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ABSTRACT

This thesis is concerned with the Transplanar wicking of water through 

multi-layer fabric assemblies, with particular reference to firefighters’ under 

garments. The literature survey is concerned with a review of research work 

carried out on thermophysiological comfort and the heat and moisture transmission 

in relation to clothing.

This serves as an introduction to which the experimental work has been 

concerned with the design and construction of apparatus for the measurement of 

horizontal transplanar wicking (i.e. from a lower fabric layer to the adjacent upper 

fabric layers, laid horizontally). This apparatus has been constructed to allow the 

measurement o f horizontal transplanar wicking under static fabric conditions, and 

another novel design has been built for horizontal transplanar wicking 

measurements under dynamic conditions. In addition a novel design of apparatus 

for the measurement o f vertical transplanar wicking under static conditions has 

been designed and constructed.

A series o f horizontal transplanar wicking tests have been carried out on a 

range of lx l rib polypropylene, Nomex, and Coolmax (polyester) knitted fabrics, 

and cotton and acrylic interlock knitted fabrics. The initial wicking of water into 

the fabric occurs in the fine inter-fibre capillaries within the yam structure and then 

transplanar wicking occurs through contiguous inter-fabric contact points. The 

nature and number of these inter-fabric contact points in any two or more fabric 

layers has been demonstrated to depend upon the relative orientation of the fabric 

construction and the applied pressure. For these reasons some variability in the 

initial wicking stages o f weft knitted fabrics is to be expected, as every two fabric 

layers in contact will exhibit different inter-fabric contact points.

A model o f horizontal transplanar wicking has been proposed to explain the 

observed phenomena.

The type o f water used (distilled) has been studied in comparison with deaerated 

and carbonated water, and been shown to have only a very minor influence on the 

initial rate o f wetting and wicking.
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An empirical hyperbolic equation has been proposed to explain the results 

of the horizontal transplanar wicking in a single fabric layer which relates the 

change in percentage fabric water content (%) in a single layer to the wicking time. 

In this way any fabric under study may be characterised by the initial rate of 

wicking and the theoretical maximum fabric saturation can be calculated. The 

effect of modifying the fabric surface structure by singeing, rubbing, and brushing 

has been compared with the untreated state for cotton interlock fabric. Disruption 

of the fine capillaries within the yarn appears to have an adverse affect on the rate 

of wicking, also the type of disruption. The maximum fabric saturation also 

appears to be affected by the type of surface disruption which may occur in 

everyday clothing wear.

Dynamic horizontal transplanar wicking exhibits greater transplanar 

wicking rates compared with the results on the same fabrics under static conditions. 

The results in each case are dependent upon which fabric type acts as the initial 

reservoir for transplanar wicking.

It was observed that for cotton fabrics that wet out rapidly in vertical transplanar 

wicking, the initial fabric layer always maintains a greater amount of water than the 

fabric layer below, whereas the reverse occurred in fabric that were slow to wet 

out.



IV

Acknowledgements

I would like to express my sincere thanks to Dr R. Jeffries for his 

encouragement, enthusiasm and support throughout the experimental phase of this 

project. Thanks are also due to Dr I Holme for his guidance and academic 

supervision during the completion of this thesis.

I would like to express my thanks to MrB. Burdett, Mrs K. Ditchfield, Mr B. 

McCarthy and the staff at the British Textile Technology Group (BTTG) for all 

their help.

I would also like to thank Mr C.D. Hepburn and my family for their help and 

support and encouragement.

This work was funded by the Postgraduate Training Partnership Scheme (PTP 

Scheme) managed by the DTI and the EPSRC.

/



V

CONTENTS
Abstract (ii)

Acknowledgements (iv)

Contents (v)

Chapter 1 Introduction 1

1.0 Introduction 1

1.1 Comfort I

1.1.1 The Balance 1

1.2 Thermophysiological Comfort 1

1.2.1 Regulation Of Body Temperature 2

1.2.2 Physiological Temperature Regulation 4

1.2.3 Function Of The Skin 8

1.2.3.1 Sweat Glands 9

1.2.3.2 Insensible Perspiration 10

1.2.3.3 Function of Sweating 11

1.2.3.4 Thermal Sweating 13

1.3 Heat Transfer/Transmission 14

1.3.1 Mechani sms of heat transfer 14

1.3.1.1 Conduction 15

1.3.1.2 Convection 16

1.3.1.3 Radiation 17

1.3.1.4 Evaporation 18

1.4 Heat transfer/transmission in the Human body 19

1.4.1 Conduction in the human body 20

1.4.2 Convection 22

1.4.3 Radiation 24

1.4.4 Evaporation 25

1.5 Environmental Effects on The Body Temperature 26

1.5.1 Effects of Environment Heat 26

1.6 Comfort in Protective Clothing 27



vi

1.7 Heat And Flame Protective Clothing 27

1.7.1 The Role of Moisture In Protective Clothing 27

1.7.1.1 The Effect of Moisture In Heat And Flame 

Protective Clothing. 27

1.7.1.2 Microclimate V Environmental Climate 29

1.7.1.3 Heat Stress 32 

Chapter 2 36

2.0 Liquid / Moisture Transmission In Textile Materials 36

2.1 Mechanisms Of Liquid / Moisture Transfer 36

2.1.1 Migration 36

2.1.2 Capillary Action 36

2.2 Liquid / Moisture Transfer Through Single & Multi-layer 

Structures 37

2.2.1 Wetting And Wicking 38

2.2.1.1 Wetting 39

2.2.1.2 Wicking 41

2.2.2 Factors Influencing Wicking 46

2.2.2.1 Vertical Planar Wicking 50

2.2.2.1.1 Wicking From A Limited Reservoir 50

2.2.2.1.2 Wicking From An Infinite Reservoir 51

2.22.2 Horizontal Transplanar Wicking 52

2.3 Measuring Liquid/Moisture Transmission 53

2.3.1 Planar Wicking 53

2.3.2 Transplanar Wicking 57



vii

Chapter 3 Introduction 60

3.0 Introduction 60

3.1 Equipment Development 67

3.1.1 Background 67

3.2 Horizontal Static Demand Wettability Technique 68

3.2.1 Component Development 69

3.2.1.1 Compression Weight Development 78

3.2.1.2 Liquid/Water Type 80

3.2.1.3 Vertical Planar wicking test using Different

Water Types. 80

3.2.1.3.1 Results and Discussion 84

3.2.1.4 Liquidlndicator 85

3.2.2. Weighing Technique 86

3.2.3. Methodology Development 87

3.2.4. Reproducibility 88

3.3 Horizontal Dynamic Demand Wettability Technique 104

3.3.1. Equipment 107

3.3.2. Component Development 107

3.3.2.1. Compression Weight Development 107

3.3.2.2. Sample Attachment 107

3.3.2.3. Liquid Medium/Skin Simulant 110

3.3.3 Methodology Development 112

3.4 Vertical Transplanar Wicking Technique 113

3.4.1 Component Development 113

3.4.2 Methodology Development 118

3.5 Secondary Experimentation 120

3.5.1 Contact Points 120

3.5.1.1 E xperim ent-1 120

3.5.1.2 Experim ent-2 121

3.6 Test Fabric Data 122

3.6.1 Sample Fabric Characteristics 123

3.6.1.1 Fabric sample data -  Experiment 3 125



viii

Chapter 4 Results and Discussion 127

4.0 Data From Initial Experimental Work 127

4.0.1 Absorption/Wicking Distribution Patterns 127

4.0.2 Experiments On Multi-Layer Assemblies 129

4.0.3 Horizontal Transplanar Wicking Points(Contact Points) 142

4.0.4 Wicking Theory 144

4.1 Results From Equipment And Methodology Development 146

4.1.1 Static Demand wettability Method 146

4.1.2 Dynamic Demand Wettability Method 151

4.1.3. Comparison of Wettability Methods in the Horizontal

Static State 156

4.1.4 Vertical Transplanar Wicking Method 159

4.2 Results and Discussion 164

4.2.1 Horizontal Static Demand wettability Technique 164

4.2.1.1 Polypropylene/ Acrylic 164

4.2.1.2 Polypropylene/Nomex 171

4.2.1.3 Nomex/ Acrylic 176

4.2.1.4 Cotton/Polypropylene 181

4.2.1.5 Cotton/Acrylic 181

4.2.1.6 Cotton/Nomex 181

4.2.2 Horizontal Dynamic Demand Wettability Technique 188

4.2.2.1 Inter-layer Tests 193

4.2.2.2 Inter-layer results 205

4.2.3 Comparison of Surface Types in Cotton interlock Fabric 206

4.2.4 Vertical Transplanar Wicking Technique 233 

Chapter 5 244

5.0 Introduction 244

5.1 Summary and Conclusion 244

5.1.1 Mechanism of Horizontal transplanar wicking 244

5.1.2 Horizontal Static transplanar wicking 250

5.1.3 Horizontal Dynamic transplanar wicking 2 51

5.1.4 Comparison fabric surface types 252



ix

5.1.5 Vertical Transplanar wicking 253

5.1.6 Conclusions 253

5.1.7 Recommendation for future work 254 

References 255 

Appendix I 259 

Appendix II 266 

Appendix III 268 

Appendix IV 269 

Appendix V 270



1

CHAPTER 1.

INTRODUCTION.

1.1 COMFORT

1.1.1 THE BALANCE

The term ‘Comfort’ is a subjective property, with endless and ever-changing 

connotations. These range from the Oxford dictionary definition as ‘ freedom from 

pain, well-being’ ,to ‘an extension of physiology and psychology enabling the 

wearer to accommodate changes in the environment without a sense of stress’ as 

described by Verma(1) . It is all a matter of balance, and one important aspect of 

comfort is ‘thermophysiological comfort’ or ‘thermal comfort’ (thermal neutrality). 

This can be defined as “a state in which man expresses satisfaction with the thermal 

environment, i.e. he would prefer neither a warmer nor a colder environment”. 

Thermal comfort can be an aim in itself in line with other common demands for 

human well-being.(50)

Thermal comfort is related to the heat and moisture release o f the human body, and 

in order to preserve the balance maintained by the body the creation of a 

microclimate as a buffer around the body against environmental conditions is 

necessary to assist in maintaining this balance.

A textile assembly that possessed suitable heat and moisture transmission properties 

would promote and maintain a feeling o f thermophysiological comfort, thus 

maintaining the balance, and in turn maintaining the equation " heat produced equals 

heat dissipated."

1.2 THERMOPHYSIOLOGICAL COMFORT

The mechanism by which the body identifies the sensations of 

temperature is dependent on the information received from temperature receptors 

in the skin. These are widely distributed around the body, but mainly in the 

extremities. Temperature-sensitive nerve endings pick up temperature changes in 

and around the body.
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1.2.1 REGULATION OF BODY TEMPERATURE

In order to understand thermal balance it is necessary to 

understand the mechanism by which the human body regulates body temperature in 

relation to environmental conditions and body activity.

The purpose of the thermoregulatory system of the body is to maintain an essentially 

constant internal body temperature of 37°C; therefore it can be assumed that for 

long exposures to a constant (moderate) thermal environment with a constant 

metabolic rate, balance will exist for the human body. This means in the ideal 

situation heat production will equal heat dissipation, and there will be no significant 

heat storage within the body.

The heat balance equation for this condition is(2):

H - Ed - Sew - Ere - L = K = R + C -----[1]

where H = the internal heat production in the human body

Ed = the heat lost by water vapour diffusion through the skin

Sew = the heat lost by the evaporation of sweat from the surface of the skin

Ere -  the latent respiration heat loss

L = the dry respiration heat loss

K = the heat transfer from the skin to the outer surface of the clothed body 
(conduction through clothing)

R = the heat loss by radiation from the outer surface of the clothed body

C = the heat loss by convection from the surface of the clothed body .

When the human body is in an environment in which the temperature is greater than 

the internal body temperature a sequence of events is set in motion in order to 

counteract it. The area of the brain that regulates body temperature sends impulses 

to the sweat (sudoriferous) glands and more sweat is produced.
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As the sweat evaporates from the surface of the skin, the skin is cooled and the 

body temperature is lowered to the normal level of 37°C, maintaining the 

homeostasis of body temperature. This sequence of events is simplified in Fig. 1.

RETURN TO HOMEOSTASIS
8

Fig.l Role of the skin in maintaining the homeostasis of body temperature.<3)
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1.2.2 PHYSIOLOGICAL TEMPERATURE REGULATION

The sensation of hot and cold is dependent on the information 

received from temperature receptors widely distributed in the superficial layers of 

the skin deep within the dermis. Nerve structures sensitive to temperature or 

temperature change are called temperature sensors, and these are sometimes known 

as the body’s ‘thermocouples’ <3,4). They can be found over the whole of the body, 

and exist at sites such as the extremities, in the fingers and toes, and the hands and 

feet to a lesser extent. Thermal sensation is most apparent in the nipples, chest, 

back and forearms. Certain areas o f the skin are of more importance to heat balance, 

and the hands and feet play a particularly important role in regulating the body 

temperature. Although these areas appear relatively small (the hands = 5%, feet = 

7% approximately o f the total skin area)(8), the blood supply from full 

vasoconstriction to full vasodilation can change by 100-fold. Hands and feet can 

limit or increase the amount of heat brought to the surface. The amount of 

insensible perspiration per unit area of skin is a lot higher in the feet and hands than 

in the rest o f  the body, and the concentration of sweat glands is also higher in these 

areas.

Temperature changes in the environment and/or skin stimulate the 

nerve endings, sending a series of impulses along the afferent nerve, passing the 

posterior columns in the spinal cord and eventually reaching the sensory cortex in 

the brain. Along the way these impulses pass the hypothalamus, the main centre for 

temperature regulation in the body (see Fig. 2).

The nerve endings consist o f two groups, cold endings and hot endings. These 

endings known as thermal receptors are sometimes referred to as free or naked 

nerve endings and are sensitive to changes in temperature , see Fig. 3.(9) A fall in 

temperature stimulates the cold endings and an increase in temperature stimulates 

the hot endings. When we are in a state of thermal comfort we are unaware of the 

temperature of our own skin. It is not said “my skin temperature” feels 

comfortable.(5) The nerve endings do not act as thermometers, but are only 

indicators o f change, either an increase or a decrease in temperature.



5

Central temperature sensors are found chiefly in the hypothalamus, but there are 

also some in the spinal cord. It is thought that the spinal cord can also act as a 

temperature regulator in the event that the hypothalamus is damaged.

Heat-sensitive neurones are found in the anterior (preoptic) region of the 

hypothalamus. The neurones respond to changes in the temperature of the blood 

circulating through this organ. A change in blood temperature of as little as

0.01°C has been shown to stimulate this thermostatic mechanism.

Inputs to the hypothalamus from the temperature sensors arrive via various cells 

and are passed to centres controlling blood vessels, sweat glands, and the muscular 

activity o f shivering. Heat production may also change as well as heat loss, 

modified due to these inputs. This temperature control can be described as a 

‘closed loop’ with a feedback system(8) controlled automatically (see Fig 2).

Fig. 2 Schematic diagram of automatic, behavioural and technical 

temperature regulation in Man(8)
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A.
y  "  CELL B O D Y

— 4
Fig 3. Sensory Nerve ce ll<7)

Body temperature is also related to levels of exercise, however mean skin 

temperature can be related to environmental temperature. The regulating system 

controls deep body temperature during exercise allowing increases in temperature 

to specific levels depending on heat production. At the same time the active 

control of cutaneous heat loss related to exercise levels takes place. This pattern 

of regulation differs from that of a body at rest. Moreover this exercise effect 

differs again from situations where the body temperature is changed by other 

means, such as changes in the surrounding environment.

As mentioned before body temperature in general is 

controlled mainly by the ‘Hypothalamus’, situated at the base o f the brain, (see 

Fig.4) with a few subsidiary centres o f control in the cerebral cortex, medulla and 

spinal cord.

Thermal control is dependent on the balance between two centres, one functioning 

to prevent excessive heat loss, and the other to prevent excessive heat gain.

The control centre for the prevention of overcooling is situated in the Posterior 

region of the Hypothalamus, close to the “Corpora Mammillaria” , and the other 

lies in the Anterior centre between the “Optic Chiasma” and “Anterior 

Commissure”(see Fig. 4).

It is the Anterior (Preoptic) centre, which is concerned with the prevention of over­

heating. This centre controls evaporative cooling, and activity in this area induces 

panting in animals, and cutaneous vasodilation and sweating in man. It is thought 

that the anterior and posterior sites are connected, so that when one is active the 

activity o f the other is depressed and vice versa. When the two sites are in balance 

a normal sensation of thermal comfort is achieved.(3,4,5)
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This nervous system response fails if their capacity for adjustment is exceeded. If 

the core body temperature rises as a result of inadequate heat loss, sweating 

continues violently until this becomes exhausted, and subsequently over-heating 

takes over the body.

The reaction to a rise in external temperature is two-fold, firstly vasodilation of the 

small blood vessels in the skin occurs, increasing the blood flow and consequently 

increasing the amount of heat lost by radiation. Secondly there is an increase in 

the activity o f the sweat glands caused by both the increased blood flow through 

the skin and the direct stimulation of the glands by the parasympathetic nerves.

The effect o f strenuous exercise on the body is similar, a rise of the internal 

temperature of 1 - 2°C may occur and this rise in turn sets off the thermostatic 

mechanisms in the hypothalamus resulting in a 1 - 2°C drop in skin temperature.

Fig.4 Thalamus - Frontal section showing thalamus and associated 

structures.<3)
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1.2.3 FUNCTION OF THE SKIN

One of the largest organs of the human body is the skin. It occupies an 

area of approximately 19,354 cm2 and varies in thickness from 0.05 to 3.0 mm* \  

The skin is composed of two layers, the ‘Epidermis’ (outer layer) and the 

‘Dermis’ (inner layer). The functions o f the skin are complex. Skin helps to 

control body temperature , prevents excessive loss o f organic and inorganic 

material, stores chemical compounds, excretes water and salts, and receives stimuli 

from the environment.

The outer thinner layer or epidermis consists of epithelium and is cemented to the 

inner thicker layer or dermis. Within the dermis is an area known as the reticular 

region’ (see Fig. 5). This region consists of fibres which permit flexibility and 

strength in all directions. It also contains blood vessels, collagenous and elastic 

fibres, and between interlacing fibre spaces are adipose tissue, hair follicles, nerves, 

and sweat glands.(4)

Stratum co*newr*

I Stratum lucklum .
inot present on 

hairy skin)

EPIDERMIS -j Stratum granutosum

I StratumIStnUom «***»»'
germinativuitt Stratum .

1 Dasale

papillary region —r 
(layer) I

Arroctor piii muscia

Seoaceous (Oil) gland

Wau fool 
Hair loiiiae

-Duct at to.Ou# 
isweat) gland

Sensory rvorva 

Palmar, wrpuscte 

j '  Sudoriferous (sweat) gtand

Hair shad 

y Sweat pores

D ennai papula

R ee nerve uadmga 

Meissners corpuscle

•juuoaaneow*. • 
tissue |

DERMIS

Vein

Autonomic motor

Aotpose tissue

Fig. 5 Structure of the Skin and underlying subcutaneous layer (3)
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1.2.3.1 Sweat Glands

These are found throughout the entire body and can be found in 

abundance in the palms and soles o f the hands and feet. The density can be as high 

as 7620/cm2, with other areas of high concentration such as the armpits and 

forehead(4).

Each gland consists of a coiled ball embedded in the dermis with the ducts 

extending through the epidermis to the surface to form the sweat pores. The base 

of the sweat glands are surrounded by a network of small blood vessels. In the 

auxiliary region the glands are of the simple branched type, elsewhere they are 

simple coiled tubular glands (see Fig. 5).



10

1.2.3.2 Insensible Perspiration

Under ambient conditions in which the air temperature is 

about 26.5°C , the human body at rest does not generally sweat , and in the 

absence of active sweating the body may still lose heat by insensible perspiration. 

The word ‘perspiration’ has become confused over the years with the word 

‘sweat’ giving rise to the misconception that insensible perspiration and sweating 

have the same meaning. Insensible perspiration does not refer to the evaporation 

of liquid sweat, which comes from the sweat glands i.e. sweating. It refers to a 

diffuse evaporation of moisture vapour taking place all over the body surface 

almost continually from water which oozed through the blood vessels of the 

dermis by transudation to pass into the spaces between the cells of the 

epidermis.(5)

Insensible perspiration can be termed as heat loss by skin diffusion (Ed) [see the 

heat balance equation (equation [1], section 1.2.1)].

Water vapour diffusion through the human skin is one part of insensible 

perspiration which is not subjected to thermoregulatory control The intensity 

of moisture vapour diffusion is assumed to be proportional to the difference 

between the saturated water vapour pressure Ps (mm Hg) at the skin temperature 

and the partial pressure of water vapour Pa (mm Hg) in the ambient a ir.(2)

The main barrier to moisture vapour diffusion is provided by two layers inside the 

homy layer of the skin, namely the Stratum Comeum Conjunctum and the 

Stratum Rucidum,( see Fig 5). In these layers the resistance to moisture vapour 

diffusion is assumed to be large in relation to the diffusion resistance of the 

clothing worn.

A rise in skin or ambient temperature produces a rise in the production of 

insensible perspiration, however the rate of perspiration will decrease with a rise 

in relative humidity (r.h%) at temperatures above 18.3°C(8). It should be noted 

that when sweating starts insensible perspiration stops. This is because once the 

surface of the skin becomes wet the pressure gradient which brings about 

diffusion is reduced.
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Under ordinary indoor conditions approximately one quarter of the heat lost by 

the body is due to the liberation of insensible perspiration, some 1200 ml. in 24 

hours of which two thirds is derived from the skin and the rest at a rate of 

approximately 0.5g/min from the lungs. This is equivalent to a combined heat loss 

of approximately 20W/24h.

This equates to 32 ml/h. of moisture as water vapour is liberated from the whole 

skin area per hour, which in turn is equivalent to a heat loss of approximately 18.5 

kcal./hour.

Table 1.
Partition of heat loss by different routes. (8)
(the importance of various modes of heat loss for an adult male averaged over 24 
hours)

Mode of heat Loss Total heat loss (%)

Insensible water loss

by breath 11
} 25by skin 14

Radiation 37
} 66Convection 29

Warming of food and air and liberation of CO2

h—*
 

O
 

O

1.2.3.3 Function of Sweating

As previously mentioned the basic function o f sweating is 

to assist in the regulation of body temperature. There are two ways by which 

water can be transported through the skin, namely insensible perspiration as 

discussed in section (1.2.3.2) and sweating.

Sweating is controlled by the autonomic nervous system, which is divided 

into two parts. These are differentiated by the chemical liberated from the nerve 

ending when they are working. Nerve endings in the sympathetic system produce 

adrenaline. In the parasympathetic system acetylcholine is formed. However in 

the case of sweat glands although the nerves are anatomically derived from the 

sympathetic system, the chemical they liberate is acetylcholine and not adrenaline.
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Sweating is a sympathetic activity controlled by nerves which are 

cholinergic, adrenergic sympathetic nerves supply the sweat glands in the hands 

and feet. These sweat glands can take part in the sweating reactions to changes in 

the ambient temperature , however they also play a role in emotional responses 

and can show continuous secretion in the cold.

In man psychogenic sweating in response to emotional sweating is generally 

confined to areas of the palm, soles and axillas in a cool environment, while it 

appears on the whole body surface in a warmer environment. Furthermore as the 

body responds to mental or thermal stimuli, sweating increases on the general 

body surface, so that sweating on the palms and soles decreases or even 

disappears.

The composition of the sweat produced by these glands varies with the location in 

the body, reflecting the differences in structure. Sweat glands in the external 

genitalia and axilla regions produce a stronger smelling substance than that of the 

rest of the body. The cause of the secretions may also vary the composition, 

sweat produced by excess heat is more acidic than that produced by exercise, and 

the concentrations of salts and ions are also affected(7).

Sweat contains several waste products from the body, such as urea, breakdown 

products from muscle action such as creatinine and creatine, and most important 

of all salt (sodium chloride).(7)

Under normal circumstances salt is unimportant, but in hot environments where 

the amount of sweat is increased, the loss of salt is important. When the sweat 

glands are overworked the reabsorption of salt by the duct cells becomes impaired 

and this leads to further salt loss.

Salt (NaCl) and the products of muscle action are the main constituents of 

sweat with the addition of various minerals and amino acids. Fresh sweat is 

acidic, this is because it contains lactic acid and other amino acids which 

contribute to the acidic reaction. These amino acids join together to form 

peptides, polypeptides and protein molecules. The following amino acids have 

been detected in human sweat(7):

ARGININE ; HISTIDINE ; THREONINE ; TYROSINE ; VALINE ; 

ISOLEUCINE; PHENYLALANINE ; ASPARTIC ACID ; GLUTAMIC ACID ; 

CITRULLINE.
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Ammonia is also present , and this increases with bacterial decomposition of the 

urea in stale sweat. Small amounts of glucose are present, along with the 

following minerals, POTASSIUM, CALCIUM, MAGNESIUM, SULPHATES, 

PHOSPHATES and IRON, with sodium chloride as the most important mineral.(7)

1.2.3.4 Thermal Sweating

The aim of thermal sweating is to cool the body by increased 

evaporative cooling. Up to 1-2 litres or more of sweat can be produced in an 

hour by an individual acclimatised to working in a hot environment. However 

this can only be kept up for a short period of time. Under resting conditions 

sweat breaks out when the ambient temperature rises above 26.5°C. With an 

ambient relative humidity (rh) above 80% under these same conditions 

evaporation is impeded and the skin becomes covered in sweat. In tropical 

conditions with an ambient temperature of 37 - 51.8°C and a low r.h. of 5 - 

25% moisture evaporation is very rapid and sweat may only show itself as crusts 

of salt on the skin. With heat acclimatisation the salt concentration in the sweat 

decreases. The vapour pressure of sweat depends upon its salt concentration, 

which, on the other hand, increases during the evaporation process itself/9,4)

The sweating mechanism is easily fatigued. The ability to sweat at high rates 

decreases considerably during long exposures to heat stress near the limit of 

tolerance. It has been reported that sweating may decline by as much as 10 to 

80% depending upon the environmental conditions.<5)
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1.3 HEAT TRANSFER

1.3.1 MECHANISMS OF HEAT TRANSFER

Basic heat transfer can be described by the second Law of 

Thermodynamics which states : that free migration of heat energy is always in the 

direction from a body at a higher temperature to a body at a lower temperature(6). 

It is also known that mechanisms of heat transfer are influenced by the 

temperature levels in the system. At low temperatures conduction is the main 

mechanism of transfer. In the case of a liquid the main mechanism of transfer is 

by convection. However at moderate temperatures another mode of transfer 

becomes apparent. The agitation of molecules by temperature increases gives rise 

to radiant energy, emitted in amounts determined by the temperature level of the 

molecules.

If the mechanisms of conduction and convection are contrasted with thermal 

radiation, it is found that the former are affected by temperature differences and 

very little by the levels of temperature, whereas the latter increases rapidly with 

increases in temperature. Therefore at low temperatures conduction and 

convection are the chief contributors to heat transfer and at higher temperatures 

radiation is the controlling mechanism of heat transfer.

The heat transfer occurring, taking account of the method of heat exchange, can 

be written as a simple equation(6):

H  =  H r +  H e  =  H o +  H  v ---------------- [2]

where : H = heat exchange
H r  = thermal radiation 
He = thermal convection 
Hd = thermal conduction 
Hv = vaporisation
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1.3.1.1 CONDUCTION

Conduction can be described as the flow of heat through a medium 

to an object which is in direct contact with it. Conduction can take place in solids, 

liquids and gases, although in the case of gases, it occurs only in circumstances 

where convection is limited or prevented from occurring. In solids intermolecular 

radiation may take part in the exchange. Sometimes it is difficult to separate the 

radiation through the pores of a solid object from conduction. Therefore the 

internal radiation is generally included in the definition of thermal conductivity.

In an object of uniform physical properties it has been determined that the amount 

of heat which flows from a warm surface to a cooler one is proportional to the 

length of the path, the nature of the object, and the thermal gradient^’27}.

In equation form many authors have applied it to the problem of the conduction of 

heat from the interior of the body to the skin, and hence the following equation 

has been developed(6):

Hd = K A O V T i)  x t, gm . cal. ------- [3] 
d

where :
Hd = quantity of heat conducted
K = thermal conductivity, a constant which depends upon the material
A = area of the conducting surfaces
T2 and Ti = temperature of the warm and cool surface 
t = time
d = thickness of the conductor.

However the basic law of heat conduction is(27);

q = k _A_ At -------- [4] 
L

where : q = rate of heat flow per unit time
L = thickness of plate 
At= temperature difference 
k = thermal conductivity 
A = area in unit time.
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1.3.1.2 CONVECTION

The next mode of heat transfer, convection is the exchange of heat 

between hot and cold objects by the physical transfer of heat via the liquid or gas 

with which the object is in contact. This method of transfer depends upon the 

existence of a liquid medium between the hot and cold objects and the streaming 

movement of warm molecules from the hot to the cooler object.

Natural convection can be termed as the transfer of heat via the air flow near a 

heated object. Since the density of the air near the object is lower than the main 

body of air, the differences in gravitational forces cause an upward flow of air 

near the object. Heat is conducted through the gas layers and carried away by 

bulk motion or convection. Although termed as natural or free convection, both 

convection and conduction are involved in this mechanism. An equation for basic 

convection was proposed by Newton and this is often referred to as “Newton’s 

Cooling Law” (27);

q = hA At ------------- [5]

where : q = rate of heat flow per unit time
A = area in unit time, 
h = surface coefficient of heat transfer 
At= temperature difference
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1.3.1.3 RADIATION

Radiation is a method of heat transfer that can be defined as an 

exchange of thermal energy between objects depending on the temperature and 

the nature of the surface of the radiating object. At temperatures below 

approximately 537°C radiation is not visible to the naked eye, but is recognised by 

the feeling of heat when a hand is held near a slightly warmer object. When the 

quantity and quality o f radiant energy emitted per unit time is dependent solely on 

the temperature of a body the radiation is called “Thermal Radiation”. For total 

radiation the following equation can been used (27);

q = ct AT4 ------------- [6]

where : q = time rate of heat flow
a  = constant of Stefan-Boltzmann’s law 
T = Absolute temperature (K)

Agitation of the molecules o f a substance by heat emit radiant energy, the amount 

of which is determined by the temperature level and passage of the molecules for 

absorption by a distant receiver of the radiation. The temperature at which 

thermal radiation accounts for approximately one half of the total heat 

transmissions is dependent on the emissivity of the surface or the magnitude of 

the convection coefficient(27).

Radiation takes the form of electromagnetic waves, and there are several physical 

laws which describe this method of heat transfer. Some of these laws relate to 

temperature and the nature of the surface of the emitting object. When radiant 

heat comes into contact with an object some energy is absorbed by the object , 

some is transmitted through it, and the remainder is reflected away. A perfect 

“black body” is considered to absorb all, and reflect no, radiant heat(6,8 \
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1.3.1.4 EVAPORATION

Evaporation is described as the conversion of a liquid or solid into 

a vapour. This method requires heat energy and therefore some heat transfer is 

necessary. There are many types of evaporation. In general molecules from a 

liquid surface in contact with a gaseous environment leave the surface and mix 

with the gas. Conversion of a solid directly into a vapour, without the formation 

of a liquid is termed “sublimation” and is another type of evaporation.

In the case of a liquid transforming into a vapour ,the boiling of water may be 

taken as an example. Vapour forming at the liquid surface is invisible at first and 

becomes visible when the heat is increased. With further increases in temperature 

boiling starts and just below the water surface steam bubbles rise and burst 

forming vapour just above the surface. Due to the presence of solid particles this 

is called “nucleate boiling” sometimes simply called ordinary boiling. Another 

type of evaporation is described as “ Film boiling”, and this occurs when water is 

spilled on a hot surface and the water droplets ‘dance’ on the surface for some 

time without sensible evaporation occurring. Just below the surface of each water 

droplet a film of superheated steam exists and this serves as thermal insulation 

between the heated surface and the water, and this is what stops the rapid 

evaporation of the bulk of the water.(29)
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1.4 HEAT TRANSFER/TRANSMISSION IN THE HUMAN BODY

Heat transfer or exchange between the human body and the 

environment is a vital part of the human thermal regulatory system 

(Homeostasis). It may take place by one factor, or by a combination of 

conduction, convection, radiation and evaporation depending on the situation. 

Because of the possible combinations heat exchange between the skin and the 

environment can be difficult to define.

In the evaporation of vapour (sweat) from the surface of the skin heat is absorbed 

at the surface by the phase change from moisture vapour to liquid sweat that 

creates a temperature difference and initiates heat transfer. Even if the skin 

surface is not wet the evaporation of insensible perspiration affects the heat and 

mass transfer process. When the surface of the skin is not in contact with another 

surface conduction cannot take place. Radiation may also take place whenever 

radiation from the skin surface is allowed to radiate to other surfaces.(8,2)

DRY HEAT EVAPORATIVE
TRANSFER HEAT TRANSFER

Fig. 6 Diagram of heat transfer from the skin surface to the environment(38)
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1.4.1 CONDUCTION IN THE HUMAN BODY

This is a mechanism by which heat is exchanged directly from 

surfaces that are touching. Heat exchange in the regulatory system of the human 

body can account for approximately not more than 1 - 2% of the total heat 

exchange, and this only plays a minor role in heat exchange with the body surface
• • / o \

and its environment' ’ .

However it is thought that conduction does occur in heat exchanged within the 

body’s central ‘core’. The central core consists of the main organs of the body, 

heart, lungs etc. The surrounding tissue of the core forms a shell o f skin, fat, and 

superficial layers of muscle. This shell can be at varying temperatures and 

thickness depending on the heat exchange processes occurring at the skin surface 

in relation to the environment, and the metabolic activity in the body core (see 

Fig 7). A ‘comfortable’ condition is induced by a mean skin surface temperature 

of approximately 33 - 34°C. This is obtained by heat being conducted from the 

core through the tissues o f the shell to the surface. A covering of clothing 

provides further insulation and an intermediate layer between the skin and the 

environment.

In an equilibrium state, body heat exchange with the surroundings may be 

considered in two distinct parts.

Firstly there is heat exchange through the tissues and clothing, and secondly this 

heat is lost through transfer from the surface of the clothing to the environment, 

(see Fig. 6).
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Fig 7. Representation of the size of the central constant temperature ‘core’ in 

conditions ranging from hot to cold. ( In cool, neutral and warm conditions 

temperature regulation is affected by vasomotor control. In hot conditions, 

sweating becomes necessary, and in the cold , shivering is evoked.(8)
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1.4.2 CONVECTION

Convection is the exchange of heat or energy from a warm body or 

clothing with the surrounding air. This causes the surrounding air to become 

heated and buoyant and rise under the influence of gravity to form a natural 

convection boundary layer around the body (see fig 8 ).

Convection can occur freely in ‘still’ air or by forced convection when the body is 

either in an air stream or moving. About 15% of body heat can be lost to the air 

and approximately 3% to nearby cooler objects such as clothing.

a) b)

Fig 8. a) Composite Schlieren photograph of the boundary layer flow over a 

standing nude subject at a room temperature of 22°C.

b) Diagrammatic representation of the natural convective boundary layer 

flow generated around a standing subject.
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The exchange of heat between the surrounding environment and the human body 

is dependent on two factors ;

(i) the difference in temperature between the body surface and the air; which 

determines the heat absorbed or given up by a unit mass of air coming in contact 

with the skin;

(ii) the air movement; which determines the mass of air coming in contact with 

the surface.

Convection is a mechanism usually thought to operate only in a fluid, and of 

course the body is not a fluid. However the circulatory system within the human 

body does contain fluid of high thermal capacity which acts as a regulated 

convection system. This assists the equalisation, conservation, or dissipation of 

heat from the human body when needed.
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1.4.3 RADIATION

This physical process of heat loss is also an important mechanism. 

Heat loss occurs because the human body is surrounded by cooler objects. In a 

room temperature of about 21°C approximately 60% of heat loss through the skin 

can take place by this method. However heat loss by radiation usually occurs 

from freely exposed surfaces, and is not an active mechanism from skin surfaces 

close together, for example the inner aspects of the thigh and the axilla. From the 

heat equation viewpoint the skin can act as a “perfect black body” - i.e. a perfect 

emitter and absorber of heat , but this aspect is dependent on the colour of the 

skin. Of course this is of very little importance once the body is out of the 

sunlight.(5)

All radiant heat emitted from the human body lies within the infrared 

wavelengths. This type of energy is invisible to the human eye , and no human 

emits radiant energy in visible wavelengths.

In relation to ‘man’ there are two types of radiant heat exchange ;

(i) the high temperature, short wavelength radiation emitted by the sun or other 

objects e.g. open furnaces;

(ii) the low temperature, long wavelength radiation associated with the human 

body, objects such as walls, ceilings and hot water radiators (indoors), and the 

outdoor environment where temperatures in the existing scale are not very 

different from the human body.

Some objects termed “ grey bodies” reflect a small, but equal amount of light of 

all wavelengths. Objects which are black or almost black for some radiation and 

not for others are called coloured objects, and it is into this category that the 

human skin and most clothing fall. The human skin regardless of its actual colour 

is considered to approximate to ‘a black body’ for the range of wavelengths in 

which it radiates. However it is the area of the body exposed to the environment 

that is effective in contributing to heat loss by radiation. Areas such as under the 

arms, between the fingers, between the legs and under the chin radiate to adjacent 

surfaces and therefore cannot contribute greatly to the overall heat loss( 8 \
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1.4.4 EVAPORATION

An important method by which heat exchange occurs is through 

evaporation, which is the main mechanism by which the human body regulates the 

body temperature in warm conditions. A general definition is the diffusion of 

water vapour across the boundary layer once liquid sweat has been converted into 

the vapour phase.

In order to avoid overheating by excessive energy storage, excess 

heat energy must be dissipated by the evaporation of sweat. During strenuous 

activity a dominant role is played by evaporative cooling in maintaining a thermal 

balance or homeostasis. The sweat rate can be finely tuned over a wide range of 

energy production. Metabolic heat production can vary from about 100W at rest 

to over lkW during violent exercise. The sweat rate can reach levels of up to 1.5 

litres/h in unacclimatised people and as much as 4 litres/h for people acclimatised 

to heat. At these sweat rates the levels of maximum heat energy that can be lost 

are lkW and 2.7kW respectively . For each gram of water that evaporates from 

the body surface 0.58 Kcal of heat is extracted. In order for evaporative cooling 

to take place sweat must not run off the surface as liquid without evaporating.

The liberation of heat from the body by evaporation is wholly dependent 

on the rate at which the body can secrete sweat and the evaporative capacity of the 

environment i.e. upon the relative humidity (r.h.). In the event that the humidity 

of the climate or microclimate is, or becomes too high it may not be possible for 

the surrounding air to absorb water vapour at the same rate at which the skin is 

producing it. Thus sweat droplets will settle and roll off as liquid without 

contributing to the evaporative process, and as a result the heat extraction will be 

lower.

However there are less important mechanisms by which smaller amounts 

of heat can be lost. When the skin is not wet and active sweating is not present 

evaporation from the skin will still take place. It is a combination of diffusion of 

water vapour and evaporation of water during expiration that leads to smaller 

amounts of heat loss. This is known as insensible evaporation. Further heat is lost 

from the body during the warming of food, air taken in, and CO2 that is expired 

during respiration (see Table 1).(6)
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1.5 ENVIRONMENTAL EFFECTS ON THE BODY TEMPERATURE.

1.5.1 EFFECTS OF ENVIRONMENTAL HEAT.

Work performance can be greatly effected by environmental heat. 

In hot conditions the body temperature may rise and an individual may experience 

discomfort from increased skin temperature and sweating, and this can affect the 

performance of many physical tasks.

In some industries and public service organisations workers can be exposed to 

severe heat, usually in the form of radiation. In steelworks, ceramics factories and 

glassworks high levels o f radiant heat can be produced. In the service industry 

such as fire fighting, all the forms of heat can be present.

A further effect of high environmental temperatures is that as work continues the 

rate of sweating decreases. Sweat gland fatigue is instigated at an early stage with 

exposure to hot conditions ; the peak sweat rate is reached as soon as body 

temperature has risen. From here on the sweat rate begins to decrease. As work 

continues the body temperature will continue to rise and work performance will 

begin to decline. If a worker continues to work in a hot environment when their 

sweat rate is deteriorating they may become liable to a serious condition known as 

heat stroke. Experiments carried out in Singapore(8) revealed that performance in 

hot conditions may still fall even without a rise in body temperature ; one possible 

explanation could be that the increase in discomfort might distract the worker.
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1.6 COMFORT IN PROTECTIVE CLOTHING

1.7 HEAT AND FLAME PROTECTIVE CLOTHING

A wide variety of industries use heat and flame protective clothing to 

protect their employees from heat produced from a fire/heat flux. Most clothing is 

designed to protect the wearer for a few extra seconds to allow escape from a flash 

fire. The types of protective clothing available range for example, 

uniform/coveralls ; fire-fighter station uniforms ; fire-fighter turnout clothing , to 

chemical protective clothing (encapsulating suits).(21)

1.7.1 THE ROLE OF MOISTURE IN PROTECTIVE CLOTHING

1.7.1.1 THE EFFECT OF MOISTURE ON HEAT AND FLAME
PROTECTIVE CLOTHING.

The human body’s first line of defence against heat stress is to 

flood the skin with the excess heat, thus, as the temperature of the body core 

increases more heat is passed from the core to the skin. As a large proportion heat 

can be liberated by the evaporative process, sweat production is increased on order 

to increase sweat evaporation. Unfortunately evaporation through clothing is often 

extremely difficult, and almost impossible in the case of protective clothing as 

these are normally constructed to prevent heat and moisture entering the clothing 

assembly from the environment. As the skin approaches the core temperature we 

have what is called “ Convergence”. A person with a skin and core temperature 

difference as low as 2°C will probably collapse with heat exhaustion/ 11)

As internal body temperatures increase with the combination of external 

temperatures and metabolic heat production from the work being performed 

moisture evaporation will decrease as the amount of sweat produced on the skin 

surface increases. Once sweat is deposited on the skin as liquid moisture 

evaporation will effectively cease. There is now a layer of liquid between the skin 

surface and the first layer of clothing. Evaporation is not taking place and therefore 

the removal of heat is severely reduced, and some cases not occurring(8).
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Most articles of heat-and flame-protective clothing are constructed to 

prevent heat, flame and moisture/liquid from entering the clothing system for a 

short period of time, but not indefinitely. The presence of water on the outside of 

the clothing system may have some effect on the protective efficiency of the 

system, however the presence of liquid within the clothing system so close to the 

wearer, must have a more detrimental effect on the wearer.

Thus the role of moisture/liquid is two-fold. In the form of moisture it is initially 

essential for the removal o f excess heat. However excess moisture which turns into 

liquid does not contribute to the body thermoregulatory system, and its presence in 

the microclimate may have a detrimental effect on the wearer.
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1.7.1.2 MICROCLIMATE v ENVIRONMENTAL CLIMATE

The environmental climate can be described as a combination of 

thermal properties such as temperature , air movement, radiation intensity and 

humidity. The microclimate is normally that intermediate area between the skin 

and an intermediate medium, i.e. clothing, however it can also be the area between 

clothing/ fabric layers, thereby creating multiple microclimates. In most cases of 

single layer structures the skin temperature is higher than the external ambient air 

temperature , therefore sweat evaporates from the skin surface, condenses on the 

fabric surface, spreads throughout the fabric and finally re-evaporates to the outside 

environment, (see Fig 9).

Fig. 9 Buffering of evaporated sweat between clothing-Iayer'(25)

Of course the atmosphere within the various layers in a multi-layer structure 

can be vastly different (see Fig. 10). For example the area nearest the skin, the first 

microclimate can be made up three different moisture concentrations, and 

Hong et a l(20) describe these moisture concentrations as follows:
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i. - Cs - the area nearest the skin, the moisture concentration to be assumed as

fully saturated;

ii. - Cm - the next area just above this is described as the microclimate between

fabric and skin surface;

iii. - Cj - and this is the layer at the inner fabric surface (see Fig 10)(20>

Ce

i i i 
<1

E

i

Co

Cb ^
F

Ci

cm

___________ i

%
...................................... i

1

M

L _ _ ......... ..

CS 1

FABRIC

M MICROCLIMATE

SKIN

Fig. 10 Cross-sectional representation of the Skin-Microclimate-Fabric- 

Environment System<20)

where :

C0 -  Moisture concentration at the outer surface.

Ce - Moisture concentration of environment far above clothing system, this 

remaining a constant.

Cb - Moisture concentration in the bulk of the fabric.

qs - moisture flux from the skin.

qf - moisture flux along the fibre surfaces.

qa - moisture flux through open air spaces in the fabric.

qt - moisture flux from the fabric to the air.
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These multilayer surfaces must be considered as three-dimensional (3D) objects. 

The skin surface is not smooth and flat, but is made up of capillary bridges, 

grooves and hairs. Fabric surfaces are also 3D in configuration and are not smooth 

and flat, but also made up of surface fibres with trapped air between them(20’46,47). 

Following the conclusions of Hong et al.(20) a proposed multi-layer system devised 

in this work is described diagrammatically in Figure 11, with the moisture 

concentration decreasing from skin to microclimate(l) through microclimate(2) 

into the air of the outside environment.
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Fig. 11 Proposed model of a theoretical Microclimate in a Multi-layer
assembly
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1.7.1.3 HEAT STRESS

In the absence of sufficient body cooling, rapid 

temperature rises cause “Hyperprea” and slow deep breathing , this lowers alveolar 

CO2 tension and raises the blood pH. Blood pressure may be lowered with 

exposure to mild heat, but bodily exposure to more intense heat causes a rise in the 

systolic pressure, and the diastolic pressure may also increase but to a lesser 

extent. As the body temperature rises sweating begins to decrease, and if cooling of 

the body is not achieved sweating can then be inhibited. The individual may have 

dry skin with a rapidly rising body temperature, and heat stroke will then become 

inevitable. This is a dangerous condition and once the body exceeds a temperature 

of approximately 42°C death may be likely. At 43°C and above permanent brain 

damage can occur, while recovery from temperatures of 44°C and above are rare 

(see Fig. 12). All these symptoms come under the heading of heat stress, and 

prevention of this condition can be greatly influenced by the garments worn during 

situations requiring heat and flame protective clothing.*8’

NORMAL

Range Exercise

at rest

34 35 36 37 38 39 40 41 42 43 44 45 °C

Fever L
Hypothermia

Death

Heat illness and 
fever therapy Death

Cold exposure and 
surgical hypothermia

Hyperthermia

ABNORMAL

Fig 12. Range of body temperature. (The usual range is from approximately 36 
to 40°C ; at temperatures above 41 °C there is an increasing risk o f death.)(8)
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Ten minutes working in a fire-fighting situation can be equal to 8 hours 

working with a pick and shovel. After 10-12 minutes a person can become 

completely exhausted even if they are in good physical condition. However heat 

stress is not a condition limited to fire fighters both in the public and the private 

sectors, but chemical emergency response, foundry work, waste incineration and 

boiler room workers are also all subjected to heat stress, even fighter pilots/10’

Heat stress can occur from the interaction of three factors : the heat produced 

during work, the clothing worn during the work , and the operational environment.

A fire-fighter can produce 100 Watts of heat at rest and 150 Watts in a fire 

situation.(1.163 watts = 1000 calories/ hour). The heat production rate at a fire 

scene has been estimated at a time-weighted average of between 300 and 400 

watts. This estimate includes short periods of light activity (150W) ; longer periods 

of moderate work, such as laying hoses, or building searches wearing BA 

equipment (250W) ; and shorter periods of peak work, such as hauling hoses 

upstairs, working with ladders and venting with axes (500W or m ore)/12,54’

Protective clothing designed to protect people from increases in 

environmental temperatures, also increases body heat production. Insulation from 

temperatures greater than skin temperature is essential, however at air and radiant 

temperatures less than skin temperature this insulation may prevent the body from 

losing this extra heat produced from greater physical activity. In addition protective 

clothing may also interfere with the evaporative cooling process of the body.

Lastly the possible environment at a fire scene can be at air temperatures 

approximating 260°C (500°F), but has been known to reach 982°C (1,800°F)(I2). 

The importance of comfort is borne out in an US report compiled by the USFA 

(United States Fire Administration) in 1990 stating that of 105 line-of-duty deaths 

in 1990, in the USA only one was caused by thermal injury sustained from a fire. 

More than 50% of the deaths were caused by heart attacks/13’ The comfort 

properties of protective clothing can thus be designed to help to relieve physical 

stress, or contribute to heat stress by trapping body heat.
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Past studies have determined that a reduction in heat stress can be 

achieved, in a number of ways. Three of these approaches are directly related to 

the design and construction of protective clothing, and these are :

• Reduction o f dynamic loading ( restriction of body movement by the garment)

• Reduction o f static loading (garment weight).

• Use of materials that provide high levels o f moisture vapour/liquid movement 

in conjunction with acceptable levels of thermal insulation.

The experimental project described in this thesis is concerned with the third 

approach , namely , to prevent high levels o f heat stress it is important to prevent 

the wearer from environmental and metabolic overheating. This would mean 

aiding the natural cooling system of the human body by assisting the movement of 

moisture/liquid within the clothing system.

At present heat-and flame-protective clothing are generally designed as a multi­

layer system, usually incorporating three layers, with each fabric layer performing 

a different function in the protective garment. This multi-layer structure comprises 

an outer waterproof/flameproof layer ; a moisture barrier layer ; and a thermal 

barrier layer. What is worn underneath the protective garment can be almost as 

important as the protective garment itself.<48,49)

Research in recent years has determined that secondary protection in conjunction 

with the normal protective outer garment can provide an ‘optimum protective 

ensemble’ as described by Lord <50). The combination of the fabric properties of 

the clothing worn beneath the protective outer layers can be very important and 

should be considered with the protective outer garment as an overall system.

It is considered that the right combination of fabric layers would help in the 

reduction of heat stress, and as a potential transport system for reducing the amount 

of heat produced and stored within the inner layers o f this clothing system.

Therefore an understanding o f the mechanisms of liquid/moisture transmission 

between fabric layers is important in conjunction with the factors which influence 

these properties.
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This project investigates the mechanisms and factors which influence 

liquid/moisture transmission in multi-layer fabric systems. Knitted fabrics have 

been the fabrics most worn underneath protective clothing, in the form of tee-shirts 

and under-wear.

With this in mind weft knitted fabrics have been the main focus of this 

experimental investigation.
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CHAPTER 2

2.0 LIQUID/MOISTURE TRANSMISSION IN TEXTILE MATERIALS

2.1 MECHANISMS OF LIQUID/MOISTURE TRANSFER

2.1.1 Migration

Migration is the transport of either liquid water or water 

vapour molecules along a fibre surface. The ability of a fibre to facilitate this is 

dependent on its surface hydrophilicity or affinity for water (see Figure 14). Other 

factors include the textile finish applied and the fibre substrate/33)

Since lm2 of substrate can contain approximately 100m2 of potential fibre surface 

a great deal o f water can be transported via a textile by this mechanism/33} 

However this is also dependent on the amount of fibre surface available for 

sorption.

2.1.2 Capillary Action

Capillary action describes the water rise in a narrow tube, 

fissure or channel. The interstices in a fabric represent the capillaries or channels 

within a fabric system. This mechanism works on the principle that, the narrower 

the capillary tube, the greater the capillary action.
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DIFFUSION THROUGH PORES

S U R R O  U N D IN G  A TM O S P H ER E

YA R NI
FIBRE SPREADING
/ W  I I

CAPLLAKY /FILL̂PICICONDEMSATI

ABSOR PTIO N
AND
MIGRATION

MICROCLIM ATE

VAPOURISATION
OF
SWEAT

/ / / ' / / / /  m I TTTJTi 1
Fig. 14 Mechanisms of Moisture transport in Textiles.(33)

2.2 LIQUID / MOISTURE TRANSFER THROUGH SINGLE & 
MULTILAYER STRUCTURES

Liquid transmission through clothing assemblies can be made up of 

a series of sub-mechanisms based on the types of wicking processes that take place 

within a clothing system.

The experimental work described in chapter 3 and 4 of this thesis is concerned 

initially with horizontal transplanar wicking, however in any clothing system a 

number of wicking processes take place at the same time, all of which may 

contribute to liquid transfer. These are listed below :

(i.) transplanar wicking in the horizontal state ;

(ii.) transplanar wicking in the vertical state ;

(iii.) planar wicking in the horizontal state;

(iv.) planar wicking in the vertical state ;

(v.) transplanar wicking in the horizontal state with interfabric movement;

(vi.) transplanar wicking in the vertical state with interfabric movement;

(vii.) planar wicking in the horizontal state with interfabric movement;

(viii.) planar wicking in the vertical state with interfabric movement.

All these processes can occur at any point in a clothing system either separately or 

in combination, whether the human subject is in a horizontal or vertical state.
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All these processes produce a very complex transport system, see Fig. 15.

Fig. 15 Wicking mechanisms involved in a Clothing system

2.2.1 WETTING AND WICKING

Wetting and wicking are complex phenomena and are intrinsically linked 

with each other, and this is particularly so when a fibrous assembly is involved 

such as a fabric.

Wetting is described as the displacement of the fibre-air interface with a fibre- 

liquid interface. The definition of wicking or wickability has changed slightly over 

the years, and become more refined. Wicking was defined as “the ability to 

sustain capillary flow ” by Harnet and Mehta(22) in the 1980’s , while later Kissa 

(15) described it as “A spontaneous transport of liquid driven into a porous system 

by capillary forces”, but also says “ wicking is a result of spontaneous wetting in a 

capillary system.” The latter definition incorporated the two methods of liquid 

transmission ,and stated that wetting precedes wicking.

However, in general, wetting describes the mechanisms that occur in a substrate 

during its initial contact with a liquid, with wicking describing the processes that 

occurs after wetting
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2.2.1.1 WETTING

Spontaneous wetting is a dynamic process and is the migration of 

liquid along the surface of a fibre or solid to reach a state of thermodynamic 

equilibrium. Forced wetting involves mechanical forces to increase the fibre-liquid 

interface beyond the static equilibrium. Wetting involves the replacement of air 

with liquid and various mechanisms such as immersion, adhesion, spreading, and 

capillary penetration may occur simultaneously.

Many studies have been carried out to apply a number of equations to describe the 

various stages of wetting. For example the solid-liquid boundary can be described 

by the Young-Dupre equation/ 14,65)

Ysv - y  s l  = y  l v  cos 6 ------------- [7]

where y denotes the interfacial tension ; the subscripts S,L, and V denote solid, 

liquid, and vapour surfaces respectively, and 0 is the equilibrium contact angle.

The term y l v  c o s  0 has been called the specific wettability or adhesion 

tension (14>i5,61,62,63,64) Although this equation is only relevant to a drop of liquid 

resting on a smooth homogeneous impermeable non-deformable surface, this 

equation is widely used to explain the wetting and wicking mechanisms in textiles. 

However it must be noted that when the contact angle is made the focus of the 

wetting process the conclusions drawn may be incorrect, for as Kissa (15) points 

out, textile fibres do not have ideal surfaces. Wetting is further complicated by 

surface roughness, heterogeneity, and the fact that the whole wetting mechanism is 

dynamic.

The contact angle thus becomes a dynamic contact angle in such systems 

corresponding to the instantaneous velocity of a moving meniscus.

Therefore the contact angle formed by a static liquid as used in the Young-Dupre 

equation can be very different from a dynamic contact angle (i.e. the contact angle 

of a moving liquid front).
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On the other hand , Ghali et al.(15) describe wetting and wicking as one process, 

mathematically represented by Darcy’s equation :

k dpr
V  = --------  ----------  [8]

p. dx

This equation relates to the liquid flow in response to the capillary pressure where:

V = velocity of liquid (cm/s)
k = permeability (cm2)

= (g/cm s) viscosity of advancing liquid
pc = capillary (g/cm s2)

In the case of fabrics the wetting ability of a fabric is almost directly linked 

to the wetting properties of the related fibres, and in turn these are related to the 

fibre surface and the liquid properties. Using these properties Hsieh (17) theorises 

that the wetting characteristics of 100% cotton , polyester, Nomex, viscose and 

secondary cellulose acetate woven fabrics can be derived from the characteristics 

of their single fibres, demonstrating that the wetting property of a single fibre is 

similar to the wetting properties of the fabric of the same fibre type.

This property is described by its liquid contact angle07}:

0 = co s1 Fq

PY --------- [9]
where, p = fibre perimeter.

F© = Force exerted on a fibre while in contact with a liquid 

y = Liquid surface tension

Experimental results from Hsieh demonstrated a straight forward method for 

determining fabric wetting contact angles , offering the advantage of simultaneous 

detection of dynamic liquid transport.(17,43,74)
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2.2.1.2 WICKING

As mentioned before wetting precedes wicking, and in order to 

spontaneously transport liquid within an textile assembly, wetting must first occur. 

Once again there are various equations associated with this phenomenon. Kissa 

explains that for the process to be spontaneous, free energy has to be gained. This 

occurs when the interfacial energy of the fibre surface in contact with vapour (air) 

and liquid, ysv, exceeds the interfacial energy between the liquid and the fibre 

surface, ys l  (14,65 ) -

Wp= ysv - ysL ------------------------ [10]

where Wp denotes the work of penetration, and the measure of energy needed for 

capillary penetration.

Due to the difficulty in measuring ysv and ysi. independently Kissa has used the 

Young -  Dupre equation [Equation 7], which expresses the difference between ysv 

and ysL. With measurable quantities yl v  and Cos 0 [Equation 10] suggests that 

when Wp is positive for spontaneous capillary penetration, Jsl C os 0, must also be 

positive. ylv ,  is always positive, so therefore Cos 0 is positive also, and the 

contact angle 0 must be between 0° and 90°. Drawing to a similar conclusion in 

relation to capillary penetration with capillary pressure the Laplace equation 

[equation n ] (14’15> has been used to describe the forces occurring in a capillary 

when a liquid wets the walls of a capillary and a meniscus is formed. The pressure 

difference AP across the curved liquid -  air interface caused by the surface 

tension of the liquid can be denoted by the equation : (1415’70)

AP = yLVC/Ri + l/R2) ---------------- [11]

In a capillary with a circular X-section, the radii of the curved interface Ri and R2 

are equal.

A P = 2 y LV/ R  --------------------- [12]

In the case of a completely wettable capillary wall, the assumption is that the 

liquid-vapour interface is a hemisphere and R = r , where r = capillary radius :



42

A P = 2 i Lv i r  ----------------------[13]

In the case of a capillary wall that is not completely wettable :

r/R = Cos 6 --------------------------[14]

substitution in equation 14 gives :

AP = 2 yLV Cos 91 r -------------------------[15]

and so for the capillary pressure to be positive Cos 6 must also be positive , and 

therefore the contact angle must be between 0° and 90°. Capillary pressure is 

inversely related to capillary radius. Because capillary spaces in fabrics are not 

uniform an indirectly determined capillary radius is used for radius ‘r’ (14,15).

The theory of wicking has been described as follows ; in a single capillary 

the liquid front advances stretching the meniscus of the liquid until elasticity and 

inertia o f the flow are exceeded. The meniscus then contracts pulling more liquid 

into the capillary thus restoring the equilibrium state of the meniscus. This may 

occur in a series of jumps due to the irregularity of capillary size. Theoretically 

capillaries have been visualised as a series of parallel capillaries in a fibrous 

assembly to facilitate this theory in fabrics.

The textile fabric can be described as three capillary systems by which liquid may 

be transported into the main fabric matrix. This system is mutually perpendicular, 

with each system representing the warp directions in the fabric plane (Cw) , the 

weft direction in the fabric (Cf), and the direction through the fabric thickness (Ct) , 

see Fig. 16.

FABRIC REPRESENTATION

Fig. 16 A theoretical representation of Capillary systems within a fabric
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It is through these three types of capillary system that liquid travels and the 

wicking process is dependent on the characteristics of (Cw), (Ct) and (Cf)(39).

The capillary system of the fabric matrix can be vastly different from cylindrical 

capillaries. These may be neither cylindrical, or closed at either end or sides due 

to their formation by inter-fibre or inter-yarn spaces, see Fig 17.

Channels leading from one face of the fabric to the other differ from the capillaries 

found running from one end to the other of the fabric plane. This difference in 

geometric construction and therefore capillary characteristics causes differences in 

capillary migration.

Wicking is affected by the shapes and surfaces of fibres, although in the 

past the belief that fibre shape does not affect wicking is now only thought to be 

true for single fibres. The shape of a fibre affects the yarn and in turn the fabric, 

influencing the size and geometry of the capillary spaces within the fibres and the 

fabric. The rate of wicking is determined by the geometric irregularities present 

which allow the meniscus to reach an edge and flatten.(34)

Work carried out by Hsieh(17) on liquid transport in a porous medium has 

determined that pore size distribution and connectivity have a great influence. An 

important aspect is the connectivity, or the geometric pathways by which the 

pores(capillaries) are interconnected. However pore connectivity cannot be easily 

quantified or described.



The event sequence for liquid advancing through a pore with curved walls as this 

would occur in a fibre, yarn or fabric may be represented by figure 18:

a) just before contact;

b) configuration can not occur unless the advancing contact angle were equal to 

180°;

c) configuration has the proper angle (bearing in mind that the liquid is being 

forced to m ove);

d) the meniscus is curved to satisfy the contact angle requirement and enters the 

pore. No matter what the value of the contact angle is the meniscus shape must 

be concave*18).

_______ a m

□ 1 / S O L ' D

__________-X  v __________^T?T7TT77TT7TT77 /7'i" j'7.- /  ...
L I Q U I D

AIR

b) \  SouD
J  \

T/ . . 1 v  / > ,v v  r—
nom c

44

A I R

A  /
1 ' SOLIO i \

7 T   ̂ > f < ■
\ . 7>r r n i  f

LIQUID

AIR
' \

L I Q U I D

Fig. 18 Initial contact of a liquid with a doughnut-hole-shaped pore.*18*

(a) Liquid surface just before contact with the pore, (b) Not acceptable due to 0a 

constraint, (c) Not acceptable because portion of liquid mass cannot vanish, (d) 

Acceptable because liquid mass is conserved and Ga constraint satisfied.
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As the liquid front advances up the pore or capillary the meniscus changes 

shape from concave to convex (see Fig. 19).

AIR

through a pore with an hourglass profile.(,8)

Inter-fibre spaces (pores) may or may not be interconnected and their 

distribution will also affect the liquid movement towards smaller pores , this can 

lead to the draining of previously filled spaces in preference to these smaller pores. 

The occurrence of fibre swelling also affects capillary liquid capacity in inter-fibre 

spaces, and the reduction in wet fibre strength can lead to collapsed pores and a 

decrease in liquid holding capacity.

Wicking in a fabric may occur from a limited or unlimited amount of water. 

Wicking from a limited reservoir may take the form of a drop of water on a fabric 

surface, while wicking from an unlimited source can be described as ‘immersion 

transplanar wicking’ or ‘longitudinal wicking’. Based on the interaction of the 

fibres Kissa(14) has further developed these wicking processes into four categories : 

I : Wicking of a liquid - no significant diffusion into the fibre surface.

I I : Wicking accompanied by diffusion of the liquid into fibres or into a finish on 

the fibre

III : Wicking accompanied by adsorption on fibres.

IV :Wicking involving adsorption and diffusion into fibres.
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2.2.2 FACTORS INFLUENCING WICKING

Wicking in general is influenced by the inter-fibre spaces. These in turn are 

affected by the fibre type and the substrate assembly or structure. The fibre length, 

width, shape and alignment all have a great influence on the quality of the capillary 

channels in the inter-fibre spaces.

The type of assembly or structure (i.e. nonwoven, woven or knitted) of the 

substrate will determine the alignment, distribution and size of the pores present. 

For example in woven structures the capillaries will be directed along the warp, 

weft and in a smaller degree the thickness of the fabric. These pores can be intra­

fibre, inter-fibre, and inter-yarn with the smallest being intra-fibre pores. These can 

be discontinuous between adjacent fibres. The density and structure of yarns in 

woven fabrics can greatly influence the dimensions and structure of inter- and intra­

yarn pores. Inter-fibre pores can be either inter- or intra-yarn structures. Inter-yarn 

pores can be similar in size to fibres and in some cases larger than yarns.

The overall complexity of fabric pore structures must therefore include the 

complex structural variables, pore size distribution, pore connectivity and total pore 

volume. In spite of these complexities Hsieh has combined several fabric properties 

to describe the porosity of a fabric as the following equation[Equation 16] 

demonstrates*I7>;

POROSITY ((f)) = 1 - medium vol. ------------  I 16 ] 

bulk vol. 

= 1 - P b

Ps

where Porosity is defined as the fraction of void space in a porous medium.

For fabrics, Pb = fabric density (g/cm’)

Ps = fibre density 

Pb = fabric weight (g/cm2) 

thickness (cm)
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Studies carried out on knitted fabrics include Robinson’s work(82> on knitted 

interlock fabrics using methanol as the wicking liquid and experimenting with 

vertical wicking. He found that Washburn’s equation(40) [equation 17] might not fit 

the wicking process in these fabrics due to :

• capillary channels in fabrics do not have circular cross-sections and are not 

uniform in cross-section along their length ;

• capillary channels differ in size and shape, and were interconnected.

ds = y r  cos 6 - gpr2 --------------  [17]
dt 4tjS 8 jj

where y = the surface tension of the liquid 

ri = the viscosity of the liquid 

6  = the contact angle P = density

S = the distance travelled by the liquid g = gravity

Law (76) also modified Washburn’s equation<40) (the hydrodynamic model) in order to 

fit results from horizontal wicking experiments on different types of knitted 

interlock fabrics in order to produce a prediction model which was :

x = at‘/2 + bt + ct2 --------------------  [18]

where x = wicking distance 

t = wicking time 

a = rate constant 

b and c = fitted parameters

Maroufi(78) also used a similar test method and hydrodynamic model to study cotton 

interlock fabric after various finishing treatments. Observing the effect of different 

loop lengths, it was found that finer yams with longer loop lengths wicked faster 

than fabrics with shorter loop lengths. Coarser yams in fabrics with shorter loop 

lengths wicked faster than fabrics with coarse yam and long loop lengths.



48

He also found that the equation fitted well with the vertical wicking performances of 

interlock fabrics.

The same apparatus was also utilised by Sungnoo1 ) to observe vertical planar 

wicking in single jersey 100% cotton fabrics and cotton/elastomeric fabrics. 

Sungnoo investigated the effect o f loop length and fabric direction on vertical planar 

wicking. Results from these tests agreed with Maroufi’s observations with regards 

to loop length. It was determined that liquid flow occurred mainly in the intra-yam 

channels in fabrics with long loops. Also at a particular loop size value the increase 

in loop size would begin to create a decrease in wicking rate. This was because the 

capillary pressure in the intra-yam channels of a long looped fabric was higher than 

the pressure in the inter-yarn channels (loop spaces), this is borne out by equation 

19.

Capillary pressure = Capillary force
Area 

= 2n r y cos 6
7i r2 -----------------[19]

= 2ycosG 
r

where liquid surface tension = y ; density = p  ; the advancing contact angle — 0 , 

flows vertically through a capillary tube against gravity g ; the driving pressure = 

ZIP ( is  the capillary pressure minus the hydrostatic pressure)

Hydrostatic pressure = gpS, where S = distance travelled by liquid, therefore

AP = 2ycos0 - gpS --------------------[20]
r

Also see equation 15.
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Little work has been published on fabric movement during wicking, however 

this must be taken under consideration if one is to try and describe the processes 

occurring during garment wear.

Fabric movement during wear is a complex series of component movements. These 

can consist o f movements parallel and perpendicular to the skin, and are further 

complicated where several layers are incorporated within a clothing assembly. 

Barnes and Holcombe(36) investigated moisture absorption during fabric movement, 

and developed a model to describe one mode of movement, assuming the clothing is 

parallel to the skin. This can be seen in Fig. 20.

Ambient
Environment

POSITION 1 posmoN 2

Fig. 20. A simple mode of fabric movement. The fabric is assumed to move 

repeatedly between the two positions shown above, spending a period tp in 

each position. The vapour resistance between the skin and fabric is ‘s’, and 

between the fabric and the ambient environment it is ‘a’, with subscripts to
• •  ( 3 6 )

differentiate between values in the two positions.

Barnes and Holcombe determined for an ideal sorptive fabric that moisture 

transport increases with movement. However in the case o f nonsorptive fabric, 

fabric movement had no effect.
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2.2.2.1 PLANAR WICKING

In most cases wicking in the direction of the fabric plane is where 

wicking occurs in a fabric hung in a vertical state. This method can also be known 

as longitudinal wicking. The fabric is partially immersed in a liquid to wet the 

fabric, and liquid transmission occurs up the substrate. There have been many 

studies carried out on this, with the distance travelled by the liquid front or the 

amount o f liquid absorbed by the substrate being measured *

In a vertically held fabric, wicking will be affected by gravity, and once capillary 

forces are balanced by the hydrostatic head, wicking ceases. The distribution of 

liquid in a vertically hung fabric may exhibit a pattern, especially when wicking is 

accompanied by absorption into the fibres.

2.2.2.1.1 Wicking From a Limited Reservoir

Wicking from a limited amount o f liquid such as a drop o f water on 

the surface o f a fabric is made up of two phases with different kinetics 

Firstly the drop of liquid spreads and penetrates the fabric surface. If most o f the 

water remains on the top surface o f the fabric, capillary penetration is kinetically 

similar to that which occurs in wicking from the unlimited reservoir. During the 

second phase all the liquid is now within the fabric and spreads radially under 

capillary forces. Kissa defines this area o f spread by the following equation (14’55>56):

A = K (y / ti y* V" t " -------------- [21]

where V = initial volume o f drop

H ,m,n = are constants (with the value o f (i = 0.33; n = 0.33 ; m = 0.67)

K = capillary sorption coefficient which depends on the dynamic 

contact angle, the thickness and permeability of the substrate.

A = area covered by spreading liquid y = surface tension o f the liquid

r| = viscosity o f liquid t = spreading time
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PHASE I

-■ -  : r .......... ........................ -

.
________ :___ :_____________________

PHASE II

Fig. 21 Schematic illustration of the two phases of drop spreading of liquids 
in fabrics.(37)

It is at the first phase that the area o f the spread is proportional to the square root of 

time. At the second phase the constants are 0.3 ;0.3 ;0.7 (p ,n,m,) respectively for 

impermeable fibres only. For permeable fibres diffusion o f the liquid into the fibres 

must be taken into account and results in the decrease o f ‘n’, the increase o f ‘m’ and 

c(i‘, but all three parameters remain constant for specific fibre-liquid system.0 4,5 5,56)

2.2.2.1.2 Wicking From an Infinite Reservoir

This can refer to wicking o f a fabric during complete immersion.

This causes the displacement of air from the inter-fibre and inter-yam spaces, and 

allows the liquid to enter the fabric matrix. In a small sample this would cause it to 

sink in a large reservoir. Transplanar and planar wicking can also be included in this 

category.
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2.2.2.2 TRANSPLANAR WICKING

Liquid transport perpendicular to the plane of the fabric, known as 

“Demand wetting or wettability”, has also been termed by Miller and Tyomkin* as 

“spontaneous transplanar liquid uptake”. This involves the transmission of liquid 

through a fabric from one side of the fabric to the other. Many tests have been 

developed over the years to investigate this phenomenon. Wicking has been split 

into two mechanisms described as spontaneous and forced, (see Fig. 22).

(19)Fig. 22 Liquid/air displacement processes.

Miller has also used Darcy’s equation to describe wicking by forced flow 

into a porous medium<19):

dV /  dt = (KA /  T]%) A P ---------  [22]

where dV /  dt = volumetric rate o f penetration, A = macroscopic cross-sectional 

area o f the network, K = permeability constant, 7) = liquid viscosity, % — linear 

distance o f penetration, and AP = external driving pressure.
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Since liquid is displacing air within the network, the external AP will be 

reduced by the capillary pressure if the dynamic contact angle is less than 90°, and 

reduced if 0a> 90°.

2.3 MEASURING LIQUID/MOISTURE TRANSMISSION

Over the years the transmission of liquid within fabrics has produced a 

variety o f experimental procedures for measuring wicking and wetting. Most have 

involved single layer investigation with some progressing to multi-layer structures, 

but almost none involving fabric movement during wicking.

2.3.1 PLANAR WICKING

A survey conducted by Harnett and Mehta<22) in the early 1980’s on 

experimental methods for testing the fabric wicking process brought to light a series 

o f methods that demonstrated the wicking mechanism.

Wicking in the planar direction was tested by the longitudinal wicking ‘strip’ 

test, using two standards available at that time, BS.3424 (method 21) 1973 - 

Determination o f resistance to wicking, and DIN 53924 (1978) Determination o f the 

rate o f absorption o f water by textile material (height o f rise method).

DIN 53924 used a short test period o f 5 minutes maximum ; used for rapid wicking 

fabrics. However BS.3424 had a very long test period of 23 hours, used for coated 

fabrics with very slow wicking rates.

However because these standards could not be used to compare heights o f rise in 

different fabrics, unless the fabrics were o f similar thickness and structure, the 

weight o f liquid gained by a fabric at the end of the test was calculated and 

expressed as a percentage o f the total fabric weight. (See Fig. 23)

Hollies et al<23) developed an alternative method, using a horizontal strip to measure 

the mass transfer rate and the simultaneous rate o f the advance o f the water front, 

(see Fig. 24).

c
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TEST FABRIC

Fig. 23 Strip Test (22)

RESERVOIR

Fig. 24 The Horizontal Water Transport Apparatus(23)
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Spot tests were also developed to test fabric wicking, and a modification of 

BS. 3554 (1970) - Determination o f wettability o f textile fabrics and AATCC 

method 39-1977 - Evaluation o f wettability, have been devised along these lines. 

Liquid is delivered as drops from a 6mm height on to a horizontal fabric sample. 

The time that the drop takes from reaching the fabric surface to its disappearance 

by wicking into the fabric is measured and recorded, (see Fig. 25). This method was 

also modified (22) to replace the drop by a continuous supply of liquid. This was 

achieved by a saturated fabric wick or capillary tube in contact with the fabric 

sample.

The Siphon test also has no published standards. This method involves the 

use o f a strip of test fabric as a siphon, with one end in a reservoir o f liquid and at 

the other end the liquid is allowed to drain into a collecting beaker. The amount of 

liquid collected is recorded at successive time intervals (see Fig. 26).

Evaluation o f the results from this method differed between researchers; 

Hardman(22) described its results as ‘a rate o f drainage’ using the lapse time 

indicators of time at initial contact o f the fabric with the liquid, and the time 

dropping commences as a measure o f wicking.

However other researchers such as Hardman(22) and Tanner<26) have used the rate of 

mass transfer o f liquid when a constant flow through the siphon has been achieved 

as an indicator.

<------------------ RESERVOIR

Fig 25 Spot Wicking te s t(22)
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VEIGHT RESERVOIR

L r r —
RESERVOIR 
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COLLECTING 
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B.

Fig. 26 Siphon Test ( 2 methods A and B) <" )



57

2.3.2 TRANSPLANAR WICKING

Transplanar wicking is sometimes known as wicking perpendicular 

to the fabric plane, but testing in this area has no published standards and various 

methods exist. In the 1950’s, 1970’s, and 1980’s authors such as Buras et al. (30), 

Komer et al. <31) and Harnett et al. (22) used the transverse wicking “plate “ test or 

variations o f it.

This method consists o f a horizontal capillary tube. A simulated sweating skin 

surface is achieved by setting the level so that the plate is kept damp,( see Fig. 27). 

Test samples are placed on the plate with a defined pressure achieved by applying 

weights on the top. Results are determined by recording the position o f the 

meniscus in the capillary tube at various time intervals as water is wicked through 

the fabric sample.

Variations o f the test have been introduced as various criticisms o f some aspects of 

the method have come to ligh t(22). For example it was thought that the decrease in 

resistance to flow imposed by the capillary tube could be overcome by replacing the 

tube by an air bleed system of constant lower resistance*22*.

Fig. 27 Plate wicking te s t(22)
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More updated methods o f measuring transplanar wicking have incorporated multi­

layer systems, such as the method devised by Yoneda et al. * 2). They have made use 

o f a pressure sensor method to measure water uptake. This apparatus consists o f a 

reservoir connected by a flexible rubber tube to a stainless steel cylinder. The 

cylinder is filled with ion-exchanged water, with a PTFE [Poly(tetrafluoroethylene)] 

perforated plate and cellulose filter paper on top ; this is the main section. Fabric 

samples are attached to the stainless steel plate and placed on the filter paper to 

cause water uptake. Detection o f uptake is by a reduction of the water column 

pressure ; the change o f pressure signals is then magnified by an amplifier and 

recorded, (see Fig. 28).

ATTACHMENT PLATE 
WITH SPECIMEN

Fig. 28 Measurement System - by Yoneda et a l .(32)
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The technique more closely related to this investigation is the technique used 

by Miller and Tyomkin<16) based on the porous plate method, (see Fig. 14). This 

was used to determine the effect of negative pressure head height on the uptake rate 

in horizontal transplanar wicking. Based on Washburn’s equation [equation 17], 

Miller and Tyomkin developed the following equation for their device :

It was possible to replace hg8 by ‘H’ which equals the negative pressure head and 

therefore the following modified equation could be used by Miller and Tyomkin in 

their experiments :

dV
dt

7tr4 f" 2 y ( 
8r|x I r

2 y cosQa - hgS 1231

where V = Volume of water absorbed [m'] h = height of elevation

6 = liquid density 

r] = liquid viscosity

g = acceleration due to gravity 

x = distance within the pore

2 y cosQa 
r

|24]

where H = negative pressure head (Kg/s2m)

Another modified version of this apparatus was also utilised by Law(7<>) to study 

transplanar liquid transmission in knitted interlock fabric.
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CHAPTER 3 

3.0 INTRODUCTION

Chapter one has described the mechanism by which the human body 

regulates body temperature in relation to body activity and environmental 

conditions. The liberation o f heat from the human body results in the loss of liquid 

from the body in the form of liquid or vapour. The formation of liquid within the 

clothing environment occurs only when the excess moisture released by the skin 

exceeds the vapour transmission rate o f the clothing system. Liquid is then able to 

accumulate within the fabric layers.

It is the ability of a clothing system to transport liquid /moisture around the various 

layers that is o f interest to this investigation. This ability is assisted by the various 

liquid/moisture transport mechanisms, which occur within a clothing system.

Figure 29 describes the main areas where sweating may occur on the human 

body, the extent o f which is determined by the activity o f the human body, the 

external environmental conditions, and to a smaller degree the internal 

environmental conditions (the microclimate) see section 1.7.1.2. Areas o f more 

intense sweating, identified as the red areas on Fig. 29, are the palms of the hands , 

soles o f the feet, and the forehead. Less intense sweating occurs over the rest o f the 

body in the sedentary person, however in a more active person there will be 

increased sweating occurring all over the body(X7 4,3). This may be further increased 

by the type o f activity being performed. In the case o f the fire-fighter wearing heat 

and flame protective clothing and additional apparatus (i.e. Breathing apparatus [BA 

unit]), large amounts o f sweat will be produced over larger areas o f the body. This 

production is further increased by an additional rise in the environmental 

temperature produced by a fire.

The ability o f the protective clothing system to remove heat and moisture from the 

body to the outside layers of the system may be compromised by the increased 

amount o f sweat being produced, allowing more liquid to accumulate within the 

assembly layers impeding or halting the evaporative process.
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Section 2.2 describes in general terms the many types of wicking 

process which occur in a clothing system in the form of Vertical and Horizontal 

planar wicking and Vertical and Horizontal transplanar wicking, see figure 15. 

In the past planar wicking, i.e. wicking along the plane o f a fabric, has been
• * (  32 33 \ # • # #investigated many times by many researchers ’ ’ , and is explained in section 2 ; 

however it is transplanar wicking which is o f interest in this experimental project 

and this is described in this section.

Figure 30 represents the various activities which may be occurring in the 

form of liquid/moisture transmission within a clothing system. Because different 

types o f liquid/moisture transmission may occur within different areas o f a clothing 

system, the various forms o f liquid/moisture transmission may be considered in 

terms o f the following :

• In a single or multi-layer assembly there may be continuous contact with the 

skin and/or within the clothing layers.

• There may be intermittent contact between layers (i.e. fabric with fabric or skin 

with fabric).

• There may be different pressures applied to the layers at different areas o f the 

clothing system ( in the shoulder area), i.e. fabric weight or equipment weight 

e.g. Breathing apparatus (BA) Fire-fighters.

• There may be movement within fabric layers, and between skin and fabric.

• Liquid transmission may occur in different states, horizontally or vertically and 

at varying angles in between, or a combination o f all three.

• There may be different types o f fabric movement i.e. backwards and forwards, 

circular, continuous or intermittent.

• The processes which occur at the folds o f fabric, and layers o f fabrics will be a 

combination o f many of the above, plus the added dimension of a squeeze 

process occurring.

• Many of the above factors may occur in the clothing system of a sedentary 

subject, where very little bodily movement is occurring. This may influence the 

amount/duration of steady state or intermittent contact occurring within a 

system.



62

• In a more active subject the amount o f steady state (continuous) contact and /or 

intermittent contact may be constantly changing as well as also increasing the 

amount o f fabric to fabric, and fabric to skin movement.

All these factors contribute to the liquid/moisture transport system within any 

clothing assembly, whether it consists o f one or more layer, see figure 30.

Fig. 29 A representation of the many areas where sweating may occur on the 

human body -  at different levels.

HIGHEST CONCENTRATION OF SWEAT GLANDS 

MEDIUM CONCENTRATION OF SWEAT GLANDS 

LOWEST CONCENTRATION OF SWEAT GLANDS
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Fig. 30 A Representation of the many possible areas where wicking can take 

place -  and the many variations and types of wicking processes that 

may take place within a clothing system.

HORIZONTAL TRANSPLANAR WICKING HORIZONTAL TRANSPLANAR WICKING
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Fig. 31 A representation of the various wicking processes which may occur 

within a clothing system and the apparatus developed to simulate 

the processes - the Static Demand Wettability Apparatus and the 

Vertical Transplanar wicking Apparatus.
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Fig. 32 A representation of the various wicking processes which may occur 

within a clothing system and the apparatus developed to simulate 

the processes -  the Dynamic Demand Wettability Apparatus
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In order to investigate the liquid transport system within clothing, all these 

factors had to be taken into consideration. With this in mind three pieces o f 

equipment were developed with a view to simulating as many o f these processes as 

possible in order to give an overall view of the liquid transport mechanism occurring 

within a clothing assembly, see Figures 31 and 32.



66

The first piece o f equipment, the Horizontal static demand wettability

apparatus (see Fig. 31 and Fig. 39) would incorporate and simulate as near as 

possible transplanar wicking in the horizontal static state as well as incorporating the 

various types o f contact which may take place within the clothing environment. 

Using a variety o f experimental time intervals the duration o f multi-layer fabric 

contacts could be investigated. This technique could also combine the use of 

different pressures on the fabric layers during the wicking process, and its effects.

The second piece o f equipment -  the Horizontal Dynamic demand 

wettability apparatus (see Fig. 32 and 48) simulates the introduction o f movement 

within fabric layers and with the skin. However this piece o f apparatus could not 

incorporate all types o f movement that may occur within a clothing system.

Both these types o f apparatus were developed with different forms of liquid 

reservoir; therefore the liquid introduction may be slightly different to that occurring 

under static conditions. This would also mimic the different areas around the human 

body where different amounts o f sweat may be released.

The final piece o f equipment incorporates the vertical state -  the Vertical 

transplanar wicking apparatus ( see Fig. 31 and Fig. 53), this state is expected to 

occur over most o f a clothing system. This state was the most difficult to simulate, 

and meant that other aspects investigated in the other pieces o f apparatus could not 

be duplicated on this piece o f apparatus. However this vertical transplanar wicking 

apparatus also required another type o f liquid reservoir and another type o f liquid 

introduction into the system.

With the combination o f these three pieces of apparatus it is hoped that a 

clearer overall understanding o f the liquid transport system within a clothing 

assembly may be achieved.
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3.1 EQUIPMENT DEVELOPMENT

3.1.1 BACKGROUND

A sensitive gravimetric technique was devised by Miller and Tyomkin06’ in 

1984, which was capable o f measuring the rate and total uptake o f liquid in the 

fabric transplanar direction (perpendicular to the fabric plane) under known negative 

pressure gradients (see Fig. 33). Their technique was based on the “Porous plate 

method (35) , and, in turn,the technique used in this experimental work is loosely 

based on both these methods with adaptations.

Fig. 33 Instrumentation for studying demand wettability under negative 

pressure gradients.06'
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3.2 HORIZONTAL STATIC DEMAND WETTABILITY TECHNIQUE

The Static Demand wettability equipment developed consists o f a Buchner 

funnel, which acts as a wetting chamber attached to a water reservoir via two 

flexible tubes separated by a rigid glass tube. The wetting chamber and the water 

reservoir are suspended between two stands, and initially raised to identical heights. 

The water reservoir is then set to a permanent height for the whole o f the test 

period.

Placed in the funnel is a layer o f Whatman ® filter paper No. 90, then a skin simulant 

(a white woven cotton fabric ; ref.: Cotton.L) , and the test sample or sample 

assemblies are placed on top. The specification for the white woven cotton.L fabric 

is described in Table 22.

A compression disc and a series o f weights were devised to enable testing to be 

conducted under different compression states (see Fig. 42).

° The water reservoir is filled with distilled water to about half its capacity, filling 

the various tubes and partially filling the wetting chamber.

° One o f the main features o f this piece o f equipment is its ability to establish a 

known negative pressure gradient, which ensures that the skin simulant is wet, 

yet not flooded.

° The water level is held just below the filter paper and this ensures the test area is 

not flooded.

° The negative pressure gradient is established before testing takes place.

Originally the piece o f equipment used by Miller and Tyomkin <16) was 

designed to take continuous liquid uptake measurements during testing via weight 

loss from the reservoir indicated by a top-loading recording balance (see Fig.33). 

However this method could not be used to measure liquid uptake from individual 

layers within an assembly.

To overcome this problem the test sample layers had to be measured individually, 

and at set time periods. Various time periods, and measuring methods, were 

explored.
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3.2.1 COMPONENT DEVELOPMENT

This technique consisted of various components, these can be seen in Fig. 3 9;

o Wetting chamber

o Liquid reservoir

o Filter paper

o Skin simulant

o Compression system

o Sample removal system

o Weighing system

o Timing System

o Liquid Indicator

- Buchner funnel

- Inverted bottle

- Filter paper ‘Whatman’ No. 90

- Woven cotton fabric (ref. no: cotton.L) (washed)

- Perspex disc and weighted bags

- Tweezers (no human contact)

- Dedicated Top-loading balance (to ± O.OOOg)

- Digital Timer

- Food Dye

Initial static demand wettability tests were carried out on the woven 

cotton.L chosen to be the skin simulant. It was during this initial testing that 

various components o f the equipment, such as the weight/compression system and 

the sample weighing methodology were devised and developed.

Several samples o f ‘cotton L ’ were tested on the demand wettability tester, 

with both the filter paper and skin simulant in place, and with only filter paper 

beneath the test sample . Less variable results were obtained when the cotton was 

present as the skin simulant, see Table 3 and Figures 34 and 35.

This experiment was also performed over various time intervals, and gave a good 

indication o f liquid uptake per min. and per 30 sec. o f the woven ‘Cotton.L’ fabric. 

Results from these short experiments can be seen in Tables 4 and 5, and Figures 36- 

38. From the results it was determined that with the skin simulant in place 

experimental variability was greatly reduced, giving more reproducible results.



70

Table 3

HORIZONTAL DEMAND WETTABILITY TESTS 
COMPARISON EXPERIMENTS

ASSEMBLY ORDER = SAMPLE-COTTON.L = TOP
SKIN SIMULANT = MIDDLE
FILTER PAPER = BOTTOM

COTTON
REF.No. |-V P/H |WT. g/cm2 ABSORPTION RATE/MIN

1 2 3 I 4 5 6 7 8 9 10

1 1cm O.Og/cm2 1.9 1.9 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.9
1 1cm 0.66q/cm2 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.8
4 2cm 0.0g/cm2 1.5 1.6 1.6 1.7 1.7 1.7 1.6 1.7 1.6 1.7
4 2cm 0.66g/cm2 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
6 3cm O.Og/cm2 0.3 0.9 1.2 1.3 1.3 1.3 1.3 1.4 1.4 1.4
7 3cm 0.66g/cm2 1.3 1.4 1.4 1.5 1.5 1.5 1.5 1.6 1.5 1.5

ASSEMBLY ORDER = SAMPLE-COTTON.L = TOP
FILTER PAPER = BOTTOM

COTTON
REF.No. |-V P/H |wr. g/cm2 ABSORPTION RATE/MIN

1 2 3 I 4 5 6 7  | 8 9 1 0

3 1cm O.Og/cm2 1.9 1.9 1.8 1.8 1.9 1.8 1.8 1.8 1.8 1.9

3 1cm 0.66q/cm2 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9
5 2cm O.Og/cm2 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
5 2cm 0.66q/cm2 1.6 1.6 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7
6 3cm O.Og/cm2 1.3 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6
7 3cm 0.66g/cm2 1.6 1.6 1.7 1.6 1.7 1.6 1.6 1.6 1.6 1.6
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Table 4.

HORIZONTAL DEMAND WETTABILITY TEST 
Multi-Layer Tests

-VE PRESSURE HEAD = 2.0cm 
COMPRESSION WEIGHT = 1.30g/cm2

(Top) MEAN WATER CONTENT (%)
TIME (min) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
COTTON.L 0 1.0 1.4 1.7 2.0 2.1 2.2 2.2 2.4 2.4 2.5

ACRYLIC 0 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3

POLYPROP 0 0.6 1.6 2.7 4.6 6.1 8.2 11.6 14.7 17.7 21.3

(Bottom)

MEAN WATER CONTENT (%)
TIME (min) 0 1 2 3 4 5 6 7 8 9 10
COTTON.L 0 2.0 4.1 4.7 6.0 6.1 7.8 18.9 22.7 29.2 46.2

ACRYLIC 0 0.8 7.0 8.4 14.2 18.1 24.9 35.5 42.9 52.8 70.7

POLYPROP 0 5.0 13.5 24.5 36.7 52.2 69.2 84.9 102.0 117.5 131.0

Table 5.

DEMAND WETTABILITY TESTS
MULTI-LAYER TESTS

..-VE PRESSURE HEAD = 2 cm 
COMPRESSION WEIGHT = 1.30 g/cm2

(Top)
MEAN (%) WATER CONTENT

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
COTTON.L.(0.5) 0 1.00 1.41 1.74 1.98 2.06 2.17 2.20 2.39 2.40 2.46
COTTON. L.(1.0) 0 2.0 4.1 4.7 6.0 6.1

ACRYLIC-(0.5) 0 0.07 0.15 0.16 0.21 0.22 0.22 0.21 0.21 0.23 0.26
ACRYLIC-(1.0) 0 0.8 7.0 8.4 14.2 18.1

POLYPROP- (0.S) 0 0.55 1.57 2.74 4.60 6.13 8.18 11.60 14.73 17.66 21.30
POLYPROP- (1.0) 0 5.0 13.5 24.5 36.7 52.2
(Bottom)
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Compressive

Fig. 39 Diagrammatic representation of Static Demand Wettability Test 

Equipment.
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3.2.1.1 Compression Weight Development

Although these tests bear no real resemblance to the real life situation, there 

was a need to make these tests follow parameters as close to life as practically 

possible. Therefore with this in mind, compression o f the test fabrics both singly and 

in assembly were taken into account. The fact that clothing assemblies are rarely in 

practice in the horizontal state could not be taken into account at this stage, as wicking 

in the transplanar direction could not be tested in a vertical state on this piece of 

apparatus.

The compression load was constructed in the form o f a disc with interchangeable 

weights being added on top o f the disc. The flat circular disc was constructed o f a 

Perspex transparent disc o f 5.5mm thick, 92mm in diameter and a mass o f 43.8g to fit 

the Buchner funnel, and to completely cover the test samples. Perspex was chosen for 

its lightness, transparency, flatness, and ease o f removal during tests.

The development o f the additional weights took the form initially of a soft plastic dish­

shaped structure with high sides which was thought to aid the ease o f removal. 

Standard weights were ruled out as the required compression weights could not be 

established to the exact g/cm2. It was therefore decided to use a dish structure and add 

the desired weight in the form o f lead pellets or glass beads, (and in some cases sand). 

This enabled the weight o f the perspex disc to be accounted for in the calculations of 

the compression weight required. This proved satisfactory initially, but due to the 

speed and lack o f ease o f removal, it was not thought to be a permanent solution.

A second idea was tried, roughly at first to determine whether the general principle 

would work. This was based on an idea used for the dynamic demand wettability 

equipment, in which small weighted bags were filled with either lead pellets, glass 

beads or sand to the required weight. This idea was transferred to the static demand 

wettability tester, in which small rounded plastic bags were manufactured and filled 

with the required weight in either lead pellets, glass beads or sand.
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The initial results were quite good as it gave a good rounded weighted bag which 

would lie flat on top o f the perspex disc covering the entire surface area o f the disc. 

Once the initial prototype bag was satisfactory, various weighted bags were 

constructed o f the required weights calculated as follows:-

COMPRESSION DEVICE = Perspex Disc (i) + Extra weight (Weighted Bag) (ii)

(i) PERSPEX DISC ® Wt. = 43.8 g

DIAMETER = 9.2 cm
THICKNESS = 0.55cm
AREA (Tir2) = 66.48cm2
COMPRESSION Wt (g/cm2) = 4 1 8  = 0.66 g/cm2

66.48

(ii) WEIGHTED BAG

(Sealed plastic bag wt.) = 0.85 g

CHOSEN WEIGHTS - 

Table 6 CALCULATION TABLE

REQ’D WT 
(g/cm2)

TOTAL WT(g) 
(Disc + Bag)

BAG WT.(g) 
(Bag + Pellets)

PELLET/BEAD
WT.(g)

1.0 66.48 22.68 21.83
2.0 132.96 89.16 88.31
3.0 199.44 155.64 154.79
4.0 265.92 222.12 221.27
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3.2.1.2 Liquid/Water Type

Small experiments were also carried out to determine whether the effect 

o f different types o f water, had any effect on the results. This was needed to 

determine whether water could be used , as in effect, the transmission o f sweat was 

being tested. Earlier the constituents o f sweat were listed, in section 1.2.3.3, however 

the very nature o f liquid sweat makes it a difficult commodity to collect and test in this 

way, and due to its many components it tends to go stale after a few hours. A few of 

the chemical composites have been used to reproduce an ‘artificial liquid perspiration’ 

(see BS. 1006:1989, E04) the standard for Colourfastness to Perspiration. However 

this also had a very short shelf-life, and with this in mind the following experiments 

were carried o u t ;

(i) due to the fact that artificial perspiration and water appeared to be o f similar 

consistency , tests were carried out to determine the surface tension of human 

sweat,

(ii) the surface tension of water and artificial perspiration were also examined and 

compared.

Tests carried out at B.T.T.G (86) concluded that as the nearest substance to 

human perspiration, artificial perspiration had a surface tension closer to water than 

human perspiration and differed only in chemical content, water could be used in the 

tests. Next further tests were carried out to determine if the type o f water used had a 

significant effect. The water types tested were Distilled water ; Carbonated water ; 

Deaerated w ater(24).

3.2.1.3 Vertical Planar Wicking Tests using Different Water Types.

Small experiments were carried out on two fabrics, woven cotton 

(cotton.L.) and knitted cotton using three different types of water. This determined 

whether the use o f distilled water, as opposed to another type, would greatly influence 

the results o f wicking. Three types o f water were chosen to test, distilled, carbonated 

(spring water), and deaerated water. The latter was prepared as described by Denton 

(24). Each water type was tested using a vertical planar wicking test.
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Samples were cut into strips o f 3 x 8cm. These were attached to a glass plate 

with a series o f ‘teeth’ running down each side o f the plate. The fabrics were laid on 

top o f the plate , and the edges of the fabric pressed on to the teeth. The underside of 

the plate was marked out in graduations o f millimetres, with a starting point o f zero. 

Once attached the sample and plate were lowered into a receptacle o f the test liquid, 

which was filled to the correct height. The plate was held upright in the middle with 

the water level touching the zero mark on the plate. Once the sample was lowered into 

the water a timer was set in motion, and recordings o f the time taken for the water to 

reach a series o f heights in steps o f 10mm were registered. The experiment was 

repeated for all three types o f water. The results can be seen in Tables 7 and 8, and 

Figures 40 and 41.

Table 7. Test sample woven Cotton.L (Skin simulant)

WATER TYPE WICKING RATE (m m /se c )

10 20 30 40 50 60

CARBONATED 2.92 1.33 0.69 0.47 0.32 0.30

DEAERATED 4.17 2.67 0.85 0.65 0.55 0.29

DISTILLED 1.00 0.83 0.68 0.43 0.29 0.22

Table 8. Test sample Cotton.L (knitted Blue)

WATER TYPE WICKING RATE (m m /se c )

10 20 30 40 50 60

CARBONATED 4.17 4.17 3.30 2.10 1.35 0.99

DEAERATED 5.00 5.00 3.17 2.11 1.56 1.09

DISTILLED 4.17 4.00 3.00 2.02 1.45 1.10
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3.2.1.3.1 Results and Discussion

Experiments carried out by Denton (24) on the wetting out 

o f yarn packages in preparation for package-dyeing discovered that air could be 

trapped within the inter-fibre spaces when large inter-yarn spaces were rapidly filled 

with water. Continued penetration within the packages was then opposed by the 

pressure o f the entrapped air.

Further experimentation using ‘dissolved air water’(24) revealed that an 

unusually rapid wetting time could be achieved. This was due to the entrapped air in 

the yarn being dissolved by the relatively airless recently boiled water (dissolved air 

water), creates a partial vacuum in the yarn, which in turn assisted with penetration. 

Denton states that some tests are more affected by dissolved air than others , mainly 

those involving the test samples being totally immersed in water.(24)

The experiments carried out in this investigation also determined that in both fabric 

samples (C o tton - blue weft knitted fabric sample, and Cotton.L -  white woven skin 

simulant) dissolved air water (deaerated water) produced a higher wicking rate initially 

than the other water types. However beyond the 30mm range the deaerated water 

appears to perform similarly to that o f the other water types.

It would seem that once the partial vacuum created by the deaerated water has 

achieved penetration within these inter-fibre spaces the deaerated water begins to act 

approximately at the same rate as the other water types such as distilled water, or 

carbonated water. This can be seen in tables 7 and 8, and Figures 40 and 41, during 

the second half o f the experiments all three water types performed at similar rates.

Although deaerated water produces an initial rapid water uptake, this would be 

unrepresentative o f the normal conditions found in perspiration on the skin surface, or 

within fabric layers within a clothing system.

With this in mind it was decided to continue to use distilled water as the experimental 

liquid for this investigation.
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3.2.1.4 Liquid Indicator

Once the type o f water to be used i.e. distilled water was established, a 

colour indicator was necessary. Tests carried out on dyed fabric samples gave a good 

indication when a test sample was wet or when initial wicking had begun. However in 

the case o f the undyed test samples initial wetting could not be observed easily. So 

some sort o f colour indicator or tracer was necessary.

The use o f a food dye in the distilled water was thought appropriate as it was easily 

rinsed out o f the test samples and was easily dissolved in water. This subsequently 

proved satisfactory for all tests where observation of the end-point was necessary.

The dye ingredients were as follows:

Concentrated Gel food colouring -

Glucose syrup

Sugar

Water

Edible Starch 

Citric Acid

Stabiliser : Sodium Benzoate 

Colour: (Red) E110;E123

Liquid Food Colouring -

Water 

Glycerol 

Citric Acid

Preservative : Sodium Benzoate

Colour: Carmoisine (E 1 2 2 )-[C .l. Food Red 3]
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3.2.2 WEIGHING TECHNIQUE

As described earlier the individual fabric layers need to be measured 

separately. Using tweezers each test sample was removed after the required wicking 

period, separated and placed on the weigh pan. However another problem was 

discovered during initial testing. Once the samples had started to take up water, water 

would be left on the weighing pan during the weighing process. So in order to avoid 

this a small wire frame was manufactured and placed on the weigh pan. The sample 

was weighed on the frame which meant there was minimum contact with the sample 

and no water was lost during each weighing period. Several methods of weighing the 

samples were evaluated;

I. WEIGHING BOTTLES

Originally each sample was transferred (after the required period o f wicking) to a 

top-loading balance for weighing via a small weighing bottle. However during 

initial wettability tests on the assemblies, it was observed that although some fabrics 

picked up water/moisture on one side, it may not soak through to the other side of 

the fabric immediately due to the nature o f the fabric. However on removal for 

weighing and being placed in weighing bottles, the samples had to be squeezed and 

folded. This caused agitation to the fabric surface, aiding moisture/water transport, 

and increasing the speed and distribution of liquid uptake rate through the fabric 

samples, thus adding another variable to the test. It was decided that samples should 

be weighed flat to eliminate as much agitation as possible, so sealable plastic bags 

were tried.

II PLASTIC BAGS

Drying rate tests were carried out on fabric samples using sealable numbered plastic 

bags. This enabled the samples to be removed and placed in a fairly flat state in these 

bags for weighing. However, this slowed down testing considerably, and involved 

the use o f a considerable number of bags, depending on the time interval between 

each weighing, and the number of fabric layers in a test assembly.
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III.DEDICATED BALANCE

This final method of measuring the liquid uptake of each fabric layer proved to be 

the most satisfactory. This involved measuring the samples immediately, by 

removing the samples from the wetting chamber and weighing them on a balance 

within a chamber, within a few seconds, and replacing the sample in the wicking 

chamber for the next time period o f wicking.

Tests were carried out to determine the drying time o f the samples in the atmosphere, 

and in the weighing chamber, and the time taken to measure the samples, from removal 

from the wetting chamber to measuring on the balance, to replacing in the chamber. 

The loss o f water by evaporation during the few seconds required for the weighing 

proved satisfactorily low, and in general negligible.

3.2.3 METHODOLOGY DEVELOPMENT

It was deemed easier to have the reservoir set to a permanent height for all the tests, 

and use the wetting chamber to adjust the negative pressure head height. This was 

carried out at the beginning of all tests.

Initially small experiments were carried out on different negative pressure heights to 

determine the appropriate starting point, using the woven cotton as the test sample as 

this was a high wicking fabric.

•  Firstly the reservoir is set to a permanent height for all the tests.

• The Buchner funnel or wetting chamber is lowered below the water level in the 

reservoir until the level in the chamber is raised well above the filter paper , 

saturating it completely.

• Once the filter paper is completely wet, the wetting chamber is raised above the 

water level in the reservoir ; at this stage the water level in the chamber will recede, 

however when the chamber is raised further the water level in the chamber will 

remain at a level just below the filter paper.

•  This will give a negative hydrostatic head to the required pressure gradient height. 

When the water levels are equal there is zero pressure gradient.



PERSPEX DISC

SAMPLES (SINGLE OR MULTI-LAYER)

SKIN SIMULANT (COTTON)

FILTER PAPER

BASE PLATE OF BUCHNER FUNNEL

Fig. 42 Component sequence for Static demand wettability test. 

3.2.4 REPRODUCIBILITY

Due to the nature o f the investigation and the new technique being 

developed, the reproducibility had to be taken into consideration.

Experimentation was carried out to determine if the experimental reproducibility was 

achievable after a series o f tests carried out to test the methodology produced large 

coefficient of variation percentages (CV%) using 1 minute intervals.

Initially fabric samples chosen for these experiments were associated with heat and 

flame protective clothing. A number o f tests were carried out and the CV% was 

calculated for these fabrics as part o f the methodology. The following results were 

obtained from these fabrics see Table 9 and 10 ; Figures 43 and 44.
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Fig. 43 H ORIZONTAL DEMAND W ETTABILITY TEST 
Static Test Com parison

TEST SAMPLE -  PVC
-VE P/H = 2.0CM 
WEIGHT = 0.66g/cm2

PERCENTAGE WATER CONTENT v TIME (min)
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Fig. 44

HORIZONTAL DEMAND WETTABILITY TEST
__________________________ Static test Comparison
TEST SAMPLE - ACRYLIC.L
-VE P/H = 2.0 cm
W EIG HT = 0.669/cm__________________________

PERCENTAGE WATER CONTENT v TIME
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The large CV% values produced by these experiments were considered to 

be too large and needed to be investigated to determine whether this was a fault in 

the methodology, the equipment, or an inherent factor in the testing o f these fabric.

In order to reduce the variability inherent in these fabric in general, the 

samples used were a smooth - surfaced woven Nylon 6.6 bolting cloth provided by 

Leeds University. These nylon fabric samples were prepared in the same way as 

previous samples.

A modification o f the test method was also thought to be needed , not only to 

reduce variability but to show up any differences in the time intervals used.

Therefore experiments were carried out on the nylon samples using a steady state 

time interval. As mentioned in section 3.0 wicking can occur intermittently or 

continuously and this should be reflected. The nylon samples were tested in the 

continuous state for the following time periods ; 5; 10 ; 15 ; 20 ; 25 ; and 30 

minutes. The results can be seen in table 11 and figure 45. It can be seen by the 

CV% obtained from these experiments that these are much lower than results 

obtained from earlier tests carried out on the PVC and Acrylic fabric samples, see 

tables 9 and 10.

However the types o f contact occurring in any clothing system can be both 

intermittent and continuous, so a change in the wicking time intervals from 1 

minute intervals to 1,3,7 and 10 minute intervals was evaluated, and a minimum 

compression weight applied. This proved to be much more satisfactory. This time 

interval was also a combination o f intermittent and continuous wicking duration, 

starting off intermittent and extending the duration to simulate a more continuous 

time period. The results can be seen in tables 1 2 -1 7 .

Table 11

(min)
WICKING
DURATION

(%) Water Content for Nylon test samples
1A 2A 3A 4A 5A Mean SD CV%

0 0.0 0.0 0.0 0.0 0.0 0
5 78.7 72.1 72.5 78.7 84.3 77.2 5.1 6.5

10 74.6 74.8 74.2 74.2 75.1 74.6 0.4 0.5
15 71.3 68.5 61.1 58.8 68.4 65.6 5.4 8.2
20 63.6 53.4 58.1 61.9 67.3 60.9 5.3 8.8
25 60.8 61.6 56.7 64.0 69.1 62.5 4.6 7.3
30 58.3 53.7 45.6 48.9 59.2 53.1 5.9 11.1
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. 45 M ean Percentage W ater content of woven Nylon continuous

filament fabric samples for steady state tests
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From figure 45 the results from the nylon samples revealed a marked 

reduction in liquid uptake after the first time interval (5 minutes), with a steady 

decline thereafter. It would seem that at longer wicking times the amount o f liquid 

retained by the samples decreased over time. This may be influenced by the nature 

of the fibre surface in these test sample (i.e. Nylon). The cross-section o f this fibre 

was circular therefore the surface o f the fibre would be smooth and unable to create 

more interfibre channels in which to retain the liquid first wicked into the nylon from 

the cotton. The marked decrease in liquid uptake in the nylon fabric cannot be due 

to evaporation because of the design of the apparatus. However over longer 

periods of time gravity would be able to exert an effect on the capillary transport of 

liquid in the nylon occurring in the transplanar direction rather than in the horizontal 

planar direction because gravity has an almost negligible effect in this latter 

direction. The skin simulant which is a cotton fabric would be continually wicking 

throughout the test, but over longer time periods it is considered that the fabric 

would seek the easiest source o f liquid. This would come from the wet nylon 

sample through back wetting into the cotton. Because the nylon is less efficient in 

retaining liquid it is clear that the cotton would begin to take back liquid from the 

nylon and this back wicking effect would then decrease the amount o f liquid that the 

nylon samples would retain after longer time periods.

The test method was then carried out in the following stages:

1. The liquid reservoir was set to a permanent height.

2. The wetting chamber was lowered and raised, and locked at its required height of 

Ocm, the height at which the water levels in both the wetting chamber and the 

reservoir are equal. This procedure initiates the wetting o f the filter paper, and 

traps the water at the required level just below the filter paper.

3. The wetting chamber was then raised to the required pressure head height of 

2.0cm.

4. The skin simulant was then laid on top o f the filter paper and left for a while, 

complete saturation o f the simulant took a few minutes.
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5. Fabric sample or samples which had been conditioned for 23 hours in 65% RH at 

20°C were then ready to be weighed on a top-loading balance.

6. The sample(s) was then laid on top of the simulant and timed for 1 min, and 

removed and re-weighed.

7. The sample was replaced on the simulant for another 2 min, removed, re­

weighed and replaced in the wetting chamber.

8. The sample(s) was then left to wick for a further 7 and 10 minutes respectively, 

the weights were recorded for these time intervals

9. The results were calculated along with the CV% for all these samples.

This test method was the methodology finally chosen for the horizontal

static demand wettability technique.
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Table 12 Nylon lA-Percentage Water content at 1,3,10 and 20 minute

intervals

NYLON 1A 

% WATER CONTENT/TIME PERIOD(min)

TEST Nos. 0 1 3 10 20

1 0 13.28 39.55 64.97 70.90

2 0 51.41 62.15 68.93 70.34

3 0 10.99 30.70 69.86 75.49

4 0 18.03 52.11 67.89 70.70

5 0 12.39 59.72 68.17 69.58

Mean 21.22 48.85 67.96 71.40

SD 17.08 13.43 1.84 2.34

CV% 80.5 27.5 2.7 3.3

Table 13 Nylon 2A-Percentage Water content at 1,3,10 and 20 minute

intervals

NYLON 2A 

% WATER CONTENT/TIME PERIOD(min)

TEST Nos. 0 1 3 10 20

1 0 23.94 53.52 65.35 68.45

2 0 20.85 55.21 73.52 74.37

3 0 20.56 58.59 68.73 72.11

4 0 28.73 58.87 62.54 64.79

5 0 38.03 52.68 60.56 65.92

Mean 26.42 55.77 66.14 69.13

SD 7.27 2.85 5.15 4.06

27.5 5.1 7.8 5.9CV%
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Tablel4. Nylon 3A-Percentage Water content at 1,3,10 and 20 minute

intervals

NYLON 3A 

% WATER CONTENT/TIME PERIOD(min)

TEST Nos. 0 1 3 10 20

1 0 22.10 61.47 66.01 71.67

2 0 36.26 59.77 67.71 75.07

3 0 13.60 59.49 66.29 67.71

4 0 16.71 54.67 69.12 70.25

5 0 38.14 57.06 66.38 70.34

Mean 25.36 60.62 66.86 73.37

SD 11.24 2.65 1.31 2.69

CV% 44.3 4.4 2.0 3.7

Tablel5. Nylon 4A-Percentage Water content at 1,3,10 and 20 minute

intervals

NYLON 4A 

% WATER CONTENT/TIME PERlOD(min)

TEST Nos. 0 1 3 10 20

1 0 23.16 64012 64.69 70.62

2 0 16.34 52.11 56.06 68.73

3 0 19.66 54.21 63.48 67.70

4 0 13.76 44.38 68.82 73.31

5 0 26.69 60.11 62.64 67.42

Mean 19.92 54.99 63.14 69.56

SD 5.17 7.60 4.62 2.45

CV% 26.0 13.8 7.3 3.5
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Tablel6. Nylon 5A-Percentage Water content at 1,3,10 and 20 minute

intervals

NYLON 5A 

% WATER CONTENT/TIME PERIOD(min)

TEST Nos. 0 1 3 10 20

1 0 24.86 65.25 67.51 69.49

2 0 20.06 61.02 69.77 72.32

3 0 25.71 59.04 61.30 68.64

4 0 38.98 68.36 75.14 76.27

5 0 33.62 62.15 66.95 70.06

Mean 28.64 63.16 68.14 71.36

SD 7.56 3.68 5.01 3.07

CV% 26.4 5.8 7.3 4.3

Table 17. Mean Test Results for Nylon samples Nos. 1A-5A

% WATER CONTENT/TIME PERIOD(min)

TIME (min) 0 1 3 10 20

NYLON - 1A 0 21.22 48.85 67.96 71.40

NYLON - 2A 0 26.42 55.77 66.14 69.13

NYLON - 3A 0 25.36 60.62 66.86 73.37

NYLON - 4A 0 19.92 54.99 63.14 69.56

NYLON - 5A 0 28.64 63.16 68.14 71.36

Mean 24.31 56.68 66.45 70.96

SD 3.65 5.54 2.02 1.70

CV% 15.0 9.8 3.0 2.4
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From these results it can be seen that the CV% has been greatly decreased, 

but variation can not be eliminated (see Tables 12-17). This was to be expected 

due to the nature o f the test, the property being investigated and the inherent nature 

of the substrates being tested.

The test method was vindicated as the sole cause o f variation produced between 

tests because it was shown that once the substrate variability was reduced (i.e. by 

using woven Nylon) the CV% decreased considerably. However the pattern of 

variability was greatest at the beginning of the test, particularly during the first few 

minutes, and this appears to be so throughout all testing. It was also noted that 

there was continued reduction in CV% throughout the subsequent time intervals in 

all tests.

The increase in the duration o f the wicking time intervals also appears to have 

helped in the reduction o f variability between tests.

Mean test results from each test sample also produced a lower CV% and this can be 

seen in Table 17, confirming a satisfactory methodology for this stage of the 

investigation.

Further testing was carried out using Nomex and Acrylic fabric samples using the 

altered wicking time intervals o f 1,3,10 and 20 minutes, producing the results seen 

in Tables 18 and 19 and Figures 46 and 47.
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Table 18.

MEAN DEMAND WETTABILTY TEST RESULTS

NOMEX SAMPLE
(non-drying tests)
COMPRESSION WEIGHT = 0.66g/cm 
-VEP/H = 2.0 cm

SAMPLES WATER CONTENT/MIN (%)
0 1 3 10 20

NOMEX -1 0 6.64 14.79 31.80 45.53
NOMEX -2 0 2.62 6.36 22.31 35.94
NOMEX -N1 0 4.14 9.41 19.02 28.72
NOMEX -N2 0 3.17 6.81 15.50 28.44
NOMEX -N3 0 4.59 10.72 22.64 31.42

Average = 0 4.23 9.62 22.25 34.01
stdev = 1.56 3.41 6.07 7.11
cv% = 36.8 35.4 27.3 20.9

Table 19.

MEAN DEMAND WETTABILTY TEST RESULTS 

ACRYLIC SAMPLE
(non-drying tests) water pH = 7.0
COMPRESSION WEIGHT = 0.66g/cm 
-VEP/H = 2.0 cm

SAMPLE WATER CONTENT/MIN (%)
0 1 3 10 20

ACRYLIC -1 0 11.05 58.30 177.22 243.38
ACRYLIC -2 0 10.17 39.05 144.23 196.01
ACRYLIC -3 0 5.93 45.32 141.76 204.18
ACRYLIC -4 0 2.87 14.67 119.66 173.78

Average = 7.5 39.3 145.7 204.3
stdev = 3.81 18.29 23.73 29.03
cv% = 50.8 46.5 16.3 14.2
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Fig. 46

MEAN HORIZONTAL DEMAND WETTABILITY TEST RESULTS 
NOMEX SAMPLE
(non-drying tests)
COM PRESSION W EIG H T = 0.66g/cm 
-VE P/H = 2.0 cm



103

Fig. 47

MEAN HORIZONTAL DEMAND WETTABILITY TEST RESULTS 
ACRYLIC SAMPLE
(non-drying tests)
COMPRESSION WEIGHT = 0.66g/cm 
-VE P/H = 2.0 cm
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3.3 HORIZONTAL DYNAMIC DEMAND WETTABILITY 
TECHNIQUE

Wicking during general wear would rarely take place just in the static state, 

because as a person moves so must the clothing move. Invariably there is constant 

movement taking place within a clothing assembly, during everyday wear ; 

between the skin and the first fabric layer, and between the first layer and the 

second fabric layer. Therefore movement may also have an effect on wicking, see 

section 3.0. As there appeared to be little or no work available on substrate 

movement and wicking, another piece of equipment needed to be developed to 

investigate this aspect of wicking

3.3.1 THE EQUIPMENT

This piece of equipment was designed to test the effect of the relative 

motion of two fabrics in close planar contact on the rate of transplanar wicking 

between these fabrics, in a “demand wettability” type apparatus. It was obvious 

that the apparatus described in (Section 3.2) could not be adapted to this purpose, 

and therefore another apparatus was constructed.

Using an initial basic construction first devised by BTTG, the original skeletal 

construction was redesigned and this apparatus was developed. The apparatus 

consists of a metal plate constructed on wheels, which could run backwards and 

forwards by means of an electric motor on a small track, , with the speed of 

movement being variable.

Clamped to the plate is a medium to hold the liquid, in this case a sponge, 

approximately 1.5 cm thick, and placed on top of this is the skin simulant. Above 

the running plate is a second plate which is held stationary. In the centre of this 

plate is an opening to hold and locate the test sample. This plate may be raised and 

lowered to set heights above the liquid holding medium, ensuring nothing touches 

the sponge during testing except the test sample.

The test samples are attached to a Perspex plate which fits inside the opening on 

the top plate and lies on the sponge. In order to allow free movement of the sample 

within the plate opening different sizes of Perspex plate were used, dependent on 

the number of sample layers being tested, (see Figs. 48 and 49 ).
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3.3.2 COMPONENT DEVELOPMENT

The Demand Wettability technique consists of the following

components :

0 Liquid Medium Sponge (Wetted)

0 Skin Simulant Woven cotton fabric (ref: Cotton.L)

0 Sample Holder Perspex plate and acetate band

0 Compression system Perspex plate and weighted bags

0 Weighing system Top-loading Balance

0 Timing system Digital Timer

0 Sample Removal system - Tweezers

3.3.2.1 Compression Weight Development

As with the static demand wettability test equipment a compression 

weight was also needed, and this took a similar form to the weights used in the 

static equipment.

Plastic weighted bags were manufactured to the same sizes as the Perspex sample 

plates, and weights were calculated in the same way as before. Weights equivalent 

to 1 g/cm2, 2g/cm2, 3g/cm2, and 4g/cm2 were made for each Perspex plate.

3.3.2.2 Sample Attachment

After some experimentation several methods of sample attachments 

were tested, as follows :

i. The use of double-sided sellotape was initially utilised, and had favourable 

results in the beginning. It was particularly useful during the multi-layer tests 

as it enables the final layer only to be attached to the plate. However with 

certain fabrics taking up large amounts of water, this failed during movement 

and the sellotape would detach from the plate.
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ii. Secondly “ Blutack” was tried, using the same general method as the double­

sided tape and attaching only the final layer.

However once again during high liquid take up and movement, detachment from 

the Perspex plate occurred.

A method whereby the presence of liquid in the sample had no affect on the 

attachment method was found. The manufacture of an acetate band and the 

incorporation of miniature ‘bulldog’ clips produced a method which worked 

perfectly during movement. The samples were placed on the Perspex plate and the 

belt was pushed on to the plate to fit around the plate/sample edges. The sample or 

samples were then attached to the belt by the mini bulldog clips, (see Fig. 50 ) on 

all four sides.
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3.3.2.3 Liquid Medium / Skin Simulant

This came in the form of a sponge o f approximately 1.5 cm in 

thickness and 5 x 12 cm in dimensions with small pores. A variety of experiments 

were carried out to determine the ideal water content of the sponge in order to 

prevent significant drying out during testing.

Other aspects were tested to determine the following ;

(i.) During movement was water expelled from the sides o f the sponge ?

(ii.) Does the sponge ‘ride-up’ during movement ?

(iii.) What was the drying rate of the sponge, was there a significant effect ?

(iv.) What was the best water content for the sponge ?

All the above questions were investigated with the following conclusions;

• During movement there was no water loss from the sponge, both at the slowest 

and fastest speed for the time period of 5 minutes. This test was repeated 

several times giving satisfactory results.

• Riding-up of the sponge during movement did not occur, however riding-up did 

occur early on in some of the test samples. This problem was solved with the 

production of a satisfactory sample attachment, (see section 3.3.2.2).

• The drying rate of the sponge was less than 0.0 lg over a 60 minute time period 

and had no significant effect.

• In order to gain a test period for as long as possible and not over saturate the 

skin simulant, a test weight for the sponge was established at 100.4 g ± 0.3g, 

(the dry weight of the sponge = 6.3g)

The skin simulant was made from a woven undyed bleached cotton, 

the same fabric previously used for the static demand wettability technique. Cut to 

the same size as the sponge, it lay on the top of the sponge and immediately took 

up water. This created a continuously moistened layer to perform the tests. Once 

again various aspects were tested these being ;

(i.) Does the sample move freely on the skin simulant ?

(ii.) Was the fabric a good continuous wicker ?



I l l

• Initially most samples moved freely on the skin simulant, although one or two 

once wet resisted during movement and began dragging on the skin simulant. 

However this problem was solved (see section 3.3.2.2).

• A woven cotton fabric was used as the skin simulant. Cotton is a known good 

wicking fibre and was an obvious choice. In addition this woven fabric had a 

closer surface appearance to the skin than a knitted fabric.



112

3.3.3 METHODOLOGY DEVELOPMENT

On top of the sponge lies a second layer; this is the ’skin 

simulant’. The simulant was represented by the same fabric used in the static tests, 

namely the cotton L. woven fabric.

The tests were runs as follows;

1. The sponge is soaked in distilled water and then squeezed out until it holds a 

predetermined amount of water, this being 100.4g ± 0.3g ( recorded weight).

2. The sponge is then clamped on to the plate with the skin simulant lying on top 

smooth and flat.

3. Each test sample layer is cut to a set size and shape, and then weighed before it 

is attached to the plate.

4. The Perspex plate, the belt and the clips are weighed together and recorded.

5. The test sample(s) are weighed and the results recorded.

6. The test sample or samples are attached to the Perspex plate with the clips and 

belt, and placed in the sample opening, with the sample facing the skin 

simulant.

7. Compression weights may be placed on top of the sample plate at this point as 

required.

8. The speed setting is set, (In all tests the slowest speed setting was used) *

9. The plate is set in motion for a set time period.

At the end of the time period, (Multi-layer tests) - the plate is removed 

and each sample is removed and weighed on a top-loading balance and the weight 

recorded. The samples are then re-attached to the plate and the cycle is repeated 

for a further period of time.

(Single layer tests) - the plate is removed with the sample and together these are 

weighed on a top-loading balance and the weight recorded. The sample and plate 

are then replaced in the opening and the cycle is repeated for a further period of 

time.

* Machine speed is measured thus, 1 = one backward and forward movement 

therefore speed is calculated as, slowest = 40/min. ; fastest = 90/min.
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3.4 VERTICAL TRANSPLANAR WICKING TECHNIQUE

As mentioned before although these newly developed pieces of 

equipment and tests are able to give a reasonable indication of what is happening 

during the wicking process, this so far has been only with the fabric in the 

horizontal state. To give an indication of what could be happening under ‘real life’ 

conditions, wicking in the vertical state was also investigated.

Factors against testing in this state were firstly, the extreme difficulty in developing 

a test which works in the vertical direction and secondly, comparison with other 

wicking tests in the horizontal state are not easily achieved.

However a simple piece of equipment was developed which allowed vertical 

transplanar wicking to be carried out.

3.4.1 COMPONENT DEVELOPMENT

Initially fabric was suspended from a stand , weighted at one end to keep it 

taut, and then water was introduced to the centre of the fabric. Small amounts of 

water were then squeezed on to the surface of the fabric at interval to see if liquid 

uptake could be achieved. Initial experiments were successful on the knitted 

(blue) cotton. However there was a tendency in the beginning to lose water by 

water droplets falling from the surface of the samples because of the effect of 

gravity. The whole component structure was then revised and refined as other 

difficulties were discovered. This included difficulty in maintaining the surface 

contact between layers.

The basic method worked, but component development continued along the 

following lines ;

(i.) An experiment was carried out using a burette as a reservoir , as then the

amount of water introduced to the fabric surface could possibly be 

monitored and controlled. However the introduction of the water to the 

fabric proved extremely difficult to control and this method was abandoned. 

The use of a syringe proved more successful, as the reservoir of water could 

be suspended horizontally from the start, and the amount of water 

introduced to the vertical fabric could still be monitored and controlled.
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(ii.) The samples had been originally suspended from stands by large ‘bulldog 

clips’ on both ends of the sample; however this proved unsatisfactory as the 

weight of the clips tended to stretch the samples, and in multi-layer tests the 

layers would not stay together. The use of plates was introduced to reduce this 

phenomenon. Two Perspex plates were designed and manufactured for this 

purpose, (SeeFig.51)

a) Plate 1. was 7 x 14cm and ;

b) Plate 2. was 7 x 14cm with a hole drilled centrally in it (approximately 2mm 

in diameter) in order to house the tip of the syringe (see Fig. 52). The fabric 

samples would be sandwiched between the plates and suspended by the clips 

from the top of the stands. This enabled multi-layer assemblies to be tested, 

and no direct weight was exerted on the samples.

(iii.) The liquid used for these tests was distilled water originally, and this 

worked satisfactory on the dyed blue knitted cotton. However this was not 

sufficient for the other test fabrics , and as these were white samples the water 

had to be coloured to aid visual assessment of these test fabrics. Once again 

the food colouring dyes were employed for this purpose ( see section 3 .2.1.4).



NEEDLE (OPTIONAL)

/* n

1. WATER RESERVOIR - SYRINGE

2. SAMPLE HOLDER PLATES 3. SAMPLE PLATE CLIPS

Fig. 51 Components for Vertical transplanar wicking technique.
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END OF SYRINGE SYRINGE TIP

APERTURE IN PERSPE!

GRADUATIONS

Fig.52 Syringe tip fits into aperture in Perspex sample plate.

The first basic experiments were carried out on the dyed knitted cotton 

fabric which was a high wicking fabric and these proved successful, so small tests 

were carried out on the other test samples, Acrylic.L. , Nomex, and Polypropylene. 

This proved successful for the acrylic and Nomex fabrics, but due to the 

hydrophobic nature of polypropylene, once the water was introduced to the fabric 

surface it remained there for a long period of time without being wicked within the 

fabric or subsequent layers.

Experiments were conducted with a needle attached to the syringe when testing 

polypropylene fabrics, to determine whether this would improve wettability.

The use of a syringe when testing the polypropylene fabric improved wettability 

only slightly, and was of no significant use. The use of the polypropylene samples 

was therefore abandoned in the vertical transplanar wicking tests.
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STAND STAND

Fig. 53 Transplanar Vertical wicking Test Equipment
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3.4.2 METHODOLOGY DEVELOPMENT

The vertical transplanar wicking test is set up with the following

components (see Fig.51) ;

0 Liquid reservoir

0 Sample holder

0 Compression clamps

0 Sample removal system

0 Weighing system

0 Saturation recording system -

Syringe

Two clear Perspex plates with aperture

Two large Bulldog clips

Tweezers

Top-loading balance 

Marker pen

With a few changes during development the methodology developed for the first 

stage of the test was as follows :

• the sample layers were weighed and the results recorded ;

• the samples were sandwiched between the Perspex plates and clamped at one 

end, and into the stand at the other ;

• the syringe was filled with coloured distilled water and fixed into its stand, and 

levelled at the aperture in the sample plate.

Initial experiments were performed with the test samples cut to a much 

smaller size (3 x 5cm ) ; however this method produced uneven pressures on the 

samples, caused by bending of the plates around the samples.

The samples were then cut to the same size as the Perspex plates (7 x 14cm) to 

eliminate this problem.

The second stage of the tests was also revised, to introducing the liquid to the 

fabric surface through the aperture, until breakthrough occurred on the outer 

surface of the second layer of test fabric. The samples were then removed and 

weighed individually. The percentage water content was calculated at breakthrough 

for each fabric layer.

However this determined the percentage water content of the whole fabric sample, 

and not the percentage content of the wet area.
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The second stage method was then changed to the following ;

1. Sample layers 1 and 2 were laid flat and aligned with the warp running down 

both fabrics, on plate 1 and sandwiched with plate 2 on top.

2. The plates were clamped both ends and into the first stand .

3. The syringe was filled with coloured distilled water and fixed into its stand, and 

levelled at the aperture in the sample plate.

4. The plunger of the syringe was depressed until a drop of liquid adhered to the 

tip of the syringe, the tip was then pushed up against the aperture so that the 

liquid travelled through the aperture.

5. The plunger was depressed again just enough to allow the liquid to touch the 

surface of the fabric.

6. If the fabric sample exhibited rapid wicking the liquid would almost instantly 

migrate into the fabric. Once this happened more liquid was introduced to the 

surface in minute amounts, until liquid appeared on the other side of the second 

fabric layer.

7. Once breakthrough had occurred, an outline of the wet areas on both fabric 

layers was drawn on the perspex plates in marker pen.

8. The whole assembly was then detached from the stand and the sample layers 

removed and weighed.

9. The outlines on each plate were then traced on to paper for later measurements, 

the outlines can then be removed for retesting.

Once the test is over the shapes of the wet areas are traced on to the dry test fabrics,

and cut out and weighed.

Using this method the percentage water content in the wet area only could be

determined.
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3.5 SECONDARY EXPERIMENTATION

3.5.1 CONTACT POINTS

Through observing the sequence of events occurring during testing using the 

dynamic demand wettability technique and static demand wettability technique, 

one of the factors which appears to influence the variability of results is contact 

between one fabric layer and the next.

This in itself is influenced by the fabric geometry, the compression of the fabric 

layers, the orientation of fabric layers to each other and finally by the fabric surface 

appearance.

Due to the uneven absorption sequence which appeared to occur in any 

multi-layer wicking test ; a small experiment was set up. This was used to 

determine the pattern of contact points possible under various conditions, as well 

as the regularity of any that could be produced, and the experimental 

reproducibility of the test.

Components

0 Liquid Medium 

0 Medium Holder 

0 Liquid

0 Skin simulant

0 Compression Weight

3.5.1.1 Experim ent-1

Tests were carried out on test samples to determine the pattern 

sequence of contact points. The methodology commenced as follows :

• The sponge was soaked completely in a dye solution, completely saturating the 

sponge.

• This then rested in the Perspex dish. A layer of the skin simulant was placed 

on top of the liquid medium and left to absorb the coloured liquid.

• Once ready the test sample was placed on the skin simulant until colour 

appeared on the top side of the test sample.

Sponge ( diameter = 9.0 cm)

Perspex dish

Coloured water (dye : red)

Woven Cotton (Ref. Cotton.L) dia. = 9.0cm 

Perspex dish and Weighted bags
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3.5.1.2 Experiment - 2

The second experiment was a repetition of the first, but with the 

addition of the compression weight (the Perspex disc). Once again this was left 

until the colour appeared visible on the top side of the test sample. The sample was 

then removed and the contact pattern recorded (see figure 54).

These experiments were repeated for knitted and woven fabrics and the various 

fibre types.

Fig. 54 Contact Points Experimentation equipment

It was also repeated on multi-layer fabric assemblies to register the possible contact 

points between two different fabric layers and the possible contact patterns.

Although some fabrics produced regular patterns , others did not, and these 

patterns were not on the whole repeatable with subsequent testing.

Although a large series of contact points could be produced, not all of these 

produced viable liquid transfer points from one layer to another. Also the spread 

was not an even pattern over a test sample ; which produced variability both within 

individual test samples and within subsequent tests.
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3.6 TEST SAMPLE DATA

There were four main test fabrics used for the main body of the research, 

picked from a larger group of fabrics used in initial testing, equipment and 

technique development, and these were carefully characterised. Other fabric 

samples were not characterised in depth.

The first group of fabrics Group [A] were characterised in general, full analysis 

was carried out on Group [B] fabrics. The groups were as follows :

GROUP [A] FABRICS -  Weft Knitted fabrics

Acrylic

PVC ( Polyvinyl chloride)

Aery lie.L 

Cotton.L 

Nylon 6.6

Coolmax (Polyester)

GROUP [B] FABRICS - used as main research fabrics.

Cotton.L (knitted - blue)

Acrylic.L

Nomex

Polypropylene

Cotton.L. (woven - white) [acting as Skin Simulant]
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3.6.1 SAMPLE FABRIC DATA 

Table 20.
WOVEN FABRIC SAMPLES

REF.NO. SAMPLE STRUCTURE SAMPLE TYPE
C (L) COTTON.L (White) Plain weave SKIN SIMULANT
N (U ) NYLON (White) Plain weave TEST SAMPLE

Table 21.
KNITTED FABRIC SAMPLES

REF.NO. SAMPLE STRUCTURE SAMPLE TYPE
C COTTON.L (Blue) Interlock TEST SAMPLE
P POLYPROPYLENE lx l Rib TEST SAMPLE
N NOMEX (Ecru) lx l Rib TEST SAMPLE
A ACRYLIC.L (White) Interlock TEST SAMPLE

PV PVC (White) lx l Rib TEST SAMPLE
CM COOLMAX (Green) lx l Rib TEST SAMPLE

Sample Fabric Characteristics.

KEY
wpc — wales/cm cpc = courses/cm s = stitch density/ (cm )
I = stitch length(cm) k = Tightness factor (tex'/2̂  "' )

Table 22. Fabric Characteristics - Mean values

REF.No. KNITTED SAMPLES Wpc Cpc S i k

c COTTON.L (Blue) 29.9 15.0 448.5 0.16 32.2
P POLYPROPYLENE 21.3 16.9 360.0 0.29 15.0
N NOMEX (Ecru) 20.0 17.7 354.0 0.28 13.3
A ACRYLIC.L (White) 23.6 11.8 278.5 0.20 33.9

PV PVC (White) 25.2 11.0 277.2 0.19 24.5
CM COOLMAX (Green) 17.7 15.9 281.4 0.29 16.9

REF.No. WOVEN SAMPLES Ends/
cm

picks/
cm

C(L) COTTON.L (White) 28.3 28.3
N(U) NYLON (White) 40 40
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Table 23. Sample Fabric Properties - Mean values

REF.No. SAMPLE MASS

g/m2

THICKNESS

(mm)

AIR PERM­

EABILITY
(mm/sec)

C(L) COTTON.L (White) 157 0.711 132
N(U) NYLON (White) 59 0.147 5787

C COTTON.L (Blue) 193 1.579 654
P POLYPROPYLENE 205 1.676 855
N NOMEX (Ecru) 147 0.906 1412
A ACRYLIC.L (White) 258 1.936 1399

Table 24. Yarn Characteristics - Mean values 

Key - C/F = Continuous Filament Yam count -  (Tex)

REF.No. SAMPLE
Woven

YARN COUNT 
Warp Weft

C/F or 
STAPLE

C(L) COTTON.L (White) 63.7 23.5 Staple

M NYLON (White) 6.3 9.9 C/F
Knitted Samples

COTTON.L (Blue) 26.6 Staple
POLYPROPYLENE 18.9 Staple

N NOMEX (Ecru) 13.9 Staple
ACRYLIC.L (White) 45.9 Staple

PV PVC (White) 21.6 Staple
CM COOLMAX (Green) 23.9 Staple
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3.6.1.1 Fabric Sample Data - (Experiment 3)

Each fabric used in this research was characterised in general, 

for each fabric type. However some sub-tests were carried out on a small number 

of the fabric samples tested.

A few samples were picked out and cpc ; wpc ; £ and k measurements were 

collected from each sample before testing commenced and repeated after testing 

was completed. The results were compiled as follows :

Table 25. Fabric Geometry properties before and after testing for the weft

knitted fabric samples.

Ref.
No.

Sample
Type

Before
wpc

After
wpc

Before
cpc

After
cpc

Before
i

After
i

Before
k

After
k

Main knitted test 
samples

C Cotton 29.9 29.1 15.0 12.2 0.16 0.14 32.2 36.8

A Acrylic 23.6 23.6 11.8 11.8 0.20 0.20 33.9 33.9

P Polyp rop 21.3 21.3 16.9 16.9 0.29 0.29 15.0 15.0

N Nomex 20.0 19.7 17.7 17.7 0.28 0.28 13.3 13.3
Supplementary knitted 

samples

CM Coolmax 17.7 18.9 15.9 16.3 0.29 0.27 16.9 18.1

PV PVC. 25.2 25.2 11.0 11.0 0.19 0.19 24.5 24.5



These weft knitted fabric test samples were constructed of two different fabric 

structures, interlock and lx l rib, see figures 55 and 56.

The blue knitted Cotton and Acrylic fabric were constructed of interlock, and the 

Polypropylene and Nomex fabrics were produced in lx l rib.

Fig. 56 INTERLOCK (79)
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CHAPTER 4 

4.0 DATA FROM INITIAL EXPERIMENTAL WORK

During the initial experimentation and development of the horizontal static 

demand wettability technique, various aspects of the wicking process were 

observed. These were investigated further.

4.0.1 ABSORPTION/WICKING DISTRIBUTION PATTERN

It was noted during the testing of single layer samples observed 

using the Static wicking equipment, that initial wicking took place in patches, and 

never over the whole fabric at once. It was first thought that this may be due to 

some aspect of the test method. Other factors such as, unevenness in the perspex 

plate, air bubbles beneath the filter paper and skin simulant, or air pockets between 

the perspex disc and the test sample were also investigated. All these factors were 

checked as follows:

• The first of these factors, the thickness of the disc was measured over its whole 

area using a micrometer. This determined that the perspex disk had a very even 

surface.

• All air bubbles if they were present (so far as they could be observed) were 

removed from beneath the filter paper and skin simulant.

• Various methods were employed to eliminate the possibility of air pockets 

between the disc and sample, and reduce the possible effects of any slight 

variations in the thickness o f the perspex disc and fabric samples, which could 

cause variations in multi-layer pressures.

These were:

(i) Use of a very high loft and open nonwoven fabric as an interface between the 

top fabric layer and the perspex disc, (this interface allowed trapped air to be 

diffused out sideways). Wicking tests were carried out, observed and compared 

with earlier tests.

(ii) Use of a light rubber sheet placed between the perspex disc and top fabric layer. 

Wicking tests were carried out again and compared.
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However both these methods made no real difference to the presence of 

patches in the test samples, and consequently it was thought that air pockets were 

unlikely to be a cause of the patchiness in transplanar wicking.

Further analysis was carried out on the production of these patches 

observed during earlier tests.

Single and multi-layer samples were tested on the static demand wettability 

equipment and the sequences o f absorption patterns observed were recorded ; test 

conditions used were under different compressional weights of ; 0.66g/cm2 ,

1 .Og/cm2 ; and 2.0g/cm2 , and at a pressure head height of 2.0cm.

In the multi-layer tests the warps of each sample were aligned with the warp of the 

skin simulant, and were changed from 0° (aligned : warp to warp ; top to top ; 

bottom to bottom ) to 90° or 180°.

The test method for analysis of the pattern sequence of absorption was as follows :-

• In the multi-layer tests, assemblies of blue weft knitted cotton, were used.

[A fabric dyed blue was used to aid visual observation of the wicking process; 

the fabric had been washed prior to the tests to remove all finishes from the 

fabric.]

Assemblies were collated so that all layers were aligned to 0° with the skin 

simulant. Figure 57 illustrates how the samples were aligned with the skin 

simulant. Aligning the top of the sample with the top of the skin simulant which 

represents 0°.

Fig. 57
TOP

LAST COURSE KNITTED 
0° 0°

90°

180°
BOTTOM

SAMPLE SKIN  SIMULANT
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• The assembly was then put on the skin simulant with the Perspex disc placed on 

top with additional weights when necessary for a time period of 1 minute.

• The samples were then removed and the pattern of absorption on each layer was 

recorded on a diagram.

• This was repeated several times under different weights with the samples 

aligned to different angles.

4.0.2 EXPERIMENTS ON MULTI-LAYER ASSEMBLIES

A second set of experiments was carried out as above using 2-layer 

assemblies. These results were also recorded as diagrams, see Figures 61 and 62.

From the analysis o f the diagrams it became clear almost immediately that 

in the multi-layer assemblies wicking from the first layer to subsequent layers took 

place before the first layer was completely wetted. Initial wetting took place in 

small patches and expanded horizontally outwards, and this happened in every 

case.

Figures 58 to 62 represent approximate time-lapse representations of the liquid 

distribution within the test samples, in single and double layer assemblies under 

different compression weights.
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Fig. 58 Horizontal Static transplanar wicking test 

SINGLE LAYERS

Compressional weight applied = 0.0g/cmJ

APPEARANCE AFTER 15 SECONDS APPEARANCE AFTER 30

— SATURATED AREA

— WATER LOGGED AREA

Test samples - blue weft knitted Cotton fabric.
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Figure 59 represents a single layer sample broken down into smaller time 

segments under a compressional weight of 0.66g/cm2.

Fig. 59 Horizontal Static transplanar wicking test -  absorption 

patterns

SINGLE LAYERS
Compressional weight applied = 0.66g/cm2

! — SATURATED AREA

-  WATER LOGGED AREA

Test samples - blue weft knitted Cotton fabric.
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Fig. 60 Horizontal Static transplanar wicking test -  absorption

patterns

SINGLE LAYERS

Compressional weight applied = 1.0g/cm2

□ — SATURATED AREA

WATER LOGGED AREA

APPEARANCE AFTER 30 SECONDS

Test samples - blue weft knitted Cotton fabric.
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APPEARANCE AFTER 30 SECONDS 

Compressional weight applied = 1.0g/cm2

The following figures represent results from the double layer

experiments.

Fig. 61 Horizontal Static transplanar wicking test -  absorption

patterns

DOUBLE LAYERS
Compressional weight applied = 0.66g/cm2

APPEARANCE AFTER 30 SECONDS

E3 — SATURATED AREA

] — WATER LOGGED AREA

Test samples - blue weft knitted Cotton fabric.
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Fig. 62 Horizontal Static transplanar wicking test -  absorption

patterns

DOUBLE LAYERS

Compressional weight applied = 2.0g/cm2

APPEARANCE AFTER 15 SECONDS

□  — SATURATED AREA

— WATER LOGGED AREA

Test samples - blue weft knitted Cotton fabric.

As a means of determining whether wicking is dominant in any particular 

direction, experiments were carried out as above with the addition of a film of 

plastic as an interface, placed between the skin simulant and the first layer of the 

test assembly.

The interface was a plastic sheet cut to the same size as the test samples with a hole 

of 3cm in diameter cut in the centre. This would allow the contact area to be 

reduced to one small area of the test sample and slow down the overall absorption 

rate. The direction of the planar wicking in the fabrics could be easily observed, 

and transplanar wicking would be concentrated at one point. Tests were carried 

out using 4-layer assemblies.
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Typical results were as follows.

Fig. 63 Horizontal Static transpianar wicking test -  absorption

patterns in multi-layer assemblies for test samples - blue weft 

knitted Cotton fabric.

(Top ■ Bottom)
Test sample Nos. = 4 - 1
Weight applied = 0.66 g/cm2
Pressure head/H = 2.0cm
N.B = Test using plastic film interface (A)
Alignment = 0°
Time = 1 min

Top layer

Bottom layer

TEST ASSEMBLY 
ARRANGEMENT-  
- FOR BLUE WEFT 
KNITTED COTTON 
FABRIC

skin simulant

r 4 - TO P LAYER

<
1 - BO TTO M  LAYER

PLASTIC HOLE INTERFACE

c — SKIN SIMULANT

A A A ...A .....A
nuin c iRRVOl

DRY
(ie. no visible water)

WARP 4 
Or
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Fig. 64 Horizontal Static transplanar wicking test -  absorption

patterns in multi-layer assemblies for test samples - blue weft 

knitted Cotton fabric.

Test sample Nos. 
Weight applied 
Pressure head/H 
N.B 
Time

(Top - Bottom)
= 4 - 1 
= 0.66 g/cm2 
= 2.0cm 
= No interface 
= 1 min

WARP
or

COURSE
direction

Alignment = 0°

Bottom layer

In all cases the planar wicking rate was quicker in the course 

direction than in the wale direction , no matter how small the wet patch. Once again 

layers 2 and 3 began wicking to the next layers before themselves becoming 

completely wetted. It was thought that the reason for the dominant direction of 

wicking in these last tests was due mainly to fabric structure, (this is supported by 

previous work on wicking carried out at BTTG on a research project)(X7). It was 

also noted that by decreasing the area available for transplanar wicking, the 

wicking process was almost totally controlled by planar wicking, the rate of which 

hardly appeared to be reduced.
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Changes in the initial alignment of different fabric layers in the test 

produced slight differences in the wicking rate but these were extremely small for 

any specific fabric combination.

As described in section 4.0.1, the first visible appearance of water in 

the test layers took place in several small patches scattered around the test sample , 

and with progression of time these spread in area and more patches appeared. 

Taking into account these observations another set of experiments were carried out. 

Using the same technique (static demand wettability) as before , single layers were 

left to wick for a time period of 15 minutes with no perspex disc on top in the first 

set of experiments, and with the perspex disc in the second set of experiments.

This produced samples containing patches of visible moisture. The samples were 

then removed and the areas of wet patches and visibly dry patches were cut from 

the sample and weighed.

The wet and dry patches were then left to dry for 24 hours and re-weighed. The 

dry patches in most cases were obtained from areas as close to wet patches as 

possible, and in some cases almost adjacent to a wet patch. This procedure was 

repeated for the 2-layer assemblies. These experiments were carried out on the 

blue weft knitted cotton only. The results obtained are illustrated in Tables 26 to 
29.

The results showed that in general the wet areas(patches) contained 

large amounts of water, and the dry patches remained in general dry, or liquid 

water-free, even in areas almost adjacent to a wet patch. This indicated that the 

wicking process in these wet patches occurred by transplanar wicking, spreading 

side-ways by planar wicking through the fabric system. Wicking was therefore not 

occurring universally over the whole sample area, transporting liquid upwards 

towards the top of the sample.

Further horizontal transplanar wicking tests were carried out on single layers using 

additional time intervals of 10 ; 20 ; 25 ; 30 ; and 35 minutes, either applying 

0.66g/cm2 weight or applying no weight. Examination of the wet and dry areas 

occurring during the horizontal wicking tests was carried out. Horizontal wicking 

was allowed to occur for the various set time periods and the samples are removed.

A wet patch or area was cut from the sample, and the dry area immediately next to 

it was also removed and the weights recorded.
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The liquid content for both sub-samples at the time of removal from the horizontal 

wicking apparatus was then calculated.

The same experiment was conducted on double layer samples, and these gave 

similar results to that of the single layer tests, in that there were small areas or 

patches of high water content next to dry or almost dry areas, (see tables 28 and 

29). This would determine the liquid content at the time of removal for these 

isolated pockets of saturation.

Single Lavers

Table 26 Horizontal static demand wettability test -  Water content in wet

areas only after 15 minutes.

Weft Knitted Blue COTTON Fabric Samples
Single - Laver Assemblies
-VEP/H  = 2cm 

Weight applied  =  0.66g/cm2 

Alignment = (P

TEST TIME  =  15min

SAMPLE No.4 CONDITION WT. AT TIME (g) DRY WT. %HjO

PIECES-A WET 0.235 0.097 142.3

P IE C E S -B WET 0.235 0.097 142.3

P IE C E S -C DRY 0.061 0.060 1.7

P IE C E S -D DRY 0.110 0.110 0.0

SAMPLE No.3 CONDITION WT. AT TIME (g) DRY WT. %H20

PIECES-A WET 0.960 0.307 212.7

PIECES - B MED.WET 0.270 0.111 143.2

PIECES-C DRY 0.150 0.150 0.0

SAMPLE No.5 CONDITION WT. AT TIME (g) DRY WT. %H20

PIECES-A WET 0.420 0.121 247.1

PIECES - B WET 0.362 0.106 241.5

PIECES-C DRY 0.054 0.054 0.0
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Table 27 Horizontal static demand wettability test -  Water content in wet

areas only after 35 minutes

Weft Knitted Blue COTTON Fabric Samples
Sinele - Laver Assemblies 

-VEP/H  = 2cm 

Weight applied = 0. OOg/cm2 

Alignment = OP

TEST TIME =3Smin

SAMPLE No.1 CONDITION WT. AT TIME (g) DRY WT. %H20
PIECES-A WET 0.160 0.090 77.8

PIECES - B DRY 0.192 0.192 0.0

SAMPLE No.2 CONDITION WT. AT TIME (g) DRY WT. %Hz0

PIECES-A WET 0.067 0.033 103.0
PIECES - B WET 0.030 0.017 76.5

PIECES - C DRY 0.116 0.115 0.9

PIECES - D DRY 0.095 0.095 0.0

PIECES - C DRY 0.054 0.054 0.0
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Double Lavers

Table 28 Horizontal static demand wettability test -  Water content in wet

areas only

Weft Knitted Blue COTTON Fabric Samples 
Double -  Laver Assemblies

-VEP/H  = 2cm 

Weight applied = 0.66gjcm2 

Alignment = 0°

C/S = Complete saturation

TEST TIME =15 min
SAMPLE No. 20 CONDITION WT. AT TIME (g) DRY WT. % H2O
P IEC E-A C/S 4.015 1.247 222.0
SAMPLE No.19

P IEC E -A WET 0.047 0.023 104.3
PIECE - B DRY 0.060 0.060 0.0

TEST TIME = 10 min
SAMPLE No. 9 CONDITION WT. AT TIME (g) DRY WT. %H20
P IEC E -A C/S 4.712 1.194 294.6

SAMPLE No. 10

PIEC E -A WET 1.213 0.435 178.9
PIECE - B WET 1.391 0.490 183.9

PIECE - C DRY 0.051 0.050 2.0
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Table 29 Horizontal static demand wettability test -  Water content in wet

areas only

Weft Knitted Blue COTTON Fabric Samples

Double - Laver Assemblies
-VEP/H  = 2cm 

Weight applied = ft 66g/cm2 

Alignment = 0°

C/S = Complete saturation

TEST TIME = 30 min
SAMPLE No.14 CONDITION WT. AT TIME (g) DRY WT. "/oHzO
PIEC E-A C/S 5.495 1.195 359.8
SAMPLE No.13

P IEC E -A WET 0.197 0.089 121.3
P IEC E-B WET 0.172 0.084 104.8

PIEC E-C DRY 0.095 0.095 0.0
PIEC E-D DRY 0.068 0.068 0.0

TEST TIME =25 min
SAMPLE No.6 CONDITION WT. AT TIME DRY WT. %H20

P IEC E -A CIS 5.43 1.175 362.1
SAMPLE No.8

PIECE -A WET 0.929 0.293 217.1
PIECE - B WET 0.828 0.244 239.3

PIEC E-C DRY 0.089 0.089 0.0

TEST TIME = 20 min
SAMPLE No. 12 CONDITION WT. AT TIME DRY WT. %H20

PIEC E-A C/S 5.462 1.247 338.0
SAMPLE No.11

P IEC E -A WET 0.395 0.149 165.1
PIECE - B WET 0.07 0.034 105.9

PIECE -C DRY 0.147 0.147 0.0
PIEC E-D DRY 0.137 0.137 0.0
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4.0.3 HORIZONTAL TRANSPLANAR WICKING POINTS 

(CONTACT POINTS)

Analysis o f these experiments gave rise to the hypothesis that 

horizontal transplanar wicking initially only took place at specific contact points 

on a fabric sample. If transplanar wicking occurs through the ‘Contact points’ 

between fabric layers it would follow that the nature and number of interfabric 

contact points may differ according to the individual fabric structures, the relative 

orientation of the fabrics, and the localised contact pressures.

The next series of experiments established that each fabric layer consisted of a 

series of possible contact points on both sides of a sample. However horizontal 

transplanar wicking would only take place at these contact points, provided that 

these approached saturation with liquid i.e. ‘water-logged’ and were therefore 

ready and able to transfer some of the saturation liquid to the layer above, thus 

facilitating the transfer of the liquid from one layer to the next.

A small experiment was devised to capture and record the possible contact points 

on a fabric sample between the sample and the skin simulant; this is described in 

section 3 .4.

Repeats of these tests on fabric samples proved that the exact reproduction of 

interfabric contact points in subsequent tests was not always possible. Each test 

produced a new set of interfabric contact points, and hence a new set of horizontal 

transplanar wicking points was observed.

It is clear that the greater the number of initial interfabric contact points (and hence 

transplanar wicking points) in the test the quicker a fabric sample would absorb and 

transfer liquid to subsequent layers by horizontal transplanar wicking.

If there are no interfabric contact points initially, it is considered that no horizontal 

transplanar wicking would take place until the whole of the initial fabric layer is 

saturated with liquid. At that point horizontal transplanar wicking should probably 

occur more simultaneously across the whole of the test specimen. Thus horizontal 

transplanar wicking would take place from fabric to fabric only i f :
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(a) suitable interfabric contact points exist initially, and

(b) enough water is present in the first fabric (inter-yarn water, i.e. contact points 

are waterlogged) to effect horizontal transplanar wicking.

A variation in the number and position of these interfabric contact points is 

considered to be the main reason for the experimental variations in the wicking 

rates observed in the initial demand wettability tests. Because these variations are 

extremely difficult to eliminate in all but the most uniform and regular of fabric 

structures, variation in the wicking rate in horizontal wicking tests are an inherent 

factor affecting the transplanar wicking rate.

Many factors may influence the presence and variety of contact points between 

fabrics, some of which can be related to the factors which also influence abrasion 

and wear resistance in a fabric.

It therefore follows that factors that alter the nature of the fabric structure, in 

particular the surface nature of the fabrics should demonstrate marked changes in 

horizontal transplanar wicking rates because of the changes in the nature of 

interfabric contact points

Some of the factors which may influence the presence of contact points are :

(1) Local pressures or stress concentrations developing on specific yarn points or 

areas (i.e., the true area of contact)

(2) Geometric area of contact between fabric and fabric

(3) Threads per cm / courses/cm and wales/cm

(4) Crown height (i.e. The extent of deformations out of the plane of the fabric 

resulting from the intersection of warp and weft yarns)

(5) Yarn linear density

(6) Yarn crimp

(7) Float length / stitch length

(8) Yarn cohesiveness

(9) Fabric tightness / stitch density

(10)Cover factor / tightness factor

These factors have been discussed fully by Backer and Tanenhaus(58) and 

Kaswell(75) in relation to abrasion and wear resistance in woven fabrics,. But with 

some minor changes also apply to knitted fabrics.
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4.0.4 WICKING THEORY

The presence of numerous prominent areas i.e. the crowns of a 

woven fabric and the heads of the loops in a knitted fabric would be the most likely 

type of contact point to facilitate horizontal transplanar wicking.

The bottom layer once completely saturated holds water in all areas including all 

the contact points on the upper surface of the saturated sample. Once these come in 

contact with the next layer, creating the correct type of capillary channels, water 

can be transferred to the next fabric layer. Planar wicking will take place next, and 

the contact points on the lower side of the next layer also take on water upwards 

and sideways (planar). This process continues through each layer.

The speed at which horizontal transplanar wicking through various fabric 

layers will occur will depends on a series of three general levels of interfabric 

contact points. The speed at which transplanar wicking will occur through a multi­

layer assembly will depend on the amount of horizontal planar wicking that needs 

to occur before coming in contact with another good interfabric contact with the 

next layer. An illustration of this process can be seen in figure 65.

Fig. 65

Skin

3rd

2nd

1st

simulant

INTERMEDIATE WICKING RATE

Representation of the three levels of inter-fabric contact sequences

HIGHEST WICKING RATE SLOWEST WICKING RATE

4th
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The highest possible wicking rate shows the best possible sequence of 

contiguous interfabric contact points necessary for the highest level of liquid 

transport through multi-layer fabric systems. This level of transmission is mainly 

controlled by horizontal transplanar wicking.

The medium wicking rates will be made up of a series of good and not so good, or 

good and bad inter-fabric contacts, relying on both horizontal planar and 

transplanar wicking, but with transplanar wicking as the predominant process.

The lowest wicking rates are controlled mainly by horizontal planar wicking with 

transmission to subsequent layers only occurring at good interfabric contact points. 

This may result in the preceding lower fabric layers becoming almost completely 

saturated before transferring liquid to the next fabric layer.

The liquid transmission sequence through a multi-layer fabric system will be made 

up of a complex combination of these three types of inter-fabric contact points.
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4.1 RESULTS FROM EQUIPMENT AND METHODOLOGY 
DEVELOPMENT 

4.1.1 STATIC DEMAND WETTABILITY METHOD

It was during initial development of the methodology that testing 

was carried out on the reproducibility o f the technique. Tests were carried out on 

Acrylic, Nomex and Polypropylene fabric samples.

Tables 30 -  32 and Figures 66 -  68 illustrates results obtained from reproducibility 

tests performed on these 3 fabric samples. Repeat tests on these fabrics produced 

coefficient of variation percentages (cv%) which were still high, although lower than 

the results from early testing. However a repeating pattern was observed, a high 

initial cv% in the first minute decreasing at each time interval. The variability could 

not be eliminated, as explained in section 4.0.3, although the amount of variation 

produced seemed to depend on the fabric/fibre type. Therefore the cv% for the 

acrylic, Nomex and polypropylene samples were fairly high but as expected on the 

basis o f previous experiments, with the polypropylene fabric producing extremely 

high cv%. As illustrated by figure 67 the Acrylic sample produced the lowest 

variation at the end of the tests giving an end cv% of 7.2%.

Table 30

MEAN DEMAND WETTABILITY TEST RESULTS

NOMEX SAMPLE - 1x1 Rib fabric
(non-drying tests) 
COMPRESSION WEIGHT = 
-VE P/H = 2.0 cm

0.66g/cm

SAMPLES WATER CONTENT/MIN (%)
0 1 3 10 20

NOMEX -1 0 5.70 13.68 27.14 42.19
NOMEX -2 0 6.61 16.06 31.21 46.70
NOMEX -N1 0 6.38 14.81 30.30 44.76
NOMEX -N2 0 7.87 14.60 38.54 48.46

Mean = 0 6.64 14.79 31.80 45.53
stdev = 0.91 0.98 4.82 2.69
cv% = 13.6 6.6 15.2 5.9
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Table 31

MEAN DEMAND WETTABILITY TEST RESULTS

ACRYLIC SAMPLE - Interlock fabric
(non-drying tests) water pH = 7.0
COMPRESSION WEIGHT = 0.66g/cm 
-VEP/H = 2.0 cm

SAMPLE WATER CONTENT/MIN (%)
0 1 3 10 20

ACRYLIC -1 0 12.04 45.03 142.80 199.44
ACRYLIC -2 0 7.50 39.34 145.72 204.34
ACRYLIC -3 0 22.32 71.15 152.79 203.94
ACRYLIC -4 0 23.07 55.86 168.14 231.72
ACRYLIC -5 0 27.28 66.69 140.56 192.59

Mean = 18.44 55.61 150.00 206.41
stdev = 8.295 13.612 11.135 14.919
cv% = 44.98 24.48 7.42 7.23

Table 32

MEAN DEMAND WETTABILITY TEST RESULTS

POLYPROPYLENE SAMPLE - 1x1 Rib fabric
(non-drying tests) water pH = 7.0
COMPRESSION WEIGHT = 0.66g/cm2 
-VE P/H = 2.0 cm

SAMPLES WATER CONTENT/MIN (%)
0 1 3 10 20

POLYPROP -1 0 1.24 3.58 12.61 28.53
POLYPROP - 2 0 1.97 6.38 24.30 55.50
POLYPROP - 3 0 0.63 1.76 4.78 9.28
POLYPROP - 4 0 0.38 0.88 7.32 27.40
POLYPROP - 5 0 0.20 0.41 0.76 1.32

Mean 0.88 2.6 9.96 24.41
Std 0.72 2.43 9.10 20.95
CV% 81.7 93.6 91.4 85.8
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NOMEX SAMPLE - knitted 1x1 Rib fabric
(non-drying tests)
Compression Weight = 0.66g/cm2 
VE P/H = 2.0cm

Fig. 66

MEAN DEMAND WETTABILITY TEST RESULTS
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Fig. 67

MEAN DEMAND WETTABILITY TEST RESULTS

ACRYLIC SAMPLE - knitted Interlock fabric
(non-drying tests)
Compression Weight = 0.66g/cm2
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Fig. 68

POLYPROPYLENE SAMPLE - knitted 1x1 Rib fabric
(non-drying tests)
Compression Weight = 0.66g/cm2 
VE P/H = 2.0cm

MEAN DEMAND WETTABILITY TEST RESULTS
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4.1.2 DYNAMIC DEMAND W ETTABULITY METHOD

A series of tests were carried out to determine the most effective time 

interval for the dynamic wettability tests. The initial intervals used were 1 minute 

intervals as initially used in the static wettability tests. However as determined by 

the static tests a longer time interval was thought necessary. Therefore 5 minute 

intervals were also used, and compared with 1 minute interval tests. The results can 

be seen in Tables 33 to 35 , and Figures 69 and 71.

Three fabrics were chosen for these tests, Nomex, Acrylic and Coolmax (PET), and 

the tests were performed in the static state.

The Nomex produced the lowest water uptake, and both time intervals produced 

similar water uptake values at 5 minute and 10 minute time intervals. The increased 

number of breaks between wicking in 1 minute tests seems to have produced only a 

slight increase in water uptake.

However this is not the case with the acrylic samples. The 1 minute time intervals in 

the acrylic samples have a much higher water uptake than the 5 minute intervals. As 

suggested earlier the ability to wick liquid from one layer to the next is highly 

dependent on the surface contacts of one layer with the other. It would appear that 

the ability to establish a number of good inter-fabric contacts is increased because 

of the frequent fabric removal and return in the 1 minute time interval tests. A 

possible 5 chances in the first 5 minutes of the 1 minute test, and only 2 chances in 

the 5 minute test. However this is not always the case as the results from both the 

Nomex and Coolmax samples have shown. This could be the result of different fibre 

types reacting to the different time intervals. Because wicking once started is an 

almost continuous process, it was thought that longer time periods with fewer 

interruptions would be better for observation of the wicking process. However 

this does not appear to be always the case, but in general both time intervals appear 

to follow similar rates of liquid uptake. However it was considered that the 

disruption of the wicking process and the continued reassembling of the sample 

assemblies may generate a greater number of fabric contact points, which may 

accelerate the rate of wicking. Also there was a need to simulate as near as possible 

the two types of possible contacts occurring between layers i.e. intermittent and 

steady state contacts , and this resulted in the use of the 5 minute time interval.
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Fig. 69 Comparison of time intervals 1 minute and 5 minutes on Nomex 

fabric using the Dynamic Demand Wettability technique.

NOMEX STATIC TEST

TIME (min)
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Fig. 70 Comparison of time intervals 1 minute and 5 minutes on Acrylic 

fabric using the Dynamic Demand Wettability technique.

ACRYLIC STATIC TEST
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Fig. 71 Comparison of time intervals 1 minute and 5 minutes on Coolmax 

fabric using the Dynamic Demand Wettability technique.
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4.1.3 COMPARISON OF WETTABILITY METHODS IN THE 

HORIZONTAL STATIC STATE

A comparison was made of the two demand wettability techniques in the 

static state, using PVC fabric samples and Acrylic fabric samples. This was to 

compare the static test on both pieces of equipment, and investigate any differences 

which may occur. These results can be seen in Figures 72 and 73 for the PVC 

fabric and Acrylic fabric samples.

In both fabric samples the static demand technique produced a greater liquid uptake 

than the dynamic technique. This may be due to the type of liquid reservoir used in 

each technique.

In the case of the static demand technique the type of liquid reservoir used 

means a greater availability of liquid to the fabric being tested ( an infinite amount of 

liquid availability). Therefore the test fabric is free to take on liquid on demand in 

any amount, at any rate. In the dynamic test the liquid reservoir is smaller and 

influenced by the temperature and humidity of the test environment, therefore the 

amount of available liquid is smaller., and this would influence the demand and 

hence the wicking rate.
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4.1.4 VERTICAL TRANSPLANAR WICKING METHOD

Using the same four core test fabric samples acrylic, cotton, 

polypropylene and Nomex, used in the dynamic and static wettability techniques, a 

test method was developed for investigating transplanar wicking in the vertical 

state. Using the method described in section 3.3 tests were carried on the above 

fabrics, and produced results with the exception of polypropylene. The initial 

wetting of polypropylene fabrics can be extremely difficult and in the case of 

vertical wicking this made the process almost impossible to observe. When wicking 

did occur it took an extremely long period of time to occur, and the amount of 

wicking which took place varied greatly from test to test. Vertical wicking testing 

was therefore abandoned for the polypropylene fabrics. Vertical testing was carried 

out with the remaining fabric samples. These results were based on the total 

percentage water content of the whole of each fabric sample, and can be seen in 

tables 36 to 38 , and figures 74 to 76 .
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VERTICAL WICKING TESTS

Table 36

SAMPLE : ACRYLIC - (Knitted)

Test pair Ref.No. MEAN RESULTS
Orig.Wt(g) W ta tE N D  CONTENT(g) WATER (%)

1 1 0.743 0.897 0.154 20.7
2 0.719 0.773 0.054 7.5

2 3 0.760 0.922 0.162 21.3
4 0.788 0.800 0.012 1.5

3 5 0.619 0.810 0.191 30.8
6 0.563 0.588 0.025 4.4

4 7 0.628 0.808 0.180 28.6
8 0.612 0.641 0.029 4.7

Ref.nos. 1 - 8  represent individual test samples of the knitted interlock acrylic 
fabric

Table 37

VERTICAL WICKING TESTS

SAMPLE : COTTON - (Knitted)

Test pair Ref.No.

1 A
D

Orig.Wt(g) W t at END CONTENT (g) WATER (%)
0.530
0.518

0.596
0.548

0.066
0.030

12.6
5.8

2 C 0.435 0.540 0.105 24.0
H 0.445 0.466 0.021 4.6

3 E 0.491 0.625 0.134 27.2
F 0.498 0.503 0.006 1.1

4 B 0.483 0.591 0.108 22.4
G 0.502 0.547 0.045 8.9

Ref.nos. A -H  represent individual test samples of the knitted interlock 
cotton.L fabric



161

Fig. 74 VERTICAL WICKING TESTS ON ACRYLIC FABRIC

FABRIC LAYERS (in PAIRS)

Fig. 75 VERTICAL WICKING TESTS ON COTTON FABRIC
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Table 38

VERTICAL WICKING TESTS

SAMPLE : NOMEX - (Knitted)

Test pair Ref. No. MEAN RESULTS
Orig.Wt(g) W t at END CONTENT(g) WATER (%)

1 1 0.422 0.449 0.027 6.4
2 0.409 0.424 0.015 3.7

2 3 0.401 0.417 0.016 4.0
4 0.403 0.410 0.007 1.7

Ref.nos. 1 - 4  represent individual test samples of the knitted lx l  rib Nomex 
fabric

Fig. 76 VERTICAL WICKING TESTS ON NOMEX FABRIC
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After examining the initial results a slight modification o f the test method 

was made in order to obtain the water content o f the wet areas only and not over 

the total fabric area.

After each test the wet areas of each layer were cut out o f each test sample and 

weighed individually. Each cut area was left for a minimum 24 hours to dry and 

then re-weighed. The sample weight in each case corresponded with the original 

sample weight prior to wetting. The total water content for the saturated area only 

was then calculated.

Figures 124 to 132 and tables 58 to 66 record results from this new test method.
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4.2.1 HORIZONTAL STATIC DEMAND WETTABILITY 

TECHNIQUE

Once the time intervals had been established a series o f tests were carried 

out on single and multi-layer assemblies. With the multi-layer fabric assemblies 

fabrics o f different fibre types were mixed within the assemblies and the resulting 

water uptake was recorded.

Table 39 and figure 77 records the results from single layer tests on Nomex, acrylic 

and polypropylene fabric samples.

Figures 78-95 records the results from tests carried out on Nomex, acrylic , cotton 

and polypropylene fabric samples used in various assembly combinations.

In all the fabric/fibre types the ability to retain water is extremely important in these 

tests, as observations during testing revealed that when a layer is removed for 

weighing the water front can be seen receding into the previous lower layers when 

the inter-fabric contacts are broken. The fabrics samples ability to retain water at 

the moment when the contacts are broken must influence the amount o f water 

present in the test fabrics at the end o f the tests.

4.2.1.1 Polypropylene/Acrylic and Acrylic/Polypropylene

The polypropylene/acrylic combination produced predictable effects , 

and traditional roles were observed. With the acrylic as the bottom layer, acrylic 

took up the greatest amount o f water and polypropylene the least amount of water. 

The absorption rate o f the acrylic samples peaked during the first minute o f the 

tests, with a sudden decreasing rate throughout the rest of the tests.

In this combination the rapid wicking rate in the first minute will be due to the 

acrylic fibres, ability to take on water quickly via its inter-fibre channels. It is 

because o f the acrylic’s round cross-sectional shape with a crinkle edge, giving the 

ability to create a higher capillary pressure than the polypropylene with a round 

cross-section, resulting in a more rapid initial liquid uptake. This is clearly visible in 

figure 79.

4.2 RESULTS AND DISCUSSION
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In the reverse order a different phenomenon was observed, namely a much 

lower uptake in both samples was observed. However although the polypropylene 

commenced with a lower liquid uptake at approximately half way through the test, 

the liquid uptake increased and overtook the acrylic sample (which is usually a 

higher wicker), and this was observed in all the repeat tests. It appears that this 

combination of fibres in this order has an unusual effect on their traditional wicking 

properties.

This time the polypropylene was next to the water source, and the acrylic still 

behaved as before with a high initial wicking rate, decreasing with time. This may 

have occurred because the acrylic as a high wicking fabric was taking on water 

quicker than the polypropylene during that first minute. Consequently the acrylic 

fabric was robbing the polypropylene fabric o f water during the time period where 

the largest uptake o f liquid occurred, (the first minute o f the test). After this first 

minute, the rate o f liquid uptake was reduced, and controlled by the polypropylene 

fabric.

However the polypropylene was also able to produce a rapid initial wicking rate in 

the first minute, decreasing after that minute, but after the third minute producing 

an increased wicking rate (this proved to be a repeatable phenomena in this 

combination), during a 7 minute wicking period in both fabrics. At the last time 

interval, 20 minutes, a wicking period o f 10 minutes it appears that at this stage 

gravity is beginning to affect the wicking rate. Overall the water uptake is greatly 

reduced by the polypropylene being the bottom layer, and the acrylic has to work 

harder to take on water in the same amount o f time, and this may explain the drop in 

the liquid uptake and then the levelling off o f water uptake as there is less water to 

be affected by gravity.
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Table 39.

MEAN STATIC DEMAND WETTABILITY TEST RESULTS
Single Layer Tests

Test Samples Mean Water content %)
0 1 3 10 20

Nomex 0 4.2 9.6 22.3 34.01
Acrylic 0 18.4 55.6 150 206.4
Polypropylene 0 0.88 2.6 9.96 24.4

Fig. 77 Horizontal Static demand wettability single layer test results

0 5 10 15 20 25
TIME (min)
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DEMAND WETTABILITY MEAN TEST RESULTS
______________________ MULTI-LAYER TESTS (MIXED)
POLYPROP - TOP 
ACRYLIC_________________- BOTTOM________
COMPRESSION WEIGHT = 0.66g/cm2
-VE P/H = 2.0 cm_________ water pH = 7.0_____

Fig. 78 Horizontal static transplanar wicking

WATER CONTENT/MIN (%)
0 1 3 10 20

POLYPROPYLENE 0 0.16 0.32 0.93 5.75
ACRYLIC 0 30.09 75.66 153.82 206.84
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DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TESTS (MIXED)

Fig. 79 Horizontal static transplanar wicking

COMPRESSION WEIGHT = 0.66g/cmz 
-VE P/H = 2.0 cm____________water pH = 7.0

0 5 10 15 20 25
TIME (min)

ABSORPTION RATE /MIN (g)
0 1 3 10 20

POLYPROPYLENE 0 0.002 0.001 0.001 0.002
ACRYLIC 0 0.448 0.380 0.232 0.156
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DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TESTS (MIXED)

Fig. 80 Horizontal static transplanar wicking

ACRYLIC - TOP 
POLYPROPYLENE - BOTTOM
COMPRESSION WEIGHT = 0.66g/cm2
-VE P/H = 2.0 cm water pH = 7.0

TIME (min)

(%) WATER CONTENT/MIN
0 1 3 10 20

ACRYLIC 0 0.26 0.46 0.64 0.79
POLYPROPYLENE 0 0.20 0.30 0.68 0.99
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Fig. 81 Horizontal static transplanar wicking

DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TEST RESULTS (MIXED)

TOP
BOTTOM

COMPRESSION WEIGHT = 0 .6 6 g W  
-VE = 2.0cm water pH = 7.0______ I

ABSORPTION RATE /MIN (g)
0 1 3 10 20

ACRYLIC 0 0.005 0.003 0.003 0.003

POLYPROPYLENE 0 0.003 0.002 0.005 0.004
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4.2.1.2 Polypropylene/Nomex and Nomex/Polypropylene

The Nomex and polypropylene fabric samples exhibited different 

properties when placed together. Polypropylene traditionally a poor wicking fibre, 

in combination with Nomex produced different results. As individual layers 

Nomex took up more liquid than the polypropylene, and is represented in figure 77. 

In figures 82 and 83 respectively with the polypropylene as the top layer produced 

a lower wicking rate. Once again with the polypropylene as the top layer, the fibre 

cross-sectional shape seems to have an influence in the first minute. The Nomex 

fibre has a ‘dog-bone’ cross-section, and it produced a higher initial wicking rate. 

However the polypropylene in this combination has also produced a more rapid 

water uptake than in the polypropylene /acrylic combination. This may be 

influenced by the fabric structures in these combination, both polypropylene and 

Nomex are lx l  rib structures (the acrylic samples were interlock).

However with the fabric layers reversed and with polypropylene as the bottom 

layer, this absorption rate could be increased using Nomex as the top layer, see 

figure 84 and 85. Polypropylene is shown as taking up more water than the Nomex 

sample, which in individual tests was not the case, (see Fig. 77 and table 39).

With polypropylene as the bottom layer an overall decrease in water uptake was 

expected, however this was not the case. The amount o f water taken up in the 

bottom layer hardly changed (Nomex -  33.7% ; Polypropylene - 38.4% in total) 

performed as they had done in earlier single layer tests, with Nomex taking on 

more water than the polypropylene as expected.

It should be noted that the results on the polypropylene fabric were not very 

consistent, presumably because of the poor wicking characteristics o f this 

hydrophobic fibre. The improved test method gave improved experimental 

reproducibility on the acrylic and Nomex fabrics, but the results on the 

polypropylene still exhibited variations (see Appendix 2 and 3, Tables 67 to 73).
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DEMAND WETTABILITY MEAN TEST RESULTS
____________________ MULTI-LAYER TEST RESULTS (MIXED)
POLYPROPYLENE 
NOMEX________ ____________
COMPRESSION WEIGHT = 0.66g/cm2

-VE = 2.0cm water pH = 7.0

Fig. 82 Horizontal static transplanar wicking

0 5 10 15 20 25

TIME (min)

WATER CONTENT/MIN (%)
0 1 3 10 20

POLYPROPYLENE 0 0.17 0.29 1.82 5.77
NOMEX 0 1.71 5.4 18.62 33.7
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Fig. 83 Horizontal static transplanar wicking

DEMAND WETTABILITY TEST RESULTS
MULTI-LAYER TESTS (MIXED)

POLYPROPYLENE - TOP 
NOMEX____________________ - BOTTOM
COMPRESSION WEIGHT = 0.66g/cm2 
-VE P/H = 2.0 cm__________ water pH = 7.0

ABSORPTION RATE /MIN (g)
0 1 3 10 20

POLYPROPYLENE 0.000 0.003 0.002 0.002 0.004
NOMEX 0.000 0.016 0.018 0.019 0.017
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DEMAND WETTABILITY MEAN TEST RESULTS 
_______________________ MULTI-LAYER TESTS (MIXED)

COMPRESSION WEIGHT = 0.66g/cm^
-VE P/H = 2.0 cm____________water pH = 7.0_____

Fig. 84 Horizontal static transplanar wicking

WATER CONTENT/MIN (%)
0 1 3 10 20

NOMEX 0 0.58 1.78 7.67 16.09
POLYPROPYLENE 0 1.36 4.85 16.74 38.41
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F ig . 85 Horizontal static transplanar wicking

DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TES

COMPRESSION WEIGHT = 0.66g/cm" 

-VE = 2.0cm water pH = 7.0

RESULTS (MIXED)

ABSORPTION RA1•E /MIN (g)
0 1 3 10 20

NOMEX 0 0.005 0.009 0.046 0.078

POLYPROPYLENE 0 0.017 0.042 0.14 0.255
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4.2.1.3 Nomex /Acrylic and Acrylic /Nomex

This combination produced predictable results in the testing with 

Nomex as the top layer, and acrylic as the bottom layer. As acrylic in the single 

layer tests was traditionally a better wicking fibre than the Nomex, this was 

expected. However the absorption rate o f the acrylic is completely different from 

rate produced in the polypropylene/acrylic combination. In the Nomex /acrylic 

combination the wicking rate in the acrylic increases steadily with time, see figure 

86, this is not the case in the polypropylene/acrylic combination, see figure 79. 

This may be due to the liquid retaining properties o f the Nomex. As mentioned 

before when the inter-fabric contacts were broken during removal for weighing 

during the tests, the liquid front could be clearly seen receding into the lower layer. 

The amount o f liquid lost to the lower layers is dependent on the liquid retaining 

properties o f the layer being removed.

However in the reverse order the results produced have shown that with acrylic as 

the top layer and Nomex as the bottom layer ,this combination appears to have 

increased the wicking ability o f the Nomex samples and greatly hindered the acrylic. 

The absorption rate o f the first combination, Nomex/acrylic produced a very slow 

steady increase in liquid uptake in the Nomex. However the acrylic samples 

produced a slow initial uptake which increased after the first minute, see figure 89.
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Fig. 86 Horizontal static transplanar wicking

DEMAND W ETTABILITY MEAN TEST RESULTS
MULTI-LAYER TESTS (MIXED)

WATER CONTENT/MIN (%)
0 1 3 10 20

NOMEX 0 0.50 0.66 1.16 1.49
ACRYLIC 0 16.08 43.05 102.06 161.22
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Fig. 87 Horizontal static transplanar wicking

DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TEST RESULTS (MIXED)

COMPRESSION WEIGHT = eeg/cm2 

-VE = 2.0cm water pH = 7.0

—• — NOMEX

ACRYLIC

0.8

0 .a.ov>00<

0.6

0.4

ACRYLIC

NOMEX

10

TIME (min)

ABSORPTION RATE /MIN (g)
0 1 3 10 20

NOMEX 0 0.0050 0.0010 0.0045 0.0035

ACRYLIC 0 0.254 0.425 0.929 1.135
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Fig. 88 Horizontal static transplanar wicking

DEMAND WETTABILITY MEAN TEST RESULTS
________ MULTI-LAYER TESTS (MIXED)

OP
- BOTTOM

COMPRESSION WEIGHT = 0.66g/crrf 
-VE P/H = 2.0 cm_____ water pH = 7.0

—♦ — ACRYLIC 

—9— NOMEX

NOMEX

10 15
TIME (min)

ACRYLIC

WATER CONTENT/MIN (%)
0 1 3 10 20

ACRYLIC 0 0.24 0.43 3.02 8.94
NOMEX 0 1.43 4.40 13.24 25.04
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Fig. 89 Horizontal static transplanar wicking

DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TEST RESULTS (MIXED)

COMPRESSION WEIGHT = 0.66g/cm2 
-VE = 2.0cm water pH = 7.0

ABSOR PTION RATE /MIN (g)
0 1 3 10 20

ACRYLIC 0 0.004 0.003 0.041 0.093

NOMEX 0 0.013 0.027 0.081 0.107
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4.2.1.4 Cotton/Polypropylene

The cotton/polypropylene combination with cotton as the top layer 

produced results indicating that the presence of polypropylene in the assembly had a 

hindering effect on the liquid uptake o f cotton. It would appear that a slow wicking 

fabric as the lower layer has an adverse influence on the top layer fabric, even if the 

top layer fabric is a high wicking fabric.

4.2.1.5 Cotton/Acrylic

In the cotton/acrylic combination, an assembly o f good wicking fibres, the 

results observed were o f high liquid uptake in the bottom layer, the acrylic, and an 

unexpected much lower uptake in the cotton - the top layer, see figure 92 and 93. 

The absorption rate in this combination increased throughout both layers, with the 

absorption rate for acrylic producing a hyperbolic curve, a steep increase in liquid 

absorption initially which decreased with time. Cotton as the top layer produced 

absorption results which performed with a slow absorption rate which increased 

with time.

4.2.1.6 Cotton/Nomex

The cotton/Nomex combination also produced unexpected results even 

though Nomex was not a particularly good wicking fibre especially in comparison 

with cotton. However the Nomex produced results very close to that o f the cotton 

samples. With the Nomex fabric as the bottom layer, a higher initial liquid uptake 

than the cotton sample (the top layer) was observed However this situation 

gradually reversed with the cotton sample in the final stages of the test, exhibiting 

the highest liquid uptake. In figure 95 after the initial uptake the absorption rate in 

the Nomex drops, allowing the cotton sample to overtake the Nomex as it increases 

its absorption rate. This may be due to the cotton fabric wicking at a quicker rate 

than the Nomex, and removing water from the Nomex at a quicker rate than the 

Nomex can wick from the water reservoir below.
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DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TESTS (MIXED)

Fig. 90 Horizontal static transplanar wicking

POLYPROPYLENE _______ - BOTTOM
COMPRESSION WEIGHT = 0.66g/cm2 
-VEP/H = 2.0 cm______________ water pH = 7.0

—• — COTTON

—■ — POLYPROP

/
COTTON

POLYPROPYLENE —

TIME (min)

(%) WATER CONTENT/MIN
0 1 3 10 20

COTTON 0 0.88 1.84 3.93 7.74
POLYPROPYLENE 0 0.12 0.17 0.28 0.55



183

Fig. 91 Horizontal static transplanar wicking

DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TEST RESULTS (MIXED)

ABSORPTION RATE /MIN (g)
0 1 3 10 20

COTTON 0 0.0110 0.0120 0.0250 0.0470

POLYPROPYLENI 0 0.0013 0.0007 0.0015 0.0035
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DEMAND WETTABILTY MEAN TEST RESULTS
MULTI-LAYER TESTS (MIXED)

Fig. 92 Horizontal static transplanar wicking

COTTON - TOP 
ACRYLIC_____________- BOTTOM
COMPRESSION WEIGHT = 0.66g/cm2 
-VE P/H = 2.0 cm water pH = 7.0

WATER CONTENT/MIN (%)
0 1 3 10 20

COTTON 0 0.87 2.55 6.15 17.94
ACRYLIC 0 15.99 43.35 83.42 135.68
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DEMAND WETTABILITY MEAN TEST RESULTS
______________________ MULTI-LAYER TEST RESULTS (MIXED)
COTTON - TOP 
ACRYLIC________ - BOTTOM
COMPRESSION WEIGHT = 0.66g/cm2 
-VE = 2.0cm water pH = 7.0_____

Fig. 93 Horizontal static transplanar wicking

ABSORPTION RATE /MIN (g)
0 1 3 10 20

COTTON 0 0.011 0.021 0.046 0.324

ACRYLIC 0 0.255 0.402 0.626 1.034
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DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TESTS (MIXED)

Fig. 94 Horizontal static transplanar wicking

COTTON 
NOMEX
COMPRESSION WEIGHT = 0.66g/cm^ 
-VE P/H = 2.0 cm water pH = 7.0

(%) WATER CONTENT/MIN
0 1 3 10 20

COTTON 0 1.28 3.64 14.42 54.29
NOMEX 0 3.35 6.76 17.98 32.40
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Fig. 95 Horizontal static transplanar wicking

DEMAND WETTABILITY MEAN TEST RESULTS
MULTI-LAYER TESTS (MIXED)

TOP
- BOTTOM

COMPRESSION WEIGHT = 0.66g/cm': 
-VE P/H = 2.0 cm water pH = 7.0

ABSORPTION RATE /TIME PERIOD
0 1 3 10 20

COTTON 0 0.015 0.0135 0.018 0.028
NOMEX 0 0.029 0.021 0.016 0.015
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4.2.2 HORIZONTAL DYNAMIC DEMAND WETTABILITY 

TECHNIQUE

Using the acrylic and Nomex fabric samples comparison tests were 

carried out using the dynamic demand wettability test apparatus, in the static mode 

and in the dynamic mode. The comparisons are illustrated in Tables 40 and 41, 

and Figures 96 and 97.

These results show almost immediately the increase in wicking produced by the 

introduction o f movement between the test sample and the skin simulant, one type 

of action which may occur naturally during normal clothing wear.

Table 40

DYNAMIC 'DEMAND WETTABILITY TEST 
Static and Dynamic Comparison tests

TEST SAMPLE - ACRYLIC.L.
Knitted ACRYLIC.L. - typical underwear fabric 
COMPRESSIONAL WEIGHT = 0.68g/cm
AVERAGE WET WEIGHT OF SPONGE = 90g

MEAN PERCENTAGE WATER ABSORBED %
0 5 10 15 20 25 30

Static 0 18.98 25.85 31.05 35.60 37.26 38.44
Dynamic 0 31.20 54.10 65.34 72.54 77.76 82.71

Table 41

DYNAMIC 'DEMAND WETTABILITY TEST
Static and Dynamic Tests

TEST SAMPLE - NOMEX
Knitted NOMEX- typical underwear fabric 
COMPRESSIONAL WEIGHT = 0.68g/cm 
WET WEIGHT OF SPONGE = 90g

PERCENTAGE WATER ABSORBED %
0 5 10 15 20 25 30

Static 0 0.95 1.38 1.60 1.94 2.07 2.24
Dynamic 0 4.98 9.05 12.83 16.90 20.89 26.45
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Fig. 96

HORIZONTAL DYNAMIC 'DEMAND WETTABILITY TEST
Static and Dynamic Comparison tests

TEST SAMPLE - ACRYLIC.L.
Knitted ACRYLIC.L. - typical underwear fabric
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HORIZONTAL DYNAMIC DEMAND WETTABILITY TEST
Static and Dynamic Tests

TEST SAMPLE - NOMEX
Knitted NOMEX- typical underwear fabric_______

Fig. 97

Results from both the Acrylic-(interlock structure) and Nom ex-(lxl rib 

structure) samples determined immediately the influence that movement had on the 

wicking rate, whether the sample was a good wicking fabric or a low wicking fabric. 

In the case o f the Nomex sample at the time period o f 30 minutes the liquid uptake 

for the Nomex sample increased from 2.2% to 25.4% liquid content with the 

introduction o f movement between the sample and the skin simulant.



191

The knitted structure o f the Nomex samples were lx l rib structure, which 

although is a more stable structure than a plain knitted structure does incorporate a 

lot o f stretch within its matrix, especially in the wale direction. This will encourage 

more distortion in the knitted fabric during movement than an interlock structure. 

An interlock fabric structure is a more stable knitted structure than a lx l rib 

structure, due to the fact that the wales on each side o f an interlock fabric structure 

are the exact opposite to each other and are locked together , and therefore can not 

be stretched to reveal the reversed loops<79), see figure 98.

Continual movement may drive liquid into both the rib and the interlock structures 

but the rib structure may have more difficulty retaining the liquid due to the ease 

with which the changing o f the loop shape and size may occur.

The stability o f the interlock structure may help to reduce the amount o f structural 

distortion during movement.

Fig. 98

lx l Rib Interlock

Inter-yarn spaces/channels
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With the inclusion of movement the distortion o f the loops in the knitted structure 

can take many forms, see figure 99.

Fig. 99 Possible distortion of knitted loops during inter-fabric movement

t
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4.2.2.1 Interlayer Tests

After the initial testing determining the influence of movement on the 

wicking rate and liquid uptake interlayer tests were carried out.

These were primarily carried out to determine the influence o f different fibre 

assembly combinations, as used in the static demand technique, see section 4.2.1. in 

combination with movement, as present in a normal clothing assembly.

Each test sample was tested with another test sample placed on top o f the skin 

simulant as a second layer.

Table 42.

DYNAMIC DEMAND WETTABILITY TESTS - MULTI-LAYER RESULTS 
INTER-LAYER MOTION TESTS

TEST SAMPLE - ACRYUC
WEIGHT APPLIED = 0.68g/cm2
SPEED = SLOWEST_______
ACRYUOTEST SAMPLE/SKIN SIM

ACRYUC
ON MEAN PERCENTAGE WATER CONTENT (%

0 5 10 15 20 25 30
NOMEX 0 2.73 5.09 8.30 13.37 17.82 23.61
ACRYUC 0 8.95 19.11 29.70 38.89 52.42 57.51
POLY 0 17.82 45.62 85.98 101.17 107.31 112.00
COTTON 0 15.30 43.36 75.81 93.51 102.29 109.70

Table 43

DYNAMIC DEMAND WETTABILITY TESTS - MULTI-LAYER RESULTS 
INTER-LAYER STATIC TESTS

TEST SAMPLE - ACRYLIC
WEIGHT APPLIED = 0.68g/cm2 
SPEED = STATIC___________
ACRYUC/TEST SAMPLE/SKIN SIM

ACRYLIC
ON MEAN PERCENTAGE WATER CONTENT (%)

0 5 10 15 20 25 30
NOMEX 0 0.59 0.69 0.76 0.79 0.81 0.87
ACRYLIC 0 0.33 0.43 0.47 0.53 0.56 0.56
POLY 0 0.44 0.53 0.64 0.73 0.77 0.82
COTTON 0 5.64 9.67 11.93 16.25 18.44 20.05
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Fig. 100
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Fig. 101
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Table 44.

DYNAMIC DEMAND WETTABILITY TESTS - MULTI-LAYER RESULTS 
INTER-LAYER MOTION TESTS

TEST SAMPLE - COTTON
WEIGHT APPLIED = 0.68g/cm2 
SPEED = SLOWEST

COTTON
ON MEAN PERCENTAGE WATER CONTENT (%)

0 5 10 15 20 25 30
NOMEX 0 35.92 66.31 115.00 165.75 209.22 247.66
ACRYLIC 0 206.16 260.57 279.78 290.15 295.13 298.26
POLY 0 11.11 24.80 40.49 55.98 72.77 89.90
COTTON 0 277.79 290.77 296.04 296.90 297.69 299.57

Table 45

DYNAMIC DEMAND WETTABILITY TESTS - MULTI-LAYER RESULTS 
INTER-LAYER STATIC TESTS

TEST SAMPLE - COTTON
WEIGHT APPLIED = 0.68g/cm2 
SPEED = STATIC

COTTON
ON MEAN PERCENTAGE WATER CONTENT (%

0 5 10 15 20 25 30
NOMEX 0 3.16 4.67 5.89 6.75 9.38 10.71
ACRYLIC 0 14.20 18.99 22.09 28.22 29.09 29.68
POLY 0 2.28 3.38 4.04 5.25 5.65 6.09
COTTON 0 203.15 213.78 219.41 223.05 225.65 227.93
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Fig. 103
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Table 46

DYNAMIC DEMAND WETTABILITY TESTS - MULTI-LAYER RESULTS 
INTER-LAYER MOTION TESTS

TEST SAMPLE - NOMEX
W EIGHT APPLIED = 0.68g/cm2 
SPEED = SLOWEST__________
NOMEX/TEST SAMPLE/SKIN SIM

NOMEX
ON MEAN PERCENTAGE WATER CONTENT (%)

0 5 10 15 20 25 30
NOMEX 0 2.73 5.09 8.30 13.37 17.82 23.61

ACRYLIC 0 8.95 19.11 29.70 38.89 52.42 57.51
POLY 0 0.74 0.89 0.94 1.00 1.09 1.16

COTTON 0 0.73 0.88 0.93 1.12 1.07 1.14

Table 47

DYNAMIC DEMAND WETTABILITY TESTS - MULTI-LAYER RESULTS 
INTER-LAYER STATIC TESTS

TEST SAMPLE - NOMEX
WEIGHT APPLIED = 0.68g/cm2 
SPEED = STATIC____________
NOMEX/TEST SAMPLE/SKIN SIM

NOMEX
ON MEAN PERCENTAGE WATER CONTENT (%

0 5 10 15 20 25 30
NOMEX 0 0.73 0.92 1.00 1.07 1.14 1.20

ACRYLIC 0 0.85 0.97 1.04 1.08 1.11 1.15
POLY 0 0.69 0.87 0.93 1.02 1.07 1.12

COTTON 0 1.05 1.86 2.49 2.94 3.48 4.00
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Fig. 105
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Table 48

DYNAMIC DEMAND WETTABILITY TESTS - MULTI-LAYER RESULTS 
INTER-LAYER MOTION TESTS

TEST SAMPLE - POLYOROPYLENE
WEIGHT APPLIED = 0.68g/cm2 
SPEED = SLOWEST
POLYPROPYLENE/TEST SAMPLE/SKIN i

POLY
ON MEAN PERCENTAGE WATER CONTENT (%

0 5 10 15 20 25 30
NOMEX 0 1.21 2.26 2.94 3.48 3.91 4.42
ACRYLIC 0 2.73 5.09 8.30 13.37 17.82 23.61
POLY 0 0.32 0.61 0.84 1.01 1.27 1.46
COTTON 0 9.81 18.22 25.98 32.39 38.91 44.60

Table 49

DYNAMIC DEMAND WETTABILITY TESTS - MULTI-LAYER RESULTS 
INTER-LAYER STATIC TESTS

TEST SAMPLE - POLYOROPYLENE
WEIGHT APPLIED = 0.68g/cm2 
SPEED = STATIC
POLYPR

POLY
ON MEAN PERCENTAGE WATER CONTENT (%

0 5 10 15 20 25 30
NOMEX 0 0.33 0.41 0.47 0.51 0.53 0.55
ACRYLIC 0 0.32 0.44 0.49 0.55 0.56 0.63
POLY 0 0.22 0.25 0.30 0.30 0.33 0.38
COTTON 0 0.16 0.26 0.36 0.38 0.45 0.50
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Fig. 106

—♦ — NOMEX 

—• — ACRYLIC 

—&— POLY 
--------COTTON

POLYPROPYLENE ON SKIN/SIM + SAMPLES 
IN MOTION
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Fig. 107
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Inter-layer Results -  ( Table 42 - 49, and figures 100 -  107)

The acrylic sample produced traditional results in both the static and the 

dynamic tests. In combination with the polypropylene sample, the acrylic had the 

smallest liquid uptake in the dynamic test, and the largest with the cotton sample. 

In the static test the cotton fabric produced the higher water in the acrylic fabric. 

The initial wicking rate was fairly steady in all cases, and high wicking rates were 

not observed.

The cotton fabric sample produced more expected results, under both 

conditions the cotton sample had a high water uptake. The lowest uptake was 

produced on the polypropylene fabric sample. Cotton on cotton produced a classic 

hyperbolic curve, illustrating a rapid initial wicking rate which settled down to a 

steady increase in liquid uptake, this occurred in both the static and dynamic states.

The greater liquid uptake in the Nomex fabric was achieved on the acrylic fabric in 

the dynamic test, however in the static test the greater uptake occurred on the 

cotton fabric. Liquid uptake on the Nomex, acrylic and polypropylene all 

produced initially rapid liquid uptake which reduced to a slower steady state. In the 

static state.

Polypropylene followed a fairly predictable sequence taking up the majority 

o f  water on the cotton fabric , and the least amount on polypropylene in the 

dynamic state.

The static state produced results which were illustrated by very uncertain 

hyperbolic curves. Although all four fabrics produced rapid water uptake in the 

first five minutes, uptake from five minutes on was variable.
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4.2.3 COMPARISON OF SURFACE TYPES IN COTTON 
INTERLOCK FABRIC

Due to observation in earlier tests it was revealed that during the 

dynamic tests wear on the samples may begin to affect the results obtained. 

Therefore another set o f experiments were carried out on the cotton interlock fabric 

samples only to determine the effect o f fabric surface change if any.

Four sample types with the following surface types were tested in the static state on 

the horizontal dynamic apparatus. :

Normal - no wear applied to the surface ;

Singed - surface hairs removed by flame ;

Rubbed - surface rubbed against another fabric surface ;

Brushed - surface has been brushed.

The samples were tested under three different weights, 0.68g/cm2 ; 1.0g/cm2 ; 

3.0g/cm2.

Under the lowest weight, the 0.68g/cm2 there was little difference in water 

uptake between the normal and the singed surface samples. There was a greater 

difference in uptake between the rubbed and the brushed (see table 50 and fig. 

108).

However with an increase in weight application this difference between the rubbed 

and brushed surfaces was reduced, see table 51 and fig 110. At the final weight 

3.0g/cm2 the singed, rubbed and brushed surfaces produced results closer together, 

with the normal surface continuing the trend with the highest liquid uptake.

Tables 53 to 56 and figures 114 to 121 represent the comparison o f the 

compression effect on each surface type.

The singed surface sample produced no significant difference in water uptake 

between the applied weights o f l.Og and 3.0g, which probably means that an 

increase in weight much above 3.0g would begin to hinder the liquid uptake. It is 

assumed that the increase in liquid uptake from the 0.68g to the l.Og weight is due 

to a better contact being achieved between the skin simulant and the sample, and an 

increase in weight much above 3.0g would begin to have the opposite affect.

It would also appear that this type o f surface is more conducive to wicking than a 

surface disrupted by abrasion.
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The normal surface appears to have performed the best in terms o f wicking power, 

and there seems to be a more significant increase in water uptake with an increase 

in the weight applied to the sample 

Table 50

COMPARISON OF COTTON SURFACES

(ON SKIN SIM ONLY)
WEIGHT APPLIED =0.68g/cm2
SPEED = NO MOTION

0 5

WA

10

TER COIN 

15

ITENT (%) 

20 25 30
NORMAL 0 216.3 225.8 231.0 234.9 237.8 240.2
SINGED 0 215.3 224.5 229.4 233.2 236.1 238.6
RUBBED 0 197.9 209.6 215.6 219.2 222.3 224.7

BRUSHED 0 150.2 187.1 199.1 206.8 211.4 214.1

0 5
t / Ara (g) v t (Time) rr 

10 15 20
tin

25 30
NORMAL 0 2.28 4.37 6.41 8.41 10.38 12.33
SINGED 0 2.30 4.41 6.48 8.50 10.49 12.46
RUBBED 0 2.39 4.51 6.58 8.64 10.64 12.64

BRUSHED 0 3.23 5.19 7.33 9.40 11.50 13.62

Table 51

COMPARISON OF COTTON SURFACES

(ON SKIN SIM ONLY) 
WEIGHT APPLIED =1.0g/cm2 
SPEED = NO MOTION

SURFACE
TYPES

SINGED
NORMAL

BRUSHED
RUBBED

0 5
t / A© | 

10
g) v

15
t (Time) m 

20
lin

25 30
NORMAL 0 2.22 4.20 6.09 7.94 9.75 11.53
SINGED 0 2.28 4.26 6.19 8.09 9.93 11.79
RUBBED 0 2.39 4.38 6.37 8.32 10.25 12.16

BRUSHED 0 2.61 4.56 6.63 8.64 10.63 12.60

0 5

WA

10

TER CON 

15

ITENT (%)

20 25 30
0 213.0 228.4 235.4 240.2 244.6 247.3
0 220.4 233.3 241.5 246.9 251.3 255.1
0 186.6 213.1 220.2 225.2 228.8 231.6
0 201.4 215.8 222.6 227.3 230.8 233.4
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Table 52

COMPARISON OF COTTON SURFACES

(ON SKIN SIM ONLY)
WEIGHT APPLIED = 3.0g/cm2 
SPEED = NO MOTION

SURFACE
TYPES WATER CONTENT (%)

10 15 20 25 30
NORMAL 0 235.6 250.6 259.7 266.3 270.9 275.5
RUBBED 0 220.9 227.6 235.3 240.9 244.9 248.8
SINGED 0 212.5 277.6 234.8 239.4 243.4 246.0

BRUSHED 0 203.4 221.8 228.3 233.6 237.9 240.4

0 5
1 1 a g ) i g ;  V

10 I 15
t  ( 1 imej m 

20
in

25 30
BRUSHED 0 2.39 4.37 6.37 8.31 10.19 12.11
SINGED 0 2.28 4.26 6.19 8.10 10.00 11.83
RUBBED 0 2.17 4.15 6.02 7.84 9.64 11.38
NORMAL 0 2.07 3.90 5.64 7.34 9.01 10.64
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Fig. 108 Comparison of Different surfaces under a weight of 0.68g/cm2

Cotton weft knit interlock fabric sample

SURFACE COMPARISON

TIME (min)
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Fig. 109 Comparison of Different surfaces under a weight of 0.68g/cm2

Cotton weft knit interlock fabric sample
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• 2 Fig. 110 Comparison of Different surfaces under a weight of l.Og/cm

Cotton weft knit interlock fabric sample
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Fig. I l l  Comparison of Different surfaces under a weight of 1.0g/cm2

Cotton weft knit interlock fabric sample
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Fig. 112 Comparison of Different surfaces under a weight of 3.0g/cm2

Cotton weft knit interlock fabric sample
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Fig. 113 Comparison of Different surfaces under a weight of 3.0g/cm2

Cotton weft knit interlock fabric sample

SURFACE COMPARISON

0 5 10 15 20 25 30
t (min)
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Table 53.

COMPARISON OF COTTON SURFACES
______________ Comparison under different weights
(ON SKIN SIM ONLY) 
SPEED = NO 
MOTION

WEIGHT
APPLIED

3.0g/cm2 
1 .Og/cm2 
0.68g/cm2

0.68g/cm2 
1 .Og/cm2 
3.0g/cm2

NORMAL SURFACE 
WATER CONTENT (%)

0 5 10 15 20 25 30
0 235.6 250.6 259.7 266.3 270.9 275.5
0 220.4 233.2 241.5 246.9 251.3 255.1
0 211.4 220.7 225.9 229.6 232.6 234.9

t / Aco v t (Time) min
0 5 10 15 20 25 30
0 2.30 4.40 6.45 8.47 10.45 12.42
0 2.22 4.20 6.09 7.94 9.75 11.53
0 2.07 3.90 5.64 7.34 9.01 10.64
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114 Cotton weft knit interlock fabric sample

Comparison under different Weights 

NORMAL SURFACE

TIME(min)
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Fig. 115 Cotton weft knit interlock fabric sample

Comparison under different weights



Table 54

COMPARISON OF COTTON SURFACES
Comparison under different weights 

(ON SKIN SIM ONLY)
SPEED = NO 
MOTION

WEIGHT
APPLIED

SINGED SURFACE 
WATER CONTENT (% )

0 5 10 15 20 25 30
3.0g/cm2 0 212.5 227.6 234.8 239.4 243.4 246.0

1 .Og/cm2 0 213.0 228.4 235.4 240.2 244.6 247.3
0.68g/cm2 0 210.4 219.4 224.3 228.0 230.9 233.3

t / A© (g) v t (Time) min
0 5 10 15 20 25 30

0.68g/cm2 0 2.32 4.46 6.53 8.56 10.56 12.54
1 .Og/cm2 0 2.28 4.26 6.19 8.09 9.93 11.79
3.0g/cm2 0 2.28 4.26 6.19 8.10 9.96 11.83
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116 Cotton weft knit interlock fabric sample

Comparison under different weights 
SINGED SURFACE
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Fig. 117 Cotton weft knit interlock fabric sample

Comparison under different weights 
SINGED SURFACE
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4.2.3.1 Results and Discussion

In the rubbed and brushed surface samples an increase in compressional 

weight produced greater liquid uptake, see table 54 and 55,and figures 118 to 121. 

For the rubbed surface sample a greater increase in liquid uptake was achieved with 

the application o f the 3.Og/cm2 weight. For the brushed surface samples it was the 

application o f the 1.Og/cm2 weight which achieved the greatest liquid increase. In 

the case o f the rubbed sample this may be due to the surface being covered in 

small ‘pills’, small balls o f matted fibres caused by the agitation o f rubbing. 

Because o f this pilling effect good surface to surface fabric contact may be 

hindered by these matted fibres and the optimum size channels created by good 

inter-fabric surface contact may not be achieved. An increase in the compressive 

weight will press the fibres closer together creating smaller more acceptable 

channels /capillaries for wicking.

The brushed samples were not covered in small pills, but were covered in a layer of 

raised surface fibres. Less weight was therefore required to compress these fibres 

to create more acceptable wicking channels. Matsudaira and Hong( ' studied the 

effect o f compressional weight on fabric structure and surface properties o f a small 

group o f woven and knitted fabrics. Figure 122 shows a model o f the eftect of 

weight increase on a fabric matrix. Figure 123 shows the appearance of the weft 

knitted cotton with a rubbed surface. The pills are clearly visible with a series of 

matted fibres occurring over the surface o f the fabric.
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Table 55

COMPARISON OF COTTON SURFACES
Comparison under different weights 

(ON SKIN SIM ONLY) 
SPEED = NO 
MOTION

WEIGHT
APPLIED

RUBBED SURFACE 
WATER CONTENT (%)

0 5 10 15 20 25 30
3. Og/cm2 0 220.9 227.6 235.3 240.9 244.9 248.8

1 .Og/cm2 0 201.4 215.8 222.6 227.3 230.8 233.4
0.68g/cm2 0 203.6 215.4 221.6 225.2 228.4 230.8

0.68g/cm2 
1 .Og/cm2 
3.0g/cm2

t/Afi> v t(T im e)m in
0 5 10 15 20 25 30
0 2.37 4.48 6.52 8.57 1056 12.54
0 2.40 4.38 6.37 8.32 10.25 12.16
0 2.17 4.15 6.02 7.84 9.64 11.38
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118 Cotton weft knit interlock fabric sample

Surface Comparison under different weights 
RUBBED SURFACE

TIME(m in)
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Fig. 119 Cotton weft knit interlock fabric sample

Surface Comparison under different weights 
RUBBED SURFACE
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Table 56

COMPARISON OF COTTON SURFACES
_______________ Comparison under different weights
(ON SKIN SIM ONLY)
SPEED = NO 
MOTION

WEIGHT
APPLIED

3.0g/cm2 
1.Og/cm2 
0.68g/cm2

0.68g/cm2 
1.Og/cm2 
3.0g/cm2

BRUSHED SURFACE
WATER CONTENT (%)

0 5 10 15 20 25 30
0 203.4 221.8 228.3 233.6 237.9 240.4

0 186.6 213.1 220.1 225.2 228.8 231.6
0 150.4 187.3 199.3 207.0 211.6 214.4

t /  Aco v t (Time) min
0 5 10 15 20 25 30
0 3.23 5.19 7.32 9.39 11.50 13.62
0 2.61 4.57 6.63 8.64 10.63 12.60
0 2.39 4.37 6.37 8.31 10.19 12.11
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Fig. 120 Cotton weft knit interlock fabric sample

Surface Comparison under different weights 
BRUSHED SURFACE
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Fig. 121 Cotton weft knit interlock fabric sample

Surface Comparison under different weights 
BRUSHED SURFACE
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Fig. 122 Cross-section Model of Fabric*83)

With increases in pressure surface hairs are compressed, see Fig. 122.

Fig. 123 Knitted Cotton sample with Normal surface and Rubbed surface

NORMAL SURFACE RUBBED SURFACE

The capillary pressure theory shows that smaller channels or pores 

produce high capillary pressure, and therefore a high wicking rate, see equation :

P = F_m = 27rri_ycos6 = 2ycos6  ----------------------[ 25 ]
n r i  n r ,2 r,

j #
p = capillary pressure Fwj = the internal wetting force ;rr, = capillary area 

G = liquid-solid contact angle y = liquid surface tension (dyne/cm) 

ri = radius inside the capillary (cm)
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Smaller channels or pores enhance the liquid spreading distance, therefore 

liquid movement can be assisted by decreasing the pore size. The ability o f  a 

fabric to retain liquid is not only determined by its pore sizes but also by the overall 

porosity o f the fabric, or the overall number o f these types o f channels or pores, 

and these in turn are influenced by the properties o f the fibre (i.e. cross-section 

shape). The distance travelled by the liquid is greater in small capillaries because 

o f the higher capillary pressure, however the liquid mass retained is small. Large 

pores will retain more water, but the distance travelled is less, therefore fast liquid 

uptake is facilitated by small evenly distributed interconnected pores, and liquid 

retention by large numbers o f these types o f interconnected pores, (i.e. for cotton -  

the irregularity o f  the fibre cross-sectional shapes contribute to a high liquid 

retention)

Further analysis o f  the graphical representation o f the different 

fabric surfaces were carried out. The shape o f the curves in the figures 

representing the percentage water content versus time appears to conform to an 

empirical hyperbolic equation o f the form (87,88):

A(o = t ------------------------- [26]

a + b t

where A(o = water content (%) 

t = time (minutes) 

and ‘a ’ and ‘b ’ are empirical constants.

Thus rearranging the equation [26], we obtain :

t = a + b t  ------------------------ [27]

Act)

Thus a plot o f  t/A<y versus t (time) should be linear (see figures 109, 111, 113, 

115, 117, 119, and 121).
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Dividing both sides o f equation [27] by ‘t ’ (time) we obtain :

/  = a + b ----------------------------- [28]

A(o t

Therefore under conditions where the wicking is very large, (i.e. approaching 

infinite time ‘ t^ ’), the following equation can be used :

1 = b OR A(ox =__L_ ------------------------ [29]
b

where the value o f Aco„ will be the maximum saturation of the fabric by the water.

A best-fit straight line was obtained using the least square method and used 

to yield the linear plots in figures 109, 111, 113, 115, 117, 119, and 121.

Table 57 shows the values obtained for a, b, Va -(initial rate o f wicking),

Vb -  (maximum water uptake) from the linear graphs.

Table 57

NORMAL SINGED RUBBED BRUSHED
0.68s>/cni2

a 0.29 0.30 0.46 1.05
b 0.403 0.407 0.405 0.421
Va 3.45 3.33 2.17 0.95

Vb(g) 2.481 2.457 2.469 2.375
7b(%) 241.1 239.5 238.1 220.7

1.0 «/cm2
a 0.45 0.45 0.46 0.55
b 0.370 0.378 0.391 0.404

Va 2.22 2.22 2.17 1.82
Vb(g) 2.703 2.646 2.558 2.475

Vb(%) 265.0 256.9 246.4 240.8
3.0 /̂cm2

a 0.45 0.41 0.37 0.49
b 0.341 0.380 0.366 0.388

Va 2.22 2.44 2.70 2.04
Vb(g) 2.932 2.632 2.732 2.577
Vb(%) 286.3 255.0 262.4 249.9
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From the results represented in table 57 the normal (untreated fabric) 

surface appears to be the optimum surface for wicking and retaining water, and 

therefore gave the best results. Even with an increase in applied weight the normal 

surface sample managed to hold the greater amount o f liquid at maximum 

saturation (Af/;x). The singed sample was ranked second in the first two weight 

classes o f 0.68g/cm2 and 1.Og/cm2 . However when 3.0g is applied it cannot retain 

as much water as the rubbed sample., which at lower weights did not retain as 

much water the singed sample. This may be due to the singed sample having no 

surface filaments or hairs to create extra inter-fibre channels on the surface of the 

fabric to collect water. The rubbed sample which has a surface covered in small 

‘pills’ and therefore small interconnected channels, once enough pressure was 

applied was able to retain water in these spaces.

The brushed surface sample retained the least amount o f water at maximum 

saturation. Although this surface type also increased the amount o f liquid retention 

with an increase in pressure. This may be due to the orientation o f the surface 

hairs o f the brushed sample. A brushed sample may lose its ‘randomness’ of 

surface hair orientation, and therefore produce larger capillary spaces on the 

surface. This will produce a slower wicking rate, and larger capillary spaces are 

affected adversely by gravity over time.

However the only sample which produced a decrease in water retention at the final 

weight application of 3.0g was the singed sample, and this may be due to the 

singed surface having no filaments or hairs to support the extra weight, therefore 

allowing the fine capillary channels created along the surface of this sample to 

become crushed or collapsed. This would reduce the amount o f capillary space 

available for water retention.

The initial rate (1/a) for each sample was also calculated and produced some 

unusual results. At the lowest weight applied 0.68g/cm2, the normal surface fabric 

produced the highest initial wicking rate. However an increase in weight produced 

a reduction in the initial wicking rate for the normal fabric surface sample.
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In the case o f  the singed sample, in general an increase in weight also 

produced a reduction in the initial wicking rate.

However the rubbed and brushed samples both produced an increase in the initial 

wicking rate with an increase in the weight applied. The increased wicking rate in 

the rubbed sample, may be due to the compression o f the matted balls o f  fibres at 

the pilled area, producing more fine capillary channels and therefore inducing rapid 

wicking. The brushed sample also produced an increase in initial wicking due to a 

decrease in capillary size with an increase in the weight applied, inducing a higher 

capillary pressure and therefore rapid wicking.

The hypothesis could therefore be drawn that depending on the type o f wear 

applied to a fabric surface, this could exert adverse affects in varying degrees, and 

the effect to the wicking properties would depend where in the clothing system the 

fabric was utilised.
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4.2.4 VERTICAL TRANSPLANAR WICKING TECHNIQUE

These results in the following tables and figures are based on the total 

percentage water content o f the whole o f each fabric sample.

Table 58

VERTICAL WICKING TESTS

SAMPLE : ACRYLIC - (Knitted)

Test pair Ref.No. MEAN RESULTS
Oriq.W t(g) W t at END CONTENT(g) WATER (% )!

1 1 0.743 0.897 0.154 20.7

2 0.719 0.773 0.054 7.5

2 3 0.760 0.922 0.162 21.3

4 0.788 0.800 0.012 1.5

3 5 0.619 0.810 0.191 30.8

6 0.563 0.588 0.025 4.4

4 7 0.628 0.808 0.180 28.6

8 0.612 0.641 0.029 4.7

Table 59

VERTICAL WICKING TESTS

SAMPLE : COTTON - (Knitted)

Test pair Ref.No.

1 A
D

drig .W t(g ) W t at END CONTENT (g) WATER (%)
0.530
0.518

0.596
0.548

0.066
0.030

12.6
5.8

2 C 0.435 0.540 0.105 24.0

H 0.445 0.466 0.021 4.6

3 E 0.491 0.625 0.134 27.2

F 0.498 0.503 0.006 1.1

4 B 0.483 0.591 0.108 22.4

10 0.502 0.547 0.045 8.9
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Fig. 124 VERTICAL WICKING TESTS ON ACRYLIC FABRIC

FABRIC LAYERS (in PAIRS)

Fig. 125 VERTICAL WICKING TESTS ON COTTON FABRIC
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VERTICAL WICKING TESTS

Table 60

SAMPLE : NOMEX - (Knitted)

Test pair Ref.No^j MEAN RESULTS
Orig.Wt(g) W t at END CONTENT(g) WATER (%)

1 1 0.422 0.449 0.027 6.4

2 0.409 0.424 0.015 3.7

2 3 0.401 0.417 0.016 4.0

4 0.403 0.410 0.007 1.7

VERTICAL WICKING TESTS ON NOMEX FABRIC

FABRIC LAYERS (in PAIRS)
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These next set of results were produced after a modification to the 

methodology, in order to calculate the water content o f the saturated area only of a 

fabric sample.

Table 61 Water content based on Total fabric sample weight

VERTICAL WICKING TESTS

SAMPLE : COTTON -  (Knitted)

Tests Ref. No. MEAN RESULTS

Orig.Wt (g) H20  Content (g) H20  Content (%)

1 1
2

1.946

1.918

0.078

0.006

4.0

0.3

2 1 1.970 0.062 3.2

2 1.916 0.013 0.7

3 1 2.01 0.077 3.8

2 1.925 0.006 0.3

Table 62 Water content based on weight of Wet area only of fabric sample
weight

VERTICAL WICKING TESTS

SAMPLE : COTTON -  (Knitted)

Tests Ref. No. MEAN RESULTS

Oriq.Wt (g) H20  Content (g) H2Q Content (%)

1 1
2

0.052

0.008

0.078

0.006

150.0

75.0

2 1 0.062 0.062 100.0

2 0.016 0.013 81.3

3 1 0.065 0.077 118.5

2 0.011 0.006 54.6
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Fig. 127 Water content based on Total sample weight

COTTON-3

COTTON-2

COTTON-1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

(%) WATER CONTENT 

H BOTTOM LAYER □  TOP LAYER

Fig. 128 Water content based on weight of Wet area only
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Table 63 Water content based on Total fabric sample weight

VERTICAL WICKING TESTS

SAMPLE : ACRYLIC -  (Knitted)

Tests Ref. No. MEAN RESULTS

Orig.Wt (g) H20  Content (g) H2O Content (%)

1 1
2

2.544

2.523

0.117

0.005

CO 
CM 

TT 
O

2 1 2.543 0.076 3.0

2 2.525 0.023 0.9

3 1 2.543 0.326 12.8

2 2.582 0.005 0.2

Table 64 Water content based on weight of Wet area only of fabric sample

weight

VERTICAL WICKING TESTS

SAMPLE : ACRYLIC -  (Knitted)

Tests Ref. No. MEAN RESULTS

Oriq.Wt (g) H20  Content (g) H?0 Content (%)

1 1 0.287 0.117 40.8

2 0.012 0.005 41.7

2 1 0.202 0.076 37.6

2 0.015 0.023 153.3

3 1 0.336 0.326 97.0

2 0.014 0.005 35.7
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Fig. 129 Water content based on Total sample weight

Fig. 130 Water content based on weight of Wet area only
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240

Table 65 Water content based on Total fabric sample weight

VERTICAL WICKING TESTS

SAMPLE : NOMEX -  (Knitted)

Tests Ref. No. MEAN RESULTS

Orig.Wt (g) H20  Content (g) H20  Content (%)

1 1 1.378 0.044 3.2

2 1.416 0.017 1.2

2 1 1.378 0.017 1.2
2 1.415 0.009 0.6

Table 66. Water content based on weight of Wet area only of fabric sample

weight

VERTICAL WICKING TESTS

SAMPLE : NOMEX -  (Knitted)

Tests Ref. No. MEAN RESULTS

Orig.Wt (g) H20  Content (g) H20  Content (%)

1 1 0.052 0.044 84.6

2 0.008 0.017 212.5

2 1 0.015 0.017 113.3

2 0.005 0.009 180.0
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Fig. 131 Water content based on Total sample weight
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Fig. 132 Water content based on weight of Wet area only
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Just as in the horizontal transplanar wicking tests, the vertical transplanar 

wicking tests showed that vertical transplanar wicking occurs in isolated pockets of 

saturation. In the vertical transplanar wicking tests double layer fabric assemblies 

were used. Initial contact with the water is in essence very similar to the spot or 

drop test(22). Water was introduced to the fabric samples by a syringe, and a drop 

o f liquid is placed in contact with the fabric surface via this method. Once the first 

drop has wicked into the fabric layer and is no longer visible on the fabric surface 

another drop is introduced, and so forth, until breakthrough is observed on the 

underside o f the second layer.

This technique was originally devised to see if it was possible to observe 

transplanar wicking in the vertical state., and to determine whether a set quantity 

o f water was necessary in the first layer before transplanar wicking would take 

place to the second layer in the vertical state.

The top layer (layer 1) was always the layer nearest the water source, and the 

bottom layer (layer 2) the layer furthest from the water supply.

Tables 61 and 62, and figures 127 and 128 represent the results from the 

knitted interlock cotton fabric. The results revealed that a high water content was 

present in the top layer when liquid was transported to the next layer.

However in the case o f the acrylic interlock fabrics (table 63 and 64, figures 129 

and 130) not only was less water taken up by the top layer before breakthrough 

occurred , but the test produced much more variable results.

In general it could be said that more water was taken into the bottom layer with the 

acrylic interlock fabric at the end o f the test in contrast to the cotton interlock 

fabric in which the inverse applied.

In a horizontal state water collecting in the inter-yam spaces (knitted loops) 

would be slowed by the influence of gravity, with a wide area to act upon, but in 

the vertical state the inter-yarn space is turned on its side, with gravity acting on the 

top o f the loop. Good inter-fabric contact points are much harder to create, and 

capillary pressure must be harder to maintain.

However the results could not be said to be conclusive, no matter how many tests 

were performed the variability with this fabric could not be eliminated.
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The Nomex lx l  rib fabric samples (tables 65 and 66, figures 131 and 132) 

produced more unusual results ; these samples took on more water in the bottom 

layer(layer 2) than in the top layer(layer 1), i.e. the layer next to the water source. 

This may be due to vertical planar wicking being the more dominant process, 

which occurs more rapidly than transplanar wicking with the aid o f gravity.

In comparison with the acrylic and Nomex fabrics, cotton has a greater wetting 

capacity than the other two fabrics. In this test the wetting ability o f any fabric 

tested is o f  great importance. With the polypropylene fabric this test technique 

could not be utilised on this fabric as initial wetting would not occur quickly 

enough for this test.

O f all three fabrics, cotton has the greater wetting property, and was able to take 

on water almost continually. This may explain the higher water content in the top 

layer (1 later), as this layer was able to keep up with the demand for water from the 

bottom layer.(layer 2 ) The Nomex and acrylic samples were much slower at 

wetting, with Nomex the slowest, which may be responsible for the increased 

amount o f water in the bottom , because water was not forced into the fabric layers 

but introduced a drop at a time. The better the wetting property the quicker water 

was absorbed into the fabric matrix. The rate at which the second layer took on 

water was governed independently, and not by the rate that the first layer took on 

water. Therefore the bottom layer was taking on water at a more rapid rate than the 

top layer in the Nomex and acrylic fabric samples.
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CHAPTER 5 

5.0 INTRODUCTION

As mentioned in Chapter 1 the right combination o f fabric layers could 

help in the transmission o f liquid through a fabric assembly and in turn help in the 

reduction o f heat stress, through the use o f heat and flame protective garments such 

as those used by firefighters.

The equipment developed and described in chapter 3 was used to study the 

wicking mechanisms and properties o f individual fabric layers within multi-layer 

fabric systems, with a view to understanding the effects o f mixed fibre types within 

a multi-layer fabric assembly. This in turn would help in establishing the ideal 

fabric combinations.

5.1 SUMMARY AND CONCLUSIONS

5.1.1 Mechanism of Horizontal Transplanar wicking

Overall observation at the time o f testing, and from all the horizontal 

transplanar wicking test results have produced the following hypothesis for 

horizontal transplanar wicking in fabric layers :

• Fabric pores/channels present in the test fabrics, are determined by the porosity 

o f the fabric, this in turn is determined by the fabric structure ; fibre type ; 

pressure applied ; inter-fabric alignment.

• Wicking will occur in the horizontal planar direction, and it is also the amount 

o f planar wicking needed which will determine the speed of water transmission 

through multi-layer fabric systems.

• Horizontal transplanar wicking occurs initially at specific inter-fabric contact 

points, which are determined by the fabric structure ; pressure applied ; inter­

fabric alignment and fabric geometry.

• The horizontal transplanar wicking process occurs by water travelling along the 

long arms o f the knitted loops (in the inter-fibre channel s)(78 80) until it reaches a 

transfer point (inter-fabric contact point), where the transfer point will most 

likely be the top o f a loop head , (see figures 134 and 135).
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• The rate o f initial wicking is determined by the number o f small inter-fibre 

channels present in the yarn. Small inter-fibre channels create a higher 

capillary pressure than inter-yarn channels thereby inducing more rapid 

wicking. It is considered that the size and shape o f the inter-fibre capillaries are 

determined by the fibre cross-sectional shape, and the degree o f fibre packing 

within the yarn bundle, (see figure 133).

• The amount o f retained liquid and the rate o f horizontal transplanar wicking is 

determined by the number and size o f the inter-yarn channels. Above a certain 

loop size the inter-yarn spaces are affected adversely by gravity(X0) and the rate 

o f wicking is reduced.

• The speed at which water will wick transplanarly from one layer to the next is 

determined by the inter-fabric contact points on each layer in the assembly, and 

relies upon the fabrics being aligned in the most conducive sequence to allow 

transplanar wicking to occur from one layer to the next.

• The transmission path in horizontal transplanar wicking will vary with 

combinations o f  knitted and woven fabrics ; woven and woven fabrics ; knitted 

and knitted fabrics, and these are represented in Figures 136 and 137.
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Fig. 133 Indications of Inter-fibre spaces or channels

comparing basic cross-sectional shapes

X-sectional shape = collapsed tube

THESE ARE TYPICAL 
INTERFIBRE SPACES 
OR CHANNELS 
AVAILABLE WHERE 
WICKING MAY TAKE 
PLACE EITHER IN THE 
TRANSPLANAR OR 
PLANAR DIRECTION -

The more irregular the fibre 

cross-sectional shape the 

more water can be collected 

in the interconnected 

channels formed by the 

indentations formed along 

the fibre length.

E.g. cotton test samples 

will always have a greater 

retaining power and 

wicking rate compared to 

that o f polypropylene 

samples due to the cross- 

sectional shape of the fibres 

used in the samples.

X-sectional shape = dog-bone

X-sectional shape = round
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Fig. 134 Areas of inter-fabric contact, and possible w ater transm ission paths

within a lx l  rib  fabric

Inter-fabric contact point with next 
laver above

Transfer point to another 
loop via inter-fibre channels

oints where liquid is 
transferred from the under 
side of the fabric -  
interfabric contact point 
with the layer below

• Figure 134 and 135 highlight the areas where inter-fabric contact points may 

occur and also the water transport path by horizontal planar wicking within a 

lx l rib fabric and an interlock fabric, using the inter-fibre channels. The inter­

yarn channels( loop spaces) become filled with water at a later stage.

• Inter-yarn spaces are formed in the loop spaces, creating larger inter-yarn 

capillary channels. The capillary pressure in these channels is lower, and 

therefore wicking is slower in these spaces. The sizes o f these channels or 

pores are also susceptible to gravity.

• In intermittent contact within a fabric system these inter-fabric contact points 

will vary with each subsequent contact. A new set o f contact points may be 

created, and therefore a new liquid transport path will be generated. This makes 

exact reproducibility o f these paths extremely difficult. Hence high CV% 

during transplanar wicking tests.
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Fig. 135 Areas of inter-fabric contact, and possible water transmission paths

within an Interlock fabric

Points where liquid is 
transferred from one side of 

the fabric to the other - 
inter-fabric contact point 

with another layer

Transfer point to another 
loop via inter-fibre 

channels
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Fig. 136 Cross-sectional representation of multi-layer fabric systems

woven to woven ; knitted to woven.

Fig. 137 Theoretical representation of liquid transmission path through

multi-layer assemblies (knitted to knitted)

WICKING PATH
(liquid wicking from loop head to loop head, 
after wicking along the long arms of the loops.)
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Horizontal static transplanar wicking tests were carried out on various 

multi-layer assemblies comprising of different fibre combinations.

O f the four core fabrics (cotton, acrylic, Nomex and polypropylene) the cotton and 

acrylic fabrics had the greater wicking ability, with the Nomex and polypropylene 

having the poorer wicking properties when tested on their own.

However in mixed combinations these properties could be either hindered or 

enhanced, see Figures 78 to 97.

In the acrylic/polypropylene combination, with polypropylene nearest the liquid 

source the liquid uptake o f the acrylic layer was severely hindered by the 

polypropylene, and thus produced an overall mean liquid uptake o f less than 1%. 

The polypropylene took on more liquid than the acrylic by the end o f the test 

period (20 minutes).

Polypropylene tested in combination with the other high wicking fabric (cotton) 

also had a negative effect on cotton wicking. Although the cotton produced a mean 

overall liquid uptake o f 7.7% in combination with polypropylene, this was a long 

way below its normal abilities, and when tested in combination with the other 

fabric, i.e. acrylic.

The low wicking fabrics, polypropylene and Nomex, in combination with each 

other actually produced greater liquid uptake than in combination with the higher 

wicking fabrics cotton and acrylic.

In the case o f the polypropylene combined with acrylic, and with the polypropylene 

layer nearest the liquid source (i.e. bottom layer). Polypropylene produced a final 

mean liquid uptake o f 38.4%. However combined with acrylic it could only 

produce a final mean water content o f 0.99%, and with cotton only 0.55%, and in 

both cases polypropylene was the layer nearest the water source.

The explanation for results obtained from the polypropylene/Nomex may be due to 

the similarity o f the fabric structure. Their similarity in liquid uptake may be the 

reason for the ability o f the Nomex and polypropylene fabrics to take on and retain 

more water when in combination together.

5.1.2 Horizontal Static transplanar wicking
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One possible theory is that the overall rate o f  liquid uptake o f the whole 

assembly is controlled by the bottom fabric layer, (i.e. the fabric layer nearest the 

water source). I f  a slow or low wicking fabric is in the bottom layer the overall 

wicking process is slowed down, and the liquid uptake is reduced. This becomes 

more apparent when the fabric combination involves a high (or good) wicking 

fabric and a low (or poor) wicking fabric.

One unusual aspect appears in the results obtained from the polypropylene 

fabric samples. With polypropylene as the bottom layer combined with the Nomex 

fabric, the polypropylene appears to have taken on more water than when it was 

tested in a single layer state. However polypropylene produced the most 

variable results and this can be seen in the CV% produced for these tests in 

Appendix 2 and 3.

The horizontal dynamic transplanar wicking test results yielded similar conclusions 

to those observed in the horizontal static transplanar wicking.

With the added dimension o f fabric movement, the cotton had the greater liquid 

uptake, but the acrylic, Nomex and polypropylene layers also demonstrated a 

significant increase in the wicking rate with the introduction o f fabric movement.

5.1.3 Horizontal Dynamic transplanar wicking

The introduction o f fabric movement produced a very clear overall 

conclusion on the effect o f  fabric movement on horizontal transplanar wicking. In 

all cases liquid uptake was increased with introduction o f  movement. In some 

cases a very significant increase, i.e. polypropylene liquid uptake was significantly 

increased with movement, see Tables 48 and 49.

Most results highlighted the traditional wicking abilities o f most o f the fabrics. The 

cotton fabric took on the most water with interfabric motion with itself, and the 

least amount was obtained from interfabric motion with polypropylene fabric 

samples.

Once again variability was unavoidable, with the polypropylene and Nomex knitted 

fabric samples having the highest CV% in general, see Appendix 4.
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5.1.4 Comparison o f fabric surface types

Observations o f  the horizontal dynamic wicking test revealed a secondary 

effect, created by the movement during the tests. The introduction o f wear during 

these tests revealed an effect on the wicking ability o f the fabrics being tested.

Four fabrics with 4 different fabric surface wear modifications were observed on 

one fabric type, the blue weft knitted interlock cotton fabric.

Singed, normal (untreated), rubbed and brushed knitted cotton fabric samples were 

tested under 0.68g/cm2, 1.Og/cm2, and 3.Og/cm2 compressional weights, using the 

horizontal dynamic transplanar.

Using an empirical hyperbolic equation to analyse the results, the initial rate o f 

wicking and maximum water uptake could be calculated. Overall analysis 

indicated that with wear wicking properties could be reduced. The type o f wear on 

a fabric would also determine the amount o f  reduction in liquid uptake. The 

amount o f pressure applied to each surface type also produced different effects on 

liquid uptake. However it was determined that the (untreated) Normal surface had 

the best surface conditions for static horizontal wicking to take place under all three 

pressures (0.68g/cm2 ; 1.Og/cm2 ; 3.Og/cm2). Under the lightest weight 

(0.68g/cm2) all four surface types took on fairly similar final water contents. An 

increase in applied pressure produced an increase in liquid uptake, with the normal 

and rubbed samples taking on the most water at maximum uptake at infinite time. 

The singed sample took on the least amount under the lightest pressure.

These observation lead to the belief that wear has a detrimental affect on horizontal 

transplanar wicking, and is further affected by the area in which a fabric is utilised 

in a garment, i.e. the shoulder areas o f garments, especially heat and flame 

protective clothing.

With increased wear the horizontal transplanar wicking properties o f a garment 

diminish and the amount o f reduction is dependent on the type and amount o f wear 

present.
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5.1.5 Vertical Transplanar Wicking

Observation o f the vertical transplanar wicking tests revealed that the 

wetting ability of any fabric is very important in establishing initial transplanar 

wicking in this test. The poorer the wetting ability o f the test fabric the slower 

transplanar wicking occurred in vertical wicking. In the case o f polypropylene this 

was too slow for these tests to work efficiently, and consequently vertical 

transplanar wicking tests were abandoned on the polypropylene knitted fabrics. 

Reproducibility o f  this test was extremely difficult to achieve, and consequently 

was not as good in general as the horizontal transplanar wicking tests. The CV% 

can be seen in Appendix 5, however with further improvement to this test this may 

be improved, as this is an important aspect in the overall view o f the wicking 

process occurring within a multi-layer fabric system or garment.

5.1.6 Conclusions

The complexities o f wicking within a multi-layer fabric system can be seen 

clearly, as figure 30 initially demonstrated. It is clear that many factors influence 

the wicking in both directions within a textile medium, and in many states e.g. 

horizontal versus vertical, static versus moving samples.

It is particularly difficult to analyse the wicking process in simple terms within 

knitted fabrics. However the experimental work carried out has determined that 

horizontal transplanar wicking does occur at inter-fabric contact points, creating 

isolated pockets o f saturation. Transmission occurs along the arms of knitted loops 

by horizontal planar wicking via inter-fibre channels, connecting with other layers 

at inter-fabric points, and creating larger inter-yarn channels. These in turn transfer 

more liquid, and collect and retain liquid within the fabric matrix.

In multi-layer assemblies the ability to transfer liquid from one layer to the next, 

and thus move liquid from the surface o f the skin to the outside layer o f a fabric 

system can be influenced by the mix of fibre types and/or the mix o f fabric 

structures within a fabric assembly.
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It is clear from the results that certain combinations o f fabrics will either hinder or 

assist the rate and amount o f liquid movement within multi-fabric layer systems.

It could therefore be said that the right combination o f fabrics within a multi-layer 

fabric assembly could be o f benefit in removing enough liquid away from the skin, 

in turn increasing evaporation and reducing the amount o f heat stored within 

certain types o f multi-layer clothing system, i.e. heat and flame protective clothing 

assemblies.

5.1.7 Recommendations for fu ture  w ork

1. Further investigation into more fabric structure combinations may yield 

interesting data.

2. More work should be carried out on vertical transplanar wicking, which has 

proved to be very difficult to simulate.

3. Image analysis o f different fabric constructions could establish more clearly the 

pattern o f inter-fabric contact points and lead to further refinements in the 

theory o f horizontal transplanar wicking.

4. The influence o f different fibre cross-sections and different fibre blends and 

blend ratios on horizontal transplanar fabric wicking should be investigated.

5. The role o f fibre lubricants and surface finishes upon the rate and extent o f 

horizontal transplanar fabric wicking should yield interesting results.

6. The effects o f pressure and different types o f fabric movement upon horizontal 

transplanar fabric wicking, e.g. the extent o f fabric reciprocation or rotary 

motion should be studied.
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Fig. 138 Cotton fibre

APPENDIX I

a) cross-section o f Cotton fibres(77) 
fibre

b)

b) longitudinal section o f Cotton.L

Fig. 139 Acrylic fibre

a) cross-section o f Acrylic fibres(77) 
fibre

b) longitudinal section o f  Acrylic
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Fig. 140 Nomex Fibre

a) cross-section o f Nomex fibres1771 b) longitudinal section ofNom ex
fibre

Fig. 141 Polypropylene fibre

Longitudinal section o f the Polypropylene fibre
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Horizontal Static transplanar wicking tests
(Mean results based on 5 tests on 5 test samples)

COMPARISON OF TEST VARIABILITY BY CV%

f MEAN COEFFICIENT OF VARIATION %

APPENDIX II

Table 67

Time (min)
— 1 3 10 20
POLYPROPYLENE 0.1 0.1 21.3 37.3
ACRYLIC 50.0 14.9 1.1 0.0

MEAN COEFFICIENT OF VARIATION %
Time (min)

1 3 10 20
a c r y l ic 20.6 5.5 2.3 0.7
POLYPROPYLENE 13.7 9.9 17.6 13.3

Table 68

COMPARISON OF TEST VARIABILITY BY CV%

MEAN COEFFICIENT OF VARIATION %
Time min)

i----- ---------------------- 1 3 10 20
|POLYPROPYLENE 11.5 24.1 14.9 11.9
NOMEX 32.9 25.5 24.5 8.3

MEAN COEFFICIENT OF VARIATION %
Time (min)

1 3 10 20
NOMEX 0.4 3.9 12.2 2.2
POLYPROPYLENE 62.0 74.2 69.1 63.8

Table 69
COMPARISON OF TEST VARIABILITY BY CV%

MEAN COEFFICIENT OF VARIATION %
Time (min)

1 3 10 20
NOMEX 31.1 0.5 7.2 16.2
ACRYLIC 12.5 20.1 11.0 8.7

MEAN COEFFICIENT OF VARIATION %
Time (min)

— 1 3 10 20
a c r y l ic 20.2 0 15.7 5.4
NOMEX 1.4 4.4 13.2 25.0
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Table 70

COMPARISON OF TEST VARIABILITY BY CV%

MEAN COEFFICIENT OF VARIATION %
Time (min)

1 3 10 20
COTTON 5.3 2.1 4.3 11.7
POLYPROPYLENE 0.5 8.6 10.6 21.5

MEAN COEFFICIENT OF VARIATION %
Time (min)

1 3 10 20
COTTON 40.7 31 12.5 33.7
ACRYLIC 5.3 28.4 23.6 26.7

MEAN COEFFICIENT OF VARIATION %
Time (min)

1 3 10 20
COTTON 0.1 0.1 77.6 6.1
NOMEX 31.4 3.4 22.8 1.4



268

A comparison of the variability of test results after a change in the test method 

as performed on single layer assemblies.

Variability of Tests are represented by the Coefficient of variation (C V % )

(Mean test results based on 5 tests on 5 samples)

Table 71.
COEFFICIENT OF VARIATION %

APPENDIX III

Time (min)
NOMEX 1 3 10 20

BEFORE 36.8 35.4 27.3 20.9
AFTER 18.3 21.9 9.4 5.6

Table 72.
COEFFICIENT OF VARIATION %

Time (min)
ACRYLIC 1 3 10 20

BEFORE 45 24.5 7.4 7.2
AFTER 11.0 12.2 1.8 1.3

Table 73.

COEFFICIENT OF VARIATION %
Time (min)

POLYPROPYLENE 1 3 10 20
BEFORE 8.7 93.6 91.4 85.8
AFTER 53.5 67.4 48.5 7.1
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APPENDIX IV

DYNA M IC  DEM A N D  W E TTA B ILTY  - M ULTI-LAYER
RESU LTS

IN TE R -LA Y ER  M O TIO N TE S T RESULTS
(Mean test results based on 5 samples tested 5 times)

Table 74.

Acrylic
MEAN COEFFICIENT OF VARIATION %

on 5 10 15 20 25 30
NOMEX 3.5 15.1 27.1 30 26.7 25.3
ACRYLIC 16.4 25.2 21.8 13.5 9.3 4.5
POLYPROPYLENE 21.1 16.7 8.2 2.6 4.1 6.8
COTTON 30.6 13.3 5.6 2.7 2.1 1.7

Table 75.

Cotton
MEAN COEFFICIENT OF VARIATION % 

Time (min)
on 5 10 15 20 25 30

NOMEX 37.6 23.3 34.9 28.4 24.8 16.8
ACRYLIC 30.6 13.3 5.6 2.7 2.1 1.7
POLYPROPYLENE 50.3 51.6 47.5 41.4 36.7 32.8COTTON 1.9 1.7 1.7 1.6 1.7 1.9

Table 76

Nomex
MEAN COEFFICIENT OF VARIATION %

Time (min)
on 5 10 15 20 25 30

NOMEX 46.2 18.9 13.5 17.4 17.9 20.9
ACRYLIC 7 23.3 0.1 5.6 7.5 4.3
POLYPROPYLENE 19.4 16.2 19.3 19.4 19.1 17.7
COTTON 11.3 14.3 10.5 9.7 6.2 2.4

Table 77.

Polypropylene
MEAN COEFFICIENT OF VARIATION % 

Time (min)
on 5 10 15 20 25 30

NOMEX 28.7 19.1 16.2 5.5 1.2 5.5
ACRYLIC 46.2 18.9 13.5 17.5 17.9 20.9
POLYPROPYLENE 49.8 50.7 55.9 56.2 58.0 56.7
COTTON 5.3 7.1 9.5 9.0 10.6 11.0



270

APPENDIX V

VERTICAL WICKING TEST RESULTS 
Variability of I’ests are represented by the Coefficient of variation (CV%)

Table 78.
I

(water content

VERTICAL WICKING TEST RESULTS

SAMPLE : Acrylic - Interlock knitted structure
based on total fabric weight) (water content based on wet area of fabric only)

% WATER CONTENT % WATER CONTENT
Top layer Bottom layer Top layer Bottom layer

20.7 7.5 40.8 41.7
21.3 1.5 37.6 153.3
30.8 4.4 97 35.7
28.6 4.7

Mean 25.4 4.5 Mean 58.5 76.9
Stdev 5.11 2.45 Stdev 33.41 66.23
cv% 20.2 54.2 CV% 57.1 86.1

Table 79
VERTICAL WICKING TEST RESULTS

SAMPLE : Cotton - Interlock knitted structure
(water content based on total fabric weight) (water content based on wet area of fabric only)

% WATER CONTENT
Top layer Bottom layer

12.6 5.8
24.0 4.6
27.2 1.1
22.4 8.9

Mean 21.6 5.1
Stdev 6.29 3.22
CV% 29.2 63.2

% WATER CONTENT
Top layer Bottom layer

150 75
100 81.3

118.5 54.6

Mean 122.8 70.3
Stdev 25.28 13.96
CV% 20.6 19.9

Table 80__________________________________________________________________
[ VERTICAL WICKING TEST RESULTS

SAMPLE : Nomex - 1 x 1  Rib knitted structure
(water content based on total fabric weight) (water content based on wet area of fabric only)

% WATER CONTENT
Top layer Bottom layer

6.4 3.7
4.0 1.7

Mean 5.2 2.7
Stdev 1.70 1.41
CV% 32.6 52.4

% WATER CONTENT
Top layer Bottom layer

84.6 212.5
113.3 180.0

Mean 99.0 196.3
Stdev 20.29 22.98
CV% 20.5 11.7
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