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Abstract

When faults occur in swarm robotic systems they can have a detrimental effect
on collective behaviours, to the point that failed individuals may jeopardise the
swarm’s ability to complete its task. Although fault tolerance is a desirable property
of swarm robotic systems, fault recovery mechanisms have not yet been thoroughly
explored. Individual robots may suffer a variety of faults, which will affect collective
behaviours in different ways, therefore a recovery process is required that can cope
with many different failure scenarios. In this thesis, we propose a novel approach for
fault recovery in robot swarms that uses Reinforcement Learning and Self-Organising
Maps to select the most appropriate recovery strategy for any given scenario. The
learning process is evaluated in both centralised and distributed settings. Addition-
ally, we experimentally evaluate the performance of this approach in comparison to
random selection of fault recovery strategies, using simulated collective phototaxis,
aggregation and foraging tasks as case studies. Our results show that this machine
learning approach outperforms random selection, and allows swarm robotic systems
to recover from faults that would otherwise prevent the swarm from completing its
mission. This work builds upon existing research in fault detection and diagnosis
in robot swarms, with the aim of creating a fully fault-tolerant swarm capable of
long-term autonomy.
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Chapter 1

Introduction

This thesis analyses fault tolerance in robotic systems, especially swarm robotic
systems, discusses possible evolutionary techniques that can be used in achieving a
fault tolerant system while also introducing learning techniques used in conjunction
with predefined behaviour to achieve a fault tolerant system that is able to recover
autonomously from faults and continue whatever task it has been assigned.

Some approaches to swarm robotics are inspired by the self-organised behaviours
of social insects, exploiting simple rules and local interactions to achieve robust,
scalable, and flexible collective behaviours for the coordination of large numbers of
robots [4]. Robustness signifies a swarm’s ability to recover from faults that could
result from the individual robots in the swarm [5] while flexibility signifies that the
individual robot in the swarm should be able to coordinate their behaviours to adjust
to a difference in the nature of the task [6]. A swarm is said to scalable when the
system functions with varying group sizes without adversely affecting the behaviour
of the swarm [6].

Swarm robotics can be described as the study of how a large number of physically
simple robots can be designed in a way whereby a collective behaviour emerges from
local interaction and communication amongst the robots and also between the robots
and their environment [7]. There are a number of qualities that are specific to swarm
robotics and are used to differentiate it from the multi-robots research. Although
these qualities are not rigid, they are useful in describing aspects of swarm robotics
[7]:

1. The individuals in the swarm are described as being autonomous. They must
have a physical embodiment and physically interact with their environment
and be autonomous. There are some systems that the individuals can attach
to themselves and detach from each other as well. They can still be considered
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as swarm systems only if there is decentralised control present.

2. Swarm robots are classified as consisting of a large number of individuals. Small
number of robots that are not scalable do not fall within the classification of
swarm robots. Swarm sizes typically start from about 10 individuals.

3. Regardless of how large a robotic system is, the number of individual homo-
geneous robots should be large. Robotic systems that are more heterogeneous
are classified as being less ‘swarm robotic’. The reason for this that if the
robot-robot interaction is varying, this has a significant effect on the behaviour
of the robots. Also, if the behaviours are random, it is not possible to achieve
similar results when the experiment is run under the same conditions.

4. The individual robot in a swarm can be described as being inefficient, so that
they cannot accomplish the task assigned on its own. The reason for this is
to enable the individuals to cooperate to accomplish the task or by utilising a
group of these robots, the robustness is improved when accomplishing the task.

5. The robots used in a swarm should only have local communication and sensing
capabilities. The allows the robots to be have scalable coordination mecha-
nisms.

In the field of swarm robotics, it was initially believed that swarm robotic systems
were robust to failure. However, analysis done by Bjerknes et al. [8] demonstrated
that partially failed individuals can result in detrimental behaviour in swarm robotic
systems. It is desired that swarm robotic systems should be fault tolerant. Fault
tolerance is the ability of a system to continue operating even when in the presence
of failures [7]. It can be divided into a three step process: fault detection, diagnosis
and fault recovery. When a fault is detected, the location of the fault is isolated
(diagnosis) to allow for a form recovery process to remove the fault or significantly
reduce the effect of the fault so as to allow the robot to continue in its task [9]. This
thesis focuses on fault recovery in swarm robotic systems while assuming that the
system is capable of detecting and diagnosing faults.

To achieve we propose utilising learning approaches with predefined behaviours
to design a partially ‘adaptive’ fault recovery swarm robotic system. Learning tech-
niques can be used to generalise solutions to fit problems that are introduced to the
swarm.

In preliminary experiments, we employ genetic algorithms for the evolution of
fault tolerance in the presence of complete motor failure. Specifically, we explore
the anchoring effect in collective phototaxis in the swarm and evolve controllers that
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are tolerant to certain failures, thus reducing the overall effect of anchoring of the
swarm. We focus on the evolution of specific parameters of the controller, using a
simple fitness function of minimising the distance between the robots and the beacon.
These experiments are discussed and expanded in the next chapter and are done to
test a possible approach towards solving the fault recovery problem presented in
this thesis. Initially, genetic algorithms were considered as a possible approach for
developing fault recovery solutions due to its ability to develop new solutions that
might not have been considered by the developer; if certain parameters of the robots
state or function can be evolved, can we develop some sort of fault tolerant system
initially before moving to a more active fault recovery approach. This is described
more in detail in chapter 2.10.

Collective phototaxis is a behaviour involving the swarm orienting and moving
towards a source of light, such as a beacon. The ω-algorithm, proposed by Bjerknes et
al. [10], provides aggregation of robotic swarms and emergent swarm taxis, through
the use of simple attraction and repulsion mechanisms, taxis was towards an infra-red
beacon. However, the authors observed that partial failure types had a detrimental
effect on the ability of the swarm to achieve taxis. Under certain conditions, an
“anchoring effect” was observed, whereby fully operational robots would be hindered
by failed robots preventing them from reaching the light source [10]. This scenario
forms a case study and initial work that is done for this PhD. This problem mentioned
signifies one, in a number of possible faults that can occur in a swarm robotic system
which effects depend on what task the swarm is assigned to. The main idea is to
have an adaptable fault recovery system that takes into consideration, most faults
and swarm behaviours.

1.1 Hypothesis and Goals

Based on the goal of the thesis to develop an adaptive fault recovery approach for
swarm robotic systems based on predefined recovery behaviour selection, the follow-
ing hypothesis can be formulated:

‘Can a combination of Reinforcement
Learning and Self-Organising Maps used
in conjunction with predefined recovery
behaviours aid in improving fault tolerance
in swarm robotic systems?’
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Following on this hypothesis, the following goals can be identified:

• To develop a fault recovery approach that is based on predefined behaviours
to be used as recovery solutions

• To apply reinforcement learning techniques and self organising maps to imple-
ment the recovery approach

• To extend the testing and testing between two general approaches: centralised
and decentralised

• Test learning approach in extended fault scenarios between different tasks,
single and multiple faults

The methodology used in the thesis is described as follows:

The method proposed here allows robots to learn how to select the most appro-
priate recovery strategy for any given system state or task. We refer to our approach
as ‘pre-fault learning’. This involves learning predefined recovery mechanisms for
different possible swarm states before a fault occurs. The swarm’s state is defined
by the distances of the nearest three robots closest to the faulty robot, their energy
levels, the level of importance of the faulty robot, how busy the nearest three robots
are, and the distance of the faulty robot to a repair station [d1, d2, d3, b1, b2, b3, p1,
p2, p3, I, drs]. These values represent the input of the learning algorithms that is
used to learn the best action for any possible state. We use two learning algorithms
that work well together: Reinforcement learning and Self Organising Maps and these
approaches are tested in both centralised and distributed settings.

Reinforcement learning in robotic systems is typically used in path or task plan-
ning [11], [12], [13]. For each possible state, an action is chosen and a reward is
allocated based on how successful that action is for that state. The state, action and
corresponding reward is stored in a lookup table. However, robotic systems exist
in continuous spaces, while reinforcement learning is traditionally implemented for
discrete spaces. It is thereby necessary to extend the present reinforcement learning
architecture to allow for learning to be done on a continuous state variables. Our
approach uses self-organising maps to solve this problem by clustering similar states
to produce a discrete set.

1.2 Contribution

In this paper, we assume that the swarm robotic system is capable of detecting
and diagnosing faults, and instead propose a novel approach to fault recovery that
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involves intelligent selection of predefined recovery strategies. These recovery strate-
gies cover faults enumerated by [5] that commonly occur in swarm robots. From
the point at which a fault has been detected and diagnosed, the swarm must decide
upon an appropriate recovery strategy. We assume that each robot has the abil-
ity to repair other robots in the swarm, therefore the problem reduces to choosing
which non-faulty robot(s) should be recruited to repair the faulty robot, and which
predefined behaviour is most appropriate given the current scenario. It should be
noted that this thesis is about the mechanisms for efficiently guiding a swarm of
robots to make decisions about whether to repair broken robots or not, but it would
NOT be about the detailed mechatronics of effecting the repair itself. The most
appropriate recovery strategy will depend on a number of factors, such as proximity
to the faulty robot or remaining battery power, thus some method of assessing the
quality of a strategy and its future effect on the swarm is required. We present a
solution to this problem that uses machine learning techniques to inform decisions at
run-time based on the results of offline training. It should be noted that this idea is
intended as a proof-of-principle that demonstrates the value of reinforcement learn-
ing for the selection of fault recovery strategies. There are two architectures: the
centralised architecture where a global observer (computer) to calculate the system
state and select the most appropriate recovery action and the distributed or decen-
tralised architecture where each robot in the swarm makes decisions based only on
local information.

There are additional contributions that this thesis presents in fault recovery for
swarm robotic systems

• A library of fault recovery behaviours in swarm robotic systems

• Implementing a simulation environment for testing the approach in ARGoS
(robot simulator)

• Develop a Reinforcement learning approach for fault recovery in swarm robotics

• Developing and implementing the fault recovery approach in centralised set-
tings for different tasks: aggregation, collective phototaxis and foraging

• Developing and implementing the fault recovery approach in decentralised (dis-
tributed) settings for different tasks

• Developing the fault recovery approach across a variety of fault scenarios across
different tasks
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1.3 Thesis Outline

This thesis consists of three parts. Part 1 is divided into three chapters: the intro-
duction, the literature review (discussion on related work on fault tolerance, fault
detection and fault recovery whilst also discussing possible evolutionary techniques
that can be linked to learning that can be used in the fault recovery approach that is
being discussed in this thesis) and the preliminary results. Part 2 details the learning
approach which is divided into multiple chapters: the fault recovery approach done
in centralised settings, distributed settings and also an extension of the experiments
done in both the centralised and distributed settings. Finally, Part 3 comprises of
the final two chapters, the conclusion and future work.
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Chapter 2

Literature Review

This literature review discusses a range of topics from swarm literature and algo-
rithms to fault tolerant systems including fault detection, diagnosis and recovery for
single, multi and swarm robot systems. Additionally, possible solutions to solving
the fault recovery problem are introduced; an overview of artificial immune systems
and evolutionary robotics which introduces the different evolutionary computation
techniques that can be considered for the solution.

2.1 Introduction to Swarm Intelligence

Swarm intelligence is an artificial intelligence (AI) method that revolves around
the study of swarm behaviour in decentralised self-organised systems [14]. Swarm
robotics is the application of the principles of swarm intelligence in the control of a
collective of robots. There are main concepts that involve the swarm intelligence field
such as decentralisation, stigmergy, self-organisation and emergence. Stigmergy in-
volves communication (direct or indirect) by the environment. Ants communicate to
other ants, the quality of a path by marking with pheromones so that a positive feed-
back mechanism ends eventually in most insects following the best path [15]. There
is no centralised control system controlling the individual robot, however the inter-
actions between the robots should lead to the emergence of global behaviour which is
a characteristic of swarm intelligence. We can classify these emergent properties into
four components: coordination, cooperation, deliberation and collaboration [14].

Grasse at al. [16] describes stigmergy in building activity in social insects. They
show that the individual’s coordination and building activities depend mainly in the
structure of the nest, that is, the environment rather than the individuals themselves.
Every instance a robot performs an action, the local environment changes and this
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action influences the actions of the overall swarm [14].
Another concept of self-organisation is a set of mechanisms where behaviours can

be observed at the global level of a system due to interactions among the lower-
level components without these components being explicitly coded. It relies on four
components [14]:

• Positive feedback which is derived from behavioural rules that promotes cre-
ation of structures, that is, recruitment and reinforcement.

• Negative feedback which counters positive feedback which stabilises the collec-
tive swarm.

• Amplification of fluctuations by positive feedback. Social insects frequently
perform random actions which is very important as this helps the swarm dis-
cover new solutions.

• Multiple direct or stigmergic interactions among the individuals to produce
random outcomes that could produce enduring results.

There have been various attempts to characterise the properties of self-organisation,
specifically [14]:

• Self-organised systems are dynamic in that when promoting creation of struc-
tures, permanent interactions between the individuals and their environment
is required.

• Self-organised systems exhibit emergent properties. The system display prop-
erties that are more complex than each individual.

• The interactions between the individuals and local environment lead to bifur-
cations. “A bifurcation is the appearance of new stable solutions when some
of the system parameters change”.

• Self-organised systems can be multi-stable. This means that for a set of param-
eters, initial conditions and random fluctuations, there can be different stable
states.

There are collective behaviours of social insects and they can be broken down
into four types of tasks:

• Coordination: This is the appropriate organisation in space and time of the
tasks needed to solve a specific problem.
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• Cooperation: This happens when the individuals work together to achieve a
task that an individual cannot solve on their own. The swarm must “cooperate”
to succeed.

• Deliberation: This refers to mechanisms that allow the swarm to make decisions
when faced with choices.

• Collaboration: This means that different activities are performed at the same
time by groups of specialised individuals.

The reason behind defining the intelligence of a swarm is because we are pointing
out a swarm is not a trivial system or a system that could easily be mapped into
other well known systems. Swarm intelligence is an emergent property and it shows
that a swarm system could not only be equally capable of doing what single robots
do, but more.

Swarm robotics has been described as a novel approach to the coordination of
large numbers of robots. It can also be described as the study of how large numbers
of relatively simple physically embodied agents can be designed such that a desired
collective behaviour emerges from the local interactions among agents and between
the agents and the environment [4]. The main inspiration for swarm robotics comes
from observing social animals such as ants, bees, birds. The reason behind the
inspiration is because these animals show a sort of swarm intelligence; they appear
to be robust, scalable and flexible. Robustness is the ability of the swarm to cope
with the loss of individuals. In social animals, robustness is promoted by redundancy
and the absence of a leader. Scalability is the ability to perform well with different
group sizes. The performance of the swarm should not drastically change after the
introduction or removal of individuals from the swarm. Scalability is promoted by
local sensing and communication. Flexibility is the ability of the swarm to cope
with a different environments and tasks. In social animals, flexibility is promoted by
redundancy, simplicity of the behaviours and mechanisms [7].

There are various main characteristics of a swarm robotics systems [7]. The
robots are autonomous and are usually homogeneous. The individuals are situated
in the environment and they can act to modify it. They have local sensing and
communication and therefore have decentralised control and no global knowledge of
the states of the other robots in the swarm. The swarm also have to cooperate to
complete a given task.

The key characteristics of swarms that are inspired from insect societies can
be described as: decentralised, not-synchronised, with simple homogeneous units
to an extent and not in large numbers. Swarm robotic systems are appealing as
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robotic systems because, compared to centralised systems designed for the same task,
they have very simple components. Therefore, the robotic units could, in principle,
modularised, mass produced, and could be interchangeable and possibly disposable.

There are various applications of swarm robotic system in the real world. Swarms
can operate on and under Earth’s surface, under water or even in space and other
planets. Practitioners have applied swarm intelligence to particle swarm optimisa-
tion (PSO), ant colony optimisation, unmanned underwater vehicles (UUV), swarm-
casting, space exploration by NASA etc. Some of these application areas in swarm
robotics involve foraging, surveillance, taxis and aggregation [17].

2.2 Swarm Taxis Algorithms

Aggregation involves robots having physical coherence when performing a task.
Robots are randomly placed in an environment and are required to interact with
one another which can be challenging with a distributed approach. Nembrini et al.
[18] and Bjerknes et al. [8] developed a class of aggregation algorithms that make use
of local wireless connectivity information alone to achieve swarm aggregation named
α algorithm, β algorithm and ω algorithm. These algorithms are called swarm taxis
algorithms. Swarm taxis involve a group of robots moving towards a beacon, usually
a light source. The ω algorithm is the preferred algorithm to be used in swarm taxis
because it has a more stable performance [19].

In swarm taxis algorithms, in order for the robots to move towards a beacon,
Nembrini et al. [18] and Bjerknes et al. [8] allow the swarm to move towards an
infrared (IR) beacon. Only the robots who are directly in line with the IR beacon
are attracted to the beacon and illuminate the beacon sensor. An emergent property
is swarm taxis towards the beacon. However, the robots do not individually have the
necessary sensing capability to determine heading towards the beacon. The robots
must work together to achieve movement in the right direction. To achieve this,
there are three mechanisms that must be in place [19]:

• There has to be something that prevents the swarm from disintegrating, that
is, if a robot moves too far it should be able to return back to the swarm

• The robots should have a minimum distance between each other so as to avoid
collision.

• Once these two conditions have been met, a “symmetry breaking mechanism”
is to be introduced to ensure that the swarm moves in the correct direction.
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In swarm taxis algorithms, swarm maintains aggregation by the following [19]:

• Coherence Behaviour: Each robot has a limited range wireless communication
and sending and listening to ‘I am here’ messages within their communication
range. If a robot loses connection and the number of neighbouring robots fall
below a predefined number, then we assume that the robot is moving away
from the swarm and therefore it turns 180 degrees. We say that the swarm is
coherent if there is a break in the overall connectivity lasts less than a predefined
time constant.

• Avoidance Behaviour: Each robot has short range avoidance and long range
beacon sensor. The robots use this short range sensor to avoid collision with
each other or any blocks in the environment. The long range sensor is used to
detect the light source.

• Symmetry Breaking Behaviour: This is how the information on the direction
towards the beacon is captured by the robots on the swarm. In a swarm, not
all the robots in the swarm would be able ‘sense’ the beacon as they could be
blocked by the other robots.

Before we discuss the ω algorithm [10], a short summary of the α and β algorithm
needs to be described so that we can understand the reason behind choosing the ω
algorithm.

2.2.1 The α algorithm

When working with the α algorithm, the robots track the number of robots within
their communication range by sending and listening to ‘I am here’ messages. If
the number of robots fall below a predefined number, α, then we assume that the
robot is moving away from the swarm and therefore it turns 180 degrees. However,
this algorithm has some problems. If the value of α is too low, then the swarm
disintegrates. Also, implementation of the α algorithm on real robots has not been
successful; it has only proved successful in simulation [19].

2.2.2 The β algorithm

For the β algorithm, it also uses radio connectivity to maintain the swarm cohesion.
The α algorithm makes use of the number of robots within their communication range
while the β uses the number of shared connections. As the robots move around, they
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send their unique IDs and a list of the IDs within their communication range. There-
fore, when a robot loses a connection with a robot, it checks with the list gotten from
other robots to see if they have ‘seen’ or also lost connection with this robot. With
all this information, they can calculate the shared connections. If the connection
to a robot is lost and the number of shared connections is less than a predefined
value, β, the robot turns around. This algorithm requires a much more complicated
communication system and also increased processing power although it maintains
swarm cohesion much better than the α algorithm. Nembrini et al. succeeded in
implementing the β algorithm on seven robots but they had to simulate the short
range wireless communication. Both the α and β use wireless communication which
is limited in range and it is essential that the difference between good communica-
tion and no communication is clearly defined. However, this technology is not readily
available today [19].

It can be observed that although α and β algorithms are quite useful, when
trying to implement on real hardware, another algorithm is needed which is how the
ω algorithm was conceived.

2.2.3 The ω algorithm

In the ω algorithm [10], there is no wireless communication channel but rather so-
phisticated sensors and a timer. The default behaviour is to move forward and as this
occurs, a timer is increased called the aggregation-timer. Every instance the robot
performs an avoidance movement; that is avoiding collision with another robot, the
aggregation timer is reset to zero. If the aggregation timer reaches a predefined
value, this means that the robot has moved a certain distance away from the swarm
and it needs to re-orient its position and move towards its perceived centre of the
swarm. This algorithm is more stable and has been successfully tested on real hard-
ware. Another advantage of this algorithm is that it frees up wireless communication
bandwidth so as to fully optimise the sensor network.

In [8], Bjerknes et al. uses the ω algorithm in analysing various fault modes and
their effects on swarm behaviour. From his analysis, it was concluded that when a
robot is partially failed, it would have a serious effect on the overall swarm behaviour.
Therefore, it is desired that the swarm should be fault tolerant.

2.3 Fault Tolerance

Fault tolerance is important in the field of robotics, especially in remote and dan-
gerous areas. We can define it as the ability of the system to continue operating
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when faults are present in the system. The system could be functional at a reduced
level of efficiency regardless of the changes in the internal structure or the environ-
ment [20]. We can classify fault tolerance into three sub-categories: Fault detection,
fault diagnosis and fault recovery. Fault detection involves discovering an anomaly
in the system. There are two ways we can use fault detection in robotic systems:
exogenous and endogenous. Exogenous fault detection is the process whereby robots
detect faults in other neighbouring robots [21] while endogenous fault detection is
the process whereby robots detect faults that occur within itself [22]. We can break-
down fault diagnosis into fault isolation and identification. Fault diagnosis requires
knowledge of the set of possible failures and the relationship between observations
and these failures. Fault recovery involves having a set of actions for a set of faults
allowing the system to continue its operation with faults present [23]. There is a need
for robots to have the ability detect, diagnose and recover from faults autonomously
and continue on with their tasks. It has been assumed previously that swarm robotic
systems are robust and scalable, that is fault tolerant, by default. It should be noted
that robot swarms do exhibit a good amount of tolerance in the failure of individ-
ual robots compared to conventional systems, however it is incorrect to assume that
these properties are automatic to all swarm robotic systems. The ω algorithm serves
as our case study in our analysis of fault tolerance in swarm robotics. Analysis done
by Bjerknes et al. [8] has disputed this assumption by using both reliability mod-
elling and experimental trials on a swarm of robots that have had failures injected.
The swarm size plays a role in this analysis. As the swarm size increases, the system
reliability decreases. Therefore a more reliable method of fault tolerance is needed,
especially for a larger swarm size.They describe three failure modes that could have
a major effect on the operation on the swarm [8]:

• First Case - Complete Failure of Individual Robot: In this situation, the
functional robots treat the failed robots as obstacles in the environment and
avoid them completely. The effect they have on the overall performance of the
swarm is minimal. The only way they can be detrimental to the performance
of the swarm is that it reduces the number of functional robots in the swarm

• Second Case - Failure of IR sensors: It is highly unlikely that all the
IR sensors on the robot would cease to function and the robot would leave
the swarm and wander around the environment. However, if this occurs, the
remainder of the swarm treats this failed robot as an obstacle as in the first
case. Also, as in the first case, the main issue is that it would reduce the
number of functioning robots in the swarm.

• Third Case - Failure of robot motors only: In this case, the motors
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are faulty however all other sensors are functional. This has a serious effect
on the overall performance of the swarm as these robots are partially failed
robots. This partially failed robot anchors the swarm, disrupting the swarm
taxis towards the beacon. This is because the robot is still active but stationary.
Even if only one motor fails and the robot is turning on the spot, it is still has
the same effect. This is the most serious case, due to the anchoring problem
and is the basis of the research proposal.

In [5], Winfield et al. implemented a failure mode and effect analysis (FMEA)
to analyse the common hazards that occur in swarm robots and their impact on the
global swarm behaviour (aggregation is used as the case study):

• Motor Failure: It is assumed that the other functions are still working. When
this happens, either one or both of the robot’s wheels stop functioning.

• Communications Failure: This is when the wireless connections sub-system
fails and the robot gets disconnected from the swarm.

• Avoidance Sensor Failure: This is when robots cannot sense other robots
or obstacles around them causing them to bump into them.

• Beacon Sensor Failure: This occurs when the robot can not ‘see’ the beacon.

• Control Systems Failure: Generally, the control system is simple and con-
sists of three behavioural layers: forward, avoidance and coherence. The failure
usually manifests itself as motor failure or communications failure.

• Total Systems Failure: This occurs when a robot fails completely due to,
for example, power failure, the robot becomes inactive and completely discon-
nected from the swarm.

There has been some work done, as explained below, in fault tolerance in swarm
robotics and in robotics in general. This has been shown for various swarm be-
haviours. Most of the work done in respect to fault tolerance in swarm robotics
is primarily in fault detection. From the Receptor Density Algorithm (RDA) [24],
which is an immune inspired (which uses the artificial immune system as inspiraton)
fault detection algorithm, to the Firefly algorithm [25], which takes inspiration from
the synchronised flashing that has been observed in some species of fireflies, there
are various fault detection methods in both multi-robot and swarm robotic systems.
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2.4 Artificial Immune Systems (AIS)

Artificial immune systems (AIS) is the result of immunology and engineering work-
ing together. AIS has a plethora of benefits though it can be argued that in most
of the application areas already established, other biologically-inspired algorithms
such as evolutionary algorithms, neural networks, etc. might solve the same problem
more effectively [26]. There are various application areas that AIS can be used in,
but they can be categorised into three: Anomaly Detection (fault detection), Opti-
misation (clustering) and Learning (pattern recognition, robotics, adaptive control
systems) [27]. The immune system can be divided into innate and adaptive immune
system. The innate immune system deals with common problems without any heavy
computation. They respond to pathogens generically without knowing the specific
kind of pathogen that is being dealt with. They are used to quickly destroy diseases.
Adaptive immune system is pathogen specific, referring here to biological systems.
There are various immune processes which are mentioned in [28] that would be useful
for a more thorough review.

AIS has a lot of potential to be an important aspect in biological-inspired algo-
rithm, however to create an effective AIS algorithm, there are various features that
are unique to it[26]:

1. They will be embodied, that is, they should not work in isolation but the AIS
should work with other systems to create a fully functional system.

2. The innate and adaptive immune system models should be used together as
this might make the system more functional. By exploiting the full ‘natural’
immune system in the models, the true value of the immune metaphor would
be revealed.

3. They will consist of multiple, heterogeneous interacting, communicating com-
ponents.

4. The components should be easily and naturally distributed

5. They should be able to perform life-long learning, that is, they should have
some sort of memory to remember past states, as would be seen in the natural
immune system.

There is a significant lack of theoretical work in AIS. How can creative, useful
algorithms be properly created if the underlying concept is not understood. By fully
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understanding the science behind the immune system, AIS practitioners can success-
fully create immune algorithms for specific application areas. It is very difficult to
create a generic AIS without knowing what application area that it would be used
in. The immune algorithms are inspired by immune processes and they are divided
into four major groups: negative selection, clonal selection, immune networks, dan-
ger theory (this theory makes use of both the innate and adaptive immune models.
Most AIS systems make use of just the adaptive immune models which is not an
ideal feature of an AIS feature according to the list above).

AIS has been used in a fault tolerance capacity, [29], although it has not been
used for fault recovery. The idea would be to evolve immunity/fault tolerance of the
swarm robotics system. Immunity is being insusceptible to faults or hazards. The
concept of immunity can be derived from the immune system which is the theory
behind how my PhD would work.

Each fault would be handled in a different way; diverse problems require a range
of specialist solutions. For every type of commonly known fault, as discussed in
[5], there would be a corresponding predefined fault recovery strategy. There would
however be only a single set of fault recovery strategies for all the commonly known
faults as mentioned above: sensor failure, communications failure etc., which would
be generic for most swarm behaviours. The swarm would try these generic behaviours
first. This is an adaptation of the innate immune system. If these strategies do not
work, if for example, the swarm is in a new environment or the swarm could be
assigned with a different swarm behaviour, their parameters of the specific type of
fault recovery strategy are to be evolved first. This is an adaptation of the adaptive
immune system.

Before the proposal is discussed, it is necessary to review work done in various
fault tolerant capacities.

2.5 Fault detection in Multi-robot systems

Roumeliotis et al. [30] presents an approach to fault detection and identification
on board in mobile robots, especially sensor failure, called Multiple Model Adaptive
Estimation (MMAE). They present three stages of sensor failures: we can say two
are ‘hard’ in the sense that the sensor is stuck on a value and subsequent values
are ignored from then on. The last failure can be classified as ‘soft’ in that the
sensor degrades but could still be useful. The computation necessary to detect all
these faults, ‘hard’ and ‘soft’, was not available [30]. Kalman filtering is a popular
technique for state and parameter estimation. The MMAE techniques uses Kalman
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filters and is used to fault detect in mobile robots. A Kalman filter give a measure of
the difference (could be called residual) between the measured sensor value and the
value that has been predicted by the filter that contains the model. The residual is
used in the filter to update this difference and has been classified as an excellent way
to indicate that the robot has fault. This has been demonstrated using three sensor
faults. This architecture is in the fault detection and identification modules and the
output from the fault detection module notifies if a fault has occurred. The module
is already active even after a fault has been detected in case the fault has been good
or a new fault is detected.

Fagiolini et al. [31] addresses a distributed Intrusion Distribution System (IDS)
that can be used to detect faulty robots in a multi-robot system. They use monitors
to share information that has been collected, which means it has a global view of
the system. The motivation behind this paper is to provide an infrastructure that
would be able to detect complicated behaviours of a robot that deviate from the main
strategy. It could be expected that a robot could deceive the model of cooperation
and neighbouring robots that monitor its progress by using their knowledge of the
system’s state. The systems that are considered are systems where the individual
robot plans its movement based in the actions of the robot itself and the neighbouring
robots. The objective is to evolve a synthesis technique that makes it possible to
build the IDS for the multi-robots. There are two concepts of the IDS: a decentralised
monitoring system whereby each robot allocates a reputation to all its neighbours.
Reputation is a measure of the robot’s cooperativeness. The second concept is the
agreement mechanism which is when all the monitors share all the local information
that has been collected can meet to make a network decision. They decide not to use
a completely decentralised system because the robots only have access to a partial
part of the overall state of the system. and the faulty robot could be affected by a
robot outside the range of the robot monitoring it.

Heredia et al. [32] [33] addresses sensor and actuator fault detection techniques in
small autonomous helicopters. The helicopters that the experiments are conducted
on are called the MARVIN helicopters. This paper investigates detection of both
the possible sensor and actuator faults. In detecting sensor faults, it is achieved
by monitoring the sensor outputs continuously. Typically, the measurements are
predictably with some degree of uncertainty due to noise and random disturbances.
They observe the measured value form the predicted value. There are five different
failure types that were considered:

• Total sensor failure. This is a serious type of failure. This happens when
the sensor stops working and outputs zero. This failure type could occur due
to communication or electrical issues.
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• Stuck with constant bias sensor failure. This happens when the sensor is
stuck at a constant bias and the outputs a constant.

• Drift sensor failure. This failure type is particularly common in analog
sensors. This could happen due to internal temperature changes or calibration
issues and the output has a constant term added to it.

• Multiplicative-type sensor failure This failure type occurs due to a scaling
error in the output of the sensor (it is ‘added’ to the sensor value).

• Outlier data sensor failure. This is a failure type that occurs mostly in
GPS sensors. It happens at a single point but results in a large error that is
given by the GPS sensor. However after this, the subsequent measurements
are correct. This could be caused by various reasons such as internal signal
processing algorithms, temporary satellite signal blocking.

In detecting the actuator faults, the detection technique is designed by using the
flight data gotten from two different sources: a non-linear mathematical model and
the real flight data from the MARVIN helicopter. They are able to generate datasets
using the mathematical model in simulation. They make use of the simulation data
to detect faults in all the actuators: main rotor, tail rotor and both the rolling and
pitching cyclic inputs. The main problem however with these techniques, if the errors
are considered small, the fault detection technique might not be able to differentiate
it from noise and other disturbances.

These approaches to fault tolerance for multi-robot systems do not work for robot
swarms due to the design and implementation of multi-robot system. For swarms,
each robot is simple and the swarm work collectively to achieve their goal however,
multi robot systems consists of robots that are each specialised for a specific task.

2.6 Fault detection in Swarm Robotic Systems

Tarapore et al. [29] discusses fault detection in multi-agent systems which has ranges
including multi-robot systems. According to this paper, majority of the fault tol-
erant systems available specify a characterisation of normal behaviour, and train a
model to recognise them but these models require specific knowledge of the normal
behaviour. Any behaviour that is not recognised is considered abnormal. However,
multi-robot systems that make use of these models do not consider variations in
normal behaviour and it would consider these variations abnormal. They tackle this
problem by taking inspiration from the regulation of tolerance and autoimmunity
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in the adaptive immune system. The adaptive immune system or acquired immune
system is a subsystem of the overall immune system in the human body. The system
remembers the immune response after the first time a pathogen is discovered. The
idea behind the adaptive immune system is that there is no previous knowledge of
the pathogens, however, the immune system is able to adapt to their presence. They
propose using the Cross-regulation model (CRM) which captures the robust mainte-
nance of immunological tolerance by allowing the system to discriminate based solely
on their density and persistence in the environment. They used an agency-based sim-
ulator to model a situation where the agents have to tolerate certain behaviours and
activate an immune response against the others. They demonstrate the capacity of
the systems to tolerate the normal swarm behaviour that could be characterised as
having a high density while also activating an immune response against the abnormal
robots. The system also accommodates the variations in normal behaviour.

Alan Millard et al. [34] proposes a novel method of exogenous fault detection that
is capable of detecting partial failures, based on the comparing expected and observed
robot behaviour. The robots do not learn the expected behaviour of every other
robot’s behaviour online, rather they each have a copy of the robot’s controller which
they can instantiate in an internal simulator. Therefore, if the robot’s controller can
be instantiated in an internal simulator, then the behaviour can be predicted. They
assume however that the the swarm is homogeneous, that is, each robot has an
identical controller. In order to compare the behaviours, there has to be a method
that each robot would use to observe one another. To simplify the problem, they
decided to provide each robot with information about the position/orientation of
other robots, collected using a tracking infrastructure that observes the swarm from a
bird’s-eye view. The robot controller is instantiated within the simulation, embodied
in a simulated model of the real robot, and is used to generate predictions of non-
faulty behaviour. Any major difference between these predictions and the robot’s
observed behaviour may indicate fault. They investigate partial motor failure as this
would be more difficult to detect.

Christensen et al. [35] proposes a new approach on fault detection for autonomous
robots by using neural networks. The idea is that hardware faults would change the
sensory data and also the actions performed by the control program. If we are able
to detect these changes, we can confirm the presence of faults. They tested this
by collecting data from three different tasks, find perimeter, follow the leader and
connect to robot, performed by real robots. During training runs, they record the
sensory data from the robots while they are operating normally and also after a fault
has been injected into the robots. By using back-propagation neural networks, they
are able to synthesise fault detection components based on the collected data from
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the training runs. They also extend the possible faults and show that a single fault
detector can be trained to detect several faults in the robot’s sensors and actuators.
The fault detectors can be synthesised to be robust to the variations in the task and
also can be trained to allow one robot to detect faults in another robot.

Another paper by Christensen et al. [25] proposes a distributed algorithm that
detect faults exogenously in other non-functional robots in a swarm robotic systems.
This algorithm is inspired by some species of fireflies. By making use of local com-
munication between the swarm, the robots are able synchronise and reach a stable
state whereby they flash an light emitting diode (LED) regularly together. The time
it takes for the robots to synchronise depends on its size and it does not have to be
synchronised at a global level for the algorithm to function. When a robot develops
a fault, the LED stops flashing. By observation, functional robots can detect the
failed robots by the lack of flashing over a certain period of time. This is done by
robots analysing camera images to detect changes in each other’s LEDs. Due to this,
the functional robots also know the location of any LEDs in its vicinity. It should
be noted that a robot’s LED can also stop flashing voluntarily if it detects a fault
within itself. However, the robots would not be able to tell the difference between a
failed robot or a robot that that its LED simply stopped functioning. This algorithm
detects if a robot is faulty but does nothing in regards to fault diagnosis and recovery
in the swarm.

Lau et al. [24] uses the Receptor Density Algorithm (RDA) in fault detection
in swarm robotics. The authors propose using statistical classifiers, such as the
RDA (an artificial immune system), to enable the swarm to be fault tolerant in
dynamic environments. They address this through comparison in which a robot
would compare its behaviour to other robots, in its communication range. By doing
this, the robot would be able to self-detect if a fault has occurred endogenously and
would be able to differentiate whether the robot has developed a fault or whether
the change of behaviour is due to a change in the environment. The RDA is inspired
by the T-cell receptor and its ability to discriminate between healthy and unhealthy
cells. It works by taking in an input spectrum, dividing it into discrete locations.
A receptor is placed at each location and takes an input. From this, it produces a
binary classification which informs us whether that location is faulty. The binary
classification is performed via the receptor location and negative feedback. More
information on the RDA can be gotten from [36] and [37]. This fault detection
mechanism is quite impressive as it takes into account different failure modes to the
wheels in dynamic environments. However fault detection is the only aspect of fault
tolerance that work is being done on. Again, this algorithm does nothing in regards
to fault diagnosis and recovery.

34



2.7 Fault Recovery

This section discusses some work done in the area of fault recovery. When un-
derstanding fault recovery in multi-robot systems, it should be noted that not all
robotic systems have a mechanism to detect or diagnose faults, however, they can
still perform a kind of fault recovery strategy that give an inherently fault tolerant
system.

2.7.1 Single-robot systems

Bongard et al. [38] discusses a fault recovery strategy when dealing with a fault in
a singular robotic system. This paper deals with a four legged robot with eight mo-
torised joints, eight joint angle sensors, and two tilt sensors that can autonomously re-
cover from damage through continuous self-modelling. In this paper, they describe a
continuous process whereby a robot still performs after injury through self-modelling.
The robot is able to indirectly deduce its own morphology through “exploring” itself
and using these self-models to synthesise new behaviours. If the robot?s structure
changes suddenly, the process above is used to restructure its internal self-models,
leading to the robot being able to generate different behaviour. This enables the robot
to continuously diagnose and recover from faults. This method does not involve any
form of redundancy or even other contingency plans designed for anticipated failures.
This process is made up of three algorithmic components that are always executed
by the physical robot regardless whether it is moving or resting: Modelling, testing
and prediction.

2.7.2 Multi-robot systems

An example of fault tolerant in multi robots systems is work done by Parker et
al. called ALLIANCE [39]. ALLIANCE is a software architecture that allows het-
erogenous robot teams, which are individually highly functional to make necessary
decisions throughout the task given by taking into account the environment, in-
teractions of the other robots and their internal states. These teams can work in
dynamic environments and are able to respond adaptively and reliably to changes
in the robots, most especially mechanical faults, and changes in the environment.
These robots can individually cope with selecting and performing various actions
that can be expected in a dynamic environment. There is no centralised control so it
is a fully distributed system. This is so as to utilise the robustness characteristic that
can be associated with distributed robotic systems. ALLIANCE has been tested on
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an actual robot team in a laboratory environment performing waste dump. It is a
good example of a fault tolerant system that performs some sort of fault recovery
mechanism with or without any fault detection. However, this mechanism deals with
a multi heterogenous robot that individually has high level functionality, therefore
would be expensive to produce and maintain. Also, each robot in the team have to
explicitly coded for a specific task. If the order of the tasks is important, it also has
to be explicitly programmed. Any sub-tasks is not fault tolerant in that the main
priority of the team is to finish the task irrespective of how efficient the action is.

Gerkey et al. [40] is another example of fault tolerance in robotic systems, dis-
cussing achieving intentional cooperation in robotic systems that comprises of au-
tonomous heterogeneous robots that are prone to failure in noisy and dynamic envi-
ronments called MURDOCH. This paper deals with dynamically allocating tasks to
these robots. The inspiration behind this is from the distributed artificial intelligence
(DAI) community. The main problem is multi-robot cooperation in tasks however
they focus primarily in task allocation. Given resources and sub-tasks, MURDOCH
assigns the resources to the necessary tasks as efficiently as possible. The three
aspects that MURDOCH takes into account during task allocation is the resource
usage, time taken to complete task and overhead communication between the robots.
They demonstrate fault tolerance in that if a robot takes too long to execute an as-
signed task, it can be assumed that the robot has failed and therefore the task can be
reassigned. MURDOCH is able to demonstrate a fault tolerant system in dynamic
task allocation for heterogeneous robot teams. As discussed in ALLIANCE, each
robot is assigned a specific sub-task and although this can change, depending on the
performance of the robot, these behaviours have already been explicitly written.

Dias et al. [41] presents a distributed architecture, “TraderBots” that can also
form centralised sub-groups so as to improve efficiency. They use a market approach
to coordinate a robot team to complete a task. This architecture is similar to MUR-
DOCH and ALLIANCE. They classify each robot as a self-interested agent while
the robot team is an economy. The goal of the team is to complete the task while
minimising the cost. Each robot works to minimise its individual robot cost but the
revenue is gotten from completing the team’s tasks. The overall cost is calculated
by summing up the individual’s robot cost and any deal made by any robot (only
profitable deals) will add up to a reduction of the global cost. The individual robots
compete for different tasks which enables the system to read the competing local
costs of each robot. This architecture is fault tolerant in the sense that the robots
have to bid for tasks so as to complete them. If a robot is not “healthy” enough to
perform a task, then it does not ‘win’ the bid, as it would not be an efficient way to
reduce the overall cost of the team.
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We have seen the work done so far in fault detection and recovery in robotic
systems including swarm robotic systems. Another way of doing recovery would be
a trial-and-error process such as stochastic optimisation. One such technique would
be evolutionary computation. Evolutionary techniques involves randomised search
heuristics; this is where the technique is executed in a loop, comparing the solutions
until the best solution is discovered. The reason why this is a popular choice is be-
cause it provides novel solutions to problems that the designer might not necessary
think about. It removes the necessity of breaking down the controller code that leads
to the emergent global behaviour. It relies on evaluating the overall swarm behaviour
that started from the individual behaviours. The approach that evolutionary algo-
rithms take in designing controllers is that the controllers are evaluated for their
ability to produce the needed behaviour. The algorithm selects the controllers and
evaluates their fitness in the environment they are working in.

2.8 Evolutionary Robotics

Evolutionary robotics (ERs) is a derivation of optimisation, therefore, before dis-
cussing ERs, general optimisation techniques need to be discussed so as to give an
overview of these techniques and how they relate to ERs.

2.8.1 Random Optimisation

In [42], metaheuristics, can also be called randomised search heuristics, is described
as a term that can be used to discuss the primary field of random optimisation.
Stochastic optimisation is the general category of algorithms and techniques that
employ some randomness to discover optimum solutions to difficult problems. These
algorithms are used to address problems where there is little knowledge known about
the problem and the practitioner has no idea what the optimal solution looks like
however the search space is too large for the brute-force search to be considered;
the practitioner refers to the person that is trying to find the optimal solution,
that is, the developer.The simplest way to perform a search is by doing random
search. This involves randomly selecting and evaluating solutions till some sort of
termination criteria has been met and then returning the best solution that has been
discovered. However, there are better alternatives to this, such as Hill-Climbing [42].
This is done by starting a random set of solutions and then making a small, random
modifications to this set and testing it. If this version is better, discard the previous
one, otherwise discard the new version. Afterwards, make another modification to
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the current version, the version not thrown away, and if his version is better keep it
otherwise discard it. This process is repeated till the termination criteria is met.

Hill-climbing is a simple algorithm that utilises the belief that similar candidate
solution tend to behave similarly, similar quality, so that by adding the modifications
you get a set of small changes in the quality of the solutions. This allows us to
“climb the hill” to good solutions. This is a main feature of metaheuristics; most
metaheuristics are basically some combination of hill-climbing and random search.
There is also the Gradient-based optimisation technique [42],: Gradient Ascent which
is a mathematical method that can be used to find the maximum of a function. The
main idea behind this is to discover the slope (optimum) and move to it. It does
not assume that the function is known, however it assumes that the slope can be
computed. This algorithm can be run till time runs out or it discovers the best
solution which is when the slope is zero. However, if there are various points on a
function that has a slope of zero, which could lead to premature convergence, which
is an important issue when using the Gradient Ascent optimisation technique. There
is also the Gradient Descent technique that is used to find the minimum of a function.
It also follows the same principles as the Gradient Ascent.

There is also Simulated Annealing which was developed by researchers in the mid
1980s [43]. This is similar to Hill-Climbing but it differs in its decision as to when
to replace the old version of the solution set with the new version. If the old version
is better that the new one, then replace the old version with the new one as normal.
However, if the new version is worse than the old version, you could still keep the
old version. This is determined by a probability. The algorithm performs a random
walk in space which allows the algorithm to discover new solutions irrespective of
how good the solution is. It has a tunable parameter, t, that causes the probability
to discard the current solution to be close to zero when t is close to zero and if t is
high, the probability is close to one. The tunable parameter starts at a high number
and is decreased slowly. The slower the rate of decrease, the longer the algorithm
resembles a random walk and explores the search space more. There is also the
Tabu Search which was created by Fred Glover [44]. It employs another approach
to exploring the search space. The algorithm keeps a list of the recently considered
solution, of a considerable length (tabu list) and does not return to these solutions
until they have been far in the past in the optimisation process. If the tabu list is
too large, the oldest candidate solution is removed from the list and is therefore not
a taboo to reconsider the solution.

Population-based methods are different from the methods discussed above be-
cause they use a sample of multiple solutions rather than a single solution. Each
of these solutions are randomly modified and assessed for their quality. Most of the
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population-based methods are inspired from biology: a set of techniques known as
Evolutionary Computation [45]. An algorithm from this collection is the evolution-
ary algorithm (EA). Evolutionary algorithms utilise the collective learning process
of a population of individuals where each individual represents a search point in the
space of potential solutions to a given problem. In swarm robotics, evolutionary
techniques have been used in order to obtain robust and efficient group behaviours
based on self-organisation [46], and might possibly be used for fault detection or re-
covery. Genetic algorithms also belong to evolutionary computation techniques that
perform optimisation or learning tasks with the ability to evolve; there are other
algorithms that also fall under evolutionary computation techniques which includes
evolution strategy (ES), evolutionary programming (EP), and genetic programming
(GP) [47].

Evolutionary Robotics (ER), usually in single robot systems, is a technique that
uses evolutionary computation to develop controllers for autonomous robots. It uses
evolutionary algorithms (EAs) to develop, modify or completely change the controller
of the robots thereby increasing the autonomy of robots [48]. The time taken to
evaluate solutions for evolutionary robotics is very long because EAs usually require
hundreds and sometimes thousands of iterations. This has lead to two evolutionary
robotics research approaches: Online Evolution (Situated method) [49], [50] and
Offline Evolution (Simulate-and-transfer method) [51].

2.8.2 Online Evolution

The emphasis is on robots experiencing the world directly through the sensors and
therefore evolving the exact needs of the robot and the task environment. The
advantage to this is that there is no aspect of modelling required from the designer,
a situated evolutionary algorithm can cater for design tolerances between robots and
a situated algorithm can discover elegant solutions related to the robot. However,
EAs require a population of solutions to select from. Some of the methods used [52] is
to maintain a population of controllers on a single robot and sequentially evaluate the
controllers. This is called time-sharing or even encapsulated evolution. This method
has a major disadvantage in that if a good solution has been found, it still keeps
looking for a new controller solution making the real world performance of the robot
unreliable. It should be noted that if the environment changes often, the evolutionary
aspect of the robotic system would be trapped in a continuous evolution and this
is a waste of time. It is desirable to be robust to change in the task environment.
However, sequentially testing controller solutions on a single robot is not an efficient
method. Also, because EAs require using both explorative and exploitative, there is
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potential for the evolutionary exploration of controller solutions to create unreliable
and dangerous mutations of a previously stable controller.

2.8.3 Offline Evolution

Generations of controller solutions are evaluated virtually through a simulator which
avoids taking time doing real world analysis. After a sufficient amount of genera-
tions, the best evolved solution is transferred to the robotic system. Simulations also
help the robots gain a wider and global perspective of the world that is being ob-
served and integrates new information back into the evaluation process. This allows
for an accurate fitness assessment as the simulation takes into account interactions
between the robot and the environment. Of course, this method isn’t without its
challenges which involves the accuracy of the simulation and transferring the solu-
tions to actual hardware. By using simulation, there is a risk that the EA would
discover and exploit inaccurate features which are not present in reality or the sim-
ulation would not take into account important features that are present in reality.
There is a term called reality gap coined by Jakobi et al. [53], which is when there
is a discrepancy between the real world and the simulation. This is present in both
single robots and swarm robots. This can be considered in 3 categories of correspon-
dence: robot-robot correspondence (differences in morphology), robot-environment
correspondence (differences in their interactions such as sensor data and actuators)
and environment-environment correspondence which is representation of the relevant
features of the environment.

Another argument is that the evolutionary development happens as a distinct
process before deploying it on real robotic hardware [51]. Because EA is an offline
process, evolutionary adaptation stops once the solution is found. This is unlike
the evolution of the situated evolutionary robotics which is continuous open-ended
evolution where the EAs forms the main process of lifetime adaptation. Some re-
searchers have looked at transferring the simulated offline process to a distributed
(spread across multiple agents) online process so as to re-tune the solution for the
real world. Another approach is to combine evolution and learning like evolving the
controllers offline but using online learning algorithms to shape the phenotype once
the solution is transferred and operating on real robots. Combining offline evolution
and online learning is a promising approach but the reality gap still exists. The
designer must isolate the key characteristics to simulate, which subsequently forms
a limit on any post-transference optimisation. A more recent approach is to allow
a robot to autonomously adapt a simulated representation in direct correspondence
to the robot’s experience of the real world. The hypothesis is that exploitation of
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simulated features that do not correspond to reality can be marked as not evolution-
ary profitable. Thereafter, realising exploitations can be used to efficiently discover
discrepancies in correspondence and amend them to a better fit for the real world.

2.8.4 Evolutionary Swarm Robotics

Evolutionary swarm robotics involves using EAs to optimise robot controllers to
give us a desired global group behaviour. There are few examples of distributed
online approaches of EAs in swarm systems [54], [50]. Distributed online approaches
involve using a distributed (shared amongst the robots) evolutionary approach on
many robots. A robot would maintain and evaluate only a single controller solution
but selectively reproduces with many of the other robots working with the same
distributed algorithm. Basically, the group of robots represents the physical evolu-
tionary population of controller solutions. This reduces the time needed to evaluate
the entire evolutionary population. In this approach, the population size depends on
the number of robots and how they interact with one another in the environment.
There is an emphasis for evolutionary process to be localised so that the system re-
mains scalable. Also if the fitness is localised, the individuals can assess themselves
and there is no need to get the fitness of the whole swarm. Because we are dealing
with swarms, the fitness of the individual must, in a way, relate to what other robots
are doing. However, because a swarm is decentralised, this is very difficult to achieve.

However, there is a lot that can benefited from distributing the EA [54]. The
individual robots in the swarm are computational units from which there can be an
increase in processing power by gains in processing can be made by splitting the
evolution into parts but then running them simultaneously. The robots represent
many experiences and can therefore be used as a form of parallel assessment. From
the first argument, parallelism can accelerate the process and make situated evolution
more timely. An online evolutionary method is embodied in the robot and therefore
specific to the requirements of the situated environment.

Konig et al. [55] evolve obstacle avoidance behaviour and highlight some imme-
diate problems with an on-line, distributed evolutionary method:

• The fitness of the phenotype is coupled to the task environment and cannot
be anticipated. Therefore, there is no exact measure of a solution to relate
between robots.

• We can not measure the global fitness as a swarm is decentralised and localised.

• The fitness value is an approximation that occurs after a time period of assess-
ment and therefore, robots exchange out of date information.
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There have been some investigations done on on-line distributed evolutionary
method which can be listed below [50]:

• Evaluating in the real world can be very slow, therefore one must have a strong
evolutionary method of selection.

• Robots are mobile and they evaluate physically therefore the initialisation of a
new evaluation does not have controlled circumstances.

• The performance of the robot to complete a task is very important and is
disrupted if a robot keeps on evaluating unreliable behaviours. This causes
some difficulty in choosing a mate for evolutionary selection.

Performing evolution offline means that evolutionary development can be analysed
on a simulator while online evolution can only be analysed on real robots.

Some work [56] has been done to conduct evolution online by using the robot’s
limited computing power that is onboard. This enables the robot to operate in a self-
contained way without relying on external for assessment or even additional compu-
tational power. The EA mechanism is carried out without any external supervision.
The main advantage of online evolution is that if there is a change in the environ-
ment or task, robots can modify their behaviour accordingly. Each evaluation takes
a significant time on real robots which is why the solution is not feasible. Another
method is conducting the evolution offline, as discussed previously, in simulation and
then transfer to real robots after evolution to avoid the delay when performing all
the evaluations on real robots. However, one of the problems with offline evolution
is the concept of reality gap.

There have been two techniques, [53], that have been developed to aid with the
concept of reality gap: a) improve the simulation model and b) make the evolved
solutions more robust to discrepancies. First, the categories above (online and offline
evolution) are sampled from the robotic hardware to create a realistic representation
in simulation. The second is that the categories are supplemented in simulation with
enough noise so as to make them not reliable for exploitation. The main problem
is that using these approaches listed above, the designer must know what features
should be sampled and what should be covered in noise. Using simulation would
definitely reduce the representation’s accuracy and therefore, some aspect of choice
from the designer which would be a limit to the development of the system.

2.8.5 Issues with Evolutionary Robotics

Evolutionary robotics, although promising, have some issues which could compromise
how efficient evolutionary robotics are in actual robotic systems.
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2.8.5.1 Reality Gap

Reality gap occurs because after the controllers have been evolved in simulation, there
are no longer valid when transferred to real robots. This is because the features in the
simulated world does not exist or is not as accurate as what is in the real world. The
evolved controllers may fail to achieve the desired behaviour after transference [57].
This difference could be due to inaccurate sensor modelling to oversimplifying the
features of the real world in simulation. The work done in this thesis is done entirely
in simulation and reality gap is one of the reasons for this. This phenomenon is quite
common in ER. In the instance where there is no noise present in the simulator, the
evolution may produce a behaviour that only uses a range of narrow sensor values.
After transference from simulation to the real robot with a wider range of sensor
values due to electrical and mechanical reasons, the robot may not function in the
way the simulated robot functioned. There have been some solutions that have been
brought forward therefore allowing for significant progress in the area.

Jakobi et al. [53], proposes introducing noise into the simulation to make the
simulation robot more realistic as real robots would be noisy. They tested this
and were able to prove that is plausible to evolve controllers and transfer it to a
real robot successfully and the real robot would produce similar behaviours to the
simulated robot. They made use of network-based control systems for developing
basic behaviours are evolved in simulation of different levels of accuracy and it is then
transferred to a real robot. It is argued that the simulation should be completely
based on a large number of collected empirical information, and should be constantly
checked to confirm it is accurate. Also appropriate amount of noise at all levels needs
to be taken into account. Using networks of noise tolerant units that adapt as main
component of the system helps reduce the differences between the simulated world
and the real world. Noise is to be added to the empirically random properties of
the robot which would help to deal with the weakness of using the simulation by
making them indistinctive. The control system resilient enough to deal with the
noise envelope may be better suited to deal with transferring the evolved controller
from simulation to the real world. It should be noted that as the robot interactions
with the environment becomes increasingly complex, the simulations becomes harder
to develop.

2.8.5.2 Bootstrap Problem and Deception

Another issue related to evolutionary robotics is the bootstrap problem and decep-
tion [58]. Fitness functions are an important part of evolutionary algorithms and
there are some difficulties when evolving difficult behaviours which is not usually
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discussed which is not usually discussed by practitioners. This could be caused by
the bootstrap and deception problem. The bootstrap problem happens when the
task at hand is too difficult for the fitness function to apply any sort of selective
pressure to a random population of initial candidate solutions. [59] describes se-
lective pressure as a term mostly used to describe selecting best individuals in a
population where high selective pressure signifies a strong emphasis on best indi-
viduals and low selective pressure signifies a weak emphasis on the selection on the
best individuals. All the individuals, at the start of the evolutionary procedure, may
perform equally badly, thereby causing the evolution to search in the wrong part of
the search space. Deception happens when the fitness function is unable to build a
gradient that leads to a global optimum. Instead, the evolution is lead towards a
local optima. This can also be called premature convergence and it leads to a sub-
optimal solution. A solution that has been proposed to address these problems is to
directly aid the evolutionary procedure. There are three approaches that have been
adopted: incremental evolution, behavioural decomposition and a semi-interactive
approach (human-in-the-loop).

Incremental evolution [60] involves breaking a task into different components that
are easier to solve individually. This can be difficult to achieve because as the order
of the tasks is important. Also, when switching from one component to another, we
have to keep in mind the time taken for execution of each component of the evolution.
Behavioural decomposition [61], [58] involves breaking down the robot controller into
sub-controllers and each of these sub-controllers are either preprogrammed or evolved
separately to solve this sub-task. At the end of the evolution, the sub-controllers are
combined together by doing a second evolutionary process to give the final controller.
Detailed knowledge of the task has to be known because the controller has to be
divided and therefore multiple evolutionary procedures has to be set up. Another
approach used to assist in the evolutionary process is using the human-in-the-loop
[62], [58] creating a semi-interactive evolutionary procedure. This is done by letting
the users to guide the evolution towards the global optima by indicating to the
procedure intermediate steps that the robot must go through during the task. A
gradient is created guiding the evolution through these intermediate states, assuming
that by reaching the intermediate states, it’s a stepping stone towards the controller
moving to advanced intermediate states. This approach is appealing because the
user can interrupt to add his/her knowledge but there are multiple open questions as
to how this can be applied to difficult tasks. As the difficulty increases, more human
knowledge might be needed but the user faces the issue of human fatigue when using
this technique.

Another solution that has been proposed in relation to the bootstrap and de-
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ception problem is to introduce a diversity technique. The main idea is that by
introducing diversity into the evolutionary process, the EA might be able to avoid
being deceived because it would be exploring other areas in the search space. There
are various methods that can be used to promote diversity in the evolutionary pro-
cess such as: novelty search and reconciling exploration or exploitation of the search
space.

Novelty search [63] is an idea where how novel a solution is compared to the
other solutions is how the evolutionary algorithm evaluates the solutions. This is an
example of an approach that is not fitness based. The algorithm functions by: a)
measuring the novelty score of a behaviour by measuring the nearest neighbours (the
number of the neighbours is determined by running experiments) and b) the solution
is added to a file randomly or whether if the novelty score is above a predefined
threshold. Solution from unexplored regions in the search space usually receive high
novelty scores, therefore the evolutionary algorithm moves towards solutions that
are new and different. An application of this algorithm, presented by Christensen et
al. [64] is described below. Another method that can be used reduce the bootstrap
and deception problem is to direct the evolution to increase its exploration and
exploitation of the solution search space. Novelty search focuses more on exploring
the search space while fitness based evolution focuses more on exploitation which
is usually a narrow region in the search space. One approach to this is to combine
novelty search with fitness based algorithms as discussed by [65]. Another approach is
called the minimal criteria novelty search (MNCS) [66]. It is an extension of novelty
search in which the solutions must meet one or more domain-dependent criteria
before it can be selected to reproduce.The reason for this is to reduce the search space
that to allow for suitable behaviours. This approach however has some issues because
it restricts the novelty search from exploring possible fruitful regions in the search
space and therefore the criteria has to carefully selected. Also if no solutions meet
the requirements, including the initial population, then there is no selection pressure
and the evolutionary process starts a random drift. [67], [68] describes another
approach called the Pareto-based multi-objective EAs (MOEAs) that optimises both
the diverse behaviour and the fitness. This approach automatically switches between
the exploration and exploitation phases based on the behaviour diversity objective
and the fitness objective. Through the evolution, the fitness could be maximises
whilst reducing the diversity of the behaviour or the diversity of the behaviour could
be maximised whilst reducing the effect of the fitness objective. Therefore there
are numerous tradeoffs between the performance of the evolution and its ability to
produce diverse behaviour. Using both objectives allow the evolutionary process to
move in multiple directions allowing it to not get stuck at local optima [69].
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The fitness function is an important part in the evolutionary process. However,
it is also one of the most difficult aspect of the evolution. The evolutionary process
depends on the fitness function as this is what is used to evaluate the candidate
solutions and would later determine the best and worst solutions. If the fitness
function is not as accurate as possible, we would not be able to get optimal solutions;
the solutions could even be wrong (the evolution could be searching the wrong part
of the search space). Practitioners have come up with some new ways where we can
evaluate the candidate solutions without depending on the fitness function.

2.8.6 Other methods of evaluating Candidate Solutions

There have been other methods, not fitness functions, that have used in evaluating
candidate solutions which are explained below. However, before discussing that, the
effect of the fitness function in evolution has to be analysed.

2.8.6.1 Analysis of fitness function in evolutionary robotics

Soorati et al. [70] discusses the effect of the fitness function in evolutionary robotics.
In this paper, they study the effect that different fitness functions have on the robot’s
performance. The challenge in evolutionary robotics, especially in the design of the
fitness function is to maximise the complexity of the task and also minimise the
necessary the deductive knowledge needed. When designing the fitness function, a lot
of effort is put into the design of the fitness function as this is used to summarise how
close the genomes are to the best solution. The researcher would perform some initial
experiments so as learn some specifics about the goal the robots are to accomplish
(deductive knowledge). Knowledge from this could be used in the design of the
fitness function but we want to minimise the need to perform initial experiments;
ideally, we want the evolutionary computation to be a black-box optimiser.

Nelson et al. [71] defines the quality of an evolutionary robotics if it accom-
plishes two things: a) it is measured by how complex the task is and b) the amount
of deductive knowledge is used in the fitness function so as to generate successful
evolved controllers. They actually suggest that an ER approach can be classified
as an improvement over an ER approach done previously on the same task if the
new approach uses less deductive knowledge in its design of the fitness function.
Soorati et al. [70] investigates four different classes of fitness functions with vary-
ing degrees of deductive knowledge: behavioural fitness functions (high deductive
knowledge integrated, BFF), functional incremental fitness functions (moderately
high deductive knowledge integrated, FIFF), tailored fitness functions (average de-
ductive knowledge integrated, TFF) and aggregate fitness functions (low deductive
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knowledge integrated, AFF). It is difficult to measure this deductive knowledge which
makes classifying the fitness functions difficult.

AFF is the lowest degree of deductive knowledge and only evaluates and selects
the best robots on whether the task has been completed. How it is done is not rele-
vant. The main problem with this technique is that there may be bootstrapping and
there is no guide for the evolution through intermediate solutions. BFF measures
how the task is completed. When designing this fitness function, deductive knowl-
edge on the various options available to complete the task is required. This approach
is complex as it requires knowing effective solutions to the task or initial experiments
that help to determine solutions. TFF combines both BFF and AFF therefore being
more complex than both AFF and BFF because the components are usually multi-
plied or added together. FIFF are sets of fitness functions that are used separately
and slowly in stages. The evolutionary procedure is done in intervals of generations
where only a single fitness function is used. That is, for every interval, there is a
corresponding fitness function. The controllers are evolved in simulation using the
NeuroEvolution of Augmenting Topologies (NEAT) which is used for neuroevolution
approaches.

These fitness function classes [70], where implemented on three tasks: movement
with object avoidance, goal homing (move as close as possible to a light source
that is located in the environment) and periodic goal homing. After executing the
evolutionary procedures on these tasks, they concluded that TFF and BFF influences
the evolution positively. However, these two fitness function classes require a high
degree of deductive knowledge in their design which contradicts what we want: the
evolutionary computation technique as a black-box optimiser. More work needs to be
done in this aspect of evolutionary computation (minimising the deductive knowledge
required in designing the fitness function). The standard approach to evolutionary
techniques in robotics involve fitness functions however some studies have been shown
the evolution can still be done without the need of a fitness function by substituting
it with some sort of behavioural diversity or some other method of evaluation. Some
of them are discussed below.

2.8.6.2 Implicit fitness function examples

Bredeche at al. [72] proposes a new approach in evolutionary computation that
eliminates the need of the fitness function. The motivation behind this paper is to
have a fixed number of swarm robots and allow them face unknown environments. In
this scenario, they specify that the human designer has no idea what environment the
robots would have to face before they are executed or it could be that the environment
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changes unexpectedly. To achieve this, Bredeche et al. proposed a distributed online
optimisation algorithm that allows for the robots to self-adapt and is also able to
withstand the pressure form the environment. From the problem, we can observe
there is no need for an explicit evaluating function as we do not know what the goal
is due to the dynamic environment. Traditional ER techniques involve performing
the optimisation technique first before execution so an approach is needed to enable
the optimisation to be performed online, which brings us to Embodied Evolution
(EE) [73], [54].

Embodied evolution helps to solve the aspect problem that has to with the dis-
tributed online algorithm. In various setups [52], [56], [74], each individual robot
in the swarm executes the evolution board and might even exchange individuals be-
tween each other if there are within range with themselves. However, EE requires a
fitness function. Therefore they propose a distributed algorithm that is environment
driven and also self-adaptable for a long period of time based on the evolutionary
operators which takes into account the selection pressure from the environment. This
can be illustrated as follows: we can classify an individual or genome as successful
when it spreads across the total swarm which requires it to minimise the risk and
also maximise the number of mating opportunities. The key to this approach is the
implied fitness function which can be seen due to two motivations: a) a robot must
be able to cope with the dynamic environment limitations, which is due to the inter-
actions of the robot and the environment or other robots, so as to maximise survival
b) as mentioned previously, the individual must spread across the population to sur-
vive. Therefore, the individuals are biased to produce efficient mating behaviours.
The larger the number of robots that are met, the larger the opportunity for the
robot to survive. An efficient environment driven algorithm must achieve a balance
between these two motivations. That is, the individual spread should be maximum
whilst also considering the survival efficiency.

Based on this, they introduce the mEDEA (minimal environment-driven dis-
tributed evolutionary adaptation). This algorithm describes how the evolution is
done locally and is run simultaneously on all the robots in the swarm. It is also run
with a communication routine that is used to receive incoming genomes from other
robots and store them in a list for use at a later time. At a point in time, a robot
would be driven by a program whose parameters are gotten from an ‘active’ genome
which remains unchanged for one generation. This genome/individual is continu-
ously broadcasting to other robots within its communication range. The algorithm
was executed in two different setups: a) the “free-ride” setup where the swarm is put
in an environment with few obstacles and the robots should be able to learn to avoid
the obstacles and wander around to improve mating opportunities b) the “energy”
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setup where food item (energy sources) are spread around environment and then can
be collected by the robots. Each agent has an energy level which is based on the
collected food and power usage.

This approach towards using an implicit fitness function proved successful al-
though future work could be done in surviving a more complex environment which
would result in more complex behaviours. This paper describes how in problems
where the fitness function cannot be explicitly expressed, there are ways around that
(implicit fitness functions). In this case, the environment is used to drive the evo-
lution towards the best possible solution as the idea was for the robot to function
in dynamic environments. There could be other ways to drive an evolutionary al-
gorithm towards its global optima which would be useful for my thesis as trying to
evolve fault recovery strategies in a swarm with a fitness function is a non-trivial
issue. Novelty search is another approach that has been introduced in evolutionary
techniques, which could be used rather than fitness function.

Christensen et al. [64] presents the novelty search as an evolutionary technique
that differs from traditional evolutionary methods that uses fitness functions as a
way to discover the best solution. Rather for this approach, individuals/genomes
are scored based on how how novel it is rather than their quality based on a fitness
function. They use NEAT in conjunction with novelty search to evolve the neural
network controllers for swarm robots. This was conducted on two tasks: aggregation
and sharing an energy recharge station. For fitness-based evolution, the evaluation
of the individuals are done independently however in novelty search, the individuals
are scored based on how different they are from the individuals that have been scored
so far with respect to their behaviour. Due to this, the evolution does not get stuck
at a local optima which is a problem usually associated with fitness based evolution.
Novelty search has been successfully applied to various tasks [75], [76] and is able
to provide capable and broad solutions to these problems. This paper studies the
application of novelty search in the evolution of neural network controllers in swarm
robotics. The reason is that swarm robots can be classified as a high level unit due
to its multiple interacting sub-units and this causes it to usually have a deceptive
fitness landscape [77].

In all experiments carried out by the authors, aggregation and sharing the energy
recharge station, they compared the results fitness-based evolution with evolving
using novelty search. One of the main aspects of novelty search is called the novelty
measure. This “measures” the novelty of each solution and is based on a behaviour
characterisation (a vector) that is linked to an approximation of the representation
of the individual’s behaviour. This characterisation is dependent on the domain and
task. It captures the macroscopic swarm-level behaviour and is therefore independent
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of the swarm size. When implementing novelty search, it does not require a huge
change from the traditional evolutionary algorithm apart from substituting the fitness
function with a “domain-dependent novelty metric”. This metric measures how
different the individuals are from each other with respect to behaviour. Previous
behaviours are stored in a file. This file is empty at first but new behaviours are
added to this file only if they are different from what is already present in the file
(the measure has to be above a predefined threshold).

An issue with the novelty search approach is that a lot of the effort could be
spent exploring new but non-productive regions in the search space so some methods
combine the exploratory attribute of the novelty search and the exploitation attribute
of a fitness-based evolutionary approach [65].

The results show that in both the aggregation and energy station sharing task,
novelty search was able to find broad, diverse and successful solutions earlier in
the evolutionary process compared with a fitness based solution. Although both
approaches performed similarly in the aggregation task, in the energy station sharing
task, the fitness based evolutionary process was deceived and help up at a local
maxima however novelty search was not deceived and was able to find appropriate
solutions. The results also show that when the behaviour representation is directly
related to the task bot excessively detailed, the evolution performs better and is more
efficient.

Novelty search is an approach that can be successful used in evolutionary swarm
robotics as displayed in this paper. It gives another perspective when looking at
evolutionary procedures when it relates to robotics. Although fitness-based evolu-
tionary processes are not without its problems, a possible improvement could be to
add a fitness function with novelty search and the evolution would use each of them
in different stages in the evolutionary procedures. Novelty search is a technique that
could be useful in my thesis because of its ability to ability to produce diverse solu-
tions however more research would have to be done in this area to see if it would be
applicable in fault recovery.

2.8.7 Fitness-based Evolution

Some other work has been done in evolutionary robotics and although all these are
fitness based algorithms, they are still relevant. They show that although there are
some issues with fitness functions as discussed above, there have been successful re-
sults gotten using these set of algorithms. It just shows that some problems would
work better with an evolutionary algorithms that are not fitness based. Francesca
et al. [78] discusses a new approach towards evolving control behaviours for au-
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tonomous swarm robots. Most swarms are designed by hand by trial and error. The
individual level behaviour is written and tested until the desired global behaviour
is achieved. This process is costly, time-consuming and not very consistent. This
paper proposes automatically developing the robot swarm behaviours using evolu-
tion. In this paper, they used evolutionary algorithms to get parameters that feed
into a neural network which maps the sensor readings of a robot into values that
are fed into its actuators. They develop a new automatic design approach for robot
swarms called AutoMoDe. It generates individual behaviour in the form of a ran-
dom finite state machine by searching through the best combination of preexisting
parametric modules. AutoMoDe develops this control algorithm by using an opti-
misation algorithm to select the arrangement of the random finite state machines,
what modules that would be included and the value of the parameters. It should be
noted however that by using these preexisting modules , AutoMoDe introduces a bias
thereby reducing the representational power: they are constrained due to the fact
the optimisation algorithms only use preexisting modules (a restricted search space).
Due to this, it limits the possibility to fine-tune the dynamics of the robot-robot
and robot-environment interactions. However, they show that if the modules are
properly defined, this bias introduced reduces the variance and increases the control
algorithm’s ability to generalise without causing to lose its effectiveness. They also
introduce another concept called AutoMoDe-Vanilla which is simply the application
of the AutoMoDe approach that is used on an e-puck robot.

Dorigo et al. [79] is an example of the application of evolutionary robotics in the
field of swarm robotics. This experiment dealt with evolving aggregation behaviours
of the s-bots and also evolving the coordinated movement of the swarm-bot. A
swarm-bot is composed of simple autonomous robots called s-bots that is capable of
self-asembling and self-organising. They can connect and disconnect from each other.
The experiments are run using a simplified version of the s-bots by using evolution
to develop effective controllers that would be used for both aggregation and the
coordinated motion. The swarm-bot has been tested on hardware and simulation.
The s-bots have simple sensors, motors and also limited computational capabilities
just like actual robots in a regular swarm but they have physical links to connect
and reconfigure themselves to solve problems where single s-bots cannot solve the
problems. The difficulty in the design of the controllers is the breaking down of the
global behaviour into the individual components of the swarm-bot, which is one of
the main reasons that evolution is used as it is able bypass this problem of finding
the individual mechanism for the controller so as to get the desired emergent global
behaviour.

Duarte et al. [80] describes a study proving that evolved controllers can be trans-
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ferred to actual robots and achieve a performance similar to the performance during
simulation. They evolve neural network-based controllers in simulation to perform
some environmental monitoring tasks on ten simple, inexpensive aquatic surface
robots such as homing, dispersion, clustering and monitoring. They conclude the
study with a proof-of-concept experiment whereby the swarm performs a complete
environmental task by combining the multiple evolved controllers enabling the robots
to develop more sophisticated controllers.

Evolutionary algorithms generally provide new and diverse solutions to tasks that
deal with optimisation. In swarm robotic systems, they aid in designing the indi-
vidual controller code to give the desired global behaviour which has been proven in
various examples that have been discussed above (aggregation, coordinated motion).
EAs have been successfully used to evolve parameters in neural network controllers
and also finite state machines as discussed in AutoMoDe. Examples have also been in
both fitness based evolutionary process and non-fitness based evolutionary process.
My thesis is based on the evolution of fault recovery strategies in fault recovery sys-
tems and the reason why i decided to go through the evolutionary route is because
of its optimisation also its ability to give a desired global behaviour by searching
through the search space. As the designer of the algorithm, i do not know the best
way for the swarm to handle fault recovery strategies and hoe the individual robot
controller code would be written to achieve the desired behaviour. Evolutionary
algorithms would aid in breaking down the global behaviour into individual codes.

From the literature review, we have discussed the importance of having a fault
tolerant system and the work done presently to achieve this. Fault tolerance is
divided into sub-categories: fault detection, fault diagnosis and fault recovery. There
are key lessons to be taken from the literature review:

• There is limited work done in fault diagnosis and fault recovery especially in
swarm robotic systems.

• The majority of the work mentioned in the literature review is fault detection.
There have been various methods that have been used in detecting faults such
as using the artificial immune system as a source of inspiration, using the on-
board simulator, monitoring sensor data etc.

• This is a limitation because it has been discussed that fault tolerance is an
important part of robotics. As mentioned, so much work has been done in
fault detection but that is not all that is needed to have a fault tolerant system.
Most of the work done, after the fault has been detected, nothing is done in
the robotic to discover what fault has occurred and how to get the robotic
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system to recover from these faults especially when they have disastrous effects
on the system. If fault tolerance (fault detection, diagnosis and recovery) is
not done appropriately, the robotic systems break down and would not be able
to complete the task that they have been assigned. This is the reason why
there is a need to have a system that is completely fault tolerant, not just in
detecting fault but also in diagnosing and recovering the faults.

• Also, it should be noted that in evolutionary swarm robotics, most of the work
done involves evolving swarm behaviours and there has not been work in any
sort of fault tolerance: fault detection, fault diagnosing and fault recovery
capability. This is also a limitation as evolutionary robotics has not been
applied to fault tolerance. From the analysis done in evolutionary robotics,
a lot of novel solutions have been developed and successful when deployed on
actual robots in the evolution of swarm behaviours. Evolution has the ability to
create solutions that might not occur to a human designer and could optimise
ideas efficiently.

Based on the literature review, we decided to do some research into this area
to explore using evolutionary techniques in a fault tolerant context using the ω-
algorithm as a case study.
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Chapter 3

Preliminary Results

3.1 Methodology

We are presented with the problem of trying to evolve a fault tolerant strategy in a
swarm of robots performing a collective phototaxis behaviour. We injected complete
motor faults but left their sensors functional. ‘Anchoring’ occurs and prevents the
swarm from completing the task. It is discussed in the previous chapter that the
initial results failed so therefore, moving forward, I would be attempting to fix this
and get this fault tolerant system working. That is, i want to prevent the anchoring
problem from occurring when robots have partially failed and allow the robots to
complete the task. This is a fault tolerant strategy for one type of fault and one
specific swarm behaviour; however, i would be building on this experiment for this
PhD by expanding it to doing actual fault recovery, moving towards other types of
faults and swarm behaviours.

This section introduces the swarm behaviour algorithm (collective phototaxis)
and various aspects of the evolutionary algorithm that is used.

3.1.1 The Collective Phototaxis Algorithm.

So far, i have attempted to evolve a fault recovery strategy for the swarm phototaxis
algorithm in ARGoS [81]. ARGoS is a robot simulator. We injected complete motor
failure faults to a robot swarm size of 15. The arena size is 20x20m2 and the robots
are initialized at the center of the arena and the robot orientation is set randomly
in range [-π, π] radians. We make use of foot-bots [82] that have been modelled in
ARGoS and the maximum speed each robot is 10cm/s. The robot has a coloured blob
omni-directional camera sensor that has been set to have an aperture, the viewing
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range of the robot, of 80cm. At the start of the experiment, the swarm is randomly
positioned within a 1.4x1.4 m2 region at the centre of the arena.

Each robot has light sensors that are used to ‘see’ the beacon, which emits a
yellow light. The robot also has omnidirectional cameras that are able to see all
colours around however it is set to filter out colours except the colour each robot
emits: red. Each robot also has four actuators: wheels with differential steering.
Each robot gets the light reading and then calculates a normalised vector, which
comprises the distance of the robot to the beacon and the angle of the robot to the
beacon. The vector is normalised with magnitude 0.25 times the maximum speed (a
predefined value), that points towards the beacon.

To calculate the cohesion vector, which is the normalised Lennard Jones inter-
action force (this is a mathematical function that approximates the interaction and
repulsion forces between the robots) and angle between each robot, the robot goes
through all the camera readings which is used to calculate the vector of interac-
tion between the robots. The camera only considers red blobs (other robots) and
the robot only considers the closest neighbours so as to avoid the attraction of the
far ones, which is determined by the target distance. The blob distance and an-
gle is recorded and these are used to calculate both the Lennard Jones interaction
force, which in turn is used to calculate the normalised cohesion vector. We evolved
the parameters of the Lennard Jones function and the hard turn, soft turn and no
turn turning threshold angles of the robots. They interchange between these angle
parameters depending on the switching conditions.

3.1.1.1 The Lennard Jones Function.

For the attraction and repulsion between the robots, the swarm phototaxis algorithm
uses the Lennard Jones mathematical function to calculate the Lennard Jones po-
tential. The Lennard Jones potential is a mathematical function that approximates
the interaction between two atoms. There are three constants that are used in the
calculation of the interaction force: gain, exponent and the target distance. The
target distance is the maximum distance between two entities, in our case, foot-bots,
before either attraction or repulsion occurs. If the robots are at a distance less than
the target distance then they repel each other and vice versa. This is shown in detail
in Fig.1.

Both the cohesion and light vectors are added together and are used to set the
wheel speeds. What is used to consider the wheel speed are the turning angles:
HARD TURN, SOFT TURN and NO TURN. The wheel speeds are based on the
current turning state. If the current turning state is NO TURN, then the robot sim-
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ply goes straight while if the turning state is SOFT TURN, both wheels go straight
however one wheel moves faster than the other. The speed is calculated by multi-
plying the current speed by 2 and also a small variable to keep the value less than or
equal to the maximum speed. If the turning state is HARD TURN, then both wheels
have opposite wheel speeds. The added normalised vectors components are made up
of length (speed) and the angle. This angle is used to determine what turning state
is required while the length is used to calculate the speed of the robot.
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Figure 3.1: Lennard Jones Function using the Predefined Values

The parameters we decided to evolve are the constants of the Lennard Jones
potential: gain, exponent and target distance; we also decided to evolve the turning
state angles. The reason behind this is that when the functioning robots are an-
chored, they can escape it with the combination of the right interaction force and
also the right criteria that allows the robot to perform NO TURN, SOFT TURN
and HARD TURN turning states.

3.1.1.2 Random Beacon Positions.

A new light position is initialised every fitness evaluation. The first step in initialising
the light position is to check if there is already a light entity in the arena. If there
is, this entity has to be removed to create a new one. An attribute that enables the
light position to be changed is the random seed value. However, once the random
seed has been set, the random number generated is fixed. Therefore, to create a new
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light position, we have to use random numbers for the random seed attribute. This is
done by creating a new random number generator (RNG) for that category. We want
the beacon to be initialised from a set radius from the centre of the arena. We set
the position of the beacon by converting spherical coordinates to vector coordinates.
The radius of the circle is 7.0m, the angle between the z axis and the vector is 90
degrees. The angle on the xy plane is being randomised by dividing 360 degrees by
a random value, between 1 and 90, each time the light is initialised. A new light
entity instance is created and the vector coordinates that have been converted from
the spherical coordinates are passed into this instance. The colour of the beacon is
set to yellow and the intensity is set to 3.0. The reason why we randomise the angle
of the beacon is so that the genetic algorithm does not overfit.
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Figure 3.2: The arena shown from above. The Light initialisation distance has a
radius of 7m from the center of the swarm and the beacon boundary has a radius of
1.5m from the beacon

From figure 2, we can observe the swarm initialised at the centre and the boundary
around the beacon that signifies the distance around the beacon that is used to
determine the number of robots that made it to the beacon. This figure also shows
the radius which the beacon position is initialised.

3.1.2 The Evolutionary Algorithm

The algorithm used to evolve the Lennard Jones parameters and turning state thresh-
old angles is a simple genetic algorithm. Genetic algorithms are heuristic search
algorithm inspired by Darwinian evolution [83]. As we have discussed earlier, this
experiment is run on the ARGoS simulator. We uses the GALIB [84] evolutionary
library as an example, which is also written in C++. There are six variables that
are being evolved; the turning states and Lennard Jones function parameters. The
genome ranges for each of these parameters are shown below:

The turning state angles have to be in a specific order: HARD TURN>SOFT TURN
>NO TURN angle. To allow the genetic algorithm to evolve these parameters with-
out affecting this order, the mutation, crossover and initialisation operators have
to be customised. Each genome is evaluated by the fitness evaluation and for each
of these fitness evaluation, three trials are run. The three trials are run and the
worst performance(fitness) is taken as the final value. How the fitness is calculated
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is described in the next subsection.

3.1.2.1 Fitness Function.

The fitness of the genome is evaluated by calculating the distance of the centre of the
swarm to the beacon, from the final position at the end of the experimental run. We
make the assumption that the algorithm already knows the robots are faulty as we are
dealing with fault recovery at the moment. We go through all the healthy robots, and
calculate the centroid of the healthy robots at each time step. We also calculate the
number of robots that are within the beacon boundary. This determines how many
robots made it to the beacon, that is, how many robots successfully complete the
task. We ran the experiment, with no faults, using the predefined values. Thereafter,
we measured the distance from the beacon to the edge of the swarm when the robots
make it to the beacon. This value is the radius that we used to determine if the
robots make it to the beacon.

3.1.2.2 The initialisation function.

The initialisation function is structured as follows: each parameter is randomly ran-
domised. The HARD TURN angle is randomised first from 10 to 180 degrees then
the SOFT TURN angle is randomised in a loop till it satisfies the condition that
its value is lower than the HARD TURN angles’, from between 0-180. The same
process is applied to initialise the NO TURN angle. The Lennard-Jones potential
parameters are randomised as normal. The range of the genes are specified already.

Gene Name Range

Hard Turn Angle Threshold(Degrees) 10 - 90
Soft Turn Angle Threshold (Degrees) 5 - 70
No Turn Angle Threshold (Degrees) 5 - 10
Target Distance (m) 10 - 100
Gain 100 - 1000
Exponent 2 - 10

Table 3.1: Genome Ranges where HARD TURN angle is a sharp turn, SOFT TURN
is a softer turn and NO TURN means the robot goes straight. Target Distance, Gain
and Exponent are parameters in the Lennard Jones Potential equation that is used
to calculate the level of interaction between the robots in the swarm

59



Table 3.2: GA Parameters

Evolution Data Value

Size of Genome (Number of Parameters) 6
Population Size 50
Generation Number (Population Iteration) 20
Crossover Probability 0.45
Mutation Probability 0.2
Number of Trials 3
Number of Runs 30

3.1.2.3 The crossover function.

We create a new class that inherits GSimpleGA from the GALIB library and override
the default step function; GALIB is a C++ genetic algorithm library that contains
tools for doing genetic algorithm optimisation. We are doing single child crossover
while the default is two children crossover. After each crossover, we check if the order
of the turning angles are kept. If the order has not been maintained, keep trying to
execute a crossover till the genes are in the right order. After the crossover occurs,
it is added to the population and the worst individual is deleted. It is a steady state
genetic algorithm where only a few individuals in the population are replaced every
generation.

3.1.2.4 The mutation function.

The mutation function undergoes a similar process. When the GA is mutating a
genome, it runs through each gene of the genome. At each gene, we get the range of
the gene and use it to calculate a mutation variable. The pseudocode is mutated gene
= gene value + randomGaussian(mean = 0, standard deviation = gene range * 0.10).
After each mutation, we check if the order of the turning angles are kept. If the order
is not kept, then keep mutating till the genes are in the right order.

3.2 Results

We evolved the controller with zero, two, five and nine faults present in the swarm.
The controller with zero faults present in the swarm would act as the baseline while
other controllers would be compared to it to observe the difference, if any. Thereafter,
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we tested these evolved controllers against a range of faults from zero to nine present
in the swarm. From each test run, we obtained the number of robots that made it
to the beacon and we used it to the analyse how the evolved controller fared. We
made use of two tests for analysis and compare the results: Mann-Whitney U Test
and Vargha-Delaney A-test.

The Mann-Whitney U Test or the Wilcoxon rank sum test is a non-parametric
test used when asked to compare the means of two groups that do not follow a normal
distribution [85] . It calculates the probablilty p, that two samples are gotten from
the same distribution. We use the null hypothesis which is a term used in statistics
to describe when there is no significant difference between specified samples, that is,
they have the same statistical properties: same medians, quartiles etc. The rank sum
test calculation is done in R. If p <0.05, we can reject the null hypothesis because
the medians are different. However, it should be stated that if p >0.05, it doesn’t
mean that we have to accept the null hypothesis. The Vargha-Delaney A test is
a non-parametric effect magnitude test that can differentiate between two samples
of observations [86] . This test is a measure of importance, scientific significance
between two samples. A lies between 0 and 1. if A is 0.5, then there is no effect,
that is, both samples have the same median. If A is 0.71, then there is a large effect
and the effect steadily reduces till it gets to 0.5. On the the other side of the graph,
from 0.5, the effect steadily increases as we descend to 0.29.
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Table 3.3: Rank Sum and A Test(Between the 0 fault evolved controller and 2 faults
evolved controller), Median and InterQuartile Range (IQR) of the number of robots
that made it to the beacon

Scenario P A Median ± IQR (0 Fault) Median ± IQR (9 Faults)

Zero Faults 0.114 0.384 83.33 ± 26.67 86.67 ± 20
One Fault 0.019 0.329 85.71 ± 21.43 92.86 ± 14.29
Two Faults 0.026 0.336 84.67 ± 15.39 84.62 ± 7.69
Three Faults 0.525 0.547 87.50 ± 25 83.33 ± 25
Four Faults 0.626 0.537 81.82 ± 18.18 72.73 ± 27.27
Five Faults 0.708 0.528 70 ± 20 70 ± 30
Six Faults 0.238 0.588 66.67 ± 44.45 55.56 ± 33.34
Seven Faults 0.786 0.479 50 ± 25 50 ± 25
Eight Faults 0.423 0.441 42.86 ± 42.86 57.14 ± 28.57
Nine Faults 0.526 0.453 50 ± 33.34 50 ± 33.34

We can observe from the rank sum test, there is a statistical difference at one
and two faults as the value of p is less than 0.05 therefore we can reject the null
hypothesis. However as the faults increase, the probability increases and although
we cannot say that we accept the null hypothesis, we can say that there is not much, if
any, statistical difference between the two samples. From the A test, we can observe,
for the data that has statistical difference, there is a medium effect between the two
samples. We can conclude that the evolved controller with two faults present in the
swarm fares worse in general than the evolved controller with no faults present in
the swarm.

We can conclude that the evolved controller with five faults present in the swarm
fares worse in general than the evolved controller with no faults present in the swarm.
We can observe from the rank sum test, there is a statistical difference at only zero
fault as the value of p is less than 0.05 therefore we can reject the null hypothesis.
However as the faults increase, the probability increases and although we cannot
say that we accept the null hypothesis, we can say that there is not much, if any,
statistical difference between the two samples. From the A test, we can observe, for
the data that has statistical difference, there is a large effect between the two samples
as the A value is greater than 0.7.

We can conclude that the evolved controller with nine faults present in the swarm
fares worse in general than the evolved controller with no faults present in the swarm.
We can observe from the rank sum test, there is a statistical difference at zero, one,
two and three faults as the value of p is less than 0.05 therefore we can reject the null
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Table 3.4: Rank Sum and A Test(Between the 0 fault evolved controller and 5 faults
evolved controller), Median and InterQuartile Range (IQR) of the number of robots
that made it to the beacon

Scenario P A Median ± IQR (0 Fault) Median ± IQR (9 Faults)

Zero Faults 0.005 0.708 83.33 ± 26.67 73.33 ± 13.33
One Fault 0.125 0.614 85.71 ± 21.43 78.57 ± 14.28
Two Faults 0.099 0.621 84.67 ± 15.39 76.92 ± 15.38
Three Faults 0.041 0.652 87.50 ± 25 75 ± 16.67
Four Faults 0.176 0.601 81.82 ± 18.18 72.73 ± 18.18
Five Faults 0.667 0.468 70 ± 20 70 ± 20
Six Faults 0.523 0.548 66.67 ± 44.45 66.67 ± 22.23
Seven Faults 0.096 0.377 50 ± 25 62.50 ± 25
Eight Faults 0.228 0.411 42.86 ± 42.86 57.14 ± 28.57
Nine Faults 0.054 0.358 50 ± 33.34 50 ± 50

Table 3.5: Rank Sum and A Test (Between the 0 fault evolved controller and 9 faults
evolved controller), Median and InterQuartile Range (IQR) of the number of robots
that made it to the beacon

Scenario P A Median ± IQR (0 Fault) Median ± IQR (9 Faults)

Zero Faults 0.003 0.716 83.33 ± 26.67 73.33 ± 13.33
One Fault 0.001 0.747 85.71 ± 21.43 71.43 ± 14.29
Two Faults 0.002 0.728 84.67 ± 15.39 69.23 ± 7.69
Three Faults 0.010 0.691 87.50 ± 25 75 ± 16.66
Four Faults 0.068 0.615 81.82 ± 18.18 72.73 ± 27.28
Five Faults 0.305 0.576 70 ± 20 70 ± 30
Six Faults 0.496 0.551 66.67 ± 44.45 66.67 ± 22.22
Seven Faults 0.557 0.456 50 ± 25 50 ± 22.50
Eight Faults 0.429 0.441 42.86 ± 42.86 57.14 ± 28.57
Nine Faults 0.214 0.408 50 ± 33.34 50 ± 33.34
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hypothesis. However as the faults increase, the probability increases and although we
cannot say that we accept the null hypothesis, we can say that there is not much, if
any, statistical difference between the two samples. From the A test, we can observe,
for the data that has statistical difference, there is a large effect between the two
samples as the A value is greater than 0.7 though at three faults, there is medium
effect.

We are presented with the problem of trying to evolve a fault recovery strategy
in a swarm of robots performing a collective phototaxis behaviour. We injected
complete motor faults but left their sensors functional. From the results, we were
able to ascertain that simulating using the evolved solution with no faults present
in the swarm provides a better result compared to the other evolved controllers (2,
5 and 9 faults) which signifies that this experiment failed. This leads to the the
proposed methods on how this problem would be solved and also future experiments
that would produce more efficient results and strategies.

These experiments and solutions are presented in the next chapter where we
discuss approaching the recovery problem from another angle. In the next part,
learning is discussed as the new approach to be considered for the fault recovery
process and the results following the implementation of the learning approach.
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Part II

Learning Approaches and their
Implementations: Fault Recovery

Solution (Centralised and
Distributed)
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How do we define learning, especially in regard to how it is being applied in
this thesis? Learning is defined as changes in the individual’s ‘mental’ model or
knowledge that represents a specific area in the learners ‘brain’. It’s more of a change
in knowledge structure not in behaviour per se; at the end of the learning process, the
individual should have a change in knowledge. For this thesis, we approach learning
from a machine learning point of view utilising reinforcement learning algorithms and
also self-organising maps to create an optimal learning process for the fault recovery
problem that we aim to solve especially when introducing predefined pre-learning
behaviour in a given environment.

There are various learning techniques that are present in literature from neural
networks to deep learning; where deep learning is one of the most popular learning
techniques today. Deep learning is one of the leading research areas in Artificial
Intelligence that utilises Artificial Neural Networks to learn unstructured data in an
unsupervised form. It is modelled after the human brain and is capable of dealing
with complex learning situations, similar to but not quite like the human brain as
the human brain is the most complex ‘computer’ in the world. Due to its ability
to train complex data and information that needs not be supervised and learn in
complex scenarios, deep learning can be a contender when selecting the appropriate
learning strategy. It should be noted that deep learning is not the be-all and end-all
learning technique; some learning situations would not work appropriately with it.
This argument is discussed more in this chapter.
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Chapter 4

Learning Techniques

4.1 Reinforcement Learning

Reinforcement learning (RL) involves learning which steps to take to achieve a goal,
by interacting with the environment [87]. The learner, in this case the robot, is not
told what to do but it must discover which steps to take based on those which result
in the highest reward. In order to learn this, the robot takes an action, and is then
‘scored’ on its performance. Reinforcement learning uses states, actions, rewards in
their simplest form. Any method that is suited to solving problems presented in
this form is considered to be a reinforcement learning method. Temporal Difference
Learning (TD) and Q-learning [87] are particularly powerful reinforcement learning
methods.

One of the main issues that arises in reinforcement learning is finding the right
balance between exploration and exploitation. Exploration involves evaluating more
of the action space. The aim of RL is for the agent to obtain a high reward by
performing the action, however for this to occur, the learning agent must perform
actions that have not been tried before lest the action with the highest reward has
not been tried yet. Exploitation involves trying an action that has already been
experienced and has a high reward. The agent has to be able to exploit experienced
actions but also has to explore the action space so as to make more efficient selections
later. The agent cannot exclusively use either exploration or exploitation.

The learning agent must explore the action space and also continuously try the
best action. At each time step t, the agent receives a representation of the envi-
ronment state, St ∈ S and maps it to an action, At ∈ A(S), selected using a learnt
probability distribution. This mapping is called a policy, πt, where πt(St, At), repre-
sents the probability of selecting action At when in state St at time step t, based on
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Algorithm 1 Pseudocode Q-Learning

1: procedure Q-Learning Algorithm
2: Initialise Q(St, At), ∀ St ∈ S, At ∈ A(S), arbitrarily
3: for <each run> do
4: Initialise St
5: for <each step> do
6: Implement action At, given by πt(St, At). Observe Rt+1

7: Select subsequent state St+1

8: Update the Q-value in Q-table
9: St ⇐ St+1

a trade-off between exploitation and exploration. One time step later, the agent re-
ceives a reward Rt+1 ∈ R ⊂ R based on how the agent performed in the environment
before moving on to the next state St+1.

For each possible state, each action must be tried many times to obtain a reliable
estimate of the expected reward. The ε variable defines the exploration factor, where
0 ≤ ε ≤ 1. The agent selects a random action with a probability of ε and exploits the
best action as decided by πt(St, At) with a probability of 1− ε. The value of ε must
be selected so as to allow a good trade-off between exploration and exploitation.

In evaluating how good a selected action is for a selected state, a value function,
V(St, At) is defined which maps the state-action pair to a value that represents the
reward. As the agent interacts with the environment, the value function is updated,
showing how well the action chosen progresses based on the rewards calculated. Q-
learning [87] is a subset of the Temporal Difference learning method, whereby an
agent takes an action in a specific state, and the performance of the state-action is
calculated as the reward. The simplest TD method updates the value function as:

V (St)⇐ V (St) + α(Rt+1 + γ(V (St+1))− V (St)) (4.1)

where α is the learning rate, γ is the discount factor which determines how far into
the future rewards are considered. To consider immediate rewards, γ must be closer
to 0. It is updated with the reward obtained from the action and the discounted
value that is expected in the next state.

Q-learning uses a value table called a Q-table, where the entries are called Q-
values. Each entry represents the maximum reward from the state-action pair im-
plemented. Selecting the best behaviour simply involves selecting the action that
has the highest Q-value for that specific state. The Q-value is updated as follows:

Q(St, At)⇐ Q(St, At) + α(Rt+1 + γ(Qmax(St+1, At))−Q(St, At)) (4.2)
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Reinforcement learning in robotic systems is typically used in path or task plan-
ning [11], [12], [13]. For each possible state, an action is chosen and a reward is
allocated based on how successful that action is for that state. The state, action and
corresponding reward is stored in a lookup table. However, robotic systems exist
in continuous spaces, while reinforcement learning is traditionally implemented for
discrete spaces. It is thereby necessary to extend the typical reinforcement learning
architecture to allow for learning to be done on continuous state variables.

There are two ways to deal with continuous state or action spaces in reinforcement
learning:

• The Q-value function is approximated for the tested state or action spaces. A
Q-table is not used; rather a function (linear, polynomial or a neural network
depending on what learning is being done) is used to represent the Q-table
and the Q-value function. This is called function approximation. It should be
noted that function approximation in reinforcement learning is also used for
more complex or dynamic environments.

• The dimensionality of the space or action space is reduced.

Function approximation is a powerful way of generalising large state spaces that
is larger than the available memory or computational resources. Utilising this in
reinforcement learning is a form of supervised learning where the states and actions
are fed into a function (neural network, linear, quadratic) that computes their values
and trains the function. With this, the function learns from a small subset of states
provided and it attempts to generalise for a larger subset of states by estimating the
Q-value which is used to determine the optimal solution to a problem.

4.2 Deep Learning

Deep Learning (DL), a type of neural network, uses this concept of function approxi-
mators but rather than using linear or quadratic functions, deep learning makes use of
neural networks to approximate the action-value function (Q-table) [88]. Deep Learn-
ing allows machines and systems to mimic the human brain to make autonomous
decisions based on learnt experiences. Due to this, it is recognised as one of the
leading research areas in Artificial Intelligence (AI).

Deep Learning has gotten a lot of publicity in recent years and has been shown to
beat human experts in many games such as Atari as can be seen in Figure 4.1 [89].
They have also been used in speech recognition programs such as Siri, Google Speech
and Amazon Alexa as well where people are able to ask AI for different things and
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Figure 4.1: Playing Atari Games using Deep Q-Learning [1]

they are able to interpret what has been said and make decisions to do or not to do
certain actions based on the input that has received [90].

Due to the neural networks used, deep learning is able to learn via what we can
call an hierarchy of categories [91]. The neural network architecture of the deep
learning is made up of hidden layers where the deep learning algorithm learns these
categories from low-level categories such as letters and moves to higher levels such
as words before being able to recognise sentences and so on.

The Deep learning narrative has been pushed in recent times especially in complex
learning scenarios especially when it comes to learning and for good reasons; there
have been studies and reports on how deep learning has improved how learning
is achieved and the results of the learning process when compared to traditional
machine learning techniques [91] [89] [92].

Deep Learning differs from traditional Machine Learning algorithms in different
ways; at the core of these algorithms, they are still quite machine-like where you
have to be a domain expert so as to represent the domain (input space) accurately
and sometimes human intervention in areas where it is not completely autonomous
in its decision making [91].

One of the advantages of deep learning is that it depends on a lot of data (this
is also a disadvantage which is discussed later in this chapter). Depending on the
application of a deep learning technique, with the advancement of technology, we
have the ability to produce/provide copious amounts of data which can be used in
the deep learning infrastructure. The data often has been collected over many years.
For example, when Google, Amazon or Apple are training their speech recognition
system, they have to record many words, spoken in many dialects and accents so as
to allow for the variations in the word and they have access to these kinds of data.
Each of these speech recognition systems is continuously learning where any word
spoken to them is kept forever and also part of the learning process where it adds to
the data used in the training phase [93].
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Additionally, deep learning eliminates the need for domain expertise where an
expert is needed to break down the complexity of the input data to something more
suitable to what the traditional learning algorithm is able to use. With deep learning,
the algorithms learn from low-level abstraction to an increasingly step by step higher
level of abstraction which has been discussed earlier [91]. Deep learning generally
performs better when there is a lack of domain understanding which significantly
reduces feature engineering whereas traditional machine learning techniques depend
heavily on ‘feature engineering’ [94]. Feature engineering is the process of using
domain knowledge of the available dataset by breaking it down to suitable features
that allow traditional machine learning to function appropriately. A feature can be
defined as an attribute that can be used to solve the proposed problem, that is, the
better the feature representation, the better the learning result. This process could
be difficult and time-consuming; trying to figure out how the input data would be
represented. There are steps to the processing feature engineering [95]:

• Reflect and Test the features

• Make a decision of what features to create

• Create these features

• Check how well features fare with present learning algorithm

• Improve features as needed

• Continue to reflect and create features as necessary

Another aspect of Deep Learning that differs from traditional machine learning
is how it solves the problem that is presented. Deep learning usually solves problems
‘end to end’ where for example, in a object identifying problem, deep learning would
take an image as the input and would output the names of all the objects in the
image at once. However, in traditional machine learning algorithms usually needs the
problem broken down first and then their results are combined at the end; considering
the same object identifying problem, where the image has to be broken down and
the results are given in parts and then combined [91].

Deep learning is one of the major advancements in machine learning that has
been applied to complex problems such as games like Go, Atari and also in speech
recognition systems as seen in Apple’ Siri, Amazon’s Alexa and so on, where we
can attribute most of the remarkable improvements done in these systems to deep
learning. Additionally, recent deep learning algorithms has been developed to a point
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which makes them run faster before which allows more data to be used during the
training phase. With recent breakthroughs and future developments, deep learning
would play a huge part in a lot of learning problems [91] [92].

However, when it comes to determining what learning method to use, traditional
machine learning procedures or deep learning, it depends on the type of problem that
is to be solved [90]. There is no perfect machine learning algorithm that works for all
problems; different aspects needs to be thought about from the state representation
to how optimal actions is to be selected to the complexity of the problem. As powerful
as Deep Learning seems to be, there are some general disadvantages and it would be
explained as a justification as to why deep learning is not used in this thesis. This
thesis talks about fault recovery in swarm robotic systems where the each robot in
the swarm is small and basic in terms of computational power; it cannot handle
heavy computational processes. It also has limited attachments because the idea is
that each robot in the swarm is simple like an ant in a swarm of ants where each ant
is simple but by working together they are able to accomplish a lot of things, which
has been discussed earlier in the literature review (the concept of swarm intelligence).

Machine Learning can be very powerful however it requires massive amounts of
data for a difference to be seen (for deep learning to be relevant) between traditional
machine learning algorithms and deep learning. It would require millions of samples.
We do not have access to these huge amounts of data that would take massive
amounts of time to train. In this thesis, we do have access to a large data set however,
compared to other deep learning algorithm training data, the dataset available is not
large enough. The reason for this is because due to the concept pre-fault learning
where the idea is that as the robots start working on their tasks, the learning of
the recovery strategies commence. Additionally, we do not have millions of input
samples to train as can be seen in the results section where the algorithm is able to
converge after about 2000 episodes. Deep learning usually takes much longer and
requires more steps before it is able to make accurate decisions [96] [97]. Therefore,
it is not appropriate to solve this specific problem.

Another issue with implementing Deep Learning is that it requires massive high
computational power for this specific scenario is that deep learning techniques need
to have high end infrastructure to train the neural network [91]. As stated earlier,
deep learning is not the magic answer to every complex learning problem; traditional
machine learning algorithms outperform certain learning problems especially when
the training data is not large enough [97].

These are the major reasons why Deep Learning is not used in this thesis when
attempting to solve fault recovery in swarm robotic systems. It needs a huge amount
of data that in turn would require massive computational power. For the level of
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learning that is being done, Deep learning might not necessarily outperform tradi-
tional machine learning algorithms.

As stated earlier, a function approximator can be used to deal with continuous
state or action spaces however, this thesis’ approach uses self-organising maps rather
than a function approximator to solve this problem by clustering similar states to
produce a discrete set. Function approximators could be a possible future work to
allow for more complex and dynamic environments that the swarm robots would
realistically encounter.The next section introduces self-organising maps, how they
function and how they would be implemented for this thesis’ application.

4.3 Self-Organising Maps

Self Organising Maps (SOMs) [98] are a type of artificial neural network (ANN) that
provide a way of representing multidimensional data in smaller dimensional spaces.
They typically consist of a two dimensional grid of neurons and unlike regular ANNs
they apply competitive learning. They are trained using an unsupervised method
to produce a discretised representation of the input space of the training samples,
called a map. This can be seen in Figure 4.2.

Each unit in the SOM has a specific topological position and contains a vector
of weights of the same size as the input vector. That is, for each unit u, the weight
vector is:

wu = [w1
u, w2

u,..., wD
u]

where D represents the dimensionality of the input vector. The SOM does not
need a target output, rather where the unit weights match the input vector, the map
is optimised to match the input data. It automatically finds structure within the
data such that similar inputs are paired closer together. For any input vector x =
[x1, x2,..., xD], the distance between each unit t of the SOM and the input vector is
given by:

D∑
d=1

(xd − wud)2 (4.3)

This is simply the squared Euclidean distance. The unit with the shortest distance
is the closest match to the input vector and is therefore the winner unit. The weights
of the winner unit are updated as:
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Figure 4.2: Two-dimensional Representation of Self Organising Maps [1]

wwinner = wwinner + β(x− wwinner) (4.4)

where β represents the learning rate of the SOM. However, not only the winner
unit is updated, the neighbouring units are updated as well, but the amount change
to their weights decays the further they are from the winner unit. All weights are
initialised at random and the learning is iterated for all the input vectors. The
network is able to distribute the input vector information appropriately within the
input space of the map.
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Chapter 5

Centralised Approach to Fault
Recovert

5.1 Empty Environment

This section describes a novel approach to fault recovery that involves the intelligent
selection of predefined recovery strategies where the learning is done in an empty
environment. In this section, the current architecture of the fault recovery process
uses a global observer to calculate the system state and select the most appropriate
recovery action, but the next section extends this to a decentralised architecture
where each robot in the swarm makes decisions based only on local information
that they receive from the environments and other robots in its immediate vicinity.
It is assumed that the swarm robotic system is already capable of detecting and
diagnosing faults so that the focus is mainly on recovering from faults. These recovery
strategies cover faults enumerated by [5] that commonly occur in swarm robots.

From the point at which a fault has been detected and diagnosed, the swarm
must decide upon an appropriate recovery strategy. We assume that each robot
has the ability to repair other robots in the swarm, therefore the problem reduces to
choosing which non-faulty robot(s) should be recruited to repair the faulty robot, and
which predefined behaviour is most appropriate given the current scenario. The most
appropriate recovery strategy will depend on a number of factors, such as proximity
to the faulty robot or remaining battery power, thus some method of assessing the
quality of a strategy and its future effect on the swarm is required. I present a
solution to this problem that uses machine learning techniques to inform decisions
at run-time based on the results of offline training. It should be noted that the
current fault recovery architecture discussed in the section is intended as a proof-of-
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principle that demonstrates the value of reinforcement learning for the selection of
fault recovery strategies.

As stated earlier, we are utilising reinforcement learning and self organising maps
in this fault recovery approach. Q-table (a property of reinforcement learning; q-
learning) is usually represented as a two-dimensional table but in this approach, as
the two possible actions sets that are different from each other, how the state-action
pairs are stored in the Q-table are different from the convention. It is represented as
more of a three-dimensional table where the states, action set 1 and action set 2 are
stored which can be seen in Figure 5.1.

States

Action Set 1 
(Row) 

Action Set 2 
(Column) 

(0,0,0)

(1,0,1)(1,0,2)

(2,1,1)

Figure 5.1: This figure describes the three-dimensional representation of the Q-table
for this specific reinforcement learning technique. As can be seen, it is different
from the traditional representation of the Q-table which is represented as a two
dimensional table.

The method proposed here allows robots to learn how to select the most appropriate
recovery strategy for any given system state or task. This approach is referred to
as ‘pre-fault learning’. This involves learning predefined recovery mechanisms for
different possible swarm states before a fault occurs. The swarm’s state is defined
by the distances of the nearest three robots closest to the faulty robot, their energy
levels, the level of importance of the faulty robot, how busy the nearest three robots
are, and the distance of the faulty robot to a repair station [d1, d2, d3, b1, b2, b3, p1,
p2, p3, I, drs]. These values represent the input of the learning algorithms that is
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used to learn the best action for any possible state.

5.1.1 Learning the Best Recovery Strategy

To test the proposed solution towards fault recovery, we use Autonomous Robots
Go Swarming (ARGoS) [99], a widely used swarm robotics simulator. A swarm of
10 foot-bots (a particular configuration of modules based on the marXbot robotic
platform [82]) is simulated in a 10x10m arena free from obstacles, undertaking case
study behaviours of collective phototaxis, aggregation and foraging.

Figure 5.2: This figure represents one of the tasks, collective phototaxis. This is the
ability for a robot swarm to sense a light source in the environment and collectively
move towards it.
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Figure 5.3: This figure represents the second task that is tested, aggregation. This
is the ability for the robots in the swarm to cluster together no matter how spread
out in the environment that they are.
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Figure 5.4: This figure represents the second of the task, foraging. This is the ability
for a robot swarm to ‘forage’ or to search for items around an environment and bring
them back to a ‘base’ or ‘nest’.

Collective phototaxis is the ability of a robot swarm to sense a light source in the
environment and collectively move towards it. The swarm is deemed successful if all
robots reach the beacon. Foraging is the ability of the swarm robots to search for,
and if found, transport ‘food’ items to a ‘nest’ (co-located with a light source). The
swarm is deemed successful if all robots make it to the nest, and if all the items are
collected. Finally, aggregation is the ability for the robots in a swarm to ‘aggregate’
or cluster together in the environment.

For the learning, the system was setup with a swarm of 10 robots and one fault
is injected at one time during the learning. For each state, the simulation is run 50
times for the selected actions and the mean of the rewards are thereafter calculated
and used in the Q-value calculations.
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Algorithm 2 SOM + RL Method

1: procedure For Training/Learning
2: for <All input vectors in training data> do
3: Send an input vector state X(St), to the SOM
4: Identify the winning unit in the input map
5: Select possible action using πt(St,At)
6: Choose action, At to calculate reward
7: Receive reward based on performance in environment
8: Calculate Q-value and update Q-table using update rule in equation (2)
9: Update the winner unit in SOM using the update rule in equation (4)
10: Update neighbouring units in the SOM

5.1.1.1 States

For this initial proof-of-principle, the initialisation of states is performed by a global
observer, as is the selection of actions from the Q-table at run-time.

The robots are initialised based on the input vector state X(St) chosen. The input
state X(St) is defined as: [d1, d2, d3, b1, b2, b3, p1, p2, p3, I, drs]. The input state
vector passed to the SOM describes the features of the swarm that are important
in choosing the best recovery strategy. The SOM is used to quantise the continuous
state space to a discrete state space. Each unit in the input map represents a discrete
state in the Q-table while the actions remain discrete in the Q-table.

Distance from the faulty robot d1 ... d3 describes how far the nearest robot(s)
is from the faulty robot.

‘How busy’ nearby robots are b1 ... b3 describes how busy the nearest robot(s)
is. The designer can decide how the swarm assigns the ‘busy’ rating. This is
rated on a discrete scale from 0 to 5, where 0 means the robot is not busy and 5
signifies that the robot is very busy. If the robot is not busy, then it can tend to
the faulty robot immediately, but as the robot ‘busyness’ increases, the longer
it takes for the robot to be deployed. Although swarms are homogeneous in
nature, there are some tasks where different robots have different capabilities
and also different sub-tasks. This property is especially useful in these areas;
for example in foraging, where other robots are searching for food, some robots
have found food items and are carrying them back to the base.

Power left p1 ... p3 describes the amount of power left in the robot at the time
that the fault is detected. This is in percentage, so as to make calculating the
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Parameter Value

Arena size 10x10 metres
Size of SOM 10x10 units

Number of states in training data 2000
Simulation time 1300 seconds

SOM Input map learning rate, β 0.6
Number of state-action repetitions 50

Q-learning learning rate, α 0.2
Exploration factor, ε 0.3

Neighbouring function σ = σoexp(−t
λ

)

Table 5.1: The table describes the parameters used for the learning process. All
Q-values are set to zero and the weights if the input SOM are initialised randomly
in the range [0,1]. The set of parameters described above were empirically derived.
The value σ represents the width of the neighbourhood which shrinks over time, σo
represents the initial width of the neighbourhood, t represents the current iteration
loop, λ represents the time constant.

reward easier.

Importance of the faulty robot I describes how important a faulty robot is. For
example, if it is actively busy with a task, e.g. transporting an object in a
foraging or search-and-rescue task, it will be considered more important. The
designer can decide how the swarm assigns the importance rating. This is rated
on a discrete scale from 0 to 5, where 0 means not important and 5 signifies that
the robot is very important. If a faulty robot is not important, the recovery
process does not aim for fast repair, but at the same time, we want to reduce
the overall cost of the repair.

Distance to repair station drb describes how far the faulty robot is from a repair
station (in meters).

5.1.1.2 Actions

There are two separate possible action sets are:

• Select any combination of the three robots chosen closest to the faulty robot,
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which will be involved in the fault recovery. There are seven possible robot
combinations: (A, B, C, AB, AC, BC, ABC).

• Select one of the four predefined recovery mechanisms below:

Transport to repair station: There is a repair station where faulty robots can be
taken to be repaired. This behaviour involves the assisting robots gripping the
faulty robot and dragging it to the repair station. The chosen robot(s) returns
to the task, leaving behind the faulty robot to be fixed.

Repair on the spot: Following [25], we assume that each robot has the ability to
repair other robots in the swarm, and that the robots have access to a repertoire
of recovery mechanisms which can fix common faults. This behaviour could
be especially useful if a faulty robot is very important and needs to resume its
task immediately. However, this takes a significant amount of time and energy.
Each fault takes a different amount of time to fix, it takes less time to fix the
faulty robot if more assisting robots are recruited. However, there is a limit to
how many robots make a difference for the ‘cost’ of the repair.

Drag Along: This behaviour requires only one robot to drag a faulty robot along.
When the ‘helper’ robot gets to the faulty robot, it grips it and continues on
with its task. It should be noted that it takes energy to drag a robot along;
therefore it needs to be included when calculating the reward.

Leader-Follower: This behaviour also requires only one robot and does not work
for specific faults: complete/partial motor failure and power failure. The faulty
robot copies behaviour of helper robot.

If multiple robots are chosen as the first action, drag along and leader-follower be-
haviours are not allowed. The swarm must first select from action set 1 (choosing
robots) and then from the action set 2 (repair mechanism).

5.1.1.3 Rewards

To quantify the expense of a particular action, we use a cost function 5.1, defined
as a weighted sum of objective measures that can be evaluated in simulation. The
reward of the reinforcement learning in this experiment is based on this cost. The
cost is to be minimised is because we want the fault recovery to be done as efficiently
as possible, that is, low reward is better. The cost is calculated based on the time
it takes to get to the faulty robot, time it takes to finish the predefined recovery
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Algorithm 3 Learning process

1: procedure For Training/Learning
2: Initialise ARGoS simulation using state from training data.
3: Choose action from action set (1): move to faulty robot
4: Calculate cost for taking action
5: Choose action from action set (2): run recovery mechanism and calculate

cost
6: Calculate total reward
7: Update the Q-values in the Q-table
8: Terminate the episode after a fixed duration

mechanism, the energy it takes to get to the faulty robot, the energy it takes to
complete the predefined behaviour. There are also punishment/reward clauses:

• If all robots complete the task, reward by reducing the cost (- 1000)

• If only some robots complete the task, punish by increasing the cost (+ 1000)

• Punish robots that take a long time to fix an ‘important’ robot (+ 1000)

• Punish recruited robot(s) that run out of power before completing the task (+
1000)

The cost equation is defined as follows:

c(t, e) = aTfr + bTpb + cEfr + dEpb + eP (5.1)

where a,b,c,d,e are scalar weights. Tfr: time to get to the faulty robot Tpb: time
to finish predefined behaviour Efr: energy it takes to get to the faulty robot Epb:
energy it takes to finish the predefined behaviour P: punishment/reward

Algorithm 3 describes the complete learning process. In order to demonstrate
proof of principle, the learning is initially done off-line using a global perspective.
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Figure 5.5: Representation of how the self organising map works with reinforcement
learning in our approach

5.2 Experimental Setup

Work done for 10, 20, 30 robots in a swarm with increasing number of faults intro-
duced. Also a mixture of different faults introduced later in the thesis.

For the learning, the system was setup with a swarm of 10 robots and one fault
type is injected at one time during the learning. For each state, the simulation is
run 100 times for the selected actions and the mean of the rewards are thereafter
calculated and used in the Q-value calculations.

The system was tested on 50 randomly generated scenarios where each scenario
is run with 100 different random seeds and the average performance is reported.
We consider four different treatments that describes the steps taken by the swarm
when getting results. This is done for three possible failure modes: motor failure,
communication failure, light sensor failure and is described in the list below. It
should also be noted that the robots are not allowed to leave any robot behind; they
have to select from any of the predefined behaviours. To iterate, from the beginning
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of the task, the swarm generates imagined scenarios, using a simulator, and learns
the best recovery strategy from them before a fault actually occurs and is detected.
When a fault is detected, the swarm selects the best recovery strategy based on what
has been learnt during the imagined scenarios.

The following list describes the steps taken by the swarm from the beginning of
the task to the end during the testing phases.

• Run experiments for collective phototaxis and foraging with no faults injected
to give baseline performance

• Then test performance with two faults injected with faults; this is enough to
break behaviour.

• Test the performance random selection of actions. This might help to recover
swarm but could be suboptimal.

• Then test performance on the SOM and RL solution.

The algorithm to test the SOM + RL infrastructure is as follows: when a fault
has been detected and diagnosed, the swarm state at this point is used as the input
vector state, X(St). The unit of the SOM with the smallest distance from the input
vector is the winner unit. Next, the winner unit is identified in the Q-table and the
action with the smallest Q-value is selected. This action is the best learnt recovery
strategies for that particular state.

The termination criteria was ‘out of time’ and the ‘no fault’ fault scenario was
used to determine the runtime. Additionally, at the start of the simulation, all robots
are at full battery level that steadily degrades to NULL which occurs at the end of
the runtime.

5.2.1 Results

The graph in Figure 5.6 describes the total average rewards over 2000 episodes.
During each episode, the swarm generates the imagined scenario which is represented
as the state that goes into the SOM and RL. The swarm thereafter selects the actions
from both action sets and the cost from selecting these actions are calculated. As can
be seen from the graph, at the beginning, the rewards fluctuate heavily as the swarm
is exploring different actions because actions are not learnt yet. As the episodes
go on, the swarm learns more and starts to select actions more intelligently, less
exploratory and more exploiting though it still strikes a balance between exploration
and exploitation. Towards the end, it can be seen that the rewards level out, as
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the swarm starts to pick more optimal solutions based on previous rewards for the
different states.

Statistical analysis for the experiments are also described below; the Mann-
Whitney U Test and the Vargha-Delaney A Test are used for this analysis.

The Mann-Whitney U Test or the Wilcoxon rank sum test is a non-parametric
test used when asked to compare the means of two groups that do not follow a normal
distribution [85] . It calculates the probablilty p, that two samples are gotten from
the same distribution. We use the null hypothesis which is a term used in statistics
to describe when there is no significant difference between specified samples, that is,
they have the same statistical properties: same medians, quartiles etc. The rank sum
test calculation is done in R. If p <0.05, we can reject the null hypothesis because
the medians are different. However, it should be stated that if p >0.05, it doesn’t
mean that we have to accept the null hypothesis. The Vargha-Delaney A test is
a non-parametric effect magnitude test that can differentiate between two samples
of observations [86] . This test is a measure of importance, scientific significance
between two samples. A lies between 0 and 1. if A is 0.5, then there is no effect,
that is, both samples have the same median. If A is 0.71, then there is a large effect
and the effect steadily reduces till it gets to 0.5. On the the other side of the graph,
from 0.5, the effect steadily increases as we descend to 0.29.
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Figure 5.6: Rewards Convergence

This is tested for different sizes in the swarm (10,20 and 40 robots) to test the
scalability of the learnt recovery strategy. It is also tested for three tasks aggregation,
foraging and collective phototaxis. The results for the robot swarm sizes, 20 and 40
are in the appendixes.

10 Robots in the swarm

Table 5.7 shows that for the 50 test states, 23% of the states chose the strategy to
drag to base, 29% chooses to fix on the spot, 34% chooses to drag the faulty robot
along and 14% chooses to follow the leader. The reason why the Leader-Follower
is chosen less is because it is limited for what faults it can be used on while the
other predefined behaviours can be used on all the faults. The swarm picks the
best recovery strategy based on the fault type and also the input state. The swarm
never leaves a robot behind, they select the best strategy that has been learnt by
the swarm. These results are collected across collective phototaxis, aggregation and
foraging.
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Recovery Type Chosen Average Percentage Chosen

Drag to Base 23%
Fix on the Spot 29%

Drag Along 34%
Leader-Follower 14%

Table 5.2: The table describes the percentage of the test input that is selected during
the testing phase of the RL + SOM and the recovery type selected. The recovery
type column represents what predefined behaviour was chosen for the 50 sample
inputs. The percentage column represents what percentage of the test inputs selects
the corresponding recovery type.
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Figure 5.7: Results for collective phototaxis: Motor failures
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Figure 5.8: Results for collective phototaxis: Communication sensor failures

Table 5.3: Rank Sum and A Test for the Collective Phototaxis Experiments

Scenario P A

Collective Phototaxis (Motor Failure) 0.00086 0.784
Collective Phototaxis (Communication Sensor) 0.0018 0.761

The box plot in Figure 5.7 displays the number of robots that are either at the
beacon or at the repair station (depending on what recovery mechanism is chosen).
When there are no faults in the system, all of the robots in the swarm reach the
light source most of the time. When two faults occur in the swarm, the faulty robot
anchors the healthy robots as their sensors are still functioning like in [8]. In some
cases, some robots are able to get to the light source; as they manage to escape the
pull of the faulty robots. When a random behaviour is chosen, sometimes all robots
make it to the light source though in some cases, the worst behaviour is chosen.
When the fault recovery strategy chosen is based on what is learnt using the SOM
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and RL, effective strategies are often chosen and the majority of the robots in the
swarm complete the task.

For communication sensor failure (see Figure 5.8), the results show that when no
faults are injected, the robots are able to complete the task i.e. are able to reach the
light source. When faults are injected, the faulty robot cannot sense other robots
accurately so it collides with other robots or obstacles. The swarm does not make it
to the light source. The robots are anchored near the faulty robots preventing the
swarm from reaching the light source. Random selection sometimes chooses a good
strategy, but in a lot of cases sub-optimal or bad strategies are chosen; energy runs
out for the ‘healthy’ robot causing fewer robots to make it to the beacon. The results
show that our SOM + RL method allows the swarm to recover successfully and most
of the robots are able to make it to the light source. Fewer robots are lost compared
to random selection. The outliers are due to situations where the test scenarios was
highly dissimilar to the scenarios to the training data used to train the system.
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Figure 5.9: Results for aggregation when the range and bearing sensors (Communi-
cation sensors) on the robots are faulty.

Table 5.4: Rank Sum and A Test for the Aggregation Experiments

Scenario P A

Aggregation 0.0285 0.609

The box plot in Figure 5.9 describes the number of robots that are either in
maximum number of aggregates or at the repair station which depends on what
recovery mechanism is chosen. When there are no faults in the system, all robots
are able to aggregate together to form just one aggregate. The discrepancy with
the number of robots in one aggregate occurs on how tightly compact the robots
are in the aggregate. When multiple robots have faults, the robots are not able to
sense the nearby robots to create one aggregate; the robots break up and multiple
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aggregates would be formed where robots would be divided between the faulty robots
that move haphazardly around the environment. When it comes to recovering from
this fault, random selection sometimes chooses a good strategy, but in a lot of cases
sub-optimal or bad strategies are chosen. The results show that our SOM + RL
method allows the swarm to recover successfully which allows the robots to form one
cohesive aggregate.

Foraging
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Figure 5.10: Results for foraging when light sensor failures are injected: Number of
robots that reached the light source.
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Figure 5.11: Results for foraging when light sensor failures are injected: Number of
items collected.

Table 5.5: Rank Sum and A Test for the Foraging Experiments

Scenario P A

Foraging (Food at base) 0.0004 0.696
Foraging (Robots at light source) 0.021 0.733

Figure 5.11 shows the performance of foraging, when light sensor faults are in-
jected. The robots use the lights to know where the nest is, so when there is no fault
recovery, the faulty robots cannot sense the light and therefore cannot make it to the
nest. The faulty robots wander aimlessly around the environment and reduces the
probability that other robots will find and collect the rest of the items. The results
show that sometimes the robots find their way back to the nest, and the remaining
robots are able to collect the rest of the items, but that does not happen frequently.
Random selection sometimes chooses a good strategy, but in many cases sub-optimal
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or bad strategies are chosen. In the corresponding figure 5.10, the results also show
that for our SOM + RL method, the swarm is able to collect most items and most
robots make it back to the nest. There are more robots to collect items. More
robots are able to return to the nest and collect items in the environment compared
to random selection. The reason why this result differs from phototaxis is because
the swarm does not suffer from anchoring effect here when faults injected; rather the
swarm is unable to effectively search the environment for items to be transported
back to the nest allowing items to be left behind.

5.3 Inclusion of Obstacles

The work done in part one is a simplified version of learning that can be done. In
part one, the recovery process is done in an uncluttered and basic environment. The
primary reason for this is to test the validity of the learning algorithms when applied
to this specific scenario. Following the conclusion from the Part 1, the hypothesis
is valid and, for completeness, the difficulty level of the learning is increased. The
learning procedure is tested with the following different fault types:

• Complete Motor Failure

• Communication Failure

• Partial Sensor Failure

• Complete Sensor Failure

• Complete Power Failure

There are two additional aspects

State Space Increase As the local environment is cluttered, there are new states
that the robots would need to consider when selecting the appropriate recovery
strategy. The new states include: objects that are positioned randomly around
the environment, a blockage obstructing the robots from getting to the repair
station and also a fault diagnosis state that describes what type of fault is being
learnt from. Remember, we are assuming that the swarm has the capacity to
detect and diagnose faults.

Reinforcement Learning Rule The selection of action and state space has been
straightforward so far, however, with the introduction of new states, there
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is a need to increase the complexity of the reinforcement learning rule. In
this new scenario, actions can now change before the episode finishes, only if
there is something actively interrupting the ‘helper’ robots from completing the
recovery process. The robots are monitored continously, and if they meander
around an obstacle for longer than 10 seconds, change the action. This prevents
the ‘helper’ robot from meandering till it runs out of energy. This would allow
the ‘helper’ robot to change action to something more suitable for the present
scenario.

From the action selected, you have your new state, (get reward) which then
takes you to a new action and you get your new reward.

5.3.1 States

For this new learning scenario, the robots are initialised based on the input vector
state X(St) chosen. The input state X(St) is defined as: [d1, d2, d3, b1, b2, b3, p1, p2,
p3, I, drs, fd, no, po1, po2, po3, po4, po5, po6, po7, po8, po9, po10, by/n, pb].

Distance from the faulty robot d1 ... d3 describes how far the nearest robot(s)
is from the faulty robot.

‘How busy’ nearby robots are b1 ... b3 describes how busy the nearest robot(s)
is. The designer can decide how the swarm assigns the ‘busy’ rating. This is
rated on a discrete scale from 0 to 5, where 0 means not busy and 5 signifies
that the robot is very busy. If the robot is not busy, then it can tend to the
faulty robot immediately, but as the robot ‘busyness’ increases, the longer it
takes for the robot to be deployed.

Power left p1 ... p3 describes the amount of power left in the robot at the time
that the fault is detected. This is in percentage, so as to make calculating the
reward easier.

Importance of the faulty robot I describes how important a faulty robot is. For
example, if it is actively busy with a task, e.g. transporting an object in a
foraging or search-and-rescue task, it will be considered more important. The
designer can decide how the swarm assigns the importance rating. This is rated
on a discrete scale from 0 to 5, where 0 means not important and 5 signifies
that the robot is very important. If a faulty robot is not important, we do not
necessarily care about how fast the repair is, but at the same time, we want to
reduce the overall cost of the repair.
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Distance to repair station drs describes how far the faulty robot is from a repair
station (in meters).

Fault diagnosis fd describes the type of fault that has occurred in the swarm. In
this scenario, we use numbers to represent the type of fault. 0 - Complete Mo-
tor failure, 1 - Communication Failure, 2 - Partial Sensor Failure, 3 - Complete
Sensor Failure, 4 - Complete Power Failure. Although we are using simple in-
tegers here to represent the fault types, ideally, features of the robot behaviour
after the fault has been detected would be used here. As we are assuming that
fault detection and diagnosis are available, if a fault that has been identified
is not part of the ‘commonly known faults’, it should choose the closest fea-
tures that best represents the fault from the fault diagnosis. This is randomly
generated.

Number of obstacles no describes the number of obstacles to be initialised in the
arena. The maximum possible m=number of obstacles in the arena are

Position of obstacles po1 ... po10 describes the positions of the obstacles that are
randomly generated around the arena excluding repair station and area where
blockage is initialised as shown in the diagram below. The obstacles are small
cylinders that are initialised all over that arena randomly. The size of the
cylinders are fixed

Blockage by/n describes whether a blockage would initialised in the simulation. It’s
a 0 or 1 option. The size of the box is fixed.

Position of blockage pb describes where in the section of the arena illustrated
below, the blockage is initialised.

5.3.2 Updated Rewards

The calculation of the reward is similar to the previous rewards calculation where
there are no obstacles. To iterate, the reward of the reinforcement learning in this
experiment is based on this cost. The cost is to be minimised is because we want
the fault recovery to be done as efficiently as possible. The cost is calculated linearly
based on the time it takes to get to the faulty robot, time it takes to finish the
predefined recovery mechanism, the energy it takes to get to the faulty robot, the
energy it takes to complete the predefined behaviour. As it has been stated earlier,
the actions can change mid-execution depending on if they are obstructed by any
obstacles and are unable to finish the recovery strategy. However, we do not want the
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actions to change mid-execution as this contributes to power used during the recovery
process. In addition to the present punishment/reward clauses, more reward clauses
are added due to the added complexity of this experimental setup.

• If all robots complete the task, reward by reducing the cost (- 1000)

• If only some robots complete the task, punish by increasing the cost (+ 1000)

• Punish robots that take a long time to fix an ‘important’ robot (+ 1000)

• Punish recruited robot(s) that run out of power before completing the task (+
1000)

• Punish recruited robot(s) that change action

• Reward recruited robot(s) that finish recovery strategy (action set 1 and action
set 2) without changing any acton mid-execution.

5.3.3 Experimental Setup

The learning setup is similar to the setup where there are no obstacles. The learning
is done with 10 robots where the states are set and initialised in the swarm. For
each state, the simulation is run 50 times for the selected actions and the mean of
the rewards are thereafter calculated and used in the Q-value calculations.

The learning algorithm for this is similar to the algorithm where there are no
obstacles however, there is an added component where the action can change mid-
execution. Algorithm 4 describes the updated learning algorithm for this second
experimental setup.

Table 5.6 shows the updated experimental setup where we can see that most of
the present learning setup is the same except for the duration of the state-action
repetitions and the training data number. These properties needed to be increased
due to the new complexity of the states.

5.3.4 Results

Figure 5.12 describes the average rewards over 3000 episodes. It can be noticed that
the number of episodes it takes to reach convergence in this experimental setup is
more than the previous setup with empty environment. We can assume that due to
the increase in the state space; it is logical to assume that it would take longer for
the learning to converge. As can be seen from the graph, the rewards fluctuate at
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Algorithm 4 Learning process

1: procedure For Training/Learning
2: Initialise ARGoS simulation using state from training data.
3: Choose action from action set (1): move towards faulty robot
4: If obstructed by obstacle (status does not change in 10 secs), choose another

action from action set (1)
5: Calculate cost for taking action
6: Choose action from action set (2):
7: If obstructed by obstacle (status does not change in 10 secs), choose another

action from action set (2)
8: Run recovery mechanism and calculate cost
9: Calculate total reward
10: Update the Q-values in the Q-table
11: Terminate the episode after a fixed duration

the beginning of the learning process which is what we expect because the algorithm
is in the exploratory stage, trying different actions for the different states before it
finally levels out. As the episodes increase, the algorithm starts to select actions more
intelligently. Towards the end, we can see that the rewards level out, as the swarm
starts to pick more optimal solutions based on previous rewards for the different
states.
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Parameter Value

Arena size 10x10 metres
Size of SOM 10x10 units

Number of states in training data 3000
Simulation time 1300 seconds

SOM Input map learning rate, β 0.6
Number of state-action repetitions 100

Q-learning learning rate, α 0.2
Exploration factor, ε 0.3

Neighbouring function σ = σoexp(−t
λ

)

Table 5.6: The table describes the parameters used for the learning process. All
Q-values are set to zero and the weights if the input SOM are initialised randomly
in the range [0,1]. The set of parameters described above were empirically derived.
The value σ represents the width of the neighbourhood which shrinks over time, σo
represents the initial width of the neighbourhood, t represents the current iteration
loop, λ represents the space constant (distance measure).
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Figure 5.12: Rewards Convergence for New Experimental Setup.
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Recovery Type Chosen Average Percentage Chosen

Drag to Base 32%
Fix on the Spot 26%

Drag Along 24%
Leader-Follower 18%

Table 5.7: The table describes the percentage of the test input that is selected during
the testing phase of the RL + SOM and the recovery type selected. The recovery
type column represents what predefined behaviour was chosen for the 50 sample
inputs. The percentage column represents what percentage of the test inputs selects
the corresponding recovery type.

This is tested for the following tasks: collective phototaxis, aggregation and for-
aging.

5.3.4.1 10 Robots in the swarm

Table 5.7 shows that for the 50 test states, 32% of the states chose the strategy to
drag to base, 26% chooses to fix on the spot, 24% chooses to drag the faulty robot
along and 18% chooses to follow the leader. The reason why the Leader-Follower
is chosen less is because it is limited for what faults it can be used on while the
other predefined behaviours can be used on all the faults. The swarm picks the
best recovery strategy based on the fault type and also the input state. The swarm
never leaves a robot behind, they select the best strategy that has been learnt by
the swarm. These results are collected across collective phototaxis, aggregation and
foraging.
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Figure 5.13: Results for collective phototaxis: Communication sensor failures

Figure 5.13 shows the results for collective phototaxis when the range and bearing
sensor (communication sensor) has failed. The results are similar to what we saw
earlier when the tested the learning algorithm in an uncluttered environment. The
box-plot shows that when no faults are injected, the robots are able to complete the
task i.e. are able to reach the light source. When faults are injected, the faulty robot
cannot sense other robots accurately so it collides with other robots and obstacles
in the environment. The robots are anchored near the faulty robots preventing
the swarm from reaching the light source. Random selection works sometimes but it
shows that SOM + RL perform better and it allows the robots to recover successfully
from the faults and the robots are able to complete the task and make it to the light
source.
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Figure 5.14: Results for collective phototaxis: Motor failure

Figure 5.14 shows the results for the collective phototaxis when the motor(s) have
failed. The results, as we expected, are similar to what was observed earlier in the
uncluttered environment using the learning algorithm. Again, the box-plot shows
that when no faults are injected, the robots are able to complete the task, that is,
they are able to reach the light source. When faults are injected, we can observe that
the faulty robot(s) anchor the swarm as all the sensors on the robot is functioning.
In certain scenarios, a few robots are able to make overcome the anchoring effect
present and can make it to the light source, therefore completing the task. In the
next box-plot, when a random behaviour is selected, it is able to select the optimal
behaviour, where all the robots are able to make it to the swarm though in some
cases, a less than optimal behaviour is chosen. However, when using learnt fault
recovery strategy to select optimal solutions, effective strategies are usually chosen
where majority of the robots in the swarm, if not all, are able to complete the task
given.
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Aggregation

●●●●●●●

●

●

No fault Faults Random RL + SOM

2
4

6
8

10

Aggregation Task

Methods

N
um

be
r 

of
 r

ob
ot

s 
ag

gr
eg

at
ed

Figure 5.15: Results for aggregation when the range and bearing sensors (Commu-
nication sensors) on the robots are faulty.

Figure 5.15 describes the box-plot that displays the number of robots that are
either in maximum number of aggregates or at the repair station which depends on
what recovery mechanism is chosen. Again, as we are in a cluttered environment,
how the aggregates are formed are different than in an uncluttered environment.
Depending on the locations of the robots and obstacles at the time a fault has
occurred, one or more aggregates may be formed especially if for some reason, the
robots cannot make it pass certain obstacles. When there are no faults in the system,
all robots are able to aggregate together to form just one aggregate. The discrepancy
with the number of robots in one aggregate occurs on how tightly compact the robots
are in the aggregate as the robots are consistently moving and keep being repelled
and pulled in towards the centre of the swarm. When multiple robots have faults,
the robots are not able to sense the nearby robots to create one aggregate; the robots
break up and multiple aggregates would be formed where robots would be divided
between the faulty robots that move haphazardly around the environment. When
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it comes to recovering from this fault, random selection sometimes chooses a good
strategy, but in a lot of cases sub-optimal or bad strategies are chosen. However,
when using the learnt recovery strategy to select the optimal behaviour, we observe
that most of the time, the robots are able to recover from the fault successfully and
are able to form one cohesive aggregate.

Foraging
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Figure 5.16: Results for foraging when light sensor failures are injected: Number of
robots that reached the light source.

Figure 5.17 shows the performance of foraging, when light sensor faults are in-
jected. This figure describes how many robots are able to return back to the home
nest after ‘foraging’ for food. The robots use the lights to know find the nest, there-
fore when there are no faults present, the robots are able to return back to the
nest after they are done searching for food. When faults are present in the swarm,
the faulty robots cannot sense the light and therefore cannot make it back to the
nest. The faulty robots wander aimlessly around the environment and reduces the
probability that other robots will find and collect the rest of the items. The results
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show that sometimes the robots find their way back to the nest, and the remaining
robots are able to collect the rest of the items, but that does not happen frequently.
Random selection sometimes chooses an okay strategy, but usually sub-optimal or
bad strategies are chosen. With the learnt fault recovery process, we can see an
improvement in how many robots make it back to the nest when compared to no
fault recovery process or random selection.
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Figure 5.17: Results for foraging when light sensor failures are injected: Number of
items collected.

In the figure 5.16, the box-plots describe the number of ‘food’ items collected fin
the duration of the foraging run. The main point of foraging is to search and gather
‘food’ items and return them back to the nest. In this situation, when robots cannot
use their light sensors to return back to the nest, they pick up the food but cannot
return the items back to the nest thereby reducing the efficiency of how items would
be collected and returned back to the nest. The results also show that by using
the learnt fault recovery strategy, the swarm is able to collect most items and most
robots make it back to the nest, returning the items back to the nest. The reason
why more items are being picked up after the fault has been ‘recovered’ is because
there are more robots to collect them. More robots are able to return to the nest,
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drop the items and return back to the environment to collect more ‘food’ items in
the environment compared to random selection. The reason why this result differs
from phototaxis is because the swarm does not suffer from anchoring effect here when
faults injected; rather the swarm is unable to effectively search the environment for
items to be transported back to the nest allowing items and robots to be left behind.

We have shown how the proposed learning algorithm performs in the fault recov-
ery process and how well it is able to perform when compared to randomly selecting
a recovery behaviour. The method shows validity in learning what predefined be-
haviours would work best for certain states and it is able to generalise a suitable so-
lution based on its present ‘knowledge’. As stated previously, this chapter describes
the learning algorithm being implemented in a more centralised manner where a
central system is doing the learning and has a global view of the entire swarm and
their environment. However, if a true fault recovery learning algorithm that is to be
used in a swarm robotics manner is wanted, a distributed approach is preferred be-
cause swarm robots are distributed in nature. The next chapter describes distributed
learning approach that better suits a swarm robotics context.
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Chapter 6

Distributed Learning Approach

We have discussed Q-Learning in a centralised fashion where a central computer has
a global view of the swarm of robots and the environment. The central system is
able to use this information to implement the learning process and also to select the
best predefined behaviour based on the information available to the central computer
that is performing the learning. Additionally, during the testing after the learning
process is done, the central computer is able to select the appropriate predefined
behaviour when it is tested at the point a fault occurs in a real life situation. As dis-
cussed in the previous chapter, as the primary application for the learning approach
discussed in this thesis finds its application in swarm robotics. Therefore, in keeping
the distributed manner that swarm robotics is developed on, we are extending the
centralised architecture for the learning process into a distributed learning architec-
ture which would be better suit a swarm robotics system model. In this chapter,
distributed learning is introduced, while the advantages and limitations and how
they have been applied in a robotics context is also discussed. The implementation
of distributed learning in the learning approach used in this thesis and the results of
this implementation is also described and developed.

6.1 Distributed Learning

Collaborative distributed learning is an aspect of distributed learning that involves
learning through interaction with oneself and other agents. The learning agents
monitor each other’s learning process and ‘thinking’ while obtaining and providing
feedback for further clarification and enhancing each other’s comprehension. This
process could also affect the agent’s learning however it further motivates the learn-
ing process with the agent [100]. Therefore, we can say that collaborative distributed
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learning involves interaction and communication with other learning agents and pos-
sibly adapting or changing its own learning to better suit the collective.

Outside the context of robotics, distributed learning is an interdisciplinary do-
main that usually involves statistics, optimisation, learning theory and core aspects
of machine learning algorithms. Distributed learning is widely adopted and used
in machine learning applications because of how it deals with using massive data.
There are four research problems , which are described below, that distributed ma-
chine learning can be broken into but it should be noted that these problems are not
mutually exclusive [101]. It should be noted that we are compare the distributed
approach to the centralised approach to determine if the fault recovery approach can
be be developed and also successful in the implementation of the recovery process.

How to use Statistics, Optimisation Theory and Algorithms

The aim of most machine learning algorithms is to minimise the loss of a set
of training data and due to this, some issues arise due to this aim:

• How long does it take the learning process to converge towards a solution?

• How optimal is this solution?

• How large should the data sets be to produce an useful solution?

To study these issues, researchers typically use theoretical analysis tools such
as optimisation theory and statistics. Nevertheless, when dealing with machine
learning algorithms that use large data sets and we have access to more compu-
tational power and resources and additionally, the aim is to reduce the learning
or training time by using additional resources through distributed or parallel
computing techniques, a set of different problems arise:

• By using distributed or parallel learning methods, are the training models
able to converge faster?

• If this does not occur, how far are we from both the optimal solution
from the distributed method and the original optimal solution (centralised
learning method)

• What would be the new conditions or assumptions that are needed to
realise new solutions to achieve convergence?

• Can we compare the speed of the distributed versus non-distributed learn-
ing (that is, the scalability) and can this be evaluated?
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• Can the learning process be designed appropriately to ensure good scala-
bility and convergence?

Developing Machine Learning models or learning algorithms suitable for
distributed learning

This deals with scaling existing non-distributed machine learning algorithms
or creating new machine learning algorithm to handle large data-sets

Building large-scale distributed machine learning applications

There are some specific application domains, for example, image classification,
which requires research for scaling these specific machine learning algorithms.
These solutions are deployed into the production line.

Developing parallel or distributed computer systems that scale up ma-
chine learning

If the learning algorithm cannot handle the computational work on one agent,
distributed systems can be used to extend to other agents (increasing the com-
putational resources that can be utilised). To do this however, other problems
might be faced:

• Consistency: If the agents involved in the learning process each own dif-
ferent parts of the training data, how can it be ensured that all agents are
working towards solving the same problem?

• Fault Tolerance: In distributed learning, the learning is spread across
multiple agents. What happens if one agent develops a fault or error?
Can this be fixed without restarting the process from the beginning?

• Communication: Machine learning involves moving parts such as I/O and
data processing procedure? How do we ensure faster I/O and non-blocking
data processing procedures that can be used for different environments.

• Resource Management: Computer clusters are expensive to develop and
construct, therefore many users generally tend to share them. There is a
need to manage and allocate the cluster resources properly whilst max-
imising cluster usage for each user.

• Programming Model: Finally, when considering the training model/algorithm,
are distributed learning structured similarly as non-distributed learning
algorithms? Is a more efficient algorithm one that uses less code? Can the
learning algorithm be written considering just a single agent and there-
after amplifying it with distributed computing techniques?
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These are issues and questions that we need to ask and consider when thinking
about utilising distributed learning techniques. These questions show that there are
limitations, presently, when it comes to applying these distributed machine learning
techniques though the answer to these questions and the overall limits of distributed
machine learning would differ depending on how the algorithm would be applied.

6.1.1 Distributed Deep Learning

Deep Learning is becoming a prominent part of machine learning because of how
effective it is in various applications so it is plausible to assume that Distributed
Deep Learning is also becoming prominent in the field of machine learning. There
are two terms to be discussed when delving into distributed deep learning: Data
Parallelism and Model Parallelism [101].

6.1.1.1 Data Parallelism

This is a technique that is utilised by partitioning the training data. In training
data, using a parallel distributed techniques, the data is divided into parts where the
number of learning agents (the computational nodes) equal the number of training
data parts. Each agent works and computes on their own data part. As the entire
training data set is being worked on in parallel using the learning agents, we are
able to compute more data compared to a non-distributed learning model (using one
agent in the learning process). One of the advantages of implementing distributed
machine learning is how fast the learning goes and converges towards a solution due
to using a number of learning agents. The learning model using data parallelism is
straightforward and generally follows these steps [102], [101]:

• Each agent performs its own training. In traditional machine learning methods,
stochastic gradient descent is an important method for optimising a fitness
function and in this step, the agent generates its set of gradients.

• All agents synchronise their gradients via network communication to reach a
consensus

The idea is that the synchronisation should not take much time and there is an
improvement over the single agent learning process.

The distributed learning model employed in this thesis follows similar steps to
data parallelism. Although we are not implementing deep learning in our algorithm,
extending the knowledge and modifying the steps of data parallelism to better fit
our application seems plausible.
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6.1.1.2 Model Parallelism

This technique is a more complex learning technique compared to data parallelism.
In data parallelism, we divide the training set into parts while in model parallelism,
we divide the machine learning model/algorithm into parts to distribute the work-
load between the learning agents thereby sharing the computational load. The main
question is how does one partition machine learning models? There are many ma-
chine learning models/algorithms and they are all written and represented differently.
Therefore, there cannot be a defined guideline on how to implement model paral-
lelism [101].

6.1.2 General Distributed Machine Learning Limitations

We have seen the advantages of implementing distributed machine learning and how
it generally compares to non-distributed machine learning. However there are some
limitations to utilising distributed learning. From the text above, we can summarise
that data parallelism works best when we have a large training data set that we can
distribute between the learning agents involved in the learning process. Model paral-
lelism works best when we have a heavy computational learning model or algorithm
that might be too expensive computationally (uses a lot of computational resources);
there is a need to break down the learning model and distribute it across the learn-
ing agents involved in the learning process to allocate the computational resources
required to allow the learning algorithm to function properly [101]. Ideally, we want
a scalable system when dealing with distributed machine learning; that is, if we have
N number of learning agents, we can train data N times more than a single agent
per unit time. Therefore, our learning model or algorithm has N scalability (linear
scalability) which is ideal [101]. Synchronisation, an important part in distributed
machine learning, has a large overhead and it could take longer to finish one training
run on a distributed learning cluster than on one single agent. More time is used to
synchronise across multiple agents to make sure that the learning model converges
at the end of the learning process. In some practices, synchronisation could take
much longer than the actual learning process. One of the main reasons why this is a
concern is that in some clusters, some nodes could be run on older hardware which
would make the faster agents wait for these older agents to finish their computation
before synchronising. In such practices, we would have a negative scalability which
is not ideal as it is a waste of money, resources and time [101], [103].
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6.1.3 Multi-Agent Distributed Learning in Robotics

We have discussed the general distributed learning approach. However as we want
to implement the distributed approach in a robotics context, we need to discuss how
to approach this. Robotics domain faces challenges that also plague inherent fault
tolerant, adaptive and efficient distributed multi-agent systems that can generally
cope with noisy and incomplete information, delayed feedback, random environments
that are in response to actions, opponents and competition for resources. These
challenges can be described below [104], [105], [106], [107]:

• Environments can be inconsistent and dynamic

• As this is multi-agent learning, it is not a singular robot that is involved but
rather multiple robots which could cause some disruptions and interference

• Computational and other resources such as battery, time needed for learning
may be limited

• Communication between the robots may not be accurate and could be low-
bandwidth

• The rewards or feedback following the actions may be delayed or lost during
the task

• Robot sensors can be noisy; they could provide inaccurate and incomplete
information

• Robot grippers (that are used during the foraging task) could slip and cause
errors

These are general problems that single agents could be experiencing but multi-
agent robot systems share the same issues and could also compound the challenges
that are described in the above list. However, it has been argued that, instead of
thinking about the multi-agent robot learning issues as an extension and a compound
result of the single robot learning issues, we think of multi-agent learning as a separate
entity with its own specific challenges rather than as an extension of the single robot
case [104].

Communication has been mentioned earlier as a possible challenge and solving
this issue can help solve these two main problems [103]:

Hidden State/View This problem is due to the fact that the learning agents have
limited view of the environment and might not have all the information to
complete the learning task and for the learning process to be done efficiently.
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Reward Assignment This problem is due to the fact that the reward in a dis-
tributed system is given at a global level (refer to the previous part where
centralised learning occurs) and in a distributed learning approach, the reward
has to be ‘distributed’ amongst all the learning agents.

We use a good communication system, for sensing and reward assignment, to
make it less distributed for a brief period of time which would help reduce the
impact of the hidden state and reward assignment problem that is inherently a dis-
tributed learning attribute. Communication is important in multi-agents including
swarm robots. Behaviours and their consequences can be interpreted as some form
of communication and the agents’ cooperation. We can define communication in two
forms: direct and indirect communication [103].

Direct Communication This form of communication involves sending direct mes-
sages to other agents via radio or bluetooth (there is a transmitter and receiver;
the message is directed towards a receiver). The message to be transmitted
could be one-to-one, one-to-many transmission.

Indirect Communication This form of communication involves observed behaviour
of other agents and their consequences in the environment.

These forms of communication can be seen in nature; various animal species
such as bees and ants can be seen displaying these kinds of communication when
performing different tasks. We have discussed these forms of this communication in
the literature review when discussing swarm intelligence and this application of this
intelligence in the field of swarm robotics.

Cooperation is also another form of communication that is based on interacting
with the other agents and the environment to perform tasks. There are two forms
of cooperation to be discussed [103]:

Explicit Cooperation This form of cooperation is defined as a set of interactions
that involve exchanging information or performing actions that would benefit
other agents in the environment.

Implicit Cooperation This form of cooperation involves interactions of the own
agents’ goal however, in the process of achieving its own goal, the agent affects
and aids the other agents in the environment to achieve their own goal.

When using communication systems for sensing, there have been comments on
how unreliable and inaccurate sensors could be especially in robotics where sensors
are very important when the agents are attempting to complete tasks. However, in
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multi-agent learning, sensing from communication systems is very important, espe-
cially when it comes to sensing other agents, obstacles and objects in the environ-
ment. When using communication systems in solving the hidden state issue, ideally,
we would like an ‘image’ view of the environment from each agent however, taking
images and analysing these images has a huge computational overhead that is not
suitable for a small, simple robot. Therefore, depending on the sensors that are
utilised, one can get a good idea on the structure of the environment. By passing in-
formation and necessary messages between robots that communicates positions and
other necessary information that is pertinent to your task, the robots can have a
broader view of the environment and not just be limited to the local view. When
using communication in reward assignments, the same idea used in the hidden state
problem where you send the necessary information within a limited area to solve how
to distribute reward amongst the robots doing the learning. The robots communi-
cate locations and rewards with each other which would aid sharing reward and also
sensing a larger area of the environment [103].

In summary, with multi-agent learning, there are challenges when implementing
a distributed learning approach such as: limited communication, limited world view,
rewards, sensor errors etc. However, there are steps that we can be taken lessen
the impact of these challenges when implementing distributed learning; distributed
learning is still not a perfect learning approach and there is still work that needs to
be done, however, we can mitigate the effects of the challenges when implemented
distributed learning. It has been discussed that when communication channels and
systems are properly utilised, they can be used to solve the limited world view and
delayed rewards problem. Sensors are hardware devices and would be always prone
to error however, with the technology available now, the capability to process image
without it being computationally expensive (using the software on a simple, small
robot) is not available but it should be possible at some point in the future.

6.1.4 Distributed Reinforcement Learning

The idea of distributed learning is not to have the same features or possible learnt
behaviours and effectiveness as the centralised method but rather to create a more
effective learning process utilising all agents in the learning process. In the previ-
ous section, we have discussed distributed learning in a general robotics context.
However, some work has done when referring to using reinforcement learning in a
distributed setting [105], [106], [107], [108]. Traditionally, Reinforcement Learning
(Q-learning, as applied in this thesis) is used in a centralised manner where one
agent (where in this thesis, a central computer) does the learning process. One of
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the main reasons why there is a lack of multi-agent q-learning processes is because
as the number of agents performing the learning process increases, the state-action
space increases exponentially therefore increases the learning time exponentially as
well. This is usually not a desired effect especially in our application, as we would
like to maximise the learning potential and have a more effective learning process
[105], [106], [107].

As discussed earlier, distributed reinforcement learning has been done in other
literature however, the approach used to implement distribution for RL in this thesis
is a novel approach.

A distributed architecture has intrinsic properties that reinforcement learning
could benefit from such as parallelism, robustness and scalability. As we are deal-
ing with swarm robotics context, there are issues that need to be addressed when
discussing distributed learning:

• The agents involved in the learning process (the robots in the swarm) only have
a partial view of the environment; they have a view of just their immediate
environment as they are limited by their sensing capabilities

• Each agent can only move in specific ways; forward, left and right especially in
swarm robotics context as each robot is designed to be as simple as possible.
This also limits the complexity of the actions and additionally, the learning

• Each agent might arrive at a different action (solution) from the other agents in
the environment. This could cause disruptions within the robots and prevent
the appropriate action to be taken

One of the major problems with distributed reinforcement learning is the question
of how they can coordinate their actions (finding the right sequence of groups of
well-matched actions) so that they can collectively perform the task that they are
trying to accomplish. In this situation, the task is the fault recovery approach which
is selecting the appropriate predefined behaviour for different environment states.
Another issue that been has stated above is the increased state-action which would
increase learning time. In the next section, we discuss how we solve these issues to
implement an optimal learning process for our fault recovery approach.

6.2 Learning Approach

We have discussed how learning in a distributed setting is approached in the previ-
ous chapter. Communication and cooperation is an important aspect of distributed
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learning in helping to solve these issues. As in the previous chapter (centralised
approach), we discuss how we are trying to accomplish a pre-fault learning strategy
where most of the work is done in simulation. Therefore, we have to determine the
level of importance of communication and cooperation. There are two questions that
we need to ask when moving forward with implementing distributed architecture to
our present centralised learning architecture:

• How much do the robots share with each other to allow for an efficient learning
process?

• How do all the robots arrive at an optimal solution to the problem?

We have mentioned previously how we are using ‘model’ scenarios during the
learning process; the robots are learning imaginary but plausible states that could
be experienced when the robots are actually online and running tasks. Therefore,
during the learning, the state features are modelled and no communication between
the robots would be needed. Each robot can be seen as its own global observer,
observing the internal learning simulation being done in its internal simulator. It
has information about the nearby, non-faulty robot(s) that would be involved in the
fault recovery. However, after the learning is done and the robots are being used
in the real world (albeit still in simulation), this is where the bullet points become
important. The first concern is what information, and how much of this information,
is permitted amongst the robots to implement an efficient learning process. The
robots have to communicate their states to each other to allow for the robots to
select the appropriate predefined strategy. The reason for this is that the optimal
predefined behaviour is dependent on the state and some of the state features is
not locally available to each robot, therefore, if the robots want to have all the
information needed to select the optimal predefined strategy, there needs to be direct
communication between the robots.

The second point deals with the issue of consensus, which is also an issue during
the learning process. This becomes apparent when learning is preferred and the
robots are being used in the real word (still in simulation), running set tasks and
a fault occurs. Each robot has had a different learning experience, therefore may
not arrive at the same recovery solution for the same fault that is being assessed
by the other robots that would be involved in the fault recovery. We do not expect
to implement different predefined recovery strategies in one instance, but rather
it is necessary that all robots are able to arrive at a common solution when it is
time to select a recovery solution. One way to solve this would be to do some sort of
distributed consensus. This idea is not completely new as we can see in general swarm
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intelligence literature (as discussed in the literature review), swarms of ants and bees
are able to arrive at similar solutions without having to directly communicate with
each other. By relying on their interactions with each other and their environment,
they are able to synchronise effectively to arrive at similar solutions when solving
tasks and problems. Ideally, this is the approach that we would like to implement but
it is non-trivial. For this thesis, we implement a standard consensus that functions
similarly to majority voting. It is understood that this might not be technically
classified as a completely distributed technique, however, direct communication is
required for sharing information between the robots, as explained in the previous
paragraph and therefore this process can be also utilised robots to allow the robots
to come to an agreed solution. The robots directly communicating with each other
does not necessarily take away the distributed aspect of this approach [103].

As with the previous work done in the centralised learning, this thesis still uses
reinforcement learning (RL) and self organising maps (SOMs) when implementing
our fault recovery approach.

6.3 Empty Environment

In this scenario, we discuss an approach to fault recovery that involves selecting
predefined recovery strategies intelligently when this is learnt in an empty environ-
ment. Our previous architecture for the fault recovery process uses a global observer
to calculate the system state and select the most appropriate recovery action. In
contrast, this section extends this architecture to a decentralised system, where each
robot in the swarm makes decisions based only on local information that they receive
from the environments and other robots in its immediate vicinity. I assume that the
swarm robotic system is capable of detecting and diagnosing faults already, so that
focus here will mainly be on recovering from faults. These recovery strategies cover
faults enumerated by [5] that commonly occur in swarm robots.

From the point at which a fault has been detected and diagnosed, the swarm
must decide upon an appropriate recovery strategy. We assume that each robot
has the ability to repair other robots in the swarm, therefore the problem reduces to
choosing which non-faulty robot(s) should be recruited to repair the faulty robot, and
which predefined behaviour is most appropriate given the current scenario. The most
appropriate recovery strategy will depend on a number of factors, such as proximity
to the faulty robot or remaining battery power, thus some method of assessing the
quality of a strategy and its future effect on the swarm is required. I present a
solution to this problem that uses machine learning techniques to inform decisions
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at run-time based on the results of offline training.
Just as it is represented in the centralised architecture, the q-table is represented

as more of a three-dimensional table where the states, action set 1 and action set 2
are stored which can be seen in Figure 5.1.

The swarm’s state is defined by the distances of the nearest three robots closest
to the faulty robot, their energy levels, the level of importance of the faulty robot,
how busy the nearest three robots are, and the distance of the faulty robot to a repair
station [d1, d2, d3, b1, b2, b3, p1, p2, p3, I, drs]. These values represent the input of
the learning algorithms that is used to learn the best action for any possible state.

We propose a method that allows robots to learn how to select the most appro-
priate recovery strategy for any given system state or task. This approach is still
‘pre-fault learning’ where learning the predefined recovery mechanisms for different
possible swarm states before a fault occurs. To test the proposed solution towards
fault recovery, we use Autonomous Robots Go Swarming (ARGoS) [99], a widely
used swarm robotics simulator. A swarm of 10 foot-bots (a particular configuration
of modules based on the marXbot robotic platform [82]) is simulated in a 10x10m
arena free from obstacles, undertaking case study behaviours of collective phototaxis,
aggregation and foraging.

For the distributed architecture, the importance of the on-board simulator is
obvious as we need to run the fault recovery learning process on each robot where
they would run the simulations and are also able to store the results and the Q-table.
The reason for this is because once the learning process is finished, each robot has to
be able to access their ‘memory’ to recall learnt experiences. As all the experiments
in this thesis are run completely in simulation, we can treat the ARGoS simulator
as the on-board simulator where we assume that the ARGoS simulator is installed
on each robot in the swarm. However, it should be noted that when porting the
architecture and learning into the physical robots, that is foot-bots as used in the
experiments, ARGoS would not be recommended for use as an internal simulator,
as it is computationally too heavy to be run onboard the swarm robots as they are
currently designed to be as simple as possible.

One of the properties that is required for the internal simulator is that it has to be
able to represent the robots accurately with all the sensors and actuators. E-pucks
[3] are more basic robots compared to foot-bots as they were developed primarily
for education. Figure 6.1 and figure 6.2 show the features of both e-pucks and foot-
bots and it can be observed that foot-bots have more features, meaning it would
require more computational power to simulate and run. It has been explained in the
previous chapter why it was decided to use foot-bots instead of e-pucks in this thesis
to run the experiments; foot-bots have the features that are required for performing
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the planned pre-defined recovery strategies.

Figure 6.1: This figure represents the properties and features of a foot-bot. Taken
from [2]
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Figure 6.2: This figure represents the properties and features of an e-puck. Taken
from [3]

6.3.1 States and Actions

Each robot, this includes the fault robot, is running the simulation on its own internal
simulator where it takes the role of the faulty robot in the simulation and generates
imagined states which has been discussed previously. To re-iterate, the states that
are fed into the learning architecture are:

Distance from the faulty robot d1 ... d3 describes how far the nearest robot(s)
is from the faulty robot (the robot running the learning simulation on-board
the internal simulator).

‘How busy’ nearby robots are b1 ... b3 describes how busy the nearest robot(s)
is. The designer can decide how the swarm assigns the ‘busy’ rating. This is
rated on a discrete scale from 0 to 5, where 0 means not busy and 5 signifies
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that the robot is very busy. If the robot is not busy, then it can tend to
the faulty robot immediately, but as the robot ‘busyness’ increases, the longer
it takes for the robot to be deployed. Although swarm are homogeneous in
nature, there are some tasks that different robots have different capabilities
and also different sub-tasks. This property is especially useful in these areas;
for example in foraging, where some robots are searching for food, some robots
have found food items and are carrying them back to the base. During the
learning process, the robot performing the learning allocates the ‘busy’ rating
for each of the nearby, non-faulty robots. During the testing phase, the robots
communicate with each other about this rating so that they are able to use
this in their individual input state to return an optimal solution.

Power left p1 ... p3 describes the amount of power left in the robot at the time
that the fault is detected. This is in percentage, so as to make calculating
the reward easier. Again, the power left in the robots is not globally available
where there is no overall global observer overlooking the swarm of robots and
the environment. For the robots that are part of the fault recovery process,
they need this information from the other robots and therefore would require
direct communication to get the necessary information.

Importance of the faulty robot I describes how important a faulty robot is. For
example, if it is actively busy with a task, e.g. transporting an object in a
foraging or search-and-rescue task, it will be considered more important. The
designer can decide how the swarm assigns the importance rating. This is rated
on a discrete scale from 0 to 5, where 0 means not important and 5 signifies
that the robot is very important. If a faulty robot is not important, we do
not necessarily care about how fast the repair is, but at the same time, we
want to reduce the overall cost of the repair. This information is also directly
communicated with the other ‘nearby’ robots to allow for the robots to select
optimal solutions.

Distance to repair station drb describes how far the faulty robot is from a repair
station (in meters). At the beginning of the task, all robots are given the
location of the repair station and the robots keep track of their position from
their start point and through put their journey in the environment. Due to this,
there is no need to share or directly communicate this information amongst the
robots.

Also, our actions are similar to the centralised approach but to re-iterate, there
are two action sets:
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• Select any combination of the three robots chosen closest to the faulty robot,
which will be involved in the fault recovery. There are seven possible robot
combinations: (A, B, C, AB, AC, BC, ABC).

• Select one of the four predefined recovery mechanisms below:

Transport to repair station: There is a repair station where faulty robots
can be taken to be repaired. This behaviour involves the assisting robots
gripping the faulty robot and dragging it to the repair station. The chosen
robot(s) returns to the task, leaving behind the faulty robot to be fixed.

Repair on the spot: Following [25], we assume that each robot has the abil-
ity to repair other robots in the swarm, and that the robots have access
to a repertoire of recovery mechanisms which can fix common faults. This
behaviour could be especially useful if a faulty robot is very important and
needs to resume its task immediately. However, this takes a significant
amount of time and energy. Each fault takes a different amount of time
to fix, it takes less time to fix the faulty robot if more assisting robots are
recruited. However, there is a limit to how many robots make a difference
for the ‘cost’ of the repair.

Drag Along: This behaviour requires only one robot to drag a faulty robot
along. When the ‘helper’ robot gets to the faulty robot, it grips it and
continues on with its task. It should be noted that it takes energy to
drag a robot along; therefore it needs to be included when calculating the
reward.

Leader-Follower: This behaviour also requires only one robot and does not
work for specific faults: complete/partial motor failure and power failure.
The faulty robot copies behaviour of helper robot.

If multiple robots are chosen as the first action, drag along and leader-follower
behaviours are not allowed. The swarm must first select from action set 1
(choosing robots) and then from the action set 2 (repair mechanism).

6.3.2 Rewards

The calculation of the reward during the learning process is similar to how it is
calculated in the centralised approach. When quantifying the expense when selecting
an action, we use a cost function, defined as a weighted sum of objective measures
that can be evaluated in simulation. The reward of the reinforcement learning in this
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experiment is based on this cost. The cost is to be minimised is because we want
the fault recovery to be done as efficiently as possible.

The cost is calculated based on the time it takes to get to the faulty robot, time
it takes to finish the predefined recovery mechanism, the energy it takes to get to
the faulty robot, the energy it takes to complete the predefined behaviour. There
are also punishment/reward clauses:

• If all robots complete the task, reward by reducing the cost (- 1000)

• If only some robots complete the task, punish by increasing the cost (+ 1000)

• Punish robots that take a long time to fix an ‘important’ robot (+ 1000)

• Punish recruited robot(s) that run out of power before completing the task (+
1000)

6.3.3 Algorithm

As we had stated earlier, each robot simulates the fault recovery process on its own
internal on-board simulator. For this experiment, ARGoS is used as the internal
simulator and the algorithm is structured to allow for this. ARGoS is also used to
simulate the ‘real world’ scenario and the results of the learning process is tested with
using this simulator. During the learning process, the robots are individually coming
up with their own action plans. Each robot generates a set of imagined scenarios
to learn from where it is assumed that each robot has different learning experiences
and there would be variation across the swarm for the ‘imagined’ scenarios learnt by
each robot.

The general pseudo-code for the reinforcement learning and self-organising map
procedure for the learning procedure is described below:

6.3.3.1 Learning Set-Up

We are implementing that ARGoS as the internal simulator and are modifying the
centralised learning algorithm. The centralised works where a central computer is
the global observer that oversees the learning and has access to all the robots in
the swarms’ information. The central computer processes the input vector states,
performs the training on the self organising maps and populates the general q-table
that contains all the information and learning states, parameters and results. Moving
forward with distributed learning, we are simulating distribution. On each simulated
robot, the existing method is run 10 separate times on the central computer; this is
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Algorithm 5 Reinforcement Learning and Self-Organising Maps Procedure

1: procedure For Training/Learning
2: for <All input vectors in training data> do
3: Send an input vector state X(St), to the SOM
4: Identify the winning unit in the input map
5: Select possible action using πt(St,At)
6: Choose action, At to calculate reward
7: Receive reward based on performance in environment
8: Calculate Q-value and update Q-table using update rule in equation (2)
9: Update the winner unit in SOM using the update rule in equation (4)
10: Update neighbouring units in the SOM

the number of robots in the swarm that initially participates in the learning. Each
run or separate time represents running on one robot internal simulator. However,
each training of SOM and reinforcement learning results in its own individual SOM
and Q-table; meaning that each robot has its own map and q-table that would
contain its own set of results. To make this clearer, definitions of the notations used
to describe this distributed approach is explained below:

Run This represents each robot internal simulations. For example, in the learning
process done in this thesis, 10 robots are used in the learning phase so therefore
there are 10 distinct internal simulations, 10 self organising maps and Q-tables
which are linked to each robot.

Episodes This represents one learning cycle for one independent input state vector.

Iterations This represents the number of repetitions for one episode.

Training period This represents how many episodes that the learning is trained
over per robot or run.

Each run is done on different seed values fed in to the simulator which translates
to different starting points in the simulation. These runs are all done independently
and they do not affect each other’s results in the map and the Q-table. Each run
goes through multiple iterations to get mean results. The training period is over 150
episodes; 150 different input state vectors). The learning process per robot consists
of a lower training period compared to the centralised approach. In actuality, the
distributed approach reduced the learning time overall due to the fewer runs per
robot that is done. Conceptually, having the distributed algorithm structured in this
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Parameter Value

Arena size 10x10 metres
Size of SOM 3x3 units

Distributed Agents involved in learning 10
Number of states in training data 150 per robot

Simulation time 1300 seconds
SOM Input map learning rate, β 0.6

Number of state-action repetitions 30
Q-learning learning rate, α 0.2

Exploration factor, ε 0.3
Neighbouring function σ = σoexp(−t

λ
)

Table 6.1: The table describes the parameters used for the learning process. All
Q-values are set to zero and the weights if the input SOM are initialised randomly
in the range [0,1]. The set of parameters described above were empirically derived.
The value σ represents the width of the neighbourhood which shrinks over time, σo
represents the initial width of the neighbourhood, t represents the current iteration
loop, λ represents the time constant.

form equates to an ideal, general distributed learning scenarios where each robot is
performing the learning on-board its own internal simulator.

It should be noted that the distributed system has a smaller area and the com-
parison with the centralised approach is less critical; this is because the centralised
approach can be considered in a developmental context.

The table 6.1 describes the parameters of the learning process.
Algorithm 6 describes the complete learning process.
The next sub-section describes the experimental set-up for testing the fault re-

covery learnt process. Additionally, we describe the algorithm of how the testing for
the different tasks is implemented.

6.3.4 Experimental Setup

The work done is for 10, 20, 40 robots in a swarm with a certain number of faults
introduced at a specific time during the experiment. For the learning, the system
was setup with a swarm of 10 robots and one fault type is injected at one time
during the learning. For each state, the simulation is run 100 times for the selected
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Algorithm 6 Learning process

1: procedure For Training/Learning per repetition
2: Randomise seed value to be used in simulation
3: Initialise ARGoS simulation using state from training data.
4: Choose action from action set (1): move to faulty robot
5: Calculate cost for taking action
6: Choose action from action set (2): run recovery mechanism and calculate

cost
7: Calculate total reward
8: Update the Q-values in the Q-table
9: Terminate the episode after a fixed duration

actions and the mean of the rewards are thereafter calculated and used in the Q-value
calculations.

The system was tested on 50 randomly generated scenarios where each scenario
is run with 100 different random seeds and the average performance is reported. We
consider four different treatments that describes the steps taken by the swarm when
getting results and is described in the list below. This is done for three possible
failure modes: motor failure, communication failure, light sensor failure.

It should also be noted that the robots are not allowed to leave any robot behind;
they have to select from any of the predefined behaviours. To iterate, from the
beginning of the task, the swarm generates imagined scenarios, using a simulator,
and learns the best recovery strategy from them before a fault actually occurs and
is detected. When a fault is detected, the swarm selects the best recovery strategy
based on what has been learnt during the imagined scenarios.

This section describes how direct communication between the robots in the swarm
can be implemented. As discussed earlier, direct communication is to be utilised in
the context of sharing information between the robots to allow for the selection of
the optimal solution and also for generating a general consensus amongst the robots
involved in the fault recovery.

When using direct communication to share information, the information shared
is dependent on what robots would need the information, faulty or recruited nearby
robots; not all robots need the same information. We use radios to broadcast the
messages across the swarm; this is available on the ARGoS simulator platform. Other
possible means of achieving direct communication with the swarm could be wireless
communication or bluetooth. There are some extension boards that can be installed
on-board the robot that has some of these features. These additional features can be
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Robot Type Information Broadcasted Information Needed

Faulty Robot Importance Rating

Importance Rating from Faulty Robot,
Distance from Faulty Robot for Ra, Rb and Rc,

‘How busy’ rating for Ra, Rb and Rc,
Power Left for Ra, Rb and Rc

Recruited Robot [Ra]
Distance from Faulty Robot,

‘How busy’ rating, Power Left

Importance Rating from Faulty Robot,
Distance from Faulty Robot for Rb and Rc,

‘How busy’ rating for Rb and Rc,
Power Left for Rb and Rc

Recruited Robot [Rb]
Distance from Faulty Robot,

‘How busy’ rating,
Power Left

Importance Rating from Faulty Robot,
Distance from Faulty Robot for Ra and Rc,

‘How busy’ rating for Ra and Rc,
Power Left for Ra and Rc

Recruited Robot [Rc]
Distance from Faulty Robot,

‘How busy’ rating,
Power Left

Importance Rating from Faulty Robot,
Distance from Faulty Robot for Rb and Rc,

‘How busy’ rating for Rb and Rc,
Power Left for Rb and Rc

Table 6.2: This table describes the information on what in transmitted and broad-
casted between the robots during the recovery process

implemented as a fail-safe incase of radio failure so that the messages can be broad-
casted across the swarm. The table below describes the information broadcasted on
the radios.

All robots within the range of any information being transmitted has the ability
to receive the information if the radio is enabled. To ensure that the robots involved
in the fault recovery make use of just necessary information, each information is
prefixed with the type of information is being sent; with this, when a robot receives
a transmitted message, it looks up the prefix to check if this is the information it
requires. If it is not, it ignores this information and waits until the information
needed is transmitted.

Each robot labels itself, A, B, C and their respective information matches each
individual robot. This is also broadcasted so that when using the state information
to select the appropriate fault recovery strategy, the correct sequence of information
is used.

Finally, when the robots have come to a solution, they broadcast their solution
(how many robots, what combination of robots and what predefined behaviour would
be used in the fault recovery). This information is represented in the Q-table so
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Algorithm 7 Testing process

1: procedure For Testing
2: Fault is detected and diagnosed
3: Input Vector State is collected (Information is transmitted and received from

surrounding robots), X(St)
4: Unit of SOM with smallest distance from input vector state is winner unit
5: Winner unit is identified in Q-table; action with smallest Q-value is selected
6: Action with smallest Q-value is selected; best learnt recovery strategy selected

for that particular state
7: Broadcast solution to other robots; receive other solutions from other robots
8: Based on other solutions, select action with highest number of votes and

implement

they compare what positions on their individual Q-tables. As we follow the major
consensus rule, after receiving the information, the number of recovery strategies
that is chosen more is selected as the winner. If there are equal number of possible
strategies selected, then either solution is chosen. If all robots involved with fault
recovery robots come up with different solutions, again any of the solutions are
chosen though it is unlikely for this specific scenario to occur. The reason is because
the input map is trained similarly across all the robots so the states are structured
similarly; we expect similar states to be chosen across all the maps.

The following list describes the steps taken by the swarm from the beginning of
the task to the end during the learning and testing phases.

• Run experiments for collective phototaxis, aggregation and foraging with no
faults injected to give baseline performance

• Then test performance with two faults injected with faults; this is enough to
break behaviour.

• Test the performance random selection of actions. This might help to recover
swarm but could be suboptimal.

• Then test performance on the SOM and RL solution.

The algorithm to test the SOM + RL infrastructure is as follows:
Algorithm 7 describes the testing process for the distributed process as it differs

from the centralised approach because the input state information is not readily
available to all the robots. As described earlier, the necessary information has to be
shared amongst the robots.
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6.3.5 Results

The set of graphs in Figure 6.3 describes the total average rewards over 150 episodes
for each robot. During each episode, the swarm generates the imagined scenario
which is represented as the state that goes into the SOM and RL. The swarm there-
after selects the actions from both action sets and the cost from selecting these
actions are calculated. As can be seen from the graph, at the beginning, the rewards
fluctuate heavily as the swarm is exploring different actions because actions are not
learnt yet. As the episodes go on, the swarm learns more and starts to select ac-
tions more intelligently, less exploratory and more exploiting though it still strikes
a balance between exploration and exploitation. Towards the end, we can see that
the rewards level out, as the swarm starts to pick more optimal solutions based on
previous rewards for the different states. Each point on the graph represents the
mean over 30 repetitions for the same state.
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Recovery Type Chosen Average Percentage Chosen

Drag to Base 31%
Fix on the Spot 25%

Drag Along 29%
Leader-Follower 15%

Table 6.3: The table describes the percentage of the test input that is selected during
the testing phase of the RL + SOM and the recovery type selected. The recovery
type column represents what predefined behaviour was chosen for the 50 sample
inputs. The percentage column represents what percentage of the test inputs selects
the corresponding recovery type.

Figure 6.3: Rewards Convergence for each Robot

This is tested for different sizes in the swarm (10,20 and 40 robots) to test the
scalability of the learnt recovery strategy. It is also tested for three tasks aggregation,
foraging and collective phototaxis. The results for the robot swarm sizes, 20 and 40
are in the appendixes.

6.3.5.1 10 Robots in the swarm

Table 6.5 shows that for the 50 test states, 31% of the states chose the strategy to
drag to base, 25% chooses to fix on the spot, 29% chooses to drag the faulty robot
along and 15% chooses to follow the leader. The reason why the Leader-Follower
is chosen less is because it is limited for what faults it can be used on while the
other predefined behaviours can be used on all the faults. The swarm picks the
best recovery strategy based on the fault type and also the input state. The swarm
never leaves a robot behind, they select the best strategy that has been learnt by
the swarm. These results are collected across collective phototaxis, aggregation and
foraging.

133



Collective Phototaxis

●●●●●●●

●

●●●●●●●

●●●●●

●

●

No fault Faults Random RL + SOM

0
2

4
6

8
10

Collective Phototaxis (Motor Failure)

Methods

N
um

be
r 

of
 r

ob
ot

s 
at

 b
ea

co
n

Figure 6.4: Collective Phototaxis: Motor failures

Figure 6.4 describes a box plot showing the number of robots that arrive at the
beacon or are at the repair station (this depends on what recovery mechanism is
used). As can be seen, when there are no faults in the swarm, all of the robots are
able to make it to the beacon. When there are faults, the faulty robots anchors the
healthy robots as the sensors on the robot are still functioning. We can observe that
some robots make it to the light source; they escape the anchoring effect of the faulty
robots. When a random behaviour is chosen, the robots make it to the light source
or repair station a times while other times, the worst behaviour is chosen which is
why we see a range of results. Finally, when the learnt recovery strategy is chosen,
more effective strategies are chosen and most of the robots are able to make it to the
beacon or repair station.
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Figure 6.5: Collective Phototaxis: Communication sensor failures

From Figure 6.5, communication sensor failure can be observed; the communication
sensors being described are the range and bearing sensors that are used in the robots
to locate other robots and the robots use these sensors for cohesion and avoidance.
Again, the results show that when no faults are injected, the robots are able to
make it to the light source. When the communication fault is injected, the faulty
robots move randomly around the environment and the ‘healthy’ robots are not able
to complete task as they anchor and follow around the faulty robots. Choosing a
random behaviour shows fault recovery solutions that work sometimes while other
times, they do not work. Finally, when the learnt recovery strategy is chosen, more
effective strategies are observed to be chosen and majority of the robots are able to
complete the task and no robot is left behind.
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Aggregation
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Figure 6.6: Results for aggregation when the range and bearing sensors (Communi-
cation sensors) on the robots are faulty.
Figure 6.6 describes the number of robots in aggregates in the environment or at the
repair station; depending on the learnt recovery mechanism used. When no faults
are present in the system, all robots are able to aggregate together to form one aggre-
gate. As it is discussed in the centralised approach, the discrepancy with the number
of robots in an aggregate is due to how compact the robots are when forming the
aggregate. The robots are continuously moving even after forming complete aggre-
gates. When faults are present, the robots are not able to make use of their sensors
to perform cohesion to create one aggregate; the robots break and form multiple
aggregates. This happens because robots move randomly around the environment
and the robots become divided between the faulty robots forming smaller collections
of the robots. Again, randomly selecting a behaviour shows that it selects a good
strategy sometimes but in most cases, it chooses a bad strategy. When the learnt
predefined behaviour strategy is implemented as the chosen recovery method, we can
see that the swarm recovers successfully which allows the robots form one cohesive

136



aggregate.

6.3.5.1.1 Foraging
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Figure 6.7: Results for foraging when light sensor failures are injected: Number of
robots that reach the nest at the end of the task.

Figure 6.7 describes the performance of the foraging task when the light sensor
faults are injected. The robots in the swarm, when performing foraging, use lights to
determine the location of the nest. Therefore when there is a fault, the faulty robot
is unable to sense the light and therefore cannot make it to the nest. The faulty
robots wander aimlessly around the environment and reduces the probability that
other robots would find and collect the rest of the items. It is observed that between
randomly selecting a predefined behaviour and using the learnt recovery strategy, the
learnt strategy performs better overall because when randomly selecting a solution,
sub-optimal or bad strategies are chosen.
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Figure 6.8: Results for foraging when light sensor failures are injected: Number of
items collected in the environment

Figure 6.8 shows the results for when amount of ‘food items’ collected in the envi-
ronment. In the no-fault scenario, the swarm is able to collect most, if not all of the
items in the environment and most of the robots make it back to the nest. When the
is fault injected, it can be seen from the results that few ‘food items’ are collected.
When randomly selecting a predefined recovery strategy, we can see that there is a
range of results where sometimes some items are picked; the reason is because by
randomly selecting a behaviour, sub-optimal or bad strategies are chosen. Finally,
when using the learnt recovery strategy solutions, it can be observed that most of
the items in the environment are collected because most of the robots are functioning
and are able to complete the task as can be observed in Figure 6.7.
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6.3.6 Inclusion of Obstacles

In the previous section, we discussed the work done in an uncluttered environment
where we extended the centralised architecture to a more distributed approach. The
main reason for this is to test the architecture without any obstructions to check the
validity of the distributed approach and how well it would perform. The learning
procedure is tested with the same fault types that are shown in the above results. It
should be noted that the object inclusion for the distributed learning environment
would be different because there is no global overseer that has a global view of the
environment therefore the obstacle inclusion would be restricted.
There are additional aspects that need to be considered when looking at including
obstacles into the environment:

State Space Increase As the local environment is cluttered, there are new states
that the robots would need to consider when selecting the appropriate recovery
strategy. The new states include: a blockage obstructing the robots from
getting to the repair station and a fault diagnosis state that describes what
type of fault is being learnt from. It should be noted that we are assuming that
the swarm has the capacity to detect and diagnose faults. In this distributed
approach, the larger the state space, the more episodes would be needed to
have the rewards converge.

Reinforcement Learning Rule The selection of action and state space has been
straightforward so far, however, with the introduction of new states, there
is a need to increase the complexity of the reinforcement learning rule. In
this new scenario, actions can now change before the episode finishes, only if
there is something actively interrupting the ‘helper’ robots from completing
the recovery process. The robots monitor themselves continuously, and if they
meander around an obstacle for longer than 10 seconds, change the action.
Again, in this situation, the robots would directly communicate with each other
about the ‘meandering’. When this occurs, only the robots already involved
in the recovery would select new behaviour to enable the swarm to complete
the task. This prevents the ‘helper’ robot from meandering till it runs out of
energy. This would allow the ‘helper’ robot to change action to something more
suitable for the present scenario. From the action selected, you have your new
state, get the reward which then takes you to a new action and you get your
new reward.
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6.3.7 States and Updated Rewards

For this new learning scenario, the robots are initialised based on the input vector
state X(St) chosen. Some of the input vector state features remain the same as in an
uncluttered environment with some additional features included in the state space.
The input state X(St) is defined as: [d1, d2, d3, b1, b2, b3, p1, p2, p3, I, drs, fd, no,
po1, po2, po3, po4, po5, po6, po7, po8, po9, po10, by/n, pb].

Distance from the faulty robot d1 ... d3 describes how far the nearest robot(s)
is from the faulty robot.

‘How busy’ nearby robots are b1 ... b3 describes how busy the nearest robot(s)
is. The designer can decide how the swarm assigns the ‘busy’ rating. This is
rated on a discrete scale from 0 to 5, where 0 means not busy and 5 signifies
that the robot is very busy. If the robot is not busy, then it can tend to the
faulty robot immediately, but as the robot ‘busyness’ increases, the longer it
takes for the robot to be deployed.

Power left p1 ... p3 describes the amount of power left in the robot at the time
that the fault is detected. This is in percentage, so as to make calculating the
reward easier.

Importance of the faulty robot I describes how important a faulty robot is. For
example, if it is actively busy with a task, e.g. transporting an object in a
foraging or search-and-rescue task, it will be considered more important. The
designer can decide how the swarm assigns the importance rating. This is rated
on a discrete scale from 0 to 5, where 0 means not important and 5 signifies
that the robot is very important. If a faulty robot is not important, we do not
necessarily care about how fast the repair is, but at the same time, we want to
reduce the overall cost of the repair.

Distance to repair station drs describes how far the faulty robot is from a repair
station (in meters).

Fault diagnosis fd describes the type of fault that has occurred in the swarm. In
this scenario, we use numbers to represent the type of fault. 0 - Complete Mo-
tor failure, 1 - Communication Failure, 2 - Partial Sensor Failure, 3 - Complete
Sensor Failure, 4 - Complete Power Failure. Although we are using simple in-
tegers here to represent the fault types, ideally, features of the robot behaviour
after the fault has been detected would be used here. As we are assuming that
fault detection and diagnosis are available, if a fault that has been identified
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is not part of the ‘commonly known faults’, it should choose the closest fea-
tures that best represents the fault from the fault diagnosis. This is randomly
generated.

Blockage by/n describes whether a blockage would initialised in the simulation. It’s
a 0 or 1 option. The size of the box is fixed. During learning, this state is always
known however during testing, as this is a distributed learning environment,
the learning agents (robots) do not have a global view of the environment.
During testing, the two states that involve the blockage are set as NULL until
a blockage is detected and this is thereafter fed into the input state vector to
get the appropriate fault recovery solution.

Position of blockage pb describes where in the section of the arena illustrated
below, the blockage is initialised.

The predefined fault recovery behaviours remains the same in this cluttered environ-
ment.
The calculation of the updated reward is similar to the previous rewards calculation
where there are no obstacles. To iterate, the reward of the reinforcement learning
in this experiment is based on this cost. The cost is to be minimised is because we
want the fault recovery to be done as efficiently as possible. The cost is calculated
linearly based on the time it takes to get to the faulty robot, time it takes to finish
the predefined recovery mechanism, the energy it takes to get to the faulty robot,
the energy it takes to complete the predefined behaviour. As it has been stated
earlier, the actions can change mid-execution depending on if they are obstructed
by any obstacles and are unable to finish the recovery strategy. However, we do not
want the actions to change mid-execution as this contributes to power used during
the recovery process. In addition to the present punishment/reward clauses, more
reward clauses are added due to the added complexity of this experimental setup.

• If all robots complete the task, reward by reducing the cost (- 1000)

• If only some robots complete the task, punish by increasing the cost (+ 1000)

• Punish robots that take a long time to fix an ‘important’ robot (+ 1000)

• Punish recruited robot(s) that run out of power before completing the task (+
1000)

• Punish recruited robot(s) that change action

• Reward recruited robot(s) that finish recovery strategy (action set 1 and action
set 2) without changing any acton mid-execution.
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Parameter Value

Arena size 10x10 metres
Size of SOM 5x4 units

Distributed Agents involved in learning 10
Number of states in training data 550 per robot

Simulation time 1300 seconds
SOM Input map learning rate, β 0.6

Number of state-action repetitions 30
Q-learning learning rate, α 0.2

Exploration factor, ε 0.3
Neighbouring function σ = σoexp(−t

λ
)

Table 6.4: The table describes the parameters used for the learning process. All
Q-values are set to zero and the weights if the input SOM are initialised randomly
in the range [0,1]. The set of parameters described above were empirically derived.
The value σ represents the width of the neighbourhood which shrinks over time, σo
represents the initial width of the neighbourhood, t represents the current iteration
loop, λ represents the time constant.

6.3.8 Learning Setup

The learning setup is similar to the setup where there are no obstacles. The learning
is done with 10 robots where the states are set and initialised in the swarm. The
learning process is run on the phototaxis task. In the previous chapter, the dis-
tributed terminology was explained therefore it is going to be used here in describing
the learning and testing process. For each state, the simulation is run 30 times for
the selected actions and the mean of the rewards are thereafter calculated and used
in the Q-value calculations. Additionally, each run (each robot) generates 400 states;
this is more than the previous chapter because of the added complexity of the state
space.
Table 6.4 describes the updated learning process setup where it can be observed
that most of the present learning setup is the same except for the SOM size and the
number of states in the training data. These properties needed to be increased due
to the new complexity of the states.
The learning algorithm for this is similar to the algorithm where there are no obstacles
however, there is an added component where the action can change mid-execution. It
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Algorithm 8 Learning process

1: procedure For Training/Learning
2: Initialise ARGoS simulation using state from training data.
3: Choose action from action set (1): move towards faulty robot
4: If obstructed by obstacle (status does not change in 10 secs), choose another

action from action set (1)
5: Calculate cost for taking action
6: Choose action from action set (2):
7: If obstructed by obstacle (status does not change in 10 secs), choose another

action from action set (2)
8: Run recovery mechanism and calculate cost
9: Calculate total reward
10: Update the Q-values in the Q-table
11: Terminate the episode after a fixed duration

should be noted that the learning process is done on each robot’s internal simulator
and each robot is a global observer within its own internal simulation and can set the
state features within the learning environment. Algorithm 8 describes the updated
learning algorithm for this second experimental setup.
When testing the learning process, the experimental setup is similar to the setup
discussed in the experimental setup. One of the most important aspects needed
in the testing process is for the robots involved in the recovery process to directly
communicate with each other to share the information that is needed to allow for a
more efficient learnt recovery strategy selection. The additional information that is
transmitted and received amongst the robots is the location of the obstacles within
each robot’s view in the environment. During the learning process, the sequence of
the obstacle positions are put into the learning maps. During the testing phase, the
obstacle positions must also be put in the same sequence therefore all the obstacle
information is required before the best strategy is chosen. The input map is not
flexible therefore the number of obstacles is set at a maximum of 10. However, if
less than 10 obstacles are present in the environment, the default value is null. The
faulty robot also needs to transmit the type of fault that has occurred during the
task.
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6.3.9 Results

Figure 6.9 describes the average rewards over 550 episodes. It can be noticed that
the number of episodes it takes to reach convergence in this experimental setup is
more than the previous setup with no environment. We can assume that due to the
increase in the state space; it is logical to assume that it would take longer for the
learning to converge. As can be seen from the graph, the rewards fluctuate at the
beginning of the learning process which is what we expect because the algorithm
is in the exploratory stage, trying different actions for the different states before it
finally levels out. As the episodes increase, the algorithm starts to select actions more
intelligently. Towards the end, we can see that the rewards level out, as the swarm
starts to pick more optimal solutions based on previous rewards for the different
states.
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Recovery Type Chosen Average Percentage Chosen

Drag to Base 24%
Fix on the Spot 26%

Drag Along 33%
Leader-Follower 17%

Table 6.5: The table describes the percentage of the test input that is selected during
the testing phase of the RL + SOM and the recovery type selected. The recovery
type column represents what predefined behaviour was chosen for the 50 sample
inputs. The percentage column represents what percentage of the test inputs selects
the corresponding recovery type.

Figure 6.9: Rewards Convergence for each Robot

This is tested for different sizes in the swarm (10,20 and 40 robots) to test the
scalability of the learnt recovery strategy. It is also tested for three tasks aggregation,
foraging and collective phototaxis. The results for the robot swarm sizes, 20 and 40
are in the appendixes.

6.3.9.1 10 Robots in the swarm

Table 6.5 shows that for the 50 test states, 24% of the states chose the strategy to
drag to base, 26% chooses to fix on the spot, 33% chooses to drag the faulty robot
along and 17% chooses to follow the leader. The reason why the Leader-Follower
is chosen less is because it is limited for what faults it can be used on while the
other predefined behaviours can be used on all the faults. The swarm picks the
best recovery strategy based on the fault type and also the input state. The swarm
never leaves a robot behind, they select the best strategy that has been learnt by
the swarm. These results are collected across collective phototaxis, aggregation and
foraging.
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Figure 6.10: Collective Phototaxis: Motor failures

Figure 6.10 describes a box plot showing the number of robots that arrive at the
beacon or are at the repair station with obstacles present in the environment. As it
can be observed, when there are no faults in the swarm, all of the robots are able to
make it to the beacon. When there are faults, the faulty robots anchors the healthy
robots as the sensors on the robot are still functioning. We can observe that some
robots make it to the light source; they escape the anchoring effect of the faulty
robots. When a random behaviour is chosen, the robots make it to the light source
or repair station a times while other times, the worst behaviour is chosen which is
why we see a range of results. Finally, when the learnt recovery strategy is chosen,
more effective strategies are chosen and most of the robots are able to make it to the
beacon or repair station.
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Figure 6.11: Collective Phototaxis: Communication sensor failures

From Figure 6.11, communication sensor failure can be observed; the communication
sensors being described are the range and bearing sensors that are used in the robots
to locate other robots and the robots use these sensors for cohesion and avoidance.
As to be expected, the results show that when no faults are injected, the robots
are able to make it to the light source. When the communication fault is injected,
the faulty robots move randomly around the environment and the ‘healthy’ robots
are not able to complete task as they anchor and follow around the faulty robots.
Choosing a random behaviour shows fault recovery solutions that work sometimes
while other times, they do not work. Finally, when the learnt recovery strategy is
chosen, more effective strategies are observed to be chosen and majority of the robots
are able to complete the task and no robot is left behind.
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Aggregation
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Figure 6.12: Results for aggregation when the range and bearing sensors (Commu-
nication sensors) on the robots are faulty.
Figure 6.12 describes the number of robots in aggregates in the environment or
at the repair station; depending on the learnt recovery mechanism used. When
no faults are present in the system, all robots are able to aggregate together to
form one aggregate. As it is discussed in the centralised approach, the discrepancy
with the number of robots in an aggregate is due to how compact the robots are
when forming the aggregate. The robots are continuously moving even after forming
complete aggregates. When faults are present, the robots are not able to make
use of their sensors to perform cohesion to create one aggregate; the robots break
and form multiple aggregates. This happens because robots move randomly around
the environment and the robots become divided between the faulty robots forming
smaller collections of the robots. Again, randomly selecting a behaviour shows that
it selects a good strategy sometimes but in most cases, it chooses a bad strategy.
When the learnt predefined behaviour strategy is implemented as the chosen recovery
method, we can see that the swarm recovers successfully which allows the robots form
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one cohesive aggregate.

6.3.9.1.1 Foraging
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Figure 6.13: Results for foraging when light sensor failures are injected: Number of
robots that reach the nest at the end of the task.

Figure 6.13 describes the performance of the foraging task when the light sensor
faults are injected. The robots in the swarm, when performing foraging, use lights to
determine the location of the nest. Therefore when there is a fault, the faulty robot
is unable to sense the light and therefore cannot make it to the nest. The faulty
robots wander aimlessly around the environment and reduces the probability that
other robots would find and collect the rest of the items. It is observed that between
randomly selecting a predefined behaviour and using the learnt recovery strategy, the
learnt strategy performs better overall because when randomly selecting a solution,
sub-optimal or bad strategies are chosen.
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Figure 6.14: Results for foraging when light sensor failures are injected: Number of
items collected in the environment

Figure 6.14 shows the results for when amount of ‘food items’ collected in the envi-
ronment. In the no-fault scenario, the swarm is able to collect most, if not all of the
items in the environment and most of the robots make it back to the nest. When the
is fault injected, it can be seen from the results that few ‘food items’ are collected.
When randomly selecting a predefined recovery strategy, we can see that there is a
range of results where sometimes some items are picked; the reason is because by
randomly selecting a behaviour, sub-optimal or bad strategies are chosen. Finally,
when using the learnt recovery strategy solutions, it can be observed that most of
the items in the environment are collected because most of the robots are functioning
and are able to complete the task as can be observed in Figure 6.13.

In general, we can see that the results are similar to the centralised solution which is
what we would expect from these set of experiments. We expect that these experi-
ments would show that learning a fault recovery strategy before a fault occurs rather
than randomly select solutions when a fault has been detected and diagnosed.
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In this thesis chapter, we have discussed our approach to distributed learning when it
is applied to the fault recovery architecture. We have demonstrated with results and
graphs how successful the recovery strategy works at selecting the optimal solution for
the fault recovery process. We discussed achieving distribution to a certain degree
and having a centralised standard consensus where the robots communicate their
chosen best recovery strategy with each other. In the future, we would like to have
a completely distributed approach where the consensus is also distributed in nature.
In both chapters, centralised and distributed, we tested the fault recovery strategy
based one type of fault occurring in two robots simultaneously. It is understood
that this situation rarely occurs and therefore, the next part would show results
for various scenarios by stress testing the present architecture to discover in what
conditions does the fault recovery architecture work and why.
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Chapter 7

Extension of Experiments

7.1 Introduction

In this section, we extend the experiments that were done in previous sections; in
previous sections, each test run was done for two same faults, on two robots at the
same time. While it has been observed that in both the centralised and distributed
approach the results are positive and the faults are able to recover efficiently and
complete the task, it is not realistic to expect that two of the same type of faults
would occur at the same time on multiple robots. In the real world, even if the same
type of fault occurs in multiple robots, it is not expected for them to occur at the
same time. Therefore, in this section, we explore different combinations of faults
occurring within a test run and also increasing the number of faults that occurs
within a test run. Effectively, we stress-test the system to observe the behaviour of
the algorithm when it is pushed to recover from some ‘stressed’ scenarios. It should
be noted that we do not expect the algorithm to work in all of these scenarios.
The reasoning behind stress-testing the system is that robots are made of movable
parts which are liable to faults, sometimes multiple faults during a task run. Some-
times, fault(s) could occur at the same time or they could at different times during
the task run and the learnt recovery strategy has to be tested to observe its per-
formance in various fault scenarios. In this chapter, we test for different faults that
occur randomly which conceptually could occur at the same time or different times.
For this, we expect the learnt recovery strategy to cope very well with few faults but
as the number of faults injected within a task run increases, there is a degradation
in the recovery process. This is due to one main reason:
As the number of faults increases, more robots are actively involved in the recovery
process. In the beginning of the recovery process, when there are fewer faults, fewer
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robots are involved in the recovery process, therefore, overall less power is being used
to ‘recover’ the robots from their faults. However when more robots are involved in
the recovery process (when there are more faults), the ‘cost’ of the repair becomes
more expensive as more power is being used and therefore more robots run out of
power faster. There are more robots with low power and if this is what is available
during a fault recovery process, the robot breaks down alongside the already faulty
robot. Another fault recovery process would have to be done with probably another
set of ‘low power’ robot(s) and the cycle continues. It should reminded that when
robots fail, other ‘healthy’ robots anchor around the robots preventing the swarm
from completing the task and this is what occurs. Random selection of predefined
behaviour for the recovery process does not cope well with these sort of scenarios
whereas the learnt recovery strategy copes better as it has learnt various possible
states but as can be seen in the results later on in this chapter, this scenario still
affects the learnt recovery strategy.
We have defined the possible faults (that can have varying effect on the swarm) that
can occur in a swarm system as:

• Complete Motor Failure

• Communication (Sensor) Failure

• Power Failure

As discussed in earlier chapters, swarm robotic systems are inherently fault tolerant
and because of this, they are able to ‘tolerate’ some faults without adversely affecting
the performance of the swarm and the swarm is able to continue with the task.
However, depending on the task, there are some faults that have a negative impact
on the ability for the swarm to complete their tasks which is not ideal. In an ideal
situation, the swarm should able to complete their task when faults occur whether
it is a crippling fault or not. When running tests and testing the learnt recovery
strategy, i did not deem it necessary to test for faults that do not have an adverse
effect on the swarm as the swarm completes the task regardless. Rather, the testing
is done for faults that has an adverse effect on the swarm and this is used for all task
scenarios in this chapter. We are not saying that the learnt recovery strategy would
not work in fault scenarios that do not have a negative effect on the swarm, rather,
this thesis is reviewing faults that have the negative effect on the swarm because we
can clearly see how well the learnt recovery strategy handles the faults that have
occurred.
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7.2 Experimental Setup

All experiments in this chapter are set up similarly with a swarm of 10 robots where
the faults are injected in the swarm during the swarm. The learning architecture is
tested on 50 randomly generated scenarios where each scenario is run with 100 differ-
ent random seeds and the average performance is reported. Each test run’s duration
is 1300 seconds. We consider four different treatments that describes the steps taken
by the swarm when getting results for the testing phase and is described in the list
below. This is done for three possible failure modes: motor failure, communication
failure, light sensor failure.
Additionally, the faults are injected at different times within the task and this is
done randomly between 100 and 800 seconds; therefore not right at the beginning
of the simulation and not right at the end of the task run. This is tested in the
collective phototaxis, aggregation and foraging tasks using both the centralised and
distributed learning architectures.
The following list describes the steps taken by the swarm from the beginning of the
task to the end during the testing phases.

• Run experiments for collective phototaxis and foraging with no faults injected
to give baseline performance

• Then test performance with faults injected with faults; this is enough to break
behaviour.

• Test the performance random selection of actions. This might help to recover
swarm but could be suboptimal.

• Then test performance on the SOM and RL solution.

Depending on the learning approach, centralised or distributed, the algorithm to test
the self-organising map and reinforcement learning algorithm would differ as already
discussed in previous chapters. Algorithm 9 describes the centralised approach while
algorithm 10 describes the distributed approach.
As explained earlier, all experiments in this chapter are setup the same, experimen-
tally.

7.3 Experiment Overview

The scenarios presented in this chapter have similar results as to what was expected
and already explained in the introduction. In this section, we give a brief overview
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Algorithm 9 Testing process

1: procedure For Testing
2: Fault is detected and diagnosed
3: Input Vector State is observed by global observer, X(St)
4: Unit of SOM with smallest distance from input vector state is winner unit
5: Winner unit is identified in Q-table; action with smallest Q-value is selected
6: Action with smallest Q-value is selected; best learnt recovery strategy selected

for that particular state

Algorithm 10 Testing process

1: procedure For Testing
2: Fault is detected and diagnosed
3: Input Vector State is collected (Information is transmitted and received from

surrounding robots), X(St)
4: Unit of SOM with smallest distance from input vector state is winner unit
5: Winner unit is identified in Q-table; action with smallest Q-value is selected
6: Action with smallest Q-value is selected; best learnt recovery strategy selected

for that particular state
7: Broadcast solution to other robots; receive other solutions from other robots
8: Based on other solutions, select action with highest number of votes and

implement

of what to expect in the results in the experiment.
As explained in the introduction, not all faults have a negative impact on the swarm
behaviour as swarms are inherently fault tolerant, therefore, the tests done in this
chapter are for specific faults that have an adverse effect on swarm behaviour prevent-
ing the swarm from completing the task assigned to them. For collective phototaxis,
we observe complete motor failures and sensor failures and run our tests on these
faults. For aggregation, we test on sensor failures as this is the only fault that shows
such an adverse effect on the performance of the swarm. When observing complete
motor or power failures in the robots for aggregation, the robots simply aggregate
around the faulty robot whereas for sensor failures, the faulty robots escape from
the pull of the swarm and wander haphazardly around the environment with the
other ‘healthy’ robots following. This causes, fewer robots to no robot in an aggre-
gate to be formed as the robots are scattered around the environment. It can be
said that they ‘anchor’ around the wandering faulty robot. For foraging, when any
fault occurs in the swarm, the faulty robot(s) gets lost in the environment and is
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not able to participate in the foraging task (searching and collecting food items). In
this foraging, the robots do not need to perform cohesion and they avoid each other
and obstacles in the environment to avoid self-damage. Due to this, it has been
observed because there are no anchoring effects rather faulty robot(s) getting lost in
the environment when complete motor failure, power failure, sensor failure or light
sensor. This reduces the number of robots that are able to explore the environment,
collect food items and return back to base and the healthy robots are pushed more
than normal to collect the food items and are usually not able to pick all the food
items during the task run; collecting food items and returning them to the base is
the goal of foraging.
In the table below, we detail the various scenarios and the results that can be observed
from the plots that are shown in next few sections:

Learning
Approach

Task Scenarios Result Overview

Centralised Collective Phototaxis Same Fault at Differ-
ent Times

As seen in figure 7.1 and figure 7.2; the results for
both motor and sensor are similar to the results seen
in previous centralised approach chapter. This is be-
cause we are dealing with the same number of faults
but they are occurring at random times within the
task run which is what is expected.

Different Faults (2)
at Different Times

In the scenario shown in figure 7.3 which describes
when two different faults (motor and sensor failures)
are injected, it is still expected that the learnt re-
covery strategy would perform better than the ran-
dom strategy which is what can be observed from the
plots shown above. The strategy performs similar as
the same two faults as, again, we are still dealing with
two faults during the task run.

Multiple Faults (4, 6,
8) at Different Times

In figure 7.4, it can be observed that as more faults
are added, the performance of both the random and
learnt recovery strategy deteriorates which is to be
expected although the learnt recovery strategy still
performs better than the random strategy.

Aggregation Same Fault at Differ-
ent Times

As can be seen in figure 7.5, It can be observed that
the number of robots in the aggregates, when com-
pared to the results in the centralised approach chap-
ter, is very similar which is expected as we are dealing
with the same number of faults.

Multiple Faults (4, 6,
8) at Different Times

Figure 7.6 describes the highest number of robots in
an aggregate in the swarm at the end of the task run
for when 4, 6 and 8 sensor faults within a task run.
As seen in the collective phototaxis section,we see a
degradation of the learnt recovery strategy’s perfor-
mance although it performs better than random se-
lection.
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Foraging Same Fault at Differ-
ent Times

For Figure 7.7 and figure 7.8, It can be observed that
the performance of the learnt recovery strategy per-
forms better than random selection but performs sim-
ilarly when the faults are inserted at the same time
which is what is expected when compared to the re-
sults in the centralised chapter. Most of the robots are
able to make it back to base while majority if not all
of the food items scattered around the environment is
collected which is what is we want and classify as a
successful foraging exercise.

Multiple Faults (4, 6,
8) at Different Times

Figure 7.9 and figure 7.10 describes the results for
when multiple faults (4, 6 and 8 light sensor faults)
are inserted into the swarm. It has been discussed in
previous chapters, the importance of the light sensors
in foraging and as expected, there is a deterioration in
random selection and also the learnt recovery strategy.
However, the learnt recovery recovery strategy per-
forms better in general when compared to randomly
selecting a predefined strategy. A good number of
robots make it back to the base and a good number
of food items are collected.

Distributed Collective Phototaxis Same Fault at Differ-
ent Times

As can be seen in figure 7.11 which describes complete
motor failures in the faulty robots, the performance
of the fault recovery strategy when compared to the
performance in the distributed approach chapter, the
results are very similar and this is expected as two
faults are still being dealt with even though they are
being inserted at different times which is what is ex-
pected. In figure 7.12, we observe the collective pho-
totaxis task where complete sensor faults are inserted
at different times during the task run. Again, when
compared to the distributed approach results, the re-
sults are similar, including the random and the learnt
fault recovery strategy which is what is expected as
the same number of faults are being injected in this
scenario as that described in the distributed learning
chapter.

Different Faults (2)
at Different Times

Although two different faults are being inserted, the
number of faults are still the same and it is expected
that the learnt recovery strategy should perform bet-
ter than random selection, which it does and there is
no significant deviation from the performance in the
learnt recovery strategy when compared to injecting
two similar faults in the swarm at different times. The
plot can be seen in figure 7.13
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Multiple Faults (4, 6,
8) at Different Times

The plots shown in figure 7.14 shows when of 4, 6 and
8 faults are inserted into the swarm and the adverse
effect it has. In the faults column, it can be observed
that no robot is able to make it to the beacon; this
can be classified as a task fail. It can be observed that
as more faults are added, the performance of both
the random and learnt recovery strategy deteriorates
which is to be expected although the learnt recovery
strategy still performs better than the random strat-
egy.

Aggregation Same Fault at Differ-
ent Times

Figure 7.15 describes the highest number of robots in
an aggregate in the swarm at the end of the task run
for this scenario. It can be observed that the number
of robots in the aggregates, when compared to the
centralised approach, is very similar which is to be
expected as the same number of faults is still being
dealt with.

Multiple Faults (4, 6,
8) at Different Times

Figure 7.16 describes the highest number of robots in
an aggregate in the swarm at the end of the task run
for when 4, 6 and 8 sensor faults within a task run.
As seen in the collective phototaxis section,we see a
degradation of the learnt recovery strategy’s perfor-
mance although it performs better than random selec-
tion. These faults are inserted into the swarm at dif-
ferent random times all through the task run. These
results are what is expected as more faults are added
in the swarm.

Foraging Same Fault at Differ-
ent Times

Figure 7.17 and figure 7.18 describes the number of
robots at the base at the end of the task run and also
the number of food items collected. Two light sensor
faults are inserted randomly at different times within
the the task run. It can be observed that the perfor-
mance of the learnt recovery strategy performs better
than random selection but performs similarly when
the faults are inserted at the same time which is what
is expected. The results observed here are similar to
the results in the previous distributed approach chap-
ter, which is what is expected as the same number of
faults are being inserted into the swarm.

Multiple Faults (4, 6,
8) at Different Times

Figure 7.19 and figure 7.20 describes the results for
when multiple faults (4, 6 and 8 light sensor faults)
are inserted into the swarm. It has been discussed in
previous chapters, the importance of the light sensors
in foraging and as expected, there is a deterioration of
the learnt recovery strategy and random selection as
the number of faults increases in the swarm during the
task. The faults are inserted at random times within
the task run (between 100 and 800 seconds).

161



Table 7.1: This table gives an overview of all the results that are all the experiments
that are in this chapter.

The corresponding graphs for the scenarios detailed in the table above, for both the
centralised and distributed approaches, are shown in the following sections.

7.4 Centralised Approach

This section describes the results of the tasks when using the learnt recovery strategy
that has been implemented in the centralised approach.

7.4.1 Collective Phototaxis

Collective phototaxis involves a swarm of robots moving towards a light source in the
environment. The robots make use of the range and bearing sensors for coherence
and avoidance between the robots and objects in the environments while they use
the light sensor to sense the beacon. The results from the scenarios described in the
previous section is shown below:
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7.4.1.1 Two same faults at different times
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Figure 7.1: Collective Phototaxis: Motor failures
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Figure 7.2: Collective Phototaxis: Complete Sensor Failures
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7.4.1.2 Two different faults at different times

●●●●●●●

No fault Faults Random RL + SOM

0
2

4
6

8
10

Phototaxis Task

Methods

N
um

be
r 

of
 r

ob
ot

s 
at

 b
ea

co
n

Figure 7.3: Collective Phototaxis: Multiple Failures
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7.4.1.3 Multiple combination of faults at different times

Figure 7.4: The plots below describe Collective Phototaxis for Multiple Failures when
injected with 4,6 and 8 faults

●●●●●●●

●

●

●

●

No fault Faults Random RL + SOM

0
2

4
6

8
10

Phototaxis Task (Four faults)

Methods

N
um

be
r 

of
 r

ob
ot

s 
at

 b
ea

co
n

166



●●●●●●●

●●●●●●●

●

●

●

●

No fault Faults Random RL + SOM

0
2

4
6

8
10

Phototaxis Task (Six Faults)

Methods

N
um

be
r 

of
 r

ob
ot

s 
at

 b
ea

co
n

167



●●●●●●●

●●

●●

●●

No fault Faults Random RL + SOM

0
2

4
6

8
10

Phototaxis Task (Eight Faults)

Methods

N
um

be
r 

of
 r

ob
ot

s 
at

 b
ea

co
n

168



7.4.2 Aggregation

Aggregation involves the robots in a swarm coming together from around the en-
vironment to form one cohesive aggregate in the environment. The robots in the
swarm make use of the range and bearing actuators and sensors onboard to sense
the other robots and objects in the environment to move towards each other to form
one aggregate. The results from the scenarios described in the previous section is
shown below:

7.4.2.1 Fault at different times
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Figure 7.5: Aggregation: Complete Sensor Failures
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7.4.2.2 Multiple faults at different times

Figure 7.6: The plots below describe Aggregation for Multiple Failures when injected
with 4,6 and 8 faults
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7.4.3 Foraging

Foraging involves robots in the swarm moving from the ‘base’ to the environment
in search for food items. The robots search the environment for food, collect them
and bring them back to base. The goal is for the robots in the swarm to search the
entire environment and collect all the ‘food items’ in the items and return back to
the base station. There are light sensors present at the base station which allows the
robots to return back to the base station safely to drop the food items and continue
searching for food items located in the environment.

7.4.3.1 Two faults at different times
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Figure 7.7: Foraging: Light Sensor Failure (Number of Robots at Base)
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Figure 7.8: Foraging: Light Sensor Failure (Food Items Collected)
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7.4.3.2 Multiple faults at different times

Figure 7.9: The plots below describe Foraging for Light Sensor Failure (Number of
Robots at Base) when injected with 4,6 and 8 faults
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Figure 7.10: The plots below describe Foraging for Light Sensor Failure (Food Items
Collected) when injected with 4,6 and 8 faults
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In this section, we describe the results for various scenarios when using the centralised
learnt architecture. The results that are shown are what we expect when these
various faults are applied to the swarm. When we have two faults in the swarm, we
observe that the learnt strategy copes well with regardless of the type of fault (as
seen in collective phototaxis) however, as more faults are added to the swarm, the
performance for the learnt recovery strategy falls although it still performs better
than randomly selecting a predefined recovery strategy which ideally, is what should
be seen. Regardless of the situation, learning your recovery strategy before-hand has
a better performance overall when applied to these different tasks.

7.5 Distributed Approach

This section describes the results of the tasks when using the learnt recovery strategy
that has been implemented in the distributed approach.

7.5.1 Collective Phototaxis

Collective phototaxis involves a swarm of robots moving towards a light source in the
environment. The robots make use of the range and bearing sensors for coherence
and avoidance between the robots and objects in the environments while they use
the light sensor to sense the beacon. The results from the scenarios described in the
previous section is shown below:
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7.5.1.1 Two same faults at different times
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Figure 7.11: Collective Phototaxis: Motor failures
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Figure 7.12: Collective Phototaxis: Complete Sensor Failures
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7.5.1.2 Two different faults at different times
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Figure 7.13: Collective Phototaxis: Multiple Failures
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7.5.1.3 Multiple combination of faults at different times

Figure 7.14: The Plots below describe Collective Phototaxis for Multiple Failures
when injected with 4,6 and 8 faults
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7.5.2 Aggregation

Aggregation involves the robots in a swarm coming together from around the en-
vironment to form one cohesive aggregate in the environment. The robots in the
swarm make use of the range and bearing actuators and sensors onboard to sense
the other robots and objects in the environment to move towards each other to form
one aggregate. The results from the scenarios described in the previous section is
shown below:

7.5.2.1 Fault at different times
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Figure 7.15: Aggregation: Complete Sensor Failures
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7.5.2.2 Multiple faults at different times

Figure 7.16: The Plots below describe Aggregation for Multiple Failures when in-
jected with 4,6 and 8 faults
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7.5.3 Foraging

Foraging involves robots in the swarm moving from the ‘base’ to the environment
in search for food items. The robots search the environment for food, collect them
and bring them back to base. The goal is for the robots in the swarm to search the
entire environment and collect all the ‘food items’ in the items and return back to
the base station. There are light sensors present at the base station which allows the
robots to return back to the base station safely to drop the food items and continue
searching for food items located in the environment.

7.5.3.1 Two faults at different times
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Figure 7.17: Foraging: Light Sensor Failure (Number of Robots at Base)
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Figure 7.18: Foraging: Light Sensor Failure (Food Items Collected)
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7.5.3.2 Multiple faults at different times

Figure 7.19: The Plots below describe Foraging for Light Sensor Failure (Number of
Robots at Base) when injected with 4,6 and 8 faults

●

●

●

●●

●●●●●●●

No fault Faults Random RL + SOM

0
2

4
6

8
10

Foraging Task (Four Faults)

Methods

N
um

be
r 

of
 r

ob
ot

s 
at

 b
as

e

194



●

●

●

●●

●●●●●●●

No fault Faults Random RL + SOM

0
2

4
6

8
10

Foraging Task (Six Faults)

Methods

N
um

be
r 

of
 r

ob
ot

s 
at

 b
as

e

195



●

●

●

●●

●●●●●●●

●

No fault Faults Random RL + SOM

0
2

4
6

8
10

Foraging Task (Eight Faults)

Methods

N
um

be
r 

of
 r

ob
ot

s 
at

 b
as

e

196



Figure 7.20: The plots below describe Foraging for Light Sensor Failure (Food Items
Collected) when injected with 4,6 and 8 faults
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In this section, we describe the results for various scenarios when using the distributed
learnt architecture for this testing phase. As we have described in the experiment
overview, the results that are shown are what we expect when testing for these
different scenarios. When fewer faults are injected into the swarm regardless of the
type of fault, the learnt recovery strategy is able to cope well with these situations.
However when the number of faults increases, although the learnt recovery strategy
is able to cope, the performance is not as optimal as the scenarios with fewer. The
reason for this has been explained in the introduction but we still observe that
although the learnt recovery strategy is not optimal (for these scenarios), it still
performs better than randomly selecting the predefined behaviours and this goes for
all the tasks tested in this section.
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Part III

Conclusion and Future Work
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Chapter 8

Conclusion

In this thesis, a fault recovery solution was presented for swarm robotic systems
based on a swarm of robots utilising a combination of learning algorithms: self-
organising maps and reinforcement learning. These learning algorithms are used to
learn, before a fault has actually occurred, a set of predefined recovery mechanisms
to determine the most appropriate behaviour for a fault recovery operation. The
learning is done in simulation using randomly generated data and is learnt and
tested in both centralised and distributed settings; they are not to be necessarily
compared to each other, rather it is a natural progression to learn in a centralised
setting and then upgrade the learning architecture to work in a distributed setting
as the robot platform that is being used in this thesis is swarm robots. It is assumed
that there is already an architecture within the swarm that is capable to detect and
diagnose faults and at the point of fault detection and diagnosis within the task
run, the robots are able lookup their ‘experiences’ to select the appropriate strategy
for any state and task. The learning architecture is tested in a distributed setting
because the swarm is inherently distributed therefore, having a learning architecture
that follows similar rules without having to manipulate how the swarm functions.
The pre-defined behaviours to be learnt includes the following:

Transport to repair station: There is a repair station where faulty robots can be
taken to be repaired. This behaviour involves the assisting robots gripping the
faulty robot and dragging it to the repair station. The chosen robot(s) returns
to the task, leaving behind the faulty robot to be fixed.

Repair on the spot: Following [25], it is assumed that each robot has the ability to
repair other robots in the swarm, and that the robots have access to a repertoire
of recovery mechanisms which can fix common faults. This behaviour could
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be especially useful if a faulty robot is very important and needs to resume its
task immediately. However, this takes a significant amount of time and energy.
Each fault takes a different amount of time to fix, it takes less time to fix the
faulty robot if more assisting robots are recruited. However, there is a limit to
how many robots make a difference for the ‘cost’ of the repair.

Drag Along: This behaviour requires only one robot to drag a faulty robot along.
When the ‘helper’ robot gets to the faulty robot, it grips it and continues on
with its task. It should be noted that it takes energy to drag a robot along;
therefore it needs to be included when calculating the reward.

Leader-Follower: This behaviour also requires only one robot and does not work
for specific faults: complete/partial motor failure and power failure. The faulty
robot copies behaviour of helper robot.

The robots are able to learn the most best behaviour that has a minimised cost of
repair for different possible states that the swarm might encounter, where the each
state vector variable can be defined as follows:

Distance from the faulty robot d1 ... d3 describes how far the nearest robot(s)
is from the faulty robot.

‘How busy’ nearby robots are b1 ... b3 describes how busy the nearest robot(s)
is. The designer can decide how the swarm assigns the ‘busy’ rating. This is
rated on a discrete scale from 0 to 5, where 0 means the robot is not busy and 5
signifies that the robot is very busy. If the robot is not busy, then it can tend to
the faulty robot immediately, but as the robot ‘busyness’ increases, the longer
it takes for the robot to be deployed. Although swarms are homogeneous in
nature, there are some tasks where different robots have different capabilities
and also different sub-tasks. This property is especially useful in these areas;
for example in foraging, where other robots are searching for food, some robots
have found food items and are carrying them back to the base.

Power left p1 ... p3 describes the amount of power left in the robot at the time
that the fault is detected. This is in percentage, so as to make calculating the
reward easier.

Importance of the faulty robot I describes how important a faulty robot is. For
example, if it is actively busy with a task, e.g. transporting an object in a
foraging or search-and-rescue task, it will be considered more important. The
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designer can decide how the swarm assigns the importance rating. This is rated
on a discrete scale from 0 to 5, where 0 means not important and 5 signifies that
the robot is very important. If a faulty robot is not important, the recovery
process does not aim for fast repair, but at the same time, we want to reduce
the overall cost of the repair.

Distance to repair station drb describes how far the faulty robot is from a repair
station (in meters).

The possible faults, which have a varying effect on the swarm depending on the task,
that are tested includes: complete motor failure, communication (sensor) failure and
power failure. The tasks that are observed during the experiments are aggregation,
collective phototaxis and foraging.
It should also be noted that the learning architecture for both the centralised and
distributed approach, in chapters 4 and 5, has been tested and learnt in a cluttered en-
vironment. The main difference between the cluttered and uncluttered environment
is that in the cluttered environment there are obstacles present in the environment
that could obstruct robots the robots involved in the recovery from completing the
recovery task that has been assigned and a major obstacle that could potentially
block the predefined behaviour of ‘drag to the base’. This is to account for potential
situations where for some reason or the other, the initial chosen recovery strategy
cannot be completed, especially the ‘drag to base’ predefined behaviour, it is able to
change behaviour to ensure that the recovery process is completed.
The results, as described in chapters 4 and 5, show that generally, the swarm is able
to select the appropriate recovery strategy when presented with a fault outperforming
random selection when utilising both the centralised and distributed approaches to
solving faults in swarms. However, there are some limitations to the work presented
in this thesis. The learnt recovery strategy presented in this thesis is not quite
adaptive especially with the limited states that are used for the learning process.
However, adding more states, increases the learning time which is not a desired
effect but it is necessary to ensure that the learning process has enough time to
learn adequately. When presented with new states within the context of what has
been learnt previously, the swarm is able to cope with this fault recovery but when
pushed outside the constraints of the learning done, some complications would arise.
That is, there would be some situations where the present fault recovery architecture
would not be able solve or cope with; what is being discussed here is unknown and
more complicated environments.
In chapter 6, an extension of the current experiments is presented where more com-
binations of faults are added within the swarm run for both the centralised and
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distributed approaches. Effectively, the system is stress-tested to observe the be-
haviour of the algorithm when it is pushed to recover from some ‘stressed’ scenarios.
As expected, the algorithm did not work in all of these scenarios as more robots
are actively involved in the recovery; the cost of repair becomes more expensive as
more power is being used during the recovery process. More robots would not have
enough power to complete the task. Additionally, randomly selecting the predefined
behaviours for the recovery process hardly copes with these sort of scenarios, how-
ever, the learnt recovery strategy copes better but as seen in this chapter, the learnt
recovery strategy is still affected.
Additionally, there are set predefined behaviours that are not flexible during their
execution. There are some scenarios that would require flexibility to deal with an
adaptive environment or a fault that could manifest differently from the norm. Pos-
sible solutions are discussed in the next section as to a possible way to deal with this
situation by extending the present architecture.
This thesis presents a new approach towards active fault recovery methods which
adds to creating a complete fault tolerant system. Reinforcement Learning and Self
Organising Maps have been used together previously therefore, it is not novel on its
own, however using it in this context where it is being implemented in a centralised
and distributed approach, in conjunction with having predefined behaviours to learn
the most effective recovery strategy is a novel approach in fault recovery literature.
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Chapter 9

Future Work

There are multiple possible future work solutions that can be done to improve the
performance of the present fault recovery architecture.
A possible extension would be to test other predefined recovery mechanisms found
in the literature and include it in the present fault recovery strategy. For example,
work done by [19] where robots are able to power share with faulty robots that
have experienced power failure could be possible predefined behaviour. The present
architecture allows for as many possible predefined recovery mechanisms but adding
more will come at the cost of a larger training set and additional learning time.
Currently, the learning is done off-line but a future extension is to allow on-line
learning using on-board simulators on the swarm robots [109], [50]. Although in the
decentralised, distributed approach, the learning is done on-board the robots, it’s
not in an on-line leaning format where whilst the robots are actively participating
in their environment, task and even during a fault recovery process. The future
extension would allow continuous learning throughout the robot’s life span where
information, from current fault recovery solutions, tasks done etc. is fed into the on-
board simulator and learning tool to allow for a more accurate and efficient learning
process.
In the distributed approach chapter, a traditional consensus method was used to
allow the robots to reach an agreement on the selection of the appropriate fault
recovery solution. To allow for a more distributed approach, a possible extension
would be to extend the present architecture to allow for distributed consensus.
Additionally, in the previous section, it was discussed that the present learning ar-
chitecture is not quite adaptive and flexible and will be unable to deal with changing
and unknown environments as it is not possible to learn every possible scenario that
the swarm could ever be presented. A model of the environment might be used
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before-hand but this is not an ideal solution. Ideally, a model free environment
would be preferable when it comes to the fault recovery process.
To achieve this, we propose utilising evolutionary approaches to design an ‘adaptive’
fault recovery swarm robotic system. Evolution can be used to produce novel solu-
tions to problems which could be different from what a human designer might decide
to write. Using evolutionary approaches in robotics is an area in robotics that is
being researched and it is called Evolutionary Robotics (ER). ER is a term that is
used to describe a method that uses evolutionary techniques in the development of
controllers for robots. ER creates autonomous robot controllers. It does not require
human designers designing the controller or having complete knowledge of the envi-
ronment that the robots would be deployed in [110], [111]. This theory is applied
in the initial experiment tested and although the test failed, there are still merit in
utilising this approach and extending the learning architecture by including some
form of evolutionary robotics. For example, the next step could be to evolve learnt
predefined behaviours that would involve the ‘helper’ robots that can aid in the re-
covery process by ‘fixing’ the faulty robots, utilising decision trees in conjunction
with the learning approach to select the most efficient recovery strategy and also us-
ing evolutionary approaches so as to create new behaviours or evolve the controllers
that can be used for major faults in various swarm behaviours (aggregation, foraging
etc.) which would make recovery process adaptive to different unknown scenarios.
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Appendix
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The appendix consists of further extensions of the experiments where the swarm size
is increased and tested against the present swarm architecture to analyse the results
and view how they fare with these scenarios.
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Chapter 10

20 Robots in the Swarm

In this scenario, the experimental setup is similar to what has been described in
centralised approach. However, it should be noted that there are more faults (6)
injected here due to the increase in the swarm size. This is because, more faults are
needed to get an adverse effect on the swarm behaviour. The results are displayed
below for collective phototaxis, aggregation and foraging. For foraging, the number
of food items to be collected are increased (40).
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Figure 10.1: Collective Phototaxis: Motor failures
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Figure 10.2: Collective Phototaxis: Communication sensor failures
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Figure 10.3: Aggregation: Communication sensor failures
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Figure 10.4: Foraging: Light Sensor (Number of Food Collected)
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Figure 10.5: Foraging: Light Sensor (Number of Robots at Nest)
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Chapter 11

40 Robots in the Swarm

In this scenario, the experimental setup is similar to what has been described in
centralised approach. However, it should be noted that there are more faults (13)
injected here due to the increase in the swarm size. This is because, more faults are
needed to get an adverse effect on the swarm behaviour. The results are displayed
below for collective phototaxis, aggregation and foraging. For foraging, the number
of food items to be collected are increased (80).
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Figure 11.1: Collective Phototaxis: Motor failures
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Figure 11.2: Collective Phototaxis: Communication sensor failures
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Figure 11.3: Aggregation: Communication sensor failures
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Figure 11.4: Foraging: Light Sensor (Number of Food Collected)
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Figure 11.5: Foraging: Light Sensor (Number of Robots at Nest)

231


	I Introduction and Literature Review
	Introduction
	Hypothesis and Goals
	Contribution
	Thesis Outline

	Literature Review
	Introduction to Swarm Intelligence
	Swarm Taxis Algorithms
	The  algorithm
	The  algorithm
	The  algorithm

	Fault Tolerance
	Artificial Immune Systems (AIS)
	Fault detection in Multi-robot systems
	Fault detection in Swarm Robotic Systems
	Fault Recovery
	Single-robot systems
	Multi-robot systems

	Evolutionary Robotics
	Random Optimisation
	Online Evolution
	Offline Evolution
	Evolutionary Swarm Robotics
	Issues with Evolutionary Robotics
	Other methods of evaluating Candidate Solutions
	Fitness-based Evolution


	Preliminary Results
	Methodology
	The Collective Phototaxis Algorithm.
	The Evolutionary Algorithm

	Results


	II Learning Approaches and their Implementations: Fault Recovery Solution (Centralised and Distributed)
	Learning Techniques
	Reinforcement Learning
	Deep Learning
	Self-Organising Maps

	Centralised Approach to Fault Recovert
	Empty Environment
	Learning the Best Recovery Strategy

	Experimental Setup
	Results

	Inclusion of Obstacles
	States
	Updated Rewards
	Experimental Setup
	Results


	Distributed Learning Approach
	Distributed Learning
	Distributed Deep Learning
	General Distributed Machine Learning Limitations
	Multi-Agent Distributed Learning in Robotics
	Distributed Reinforcement Learning

	Learning Approach
	Empty Environment
	States and Actions
	Rewards
	Algorithm
	Experimental Setup
	Results
	Inclusion of Obstacles
	States and Updated Rewards
	Learning Setup
	Results


	Extension of Experiments
	Introduction
	Experimental Setup
	Experiment Overview
	Centralised Approach
	Collective Phototaxis
	Aggregation
	Foraging

	Distributed Approach
	Collective Phototaxis
	Aggregation
	Foraging



	III Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	IV Appendix
	20 Robots in the Swarm
	40 Robots in the Swarm


