A1)
θ=π/4,k=1,3,5,7

, max(A2)
θ=π/4,k=2,4,6,7

}

⇒ 0 ≤ c ≤ 1/ max(A2)
θ=π/4,k=2,4,6,7

⇒ 0 ≤ c ≤ 0.7071.

or this can be written as 0 ≤ c ≤ 1/2d2. We note here that for consistency, the same

boundaries for c are used for the special cases in Section 3.2.1, even if the edge case

can allow a higher upper bound.

For the extended case of the single molecule pattern, X-SiMPa, functions in Equation

(3.2.6), every quantity A1, ..., A6 is included leading to

0 ≤ αk(r, θ, c) ≤ 1 ⇒ 0 ≤ c ≤ 1/max{A1, A2, A3, A4, A5, A6}

⇒ 0 ≤ c ≤ 1/ max(A4)
θ=π/4,k=10,12,14,16

⇒ 0 ≤ c ≤ 0.3535568,
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or equivalently 0 ≤ c ≤ 1/(d8 + d2).

3.2.5 Single frame generation using the SiMPa functions

In this section we present a pseudo-algorithm for producing synthetic data in terms

of individual frames, using the SiMPa functions. No dependency is present between

the frames and the user is able to choose every parameter introduced in the SiMPa

functions, while also add error of the preferred level. This error can be considered

to be the background noise every imaging technique is subject to and is considered

to come from a Gaussian distribution, a choice related to our modelling in the fol-

lowing Section 3.3.2. Generation of stacks of frames with consecutive frames being

dependent is presented in Chapter 4, after we introduce the state-space model based

on SiMPa functions. The pseudo-algorithm is presented below, generating individual

synthetic frames according to the SiMPa functions.

Pseudo-algorithm - Generation of frames using the SiMPa functions

(i) Choose values for the quantities F, n,m,K,R, l, d as well values for the

parameters c and I where,

F : number of individual frames to be generated

n and m: number of rows and columns for each frame respectively

K: total number of molecules

R: radius of the molecule

l: side length of pixel

d: proportion quantity, 0 < d < 1

c: power of the intensities di�raction

I: intensity of a single event

(ii) Generate distances r and angles θ that satisfy the restictions r| cos(θ)| <
l

2
− R and r| sin(θ)| < l

2
− R and then randomly assign the combinations

to each one of the molecules in K.
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(iii) Choose randomly the number of active molecules on each frame, denoted

by NF and randomly draw KF combinations of r and θ from K for each

one of the molecules.

(iv) For every frame f from 1 : F repeat

1. Create a lattice of of size n×m with a baseline intensity d× I.

2. Generate NF [f ] random numbers u between 1 and n×m for each of

the molecules chosen to be active on frame f .

3. Trasform the random numbers u into positions inside the lattice by ap-

plying Rows = Remainder(u−1, n)+1 and Columns = Quotient(u−
1, n) + 1.

4. For every molecule kf in 1 : NF [f ] repeat

(a) Evaluate the SiMPa functions using the Equation (3.2.1) with r

and θ from KF [kf ] and obtain the quantities (1 − αk)I for k =

0, ..., 8.

(b) Place the quantities (1− αk)I on the lattice, where the quantity

(1− α0)I is located at the position (Rows[kf ], Column[kf ]).

5. Add independent and identically distributed background error to ev-

ery pixel on the lattice, for instance by using a Gaussian distribution

with mean µb and precision τb.
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3.3 Individual frame inference based on SiMPa

In this section we introduce the complete model for drawing inference on individual

frames based on the SiMPa functions. Firstly, a brief introduction to Markov ran-

dom �elds (MRF) is presented (Section 3.3.1), a key tool in our modelling in order to

identify pixel regions where the potentially active molecules lie onto. These regions,

commonly known as regions of interest (ROI), are basically a set of pixels of higher

total intensity. Based on the regions of interest capturing the important parts within

a frame, we next obtain the general form of our Bayesian modelling based on the

SiMPa functions (Section 3.3.2). This mainly consists of a moving region (MR) which

scans neighbourhoods within the frame, aiming to capture intensities di�raction, or

Point Spread Functions (PSF), of nearby active molecules. A moving region is con-

sidered to consist of a number of PSF's, each one described by the SiMPa functions,

hence it represents our proposed data generation mechanism, or likelihood. Every

PSFs is fully characterised by the SiMPa functions, describing the proportions of a

single event intensity I each pixel should have according to the molecule's position

(Section 3.2). A Bayesian framework facilitates coherent propagation of uncertainty

for each one of the parameters in the model.

Next, we present the probabilistic scheme of drawing inference on pixels including

active molecules, forming what we call the counting scheme, and localisation of them

within these pixels, both based on our novel pattern-con�guration-realisation concept

presented in Section 3.3.3. Brie�y, a pattern denotes a structure formed within a

MR consisting of a combination of active and inactive pixels, while a con�guration

accounts for the contribution of potential PSFs based on the SiMPa functions to

the creation of the pattern. A realisation is a position of a molecule according to

a discretisation of r and θ. The pattern-con�guration-realisation concept within a

Bayesian framework forms our individual frame probabilistic inference scheme, which

is provided with formal de�nitions. Two similar pseudo-algorithms are provided in

Section 3.3.5, one summarising the individual frame counting scheme, where the
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location of the molecules is �xed at the origin of the SiMPa functions, i.e. r = θ =

0, with the second additionally allowing for precise localisation with respect to a

discretisation of r and θ.

3.3.1 Markov random �elds (MRF)

In this section we present a brief introduction to Markov random �elds (MRF), a

fundamental element of our inference scheme. Let {Xt}, t = 1, 2, ... to be a sequence

of random variables taking values on a �nite set. The univariate process Xt is a

discrete time Markov chain taking values on this �nite set, if it satis�es the Markov

property, that is P (Xt+1 = xt+1|X1 = x1, ..., Xt = xt) = P (Xt+1 = xt+1|Xt = xt) for

all t. This property implies that the full conditional distribution of Xt moving to the

next state depends only on the present state of Xt.

sij sij

Figure 3.3.1: Neighbourhood systems of 1st and 2nd order. On the left panel of the
�gure the 1st order neighbourhood structure is presented where on the right panel the
2nd order neighbourhood. The black �lled in circle denotes the central pixel of each
neighbourhood where the empty circles the neighbouring pixel respectively.

Since our focus is on 2-dimensional frames, each one described as a lattice of pixels, we

consider an MRF (De�nition 3.3.1), the extension of the Markov chain in 2D (Geman

and Geman [1987]). We denote with S a lattice consisting of square pixels with

dimension N = n×m, where n and m represent the rows and columns respectively.

Each coordinate pair (i, j) corresponds to the location of a pixel within the lattice,
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hence sij ∈ S for all i = 1, ..., n and j = 1, ...m. The neighbourhood of the pixel

sij is de�ned as the set ∂sij = {q ∈ S : q ∼ sij}, where ∼ denotes that q belongs

to the neighbourhood of sij. Suitable neighbourhood systems can be considered for

di�erent behaviours. Two of the most common are the �rst (4-neighbour system)

and second-order (8-neighbour system) neighbourhood structures presented in Figure

3.3.1.

In terms of functions of pixels in a lattice, these neighbourhood structures can be

de�ned as,

∂s1st-order ≡ ∂sij =



si−1,j, if 2 ≤ i ≤ n, 1 ≤ j ≤ m

si,j+1, if 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1

si+1,j, if 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

si,j−1, if 1 ≤ i ≤ n, 2 ≤ j ≤ m,

(3.3.1)

∂s2nd-order ≡ ∂sij =



si−1,j+1, if 2 ≤ i ≤ n, 1 ≤ j ≤ m− 1

si−1,j, if 2 ≤ i ≤ n, 1 ≤ j ≤ m

si−1,j−1, if 2 ≤ i ≤ n, 2 ≤ j ≤ m

si,j+1, if 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1

si,j, if 1 ≤ i ≤ n, 1 ≤ j ≤ m

si,j−1, if 1 ≤ i ≤ n, 2 ≤ j ≤ m

si+1,j+1, if 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m− 1

si+1,j, if 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m

si+1,j−1, if 1 ≤ i ≤ n− 1, 2 ≤ j ≤ m− 1,

(3.3.2)

where the conditions on each neighbouring pixel imply the possible choices of pixels

which result in a complete corresponding neighbourhood structure.
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De�nition 3.3.1. [Li, 2009] The process {Xs} = {Xs : s ∈ S} with S = {1, ..., N(=

n×m)} is considered to be a Markov random �eld with respect to a neighbourhood

system ∂s if it satis�es the following conditions,

(i) positivity condition, P (X = x) = P (X1 = x1, ..., Xs = Xs) > 0 for every

realization x

(ii) Markov property via local conditionals, P (Xs = xs|Xq = xq,∀q ∈ S) = P (Xs =

xs|X∂s = x∂s) for all pixels s ∈ S.

3.3.2 Bayesian modelling of individual frames using the SiMPa

functions

In this section we introduce our Bayesian modelling for individual frames based on

the SiMPa functions. As previously discussed on Chapter 2, data from SMLM are

obtained as a stack of sparse frames, containing a number of active molecules, pro-

cessed in order to reconstruct a �nal super-resolution image from the determined

positions of the molecules. The procedure can be considered to consist of two parts,

the spatial and temporal components. The former accounts for acquiring all available

information within each frame, capturing behaviours and structures on the spatial

domain, which can allow separate identi�cation and localisation of active molecules.

The latter is responsible for linking the active molecules over time, where time cor-

responds to the number of frames in the stack, taking into account the dynamics

of the blinking process. In order to carry out appropriate inference on the stack of

frames, one can claim that both components should be taken into consideration. In

Chapter 4, we consider a state-space model based on SiMPa functions, temporally

linking the spatial structure of individual frames. Here, we present the general form

of our Bayesian model based on the SiMPa functions, capable of conducting individ-

ual frame inference on the spatial domain or stacks of frames without formal time

dependence.

Starting with appropriate notation, we de�ne y to be an observed lattice of intensities
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for an individual frame, that is y = {yij}, where i = 1, ..., n, j = 1, ...,m with n and

m being the number of rows and columns of the lattice respectively. We introduce a

latent mechanism which we assume is responsible for the generation of the intensities

within the lattice and we denote by x, with x = {xij}, i = 1, ..., n, j = 1, ...,m. This

unobserved lattice is considered to be a Markov Random Field (MRF), with its main

role being the identi�cation of the regions that can potentially contain an one (or

more) active molecules, commonly referred to regions of interest (ROI). As an active

molecule is described by its di�raction along a region of pixels, or Point Spread

Function (PSF), the MRF will serve as a tool to obtain the potential pixels which

are part of one (or more) PSFs. We consider two di�erent states for a pixel, the 'On'

and 'O�' state respectively, with the former denoting a PSF pixel of one (or more)

active molecules, or signal, and the latter a pixel only subject to noise. Therefore,

xij =

 1, if the pixel is declared to be in 'On' state

−1, if the pixel is declared to be in 'O�' state.
(3.3.3)

We assume that all the necessary information about a pixel's state is fully described

by the MRF, hence the intensities y = {yij} are conditionally independent given

the �eld x = {xij}. Therefore, regardless of the distributional assumption for the

intensities, the likelihood reads,

f(y|x,φ) =
∏
i,j

f(yij|xij,φ), for a set of parameters φ. (3.3.4)

The choice of the distribution for yij is not unique, however we adopt a Gaussian

distribution in agreement to what is most frequently used to describe the PSF of an

active molecule. A number of examples are presented in Chapter 2 where Gaussian

PSFs are �tted to ROIs. The novel SiMPa functions are introduced in the mean of the

Gaussian distribution, according to the concept described in Section 3.2, accounting

for the proportion of the single event intensity I a pixel should have based on the
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position of the molecule within the pixel.

Denoting by φ the set including all the parameters involved, the probability density

of the intensities is,

f
(
yij
∣∣xij,φ) ∼ N

(
yij
∣∣µ(xij), τ(xij)) , (3.3.5)

with τ denoting the precision, hence Var(yij
∣∣xij,φ) = 1/τ(xij). The mean and

precision of f
(
yij
∣∣xij,φ) depend on the state of the respective pixel, identi�ed by

the underlying �eld, and with respect to the SiMPa functions are de�ned as,

µ(xij) =

I (1− αO(r, θ, c)) , if xij = 1 ('On')

I d, if xij = −1 ('O�')
and τ(xij) = τb, (3.3.6)

where, recalling from Equation 3.2.1 in Section 3.2, the SiMPa functions are de�ned

as,

αk =


c

(
d1 − r cos

[
(k − 1)π

4
+ θ

]
g(R, l)

)
, k = 1, 3, 5, 7

c

((
(rg(R, l))2 + d22 + 2d2skr cos

(
(k + 1)π

4
− θ
)
g(R, l)

)1/2
)
, k = 2, 4, 6, 8

0, k = 0

,

and αO(r, θ, c) a single evaluation of the SiMPa functions αk, k = 0, ..., 8, which we

discuss next.

The precision τ(xij) in Equation (3.3.6) is de�ned to be the same no matter the

state of the �eld and equal to τ(xij) = τb, where τb denotes the background error or

camera noise. This choice can be supported by the fact that the camera noise can

be naturally considered to be generated by the same mechanism for every pixel on

the lattice (Section 2.2.2).

The mean µ(xij) in Equation (3.3.6), is formed with respect to the the SiMPa func-
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tions. Based on our proposed way of applying the SiMPa functions, as introduced

in Section 3.2, the functions account for the proportion of a single event intensity

I each pixel across the neighbourhood should be assigned, based on the position of

the molecule within the central pixel. It should be highlighted here, that as the �eld

identi�es regions of interest, a declared 'On' pixel does not necessarily correspond

to an active molecule directly. If this was the case, every pixel identi�ed as 'On'

by the �eld would be assigned with α0 from the SiMPa functions, which implies an

active molecule lying exactly on that pixel. On the contrary, as the SiMPa functions

correspond to the behaviour of a PSF of an active molecule within a predetermined

region, an identi�ed 'On' pixel is assumed to belong to a PSF linked by the quantity

αO(r, θ, c) in Equation (3.3.6). The notation αO denotes an appropriate choice from

α0, ..., α8 based on the part of the PSF contributing to the pixel with respect to the

molecule's position within the central pixel of the PSF.

Speci�cally, when a pixel is identi�ed as 'On' its mean is de�ned by the quantity

I (1− αO(r, θ, c)), whereas when a pixel is identi�ed as 'O�', its mean is only re-

lated to background intensity as no PSF is contributing. The quantity I d precisely

represents the background intensity when assumed to be proportional to the single

event intensity I, with d denoting the proportion. In a way, a �xed value for the

proportion d corresponds to a uniform background, that is same average number of

photons on each pixels as discussed in Section 2.2.2, with active molecules emitting a

larger amount of photons. For that reason, we assume that the background intensity

is proportional to the single event intensity.

The basic concept of our modelling lies on the idea that the intensities di�raction of

a molecule on the lattice is fully described by the SiMPa functions. Consequently, a

mechanism able to scan the lattice and obtain these di�ractions, or the point spread

functions (PSF) of active molecules, is considered. We introduce a moving region

(MR), or a sliding window, which we allow to travel along the lattice adding the

intensities of a predetermined region. Reasonably, we assume the predetermined

region of this moving region to be the same size as the neighbourhood structure used
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in the SiMPa functions. Since we denote the observed intensities by y = {yij}, the
moving region is de�ned as MRij =

∑
pq∈∂yij

ypq with i, j being the row and column of

the pixel respectively and ∂yij the 8-neighbour system of the pixel as in Equation

3.3.2. Following the de�nition of the probability density in Equation (3.3.5), the

probability density of the moving region given the states in the neighbourhood of xij
is,

f

MRij =
∑

pq∈∂yij

ypq

∣∣∣ ∂xij,φ
 ∼ N

(
MRij

∣∣ µMR, τMR

)
, (3.3.7)

with τ denoting the precision and φ the set of all parameters included. Consequently,

the mean and the precision of f (MRij| xij,φ) depend on the state of the �eld and

consist of the appropriate sum of the Equations (3.3.6) using the conditional inde-

pendence of y given x. Therefore Equation (3.3.7) reads in,

MRij|∂xij,φ ∼ N

I(dN{∂xij=−1} + N{∂xij=1}∑
v=1

(
1− αO(rv, θv, c)

))
, τb/Np

 , (3.3.8)

where N{∂xij=1} and N{∂xij=−1} denote the number of pixels identi�ed as 'On' and

'O�' in the neighbourhood of xij respectively. The variance of the likelihood is

the sum of the individual variances with σ2
MR = Npσ

2
b or in terms of precision,

τMR = τb/Np where Np is the number of pixels included on the 8-neighbour system,

here Np = 9. The mean is the sum of the corresponding intensities described by the

SiMPa functions with respect to the states of the pixels in the moving region.

Then, since y are conditional independent given x, the likelihood is calculated by

multiplying the conditionally independent terms based on the MR which scans the

frame, therefore,

f(MR| x,φ) =
∏
i,j

f(MRij|∂xij,φ), (3.3.9)
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where MR = {MRij, i = 1, ...n & j = 1, ...,m}.

Brie�y, let a moving region partially capturing a single PSF of a molecule according

to the states of the pixels in the �eld. Then, the mean of the likelihood for this

speci�c moving region is considered to be the sum of the number of 'O�' pixels,

N{∂xij=−1}, multiplied by the background intensity, I d, and the appropriate SiMPa

functions for the number of 'On' pixels, N{∂xij=1}, multiplied by the single event

intensity, I.

One of our main goals, as discussed in Section 2.3, is to allow inference on closely

located active molecules, which have their PSFs overlapping. In order to achieve

this, we modify and generalise the mean µMR to be able to account for more than

one PSF, in terms of allowing an identi�ed 'On' pixel to be a product of more that

a single PSF. Therefore,

MRij|∂xij,φ ∼ N

I
(
dN{∂xij=−1} +

NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv, θv, c)

))
︸ ︷︷ ︸

µMR

, τb/Np︸ ︷︷ ︸
τMR

 .

(3.3.10)

The part regarding the number of 'O�' pixels is unchanged, whereas the quantity

accounting for the number of 'On' pixels is altered in such a way to account for

multiple PSFs, the number of which is indicated by NPSF. For each PSF falling

within the moving region the SiMPa functions are obtained with respect to the

number of pixels each one contributes to the MR, denoted by nPSF. The sum of

every SiMPa function for each separate PSF, results in the total contribution inside

the moving region.

Example 3.3.1. For instance, let a moving region identi�ed to have two 'On' pixels

according to �eld. As presented in Figure 3.3.2, the grey �lled pixels represent the

'On' pixels while the dashed lines two separate PSF's overlapping with each other,
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hence NPSF = 2, both contributing to the MR. The �lled in circles within the central

pixels of the PSF's denote the respective molecule's position. The number of 'O�'

pixels contributing to the total intensity of the MR is N{x∂ij=−1} = 7. In order to

calculate the total contribution of the PSFs to the 'On' pixels, we individually take

into consideration each PSF's segment, corresponding to nPSF1 = 2 'On' pixels for

PSF1 and nPSF2 = 1 for PSF2.

MRij →

PSF1 → ← PSF2

Figure 3.3.2: Example of two Point Spread Functions (PSF) contributing in a moving
region (MR). The black solid lines represent the moving region with the grey �lled in
pixels to have been identi�ed as 'On' by the �eld. The dashed lines represent two
di�erent (black and blue) PSF's contributing to the moving region resulting in the
two 'On' pixels case within the MR. The coloured circles denote the corresponding
molecules of each PSF's respectively.

Regarding the prior distributions for each one of the parameters involved, we consider

a Gaussian distribution for the single event intensity I and a Gamma distribution

for the background precision (error) τb. The di�raction parameter c is bounded, as

discussed in detail in Section 3.2.4, hence we use a Rescaled Beta distribution. The

MRF x is modelled using an auto-logistic model, �rst introduced by Besag [1974],

with

π
(
x
∣∣{β0, βf}) = exp {β0V0(x) + βfVf (x)}

Z({β0, βf})
(3.3.11)
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The statistic V0(x) is de�ned as V0(x) =
∑
i,j

xij so positive or negative values of β0's

tend to control the number of 'On' or 'O�' states, respectively. The statistic Vf (x) is

declared in physics as the energy function and is de�ned as Vf (x) =
∑

pq∈∂xij
xijxpq with

∂xij denoting the neighbourhood of xij, βf is a parameter de�ning the strength of

neighbouring interaction with large positive values leading to realizations of x having

homogeneous patches of -1's or 1's and Z({β0, βf}) is the normalizing constant. The
full conditional distribution of xij using the 8-neighbour structure can be obtained

using the Hammersley-Cli�ord theorem as,

π
(
xij
∣∣∂xij, {β0, βf}) ∝ exp

β0xij + βf
∑

pq∈∂xij

xijxpq

 . (3.3.12)

The parameters I, c, τb, β0 and β0 are considered as global parameters since they

rely on the entire frame, whereas the combinations of r and θ are local parameters

corresponding to a neighbourhood of the PSF. The complete Bayesian framework

for the update of the global parameters is done via the full-conditional distributions

(presented in Section 3.3.4), along with inference on the local parameters r and θ

based on our novel pattern-con�guration concept which is introduced in the following

Section 3.3.3 and analysed thoroughly. The general prior setting for the global and

local parameters, reads in,

Global Parameters



I|µI , τI ∼ N(I| µI , τI)

c|ac, bc ∼ RescaledBeta(c| ac, bc, trc)

τb|aτ , bτ ∼ Gamma(τb| aτ , bτ )

π(x|b0, bf ) ∼ Auto-logistic(x| β0, βf )

b0|mb0 , τb0 ∼ N(b0| mb0 , τb0)

bf |mbf , τbf ∼ N(bf | mbf , τbf ).

(3.3.13)

Local Parameters
{
π({Conf, r,θ}ij) ∼ Uniform(1/NConfij) . (3.3.14)
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3.3.3 Pattern-Con�guration-Realisation concept

In this section we introduce our novel probabilistic individual frame inference scheme

via a Bayesian framework. As discussed in Section 3.3.2, the mean µMR of a moving

region (MR) depends on the states ('On' and 'O�') of the corresponding pixels in

the �eld, which determine their contribution to the total intensity of the MR.

A main assumption, which is adopted throughout the thesis, is the restriction of no

more than two PSFs allowed to overlap with each other. This can arguably be a

reasonable assumption based on the natural of SMLM, where only a sparse subset of

molecules is active on a single frame (Section 2.2), however an extension to more than

two PSFs is straightforward (discussion on Chapter 6). In a way, it is probable to

have two closely located molecules blinking simultaneously, resulting in their PSFs

overlapping, but not likely to have three or more molecules active within a small

distance at the same time.

We address two main aspects taken into consideration in order to conduct inference

on the positions of the active molecules. The �rst one corresponds to the number of

pixels, nPSF, every PSF contributes to a MR, while the second one to the positions

of the corresponding active molecules, described by r and θ, on each one of the PSFs.

The following de�nitions are key components of our proposed probabilistic inference.

De�nition 3.3.2. A pattern is a constructed structure within a moving region,

consisting of a combination of 'On' and 'O�' pixels as identi�ed by the �eld.

Let MRij be the moving region around a pixel (i, j), i = 1, ..., n and j = 1, ...,m

where n and m are the number of rows and columns of the frame, and ∂xij the states

of the corresponding pixels as identi�ed by the �eld. Then, a pattern, denoted with

P(∂xij), is a matrix of 1's and -1's with 1 and -1 denoting to 'On' and 'O�' states

respectively.
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De�nition 3.3.3. A con�guration is a combination of a number of PSFs, overlap-

ping or not, which can result in a speci�c pattern with respect to a moving region.

Let MRij be the moving region around a pixel (i, j), i = 1, ..., n and j = 1, ...,m

where n and m are the number of rows and columns of the frame, and P(∂xij) the

corresponding pattern. Then, a con�guration for the MRij, denoted with {Conf}ij
(or Conf), is a collection of the parts of the associated PSFs in order to form the pat-

tern P(∂xij), hence {Conf}ij = (nPSF1 , nPSF2 , ..., nPSFNPSF ), where NPSF the number

of PSFs and nPSFv ≤ NPSF for every v = 1, ...,NPSF.

Number of pixels - nPSF

The number of pixels, nPSF, a PSF contributes in a MR is a quantity not directly

observable, if overlapping PSFs are present. A pattern, as introduced in De�nition

3.3.2, consists of a structure of 'On' and 'O�' pixels as identi�ed by the �eld, as a

potential product of di�erent parts of one or more PSFs. With respect to our main

assumption, of allowing up to two PSFs to overlap, there is a �nite number of con-

�gurations every pattern can give rise to. The number of PSFs in a con�guration, as

in De�nition 3.3.3, is denoted by NPSF, in agreement with Equation (3.3.10).

Example 3.3.2. A pattern associated with all possible con�gurations under our

assumption is presented in Figure 3.3.3. A MR has been assigned to have three 'On'

pixels according to the �eld, under the structure of two 'On' on the top right corner

and one 'On' on the bottom left corner, hence the pattern P(∂xij) =


−1 1 1

−1 −1 −1
1 −1 −1

.
With respect to main assumption of no more than two PSFs overlapping, there are

six di�erent con�gurations which can potentially form this speci�c pattern within the

MR. For instance, a possible con�guration consists of two individual PSFs without

any overlapping, denoted by Conf1, where the total number of PSFs is NPSF = 2.

The number of pixels from the �rst PSF is nPSF1 = 2 and from the second one is

nPSF3 = 1. Another case, allows four individual PSFs overlapping in a speci�c way in
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pairs of two, as in Conf6 with NPSF = 4. For this con�guration, the number of pixels

from the �rst PSF is nPSF1 = 2 and from its overlapping one is nPSF2 = 1, while the

second one has nPSF3 = 1 with its overlapping one to have nPSF4 = 1. All six di�erent

con�gurations under this pattern with their respective pixels, nPSF, contributing to

the MR are shown with di�erent colouring for every di�erent PSF.

Con�gurations

Conf1

Conf2

Conf3

Conf4

Conf5

Conf6

NPSF

2

3

3

3

4

4

nPSF1
nPSF2

nPSF3
nPSF4

2 1 − −
2 1 − 1

2 1 2 −
2 1 1 −
2 1 2 1

2 1 1 1

Pattern → MRij

PSF1 →
or (PSF1,PSF3)

← PSF2 or (PSF2,PSF4)

↑
PSF3

Figure 3.3.3: Example of a pattern along with every possible con�gurations that can
be formed from, with respect to the assumption of up to two PSFs allowed to overlap.
On the left panel of the �gure, a pattern is declared with the grey �lled pixels on a MR,
with the dashed (coloured) lines representing PSFs forming the di�erent con�gurations.
The right panel contains all the possible con�gurations with their corresponding pixels
contributing.

An algorithm has been constructed in order to obtain all di�erent con�gurations

for every di�erent pattern that can be formed within a MR, with respect to our

assumption of allowing up to two PSFs to overlap. The number of all the di�erent

patterns for every 'On' case are shown in Table 3.3.1, along with the total number of

con�gurations that can exist on each pattern. It should be noted that every pattern

has a di�erent number of con�gurations based on its structure.
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'On' Pixels 1 2 3 4 5 6 7 8 9

Di�erent Patterns 4 14 28 45 52 46 28 9 1
Number of Con�gurations 8 48 208 648 1584 2684 3264 2492 2152

Table 3.3.1: Number of di�erent patterns that can be formed when the MR size is
3 × 3 pixels (same as PSF's size) and total number of con�gurations that can exist
(with respect to the assumption of up to two PSF allowed to coincide). Each pattern
has a di�erent number of con�gurations which is not shown here.

Recalling from Equation (3.3.10) the probability density of the MR with respect to

the SiMPa functions is,

MRij|∂xij,φ ∼ N

(
I
(
dN{∂xij=−1} + q

NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv, θv, c)

))
, τb/Np

)
.

Each pattern formed by the �eld on every MR, is evaluated at the respective con-

�guration, described by the appropriate number of pixels, nPSF, for every PSF con-

tributing. This is highlighted in the Equation (3.3.10) with the red color. As can

been seen, the SiMPa functions, αO,nPSFv (r, θ, c), depends on the number of pixels

from each PSF, nPSF. This implies that we want to take into consideration only the

parts of the PSF contributing to the MR, based on the SiMPa functions evaluated at

the position of the molecule denoted by r and θ. For instance, if a MR is identi�ed

to have four 'On' pixels produced by a single PSF, i.e. nPSF = 4, then we need the

corresponding four pixels from the SiMPa functions of that PSF, according to the

position of the molecule. The way to deal with the SiMPa functions for every MR is

what we address next.

Positions of molecules - r and θ

The second aspect corresponds exactly to the choice of the appropriate SiMPa func-

tions, consequently inference on position of the molecules denote by the distance r

on direction θ. As discussed in Section 3.2, the local parameters r and θ live on the
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continuous space and satisfy the restrictions r| cos(θ)| < l

2
−R and r| sin(θ)| < l

2
−R,

where R is the radius of the molecule and l the side length of the pixel. However,

even though this is the natural way to proceed, it might not be feasible to measure

a molecule's position with such precision. One can argue that the measurements

obtained by SMLM can allow localisation reaching up to a certain resolution, hence

limiting the precision and accuracy on estimates of r and θ. Additionally, we seek a

methodology in which inference on r and θ can be both e�cient and not extremely

computationally intensive.

A way to tackle this issue is by introducing a discretisation for r and θ. This prac-

tically means that instead of trying to measure the exact molecule's position within

the pixel, which can be declared naturally intractable, we want to locate it with a

precision described by a combination of ranges for r and θ. We consider a discretisa-

tion of θ to be all angles from 0 to 2π with a step of π/8, that is θ = k
π

8
, k=0,1,...,16.

Regarding the distances r, three di�erent values are explored on every angle θ with

r = 0 (origin of the SiMPA functions), r =
rmax,θ

2
(half distance from the origin

when angle is θ) and r = rmax,θ (maximum distance from the origin when angle is

θ). Under this modi�cation, one is trying to approach the molecule's position in

a discrete space de�ned by a total number of angles Nθ = 16 and total number of

distances Nr = 33, i.e. r = θ = 0 and two distances (half and maximum) for every

θ.

De�nition 3.3.4. A realisation is a speci�c combination of r and θ from a prede-

termined discretisation, determining the position of a molecule within a pixel and

denoted with {r, θ}.

De�nition 3.3.5. A complete localisation set for any moving region MRij, i =

1, ..., n (rows of frame) and j = 1, ...,m (columns of frame), with respect to the respec-

tive pattern ∂xij, is the collection of a con�guration, {Conf}ij, associated with appro-
priate realisations, {r,θ}ij, denoted by {Conf, r,θ}ij =

{
Confij, {r, θ}ij(1) , ..., {r, θ}ij(v)

}
,

where v = 1, ..., NPSF to be denoting the number of PSFs on the con�guration Confij
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of pixel (i, j). A complete counting set is the simpli�cation of the complete localisa-

tion set where each realisation is at the origin of the SiMPa functions , i.e. r = θ = 0,

denoted by {Conf, r = 0,θ = 0}ij ≡ {Conf}ij.

A main property of the SiMPa functions is the periodicity of their behaviour. The

SiMPa functions performance under a speci�c direction θ1, is identical to the sym-

metric direction θ2 within the pixel, with respect to the axis of the coordinate system.

The only di�erence is that the whole system is rotated depending on the symmetry of

the corresponding angles. A graphical illustration can be seen in Figure 3.3.4, where

a direction θ1 = π/8 (a) and θ2 = 5π/8 (b) both on a distance
rmax,θ

2
have been

chosen. On part (a) of the �gure, the SiMPa functions evaluated at r on angle θ1
are shown, with part (b) containing the symmetric realisation on the 2nd quadrant

with θ2 along with the equivalent SiMPas from the realisation with θ1 on part (a).

Therefore, as the chosen discretisation consists of multiples of π/8, we can reduce

the amount of total direction θ and distances r to the ones which exist only on the

�rst quadrant of the coordinate system, hence Nθ = 5 (0, π/8, π/4, 3π/8, π/2) with

Nr = 15. Based on to the rotation property of the SiMPa functions, we are able to

identify r and θ only by evaluating their performance on the �rst quadrant. This

stands for any chosen discretisation as well when the continuous space is considered

and can noticeably reduce the complexity of the localisation procedure, however not

without complications, as discussed later in the Section.
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x

y

r
θ1

(a)

α1(r, θ1)

α3(r, θ1)

α5(r, θ1)

α7(r, θ1)

α2(r, θ1)α4(r, θ1)

α6(r, θ1) α8(r, θ1)

x

y
r θ2

(b)

α1(r, θ2)

≡

α5(r,θ1)

α3(r, θ2)

≡

α3(r,θ1)

α5(r, θ2)

≡

α1(r,θ1)

α7(r, θ2)

≡

α7(r,θ1)

α2(r, θ2)

≡

α4(r,θ1)

α4(r, θ2)

≡

α2(r,θ1)

α6(r, θ2)

≡

α8(r,θ1)

α8(r, θ2)

≡

α6(r,θ1)

Figure 3.3.4: Example of the periodicity of the SiMPa functions when the system
is rotated. (a) A molecule has been placed r units with direction θ1 = π/8 from the
origin. (b) A molecule has been placed r units with direction θ2 = 5π/8 from the
origin. The equivalence of the SiMPa functions when the angle θ1 from (a) is outlined.

With respect to the assumption of allowing only up to two PSFs to overlap, there is

a �nite number of con�gurations that can be formed by di�erent patterns, with the

total number of con�guration remaining unchanged as shown in Table 3.3.1. On the

contrary, as every con�guration consists of a number of PSFs which contribute to

the MR, each one is associated with a realisation which alters the behaviour of the

SiMPa functions. Therefore, the appropriate parts of the PSFs, described by nPSF,

of the corresponding realisation need to be taken into consideration. As already

discussed, due to the periodicity of the SiMPa functions only the �rst quadrant of

the coordinate system is considered, however two immediate questions arise.

Firstly, given a realisation for each PSF involved in a MR, how can we obtain the

appropriate regions which have fell within the MR. These regions are represented by

the number of pixels nPSF every PSF contributes, associated with the intensities of

the realisation based on the SiMPa functions. Secondly, when allowing an additional
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realisation, in terms of adding a combination of r and θ within the model, how much

the complexity of the model is increased with the e�ect of complicating the position

inference.

The complexity is considered in terms of the number of realisations within each

con�guration. Sticking to the discreatisation θ = k
π

8
, k=0,1,2,3,4 (1st quadrant)

and r = 0 (origin of the SiMPA functions), r =
rmax,θ

2
(half distance from the origin

when angle is θ) and r = rmax,θ (maximum distance from the origin when angle

is θ, we investigate the behaviour of a single molecule, or equivalent an individual

PSF. The symmetric directions of θ are also included based on the periodicity of the

SiMPa functions.

For a single realisation, the number of possible combinations a PSF's parts can land

on a MR, denoted with N{MR,nPSF}, depends on the number of pixels, nPSF, this PSF

contributes to the MR. On Table 3.3.2, we present the relation of N{MR,nPSF} and

nPSF for a single realisation of an individual PSF, apart from the case where r = 0

for any direction θ. In that case, N{MR,nPSF} is reduced from the numbers on the

table, due to the symmetric di�raction of the SiMPa functions without implying a

di�erent position of the molecule but r = θ = 0 (as can be seen in Figure 3.2.4 (a).

Therefore, N{MR,nPSF} = 1 regardless of nPSF.

nPSF 1 2 3 4 5 6 7 8 9
N{MR,nPSF} 4 8 4 4 0 4 0 0 1

Table 3.3.2: Number of possible combinations a PSF's parts can fall within a MR,
N{MR,nPSF} for a single realisation. This number depends on the number of pixels the
PSF contributes to the MR, denoted by nPSF.

From Table 3.3.2, for instance, when nPSF = 3, there are N{MR,nPSF} = 4 di�erent

PSF parts that might have fell on a MR according to one realisation. These parts

can be one of {α8, α1, α2}, {α2, α3, α4}, {α4, α5, α6} or {α6, α7, α8} evaluated at the

corresponding realisation. We note here, that there are no cases for N{MR,nPSF} when
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nPSF = 5, 7 or 8, since it is not feasible a 3 × 3 PSF to have 5,7 or 8 pixels landing

within a 3× 3 MR.

Consequently, we can calculate the number of possible combinations multiple PSFs

parts can fall within the MR to be
NPSF∏
v=1

N{MR,nPSFv} for a single realisation, leading to

a generalisation of the di�erent cases a con�guration can be formed, from a number

of realisations on the 1st quadrant and their respective symmetries, to be,

Nconf =

NPSF∏
v=1

(
NrθN{MR,nPSFv} + 10∈r

)
, (3.3.15)

where Nrθ is the total number of realisations on the �rst quadrant of the coordinate

system excluding those with r = 0 and 10∈r = 1, when r = 0 (origin of the SiMPa

functions) and 10∈r = 0 otherwise. As a reminder, we focus on the �rst quadrant

due to the periodicity of the SiMPa functions, where the symmetric realisations have

been considered.

Revisiting Example 3.3.2 based on Figure 3.3.3, the con�guration Conf3, for instance,

is produced by three PSFs, these are PSF1, PSF2 and PSF3, each one contributing

nPSF1 = 2, nPSF2 = 1 and nPSF3 = 2 pixels to the MR respectively. Every individual

PSF can contain a molecule placed in a di�erent position within the central pixel. If

we consider two realisations from the discretisation, say θ1 = π/8 and r1 =
rmax,θ=π/8

2
and r = θ = 0, then for the con�guration Conf3 we get Nconf = (4+1)×(8+1)×(8+

1) = 405 by using Table 3.3.2 and Equation 3.3.15. This gives us the total cases the

con�guration Conf3 can be formed, if each one of the molecules involved are placed

on the chosen realisations or their symmetric positions, that is k
π

8
, k=1,5,7,15.

Next, we focus on the way to identify the quadrant each molecule belongs to, hence

their position declared by r and θ, which relies on the relative position of the MR

and the corresponding number of pixels, nPSF, each PSF contributes. We de�ne four

separate areas around a MR a PSF can lie onto which contribute to the decision
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on the quadrant of the molecules. Depending on the number of pixels, nPSF, a PSF

contributes to the MR, we consider two di�erent cases. In Figure 3.3.5, the areas

when nPSF = 1, 2, 4 are presented, using only the case where nPSF = 1, whereas in

Figure 3.3.6 the equivalent ones when nPSF = 3, 6, using the case where nPSF = 3.

In both �gures, the red solid lines associated with the numbering label represent

the areas relative to the MR, with the blue solid boxes denoting the quadrants of

the central pixel of each PSF. The PSFs are drawn with the black dashed with the

SiMPa functions contributing to have been outlined.

1st

1st

1st

1st

2nd

2nd

2nd

2nd

3rd

3rd

3rd

3rd

4th

4th

4th

4th

α8

α2α4

α6

α2α4

α6 α8

α6 α8

α2α4

α4

α6 α8

α2

1

2

4

3

Figure 3.3.5: Implementation of case where a single pixel of a PSF lands on an MR.
The molecule lies anywhere inside the �rst quadrant of the coordinate system, denoted
with the blue colored 1st. Regarding the position of the PSF with respect to the MR
(regions denoted with the red lines and circled numbers identi�ed by the con�gura-
tion chosen), di�erent quantities of the SiMPa functions account for the respective
quadrants the molecule lies in.
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Figure 3.3.6: Implementation of case where three pixels of a PSF lands on an MR.
The molecule lies anywhere inside the �rst quadrant of the coordinate system, denoted
with the blue coloured label '1st'. Regarding the position of the PSF with respect to
the MR (regions denoted with the red lines and circled numbers identi�ed by the con�g-
uration chosen), di�erent quantities of the SiMPa functions account for the respective
quadrants the molecule lies in.

As already discussed, we assume a molecule lies somewhere within the 1st quadrant.

Focusing on the case where nPSF = 1 in Figure 3.3.5, the number of possible combi-

nations a PSF's parts can fall within a MR is N{MR,nPSFv} = 4 (also declared on Table

3.3.2). Based on the SiMPa functions chosen and the corresponding location of the

PSF, we are able to identify symmetric realisations, producing identical performance,

just by rotating the SiMPa functions by multiples of π/2 with respect to the origin.
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This implies identi�cation of the appropriate direction θ under the unchanged dis-

tance r on the symmetric realisation. The choice of the quadrants for the cases with

nPSF = 1, 2, 4 are summarised on Table 3.3.3. These tables show all combinations

of the SiMPa functions when a realisation from the �rst quadrant is chosen for all

four di�erent areas in Figure 3.3.5, along with the symmetric realisations when the

system is rotated.

1 Pixel 4 Pixels 1 2 3 4

α2 α0α1α2α3 1st 2nd 3rd 4th

α4 α0α3α4α5 2nd 3rd 4th 1st

α6 α0α5α6α7 3rd 4th 1st 2nd

α8 α0α1α7α8 4th 1st 2nd 3rd

2 Pixels 1 2 3 4

α1α2 1st 2nd 3rd 4th

α2α3 1st 2nd 3rd 4th

α3α4 2nd 3rd 4th 1st

α4α5 2nd 3rd 4th 1st

α5α6 3rd 4th 1st 2nd

α6α7 3rd 4th 1st 2nd

α7α8 4th 1st 2nd 3rd

α1α8 4th 1st 2nd 3rd

Table 3.3.3: Combinations of the SiMPa functions when a PSF contributes one or
four pixels on a MR, along with the corresponding quadrants the molecule lies in, with
respect to rotation and PSF's relative position with the MR.

On a similar manner, the quadrants when nPSF = 3 or 6 can be obtained, using the

four di�erent areas in Figure 3.3.6. All the combinations of the SiMPa functions for

a molecule on the 1st quadrant, along with the symmetric realisation are summarised

on Table 3.3.4.

3 Pixels 6 Pixels 1 2 3 4

α1α2α8 α0α1α2α3α7α8 1st 2nd 3rd 4th

α2α3α4 α0α1α2α3α4α5 2nd 3rd 4th 1st

α4α5α6 α0α3α4α5α6α7 3rd 4th 1st 2nd

α6α7α8 α0α1α5α6α7α8 4th 1st 2nd 3rd

Table 3.3.4: Combinations of the SiMPa functions when a PSF contributes three or
six pixels on a MR, along with the corresponding quadrants the molecule lies in, with
respect to rotation and PSF's relative position with the MR.
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As an example, for the area 1 in Figure 3.3.5 the choice of α2 corresponds to a

realisation on the 1st quadrant, since we only consider realisations in there. Applying

the rotation, α4 corresponds to the symmetric realisation on the 2nd quadrant, α6

on the 3rd and α8 on the 4th. Similarly, for the area 2 in Figure 3.3.6, {α6, α7, α8}
denotes a realisation on the 1st quadrant, where rotation gives {α8, α1, α2} for 2nd
quadrant, {α2, α3, α4} for 3rd quadrant and {α4, α5, α6} for 4th quadrant. Therefore,
we can argue that identi�cation of the relative location of the PSF and the MR along

with the corresponding SiMPa functions, can be done by choosing the appropriate

quadrant of the molecule, with respect to realisations on the 1st quadrant.

3.3.4 Individual frame inference

In this section we introduce our novel pattern-con�guration-realisation concept within

a probabilistic scheme, leading to our proposed individual frame inference scheme

based on the SiMPa functions. In its simplest form we consider r = θ = 0, in which

the localisation of any molecule is always �xed at the center of the pixel (origin of

SiMPa functions), resulting in what we call individual frame counting scheme. Al-

lowing speci�c positions for molecules within pixels based on the possible realisations

(De�nition 3.3.4) creates our individual frame localisation scheme. In both schemes,

the update of the parameters is based on the full-conditional distributions. A special

case Gibbs step is introduced for the con�gurations formed in a every MR, as well as

to draw positions of molecules, described by r and θ. The entire parameter update

based on the full conditional distributions is presented in Section 3.3.4.1, followed

by the probabilistic individual frame counting and localisation schemes in Section

3.3.4.2.

3.3.4.1 Parameter updating via full conditionals

A Metropolis-Hastings (M-H) within Gibbs sampling algorithm is implemented with

standard Gibbs steps for the single event intensity I, the background noise τb and
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M-H for the Markov random �eld x and power of di�raction parameter c. Let

φ =
{
I, τb, c,x, {Conf, r,θ}ij

}
,

µMR = I
(
dN{∂xij=−1} +

NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv, θv, c)

))
,

τMR = τb/Np,

where {Conf, r,θ}ij the complete localisation set for a moving region MRij, i =

1, ..., n and j = 1, ...,m the rows and columns of the frame respectively (De�nition

3.3.5).

First, we obtain the full conditional distributions for the global parameters I, τb, c

and x, using the prior distributions in Equation (3.3.13) and the MR likelihood in

Equation (3.3.9),

Update of I

The full conditional of the single event intensity I is a Gaussian distribution,

p
(
I| φ{−I}, µI , τI

)
∝
∏
∀i,j

N
(
MRij

∣∣ µMR, τMR

)
× N(I

∣∣ µI , τI)

∼ N


τIµI +

τb
Np

∑
∀ij

MRijBij

τI +
τb
Np

∑
∀ij

(Bij)
2

, τI +
τb
Np

∑
∀ij

(Bij)
2

 , (3.3.16)

where Bij = dN{∂xij=−1} +
NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv, θv, c)

)
.

Update of τb
The full conditional of precision τb is a Gamma distribution,

p
(
τb| φ{−τb}, aτb , bτb

)
∝
∏
∀i,j

N
(
MRij

∣∣ µMR, τMR

)
×Gamma(τb| aτb , bτb)
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∼ Gamma

aτ + NMR

2
,

∑
∀ij

(MRij − µMR)
2

2Np

+ bτ

 , (3.3.17)

where NMR = n×m is the number of pixels in the frame with n and m the number

of rows and columns respectively.

Update of c

The full conditional of power of di�raction parameter c is not in a closed form

therefore a Metropolis-Hastings step is considered, with

p
(
c| φ{−c}, ac, bc, trc

)
∝
∏
∀i,j

N
(
MRij

∣∣ µMR, τMR

)
× RescaledBeta(c| ac, bc, trc),

(3.3.18)

where trc is the rescale parameter. We will use a rescaled Beta with mode at the

current value as the proposal distribution.

Update of x

Regarding the update of the �eld x, the full conditional distribution of xij reads in,

p
(
xij
∣∣ φ{−xij}, β0, βf) ∝ f

(
yij
∣∣µ(xij), τ(xij))π(xij|∂xij, {β0, βf}) , (3.3.19)

where

µ(xij) =

I (1− αO(r, θ, c)) , if xij = 1 ('on')

I d, if xij = −1 ('o�')
and τ(xij) = τb,

as in Equation (3.3.6) and π
(
xij
∣∣∂xij, {β0, βf}) ∝ exp

{
β0xij + βf

∑
pq∈∂xij

xijxpq

}
as in Equation (3.3.12). Therefore, a pixel is identi�ed as 'On' in the �eld with
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probability,

pon =

exp
{
−τb

2
(yij − µ(xij = 1))2

}
exp

{
β0 + βf

∑
pq∈∂xij

xpq

}
∑

k=1,−1

exp
{
−τb

2
(yij − µ(xij = k))2

}
exp

k
β0 + βf

∑
pq∈∂xij

xpq


,

(3.3.20)

where pon = Pr
[
xij = 1

∣∣ φ{−xij}, β0, βf].
Update of {β0, βf}
The update of the hyperparameters β0 and βf of the �eld is done using the pseu-

dolikelihood estimation in order to avoid the calculation of the normalising constant

Z({β0, βf}) =
∑
x

exp {β0V0(x) + βfVf (x)}. Calculating the normalising constant is

very computationally intensive as it consists of 2RC terms. Therefore,

p({β0, βf}|x) ∝ π(x|{β0, βf})π(β0)π(βf )

=
exp {β0V0(x) + βfVf (x)}

Z({β0, βf})
π(β0)π(βf )

≈
∏
i,j

π(xij|∂xij, {β0, βf})π(β0)π(βf ), (3.3.21)

where the pseudo-likelihood estimation [Besag, 1974], reads in,

π
(
x
∣∣{β0, βf}) ≈ ∏

i,j

π(xij|∂xij, {β0, βf}). (3.3.22)

3.3.4.2 Con�gurations and/or realisations updating

Given our Bayesian approach, the updating of the con�gurations for the localisation

and counting schemes is probabilistic, and it takes into account the appropriate

patterns within each MR. The former corresponds to the individual frame localisation
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scheme which relies on con�gurations associated with realisations (De�nitions 3.3.3

and 3.3.4), while the latter to the individual frame counting scheme in which every

realisation is set to be at the origin of the SiMPa functions, hence r = θ = 0.

For every moving region MRij and according to De�nition 3.3.5, we use the com-

plete localisation set {Conf, r, θ}ij and the complete counting set {Conf}ij for the
individual frame localisation and counting schemes respectively. For the former the

full conditional distribution of a complete localisation set is obtained as,

Pij ≡ p
(
{Conf, r,θ}ij

∣∣∣ MRij,x, I, c, τb

)
∝ f

(
MRij

∣∣∣ x, I, c, τb, {Conf, r,θ}ij) π({Conf, r,θ}ij)
∝ N (MRij |µMR, τMR) Uniform(1/Nconfij), (3.3.23)

where a uniform prior is assigned for each complete localisation set (as in Equation

(3.3.14)). For every MRij, the corresponding pattern ∂xij (De�nition 3.3.2) is in-

cluded within the �eld x and the quantity Nconfij denotes the number of possible

formations of the corresponding con�guration based on the chosen discretisation of

r and θ, de�ned in Equation (3.3.15). Similarly, the full conditional distribution of

a complete counting set is obtained as,

Cij ≡ p
(
{Conf}ij

∣∣∣ MRij,x, I, c, τb

)
∝ f

(
MRij

∣∣∣ x, I, c, τb, {Conf}ij) π({Conf}ij)
∝ N (MRij |µMR, τMR) Uniform(1/Nconfij). (3.3.24)

The mean µMR and τMR in Equations (3.3.23) and (3.3.24) can be obtained from

Equation (3.3.10), with µMR evaluated respectively at the red coloured parts below,

Localisation: µMR = I
(
dN{∂xij=−1} +

NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv, θv, c)

))
.
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Counting: µMR = I
(
dN{∂xij=−1} +

NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv = 0, θv = 0, c)

))
.

The full conditional distributions Pij and Cij are evaluated at every possible forma-

tion in NConfij , denoted with NConfij (u)
and NConfij (w)

, for the counting and localisa-

tion schemes respectively. Hence, both Pij and Cij have a �nite support and thus

each full conditional distribution is multinomial with probabilities proportional to

Pij(1), ..., Pij(u) and Cij(1), ..., Cij(w) respectively. Both the probabilistic schemes are

introduced within a Gibbs step with probabilities obtained as,

Localisation scheme:


Pij(1) = p

(
{Conf, r,θ}ij(1)

∣∣∣ MRij,x
(q), I(q), c(q), τ

(q)
b

)
...

...

Pij(u) = p
(
{Conf, r,θ}ij(u)

∣∣∣ MRij,x
(q), I(q), c(q), τ

(q)
b

)
→



Pij(1)/
u∑
h=1

Pij(h)

...

Pij(u)/
u∑
h=1

Pij(h)


.

Counting scheme:


Cij(1) = p

(
{Conf}ij(1)

∣∣∣ MRij,x
(q), I(q), c(q), τ

(q)
b

)
...

...

Cij(w) = p
(
{Conf, }ij(w)

∣∣∣ MRij,x
(q), I(q), c(q), τ

(q)
b

)
→



Cij(1)/
w∑
h=1

Cij(h)

...

Cij(w)/
w∑
h=1

Cij(h)


.

As a numeric illustration, we revisit Example 3.3.1 where the possible con�gura-

tions are shown in Figure 3.3.7. Let a discretisation of r and θ to consist of

θ = {0, π/8, π/4, 3π/8} (1st quadrant only) and r = {0, rmax,θ/2}, then Nrθ, the

total number of realisations on the 1st quadrant without the ones with r = 0, is

Nrθ = 3. In order to implement our localisation scheme, we need to evaluate Pij
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for every {Conf, r, θ}ij, hence the total number of complete localisation set, using

Equation (3.3.15), Table 3.3.2 and con�gurations in Figure 3.3.7, are

NConf1 = (8× 3 + 1) = 25

NConf2 = (8× 3 + 1)× (8× 3 + 1) = 625

NConf3 = (8× 3 + 1)× (4× 3 + 1) = 325

}
→ NConf(u) = 975.

This wraps up in Pij(1)/
975∑
h=1

Pij(h), ..., Pij(975)/
975∑
h=1

Pij(h) which allows to draw a local-

isation for MRij. Due to the periodicity described before, the positions drawn are

realisations from θ = k
π

8
with k = 0, ..., 16 with the same distances r = {0, rmax,θ/2},

by taking into account the relative positions of the MR to the drawn complete local-

isation set.

Con�gurations

Conf1

Conf2

Conf3

NPSF

1

2

2

nPSF1 nPSF2

2 −
2 1

2 2Pattern → MRij

PSF1 →
or (PSF1,PSF2)

↑
PSF2

Figure 3.3.7: Simple example of a pattern along with every possible con�guration it
can arise from, with respect to the assumption of no more than two PSFs allowed to
overlap. On the left panel of the �gure, a pattern is declared with the grey �lled pixels
on a MR, with the dashed (coloured) lines representing PSFs forming the di�erent
con�gurations. The right panel contains all the possible con�gurations with their
corresponding pixels contributing.
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3.3.4.3 Challenges and issues of localisation scheme

Two main complications based on our proposed concept to decide on positions of

molecules should be addressed, both corresponding to an identi�ability problem

based on the symmetries of the SiMPa functions. The �rst is related to cases where

the PSFs of a con�guration contribute the same number of pixels to a MR, where

the second appears when the predetermined realisations produce either a symmetric

di�raction with respect to the SiMPa's origin or the number of PSF pixels contribut-

ing to the MR is insu�cient.

In part (a) of Figure 3.3.8, we present an example of the identi�ability issue according

to a con�guration consisting of PSFs that have the same contribution to the MR.

The pattern consists of two 'On' pixels, one on each corner of the MR, with the

associated con�guration represented by two individual PSFs each one having a single

pixel contribution to the MR. Two separate set of molecules are outlined on the

PSFs, denoted with the blue and red coloured points, along with their associated

SiMPa functions based on the rotation scheme from Figure 3.3.5 when considering

directions only on the 1st quadrant. The blue set consists of a molecule at r = θ = 0

(PSF1) and a second at r =
rmax,θ=5π/4

2
with θ = 5π/4 (PSF1), while the red set

of a molecule at r =
rmax,θ=π/4

2
with θ = π/4 (PSF1) and a second at r = θ = 0

(PSF2). The identi�cation issue arises due to the fact that both set of molecules

have the same likelihood according to the MR, preventing our proposed scheme to

distinguish between the appropriate realisations associated with the con�guration,

hence potentially leading to inaccurate localisation. Focusing on the mean of the

MR, µMR, in Equation (3.3.10),

µMR = I
(
dN{∂xij=−1} +

NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv, θv, c)

))
= I

(
d× 7 + (1− cα4(r = 0, θ = 0)) + (1− cα8

(
r =

rmax,θ=5π/4

2
, θ =

5π

4
)
))

= I
(
d× 7 + (1− cα4(r = 0, θ = 0)) + (1− cα4

(
r =

rmax,θ=π/4

2
, θ =

π

4
)
))
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= I
(
d× 7 + (1− cα4

(
r =

rmax,θ=π/4

2
, θ =

π

4
) + (1− cα8(r = 0, θ = 0))

)
= µMR,

where the second line of the equation is evaluated at the realisations without the use

of rotation, with their appropriate equivalent rotated ones shown on the third line.

The equality of µMR corresponds to identical contribution to the total intensity of

the MR by either sets of molecules, which within the probabilistic scheme translates

into identical probabilities.

α8/α4

α4/α4

Pattern → MRij

PSF1 →

← PSF2

(a)

α1/α8

Pattern → MRij

← PSF

(b)

Figure 3.3.8: Di�erent examples of identi�cation issues regarding localisation of
molecules using the SiMPa functions. (a) Two set of molecules, denoted with the
blue and red colours respectively, contributing exactly the same total intensity to the
MR with respect to the SiMPa functions. (b) Two separate molecules, blue and red
coloured, contributing the same intensity to the MR according to the SiMPa functions.

In part (b) of Figure 3.3.8, we present a similar case of the identi�ability issue

formed when a predetermined realisation produces a symmetric di�raction based on
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the SiMPa functions. The pattern consists of one 'On' pixel corresponding to a con-

�guration of an individual PSF, with two di�erent molecules placed at r =
rmax,θ=π/2

2
with θ = π/2 (blue coloured) and r =

rmax,θ=3π/2

2
with θ = 3π/2 (red coloured) re-

spectively. Additionally, their corresponding SiMPa functions are outlined based on

the rotation scheme in Figure 3.3.5. Similarly to part (a), the intensity contribution

to the MR of the either PSFs based on the SiMPa functions is identical, hence same

probabilities on both realisations will be assigned based on our probabilistic scheme,

with the µMR,

µMR = I
(
dN{∂xij=−1} +

NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv, θv, c)

))
= I

(
d× 8 + (1− cα8(r =

rmax,θ=π/2

2
, θ =

π

2
))
)

= I
(
d× 8 + (1− cα1(r =

rmax,θ=0

2
, θ = 0))

)
= I

(
d× 8 + (1− cα8

(
r =

rmax,θ=0

2
, θ = 0))

)
= µMR.

Such an identi�cation issue can be addressed in cases where either the direction θ,

with θ ∈ [0, π/2) (1st quadrant), produces a symmetric di�raction with respect to

the origin of the SiMPa functions, as discussed, or when any direction θ from the

1st quadrant is accompanied with insu�cient number of PSF pixels. Regarding the

latter, consider the scenario in part (b) of Figure 3.3.8, with a single molecule located

at r =
rmax,θ=π/8

2
with θ = π/8 and a second one at r =

rmax,θ=3π/8

2
with θ = 3π/8.

These realisations are indistinguishable when the MR captures only a single pixel of

the PSF, in terms of both realisations having the same likelihood, however this is

not the case if the MR falls onto two pixels of the PSF for instance.

These identi�ability issues arise due to the symmetry/periodicity of the SiMPa func-

tions, and can prevent accurate localisation in some of the cases where di�erent con-

�gurations associated with realisations yield identical likelihoods. However, given

the probabilistic approach, such symmetries are likely to be broken for a di�erent
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MR and thus the posterior probabilities of the correct positions should be higher.

3.3.5 Bayesian update Pseudo-algorithms

MCMC Individual frame inference scheme - Pseudo-algorithm

1. Step q=0 (Iteration 0):

Initialisation of parameters sampling from their prior distributions in Equa-

tions 3.3.13. This results in obtaining, I(0), c(0), τb(0), {β0, βf}(0), x(0) and

set initial r's and θ's equal to 0, hence the collection {Conf, r,θ}(0) con-
taining all the localisations based on the pattern-con�guration probabilistic

scheme for every pixel is set to {Conf, r,θ}(0) = {Conf,0,0}(0).

2. Step q = 1, ..., IT (Iteration 1 up to IT):

(i) Update the parameters I(q), τ (q)b (Gibbs steps), c(q), {β0, βf}(q) (Metropolis-

Hastings steps) from their corresponding full conditional distribu-

tions using the moving regions MR = {MRij,∀i = 1, ..., n and j =

1, ...,m}.

I(q) ∼ p
(
I
∣∣ x(q−1),MR, τ

(q−1)
b , c(q−1), {Conf, r,θ}(q−1)

)
from Equation(3.3.16)

τ
(q)
b ∼ p

(
τb
∣∣ x(q−1),MR, I(q), c(q−1), {Conf, r,θ}(q−1)

)
from Equation(3.3.17)

c(q) ∼ p
(
c
∣∣ x(q−1),MR, I(q), τ

(q)
b , {Conf, r,θ}(q−1)

)
from Equation(3.3.18)

{β0, βf}(q) ∼ p
(
β0, βf

∣∣ x(q−1))
from Equation(3.3.21)
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(ii) Update the �eld x(q) pixel-wise from the full conditional in Equa-

tion (3.3.19), using the original data y = {yij,∀i = 1, ..., n and j =

1, ...,m},

x
(q)
ij ∼ p

(
xij
∣∣ y,x(q−1), I(q), τ

(q)
b , c(q), {Conf, r,θ}(q−1), {β0, βf}(q)

)
from Equation(3.3.19)

(iii) Choose between individual frame localisation scheme and individual

frame counting scheme.

Individual frame localisation scheme

For inference on con�gurations, that is pixels including the molecules based

on the pattern-con�guration concept, as well their respective realisation,

apply the probabilistic localisation scheme based on SiMPa functions, based

on the most up to date �eld x(q).

For allMR = {MRij,∀i = 1, ..., n and j = 1, ...,m}, where each individual
MRij has a �nite number of con�gurations that can be formed based on

its pattern in x(q), apply the proposed probabilistic scheme,

Pij
(q)
(1) = p

(
{Conf, r,θ}ij(1)

∣∣∣ MRij,x
(q), I(q), c(q), τ

(q)
b

)
...

...

Pij
(q)
(u) = p

(
{Conf, r,θ}ij(u)

∣∣∣ MRij,x
(q), I(q), c(q), τ

(q)
b

)
with localisation probabilities to be obtained after normalising the densi-

ties Pij
(q)
(1), . . . , Pij

(q)
(u), that is

Pij
(q)
(1)

/
u∑
h=1

Pij
(q)
(h), . . . , Pij

(q)
(u)

/
u∑
h=1

Pij
(q)
(h)
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where each one of the Pij
(q)
(•) is obtained from Equation (3.3.23).

Individual frame counting scheme

For inference on con�gurations, that is pixels including the molecules based

on the pattern-con�guration concept apply the probabilistic counting scheme

based on SiMPa functions, based on the most up to date �eld x(q).

Cij
(q)
(1) = p

(
{Conf, r = 0,θ = 0}ij(1)

∣∣∣ MRij,x
(q), I(q), c(q), τ

(q)
b

)
...

...

Cij
(q)
(w) = p

(
{Conf, r = 0,θ = 0}ij(w)

∣∣∣ MRij,x
(q), I(q), c(q), τ

(q)
b

)
with localisation probabilities to be obtained after normalising the densi-

ties Cij
(q)
(1), . . . , Cij

(q)
(w), that is

Cij
(q)
(1)

/
w∑
h=1

Cij
(q)
(h), . . . , Cij

(q)
(w)

/
w∑
h=1

Cij
(q)
(h)

where each one of the Cij
(q)
(•) is obtained from Equation (3.3.24).

3. At the end of the MCMC, calculate posterior probabilities for the con�g-

urations by applying (Drawn Con�gurations)/ (Potential Con�gurations)

to obtain pixels including the �uorophores.

If localisation is performed, calculate additional posterior probabilities of

realisations within the con�gurations by applying (Drawn realisations)/

(Potential realisations).
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3.4 Implementation

In this section an implementation of the individual frame inference scheme based on

the SiMPa functions is presented, with the main purpose of describing the outcome

of our novel pattern-con�guration-realisation probabilistic procedure. This is based

on a toy example with more complex images analysed in the application on synthetic

data in Chapter 5. We use the individual frame localisation algorithm from Section

3.3.5 in order to present the output on drawing con�gurations associated with real-

isations, i.e. inference on speci�c positions of molecules within pixels with respect

to a discretisation of r and θ. The individual frame counting algorithm is a simpli�-

cation where every molecule is assumed to be at the origin of the SiMPa functions,

corresponding to the center of the pixel with r = θ = 0. Using the algorithm in

Section 3.2.5, we generate a single frame of size n×m = 40×40 based on the SiMPa

functions, which is displayed in Figure 3.4.1.

Regarding the parameters chosen to generate the frame, the single event intensity was

set to I = 8 with the background proportion being d = 0.3, hence the background

intensity I0 = d×I = 2.4. Independent error from a zero mean Gaussian distribution

was added to the measurements, that is N(0, τb), where the background precision was

selected to be τb = 10. The choice on the pixels containing the molecules within the

frame was arbitrary, with their positions in terms of distances r on directions θ, to

have been chosen as continuous values in the 2-dimensional space. Under the power

of di�raction parameter c = 0.4, the PSFs of the molecules were obtained using the

SiMPa functions.

Within the frame, a variety of overlapping scenarios can be identi�ed, with PSFs

having di�erent number of pixels coinciding, along with a number of well isolated

PSFs. On the middle left part, around [Row, Column] = (22, 5), two individual

molecules have their PSFs overlapping on four pixels, whereas on the top right part,

around [Row, Column] = (33, 26), on two. Also, on the bottom left area, at [Row,

Column] = (7, 13), there is a complete overlap of the PSFs of two active molecules
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which lie onto the same pixel on di�erent positions.

0

10

20

30

40

0 10 20 30 40

Col

Ro
w

Figure 3.4.1: Simulated individual frame using the SiMPa functions. The light blue
crosses represent the true positions of the molecules with their Point Spread Functions,
PSFs, to be shown in the surrounding 3× 3 pixel regions.

We apply the individual frame localisation scheme for IT = 25.000 iterations after

a burn-in period of 10.000 iterations, as presented in Section 3.3.5. Regarding the

output of the scheme, the posterior distributions of the parameters are obtained via

the appropriate Gibbs and Metropolis-Hastings steps. The posterior distributions,

shown by the histograms and the blue solid density lines, along with the prior dis-

tributions, denoted with the red solid lines, are presented in Figure 3.4.2, where the

selected prior distributions are,

π(I| µI , τI) ∼ N(I| µI = 8, τI = 2)

π(c| ac, bc) ∼ RescaledBeta(c| ac = 2, bc = 2, trc = 0.7071)

π(τb| aτ , bτ ) ∼ Gamma(τb| aτ = 2, bτ = 0.25)

π(b0| mb0 , τb0) ∼ N(b0| mb0 = 0, τb0 = 9)
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π(bf | mbf , τbf ) ∼ N(bf | mbf = 0, τbf = 9). (3.4.1)

and the background intenstity proportion d = 0.3. Regarding the choice of I, we

consider an informative prior distribution centred at the true value, based on our

argument that it can be measured from the data during an imaging experiment.

For both the background error precision τb and power of di�raction parameter c,

the prior distributions correspond to non-informative choices whereas β0 and βf are

Gaussian distributions centred at zero, while values between -2 and 2 generally serve

the purpose.

Figure 3.4.2: Prior and posterior distributions for the parameters I, τb, c, β0 and
βf in the simulated individual frame using the SiMPa functions. The red solid lines
denote the prior distributions for each parameter while the histograms associated with
the blue solid lines denote the posterior distributions of each parameter respectively.
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In order to perform the localisation scheme, we select a discretisation of r and θ to

be all the directions θ = k
π

4
, k=0,1,...,8 under the distances r = 0 and r =

rmax,θ

2
,

corresponding to the origin of the SiMPa functions and half the distance from the

origin on direction θ respectively.

During the MCMC, the update of the �eld follows the update of the parameters,

resulting in a binary mask representing the states of every pixel, that is 'On' or

'O�'. For every moving region, the full conditional distributions of the complete

localisation sets are evaluated, based on the patterns formed within the updated

�eld and the corresponding discretisation of r and θ. A complete localisation set

consist of a con�guration associated with corresponding realisations. As thoroughly

described in Section 3.3.3, the full conditional distributions are introduced within a

probabilistic scheme in order to draw localisations of the molecules, both in terms of

identifying the pixels containing them and their speci�c positions within in terms of

r and θ.

More speci�cally, each con�guration corresponds to a combination of PSFs based on

the respective pattern, regardless of the realisations the con�guration is associated

with. Consequently, each con�guration is an identi�cation mechanism of the pixels

in which the molecules lie onto, probably more easily spotted when considering the

simpli�cation with r = θ = 0. Taking into consideration every con�guration for a

speci�c pattern of a moving region, we are able to obtain the set of all potential pixels

in which the molecules can lie onto. We call this the potential positions set, where

the drawn positions declare the pixels which include the molecules and are selected

using their multinomial full conditional distribution. For the individual frame local-

isation scheme, the drawn positions are additionally accompanied with a realisation,

hence we acquire what we call the drawn localisations. The potential localisations

correspond to all the di�erent combinations of r and θ in the discretisation a molecule

can lie within a pixel.

All these individual quantities are key in order to conduct inference on the positions
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of the molecules within a frame. Di�erent counters are established responsible for

recording the draws and potential positions on every iteration. Regarding the con-

�guration draws, corresponding to pixels containing the molecules, three individual

counters of the size of the frame are considered. In the �rst one, named 'Visits', we

store the potential positions of every moving region, with the second one collecting

the corresponding drawn positions, named as 'Positions'. Since we store single draws

within 'Positions', as it corresponds to pixels containing a single active molecule, we

consider a third counter named 'Double events' accounting for two active molecules

in a single pixel. In the 'Double events' counter, we record the drawn positions con-

stituting of two molecules having their PSFs completely overlapping. In order to

store the drawn localisations, we establish a counter we name 'Localisations', where

we treat each pixel as a super-pixel consisting of its regular division according to

the discretisation scheme of r and θ. Each one of the divisions corresponds to a

speci�c realisation, therefore since θ = k
π

4
, k=0,1,...,8 under the distances r = 0 and

r =
rmax,θ

2
we have 3× 3 super-pixels.

At the end of the MCMC, we construct our posterior probability maps based on the

stored counts. The ratio of 'Positions' and 'Visits' corresponds to a probability heat-

map declaring pixels containing a molecule, accompanied with a probability heat-map

regarding pixels containing two molecules when dividing the 'Double events' with

the 'Positions' counter. In general, when a pixel is identi�ed as a pixel containing

a molecule, we have an additional mechanism to determine the existence of two

molecules within the pixel. In a similar manner, we obtain a posterior probability

map denoting the localisation of the molecules within the identi�ed pixels, by taking

the ratio of the 'Localisation' and the 'Positions' counter.

In Figure 3.4.3, we present the posterior probability maps for the simulated individual

frame, with the unchanged and �ltered maps on the right and left columns of the

�gure respectively. The light blue bars, on the right bottom corners of each heat-map,

denote the altering probability levels, with the bins representing the probability
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Figure 3.4.3: Posterior probability maps for the simulated individual frame based
on SiMPa functions. On the left column of the �gure the original probability maps
are shown whereas on the right column the ones �ltered by the average �eld. The top
row contains the probabilities of pixels containing a single molecule with the middle
row accounting for double molecules within the pixels. The bottom row consists of
the super-pixels probabilities for molecules on the sub-pixels, each one representing a
realisation.
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mass in the respective regions. Regarding the �ltering, we consider two di�erent

ways to clear the heat-maps both related to the average �eld. The average �eld is

the ratio of the sum of �elds for every iteration and the number of iterations. We

decide to multiply our probability maps with either the average �eld, which is the

case in our implementation, or a binary mask obtained by a threshold on the average

�eld. The main reason to consider such �lters relies on the fact that a molecule

cannot lie outside the identi�ed 'On' pixels.



Chapter 4

Stack of frames analysis

4.1 Introduction

Active molecules, or �uorophores, captured on frames within a SMLM procedure

are not directly observable, however their intensities within their emission regions

can be measured. The intensities correspond to the observed signal of the frames as

stored by the recorder of the imaging system. The entire sequence of frames forms

the underlying structure under investigation, exhibiting both spatial and temporal

dependencies. The former corresponds to the di�raction of captured active molecules

within frames, where the latter to the properties and dynamics of �uorophores across

the time dependent frames. As we introduced in Chapter 3, we model the behaviour

of an active molecule's di�raction by using the SiMPa functions, which take into

consideration the molecule's location within a pixel. A complete Bayesian modelling

approach was provided, which allows for inference on individual frames based on our

novel pattern-con�guration-realisation concept.

Besides modelling the spatial association of �uorophores, a corresponding mechanism

is needed to account for progressing our SiMPa functions based model over time. In

this case, time is translated into the total number of frames within the stack. Natu-

104
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rally, even when the most developed cameras are used in order to capture images of

the specimen, the possibility of either capturing entire events of active �uorophores

or having complete blinking cycles on a single frame is not very high. This is di-

rectly related with the molecule's properties and dynamics, the capabilities of the

imaging technique and generally the complete imaging procedure [Antolovic et al.,

2017], which has been discussed in more detail in Chapter 2. Practically, same or

reappearing events can be captured in more than one consecutive or within the stack

of frames, which needs to be incorporated throughout the chosen modelling. From a

quantitative point of view, having a mechanism capable of identifying �uorophores

interchanging between excited and dark states before being photo-bleached is of ex-

treme importance. Counting the number of molecules on a stack of frames, hence in

the specimen under investigation, can contribute to gaining substantial information

about intermolecular interactions and behaviours.

In this chapter, we present a state space model based on SiMPa functions, which

allows for coherent propagation of uncertainty both in space and time. We introduce

a probabilistic frame inference scheme based on SiMPa functions, similar to what

we presented in Chapter 3, within a Markov switching model driving the stochastic

behaviour of the pixel states over time. In Section 4.2, we start with a brief introduc-

tion of the general Markov switching model along with its associated properties to be

discussed in Section 4.2.1, mainly based on Frühwirth-Schnatter [2006]. In Section

4.2.2 we formulate the Markov switching model based on SiMPa functions, followed

with a fully detailed scheme on Bayesian inference for both parameters and states in

Section 4.2.3. In Section 4.3 a pseudo-algorithm of a sampling scheme for generating

a stack of frames is introduced. A transition matrix accounts for alteration of a

molecule's state between frames whereas the SiMPa functions model the spread of

the intensities of any active molecules within the frames. The model implementation

is illustrated in Section 4.4, using a synthetic data set generated by the sampling

scheme, with a detailed discussion on the output and localisation.
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4.2 General form of state-space model

4.2.1 The Markov Switching model

In this section, the basic Finite Markov Switching model is presented when time

series data is of main interest, as described in Frühwirth-Schnatter [2006]. We adopt

this term, however a variety of names exists in the literature denoting the exact

same model, such as Markov Mixture or hidden Markov models, with applications

on di�erent areas for instance in econometrics [Pagan and Schwert, 1990], engineer-

ing [Rabiner, 1989], neuroimaging [Smith et al., 2010b], as well as super resolution

reconstructing [Humblot and Mohammad-Djafari, 2006] and single cell imaging [Hey

et al., 2015]. Some basic properties and conditions will be speci�ed, which are es-

sential before introducing the Markov Switching model based on SiMPa functions in

Section 4.2.2.

Following Frühwirth-Schnatter [2006], let a vector y = (y1, ..., yt, ..., yT ) denote a set

of T time series observations, arising from a stochastic process Yt, with t = 1, ..., T .

For the purposes of our work, we assume that these observations are measurements on

a continuous scale, without this being a necessary constraint. We allow the stochastic

process Yt, which is observable, to depend on a hidden discrete stochastic process

St, t = 1, ..., T , a�ecting its behaviour via a speci�ed relationship. Let the vector

S = (S0, ..., St, ..., ST ) denote a realization of the discrete unobserved process St for

t = 0, ..., T , taking values on a �nite space of K states, i.e. St = k with k = 1, ..., K.

The two following rather strong assumptions regarding St and Yt need to be obeyed

in order to de�ne the basic Markov switching model, entities which will be later

relaxed to obtain a sensible Markov switching model based on the SiMPa functions.

Assumptions

(A) The hidden stochastic process St needs to be an irreducible aperiodic Markov

chain starting from an ergodic distribution.

(B) The random variables Y = (Y1, ..., Yt, ..., YT ) are conditionally independent
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when knowing the states S = (S0, ..., St, ..., ST ), arising from the distribution,

Yt|St = k,φ ∼ f(Yt|φSt=k),

where f(Yt|·) denotes a speci�c parametric family with φ being the correspond-

ing parameters.

With respect to conditions (A) and (B), the basic Markov switching model is de�ned

via the conditional distribution of Yt given St as,

Yt|St,φ ∼ f(Yt|φSt). (4.2.1)

Regarding condition (A), we present a brief discussion on the speci�c properties

of a Markov chain. More detail can be found in Frühwirth-Schnatter [2006] and

Karlin and Taylor [1981]. Firstly, we allow the stochasticity of St to be entirely

described by a transition matrix ξ, with ξlk denoting the probability of transitioning

from state l to state k between two discrete time points say t − 1 and t, that is

ξlk = Pr(St = k|St−1 = l), ∀l, k ∈ {1, ..., K} and

ξ =


ξ11 . . . ξ1K
... . . . ...

ξK1 . . . ξKK

 , (4.2.2)

where ∀lk ∈ {1, ..., K}. Every row of the transition matrix ξ obeys ξlk ≥ 0 and
K∑
k=1

ξ·k = 1, with the latter corresponding to the sum of the transition probabilities

of a speci�c state to every possible one to be equal to one.

A probability distribution η = (η1, ..., ηk, ..., ηK) satisfying the invariance property is

called the invariant distribution of St. This means that if St−1 is drawn from such

an invariant distribution η the states of St will be also drawn from η, translating

into Pr(St = k|ξ) = ηk for k ∈ 1, ..., K, with=η existing for every Markov chain
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however not uniquely de�ned. A Markov chain with a transition matrix ξ which

achieves uniqueness of η and additionally convergence of St to η regardless of the

initial state S0, is called ergodic with η being its ergodic distribution. If a Markov

chain is aperiodic then the ergodicity property is satis�ed, with aperiodicity corre-

sponding to lack of periodicity between di�erent states. This translates into having

positive transition probabilities between the same states of a Markov chain, that is

the diagonal entries of the transition matrix hence ξkk > 0, ∀k ∈ 1, ..., K. Lastly, a

Markov chain is irreducible if every state of the chain will be reached for a St which

starts from an arbitrary state k ∈ {1, ..., K}, hence (ξ × ξ × ...× ξ︸ ︷︷ ︸
h

)lk > 0 for some

step h ≥ 1.

The general form of a Markov Switching model is de�ned by obtaining the joint

distribution of the random variables Y = (Y1, ..., Yt, ..., YT ) and their correspond-

ing hidden states S = (S0, ..., St, ..., ST ), modelled by a Markov process. Let y1:T =

(y1, ..., yt, ..., yT ) to be a realization of Y associated with their states S1:T = (S1, ..., St, ..., ST ),

then the joint distribution can be written as,

p(S1:T ,y1:T |ϑ) ∝ f(yT |y1:T−1,S1:T ,ϑ)p(ST |S1:T−1,y1:T−1,ϑ)

× p(y1:T−1|S1:T−1,ϑ)p(S1:T−1|ϑ)

∝ f(yT |y1:T−1,S1:T ,ϑ)p(ST |S1:T−1,y1:T−1,ϑ)p(S1:T−1,y1:T−1|ϑ)

∝ f(yT |y1:T−1,S1:T ,ϑ)p(ST |S1:T−1,y1:T−1,ϑ)f(yT−1|y1:T−2,S1:T−1,ϑ)

× p(ST−1|S1:T−2,y1:T−2,ϑ)p(y1:T−2|S1:T−2,ϑ)p(S1:T−2|ϑ)

∝ f(yT |y1:T−1,S1:T ,ϑ)p(ST |S1:T−1,y1:T−1,ϑ)f(yT−1|y1:T−2,S1:T−1,ϑ)

× p(ST−1|S1:T−2,y1:T−2,ϑ)p(S1:T−2,y1:T−2|ϑ)

∝ . . .

∝
T∏
t=1

f(yt|y1:t−1,S1:t,ϑ)p(St|S1:t−1,y1:t−1,ϑ)p(S0|ϑ), (4.2.3)
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where y1:t−1 = (y1, ..., yt−1) and accordingly S1:t−1 = (S1, ..., St−1), ϑ = (φ, ξ) with

φ = (φ1, ...,φK) the parameters for the di�erent states K and ξ the transition

matrix as in Equation (4.2.2). The density p(S0|ϑ) denotes the initial distribution
of the states in {1, ..., K}. The other two densities which appear by writing down

the joint distribution as this product, are commonly known as one step ahead pre-

dictive density of yt conditional on the past observations y1:t−1 = (y1, ..., yt−1) and

the states S1:t−1 = (S1, ..., St−1) and conditional distribution of St when given past

observations y1:t−1 = (y1, ..., yt−1) and states S1:t−1 = (S1, ..., St−1). The former,

denoted by f(yt|y1:t−1,S1:t,ϑ), basically allows dependency between the current ob-

servation and the previous ones when the states are known, while the latter, denoted

by p(St|S1:t−1,y1:t−1,ϑ), gives the conditional probability distribution of the current

state when past observations and states are available.

According to the choice of modelling, di�erent assumptions can be made about

the dependency between the observations themselves or/and the states modelled by

f(yt|y1:t−1,S1:t,ϑ) as well the relationship of the states over time p(St|S1:t−1,y1:t−1,ϑ).

Regarding the former, two of the most common assumptions are either to assume

only dependency on the current state St, e.g. Markov switching autoregressive model

[Hamilton, 1989], or on a �nite number of previous states, say St−1, ..., St−p, e.g.

Markov switching ARMA models [Billio et al., 1999].

4.2.2 Markov Switching model based on SiMPa functions

In this section, we describe the general form of the Markov switching model based

on the SiMPa functions. As discussed in detail in Chapter 2, a SMLM frame consists

of intensities which represent the visible outcome of a single image. These intensities

provide measurements of underlying �uorophores stochastically emitting light when

exposed on speci�c wavelengths of light. After repetition of this process over a

number of times di�erent, or the same molecules undergo similar proceedings. When

the entire experiment is complete a large number of unprocessed frames form a stack

of frames providing information about the underlying structure of the specimen under
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investigation.

We consider this stack of frames as a sequence of lattices consisting of intensities

over t = 1, ..., T time points. Every lattice contains a speci�c set of �uorophores

either on excited or dark states, with the active �uorophores on each lattice to

potentially arise from the blinking procedure. Since a photo-bleached �uorophore

cannot be directly observed, we consider a two-state procedure of 'On' and 'O�',

denoting excited and ground states respectively. The overall state of each lattice

is dependent over the time points t = 1, ..., T due to the blinking process with

�uorophores allowed to stochastically alter or retain their state. A natural way to

describe this imaging procedure is by a dynamic system which evolves over time,

where time can be described as the total number of frames the entire stack consists

of.

Following similar notation to Chapter 3, let yt to be a lattice of observed intensities

at time t with yt = {yt,ij}, i = 1, ..., n and j = 1, ...,m, where n and m the number

of rows and columns of the lattice respectively, and yt,ij to be the observed intensity

of pixel {i, j} at time t. The sequence of observations y1:T = (y1, ...,yt, ...,yT )

can be expressed as a time series over t = 1, ..., T time points, generated by a

stochastic process Yt. Regarding observations from a SMLM experiment, y1:T can

be considered as a realization of Yt containing the observed intensities for a stack of

frames consisting of T individual frames, with yt being the tth frame. As a result, a

discrete-time time series seems appropriate where t can take values in the discrete set

{1, ..., T}, hence t ∈ {1, ..., T}. In our case, each one of the time points t represents

a frame from the sequence of frames 1, ..., T which are time related.

We allow a latent discrete valued variable x1:T to be the hidden mechanism according

to which the data are being generated, where x1:T = (x1, ...,xt, ...,xT ). We name

each one of the xt, t ∈ {1, ..., T} a state con�guration of the unobserved discrete

valued process for frame t. We de�ne a state con�guration to be the collection of

individual states for every pixel on frame t, hence xt = {xt,ij} for i = 1, ..., n and
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j = 1, ...,m to be the number of rows and columns of frame t respectively. The

state xt,ij of any pixel {i, j} on frame t can take values in the �nite discrete state

set {1, ..., K} consisting of K states. Under our modelling, we consider K = 2 states

with,

xt,ij =

 1, if the pixel is declared to be in 'On' state

−1, if the pixel is declared to be in 'O�' state
,

where 1 and -1 represent the 'On', or active, and 'O�', or de-active, pixels respec-

tively. We stress here that xt,ij corresponds to the state of the pixel and not the

�uorophore itself. In order to have a more accessible notation throughout our mod-

elling, we adopt a vectorised indexing scheme for every frame t, therefore,

y1:T = (y1, ...,yt, ...,yT ) with yt = {yt,s}, s = 1, ..., N(= n×m)

x1:T = (x1, ...,xt, ...,xT ) with xt = {xt,s}, s = 1, ..., N,

hence,

xt,s =

 1, if pixel s is in 'On' state

−1, if pixel s is in 'O�' state
, (4.2.4)

Also, we denote with y1:t = (y1, ...,yt) the sequence of observed frames 1 to t for any

t ∈ {1, ..., T} and similarly, x1:t = (x1, ...,xt) the unobserved con�gurations states

of frames 1 to t.

We model the observed intensities yt, ∀t = 1, ..., T , using a Gaussian distribution

based on the con�guration states xt, ∀t = 1, ..., T , where the mean of each individual

observation {yt,s} relies on the state of the discrete hidden underlying variable {xt,s},
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∀s = 1, ..., N . The background error level is considered to be generated by the same

distribution regardless of the state of the pixel. Therefore,

yt,s = µxt,s + εt, εt ∼ N(0, τb), (4.2.5)

or equivalently, expressed in terms of the entire frame yt and the corresponding

con�guration states xt,

yt = µxt + εt, εt ∼ N(0, τb), (4.2.6)

where the state dependent mean is represented by the SiMPa functions introduced

in Chapter 3 and τb is the background error precision. As a reminder, the SiMPa

functions αk(r, θ, c), k = 0, .., 8, describe the intensities di�raction in a predetermined

neighbourhood (here of dimension 3 × 3 pixels) around the central pixel containing

an active �uorophore, lying r units away from its center (origin) on direction θ, with

c the parameter describing the power of di�raction. Our proposed use entails the

single event intensity I, allowing the SiMPa functions to account for the intensity

proportions of I in the predetermined neighbourhood (Section 3.2). Consequently,

each active pixel ('On' state) can be considered as a member of a speci�ed di�raction

(PSF) where its assigned SiMPa value depends on the pixel the �uorophore lies into,

along with the speci�ed position declared by r and θ. We denote this with αO(r, θ, c).

Thus,

µxt,s =

I (1− αO(r, θ, c)) , if xt,s = 1

I d, if xt,s = −1
, (4.2.7)

where Id = I0 denotes the proportion of the single event intensity I operating as

a background baseline intensity, and the SiMPa functions αk(r, θ, c) as in Equation

(3.2.1) in Section 3.2,
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αk =


c

(
d1 − r cos

[
(k − 1)π

4
+ θ

]
g(R, l)

)
, k = 1, 3, 5, 7

c

((
(rg(R, l))2 + d22 + 2d2skr cos

(
(k + 1)π

4
− θ
)
g(R, l)

)1/2
)
, k = 2, 4, 6, 8

0, k = 0

,

where αO(r, θ, c) in Equation 4.2.7 denoting any of the αk(r, θ, c) for any k ∈ {0, ..., 8},
with respect to r and θ.

Regarding the latent discrete variable x1:T representing the states of the pixels, we

allow a dependency over consecutive time point progressing via a transition prob-

ability matrix ξ. Additionally, the pixels themselves are spatially associated with

each other since they feature intensities which spread from active �uorophores. This

local spatial dependency can be conveniently modelled by a Markov Random Field

(MRF), as presented in Section 3.3.1 and De�nition 3.3.1. In that case, the state of

a pixel depends on the states of the neighbours within a 3 × 3 pixel region, chosen

according to the size of the PSF with respect to the SiMPa functions, leading to,

xt = ξxt−1 or xt =

(
ξ11 ξ10

ξ01 ξ00

)
xt−1, (4.2.8)

with ξ to be the transition matrix consisting of K = 2 states ('On' and 'O�') and

xt−1 a MRF with pixel-wise dependency described by a neighbourhood structure via

the conditional distributions, that is

Pr(xt−1,s|xt−1,q,∀q 6= s ∈ {1, ..., N}) = Pr(xt−1,s|∂xt−1,s),

where ∂• denotes the neighborhood structure as in Equations (3.3.1) and (3.3.2).

Practically, between two time points t − 1 to t, we allow a pixel-wise transition
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between 'On' and 'O�' states while taking into consideration the states of the neigh-

bourhood at time t − 1. The evolution of states depends on a transition scheme

a�ected by the states of the neighbouring pixels, hence pixel-wise we have equiva-

lently to (4.2.8),

xt,s =

(
ξ11 ξ10

ξ01 ξ00

)
xt−1,s. (4.2.9)

Equations (4.2.6) and (4.2.8) fully describe the general form of the state space model

based on SiMPa functions, graphically represented in Figure 4.2.1. We note here that

since we model the state of the pixels and not the states of the molecules themselves,

a pixel cannot be 'Bleached' (see [Eggeling et al., 1998] for detail on photo-bleaching)

but can cycle between 'On' and 'O�' states based on the di�raction of closely active

molecules.

xt−1

↓

· · · −→ ξ−→

xt

↓

ξ−→

xt+1

↓

· · · −→

yt−1 yt yt+1

Figure 4.2.1: Graphical representation of the state space model based on SiMPa
functions. Every lattice of intensities yt is a result of an unobserved state con�guration
xt, which alters its individual states over time according to the transition matrix ξ.

More speci�cally, similarly to Chapter 3, we model the MRF by using an autologistic

model [Besag, 1974] with the joint distribution of xt−1 = {xt−1,s}, s = 1, ..., N ,
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π
(
xt−1

∣∣{β0, βf}) = exp {β0V0(xt−1) + βfVf (xt−1)}
Z({β0, βf})

, (4.2.10)

where V0(xt−1) =
∑
∀s
xt−1,s and Vf (xt−1) =

∑
q∈∂xt−1,s

xt−1,sxt−1,q with β0 and βf being

parameters controlling the number of states and the strength of the neighboring

interaction respectively. The quantity Z({β0, βf}) denotes the normalizing constant.
According to the Hammersley-Cli�ord theorem [Hammersley and Cli�ord, 1971], the

MRF can be fully characterized from its full conditional distributions by,

π
(
xt−1,s

∣∣∂xt−1,s, {β0, βf}) ∝ exp

β0xt−1,s + βf
∑

q∈∂xt−1,s

xt−1,sxt−1,q

 , (4.2.11)

Similarly to Equation (3.3.22), we use the pseudo-likelihood estimation for the auto

logistic �eld in order to reduce the complexity of having to calculate 2N terms in the

normalising constant [Besag, 1974],

π
(
xt−1

∣∣{β0, βf}) ≈ ∏
s∈{1,...,N}

π(xt−1,s|∂xt−1,s, {β0, βf}). (4.2.12)

In order to specify the Markov switching model based on SiMPa functions described

by Equation (4.2.6) and (4.2.8), we need to make two assumptions associated with the

dependencies over time. Firstly, we introduce some notation with ϑ = (φ, ξ) to be de-

noting the entire collection of parameters, where φ =
(
I, c, τb,β1:T , {Conf, r,θ}1:T

)
is the respective collection of within frame parameters and ξ the transition matrix,

as the between frame parameters. The vector β1:T contains each frame-wise param-

eter set {β0t , βft} for every frame t ∈ {1, ..., T}, while the collection {Conf, r,θ}1:T
represents the complete localisation set for every frame 1, ..., T with,

β1:T = (β1, ...,βT ) = ({β01 , βf1}, ..., {β0T , βfT }) ,
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{Conf, r,θ}1:T =
(
{Conf, r,θ}1, ..., {Conf, r,θ}T

)
, and

{Conf, r,θ}t =
(
{Conf, r,θ}t,s, ∀s ∈ {1, ..., N}

)
,

(4.2.13)

where a complete localisation frame set {Conf, r,θ}t, ∀t = 1, ..., T , consists of all

the drawn con�gurations associated with their corresponding realisations for every

pixel s ∈ {1, ..., N}, introduced on the probabilistic inference scheme introduced in

Chapter 3 based on our novel pattern-con�guration-realisation concept. We adjust

the scheme for the Markov switching model based on SiMPa functions, later in

Section 4.2.3. Therefore, for a single pixel,

{Conf, r,θ}t,s =
{
Conft,s, {r, θ}t,s(1) , ..., {r, θ}t,s(v)

}
, (4.2.14)

where v = 1, ..., NPSF to be denoting the number of �uorophores that have been

localised based on the con�guration Conft,s of pixel s. It should be noted that

the notation used for the number of localisation of �uorophores is directly equiv-

alent with the number of the PSF's, hence the use of NPSF. For notation sim-

plicity, we will remove the frame indexing when it is not confusing, hence use

φ =
(
I, c, τb,β1:T , {Conf, r,θ}1:T

)
instead of φt =

(
I, c, τb,βt, {Conf, r,θ}t

)
. Us-

ing this notation we make the following assumptions.

Assumptions for MSM based on SiMPa functions

(A1) For �xed xt at time t, the intensity observations yt are conditionally indepen-

dent and do not depend on previous intensity observations y1:t−1:

f(yt|y1:t−1,x1:t,ϑ) = f(yt|xt,φ) =
∏

∀s∈{1,...,N}

f(yt,s|xt,s,φ).

(A2) Given that xt is a Markov random �eld, the conditional distribution of xt



4.2. General form of state-space model 117

is independent of past observations y1:t−1 and only depends on the states of

the previous states xt−1, transitioning according to the transition matrix ξ in

(4.2.8), and their neighbouring states denoted by ∂xt−1, hence

p(xt|x1:t−1,y1:t−1,ϑ) = p(xt|xt−1,ϑ)

= p(xt|xt−1, ξ)p(xt−1|∂xt−1,φ)
pseudo
≈

∏
∀s∈{1,...,N}

p(xt,s|xt−1,s, ξ)p(xt−1,s|∂xt−1,s,φ).

As the domain of the states xt,s,∀t, s is discrete and can only take values inK =

{−1, 1}, we can straightforward obtain the pixel-wise conditional probabilities

of any state k ∈ {−1, 1}, that is 'O�' and 'On' state respectively, thus

Pr(xt,s = k|x1:t−1,y1:t−1,ϑ) = Pr(xt,s = k|xt−1,ϑ)

=
∑

kp∈{−1,1}

Pr(xt,s = k|xt−1,s = kp, ξ)×

× Pr(xt−1,s = kp|∂xt−1,s,φ),

where ϑ = {φ, ξ} and

Pr(xt−1,s = kp |∂xt−1,s,φ) =

exp{β0kp + βf
∑

q∈∂xt−1,s

kpxt−1,q}

∑
ka∈{−1,1}

exp

ka
β0 + βf

∑
q∈∂xt−1,s

xt−1,q


,

(4.2.15)

coming from the autologistic model as in (4.2.11). The condition of having a

state to depend on the transition probability of the previous state of the pixel

as well the states of its predetermined neighborhood is presented graphically

in Figure 4.2.2.
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xt−1

xt−1,s

xt

xt,s
ξ =

(
ξ11 ξ10
ξ01 ξ00

)

xt−1,∂s

Figure 4.2.2: Transition of a state via a transition matrix and the corresponding
neighbourhood region of the MRF. On the left lattice an arbitrary pixel s is shown,
denoted with xt−1,s at time t− 1, either on the 'on' or 'o�' state along with its neigh-
bourhood structure, assigned with the blue solid line. Based on assumption (A2),
the state of the pixel s at time t, xt,s, depends on the transition probability of xt−1,s
according to ξ and the state of its neighbourhood.

Similar to Equation (4.2.3), the general form of the Markov switching model based

on SiMPa functions is fully determined from the joint density of the hidden states

x1:T and the observed intensities y1:T , hence

p(x1:T ,y1:T |ϑ) ∝ f(y1:T |x1:T ,ϑ)p(x1:T |ϑ)

∝
T∏
t=1

f(yt|y1:t−1,x1:t,ϑ)p(xt|x1:t−1,y1:t−1,ϑ)p(x0|ϑ)

(A1)
∝
(A2)

p(x0|φ)
T∏
t=1

f(yt|xt,φ)p(xt|xt−1,ϑ)

(A2)
∝ p(x0|φ)

T∏
t=1

f(yt|xt,φ)p(xt|xt−1, ξ)p(xt−1|∂xt−1,φ), (4.2.16)

where p(x0|φ) is the initial distribution of the states, which we assume is independent
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of the transition matrix ξ, hence p(x0|ϑ) ≡ p(x0|φ).

In other words, the joint distribution of y1:T and x1:T is the product of the likelihood

of x1:T and ϑ, when the intensities y1:T are observed, and the marginal density of

x1:T . The likelihood can be written as the product of the conditional densities of yt
when the states x1:t are known and y1:t−1 have been observed ∀t ∈ {1, ..., T}. Ac-

cording to assumption (A1) of conditional independence of yt's when conditioning

on the states, the likelihood simpli�ed to

f(y1:T |x1:T ,φ) ∝
T∏
t=1

f(yt|y1:t−1,x1:t,ϑ)

(A1)
∝

T∏
t=1

f(yt|xt,φ)

∝
T∏
t=1

∏
∀s∈{1,...,N}

f(yt,s|xt,s,φ), (4.2.17)

while the marginal density of x1:T can be written as the product of the conditional

densities of xt, ∀t ∈ {1, ..., T}, which depend only on the states of the neighbourhood
of the previous time point t− 1 with respect to assumption (A2), thus

p(x1:T |ϑ) ∝ p(x0|φ)
T∏
t=1

p(xt|x1:t−1,ϑ)

(A2)
∝ p(x0|φ)

T∏
t=1

p(xt|xt−1,ϑ)

∝ p(x0|φ)
T∏
t=1

∏
∀s∈{1,...,N}

p(xt,s|xt−1,s,ϑ)

∝ p(x0|φ)
T∏
t=1

∏
∀s∈{1,...,N}

p(xt,s|xt−1,s, ξ)p(xt−1,s|∂xt−1,s,φ). (4.2.18)
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On the last line of Equation (4.2.18), the conditional density of xt,s has been written

as the product of the transition density from xt−1,s to xt,s and the probability density

of the Markov �eld, which takes into account the neighbourhood structure.

4.2.3 Bayesian inference for the Markov Switching model based

on SiMPa functions

In this section we describe the general form of Bayesian inference for the Markov

Switching model based on SiMPa functions. This is based on the full posterior dis-

tribution, which is written as the product of the joint likelihood of the data and

states and the prior distributions, hence its general form reads in,

p(x1:T ,ϑ|y1:T ) ≡ p(x1:T ,φ, ξ|y1:T ) ∝ p(x1:T ,y1:T |φ, ξ) p(φ) p(ξ)
(4.2.16)
∝ f(y1:T |x1:T ,φ) p(x1:T |φ, ξ) p(φ) p(ξ).

(4.2.19)

Sampling directly from the full posterior is not feasible, therefore a sequential MCMC

sampling scheme is considered. It consists of three main parts which rely on con-

ditional and sequential updates. The �rst part accounts for updating the tran-

sition matrix ξ based on data augmentation as has been described in Frühwirth-

Schnatter [2006]. The second part consists of parameter updating when the states

of the hidden process are considered known. Regarding the unknown parameters

φ =
(
I, c, τb,β1:T , {Conf, r,θ}1:T

)
, we adopt a similar concept as in Chapter 3 by

using the full conditional distributions. While we condition on the states, our proba-

bilistic counting and localising inference scheme presented in Chapter 3 still stands,

however consecutive frames must somehow be connected as their states exhibit a

temporal dependency, progressing stochastically according to the transition matrix

ξ. The corresponding parameter updating scheme for ϑ = {φ, ξ} when the states
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are �xed is presented in Section 4.2.3.1 in detail. The third and last part accounts

for estimating the states of the unknown process x1:T when all the parameters of

the Markov switching model based on SiMPa functions are sampled and assumed

known. We adopt a Forward-Filtering-Backward-Sampling (FFBS) algorithm, in a

similar manner as Frühwirth-Schnatter [2006], to update the hidden states. The

FFBS algorithm consists of a sequential procedure, initially running a �ltering step

forward in time, that is for t = 1, ..., T , based on the �ltered and one-step ahead

probability densities, followed by a multi-move backwards sampling algorithm, that

is for t = T, T − 1, ..., 1, using the conditional distribution of the states when the fu-

ture states are considered known, presented in Section 4.2.3.2. This section concludes

with a Pseudo-algorithm in 4.2.3.3, summarising the steps in order to draw infer-

ence on the Markov switching model based on the SiMPa functions from a Bayesian

perspective via an FFBS state update algorithm.

4.2.3.1 Parameter updating and localisation given the states

In this section we describe the parameter updating scheme as well as �uorophore

localisation based on SiMPa functions. The procedures are similar to those in Sec-

tion 3.3.2, adapted to the appropriate notation and modi�cations to account for

the Markov switching model. Parameter updating is performed using the full con-

ditional distributions of each one of the parameters via a sequential update proce-

dure onto an MCMC sampling scheme, as sampling directly from the full posterior

p(x1:T ,ϑ|y1:T ) in Equation 4.2.19 is extremely challenging, if not impossible. Local-

isation of �uorophores relies on our novel probabilistic inference scheme using the

pattern-con�guration-realisation concept, as introduced in Section 3.3.3, relying to

a discretisation of the continuous parameters r and θ.

One of the key concepts when applying the modelling scheme based on the SiMPa

functions, is the use of a mechanism which attempts to capture the behaviour of a

�uorophore intensity spread along a predetermined neighbourhood. Since the SiMPa

functions describe the di�raction on a 3× 3 region of pixels (or 2nd order neighbour-
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hood structure), a same sized moving region (MR) scans the lattice adding intensities

in an attempt to capture and identify the corresponding di�ractions. More speci�-

cally, the likelihood as presented in Equation (4.2.17) is described by,

f(y1:T |x1:T ,φ) ∝
T∏
t=1

∏
∀s∈{1,...,N}

f(yt,s|xt,s,φ),

due to assumption (A1) of conditional independence of y1:T when x1:T are known

with φ =
(
I, c, τb,β1:T , {Conf, r,θ}1:T

)
, where from (4.2.5) and (4.2.7),

f(yt,s|xt,s,φ) ∼ N
(
µxt,s , τb

)
, (4.2.20)

with τb to be denoting precision and

µxt,s =

I (1− αO(r, θ, c)) , if xt,s = 1

I d, if xt,s = −1
.

We summarise the probability density function of the intensity of a speci�c pixel s

at time t in Equation (4.2.20) by introducing the indicator functions 1{xt,s=1} and

1{xt,s=−1} where,

1{xt,s=1} =

1, if xt,s = 1

0, if xt,s = −1
and 1{xt,s=−1} =

0, if xt,s = 1

1, if xt,s = −1
,

leading to

f(yt,s|xt,s,φ) ∼ N
(
I d1{xt,s=−1} + I (1− αO(r, θ, c))1{xt,s=1}, τb

)
. (4.2.21)

The data in the MR can be obtained by adding the intensities in the predetermined
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neighbourhood region, hence MRt,s =
∑

q∈∂yt,s
yt,q with,

f(MRt,s|∂xt,s,φ) ∼ N

 ∑
q∈∂xt,s

µxt,q , 1
/ ∑

q∈∂xt,s

τ−1b

 , (4.2.22)

due to conditional independence of yt when the states xt are considered known, and

τb is the background error precision. The precision τMRt,s of the probability density

of MRt,s can be simpli�ed into,

τMRt,s = 1
/ ∑

q∈∂xt,s

τ−1b = (Npτ
−1
b )−1 =

τb
Np

, (4.2.23)

with Np being the total number of pixel in the predetermined neighbourhood, here

Np = 9, while the mean µMRt,s =
∑

q∈∂xt,s
µxt,q of the probability density of MRt,s, can

be obtained by,

µMRt,s =
∑

q∈∂xt,s

µxt,q = I

 d
∑

q∈∂xt,s

1{xt,q=−1} +
∑

q∈∂xt,s

1{xt,q=1} (1− αO(r, θ, c))


= I

 dN{∂xt,s=−1} +

N{∂xt,s=1}∑
v=1

(1− αO,v(r, θ, c))


= I

(
dN{∂xt,s=−1} +

(
N{∂xt,s=1} − αO,N{∂xt,s=1}(r, θ, c)

))
,

(4.2.24)

where N{∂xt,s=1} and N{∂xt,s=−1} denote the total number of 'On' and 'O�' pixels

respectively in the neighbourhood of pixel s on frame t. The term αO,v(r, θ, c) rep-

resents the corresponding SiMPa functions for each 'On' pixel v, while the quantity

αO,N{∂xt,s=1}(r, θ, c) the sum of all the corresponding SiMPa functions for every 'On'

pixel v = 1, ..., N{∂xt,s=1} within the MRt,s. Similarly to the modi�cations in Section
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3.3.3 in Chapter 3, we adjust µMR in a way to take into account the number of PSF's

contributing to the MR, if this information was available, allowing overlapping sce-

narios to potentially occur. Therefore, the modi�ed generalised version of µMR as in

Equation (3.3.10) becomes,

µMRt,s = I
(
dN{∂xt,s=−1} +

NPSF∑
v=1

(
nPSFv − cαO,nPSFv (rv, θv)

))
, (4.2.25)

where the total number of 'On' pixels N{∂xt,s=1} can be factorised into a combination

of PSF's, denoted with NPSF. Each one of the PSF's in NPSF has nPSF 'On' pixels,

associated with the total sum of the corresponding SiMPa functions αO,nPSF , where

every nPSFv ⊆ N{∂xt,s=1} for all v ∈ {1, ...,NPSF}.

Therefore, based on Equations (4.2.25) and (4.2.23), the density of a moving re-

gion MRt,s, ∀s ∈ {1, ..., N} at frame t in Equation (4.2.22), when the states and

parameters are known takes the form,

f(MRt,s|∂xt,s,φ) ∼ N

(
I
(
dN{∂xt,s=−1} +

NPSF∑
v=1

(
nPSFv − cαO,nPSFv (rv, θv)

))
,
τb
Np

)
.

(4.2.26)

We consider the same assumption as in (A1), regarding conditional independence

of the MRt = {MRt,s,∀s ∈ {1, ..., N}} in any frame t when the corresponding state

con�guration xt is known. Similarly, we assume that they do not depend on previous

moving regions MR1:t−1, hence,

f(MRt|MR1:t−1,x1:t,ϑ) = f(MRt|xt,φ) =
N∏
s=1

f(MRt,s|∂xt,s,φ)
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and accordingly to (4.2.17) the likelihood based on the moving regions results in,

f(MR1:T |x1:T ,φ) ∝
T∏
t=1

f(MRt|MR1:t−1,x1:t,ϑ)

∝
T∏
t=1

N∏
s=1

f(MRt,s|∂xt,s,φ)

(4.2.26)
∝

T∏
t=1

N∏
s=1

N
(
MRt,s |µMRt,s , τMRt,s

)
. (4.2.27)

We divide the parameters into global parameters, frame-wise global parameters and

frame-wise local parameters according to their relation with the stack of frames.

We adopt a Bayesian framework in which we assign priors on every parameter in

φ = {I, c, τb,β1:T , {Conf, r,θ}1:T} in the following fashion,

Global Parameters


π(I) ≡ π (I|µI , τI) ∼ N(I|µI , τI)

π(τb) ≡ π (τb|aτ , bτ ) ∼ Gamma(τb|aτ , bτ )

π(c) ≡ π (c|ac, bc) ∼ RescaledBeta(c|ac, bc, trc)

,(4.2.28)

Frame-wise
Global Parameters

π(β0t) ≡ π (β0t |mb0 , τb0) ∼ N(β0t |mb0t
, τb0t )

π(βft) ≡ π
(
βft |mbf , τbf

)
∼ N(βft |mbft

, τbft )
, (4.2.29)

Frame-wise
Local Parameters

{
π({Conf, r,θ}t,s) ∼ Uniform(1/NConft,s) . (4.2.30)

We assign a discrete uniform distribution with equally probability 1/NConft,s as the

prior of the complete localisation set {Conf, r,θ}t,s for any pixel s ∈ {1, ..., N} at
frame t (Equation (4.2.30)), where NConft,s is the total number of con�gurations for

pixel s based on the discretisation of r and θ. As mentioned earlier, the complete

localisation set {Conf, r,θ}t,s (see De�nition 3.3.5) consists of the con�guration as-

sociated with the realisations for pixel s at frame t (De�nitions 3.3.3 and 3.3.4 in

Section 3.3.3). The parameters I, τb, c are the global parameters, since they depend
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on the entire time series from t = 1, ..., T , the βt's ∀t ∈ {1, ..., T} are global pa-

rameters on each respective individual frame t and the complete localisation sets

{Conf, r,θ}t,s are local parameters for every pixel s of every frame t.

Regarding the global parameters I, τb and c, we obtain the corresponding full condi-

tional distributions based on the entire moving region observations collectionMR1:T

and their respective prior distributions in Equation (4.2.28), therefore,

Full conditional of I

p
(
I
∣∣MR1:T ,φ−I

)
≡ p

(
I
∣∣MR1:T ,x1:T , τb, c, {Conf, r,θ}1:T

)
∝ f(MR1:T |x1:T , I,φ−I) π(I)

(4.2.28)
∝

(4.2.27)

T∏
t=1

N∏
s=1

N
(
MRt,s |µMRt,s , τMRt,s

)
N(I |µI , τI).

(4.2.31)

Therefore, the full conditional of I is,

p
(
I
∣∣MR1:T ,φ−I

)
∼ N(I |µFCI , τFCI ), (4.2.32)

where the full conditional mean µFCI and precision τFCI ,

µFCI =

τIµI +
τb
Np

T∑
t=1

N∑
s=1

MRt,s

µMRt,s/I︷ ︸︸ ︷(
dN{∂xt,s=−1} +

NPSF∑
v=1

(
nPSFv − cαO,nPSFv (rv, θv)

))
τFSI

,

τFCI = τI +
τb
Np

T∑
t=1

N∑
s=1

(
dN{∂xt,s=−1} +

NPSF∑
v=1

(
nPSFv − cαO,nPSFv (rv, θv)

))
︸ ︷︷ ︸

µMRt,s/I

2

,

with the mean of the moving region µMRt,s for pixel s at frame t is as in Equation
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(4.2.25).

Full conditional of τb

p
(
τb
∣∣MR1:T ,φ−τb

)
≡ p

(
τb
∣∣MR1:T ,x1:T , I, c, {Conf, r,θ}1:T

)
∝ f(MR1:T |x1:T , τb,φ−τb) π(τb)

(4.2.28)
∝

(4.2.27)

T∏
t=1

N∏
s=1

N
(
MRt,s |µMRt,s , τMRt,s

)
Gamma(τb |aτb , bτb).

(4.2.33)

Similarly, the full conditional distribution of the precision τb is in closed, hence,

p
(
τb
∣∣MR1:T ,φ−τb

)
∼ Gamma(τb |aFCτb , b

FC
τb
), (4.2.34)

where the full conditional shape aFCτb and rate bFCτb ,

aFCτb = aτb + (T ×N)/2,

bFCτb =

T∑
t=1

N∑
s=1

(
MRt,s −

µMRt,s︷ ︸︸ ︷
I
(
dN{∂xt,s=−1} +

NPSF∑
v=1

(
nPSFv − cαO,nPSFv (rv, θv)

)))2
2Np

+ bτb .

When it comes to updating, usual Gibbs steps are used for both parameters I and

τb in order to sample from their full conditional distribution throughout an MCMC

update scheme. This is not the case for the update of spread parameter c as well the

frame wise global parameters β1:T .

Full conditional of c

The full conditional distribution of c is the product of the normally distributed

density of MR1:T and the rescaled beta prior distribution, chosen with respect to
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the limitations of c as discussed in detail on Section 3.2.4, therefore,

p
(
c
∣∣MR1:T ,φ−c

)
≡ p

(
c
∣∣MR1:T ,x1:T , I, τb, {Conf, r,θ}1:T

)
∝ f(MR1:T |x1:T , c,φ−c) π(c)

(4.2.28)
∝

(4.2.27)

T∏
t=1

N∏
s=1

N
(
MRt,s |µMRt,s , τMRt,s

)
RescBeta(c|ac, bc, trc),

(4.2.35)

which cannot be expressed in exact form. The �xed parameter trc denotes the

rescaling of the usual Beta distribution with trc = 0.7071, when the side length of

the pixel is l = 1 without loss of generality, as obtained on Section 3.2.4.

Therefore, in order to update the parameter c we adopt a Metropolis-Hastings step

within MCMC, using a rescaled Beta distribution with mode at the current value of

c as the proposal distribution.

Full conditional of {β0t , βft}

p({β0t , βft}|xt) ∝ π(xt|β0t , βft)π(β0t)π(βft)

=
exp {β0tV0(xt) + βftVf (xt)}

Z({β0t , βft})
π(β0t)π(βft)

≈
N∏
s=1

π(xt,s|∂xt,s, {β0t , βft})N(β0t|mβ0t
, τβ0t )N(βft|mβft

, τβft ).

(4.2.36)

The full conditional of the frame wise global parameters β1:T =
{
{β0t , βft},∀t =

1, ..., T
}
for every t, is not exact, hence a Metropolis-Hastings step is considered. The

update is based on Gaussian distributed proposal distributions centred at the current

values of {β0t , βft}. On the last line of Equation (4.2.36), the pseudo-likelihood

approximation [Besag, 1974] is used in order to reduce the complexity of calculations

as in Equation (4.2.12).
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Localisations update based on full conditionals

The localisation of active �uorophores, or the simpli�ed form of pixel identi�cation

where the active �uorophores lie onto, is performed according to our novel prob-

abilistic inference scheme introduced in Section 3.3.3 in Chapter 3, based on the

pattern-con�guration-realisation concept. The latter relies on the assumption of ev-

ery identi�ed �uorophore being at the origin of the SiMPa functions (r = θ = 0),

while the former associates each one with a realisation as well. As a reminder, a

realisation is combination of r and θ from a chosen discretisation (De�nition 3.3.4).

Both approaches rely on the potential con�gurations a pattern can be formed from,

under the assumption of up to two PSFs allowed to overlap. A pattern is a struc-

ture of 'On' and 'O�' pixels within a MR (De�nition 3.3.2), with the con�guration a

combination of PSFs which can result in the corresponding pattern (De�nition 3.3.3).

Full conditional of complete localisation set {Conf, r,θ}t,s

According to Equation (4.2.14) and De�nition 3.3.5, a complete localisation set for a

pixel s at frame t is denoted with {Conf, r,θ}t,s =
{
Conft,s, {r, θ}t,s(1) , ..., {r, θ}t,s(v)

}
,

where {Conf, r,θ}t =
(
{Conf, r,θ}t,s, ∀s ∈ {1, ..., N}

)
the complete localisation

set for frame t, as in Equation (4.2.13). Then we can obtain the full conditional

distribution for any pixel s in frame t,

Pt,s ≡ p
(
{Conf, r,θ}t,s

∣∣∣ MRt,s, ∂xt,s, I, c, τb

)
∝ f

(
MRt,s

∣∣∣ ∂xt,s, I, c, τb, {Conf, r,θ}t,s) π({Conf, r,θ}t,s)
(4.2.30)
∝

(4.2.26)
N
(
MRt,s |µMRt,s , τMRt,s

)
Uniform(1/NConft,s), (4.2.37)

where the mean µMRt,s , from Equation (4.2.25), is evaluated at the appropriate com-

plete localisation set {Conf, r,θ}t,s, contributing to the red coloured parts below,

µMRt,s = I
(
dN∂xt,s=−1} +

NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv, θv, c)

))
.
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The full conditional distribution Pt,s is evaluated at every possible formation in

NConft,s , denoted with NConft,s (u)
, i.e. ∀1, ..., u in the �nite con�gurations set for

the corresponding pattern of pixel s on frame t. Since Pt,s has a �nite support, it is

multinomial with probabilities proportional to Pt,s(1), ..., Pt,s(u), which is introduced

within a Gibbs step to draw localisations, similar to Equation (4.2.37) in Chapter 3,

as,


Pt,s(1) = p

(
{Conf, r,θ}t,s(1)

∣∣∣ MRt,s, ∂xt,s, I, c, τb

)
...

Pt,s(u) = p
(
{Conf, r,θ}t,s(u)

∣∣∣ MRt,s, ∂xt,s, I, c, τb

)
→



Pt,s(1)

/
u∑
i=1

Pt,s(i)

...

Pt,s(u)

/
u∑
i=1

Pt,s(i)


.

Full conditional of complete counting set {Conf, r = θ = 0}t,s
The complete counting set, {Conf, r = θ = 0}t,s ≡ {Conf}t,s, is the simpli�cation of

the complete localisation set, allowing inference only on the con�gurations forming

the patterns, and relies on �xed positions of the �uorophores within the pixels hence

r = θ = 0 (De�nition 3.3.5). In that case, the complexity of the probabilistic

scheme reduces substantially, by avoiding an enormous number of probabilities to

be calculated for each pixel, which can potentially result in less reliable inference.

Similar to Section 3.3.3, this modi�cation corresponds to the probabilistic counting

scheme, reading in,


Ct,s(1) = p

(
{Conf}t,s(1)

∣∣∣ MRt,s, ∂xt,s, I, c, τb}
)

...

Ct,s(w) = p
(
{Conf}t,s(w)

∣∣∣ MRt,s, ∂xt,s, I, c, τb}
)
→



Ct,s(1)

/
w∑
h=1

Ct,s(h)

...

Ct,s(w)

/
w∑
h=1

Ct,s(h)


,
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from the simpli�ed full conditional distribution of any con�guration {Conf}t,s,

Ct,s ≡ p
(
{Conf}t,s

∣∣∣ MRt,s, ∂xt,s, I, c, τb

)
∝ f

(
MRt,s

∣∣∣ ∂xt,s, I, c, τb, {Conf}t,s) π({Conf}t,s)
(4.2.30)
∝

(4.2.26)
N
(
MRt,s |µMRt,s , τMRt,s

)
Uniform(1/NConft,s), (4.2.38)

where a similar Uniform prior is used for the number of con�gurations NConft,s , as-

signing equal prior probability on each con�guration, with NConft,s (w)
denoting every

possible con�guration. As for Pt,s, Ct,s has a �nite support and thus it is multinomial

with probabilities proportional to Ct,s(1), ..., Ct,s(w). Their corresponding contribu-

tions to the mean µMRt,s from Equation (4.2.25) is outlined with the red coloured

parts below,

µMRt,s = I
(
dN∂xt,s=−1} +

NPSF∑
v=1

(
nPSFv − αO,nPSFv (rv = 0, θv = 0, c)

))
.

Full conditional of the transition matrix ξ

The full conditional distribution of ξ is obtained as the product of the marginal den-

sity of x1:T and the prior distribution for ξ, while it does not depend on the observed

intensities but only on the con�guration states of x1:T = (x1, ...,xT ). Therefore,

p(ξ|x1:T ) ∝ p(x1:T |ξ)p(ξ). (4.2.39)

Recalling from Equation (4.2.18), the marginal density of x1:T reads,

p(x1:T |ϑ) ∝ p(x0|φ)
T∏
t=1

p(xt|xt−1, ξ)p(xt−1|ϑ)

∝ p(x0|φ)
T∏
t=1

N∏
s=1

p(xt,s|xt−1,s, ξ)p(xt−1,s|∂xt−1,s,φ)
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and for the full conditional of ξ as in Equation (4.2.39) only the terms that include

ξ contribute when the con�gurations states x1:T are known, hence

p(x1:T |ξ) ∝
T∏
t=1

p(xt|xt−1, ξ) ∝
T∏
t=1

N∏
s=1

p(xt,s|xt−1,s, ξ)

∝
T∏
t=1

N∏
s=1

ξxt−1,s,xt,s

∝
T∏
s=1

1∏
j1=0

1∏
j2=0

ξ
nj1,j2

(x1:T,s)

j1,j2

∝
1∏

j1=0

1∏
j2=0

ξ
Nj1,j2

(x1:T )

j1,j2
, (4.2.40)

where nj1,j2(x1:T,s) the number of times a state transition occurs from j1 to j2 in the

trajectory of a pixel s ∈ {1, ..., N} over all time points from t = 1, ..., N . Similary,

the quantity Nj1,j2(x1:T ) contains the total number of transitions from j1 to j2 for

every pixel s ∈ {1, ..., N} hence,

nj1,j2(x1:T,s) = #{xt,s = j1, xt−1,s = j2}, (4.2.41)

Nj1,j2(x1:T ) =
N∑
s=1

nj1,j2(x1:T,s) =
N∑
s=1

#{xt,s = j1, xt−1,s = j2}. (4.2.42)

We assume a-priori independence on the rows of the transition matrix ξ in Equation

(4.2.8), translating into ξ1,• independent of ξ0,•. We assign a Dirichlet distribution

on each row ξj1,• for j1 = 0, 1 of ξ, similar to two independent Beta distributions

since K = 2, hence

π (ξj1,• |ej1,1, ej1,0) ∼ Dirichlet (ξj1,• | ej1,1, ej1,0)

∝
∏
j2=0,1

ξ
(ej1,j2−1)
j1,j2

. (4.2.43)
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Using Equation (4.2.39), the rows ξ1,• and ξ0,• hold their independence a-posteriori,

and their posterior distributions for j1 = 0, 1 can be obtained, as

p(ξj1,•|x1:T ) ∝ p(x1:T |ξj1,•)p(ξj1,•)
(4.2.40)
∝

(4.2.43)

1∏
j2=0

ξ
Nj1,j2

(x1:T )

j1,j2

∏
j2=0,1

ξ
(ej1,j2−1)
j1,j2

∝
1∏

j2=0

ξ
(Nj1,j2

(x1:T )+ej1,j2−1)
j1,j2

,

which is in closed expression, recognised as a Dirichlet distribution with,

p(ξj1,•|x1:T ) ∼ Dirichlet
(
ξj1,• | ej1,1 +Nj1,1(x1:T ), ej1,0 +Nj1,0(x1:T )

)
,

(4.2.44)

where Nj1,1(x1:T ) and Nj1,0(x1:T ) the quantities denoted in Equations (4.2.41) and

(4.2.42).

Duration of a state

In order to have a mechanism to distinguish between reappearing or di�erent active

�uorophores on consecutive frames within the stack, we consider a parameter Dkc

accounting for the duration of a state kc ∈ K = {1,−1}. Then,

Pr (Dkc = lkc | x1:T ,ϑ) =
N∏
s=1

Pr (Dkc = lkc | x1:T,s,ϑ) , (4.2.45)

where lkc a length of state kc. Our assumption is that the probability of the duration

of a state kc to be lkc based on the con�guration states x1:T is the product of the

individual probabilities of duration lkc for every pixel s when their corresponding

trajectories of the neighbourhood are known. These probabilities which we denote



4.2. General form of state-space model 134

by plkc can be obtained,

plkc ≡ Pr (Dkc = lkc | x1:T,s,ϑ)

∝
∏

τ∈{1,...,T}

Pr
(
xτ+1,s = ... = xτ+(lkc−1),s = kc, xτ+lkc ,s = k

′

c | xτ,s = kc,ϑ
)

∝
∏

τ∈{1,...,T}

ξkc,k′cPr
(
xτ+(lkc−1),s = kc|∂xτ+(lkc−1),s,ϑ

)
×

lkc−1∏
m=1

ξkc,kcPr
(
xτ+(m−1),s = kc | ∂xτ+(m−1),s,ϑ

)
∝

∏
τ∈{1,...,T}

ξkc,k′cφkc(xτ+(lkc−1),s)

lkc−1∏
m=1

ξkc,kcφkc(xτ+(m−1),s),

(4.2.46)

where φkc(xτ,s) = Pr (xτ,s = kc | ∂xτ,s,ϑ). Using Equation (4.2.45), the probability

of a state kc having length lkc based on the con�guration states x1:T ,

Pr (Dkc = lkc | x1:T ,ϑ) ∝
N∏
s=1

∏
τ∈{1,...,T}

ξkc,k′cφkc(xτ+(lkc−1),s)

lkc−1∏
m=1

ξkc,kcφkc(xτ+(m−1),s).

(4.2.47)

Therefore, since the number of frames in the stack is discrete with t = 1, ..., T , the

length a pixel s can remain on a state kc will be also discrete with maximum duration

to be the total number of frames T , when assuming no prior knowledge. Let L be

the maximum length with L ≤ T , then we can calculate the probability of duration

of state kc being lkc ,

Pr (Dkc = lkc | x1:T ,ϑ) =

N∏
s=1

∏
τ∈{1,...,T}

ξkc,k′cφkc(xτ+(lkc−1),s)

lkc−1∏
m=1

ξkc,kcφkc(xτ+(m−1),s)

L∑
la=1

N∏
s=1

∏
τ∈{1,...,T}

ξkc,k′cφkc(xτ+(la−1),s)
la−1∏
m=1

ξkc,kcφkc(xτ+(m−1),s)

.
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(4.2.48)

We can straightforward obtain the expected duration of state kc,

E(Dkc) =
L∑

la=1

la × Pr (Dkc = la | x1:T ,ϑ) . (4.2.49)

The expected duration in Equation (4.2.49) is our main tool to distinguish between

di�erent and reappearing active �uorophores between the frames on the stack. How-

ever, the probability in Equation (4.2.48) is extremely challenging to calculate, there-

fore we consider an approximation based on the average states of the �elds, discussed

during the implementation in Section 4.4.

The entire parameter updating for the Markov switching model based on the SiMPa

functions is summarised on the following Pseudo-algorithm.

Pseudo-algorithm - Parameter updating for the Markov Switching

model based on SiMPa functions when the states are known

1. Step q=0 (Iteration 0):

Initialisation of parameters by sampling from their prior distributions in

Equations (4.2.28), (4.2.29) and (4.2.30), resulting in

ϑ(0) =
{
I(0), c(0), τ

(0)
b ,β

(0)
1:T , {Conf, r,θ}

(0)
1:T , ξ

(0)
}

where β
(0)
1:T =

(
{β(0)

01
, β

(0)
f1
}, ..., {β(0)

0T
, β

(0)
fT
}
)

{Conf, r,θ}(0)1:T =
(
{Conf, r,θ}(0)1 , ..., {Conf, r,θ}(0)T

)
where the collection {Conf, r,θ}(0)1:T contains all the localisations based on

the pattern-con�guration-realisation probabilistic scheme for every pixel

in every frame. Without loss of generality we can assume that the initial



4.2. General form of state-space model 136

localisations for all pixels are at the origin of the SiMPa functions, i.e.

{Conf, r,θ}(0)1:T = {Conf,0,0}(0)1:T .

As discussed throughout the Chapter, the con�guration states x1:T =

(x1, ...,xT ) are assumed known.

2. Step q=1,...,IT (Iteration 1 up to IT)

Estimation of parameters in ϑ(q) =
{
I(q), c(q), τ

(q)
b ,β

(q)
1:T , {Conf, r,θ}

(q)
1:T , ξ

(q)
}

and probabilistic draw of localisations of molecules based on SiMPa func-

tions conditional on knowing x(q−1)
1:T .

(a) Update the transition matrix ξ(q) from its full conditional distribution

for each one of the rows ξ(q)j1,• ,

ξ
(q)
j1,• ∼ p

(
ξj1,• | x

(q−1)
1:T

)
from Equation(4.2.44)

(b) Update the parameters I(q), τ (q)b (Gibbs steps), c(q),β(q)
1:T (Metropolis-

Hastings steps) from their corresponding full conditional distribu-

tions using the entire time series from 1 : T and the moving regions

MR1:T = (MR1, ...,MRT ) where MRt = {MRt,s, ∀s ∈ {1, ..., N}},
∀t = (1, ..., T ).

I(q) ∼ p
(
I
∣∣ x(q−1)

1:T ,MR1:T , τ
(q−1)
b , c(q−1), {Conf, r,θ}(q−1)1:T

)
from Equation(4.2.32)

τ
(q)
b ∼ p

(
τb
∣∣ x(q−1)

1:T ,MR1:T , I
(q), c(q−1), {Conf, r,θ}(q−1)1:T

)
from Equation(4.2.34)

c(q) ∼ p
(
c
∣∣ x(q−1)

1:T ,MR1:T , I
(q), τ

(q)
b , {Conf, r,θ}(q−1)1:T

)
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from Equation(4.2.35)

{β0t , βft}(q) ∼ p
(
{β0, βf}

∣∣ x(q−1)
1:T

)
from Equation(4.2.36)

(c) Apply either the localisation scheme or counting scheme.

Localisation scheme

For each frame t ∈ (1, ..., T ) on iteration q, apply the individual frame

localisation scheme based on SiMPa functions, based on the most up

to date con�guration states of �elds x(q−1)
1:T = (x

(q−1)
1 , ...,x

(q−1)
T ).

For everyMRt = {MRt,s, s ∈ {1, ..., N}}, evaluate the full conditional
distributions in Equation (4.2.37),

P
(q)
t,s (1)

= p
(
{Conf, r,θ}t,s(1)

∣∣∣ MRt,s, ∂x
(q−1)
t,s , I(q), c(q), τ

(q)
b

)
...

...

P
(q)
t,s (u)

= p
(
{Conf, r,θ}t,s(u)

∣∣∣ MRt,s, ∂x
(q−1)
t,s , I(q), c(q), τ

(q)
b

)
with localisation probabilities obtained after normalising the densities

P
(q)
t,s (1)

, . . . , P
(q)
t,s (u)

, that is

P
(q)
t,s (1)

/
u∑
h=1

P
(q)
t,s (h)

, . . . , P
(q)
t,s (w)

/
u∑
h=1

P
(q)
t,s (h)

Counting scheme

For each frame t ∈ (1, ..., T ) on iteration q, apply the individual frame

counting scheme based on SiMPa functions, based on the most up to

date con�guration states of �elds x(q−1)
1:T = (x

(q−1)
1 , ...,x

(q−1)
T ).

For everyMRt = {MRt,s, s ∈ {1, ..., N}}, evaluate the full conditional
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distributions in Equation (4.2.38),

C
(q)
t,s (1)

= p
(
{Conf, r = 0,θ = 0}t,s(1)

∣∣∣ MRt,s, ∂x
(q−1)
t,s , I(q), c(q), τ

(q)
b

)
...

...

C
(q)
t,s (w)

= p
(
{Conf, r = 0,θ = 0}t,s(w)

∣∣∣ MRt,s, ∂x
(q−1)
t,s , I(q), c(q), τ

(q)
b

)
with localisation probabilities obtained after normalising the densities

C
(q)
t,s (1)

, . . . , C
(q)
t,s (w)

, that is

C
(q)
t,s (1)

/
w∑
h=1

C
(q)
t,s (h)

, . . . , C
(q)
t,s (w)

/
w∑
h=1

C
(q)
t,s (h)

3. Store the most up to date parameters in

ϑ(q) =
{
I(q), c(q), τ

(q)
b ,β

(q)
1:T , {Conf, r,θ}

(q)
1:T , ξ

(q)
}

4.2.3.2 State updating given the parameters using data augmentation

In this section we describe the complete state updating based on data augmenta-

tion using a Forward-Filtering-Backward-Sampling (FFBS) algorithm. Backward

sampling is one of the most popular procedures in order to draw inference on a

state-space model with a hidden stochastic process being the underlying mechanism

generating the observations. It is based on the idea of �rstly moving forward in

time, that is t = 1, ..., T , applying a �ltering process based on a determined predic-

tion step and then sampling trajectories of the hidden states by moving backwards

in time, that is t = T, ..., 1. This allows sampling from hidden state processes under

extremely complicated and intractable scenarios and has been increasingly studied

over the past decades, e.g. for non linear state space model by Fong et al. [2002] and

jump Markov linear systems by Doucet et al. [2000].

In terms of probability modelling, the �ltering procedure is carried out using the
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�ltering density, de�ned by p(xt|y1:t,ϑ), while the backward sampling scheme is

implemented with the commonly known joint smoothing density p(x1:T |y1:T ,ϑ). Fil-
tering is based on the idea of obtaining probabilities for the con�guration states xt
when observations up to time t are available, that is y1:t, where backward sampling

draws the con�guration states of xt as if the future states xt+1:T are considered �xed.

According to the modelling described in Section 4.2.2 and the assumptions (A1) and

(A2), we are able to obtain the corresponding densities. The �ltered density of xt
can be written in the following way,

p(xt|y1:t,ϑ) = p(xt|yt,y1:t−1,ϑ)

∝ f (yt|y1:t−1,xt,ϑ) p (xt|y1:t−1,ϑ)
(A1)
∝ f (yt|xt,φ) p (xt|y1:t−1,ϑ) ,︸ ︷︷ ︸

one-step ahead density at t

(4.2.50)

where f (yt|xt,φ) =
∏

∀s∈{1,...,N}
f(yt,s|xt,s,φ) is as in Equation (4.2.17). As can be

seen in the last line of the equation, the so called one-step ahead density at time t

appears, p (xt|y1:t−1,ϑ). This corresponds to predicting the con�guration states of

xt when observations up to t− 1 are available. It can be factorised into the product

of the marginal density of xt and the �ltered distribution at t− 1 as,

p(xt|y1:t−1,ϑ) =
∑
∀xt−1

p(xt,xt−1|y1:t−1,ϑ)

∝
∑
∀xt−1

p(xt|xt−1,y1:t−1,ϑ)p (xt−1|y1:t−1,ϑ)

(A2)
∝

∑
∀xt−1

p(xt|xt−1,ϑ)p (xt−1|y1:t−1,ϑ)

(A2)
∝

∑
∀xt−1

p(xt|xt−1, ξ)p(xt−1|∂xt−1,φ) p (xt−1|y1:t−1,ϑ) ,︸ ︷︷ ︸
�ltered density at t−1

(4.2.51)
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where p(xt−1|∂xt−1,φ) is modelled by an autologistic model as in Equation (4.2.10).

The �rst line of the equation states that the marginal density can be obtained by

summing out all possible con�guration states xt−1 from the joint distribution of xt
and xt−1.

As can be seen in Equations (4.2.50) and (4.2.51), updating either the �ltered or the

one-step ahead probabilities requires knowledge of the corresponding one-step ahead

or �ltered probabilities respectively, implying a recursive acquisition procedure. The

way we perform the �ltering, as well the sampling which follows, is based on pixel-

wise trajectories over the corresponding time points, as can be graphically seen in

Figure 4.2.3.

y1

y1,s1

y1,s2

y2

y2,s1

y2,s2

y3

y3,s1

y3,s2

yT

yT,s1

yT,s2

Figure 4.2.3: Two di�erent pixel's, s1 and s2, trajectories of raw data points over all
time points, or frames equivalently, where t = 1, ..., T . These trajectories are denoted
with y1:T,s1 and y1:T,s2 respectively, and correspond to all the observed intensities for
pixel s1 and s2 across the stack of frames. Similar trajectories account for their states
x1:T,s1 and x1:T,s2 (not shown).

This allows for a recursive pixel-wise update implementation of the states in every

xt = {xt,s, s ∈ {1, .., N}}, ∀t ∈ {1, ..., T}, therefore we are interested in the univariate
probabilities Pr(xt,s = kc|y1:t,s,ϑ) and Pr(xt,s = kc|y1:t−1,s,ϑ). These probabilities

denote the �ltered and one step ahead probabilities of xt,s being on state kc, con-
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ditioning on a trajectory of observations over t and t − 1 time points for pixel s

respectively. Due to the discrete domain of possible values for the states, that is

'On' and 'O�' declared with 1 and -1 as in Equation (4.2.4), these probabilities are

straightforward to obtain. The one step ahead probability of xt,s given observations

up to t− 1, y1:t−1,s, reads in,

Pr(xt,s = kc |y1:t−1,s,ϑ) =
1∑

kp=0

Pr(xt,s = kc |xt−1,s = kp, ξ)×

× Pr(xt−1,s = kp |∂xt−1,s,φ)Pr(xt−1,s = kp |y1:t−1,s,ϑ),

(4.2.52)

while the �ltered probability of xt,s given observations up to t, y1:t−1,s,

Pr(xt,s = kc |y1:t,s,ϑ) =
f(yt,s|xt,s = kc,φ) Pr(xt,s = kc | y1:t−1,s,ϑ)
1∑

ka=0

f(yt,s|xt,s = ka,φ) Pr(xt,s = ka| y1:t−1,s,ϑ)
.

(4.2.53)

We note here that p(x0|φ, ξ) ≡ p(x0|φ) independent of the transition matrix ξ,

as our assumption in Equation (4.2.16). Therefore, we sample the initial �eld x0

taking only into consideration the predetermined neighbourhood structure via the

autologistic model. The state of every pixel s in x0 = {x0,s, s ∈ {1, ..., N}} is

obtained the probability in Equation (4.2.15),

Pr(x0,s = kp |x0,∂s,φ) =

exp{β0kp + βf
∑
q∈∂s

kpx0,q}

∑
ka∈{−1,1}

exp

{
ka

(
β0 + βf

∑
q∈∂s

x0,q

)} .
(4.2.54)
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In order to sample the initial �eld x0 knowledge on the states of the neighbouring

pixels is required. Therefore, instead of having a completely random con�guration

state to apply the autologistic model, we consider an initial classi�cation step based

on the �rst frame of the stack. A quartile of the observed intensities on the �rst

frame sets a binary classi�cation of the pixels, which is then used to sample x0 from

Equation (4.2.54).

In order to sample the con�guration states of x1:T = x1, ...,xt, ...,xT ) we adopt

a multi-move sampling scheme similar to Frühwirth-Schnatter [2006]. Multi move

sampling implies sampling the con�guration states of x1:T simultaneously from the

full conditional distribution of x1:T given y1:T and the parameters ϑ. Firstly, we

write down this full conditional distribution p(x1:T |y1:T ,ϑ) as,

p(x1:T |y1:T ,ϑ) ∝ p(x1, ...,xT−1|xT ,y1:T ,ϑ) p(xT |y,ϑ)

∝ p(x1, ...,xT−2|xT−1,xT ,y1:T ,ϑ) p(xT−1|xT ,y1:T ,ϑ) p(xT |y1:T ,ϑ)

∝ p(x1|x2, ..,xT ,y1:T ,ϑ) ... p(xT−1|xT ,y1:T ,ϑ) p(xT |y1:T ,ϑ)

∝ p(xT |y1:T ,ϑ)
T−1∏
t=0

p(xt|xt+1, ..,xT ,y1:T ,ϑ),

where p(xt|xt+1, ..,xT ,y1:T ,ϑ) is the conditional distribution of the con�guration of

states xt when the future con�gurations of states xt+1, ...,xT are considered known,

and p(xT |y1:T ,ϑ) is the �ltered density of xT at time T .

Since we perform a recursive update of the con�guration states, we are mainly inter-

ested in the conditional distribution of the con�guration states xt given the future

con�gurations of states xt+1, ...,xT . Therefore, the conditional distribution of xt
given xt+1, ...,xT can be simpli�ed,

p(xt|xt+1, ..,xT ,y1:T ,ϑ) ∝ f(yt+1, ...,yT |xt, ...,xT ,y1:t,ϑ) p(xt|xt, ...,xT ,y1:t,ϑ)

∝ p(xt|xt+1, ...,xT ,y1:t,ϑ)

∝ p(xt+1, ...,xT |xt,y1:t,ϑ) p(xt|y1:t,ϑ)
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∝ p(xt+1|xt,y1:t,ϑ)p(xt|y1:t,ϑ)
(A2)
∝ p(xt+1|xt,ϑ)p (xt|y1:t,ϑ)
(A2)
∝ p(xt+1|xt, ξ)p(xt|∂xt,φ) p(xt|y1:t,ϑ),︸ ︷︷ ︸

�ltered density at t

where in the �rst line of the equation, f(yt+1, ...,yT |xt,xt+1, ...,xT ,y1:t,φ) is inde-

pendent of xt when xt+1 is available and considered known. Therefore, if the state

of xt+1,s was known and equal to kf the probability the state of xt,s being equal to

kc given the trajectory of observations up to time t, that is y1:t,s, reads as,

Pr(xt,s = kc|xt+1,s = kf ,y1:t,s,ϑ) =

Pr(xt+1,s = kf |xt,s = kc,ϑ)Pr(xt,s = kc|y1:t,s,ϑ)∑
ka={−1,1}

Pr(xt+1,s = kf |xt,s = ka,ϑ)Pr(xt,s = ka|y1:t,s,ϑ)
. (4.2.55)

The following Pseudo-algorithm summarises the steps in order to sample a complete

path of x1:T using the corresponding pixel-wise trajectories over time, using the

described FFBS procedure. For the multi-move updating of x1:T the parameters

ϑ = {I, c, τb,β1:T , {Conf , r,θ}1:T , ξ} are considered known.

Pseudo-algorithm for Multi-move State updating

1. Step t=0 (Frame 0):

Initialise x0 from initial distribution p(x0|φ).
Every pixel s ∈ {1, ..., N} can be on the 'on' state (=1) with probability,

Pr(x0,s = 1 |∂x0,s,φ)

as de�ned in Equation (4.2.54), where the �eld x0 is initially sampled using
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a broad classi�cation of the �rst frame based on a quartile of the data.

2. Step t=1 to T (Frame 1 up to Frame T) :

For every pixel s ∈ {1, ..., N} calculate recursively the one step ahead and

�ltered probabilities of the 'On' state (=1) with probabilities

Pr(xt,s = 1 |y1:t−1,s,ϑ) and Pr(xt,s = 1 |y1:t,s,ϑ)

respectively, from Equations (4.2.51) and (4.2.52) using their corresponding

trajectories.

The �ltered probabilities need to be saved as they are necessary in order

to perform the backward sampling in Step 3 and 4.

3. Step t=T (Frame T):

Sample the con�guration states xT of the last frame by using the �ltered

probability Pr(xT,s = 1 |y1:T,s,ϑ) for every pixel s ∈ {1, ..., N} obtained
and saved in Step 2.

4. Step t=T-1 to 1 (Frame T-1 up to Frame 1) :

For every pixel s ∈ {1, ..., N} sample a state with probability of being on

the 'on' state from

Pr(xt,s = 1|xt+1,s = kf ,y1:t,s,ϑ)

in Equation (4.2.55) where the state of xt+1,s, denoted by kf in the proba-

bility, has been obtained and saved in Step 2 along with the �ltered prob-

abilities Pr(xt,s = 1|y1:t,s,ϑ) needed.
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4.2.3.3 Pseudo-algorithm for Bayesian inference of a Markov Switch-

ing model based on SiMPa functions via a Forward-Filtering-

Backward-Sampling (FFBS) algorithm

Pseudo-algorithm - Bayesian Inference Markov Switching model

based on SiMPa functions

1. Step q=0 (Iteration 0):

Initialisation of parameters and �elds

ϑ(0) =
{
I(0), c(0), τ

(0)
b ,β

(0)
1:T , {Conf, r,θ}

(0)
1:T , ξ

(0)
}

where β
(0)
1:T =

(
{β(0)

01
, β

(0)
f1
}, ..., {β(0)

0T
, β

(0)
fT
}
)

x
(0)
1:T = (x1, ...,xT )

The parameters in ϑ(0) can drawn from the corresponding prior distribu-

tions, while the con�gurations states x(0)
1:T from the marginal density of x1:T

in Equation (4.2.18),

x
(0)
1:T ∼ p(x1:T |ϑ(0))

Without loss of generality we assume that the initial values for the complete

localisation sets {Conf, r,θ}(0)1:T = {Conf,0,0}(0)1:T , hence every �uorophore

is at the origin of the SiMPa functions..

2. Step q=1,...,IT (Iteration 1 up to IT)

Sequential update of the parameter and states

2i. Updating of parameters in ϑ(q) =
{
I(q), c(q), τ

(q)
b ,β

(q)
1:T , ξ

(q)
}
and probabilis-

tic draw of �uorophores localisations based on SiMPa functions, conditional

on knowing x(q−1).
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(a) Update the transition matrix ξ(q) from its full conditional distribution

for each one of the rows ξ(q)j1,• ,

ξ
(q)
j1,• ∼ p

(
ξj1,• | x

(q−1)
1:T

)
from Equation(4.2.44)

(b) Update the parameters I(q), τ (q)b (Gibbs steps), c(q),β(q)
1:T (Metropolis-

Hastings steps) from their corresponding full conditional distribu-

tions using the entire time series from 1 : T and the moving regions

MR1:T = (MR1, ...,MRT ) where MRt = {MRt,s, ∀s ∈ {1, ..., N}},
∀t = (1, ..., T ).

It should be noted that the parameters I(q), τ (q)b , c(q) are global param-

eters while β(q)
1:T are frame-wise parameters, therefore

I(q) ∼ p
(
I
∣∣ x(q−1),MR1:T , τ

(q−1)
b , c(q−1), {Conf, r,θ}(q−1)1:T

)
from Equation(4.2.32)

τ
(q)
b ∼ p

(
τb
∣∣ x(q−1),MR1:T , I

(q), c(q−1), {Conf, r,θ}(q−1)1:T

)
from Equation(4.2.34)

c(q) ∼ p
(
c
∣∣x(q−1),MR1:T , I

(q), τ
(q)
b , {Conf, r,θ}(q−1)1:T

)
from Equation(4.2.35)

{β0t , βft}(q) ∼ p
(
{β0, βf}

∣∣x(q−1)
t

)
from Equation(4.2.36)

(c) Apply either the localisation scheme or counting scheme.

Localisation scheme

For each frame t ∈ (1, ..., T ) on iteration q, apply the individual frame

localisation scheme based on SiMPa functions, based on the most up
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to date con�guration states of �elds x(q−1)
1:T = (x

(q−1)
1 , ...,x

(q−1)
T ).

For everyMRt = {MRt,s, s ∈ {1, ..., N}}, evaluate the full conditional
distributions in Equation (4.2.37),

P
(q)
t,s (1)

= p
(
{Conf, r,θ}t,s(1)

∣∣∣ MRt,s, ∂x
(q−1)
t,s , I(q), c(q), τ

(q)
b

)
...

...

P
(q)
t,s (u)

= p
(
{Conf, r,θ}t,s(u)

∣∣∣ MRt,s, ∂x
(q−1)
t,s , I(q), c(q), τ

(q)
b

)
with localisation probabilities obtained after normalising the densities

P
(q)
t,s (1)

, . . . , P
(q)
t,s (u)

, that is

P
(q)
t,s (1)

/
u∑
h=1

P
(q)
t,s (h)

, . . . , P
(q)
t,s (w)

/
u∑
h=1

P
(q)
t,s (h)

Counting scheme

For each frame t ∈ (1, ..., T ) on iteration q, apply the individual frame

counting scheme based on SiMPa functions, based on the most up to

date con�guration states of �elds x(q−1)
1:T = (x

(q−1)
1 , ...,x

(q−1)
T ).

For everyMRt = {MRt,s, s ∈ {1, ..., N}}, evaluate the full conditional
distributions in Equation (4.2.38),

C
(q)
t,s (1)

= p
(
{Conf, r = 0,θ = 0}t,s(1)

∣∣∣ MRt,s, ∂x
(q−1)
t,s , I(q), c(q), τ

(q)
b

)
...

...

C
(q)
t,s (w)

= p
(
{Conf, r = 0,θ = 0}t,s(w)

∣∣∣ MRt,s, ∂x
(q−1)
t,s , I(q), c(q), τ

(q)
b

)
with localisation probabilities obtained after normalising the densities
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C
(q)
t,s (1)

, . . . , C
(q)
t,s (w)

, that is

C
(q)
t,s (1)

/
w∑
h=1

C
(q)
t,s (h)

, . . . , C
(q)
t,s (w)

/
w∑
h=1

C
(q)
t,s (h)

2ii. Updating of con�guration states in x(q)
1:T = (x

(q)
1 , ...,x

(q)
T ) using the recur-

sive FFBS algorithm (Susection 4.2.3.2) conditional on knowing all the

parameters ϑ(q) =
{
I(q), c(q), τ

(q)
b ,β

(q)
1:T , {Conf, r,θ}

(q)
1:T}, ξ(q)

}
.

Updating the con�guration states x(q)
1:T is based on the raw time series

data y1:T and the appropriate pixel-wise trajectories over time points as

presented on Section 4.2.3.

(a) Step t=0 (Frame 0) in iteration q:

Initialise x(q)
0 =

{
x
(q)
0,s, for every s ∈ {1, ..., N}

}
from initial distribu-

tion p(x0|φ). The probability of the 'On' state (=1) can be,

Pr
(
x0,s = 1

∣∣∂x(q)0,s,φ
)

as de�ned in Equation (4.2.54), where the �eld x0 is initially sampled

using a broad classi�cation of the �rst frame based on a quartile of

the data.

(b) Forward Step t=1 to T (Frame 1 up to Frame T) in iteration q:

For every x(q)
t =

{
x
(q)
t,s , for every s ∈ {1, ..., N}

}
with t = 1, .., T cal-

culate recursively the one step ahead and �ltered probabilities of every

pixel being on the 'On' state (=1) with probabilities,

Pr
(
xt,s = 1

∣∣y1:t−1,s,ϑ(q)
)

and Pr
(
xt,s = 1

∣∣y1:t,s,ϑ(q)
)

for their corresponding trajectories y1:t−1,s and y1:t,s respectively, from
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Equations (4.2.51) and (4.2.52).

The �ltered probabilities are stored, since they are necessary in order

to perform the backward sampling in Step (c) and (d), in the variable

FP = (FP1, ...,FPt, ...,FPT ),

where FPt =
{
Pr(xt,s = 1 |y1:t,s,ϑ(q)),∀s ∈ {1, ..., N}

}
(c) Step t=T (Frame T) in iteration q:

Sample the con�guration states x(q)
T of the last frame by using the �l-

tered probability Pr
(
xT,s = 1 |y1:T,s,ϑ(q)

)
for every pixel s ∈ {1, ..., N}

obtained and stored in Step (b).

(d) Backward Step t=T-1 to 1 (Frame T-1 up to Frame 1) in iteration q:

For every x(q)
t =

{
x
(q)
t,s , for every s ∈ {1, ..., N}

}
with t = T, .., 1 sam-

ple the con�guration states with pixel-wise probability of being on the

'on' state

Pr
(
xt,s = 1

∣∣x(q)t+1,s = kf ,y1:t,s,ϑ
)

in Equation (4.2.55) for the corresponding trajectory y1:t,s. The state

of xt+1,s, denoted by kf in the probability, has been obtained and

stored in Step (b), along with the �ltered probabilities Pr(xt,s =

1|y1:t,s,ϑ).

3. At the end of the MCMC for every t = 1, ..., T , calculate posterior probabil-

ities for the con�gurations by applying (Drawn Con�gurations)/ (Potential

Con�gurations) to obtain pixels including the �uorophores.

If localisation is performed, calculate additional posterior probabilities of

realisations within the con�gurations by applying (Drawn realisations)/

(Potential realisations).
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4.3 Sampling scheme for sequence of images using

the SiMPa functions

Pseudocode - Generation of stack of frames using the SiMPa

functions

(i) Choose the parameters n,m,R, l, c, I, d, τb, N (0)

n, m: number of rows and columns respectively for each frame

R: radius of the molecules

l: length of pixel

c: di�raction parameter

I: intensity of a single event

I0: background intensity

τb: background error precision

N (0): total number of alive molecules

Also de�ne the transition matrix P including the probabilities in which

states (1='On', 0='O�', D='Bleached') of molecules between frames are

altering, i.e.

P =


p11 p10 p1D

p01 p00 0

0 0 1


(ii) Choose an r and θ for every molecule in N (0) and draw a random position

for each one. We de�ne the following sets:

K(0) = 1 : N(0) =
{
1, 2, ...,N(0)

}
(set including molecules)

r = {r1, r2, ..., rN(0)} (each molecule's distance)

θ = {θ1, θ2, ..., θN(0)} (each molecule's angle)



4.3. Sampling scheme for sequence of images using the SiMPa functions 151

u = {u1, u2, ..., uN(0)} (each molecule's pixel on the lattice)

(iii) Choose a number of 'On' molecules denoted by n(0)
11 . We use the following

notation:

N(0)
a = n

(0)
11 : number of active molecules

N(0)
da = N(0) − N(0)

a : number of de-active molecules

N(0)
D = 0 : number of bleached molecules

K(0)
a : Choose N(0)

a molecules from K(0) to be active

K
(0)
da : Choose N(0) − N(0)

a molecules from K(0) to be de-active

K
(0)
D = ∅ : Choose 'Bleached' molecules

(iv) Set frame f = 1 and denote by:

n
(f)
ij : the number of molecules moving from state i to state j on frame f .

Transition of every molecule and repetition until N(f)
D = N(0):

K(f−1)
a =


1

2
...

N(f−1)
a

 T
(f)
a ∼Multinomial(1|p11,p10,p1D)−→ T(f)

a =



11 10 1D

1 0 0

0 1 0
. . .

0 0 1



K
(f−1)
da =


1

2
...

N(f−1)
da

 T
(f)
da
∼Multinomial(1|p01,p00)−→ T(f)

da =



01 00

1 0

0 1
. . .

1 0


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Then the molecules on each state can be obtained by:

K(f)
a =

{
K(f−1)

a [T(f)
a [11] = 1]

}
∪
{
K

(f−1)
da [T(f)

da [01] = 1]
}

K
(f)
da =

{
K(f−1)

a [T(f)
a [10] = 1]

}
∪
{
K

(f−1)
da [T(f)

da [00] = 1]
}

K
(f)
D =

{
K(f−1)

a [T(f)
a [1D] = 1]

}
∪
{
K

(f−1)
D

}
and the total number of them on each state at frame f can be determined

by the sums of the respective columns of the transition matrices T(f)
a and

T(f)
da . Therefore,

N(f) = N(f−1) − n(f)
1D

N(f)
a = n

(f)
11 + n

(f)
01

N(f)
da = N(f) − N(f)

a

N(f)
D = N(f−1)

D + n
(f)
1D

(v) For every frame f :

1. Create a lattice of of size n×m with a baseline intensity I0.

2. Calculate the quantities
(
1− αk

(
r[K(f)

a ],θ[K(f)
a ]
))

I, k = 0, ..., 8 for

every molecule in K(f)
a .

3. Place the PSF's, based on SiMPa functions, of the K(f)
a molecules on

the lattice, with the center pixels to be de�ned by u[K(f)
a ].

5. Add independent and identically distributed background error with

precision τb to every pixel on the lattice.
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4.4 Implementation

In this section we implement the Markov switching model based on SiMPa functions

using a toy example data set. Using the algorithm in Section 4.3 we are able to obtain

a sequence of frames which are time related according to a transition matrix P . This

transition matrix accounts for the state transition of �uorophores across the sequence,

with their di�raction described by the SiMPa functions. For this implementation, we

consider a subset of the stack of frames constructed for our application on synthetic

data in Chapter 5. Brie�y, this is derived from an underlying structure of a circle

within a circle with a total of F = 4730 low resolution frames constituting the entire

stack. The low resolution frames are constructed according to the SiMPa functions

using the single event intensity I = 8 with a baseline intensity I0 = 2.4, the power

of spread parameter c = 0.4 and the background error precision τb = 10 (see Section

5.2). The chosen subset of the stack of frames consists of T = 9 frames, corresponding

to f401, ..., f409, and is displayed in Figure 4.4.1.

We apply the Markov switching model based on SiMPa functions for IT = 25.000

iterations after a burn-in period of 10.000 iterations, following the pseudo-algorithm

in Section 4.2.3.3. The posterior distributions of the parameters are obtained via

the appropriate Gibbs and Metropolis-Hastings steps, while the localisation update

relies on our novel pattern-con�guration-realisation probabilistic scheme. Here, we

consider the probabilistic counting scheme where every molecule is assumed to lie

at the origin of the SiMPa functions, hence r = θ = 0. The prior distributions for

I, τb, c, β0t and βft for t = 401, ..., 409 are identical to the ones considered for the

individual frame implementation in Equation (3.4.1), and additionally independent

Dirichlet prior distributions for each row of the pixel state transition matrix ξ,

π (ξ1,• |e1,1, e1,0) ∼ Dirichlet (ξ1,• | e1,1 = 30, e1,0 = 50) ,

π (ξ0,• |e0,1, e0,0) ∼ Dirichlet (ξ0,• | e0,1 = 30, e0,0 = 50) ,

according to Equation (4.2.43). Because the transition matrix ξ consists of K = 2
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Frame 401 Frame 402 Frame 403

Frame 404 Frame 405 Frame 406

Frame 407 Frame 408 Frame 409

Figure 4.4.1: Subset of consecutive frames from the entire stack generated for appli-
cation on 'Circle within circle' synthetic data. The light blue crosses represent the true
positions of the molecules, with their square pixel regions to be denoting the intensities
di�raction according to the SiMPa functions.

states, that is 'On'(1) and 'O�'(0), we can equivalently have independent Beta prior
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distributions,

π (ξ11 |e1,1, e1,0) ∼ Beta (ξ11 | e1,1 = 30, e1,0 = 50) ,

π (ξ00 |e0,1, e0,0) ∼ Beta (ξ00 | e0,1 = 30, e0,0 = 50) .

Similar to the implementation for an individual frame (Section 3.4), the output of

the algorithm includes the posterior distribution of the parameters I, τb, c, ξ and β,

and posterior probability heatmaps associated with the localisation of the molecules.

In Figure 4.4.2, we present the corresponding prior and posterior distributions for

I, τb and c, as well as ξ11 and ξ00. The posterior distribution for the frame wise

parameters {β0t , βft} can be found in Appendix A.1.

Figure 4.4.2: Prior and posterior distributions for parameters in the synthetic stack
implementation. The red solid lines denote the prior distributions for each parameter
while the histograms associated with the blue solid lines denote the posterior distribu-
tions of each parameter respectively.
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Regarding the localisation of molecules, here corresponding to identi�cation of pixels

that contain active molecules (probabilistic counting scheme), the posterior prob-

ability heatmaps are shown in Figures 4.4.3 and 4.4.4. The former contains the

probabilities of pixels containing active molecules constructed based on the ratio of

the counters 'Positions' and 'Visits', while the latter the probabilities of pixels in-

cluding two active molecules, as a result of the ratio of 'Double events' counter and

'Positions'.

As a reminder from Section 3.4, the 'Positions' counter stores the drawn con�gura-

tions for every MR, consequently the drawn pixels containing the active molecules,

while at the same time all the corresponding potential con�gurations for the MR are

stored in the 'Visits' counter. Cases where the drawn con�gurations consist of PSFs

that completely overlap, corresponding to two active molecules on the same pixel,

are stored in the 'Double events' counter. All these counters are updated for every

MR during all MCMC iterations, providing posterior heatmaps when considering

the appropriate ratios. Due to the probabilistic nature of our modelling to draw

positions of molecules, cases can exist where MRs identify pixels containing events

outside of the determined 'On' pixels by the �eld. Since this cannot be true we �lter

our probability maps using the average �eld at the end of the MCMC. The average

�eld corresponds to the sum of the �elds obtained on every iteration divided by the

number of iterations, presented in Figure 4.4.5.

Considering the posterior probability heatmap in Figure 3.4, we can analyse the

capability and power of our probabilistic scheme to resolve partially overlapping

PSFs, as well as identifying pixels that contain two simultaneously active molecules.

The former can be seen in multiple cases within di�erent frames, for instance on

Frames 403 (bottom left corner) and 404 (top left corner), while the latter is apparent

on Frame 405 in Figure 4.4.4, where the probabilities at the region on the right

bottom corner are quite high. A more detailed discussion about the probabilistic

inference is presented in Chapter 5 where we perform the application on synthetic

data and conduct a sensitivity analysis.
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Figure 4.4.3: Posterior probability heatmaps �ltered by the average �eld for frames
in Figure 4.4.1. Higher probabilities of pixels containing molecules are declared with
white color levels, as shown in the light blue probability scale bar on each probability
map. The white bins represent the density around the regions.
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Figure 4.4.4: Double event posterior probability heatmaps �ltered by the average
�eld for frames in Figure 4.4.1. Higher probabilities are declared with white color
levels as shown in the light blue probability scale bar on each probability map. The
white bins represent the density around the regions.
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Figure 4.4.5: Average �eld per frame in Figure 4.4.1. The larger proportions a pixel
is identi�ed as 'On' are declared with the light blue color levels as shown in the scale
bar on each frame. Each �gure represents the average state of each frame after the end
of the MCMC.
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Now, we focus on inference from the Markov switching model based on SiMPa func-

tions, accounting for simultaneous update of the states of the time related frames

within the stack. The con�guration states x401:409 are obtained using the FFBS al-

gorithm from Section 4.2.3.3 and we able to calculate the probabilities of a state,

say 'On', having a speci�c length or duration dOn using Equation (4.2.48). Due to

the high complexity of this probability, we decide to use an approximation based

on the average �elds. More speci�cally, at the end of the MCMC we construct a

binary mask of the average �elds in Figure 4.4.5 using an arbitrary threshold of 0.75.

Practically, this means we consider the pixels that were identi�ed active 75% during

the MCMC, therefore the binary mask of �eld t reads in Qt =

{
IT∑
q=1

x
(q)
t /IT > 0.75

}
,

∀t ∈ {401, ..., 409}. Then, we approximate Pr (DOn = dOn | x1:T ,ϑ) in Equation

(4.2.48) with,

Pr (DOn = dOn | x1:T ,ϑ) ≈

N∑
s=1

#{Q1:T,s:(s+dOn) = 1, Q1:T,s+(dOn+1) = 0}

T∑
da

N∑
s=1

#{Q1:T,s:(s+da) = 1, Q1:T,s+(da+1) = 0}
,

where Qt = {Qt,s,∀s ∈ {1, ..., N}} and Q1:T,s denotes pixel's s binary mask trajec-

tory. Here, we considered the frames f401, ..., f409 therefor 1 : T = 401 : 409. On

a similar manner we approximate the probability Pr (DO� = dO� | x1:T ,ϑ) by using

sub-sequences within the trajectories of pixels that were identi�ed 'On' and then

altered their state to 'O�', therefore,

Pr (DO� = dO� | −) ≈

N∑
s=1

#{Q1:T,s+(dO�−1) = 1, Q1:T,s:(s+dO�) = 0, Q1:T,s+(dO�+1) = 1}

T∑
da

N∑
s=1

#{Q1:T,s+(da−1) = 1, Q1:T,s:(s+da) = 0, Q1:T,s+(da+1) = 1}
.

We consider the maximum duration of either states to be the same as the number

of frames in the stack, therefore we can calculate the expected duration of the states
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using the average �elds in Figure 4.4.5 and Equation (4.2.49) as,

E(DOn) =
9∑

da=1

da × Pr (DOn = da | x401:409,ϑ) ≈ 1.20,

E(DO�) =
9∑

da=1

da × Pr (DO� = da | x401:409,ϑ) ≈ 3.16. (4.4.1)

Since the trajectories of pixels are measured on the discrete domain, correspond-

ing to the number of frames within the stack, we round these to E(DOn) = 1 and

E(DO�) = 3 which describe the expected duration a pixel remains on the 'On' and

'O�' state respectively. We use these expected durations in order to distinguish

between di�erent and re-activated molecules within the stack after deciding on the

pixels containing the active molecules. Therefore, using the probability maps in Fig-

ures 4.4.3 and 4.4.4, we can obtain individual reconstructions of the corresponding

underlying structures on each frame using an arbitrary common threshold, presented

in Figure 4.4.6. The threshold, here chosen to be 0.50, determines the pixels within

each frame that are most probable to contain a molecule, hence can provide a recon-

struction of the true positions of the molecules when it is assumed that r = θ = 0.

The light blue crosses on the �gure represent the true positions of the molecules,

where the red coloured circles the drawn ones based on the threshold. A extended

discussion on thresholds for the posterior probability maps is presented later in Sec-

tion 5.3.1.

A �nal reconstruction of the underlying structure can be obtained by plotting all

the individual frame reconstructions, however under the Markov switching model

based on SiMPa functions we can use the expected durations of the states to capture

and identify reappearances of molecules. The identi�ed pixels containing the active

molecules are associated with pixels on the 'On' state, hence using Equations (4.4.1)

we can evaluate their corresponding state trajectories. This can provide an overall

counting of molecules throughout the stack of frames for the underlying structure.



4.4. Implementation 162

●

●

●

●
●

Frame 401

●
●

●

●
●

●

Frame 402

●
●

●
●

●
●

●

●
●

●
●

Frame 403

●
●

●

●

●

●
●

●

Frame 404

●

●

●

●
●

●

Frame 405

●

● ●

●

● ●

Frame 406

●
●

Frame 407

●
● ●

●

●

●

●

●

●● ●

Frame 408

●
●

●

Frame 409

Figure 4.4.6: Individual frame reconstructions for frames in Figure 4.4.1 using a
threhold value of 0.50. The red circles denote the drawn positions by applying the
threshold on the posterior probabilities �ltered by the average �eld, whereas the light
blue coloured points represent the true positions of the molecules.



4.4. Implementation 163

In Table 4.4.1 we present the performance of counting if di�erent rounding choices

were made. The table consists of four di�erent combinations of the duration of

the states, based on alternating rounding of the determined durations in Equation

(4.4.1), and declares the percentages of the total correct and wrong predictions. A

correct identi�cation of a pixel containing an active molecule is declared as a True

Positive (TP), whereas a incorrect identi�cation as a False Positive (FP). Similarly,

True Negative (TN) corresponds to correct identi�cation of an empty pixel and False

Negative (FN) incorrect declaration of a pixel as empty when an active molecule in

fact lies onto.

Counting TP FP TN FN

E(DON) = 1
100 % 0.3% 99.9% 0%

E(DOFF) = 3

E(DON) = 2
98.1% 0.1% 99.9% 1.9%

E(DOFF) = 3

E(DON) = 1
98.1% 0.3% 99.9% 1.9%

E(DOFF) = 4

E(DON) = 2
96.3% 0.1% 99.9% 3.7%

E(DOFF) = 4

Real 54 - 1558 -

Table 4.4.1: Counting of molecules using di�erent expected duration E(D) of 'On' and
'O�' states. The table outlines the percentages of correct identi�ed pixels containing
the active molecules (True Positive - TP) and the number of correct identi�ed empty
pixels (True Negative - TN), along with the incorrect predictions for active pixels (False
Positive - FP) and de-active pixels (False Negative - FN). The real number of pixels
containing active molecules and empty pixels are also outlined (Real).



Chapter 5

Application and sensitivity analysis

5.1 Introduction

In this chapter we apply the individual frame counting scheme based on the SiMPa

functions on synthetic data and compare with one of the most popular o�-the-self

alternatives. The application consists of a complete analysis on a stack of frames

produced by an underlying �xed structure using both our proposed individual frame

scheme and ThunderSTORM [Ovesn�y et al., 2014]. Additionally, we conduct a sen-

sitivity analysis on the performance of our model, on both sets of parameters in-

volved in the localisation/counting schemes and the Markov switching model based

on SiMPa functions. The choice not to consider the latter for the application is di-

rectly related to computational times and complexity, a matter we discuss on Chapter

6, with the individual frame inference easily set up for parallel computing. Lastly,

we apply our individual frame counting scheme on a realistic data set of Tubulins,

used for the challenge in 2013 [Sage et al., 2015] to evaluate current super resolution

localisation methods.

In Section 5.2, we construct a synthetic data set constituting of a stack of low res-

olution frames under a predetermined underlying structure. We explain in detail

164
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the parameter selection, followed by an elicitation procedure in order to obtain prior

distributions for the single event intensity I and background error precision τb. In

Section 5.3, we perform a complete analysis of the individual frame counting scheme

based on the SiMPa functions using the generated synthetic data set (Section 5.3.1),

before comparing and evaluating its performance against ThunderSTORM [Ovesn�y

et al., 2014] (Section 5.3.2). We present visual reconstructions of the underlying re-

ality as well as quantitative evaluation of the output for both methods. We conclude

this chapter with a sensitivity analysis in Section 5.4 split into two parts. The �rst

part corresponds to the assessment of our localisation output when di�erent overlap-

ping scenarios are present, as well as investigating the e�ect of di�erent noise levels

(Section 5.4.1). We consider a variety of prior distributions for every parameter in

order to assess the robustness of both the individual inference and Markov switching

models based on SiMPa functions, forming the second part of the analysis (Section

5.4.2). The chapter concludes with an application on a realistic data set (Section

Section 5.5).

5.2 Synthetic data generation

In this section, we describe the data generation mechanism using the SiMPa func-

tions according to the pseudo-algorithm introduced in Section 4.3, and explain the

parameter selection for the synthetic data. We also present a simple mechanism

using a number of frames from the stack in order to elicit prior distributions for the

single event intensity I and background error precision τb.

We decide to construct frames of size n = 40 rows andm = 40 columns, resulting in a

total of N = 1600 pixels. The side length of the pixel is arbitrary chosen to be l = 1,

while each molecule is a point of a circular structure with radius R = 0. In order to

obtain the positions of the molecules within the image, we create a predetermined

structure of two concentric circles, with their radius having a small scale di�erence,

and we name 'Circle within circle' synthetic data. The molecules are placed on the
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circumference of each circle, each one constructed as a set of appropriate directions

θ from the corresponding centres based on a narrow discretisation of all possible

angles. This allows molecules to exist in close distances, with their actual positions

described as continuous measurements on the Cartesian coordinate system. The true

underlying structure of the 'Circle within circle' synthetic data is displayed in Figure

5.2.1, with the light blue crosses representing the exact positions of the molecules

within the image.

In order to generate the low resolution stack of frames using the SiMPa functions,

the Cartesian coordinates of every molecule are transformed onto polar coordinates

according to the lattice pixels they belong to. Consequently, each molecule is asso-

ciated with a corresponding position within the image based on a distance r with

direction θ with respect to the center of the pixel it lies into, with these centres

corresponding to the origin of the SiMPa functions. The starting frame, or frame

zero, is arbitrarily chosen to contain 5% of the total number of molecules existing

in this structure. Following similar notation to the pseudo-algorithm in Section 4.3,

the total number of molecules is N (0) = 602 with N(0)
a = n

(0)
11 = 0.05 × 602 = 30

and N(0)
da = 572. Consulting Dempsey et al. [2011] about di�erent duty cycles of

�uorescent dyes, we decide on a transition matrix between 'On', 'O�' and 'Bleached'

state to consist of,

P =

On O� Bleached
On 0.049 0.851 0.1

O� 0.015 0.985 0

Bleached 0 0 1

,

responsible for driving each molecule's state in consecutive frames. The transition

matrix P promotes de-active ('O�') molecules to retain their state with a transition

probability pO�,O� = 0.985 and active ('On') molecules to alter their state with

probability pOn,O� = 0.851.
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In order to construct the PSF for every molecule using the SiMPa functions, apart

from their predetermined position using the 'Circle within circle' structure, denoted

by {rq, θq}, ∀q ∈ {1, ..., N (0)} within the corresponding pixels, the single event in-

tensity I, the power of spread parameter c and the background error τb need to be

selected. Therefore, for the single event intensity I we choose I = 8 with the back-

ground baseline being d = 30% of I, hence I0 = 2.4. These choices were chosen

arbitrary but in their di�erence corresponds to clear separation between intensity of

signal and background. Since c is bounded (see Section 3.2.4), we consider c = 0.4 as

an intermediate value and regular background error levels with precision τb = 10, or

equivalently variance σ2
b = 1/τb = 0.1, corresponding to noise that noticeably alters

the intensities of pixels however not on a completely severe manner (see Section 5.4.1

for e�ect of di�erent noise levels). Adopting these parameter values, a sequence of

a total number of F = 4730 frames is obtained with the �rst Ft,∀t ∈ {1, ..., 1500}
frames having the majority of molecules blinking, whereas the remaining ones are

mostly described by sparsity before every molecule reaches the 'Bleached' state. The

number of bleached molecules at frame F1500 is 545 out of the total N (0) = 602

molecules. A few randomly selected low resolution frames from the generated se-

quence are displayed in Figure 5.2.1. The light blue crosses denote the true positions

of the molecules with the square regions representing the spread according to the

SiMPa functions.

Recalling the discussion in Section 2.2.3, high density data involve cases where mul-

tiple �uorophores are captured on individual frames, translating into light emitters

that can potentially coincide with each other, where low density data consist of

mostly sparse frames which can achieve temporal separation of �uorophores. The

former is usually described by higher signal-to-noise ratio (SNR) while the latter

can su�er from potentially challenging lower SNR. According to the data generation

mechanism based on the SiMPa functions, di�erent choices on the parameters can

result in low resolution frames, promoting overlapping �uorophores or well separated

ones with either high or low signal to noise ratio. The latter depends on the
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Underlying Structure Frame 3 Frame 40

Frame 92 Frame 175 Frame 338

Frame 395 Frame 534 Frame 909

Figure 5.2.1: Circle within circle - synthetic data using the SiMPa functions. On the
left top corner of the �gure, the true underlying structure of molecules forming a circle
within a circle is presented. The following �gures are randomly selected frames from
the generated stack using pseudo-algorithm in Section (4.3). The square regions on
each frame denote the spread according to SiMPa functions while the light blue crosses
the true positions of the molecules.
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adjustment of the contrast between the single event intensity I and background

baseline I0 in association with appropriate noise levels, with the former corresponding

to altering the transition matrix and/or the initial 'On' molecules. For instance,

increasing the probability of a molecule remaining on the 'On' state or the probability

of transitioning from 'O�' to 'On' can allow an increased number of overlapping cases.

In a way, we can arguably construct fairly representative high or low density data

by varying the choice of the parameters.

In order to implement the individual frame inference scheme based on SiMPa func-

tions, prior distributions need to be selected accounting for the initial uncertainty on

each parameter. Regarding the power of di�raction c, we use a rescaled beta prior

with higher density on values away from zero (in which the di�raction decays slower),

π(c) ∼ RescaledBeta(4, 1.75), whereas for the �eld parameters we assign indepen-

dent Gaussian distributions centred at zero with precision 9, π(β0), π(βf ) ∼ N(0, 9).

These prior distributions are not elicited but chosen to be sensible, presented on the

right panel of the Figure 5.2.3, with values generally between -2 and 2 to serve the

purpose regarding β0 & βf .

For the single event intensity I and background error precision τb, we perform a prior

elicitation process to obtain the corresponding hyper-parameters for their Gaussian

and Gamma prior distributions respectively. We decide to follow this procedure as

the single event intensity and background error are directly related with the mea-

surements on the frames and play a crucial role on the localisation. During a real

STORM imaging experiment, prior distributions for the single event intensity I can

be arguably recovered or �xed by the user, however we present a mechanism for a

complete data set when potentially no prior knowledge is available. For the prior

elicitation procedure, we consider the �rst 100 frames out of the total F = 4370 and

split each one of them into three separate sets using di�erent quantiles. The lower

quantile qlwr consists of the 98% of the observations forming the hypothetical back-

ground intensities, while the middle quantile qinter between 98% and 99% accounts

for the single event intensities and the upper quantile qupr above 99% for overlapping
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cases. These values can vary depending on the nature of the data and choices might

be considered in a sophisticated fashion. In a way, lower values can be considered

for data sets consisting of a large amount of overlapping cases or high density data,

while potentially higher values for low density data. Gathering the corresponding

observations from each partition we obtain Qlwr, Qinter and Qupr, presented in Figure

5.2.2 with the red solid vertical lines being their 10% and 90% quantiles respectively,

which we denote with Q?
lwr, Q

?
inter and Q?

upr. The reason for considering a within

subset of the quantiles is to try and exclude potential extremes on average.

Figure 5.2.2: Quantities used for prior elicitation. Di�erent measurements obtained
by using three di�erent quantiles on each one of the �rst 100 frames of the 'Circle
within circle' synthetic data. The top histogram consists of the larger values, hence
is assumed to contain the overlapping scenarios, whereas the middle and bottom one
consist of the single event case and background baseline respectively. The vertical red
solid lines denote the 10% and 90% quantiles of the corresponding sets.
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Then,

π(I) ∼ N
(
µI = mean(Q?

inter), τI = 1/var(Q?
inter)

)
= N(7.32, 2.83),

π(τb) ∼ Gamma
(
shapeτb = 2, rateτb = 4var(Q?

lwr)
)
= Gamma(2, 0.33),

with the prior elicitation procedure summarised in the following Pseudo-algorithm.

Pseudo-algorithm: Prior elicitation for I and τb

1. Choose F frames to be used in the elicitation procedure, where yf are the

observations for frame f ∈ F .

2. Select qlwr, qinter and qupr corresponding to quantiles for the hypothetical

background, single and overlapping intensities respectively.

3. For every f ∈ F obtain the quantities:
Qlwrf = {yf ≤ qlwr}
Qinterf = {yf > qlwr & yf ≤ qinter}
Quprf = {yf > qinter & yf ≤ qupr}

→


Qlwr =
{
Qlwrf ,∀f ∈ F

}
Qinter =

{
Qinterf ,∀f ∈ F

}
Qupr =

{
Quprf ,∀f ∈ F

}


4. Select common quantiles ml and mr to keep:

Q?
lwr = {Qlwr ≥ ml & Qlwr ≤ mr}

Q?
inter = {Qinter ≥ ml & Qlwr ≤ mr}

Q?
upr = {Qlwr ≥ ml & Qlwr ≤ mr}

5. Obtain the mean(Q?
inter), var(Q

?
inter) and var(Q?

lwr). For the prior distribu-
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tion of I, set,

π(I) ∼ N
(
µI = mean(Q?

inter), τI = 1/var(Q?
inter)

)
whereas for the background error set,

π(τb) ∼ Gamma
(
shapeτb = 2, rateτb = 4var(Q?

lwr)
)

where we consider four times the variance var(Q?
lwr) to allow for higher

uncertainty on τb and �xed shape at 2 to move away from 0.

Figure 5.2.3: Priors elicited from the 'Circle within circle' synthetic data. On the
top left corner of the �gure, the prior of the single event intensity I is presented with
I0 being the background intensity, whereas on the bottom left corner the prior of the
background precision τb is shown. The two remaining chosen priors for the spread c
and �eld control parameters β's are indicated on the right panel.
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The prior distributions elicited and selected are summarised in Figure 5.2.3, with

the blue coloured crosses denoting the means of the prior distributions. We adopt

these prior distribution for the application on the 'Circle within circle' synthetic data

using the individual frame inference based on the SiMPa functions which follows.

5.3 Application and comparisons on synthetic data

5.3.1 Application using individual frame inference based on

SiMPa functions

In this section we present the application on the synthetic data of 'Circle within

a circle' as described in Section 5.2, using the individual frame inference based on

SiMPa functions. From the total number of F = 4730 frames in the generated stack

we consider the �rst Ft frames, t ∈ {1, ..., 100}. The main reason behind this choice

is that most of the blinking processes occur during the �rst 1500 frames, with the

�rst 100 frames to be involving most, if not all, of the challenging PSF overlapping

scenarios. The remaining frames are generally sparse, where only a few, mostly well

separated, molecules are present before all of them are bleached.

In Figure 5.3.1 some of the Ft, t ∈ {1, ..., 100}, frames are displayed, which are part

of the application and a complete analysis using the individual frame inference based

on SiMPa functions is presented. On each frame, the light blue crosses denote the

true positions of the molecules and the surrounding 3×3 pixel regions their intensity

di�raction based on the SiMPa functions. The choice of this set of frames is to present

a variety of cases, including some challenging scenarios as well less demanding ones.

As can be seen in Figure 5.3.1, each one the frames contain a type of an overlapping

situation, in which di�erently positioned molecules within their corresponding pixels

have their PSF's overlapping on a number of pixels. On Frame 11, for instance,

two molecules share the same pixel resulting in a complete overlapping of their PSFs

(middle left side of the frame), with molecules having their PSFs overlapping on six
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Frame 3 Frame 11 Frame 22

Frame 30 Frame 44 Frame 51

Frame 77 Frame 79 Frame 85

Figure 5.3.1: Selected frames from the on 'Circle within circle' synthetic data. The
frames represent a variety of both overlapping and well isolated PSFs scenarios within
the generated stack, and also Frames 3, 22, 30 and 51 contain violations of the main
assumption of no more than two PSFs allowed to overlap. The light blue crosses
denote the true positions of the molecules with the surrounding 3 × 3 pixel regions
their corresponding intensity di�raction based on the SiMPa functions.
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and four pixels also identi�ed (right bottom side of the frame). Additionally, it

is apparent that in most of the frames well isolated PSFs can be spotted, where

the distance of activate molecules is larger making their di�raction distinguishable

from other. All these regions represent scenarios where at most two molecules are

extremely close to one another, however this is not necessarily always the case.

High intensity regions can be formed when multiple molecules are simultaneously

activated close to each other. Such cases can lead to extremely di�cult situations

where most of the PSFs in the region share a small number of pixels, making it

incredibly challenging to distinguish the molecules positions. One of these cases is

illustrated on the top middle part of Frame 3, where four molecules are simulta-

neously active within a small area producing a high intensity region with multiple

overlapping PSFs. As a reminder, our proposed individual frame inference using the

SiMPa functions relies on the assumption of having up to two PSFs either partly or

completely overlapping on a single region, making the latter a big violation of the

assumption. In a similar manner, small violations of the assumption can occur within

a frame, for instance when an overlapping case between two PSFs is accompanied

with a third PSF interfering with one of the other two PSFs (Frame 30). This can

potentially result in missing events or even wrong and less reliable identi�cation of

molecules, cases we investigate thoroughly in Section 5.4, however it does not prevent

us from conducting inference on such regions. It should be noted that similar high

intensity regions can be formed without having our assumption violated, which can

result in high precision inference, with an example shown on the left bottom part of

Frame 77.

Depending on the signal-to-noise ratio, the performance of our proposed model can be

a�ected, thus a sensitivity analysis is performed on Section 5.4. For this application

we consider the so-called regular noise level as presented in Section 5.2 and apply

the individual frame inference based on SiMPa functions using the pseudo-algorithm

in Section 3.3.5. We focus on the individual frame counting scheme based on the

SiMPa functions, the simpli�cation of our full model which assumes r = θ = 0 for
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every molecule within a frame. The main practical reason for this choice is the gain in

computational time compared to implementing the localisation scheme. Additionally,

our counting scheme based on SiMPa functions aims to tackle one of the main issues

in quantitative STORM imaging, constituting of identifying the number of molecules

within a cell.

Similar to the implementation presented in Section 3.4, the main output of the pro-

cedure for an individual frame involves a posterior probability map of the frame,

where higher probabilities indicate the pixels where active molecules more likely lie

onto. The posterior probability map is a product of adopting our novel pattern-

con�guration procedure onto the corresponding full conditional distributions to ob-

tain a probabilistic scheme of drawing positions of molecules (Section 3.3.3). Brie�y,

for every pixel on every MCMC iteration, the drawn positions of the chosen con-

�guration are recorded, along with the potential positions based on all the possible

con�gurations the pattern can be formed on the corresponding moving window. At

the end of the MCMC, the ratio of the drawn and the potential position constitutes

the posterior probability map of the frame. Since we apply the individual frame

counting scheme, molecules are assumed to have r = θ = 0 within their correspond-

ing pixels therefore no localisation counter is obtained throughout MCMC.

Alongside the posterior probability map, an additional probability map is obtained

accounting for double events, corresponding to two simultaneously active molecules

on the same pixel. Considering only the posterior probability map, we are able to

identify pixels with a single molecule, however this does not provide any information

about the number of molecules on the speci�c pixels. Since we assume that up to

two PSFs are allowed to partially or completely overlap, translating into formation

of patterns with up to two PSF overlapping on each structure within (e.g. see Figure

3.3.3), we also record the number of times the drawn positions correspond to complete

overlap of two molecules. After the MCMC is complete, the ratio of the double

events and the drawn positions provides a probability map capable of identifying

pixels containing two molecules. In association with the posterior probability map,
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pixels which are highly probable of containing a single molecule are accompanied

with an additional probability to potentially capture a second molecule as a result

of complete overlap of two PSFs.

Finally, as discussed in Section 3.4, we consider two types of �ltering on the posterior

probability map, and consequently on the double event probability map. According

to our proposed model, the fact that the hidden Markov �eld is the unobserved

mechanism declaring the states of the pixels it is safe to claim the molecules will

lie somewhere within the determined 'On' pixels of the �eld. Therefore, we decide

to �lter the posterior probability maps using either the average �eld, obtained by

taking the ratio of the sum of the �elds and the number of iterations, or a binary

(0/1) mask created by thresholding the average �eld. By de�nition, the former in

general decreases the scale of the probabilities as it could be a multiplication with

proportions less than one, while the latter keeps the same scale with the drawback

of requiring an arbitrary threshold.

For this application, we choose to �lter the posterior probability maps based on the

average �eld. This choice does not make a big di�erence on inference since the results

are almost identical to the ones produced using the binary mask, obtained with a

threshold of 0.70 on the average �eld. In a total of 40.000 MCMC iterations after

10.000 iterations as a burn-in period, the posterior probability maps of the �rst Ft
frames were obtained, t ∈ {1, ..., 100}, with the chosen frames (Figure 5.3.1) displayed
in Figure 5.3.2. The probability scale bars go from grey (lower probabilities) to white

levels (higher probabilities), where large probabilities indicate pixels containing a

single molecule. Additionally, the contour bins surrounding the corresponding pixels

denote the densities of the regions. The posterior distributions of the parameters

I, c, τb and {β0, βf}, the average �elds and the traces of the chains for the chosen

frames can be found in Appendix A.2.

We note here that due to the nature of our modelling, based on the pattern - con�gu-

ration concept, there can be cases where a pattern has no compatible con�gurations.
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A compatible con�guration is a product of combinations of complete PSFs, as in-

troduced in Section 3.3.3, which can contribute to form a pattern. Since the �eld,

responsible for updating the states of the pixels, does not guarantee correct identi-

�cation of every pixel in a PSF as 'On' on every iteration, there can be potentially

patterns consisting of a large amount of 'On' pixels without compatible con�gura-

tions. In these situations, our model updates the intensity of the entire moving

region as being a product of only 'O�' pixels, since it is incapable of localising any

molecules within due to the absence of con�gurations. This phenomenon can cause

a detrimental e�ect on the parameter updating, especially regarding the background

error precision τb which could experience high jumps to the lower values, potentially

also causing a chain e�ect to the rest. Such cases, which are sparsely present during

our procedure, are not included in the parameter updating.

Each one of the well separated PSFs can be accurately identi�ed, assigning very high

probabilities around 0.70-0.80 for the pixels where the molecules lie onto. This can be

con�rmed in a number of occasions for the chosen frames in Figure 5.3.2. The mass of

the regions is also focused on the correctly identi�ed pixels of the molecules as the bins

indicate. Similarly, robust identi�cation results are obtained regarding coinciding

situations when there is no violation of our up to two PSFs overlapping limit. The

scale and structure of overlap is invariant on our identi�cation process which achieves

separation of molecules, however compared to isolated molecules the probabilities

obey a lower scale around 0.55-0.65. More speci�cally, PSF overlapping on four and

six pixels of two closely located molecules can be spotted on Frame 11, whereas PSFs

sharing two and three common pixels are present in Frame 51 and 79 respectively.

The former achieves spatial separation of the events with corresponding probabilities

around 0.59 and 0.62 for the four and six overlapping pixels cases accordingly. The

latter also successfully completes the molecules pixel identi�cation however on a lower

probability level of around 0.54 and 0.57 for the two pixel collision on Frame 51, and

approximately 0.54 for the three pixel case on Frame 79. For all of these overlapping

cases, the probability mass is concentrated on the determined higher probable pixels
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accounting for accuracy and precision of identi�cation.

Regarding inference on high intensity regions, identi�cation of pixels containing

molecules can be problematic depending on the level of violation of our assump-

tion. In such cases, less accurate estimates are provided corresponding to lower and

more spread out probabilities around the region, not generally the case in regions

free of violation. Speci�cally, high intensity regions without a violation, as on Frame

77, still perform properly with most of the density focused on the correct pixels,

with slightly varying identi�cation probability values of 0.5, 0.55, 0.57 and 0.56 for

each one. Similar types of intensity regions formed by multiple PSFs, but with the

di�erence of violating our assumption on a small degree, have less precise results or

sometimes fail to identify every molecule involved. Such cases occur for instance on

Frames 22, 30 and 51 (left bottom, left top and left top part of �gures respectively),

where on the �rst frame there is a clear and accurate separation of the overlapping

molecules, that is 0.56 and 0.59 probabilities with high density, in contrast with

the other two producing uncertain results regarding every molecule included. On

Frame 30, the area where all three molecules overlap with each other, the pixels

with two of the molecules obtain a �ne probability with most of the mass (0.57 and

0.58), however the third molecule existing in between cannot be clearly separated

with probabiliy ≈ 0.35. Even more uncertain is the region on Frame 51, resulting in

assigning higher probabilities on pixels where there are no molecules, however still

managing to capture two out of three pixels with acceptable probabilities.

High intensity regions with big violations of the assumption, as on Frame 3 (top mid-

dle part), lead to unreliable results even though there are exceptions where molecules

can be accurately identi�ed. In general, regions where most of the violation occurs

tend to have a more spread out distribution of probabilities, which can either re-

sult in missing a number of molecules or falsely identifying pixels containing active

molecules.
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Figure 5.3.2: Posterior probability maps �ltered by the average �eld for frames in
Figure 5.3.1. Higher probabilities are indicated with white color levels as shown in the
light blue probability scale bar on each probability map. The white bins represent the
density around the regions.
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In Figure 5.3.3, the double event probability maps for the choses frames are displayed.

As already mentioned, this probability map is obtained using the ratio of the drawn

positions consisting of two molecules having their PSFs completely overlapping and

the corresponding drawn positions for pixels containing single molecules. Similarly

to the posterior probability maps, we �lter the derived double event probabilities

using the average �eld, relying on the fact that localised molecules must lie within

the 'On' pixels of the �eld. In Figure 5.3.1, we can outline a number of occasions

where two molecules have their PSFs completely overlapping, apparent for instance

on Frames 11 (middle left part) and 79 (top right corner). As presented in Figure

5.3.3, looking at the double events regions and the corresponding probability levels,

a clear identi�cation of such events has been acquired. It should be also noted that,

due to the probabilistic nature of our localisation procedure, regions which contain an

overlapping scenario can be sometimes declared as ones with completely overlapping

PSFs. Such regions can be found in Frames 30 (middle left part) or Frame 51 (right

bottom part), with the double event probability map showing an e�ect although

negligible when taking into consideration the corresponding probability levels.

In order to con�rm and justify our claim about the di�erent coinciding scenarios

we focused on, we additionally obtain individual precision-recall-precision curves for

each one of the chosen frames, serving as diagnostic metrics. These curves show the

alteration in precision, i.e. positive predictability power, and recall or sensitivity, i.e.

true positive rate or positive detection power, when multiple di�erent thresholds are

used to capture the true molecule positions. As can be seen in Figure 5.3.4, there is

an obvious trade-o� between precision and recall when our assumption is violated,

whereas the rest of the cases, no matter the type of overlap, have optimal perfor-

mance. The associated sensitivity-speci�city plots, known as ROC curves [Fawcett,

2006], can be found in Appendix A.2, with speci�city being the true negative rate

accounting for the proportion of correctly identi�ed pixels without a molecule.
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Figure 5.3.3: Double event posterior probability maps �ltered by the average �eld
for frames in Figure 5.3.1. Higher probabilities are indicated with white color levels as
shown in the light blue probability scale bar on each probability map. The white bins
represent the density around the regions.
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Figure 5.3.4: Precision-Recall curves for 'Circle within circle' frames in Figure 5.3.1.
The lines show the performance of our model in terms of balancing the trade-o� between
precision and recall, with the adapting colour denoting di�erent threshold values.
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As already discussed above, the posterior probabilities are a�ected by the type of

overlap present on speci�c regions within individual frames. Our probabilistic in-

ference based on the pattern-con�guration concept provides a reliable measure of

uncertainty regarding the location of the molecules on separate frames, however the

importance of visualising and exploring molecular behaviour and interaction make

reconstructions of structures a necessity. Additionally, processing the derived proba-

bility maps is crucial from the quantitative perspective in order to obtain a count on

the number of molecules. In a straightforward way, reconstructions of the individual

underlying reality can be achieved by applying a threshold to the posterior probability

maps on a speci�c level followed by placing molecules at the center (SiMPa func-

tions origin) of the corresponding identi�ed pixels. This is translated into r = θ = 0

for the localised molecules, accounting for the individual frame counting scheme we

perform on this application. The �nal reconstruction, or super resolution image, can

be acquired by plotting all the individual positioned molecules on a single frame.

We focus on two ways for applying a threshold on the posterior probability maps in

order to construct a super resolution image. A direct and potentially naive way is to

consider �xed common thresholds for the entire frame, with the second way relying

on a conventional threshold scheme based on the average �eld. We discuss both

approaches in detail and present reconstructions for both the individual frames and

the entire stack of frame Ft, t = 1, ..., 100, accompanied with performance metrics

for evaluation.

Fixed Threshold for frames in the stack

In Figure 5.3.5, we present the individual frame reconstructions for the chosen frames

in Figure 5.3.1, based on two di�erent �xed threshold values of 0.45 and 0.50. On each

individual frame, the light blues crosses indicate the true positions of the molecules

with the red empty and yellow �lled circles corresponding to the localisations of

molecules with r = θ = 0 using the 0.45 and 0.50 thresholds respectively. The values

are �xed for every frame and are chosen regardless of the overlapping situation,

however the choice comes with a trade-o� on identi�cation. The importance and
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e�ect of thresholds when perform a reconstruction can be spotted on a variety of

occasions in Figure 5.3.5, with the most immediate and crucial e�ect being either

missing or over-counting molecules.

Missing a molecule during a reconstruction procedure accounts for failing to place a

molecule when in reality there exists one. Apart from our identi�cation scheme being

imprecise in terms of performance, incapability of identifying pixels where molecules

lie onto could be a result of poor judgement on choices for thresholds applied on

the posterior probability maps. Additionally, a consequence of di�erent decisions on

thresholds and/or our technique's inference accuracy could potentially read in falsely

determination of pixels including molecules, or simpler over-counting. Therefore,

performing a reliable reconstruction of an underlying structure using the posterior

probability maps, sophisticated ways of determining the appropriate threshold levels

need to be considered.

Applying the lower threshold level of 0.45, missing molecules is an issue only present

in the case of violations on our assumption (Frame 3 and 30) where over-counting

is more frequent, mainly on well isolated regions with molecules lying far away from

the pixel's origin. On the other hand, adopting the threshold of 0.50 experiences

the same limitation within a violation region, but overcomes the drawback of over-

counting in most of the cases. A negative consequence of this higher threshold is

potentially missing active molecules which were previously identi�ed (Frame 77 -

bottom left part or Frame 79 - middle right part), as a result of more uncertain

regions due to overlapping PSFs, hence lower probabilities.

Conventional Threshold based on the average �eld

In Figure 5.3.6, we present the individual frame reconstructions for the chosen frames

in Figure 5.3.1, based on a conventional threshold scheme obtained as a product of the

average �eld. On a similar manner to �xed thresholds, the light blue crosses represent

the true positions of the molecules, with the orange coloured circles denoting the

positions obtained by applying the conventional threshold.
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Speci�cally, we work with the average �eld for each individual frame obtained at

the end our inference in order to decide on the potential complexity of the cor-

responding regions, hence adjust the level of thresholding. The average �elds for

the chosen frames can be found in Appendix A.2. In a way, high intensity regions

where multiple overlapping or not PSFs potentially contribute to their formation,

represent challenging regions of higher complexity therefore a lower threshold can

serve the purpose. Molecules on regions where well isolated or fairly distanced PSFs

are present can provide higher localisation precision, therefore we can use higher

threshold values. With respect to the SiMPa functions, the intensities for a single

active molecule spread out on a 3× 3 neighbourhood region, hence a complete PSF

is associated with nine pixels in total (same size as the moving region ; MR). In

an ideal situation, a pixel containing a molecule will have its associated nine neigh-

bouring pixels identi�ed as 'On' by the average �eld. Taking this into consideration

we can learn about the complexity of the outer region of the pixel by examining a

larger neighbourhood on the average �eld, here we consider the 5×5 neighbourhood.

For instance, if the larger neighbourhood contains eleven identi�ed 'On' pixels we

can assume fairly separated PSFs, or small overlapping levels, thus threshold higher,

whereas a case with thirteen 'On' pixels is mostly probably a result of overlapping

PSFs, thus we should threshold lower.

Our conventional threshold based on a large neighbourhood of the average �eld

is presented in Table 5.3.1, applied on every individual pixel on each frame Ft,

t = 1, ..., 100, using the following notation. Let xt =
IT∑
q=1

x
(q)
t /IT denote the average

�eld of frame t where IT the number of iterations and xs,t a pixel s ∈ {1, ..., N}
on the average �eld of frame t. If

∑
s

∂xs,t denotes the sum of states in the 5 × 5

neighbourhood of pixel s in the average �eld t, then,
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Convention based on 5× 5 neighbourhoods of average �eld Threshold∑
s

∂xs,t < 12 0.60∑
s

∂xs,t ≥ 12 &
∑
∂xs,t < 15 0.45∑

s

∂xs,t ≥ 15 &
∑
∂xs,t < 18 0.40∑

s

∂xs,t > 18 0.35

Table 5.3.1: Conventional threshold scheme based on the average �eld. The quantity∑
∂xs,t denotes the sum of states in the 5× 5 neighbourhood of pixel s in the average

�eld t, associated with conventional conditions to acquire a threshold level.

As can be spotted in Figure 5.3.6, adopting the conventional threshold improves the

quantitative ability of our individual counting scheme compared to �xed common

thresholds for the entire frame. This is supported and summarised on Table 5.3.2

where all threshold approaches are evaluated based on their identi�cation capabili-

ties. The table contains the following percentages; true positives (TP), correct iden-

ti�cation of pixels containing molecules; false positives (FP), false identi�cation of

pixels containing molecules; true negatives (TN), correct identi�cation of empty pix-

els; false negatives, false identi�cation of empty pixels when they contain molecules.

These metrics are accompanied with the real number of pixels containing molecules

and empty pixels (Real). Additionally, the blue coloured quantities correspond to

the performance of counting when we do not take into consideration reappearances

of molecules due to blinking, whereas the black colour to the individual frame counts

regardless of blinking.
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Figure 5.3.5: Individual frame reconstructions for a number of frames included in
the application on synthetic data, using two di�erent thresholds for the posterior prob-
ability maps �ltered by the average �eld. The red circles denote the drawn positions
by thresholding the posterior probabilities �ltered by the average �eld at 0.45, whereas
the yellow coloured points at 0.5. The light blue coloured crosses represent the true
positions of the molecules.



5.3. Application and comparisons on synthetic data 189

●

●
●

●

●

●

●
●

●
●

●
● ●

●

Frame 3

●●
●

●
●

●
●

●

●

●

Frame 11

● ●
●

●

●

●

●
●
●

●

●

Frame 22

●
●

●
● ●
●

●

●

●
●

●
● ●

●

Frame 30

●

●

●

●
●

●
●

●

●
●

Frame 44

●
●

●●
●

●

●

●
●
●

●

●

Frame 51

● ●
●

●

●

●
●

●

●

●

●

Frame 77

●
● ●

●

●

●
●

●●

●●

Frame 79

● ●
●

●
●

●

●

●

●
●

●

Frame 85

Figure 5.3.6: Individual frame reconstructions for a number of frames included in the
application on synthetic data, using the conventional threshold scheme based on the
average �eld for the posterior probability maps �ltered by the average �eld. The orange
coloured circles denote the drawn positions by applying the conventional threshold,
with the light blue coloured crosses representing the true positions of the molecules.
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Counting TP FP TN FN

Thr = 0.45 95.2% 95.9% 1% 1.4% 99.1% 99.1% 4.8% 4.1%
Thr = 0.50 93.3% 93.9% 0.3% 0.6% 99.9% 99.9% 6.7% 6.1%
Thr = 0.55 80.8% 84.7% 0.1% 0.1% 99.9% 99.9% 19.2% 15.3%
Conv Thr 97.1% 98% 0.2% 0.5% 99.9% 99.9% 2.9% 2%

Real 104 98 - - 1528 1528 - -

Table 5.3.2: Performance of di�erent threshold approaches in terms of counting for
chosen frames in Figure 5.3.1. The table outlines the percentages of correct identi�ed
pixels containing the active molecules (TP) and correct identi�ed empty pixels (TN),
along with the incorrect positive (FP) and negative (FN) predictions. The black and
blue colours denote counting when reappearances of molecules due to blinking are either
considered or not respectively. The real number of pixels containing active molecules
and empty pixels are also outlined (Real).

As a general comment, applying a �xed common threshold for all frames in the stack,

undergoes a trade-o� in precise identi�cation and wrong determination of pixels in-

cluding activated molecules. This e�ect does not seem to compose an issue if separate

thresholds were chosen independently for each frame, based on the spatial associa-

tion of the molecules within, a claim con�rmed by the di�erence of the threshold

scales on the precision-recall curves in Figure 5.3.4. Considering the conventional

threshold scheme based on the average �eld seems to improve the performance of

counting, mainly alleviating the over-counting issue when well separated or fairly

distanced PSFs are of focus. However, there can still be room for improvement

on manipulation of the probability maps obtained via our scheme for reconstruc-

tions, potentially by the use of an adaptive threshold based on di�erent criteria, a

matter not of our main focus throughout this thesis which discuss in Chapter 6.

The detected alteration of the probability levels, and consequently the appropriate

threshold scales, when di�erent regions are of main focus as well various noise levels

are present, is a case we investigate thoroughly in Section 5.4, where we conduct a

complete sensitivity analysis.

Without making use of a tool to identify same molecules undergoing the blinking
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process between frames, we present in Figure 5.3.8 the �nal reconstruction, or super

resolution image, of the 'Circle within circle' sequence of frames Ft, t = 1, ..., 100, by

combining the Frame-wise localisation. Additionally, in Figure 5.3.7 the reconstruc-

tion using only the chosen frames from Figure 5.3.1 is displayed. In both �gures, the

light blue crosses indicate the true positions of the molecules without taking into con-

sideration potential reappearances due to blinking, with the red, yellow and orange

colour points representing the reconstructions based on 0.45, 0.50 and conventional

thresholds respectively.

This lack of a mechanism to process the temporal dependency of consecutive frames,

when using the individual frame inference based on SiMPa functions, can result in

determining the same molecule on multiple occasions while remaining on the active

state between frames. Furthermore, the e�ects identi�ed individually on the chosen

frames are consequently apparent and present on the �nal reconstruction, with the

lower threshold leading to over-counting a number of molecules where a higher one

is more accurate but fails to capture all of them at times. However, the conventional

threshold scheme improves the performance of counting and seems more accurate, a

matter supported by Table 5.3.3 which summarises the performance of identi�cation.

Speci�cally, Table 5.3.3 contains the same metrics as Table 5.3.2, with TP, FP,

TN and FN denoting the true positives (correct prediction of pixel containing a

molecule), false positives (false prediction of pixel containing a molecule), true nega-

tives (correct prediction of empty pixel) and false negatives (false prediction of empty

pixel) respectively. The black and blue colours corresponds to counting when the

real reappearances of molecules due to blinking are taken into consideration or not

respectively. Focusing on the latter, since we applied the individual frame count-

ing scheme, we can claim that the lower and conventional threshold scheme have

similar detection power (here TP=95.7% in both cases), however the amount of in-

correct determinations of pixels containing a molecule is signi�cantly higher for the

lower threshold (FP=9.5% against 3.1% for conventional). Consequently, this has an

immediate e�ect on the detection of correct empty pixels (TN), whereas the amount
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Figure 5.3.7: Final reconstructions of the super resolution image for the chosen frames
in Figure 5.3.1, using two �xed thresholds for the posterior probability maps �ltered
by the average �eld and the conventional threshold scheme based on the average �eld.
On the top left corner of the �gure, the true positions of the molecules are shown (light
blue crosses) with the 0.45 (red colour) and 0.5 (yellow colour) �xed threshold �nal
reconstructions to be presented on the right top and left bottom corner respectively.
On the bottom right corner of the �gure, the �nal reconstruction using the conventional
threshold scheme is displayed.
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Figure 5.3.8: Final reconstruction of the super resolution image using the �rst 100
frames of the 'Circle within circle' stack of frames, using two �xed thresholds for the
posterior probability maps �ltered by the average �eld and the conventional threshold
scheme based on the average �eld. On the top left corner of the �gure, the true
positions of the molecules are shown (light blue crosses) with the 0.45 (red colour) and
0.5 (yellow colour) �xed threshold �nal reconstructions to be presented on the right top
and left bottom corner respectively. On the bottom right corner of the �gure, the �nal
reconstruction using the conventional threshold scheme is displayed (orange colour).



5.3. Application and comparisons on synthetic data 194

of missed molecules (FN) appears to be similar. As we discuss later in Section 5.4.1,

the main reason for this incapability is the violation on the assumption of no more

than two PSFs overlapping on a single region. Fairly similar behaviours and re-

sults are obtained by looking at the black coloured columns, with which we compare

against the exact number of molecules due to re-activation between frames, with the

false detection of pixels containing active molecules increasing noticeably.

Counting TP FP TN FN

Thr = 0.45 95.7% 99.8% 9.5% 35.1% 98.1% 98.1% 3.5% 0.2%
Thr = 0.50 90.8% 98.5% 3% 26% 99.2% 99.2% 9.2% 1.5%
Thr = 0.55 81.5% 96.5% 1.2% 19.2% 99.8% 99.8% 18.5% 3.5%
Conv Thr 95.7% 99% 3.1% 28.9% 99.4% 99.4% 4.3% 1%

Real 892 479 - - 1472 1472 - -

Table 5.3.3: Performance of di�erent threshold approaches in terms of counting for
frames on application on synthetic data. The table outlines the percentages of correct
identi�ed pixels containing the active molecules (TP) and correct identi�ed empty
pixels (TN), along with the incorrect positive (FP) and negative (FN) predictions.
The black and blue colours denote counting when reappearances of molecules due to
blinking are either considered or not respectively. The real number of pixels containing
active molecules and empty pixels are also outlined (Real).

5.3.2 Comparison with ThunderSTORM

In this section we apply ThunderSTORM, as introduced by Ovesn�y et al. [2014],

on the 'Circle within circle' synthetic data in order to compare and evaluate the

performance of our individual frame inference based on SiMPa functions. As we

brie�y discussed in Chapter 2, ThunderSTORM is an open source software for pro-

cessing and visualising images obtained by a super resolution localisation microscopy

technique, such as STORM. In order to perform an analysis, a number of steps are

considered before the construction of a super resolution image, consisting of four

main parts, (i) �ltering (ii) identi�cation of approximate molecules positions (iii)
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sub-pixel localisation and (iv) post-processing. Each one of these parts can be per-

formed on di�erent ways according to the user's preferences, however default settings

are suggested which we adopt and discuss in more detail.

Regarding (i), we use the wavelet �lter based on B-spline basis functions. Following

Ovesn�y et al. [2014], an input image V0 is transformed at di�erent levels j, here

j = 1, 2, to Fj = Vj−1 − Vj based on the convolution in Vj = (Vj−1 ∗ kj) ∗ kjT, where
kj the �lter's convolution kernel. The Vj's correspond to a band pass �lter allowing

only frequencies of a certain range. In this case, the kernels kj are obtained based

on the B-spline basis functions of order q = 1, 2, ... [Izeddin et al., 2012], with the

user able to adjust the order q and the scaling factor s which is part the kernel. The

default settings correspond to the third order basis functions with s = 2, which we

also consider for the application on the 'Circle within circle'.

The �ltered image F , having the same size as the input image V0, is used in step

(ii) of the analysis in order to determine approximate positions of the molecules,

which are then used in order to perform the localisation. In the former, we use

the local maxima for positions identi�cation, where each pixel in F is considered

as a potential candidate if its corresponding intensity is above a threshold, along

with larger intensity value within a speci�c 4 or 8 pixel neighbourhoods, similar to

Equations (3.3.1) and (3.3.2). Both of these features can be selected by the user with

the choice of the threshold being of high importance. Following the default setting

and what Izeddin et al. [2012] suggested, we keep F2 to obtain the �ltered image

and the one times the standard deviation of the intensities F1, s.d.(F1), to derive a

threshold level for the approximate positions.

The next step, involves localisation of the molecules based on the determined ap-

proximate positions, where the output of the procedure provides a complete set of

coordinates for every identi�ed molecule. ThunderSTORM supports a number of lo-

calisation procedures, some of which mentioned in Chapter 2, however here we apply

two separate approaches, that is 2D Gaussian PSF �tting for single molecules using
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weighted least squares and multiple emitter �tting. The former corresponds to �tting

a PSF model similar to Equations (2.2.2) and (2.2.4), with the latter following a simi-

lar procedure as introduced by Huang et al. [2011a]. This corresponds to a sequential

routine of �tting a single PSF model to localise one molecule, followed by �tting a

second PSF model to the maximum intensity of the residual image, obtained after

subtracting the initial localisation from the input image. This procedure is repeated

until the maximum amount of allowed molecules is reached, a number that can be set

by the user, followed by statistical tests to obtain the optimal amount (see Ovesn�y

et al. [2014]). Here, we keep the default amount of �ve molecules. We also note

that we set the �tting region to be of size 3× 3 pixels similar to the predetermined

neighbourhood of the SiMPa functions (Figure 3.2.1).

Applying ThunderSTORM using both single and multiple �tting, we use the esti-

mates of the localised positions of the molecules in order to perform a reconstruction.

In agreement with our application using the individual frame counting scheme based

on SiMPa functions in Section 5.3.1, we present the individual frame reconstructions

for the chosen frames in Figure 5.3.1 as well as the �nal reconstruction of all frames

in the sequence Ft, t = 1, ..., 100. In Figures 5.3.9 and 5.3.10, the individual frame

reconstructions for the chosen frames are displayed using ThunderSTORM with sin-

gle and multiple �tting respectively (yellow coloured circles). Additionally, the true

positions of the molecules are marked (light blue crosses) along with the reconstruc-

tions using our conventional threshold scheme on the posterior probabilities maps

(orange coloured circles), as described on the previous section. In both �gures, well

isolated regions containing single molecules are accurately separated and identi�ed

by both ThunderSTORM and our model, however, ThunderSTORM performance

deteriorates in high intensity regions using either single or multiple �tting. These re-

gions can be either regions with adjacent PSFs without overlap or ones where active

molecules have their PSFs overlapping. In either case, ThunderSTORM struggles or

even fails to detect and spatially separate all of the molecules contributing to the for-

mation of such regions. As we mentioned in Section 5.3.1 and analyse in detail next
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in Section 5.4.1, our model mainly struggles to separate PSFs in regions of interest

that violate our assumption, of no more than two PSFs overlapping, but performing

appropriately in every other case. The �nal reconstructions of all the frames Ft,

t = 1, ..., 100, in the sequence are displayed in Figure 5.3.11, where the individual

frame reconstructions are combined and plotted. We note here that this procedure

does not involve a mechanism to assess potential reappearances of molecules due to

blinking.

In order to evaluate and compare the performance of our model against Thunder-

STORM, we consider the localised molecules in the latter to obtain the corresponding

pixels where molecules lie onto. In a similar manner as before, a correct identi�ca-

tion of a pixel containing an active molecule is declared with TP (True positive)

and a false identi�cation with FP (False positive), whereas TN (True negative) and

FN (False negative) are the relative correct and false declarations of empty pixel.

In Table 5.3.4, we present the comparison of the counting performances, where the

blue colours indicate the individual appearances of molecules within frames with-

out considering potential reactivations, a case outlined with the black colour, and

'Thunder', 'Thunder+' and 'SiMPa' corresponding to single, multiple PSF �tting

and conventional threshold on posterior probability maps using the SiMPa functions

respectively.

Focusing on the �nal individual frame counting (blue colour), our model outperforms

ThunderSTORM, in either localisation procedures of single or multiple PSF �tting.

Regarding the positive detection capabilities, there is a quite large di�erence between

'SiMPa' and 'Thunder', that is TP=95.7% against 70.1%, consequently leading to a

similarly large gap on the false detection of pixels containing an active molecule as

empty, that is FN=4.3% against 29.9%. ThunderSTORM's counting performance

improves when considering multiple emitters �tting, 'Thunder+', increasing the pos-

itive predictability power, from 70.1% to 83.5%, however still on noticeably lower

levels than 'SiMPa'.
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Figure 5.3.9: Individual frame reconstructions for selected frames included in the ap-
plication on synthetic data, using the conventional threshold scheme based on the aver-
age �eld for the posterior probability maps and the localisations obtained by Thunder-
STORM on single molecule �tting. The orange coloured and yellow �lled circles denote
the drawn positions by applying the conventional threshold and ThunderSTORM re-
spectively. The light blue coloured crosses represent the true positions of the molecules.
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Figure 5.3.10: Individual frame reconstructions for selected frames included in the
application on synthetic data, using the conventional threshold scheme based on the
average �eld for the posterior probability maps and the localisations obtained by Thun-
derSTORM on multiple-emitters �tting. The orange coloured and yellow �lled cir-
cles denote the drawn positions by applying the conventional threshold and Thunder-
STORM respectively. The light blue coloured crosses represent the true positions of
the molecules.
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SR image − Conventional Threshold scheme

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ThunderSTORM − single fit
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Figure 5.3.11: Final reconstruction of the super resolution image using the �rst 100
frames of the 'Circle within circle' stack of frames, using the conventional threshold
scheme for the posterior probability maps �ltered by the average �eld and Thunder-
STORM based on both single and multiple �tting. On the top left corner of the �gure,
the true positions of the molecules are shown (light blue crosses) with the conven-
tional threshold scheme (orange colour) displayed on the right top corner. On the
bottom right panel of the �gure, the �nal reconstructions using ThunderSTORM (yel-
low colour) based on single molecule (left bottom panel) and multiple �tting (right
bottom panel) are presented.
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The percentage of false declaration of empty pixels as one containing a molecule is

lower for 'Thunder' compared to 'SiMPa', FP=1.1% against 3.1%, an e�ect depended

on the incapability of the former to capture most of the regions of interest. This

improves with multiple �tting ('Thunder+') which allows a larger number of potential

regions to be detected and localised, but also increases FP to 5.7% against 3.1% on

'SiMPa'.

Counting TP FP TN FN

Thunder 70.1% 92.7% 1.1% 13.4% 99.9% 99.9% 29.9% 7.3%
Thunder+ 83.5% 96.5% 5.7% 24.9% 98% 98% 16.5% 3.5%
SiMPa 95.7% 99% 3.1% 28.9% 99.4% 99.4% 4.3% 1%

Real 892 479 - - 1472 1472 - -

Table 5.3.4: Performance of ThunderSTORM and individual frame inference based on
SiMPa functions for 'Circle within circle' synthetic data, where 'Thunder' denotes sin-
gle �tting, 'Thunder+' multiple �tting and 'SiMPa' the conventional threshold scheme
applied on the individual frame counting scheme based on SiMPa functions. The ta-
ble outlines the percentages of correct identi�ed pixels containing the active molecules
(TP) and the number of correct identi�ed empty pixels (TN), along with the incor-
rect positive predictions (FP) and negative (FN). The black and blue colours denote
counting when reappearances of molecules due to blinking are either considered or not
respectively. The real number of pixels containing active molecules and empty pixels
are also outlined (Real).

5.4 Sensitivity analysis

5.4.1 Sensitivity analysis for counting and localisation

In this section, we conduct a sensitivity analysis on the counting and localisation

procedures with varying levels of error which can a�ect the accuracy and precision of

the posterior probabilities, our key tool in identifying pixels including molecules as

well localising them within. This involve a variety of overlapping scenarios including

cases of well isolated PSFs, coincidence of two PSFs on a di�erent number of pixels, as

well di�erent kind of high intensity regions, with either violations of our assumption
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or not.

In order to construct a sequence of frames having di�erent noise levels, we use the

structure of the 'Circle within circle' synthetic data generated in Section 5.2, while

keeping the exact same positions of molecules amongst the individual frames. Apart

from the background levels, all the parameters used in order to create the di�raction

of the molecules based on the SiMPa functions remain unchanged, with the single

event intensity I = 8, background intensity I0 = 2.4 and power of spread c = 0.4.

After every separate 'Circles within circle' frame is obtained, we assign zero mean

Gaussian noise of three di�erent levels, while also keep the free of noise scenario as

an additional case. We name as noiseless, small, regular and large noise cases the

corresponding scenarios under background noise with precision τb = 100, 10, 1, or

equivalently variance σ2
b = 0.01, 0.1, 1, for the last three cases respectively.

In Figure 5.4.1, the distribution of signal using the SiMPa functions is presented along

with the distribution of the background intensity, when each one of the four noise

levels is applied. Here, we refer to signal as the determined SiMPa values according

to a distance r and direction θ when I = 8 and c = 0.4. Initially, the SiMPa functions

(Equation 3.2.1) are evaluated over a large set of combinations of r and θ forming the

noiseless case in (a), before the obtained quantities become subject to noise in (b),

(c) and (d). The distribution of the signal is denoted with the light blue coloured

histograms while the background intensity with the light green. The noiseless and

small noise scenarios have a clear separation of the signal and background, with the

latter causing only a small drift from the true SiMPa values. We note here that

the behaviour around 8 corresponds to the central pixels containing the molecules,

which under these noise levels are not a�ected noticeably, hence the peaks, not the

case for regular and large noise. A larger variability, responsible also for a small

collision between signal and background is apparent on regular noise level, whereas

the large level results in a mixture of the two distributions, potentially challenging

in distinguishing between signal and background. The regular noise level in (b) was

considered to generate the 'Circle within circle' synthetic data for the application in
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Section 5.3.

Figure 5.4.1: Di�erent noise levels when generationg the 'Circle within circle' syn-
thetic data. The light blue histograms represent the di�raction according to the SiMPa
functions for continuous combinations of r and θ with I = 8, c = 0.4 and di�erent zero
mean Gaussian distributed noise. The dark green histograms show the background
intensity where I0 = I × d = 2.4 with d = 0.3. (a) No noise (b) τb = 100 (c) τb = 10
and (d) τb = 1.

5.4.1.1 Prior parameters

Before progressing into the sensitivity analysis, we brie�y discuss the selection of

the corresponding prior distributions for each one of the parameters. In agreement

with the prior elicitation for the regular noise case in Section 5.2, we consider the

same quantile procedure under similar limits in order to obtain prior distributions

for I and τb, whereas the ones for c and β's are unchanged as in Figure 5.2.3 (right

column). For the noiseless case, we apply our model by assigning τb the elicited prior
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for the lowest noise, that is for the small noise case with τb = 100. The corresponding

elicited prior distributions for I and τb, in case of noise free, small and large noise,

are displayed in Figure 5.4.2.

Figure 5.4.2: Priors elicited for single event intensity I and precision τb when small
and large noise levels are present. On the left panel of the �gure, the elicited priors
under small noise levels are shown, where on the right panel the ones under large
noise. The priors from the small noise case are also used for the free of noise scenario.
The blue µ marks denote the means of the distributions whereas I0 the background
intensity.

5.4.1.2 Varying noise levels

In order to assess the accuracy of our localisation inference di�erent types of over-

lapping cases need to be taken into consideration. For that reason, we select four

representative frames from the generated stack of 'Circle within circle' data which

contain most of the potential structures within a frame, according to our proposed
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model based on SiMPa functions. Both for the counting and localisation procedures,

these frames are thoroughly investigated and compared under all separate error lev-

els described above, where a detailed analysis is also performed by closely assessing

the corresponding overlapping cases. For the localisation algorithm we consider the

same discretisation of r and θ as in Section 3.4, with possible directions θ = k
π

4
,

k=0,1,...,8 under the distances r = 0 and r =
rmax,θ

2
, corresponding to the origin of

the SiMPa functions and half the distance from the origin on direction θ respectively.

Regular overlapping cases without violation of assumption

Frame 57, presented in the left hand side of Figure 5.4.3 under every di�erent noise

level, includes some of the regular PSF coinciding scenarios along with well separated

PSFs. Our assumption of up to two PSFs allowed to overlap stands, hence this frame

is characterised as a regular overlapping case without violation. In the middle and

right hand sides of the �gure, the posterior probability maps �ltered by the average

�eld are presented under the counting and localisation inference respectively, with

the blue boxes indicating the regions of di�erent cases. In general, both procedures

perform equally well in all of the noiseless, small and regular noise cases, with count-

ing showing good stability and precision in identi�cation, con�rmed by the density

having most of mass around the correct pixels containing the molecules. Regarding

the large noise case, despite being also visually apparent how it a�ects the PSFs (left

hand side of �gure - (d)), both inference procedures seem to perform quite decently

for every molecule within the frame. However, there is higher uncertainty on the

positions of the molecules regardless the overlapping scenario they belong to, a case

apparent by the behaviour and structure of the density bins.
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Figure 5.4.3: 'Circle within circle' data - Frame 57 under di�erent noise levels (left)
along with posterior probability maps �ltered by the average �eld, using both counting
(middle) and localisation (right) algorithms. The light blue crosses on the frames
denote the true locations of the molecules, while the blue squares A, B and C regular
overlapping scenarios which are investigated thoroughly in Figures 5.4.4, 5.4.5 and
5.4.6 respectively.
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For every focused region throughout this analysis, we adopt the same structure for

�gures consisting of three main parts. The �rst part, on the left hand side of �gures,

includes the detailed focused regions under the di�erent error levels, with the true

positions of the molecules outlined with the light blue color. The second and third

part, on the middle and right hand side of �gures respectively, consist of the posterior

probability maps �ltered by the average �eld for the counting and localisation pro-

cedures respectively, where the actual determined probabilities of the pixels above

0.20 are also outlined with the light blue colour.

Well separated PSF

Region A on Frame 57, presented in Figure 5.4.4, consists of only one well separated

PSF. For the small, regular and free of noise cases, both the counting and local-

isation algorithms perform equally well, assigning probabilities above 65% on the

correct pixel containing the molecule. The only di�erence is the uncertainty around

the regions, with the latter being less precise in terms of scales on the neighbour-

ing assigned probabilities. Regarding the large noise levels, both of our algorithms

still are able to recognise the correct positions of the molecules, however this well

separated PSF was speci�cally chosen to show an e�ect which can potentially be

present under this error. Since we reconstruct a frame by applying a threshold to

the obtained posterior probabilities, the determined level can alter the number and

places of molecules. In this case, a threshold of about 0.57 for counting, and 0.46 for

localisation, achieve correct identi�cation of the pixel where the molecule lies onto,

however additionally wrongly assigns a second one on a neighbouring pixel, causing

over-counting or misplacing of a molecule as discussed in Section 5.3.1. For an iso-

lated PSF, this scenario can occur when high level of noise prevents pixels which

are part of the PSF to be on average considered as 'On' by the �eld. Consequently,

this results in a constant lower declaration of such pixels being active, resulting on

a reduction of precision on the positions inference.

Overlapping PSFs on four pixels

Similarly, precise and quite similar results are obtained for the four overlapping
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pixels situation, outlined with Region B on Frame 57, closely focused in Figure 5.4.5.

The posterior probabilities under all noisy occasions show capability of accurately

spatial separation of the coinciding PSFs, with clearly distinguishable levels from the

neighbouring pixels. The uncertainty levels are higher for the localisation algorithm,

especially under the large noise scenario, however a threshold ≈ 0.50 achieves optimal

placement of molecules in terms of reconstruction.

Overlapping PSFs on six and one pixels

The marked Region C in Frame 57, presented in Figure 5.4.6, consists of two di�er-

ent overlapping cases, each one consisting of two PSFs overlapping on six and one

pixels respectively. Based on the counting algorithm, in both cases the molecules are

distinguished from their corresponding PSFs with high accuracy. The precision of

the results is smaller when it comes to large noise, with probabilities dropping from

over 0.55 to ≈ 0.45. The localisation procedure appears to struggle to identify the

correct pixels containing the molecules for the six pixels overlap in the noiseless and

small case scenario. The probabilities of the correct pixels are almost identical to

two other pixels in the region at around 0.42. This can be an e�ect of not precise

identi�cation on average of the entire region by the �eld, as discussed above, and/or

the complexity levels of the localisation procedure. The latter corresponds to the

large number of con�gurations associated with a realisation existing for any speci�c

pattern formed within a moving region (see Section 3.3.2). In contrast, under regular

additive noise, possibly as a result of blurring, the localisation process becomes more

adaptive and precise achieving more accurate separation of the two overlapping PSFs

on six pixels. For the one common pixel case, the molecules become distinguishable

with high certainty, which substantially decreases in scale and becomes less reliable

under large error levels.

Small high intensity regions without violation of assumption

Frame 6 in Figure 5.4.7, is a representative regular frame with some overlapping

PSF. The main reason we also focus on this one is that Frame 6 falls within the
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Figure 5.4.4: Selected region A in Frame 57 along with posterior probability maps
�ltered by average �eld, using both counting and localisation algorithms - Well isolated
PSF case. The light blue crosses denote the true locations of the molecules, while the
actual posterior probabilities higher than 30% are outlined both for the counting and
localisation procedures.
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Figure 5.4.5: Selected region B in Frame 57 along with posterior probability maps
�ltered by average �eld, using both counting and localisation algorithms - Two PSFs
overlapping on four pixels. The light blue crosses denote the true locations of the
molecules, while the actual posterior probabilities higher than 30% are outlined both
for the counting and localisation procedures.
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Figure 5.4.6: Selected region C in Frame 57 along with posterior probability maps
�ltered by average �eld, using both counting and localisation algorithms - Two cases
of two PSFs overlapping on six and one pixel. The light blue crosses denote the true
locations of the molecules, while the actual posterior probabilities higher than 30% are
outlined both for the counting and localisation procedures.



5.4. Sensitivity analysis 212

category we call small high-intensity region without violation, where more than two

PSFs, that is three or four, form a region of interest of higher total intensity than

ordinary. In agreement with the posterior probability maps for Frame 57, both

procedures of either counting or localising provide reliable identi�cation for pixels

containing molecules, with the latter being generally less precise. Regarding the large

noise case for both procedures, an issue can be recognised on the top right corner of

the �gure, where the overlapping of two PSFs on two pixels is highly a�ected by the

error levels. Even though separation is achieved with less certainty, these noise scales

could lead to the �eld being more variable, from incapability of recognising complete

regions of interest on a stable basis, followed by larger uncertainty on inference.

This small high-intensity region in Frame 6, presented in Figure 5.4.8, is formed by

two molecules having their PSFs sharing six pixels with an additional PSF of a third

active molecule right next to the other ones. Based on the posterior probabilities

of the counting procedure, all of the small, regular and free of noise cases provide

rather accurate identi�cations of pixels containing the molecules, achieving clear

spatial separation of the corresponding PSFs. In contrast, uncertainty is much higher

on the larger error case, which apart from being responsible for the lower scale of

precision, also seems to prevent the complete separation of PSFs. The correct pixels

are still distinguishable with probabilities of 0.49, 0.49 and 0.41 based on the counting

algorithm, although the last probability is fairly close to the surrounding ones. This

is not exactly the case for the localisation algorithm. Less accurate results are even

apparent on the noiseless case, even though two of the three PSFs are positively

resolved under any noise type. The third molecule's position probabilities are 0.43 for

the noiseless and small noise cases and ≈ 0.38 for regular and large cases, preventing

clear distinction within the region. Additionally, the pixel of the PSF on the right

middle end is consistently wrongly identi�ed, with 0.46, 0.46, 0.46 and 0.45 for the

di�erent noise levels respectively, a case that could lead to over-counting and/or

misplacing due to a regular threshold ≈ 0.40 or missing molecules ≈ 0.47.
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Figure 5.4.7: 'Circle within circle' data - Frame 6 under di�erent noise levels (left)
along with posterior probability maps �ltered by the average �eld, using both counting
(middle) and localisation (right) algorithms. The light blue crosses on the frames
denote the true locations of the molecules, while the blue square A a small high intensity
region without violation, investigated thoroughly in Figure 5.4.8
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Figure 5.4.8: Selected region A in Frame 6 along with posterior probability maps
�ltered by average �eld, using both counting and localisation algorithms - Three PSFs
forming a small high intensity region without violation. The light blue crosses denote
the true locations of the molecules, while the actual posterior probabilities higher than
30% are outlined both for the counting and localisation procedures.
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Large high intensity regions without violation of assumption

Frame 62, presented in Figure 5.4.9, consists of a main region from the case we call

large high-intensity region under no violation. In such a case, multiple PSFs which are

allowed pairwise overlapping form a large region of high total intensity. As a general

comment, inference in these types of regions can be a�ected by di�erent error levels,

while at the same time the determined inference algorithm can arguably provide

altered results as we discuss next. Similarly to Frames 6 and 57, under no or small

noise, both counting and localising procedures identify the correct pixels containing

the molecules, with the former being noticeably more precise. Furthermore, equally

accurate identi�cation is derived under regular noise scale during counting, however

this is not the case for the localisation procedure. Lastly, both procedures can be

either less precise or even have essential issues regarding large scaled noise.

Speci�cally, in Figure 5.4.10, we outline the big high-intensity Region A under no

violation in more detail. As already spotted from the larger scale picture in Figure

5.4.9, the small, regular and free of noise cases allow the counting procedure to ob-

tain an accurate and reliable identi�cation outcome, whereas the large noisy version

decreases the precision for a number of pixels where molecules lie into. Additionally,

it is essentially a�ected by the error in terms of missing some of the molecules, if

a fairly low threshold ≈ 0.40 was considered for placing them. Regarding the lo-

calisation procedure, things get complicated earlier on, where even though under

small and no noise levels separation and identi�cation of the correct pixels is mostly

achieved, the levels of uncertainty are quite high throughout the neighbourhood.

This could lead to one, or more, of the described issues of over-counting, misplacing

and/or missing molecules, a statement quite obvious when evaluating the probabil-

ities within the region. As a matter of fact, these potential issues have a knock on

e�ect when moving to cases of bigger noise levels, corresponding to either regular

or large noise scenarios. In such high intensity regions, the vast amount of possible

con�gurations associated with realisations can potentially prevent the localisation

scheme of performing decently (see Section 3.3.2).
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Figure 5.4.9: 'Circle within circle' data - Frame 62 under di�erent noise levels (left)
along with posterior probability maps �ltered by the average �eld, using both counting
(middle) and localisation (right) algorithms. The light blue crosses on the frames
denote the true locations of the molecules, while the blue square A a big high intensity
region without violation, investigated thoroughly in Figure 5.4.10
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Figure 5.4.10: Selected region A in Frame 6 along with posterior probability maps
�ltered by average �eld, using both counting and localisation algorithms - Three PSFs
forming a large high intensity region without violation. The light blue crosses denote
the true locations of the molecules, while the actual posterior probabilities higher than
30% are outlined both for the counting and localisation procedures.
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High intensity regions under violation of assumption

In Frame 23, presented in Figure 5.4.11, the posterior probability maps using both

the counting and localisation algorithms are shown, along with two separate cases

which belong to the category that violates our main assumption of having at most two

PSFs overlapping in a region. In general, as the probability heat-maps outline, the

overall performance of our inference schemes are not a�ected by the corresponding

violations regardless of the noise levels. On the contrary, the corresponding regions

with violations tend to provide alternating identi�cation inference under the various

error levels. Speci�cally, two di�erent regions are of main focus, with Region A falling

within the category of big high-intensity region under violation, in which multiple

PSFs (in this case four) coincide on several occasions. In a similar manner, Region B

belongs to a closely related category of small high-intensity regions under violation,

accounting for existence of commonly shared pixels between three PSFs.

Regarding the small high-intensity Region B, displayed in Figure 5.4.12, the capabil-

ity of the counting algorithm to identify the pixels containing the molecules appears

to be invariant of the violation. In terms of reconstructing the region, for every noisy

scenario a regular threshold value of ≈ 0.45 accounts for optimal performance, how-

ever a smaller one at ≈ 0.40 results in wrongly placing molecules in some pixels. This

is not exactly the case based on the localisation algorithm. For the small, regular and

free of noise scenarios, a similar issue can be outlined accounting for imprecision on

identi�cation of the correct pixels regardless of the threshold level for reconstruction.

A similar value of ≈ 0.45 achieves separation for two of the molecules within the re-

gion however falsely includes a third one (right bottom corner). A lower threshold of

≈ 0.40 can resolve every molecule included, on the drawback of still falsely placing a

fourth one on the same location. In the most noisy version, uncertainty overwhelms

the entire localisation inference, assigning probabilities on a larger neighbourhood,

however the position inference is quite similar to the regular noise case.
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Frame 23 − Posterior Probabilities Heatmaps

Figure 5.4.11: 'Circle within circle' data - Frame 23 under di�erent noise levels
(left) along with posterior probability maps �ltered by the average �eld, using both
counting (middle) and localisation (right) algorithms. The light blue crosses on the
frames denote the true locations of the molecules, while the blue squares A and B a
small and big high intensity region under violation, investigated thoroughly in Figures
5.4.13 and 5.4.12 respectively.
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Figure 5.4.12: Selected region B in Frame 23 along with posterior probability maps
�ltered by average �eld, using both counting and localisation algorithms - Three PSFs
forming a small high intensity region under violation. The light blue crosses denote
the true locations of the molecules, while the actual posterior probabilities higher than
30% are outlined both for the counting and localisation procedures.
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Large high intensity regions under violation of assumption

Focusing at Region A in Figure 5.4.13, of big high-intensity under violation, both

algorithms regardless of the noise case seem to face di�culties on providing accurate

and precise inference for pixels containing molecules. Based on the counting proce-

dure, accuracy in recognition of the molecules within the region is fairly similar across

small, regular and free of error cases, with most uncertain inference around the area

where three molecules overlap with each other (middle area). In terms of placing

molecules according to a probabilities threshold, values ≈ 0.40 lead to almost ideal

results in small and free of noise cases, subject to a single missed molecule, an issue

not present on the regular noise results, however might be a result of randomness.

In a decision of lowering the threshold below 0.40, all correct pixels can be identi�ed

under the disadvantage of falsely placing more molecules within the region. Large

scale noise under this scenario seems to severely a�ect the identi�cation capabil-

ities of the algorithm, producing unstable results which can lead to both missing

molecules and wrong placement of molecules. This is also the case for the localisa-

tion procedure with the inference being even more variable. Uncertainty appears to

overpower the predictability of the procedure even under small, regular and free of

noise versions although on a less severe scale. Correct recognition of the molecules

pixels can be obtained under various thresholds, however no matter the determined

level, misplacements and/or missed molecules outcome is inevitable.

The precision-recall curves for the frames investigated are presented in Figures 5.4.14

and 5.4.15 for the small/free of noise and regular/large noise cases respectively, con-

�rming the e�ect large noise has in the inference procedures, even though both still

perform quite well with fairly similar trade-o�s under close thresholds. This negative

impact can be identi�ed in most of the frames we investigated, with lower noise levels

appearing to have a small in�uence on identi�cation of pixels containing the active

molecules. The change in accuracy and precision can additionally be outlined when

challenging overlapping and/or not regions are present, again mainly problematic

under large noise. The sensitivity-speci�city curves can be found in Appendix A.3.
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Figure 5.4.13: Selected region A in Frame 6 along with posterior probability maps
�ltered by average �eld, using both counting and localisation algorithms - Five PSFs
forming a large high intensity region under violation. The light blue crosses denote
the true locations of the molecules, while the actual posterior probabilities higher than
30% are outlined both for the counting and localisation procedures.
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Figure 5.4.14: Precision-Recall curves under small and free of noise levels for the
frames used in sensitivity analysis, including both the counting and localisation proce-
dures. The line types denote the corresponding noise cases whereas the adaptive color
the trade-o� in precision-recall for di�erent thresholds on the posterior probabilities.
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Figure 5.4.15: Precision-Recall curves under regular and large noise levels for the
frames used in sensitivity analysis, including both the counting and localisation proce-
dures. The line types denote the corresponding noise cases whereas the adaptive color
the trade-o� in precision-recall for di�erent thresholds on the posterior probabilities.
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High intensity regions under extreme violations of assumption

Lastly, we investigate a special case corresponding to extreme scenarios, where a

patch is produced from multiple PSF overlapping in a fairly small region under

violation of our assumption on a large scale. In such cases, procedural issues can

potentially arise, mainly because of the incapability of our algorithms to estimate

the corresponding intensities of the focused spot leading to inaccurate estimation

of parameters and pixels containing the molecules. On the top panel (a) of Figure

5.4.16, we present Frame 1 and 10 from the 'Circle within circle' stack reading as

representative frames of extreme violations of the assumption. Frame 1, consists of

a number of overlapping PSFs with a number of violations of the assumption, along

with an extreme violation on a high-intensity region formed by four molecules active

really close to each other (bottom left part of �gure). On a similar manner, Frame

10 consists of a few PSFs satisfying the assumption whereas a high intensity region

formed by six simultaneously active molecules is present on the right middle panel

of the �gure.

These type of extreme violations can potentially cause our procedures to fail on

identifying every region of interest (ROI), as the �eld is unable to determine the

pixels that belong to a PSF on a stable basis, as a result of a negative chain e�ect on

estimation of the parameters. The average �elds for these two frames are displayed

on part (b) of Figure 5.4.16 where this instability of acquiring the majority of true

'On' pixels is apparent. As a consequence of this, the posterior probability maps

(part (c)), which depend on the states of the �elds on every iteration of the MCMC,

struggle to provide accurate positions of molecules and are highly uncertain, not

only on the regions with violations but generally on the frame. In reality, when

high density data are analysed, the assumption of up to two PSFs overlapping can

be relaxed in order to allow for more intense overlapping, however with a cost on

computing times and possibly on the stability of the probabilistic scheme, as we

discuss in Chapter 6.
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Figure 5.4.16: Position inference using the counting algorithm on Frames 1 and 10
from 'Circles within circle' data used in application. (a) Raw intensities of Frames 1
and 10, with the light blue crosses denoting the true positions of the molecules (b)
Average �elds of Frames 1 and 10, with the scale bar denoting the 'On' probabilities
for each pixe. (c) Posterior probability heat-maps �ltered by the average �eld.
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In more detail, during the update of the parameters the total intensity of a moving

region based on the SiMPa functions has an upper bound, according to the potential

maximum intensity using the most up to date parameters and appropriate con�gu-

rations with respect to the pattern. As a matter of fact, on an extreme overlapping

situation, even if our probabilistic scheme accomplishes to regularly draw con�gura-

tions accounting for maximum corresponding total intensity, a big distance between

the observed and estimated intensity of the moving region still exists. This has a

major impact on the parameter estimation, starting on the estimation of the back-

ground error precision τb, followed by a chain e�ect on I and c, or the other way

around. This distance can prevent τb's estimation to move away from values ap-

proaching zero or result in a bimodal distribution with higher values. The latter is

the case for Frame 10 while the former can be spotted on Frame 1, both displayed

on the middle part of Figure 5.4.17. Additionally, in an attempt to reach the true

intensity of the moving region, the spread parameter c goes down to zero which al-

lows brightest neighbourhoods, or slower di�raction , and the single event intensity

I to higher values, resulting in higher intensity values within the moving region. The

prior and posterior distributions for I and c for Frames 1 and 10 are displayed on

the top and bottom panel of Figure 5.4.17.

As brie�y mentioned above, this chain e�ect prevents the �eld to provide sensible

regions of interest and the update is fairly unstable. On average, mainly pixels of

higher intensity tend to be identi�ed as 'On' with a number of pixels that are in reality

parts of a PSF to be potentially switched 'O�'. The instability of the �eld is more

obvious on Frame 1, where both τb and c go to zero, and less on Frame 10 (part (b) of

Figure 5.4.16). In either cases, the outcome of identifying pixels containing molecules

is fairly similar, led by high levels of uncertainty on the posterior probabilities, a fact

which can cause either over-counting and/or missing active molecules.
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Figure 5.4.17: Prior and Posterior distributions of I (top panel of �gure), τb (middle
panel of �gure) and c (bottom panel of �gure) for Frames 1 and 10 from 'Circles
within circle' data used in application. The histograms along with the blue solid line
represent the posterior samples with the red solid lines being the corresponding prior
distributions.

General conclusions on localisation

On average, the counting scheme is consistent on identifying the correct pixels con-

taining active molecules, when no violations of the assumption exist, regardless of

the noise levels. This identi�cation corresponds to precisely placing molecules at the

center of pixels, or the origin of the SiMPa functions with r = θ = 0. Under scenar-

ios that violate the assumption of up to two PSFs allowed to overlap, the counting

algorithm still performs quite well in relation with the scale of violation in terms of

the complexity levels produced in the focused region, however there is a possibility
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of over-counting and/or missing events. Despite the accuracy of the probabilistic

outcome of our model, levels of threshold can be crucial when reconstructing the

specimen under investigation, or placing molecules, leading to the need of acquiring

thresholds using sophisticated ways, a fact we further discuss in Chapter 6.

In a similar manner, the localisation scheme also performs well on average regard-

less of the overlapping case when no violation occurs. However, localisation appears

much more sensitive to the scale of noise, with large levels noticeably a�ect the iden-

ti�cation capability of the procedure. It is highly complex as a process, mainly due

to the probabilistic scheme relying on a large, though �nite, number of con�gurations

associated with a realisation for most of the potential patterns (see Section 3.3.3). As

a result, this can bound the precision on identi�cation of pixels containing molecules

when a moving region focuses on high intensity regions. In cases of violations of the

assumption, the probabilistic identi�cation appears equally unstable, similarly with

respect to the level of violation, speci�cally under large noise levels.

Furthermore, the localisation procedure does not provide clearly distinguishable po-

sitions of molecules within their corresponding identi�ed pixels, hence allows room

for improvement (discussion on Chapter 6). The majority of probability sets for

positions of molecules within the identi�ed pixels according to the discretisation of r

and θ, appears to be uniformly distributed, especially for the regular and large noise

levels. The corresponding realisation probability heat-maps are omitted from this

section but can be found in Appendix A.3.

Regardless of the chosen algorithm, frames containing extreme cases of overlapping

molecules, in terms of being subject to large scale violations of the assumption, po-

tential issues in stable identi�cation of regions of interest (ROI) can be addressed.

The main reason is the incapability of our procedures to estimate the corresponding

intensities of the extreme regions leading to inaccurate parameter estimation. The

parameters τb and c tend to move down to low values (close to zero) with I shifting

to higher levels. In these cases, the �eld is noticeably a�ected by being generally
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unstable and often failing to identify correctly the 'On' pixels, resulting in less re-

liable localisation inference. Relaxing the assumption of no more than two PSFs

overlapping is straightforward, a case we discuss in detail in Chapter 6.

Lastly, a similar issue can potentially be the case when excessive error levels exist

within frames which contain many overlapping patches. This can result in pixels

altering entirely their intensity levels, especially the ones which are parts of a PSF

and do not contain an active molecule, leading to an unstable �eld hence less pre-

cise localisation. In such cases, more informative prior distributions could improve

the performance and enhance the capabilities of the procedures however do not nec-

essarily guarantee alleviation of the issues. On a general comment, the counting

algorithm shows more stability even under more challenging situations and is less

computationally intensive than the localisation procedure.

5.4.2 Sensitivity analysis on parameters

In this section we perform a sensitivity analysis on the parameters needed to perform

our proposed methodology, when either using the individual frame inference scheme

or the Markov switching model based on SiMPa functions. Using the individual

frame counting scheme we investigate the e�ect of the prior distributions on the

single event intensity I, background error precision τb, power of spread parameter c

and the �eld control parameters β0 and βf . Regarding the Markov switching model

we only consider di�erent prior distributions for the transition matrix ξ since the rest

of the parameters remain the same. Lastly, we stress out the importance of having

a well established estimate for the proportion of the background intensity d since

based on our proposed model the background intensity I0 = d × I, with d being a

constant, a matter that can be relaxed as we discuss in Chapter 6.

Regarding the individual frame scheme part, where we perform an analysis on the

e�ect of di�erent prior parameter con�gurations on inference, we consider a single

frame from the generated 'Circle within circle' synthetic data used for the appli-
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cation in Section 5.3. This frame, Frame 338, is selected as a representative one

constituting of a number of well isolated and overlapping PSFs when the assumption

of no more than two PSFs overlapping is not violated, and is displayed in Figure

5.2.1. Additionally, we revisit the subset from the stack of the 'Circles within circles'

considered during the implementation of the Markov switching model based on the

SiMPa functions in Section 4.4, displayed in Figure 4.4.1. This subset constitutes the

baseline to the analysis of the e�ect of di�erent prior distributions on the transition

matrix ξ.

In order to conduct the analysis on the parameters we consider two types of priors

apart from the elicited (for I and τb) and chosen (c and β0 & βf ) ones in Figure 5.2.3.

The one set of prior parameters has an identical or similar location as the elicited or

chosen but assigned a fairly larger variance, while the second set retains the elicited

variance however shifting the location away either to the right or left. We name the

former set 'Larger variance case' whereas the latter 'Location shifted case'. Regard-

ing the prior distributions for β0 & βf , we decide not to investigate on a location

shifted case, since values on the scale between -2 and 2 are reasonable parameter

values which serve the purpose. In Figure 5.4.18 we present the corresponding prior

distributions for I, τb, c and β0 & βf which we consider throughout this analysis.

The red solid lines denote either the elicited or chosen prior distributions, whereas

the blue and light green solid lines correspond to the larger variance and location

shifted cases respectively. We focus on the e�ect these prior distributions have on

the corresponding posterior distributions and consequently on localisation, by chang-

ing one prior at a time while keeping the rest on their pre-determined structure, as

denoted with the red solid lines in Figure 5.4.18.
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Figure 5.4.18: Prior distributions for parameters I, τb, c and β0 & βf used for
sensitivity analysis. The red solid lines correspond to either the elicited (I and τb) or
chosen (c and β's), whereas the blue and light green solid lines to the larger variance
and location shifted cases respectively.

In Figure 5.4.19, we present the posterior distributions of every parameter under the

di�erent corresponding prior distributions. Each sub-�gure has been obtained from

an individual implementation of our counting algorithm based on SiMPa functions

on Frame 338, on a run of 30000 MCMC iterations after a burn-in period of 10000

iterations. The left column of the �gure corresponds to the obtained posterior distri-

butions of the separate runs using the elicited or chosen prior distributions, while the
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middle and right columns consist of the posterior distributions under larger variance

and location shifted cases respectively. The red solid lines denote the prior distribu-

tions of each parameter, while the histograms associated with the blue solid density

lines the corresponding posteriors.

In order to investigate how the posterior distributions are a�ected by the prior choice,

hence potentially the localisation inference, we compare the sub-�gures in Figure

5.4.19 row-wise which can show and outline shifts in the posteriors. As can be easily

identi�ed, the prior choices do not alter the behaviour of the model therefore it is safe

to say that we obtain robust estimates regardless of the initial choices. As a matter

of fact in Bayesian analysis, if the prior distributions are completely wrong, mainly

referring to extreme cases with point mass distributions centred far from truth, this

can potentially highly damage our model inference. This is a situation not very

common in super-resolution imaging where large amounts of data can be obtained,

however we suggest the use of non-informative prior distributions in clueless cases.

One should be careful on the prior determination of the single event intensity I,

and consequently on the background proportion d, if he was to proceed on a prior

elicitation process (as for instance in Section 5.2) to acquire hyper-parameters. We

next investigate the e�ect on choices of d which we consider as a constant throughout

this thesis. We note that the rest of the posterior distributions for each one of the

cases investigated and presented throughout this section, as well as the posterior

probability heat-maps �ltered by the average �eld, can be found in Appendix A.3,

omitted from the main body due to their robustness and almost perfect similarity.

We consider two separate values for the background proportion d, one higher than

the true value with d = 0.45 and one lower with d = 0.20, while keeping the original

elicited and chosen prior for each one of the parameters (Figure 5.2.3). In both

cases, the parameter estimation of I, τb and c is a�ected, shifting the location of the

posterior distributions either to the left or right. Regarding d = 0.45, corresponding

to the left panel of the Figure 5.4.20, the posterior of the precision τb is robust (similar

to Figure 5.4.19), however the posterior distributions of I and c are shifted to the
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Figure 5.4.19: Prior/Posterior distributions obtained using di�erent priors for the
parameters I, τb, c and β0 & βf , part of the sensitivity analysis on the parameters.
Each separate prior used belongs to either the elicited location but larger variance case
or location shifted on same elicited variance. The histograms represent the posterior
samples wheres the red solid lines the prior distributions. The light blue histogram on
the bottom part relates to βf while the regular one to β0.
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left assigning lower values, as a result of a knock on e�ect. Since I, which corresponds

to the level of the intensities with respect to the SiMPa functions, is dropping, in

order for the model to approach the performance of the SiMPas it acquires tighter

di�raction within the neighbourhoods, hence c is going down. In a similar manner, a

background proportion of d = 0.20 (right panel of Figure 5.4.20), causes an overesti-

mation of I shifting its posterior distribution to the right, which consequently drags

the posterior of c to the right. Large values of c boost the SiMPa functions which

translates into faster intensities di�raction within a neighbourhood, a consequence

on our model attempting to approach the observed intensities. Additionally, in this

case our model struggles to accurately estimate the background noise precision τb,

shifting the posterior distribution to the left as displayed on the middle right panel of

Figure 5.4.20. We note that the posterior distributions of β0 & βf remain una�ected

in both cases, hence not presented in the section.

These types of behaviours of the parameters can also potentially a�ect the local-

isation process. In Figure 5.4.21, we present the posterior probability heat-maps

�lter by the average �eld for Frame 338, when d = 0.45 (left panel of the �gure)

and d = 0.20 (right panel of the �gure). Higher probabilities denote pixels which

contain a single active molecule, with their levels shown on the probability scale bar

on the bottom right corners, and the bins representing the corresponding densities

around regions. As can be identi�ed, we can argue that the localisation is robust

and remains unaltered regardless of the choice of d, however the uncertainty levels

on pixels identi�cation are higher. This is more obvious when d = 0.45, where in

most neighbourhoods the density is more spread out than clearly focused on the

correct pixels containing the molecules, also supported by the scale bar declaring

lower probability levels. Applying a reconstruction setup based on the probability

heat-maps could lead to either over-counting or missing active molecules, similar to

what we addressed and discussed in Section 5.3.1. We discuss about relaxing the

fact that d is a constant in Chapter 6.

Lastly, we revisit the subset from the stack of frames used to implement the Markov



5.4. Sensitivity analysis 236

switching model based on SiMPa functions in Section 4.4, displayed in Figure 4.4.1.

Figure 5.4.20: Prior and Posterior distributions of I, τb and c for Frame 338 from
'Circle within circle' data (displayed in Figure 5.2.1) using di�erent proportions of
the background intensity, that is d = 0.45 and d = 0.20 on the left and right panel
respectively. The histograms along with the blue solid line represent the posterior
samples with the red solid lines being the corresponding prior distributions.

This subset consists of nine frames, that is Ft, t = 401, ..., 409 from the 'Circle

within circle' synthetic data set, and we use in order to investigate the e�ect of

di�erent prior distributions on the transition matrix ξ. As a reminder, ξ contains

the probabilities of a pixel interchanging between 'On'(1) and 'O�'(0) states, with

ξ11 and ξ00 denoting the probabilities of a pixel remaining on the 'On' and 'O�'

states respectively. Similar to Section 4.4, we consider di�erent independent Beta

prior distributions for ξ11 and ξ00, displayed in Figure 5.4.22. The red solid lines
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correspond to the prior distributions used on the implementation, concentrated on

lower and higher probabilities for ξ11 and ξ00 respectively, hence promoting 'On'

pixels to alter and 'O�' pixels to retain their states. In contrast, the blue solid lines

represent the opposite scenario where higher probabilities are considered for 'On'

pixels to retain and 'O�' pixels to alter their states. The prior distributions denoted

with the light green solid lines represent a non-informative case where neither state

is promoted.

In Figure 5.4.23, we present the posterior distributions of ξ11 and ξ00, associated

with their corresponding prior distributions, on a run of 25.000 MCMC iterations

after a burn-in period of 10.000 iterations of the Markov switching model based on

the SiMPa functions. Supported by the posterior distribution on the �gure, we can

safely argue that the prior choices for the transition matrix ξ do not a�ect or alter the

performance of our model signi�cantly, since the results are robust and consistent.

The posterior distributions of the I, τb, c and {β0t , βft}, t = 401, ..., 409 are almost

identical to the ones obtained during the implementation in Section 4.4, displayed in

Figure 4.4.2 and in Appendix A.1 for {β0t , βft}, as well as the localisation inference

presented in Figures 4.4.3 and 4.4.4.

General conclusions on parameter sensitivities

Both the individual frame inference scheme and the Markov switching model based on

the SiMPa functions are consistent and robust to the selection of prior distributions

of the parameters I, τb, c, {β0, βf}'s and ξ when d is well de�ned. Since the single

event intensity I and background proportion d are connected within our models, one

should be careful if an elicitation procedure is responsible for their determination.

The fact that d is a constant, can a�ect the localisation as a result of a knock on e�ect

on the parameter estimation, when values far away from the truth are selected. This

corresponds to regions in the posterior probability heat-maps having higher levels of

uncertainty, a matter that can cause over-counting and/or missing active molecules

when a reconstruction setup is applied. Again, we outline the fact that both I and d

are observable quantities which can be well-established during a STORM experiment.
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Figure 5.4.21: Posterior probability maps �ltered by the average �eld for Frame 338
from 'Circle within circle' (displayed in Figure 5.2.1), using di�erent proportions of the
background intensity d. On the left panel of the �gure, d is higher than the true value
with d = 0.45, while on the right panel lower with d = 0.20.

Figure 5.4.22: Prior distributions for the parameters ξ11 and ξ00 of the transition
matrix ξ used for sensitivity analysis. The red and blue solid lines correspond to more
concentrated prior distributions around speci�c probabilities, whereas the light green
solid lines denote less informative prior distributions.
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Figure 5.4.23: Prior and Posterior distributions for the parameters ξ11 and ξ00 of the
transition matrix ξ by applying the Markov switching model based on SiMPa functions
on a subset of frames from 'Circle within circle' data (displayed in Figure 4.4.1). The
histograms along with the blue solid line represent the posterior samples with the red
solid lines being the corresponding prior distributions.

5.5 Application on realistic data

In this section we apply our individual frame inference scheme on realistic data used

for the challenge in 2013, in order to evaluate and assess current single molecule lo-

calisation methods [Sage et al., 2015]. The chosen dataset represents Tubulins with

various diameters, consisting of a long sequence of 10000 frames with low density

(LDLS), where mostly well separated PSFs of active molecules are present on indi-

vidual frames. For this implementation, we consider a subset of the total F = 10000
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frames in the middle part of the sequence consisting of 100 frames, that is Ft for

t ∈ {502, 522, 542, .., 2502}. Our choice is based on the idea that for such a long

sequence, big steps (here we consider a step of 20 frames) will most probably allow

to focus on di�erent molecules undergo blinking and not ones that retain their 'On'

state over consecutive frames.

In Figure 5.5.1 some of the Ft, t ∈ {502, 522, 542, .., 2502}, frames are displayed,

which are part of the application and in agreement with Section 5.3, a complete

analysis using the individual frame inference based on SiMPa functions is presented.

Every frame in the sequence is represented by a n = 128× 128 = m lattices of pixels

consisting of intensities coming from either only background or parts of one or more

PSFs. In order to have similar intensities to our implementations throughout this

thesis we rescale the values by dividing them by 100.

Based on a visual and preliminary investigation of the frames, we can potentially

argue that the majority of active molecules are captured by their well separated

PSFs, with a few probably overlapping in some cases, for instance in the middle part

of Frame 1142 or the left middle area of Frame 1222. Additionally, regardless of the

noise levels which we discuss next, di�erent large regions within the frames appear

to contain higher intensities without implying the existence of active molecules. This

can be potentially a result of non-uniform background or out of focus light, as we

discussed in Chapter 2, and could complicate our individual frame inference when

we identify the regions of interest based on the MRF. Lastly, the production of

such long sequences of low density, translates into longer acquisition times hence the

probability of capturing active molecules during their state transition is increased, a

fact that can lead frames to contain events of lower intensities. These matters need

to be taken into consideration and are discussed next where we describe the prior

setting.
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Frame 642 Frame 822 Frame 902

Frame 1082 Frame 1142 Frame 1222

Frame 1682 Frame 2022 Frame 2502

Figure 5.5.1: Selected frames from a subset of the realistic LDLS Tubulins data
used for application. The frames are arbitrarily chosen and appear to contain both
well isolated and overlapping PSFs from active molecules. The intensity levels are
described by the grey-scale colours with white representing higher values.
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Prior setting

In order to obtain prior distributions for the single event intensity I and background

noise precision τb, we follow a similar procedure as the elicitation procedure de-

scribed in Section 5.2, whereas we keep the same rescaled beta prior with higher

density on values away from zero for the power of di�raction parameter c, i.e.

π(c) ∼ RescaledBeta(4, 1.75) and independent Gaussian distributions for the �eld

parameters β0 and βf , i.e. π(β0), π(βf ) ∼ N(0, 9). The choice for c promotes large

values, hence faster decay of the di�raction based on the SiMPa functions, with

values between -2 and 2 to serve the purpose regarding β0 & βf .

Figure 5.5.2: Quantities used for prior elicitation - realistic LDLS Tubulins data.
Di�erent measurements obtained by using three di�erent quantiles on each one of the
frames in the subset of the realistic LDLS Tubulins used for the application. The top
histogram consists of the larger values, hence is assumed to contain the overlapping
scenarios, whereas the middle and bottom one consist of the single event case and
background baseline respectively. The vertical red solid lines denote the 10% and 90%
quantiles of the corresponding sets.
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For elicitation, we use the sequence Ft, t ∈ {502, 522, 542, .., 2502}, and the lower

quantile qlwr corresponds to the 99.5% of the observations, the middle quantile qinter
between 99.5% and 99.925% and qupr above 99.925%, accounting for the hypothetical

background, single event and overlapping intensities respectively. As we discussed in

Section 5.2, we consider higher values for these quantiles since we deal with a long

sequence of low density data. In Figure 5.5.2, the obtained sets of observations Q?
lwr,

Q?
inter and Q

?
upr are presented with the red solid vertical lines being their 10% and

90% quantiles respectively. Based on these sets, for the single event intensity I we

obtain π(I) ∼ N(8.6, 1.91) with d = 0.25, and for the background error precision τb,

π(τb) ∼ Gamma(2, 0.94), with the prior distributions displayed in Figure 5.5.3 in the

red coloured solid lines. Also, the light green solid line denotes a very precise prior

distribution for τb, which is the one we consider for this application and discuss next.

Figure 5.5.3: Priors elicited or chosen from the realistic LDLS Tubulins data. On
the top left corner of the �gure, the prior of the single event intensity I is presented
with I0 being the background intensity, whereas on the bottom left corner the prior of
the background precision τb is shown, as selected to be a very precise prior centred on
a value above 1 (here at µτb). The two chosen prior distributions for the spread c and
�eld control parameters β's are indicated on the right panel.
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Application

The LDLS Tubulins data fall within the category we considered as 'Large noise'

case during the sensitivity analysis in Section 5.4.1, a fact supported by the large

variability in the hypothetical background intensities in Figure 5.5.2. If we take into

account the mean, µI = 8.6, of the hypothetical single event intensity I, and the

background intensity with a mean around 2.2 varying between 0 and 5, we can argue

we have a case fairly similar to the di�raction of background levels, when I = 8

and the proportion d = 0.3, hence the background intensity is I0 = 2.4, under a

large scale noise. This can be found at the bottom right panel of Figure 5.4.1. As

thoroughly discussed in Section 5.4.1, large noise levels can noticeably a�ect and

alter the capabilities of our localisation algorithms, since the intensity levels of the

pixels can be altered substantially, mostly complicating cases with overlapping PSFs.

Even though there is higher uncertainty on inference, we showed that, regardless of

the overlapping scenarios, both our counting and localisation procedures are capable

of constantly identifying all regions of interest when complete events are present.

Complete events correspond to an active molecule di�raction described as a result of

the single event intensity I, thus single emitters produce similar signal on individual

frames. This is not always the case in the LDLS sequence. If we assume that

µI = 8.6 (as elicited), there are a number of occasions where captured PSFs have a

di�raction of lower or weaker signal, with two potential reasons being that the noise

levels have crucially altered the di�raction or incomplete events are present possibly

during a state transition. The latter is directly related with the blinking rate of the

respective �uorophore and the camera's frame rate, as we discussed in Chapter 2.

Our proposed model does not include a mechanism to identify incomplete events,

however a potential extension is discussed in Chapter 6, where we consider a local

parameter q to account for the proportion of captured events in terms of the single

event intensity I.

In preliminary runs of individual frames from the LDLS Tubulins, using the prior

setting with the red solid lines in Figure 5.5.3, we discovered that the combination
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of large noise and potentially incomplete events within frames can lead to an in-

capability of our model to identify every region of interest, potentially resulting in

only capturing the high intensity regions as ones with active molecules. Speci�cally,

the posterior distribution of the background error precision τb is centred on a small

value close to zero, less than 0.5, (translating into large variance), making either

lower intensity pixels most probable to be identi�ed as 'O�', or highly improbable to

cycle back to 'On' from the 'O�' state. Also, apart from missing regions of interest,

another e�ect could be to create unnecessary large 'On' patches or islands around

the determined regions, that can make inference less accurate.

These should not be the cases if the posterior of τb was not stuck on such small

values, also a possible consequence of high complexity within a frame, even when

incomplete events are present. We note here that, regardless of the noise levels, if

an incomplete event has a di�raction with intensities closer to background, there is

a high probability to be identi�ed as 'O�' on average through our inference. The

posterior probability maps and the average �elds for the chosen frames in Figure 5.5.1,

when the elicited prior distribution for τb is considered, can be found in Appendix

A.4. For this application we consider a very precise prior distribution for τb on a value

away from zero, here this is the elicited mean µτb , displayed on the left bottom panel

of Figure 5.5.3 with the light green colour, however any very precise prior centred on

values above 1 can serve the purpose. Such an adjustment forces τb to move away

from small values close to zero, accomplishing correct identi�cation of every region

of interest even when incomplete events exist, however we should note here that our

model is still functional and provides inference on the determined regions (Appendix

A.4). As already mentioned, we discuss potential extensions and improvements of

our proposed model that can potentially alleviate these issues in Chapter 6.

Similar to the application on the 'Circle within circle' synthetic data in Section 5.3.1,

we apply the individual frame counting scheme in a total of 25000 MCMC iterations

after 5000 iterations as a burn-in period. We obtain the posterior probability maps

�ltered by the average �eld for the Ft frames, t ∈ {502, 522, ..., 2502}, with the chosen
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frames (Figure 5.5.1) displayed in Figure 5.5.4, indicating the probabilities of pixels

containing a single molecule.

Alongside the posterior probability map, the double event posterior probability maps

(also �ltered by the average �eld) are obtained, accounting for two simultaneously

active molecules on the same pixel. For the chosen frames (Figure 5.5.1) these maps

are displayed in Figure 5.5.5. The posterior distributions of the parameters I, c, τb
and {β0, βf}, and the average �elds for the chosen frames are omitted from the main

body and can be found in Appendix A.4.

The posterior probability maps associated with the double events heatmap constitute

the positional inference to identify pixels containing active molecules. In Figure 5.5.4,

the capability of our model to determine such pixels is apparent, with regions that

are potentially a result of isolated molecules to be resolved with high probabilities

(around 0.75) compared to more complex ones with overlapping molecules (around

0.50). The probability levels can drop even lower in cases where either large patches

are created by the �eld (see Appendix A.4 for the average �elds) or more complicated

overlapping situations occur, probably ones violating the assumption of no more than

two PSFs allowed to overlap.

Additionally, since the LDLS Tubulins are subject to large noise levels, we expect

to have a more variable �eld hence larger uncertainty on the localisation inference,

a matter we thoroughly investigated in Section 5.4.1. Brie�y, large noise could sub-

stantially alter the intensity levels of pixels with the consequence of preventing our

model to identify complete PSFs, thus decreasing the precision in identi�cation of

pixels containing active molecules, more apparent in overlapping PSFs (see Figure

5.4.6 or 5.4.10) and even sometimes in well isolated PSFs (Figure 5.4.4). This is

an e�ect we identify in the results of this application, more clear during the recon-

struction steps that follow, with potential consequences being over-counting and/or

missing molecules.
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Figure 5.5.4: Posterior probability maps �ltered by the average �eld for frames in
Figure 5.5.1. Higher probabilities are indicated with white color levels as shown in the
light blue probability scale bar on each probability map. The white bins represent the
density around the regions.
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Figure 5.5.5: Double event posterior probability maps �ltered by the average �eld
for frames in Figure 5.5.1. Higher probabilities are indicated with white color levels as
shown in the light blue probability scale bar on each probability map. The white bins
represent the density around the regions.
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In agreement with Section 5.3.1, construction of a super resolution image can be per-

formed by applying a threshold on the posterior probabilities, determining the pixels

containing a single active molecule, followed by a threshold on the double event prob-

ability map to further identify if the drawn positions contain two active molecules.

The corresponding localisation of molecules will be �xed at the center of the pixels

(origin of the SiMPa functions), i.e. r = θ = 0, as we applied the individual frame

counting scheme. We consider the same two schemes to threshold our probability

maps, with the �rst being common thresholds for all frames in the sequence and the

second a conventional scheme that takes into account a larger neighbourhood within

their average �elds to determine regions with higher complexity.

For the �xed threshold scheme, we keep the same levels, that is 0.45 (lower) and 0.50

(intermediate), as in Section 5.3.1, which are intermediate values and can potentially

resolve both well separated and overlapping PSFs. According to the sensitivity anal-

ysis on localisation in Section 5.4.1, regarding the overlapping, or not, scenarios, as

well as the stability of the �eld, we expect such values to lead both in over-counting

and missing active molecules in some of the cases. In Figure 5.5.6, we present the

frame-wise reconstructions for the chosen frames in Figure 5.5.1, using the common

thresholds of 0.45 and 0.50, where on each individual frame the red empty and yellow

�lled circles correspond to the localisations of molecules with r = θ = 0 respectively.

We focus on Frames 902 and 1222, which appear to contain di�erent intensity regions

with di�erent overlapping scenarios, in order to discuss the performance of the �xed

thresholds. Regarding potential overlapping regions, the patch on the middle left area

of Frame 902 is identi�ed as being a product of two simultaneously active molecules

in close proximity for the lower threshold, not the case for the intermediate one. On

the left area of Frame 1222 for instance, there seems to be four di�erent overlapping

regions, however under both these thresholds only the top one determines molecule

pixels. These thresholds appear to be quite high for such regions hence failing to place

molecules, a consequence outlined in Section 5.4.1 when large noise was investigated.
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Figure 5.5.6: Individual frame reconstructions for a number of frames included in
the application on realistic LDLS Tubulins data, using two di�erent thresholds for the
posterior probability maps �ltered by the average �eld. The red circles denote the
drawn positions by thresholding the posterior probabilities �ltered by the average �eld
at 0.45, whereas the yellow coloured points at 0.5.
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The right top corner and the bottom areas of Frames 902 and 1222 respectively,

appear to consist of a number of potential well isolated PSFs. It is quite clear that

in almost every case, both the low and intermediate thresholds lead to possible over-

counting, a matter that was also the case in the application in Section 5.3.1 for �xed

thresholds. In an attempt to have a common threshold capturing active molecules on

entire frames, isolated PSFs which can be accurately resolved by higher thresholds,

lead to over-counting since there is higher uncertainty under large noise (details in

Section 5.4.1).

In Figure 5.5.7, we present the individual frame reconstructions for the chosen frames

in Figure 5.5.1, using a conventional threshold scheme based on the average �eld,

with the drawn positions indicated with the orange coloured circles. In Table 5.5.1 we

present the conventional threshold scheme, where some adjustments have been made

compared to the one used in the application on the 'Circle within circle' synthetic

data (Table 5.3.1 in Section 5.3), and we discuss next.

As a reminder, the idea behind the conventional threshold scheme is to provide a

broad classi�cation on the complexity of regions of interest, in terms of indicating

potential overlapping or not scenarios by focusing on the states of pixels in a larger

neighbourhood. Since the LDLS Tubilins sequence is subject to large noise levels, we

alter the structure of the scheme as the �elds during the MCMC are generally less

stable (average �elds for chosen frames can be found in Appendix A.4). Similarly as

before, xt =
IT∑
q=1

x
(q)
t /IT denotes the average �eld of frame t where IT the number

of MCMC iterations and xs,t a pixel s ∈ {1, ..., N} on the average �eld of frame t.

Then,
∑
s

∂xs,t denotes the sum of states in the 5× 5 neighbourhood of pixel s in the

average �eld t. Compared to the conventional threshold scheme for the 'Circle within

circle', the limits for
∑
s

∂xs,t have been decreased to account for the instability of the

�elds, along with the threshold values due to the higher uncertainty in the regions of

interest under large noise levels. Additionally, the �rst three rows in Table have been

added to deal with incomplete PSFs, here we assume a complete PSF is described
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by a 3 × 3 pixel region, a case more frequent under large noise (for instance Figure

5.4.4).

Applying the conventional threshold scheme, the reconstruction in Figure 5.5.7 ap-

pears to improve in terms of not placing some of the potential unnecessary molecules

especially in regions where most probably single molecules exist, while also placing

molecules in more challenging regions which were before omitted due to the larger

thresholds. However, this convention is not ideal since it could still incorrectly mis-

place or include molecules in the reconstruction, with di�erent trade-o�s in precision

when altering either the limits of
∑
s

∂xs,t or the threshold levels. Obtaining an op-

timal threshold is beyond the scope of this thesis, however we discuss the possibility

of an adaptive threshold in Chapter 6.

Convention based on 5× 5 neighbourhoods of average �eld Threshold∑
s

∂xs,t ≤ 4 0.95∑
s

∂xs,t ≥ 5 &
∑
∂xs,t < 7 0.75∑

s

∂xs,t = 7 0.60∑
s

∂xs,t ≥ 8 &
∑
∂xs,t < 10 0.55∑

s

∂xs,t ≥ 10 &
∑
∂xs,t < 13 0.45∑

s

∂xs,t ≥ 13 &
∑
∂xs,t < 16 0.40∑

s

∂xs,t ≥ 16 0.35

Table 5.5.1: Conventional threshold scheme based on the average �eld for application
on realistic LDLS Tubulins. The quantity

∑
∂xs,t denotes the sum of states in the 5×5

neighbourhood of pixel s in the average �eld t, associated with conventional conditions
to acquire a threshold level.

Lastly, in Figures 5.5.8 and 5.5.9 we present the �nal super resolution images by

combining the individual frame reconstructions for the chosen frames in Figure 5.5.1

and the entire sequence of frame Ft, t ∈ {502, 522, ..., 2502}, respectively, where we
also considered a common threshold of 0.55.
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Figure 5.5.7: Individual frame reconstructions for a number of frames included in the
application on realistic LDLS Tubulins data, using the conventional threshold scheme
based on the average �eld (Table 5.3.1) for the posterior probability maps �ltered by
the average �eld.The orange coloured circles denote the drawn positions by applying
the conventional threshold scheme.
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Figure 5.5.8: Final reconstructions of the super resolution image for the chosen frames
in Figure 5.5.1, using three �xed thresholds for the posterior probability maps �ltered
by the average �eld and the conventional threshold scheme based on the average �eld
(Table 5.3.1). On the top panel of the �gure, the 0.45 (left - red colour) and 0.5 (right
- yellow colour) �xed threshold reconstructions are displayed, with the 0.55 (green
colour) and the conventional threshold (orange colour) shown on the bottom left and
right corners respectively.
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SR image − PP from Average Field: Threshold 0.55
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Figure 5.5.9: Final reconstruction of the super resolution image using the subset
of the realistic LDLS Tubulins data, using three �xed thresholds for the posterior
probability maps �ltered by the average �eld and the conventional threshold scheme
based on the average �eld (Table 5.3.1). On the top panel of the �gure, the 0.45 (left -
red colour) and 0.5 (right - yellow colour) �xed threshold reconstructions are displayed,
with the 0.55 (green colour) and the conventional threshold (orange colour) shown on
the bottom left and right corners respectively.



5.5. Application on realistic data 256

ThunderSTORM/SiMPa

Finally, we use ThunderSTORM [Ovesn�y et al., 2014] on the subset of frames using

single PSF �tting, similar to Section 5.3.2, in order to qualitatively compare the re-

sults against the individual counting scheme based on the SiMPa functions. In Figure

5.5.10, we present the �nal reconstruction by combining the individual localisations

using the conventional threshold scheme on the posterior probabilities (left panel -

orange coloured circles) along with the �nal reconstruction using ThunderSTORM

(right panel - yellow coloured circles).
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Figure 5.5.10: Final reconstruction of the super resolution image for the subset of the
realistic LDLS Tubulins data using SiMPa and ThunderSTORM. For the SiMPa, the
conventional threshold scheme (Table 5.3.1) is applied on the posterior probabilities
�ltered by the average �elds, displayed on the left panel (orange coloured circles), while
the reconstruction using ThunderSTORM on single PSF �tting are displayed on the
right panel (yellow coloured circles).
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Generally, the overall structure of the underlying Tubulins is similarly reconstructed

using both SiMPas and ThunderSTORM, with a few di�erences easily spotted in

some occasions. Based on the SiMPa functions, the structure appears to consist of

thicker lines compared to ThunderSTORM in which they are sharper, potentially a

result of the simpli�cation in our probabilistic counting scheme which assumes that

every molecule lies at the center of pixels (r = θ = 0).

Regarding molecule identi�cation, two main di�erences can be spotted on the �nal

reconstructions. Firstly, on the top panel of the images, the two main formed lines

appear to extend a lot more according to SiMPas, with ThunderSTORM appearing

to fail on identifying these regions as regions of interest. SiMPa �nds several ac-

tive molecules, whereas ThunderSTORM completely misses a few potentially active

molecules in the corresponding areas. In contrast, ThunderSTORM seems to local-

ising a few molecules at the right hand side of the second line from the bottom, with

the SiMPas leaving a small gap. Secondly, as we thoroughly discussed in Section 5.5,

even though the conventional threshold scheme appears to improve on both unnec-

essary placement of molecules (possible over-counting) and missing molecules, the

large noise levels often reduce the accuracy of our schemes due to larger uncertainty

(see Section 5.4.1). As a result, SiMPa can possibly over-count in some regions that

appear to be a product of single active molecules, but seems much more powerful

regarding potential overlapping PSFs, a matter that can be a consequence for the

unidenti�ed areas with ThunderSTORM. This can be supported by our comparisons

in the 'Circle within circle' synthetic data in Section 5.3.2.

Some of the above di�erences between SiMPa and ThunderSTORM regarding the

reconstructions, can be seen in the individual reconstructions in Figure 5.5.11 for

the chosen frames in the LDLS Tubulins data (from Figure 5.5.1), using both the

conventional threshold scheme and ThunderSTORM with single molecule �tting.

The former is denoted by the orange whereas the latter with the yellow coloured

circles.
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Figure 5.5.11: Individual frame reconstructions for a number of frames included
in the application on realistic LDLS Tubulins data, using the conventional threshold
scheme based on the average �eld (Table 5.3.1) for the posterior probability maps
�ltered by the average �eld (left panel - orange colour) and ThunderSTORM using
single PSF �tting (right panel - yellow colour).
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5.6 Application on SuReSim data and comparisons

In this section we �rst apply our individual frame counting scheme on realistic data

generated by SuReSim [Venkataramani et al., 2016], a software which simulates 3-D

structures for localisation microscopy based on an underlying set truth, and compare

the results with ThunderSTORM [Ovesn�y et al., 2014]. For the former, the proce-

dures (prior elicitation/inference) and output based on the SiMPa functions are in

complete agreement with Sections 5.3 and 5.5, where for the latter, ThunderSTORM

is adjusted to the nature of the simulated data and camera's setup accordingly. The

evaluation and comparison of the results is performed both qualitatively and quan-

titatively.

SuReSim data generation

The generated dataset represents a 3-D structure of Microtubules where the ground

truth of molecules' positions is known. Most of the default settings for the Micro-

tubules structure were maintained, where only a few of them were altered to meet

the purpose of our proposed model based on SiMPa functions, i.e. high density data

where PSF overlap is highly possible. Therefore, the number of frames in the gen-

erated stack was reduced to 5000 (instead of 10000) and the option to ensure single

PSF's was deselected. Even though we apply our individual frame inference scheme,

hence we do not have a mechanism to account for blinking events over consecutive

frames, we selected to allow potential contribution of blinking molecules to multi-

ple frames, however, increased the mininum photon count of blinking. Relaxing the

latter corresponds to having proportions of the single event intensity I for di�erent

molecules and is discussed in Chapter 6. Finally, the windowsize for PSF rendering

was selected to be of 3 × 3 pixels, similar to the neighbourhood region of the SiMPa

functions, again a choice that can be relaxed and has been introduced in Section

3.2.2 and discussed in Chapter 6.

In general, the simulated SuReSim Microtubules stack of F = 5000 frames consists

of high density data, where both well separated and overlapping PSF's are present,
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Frame 0002 Frame 0352 Frame 0552

Frame 0802 Frame 1102 Frame 1852

Frame 2802 Frame 4502 Frame 4652

Figure 5.6.1: Selected frames from SuReSim data. The frames are arbitrarily chosen
and appear to contain both well isolated and overlapping PSFs from active molecules.
The intensity levels are described by the grey-scale colours with white representing
higher values. The light blue crosses correspond to the true positions of the molecules.
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either representing entire events of higher intensities or reappearances of blinking

events of potential lower intensities. Every frame in the sequence is represented by

a n = 34 × 40 = m lattice of pixels consisting of intensities coming from either

only background or parts of one or more PSFs (pixel to nm ratio for the stack is

set to 133 by default). In order to have similar intensities to our implementations

throughout this thesis we rescale the values by dividing them by 100. For this

implementation, we consider a subset of the sequence of F = 5000 frames, that is

Ft for t ∈ {2, 52, 102, .., 5002} (every 50th frame starting at frame 2), some of which

are displayed in Figure 5.6.1, for which the output from the individual SiMPa frame

inference will be presented.

Based on a visual and preliminary investigation of the frames we can identify active

molecules both captured by their well separated PSFs and overlapping ones, with

the potential di�erence in intensity being apparent for di�erent molecules. This

translates into PSFs having either brighter or relatively darker di�raction, with a

number of them being almost visually inseparable from background. Since the true

position of molecules is known, we can also see that the number of molecules that

overlap per region exceed two, one of the main assumptions for the current SiMPa

model. An extension is straightforward and discussed in Chapter 6. These matters

can potentially a�ect both localisation and parameter estimation, therefore will be

taken into consideration and described next during the application.

Prior setting

Following a similar procedure as described in Section 5.2, we elicit prior distribu-

tions for the single event intensity I and background noise precision τb, whereas

we again keep the rescaled beta prior for the power of di�raction c, i.e. π(c) ∼
RescaledBeta(4, 1.75), and independent Gaussian distributions for the �eld parame-

ters β0 and βf , i.e. π(β0), π(βf ) ∼ N(0, 9). As before, the choice for c promotes large

values, translating into faster decay of the di�raction, and values between -2 and 2

to serve the purpose regarding β0 & βf about the behaviour of the �elds.
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Figure 5.6.2: Quantities used for prior elicitation - SuReSim data. Di�erent mea-
surements obtained by using three di�erent quantiles on each one of the frames in
the subset of the SuReSim data used for the application. The top histogram consists
of the larger values, hence is assumed to contain the overlapping scenarios, whereas
the middle and bottom one consist of the single event case and background baseline
respectively. The vertical red solid lines denote the 10% and 90% quantiles of the
corresponding sets.

For elicitation, we use the sequence Ft, t ∈ {1, 31, 51, .., 2501} and based on a prelim-
inary analyis, the lower quantile qlwr corresponds to the 75% of the observations, the

middle quantile qinter between 75% and 99.995% and the upper qupr above 99.95%,

accounting for the hypothetical background, single event and overlapping intensities

respectively. As we discussed in Section 5.2, these quantiles are considered to deal

with such high density data. In Figure 5.5.2, the obtained sets of observations Q?
lwr,

Q?
inter and Q

?
upr are presented with the red solid vertical lines being their 10% and

90% quantiles respectively. Based on these sets, for the single event intensity I we

obtain π(I) ∼ N(11, 5.4) with d = 0.27, and for the background error precision τb,
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π(τb) ∼ Gamma(2, 2), with the prior distributions displayed in Figure 5.5.3 in the

red coloured solid lines. Also, the light green solid line denotes a very precise prior

distribution for τb, which is the one we consider for this application and discussed.

Figure 5.6.3: Priors elicited or chosen from SuReSim data. On the top left corner
of the �gure, the prior of the single event intensity I is presented with I0 being the
background intensity, whereas on the bottom left corner the prior of the background
precision τb is shown, as selected to be a very precise prior centred on a value above
1 (here at µτb). The two chosen prior distributions for the spread c and �eld control
parameters β's are indicated on the right panel.

Application

The microtubules data fall within the category we considered as 'Regular noise' case

during the sensitivity analysis in Section 5.4.1, a fact supported by the variability in

the hypothetical background and single event intensities in Figure 5.5.2 which also
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present similar behaviour with the Quantiles for 'Circle within circle' data in Section

5.2.2.

As we have showed in sensitivity analysis in Section 5.4, regardless of the noise levels

and overlapping scenario that satis�es the assumption of up to two PSFs overlapping

per region, both our counting and localisation procedures are capable of consistently

identifying all regions of interest when complete events are present. As a reminder,

complete events correspond to an active molecule di�raction described as a result of

the single event intensity I, thus single emitters produce similar signal on individual

frames. For the microtubules data this is not always the case due to how the data are

generated, a fact also visually identi�ed on frames in Figure 5.6.1. Alongside over-

lapping events, blinking events that can reappear in multiple frames might produce

weaker signal from incomplete events.

Therefore, similar to the tubulins application in Section 5.5, and based on prelimi-

nary runs of individual frames from the microtubules data, using the prior setting

with the red solid lines in Figure 5.6.3, we again discovered that a combination of

extreme overlapping and/or potentially incomplete events within frames can lead

to an incapability of our model to identify every region of interest. The impact of

this can be potentially only capturing the high intensity regions as ones with active

molecules. As with tubulins in Section 5.5, the posterior distribution of τb is centred

around a small value close to zero, translating into large variability of intensities,

making either lower intensity pixels most probable to be identi�ed as 'O�' (empty).

As previously, a posterior distribution of τb that is not stuck on such small values,

can alleviate this issue, hence for this application we consider a very precise prior

distribution for τb on a value away from zero and above one, displayed on the left bot-

tom panel of Figure 5.6.3 with the light green colour. We note here that incomplete

events with an intensities di�raction closer to background, can also be potentially

identi�ed as 'O�' on average through our inference.



5.6. Application on SuReSim data and comparisons 265

0.0
0.2
0.4
0.6

Prob

Frame 0002

0.0
0.2
0.4
0.6

Prob

Frame 0352

0.0
0.2
0.4
0.6

Prob

Frame 0552

0.0
0.2
0.4
0.6
0.8

Prob

Frame 0802

0.0
0.2
0.4
0.6
0.8

Prob

Frame 1102

0.00
0.25
0.50
0.75

Prob

Frame 1852

0.0
0.2
0.4
0.6

Prob

Frame 2802

0.0
0.2
0.4
0.6
0.8

Prob

Frame 4502

0.0
0.1
0.2
0.3
0.4

Prob

Frame 4652

Figure 5.6.4: Posterior probability maps �ltered by the average �eld for frames in
Figure 5.6.1. Higher probabilities are indicated with white color levels as shown in the
light blue probability scale bar on each probability map. The white bins represent the
density around the regions.
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Figure 5.6.5: Double event posterior probability maps �ltered by the average �eld
for frames in Figure 5.6.1. Higher probabilities are indicated with white color levels as
shown in the light blue probability scale bar on each probability map. The white bins
represent the density around the regions.
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Similar to both the applications on the 'Circle within circle' synthetic and Tubulins

realistic data in Sections 5.3.1 and 5.5 respectively, we apply the individual frame

counting scheme in a total of 25000 MCMC iterations after 5000 iterations as a

burn-in period. The resulting posterior probability maps �ltered by the average �eld

for frames Ft, t ∈ {2, 52, ..., 2502}, with the chosen frames (Figure 5.5.1) displayed

in Figure 5.6.4, indicating the probabilities of pixels containing a single molecule.

Alongside those, in Figure 5.6.5 the double event posterior probability maps (also

�ltered by the average �eld) are obtained, accounting for two simultaneously active

molecules on the same pixel. The posterior distributions of the parameters I, c, τb
and {β0, βf} and the average �elds for the chosen frames in Figure 5.6.1 can be found
in Appendix A.5.

Using the main positional inference tools, that is the posterior probability maps

associated with the double events heat-map, we are able to identify pixels containing

active molecules. Looking at Figure 5.6.4, the capability of our model to determine

such pixels is apparent, with regions that are potentially a result of isolated molecules

to be resolved with high probabilities (≈ 0.7) compared to more complex ones with

overlapping molecules (≈ 0.45). The probability levels can drop even lower (≈ 0.3-

0.35) in cases where either large patches are created by the �eld (see Appendix A.5

for the average �elds) or more complicated overlapping situations occur, consisting

mostly of violations of the assumption of no more than two PSFs allowed to overlap

in a region.

As a result of this variability of the posterior probabilities, especially for complex

regions and those that violate the assumption of no more than two PSFs overlapping,

identifying molecules to reconstruct a super resolution image based on a thresholding

scheme can have an e�ect of overcounting or missing molecules. Such processing of

the posterior probability maps has an important role from a quantitative perspective.

Of course, as previously has been discussed, incapability of localising molecules can

be a result of creation of large islands in the �eld from many closely PSFs either

overlapping or not. As thoroughly described in Sections 5.3 and 5.5, we consider
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two di�erent threshold approaches, these are (i) �xed thresholds for all frames and

(ii) a conventional threshold scheme based on average �eld, each one having pros and

cons. Generally, we prefer the use of the latter since it can reduce the number of

false positives (incorrect identi�cation of pixels with active molecules), however, can

sometimes lead to missing true positives (correct pixels containing active molecules),

as we will see later in this section. According to our individual frame counting scheme,

both reconstruction approaches for individual frames consist of placing molecules at

the center of the identi�ed pixels (origin of SiMPa), that is when r = θ = 0, followed

by stacking up all reconstructions on a single frame.

Mainly based on preliminary analysis of the results from SiMPa, we consider the �xed

threshold levels for all frames to be 0.40 and 0.45. These are both 0.05 lower than the

ones applied to 'Circle within circle' data in Section 5.3 that have similar noise levels

but di�er in number of potentially overlapping PSFs and reappearances of blinking

events. This is done to allow potential identi�cation of active pixels for more complex

regions, but at the same time increases the possibility of overcounting. For the same

reasons, for the conventional threshold scheme, we maintain the same conditions

for the average �eld as in Table 5.3.1, while we increase each one by 0.05 with the

last one starting at 0.40. The conventional threshold scheme for this application on

microtubules data can be seen in Table 5.6.1. As a reminder, this scheme classi�es

the regions of the average �eld based on the state of a larger neighbourhood of 5 ×
5 pixels. Both of these approaches can be improved, mainly by having a dynamic

threshold, as discussed in Chapter 6.
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Convention based on 5× 5 neighbourhoods of average �eld Threshold∑
s

∂xs,t < 12 0.65∑
s

∂xs,t ≥ 12 &
∑
∂xs,t < 15 0.5∑

s

∂xs,t ≥ 15 &
∑
∂xs,t < 18 0.45∑

s

∂xs,t > 18 0.4

Table 5.6.1: Conventional threshold scheme based on the average �eld for SuReSim
data. The quantity

∑
∂xs,t denotes the sum of states in the 5 × 5 neighbourhood

of pixel s in the average �eld t, associated with conventional conditions to acquire a
threshold level.

In Figure 5.6.6, the individual frame reconstructions based on the conventional

threshold scheme for the chosen frames in Figure 5.6.6 are displayed. From a �rst

glance, we can argue that well isolated complete events or ones that had their PSFs

overlapping while satisfying the assumption can be accurately identi�ed, a case not

necessarily true for incomplete events or scenarios of violation in overlap. The �-

nal reconstructions of the super resolution image using both �xed and conventional

thresholds is presented in Figure 5.6.7 along with the ground truth. An overall

performance of these schemes for all frames Ft, t ∈ {1, 31, 51, .., 2501}, in the appli-

cation can be found later in Table 5.6.2, where we compare and discuss results with

ThunderSTORM [Ovesn�y et al., 2014].

Similar to our other two applications, we present in Figure 5.6.8, the individual

precision-recall-precision curves for each one of the chosen frames, serving as diagnos-

tic metrics. These curves correspond to the positive predictability power (precision),

against positive detection power (recall), over multiple di�erent thresholds levels in

order to capture the true molecule positions. As already mentioned, it is apparent

that the threshold levels should not be globally de�ned but need to follow some so-

phisticated rules in order to be e�cient (discussion in Chapter 6). The associated

sensitivity-speci�city plots can be found in Appendix A.5, with speci�city being the

proportion of correctly identi�ed inactive pixels.
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Figure 5.6.6: Individual frame reconstructions for frames in Figure 5.6.1 included
in the application on SuReSim data, using the conventional threshold scheme based
on the average �eld for the posterior probability maps �ltered by the average �eld.
The orange coloured circles denote the drawn positions by applying the conventional
threshold, with the light blue coloured crosses representing the true positions of the
molecules.
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SR image − Conventional Threshold scheme

Figure 5.6.7: Final reconstruction of the super resolution image using the subset of
frames of the 'Circle within circle' stack of frames, using two �xed thresholds for the
posterior probability maps �ltered by the average �eld and the conventional threshold
scheme based on the average �eld. On the top left corner of the �gure, the true
positions of the molecules are shown (light blue crosses) with the 0.4 (red colour) and
0.45 (yellow colour) �xed threshold �nal reconstructions to be presented on the right
top and left bottom corner respectively. On the bottom right corner of the �gure,
the �nal reconstruction using the conventional threshold scheme is displayed (orange
colour).
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Figure 5.6.8: Precision-Recall curves for SuReSim data frames in Figure 5.6.1. The
lines show the performance of our model in terms of balancing the trade-o� between pre-
cision and recall, with the adapting colour denoting di�erent threshold values. Frames
1102 and 1852 initiate the curve at 0 because the higher threshold does not correspond
to a TP, but a FP, not the case for the rest of the frames.
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ThunderSTORM

Lastly, we again use ThunderSTORM [Ovesn�y et al., 2014] on the same subset of

frames Ft, t ∈ {2, 52, ..., 2502}, using single and multiple PSF �tting, as described in

Section 5.3.2, in order to both quantitatively and qualitatively compare the results

against the individual frame counting scheme based on the SiMPa functions. We note

here that the ThunderSTORM algorithm was preliminary implemented a number of

times to acceptably adjust the parameters in a way to perform at full capacity. The

camera setup was identically determined to be the one used during microtubules

data generation, while the �tting window was set to be of size 5 × 5 pixels where

ThunderSTORM performs better, even though the window size for PSF rendering

during data generation was 3 × 3 to be in agreement with SiMPa's neighbourhood.

In Figure 5.6.9, we present the �nal reconstruction by combining the individual local-

isations using the conventional threshold scheme on the posterior probabilities (top

panel - orange coloured circles) along with the �nal reconstructions using Thunder-

STORM with single PSF �tting (bottom left panel - yellow coloured circles) and

multiple PSF �tting (bottom right panel - yellow coloured circles). Additionally, the

ground truth is displayed with the light blue crosses on the top left panel of the

�gure. From a qualitative point of view, both SiMPa and ThunderSTORM seem to

identify the general structure, with ThunderSTORM producing sharper areas with

molecules appearing to be in closer distance with each other. For the single PSF

�tting the reconstruction clearly appears to be visually poor, especially regarding

the number of identi�ed molecules. SiMPa produces thicker regions of molecules, a

result of the simpli�cation during counting of having r = θ = 0.

From a quantitative perspective, we present in Table 5.6.2 the same metrics used

throughout this thesis for comparisons. As a reminder, the abbreviation TP, FP, TN

and FN denote the true positives (correct prediction of pixel containing a molecule),

false positives (false prediction of pixel containing a molecule), true negatives (cor-

rect prediction of empty pixel) and false negatives (false prediction of empty pixel)

respectively. Two di�erent colours, black and blue, have been used, with the former
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corresponding to counting when the real reappearances of molecules due to blinking

are taken into account or not respectively. Focusing on the latter, since the indi-

vidual frame counting scheme has been applied, we can claim that the SiMPa based

model has a better detection power (TP) which can almost reach ≈ 16% improve-

ment compared to ThunderSTORM, while keeping the same percentage of incorrect

pixels (FP) and correct identi�cation of empty ones (TN). This can be increased

by either adjusting the conventional threshold scheme in a di�erent way or in that

case choosing the common threshold of 0.45 for all frames, however with the cost of

increasing the FP. As a general comment, SiMPa seems to be noticeably better than

ThunderSTORM, even though SiMPa requires minimal information about the design

and details of the experiment compared to ThunderSTORM. Additionally, extensions

and improvement of the current form of SiMPas are straightforward to implement

and can potentially allow for tackling scenarios and cases that are now problematic,

such as incomplete events, extreme overlapping etc (discussed in Chapter 6).

Counting TP FP TN FN
SiMPa - ConvT 57.2% 58.6% 32.8% 33.5% 90.3% 90.3% 42.8% 41.4%
SiMPa - T0.40 64.8% 66.2% 52.9% 54.2% 86.9% 86.9% 35.2% 33.8%
SiMPa - T0.45 50.3% 51.7% 26.8% 27.2% 91.1% 91.1% 49.7% 48.3%

Thunder 28.7% 29.5% 13.9% 14.2% 94.6% 94.6% 71.3% 70.5%
Thunder+ 41.9% 42.8% 29.2% 29.9% 90.6% 90.6% 58.1% 57.2%

Real 1754 1700 - - 925 925 - -

Table 5.6.2: Performance of ThunderSTORM and individual frame inference based on
SiMPa functions for SuReSim data. where 'Thunder' denotes single �tting, 'Thunder+'
multiple �tting, 'SiMPa - Conv' the conventional threshold scheme applied on the
individual frame counting scheme based on SiMPa functions and 'SiMPa - T0.40' &
'SiMPa - T0.45' �xed thresholds of levels 0.4 & 0.45 respectively. The table outlines
the percentages of correct identi�ed pixels containing the active molecules (TP) and
the number of correct identi�ed empty pixels (TN), along with the incorrect positive
predictions (FP) and negative (FN). The black and blue colours denote counting when
reappearances of molecules due to blinking are either considered or not respectively.
The real number of pixels containing active molecules and empty pixels are also outlined
(Real).
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SR image − Conventional Threshold scheme
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ThunderSTORM − multiple fit

Figure 5.6.9: Final reconstructions of the super resolution image on SuReSim data,
using SiMPa and ThunderSTORM. The conventional threshold scheme for the poste-
rior probability maps �ltered by the average �eld has been applied for SiMPa, whereas
ThunderSTORM is considered on both single and multiple �tting. On the top left
corner of the �gure, the true positions of the molecules are shown (light blue crosses)
with the conventional threshold scheme (orange colour) displayed on the right top
corner. On the bottom right panel of the �gure, the �nal reconstructions using Thun-
derSTORM (yellow colour) based on single molecule (left bottom panel) and multiple
�tting (right bottom panel) are presented.



Chapter 6

Conclusion and Discussion

In this thesis, we propose a novel approach to process SMLM images, based on a

novel set of structural functions (SiMPa), that model the intensity di�raction along

a predetermined neighbourhood with respect to the position of a molecule within

a pixel. We introduce a new concept within a Bayesian framework, based on the

pattern-con�guration-realisation scheme that allows for probabilistic inference on the

positions of the molecules. Its main feature includes a moving region which scans

frames associated with the corresponding structural pattern of a hidden mechanism

determining the unobserved state of the pixels. Setting an allowance of overlapping

PSFs, every pattern has a �nite number of PSFs that can be formed from, hence

for every moving region potential positions can be drawn in a probabilistic manner.

Cycles of this procedure can result in localisations of active molecules not only when

well isolated PSFs are focused, but also when overlapping situations occur from

molecules in close proximity.

The SiMPa functions based model, associated with the pattern - con�guration -

realisation scheme, was extended in order to allow processing on complete stacks

of frames as obtained by a SMLM imaging experiment, while accounting for time

dynamics. A stack of frames, considered as a state space model, progresses via a
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Markov switching model while taking into account the corresponding �uorophore

transition properties as well as the spatial dependencies. A forward �ltering back-

wards sampling (FFBS) algorithm was considered for updating the unobserved time

related states of the pixels, whereas the molecules spatial separation was achieved

using the SiMPa functions within the proposed probabilistic scheme.

Considering a data generation mechanism based on the SiMPa functions, we obtained

a synthetic data - stack of frames in which we applied our individual inference scheme,

presenting a complete inference and features in order to evaluate and reconstruct

super resolution images. We showed that our model is robust on any changes of

the parameter prior distributions, and additionally retain its powerful capability to

resolve overlapping PSFs, or more generally high intensity regions containing multiple

PSFs, especially when the allowance of overlapping PSFs is met. We outlined the fact

that large noise levels, that can alter substantially the intensity of pixels, can have a

negative e�ect on localisation adding more uncertainty to the results. We compared

our model against a popular o�-the-shelf alternative (ThunderSTORM) using the

synthetic data set, in which our model appears to be superior from a quantitative

perspective, while o�ering similar visual reconstructions.

Lastly, we applied our individual frame inference scheme on a realistic data set

of Tubulins, consisting of a long sequence of low density data, and on simulated

SuReSim dataset of high density data to evaluate and compare our proposed method-

ology. Next, we discuss potential extensions and future work that can either improve

and enhance our current procedures or enable them to deal with super resolution data

sets of di�erent properties, i.e. high density data where multiple PSFs could overlap

with each other.

Computing times - Implementation on GPUs

Our probabilistic inference schemes, either counting or localisation, appear to be

quite powerful in resolving overlapping PSFs and high intensity regions, however re-

quire a number of iterations to achieve this since the schemes are embedded within
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a Bayesian framework. In this thesis, we mainly focused on the counting algo-

rithm which is less computationally intensive. Furthermore, for the Markov switch-

ing model based on SiMPa functions we only performed an implementation along

with a parameter sensitivity analysis on a small subset of a stack, since it requires

even more computational power and memory.

For every model, the codes have been written in R using vectorization, with the

frame-wise counting and localisation algorithms applied in parallel using the Univer-

sity of She�eld cluster. For individual frames, the computational time is independent

of its dimensions, however is directly dependent on the complexity of the regions and

consequently the number of active molecules, leading to a necessary trade-o� in order

to resolve overlapping PSFs. On a laptop with i7-6500U CPU @ 2.50GHz & 16G

RAM, computation of 30.000 MCMC iterations need,

Complexity Counting Localisation

Multiple High intensity regions ; ∼ 20 molecules 1.5− days 2+ days
Multiple Overlap (>5 cases) ; ∼ 20 molecules 1.5− days 2+ days
Regular Overlap (<5 cases) ; ∼ 20 molecules 1.25− days 2− days

Table 6.0.1: Computational times for individual frame inference based on SiMPa
functions, on a total of 30000 MCMC iterations. For the localisation algorithm the

realisations come from a discretisation, with possible directions θ = k
π

4
, k=0,1,...,8

under the distances r = 0 and r =
rmax,θ

2
(2 distances over 8 angles).

We plan on optimising our algorithms in R, and then create an R package imple-

menting our localisation schemes. A straightforward way to parallelise the code is

distribute the localisation or counting schemes into separate CPUs, since our cor-

responding functions use as input the number of 'On' pixels. Here, we considered

a 3 × 3 moving region, thus the possible 'On' pixels are 1-9, allowing for splitting

the code into 9 CPUs. One of the main future plans is to transfer the procedures

into GPUs, so computational speed will increase rapidly, and potentially create an
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add-on for ImageJ as a user friendly interface.

Improvement of localisation scheme

In order to increase the accuracy and precision on localisation of molecules, with

respect to a discretisation of r and θ, and also obtain a faster and less complex

localisation scheme, a two stage procedure could be considered. Speci�cally, our

probabilistic counting scheme relies on the pattern - con�guration concept where

every molecule is assumed to be �xed at the center of pixels, or the origin of the

SiMPa functions with r = θ = 0, while the localisation scheme additionally allows

all possible realisations (in the 1st quadrant) on each con�guration. For that reason,

inference with the latter relies on a large number of probabilities for each moving

window, hence making it less stable and more computational expensive (Section

3.3.3). Therefore, with a potential two stage procedure within our inference, one

could have a mechanism to obtain the pixels containing the active molecules before

proceeding to localisation, instead of applying a simultaneous step that takes into

account all possible con�gurations associated with the corresponding realisations.

Relaxation of assumption & Extended SiMPa (SiMPaX)

The main assumption we made throughout this thesis, reads in allowing no more

than two PSFs overlapping on a single region. Speci�cally, let a moving region

landing in a central pixel where the active molecule lies into. When considering the

SiMPa functions that correspond to a 3 × 3 neighbourhood of pixels, we assume

that this particular moving region cannot have an extra two PSF contributing but

one up to one extra one. We showed that, even under violations of this assumption

inference on such region is obtained, however there might be cases with inaccurate

identi�cation and/or missing molecules. The main reasons for this allowance, is

�rstly related to the nature of SMLM imaging, where mostly temporally separated

molecules are captured, and secondly, reduces the complexity and computational

times of our model. As we discussed before, a proper implementation on GPUs

can allow a straightforward extension of this assumption, probably a matter of high

importance since high density data are in the forefront of interest. Regarding data
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sets that appear to contain molecules di�using in a larger neighbourhood, we plan

on applying the extended SiMPa model (SiMPaX), also needing more computational

power.

Background proportion d (or background intensity I0)

Throughout this thesis, we assumed the background, I0, and single event, I, intensi-

ties are related, based on the argument that the single event intensity is a quantity

added on top of some background levels, hence I0 can be considered proportional

to I. The proportionality relationship was described by the constant d, which when

multiplied with I gives the background intensity. Two main extensions can be po-

tentially considered, one accounts for allowing d to be a parameter, maybe a-priori

following a Beta distribution, and another assuming no relationship between I and

I0. Both are straightforward to implement, with the former relaxing the need to

have an accurate estimate of the background intensity proportion, even though it is

an observable quantity during the imaging experiment.

Proportion of event parameter q

In order to capture incomplete events, that is active molecules with lower emission in-

tensity than ordinary, an additional local parameter q can be introduced, accounting

for the proportion of an event captured on the frame in terms of the total intensity

levels. This parameter can be potentially embedded in both the individual frame

and Markov switching models. In the former, this can help identifying regions of

interest that could be otherwise missed, especially in cases where the background I0
and single event intensity I are closely valued, or under large noise cases. Apart from

this, in the latter, this can also be used to determine active molecules retaining their

'On' state between frames, according to the relation and synchronization between

frame (camera settings) and blinking (duty cycle of molecule) rates. This parameter

would be multiplied by the mean µ(xij) ('On' state only) in Equation (3.3.6), where

throughout this thesis we can say we assumed q = 1 hence focusing on complete
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events, therefore

µ(xij) =

q I (1− αO(r, θ, c)) , if xij = 1 ('On')

I d, if xij = −1 ('O�')
.

Background error precision τb

We can allow τMR(xij) to depend on the 'On' and 'O�' pixels, instead of assuming

that each pixel regardless of its state has a common background error τb, generated

by a zero mean Gaussian distribution with precision τb, hence for an 3 × 3 MR -

τMR(xij) = τb/Np (Equation (3.3.7)). For instance, let τO� be the precision of an

'O�' pixel (or variance VO�) and τOn the precision of an 'On' pixel (or variance VOn),

then if nO� and nOn are the number of 'O�' and 'On' pixels in the MR respectively,

τMR(xij) =
(τOn/nOn)(τO�/nO�)

(τOn/nOn) + (τO�/nO�)
,

obtained by τMR(xij) = 1/VMR(xij) = 1/(nO�VO� + nOnVOn). Such an extension

can potentially allow our models to have a more stable performance on localisation,

especially cases of large noise levels.

Adaptive threshold scheme for reconstructions

Finally, in order to reconstruct super resolution images using the posterior probability

maps, we considered either di�erent common thresholds for every frame regardless

of the complexity of individual regions within, or a conventional threshold scheme

based on a mechanism using the average �eld on each frame to distinguish between

high and regular intensities regions. Even though these schemes provide insightful

reconstructions, there is de�nitely room for improvement. For future work, we will

try to construct an adaptive threshold scheme that can take into account not only

neighbourhoods in the �eld, but also potentially the probability densities or the total

intensity of the regions with respect to the single event intensity I.



Appendix A

Appendix

This Appendix contains a number of �gures that are omitted from the main body of

the thesis.

Part A.1 corresponds to the implementation of the Markov switching model based

on SiMPa in Section 4.4.

Part A.2 corresponds to the application of the individual frame inference based on

the SiMPa functions to the synthetic data set of a 'Circle within circle' in Section

5.3.1.

Part A.3 corresponds to the sensitivity analysis in Section 5.4.

Part A.4 corresponds to the application of the individual frame inference based on

the SiMPa functions to realistic data in Section 5.5.

Part A.5 corresponds to the application of the individual frame inference based on

the SiMPa functions to SureSim data in Section 5.5.
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A.1 Figures from implementation of MSM SiMPa

model (Sec 4.4)

Figure A.1.1: Prior and posterior distributions for the frame wise parameters β0's
for frames in Figure 4.4.1. The red solid lines denote the prior distributions for each
β0t , t = 401, ..., 409 while the histograms associated with the blue solid lines denote
the corresponding posterior distributions.
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Figure A.1.2: Prior and posterior distributions for the frame wise parameters βf 's
for frames in Figure 4.4.1. The red solid lines denote the prior distributions for each
βft , t = 401, ..., 409 while the histograms associated with the blue solid lines denote
the corresponding posterior distributions.
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A.2 Figures - Application on synthetic data (Sec

5.3)
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Figure A.2.1: Average �elds for 'Circle within circle' frames in Figure 5.3.1. The
larger proportions a pixel is identi�ed as 'On' are declared with the light blue color
levels as shown in the scale bar on each frame. Each �gure represents the average state
of each frame after the end of the MCMC.
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Figure A.2.2: Sensitivity-Speci�city (ROC) curves for 'Circle within circle' frames in
Figure 5.3.1. The lines show the performance of our model in terms of balancing the
trade-o� between sensitivity and speci�city, with the adapting colour denoting di�erent
threshold values.
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Figure A.2.3: Posterior distributions of single event intensity I for frames in Figure
5.3.1 presented in the application on 'Circle within circle' synthetic data. The his-
tograms represent the drawn posterior samples whereas the red solid lines the prior
distributions.
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Figure A.2.4: Trace plots of the drawn posterior sample of the single event intensity I
for frames in Figure 5.3.1 presented in the application on 'Circle within circle' synthetic
data.
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Figure A.2.5: Posterior distributions of background error τb for frames in Figure 5.3.1
presented in the application on 'Circle within circle' synthetic data. The histograms
represent the drawn posterior samples whereas the red solid lines the prior distributions.
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Figure A.2.6: Trace plots of the drawn posterior sample of the background error
precision τb for frames in Figure 5.3.1 presented in the application on 'Circle within
circle' synthetic data.
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Figure A.2.7: Posterior distributions of power of spread parameter c for frames in
Figure 5.3.1 presented in the application on 'Circle within circle' synthetic data. The
histograms represent the drawn posterior samples whereas the red solid lines the prior
distributions.
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Figure A.2.8: Trace plots of the drawn posterior sample of the power of spread
parameter c for frames in Figure 5.3.1 presented in the application on 'Circle within
circle' synthetic data.
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Figure A.2.9: Posterior distributions of �eld control parameters β0 and βF for frames
in Figure 5.3.1 presented in the application on 'Circle within circle' synthetic data. The
histograms represent the drawn posterior samples whereas the red solid lines the prior
distributions.
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Figure A.2.10: Trace plots of the drawn posterior sample of the �eld control param-
eter β0 for frames in Figure 5.3.1 presented in the application on 'Circle within circle'
synthetic data.
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Figure A.2.11: Trace plots of the drawn posterior sample of the �eld control param-
eter βf for frames in Figure 5.3.1 presented in the application on 'Circle within circle'
synthetic data.
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A.3 Figures - Sensitivity analysis (Sec 5.4)

Figure A.3.1: Prior/Posterior distributions obtained for the parameters τb, c and
β0 & βf for Frame 338, using di�erent prior distributions for I. The left column
contains the posterior distributions when the elicited prior is used for I, whereas the
middle and right columns the cases of larger variance and wrong location respectively.
The histograms represent the posterior samples whereas the red solid lines the prior
distributions. The light blue histogram on the bottom part relates to βf while the
regular one to β0.
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Figure A.3.2: Prior/Posterior distributions obtained for the parameters I, c and
β0 & βf for Frame 338, using di�erent prior distributions for τb. The left column
contains the posterior distributions when the elicited prior is used for τb, whereas the
middle and right columns the cases of larger variance and wrong location respectively.
The histograms represent the posterior samples whereas the red solid lines the prior
distributions. The light blue histogram on the bottom part relates to βf while the
regular one to β0.
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Figure A.3.3: Prior/Posterior distributions obtained for the parameters I, τb and
β0 & βf for Frame 338, using di�erent prior distributions for c. The left column
contains the posterior distributions when the elicited prior is used for c, whereas the
middle and right columns the cases of larger variance and wrong location respectively.
The histograms represent the posterior samples whereas the red solid lines the prior
distributions. The light blue histogram on the bottom part relates to βf while the
regular one to β0.
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Figure A.3.4: Prior/Posterior distributions obtained for the parameters I, τb and
c for Frame 338, using di�erent prior distributions for β0 and βf . The left column
contains the posterior distributions when the elicited prior is used for β0 and βf ,
whereas the right column the case of larger variance. The histograms represent the
posterior samples whereas the red solid lines the prior distributions.
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Figure A.3.5: Posterior probability maps �ltered by the average �eld for Frame 338
used on parameter sensitivity. Higher probabilities are indicated with white color levels
as shown in the light blue probability scale bar on each probability map. The white
bins represent the density around the regions.
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Figure A.3.6: Precision-Recall curves under regular and large noise levels for the
frames used in sensitivity analysis, including both the counting and localisation proce-
dures. The line types denote the corresponding noise cases whereas the adaptive color
the trade-o� in precision-recall for di�erent thresholds on the posterior probabilities.
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Figure A.3.7: Sensitivity-Speci�city (ROC) curves under small and free of noise levels
for the frames used in sensitivity analysis, including both the counting and localisation
procedures. The line types denote the corresponding noise cases whereas the adaptive
color the trade-o� in sensitivity-speci�city for di�erent thresholds.
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Frame 57 − SR image Probability Heatmaps filtered by Average Field

Figure A.3.8: Frame 57 - Posterior probability map �ltered by the average �eld for
speci�ed locations within the pixels, according to our localisation algorithm based on
SiMPa functions. Every pixel has been expanded into a 3 × 3 super-pixel region, each
one denoting a combination of the applied discretisation of r and θ.
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Frame 6 − SR image Probability Heatmaps filtered by Average Field

Figure A.3.9: Frame 6 - Posterior probability map �ltered by the average �eld for
speci�ed locations within the pixels, according to our localisation algorithm based on
SiMPa functions. Every pixel has been expanded into a 3 × 3 super-pixel region, each
one denoting a combination of the applied discretisation of r and θ.
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Frame 62 − SR image Probability Heatmaps filtered by Average Field

Figure A.3.10: Frame 62 - Posterior probability map �ltered by the average �eld for
speci�ed locations within the pixels, according to our localisation algorithm based on
SiMPa functions. Every pixel has been expanded into a 3 × 3 super-pixel region, each
one denoting a combination of the applied discretisation of r and θ.
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Frame 23 − SR image Probability Heatmaps filtered by Average Field

Figure A.3.11: Frame 23 - Posterior probability map �ltered by the average �eld for
speci�ed locations within the pixels, according to our localisation algorithm based on
SiMPa functions. Every pixel has been expanded into a 3 × 3 super-pixel region, each
one denoting a combination of the applied discretisation of r and θ.
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A.4 Figures - Application on realistic data (Sec 5.5)

Figure A.4.1: Posterior distributions of single event intensity I for frames in Figure
5.5.1 presented in the application on realistic LDLS Tubulins data. The histograms
represent the drawn posterior samples whereas the red solid lines the prior distributions.
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Figure A.4.2: Posterior distributions of background error precision τb for frames
in Figure 5.5.1 presented in the application on realistic LDLS Tubulins data. The
histograms represent the drawn posterior samples whereas the red solid lines the prior
distributions.
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Figure A.4.3: Posterior distributions of power of spread parameter c for frames
in Figure 5.5.1 presented in the application on realistic LDLS Tubulins data. The
histograms represent the drawn posterior samples whereas the red solid lines the prior
distributions.
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Figure A.4.4: Posterior distributions of �eld control parameters β0 and βF for frames
in Figure 5.5.1 presented in the application on realistic LDLS Tubulins data. The
histograms represent the drawn posterior samples whereas the red solid lines the prior
distributions.
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Figure A.4.5: Average �elds for frames in Figure 5.5.1. The larger proportions a
pixel is identi�ed as 'On' are declared with the light blue color levels as shown in the
scale bar on each frame. Each �gure represents the average state of each frame after
the end of the MCMC.
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Figure A.4.6: Posterior probability maps �ltered by the average �eld for frames in
Figure 5.5.1, when the elicited prior distribution for τb is used. Higher probabilities
are indicated with white color levels as shown in the light blue probability scale bar on
each probability map. The white bins represent the density around the regions.
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Figure A.4.7: Average �elds for frames in Figure 5.5.1, when the elicited prior distri-
bution for τb is used. The larger proportions a pixel is identi�ed as 'On' are declared
with the light blue color levels as shown in the scale bar on each frame. Each �gure
represents the average state of each frame after the end of the MCMC.
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A.5 Figures - Application on SuReSim data (Sec

5.6)

Figure A.5.1: Posterior distributions of single event intensity I for frames in Figure
5.6.1 presented in the application on SuReSim data. The histograms represent the
drawn posterior samples whereas the red solid lines the prior distributions.
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Figure A.5.2: Posterior distributions of background error precision τb for frames in
Figure 5.6.1 presented in the application on SuReSim data. The histograms represent
the drawn posterior samples whereas the red solid lines the prior distributions.
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Figure A.5.3: Posterior distributions of power of spread parameter c for frames in
Figure 5.6.1 presented in the application on SuReSim data. The histograms represent
the drawn posterior samples whereas the red solid lines the prior distributions.
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Figure A.5.4: Posterior distributions of �eld control parameters β0 and βF for frames
in Figure 5.6.1 presented in the application on SuReSim data. The histograms represent
the drawn posterior samples whereas the red solid lines the prior distributions.
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Figure A.5.5: Average �elds for frames in Figure 5.6.1. The larger proportions a
pixel is identi�ed as 'On' are declared with the light blue color levels as shown in the
scale bar on each frame. Each �gure represents the average state of each frame after
the end of the MCMC.
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Figure A.5.6: Sensitivity-Speci�city (ROC) curves for SuReSim data frames in Fig-
ure 5.6.1. The lines show the performance of our model in terms of balancing the
trade-o� between sensitivity and speci�city, with the adapting colour denoting di�er-
ent threshold values.
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