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 Abstract 

 The demand for resources-constrained devices of 8-bit and 32-bit microcontrollers has 

increased due to the requirements of different applications such as Radio Frequency 

Identification (RFID), Internet of Things (IoT) and Wireless Sensor Network (WSN). 

Applying efficient security in these applications and their microcontroller platform is one of 

the significant concerns for its limited acceptance. In fact, public key cryptography (PKC), 

RSA and Elliptic Curve Cryptography, are generally considered the most powerful 

cryptosystems that could provide a high level of security. However, RSA involves very 

intensive computational arithmetic with a key size of 1024-2048 bits. Therefore, ECC could 

be a feasible solution to provide a similar level of security with a smaller key size and lesser 

arithmetic computations. However, the highly effective ECC implementations in 

microcontroller devices remain as a concern, due to some drawbacks of the microcontrollers. 

This thesis illustrates the technique for achieving highly efficient ECC on microcontroller 

devices that could be used in applications such as IoT, WSN and RFID. We implement an 

efficient ECC cryptosystem in single-core microcontroller and a homogenous multicore 

microcontroller. The Elliptic Curve Digital Signature is implemented on an 8-bit and 32-bit 

microcontrollers and its performance is evaluated for the possible combination of finite field 

arithmetic, point doubling, point addition and scalar point algorithms. The developed 

technique reduced the time required for generating EDSA key from 83ms in 32bit 

microcontroller to 263ms in 8bit microcontroller.  The parallelization of the Comba 

multiplication in 𝐺𝐹(2163) implemented in a homogenous multicore microcontroller, 

obtained a performance enhancement of 85% in comparison to a single core microcontroller. 

The feasibility of the algorithms and the advantages of adopting parallelization is validated 

by using these algorithms to implement ECC scalar point multiplication over GF(2m) using 

the Xmos multi-core microcontroller. Also it is believed that our proposed solutions for a 

multicore microcontroller that could be used in applications like IoT, WSN and RFID is the 

first of its kind.                   
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Chapter 1 Introduction of Thesis  

 

This chapter provides an overview of the complete thesis. It starts by expressing the demands 

of cryptography in securing the new technology of WSN and IoT. Then, it illustrates how the 

aims of the thesis been developed, followed by the main contribution. Finally, a detailed list of 

the published papers is given.   
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1.1 Overview 

The emergence of new technologies related to the Wireless Sensor Network (WSN), 

Wireless Body Area Network (WBAN), Internet of Things (IoT) and Radio Frequency 

Identification (RFID) is based on embedded microcontroller platforms. It is considered that 

these microcontrollers are resource constrained devices, which can accommodate small sized-

code memory and have low-speed processors working with limited battery resources. The main 

functionality of these microcontrollers in such applications is to aggregate the information 

produced by the sensors connected to them and transmit the data over a communication 

channel to its destination. For example, WBAN could be designed to help patients and doctors 

with real-time data about the vital life parameters related to patients, such as blood pressure, 

pulse heart rate, body temperature and other parameters. A new advancement in medication 

related to WBAN goes beyond the scope of merely transmitting the data, and may involve 

injecting the medicine into the patient, such as an online insulin pump system. Therefore, such 

highly critical applications related to human health hazards, lead to concern over the security of 

these applications and their networks.  

However, modern cryptography plays a vital role in ensuring the security of these 

applications. For that, a different type of symmetric cryptography could be used to guarantee 

confidentiality, integrity, and authenticity for the provided services [13]. However, employing 

highly effective Public Key Cryptography (PKC), such as RSA or ECC on microcontrollers, 

can lead to many technical challenges and problems that need to be addressed in advance, like 

the deployment of ECC schemes delay the processes within the processor due to the 

complexity of the arithmetic operations associated with this scheme [13].   

In this context, there have been many attempts to improve the ECC efficiency of 

constrained devices, which in turn resulted in the possibility of implementing the ECC 

algorithm in such devices. As a result, researchers have been encouraged to undertake further 

evolutionary researches that have also demonstrated the ability of ECC to provide the same 

level of security provided by RSA with lower key size in these devices. The fundamental 

approach of ECC allows end users to make ECC implementation more flexible and selectable. 

For example, ECC could be built based on either over a binary finite field or prime finite field 

arithmetic. However, the latest research shows possibilities of implementing the ECC as 

hardware, software or even combination of software/ hardware. This could lead to further 
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investigation for the identification of the best solutions that provide higher performance with 

low power consumption and high-security level.      

1.2 Thesis Aims and Scope  

 Overall, there is an ongoing debate over the enhancement of the ECC performance 

without the loss of its strength when executed on the embedded microcontroller of IoT, WSN, 

and WBAN. In fact, the feasibility of implementing highly-efficient ECC in a microcontroller 

and integrating them with other functions, such as actual network communication, is still 

difficult primarily due to two facts (1) designing the architecture of the microcontroller 

platform with limited power consumption, speed of the processor, and memory size; and (2) 

ECC cryptosystem is based on complex arithmetic operation with operands size (≥ 163 −

𝑏𝑖𝑡), which may result in decreasing the overall performance of the microcontroller and 

subsequently having a negative impact on the overall performance of the application.  

 Therefore, based on the above concerns, we aim to provide solutions that can result in 

an optimal ECC performance along with maintaining the efficiency of the applications. 

Therefore, we address such concerns by attempting to enhance the performance with the help 

of an ECC software implementation. Our selection is based on the flexibility and simplicity of 

integrating ECC with application architecture. Hence, in this thesis, we used two different 

approaches, detailed below, to provide directions for our research.         

Firstly, evaluating the possibilities of enhancing the overall ECC performance on a 

software implementation on single core microcontroller, using an open source reconfigurable 

library. Thereby, importing a Relic Toolkit [14] in such constrained devices helps in 

understanding and analyzing the behavior of the microcontroller. Also, this methodology 

addresses the issue of the best combination of a finite field, point doubling, point addition and 

scalar point multiplication algorithms that could lead to better ECC performance as well as 

understanding the influence. In particular, through this procedure, we can observe the impact 

of these factors on the overall performance of the ECC scheme and the Microcontroller. 

Furthermore, designing ECC security level is highly dependent on the underlying layer, 

known as finite field arithmetic operations, and its size. Therefore, a flexible tool that could 

support different ECC curves over the binary field or prime field is a necessity. Such 

mechanisms allow the selection of the required level of security. Also, this enables a smooth 
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communication between the microcontroller and applications when an application has different 

security requirements. 

Secondly, research on the possibility of implementing ECC on a homogeneous multi-

core microcontroller and exploring its capabilities to boost the ECC performance. 

Homogeneous multicore microcontrollers are designed to support simultaneous tasks. Different 

types of microcontroller have been designed with a multi-core processor, including XMOS, 

Parallax, and Ultra-Reliable Multi-core ARM-based processor.  

Among these types of multicore microcontrollers, XMOS is considered the best since it 

works similar to an ordinary microcontroller and due to its ability to tackle issues beyond the 

capabilities of a traditional microcontroller. Additionally, it has a multiple core processor that 

allows simultaneous execution of sequential or multiple tasks. It can also provide timing 

analysis along with hardware simulation, using a powerful IDE known as Xtimecomposer  

[15]. Design and implementation on an XMOS multicore microcontroller is very flexible since 

the parallelization can be invoked in the main function or within all the functions of the 

programs. Calling for parallelizing multiple tasks from the primary function will also allow the 

developer to assign a particular core for his parallel tasks while calling for parallelization on 

other functions to automatically select the core allocation by the system. Thus, for complex 

implementation where only a particular function is required for conducting parallelization, the 

latter should be implemented within these functions instead of the main function, and the tasks, 

logic cores will be dynamically distributed by the system based on the availability of the 

resources.  

In fact, having such features and functionalities makes the development of such 

platforms more suitable for accommodating complex algorithms. In the later stages this could 

particularly lead to the integration of some application (such as IoT, WSN, or WSN) with 

parallel reading from sensors along with the possibility of conducting the parallel tasks of 

implementation necessary for secure  key generation, encryption, and security protocol in 

parallel approaches. 

 Further, examining the reconfiguration and scalability within the multi-core 

microcontroller are the concerns that need to be specifically addressed during implementation. 

With this knowledge, the National Institute of Standards Technology (NIST) has published 
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different ECC curves, including: curves over binary fields 𝐺𝐹(2𝑚) where m=163, m=233, 

m=283, m=409 and m=571 as well as curves for ECC implementation over prime field 𝐺𝐹(𝑝) 

where p=192, p=224, p=256, p=384 and p=521[16]. Having said that, parallelizing such 

complex ECC algorithms using a software implementation approach is not an easy task. 

However, the possible features and functionalities in the XMOS multicore microcontroller and 

its powerful Xtimecomposer IDE can help in tackling such challenges. As mentioned before, 

our selection for such a platform is not only based on implementing the ECC, but also 

specifically considering the flexibility and simplicity of integrating the ECC cryptosystem with 

the applications’ sensors data collection and overall communication protocols.  

Hence, the focus of this thesis is at a different level of ECC cryptosystem layers. Thus, 

we initially attempt to adopt the well-known algorithms that are assigned to each layer in order 

to obtain an effective speedup of the sequential and parallel performance. However, some 

algorithms are considered to improve the overall ECC performance. In a way, the proposed 

technique will serve the purpose of enhancing the ECC performance on microcontrollers that 

could be used in different applications, such as RFID, WSN and IoT. The end-to-end 

encryption and decryption, higher-level protocol communication, power consumption analysis 

and system failure analysis are not considered in this thesis.             

1.3 Thesis Main Contributions 

The current published works are mainly focused on enhancing the ECC performance of 

a single core microcontroller. Many of them attempted to create their own library for their 

targeted devices. However, we noticed that these works are limited with few algorithms that 

should be supported by the ECC. ECC is a highly algorithmic-based cryptosystem with many 

algorithms in place that could either increase or decrease their performance. When the 

algorithms for implementing the ECC is limited then the speedup efficiency of the ECC 

processor is not enhanced to the desired level. Hence, in this work, we initially started by 

importing a highly effective open-source library that allows flexible and reconfigurable 

features, along with increasing the ECC efficiency by selecting the best combination from a 

wide range of algorithms provided by the tool. 

Also, there are a significant number of published works that are related to improving 

the ECC efficiency in large scale computer and processors. However, none of the published 
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works make any attempts to improve the ECC in a homogeneous multicore microcontroller. 

Therefore, to our knowledge, we are the first to propose boosting the ECC on a multicore 

microcontroller, despite the overall complexity of implementing ECC in such a constrained 

device.    

The initial research indicated the presence of some open-source tools that help in 

boosting the efficiency of ECC in microcontroller-based platforms. However, some of them are 

limited to supporting just a specific platform and some of the others could be used to support a 

wide range of microcontrollers. To overcome this limitation, we managed to import relic tool 

open-source to our microcontroller and accordingly managed to prove the enhancement in the 

performance of the ECC. The novelty of our contribution is summarized below: 

● Experimental analysis and evaluation for Elliptic Curve Digital Signature 

(ECDSA) on both an 8-bit and a 32-bit platform (Arduino mega2560 and 

Arduino Due) has been carried out using Relic library [14], and comparative 

results of the implementation are provided. To our knowledge, no such analysis 

and results have been reported till date.  

● We are the first to use the configuration features provided by an open source 

tool for enhancing the performance of ECC, which could be considered as a 

guidance and benchmark for the developers planning to use the relic tools in 

Arduino-mega2560 and Arduino-due. In this, we reported ECDSA key 

generation on Arduino Due can be achieved in (90ms) when compared to 

(263ms) on the Arduino Mega for m=163. 

  Accordingly, we consider enhancing the ECC performance based on the second 

approach mentioned in subsection 1.2. Where we attempted to introduce the concept of a 

homogeneous multicore microcontroller. Thus, we managed to achieve the following novelties: 

● The first-ever novel parallel Comba multiplication over 𝐺𝐹(2163) was 

implemented using an XMOS multicore microcontroller. Our implementation 

showed an improvement in 85% of the measured time in comparison to a single 

core implementation. This result also considered the performance of Comba 

multiplication algorithm with and without fast modular reduction for different 

word sizes (8-bit, 16-bit and 32-bits). Another contribution to this novelty is the 
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fast reduction algorithm to support the 8-bit word size, which was a result of 

modifying the 32-bit reduction algorithm. 

● Our second novelty related to the second approach in the overall proposed 

improvement in ECC scalar multiplication over the binary field 𝐺𝐹(2𝑚) for 

m=163, m=233, m=283, m=409 and m=571, using an XMOS homogeneous 

multicore microcontroller. In this work, we managed to report a 63% 

improvement in ECC point multiplication, in comparison to its sequential 

implementation in a single core implementation. Furthermore, in this particular 

work, three algorithms listed below have been modified and optimized: 

I. Modified Point Doubling in LD coordinate system by implementing a 

parallelization principle in it. Accordingly, we managed to reduce the 

number of algorithm steps from 14 to 9. 

II.  Modified Point Addition in LD coordinate system by implementing a 

parallelization principle in it. Hence, we were able to reduce the number 

of algorithm steps from 26 to 20 steps. 

III. Modified left to right binary method point multiplication algorithm has 

been proposed. The enhancement is achieved by performing an initial 

scanning of the most significant bit (MSB) of k in order to track down 

the first non-zero bit from the MSB. If the non-zero first bit is found, 

then the coordinates are filled in Q to start the loop operation. P's 

coordinates will be filled in Q to start the loop operation.   

● The third novelty presented relates to the second proposed approach is our 

contribution towards improving the ECC point multiplication over GF(P), 

where P=128, P=192, P=256 and P=384 using XMOS homogenous multicore 

microcontroller. In this work, we obtained an 80% improvement of ECC point 

multiplication, which is higher when compared to its sequential implementation 

in a single-core implementation. Also, in this study we modified the algorithms 

listed below.: 

I. We were able to parallelize the Comba algorithm proposed by the 

scholars in [17] and [18] and replaced the original algorithm proposed 

by the scholars in [19] with this new modified parallelized algorithm.  

II. We modified (X, Y)- only co-Z conjugate addition with update XYCZ -

ADDC algorithm, in turn we were able to reduce the original sequential 
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operational steps of the algorithm from 19 to 13, only with the cost of 

5M+3+16A by involving of 6 field registers in this operation.   

III. We modified (X, Y)- only co-Z addition with update XYCZ -ADD 

algorithm, as a result reduced the original sequential operations steps of 

the algorithm from 13 steps to only 7 steps. 

IV. We modified the Jacobian doubling (𝑎=−3) algorithm for reducing the 

original sequential point doubling operation steps from 18 to 15. 

 Hence, it can be observed that our effective software design for efficient ECC tackles 

ECC over the binary field as well as ECC over the prime field. Furthermore, in this work, we 

considered three different types of data width 8, 16 and 32 bits. This is the first-ever effort that 

attempts to enhance the performance of ECC by considering curves over the binary as well as 

the prime fields.  

 Finally, in this research, we have been able to enhance the performance of the ECC on 

a microcontroller that could be used for different applications. For that, our thesis contributions 

point to the fact that PKC could be used in the constrained devices and secure communication 

could be established easily – taking into account the various types of microcontrollers 

mentioned in this thesis.     

1.4 Thesis Outlines 

 Immediately after this chapter, the next chapter provides the reader with essential 

background and historical information about cryptography. In addition to that, a detailed 

explanation and differentiation between symmetric and asymmetric cryptography is also 

provided. Furthermore, details about the elliptic curve cryptography group's law and point 

multiplication algorithms, have been provided. Finally, the chapter 2 presents a discussion 

about the domain parameters and protocols of ECC.  

 In Chapter 3, our first effective ECC implementation is discussed. This chapter 

introduces the concept of ECC and highlights the related research., Further this chapter 

provides a brief introduction to the Arduino microcontroller architectures, followed by detailed 

implementation of the proposed solution. This chapter is concluded by presenting an analysis 

of the obtained results.  
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 Chapter 4 introduces a new concept of emerging technology related to microcontrollers. 

This chapter presents the implementation of parallelizing the Comba algorithm in a 

homogeneous multicore microcontroller. First the concept of the algorithm and its relationship 

and importance in ECC over binary field cryptosystem is described. Then, a detailed 

parallelization concept for the algorithm is provided. Finally, the chapter is concluded by 

analyzing the obtained results. 

 In Chapter 5, presents the concept of parallelizing the ECC point multiplication over a 

binary field. The chapter begins with the introduction of the overall concept of ECC over a 

binary field, followed by a related mathematical background. Then the proposed solution to 

increase the performance of ECC point multiplication is elaborated. The details of 

implementing the proposed solutions is provided in subsection 5.4. Finally, the performance 

analysis is presented along with the conclusions drawn from the analysis.  

 Chapter 6 elaborates the proposed solution to enhance the scalar point multiplication of 

ECC, but this time for ECC over the prime field. Initially a general description for ECC over a 

prime field along with its mathematical background is provided. Then the proposed solution is 

described along with the technical details of its implementation. Finally, the results are 

analyzed and the conclusions drawn from it are mentioned. 

 Finally, the Chapter 7, provides a summary of the complete research along with the 

suggestions for the future work that can be conducted.  
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Chapter 2 Background Theory  

This chapter discusses historical information about cryptography and its goals. We further 

provide a preliminary related background and fundamental terminologies for public key 

cryptography including RSA and Elliptic Curve Cryptography. Hence, details about ECC 

Field arithmetic over 𝐺𝐹(𝑃) and 𝐺𝐹(2𝑚)  are given. We also discuss some algorithms 

related to the Point of Multiplication that is employed in this thesis, along with elliptic curve 

domain parameters protocols.       
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2.1 Cryptography History  

In the past, steganography, a Greek originated word meaning “covered writing”, was 

referred to as a technique for communication of secure messages. In contrast to cryptography, 

steganography means concealing the message itself by covering it with something else, 

whereas cryptography means concealing the content of the message by enciphering [20].  

Also, the word ‘cryptography’ originally came from the Greek root words kryptos and 

gráphō, which together mean “hidden writing” [21]. Cryptography has very long and 

interesting history, dating back to 4000 years ago. The best description for the history of 

cryptography can be found in [22]. In this book, the author traced its history from the initial 

use of cryptography by the Egyptians in 1900 B.C to the 20th century. 

 As per [1] and [2], the first attempt to cipher a plain text was developed by Roman 

generals in the 1st century B.C. They ciphered the message by shifting a fixed number of 

letters down to the alphabet. This procedure of ciphering came to be known as Caesar's 

Cipher.  

 However, the principle of substitution ciphers was created by a Greek historian 

Polybius in the 2nd century B.C. This technique is based on replacing the letter of the alphabet 

and placing it within a Polybius square using numbers.   

 It is believed that the first transposition cipher was used by Spartan in 5th century B.C 

[21]. They used to exchange secret messages by wrapping slender bar parchment and wound 

it in something called a scytale. To decipher the message, the papyrus needed to be rewound 

it in the scytale of identical thickness.   

 In the 9th century, the first code-breaking textbook Istikhraj al-Kotob Al-Mu'amah was 

published by Islamic mathematician named Abū Yūsuf Yaʻqūb ibn Isḥāq al-Kindī. In his 

book, al-Kindī introduced the  alphabetic cipher and frequency analysis techniques [21] .     

 The Middle Ages witnessed more progress in the cryptographic field. During this 

time, most of the Western European governments used cryptography to be in touch with their 

ambassadors. The most significant enhancements were developed in Italy in 1452. Venice 

established a new organization with three secretaries responsible to cipher and deciphers the 

government's messages [23]. 

http://en.wikipedia.org/wiki/Al-Kindi
http://en.wikipedia.org/wiki/Al-Kindi
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In 1553, a new concept of a Vigenere cipher was published by Italian Renaissance Leon 

Basttista Alberti. This new concept was considered as strong as polyalphabetic substitution 

cipher at that time [21].   

 The invention of telegraph communication in 1844 triggered a dramatic rise in 

cryptography. Thus, the Vigenere cipher was used in telegraph communication until Friedrich 

W. Kasiski developed all periodic polyalphabetic ciphers in 1863 [23].     

 Furthermore, the historical information shows that cryptography played a vital role in 

the outcome of both world wars. For example, in 1895, the invention of radio transmission 

made a remarkable change of using cryptography in telegraphic communication – when the 

French military managed to intercept German communication during the First World War. 

This is because the French cryptanalysts managed to break the double columnar transposition 

created by German military [23].  The Enigma machine is an encryption gadget created and 

utilized in the mid-twentieth century to ensure business, discretionary and military 

correspondence. It was utilized widely by Nazi Germany during World War II, in all parts of 

the German military. But, the Enigma encryption demonstrated to be vulnerable to 

cryptanalytic attacks by Germany's foes, at first Polish and French and, later, a gigantic effort 

by the United Kingdom at Bletchley Park. While Germany acquainted a progression of 

enhancements with Enigma and these hampered efforts of decryption to fluctuating degrees, 

they didn't decisively keep Britain and its partners from misusing Enigma-encoded messages 

as a noteworthy source of knowledge during the war. Numerous observers state that this flow 

of intelligent communication reduced the duration of the war altogether and may even have 

modified its result. 

  The growth of computers and communication systems, starting in the 1960s, 

introduced cryptography as a requirement to secure the digital information. Historically, Data 

Encryption Standard (DES) is considered the first standard for encrypting unclassified 

information. It was adopted by the U.S Federal Information Processing Standard as a result of 

the work conducted by Feistel at IBM 1970s. In fact, DES is the most well-known 

cryptographic mechanism in history. It continues to be a standard technique for protecting 

electronic commerce provided by different financial organizations around the world [24].  

 However, the work published by Diffie and Hellman in 1976 created new directions 

in cryptography. In fact, this work is considered the most impressive development in the 
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history of cryptography. The authors introduced a new concept of public-key cryptography 

and an innovative method for key exchange based on a discrete logarithm problem. Despite 

the fact that there was no practical acknowledgement of public-key cryptography scheme at 

that time, the idea creates an extensive interest in the cryptography community. 

 Accordingly, a new practical public-key encryption and digital signature scheme 

proposed by Rivest, Shamir and Adleman in 1978 is now known as RSA. The idea of RSA is 

mainly based on the intractability of factoring large integers. This approach of cryptography 

energized efforts to research for better techniques for factorization. 

2.2 Goals of Cryptography  

 Cryptography has become a hot topic in the existing research due to high demand for 

applications and computer networks. Currently, cryptographic algorithms are required in all 

the secure communications and digital data authentication. However, cryptography should 

not be considered as the only means of securing information, but rather one set of techniques 

responsible in providing security. In principle, cryptography has primary goals, as 

summarized below [1, 20, 25]: 

● Data Confidentiality: Content of a message sent from A to B cannot be read by 

somebody else and is protected from an unauthorized user. 

● Entity Authentication: This is a procedure of verifying the user identity to ensure 

that each arriving message came from a trusted source.   

● Data Origin Authentication: To enable a received entity and verify that the 

incoming message has been sent by a trusted entity and the message has not been 

altered thereafter.   

● Data Integrity: This method allows the received entity to verify that the inbound 

message has not been tampered in transit.   

● Non-Repudiation: This procedure ensures that it is impossible for the sender to turn 

around later and deny sending the message.  

2.3 Private Key Cryptography  

Private key cryptography also known as symmetric-key or single-key encryption, was the 

only used type cryptography scheme until the end of the 1970s. This scheme played a 

primary role in providing security services in many network devices. It was in use until the 
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development of public-key cryptography, which was developed for tackling the drawbacks of 

this scheme. The concept of this scheme is based on using a single key during the encryption 

and decryption processes. It consists of five main components as listed below [20, 26]:  

➢ Plaintext 

➢ Encryption Algorithm  

➢ Secret Key  

➢ Ciphertext 

➢ Decryption Algorithm  

Figure 2.1 illustrates the symmetric key cryptography. Here, the plaintext represents the 

original message, which is fed into the encryption algorithm. The purpose of having an 

encryption algorithm is to conduct various substitutions and transformation in the plain 

text. 

 The secret key K used in this scheme is completely independent of  the plaintext and 

encryption algorithm. The key is generally selected to be the binary alphabet 0,1. To the 

plain text X the sender needs to form the cipher Y as a function of K. Based on this, the 

encryption transformation could be written in the form given below:  

 

Public Key 
Algorithms

IFP (e.g RSA)
DLP(e.g
Diffie-

Hellman)

ECDLP(e.g
ECDH and 

ECDSA)

 

Figure 2.1 Main Families Public Key Cryptography 
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𝑌 = 𝐸𝑘(𝑃) 

The output of the encryption algorithm, transformation processes, substitution processes 

is totally dependent on the secret key. The encryption process yields the cipher text, which 

is mainly a scrambled message and is heavily dependent on the secret key – wherein, if 

two different secret keys used by the same message then it must result in two different 

cipher texts. Apparently, the cipher text is a random stream of data that is unintelligible.  

The decryption process allows the receiver to retrieve the original message, X, using the 

below decryption function: 

𝑋 = 𝐷𝑘(𝑌) 

     During the decryption process, the decryption algorithm must apply the same secret 

key that has been used in the encryption process. Therefore, the algorithm being used 

must enable any person to perform the deciphering process, without using the pre-shared 

key or even figuring out the secret key from the ciphered text. Thus, it is important to note 

the minimum specifications required while using the encryption algorithm. Accordingly, 

such an implementation must ensure the secrecy of the secret key, because all the 

information will be readable to the opponent if he/she knows the secret key and 

encryption algorithms.  

 In general, the security of this scheme is maintained by ensuring that the security 

mechanisms are being used by the sender and receiver. It should be also noted that 

encryption algorithms are not kept secret for the following reasons: 

➢ To help manufacturers in developing a low-cost implementation of data 

encryption algorithms  

➢ To help in providing a number of products with different cost allowing end-users 

to select from varieties.          

 Symmetric key cryptography has two categories: stream cipher and block cipher. The 

concept of the former is based on encrypting bit individually by adding a bit from secret 

keystream to the plaintext. The stream cipher is further divided into two types: 

synchronous stream cipher and asynchronous stream cipher. The synchronous stream 

cipher is only dependent on the secret keystream, whereas  asynchronous stream ciphering 

the keystream depends on the cipher text. 
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    The synchronous stream cipher is the most practically-used stream cipher, and 

an A5/1 cipher, an example of it, particularly used in the GSM mobile phone standard. 

The concept of the block cipher is based on encrypting the entire block of the plaintext at 

a time using the secret key.  

 Advance Encryption Standard (AES) and Data Encryption Standard (DES) or triple 

(3DES) are standards comes under the block cipher. The AES has a block length of 128 

bits (16 Bytes) and DES has a block length of 64 bits. To summarize, the symmetric key 

cryptography is still playing a major role in providing the security services, such as 

confidentiality, integrity and authenticity due to its efficiency and short key length. 

Although it does have powerful advantages, it has some cons which are listed below: 

1. It requires a secure transmission channel before exchanging the secret key 

between the sender and receiver.  

2. Setting up shared key manually results in losing control over the secret keys, 

especially when it is used in the large network which contains a large number of 

entities. 

3. More storage requirements will be needed for storing a large number of key pairs. 

These drawbacks can be tackled by using public-key cryptography in line with symmetric 

key efficiencies and functionalities.  

2.4 Public Key Cryptography 

Public key cryptography was invented by Diffe Halmen and Markle in 1976. The concept of 

the public cryptography is based on using two different keys (public or private key) during 

encryption and decryption processes.  Both of the keys are to be generated by the receiver 

party. Accordingly, the receiver must communicate his public key to the transmitter side. 

Upon receiving the public key, the transmitter will be in a position to encrypt the data using 

the public key provided by the receiver party.  To decrypt the message, a receiver must use 

his private key.  Although their keys need to be communicated between sender and receiver, 

the main disadvantage here is that these two keys are transmitted over insecure channels, as 

shown in Figure 2.1. The use of a public-key algorithm is not limited to exchanging the key, 

but it can also be used for proving the authentication through the digital signature. 

Furthermore, there are three basic mechanisms for the public-key algorithm:  



Chapter 2: Background Theory 

 
 

 

 2-8 

 

1. Digital Signature 

2. Encryption  

3. Key Establishment Protocol and Key Transport Protocol        

In addition to the above mechanisms, the public key schemes allow implementing all 

required functionalities for modern security protocols, such as SSL/TLS [27].  However, 

implementing public-key schemes is not an easy task due to its high computational 

requirements. For that, implementing cryptographic system requires a mixed implementation 

of symmetric and asymmetric key cryptography, which could be nominated as a hybrid 

cryptosystem. Hybrid cryptosystem can be achieved by using the public key algorithm for the 

Title Title

Plain Text 

Public key

Plain Text 

(Output)

Insecure 

Channel
Encryption Decryption 

Title

Cipher Text

Title

Cipher Text

Key Generation 

To Public

Public Key 

Distribution

Private Key

 

 

 

Figure 2.2 Public key cryptography model 
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key establishment, and the symmetric key algorithm will be used to perform the data 

encryption processes.   

 There are three main families for public key cryptography listed in Figure 2.3:  

 

The first category of the public key algorithms referred to as Integer Based Problem (IFP). 

The concept of these algorithms is based on determining the prime factors of a given positive 

integer. RSA, which refers to its developers of the algorithm Rivest, Shamir and Adleman, is 

one of the famous IFP families [27].  

  The second type of public key algorithms is called a Discrete Algorithm 

Problem (DLP). These types of algorithms are based on finding positive integer k of a given 

α and β such that β =∝ 𝑘 𝑚𝑜𝑑 𝑝. The two examples of this algorithm are Diffie-Hellman Key 

exchange protocol and digital key exchange.  

 The last type of this family is called Elliptic Curve Discrete Logarithm Problem 

(ECDLP). Its concept is based on finding the positive integer, K, on a given points P and Q in 

the elliptic curve that is defined over a finite field, such that Q=K.P. Elliptic Curve Diffie 

Hellman (ECDH) key exchange protocol and Elliptic Curve Digital Signature Algorithm 

(ECDSA) are examples of ECDLP based algorithms. 

Title Title
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(Input)

X

Secret Key Shared 

by Sender and 

Receiver

Transmitted 

Cipher text 
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by Sender and 
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(Output)

Y= E(K,X)

Encryption 

Algorithm (e.g 
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Decryption 

Algorithm 

Reverse of 

Encryption 

Algorithm)

X= D(K,Y)

 

 

Figure 2.3 Symmetric-key cryptography model 
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2.4.1 Some Definitions From Number Theory  

A finite group and field are the primary mathematical constructs used in public-key 

cryptography. These constructs contain a non-empty set of elements, and they have the ability 

to generate other set of elements if it is jointly operated with one or more functions.  In this 

thesis, we consider some definitions concerning elementary common algebraic structures. 

These include groups, rings and fields. Seeking further detail, we refer the reader to [28] as it 

provides in-depth details for a finite field.  

Groups  

DEF. 2.1 A group (G) is defined as a set of elements along with binary operation "*", 

satisfying four properties. An Abelian group is the most common type of algebraic groups 

that satisfies the four properties defined below [1, 20, 29]:  

1. Closure: The group is called closure if a and b are elements of G, then 𝑐 = 𝑎 ∗ 𝑏 is 

also an element of G – in which the result obtained after applying the operation on 

any two elements in the set. 

2. Associatively: The group is to be considered associative if a, b and c are elements of 

G, then (a*b)*c=a*(b*c) – in which the operations can be applied in any order.  

3. Commutativity: To satisfy a commutative rule all of a and b in G should satisfy   

a*b=b*a. 

4. Existence of identity: For all ‘a’ in G, there exists an element e, called the identity 

element, such that e*a=a*e=a. 

5. Existence of an inverse: The existent element for each a in G is 𝑎′ and known as 

inverse of a and such that 𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒. 

  Despite the groups that involve one single operation, the properties provided 

on the operation allow using the pairs of operations. For example, addition and subtraction 

operations could be supported by defined addition operation in the group, as long as addition 

is using inverse – in which, if the identity element e=0, then the inverse is 𝑎−1 = −𝑎.  

DEF. 2.2 If the set has a finite number of elements, it is said to be a finite group; otherwise, it 

is known as an infinite group [20]. The number of elements in a finite group is referred to as 

the order of the group, |G|. However, if the group is not finite, its order also is infinite; if the 

group is finite, the order is finite.  
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DEF. 2.3 A subset H of a group G is a subgroup of G, if H itself is a group with respect to 

the operation on G. Therefore, if 𝑮 =< 𝑆,•> is a group, 𝐻 =< 𝑇,•>  is a group under the 

same operation, and T is a non-empty subset of S, H is a subgroup of G [28]. In accordance 

with this, the definition implies the following [20]: 

1. The groups share the same identity element. 

2. Each group has a subgroup of itself. 

3. The group made of the identity element of G, H=<[5],•> is a subgroup of G. 

4. If a and b are members of both groups, then c=a*b is also a member of the groups. 

5. If a is a member of both groups, the inverse of a is also a member of both groups. 

DEF. 2.4 A multiplicative finite group G is called cyclic if all elements of the group 𝑎 ∈ 𝐺 

can be generated by repeated application of group operation. Thus, if there is an element 𝑎 ∈

𝐺 such that for any 𝑎 ∈ 𝐺, there is some integer j with 𝑏 = 𝑎𝑗. However, such an element is 

nominated as a generator of the cyclic group and to be written as 𝑮 = 〈𝑎〉 [28].  

DEF. 2.5 If a subgroup of a group can be produced by applying the power of an element, 

then it is known as the cyclic subgroup. The term “power” here stands for repeatedly 

employing the group process to the element, which is presented below[20] :   

𝑎𝑛 → 𝑎 ∗ 𝑎 ∗ ⋯∗ 𝑎(𝑛 𝑡𝑖𝑚𝑒𝑠) 

Ring  

DEF. 2.6 A ring is an algebraic structure having two operations, and denoted as 𝑅 =< {⋯ },∗

, >. All of the abelian group properties must be fulfilled by the first operation. The second 

operation must satisfy only the first two properties, and it must distribute over the first 

operation. 

DEF. 2.7 A ring is called distributive if all a,b and c elements of R have 𝑎□(𝑏 ∗ 𝑐) = 

(a□b)*(a□c) and (a*b)□c=(a□c)*(b□c). A commutative ring is a ring in which the 

commutative property is also satisfied for the second operation.  

Field 

DEF. 2.8 A field represented by F=<{⋯},*,□> is a commutative ring in which the second 

operation satisfies all five properties defined for the first operation, except that the identity of 

the first operation and (sometimes called the zero elements), which has no inverse.  
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 2.4.2 RSA 

 RSA, whose concept was first introduced by Diffie-Hellman,  was developed by 

Revest, Adi Shamir and Len Adleman in 1978. Their main objective was the development of 

a cryptographic algorithm that could meet the requirements of the public-key cryptosystem. 

The RSA algorithm can be categorized under the block cipher. The format of the plaintext 

and ciphertext in the RSA, whose typical size is 1024 bits or 309 decimal digits < 21024, is 

referred to as integers between 0 and n-1. 21024. 

 RSA is involved in various applications like key transport, encrypting small pieces of 

data. Digital signature is another application of RSA which can be utilized for the digital 

certificates on the internet. RSA is unable to replace the symmetric cipher since it is very 

much slower due to higher number of computations in comparison with the AES.  The main 

purpose of having RSA encryption feature is to provide highly secure key exchanges for a 

symmetric cipher. The primary objective of RSA encryption feature is proving the highest 

security for key exchanges in a symmetric cipher, which means that the RSA is generally 

used along with symmetric ciphers like AES since it has the responsibility of performing bulk 

encryption of the data [20].  The RSA encryption is accomplished by using ring 𝑍𝑛 and 

modular computation. The functions below describe the RSA encryption and decryption. 

RSA Encryption: 

Given the public key (n,e) ≡ 𝐾𝑝𝑢𝑏  and Plaintext  Y=e. 𝐾𝑝𝑢𝑏   (x) ≡𝑋𝑒 modn where, x,y ϵ 𝑍𝑛 

RSA Decryption: 

Given the private key d ≡ 𝐾𝑝𝑟𝑖𝑣𝑎𝑡𝑒  the ciphertext  Y, X ≡ d. 𝐾𝑝𝑟𝑖𝑣𝑎𝑡𝑒  (Y) ≡ Yd modn  where, X,Y ϵ 𝑍𝑛 

 Generally, implementing RSA is more critical in comparison with 3DES or AES since 

it involves the exponation of large numbers. Additionally it involves algorithms of modular 

multiplication, squaring and multiply [20]. As the RSA has high computational complexity, 

the Elliptic Curve Cryptography (ECC) is another option for implementing public key 

cryptosystem due to its attractive features and reported efficiencies [1]. Some of the merits of 

ECC are listed below: 

● ECC can provide the same level of security as that of RSA with smaller key sizes. 

● ECC requires lesser memory size and faster arithmetic operations. 
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● There exists a high possibility of implementing ECC in the constrained devices like 

mobiles, as it requires less memory and less power consumption.   

Therefore, based on the ECC advantages, we consider it as the main scope of this thesis.    

  2.4.3 Digital Signature Algorithm (DSA) 

 The main concept of a digital signature scheme is to provide the same services 

provided by traditional signature. Normally, a conventional signature is included in the 

document, whereas a digital signature is a separate entity. To verify the conventional 

signature, the recipient needs to compare the signature with a signature in the document, 

whereas to verify a digital signature, the recipient needs to apply a verification process to the 

documents and signature. Different services that could be provided by digital signature 

include message authentication, integrity and non- repudiation. 

 A confidential communication cannot be provided by a digital signature. Thus, if 

confidentiality is needed, the message and the signature must be encrypted using either secret 

key or public-key cryptosystem. For example, the RSA digital signature scheme uses the 

RSA cryptosystem, and also the ElGamal digital signature uses ElGamal cryptosystem. In 

normal public key cryptography communication, we use the public key and private key of the 

receiver. In contrast, with digital signature communication, the public and private key of the 

sender is used.   

 Besides the RSA digital signature and ElGamal digital signature, Elliptic Curve 

Digital Signature Algorithm came as an alternative solution for providing confidential 

service. ECDSA consists of three processes, which are key generation process, signing 

process and signature process. These processes are explained in detail below and are based on 

implementing ECDSA between the sender Alice and the receiver Bob: 

➢ Key Generation process: 

1. Alice selects elliptic curve 𝐸𝑃(𝑎, 𝑏) with 𝑝 is a prime number. 

2. Alice selects 𝑞 which to be used in the calculation  

3. Alice selects the private key 𝑑 

4. Alice selects the point in the curve 𝑒1(… . . , … . . ) 

5. Alice calculate 𝑒2 which can be obtained by multiplying 𝑑 × 𝑒1 = 𝑒2 

6. Alice is now ready to send the public key which includes (𝑎, 𝑏, 𝑝, 𝑞, 𝑒1, 𝑒2) 
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➢ Signing Process: The main purpose of the signing process is selection of a random 

number, creation of a third point, calculation of the signature and sending the message 

with the signature. 

1. Alice selects random number 𝑟 between 1 and 𝑞 − 1 

2. Alice calculates the third point 𝑃 = 𝑟 × 𝑒1(… . , … . )𝑃 = (𝑈, 𝑉) 

3. Alice calculates the first signature 𝑠1 = 𝑈𝑚𝑜𝑑𝑞 

4. Alice calculates the second signature 𝑠2 = (ℎ(𝑀) + 𝑑 × 𝑠1)𝑟−1𝑚𝑜𝑑 𝑞 where 

(ℎ)𝑀 = message digest,𝑑 = private key 𝑟 = secret random number 

5. Alice sends 𝑠1, 𝑠2 and the message  

➢ Verification Processes  

1. Bo calculates the intermediate result (𝐴 𝑎𝑛𝑑 𝐵)as below: 

▪ 𝐴 = ℎ(𝑀)𝑠1−1𝑚𝑜𝑑𝑞  and   𝐵 = 𝑠2−1𝑠1 𝑚𝑜𝑑𝑞 

2. Bob constructs the 𝑇 𝑝𝑜𝑖𝑛𝑡 𝑇(𝑥, 𝑦) = 𝐴 × 𝑒1(⋯ ,⋯ )𝑎𝑛𝑑 𝐵 × 𝑒2(⋯ ,⋯ ) if 

𝑥 = 𝑠1 then the signature is True.  

2.5 Elliptic Curve Key Cryptography 

 Although the RSA and ElGamal cryptosystems are providing considerably secure 

symmetric key cryptosystems, their security comes with a price due to their large keys. To 

overcome this issue, researchers have looked for alternatives that offer the same level of 

security with smaller key sizes. One of the promising solutions is the Elliptic Curve 

Cryptography (ECC). The principle of Elliptic Curve, backdated to the mid of 19th century, 

was discovered by Victor Miller (IBM) and Neil Koblitz (University of Washington) in 1985. 

  Table 1 clearly exemplifies the fact that ECC requires a much smaller key size in 

comparison to RSA for providing the same level of security since the security per key bit rate 

is much higher. For example, the level of security offered by a 3072-bit legacy key (RSA) is 

Table 2.1 NIST Guidelines for Public key size [2] 

ECC key RSA/DH key Size Key-Size Ratio AES Key Size 

163 bit  1024 bit 1:6 N/A 

256 bit  3072 bit 1:12 128 bit 

384 bit  7680 bit 1:20 192 bit 

512 bit 15360 1:30 256 bit 
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the same as that offered by a 256 bit ECC key, and thus ECC offers better performance with a 

key size that is 1/12th of RSA key. This type of performance efficiency gets better on 

increasing the security level. Hence, they can be effectively used in constrained platforms 

like wireless devices, handheld computers, smart cards, etc. [30] 

 The Concept of Elliptic Curve Cryptography is very rich with theories and deep 

arithmetic. Therefore, ECC implementation requires a focus on different arithmetic and  

operations and algorithms. Figure 2.4 describes the system level of elliptic curve 

cryptography implementation. The top layer in the pyramid represents the implementation of 

ECC Protocols levels, such as Elliptic Curve Digital Signature Algorithm (ECDSA), Elliptic 

Curve Diffie Hellman ECDH and Elliptic Curve Integrated Encryption Schemes (ECIES). 

Scalar point multiplication is considered as a second level before ECC protocol. The 

fundamental operation of the elliptic curve cryptography is scalar point multiplication, which 

is defined in equation (2.1) as follows: 

                                                      Q = k.P                                                                      (2.1) 

 The scalar point multiplication is based on point addition and point multiplication. 

The point addition operation for two given points 𝑃, 𝑄 ∈ 𝐸, resulting in point known as the 

sum of P and Q,𝑃 + 𝑄 ∈ 𝐸, whereas the point multiplication is the process concern of 

 

 
 

Figure 2.4 ECC Implementation Pyramid 
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multiplying two elements in the multiplication group GF*(q) for integer modulo a prime P.  

Different point multiplication algorithms are presented in [1] to compute (1). The 

performance of ECC depends on the point multiplication and its associated coordinates 

systems. The scalar point multiplication for two points 𝑄, 𝑃 ∈ 𝐸 𝐺𝐹(𝑞)⁄  which belongs to 

elliptic curve 𝐸 ∈ 𝑮𝐹(𝑞) is basically defined over an Abelian group as shown below: 

𝑄 = 𝐾.𝑃 = 𝑃 + 𝑃⋯𝑃 + 𝑃⏟        
𝑘−1 𝑡𝑖𝑚𝑒𝑠

 

 The implementation of Elliptic Curve Cryptography is based on scalar point 

multiplication and Elliptic Curve Discrete Logarithm Problem (ECDLP). The concept of 

ECDLP based on finding K for a given Q and P, where the parameter of K is called discreet 

algorithm of Q to the base P and K= 𝑙𝑜𝑔𝑝 Q Despite the availability of this algorithm, it does 

not have the capability to solve the ECDLP, as it can only be used for factorizing a large 

number. For this reason, the RSA requires a larger key size, and ECC can provide the same 

level of security with a shorter key length.  

 An elliptic curve E over a field K could be defined over either the field R of the real 

numbers, the field Q of rational numbers, the field C of complex numbers, or finite field 𝐹𝑞 of 

𝑞 = 𝑝𝑟elements. Figure 2.5 shows an elliptic curve over the rational field Q. Thus, an elliptic 

 

 

 

Figure 2.5 The Elliptic Curve 𝒚𝟐 = 𝒙𝟑 − 𝟓𝒙 + 𝟒 over R 
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curve over K is to be defined as a set of points (𝑥, 𝑦) where 𝑥, 𝑦 ∈ 𝐾 that satisfies the 

following equation: 

                     𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏                                                                 (2.3) 

where 𝑎, 𝑏 ∈ 𝑘 is to be a cubic polynomial with no multiple roots and K is to be a field of 

characteristic ≠ 2,3.   

Therefore, the elliptic curve E over finite field 𝐺𝐹 is to be defined using the following long 

Weierstrass equation in the projective form [1]: 

𝐸: 𝑌2𝑍 + 𝑎1𝑋𝑌𝑍 + 𝑎3𝑌𝑍
2 = 𝑋3 + 𝑎2𝑋

2𝑍 + 𝑎4𝑋𝑍
2 + 𝑎6𝑍

3                        (2.4) 

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ 𝐺𝐹. 

Weierstrass equation (2.4) represents a smooth elliptic curve in projective coordinates. It has 

the correspondence in the affine (Euclidean) coordinates, containing the form: 

𝐸: 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥
3 + 𝑎2𝑥

2 + 𝑎4𝑥 + 𝑎6                                            (2.5) 

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ 𝐺𝐹. and ∆≠ 0 and ∆ is discriminante of 𝐸 which defined as below: 

∆= −𝑑2
2𝑑8 − 8𝑑4

3 − 27𝑑6
2 + 9𝑑2𝑑4𝑑6         

𝑑2 = 𝑎1
2 + 4𝑎2                                                   

𝑑4 = 2𝑎4 + 𝑎1𝑎3                                              

𝑑6 = 𝑎3
2 + 4𝑎6                                                    

𝑑8 = 𝑎1
2𝑎6 + 4𝑎2𝑎6 − 𝑎1𝑎3𝑎4 + 𝑎2𝑎3

2 − 𝑎4
2}
 
 

 
 

 

However, the below simplified Weierstrass equations provided by [1] shows that it is not 

necessary to use whole equations (2.4 and 2.4 ). In which, the same original Weierstrass 

equation could be rewritten in a simpler way, depending upon the field characteristics. 

Simplified Weierstrass equations:   

1. When characteristics of K is not equal to either 2 or 3 then E transforms to a curve 

where 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ 𝐾 𝑎𝑛𝑑 ∆= −16(4𝑎3 + 27𝑏2). 

2. When characteristics of K is 2 and if 𝑎1 ≠ 0, then E transforms to non-super singular 

curve where 𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑎, 𝑏 ∈ 𝐾 𝑎𝑛𝑑 ∆= 𝑏. 

3. When characteristics of K is 2 and if 𝑎1 = 0 then E transforms to a supersingular 

curve where 𝐸: 𝑦2 + 𝑐𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑎, 𝑏, 𝑐 ∈ 𝐾 𝑎𝑛𝑑 ∆= 𝑐4. 
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4. When characteristics of K is 3 and 𝑎1
2 ≠ −𝑎2, then E transforms to a non-super 

singular curve where 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑎, 𝑏, 𝑐 ∈ 𝐾 𝑎𝑛𝑑 ∆= −𝑎3𝑏. 

5. When characteristics of K is 3 and 𝑎1
2 = −𝑎2, then E transforms to a supersingular 

curve where 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑎, 𝑏, 𝑐 ∈ 𝐾 𝑎𝑛𝑑 ∆= −𝑎3. 

Points on the Elliptic Curve  

 The points in the elliptic curve E over the field L are defined below: 

𝐸(𝐿) = {∞} ∪ {(𝑥, 𝑦) ∈ 𝐿 × 𝐿|𝑦2 +⋯ = 𝑥3 +⋯} 

The points in the elliptic curve are to be known as the set of a collection in the union of the 

point at infinity where (𝑥, 𝑦) that belongs to L, which satisfy the original curve equation 

(2.5). The point at infinity is kind of a point sitting at the top of y-axis and bottom of the y-

axis. Using the Diophantus techniques drawing a vertical line between two points in the 

elliptic curve, these two points should intersect in the elliptic curve in the third point. 

However, in the case of the point at infinity, the points will actually intersect again in the 

elliptic curve at the point of infinity. In fact, this is very useful as it helps in defining the 

concept of the group, which is very much needed in order to apply the elliptic curve concept 

for various applications. In principle, the elliptic curve should form an abelian group as it has 

two points P and Q in a defined field over the elliptic curve, resulting in a third point denoted 

by P+ Q lays on E the field. Thus, given two points 𝑃, 𝑄 in 𝐸(𝐹𝑝) yield a third point, denoted 

by 𝑃 + 𝑄 on 𝐸(𝐹𝑝), which should satisfy the following properties: 

▪ 𝑃 + 𝑄 = 𝑄 + 𝑃 (Commutativity) – in which adding P and Q should be identical if we 

are adding Q and P. 

▪ (𝑃 + 𝑄) + 𝑅 = 𝑃 + (𝑄 + 𝑅) (Associativity) – which means it does not matter in 

which order we are performing the addition operation.  

▪ 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃 (existence of an identity element). This means there should be an 

identity element, and if we add P and O, then we should get back as the same as O 

plus P because of the commutativity property. Also, both of them should actually go 

back to P as there is O. However, O is generally referred to as the point of infinity, 

which is assumed to be the identity element in the plus operation.   

▪ Three exists (−𝑃) such that −𝑃 + 𝑃 = 𝑝 + (−𝑃) = 𝑂  (Existence of Inverse). This 

property means that another point exists as (−𝑃), such that if we take (−𝑃) and 
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added with (−𝑃) that additive is the inverse of P, which should give us back O point 

on infinity again. Therefore, a minus P is the additive inverse of P.           

Point Addition Point Doubling 

For example, if we have two points 𝑃 𝑎𝑛𝑑 𝑄 in the elliptic curve: 

 

𝑦2 = 𝑥3 − 𝑥 + 1 

 

which shows the form of an elliptic curve that we have chosen here, if 𝑃 𝑎𝑛𝑑 𝑄 are two 

points in this curve. Thus, we can define the addition operation for the 𝑃 𝑎𝑛𝑑 𝑄 using 

Diophantus techniques – in which we can draw a straight line through them, and it will 

intersect in the elliptic curve in the third point. Accordingly, we take the reflection of the 

third point in x-axis as the sum, and we refer 𝑅 as the sum of P 𝑎𝑛𝑑 𝑄 . In fact, this has a 

very close relationship with Diophantus techniques.  

2.5.2 Elliptic Curve Parameter Selection  

 In general, the implementation of ECC requires more focus and a number of decisions 

taken at different levels are  presented in the ECC pyramid (Figure 2.4). 

 

Figure 2.6 The Elliptic Curve Point Addition 𝒚𝟐 = 𝒙𝟑 − 𝒙 + 𝟏 
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▪ At the ECC protocol layer  

o Appropriate selection of protocols (key exchange or signature) 

▪ At the Scalar Point Multiplication layer 

o Selecting the algorithm for scalar point Multiplication 𝑘. 𝑃      

▪ At the Elliptic Curve layer 

o To select a proper point addition and point doubling algorithms 

o To choose the type of representation for the points (affine or projective 

coordinates) 

▪ At the Field Arithmetic layer  

o A decision for selecting an underlying field (𝐺𝐹(2𝑚), 𝐺𝐹(𝑝), 𝐺𝐹(𝑝𝑚)) need 

to be taken. 

o A selection of the field representation (e.g polynomial or normal basis) 

o Appropriate selection for the finite field algorithms (Addition, Multiplication, 

Squaring, Reduction, Inversing)  

 Having such choices and huge flexibility makes ECC feasible for both constrained 

devices and high-performance servers. Subsequently, we first provide a fundamental 

arithmetic for the curve defined over prime field 𝐺𝐹(𝑝) (Section 2.5.3) and elliptic over the 

binary field 𝐺𝐹(2𝑚) (Section 2.5.4). In general, in this thesis, we only present the algorithms 

that are applied in our research.  Further detail of different algorithms could be obtained in [1, 

25].     

2.5.3 Elliptic Curve Arithmetic Over 𝑮𝑭(𝑷)  

 Finite field or Galois field was invented by (Evariste Galois) in the 19th century [31]. 

The finite filed is a field included with finite field order. The order of finite field could be 

represented by the prime or the power of a prime [32]. In practice, the finite field is used in 

many applications besides the cryptography like number theory, algebraic geometry Galois 

theory and quantum error correction. ECC could be implemented in constrained devices 

underlying three types of finite fields which include: elliptic curve over prime field GF(p), 

elliptic Curve over binary fled GF(2m)  and over a prime extension field GF(pm).  However, 

in this thesis, our research is based only on the binary field and prime field.  Further details 

will be provided in the next sections, but they are limited to those related to this thesis. 

The elliptic curve over prime field is represented by the following equation: 
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𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝,   𝑤ℎ𝑒𝑟𝑒 4𝑎3 + 27𝑏2𝑚𝑜𝑑 𝑝 ≠ 0  

The finite field elements for the above equation are integers number between 0 and p − 1. 

The integers to be involved in all of the Elliptic Curve modular arithmetic operations include 

addition, subtraction, multiplication, division and multiplicative inverse. The selection of 

prime number is to be conducted based on SEC specification, where p is rated between 112-

521 bits. Figure 2.5 shows points generated by Sagemath tool for the prime field of size y2 =

x3 + x  

 

 

 

 

 

 

 

Projective coordinate representations  

 Mathematically, elliptic curve over prime field consisting of integer P over finite field 

𝐺𝐹(𝑝) and the elements 𝑎, 𝑏 ∈ 𝐹𝑝 can be defined by the equation below: 

E: y2 ≡ x3 + ax + b (mod p) 

Basically, (𝑥, 𝑦) points are to be represented by the coordinate referred to as Affine 

Coordinates (Α). However, it is a very common practice that projective coordinates are used 

in replacing the Affine Coordinates and represent the points P and Q. This is because Affine 

Coordinates over the prime field is expensive due to the necessary field inversion operations 

during the Elliptic Curve Scalar Point Multiplication (ECSPM) computations.  

▪ Using the standard projective coordinates, the affine point (X Z⁄ , Y Z⁄ )  could be used 

in correspondence to the projective point (X: Y: Z), Z ≠ 0. The point at infinity ∞ 

 

Figure 2.7 Elliptic Curve Point for 𝒚𝟐 = 𝒙𝟑 + 𝒙 
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corresponds to  corresponds to  (0: 1: 0), and the negative of (X: Y: Z) is (X:−Y: Z). 

The elliptic curve equation that corresponds to the standard projective coordinates is: 

Y2Z = X3 + aXZ2 + bZ3 

▪ Using the Jacobian projective coordinates, the affine point (X Z2⁄ , Y Z3⁄ )  could be 

used in correspondence to the projective point (X: Y: Z), Z ≠ 0. The point at infinity ∞ 

corresponds to  (0: 1: 0), and the negative of (X: Y: Z) is (X:−Y: Z). The elliptic curve 

equation corresponding to the Jacobian projective coordinates is: 

Y2Z = X3 + aXZ4 + bZ6 

The calculation of point addition and point doubling is highly dependent on the type of the 

selected projective coordinates. Thus, these representations can be considered as 

advantageous if the inversion operation is more expensive when compared to multiplication 

in the finite field. To accomplish the processes of elliptic curve arithmetic, a single inversion 

at the end of point addition and point doubling is needed. This can be achieved using the 

Fermat's Little Theorem: x−1 ≡ xp−2 mod p. However, Table 2.2 illustrates different 

complexity concerning group operations for a different type of coordinates representation on 

𝑦2 = 𝑥3 − 3𝑥 + 𝑏. Where A=affine representation, J=Jacobin, P=Standard Projective, I= 

Field Inversion, M=Field Multiplication, S=Field Squaring.  

  2.5.4 Field Arithmetic over 𝑮𝑭(𝑷) 
  In this section, we present some of the algorithms functioning as arithmetic in the 

prime field  𝐺𝐹(𝑃). In fact, the elliptic curve cryptography is to be defined on a finite field 

known as Galois Field GF. The selected GF is used to define a set of operations that are used 

to compute point doubling and point addition. However, in the case of GF(P) the 

performance of modular arithmetic is very essential, as its performance directly affects the 

Table 2.2 Point addition and Point Doubling Operation Counts[1] 

Point Doubling General Addition Mixed 

Coordinates 

2A →A 1I,2M,2S A+A→A 1I,2M,1S J+A→J 8M,3S 

2P → P 7M, 3S P+P→P 12M,2S  

2J → J 4M,4S J+J→J 12M,4S  
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overall performance of ECC algorithms on GF(P). Since field arithmetic over GF(P) consists 

of several algorithms, we presented some of these algorithms along with their functionality.  

Modular Reduction:    

The modular operation is to be used for reducing to modulo P, where P is large. In which, a 

finite field of order P, GF(P) with P prime is to be identified as the set 𝑍𝑝 of integers 

{0,1,⋯ , 𝑃 − 1}. The main concept of modular 𝑅 arithmetic is based on dividing C by M 

where C, M ∈ 𝑍 such that 𝑀 < 𝐶. In which, the modular reduction is a process of computing 

𝑅 = 𝐶 𝑚𝑜𝑑 𝑀 – i.e., the remainder R of the division C is to be represented as below: 

𝑅 = 𝐶 − ⌊
𝐶

𝑀
⌋𝑀 

 Having a modular reduction in place would help in avoiding an expensive operation. 

For example, the expensive operations to be conducted by division operation could be 

avoided by using modular reduction. Additionally, having a special form of reduction steps 

for modulo P  can result in archiving a considerable acceleration, which would directly 

enhance the performance of ECC. Performing ECC computation consists of conducting a 

variety of modulo P arithmetic. Different modular reduction algorithms have been proposed 

by researchers to help in achieving fast reduction. For example, a classical method could be 

replaced by Barret methods, due to its powerful mechanism on conducting a reduction with 

less-expensive operations. Alternatively, when the cost of input and output conversions is 

cancelled out,  the Montgomery’s method could be selected because it is capable of reducing 

the number of intermediate multiplications [1]. In addition to that, there are five 

recommended elliptic curves by FIPS 186-2 standard with moduli, as shown below, that can 

yield fast reduction algorithms, especially on word size 32 [1]: 

𝑃192 = 2
192 − 264 − 1 

𝑃224 = 2
224 − 296 + 1 

𝑃256 = 2
256 − 2224 + 2192 + 296 − 1 

𝑃384 = 2
384 − 2128 − 296 + 232 − 1 

𝑝521 = 2
521 − 1 
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 Considering the above prime properties, a powerful reduction algorithm could be 

obtained especially with a machine with 32-word size. In fact, these properties could be 

presented as sum or differences of a small number of power 2. However, these powers appear 

to be a multiple of 32. For example, a 𝑃 = 𝑃192 = 2
192 − 264 − 1 could be reduced using a 

congruence arithmetic. Thus, let c be an integer with 0 ≤ 𝑐 < 𝑃2 

𝑐 =  𝑐5𝑐
320 + 𝑐42

256 + 𝑐32
192 + 𝑐22

128 + 𝑐12
64 + 𝑐0  

where the base of 264 representation of c where each 𝑐𝑖 ∈ [0,2
64 − 1]  reduce the higher 

power of 2 in (2.) using the congruence  

𝑐 ≡ 𝑐52
128 + 𝑐52

64 + 𝑐5 + 𝑐42
128 + 𝑐42

64 + 𝑐32
64 + 𝑐3 + 𝑐22

128 + 𝑐12
64 + 𝑐0 (𝑚𝑜𝑑 𝑃) 

and 𝑐 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝 can obtained by adding the four 192-bit integers  𝑐52
128 + 𝑐52

64 +

𝑐5, 𝑐42
128 + 𝑐42

64, 𝑐32
64 + 𝑐3, 𝑐22

128 + 𝑐12
64 + 𝑐0 and continually subtracting  P until the 

result is less than p. This procedure can be illustrated on fast modular reduction for modulo 

𝑃192 = 2
192 − 264 − 1 Algorithm 2.1 [1]. However, in chapter 6, we consider using a 

Generic Generalized Mersenne Reduction procedure as proposed by [19].   

 

 

      Algorithm 2.1  Fast Reduction modulo𝑷𝟏𝟗𝟐 = 𝟐
𝟏𝟗𝟐 − 𝟐𝟔𝟒 − 𝟏  

INPUT: An integer 𝑐 = (𝑐5, 𝑐4, 𝑐3, 𝑐2, 𝑐1, 𝑐0) in base 264 with 0 ≤ 𝑐 < 𝑃162
2  . 

OUTPUT: 𝑐 𝑚𝑜𝑑𝑃192  
1) 𝐷𝑒𝑓𝑖𝑛𝑒 192 − 𝑏𝑖𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  
    

   𝑠1 = (𝑐2, 𝑐1, 𝑐0),  𝑠2 = (0, 𝑐3, 𝑐3), 
   𝑠3 = (𝑐4, 𝑐4, 0),  ) 𝑠4 = (𝑐5, 𝑐5, 𝑐5) 
 

2) Return (𝑠1 + 𝑠2 + 𝑠3 + 𝑠4) 𝑚𝑜𝑑 𝑃192  
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Addition and Subtraction: The mechanism for performing the field addition and subtraction 

is quite straightforward. [1] proposed Algorithm 2.2 and Algorithm 2.3 performs the addition 

and subtraction respectively of multiword integers where assigning in the form “(ε,z)←w” for 

an integer w means that  𝑧 ← 𝑤 𝑚𝑜𝑑2𝑊  and 𝜀 ← 0 𝑖𝑓 𝑤 ∈ [0, 2𝑊),  otherwise 𝜀 ← 1.    

   However, to compute modular addition ((𝑥 + 𝑦)𝑚𝑜𝑑 𝑃) and subtraction  ((𝑥 −

𝑦)𝑚𝑜𝑑 𝑃), some modification with additional reduction steps on reduction modulo P are 

required. These steps start by performing the steps mentioned in Algorithms 2.2 and 

Algorithm 2.3, then processed with If and Else If statements, as shown below:  

Modular Addition:  

If 𝜀 = 1, then substract 𝑃 𝑓𝑟𝑜𝑚 𝑐 = (𝐶[𝑡 − 1],⋯ , 𝐶[2], 𝐶[1], 𝐶[0]); 

Else if 𝑐 ≥ 𝑃 𝑡ℎ𝑒𝑛 𝑐 ← 𝑐 − 𝑝  

      Algorithm 2.2  Multi-precision addition  

 

INPUT: Integers 𝑎, 𝑏 ∈ [0, 2𝑊𝑡). 𝑐 
OUTPUT: (𝜀, 𝑐)𝑤ℎ𝑒𝑟𝑒 𝑐 = 𝑎 + 𝑏 𝑚𝑜𝑑2𝑊𝑡  𝑎𝑛𝑑 𝜀 𝑖𝑠 𝑐𝑎𝑟𝑟𝑦 𝑏𝑖𝑡.  

1)  (𝜀, 𝐶[0]) ← 𝐴[0] + 𝐵[0]. 
 

2) For 𝑖 from 1 to 𝑡 − 1 do. 

 

2.1 (𝜀, (𝐶[𝑖]) ← 𝐴[𝑖] + 𝐵[𝑖] + 𝜀     
 

3) Return  (𝜀, 𝑐) 
 

 

 

      Algorithm 2.3  Multi-precision subtraction  

 

INPUT: Integers a,b ∈ [0, 2Wt).  

OUTPUT: (ε, c) where c = a + b mod 2Wt and ε is the carry bit.  

1. (ε,C[0])← A[0] + B[0].  

2. For i from 1 to t −1 do  

2.1  (ε, C[i])← A[i] + B[i] +ε.  

3. Return(ε, c). 
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Modular Subtraction:  

If 𝜀 = 1, then add 𝑃 𝑡𝑜 𝑐 = (𝐶[𝑡 − 1],⋯ , 𝐶[2],𝐶[1], 𝐶[0]); 

Modular Multiplication:  

 The efficiency of modular multiplication plays a very important role in the overall 

performance of ECC. However, to perform a field multiplication of 𝑎, 𝑏 ∈ 𝐹𝑃, the 

multiplication process of a and b as integers need to be accomplished first. Then, they need to 

be processed with a reduction process of the result modulo p. Operand-scanning, product 

scanning, Comba Algorithm, Montgomery Multiplication and Karatusba Multiplication are 

the most popular modular multiplication algorithms. The operand scanning method and 

product scanning method are based on obtaining the bit quantity (U V) by concatenating of 

W-bit word U and  V.  Algorithm 2.4 illustrates the integer multiplication using the operand 

scanning method. In this algorithm, the main operation is to be executed in step 2.2, known as 

inner product operation. The calculation process is used to be represented by 𝐶[𝑖 + 𝑗] + 𝐴[𝑖] ∙

𝐵[𝑗] + 𝑈 and operands are w-bit values. In general, the inner product in this algorithm is 

bounded by  2(2𝑤 − 1) + (2𝑤 − 1)2 = 2𝑤 − 1, which can be depicted by (UV). 

  A product scanning Algorithm 2.5 is based on calculating the product c = a. b from 

right to left. However, a (2w) bit of w− bit operand is required and values of 

R0, R1, R2, U and V are presented by w-bit words. Another form of product scanning 

algorithm is so-called a Comba algorithm, proposed by [33]. The idea of Comba algorithm is 

quite similar to the product scanning, since the outer loops move through the words of 

product P. As shown in Algorithm 2.6, a Comba algorithm mainly consists of two inner loops 

and two outer loops. The inner loops are responsible for performing a bulk of computation. 

This includes executing Multiply-Accumulate (MAC) operations (i.e., two bits words are 

multiplied and 2 w − bit products to be added to the accumulative sum). Therefore, three w-

bit registers are needed for storage purposes, since the same operation can be easily longer 

than w-bit long. The accumulative sum of the values (t,U,V) represent the integer value 

𝑡. 22𝑤 +𝑈. 2𝑤 + 𝑉. As shown in the Algorithm 2.6, it is very clear that line 7 and 14 are just 

performing right -shift of accumulative sum (t,U,V) [17]. After conducting the integer 

multiplication using the Comba algorithm, a fast modular reduction algorithms proposed by 

[1] or [19] could be used in order to reduce the result of modulo P.       
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     However, these new techniques of multiplication created a consolidated background for 

the researchers to select between them during the implementation. Also, it opens trapdoor to 

them for further enhancement, such as the work conducted by [17]. 

 

 

 

 

      Algorithm 2.4  Integer Multiplication - Operand Scanning  

 
INPUT: INPUT: Integers 𝑎, 𝑏 ∈ [0, 𝑃 − 1] 
OUTPUT: 𝑐 = 𝑎. 𝑏 .  
1)  𝑆𝑒𝑡 𝐶[𝑖] ← 0𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑡 − 1 
2) For i from 0 to 𝑡 − 1 do. 

2.1 𝑈 ← 0. 
2.2 For j form 0 to 𝑡 − 1 do 
              (𝑈 𝑉) ← 𝐶[𝑖 + 𝑗] + 𝐴[𝑖]. 𝐵[𝑗] + 𝑈 
              𝐶[𝑖 + 𝑗] ← 𝑉. 
               
  2.3 𝐶[𝑖 + 𝑡] ← 𝑈   

3) Return  (𝑐) 
 

 

 

      Algorithm 2.5  Integer Multiplication - Product Scanning  

 
INPUT: INPUT: Integers 𝑎, 𝑏 ∈ [0, 𝑃 − 1] 
OUTPUT: 𝑐 = 𝑎. 𝑏 .  

1)  𝑅0 ← 0,𝑅1 ← 0, 𝑅2 ← 0 
 
2) For 𝑘 from 0 to 2𝑡 − 2 do. 

 
2.1 For each element of {(𝑖, 𝑗)|𝑖 + 𝑗 = 𝑘, 0 ≤ 𝑖, 𝑗 ≤ 𝑡 − 1} do 
              (𝑈 𝑉) ← 𝐴[𝑖]. 𝐵[𝑗] 
              (𝜀, 𝑅0) ← 𝑅0 + 𝑉. 
              (𝜀, 𝑅1) ← 𝑅1 + 𝑈 + 𝜀. 
              𝑅2 ← 𝑅2 + 𝜀. 
  2.2 𝐶[𝑘] ← 𝑅0,  𝑅0 ← 𝑅1, 𝑅1 ← 𝑅2, 𝑅2 ← 0   

3) C[2𝑡 − 1] ← 𝑅0. 
4) Return  (𝑐) 

 
 

 



Chapter 2: Background Theory 

 
 

 

 2-28 

 

 

Modular Squaring: 

 In general, a field squaring of 𝑎 ∈  𝐹𝑃 could be completed by firstly squaring a as an 

integer, then reducing obtained result modulo P. The principle of squaring long integer A is 

considered to be faster compared to multiplication operation 𝐴. 𝐵. This is due to the 

symmetries of the squaring operation. However, the 2w-bit terms of the form 𝑎𝑥 . 𝑎𝑦 appears 

to be once for 𝑥 = 𝑦 and twice for 𝑥 ≠ 𝑦. In fact, as 𝑎𝑥 . 𝑎𝑦  and 𝑎𝑦. 𝑎𝑥 are similar, the 

squaring computation is to be accomplished by one-time multiplication and performing left 

shift in accordance. 

  In addition to the multiplication, the Comba Algorithm could be also used for 

squaring. This is because the Comba squaring is structured with a nested loop. The nested 

Algorithm 2.6 Comba Algorithm  

INPUT: 𝐴 = (𝑎𝑠−1 , ⋯ , 𝑎1, 𝑎0,) 𝑎𝑛𝑑 𝐵 = (𝑏𝑠−1 , ⋯ , 𝑏1, 𝑏0,).   

OUTPUT: Product = 𝐴. 𝐵 (𝑃2𝑠−1,⋯ , 𝑃1, 𝑃0)  

1: (𝑡, 𝑢, 𝑣) ← 0   

2: for i from 0 by 1 to s do 

3:     for j from 0 by 1 to i do  

4:          (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗  

5:     end for  

6:     𝑃𝑖 ← 𝑣 

7:     𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0 

8:   end for  

 9:   for i from  s by 1 to 2s-1 do  

10:      for j from i+1--s by 1 to s do  

11:           (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗  

12:       end for  

13:       𝑃𝑖 ← 𝑣 

14:       𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0 

14:  end for  

15: 𝑃2𝑠−1 ← 𝑣                                      
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loop in Comba squaring is to be only iterated by 𝑠
2

2⁄  compared to (𝑠2 + 𝑠)/2 in single 

precision multiplication. In which, the operation in inner loop could be presented by the 

following form: 

(𝑡, 𝑈, 𝑉) ← (𝑡, 𝑈, 𝑉) + 2(𝑎𝑗 + 𝑎𝑖−𝑗) 

Modular Inversion:   

 The process of finding the inversion in a prime field can be done using a direct 

exponentiation technique. Thus, if 𝐵 is an element of prime field 𝐺𝐹(𝑃) and 𝐶 an inverse of 

field 𝐵, then the inverse could be computed using a direct exponentiation of 𝐶 = 𝐵−1 =

𝐵𝑃−2. However, direct exponentiation is considered to be costly, as it involves modular 

multiplication, modular squaring and modular reduction. Therefore, a binary extended 

Euclidean Algorithm could be considered as the most effective way of implementing 

inversion [1]. This is because the only divisions done are by 2 and accordingly processed 

with a right-shift. The normal process of computing 𝑔𝑐𝑑 of positive integers 𝑎 𝑎𝑛𝑑 𝑏  is 

implemented through a classical Euclidean Algorithm. The algorithm is based on dividing 

𝑏 𝑏𝑦 𝑎 and obtaining a quotient and a remainder where 𝑏 ≥ 𝑎. The overall process should 

satisfy 𝑏 = 𝑞𝑎 + 𝑟 and 0 ≤ 𝑟 ≤ 𝑎. However, to achieve this,  𝑔𝑐𝑑 (𝑎, 𝑏) is to be reduced by 

computing 𝑔𝑐𝑑 (𝑟, 𝑎) until the argument (𝑟, 𝑎) is obtained smaller than the argument (𝑎, 𝑏) 

and the process need to be repeated until one of the argument is 0 with a result of 

𝑔𝑐𝑑  (0, 𝑑)  = 𝑑. Therefore, at this point, the algorithm could be terminated, as there are no 

negative remainders to be reduced. Hence, this method is very efficient, since division steps 

could be shown at most 2𝑘 where 𝑘 is the length of 𝑎. The mechanism above could be 

extended to Euclidean Algorithm 2.7 to find integers 𝑥 𝑎𝑛𝑑 𝑦 in which 𝑎𝑥 + 𝑏𝑦 =

𝑑 where 𝑑 = 𝑔𝑐𝑑 (𝑎, 𝑏) .   
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 However, finding a modular inversion using Extended Euclidean could be achieved 

by slightly modifying Algorithm 2.7. For that, let P prime, 𝑎 ∈ [1, 𝑃 − 1] and Algorithm 2.8 

is processed with input (𝑎, 𝑃). Thus, the last none zero remainder 𝑟 encountered in step 3.1 is 

𝑟 = 1. In which, the integers 𝑢1, 𝑥 𝑎𝑛𝑑 𝑦1 is to be updated in step 3.2 where 𝑎𝑥1 + 𝑃𝑦1 = 𝑢 

with 𝑢 = 1. These results 𝑎𝑥1 ≡ 1 (𝑚𝑜𝑑 𝑃) 𝑎𝑛𝑑 𝑎
−1 = 𝑥1𝑚𝑜𝑑 𝑃 considering that 

𝑦1 𝑎𝑛𝑑 𝑦2 are not required for determining 𝑟1.   

 

 

 

 

      Algorithm 2.8  𝑭𝑷 Inversion using Extended Euclidean   

 
INPUT: INPUT: Prime 𝑃 𝑎𝑛𝑑 𝑎 ∈ [1, 𝑃 − 1] 
OUTPUT: 𝑎−1 𝑚𝑜𝑑 𝑃. 

1)  𝑢 ← 𝑎, 𝑣 ← 𝑝 

 

2) 𝑥1 ← 1, 𝑦1 ← 0, 𝑥2 ← 0 

 

3) While u ≠ 0 do 

             3.1 𝑞 ← ⌊𝑣 𝑢⁄ ⌋, 𝑟 ← 𝑣 − 𝑞𝑢, 𝑥 ← 𝑥2 − 𝑞𝑥1 

             3.2 𝑣 ← 𝑢, 𝑢 ← 𝑟, 𝑥2 ← 𝑥1, 𝑥1 ← 𝑥 

            

4) Return  (𝑥1𝑚𝑜𝑑 𝑃) 
 
 

 

      Algorithm 2.7  Extended Euclidean Algorithm for Integers   

 

INPUT: INPUT: Positive Integers 𝑎 and  𝑏 with 𝑎 ≤ 𝑏. 

OUTPUT: 𝑑 = gcd(𝑎, 𝑏) and integers 𝑥, 𝑦 satisfying 𝑎𝑥 + 𝑏𝑦 = 𝑑  

1)  𝑢 ← 𝑎, 𝑣 ← 𝑏 

 

2) 𝑥1 ← 1, 𝑦1 ← 0, 𝑥2 ← 0, 𝑦2 ← 1 

 

3) While u ≠ 0 do 

             3.1 𝑞 ← ⌊𝑣 𝑢⁄ ⌋, 𝑟 ← 𝑣 − 𝑞𝑢, 𝑥 ← 𝑥2 − 𝑞𝑥1, 𝑦 ← 𝑦2 − 𝑞𝑦1 
             3.2 𝑣 ← 𝑢, 𝑢 ← 𝑟, 𝑥2 ← 𝑥1, 𝑥1 ← 𝑥, 𝑦2 ← 𝑦1, 𝑦1 ← 𝑦 

            

4)𝑑 ← 𝑣, 𝑥 ← 𝑥2, 𝑦 ← 𝑦2 
5) Return  (𝑑, 𝑥, 𝑦) 
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2.5.5 Elliptic Curve Arithmetic over 𝑮𝑭(𝟐𝒎) 

    The general form of Elliptic Curve over binary field 𝐸(2𝑚) is to be presented by the 

following equation: 

𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏                                                                                                    (2.1) 

where 𝑎, 𝑏 are parameters ∈ 𝐺𝐹(2𝑚), 𝑏 ≠ 0 and {(𝑋𝑖, 𝑌𝑖), for 𝑋𝑖, 𝑌𝑖 ∈ 𝐺𝐹(2
𝑚)} are set of 

solutions for equation (2.1). However, the number of the points in 𝐺𝐹(2𝑚) are denoted by 

#𝐸(2𝑚), whereas the addition inverse point 𝑅𝑖(𝑋𝑟 , 𝑌𝑟) of 𝐸(2𝑚) is defined as −𝑅(𝑋𝑟 , 𝑋𝑟 −

𝑌𝑟) and the elliptic curve 𝐸(2𝑚) points from addition group are normally satisfying closure, 

identity and inverse properties. [1] proposed the below set of rules for defending the 

operations of Elliptic Curve over 𝐺𝐹(2𝑚)   

Point Addition Rule:  

The result of adding two points, P and Q, where 𝑃: (𝑋𝑝, 𝑌𝑝) ∈ (2
𝑚), 𝑄: (𝑋𝑞 , 𝑌𝑞) ∈ (2

𝑚), 

𝑋𝑝 ≠ 𝑋𝑞 and the coordinates of R is (𝑋𝑟 , 𝑌𝑟) is given by 

𝑋𝑟 = 𝑠
2 + 𝑠 + 𝑋𝑝 + 𝑋𝑞 + 𝑎, 𝑌𝑟 = 𝑠(𝑋𝑝 + 𝑋𝑟) + 𝑌𝑝 + 𝑋𝑟 , 𝑤ℎ𝑒𝑟𝑒 𝑠 =

𝑌𝑝+𝑌𝑞

𝑋𝑝+𝑋𝑞
                 (2.2)  

Point doubling rule:  

The result of doubling points P where 𝑃: (𝑋𝑝, 𝑌𝑝) ∈ (2
𝑚),  𝑋𝑝 ≠ 0 and the coordinates of R 

is (𝑋𝑟 , 𝑌𝑟) is given by 

𝑋𝑟 = 𝑠
2 + 𝑠 + 𝑎, 𝑌𝑟 = 𝑋𝑝

2 + (𝑠 + 1)𝑋𝑟 , 𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑋𝑝 +
𝑌𝑝

𝑋𝑝
                                       (2.3) 

Projective coordinate representations  

 The process of elliptic curve key generation and elliptic curve digital signature 

contain modular inverse operations. In fact, as mentioned previously, the modular inversion 

is considered to be too costly in terms of time complexity compared to multiplication 

computation. Therefore, an alternative way to avoid such cost is to convert the affine 

coordinates (𝑋, 𝑌) of elliptic curve point to the projective coordinate (𝑋∗, 𝑌∗, 𝑍∗) and to take 

care of denominator part of the operations with 𝑍∗. The process is to be finalized by returning 

back the projective coordinates (𝑋∗, 𝑌∗, 𝑍∗) to affine coordinates (𝑋, 𝑌). There are different 

types of projective coordinates considering the elliptic curve of a non super-singular formula 

shown: 
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𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 

1. Standard projective coordinates  

 The projective equation of elliptic curve is presented by the following equation: 

𝑌2𝑍 + 𝑋𝑌𝑍 = 𝑋3 + 𝑎𝑋2𝑍 + 𝑏𝑍3 

where the point of infinity ∞ corresponds to (0:1: 0), negative points of (𝑋: 𝑌: 𝑍) is (𝑋:𝑋 +

𝑌: 𝑍). The projective point (𝑋: 𝑌: 𝑍) for 𝑍 ≠ 0 corresponds to Affine point (𝑋 𝑍⁄ , 𝑌 𝑍⁄ ) 

where 𝑐 = 1 𝑎𝑛𝑑 𝑑 = 1. 

2. Jacobian Projective Coordinates  

 In this type of projective coordinate, the projective point (𝑋: 𝑌: 𝑍) corresponds to 

Affine points (𝑋 𝑍2, 𝑌 𝑍3⁄ )⁄  where, 𝑍 ≠ 0, 𝑐 = 2, 𝑑 = 3, Point at infinty ∞ corresponds 

to (1: 1: 0) and negative points of (𝑋: 𝑌: 𝑍)is (𝑋: 𝑋 + 𝑌: 𝑍). Also, the projective equation 

of elliptic curve is to be presented as below:  

𝑌2 + 𝑋𝑌𝑍 = 𝑋3 + 𝑎𝑋2𝑍2 + 𝑏𝑍6 

3. Lopez-Dahab(LD) Projective Coordinates 

 The projective equation of elliptic curve is presented by the following equation: 

𝑌2 + 𝑋𝑌𝑍 = 𝑋3𝑍 + 𝑎𝑋2𝑍2 + 𝑏𝑍4 

where the point of infinity ∞ corresponds to (1:0: 0), negative points of (𝑋: 𝑌: 𝑍) is (𝑋:𝑋 +

𝑌: 𝑍). The projective point (𝑋: 𝑌: 𝑍) for 𝑍 ≠ 0 corresponds to Affine point (𝑋 𝑍⁄ , 𝑌 𝑍2⁄ ) 

where 𝑐 = 1 𝑎𝑛𝑑 𝑑 = 2. 

2.5.6 Field Arithmetic over 𝑮𝑭(𝟐𝒎) 
 

 In practice, there is no practical use of implementing elliptic curve over the real 

numbers. This is due to the computational limitation and constraints. Therefore, in this 

subsection, we discuss the mechanism and related computation arithmetic of implementing 

elliptic curve over binary field 𝐺𝐹(2𝑚), where the order of elliptic curve can be defined up to 

𝑚 − 𝑏𝑖𝑡. Until recently, most of the applications, such as ECDSA over 𝐺𝐹(2𝑚), defines 𝑚 to 

be equal or greater than 163 bits. Thus, most of the ECDSA operations over  𝐺𝐹(2𝑚) involve 

m-bit integers. In the other words, the size of elliptic curve coefficients, points and elliptic 
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curve are all m-bit numbers. However, performing elliptic curve over binary field 𝐺𝐹(2𝑚) 

requires many binary arithmetic functions that include modular reduction, addition, 

multiplication, squaring and inverse.  

 The practical implementation of the arithmetic operations on embedded processors 

normally works using 4-bit, 8-bit,16-bit and 32-bits words. In this, we normally do not 

perform m-bit arithmetic bit by bit as it is time consuming. Taking into account that, we can 

handle 𝐺𝐹(2𝑚) field elements most of the time as 32-bit words. Thus, we can present the 32-

bits word elements as 𝑋 = (𝑥[𝑛 − 1],⋯ , 𝑥[2], 𝑥[1], 𝑥[0]) of 𝐺𝐹(2𝑚), where 𝑛 = [𝑚 32⁄ ] 

and the right most bit 𝑥[0] is LSB bit of the m-bit field elements. Whereas, the Left most 𝑡 =

(32𝑛 −𝑚) bit of 𝑥[𝑛 − 1] are not used and to be set to zero.  For example, if 𝑚 = 163 then 

𝑛 = 6 words, which can be presented as (𝑥[5], 𝑥[4], 𝑥[3], 𝑥[2], 𝑥[1], 𝑥[0]) with left-most 𝑡 =

29 bits that to be set to zero in 𝑥[5].      

Modular Reduction with 𝐟(𝐱):  

A modulus computation for 𝑓(𝑥) based on the output of 𝐺𝐹(2𝑚) can be achieved if 𝑓(𝑥) =

𝑥𝑚 + 𝑟(𝑥) is irreducible binary (Primitives) polynomial of degree of 𝑚 and if the elements 

of degree 𝑚 and if the elements of 𝐺𝐹(2𝑚) is also generated using primitive polynomial 

𝑓(𝑥), where the elements of  𝐺𝐹(2𝑚) of the degree at most 𝑚 − 1. Additionally, the 𝐺𝐹(2𝑚) 

field elements is an 𝑚 − 𝑏𝑖𝑡 member, which can be presented in polynomial form as 𝑎(𝑥) =

𝑎𝑚−1𝑥
𝑚−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 or 𝐴 = [𝑎𝑚−1, 𝑎𝑚−𝑥 , ⋯ , 𝑎2, 𝑎1, 𝑎0] for a vector form 

representation.  

The binary arithmetic for squaring and multiplication with 𝑚 − 1 polynomial resulting the 

output polynomial with a degree of 2𝑚 − 2. Therefore, we can compute 𝑌(𝑥) 𝑚𝑜𝑑𝑢𝑙𝑜 𝑓(𝑥) 

if the output of 𝑌(𝑥) is greater than the degree of the primitive polynomial. Having such 

mechanism, we will be to ensure that the output result 𝑌(𝑥) polynomial is less than 𝑚. It is 

very often that the binary field arithmetic 𝑖 is to be normally consider true for 𝑥𝑖 =

𝑥𝑖−𝑚 𝑟(𝑥)(𝑚𝑜𝑑 𝑓(𝑥)) 𝑖𝑓 𝑖 ≥ 𝑚.  For example, if we consider 𝑚 = 163 then 2𝑚 − 2  

degree 𝑌(𝑥). Accordingly, we can use 32 − 𝑏𝑖𝑡 𝑤𝑜𝑟𝑑 by utilizing a 32-bit vector, which 

could be represented as below: 

𝑌 = (𝑦[10], 𝑦[9]⋯ , 𝑦[2], 𝑦[1], 𝑦[0]) 
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Assuming that 𝑓(𝑥) is to be trinomial or pent-nominal having middle terms close to each 

others. Accordingly, we can process a reduction process of 𝑌(𝑥)𝑚𝑜𝑑𝑢𝑙𝑜 𝑓(𝑥) in very 

effective way by reducing 32 − 𝑏𝑖𝑡 at a time. The reduction process of 𝑦[9] starts by adding 

𝑦[9] four times to 𝑌. In detail, the process is to be accomplished by using 0th  of 𝐿𝑆𝐵 belongs 

to 𝑦[9] and added to bit 132,131,128 and 125 of 𝑌. Then, we can add the first 𝐿𝑆𝐵 of 𝑦[9] to 

bit 133,129 and 126 of 𝑦[9] and so on. For example, if 𝑓(𝑥) = 𝑥163 + 𝑥7 + 𝑥6 + 𝑥3, then 

the computation for the modular reduction for 𝑦[9] should start from bit 288 to 319 of 𝑌 as 

shown below:  

𝑥288 = 𝑥132 + 𝑥131 + 𝑥128 + 𝑥125 (𝑚𝑜𝑑 𝑓(𝑥)) 

𝑥289 = 𝑥133 + 𝑥132 + 𝑥129 + 𝑥126 (𝑚𝑜𝑑 𝑓(𝑥)) 

⋯ 

𝑥318 = 𝑥162 + 𝑥161 + 𝑥158 + 𝑥155 (𝑚𝑜𝑑 𝑓(𝑥)) 

𝑥319 = 𝑥163 + 𝑥162 + 𝑥159 + 𝑥156 (𝑚𝑜𝑑 𝑓(𝑥)) 

For further detail about modular reduction over binary field, that related can be found in 

Chapter 4 (Section 4.4.2) and [1] . 
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Finite Field Multiplication over Binary Field: 

The third field elements known as 𝑐(𝑧) = 𝑎(𝑧). 𝑏(𝑧) 𝑚𝑜𝑑 𝑓(𝑧). In fact, conducting finite 

field multiplication could involves two steps: polynomial multiplication and reduction 

process of modulo using irreducible polynomial. In fact, there are two benefits of using 

irreducible polynomial: firstly, it simplifies a reduction process, and secondly, it can help to 

fewer nonzero especially with spare irreducible. However, many algorithms have been 

proposed by researchers to help implement binary field multiplication, which include: Pencil 

and Paper Polynomial Multiplication algorithm, Karatusba-Ofman Algorithm, Montgomery 

Algorithm and Comba Multiplication Algorithm. 

 The concept of Pencil and Paper Multiplication illustrated in Algorithm 2.9 is 

basically based on modifying the Shift-and-add multiplication Algorithm proposed by [34]. 

The method of Pencil and Paper Polynomial Multiplication is denoted by ⨂. However, the 

principle is normally conducted by multiplying individually the word 𝐴[𝑖] and 𝐵[𝑗] where  

𝑎(𝑥) = (𝐴[𝑡 − 1],⋯ , 𝐴[1], 𝐴[0]) and 𝐵(𝑥) = (𝐵[𝑡 − 1],⋯ , 𝐵[1],𝐵[0]), which accordingly 

result in two words output. The process of obtaining the word level polynomial product 

involves the following: 

● Scanning the coefficients of 𝐵[𝑗] from 𝑏𝑤−1 to 𝑏0  

● Summing the partial product 𝐴[𝑖]𝑏𝑘  to the running sum 

      Algorithm 2.9 Pencil and Paper Polynomial Multiplication   

 
INPUT: binary Polynomial 𝑎(𝑥) = (𝐴[𝑡 − 1]⋯𝐴[1], 𝐴[0])𝑎𝑛𝑑 𝑏(𝑥) = (𝑏[𝑡 −
1],⋯𝐵[1], 𝐵[0]) of the degree max 𝑚− 1 

OUTPUT: Polynomial product (C[2t-1],⋯ ,𝐶[1], 𝐶[0]) = 𝐴⊗ 𝐵 

 

1)  𝑓𝑜𝑟 (𝑖 = 0 𝑡𝑜 2(𝑡 − 1) 
       C[i]← 0 

      End for                

2) for (i= 0 𝑡𝑜 𝑡 − 1) 
           For (𝑗 = 0 𝑡𝑜 𝑡 − 1) 
                  P,Q← 𝐴[𝑖]⨂𝐵[𝑗] 
                  C[i+j]← 𝐶[𝑖 + 𝑗]⨁𝑃 

                  C[i+j+1]← 𝐶[𝑖 + 𝑗 + 1]⨁𝑃 

           End for  

     End for     
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However, the partial product could be either 0 if 𝑏𝑘 = 0 or multiplicand 𝐴[𝑖] if 𝑏𝑘 = 1. 

Accordingly, after each partial addition the product is to be multiplied by 𝑥 (just one bit left 

shifting) to make the necessary alignment for the next partial product.     

 Alternatively the Karatusba- Ofman Algorithm [35] proposed a recursive divide-and 

conquer approach to multiply two polynomials plus reducing the number of single precision 

multiplication. This mechanism works on replacing the multiplication operations with many 

additions operations – due to the fact that addition operation can be accomplished and 

processed faster on microprocessor compare to the multiplication operations.        

 The procedure for multiplying 𝑎(𝑥) and 𝑏(𝑥) of degree at most 𝑚− 1 using 

Karatusba- Ofman Algorithm mainly consists of the two steps. The first step is to split 𝑎(𝑥) 

and 𝑏(𝑥) into two polynomials of degree at most (
𝑚

2
) − 1. However, in case m is odd, then 

the polynomials are to be pretended with zeros. Thus, A(x) = A1(x)X + A0(x) − B(x) =

B1(x)X + B0(x),where X = x
m
2⁄ . Accordingly, 𝑎(𝑥). 𝑏(𝑥) = 𝐴1𝐵1𝑋

2 + [(𝐴1 + 𝐴0)(𝐵1 +

𝐵0) + 𝐴1𝐵1 + 𝐴0𝐵0]𝑋 + 𝐴0𝐵0 and 𝑋 products is to be derived from three products of degree 

(𝑚 2 − 1⁄ ) per the following steps: 

• 𝑚 − 𝑏𝑖𝑡 multiplication is performed by two 𝑚 2⁄  bit multiplication.  

• one (𝑚 2 + 1) − 𝑏𝑖𝑡⁄  multiplication responsible to handle the output of sum term 

• Several multi-precision addition  

 Accordingly, the results, of 
𝑚

2
𝑎𝑛𝑑 𝑚 2 + 1⁄  could be recalculated again using 

Karatusba Ofman Algorithm which could lead to have a recursive multiplication algorithm. 

However, the practical implementation shows that the number of used recursion levels will be 

finally dictated by the amount of overhead associated with algorithm implementation. Also, it 

will be relatively dictated by the performance of the multiplication and addition process. For 

instance, applying 192-bit binary polynomials with a 32-word-length processor leads to the 

following recursions [29]:  

192 → 96 + 96 → 32,32,32 + 32,32,32 𝑜𝑟 

192 → 64 + 64 + 64 → 32,32 + 32,32 + 32,32 

      The initial attempt of computing 𝑎. 𝑏 in 𝐺𝐹(2𝑚) was proposed by Koc and Acar 

and proposed in [36]. Their proposal was based on computing 𝑎. 𝑏. 𝑟−1  in 𝐺𝐹(2𝑚), where 𝑟  
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is to be considered special fixed elements of 𝐺𝐹(2𝑚). Accordingly, Montgomery in [37] 

proposed modular multiplication of integers. The recent software implementation of 

Montgomery proposal shows its capabilities to enhance the overall performance of integer 

multiplication. However, such proposal is highly dependent on the selection of 𝑟(𝑥) = 𝑥𝑚, 

where 𝑟  is the element of the field denoted by 𝑟(𝑥)𝑚𝑜𝑑 𝑓(𝑥) 𝑖. 𝑒 if 𝑓 =

( 𝑓𝑚−1, 𝑓𝑚 ,⋯ , 𝑓1, 𝑓0 ) then 𝑟 = (𝑓𝑚 , ⋯ 𝑓1, 𝑓0). Additionally, to implement Montgomery 

multiplication, it necessary that 𝑟(𝑥)𝑎𝑛𝑑 𝑓(𝑥) are to be relatively prime 𝑖. 𝑒

𝑔𝑐𝑑 𝑔𝑐𝑑 𝑟(𝑥). 𝑓(𝑥) = 1   in which 𝑓(𝑥) should not be divisible by 𝑥. Whereas, the 𝑓(𝑥) is 

an irreducible polynomial over 𝐺𝐹(2) as well as  𝑟(𝑥) and 𝑓(𝑥) are relatively primes. This 

resulting two polynomials known as 𝑟−1(𝑥) and 𝑓′(𝑥) with the propriety:  

𝑟(𝑥)𝑟−1(𝑥) + 𝑓′(𝑥)𝑓(𝑥) = 1 

where 𝑟−1 is the inverse of 𝑟(𝑥) modulus 𝑓(𝑥).  

 The Extended Euclidean algorithm could be used to compute the 𝑟−1(𝑥) and 𝑓′(𝑥) 

polynomial. In order to compute the word level of Montgomery products, it is required to 

calculate the w-length of f0(x) rather than computing the entire polynomial f(x) which is 

normally known as the length of 𝑘 = 𝑡𝑤. It is worth mentioning here that the efficiency of 

the inversion algorithm is based on observing the polynomial of f0(x),in which its inverse 

should satisfy 𝑓0(𝑥)𝑓
′(𝑥) = 1 𝑚𝑜𝑑 𝑥𝑖 for 𝑖 = 1,2,3⋯𝑤.  

On the other hand, Comba [33] proposed accelerating the multiplication by reducing the 

number of extended references during the time of execution. The proposed idea is based on 

eliminating the write-back operation just by changing the order of partial product 

generation/accumulation. In which, each result is to be computed in its entirety and sequence. 

This operation is to be carried out with least significant word-only as well as values of 𝐴[𝑖] 

and 𝐵[𝑗] to be read from memory. Further improvement of comba could help significantly 

the storage overhead. All polynomials 𝑢(𝑥) could be obtained by computing 𝑢(𝑥)𝑏(𝑥) of 

degree less than 𝑤 (Window Length). However, further detail about Comba algorithm is 

discussed in Chapter 4.             

2.5.7 Group Law  

 It is very essential to define an algebraic structure for a cryptosystem that is based on 

elliptic curve 𝐸 over the filed 𝐾. The purpose of the algebraic structure is to explain the 

arithmetic rules and the relationship of the points on a selected curve as well as defining the 
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identity, zero and inverse elements.  However, as we described the Elliptic Curve earlier in 

(section 2.5) the idea of the elliptic curve is based on having two points in the elliptic curve, 

and accordingly, we can produce other points. Therefore, in this section, we provide a 

detailed description of the group laws for the elliptic curve over the prime field and binary 

field. 

Elliptic over Prime field 𝐅𝐩 Group Laws: 

 In general, an elliptic curve 𝐸 over prime field 𝐾 with characteristic 𝐾 ≠ 2,3  is a set 

of solutions that usually satisfy the following simplified Weierstrass equation: 

𝐸 𝐾: 𝑦2⁄ = 𝑥3 + 𝑎𝑥 + 𝑏 

where 𝑎, 𝑏 ∈ 𝐾 and 4𝑎3 + 27𝑏2 ≠ 0 combined with point at infinity ∞.  In which, the group 

laws of an elliptic curve over the prime field as shown below[1]: 

Identity  

 𝑃 +∞ = ∞+ 𝑃 = 𝑃 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃 ∈ 𝐸(𝐾) 

Negatives  

If  𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐾) then  𝑃 + 𝑄 = ∞ where the point 𝑄 = (𝑥, −𝑦)  ∈ 𝐸(𝐾) which is 

known as negative of 𝑃 and denoted by −𝑃. Note that, −∞ = ∞. 

Point Addition  

Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐾)  and 𝑄 = (𝑥2, 𝑦2) ∈ 𝐸(𝐾), where 𝑃 ≠ ±𝑄. Then 𝑃 + 𝑄 = (𝑦3, 𝑥3), 

where  

𝑥3 = (
𝑦2−𝑦1

𝑥2−𝑥1
)2 − 𝑥1 − 𝑥2 and 𝑦3 = (

𝑦2−𝑦1

𝑥2−𝑥1
) (𝑥1 − 𝑥3) − 𝑦1. 

Point Doubling  

Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐾),  where 𝑃 ≠ −𝑃. Then 2𝑃 = (𝑦3, 𝑥3), where  

𝑥3 = (
3𝑥1

2+𝑎

2𝑦1
)2 − 2𝑥1 and 𝑦3 = (

3𝑥1
2+𝑎

2𝑦1
) (𝑥1 − 𝑥3) − 𝑦1. 
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Elliptic over Binary field 𝑭𝟐𝒎  Group Laws:  

An elliptic curve 𝐸over non-super singular 𝐹2𝑚  is  the set of solutions to be represented by 

the following simplified Weierstrass equation[1]: 

𝐸 𝐹2𝑚⁄ : 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 

Identity  

𝑃 + ∞ = ∞+ 𝑃 = 𝑃 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃 ∈ 𝐸(𝐹2𝑚)  

Negatives  

If  𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐹2𝑚) then  𝑃 + 𝑄 = ∞ where the point 𝑄 = (𝑥, 𝑥 + 𝑦)  ∈ 𝐸(𝐹2𝑚) which 

is known as negative of 𝑃 and denoted by −𝑃. Note that, −∞ = ∞. 

Point Addition  

Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹2𝑚)  and 𝑄 = (𝑥2, 𝑦2) ∈ 𝐸(𝐹2𝑚), where 𝑃 ≠ ±𝑄. Then 𝑃 + 𝑄 =

(𝑦3, 𝑥3), where  

𝜆3 = 𝜆
2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎 and 𝑦3 = 𝜆(𝑥1 + 𝑥3)𝑥3 + 𝑦1 

with 𝜆 = (𝑦1 + 𝑦2) (𝑥1 + 𝑥2)⁄ . 

Point Doubling  

Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹2𝑚),  where 𝑃 ≠ −𝑃. Then 2𝑃 = (𝑦3, 𝑥3), where  

𝑥3 = 𝜆
2 + 𝜆 + 𝑎 = 𝑥1

2 +
𝑏

𝑥1
2 and 𝑦3 = 𝑥1

2 + 𝜆𝑥3 + 𝑥3 with 𝜆 = 𝑥1 + 𝑦1 𝑥1⁄  

2.5.8 Point Multiplication Algorithms 

 In this section, we present different methods related to the computation of [k]P, where 

P is a point in the elliptic curve and k is an integer. Thus, our aim is primarily focused on 

describing the methods of scalar points multiplication utilized in this thesis. Therefore, for 

further understanding and information, we refer the reader to [38]. In fact, point 

multiplication can be considered as a scalar multiplication operation. Its principle is based on 

conducting a series of point doubling and point addition operations. In which, the Q = kP is 

to be generated after performing the full series of point addition and point doubling. It is 

worth mentioning here that the alternative name of point multiplication is scalar point 

multiplication.  
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Elliptic Curve Over 𝑮𝑭(𝑷) Scalar Multiplication: 

Scalar multiplication is considered dominant of the ECC operation, which consumes about 

80% of the time spent to execute the ECC operation [4]. A scalar point multiplication could 

be implemented using various algorithms include: Double and Addition in binary Algorithm, 

window method, NAF and wNAF Algorithm, sliding window Algorithm and Montgomery 

Ladder Algorithm.  

a) Double and Addition in Binary Algorithm 

The idea of this algorithm is based on interpreting 𝑘 to binary format, then performing the 

point addition and point doubling, accordingly. However, to process with such an algorithm, 

we need to conduct point doubling operation for the ′0′ bit, whereas point doubling and 

addition need to be conducted for the ′1′ bit. For example, if  𝑘 = 19 = (10011)2, then the 

following point addition and point doubling will be performed as per Table 2.3. 

b)  Non adjacent Form (NAF) addition-subtraction  

The main purpose of this algorithm is to come up with a binary format in which 𝑘 is not 

adjacent nonzero bit close to each other. Thus, the binary form of the previous example could 

be tackled by changing it below, using the NAF algorithm: 

𝑘 = (10011)2 = (1010 − 1)2 

Table 2.3 Double and Addition in Binary Algorithm 

1 P Initializing  

0 2P Doubling 

0 4P Doubling  

1 9P Doubling and Addition 

1 19P Doubling and Addition 
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a) Montgomery  Ladder Algorithm  

The initial principle of proposing this concept was to develop an algorithm that was capable 

of handling the operations of scalar multiplication in a very efficient way for a specific type 

of elliptic curves. In accordance with that, such a proposal managed to report better 

performance from the speed point-of-view, just by introducing the concept of computing 

(X, Z)  coordinates of the presented intermediate points. In fact, such an enhancement made 

the Montgomery ladder allow more involvement of other algorithms, such as the differential 

addition algorithm. The differential addition algorithm helps calculating the sum of two 

points so that their difference is well known. Further explanation about Montgomery ladder 

algorithm and XYCZ-ADDC algorithms and others are given in Chapter 6.   

Elliptic Curve Over 𝑮𝑭(𝟐𝒎) Scalar Multiplication: 

In this part, we particularly consider scalar multiplication over the binary curve. In which, an 

elliptic curve is defined using the below Weierstrass equation: 

𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 𝑤𝑖𝑡ℎ 𝑎, 𝑏 ∈ 𝐹2𝑚 

where 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2) are two points on a curve𝐸(𝐹2𝑚).  Thus, to compute 

the point addition, the following should be considered: 

{
𝑥3 = 𝜆2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎,

𝑦3 = (𝑥1 + 𝑥3)𝜆 + 𝑥3 + 𝑦1
 

Table 2.4 NAF with Addition and Subtraction 

1 P Initializing  

0 2P Doubling 

1 4P Doubling and addition  

0 9P Doubling  

-1 19P Doubling and subtraction 
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Where 𝜆 = {

𝑦1+𝑦2

𝑥1+𝑦2
 𝑖𝑓 𝑃1 ≠ 𝑃2

𝑦1

𝑥1
+ 𝑥1 𝑖𝑓 𝑃1 = 𝑃2

 From the above, it is very obvious that point addition and 

point doubling involve of an inversion 

From the above, it is very obvious that point addition and point doubling involve of an 

inversion operation in 𝐺𝐹(2𝑚), which is considered a costly operation. Therefore, it is 

recommended to use a projective coordinate instead, as it has the capability to perform the 

curve operation with a bit more field multiplication operations without field operations.  

 However, there are different types of coordinates system that include: standard 

projective coordinate system, Lòpez-Dahab projective coordinate system, Jacobian Projective 

coordinate system and affine coordinate system. While carefully planning to use any one of 

these, it is suggested to consider the number of field operations, as summarized in the 

following table: 

   However, the standard projective coordinates system 𝑃 = (𝑋: 𝑌: 𝑍) is to be 

corresponded to the affine coordinates (𝑋 𝑌, 𝑌 𝑍)⁄⁄  that should satisfy the curve equation (1), 

whereas the Lòpez-Dahab projective coordinates (𝑋: 𝑌: 𝑍) match to the affine coordinates 

(𝑋 𝑌⁄ , 𝑌 𝑍2)⁄ . Computing the scalar point multiplication for a point 𝑃 ∈ 𝐸(𝐺𝐹𝑚) and scalar 

𝑘 ∈ 𝑁: where 𝑘. 𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃⏞          
𝐾 𝑡𝑖𝑚𝑒𝑠 

  is to be achieved using different methods.  

2.6 Elliptic Curve Domain Parameters & Protocols  

 Elliptic curve domain parameters play a very important role in ECC protocol 

implementation. Thus, in the coming subsections, we highlighted these parameters based on 

ECC standards.  

Table 2.5 Number of operations for point addition and point doubling[1] 

Coordinate system General addition General addition (mixed 

coordinates) 

Doubling 

Affine V+M --- V+M 

Standard projective 13M 12M 7M 

Jacobian projective 14M 10M 5M 

Lòpez-Dahab 14M 8M 4M 
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2.6.1  Elliptic Curve Domain Parameters  

 To ensure a proper implementation of elliptic curve cryptography, domain parameters 

need to be highly considered beside the curve parameter a and b. The purpose of using 

Elliptic Curve domain parameters are to validate the primitives of GF(2m ) and GF(p). More 

description on Elliptic Curve domain parameters and how they are generated can be obtained 

from[39].  

The main domain parameters for Elliptic Curve over prime GF(P) are p,a,b,G,n and h. These 

parameters are defined as below: 

1. a and b: These two parameters are responsible for defining the curve 𝑦2 𝑚𝑜𝑑 𝑝 =

𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝  

2. p: It is used to define the prime for the finite field. 

3. G: Is the parameter used to generate the points (𝑋𝐺 , 𝑌𝐺). 

4. n: The parameter is used while selecting the scalar for multiplication. 

5. h: It represents the number of points on an elliptic curve where h is a cofactor. 

 On the other hand, the elliptic curve domain parameter over the binary field GF(2𝑚 ) 

is nominated by 𝒎, 𝒇(𝒙), 𝒂, 𝒃, 𝑮, 𝒏 𝒂𝒏𝒅 𝒉.  Each of these parameters are described below: 

1. 𝒎: An integer value used to define finite field of GF(2𝑚 ) 

2. 𝒇(𝒙): Represents the irreducible polynomial of the  GF(2𝑚 ) degree (𝑚) 

3. 𝒂, 𝒃: Used to define the GF(2𝑚 ) curve 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏  

4. 𝑮: The role of G is to generate the (Gx, Gy) points in the elliptic curve 

5. 𝒏: Used to represent the order of the elliptic curve. 

6. 𝒉: Represents the cofactor and h =≠ E(GF(
2m)

n
) . ≠ E(GF(2m). 

2.6.2 Elliptic Curve Protocols   

 

 In symmetric cryptography, such as RSA and ECC, the number of bit operations is to 

be powered to K, in which (log k log3q) and log notation without base presents a natural 

logarithm [40]. However, the number of bit operations reflects the number needed to 

calculate the coordinates of multipleK. P . Accordingly, it is possible to drive efficient public 

protocols by adopting the ECC [41].   
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I. Elliptic Curve Key Pair Generation: 

 The key generation procedure in ECC is defined as outcomes of multiple additions of 

one or more points in a finite field 𝐺𝐹(𝑞) and point 𝑃 ∈ 𝐸/𝐺𝐹(𝑞) with order 𝑛. 

Consequently, if a user 𝐴 intends to generate the elliptic curve pairs, he/she should validate 

elliptic curve parameters 𝑇 = (𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ) for elliptic curve over 𝐹𝑃or 𝑇 =

(𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺𝑛, ℎ) for elliptic curve over 𝐹2𝑚  [24, 39]. 

II. Elliptic Curve Diffie-Hellman Key Exchange (ECDH) 

 Historically, a principle of Diffie - Hellman key exchange was initially proposed by 

[42]. Their proposal was aimed to show the possibilities of communicating selected keys over 

insecure channels. However, [43] develop a detailed recommendation and specification on 

implementing the Diffie - Hellman key exchange principle based on Discrete Logarithm 

Cryptography and Problem. In general, the steps of implementing the key exchange start by 

the domain verification 𝑇 = (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ)𝑜𝑟 (𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺, 𝑛, ℎ) to be conducted by 

sender and receiver. However, all parties involved in the key generation should maintain its 

key pairs and its domain parameters. The set of domain parameters could be used in different 

key generation scheme and could be used for a certain time without changing them. For 

example, consider that Alice and Bob have to conduct a sort of insecure form of 

communication, in which they are aware that someone is going to be eavesdropping on any 

message they pass back and forth. Therefore, Diffie -Hellman allows them to use public and 

private key pairs to pass messages – in a way such that they need to agree on parameters for 

some elliptic curve so they can pass a secret back and forth by computing points along the 

curve based on these public parameters. In which, the elliptic curve discrete logarithm gets 

involved based on the fact that they need to publicly reveal their points. The ECDH is 

summarized as shown in Algorithm 2.11. 

      Algorithm 2.10 Elliptic Curve Key Pair Generation    

 
INPUT:  Domain Parameters T= (𝑃, 𝑎, 𝑏, 𝐺, 𝑛, ℎ)𝑜𝑟(𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺, 𝑛, ℎ)  
OUTPUT: Elliptic Curve Key Pair (𝑑, 𝑄)𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑇 

 
1. Randomly selection for Integer 𝑑 in the interval[1, 𝑛 − 1]. 
2. Compute 𝑄 = 𝑑𝐺 
3. Output (𝑑, 𝑄) 
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III. Elliptic Curve Digital Signature Algorithm EDSA (Generation) 

The process of ECDSA involves different domain parameters that include 

(𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), where a signed message 𝑚 ∈ 𝐸/𝐺𝐹(𝑞) – assuming that both 𝐴 and 𝐵 

have similar authentication parameters plus the public key 𝑄𝐵 [24]. Therefore, to perform 

ECDSA tasks, a user 𝐴 is required to use his key pair (Q,𝐾𝐴)) [1] as shown in Algorithm 

2.12. 

IV. Elliptic Curve Digital Signature Algorithm EDSA (Verification)  

The EDSA verification process is to be achieved by considering the domain parameters 

(𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), a message 𝑚 and proposed signature information. Algorithm 2.13 

illustrates the process involving the acceptance or rejection for the entire digital signature 

      Algorithm 2.11 Elliptic Curve Digital Signature Algorithm (Generation)    

 
INPUT:  Domain Parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑘𝑒𝑦 𝐾𝐴 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚  
OUTPUT: Signature for the message 𝑚 with the pair (𝑠, 𝑟)  

1. 𝐴 select a random integer 𝐾𝐴in the interval [1,n-1] 
2. Compute𝐾𝐴, 𝑃 = (𝑥1, 𝑦1). Then,  
Let 𝑠 = 𝑥1, where 𝑠 is supposed to be in the interval [1, 𝑛 − 1], 𝑖𝑓 𝑠 = 0 return to 
step1  
3. Compute ℎ(𝑚) denotes the hash function SHA-1 

4. Compute (𝐾𝐴
−1) 𝑀𝑜𝑑 𝑛. 

5. Compute 𝑟 = 𝐾𝐴
−1. (ℎ(𝑚) + 𝐾𝐴𝑠)𝑀𝑜𝑑 𝑛 

If 𝑟 = 0 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑠𝑡𝑒𝑝 1 
6. Return (𝑠, 𝑟)  

 
 

 
      Algorithm 2.12 Elliptic Curve Diffie-Hellman Key exchange(ECDH)    

 
INPUT:  Domain Parameters T= (𝑃, 𝑎, 𝑏, 𝐺, 𝑛, ℎ)𝑜𝑟(𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺, 𝑛, ℎ)  
 
OUTPUT: A shared secret Key  Z 

 

1. Compute Elliptic Curve Point 𝑃 = (𝑥𝑝, 𝑦𝑝) = 𝑑𝑢𝑄𝑣 

 
2. Check if 𝑃 ≠ 𝑂, output "Invalid" and stop 

 
3. Return Z 
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 assigned with the message. However, this process required a user 𝐵 to validate a user 𝐴′𝑠 

signature (𝑠, 𝑟) assigned to message 𝑚. Accordingly, user 𝐵 need to accomplish the rest of 

the algorithm’s steps by using the provided authenticated copy of the 𝐴′𝑠 public key 𝑄. 

V. Elliptic Curve Analogue of ElGamal - Encryption  

In the assumption that both users 𝐴 and 𝐵 have already communicated their key using public 

key using Algorithm 2.11, user 𝐴 could encrypt the required message 𝑚 ∈ 𝐸/𝐺𝐹(𝑞), where 

a given point 𝑃 ∈ 𝐸/𝐺𝐹(𝑞) with 𝑛 order. Therefore, a message 𝑚 needs to be depicted as 

points in 𝐸. Particularly, this process is to be carried out by integrating a message 𝑚 as a 

point in a curve. However, a full detail of such steps is provided in [40]. Thus, the user 𝐴 

would encrypt the points 𝑀 just by including it to 𝐾𝐴, 𝑄, where 𝐾𝐴  is an integer which should 

be arbitrarily selected and 𝑄 is the public key of the user 𝐵. After that, the originated message 

could be sent by user 𝐴 to 𝐵 a ciphered text containing the pair of points (𝐶1, 𝐶2).  

      Algorithm 2.13 Elliptic Curve Digital Signature Algorithm (Verification)    

 
INPUT:  Domain Parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑠, 𝑟),𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚  
OUTPUT: Signature Acceptance  or Rejection 
 

1. Verify that (𝑠, 𝑟) are integers and the interval [1,n-1] else the signature is 
rejected. 

2. Compute ℎ(𝑚).  
3. Compute 𝑢 = 𝑟−1 mod n. 
4. Compute 𝑣1 = 𝑢. ℎ(𝑚)𝑚𝑜𝑑 𝑛& 𝑣2𝑄 and let 𝑤 = 𝑥2𝑚𝑜𝑑 𝑛.  

5. Compute (𝐾𝐴
−1) 𝑀𝑜𝑑 𝑛. 

6. Compute (𝑥2, 𝑦2) =  𝑣1𝑃 + 𝑣2𝑄 and let 𝑤 = 𝑥2 𝑚𝑜𝑑 𝑛. 
7. If 𝑤 = 𝑠 the signature is verified else rejected  

 
 

 

      Algorithm 2.14 Elliptic Curve ElGamal Analogue Encryption     

 
INPUT:  Domain Parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), 𝑃𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 𝑄 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚  
OUTPUT: Cipher text of message 𝑚(𝐶1 , 𝐶2)  
 

1. Represent the message 𝑚 as a point 𝑀 in a curve 𝐸/𝐺𝐹(𝑞) 
2. A selects a random integer 𝐾𝐴in the interval [1,n-1]. 
3. Compute𝐶1 = 𝐾𝐴. 𝑃. 
4. Compute 𝐶2 = (𝑀 + 𝐾𝐴. 𝑄) 
5. Return(𝐶1, 𝐶2). 
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VI. Elliptic Curve Analogue of ElGamal - Decryption 

Algorithm 2.15 shows the process of restoring the plaintext message, which requires user 𝐵 

to use the same domain parameters shown in Algorithm 2.14. In addition to that, user 𝐵 needs 

to use his private key inline with the cipher text (C1, C2)in  which, B needs to multiply the 

first point with his private key and deduce the obtained result from the second point until 

retrieving the plain text.         

 

2.7 Conclusions   

 Throughout this chapter, we provided the background details associated with 

cryptography, such as its history and the differences between symmetric and asymmetric 

types of cryptography. Accordingly, we introduced fundamental information related to 

Elliptic Curve Cryptography such as Finite Field algorithms, point addition, point doubling 

and ECC protocols. However, the main focus of this chapter was to provide preliminary 

information relevant to work in this thesis.    

 

 

 

      Algorithm 2.15 Elliptic Curve ElGamal Analogue Encryption     

INPUT:  Domain Parameters 
(𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑘𝑒𝑦 𝐾𝐵𝐶𝑖𝑝ℎ𝑒𝑟 𝑡𝑒𝑥𝑡  𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚(𝐶1,𝐶2)  
OUTPUT: Message 𝑚 

1. Compute 𝑑1 = 𝐶2 −𝐾𝑏 . 𝐶1  
2. Compute 𝑀 = 𝐶2 −𝐾𝐵 . 𝐶1 
3. Extract 𝑚 from M 
4. Return 𝑚 
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Chapter 3 Software Design: 

ECC Implementation on 

8-bit & 32-bit Single 

Core Microcontroller 
In this chapter, a detailed description for implementing ECC on an 8-bit microcontroller and 

32-bit microcontroller using Relic toolkit is provided. Throughout such implementation, we 

managed to provide the users of this tool in such constrained devices a best level of obtaining 

an optimal and efficient performance. Knowing that a relic tool provides a wide range of 

algorithms related to finite field arithmetic, point addition, point doubling, point 

multiplication and protocols; in fact, getting them combined during a project compilation 

process could help to achieve better performance as it has been proofed in this work.  
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3.1 Introduction 
The recent and expected proliferation of wireless sensor networks (WSN) with all its 

economical and societal benefits across a range of applications spanning healthcare, home, 

environment, and defense will face serious limitations if security concerns are not addressed. 

Cryptography plays a very important role in achieving security. 

 Elliptic Curve Cryptography (ECC) is increasingly becoming the first choice for 

public key cryptography implementation, as it requires much shorter key sizes compared to 

the RSA for the same level of security. The implementation of ECC on sensor node platforms 

remains a challenge due to the resources limitation in these nodes. Therefore, optimal low 

resource ECC implementations are required with optimization techniques to speed up the 

ECC operations and to reduce the memory usage without prohibitive complexity. 

 The Relic-toolkit developed by the scholars in [16] is an attractive platform for 

providing security in WSN. It has many features in comparison to the other ECC open 

sources libraries, such as those in [44-46]. And it supports many modern cryptographic 

functions and protocols, such as ECDSA, ECDH, RSA and ECMQV. 

 Experimental analysis and evaluation for Elliptic Curve Digital Signature (ECDSA) 

on both an 8-bit and a 32-bit platform (Arduino mega2560 and Arduino Due) has been 

carried out and comparative implementation results are given. To our knowledge, no such 

analysis and results have been reported to date. 

The implementation results obtained, show that ECDSA key generation on Arduino 

Due can be achieved in (90ms) compared to (263ms) on the Arduino Mega for m=163. 

Furthermore, implementation optimisation (such as multi-precision GF(2m) arithmetic) 

configurations are shown to enhance the performance of the ECDSA on the Arduino Due to 

(83 ms). These results will act as a useful benchmark and guidance in selection of the 

optimization techniques provided by the tool for a given WSN application. 

This chapter is organized as follows: Section 3.2 provides the related work of 

software implementation on microcontroller and ECC background. The third section 

illustrates the arduino mega2560 and arduino Due architectures. The efficient implementation 

and optimizations provided by the relic-toolkit are presented in section 3.4. Our proposed 

optimization using the relic code is discussed in section 3.5. Accordingly, our implementation 
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work is described and results analyses are illustrated in section 3.5. Finally, we conclude this 

discussion in section 3.6. 

3.2 Background 
 In 1985, both Neal Koblitz and Victor S. Miler independently proposed Elliptic Curve 

Cryptography which is based on Elliptic Curve theories. Currently, ECC is considered to be 

one of the main players for implementing security in different applications. Basically, ECC 

has better features and a better future for cryptography since it has the capability to provide 

many cryptography schemes, such as key management, digital signature and verification. 

Beside these services and its powerful security, ECC has more powerful computation with 

shorter key length sizes compared to other public key cryptography solutions, such as RSA 

and Diffie-Hellman. ECC could be defined over prime fields and binary fields. However, for 

the purpose of this work, we consider Elliptic Curve over binary fields. The equation below 

represents the elliptic curve over binary fields: 

y2 + xy = x3 + ax2 + b 

where 𝑏 ≠ 0 and the value of 𝑥, 𝑦, 𝑎 and 𝑏 are polynomials representing 𝑛 − 𝑏𝑖𝑡 words. 

Finding points on the curve could be achieved by using generator for polynomials and 

irreducible polynomial. The rules for points addition in 𝐺𝐹(2𝑚) is different from 𝐺𝐹(𝑝). 

Therefore, if 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2) and 𝑄 ≠ 𝑃, then can be determined as shown 

below: 

𝜆 =
𝑦2 + 𝑦1
𝑥2 + 𝑥1

 

𝑥3 = 𝜆
2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎 

𝑦3 = 𝜆(𝑥1 + 𝑥3) + 𝑥3 + 𝑦1 

and if 𝑄 = 𝑃 then 𝑅 = 𝑃 + 𝑃 or 𝑅 = 2𝑃 as below: 

𝜆 = 𝑥1 + 𝑦1/𝑥1 

𝑥3 = 𝜆
2 + 𝜆 + 𝑎 

𝑦3 = 𝑥2 + (𝜆 + 1)𝑥3 

On the other hand, the point doubling 2𝑃 can be found as below: 
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Let 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(2
𝑚) where 𝑃1 ≠ −𝑃 and 2𝑃 = (𝑥3, 𝑦3) then,  

𝑥3 = 𝑥1
2 + 𝑏

𝑥1
2⁄  &  𝑦3 = 𝑥1

2 + 𝜆𝑥3 + 𝑥3 

where [
𝑦2 + 𝑦1

𝑥2 + 𝑥1
⁄ ] 𝑃1 ≠ 𝑃2 & 𝜆 = 𝑥𝑥1 + 𝑦1/𝑥1𝑃1 = 𝑃2  

Elliptic Curve Digital Signature (ECDSA) is used for digital signature purposes consisting of 

three main procedures: key pair generation, signature generation and signature verification. 

The Elliptic Curve Diffie Hellman (ECDH) protocol is used for exchanging the keys between 

two parties over an insecure channel. The purpose for having the ECC schemes is to provide 

a high level of security with smaller key sizes. Therefore, it is important for both parties 

involved in the communication to have pre-defined and agreed domain parameters for each 

scheme. The detailed specification can be found in Chapter 2, section 2.6.2. 

3.3 The Arduino Mega2560 and Arduino Due Architecture  
 

I. Arduino Mega 2560 Architecture: 

 This type of microcontroller is based on ATmega2560. This microcontroller is 

designed to support 54 digital input and output pins. Additionally, a 16 MHz crystal oscillator 

with a USB connection are accommodated in this microcontroller. In general, it contains 

everything that will allow the end-user to simply plug it in with his computer using USB 

cable, or power it using an AC-DC adaptor and accordingly getting started. This type of 

arduino microcontroller consists of 256 KB flash memory that will allow storing the required 

code in addition to 8 KB of SRAM and 4 KB for EEPROM purposes [47].    

II. Arduino Mega Due Architecture: 

In fact, this is the first arduino microcontroller that has been equipped with 32 bit ARM core 

processor. This type of arduino microcontroller is also designed to support 54 digital 

input/output ports. In which, 12 of them could be used as PWM outputs. However, compared 

to the arduino mega2560, this microcontroller has much higher oscillator, which can reach up 

to 84 MHz.  Furthermore, it has been also equipped with USB OTG capable connection and 

JTAG header as well as reset and erase button. Additional information could be found in 

[47].      
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3.4 Efficient Method of Improving Relic toolkit on Arduino 

Devices   
 The primary objective for the relic-toolkit is to construct an efficient and configurable 

cryptographic software capable to implement a certain level of security and algorithms. 

Therefore, we achieved these objectives through different design principles that we 

considered during the various stages of implementation. 

Security: Security: The relic-toolkit is designed to provide cryptography protocols such as 

RSA, ECDH, ECDSA, ECSS and ECMQV. In addition to that, relic-toolkits support the 

implementation of ECC over the prime field and ECC over the binary field. This includes 

different Elliptic Curve parameters recommended by the Standard for Efficient Cryptography 

Group (SECG), such as Secp160k1, Secp160r1 and Secp160r2 detailed by [39]. 

Configurability: The principle of configurability is achieved by allowing the user to select 

the desired components for the targeted platform during the process of developing the library. 

Furthermore, the desired performance can be achieved by combining and selecting different 

types of mathematical optimization provided by the tool. 

Portability: The relic-toolkit can be used with different types of the wireless sensor 

platforms, such as ARM, AVR and MSP. Additionally, the library could be built in different 

types of operating system such as windows (using MingW), Ubuntu and Mac OS. In this 

work, we consider importing and testing the relic library in Arduino mega260 (AVR- 8-bit 

processor) and Arduino Due (ARM-cortex-32 bit processor). 

Efficiency: In order to accomplish the desired efficiencies from the tool, we decided to 

implement the ECC over binary fields based on the potential result reported by the end to end 

security. We also used an assembly version (shown as K163-asm) file in order to achieve 

better performance as recommended by [48] wherein a new secure and energy-efficient 

communication model for the Constrained Application Protocol (CoAP), was developed for 

smart object networks. This model ensured authenticity over a network of multi-hop 

topology. 

Functionality: This principle is ensured through the practical implementation for different 

public key cryptography schemes provided by the relic-toolkit such as ECDH and ECDSA. 
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3.4 Proposed Design  
In this section, we aim to provide relevant optimization techniques accomplished with the 

optimization algorithms available in the tool. The details provided in this regard is limited to 

the optimization techniques used in this thesis. 

Optimization for Multiple Precision Arithmetic: 

Comba Algorithm: The Comba algorithm is a technique in which the partial products are 

ordered and scheduled. The multiple precision is required for big number arithmetic. In the 

multiple precision arithmetic the computations are carried out on the digits whose precision 

are constrained by the host system memory availability. It is highly efficient for public key 

cryptography implementations in resolving memory limitations as well as overcoming 

overflow issues. The contribution of multiple precision on solving such problems is achieved 

by increasing the integer representation while using single precision data type [49] shows 

better performance compared to the school book multiplication method. However, the relic-

toolkits allow users to select from different types of multiple precision arithmetic algorithms 

besides the comba algorithm such as school book multiplication, Karatsuba multiplication 

and others. 

 

Montgomery-Comb Modular Reduction Algorithm: 

A modular reduction is a process of finding the reminder of dividing two products: 

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑐) where 𝑏 is restricted with range 0 ≤ 𝑏 < 𝑐2 

The implementation of the Montgomery modular reduction algorithm involves fewer single 

multi precision multiplications in comparison with Barrett Modular reduction, which requires 

two modified multipliers [86]. Previous software implementation of the Montgomery 

algorithm reported slower speed. This challenge has been tackled and resolved by the 

researchers through combing the Montgomery modular reduction and comba algorithms. The 

combination methodology can be achieved by allowing the comba algorithm to act as a 

multiplier. 

Comba Squaring Algorithm:  

 Multiple Precision Squaring, which affects the overall implementation performance,  

is a process of multiplying two equal multiplicands. The software implementation for 

squaring can be performed using multiplication algorithms or using specialized squaring 
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methods. Using specialized squaring helps to reduce the load operand approximately by half 

over using multiplication algorithms. Additionally, it helps to enhance the computation 

performance for the duplicated partial products. Moreover, specialized squaring algorithms 

contribute to overcome the limitation of baseline multiplication algorithms. These limitations 

can be summarized into two main points. First, the needs for processing single precision shift 

inside the nested loop. Second, the challenges of performing the products doubling process 

inside the inner loop.  

 The comba squaring algorithm could be used to solve these drawbacks. The concept 

of comba squaring is to some extent similar to the comba multiplication algorithm with some 

differences that help to accommodate the single precision shifting and doubling processes. 

The relic toolkit supports three different multiple precision square algorithms besides the 

comba squaring, which are the Karatsuba Squaring, the recursive karatsuba and the School 

book method [49]. In this work, we configure the relic library with Comba squaring to obtain 

better performance. 

Optimization for Elliptic Curve Arithmetic  

Point Representations: There are different coordinate systems that can be used to represent 

the elliptic curve, the most popular being the affine coordinates and projective coordinates. 

The projective coordinates can be considered an option that can help avoid the costly and 

expensive multiplication and inversion operations. The results reported by [38] show better 

performance achievement compared to the affine. The relic-toolkit has been designed to 

support both, and we selected the projective coordinate to achieve a higher performance. 

Point Multiplications: Point multiplication or scalar multiplication is implemented through a 

series of point addition and point doubling operations. The key has to be obtained after 

conducting a full cycle of addition and doubling operations. The point multiplication over the 

binary elliptic curve can be implemented with different algorithms such as left-to-right binary 

algorithm, halving, right-to-left width-w and others. The relic library consists of six different 

algorithms, such as the basic binary point multiplication algorithms, Lopez-Dahab point 

multiplication and right-to-left width-w (T)NAF. Since the sliding windows method is more 

helpful on speeding up the scalar multiplication, we selected the right-to-left width (T) NAF 

algorithm for performing the point multiplication. The concept of sliding windows is based 

on scanning a bit at a time and performing the point doubling for them at the same time [44]. 

Simultaneous Point Multiplications: Enhancement of the efficiencies and speeding up 

computation of point multiplication has been extensively considered by many researchers due 
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to its significance in some ECC schemes. For example, the implementation of ECDSA 

required two types of point multiplication, the first for  signature generation which is fixed, 

the second for signature verification process, which is also fixed but unknown. However, the 

speed of the signature verification process can be increased by  using simultaneous multiple-

point multiplication [1]. Different methods have been proposed for simultaneous point 

multiplications such as Shamir's trick, Joint sparse form and interleaving. With this aspect, 

the relic-toolkits support all of these methods plus the basic simultaneous point multiplication 

methods that can be selected during the relic building process 

3.5 Implementation Results and Analysis   
Point Representations:  

We imported the relic-toolkit ] into the arduino mega 2560 (8-bit AVR processor) [47] and 

arduino Due (32-bit ARM processor). Our selection for these platforms is based on the fact 

that we targeted to implement the ECC schemes on a processor that does not require an 

operating system support. Furthermore, the 8-bit to 32-bit processor range is a representative 

range for resource embedded applications. We imported relic-0.3.1 onto the two platform 

boards, and experimented with the performance of ECDSA and ECDH over binary fields 

using different NIST curve standard (NIST-K163,NIST-B163). In order to obtain better 

performance, we examined the presets provided by [46]. The execution timings of the codes 

were measured using inbuilt millis() function provided by Arduino.h library. Furthermore, we 

measured the amount of RAM using "MemoryFree.h" library beside the avr-size and arm-

none-eabi-size tools.  

Experiment Setup:  

In order to build the library, we installed the avr-gcc version 4.5.3 compiler and cmake cross-

platform version 2.8.7. The recommended presets by [16] shown in Figures 4 and 5 in the 

Appendix were used for building the library with low memory arm-none-eabi-size tools. 

optimization algorithms and faster time execution respectively, compared to the original 

recommended presets. For importing the relic-toolkit in arduino Due, we installed arduino 

extension plug-in (embedxcode) in Xcode IDE MAC OS X version 10.7.3, and then we 

imported the relic-toolkits into the XCode IDE. 
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 Due to the importance of time and memory usages, we considered evaluating our 

ECC implementation based on these two factors. The arduino mega2560 is an 8-bit micro-

controller, but it has the capability to manipulate 16X16 bit operations by using two separate 

registers. From the other perspective, the arduino Due is a 32bit micro-controller and can 

easily handle 8- and 16-bit operations. We measured the execution time using the inbuilt 

 

CC=avr-gcc CXX=c++ LINK="-mmcu=atmega2560 -Wl,-gc-sections" COMP="-O2 -

ggdb -Wa,-mmcu=atmega2560 -mmcu=atmega2560 -ffunction-sections -fdata-sections" 

cmake -DARCH=AVR -DWORD=8 -DOPSYS=NONE -DSEED=LIBC -DSHLIB=OFF 

-DSTBIN=ON -DTIMER=NONE -DWITH="DV;BN;FB;EB;EC;CP;MD" -

DBENCH=20 -DTESTS=20 -DCHECK=off -DVERBS=off -DSTRIP=on -DQUIET=on 

-DARITH=avr-asm-163 -DFB_POLYN=163 -

DBN_METHD="COMBA;COMBA;MONTY;SLIDE;STEIN;BASIC" -

DFB_METHD="INTEG;INTEG;QUICK;BASIC;BASIC;BASIC;EXGCD;BASIC;BASI

C" -DFB_PRECO=off -DFB_TRINO=off -DBN_PRECI=160 -DBN_MAGNI=DOUBLE 

-DEB_PRECO=on -DEB_METHD="PROJC;RWNAF;LWNAF;INTER" -

DEB_MIXED=on -DEB_KBLTZ=on -DEB_ORDIN=off -DEB_SUPER=off -

DEC_METHD="CHAR2"-DMD_METHD=SHONE ./CMakeLists.txt 

Figure 3.2 Recommended Arduino High Speed Preset  

 

CC=avr-gcc CXX=c++ LINK="-mmcu=atmega2560 -Wl,-gc-sections" COMP="-O2 -

ggdb -Wa,-mmcu=atmega2560 -mmcu=atmega2560 -ffunction-sections -fdata-sections" 

cmake -DARCH=AVR -DWORD=8 -DOPSYS=NONE -DSEED=LIBC -DSHLIB=OFF 

-DSTBIN=ON -DTIMER=NONE -DWITH="DV;BN;FB;EB;EC;CP;MD" -

DBENCH=20 -DTESTS=20 -DCHECK=off -DVERBS=off -DSTRIP=on -DQUIET=on 

-DARITH=easy -DFB_POLYN=163 -

DBN_METHD="COMBA;COMBA;MONTY;SLIDE;STEIN;BASIC" -

DFB_METHD="INTEG;INTEG;QUICK;BASIC;BASIC;BASIC;EXGCD;BASIC;BASI

C" -DFB_PRECO=off -DFB_TRINO=off -DBN_PRECI=160 -

DBN_MAGNI=DOUBLE -DEB_PRECO=on -

DEB_METHD="PROJC;RWNAF;LWNAF;INTER" -DEB_MIXED=on -

DEB_KBLTZ=on -DEB_ORDIN=off -DEB_SUPER=off -DEC_METHD="CHAR2" -

DMD_METHD=SHONE ./CMakeLists.txt 

 

Figure 3.1 Recommended Arduino Low area Preset  
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function millis() provided by the ardunio library. This function returns the timing result in 

milliseconds using the arduino internal timer #0 or TCNT0. However, the timer runs at 16 

MHz in arduino mega2560 and at 84 MHz in arduino DUE. On the other hand, we measured 

the amount of RAM using arm-none-eabi-size tool for arduino DUE, and we used the avr-

size tool for measuring the RAM utilization in arduino mega2560.  

ECDSA: In this part, we demonstrate the main obtained results with regards the ECDSA 

performance. Figure3.3 below shows the time execution for ECDSA key generation on both 

platforms. 

As expected, the arduino mega2560 takes more time to generate the ECDSA keys, as 

it runs at a much lower clock than the arduino Due The figure 3.4 presents a comparison of 

the binary field arithmetic with basic and comba algorithms. The binary field arithmetic with 

BASIC algorithm configuration resulted in an improved performance on the DUE as shown 

in Figure 3.4. 

 

 

 

Figure 3.1 Time Execution for EDSA  
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 The performance on the mega2560 was improved using the assembly code provided in the 

library. This enhancement is represented by the figures which include the time execution 

improvement and memory usages, respectively. These results show even better performance 

compared to the results reported by [44] and [45]. 

 

 

 

Figure 3.2 Time Execution for EDSA  

 

 

Figure 3.3 Time Execution for EDSA  
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3.6 Conclusions 

 In this work, we illustrated the potential of implementing relic-toolkits on sensor node 

platforms. We also evaluated some of the optimization methods and their effectiveness in the 

ECDSA implementation performance. The configuration features provided by the relic-

toolkit can help enhance the ECC performance, which could be considered as a benchmark 

and guidance for the developer planning to use the relic in resource constrained processor 

platforms, such as the ones presented in this thesis. 

 

 

 

 

 

 

Figure 3.4 Time Execution for EDSA  
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Chapter 4 Software Design: Efficient 

Field Arithmetic over 

𝑮𝑭(𝟐𝟏𝟔𝟑)Implementation on 

A Homogeneous Multicore 

Microcontroller   

 

Some parts of this work have been published in [50]. 

Efficient field arithmetic over 𝐺𝐹(2163) is proposed in this chapter. Thus, our novel proposal 

here was trying to enhance the performance of Comba algorithm. The reason for such an 

attempt was to examine the possibility of enhancing its performance using a homogeneous 

multi core microcontroller. Therefore, we started this chapter by providing and highlighting 

the importance of multiplication processes in the overall performance of ECC. Then we 

detailed our proposal of parallelizing the Comba algorithm. After that, we provide the 

analytical details for the obtained results. In this work, we managed to enhance the Comba 

Algorithm by about 90%.  
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4.1 Introduction 
 The modern technologies of inexpensive constrained devices help to motivate the 

researchers to use these devices in Wireless Sensor Networks (WSN), such as a hazardous 

environments, military operations and medical monitoring with high attention of maintaining 

the necessary security requirement. Recently, Elliptic Curve Cryptography (ECC) proved to 

be a competitive substitute for standard public key cryptosystems like RSA, DSA and DH. 

Particularly, it can provide the same level of security provided by RSA with short key size, 

low processing time and less memory size. 

 ECC can be implemented based on prime finite field arithmetic GF(p) or binary finite 

field arithmetic GF(2m) where m is prime and its performance highly dependent on the 

multiplication operation of the finite field arithmetic. Indeed, [51] states that around 80% of 

the time execution is consumed by the multiplication operation in a software implementation. 

Therefore, various attempts were conducted to reduce the time execution such as the work 

done by [52] and [53], where they suggested modified algorithms and provided new 

multiplication techniques suited to microcontroller platforms that can be used in WSNs. 

Lately, the work conducted by [54] expressed the benefits of employing multicore embedded 

platforms in WSNs through energy savings and time execution improvements. 

  Therefore, this work is an attempt to answer the question of whether it is possible to 

enhance the software implementation performance of binary finite field multiplication in 

ECC using homogeneous multicore platforms for resource constrained applications. Even 

though there are many earlier attempts [51, 53, 55-58] to enhance multi precision 

multiplication in single core microcontroller. To the best of our knowledge, our work in this 

paper is the first endeavor aiming at boosting the efficiency of multi precision multiplication 

using a homogenous multicore microcontroller suitable for low resource environments. We 

develop a novel parallel software implementation of multi precision multiplication for the 

comba algorithm suitable for a homogenous multicore implementation. We also propose and 

deploy a fast algorithm for the reduction operation with word sizes of 8, 16 and 32 bits. 

Performance is investigated and analyzed on both single and multicore platforms, and the 

results obtained are presented and compared. 

In this chapter, we organized our works as follows. Firstly, we introduced the ECC 

concept and how multiplication play an importance role in ECC performance in section 4.1. 

In section 4.2, we discussed the related works that have been conducted to enhance the 
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Comba multiplication algorithms. Accordingly, we highlighted the XMOS a homogeneous 

multi core microcontroller in section 4.3. Parallel Comba multiplication on a multicore 

microcontroller has been discussed in section.4.4. Our implementation results and analysis 

are detailed in section 4.5. Finally, we conclude our work in section 4.6.       

4.2 Related Work 
The performance of the polynomial multiplication plays very important role in the overall 

performance of the ECC. Consequently, having a solid and effective binary polynomial 

multiplication will result from duplication, squaring and reversal in GF(2 m), and thus can 

assist in creating a substantial improvement in the entire ECC procedure. 

 Therefore, many attempts have been made by researchers to enhance the performance 

of multi-precision multiplication. For instance,[11] suggested a simple architectural 

improvement using a general-purpose processor core that could assist execute arithmetic 

operations in GF(2 m) finite binary areas. Their suggestion is based on a recent modification 

of the MULSC instruction supplied by SPARC V8 Architecture, which was implemented by 

Lopez and Dahab in the left-to-right comb technique. The authors utilized this technology to 

describe an increase in the speed of 90 per cent in addition to a remarkable reduction in the 

use of RAM. It utilizes polynomial bias as well as special polynomials such as trinomials, 

pentanomial and all one polynomial (AOP) to develop an extensive and careful study of finite 

field multiplication over GF (2 m). The Montgomery multiplication scheme carries out this 

multiplication and application of it is also described. It focuses on different arithmetical 

operation on the elliptic curve cryptography over GF (2m ). The parameter performance is 

also discussed in term of a number of component, latency, space and time complexity. 

 Michael Hutter and Erich Wenger [53] proposed a new novel multiplication technique 

to help to increase the performance of multiplication. Their technique is based on the product 

scanning approach, but it divides the calculation into several rows. In this method, the authors 

reduced the number of necessary load instructions through caching of operands. The method 

significantly reduces the number of load instructions required, which is usually one of the 

most expensive operations on modern processors. I evaluated the new technique on an 8-bit 

ATmega128 microcontroller and compared the result with existing solutions. The application 

requires only 2,395 clock cycles for a 160-bit multiplication that exceeds associated job by a 

factor of 10% to 23%. The amount of load orders required is decreased from 167 (needed to 

multiply the best-known hybrid) to just 80. Even for larger Integer sizes (required for RSA) 
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and limited register sets, the implementation scales are perfect. It also fully complies with 

existing multiply-accumulate instructions integrated into most of the processors available. 

The proposed method was implemented in ATmega128 microcontroller and showed  by 23 % 

compared to the result reported by [51]. The number of load instructions required is usually 

one of the most expensive operations on modern processors and is reduced by the method. 

The new technique is evaluated on an 8-bit ATmega128 microcontroller, and the result is 

compared with existing solutions. There is need of only 2,395 clock cycles for a 160-bit 

multiplication in the application that exceeds associated job by a factor of 10% to 23%. The 

amount of load orders required has been reduced from 167 to just 80. The implementation 

scales are perfect for larger Integer sizes and limited register sets. It also fully complies with 

existing multiply-accumulate instructions integrated into most of the processors available. 

 Next, Seo, Hwajeong [58] proposed a novel method nominated as carry-once capable 

to perform multi-precision multiplication having accumulation of intermediate results. The 

principal idea of this technique is to optimize the number of addition instructions required for 

intermediate result update. Through this method, the authors reported better performance of 

multi-precision multiplication while they implemented 160-bit multiplication over 

ATmega128. 

 Z. Liu and J. Großschädl [59] proposed a new software technique for improving the 

performance of Montgomery modular multiplication on a 8-bit AVR microcontroller. Using 

assembly language, the authors managed to implement six hybrid Montgomery multiplication 

algorithms in AVR microcontroller. In fact, the authors take the advantages of the hybrid 

multiplication and combine it with Montgomery's multiplication to enhance the modular 

multiplication. Accordingly, they evaluated the performance of the new method for different 

operands ranging from 160 to 1024 bits.  

 The work in [5] proposed a new efficient techniques for improving the multiplication, 

squaring modular reduction and inversion in 𝐺𝐹(2163) and 𝐺𝐹(2233) using MICAz Mote 

microcontroller. In this work, the authors proposed using Karatsuba’s multiplication 

algorithm to divide the multiplication problem into two sub-problems. These two 

subproblems are to be manipulated separately. In addition to that, they suggested saving the 

already shifted results produced in the first phase. This process can help to reload the 

intermediate result into registers for multi-precision shifting of some of the read memory 

already released during the first phase.  
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 [60] describes new techniques for parallelizing binary fields in computers equipped 

with modern vector instruction sets. The authors’ detailed methods for implementing field 

multiplication, squaring and square root, and they present a constant memory lookup-based 

multiplication mechanism. In this work, the authors implemented the finite field arithmetic as 

an arithmetic backend of the relic toolkit [16] for testing and benchmarking purposes.   

 A new record for enhancing the multi-precision multiplication on AVR 8-bit 

microcontroller has been reported by [56]. In this work, the authors optimized Karatsuba 

multiplication in AVR 8-bit microcontroller. To help in achieving that, the authors proposed 

tuning the instruction scheduling in order to minimize the number of live registers that to be 

used during the Karatsuba multiplication process. Accordingly, the authors managed to 

obtain new multiplication speed record for multiplying integers between 48 and 256 bits on 

the ATmega family of microcontrollers.  

 Speed-up of the arithmetic operation and enhancing its effectiveness in the software 

implementation of  𝐺𝐹(𝑝) is the work proposed by [61].  Their work was mainly focused on 

increasing the performance of finite field multiplication for 32-bit and 64-bit platform using 

the Comba algorithm. In this work, the authors suggested implementing carry accumulation 

by the addition of 32-bit variables in the 64-bit variable accumulator to avoid accounting 

carry after the addition of variables. However, they proposed to accumulate the carry in the 

final iteration. 

 H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim [55] presented further techniques for 

improving the performance of multi-precision multiplication on an embedded 

microprocessor. The authors proposed enhancing carry-once method by applying the operand 

caching methodology and further optimization for multiplication and accumulation (MAC), 

unbalanced comb and comb-window methods. In this work, the authors managed to optimize 

the product scanning method by reducing the number of required registers.  

 However, despite the amount of works that have been conducted to enhance the 

performance of multi-precision multiplication, we noticed none of the previous works 

attempted to improve it using the multicore microcontroller. Thus, in the present work, we 

introduce new methodologies of enhancing the multi-precision multiplication in the multicore 

microcontroller.      
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4.3 The Xmos Architecture  
 xCORE Multicore Microcontroller starter kit is a 32-bit multicore microcontroller 

capable of providing low latency and timing determinism of the xCORE architecture to 

different embedded applications. The main advantage of xCORE microcontroller is its 

capability to execute multiple tasks concurrently as well as the possibilities of conducting the 

communication between tasks using a high-speed network 

 As shown in Figure 4.1, the starting kit xCORE microcontroller is equipped with 

analog and digital nodes. The digital node consists of xCORE Tile, a switch, and PLL (Phase- 

Looked-Loop), whereas, the analog node comprises the USB PHY, multi-channel 

ADC(Analog to Digital Converter), deep sleep memory, an oscillator, a real-time counter and 

power supply control. To establish the communication between analog and digital node, a 

necessary link that is capable to switch to the digital node is required. 

  The system is however programmed using high-level programming language C / C++ 

and the language XMOS-originated. The XC language is designed to provide extensions to C 

and to simplify the control over concurrency. Also, it allows the end user to control  I/O and 

timing as well as to use low-level assembler. The xCORE tile  is to be considered as a 

 

 

Figure 4.1 XSI -U Series 16 core devices 
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flexible  multicore microcontroller component. It consists of the integrated I/O and on-chip 

memory and multiple logical cores, which can be run simultaneously. In fact, each of the 

logical cores guaranteed a slice of processing power, can execute computational code and 

provide a control software and I/O interfaces. The logical cores use channels to exchange 

data within a tile or across tiles, while the tiles are to be connected using switch network 

known as xCONNECT. The xCONNECT uses the proprietary of physical layer protocol to 

add additional resources to a design. Additionally, the I/O pins are determined through 

intelligent ports, which can help for serializing data, interpret strobe signals, wait for 

scheduled times or events and make the device ideal for real-time control applications. 

 Each tile consists of 8 active logical cores, which have a capability to issue the 

instructions down a shared four-stage pipeline. The instructions generated from active cores 

are issued using round-robin. However, if up to four logical cores are in use, then each core is 

allocated with a quarter of the processing cycles. In contrast, activating more than four logical 

cores results in each core being allocated at least with 1/𝑛 cycles (for 𝑛 cores).  

 Another benefit of using Xmos devices is its capability to work as a scalable 

architecture, in which the xCORE devices can be connected together allowing the end user to 

construct one system. Each of xCORE device has an xCONNECT interconnect feature to 

communicate different tasks that run on the various xCORE tiles on the system.  

For further detail about xmos multicore microcontroller, we refer the reader to [14].    

4.4 Parallel Comba Multiplication on Multicore Microcontroller  
Comba Multiplication is considered as one of the most important multiplication 

techniques used in public key cryptography computations – be it in modular form in RSA or 

in finite field form in Elliptic Curve Cryptography, for example. The efficiency of these 

public key cryptography implementations depends heavily on the efficiency of the 

implementation of the multiplication operation. Multicore architectures are becoming 

increasingly important platforms for modern computation. However, cryptography 

implementations on these platforms is still in its infancy. In this work, we propose a parallel 

software implementation of the comba multiplication in 𝐺𝐹(2163) using a homogenous 

multicore microcontroller.  

We obtain performance results and compare these to sequential implementation of 

comba multiplications with and without modular reduction for different word size 8, 16 and 
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32 bits on single core microcontrollers. Our obtained results outperform most of the 

published single core modular multiplication implementations and require much fewer 

cycles. We achieve more than 85% enhancement of the measured latency in comparison to a 

single-core implementation. 

4.4.1 Finite Field Multiplication 

 Multi-precision algorithms are important to handle arithmetic operations on general 

processors by splitting the operation into smaller blocks. There are many techniques to 

implement muti-precision multiplication over 𝐺𝐹(2𝑚); these include product scanning [33], 

hybrid scanning, operand caching, and consecutive operand-caching techniques [11].  

Product scanning techniques (known also as Comba) are considered to be the most efficient 

for large operands. Comba, as illustrated in Algorithm 4.1, is based on two individual outer 

loops to generate the multiplier operands index and inner loops for generating multiplicand 

operands index. The multiplicand and multiplier operands are to be produced in column-wise 

style as explained in Figure 4.2,  where t = 4 and the inner loop is iterating 42 or 16 times in 

total. 

      Algorithm 4.1  Comba's Algorithm over GF(2m) 

INPUT: Two 𝑚 bit polynomials 𝑎(𝑧). 𝑏(𝑧) ∈ 𝐺𝐹(2𝑚) and consisting of 𝑡[𝑚 𝑊⁄ ] − 𝑤𝑜𝑟𝑑 

each where 𝑊 is the word size of the processor. 
OUTPUT: 𝑐(𝑧) = 𝑎(𝑧). 𝑏(𝑧) = (𝑐2𝑚−1,⋯ 𝑐0) 

1) 𝑠 ← 0 
2) For 𝑖 in 0 to 𝑡 − 1 do (𝑖 denotes column number) 

a. For 𝑗 in 0 to 𝑖 do  
i. 𝑆 ← 𝑆 + (𝑎𝑗 × 𝑏𝑖−𝑗) 

End For; 
b. 𝑐𝑖 ← 𝑆 𝑚𝑜𝑑 2𝑤 (Partial sum of each column) 

c. 𝑆 ← 𝑆
2𝑤⁄  (Word is right shifted by 𝑤 −bits ) 

End For; 
3) For 𝑖 in 𝑡 to 2𝑡 − 2 do 

a. For 𝑗 in (𝑖 − 𝑠 + 1) to(𝑠 − 1) do  
i. 𝑆 ← 𝑆 + (𝑎𝑗 × 𝑏𝑖−𝑗) 

End For; 
b. 𝑐𝑖 ← 𝑆 𝑚𝑜𝑑 2𝑤 (Partial sum of each column) 

c. 𝑆 ← 𝑆
2𝑤⁄  (Word is right shifted by 𝑤 −bits) 

End For; 
4) 𝐶2𝑑−1 ← 𝑆 𝑚𝑜𝑑2𝑤 

 
5) Return 𝐶(𝑧) 
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Recently, a number of recently research works based on single core microcontroller 

implementations attempted to improve Comba techniques and to provide a comprehensive 

explanation for these methodologies on these platforms. In [53], the authors proposed 160-bit 

multiplication on ATmega128 microcontroller by dividing the product scanning method into 

individual rows, achieving 23 % fewer clock cycles than [51]. A carry-once method 

demonstrated in [58] managed to optimize and decrease the number of intermediate product 

calculation and even led to much better results than [53]. 

 

 Recently, Comba algorithms have also been shown to be efficient in enhancing the 

implementation performance of Fully Homomorphic Encryption Schemes [62] and [63]. In 

this work, we propose enhancing mutli-precision multiplication using comba on a 

homogenous multi core microcontroller, which allows to carry out multiple instruction flows 

 

Figure 4.2 Schematic representation 𝟒 × 𝟒word multiplication using Comba Algorithm 



Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163 

 
 

 

 4-10 

 

concurrently. This could form a basis for further research on implementations on such 

platforms. 

 4.4.2 Modular Reduction  

 A fundamental operation in ECC computations is a modular reduction, which is 

required in the finite field operations. According to Algorithm 4.2 [64] adopted in this work, 

it could be observed that the primary operations associated with reduction are XOR and left 

or right shifts. In order to consider the implementation of Algorithms 1 and 2 on 

microcontrollers with word sizes of 8, 16 and 32 bits, a necessary adjustment in Algorithm 

4.2 was made, as will be explained in the next section.  

4.4.3 Proposed Design   

 Both functional-parallelism and data-parallelism have been exploited in the design 

process adopting the Foster design methodology [65]. The Comba algorithm was executed by 

calling the two parallel tasks at the main loops 2 and 3, as depicted in Algorithm 4.1. For the 

partitioning step in the sequential Comba algorithm, we divided the two main loop 2 and 3 

into two tasks, since there is one common input consisting of two arrays 𝐴(𝑎𝑠−1, ⋯ 𝑎1, 𝑎0) 

and 𝐵(𝑏𝑠−1, ⋯ , 𝑏1, 𝑏0) with word size 𝑤 − 𝑏𝑖𝑡, where 𝑤 represents the word size of the 

processors (𝑖. 𝑒 𝑤 = 16,𝑤 = 8 𝑎𝑛𝑑 𝑤 = 32). However, to overcome the constraints of the 

internal linkage code due to the carry [5], we used the tasks functions in XC programs that 

are able to call tasks in parallel on separate logic cores without thinking about the priority and 

scheduling of the communication between tasks. 

      Algorithm 4.2  Comba's Fast reduction method with 𝑾 = 𝟑𝟐 for 𝑮𝑭(𝟐𝟏𝟔𝟑) 

𝒇(𝒛) = 𝒛𝟏𝟔𝟑 + 𝒛𝟕 + 𝒛𝟔 + 𝒛𝟑 + 𝟏 

INPUT: A binary polynomial 𝑐(𝑧) of degree  at most 324  
OUTPUT: 𝑐(𝑧)𝑚𝑜𝑑 𝑓(𝑧) 

1) For 𝑖 from 10 down to 6 do { Reduce 𝐶[𝑖]𝑧324 modulo 𝑓(𝑧) } 
a. 𝑇 ← 𝐶[𝑖] 
b. 𝐶[𝑖 − 6] ← 𝐶[𝑖 − 6] ⊕ (𝑇 ≪ 29) 
c. 𝐶[𝑖 − 5] ← 𝐶[𝑖 − 5] ⊕ (𝑇 ≪ 4)⊕ (𝑇 ≪ 3)⊕ 𝑇⊕ (𝑇 ≫ 3) 
d. 𝐶[𝑖 − 4] ← 𝐶[𝑖 − 4] ⊕ (𝑇 ≫ 28)⊕ (𝑇 ≫ 29) 

2) 𝑇 ← 𝐶[5] ≫ 3 { Extract 33-31 of 𝐶[5]} 
3) 𝐶[0] ← 𝐶[0] ⊕ (𝑇 ≪ 7)⊕ (𝑇 ≪ 6)⊕ (𝑇 ≪ 3)⊕ 𝑇 
4) 𝐶[1] ← 𝐶[1] ⊕ (𝑇 ≫ 25)⊕ (𝑇 ≫ 26) {Clear the reduced bits of 𝐶[5]} 
5) Return (𝐶[5], 𝐶[4], 𝐶[3], 𝐶[2], 𝐶[1], 𝐶[0]) 
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4.5 Implementation Results and Analysis  
 In this work, we used XMOS, a low cost development stratKit which consists of a 

two-tile XCORE device and eight 32 bit with 500 MIPS xCORE multicore microcontroller 

[14]. Also, we used Arduino Mega260 (16-bit AVR) processor and Arduino Due (32-bit 

ARM) processors to compare our parallel multicore approach with a single core approach. 

4.5.1 Modified Comba Algorithm - Parallel Multiplication 

 The implementation of GF(2163) multiplication using the parallel comba algorithm 

for different word sizes (which include w = 16,w = 8 and w = 32) is shown in Algorithm 

4.3.  

Accordingly, the multiplication is performed using two outer loop functions and 

simultaneously called from the main function as shown in Figure 4.3. 

 

 

      Algorithm 4.3  Modified Comba's Algorithm over GF(2m) 

INPUT: Two 𝑚 bit polynomials 𝑎(𝑧). 𝑏(𝑧) ∈ 𝐺𝐹(2𝑚) and consisting of 𝑡[𝑚 𝑊⁄ ] − 𝑤𝑜𝑟𝑑 

each where 𝑊 is the word size of the processor.   
OUTPUT: 𝑐(𝑧) = 𝑎(𝑧). 𝑏(𝑧) = (𝑐2𝑚−1,⋯ 𝑐0) 

1) 𝑠 ← 0 
2) {Task -1 Function Parallel } 

a.  For 𝑖 in 0 to 𝑡 − 1 do (𝑖 denotes column number) 
i. For 𝑗 in 0 to 𝑖 do  

1. 𝑆 ← 𝑆 + (𝑎𝑗 × 𝑏𝑖−𝑗) 

End For; 
ii. 𝑐𝑖 ← 𝑆 𝑚𝑜𝑑 2𝑤 (Partial sum of each column) 

iii. 𝑆 ← 𝑆
2𝑤⁄  (Word is right shifted by 𝑤 −bits ) 

3) {Task -1 Function Parallel } 
a. For 𝑖 in 𝑡 to 2𝑡 − 2 do 

i. For 𝑗 in (𝑖 − 𝑠 + 1) to(𝑠 − 1) do  
1. 𝑆 ← 𝑆 + (𝑎𝑗 × 𝑏𝑖−𝑗) 

End For; 
ii. 𝑐𝑖 ← 𝑆 𝑚𝑜𝑑 2𝑤 (Partial sum of each column) 

iii. 𝑆 ← 𝑆
2𝑤⁄  (Word is right shifted by 𝑤 −bits) 

End For; 
4) 𝐶2𝑑−1 ← 𝑆 𝑚𝑜𝑑2𝑤 
5) Return 𝐶(𝑧) 
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We applied the 32-bit fast modular multiplication per Algorithm 2, whereas for the 8-bit and 

16-bit, we modified algorithm 2, as seen in Algorithm 4.4 and Algorithm 4.5 below, which 

illustrate fast modular reduction for 8 and 16 bit, respectively. The reduction process started 

after the multiplication, which is to be based on the 326 bits of the 163 arithmetic 

multiplication bit result. In this, the 326 is to be divided into 𝑤 = 8 for 8-bit word size, and 

the calculation of the number of word size is based on (
(163 × 2)

8⁄ ) =

41 𝑤𝑜𝑟𝑑𝑠 𝑤0 𝑡𝑜 𝑤40. Also, we used the following reduction irreducible polynomial 

recommended by NIST  [64] to execute the reduction process for 𝐺𝐹(2163): 

𝑓(𝑧) = 𝑧163 + 𝑧7 + 𝑧6 + 𝑧3 +1 

 

 

 

 

Figure 4.3 Xtimecompsoer Task-1 Flow Diagram  
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For the 8-bit word size, there will be no shifting instruction required at the initial step, and the 

bits will be copied as it is, and after that, the 3 bits shifting (of bit 163-325) is to be 

implemented by 6-bit and 7-bit left shift. Following each shift, extra bits moving out of the 

325-bit mark due to shifting are replaced back into the starting positions left vacant by 

shifting. 

Then, the extra bit will be serially shifted by 3, 6 and 7 bits. Afterwards, to obtain the 163 

reduction in output, all columns starting from bit 0 to bit 163 are to be sequentially added 

using XOR instruction. Moreover, a similar strategy is used for performing reduction with 

word size = 16.  

 

      Algorithm 4.4  Fast reduction Modification using Word size =8    

INPUT:  Binary polynomial 𝑊(𝑧) of degree ≤ 324  
OUTPUT: 𝑊(𝑧)𝑚𝑜𝑑 𝑓(𝑧) of degree ≤ 163 where 𝑓(𝑧) is irreducible polynomial  

1) 𝑊20 → 𝑊0⨁𝑊20 ≫ 3⨁(𝑊20 ≫ 3) ≪ 3⨁(𝑊20 ≫ 3) ≪ 6⨁(𝑊20 ≫ 3) ≪
7⨁𝑊21 ≪ 5 

2) For 𝒊 in 1 to 19 (by one ) do  
a.  𝑊𝑖 = 𝑊𝑖⨁𝑊(20+𝑖) ≫ 3⨁𝑊(20+𝑖)⨁𝑊(20+𝑖) ≪ 3⨁𝑊(20+𝑖) ≪

4⨁𝑊(21+𝑖) ≪ 5⨁𝑊(19+𝑖) ≫ 4 

b. End For; 
3) 𝑊20 → 𝑊20⨁𝑊40 ≫ 3⨁𝑊40⨁𝑊39 ≫ 5⨁𝑊39 ≫ 4 
4) 𝑊1 → 𝑊1⨁𝑊40⨁𝑊40 ≫ 2 
5) 𝑊0 → 𝑊0⨁𝑊40 ≫ 3⨁(𝑊40&0𝑋7)⨁(𝑊40&0𝑋7) ≪ 3⨁(𝑊40&0𝑋7) ≪ 6⨁𝑊40 ≪

1⨁(𝑊40&0𝑋7) ≪ 4⨁𝑊39 ≫ 7⨁(𝑊39 ≫) ≪ 3⨁(𝑊39 ≫ 7) ≪ 6⨁(𝑊39 ≫ 7) ≪
7 

6) 𝑊20 → 𝑊20&0𝑋7 
7) Return 𝑊20,𝑊19,⋯ ,𝑊1,𝑊0 
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 For the 8-bit word size, there will be no shifting instruction required at the initial step, 

and the bits will be copied as it is and after that, the 3 bit shifting (of bit 163-325) is to be 

implemented by 6-bit and 7-bit left shift. Following each shift, extra bits moving out of the 

325-bit mark due to shifting are replaced back into the starting positions left vacant by 

shifting. Then, the extra bit will be serially shifted by 3, 6 and 7 bits. Afterwards, to obtain 

the 163 reduced output, all columns starting from bit 0 to bit 163 are to be sequentially added 

using XOR instruction. Moreover, a similar strategy is used for performing reduction with 

word size = 16. 

 We patterned our design using C and XC programming Language on the xmos 

startKit. Also, we used xTIMEcomposer development tools for the design and for performing 

time analysis. Additionally, we implemented the sequential Comba algorithm on different 

single-core microcontroller platforms for comparison purposes. These include Arduino 

Mega2560 (AVR 16 bit), Arduino Due ( ARM 32 bit ) and Xmos (32 bit single core) with 

different data width (W = 8, 16 and 32 bits ), as reported in Figure 4.4  and Figure 4.5. 

 We further provide to summarize and compare the obtained number of cycles for 

𝐺𝐹(2163) using Comba parallel multiplication in single and multicore in comparison with 

state of art for 𝐺𝐹(2163) and 𝐺𝐹(160) multiplication. It is apparent that different types of 

algorithms, platforms and finite field types were used in previous state of art works. This 

makes evaluations more difficult for a fair comparison between our work and other published 

works. Therefore, we used the number of cycles as a reasonable metric for  

     Algorithm 4.5  Fast reduction Modification using Word size =16    

INPUT:  Binary polynomial 𝑊(𝑧) of degree ≤ 324  
OUTPUT: 𝑊(𝑧)𝑚𝑜𝑑 𝑓(𝑧) of degree ≤ 163 where 𝑓(𝑧) is irreducible polynomial  

8) 𝑊0 → 𝑊0⨁𝑊10 ≫ 3⨁(𝑊10 ≫ 3) ≪ 3⨁(𝑊10 ≫ 3) ≪ 6⨁(𝑊10 ≫ 3) ≪
7⨁𝑊11 ≪ 13 

9) For 𝒊 in 1 to 9 (by one ) do  
a.  𝑊𝑖 =𝑊𝑖⨁𝑊(10+𝑖) ≫ 3⨁𝑊(10+𝑖)⨁𝑊(10+𝑖) ≪ 3⨁𝑊(10+𝑖) ≪

4⨁𝑊(11+𝑖) ≪ 4⨁𝑊(11+𝑖) ≪ 13⨁𝑊(9+𝑖) ≫ 13⨁𝑊(9+𝑖) ≫ 12 

b. End For; 
10) 𝑊10 → 𝑊10⨁𝑊20 ≫ 3+𝑊20⨁𝑊19 ≫ 13⨁𝑊19 ≫ 12 
11) 𝑊0 → 𝑊0⨁𝑊20 ≫ 3⨁(𝑊20&0𝑋7)⨁(𝑊20&0𝑋7) ≪ 3⨁𝑊20 ≪ 6⨁𝑊20 ≪

1⨁𝑊19 ≫ 15(𝑊20&0𝑋7) ≪ 4⨁(𝑊19 ≫ 15) ≪ 3⨁(𝑊19 ≫ 15) ≪ 6⨁(𝑊19 ≫
15) ≪ 7⨁𝑊20 ≪ 8 

12) 𝑊10 → 𝑊10&0𝑋7 
13) Return 𝑊10,𝑊9, ⋯ ,𝑊1,𝑊0 
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comparisons and evaluation. Furthermore, [66] used 21 registers out of 32 to execute the LD 

Multiplication Algorithm on a single core ATmega128 8-bit processor, whereas our approach 

of using xmos 32 bits multicore microcontroller used only 12 registers for single core 

multiplication and 4 registers in each task for performing simultaneous Comba.  

 

Figure 4.5 Result Analysis of Implemented Comba Algorithm Without Reduction  
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Figure 4.4 Result Analysis of Implemented Comba Algorithm with Fast Reduction  
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     Table 4.1  Comparison with State of Art of Comba Implementation   

Author Platform  Algorithm  Word 

Size (bit) 

No of 

Cycles  

Field  

Aranha et al[5] ATMega128L LD Mult. (new variant) 8 9738 𝐺𝐹(2163) 
Kargl et al[7]   ATMega128L Comb multiplication with 

windows4 

8 5057 𝐺𝐹(2163) 

Kargl et al[7]   ATMega128L Comb multiplication 8 2593 𝐺𝐹(160) 
This work -

Single core 

without reduction 

Xmos StartKit Sequential Comba 

Multiplication 

 

8 

 

95 
 

𝐺𝐹(2163) 

This work - 
Single core with 

reduction 

Xmos StartKit Sequential Comba 
Multiplication 

 
8 

 
1140 

 

𝐺𝐹(2163) 

This work -

Single core 

without reduction 

Xmos StartKit Parallel Comba 

Multiplication 

 

8 

 

149 
 

𝐺𝐹(2163) 

This work - two 

cores with 

reduction 

Xmos StartKit Parallel Comba 

Multiplication 

 

8 

 

129 
 

𝐺𝐹(2163) 

Gouve [10] MPY32 Comba Multiplication  

16 

 

741 
 
𝐺𝐹(160) 

Gouve [10] MSPX LD Multiplication  

16 

 

3585 
 

𝐺𝐹(2163) 

This work - 

Single core 

without reduction 

Xmos StartKit Sequential Comb 

multiplication 

 

16 

 

214 
 

𝐺𝐹(2163) 

This work- Two 

cores without 

reduction 

Xmos StartKit Parallel Comba 

Multiplication 

 

16 

 

114 
 

𝐺𝐹(2163) 

This work Single 
core with 

reduction 

Xmos StartKit Sequential Comb 
multiplication 

 
16 

 
102 

 

𝐺𝐹(2163) 

This work - Two 

cores with 

reduction 

Xmos StartKit Parallel Comba 

Multiplication 

 

16 

 

129 
 

𝐺𝐹(2163) 

P. Szczechowiak 

[11] 

PXA271 Karatusba Multiplication  

32 

 

13183 
 

𝐺𝐹(2271) 

L. B. 

Oliveira[12] 

PXA271 wMMX Lopez-Dahab Algorithm  

32 

 

1411 
 

𝐺𝐹(2271) 

This work -

Single core 

without reduction 

Xmos StartKit Sequential Comb 

multiplication 

 

32 

 

139 
 

𝐺𝐹(2163) 

This work- Two 

cores without 

reduction 

Xmos StartKit Parallel Comba 

Multiplication 

 

32 

 

155 
 

𝐺𝐹(2163) 

This work- 

Single core with 

reduction 

Xmos StartKit Sequential Comb 

multiplication 

 

32 

 

1402 
 

𝐺𝐹(2163) 

This work- Two 

cores with 
reduction 

Xmos StartKit Parallel Comba 

Multiplication 

 

32 

 

155 
 

𝐺𝐹(2163) 
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4.6 Conclusions  
 In this work, we have shown that homogenous multicore microcontroller platforms 

are a feasible option to enhance the performance of Comba multiplication over binary finite 

fields, thereby enhancing the performance of ECC implementations. We have detailed the 

design of a modified Comba multiplier over the binary finite field 𝐺𝐹(2163) corresponding to 

an ECC curve using an Xmos startKit homogenous multicore platform that can be adopted in 

WSN applications. The design required a modification of both the Comba algorithm and the 

the fast reduction step to accommodate the reduction process for 8- and 16-bit word sizes. 

About 90% improvement in cycle performance was achieved compared to the single core 

implementation. Further work will concentrate on implementing the ECC point multiplication 

based on the modified Comba multiplier. 
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Chapter 5 : Software Implementation 

of Parallelized Elliptic Curve Scalar 

Point Multiplication over Binary 

Field  
Some parts of this work have been published in [67] 

Software implementation of parallelized Elliptic Curve Scalar Point Multiplication over 

binary field is presented in this chapter. In fact, we start this chapter by providing a much 

detail on the importance of scalar point multiplication while implementing Elliptic Curve 

Cryptography. Accordingly, we take the reader to the background of point multiplication and 

detailing the relationship between them. We also provide our novel proposal for enhancing 

the ECC point multiplication over𝐺𝐹(2𝑚). This is followed by a detail description of how we 

managed to achieve such proposal using a homogeneous multicore microcontroller known as 

XMOS. Eventually, we analyzed the performance concern different ECC curves this include: 

𝐺𝐹(2163), 𝐺𝐹(2233), 𝐺𝐹(2283), 𝐺𝐹(2409) 𝑎𝑛𝑑 𝐺𝐹(2571).        
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5.1 Introduction 

Elliptic curve cryptography (ECC)-based security has potential use in resource 

constrained applications, such as RFID tags and wireless sensor networks (WSN) and 

therefore the Internet of Things (IoT). Compared to RSA, ECC requires shorter length keys 

for the same level of security and is computationally more efficient, and therefore, it has the 

ability to provide high security with faster processing time and fewer resources. In general, 

scalar point multiplication (PM) is the main operation in Elliptic Curve Cryptography [1]. 

The PM can be implemented either over binary extension fields GF(2m)  or over prime fields 

GF(P). In the ECC PM, the public key is computed by multiplying a base point on the elliptic 

curve, P with a private key (integer), K. A Koblitz curve [38] is a special elliptic curve that is 

resource friendly due to its simplicity, and therefore, it is used in this work; however, a 

random binary curve can also be implemented with an extra latency overhead. The ECC PM 

can be implemented in software, hardware, and as a software/hardware co-design.  A pure 

software implementation is attractive on battery-run devices due to its flexibility and low 

resource requirements.  

The crucial problem of software implementations is the latency due to the word-level 

computations required and frequent memory operations. Thus, different efforts have been 

conducted by researchers to enhance ECC performance in pure software design by modifying 

ECC related algorithms as reported by [68] and [69]. General purpose multicore processors 

are being increasingly adopted as alternative platforms to single core architectures for high-

performance domain specific applications, such as ECC. For example, in [11], the authors 

proposed hardware design for separated hybrid scanning parallelization for Montgomery 

Multiplication using multicore approach by constructing two, four and eight soft cores on 

FPGA. The reported results in this work show good speed, large communication latency 

tolerance and good scalability. [70] proposed fully programmable curve-based crypto 

processors to accelerate scalar point multiplication of ECC using the GEZEL 

hardware/software co-design platform. Also, ECC multi-core software implementations on 

Intel Xeon Quad-Core processors using OpenMP are reported in [71] and [72]. Another 

example for software multicore implementation is reported by [8] where right to left double 

and add algorithm is parallelized using two threads through OpenMP library. We observed 

that almost all of the previous ECC multicore software implementations were implemented 
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on powerful platforms that may not be suited to low-resource WSN type applications using 

devices with limited resources and lower clock speeds.   

Therefore, in this work, we consider multicore ECC implementation as an enabler for 

deployment of public key protocols in the low-resource end of applications. We advocate the 

use of a homogeneous, low-power, multicore microcontroller that is suitable for adoption in 

resource constrained environments, such as (WSN). Key to ECC implementation on 

multicore platforms is parallelism by avoiding data dependency in the point operations. This 

requires careful task scheduling and core partitioning.  

The contribution of the work presented in this chapter is to demonstrate the 

possibilities of obtaining better performance for ECC point multiplication by using suitable 

methodologies on partitioning the tasks between the available processor cores coupled with 

two novel fundamental algorithmic modifications for performing ECC point multiplication.  

The first proposed modification is based on performing a vertical parallelization on point 

doubling and point addition operations. The vertical parallelization approach is based on 

performing multiple finite field operations that have no data dependency by different parallel 

logical cores. The second proposed modification is based on modifying the left to right 

double and add binary point multiplication [1] to remove data dependencies. In this modified 

algorithm, we initialize point multiplication by scanning the position of the leftmost bit of 

key with a value of ‘1’. The scanning can accelerate point multiplication if some of the most 

significant bits of the key are zeros. In PM, point doubling is then carried out for every bit of 

key zeros and the point addition operation is performed when 𝑘𝑖 = 1 where 𝑘𝑖 is the 𝑖𝑡ℎ   bit 

of 𝑘. The advantage of binary fields 𝐺𝐹(2𝑚) is that addition and subtraction are simply 

bitwise xor operations. We also adopt projective coordinate based ECC point multiplication 

to avoid the expensive field inversion operation. 

Here, the proposed multicore ECC point multiplication with a single core version 

implemented on same Xmos device and on Arduino (Due) for  𝐺𝐹(2163). The proposed 

multicore implementation performs 60% better than single core-based implementation. It is 

also evident that multicore design perfomed better on embedded implementation. 

The remainder of this chapter is organized as follows: Section 5.1 gives a 

mathematical preliminary of ECC. Section 5.3 introduces proposed parallel ECC point 

multiplication scheme. In Section 5.3, 5.4 and 5.5 we present multi core implementation of 
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the proposed ECC and results. Finally, we end this chapter with some conclusions in section 

5.6  

5.2 Background  

The elliptic curve over binary field (E) is defined as a set of points combined with 

point of infinity, and O is expressed by the Weierstrass equation: 

𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏            (5.1) 

where 𝑎, 𝑏 ∈ 𝐺𝐹(2𝑚) and 𝑏 ≠ 0. The fundamental operation of the elliptic curve 

cryptography is scalar point multiplication, which is defined in (2) as follows:                         

                                                  Q = k.P                                         (5.2) 

where k  is an integer, P is a point on the elliptic curve and Q is a new point on the elliptic 

curve. The new point, Q, is produced by scalar point multiplication, .k P = P+…+P+P, where 

Q is a result of k-1 times point addition of P.   

 Different point multiplication algorithms are presented in [1] to compute (2). The 

performance of ECC depends on the point multiplication and its associated coordinates 

systems. In this work, standard coordinates-based Lopez-Dahab Projective is chosen to avoid 

the expensive field inversion operation that is involved in the affine coordinates systems. 

Moreover, the standard coordinates offer less computation than the Jacobian Projective [1] 

coordinates. Again, in Lopez- Dahab (LD) Projective coordinate,  a point [𝑋, 𝑌, 𝑍] be point on 

the elliptic curve corresponding to the affine points [𝑋/𝑍, 𝑌, 𝑌/ 𝑍2] where 𝑍 ≠ 0 [1]. 

5.2.1 Point Doubling 

In (2), a group of operations of adding two points (P, Q) on curve E is performed for k-1 

times. The point addition can be obtained by point doubling while the value k bit is zero. An 

advantage of the point doubling is that the computation overhead is lower than that of point 

addition. The point doubling operations is based on [73], where the point doubling of point 

P[𝑋1, 𝑌1, 𝑍1] to be given as 2P [𝑋3, 𝑌3, 𝑍3] and to be calculated per the following steps:  

𝑍3 ← 𝑋2𝑍2 

𝑋3 ← 𝑋4 + 𝑏𝑍1
4 

𝑌3 ← 𝑏𝑍1
4𝑍3 + 𝑋3(𝑎𝑍3 + 𝑌1

2 + 𝑏𝑍1
4) 
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The point doubling based on the LD projective coordinate [1] has 4 finite field multiplication 

operations, 5 finite field squaring operations and 4 finite field addition operations, as shown 

in Algorithm 5.1. The algorithm has two temporary variables 𝑇1 and 𝑇2 to save intermediate 

results of point doubling. 

5.2.2 Point Addition  

The point addition in LD projective coordinate system allows mixing the coordinates for the 

point addition, where the projective points 𝑃[𝑋1, 𝑌1, 1] could be added with affine point 

𝑄[𝑥1, 𝑦1] to produce 𝑃 + 𝑄[𝑋3, 𝑌3, 𝑍3] where 𝑄 ≠ ±𝑃 using the steps as shown below[73]. 

𝐷 ← 𝐵3(𝐶 + 𝑎𝑍1
2) 

𝑍3 ← 𝐶
2 

Algorithm 5.1 Point Doubling in LD coordinate system where 𝒂 ∈ {𝟎, 𝟏} 

INPUT: 𝑃 = (𝑋1: 𝑌1: 𝑍1) 𝑖𝑛 𝐿𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑛
𝐸

𝐾:𝑌2
+ 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏  

OUTPUT:2𝑃 = (𝑋3: 𝑌3: 𝑍3) in LD coordinates  

 

1: If P = ∞ then (∞)  

2: T1 ← Z1
2 { T1 ← Z1

2} 

3: T2 ← X1
2 {T1 ← X1

2} 

4: Z3 ← T1. T2{Z3 ← X1
2. Z1

2} 

5: X3 ← T2
2{X3 ← X2

4} 

6: T1 ← T1
2{T1 ← Z1

4} 

7: T2 ← T1. b{T2 ← b. Z1
4} 

8: X3 ← X3 + T2{X3 ← X1
4 + bZ1

4} 

9: T1 ← Y1
2{T1 ← Y1

2} 

10: If a = 1 then T1 ← T1 + Z3{T1 ← aZ3 + Y1
2} 

11: T1 ← T1 + T2{T1 ← aZ3 + Y1
2 + bZ1

4} 

12: Y3 ← X3. T1{Y3 ← X3(aZ3 + Y1
2 + bZ1

4)} 

13: T1 ← T2. Z3{bZ1
4Z3} 

14: Y3 ← Y3 + T1{Y3 ← bZ1
4Z3 + X3(aZ3 + Y1

2 + bZ1
4)} 

15: Return (X3: Y3: Z3) 
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𝐸 ← 𝐴.𝐶 

𝑋3 ← 𝐴
2 +𝐷 + 𝐸 

𝐹 ← 𝑋3 + 𝑥2. 𝑍3 

𝐺 ← (𝑥2 + 𝑦2). 𝑍3
2 

𝑌3 ← (𝐸 + 𝑍3). 𝐹 + 𝐺 

The point addition algorithm has 8 finite field multiplications, 5 squaring and 9 additions as 

shown in Algorithm 5.2. In addition to that, 𝑇1, 𝑇2, 𝑇3  are temporary variables to be used for 

the adder operations. 

Algorithm 5.2 Point Addition in LD coordinate system where 𝒂 ∈ {𝟎, 𝟏} 

INPUT: 𝑃 = (𝑋1: 𝑌1: 𝑍1) 𝑖𝑛 𝐿𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑛𝑄 = (𝑥2, 𝑦2) in affine coordinate on 

𝐸 𝑌 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏⁄   

OUTPUT:2𝑃 = (𝑋3: 𝑌3: 𝑍3) in LD coordinates  

 

1: If P = ∞ then (∞)  

2: If P = ∞ then (x2: y2: 1) 

3: T1 ← Z1X2{T1 ← X1Z1}  

4: T2 ← Z1
2{T1 ← Z1

2} 

5: X3 ← X1. T1{X3 ← B = X1. Z1 + X1} 

6:T1 ← Z1. X3{T1 ← C = Z1B} 

7: T3 ← T2. y2 {T3 ← Y2Z1
2} 

8: Y3 ← T1 + T3 {Y3 ← A = Y2. Z1
2 + Y1} 

9: If X3 = 0 then (a)if 

Y3
= 0 use Point doubling Algorithm to compute (X3: Y3:Z3)

= 2(x2: y2: 1)and return (X3: Y3: Z3) 

10: Z3 ← T1
2{Z3 ← C

2} 

11: T3 ← T1. Y3{Z3 ← E = AC} 

12: (b) If a =1 then T1 ← T1 + T2 {T1 ← C+ aZ1
2} 

 

13:  T1 ← T2. Z3 {T1 ← bZ1
4Z3} 

14: X3 ← T2. T1 {X3 ← D = B
2(C + aZ1

2)} 

15: T2 ← Y3
2{T2 ← A

2} 

16: X3 ← X3 + T2 {A
2 + D} 

17: (X3 ← X3 + T3){X3 ← A
2 + D + E} 

18: (T2 ← x2. Z3){T2 ← X2Z3} 

19: T2 ← T2 + X3{T2 ← F = X3 + X2Z3} 

20: T1 ← {T1 ← Z3
2} 

21:  T3 ← T3 + Z3{T3 ← E+ Z3} 

22: Y3 ← T3. T2{Y3 ← (E + Z3)F} 

23: T2 ← x2 + y2{T2 ← X2 + Y2} 

24: T3 ← T1. T2{T3 ← G = (X2 + Y2)Z3
2} 

25: Y3 ← Y3 + T3{Y2 ← (E + Z3)F + G} 

26: Return (X3: Y3: Z3) 
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5.2.3 Scalar Point Multiplication  

The scalar point multiplication is to be defined as a series of point doubling and addition 

operations. Again, the result of the LD point doubling and point addition algorithms is the 

𝑄[𝑋, 𝑌, 𝑍] will be projective coordinates that can be easily converted into affine coordinates 

𝑄[𝑥2 , 𝑦2] by using the steps below: 

𝑥2 ← 𝑋 𝑍⁄  and 𝑦2 ← 𝑌 𝑍2⁄  

For the projective to affine coordinate conversion, a single field inversion is used. In this 

work, we consider implementing left-to-right binary method for the point multiplication as 

shown in Algorithm 5.3 [1] that is suitable for an initial operation. 

5.2.4 Binary Field Arithmetic  

 Binary fields are attractive for ECC-based public key cryptography [15, 29]. The 

point operations involve finite field multiplication, finite field squaring, finite field addition 

and finite field inversion over 𝐺𝐹(2𝑚) [1]. The finite field inversion is the costliest operation 

but can efficiently be performed by using multiplicative inversion. Thus, field multiplication 

is the most crucial and complex arithmetic operation. 

5.2.5 Finite Field Multiplication  

 The efficiency of ECC is highly dominated by the efficiency of the field 

multiplication operation [51]. The field multiplication is performed by multiplying two 

elements 𝑎(𝑥). 𝑏(𝑥) ∈ 𝐺𝐹(2𝑚) yielding a binary elements of degree (2𝑚 − 1) followed by 

decreasing the product modulo an irreducible polynomial 𝐹(𝑥) ∈ 𝐺𝐹(2𝑚) [1]. There are 

Algorithm 5.3 Left-to-right binary method for point multiplication  

INPUT: 𝑘 = (𝑘𝑡−1,⋯ 𝑘1, 𝑘0)2, 𝑃 ∈ 𝐸(𝐹𝑞)  

OUTPUT:𝑘𝑃  

 

1) 𝑄 ← ∞  

2) For 𝑖 from 𝑡 − 1down to do  

a. 𝑄 ← 2𝑄 

b. if 𝑘𝑖 = 1 𝑡ℎ𝑒𝑛 𝑄 ← 𝑄 + 𝑃 

3) Return (𝑄) 
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various approaches to implementing multiplication over 𝐺𝐹(2𝑚) using  a word-level 

computational environment (i.e., embedded processor); these include product scanning [33], 

hybrid scanning, operand cashing, and consecutive operand-cashing techniques [11].  

  In this work, we adopt the product scanning algorithm (i.e. Comba algorithm) for its 

reported efficiencies [74]. The algorithm runs using two individual nested loops as outer loop 

and inner loop. The outer loop handles the index of the multiplier and the inner loop is 

responsible for generating the index of the multiplicand. The amount of time the inner loop 

iterates relies on the amount of words required for a given field (m). For example, if there are 

"t" words, the number of iteration will be ′t′. In each inner loop iteration, there is one   

𝐺𝐹(2𝑚) multiplication, one xor and two load operations for collecting each column products. 

The column products are 2w size. Thus, a second store operation is essential at the outer loop 

to hold the result of the partial product.   

5.2.6 Finite Field Squaring 

 Squaring over binary fields is a linear operation. The square operation can be 

implemented by manipulating the simple bits of the original polynomial a(z). To speed up the 

process of the squaring operation, a look-up table are used with a size of 512 bytes. The look 

up table is based on squaring needing pre-computing of 8-bit polynomials input into 16-bit 

squared results. The disadvantage of the look-up table method is that it requires large 

memory that may increase with the increase of field size. In this work, we consider a linear 

polynomial squaring [1].  

 The main idea of the linear algorithm is to accomplish the squaring by inserting zeros 

between every corresponding bit of a(z) from bit position "1". In this process, the odd 

positions are to be filled up with zeros and even positions loaded with bits of the input 

polynomial. After the square operation, the output is 2m-1 bit that is required to be reduced to 

m bit by using a reduction operation.  

5.2.7 Finite Field Addition 

 The addition of two elements is simply calculated using a bit wise XOR operation. In 

this work, the field addition is a word level XOR operation [75].  

5.2.8 Modular Reduction  

 Each of the resulting field multiplication and field squaring operation is 2m-1 bits 

without reduction. We need to reduce the result to m bit. In this chapter, we consider NIST 
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fast reduction polynomials [1]. Thus, a modified 8-bit fast reduction algorithm we proposed 

in [74] is implemented over 𝐺𝐹(2163) with the irreducible polynomial. Additionally, the rest 

of 𝐺𝐹(2𝑚) were adopted and implemented as described in [1]. 

                           𝑓(𝑧) = 𝑍163 + 𝑍7 + 𝑍6 + 𝑍3 + 1                                                                (3) 

                           𝑓(𝑧) = 𝑍233 + 𝑍74 + 1 (𝑤𝑖𝑡ℎ 𝑤 = 32)                           

                           𝑓(𝑧) = 𝑍283 + 𝑍12 + 𝑍7 + 𝑍5 + 1 (𝑤𝑖𝑡ℎ 𝑤 = 32)   

                           𝑓(𝑧) = 𝑍409 + 𝑍87 + 1 (𝑤𝑖𝑡ℎ 𝑤 = 32)          

                         𝑓(𝑧) = 𝑍571 + 𝑍10 + 𝑍5 + 𝑍2 + 1 (𝑤𝑖𝑡ℎ 𝑤 = 32)                                                                 

                        

As illustrated in Figure 5.1, the result of multiplication or square operation is 325 bits. We 

need to reduce the 325 bits to 163 bits (i.e. 162 to 0). In the fast reduction method, the 163 th 

to 325 th bits are added with 0th to 162th bit with shifting. For the irreducible polynomial in (3) 

over 𝐺𝐹(2𝑚), the bitwise addition is performed with: no-shifting, 3-bit shifting, 6-bit shifting 

and finally, 7-bit shifting. Moreover, the 3-bit shifting, 6-bit shifting and 7-bit shifting shifts 

 

Figure 5.1 Shifting Operation in Fast Reduction Process with word size=8 
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extra bits over the 162𝑡ℎ bit as shown in the Figure 5.1. For example, three extra bits 

overflow due to the 3-bit shifting, and therefore, it is required to add the extra bits with the 

bits from the rightmost side bit (0𝑡ℎ bit) in a shifted fashion as per the order of the irreducible 

polynomial. Thus, in 3-bit shifting, the extra bits (323𝑡ℎ, 324𝑡ℎ and 325𝑡ℎ) are added with 

no-shift, 3-bit shift, 6-bit shift and finally 7-bit shift from the rightmost bit (0th bit). The 

same approach applies for the 6-bit shifting and 7-bit shifting cases, as shown in Figure 5.1. 

5.3 Proposed Concurrent ECC Point Multiplication   

There are data dependencies in the LD point operation algorithms that can prohibit 

achieving parallel field operations [8]. We extract potential field operations from the LD 

algorithm that can be performed in parallel by avoiding data dependency. We present a new 

vertical parallelism mechanism for both point doubling and point addition separately by 

avoiding data dependency. The parallel operation utilizes separate cores or a group of cores 

to operate several instructions concurrently.    



Chapter 5:  Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields   

 
 

 

 5-11 

 

5.3.1  Parallel Lopez-Dahab Point Doubling  

 The point doubling algorithm is modified to perform parallel operations. A Read-After-

Write (RAW) dependency is investigated to extract possible parallel operations. In addition, 

we accomplish several parallel operations in the point doubling that are compatible with our 

target platform. For example, we parallelized two field operations as shown in Algorithm 5.4: 

(𝑍3 ← 𝑇1𝑇2) with (𝑋3 ← 𝑇2
2), since there is no dependency.  

 Similarly, three fields operations are performed concurrently, as shown in step 8. 

However, step 9 (𝑌3 ← 𝑌3 + 𝑇1) cannot be parallelized since it depends on the output of 

previous step(𝑌3 ← 𝑋3. 𝑇1). With a careful rescheduling in the point doubling operations 

algorithm proposed by [1], we were able to minimize the total steps down to 9 as shown in 

the modified Algorithm 5.4.  

5.3.2  Parallel Lopez-Dahab Point Addition 

Algorithm 5.4 Modified Point Doubling in LD coordinate system where a ϵ {0,1}   

INPUT: 𝑃 = (𝑋1: 𝑌1: 𝑍1) 𝑖𝑛 𝐿𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑛
𝐸

𝐾:𝑌2
+ 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏  

OUTPUT:2𝑃 = (𝑋3: 𝑌3: 𝑍3) in LD coordinates  

1: If 𝑃 = ∞ then (∞)  

2: 𝑇1 ← 𝑍1
2 { 𝑇1 ← 𝑍1

2} 

3: 𝑇2 ← 𝑋1
2 {𝑇1 ← 𝑋1

2} 

4: 𝑍3 ← 𝑇1. 𝑇2{𝑍3 ← 𝑋1
2. 𝑍1

2}||𝑋3 ← 𝑇2
2{𝑋3 ←

𝑋2
4}||𝑇1 ← 𝑇1

2{𝑇1 ← 𝑍1
4}||𝑇2 ← 𝑇1. 𝑏{𝑇2 ←

𝑏. 𝑍1
4}[Parallel Operation] 

5: 𝑋3 ← 𝑋3 + 𝑇2{𝑋3 ← 𝑋1
4 + 𝑏𝑍1

4} 

6:𝑇1 ← 𝑌1
2{𝑇1 ← 𝑌1

2} 

7:𝐼𝑓 𝑎 = 1 then 𝑇1 ← 𝑇1 + 𝑍3{𝑇1 ← 𝑎𝑍3 + 𝑌1
2} 

8:𝑇1 ← 𝑇1 + 𝑇2{𝑇1 ← 𝑎𝑍3 + 𝑌1
2 + 𝑏𝑍1

4}||𝑌3 ←

𝑋3. 𝑇1{𝑌3 ← 𝑋3(𝑎𝑍3 + 𝑌1
2 + 𝑏𝑍1

4)}||𝑇1 ←

𝑇2 . 𝑍3{𝑏𝑍1
4𝑍3}[Parallel Operation] 

9: 𝑌3 ← 𝑌3 + 𝑇1{𝑌3 ← 𝑏𝑍1
4𝑍3 + 𝑋3(𝑎𝑍3 + 𝑌1

2 + 𝑏𝑍1
4)} 

10: Return (𝑋3: 𝑌3: 𝑍3) 
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 The point addition implementation in Algorithm 5.2 was modified by removing 

dependencies to enable vertical parallelism.  

n Algorithm 5.2, there are 26 steps, including the conditional step that is triggering the point 

doubling operation, 𝑌1 = 0. In the modified algorithm, Algorithm 5.5, we managed to 

minimize the number of steps to 20. Furthermore, in this work, we advocate a new approach 

of parallelization, namely interleaving parallelization as shown, for example, in the modified 

algorithm for step 16.   

 

5.3.2 Proposed Left to Right Double and Add Scalar Point Multiplication  

Algorithm 5.5 Modified Point Addition in LD coordinate system where a ϵ {0,1} 

INPUT:𝑝 = (𝑋1: 𝑌1: 𝑍1)𝑖𝑛 𝐿𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑛 𝑄 = (𝑥2, 𝑦2)in affine coordinates 
𝐸

𝐾:𝑌2
+ 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 

OUTPUT:2𝑃 = (𝑋3: 𝑌3: 𝑍3) in LD coordinates 

 

1: If 𝑃 = ∞ then (∞)  

2: If 𝑃 = ∞ then (𝑥2, 𝑦2: 1)  

3: 𝑇1 ← 𝑍1𝑋2{𝑇1 ← 𝑋1𝑍1}  

4: 𝑇2 ← 𝑍1
2{𝑇1 ← 𝑍1

2} 

5: 𝑋3 ← 𝑋1. 𝑇1{𝑋3 ← 𝐵 = 𝑋1. 𝑍1 +𝑋1} 

6:𝑇1 ← 𝑍1. 𝑋3{𝑇1 ← 𝐶 = 𝑍1𝐵} 

7: 𝑇3 ← 𝑇2 . 𝑦2 {𝑇3 ← 𝑌2𝑍1
2} 

8: 𝑌3 ← 𝑇1 + 𝑇3 {𝑌3 ← 𝐴 = 𝑌2. 𝑍1
2 + 𝑌1} 

9: If 𝑋3 = 0 𝑡ℎ𝑒𝑛 (𝑎)if 𝑌3 =

0 use Point doubling Algorithm to compute (𝑋3: 𝑌3:𝑍3) =
2(𝑥2: 𝑦2: 1)and return (𝑋3: 𝑌3: 𝑍3) 

10: 𝑍3 ← 𝑇1
2{𝑍3 ← 𝐶2}||𝑇3 ← 𝑇1. 𝑌3{𝑍3 ← 𝐸 =

𝐴𝐶}[ParallelOperation} 

11: (b) If a =1 then 𝑇1 ← 𝑇1 + 𝑇2 {𝑇1 ← 𝐶 + 𝑎𝑍1
2} 

12: 𝑇1 ← 𝑇2 . 𝑍3 {𝑇1 ← 𝑏𝑍1
4𝑍3} 

 

13: 𝑋3 ← 𝑇2. 𝑇1  {𝑋3 ← 𝐷 =

𝐵2(𝐶 + 𝑎𝑍1
2)} 

14: 𝑇2 ← 𝑌3
2{𝑇2 ← 𝐴

2} 

15: 𝑋3 ← 𝑋3 + 𝑇2 {𝐴
2 +𝐷} 

16: Interleaving Parallel[(𝑋3 ← 𝑋3 +

𝑇3){𝑋3 ← 𝐴
2 +𝐷 + 𝐸}||(𝑇2 ←

𝑥2. 𝑍3){𝑇2 ← 𝑋2𝑍3}||(𝑇2 ← 𝑇2 +

𝑋3{𝑇2 ← 𝐹 = 𝑋3 +𝑋2𝑍3}||𝑇1 ←

 {𝑇1 ←

𝑍3
2}[Parallel inside Parallel operation]  

17: 𝑇3 ← 𝑇3 + 𝑍3{𝑇3 ← 𝐸 + 𝑍3}||𝑌3 ←

𝑇3 . 𝑇2{𝑌3 ← (𝐸 +

𝑍3)𝐹}[Parallel Oeration] 

18: T2 ← x2 + y2{T2 ← X2 + Y2} 

19: 𝑇3 ← 𝑇1 . 𝑇2{𝑇3 ← 𝐺 = (𝑋2 +

𝑌2)𝑍3
2}||𝑌3 ← 𝑌3 + 𝑇3{𝑌2 ←

(𝐸 + 𝑍3)𝐹 + 𝐺}[ Parallel Operation] 

20: Return (𝑋3: 𝑌3: 𝑍3) 
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 In order to obtain better time complexity performance, we modified the left to right 

algorithm[1]. The enhancement is achieved by performing the initial scanning most 

significant bits (MSB) of k in order to track down the first none zero bit from MSB. If the non-

zero first bit is found, then P's coordinates will be filled in Q to start loop operation is shown 

in Algorithm 3. The start position of the loop is the position of the first non-zero bit that is 

listed in variable “pos” as shown in the algorithm. The loop operation then continues from 

“pos-1” to 0th bit of k. The scanning process reduces latency for the case of k input with zeros 

in the MSBs. In [1], the time complexity for point addition (A) and point doubling (D) are mD  

and (m⁄2)A respectively. In the proposed Algorithm 3, the loop operation of the main 

algorithm starts only after finding of the first from the MSBs. Thus, the number of point 

addition operations will be (m/2-1) and point-doubling operations would be (m-(m-1-pos)) 

where (m-1-pos) represents the number at the MSB. Therefore, the expected running time for 

the scalar point multiplication could be represented by (m/2-1).A+(m-(m-1-pos)-1)D, which 

is potentially lower than original algorithm in [1]. 

Algorithm 5.6 Modified Left-to-right binary method for point multiplication  

INPUT: Base Point 𝑃 = (𝑃𝑥 , 𝑃𝑦) and scalar 𝑘 = (𝑘𝑖−1,⋯ , 𝑘1, 𝑘0)2, 𝑃 ∈ 𝐸(𝐹𝑞) 

OUTPUT: Point 𝑄on the elliptic curve such that  

Q=kP=(𝑄𝑥 , 𝑄𝑦 , 𝑄𝑧) 

 

1: 𝑄 ← ∞ 

2: For i From t-1down to do  

a) if 𝐾𝑖 =
′ 0′then  

1. break 

2. end if  

b) else if 𝐾𝑖 =
′ 1′then 

1. load Q = P 

2. store i in pos 

3. end if  

c) end for  

3: For i in pos-1 to 0 do  

a) Perform_point_doubling: 𝑄 ← 2𝑄 

b) if 𝐾𝑖 =
′ 1′then  

1. Perform_point_addition: 𝑄 ← 𝑃 +𝑄 

2. end if  

c) end for 

4: Return (Q) 
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5.4 Implementation Details  

The proposed ECC scalar point multiplication based on the modified algorithms is 

implemented kit using xtimecomposer IDE. The Xmos Kit consists of a two tiles XCORE 

device and eight 32-bit logic cores that can support up to 500 MIPS xCORE multi-core 

microcontroller and 100MHz processor speed [14]. A sequential implementation was first 

carried out to help identify any performance bottlenecks in the execution of the point 

operations, as shown in Figure 5.2.   

In addition to that, we analyzed our sequential implementation on two different 

platforms including Arduino Due (ARM processor) and Xmos platform as shown in Figure 5. 

3. In fact, these two figures show that around 63% the scalar point multiplication is taken by 

point addition operations.   

 

 

Figure 5.2 Sequential ECC Scalar Point Multiplication Intel Vtune Analysis [3]  
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5.5 Performance Analysis  

 We analyzed our sequential implementation on two different platforms, including 

Arduino Due (ARM processor) and Xmos platform, as shown in Fig 5.3. In fact, these two 

figures show that around 63% of the scalar point multiplication is taken by point addition 

operations.  After a successful implementation, the proposed vertical parallelization managed 

to enhance the performance of ECC scalar point multiplication up to 49% and around 44% in 

point addition operations, as illustrated in Fig. 4. In Table 5.1, we show the number of logic 

cores used, execution time and number of clock cycles for some steps that we parallelized in 

Algorithms 4 and 5 to conduct point doubling and point addition. These cores are 

automatically assigned by the tools as we are using the parallel instruction, “par statement” 

outside the main function. To achieve, a further parallel operation, we assigned “par 

statement” to some of the arithmetic functions belonging to the main point doubling and point 

addition functions individually.  

 

 The optimal utilization of the core is a key part of the optimization of ECC point 

multiplication, as shown in Table 5.1. In this work, we managed to utilize all of the existing 8 

cores provided. Notably, the performance of each binary finite field arithmetic operation that 

is implemented on a particular core of the Xmos can be obtained. Again, the parallel 

 

Figure 5.3 Parallel ECC Scalar Point Multiplication xmos single core 
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operation consumes a latency that is equivalent to a multiplication latency, whereas the other 

operations (field squaring and field addition) are operating on the fly. Furthermore, the 

overall number of processors for performing the scalar point multiplication over projective 

coordinates is tested for k=3{“00…011”}, where a load Q operation for the MSB of k, 1 

followed by point doubling and point addition for the last bit of k, 1.    

To quantify, a k input of the best case (k=3), average case (as same as the complexity in [8]) 

and worst case (k=0x”07ff..f” ) inputs were investigated. Table 5.2 illustrates the time 

complexity of the scalar point multiplication for different inputs. 
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     Table 5.1  Time Complexity Table  

 

k  

 

Operations involved 

No of Clock Cycles Time Execution ( s  ) 

𝑘 = 0  
 

Infinity 

 

69093 

 

64 

𝑘 = 1 
 

Loading 

 

70270 

 

65 

 

𝑘 = 2 

 

Loading+Doubling 

 

374095 

 

369 

 
𝑘 = 3 

 

Doubling+Addition 

 

1523 × 103 

 

1518 

𝑘 = 0𝑥07⋯0𝑥𝐹𝐹 

 (Worst Case) 

163 Doubling +163 

Addition 

 

24750 ∗ 103 

 

247501 

 

     Table 5.2  Operation Details and Performance  

 

Operation  

Number logic Cores 

used 

 

Operation 

Time 

Execution 

( s  ) 

No of Clock Cycles 

Point Doubling for 

Step Number 4 

4 logic cores (core 0 

To core 3) 

 

Multiplication 

 

5 

 

318 

Squaring 5.648 353 

 

Addition 

 

1.536 

 

96 

Point Addition 

Step No 10  

One Core used 

(Core 0) 

Multiplication 5 

 

318 

 

Squaring 5.648 353 
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As already stated, to our knowledge, our work is the first attempt to implement ECC scalar 

point multiplication on a homogeneous multicore microcontroller. For comparisons, we tried 

to put context more than provide like for like comparisons as the platforms are not 

comparable in terms of resources available, as shown in Table 5.3. 

 

 

 

     Table 5.3 Comparison With State of Arts   

 

 

Author 

platf

orm 
Algorithm 

Time 

Execution 

( s  ) 

No of Clock Cycles Operation Field 

C. Negre[6] 
Intel Core 

i7 

Parallel 

(Double, Halve)- 

and-add with NAF4 

 

 

29 

 

97 × 103 

 

𝐺𝐹(2233) 

C. Negre[6] 

Qualcom

m 

SnapDrag

on 

Parallel 

(Double, Halve)- 

and-add with NAF4 

 

1060 

 

1591 × 103 

 

𝐺𝐹(2233) 

J.M[8] 
Intel Core 

i7 

Halve-Double and 

add 

 

------- 

 

130696 

 

𝐺𝐹(2233) 

This Work  
Xmos 

Start Kit 

left to right double 

and add scalar point 

 

51.32 

 

1523 × 103 

 

𝐺𝐹(2163) 

This Work  
Xmos 

Start Kit 

left to right double 

and add scalar point 

 

18.590 

 

8887 × 103 

 

𝐺𝐹(2233) 

This Work  
Xmos 

Start Kit 

left to right double 

and add scalar point 

 

77.489 

 

1059 × 103 

 

𝐺𝐹(2283) 

This Work  
Xmos 

Start Kit 

left to right double 

and add scalar point 

 

109.835 

 

2111 × 103 

 

𝐺𝐹(2409) 

This Work  
Xmos 

Start Kit 

left to right double 

and add scalar point 

 

151.778 

 

3956 × 103 

 

𝐺𝐹(2571) 
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5.6 Conclusions 

In this chapter, we proposed new modified algorithms that overcome data 

dependencies in ECC computations and hence enable parallel implementation of ECC on 

multi-core platforms efficiently. A pure software implementation for ECC scalar point 

multiplication over 𝐺𝐹(2𝑚) using the Xmos multi-core microcontroller was implemented 

using these algorithms, which confirmed the feasibility and improvements of adopting 

parallelism in ECC implementations. It is advocated that homogeneous multicore platforms 

can be useful for resources constrained applications where strong security is required. 

Potentially, our parallelization approach could be adopted to improve cryptography 

operations and to open up the potential of having strong public key cryptography in software 

with high performance and flexibility on a range of multicore microcontroller platforms. 

Hence, future work will investigate deploying these algorithms on alternative multicore 

platforms. 
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Chapter 6 Software Design: 

Fast Parallel ECC Point 

Multiplication over Prime 

Fields    
This chapter presents fast parallel ECC Point Multiplication over prime Field 𝐺𝐹(𝑃). In this 

work, we attempted to enhance the performance of ECC point Multiplication over prime field 

𝐺𝐹(128),𝐺𝐹(192),𝐺𝐹(256)𝑎𝑛𝑑 𝐺𝐹(384) by using a homogenous multicore 

microcontroller. Our aim is based on the fact of necessity of providing highly-secure 

communication on resource constrained devices, which can accordingly use in different 

applications such RFID, Wireless Sensor Network, and IoT. This chapter provides an overall 

description of ECC over prime field with some mathematical descriptions of Modular 

Multiplication, Modular reduction, and point multiplication. Accordingly, we detailed our 

proposal to enhance the ECC point multiplication. This is followed by a detailed description 

of our implementation and a final presentation of the enhancement as shown in the result 

analysis 
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6.1 Introduction 

There is an expectation that the emergence of multicore processing would enable a 

new generation of sensor nodes that suits the anticipated growth of information-rich 

applications using Wireless Sensor Nodes (WSNs) [76]. Specifically, the lower power 

homogeneous multicore microcontrollers can be very attractive for sensing the necessary data 

and carrying out the required computations across the multicores concurrently.  The security 

remains a major concern, similar to that of single core sensor nodes. Hence there is a need to 

consider the safety of the devices at the time of implementation has developed as an 

alternative to RSA in the applications of public key-based security due to its enhanced 

performance of security per bit. However, the complex ECC computations based on either 

binary 𝐺𝐹(2𝑚) or prime 𝐺𝐹(𝑃) fields make their implementation on small, low-power 

devices challenging. 

Although [77] concluded that  ECC over binary fields is faster than ECC over prime 

fields in hardware implementation, the timing result reported by [1] for the ECC software 

implementation using Intel Pentium Processors shows the opposite. In fact, [1] reported faster 

performance when using for NIST recommended prime fields compared to the binary fields 

curves. A pure ECC software implementation over prime fields optimized for high 

performance would be attractive for implementation on sensor node processors.  Different 

efforts have been made by researchers to enhance the ECC performance in these devices like 

the works reported by [78-80].  

Parallel ECC implementations over prime fields have been reported for both hardware 

and software platforms [8, 81, 82]. For example, [8, 81, 82] managed to improve the ECC 

performance over prime field for 256-bit and 160-bit in GF(P) using Read after Write (RAW) 

strategy implemented in Modular Arithmetic Logic Unit (MALU) using hardware design.  

Similarly, in [8, 81, 82] the authors proposed software parallel approach for enhancing the 

scalar point multiplication over the prime field (p = 2255 −19) in an Intel Core 2 workstation. 

We noticed that ECC over prime field parallel software was implemented on powerful 

platforms. These implementations may not suit to low-resource, WSN-type applications using 

devices with limited resources and lower clock cycles. 

The contribution of this work is mainly to further explore the feasibility and potential 

for parallelizing improve ECC scalar point multiplication over prime field for four SECG 

curves Spec128r1, Spec192r1, Spec256 and Spec384r1 on a homogeneous multicore 

microcontroller(xmos) [15] and [14]. To our knowledge, this is the first ECC over prime 
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implementation reported on such platform.   

The proposed implementation is based on three novel fundamental algorithmic 

modifications. Firstly, we present first time parallel Comba Algorithm proposed by [17] and 

[18] on multicore microcontroller. Secondly, we proposed a novel parallel approaches for 

parallelizing Jacobian point doubling proposed by [83], and we managed to reduce it 

computational steps to 15 steps. Also, we presented a new parallel approach for parallelizing 

point addition algorithms proposed by [83]. We used Read After Write (RAW) investigation 

and data dependencies check to extract possible parallel operations. Finally, we analyze the 

timing performance of our implemented techniques on the xmos start kit platform using its 

xTimecomposer IDE. The obtained results show 85% improvement compare to single core 

implementation.   

The remainder of this chapter is organized as follows. Section 6.3 details the Elliptic 

Curve Cryptography design and implementation. The implementation results and analysis are 

devoted in sections 6.4 and 6.5. Finally, the chapter is concluded in 6.5.    

6.2 Mathematical Background 

Mathematically, the elliptic curve over prime field consists of an integer P over finite 

field 𝐹𝑃 and the elements 𝑎, 𝑏 ∈ 𝐹𝑝 are to be defined by the equation below: 

𝐸: 𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝) (6.1) 

Recently, ECC has been standardized by different standard bodies such as ANSI 

(American National Standard), NIST (National Institute of Standards and Technology) and 

others. In this work, we specifically used the following recommended elliptic domain 

parameters over 𝐹𝑃   for secp128r1, secp192, secp256r1 and secp384r1, as specified by [15]. 

The domain parameters for these curves consists of six main parameters nominated as 

sextuple and presented as below: 

𝑇 = (𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ) 
where 𝑎, 𝑏 ∈ 𝐹𝑃  and 𝑃 represents an integer of modulus to specify the finite field, and for the 

purpose of our work, we consider the following recommended modulus: 

  𝑃128 = 2
128 − 297 − 1,𝑃192 = 2

192 − 264 − 1,𝑃256 = 2
224(232 − 1) + 2192 + 296 −

1,𝑃384 = 2
384 − 2128 − 296 + 232 − 1. 

 

The purpose of parameters 𝐺, 𝑛, ℎ are to define the base point, define the order of G 

and define the cofactor, respectively. These four curves are following the definition specified 

by equation (1). In fact, these curves have the same basic arithmetic operations which work 
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for all of them. The only differences between them are the modulus and size of the numbers 

change. Therefore, in the coming subsections. we provide more detail for the arithmetic 

prime finite field operations involved in our work. 

In principle, the construction of Elliptic Curve is mainly depending on the selection of 

point representation, point doubling, point addition and point multiplication. Having these 

operations implemented will allow to create a trapdoor for implementing different protocols 

such Digital Signature Algorithm (DSA) and Diffie-Hellman based encryption. However, 

there are different ECC standard bodies recommended to implement ECC underlying finite 

field, a Galois Field (GF) prime field or binary fields 𝐺𝐹(2𝑚) [15]. 

 

6.2.1 Modular Multiplication 
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In addition to the replacement of the multiplication algorithm, we also propose 

parallelizing the Comba algorithm which is elaborated in section 6.3.1.       

In this work, we considered the FIPS 186-2 standard that is used to provide different moduli 

illustrated below that can help creating fast reduction algorithms especially on word size 32. 

We also provide an example of these algorithms (Algorithm 6.2). Therefore, for further 

information and algorithms, we refer the reader to [1] section 2.2.6: 

𝑃192 = 2
192 − 264 − 1 

𝑃256 = 2
256 − 2224 + 2192 + 296 − 1 

Algorithm 6.1 Comba Multiplication Technique  

INPUT: 𝐴 = (𝑎𝑠−1 , ⋯ , 𝑎1, 𝑎0,) 𝑎𝑛𝑑 𝐵 = (𝑏𝑠−1 , ⋯ , 𝑏1, 𝑏0,).   

OUTPUT: Product = 𝐴. 𝐵 (𝑃2𝑠−1,⋯ , 𝑃1, 𝑃0)  

1: (𝑡, 𝑢, 𝑣) ← 0   

2: for i from 0 by 1 to s do 

3:     for j from 0 by 1 to i do  

4:          (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗  

5:     end for  

6:     𝑃𝑖 ← 𝑣 

7:     𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0 

8:   end for  

 9:   for i from  s by 1 to 2s-1 do  

10:      for j from i+1--s by 1 to s do  

11:           (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗  

12:       end for  

13:       𝑃𝑖 ← 𝑣 

14:       𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0 

14:  end for  

15: 𝑃2𝑠−1 ← 𝑣                                      

 

 

 

 



Chapter 6:  Software Design: Fast Parallel ECC Point Multiplication over Prime Fields  

 
 

 

 6-6 

 

𝑃384 = 2
384 − 2128 − 296 + 232 − 1 

 

6.3 Proposed Design ECC point Multiplication over Prime Fields  

The point multiplication is to be accomplished by adding a point to itself for a certain 

number of times and denoted by kP, where k is a scalar number of times that we intend to add 

P to itself. For example, 3P could be literally represented as P+P+P, which specifically 

consist of point double and addition. The scalar point multiplication dominates the execution 

time for Elliptic Curve Cryptography scheme. Because of this, several algorithms have been 

proposed to help enhance scalar point computation, such as [81, 84] and [83]. [19] proposed a 

Montgomery Ladder with (X, Y)-only co-Z addition algorithm suggested by [83] to conduct 

scalar point multiplication. The algorithm contains  three main computations that include: (n-

1) XYCZ-ADDC algorithm, (n-1) XYCZ-ADD computations, point doubling algorithm and 

Final inversion of Z operations.   

6.3.1 Proposed Elliptic Curve Point Representation   

Basically, (x,y) points are to be represented by the coordinate referred to as Affine 

Coordinates (Α). However, it is very common practice that projective coordinates are used in 

replacing the Affine Coordinates. This is because Affine Coordinates over prime field is 

      Algorithm 6.2  Fast Reduction modulo𝑷𝟐𝟓𝟔 = 𝟐
𝟐 + 𝟐𝟐𝟐𝟒 + 𝟐𝟏𝟗𝟐 + 𝟐𝟗𝟔 − 𝟏  

INPUT: An integer 𝑐 = (𝑐15,⋯ , 𝑐2, 𝑐1, 𝑐0) in base 232 with 0 ≤ 𝑐 < 𝑃256
2  . 

OUTPUT: 𝑐 𝑚𝑜𝑑𝑃256  
 

1) 𝐷𝑒𝑓𝑖𝑛𝑒 256 − 𝑏𝑖𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠  
    
   𝑠1 = (𝑐8, 𝑐7𝑐6, 𝑐4, 𝑐3𝑐2, 𝑐1, 𝑐0), 
  𝑠2 = (𝑐15, 𝑐14, 𝑐13, 𝑐12, 𝑐11, 0,0,0), 
   𝑠3 = (0, 𝑐15, 𝑐14, 𝑐13, 𝑐12, 0,0,0), 
 𝑠4 = (𝑐15, 𝑐14, 0,0,0, 𝑐10, 𝑐9, 𝑐8), 
𝑠5 = (𝑐8, 𝑐13, 𝑐15, 𝑐14, 𝑐13, 𝑐11, 𝑐10, 𝑐9), 
𝑠6 = (𝑐10, 𝑐8, , 0,0,0, 𝑐13, 𝑐12, 𝑐11), 
𝑠7 = (𝑐11, 𝑐9 , 0,0,0, 𝑐15, 𝑐14, 𝑐13, 𝑐12), 
𝑠8 = (𝑐12, 0, , 𝑐10, 𝑐9, 𝑐8, 𝑐8, 𝑐15, 𝑐14, 𝑐13), 
𝑠9 = (𝑐13, 0, 𝑐11, 𝑐10, 0, 𝑐15, 𝑐14), 
 
2) Return (𝑠1 + 2𝑠2 + 2𝑠3 + 𝑠4 + 𝑠5 − 𝑠6 − 𝑠7 − 𝑠8 − 𝑠9) 𝑚𝑜𝑑 𝑃256   
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costly due to the operations of field inversion which are required during the Elliptic Curve 

Scalar Point Multiplication (ECSPM) computations.  

There are several types of projective coordinates that can help avoid the inversion 

operations; these include Standard Projective coordinates, Jacobian Projective Coordinates 

and Chudnovsky coordinates. Hence, we used nano-ecc [19], which is an open-source library, 

and the Jacobian Coordinates is considered in this work. The selection of this type is based on 

the good results reported by [1] and [65], [69],[85].      

6.3.2 Proposed Parallel Comba Multiplication over Prime Fields  

Finite field multiplication is an important operation for every ECC system. [19] proposed to 

use the Comba algorithm designed by [85]. However, we noticed this algorithm could be 

optimized using the Comba algorithm, as shown in Algorithm 6.1, and which was proposed 

by [17] and [18]. Comba algorithm mainly consists of two outer loops and two simple inner 

loops to perform a bulk of computations. 

Algorithm 6.3 Modified Comba Multiplication Technique 

INPUT: 𝐴 = (𝑎𝑠−1,⋯ , 𝑎1, 𝑎0,) 𝑎𝑛𝑑 𝐵 = (𝑏𝑠−1,⋯ , 𝑏1, 𝑏0,).   

OUTPUT: Product = 𝐴. 𝐵 (𝑃2𝑠−1,⋯ , 𝑃1, 𝑃0)  

1: (𝑡, 𝑢, 𝑣) ← 0   

2: par{                                              

3: for i from 0 by 1 to s do 

4:     for j from 0 by 1 to i do  

5:          (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗  
6:     end for  

7:     𝑃𝑖 ← 𝑣 

8:     𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0 

10:   end for  

11:   end par} 

12: par{ 

13:  for i from  s by 1 to 2s-1 do  

14:      for j from i+1--s by 1 to s do  

15:           (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗  

16:       end for  

17:       𝑃𝑖 ← 𝑣 

18:       𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0 

19:  end for  

20: end par} 

21: 𝑃2𝑠−1 ← 𝑣 
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During each iteration, the inner loops are responsible for performing a Multiplication 

and Accumulate operations, in which 2w-bit words is multiplied, and in accordance to that, 

2w-bit product is to be added to the cumulative sum. However, the output of sum operation is 

most likely to be longer than 2w bit, which will require three w-bit registers to store them. In 

fact, as shown Algorithm 6.1, cumulative sum process is presented by (t,u,v) which are used 

to present the integer value 𝑡. 22𝑤 + 𝑢. 2𝑤 + 𝑣. Meanwhile, the operations carried out in line 

7 and 14 illustrated in Algorithm 6.1 is used to represent w-bit right-shift of the cumulative 

sum (t,u,v). 

6.3.3 Proposed Parallel Jacobian Point Doubling                                                       

 The point doubling formula used in this library is based on the modified point 

doubling formula described by [83].  As it can be seen from the following formula, the cost 

of point doubling operations has been reduced from 4M+6S+8A for the general Jacobian case 

to 4M+4S+9A [1]: 

𝑋3 = 𝐵
2 − 2𝐴, 𝑌3 = 𝐵(𝐴 − 𝑋3) − 𝑌1

4, 𝑍3 = 𝑌1𝑍1 (6.2) 

 

where 𝐴 =
3(𝑋1+𝑍1

2)(𝑋1−𝑍1
2)

2
 𝑎𝑛𝑑  𝐵 = 𝑌1𝑍1 with formula (6.2).  

The above algorithm can be calculated using 6 field registers when 𝑎 = −3.  In this library, a 

modified Jacobin point doubling (Algorithm 14) developed in [83] has been selected. 

However, we propose a modification to speed up the point doubling computation process. 
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Our proposed modification is based on performing parallel operations for finite field 

operations that are to be executed within the point doubling algorithm. This has been 

achieved after conducting Read After Write (RAW) investigation in the algorithm to extract 

possible parallel operations. Accordingly, we managed to conduct several parallel operations 

in point doubling that are compatible with our target platform. For example, we parallelized 

step 3 (T4 ← T4
2) with step 4 (T2 ← T2. T3 ) since there is no data dependency. Using this 

methodology and in line with careful rescheduling, we managed to reduce the point doubling 

steps to 15 steps compared to 18 steps reported by [83]. The following algorithm provided a 

low-level description for the new parallel Modified Jacobian Algorithm depicted in [83]. 

6.3.4 Proposed Parallel co-Z addition point doubling addition 

[19] has taken into account the advantages of using co-Z addition proposed by [83]. 

The co-Z addition works by sharing the same Z-coordinate for the two input points. Let P =

(X1, Y1, Z) and Q = (X3, Y3, Z3) nominated as co-Z addition of P and Q (with (P ≠ Q) is 

defined as P + Q = (X3, Y3, Z3), where:  

𝑋3 = 𝐷 − (𝐵 + 𝐶), 𝑌3 = (𝑌2 − 𝑌1)(𝐵 − 𝑋3) − 𝐸 𝑎𝑛𝑑 𝑍3 = 𝑍(𝑋2 − 𝑋1)                                  (6.3) 

Algorithm 6.4 Modified Jacobian doubling (𝐚 = −𝟑)   

INPUT: 𝑷 ≡ (𝑋1, 𝑌1, 𝑍1) 
OUTPUT: : 𝟐𝑷(𝑋3, 𝑌3, 𝑍3) 

     𝑇1 = 𝑋1, 𝑇2 = 𝑌1, 𝑇3 = 𝑍1) 
1: 𝑇4 ← 𝑇2

2                                                            [𝑌1
2] 

2: 𝑇5 ← 𝑇1. 𝑇4                                            [𝑋1𝑌1
2 = 𝐴] 

3: 𝑇4 ← 𝑇4
2  [𝑌1

4]|| 𝑇2 ← 𝑇2 . 𝑇3 [𝑌1𝑍1 = 𝑍3]|| 
 𝑇3 ← 𝑇3

2 [𝑍1
2] [ Parallel Operations] 

4:𝑇1 ← 𝑇1 + 𝑇3 [𝑋1 + 𝑍1
2] ||  𝑇3 ← 𝑇3 + 𝑇3 [2𝑍1

2]  [Parallel Operation]                                          

5: 𝑇3 ← 𝑇1 − 𝑇3                                           [𝑋1 − 𝑍1
2] 

6: 𝑇1 ← 𝑇1 . 𝑇3                                              [𝑋1
2 − 𝑍1

4] 
7: 𝑇3 ← 𝑇1 + 𝑇1                                       [2(𝑋1

2 − 𝑍1
4)] 

8: 𝑇1 ← 𝑇1 + 𝑇3                                           [3(𝑋1
2 − 𝑍1

4)] 

9:𝑇1 ← 𝑇1/2                                          [
3

2(𝑋1
2−𝑍1

4)
= 𝐵] 

10: 𝑇3 ← 𝑇1
2                                                           [𝐵2] 

11: 𝑇3 ← 𝑇3 − 𝑇5                                               [𝐵2-A] 

12: 𝑇3 ← 𝑇3 − 𝑇1                                [𝐵2 − 2𝐴 = 𝑋3] 
13: 𝑇5 ← 𝑇5 − 𝑇3                                            [𝐴 − 𝑋3] 
14: 𝑇1 ← 𝑇1 . 𝑇5                                         [𝐵(𝐴 − 𝑋3)] 
15: 𝑇1 ← 𝑇1 − 𝑇4                        [𝐴 − 𝑋3) − 𝑌1

4 = 𝑌3] 
 

Return (𝑇3 , 𝑇1 , 𝑇2) 
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with 𝐴 = (𝑋2 − 𝑋1)
2, 𝐵 = 𝑋1𝐴, 𝐶 = 𝑋2𝐴,𝐷 = (𝑌2 − 𝑌1)

2 𝑎𝑛𝑑 𝐸 = 𝑌1(𝐶 − 𝐵)                            (6.4) 

This mechanism yields very efficient co-Z point addition with a cost of 5M+2S+7A 

point addition. In this work, we proposed parallel co-Z point addition by removing 

dependencies to help speed up the point addition process. Therefore, we reduced the steps 

required for trigging the co-Z point addition to 7 steps compared to the 13 steps reported by 

[83], as shown in Algorithm 6.4. 

 In addition to the proposed parallelization shown in Algorithm 6.4, we advocate a 

new way for parallelizing a sequence of multiple of parallel operations within one of the 

outer parallel loop to help speed the co-Z addition. Also, [83] proved the possibilities to 

obtain the conjugate P − Q coordinate with little cost, since it is sharing the same Z-

coordinates with P + Q. In which, P − Q = (X3
′ , Y3

′ , Z3) where: 

𝑋3
′ = 𝐹 − (𝐵 + 𝐶), 𝑌3

′ = (𝑌1 + 𝑌2)(𝑋3 − 𝐵) − 𝐸 𝑎𝑛𝑑 𝑍3 = 𝑍(𝑋2 − 𝑋1)            (6.5) 

with F = (Y1 + Y3)
2  and (A, B, C, D, E) as defined in (4). In [83], the authors proposed co-Z 

conjugate addition algorithm with 19 steps with cost of 5M+3+16A by involving 6 field 

registers in this operation. However, in this work, the proposed approach requires just 15 

steps as shown in the Algorithm 6.4. 

Algorithm 6.5 Modified (X, Y)- only co-Z addition with update XYCZ -  

INPUT: (𝑋1, 𝑌1) and (𝑋2, 𝑌2)𝑠. 𝑡 𝑃 ≡ (𝑋1: 𝑌1: 𝑍) 𝑎𝑛𝑑 𝑄 ≡ (𝑋2: 𝑌2: 𝑍)for some 𝑍 ∈ 𝐹𝑞 , 𝑃, 𝑄 ∈ 𝐸(𝐹𝑞)  

OUTPUT: : (𝑋3, 𝑌3) and (𝑋′2, 𝑌′2)𝑠. 𝑡 𝑃 ≡ (𝑋
′
1: 𝑌

′
1: 𝑍3) 𝑎𝑛𝑑 𝑃 + 𝑄 ≡ (𝑋3: 𝑌3: 𝑍3)for some 𝑍3 ∈ 𝐹𝑞   

    ( 𝑇1 = 𝑋1, 𝑇2 = 𝑌1, 𝑇3 = 𝑋2, 𝑇4 = 𝑌2) 
1: 𝑇5 ← 𝑇3 − 𝑇1                                               [𝑋2 − 𝑋1] 
2: 𝑇5 ← 𝑇5

2                                          [(𝑋1 − 𝑋1)
2 = 𝐴] 

3: 𝑇1 ← 𝑇1. 𝑇5 [𝑋1𝐴 = 𝐵]|| 𝑇3 ← 𝑇3. 𝑇5 [𝑋2𝐴 = 𝐶][Parallel 

Operations] 

4:𝑇4 ← 𝑇4 − 𝑇2                                                  [𝑌2 − 𝑌1] 
5: 𝑇5 ← 𝑇4

2                                           [(𝑌2 − 𝑌1)
2 = 𝐷] 

6: 𝑇5 ← 𝑇5 − 𝑇1                                                  [𝐷 − 𝐵] 
7: 𝑇5 ← 𝑇5 − 𝑇3  [𝑋3] || 𝑇3 ← 𝑇3 − 𝑇1  [𝐶 − 𝐵] 
    𝑇2 ← 𝑇2. 𝑇3  [𝑌1(𝐶 − 𝐵)] || 𝑇3 ← 𝑇1 − 𝑇5     [𝐵 − 𝑋3] 
    𝑇4 ← 𝑇4. 𝑇3 [(𝑌2 − 𝑌1)(𝐵 − 𝑋3)]|| 𝑇4 ← 𝑇4 − 𝑇2   [𝑌3] 
[Parallel Operations] 

 

Return ((𝑇5, 𝑇4)(𝑇1, 𝑇2)) 
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6.4 Implementation Details  

 In this work, we implemented an efficient parallel ECC on an xmos start kit 

development board. This development board consists of 8 logical cores CPU allowing 

parallel execution design using XC programming language and C codes. We used 

xTIMEcompser development tool to execute our implementation and to perform timing 

analysis.   

6.5 Result Analysis 

 In this work, we first implemented a sequential implementation for ECC in xmos 

device for the four prime curves, and performance results are illustrated in Figure 6.1.  

Then, we implemented our parallelization in Comba algorithm, point doubling, and point 

Algorithms, as shown in Figure 6.2.  

As it can be seen from these figures, we managed to reduce the time and number 

clock cycles for computing ECC scalar point multiplication by 85% for some curves. In this 

work, we utilized 6 logic cores from the 8 logic cores provided by the xmos start kit.   

  To our knowledge, our work is the first attempt to implement ECC scalar point 

multiplication over prime field GF(P) on a homogenous multicore microcontroller. We 

reported the latest contribution concerned with software parallel implementation. In this 

table, we tried to put context more than like-for-like comparison, as the platforms are not 

 

Figure 6.1 Sequential Single Core ECC Scalar Point Multiplication in xmos 
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comparable with respect to resource availability. To sum up, our implementation shows the 

feasibility of using parallel approach in a homogenous multicore microcontroller to improve 

ECC performance in constrained devices. This is an attractive option in case of low-resource 

applications that contribute to towards enabling the strong public key cryptography schemes 

and protocols to be implemented faster in smaller devices. 

 

   

 

 

Figure 6.2 Parallel Multicore ECC Scalar Point Multiplication in xmos  
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     Table 6.1  Comparison With State-Of-Art  

Author Platform Time 
Execution 
(s) 

Algorithm 
 

Clock 
Cycles 

Operation Field GF(P) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
[4] 

 
 
 
 
 
 
 
IMX6Quad- 1.00 GHz. 

0.84 µs 1 Thread-
Best seq. 

 
 
 
 
 
 
-------- 
 

128 

0.47 µs 256 

0.61 µs 384 

2.21 µs 2 Threads -
Montgomery  
Bipartite 

128 

0.85 µs 256 

0.97 µs 384 

1.01 µs 3 Threads -
Montgomery  
2-ary Multi. 
v2 

128 

1.17 µs  256 

1.10 µs 384 

1.16 µs 4 Threads 
Montgomery  
4-ary Multi. 
v2 

128 

1.23 µs 256 

1.32 µs 384 

 
 
 
 
 
 
 
 
Intel Core I7 

1.22 µs 1 Thread-
Best seq. 

 
 
 
 
 
-------- 
 
 
 
 

128 

1.84 µs 256 

2.78 µs 384 

2.95 µs 2 Threads -
Montgomery  
Bipartite 

128 

3.52 µs 256 

3.86 µs 384 

3.10 µs 3 Threads -
Montgomery  
2-ary Multi. 
v2 

128 

3.62 µs 256 

2.08 µs 384 

3.52 µs 4 Threads 
Montgomery  
4-ary Multi. 
v2 

128 

2.01 µs 256 

2.22 µs 384 

 
 
[8] 

Intel Core i7r-2600 Sandy 
Bridge 3.4GHz, 

 
-------------- 
 

NAF D&A 207000 WCurve25519 

NAF D&A 176000 JQCurve25519 

 
 
 
 
 
[9] 

 
AMD Athlon 64x2, 2.4GHz 
Dual Core Processor 

3.203 ms  
 
 
 
Karatsuba 

 
 
 
 
 
______ 

32 

7.187 ms 64 

13.203 ms 96 

18.203 ms 128 

28.188 ms 160 

47.203 ms 192 

3.187 ms  
 
 
 
Montgomery 

32 

6.219 ms 64 

12.219 ms 96 

16.219 ms 128 

26.234 ms 160 

46.234 ms 192 

This work Xmos strat kit – 6 logical 
cores  

123.432µs Montgomery 
Ladder 

10286 128 

129.732 
µs 

10781 192 

224.568 
µs 

18714 256 

18.82  15235 384 
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6.6 Conclusion 

In this chapter, we addressed the practical feasibility of parallel software 

implementation of ECC scalar point multiplication on a homogeneous multicore 

microcontroller. In particular, we proposed an efficient ECC scalar point multiplication 

implementation which can be hosted on the xmos start kit so that it scales to target different 

ECC standard curves underlying prime field GF(P) recommended by SECG [16]. To 

maximize the performance of ECC point multiplication on multicore microcontroller, three 

novel modified parallelization have been proposed. These include: the parallelization of finite 

field multiplication Comba algorithm, point doubling and point addition algorithms. This 

implementation runs the whole ECC point multiplication in only 123µs for Spec128r1, 129µs 

for Spec192r1, 224µs for Spec256 and 18.82µs for Spec384r1. Potentially, our proposed 

methods were able to boost cryptography operations and provide the potential of having 

strong public key cryptography in parallel software implementation with high performance 

and flexibility using a multicore microcontroller platform. 
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Chapter 7 : Conclusions and 

Future Research Work 
 

This chapter provides an overview of the research and the new concepts offered in this thesis. 

In addition to that, a number of the suggested future works and open up ideas for further 

researches are discussed here. 
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7.1 Summary and Conclusions 

In this research, we have specifically concentred on providing a cutting-edge contribution 

for enhancing the Elliptic Curve Cryptography performance on constrained devices. Our 

proposed solutions could be used in different applications, such as WSN, WSBN and IoT. 

Knowing that these applications are a microcontroller-based technology and providing 

communication, security is one of the major challenges. This is because of the 

microcontroller limitations, such as speed of the microcontroller built-in processor, the power 

consumption and the number of input/output ports. Thus, trying to encapsulate a powerful a 

symmetric cryptography scheme such as ECC is one of the concerns that required higher 

attention and research. Therefore, in this work, we managed to provide solutions where a 

powerful software implementation of ECC is implemented in microcontrollers suitable for 

such mentioned applications.  

Throughout the third chapter of this thesis, we proposed enhancing the performance of 

ECC in arduino 8-bit and 16-bit microcontrollers. In this work, we imported a very well-

known modern cryptographic supporting C code relic-toolkit.  A relic toolkit managed to 

provide high efficiency and flexibility of modern cryptography. Also, the toolkit could 

support different types of cryptographies protocols such EDSA, ECDH, ECMQV and ECSS. 

Additionally, it supports a wide range of configurable structure algorithms, which could be 

configured during the relic setup. In particular, in this work, relic-0.3.1 is imported onto the 

two platform boards, and we experimented with the performance of ECDSA and ECDH over 

binary fields using different NIST curves standard (NIST-K163,NIST-B163). Accordingly, 

we enhanced the performance of ECDSA by providing the best combination of algorithms in 

the relic presets and succeed to report better performance in arduino DUE compared to 

arduino mega2560.   

In the fourth chapter, an effort has been taken to enhance multiplication operation 

of 𝐺𝐹(2163). Two novelties have been demonstrated here. Firstly, we managed to parallelize 

Comba algorithm using a Homogenous multi core microcontroller (XMOS). This, in fact, 

results in much better performance compared to a single core Comba multiplication in 

software implementation in a microcontroller.  

A second novel claim is that we modified a fast modular reduction 32-bit algorithm to 

support 8-bit in 𝐺𝐹(2163) and get it integrated with Comba algorithm. In this, we were able 
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to report better performance of Comba algorithm for both implementations of parallel Comba 

without reduction and Comba multiplication with reduction.  

In Chapter 5, we illustrate the capability of a homogenous multicore microcontroller 

(XMOS) to improve overall performance of scalar point multiplication for ECC 

implementation over 𝐺𝐹(2𝑚). Therefore, we hereby summarized the novelties related to this 

work: 

A new modified parallelized Lopez-Dahab point doubling been proposed here. Such a 

novel idea helps us to obtain high performance for overall ECC scalar point multiplication.  

Our method shows that we were able to reduce the number of steps from 14 steps of point 

doubling operations algorithm to only 9 steps.   

The second novel contribution concerns on modifying the Lopez-Dahab point addition 

algorithm and accordingly the parallelizing some of its steps. We also managed to reduce the 

algorithm steps from 26 steps to 20 steps using parallelization mechanisms. Furthermore, we 

also introduce the concept of parallelizing inside a parallelized round.  

Thirdly, we enhanced the overall performance of Left to Right Double and Add Scalar 

Point Multiplication algorithm. This was achieved by designing the algorithm that should 

work initially by performing the initial scanning most significant bits (MSB) of k in order to 

track down the first none zero bit from MSB. If the non-zero first bit is found, then P's 

coordinates will be filled in Q to start loop operation.  

From all over all that, in this work, we able to report much higher performance in ECC 

point multiplication over binary fields for all related standardized curves, including: 

𝐺𝐹(2163), 𝐺𝐹(2233), 𝐺𝐹(2283), 𝐺𝐹(2409), 𝐺𝐹(2571).  

In addition to all that is mentioned above, we tried to tackle improving the ECC over 

constrained devices from different perspectives. Thus, in Chapter 6, we managed to obtained 

better performance of ECC point multiplication over the prime field 𝐺𝐹(𝑃).  We also here 

claimed three more novelties that could be summarized as below: 

 The first claimed novelty is parallelizing the Comba Algorithm for 𝐺𝐹(𝑃) gets the 

benefits from the previous novelty of parallelizing Comba Algorithm in 𝐺𝐹(2163). In this, we 

managed to parallelize the multiplication arithmetic of ECC over 𝐺𝐹(𝑃).  
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Secondly, we proposed Parallel Jacobian Point Doubling over 𝐺𝐹(𝑃). Implementing such 

a solution helps us to reduce the steps involved in a sequential manner from 18 steps to 15 

steps. Such enhancement positively impacted the overall performance or ECC point 

multiplication over 𝐺𝐹(𝑃). 

The third novelty has been achieved by parallelizing co-Z addition point addition. In this 

approach, we proposed a parallel implementation for this algorithm and managed to reduce 

the steps to 7 steps compared to 13 steps proposed by the original algorithm.  

In this thesis, we considered how to improve the efficiency of software implementation for 

Elliptic Curve Cryptography on Microcontroller platform. Therefore, for a purpose of our 

research we considered implementation mainly on three types of Microcontrollers, which 

include: Arduino Mega2560 with 8-bit microcontroller, Arduino DUE with 32-bit ARM 

processor Microcontroller and XMOS start Kit. We also confirm the scalability of 

implementing different types of curves per SEC1 standard, in which different SEC1 curves 

have been implemented for both 𝐺𝐹(2𝑚) and 𝐺𝐹(𝑃) and bench mark results have been 

presented.  

 In fact, several attempts have been made to improve the performance of ECC on software 

implementation methodology. Besides that, there are also different efforts to boost 

efficiencies using assembly programming language or by modifying the existing related 

algorithms.  However, none of these attempts have tried to improve the ECC performance 

using a homogenous multicore microcontroller.  

Therefore. to our knowledge proposed solutions herein for boosting the ECC performance 

in a homogenous device is the first ever proposal of enhancing the ECC performance in such 

type of microcontroller at the time of writing this thesis. It is also worth mentioning that our 

proposed solution could be easily acquired to be smoothly integrated with any application 

using XMOS microcontroller or arduino microcontroller. Through this, ECC is to be used as 

a security service provider in these platforms.   

7.1 Future Research Works 

 Our aim in this thesis was to come up with solutions that can help with implementing 

ECC on a constrained microcontroller. Although we had shown a significant improvement of 

the ECC performance, there are still some other concerns that could be considered for future 

work or that remain as open problems as provided below: 
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  Besides the speed enhancement the ECC performance that we have achieved in this 

work, power consumption is one of the counter measures part that need to taken into 

consideration. Considering that, our implementation is proposed for a microcontroller to be 

used in applications (WSN, IoT) that are highly depending on low-power resources like 

batteries. Introducing such ECC algorithms alongside the process and communication related 

to the data sensing and others inside these microcontroller should be highly evaluated and 

addressed.   

 One of challenges that needs to considered while implementing cryptography for any 

system is studying the strength of a security system from any cryptanalysis mechanisms and 

algorithms. In fact, lightweight applications, such as the devices we used in our work, need to 

evaluated against any side-channel attacks. Using strong cryptography in such applications  

does not mean that these devices are strong enough to defend from any side-channel attack. 

The side-channel attack could be implemented in a passive manner, where time and power 

are simultaneously used during the attack. One possible way to defend such an attack is to 

use resistance algorithms, but such a solution requires large memory and double execution 

time. Therefore, a deep investigation on how to prevent the ECC on XMOS and arduino 

devices from side-channel attacks is one of the issues that could further investigated.  

 Another potential future work is parallelizing lattice-based cryptography on a 

homogeneous multicore microcontroller, which is an area of research that needs to be 

tackled. One advantage of lattice-based cryptography in any system include its ability to 

defend from a quantum attack. So, getting such cryptography in a constrained well adds a lot 

of security benefit to these devices and applications involved.  

 End-to-end encryption for parallelizing ECC using XMOS devices is one of the open 

problems we suggested here. Therefore, we recommend implementing our proposed solutions 

to check the effectiveness in a real-time network environment. This environment might be 

WSN or IoT.    

 Examining our proposed solution with different platforms, such as parallax, is one of 

open problems, since we have examined our solutions with only one type of a homogenous 

multicore microcontroller. This work can help to understand how other platforms will be able 

to react and cope with such solutions.  
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 To conclude, the existing growth of technology shows a very high demand on 

Wireless Sensor Network and IoT. Such an application requires a powerful security system 

that could prevent them from different types of attacks. However, until recently, people used 

to hesitate to implement cryptography in these constrained devices due to the microcontroller 

limitation. This lead to widely impression that implementing cryptography in such devices is 

infeasible, since a symmetric cryptography is excessively massive and cannot be 

accommodated in such devices. This could additionally contribute towards scaling down the 

entire efficiency of a microcontroller.            
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