

 iii

Efficient Elliptic Curve

Cryptography Software

Implementation on

Embedded Platforms

By

Mohamed Said Sulaiman Albahri

Thesis submitted for the Degree of Doctor of Philosophy

Department of Electronic & Electrical Engineering

The University of Sheffield

September-2019

 iv

 Abstract

 The demand for resources-constrained devices of 8-bit and 32-bit microcontrollers has

increased due to the requirements of different applications such as Radio Frequency

Identification (RFID), Internet of Things (IoT) and Wireless Sensor Network (WSN).

Applying efficient security in these applications and their microcontroller platform is one of

the significant concerns for its limited acceptance. In fact, public key cryptography (PKC),

RSA and Elliptic Curve Cryptography, are generally considered the most powerful

cryptosystems that could provide a high level of security. However, RSA involves very

intensive computational arithmetic with a key size of 1024-2048 bits. Therefore, ECC could

be a feasible solution to provide a similar level of security with a smaller key size and lesser

arithmetic computations. However, the highly effective ECC implementations in

microcontroller devices remain as a concern, due to some drawbacks of the microcontrollers.

This thesis illustrates the technique for achieving highly efficient ECC on microcontroller

devices that could be used in applications such as IoT, WSN and RFID. We implement an

efficient ECC cryptosystem in single-core microcontroller and a homogenous multicore

microcontroller. The Elliptic Curve Digital Signature is implemented on an 8-bit and 32-bit

microcontrollers and its performance is evaluated for the possible combination of finite field

arithmetic, point doubling, point addition and scalar point algorithms. The developed

technique reduced the time required for generating EDSA key from 83ms in 32bit

microcontroller to 263ms in 8bit microcontroller. The parallelization of the Comba

multiplication in 𝐺𝐹(2163) implemented in a homogenous multicore microcontroller,

obtained a performance enhancement of 85% in comparison to a single core microcontroller.

The feasibility of the algorithms and the advantages of adopting parallelization is validated

by using these algorithms to implement ECC scalar point multiplication over GF(2m) using

the Xmos multi-core microcontroller. Also it is believed that our proposed solutions for a

multicore microcontroller that could be used in applications like IoT, WSN and RFID is the

first of its kind.

 v

 Acknowledgements

First, I would like to express gratitude to my supervisor, Dr. Mohammed Benassia, for his

valuable help and support and his continuous encouragement and direction. In fact, there is

no doubt that without his effort and support, this thesis would not have been achievable.

Also, I am very pleased to Dr. Luke Seed and Professor. Sakir Sezer for their kind

acceptance to evaluate and examine me during my viva. Their discussions were very

productive and effective, which added more valuable information to my knowledge as well as

my thesis.

Additionally, I would to acknowledge and expression my appreciation to my colleagues

for their kind help and support during my PhD studies. Specifically, I would like to thank Zia

Uddin Ahmed Khan, a PhD fellow who significantly contributed to achieving parallel

implementation of ECC point multiplication presented in this thesis. Also, I offer grateful

thanks to my colleague Ahmed Al-Baidhani for his remarkable help and support on finalizing

some of administrative work related to my requirements due to circumstances I faced during

my PhD course. Special thanks go to Ms. Hilary, and all administrative staff members in the

Electrical and Electronic Engineering department, for taking care of my continuous

administrative requests throughout my coursework.Last, but not least, grateful thanks go to

my wife, AZZA Albahri. Really, I cannot appreciate enough her outstanding effort of

sacrificing with me, despite her illness. To all of my children (Marwa, Mariya, Maryam,

Ahmed, Maram and Mayar), thank you for your help and support. Actually, you have done a

lot to motivate me and to encourage me to continuing my PhD, despite the difficult time we

all together are passed through due to the health problems of Mom, Maram and Mariya. Also,

I would like to express appreciation to my mother, brothers and sisters for their help and

encouragement. Great thanks go to my brother-in-law Said Ahmed Albahri for taking care of

my family while I was way to do my PhD.

 To the spirit of my dear father, and all those mentioned above, I am very thankful for

you.

 Mohamed Said Albahri

Sheffield-05/09/2019

Table of Contents

 iii

Table of Contents

Abstract .. iv

Acknowledgements .. v

Table of Figures .. viii

List of Tables ... x

List of Algorithms ... xi

Glossary... xii

Chapter 1 Introduction of Thesis .. 1-1

1.1 Overview ... 1-2

1.2 Thesis Aims and Scope .. 1-3

1.3 Thesis Main Contributions .. 1-5

1.4 Thesis Outlines .. 1-8

1.5 Published Papers ... 1-10

Chapter 2 Background Theory .. 2-1

2.1 Cryptography History .. 2-2

2.2 Goals of Cryptography .. 2-4

2.3 Private Key Cryptography ... 2-4

2.4 Public Key Cryptography ... 2-7

2.4.1 Some Definitions From Number Theory .. 2-10

2.4.2 RSA ... 2-12

2.4.3 Digital Signature Algorithm (DSA) .. 2-13

2.5 Elliptic Curve Key Cryptography .. 2-14

2.5.2 Elliptic Curve Parameter Selection ... 2-19

2.5.3 Elliptic Curve Arithmetic Over 𝑮𝑭(𝑷) ... 2-20

2.5.4 Field Arithmetic over 𝑮𝑭(𝑷) ... 2-22

2.5.5 Elliptic Curve Arithmetic over 𝑮𝑭(𝟐𝒎) ... 2-31

2.5.6 Field Arithmetic over 𝑮𝑭(𝟐𝒎) .. 2-32

2.5.7 Group Law .. 2-37

2.5.8 Point Multiplication Algorithms ... 2-39

2.6 Elliptic Curve Domain Parameters & Protocols... 2-42

2.6.1 Elliptic Curve Domain Parameters .. 2-43

Table of Contents

 iv

2.6.2 Elliptic Curve Protocols .. 2-43

2.7 Conclusions ... 2-47

Chapter 3 Software Design: ECC Implementation on 8-bit & 32-bit Single Core Microcontroller 3-1

3.1 Introduction .. 3-2

3.2 Background ... 3-3

3.3 The Arduino Mega2560 and Arduino Due Architecture ... 3-4

3.4 Efficient Method of Improving Relic toolkit on Arduino Devices ... 3-5

3.4 Proposed Design ... 3-6

3.5 Implementation Results and Analysis ... 3-8

3.6 Conclusions ... 3-12

Chapter 4 Software Design: Efficient Field Arithmetic over 𝑮𝑭(𝟐𝟏𝟔𝟑)Implementation on A Homogeneous

Multicore Microcontroller .. 4-1

4.1 Introduction .. 4-2

4.2 Related Work .. 4-3

4.3 The Xmos Architecture ... 4-6

4.4 Parallel Comba Multiplication on Multicore Microcontroller ... 4-7

4.4.1 Finite Field Multiplication .. 4-8

4.4.2 Modular Reduction .. 4-10

4.4.3 Proposed Design .. 4-10

4.5 Implementation Results and Analysis ... 4-11

4.5.1 Modified Comba Algorithm - Parallel Multiplication ... 4-11

4.6 Conclusions ... 4-17

Chapter 5 : Software Implementation of Parallelized Elliptic Curve Scalar Point Multiplication over Binary

Field... 5-1

5.1 Introduction .. 5-2

5.2 Background ... 5-4

5.2.1 Point Doubling ... 5-4

5.2.2 Point Addition .. 5-5

5.2.3 Scalar Point Multiplication ... 5-7

5.2.4 Binary Field Arithmetic .. 5-7

5.2.5 Finite Field Multiplication .. 5-7

5.2.6 Finite Field Squaring... 5-8

5.2.7 Finite Field Addition ... 5-8

Table of Contents

 v

5.2.8 Modular Reduction .. 5-8

5.3 Proposed Concurrent ECC Point Multiplication .. 5-10

5.3.1 Parallel Lopez-Dahab Point Doubling .. 5-11

5.3.2 Parallel Lopez-Dahab Point Addition .. 5-11

5.3.2 Proposed Left to Right Double and Add Scalar Point Multiplication 5-12

5.4 Implementation Details .. 5-14

5.5 Performance Analysis ... 5-15

5.6 Conclusions ... 5-19

Chapter 6 Software Design: Fast Parallel ECC Point Multiplication over Prime Fields 6-1

6.1 Introduction .. 6-2

6.2 Mathematical Background .. 6-3

6.2.1 Modular Multiplication .. 6-4

6.3 Proposed Design ECC point Multiplication over Prime Fields... 6-6

6.3.1 Proposed Elliptic Curve Point Representation ... 6-6

6.3.2 Proposed Parallel Comba Multiplication over Prime Fields ... 6-7

6.3.3 Proposed Parallel Jacobian Point Doubling ... 6-8

6.3.4 Proposed Parallel co-Z addition point doubling addition .. 6-9

6.4 Implementation Details .. 6-11

6.5 Result Analysis .. 6-11

 .. 6-12

6.6 Conclusion ... 6-14

Chapter 7 : Conclusions and Future Research Work .. 7-1

7.1 Summary and Conclusions .. 7-2

7.1 Future Research Works ... 7-4

Tables of Figures

 viii

Table of Figures
Figure 2.1 Main Families Public Key Cryptography ... 2-5

Figure 2.2 Public key cryptography model.. 2-8

Figure 2.3 Symmetric-key cryptography model .. 2-9

Figure 2.4 ECC Implementation Pyramid .. 2-15

Figure 2.5 The Elliptic Curve 𝒚𝟐 = 𝒙𝟑 − 𝟓𝒙 + 𝟒 over R .. 2-16

Figure 2.6 The Elliptic Curve Point Addition 𝒚𝟐 = 𝒙𝟑 − 𝒙 + 𝟏 .. 2-19

Figure 2.7 Elliptic Curve Point for 𝒚𝟐 = 𝒙𝟑 + 𝒙 ... 2-21

Figure 3.1 Recommended Arduino High Speed Preset ... 3-9

Figure 3.2 Recommended Arduino Low area Preset .. 3-9

Figure 3.3 Time Execution for EDSA .. 3-10

Figure 3.4 Time Execution for EDSA .. 3-11

Figure 3.5 Time Execution for EDSA .. 3-11

Figure 3.6 Time Execution for EDSA .. 3-12

Figure 4.1 XSI -U Series 16 core devices ... 4-6

Figure 4.2 Schematic representation 𝟒 × 𝟒word multiplication using Comba Algorithm 4-9

Figure 4.3 Xtimecompsoer Task-1 Flow Diagram ... 4-12

Figure 4.4 Result Analysis of Implemented Comba Algorithm with Fast Reduction 4-15

Figure 4.5 Result Analysis of Implemented Comba Algorithm Without Reduction 4-15

Figure 5.1 Shifting Operation in Fast Reduction Process with word size=8.. 5-9

Figure 5.2 Sequential ECC Scalar Point Multiplication Intel Vtune Analysis [3] .. 5-14

Figure 5.3 Parallel ECC Scalar Point Multiplication xmos single core ... 5-15

Figure 6.1 Sequential Single Core ECC Scalar Point Multiplication in xmos ... 6-11

Figure 6.2 Parallel Multicore ECC Scalar Point Multiplication in xmos Multiplication in xmos 6-12

file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519068
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519069
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519070
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519071
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519072
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519073
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519074
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519075
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519076
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519077
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519078
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519079
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519080
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519081
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519082
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519083
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519084
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519085
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519086
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519087
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519088
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519089
file:///C:/Users/User/Desktop/chapter-6%20corrections/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc18519090

List of Tables

 x

List of Tables
Table 2.1 NIST Guidelines for Public key size [2] .. 2-14

Table 2.2 Point addition and Point Doubling Operation Counts[1] .. 2-22

Table 2.3 Double and Addition in Binary Algorithm ... 2-40

Table 2.4 NAF with Addition and Subtraction... 2-41

Table 2.5 Number of operations for point addition and point doubling[1].. 2-42

Table 4.1 Comparison with State of Art of Comba Implementation ... 4-16

Table 5.1 Time Complexity Table ... 5-17

Table 5.2 Operation Details and Performance... 5-17

Table 5.3 Comparison With State of Arts... 5-18

Table 6.1 Comparison With State-Of-Art ... 6-13

file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481403
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481404
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481405
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481406
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481407
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481408
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481409
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481410
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481411
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481412

List of Algorithms

 xi

List of Algorithms
Algorithm 2.1 Fast Reduction modulo𝑷𝟏𝟗𝟐 = 𝟐𝟏𝟗𝟐 − 𝟐𝟔𝟒 − 𝟏 .. 2-24

Algorithm 2.2 Multi-precision addition.. 2-25

Algorithm 2.3 Multi-precision subtraction... 2-25

Algorithm 2.4 Integer Multiplication - Product Scanning .. 2-27

Algorithm 2.5 Integer Multiplication - Operand Scanning ... 2-27

Algorithm 2.6 Comba Algorithm ... 2-28

Algorithm 2.7 Extended Euclidean Algorithm for Integers .. 2-30

Algorithm 2.8 𝑭𝑷 Inversion using Extended Euclidean ... 2-30

Algorithm 2.9 Pencil and Paper Polynomial Multiplication .. 2-35

Algorithm 2.10 Elliptic Curve Key Pair Generation ... 2-44

Algorithm 2.11 Elliptic Curve Digital Signature Algorithm (Generation) .. 2-45

Algorithm 2.12 Elliptic Curve Diffie-Hellman Key exchange(ECDH) .. 2-45

Algorithm 2.13 Elliptic Curve Digital Signature Algorithm (Verification) .. 2-46

Algorithm 2.14 Elliptic Curve ElGamal Analogue Encryption .. 2-46

Algorithm 2.15 Elliptic Curve ElGamal Analogue Encryption .. 2-47

Algorithm 4.1 Comba's Algorithm over GF(2m) .. 4-8

Algorithm 4.2 Comba's Fast reduction method with 𝑾 = 𝟑𝟐 for 𝑮𝑭𝟐𝟏𝟔𝟑 𝒇𝒛 = 𝒛𝟏𝟔𝟑 + 𝒛𝟕 + 𝒛𝟔+ 𝒛𝟑+

𝟏 .. 4-10

Algorithm 4.3 Modified Comba's Algorithm over GF(2m) .. 4-11

Algorithm 4.4 Fast reduction Modification using Word size =8 .. 4-13

Algorithm 4.5 Fast reduction Modification using Word size =16 .. 4-14

Algorithm 5.1 Point Doubling in LD coordinate system where 𝒂 ∈ {𝟎, 𝟏} ... 5-5

Algorithm 5.2 Point Addition in LD coordinate system where 𝒂 ∈ {𝟎, 𝟏} .. 5-6

Algorithm 5.3 Left-to-right binary method for point multiplication ... 5-7

Algorithm 5.4 Modified Point Doubling in LD coordinate system where a ϵ {0,1} 5-11

Algorithm 5.5 Modified Point Addition in LD coordinate system where a ϵ {0,1} 5-12

Algorithm 5.6 Modified Left-to-right binary method for point multiplication ... 5-13

Algorithm 6.1 Comba Multiplication Technique ... 6-5

Algorithm 6.2 Fast Reduction modulo𝑷𝟐𝟓𝟔 = 𝟐𝟐 + 𝟐𝟐𝟐𝟒 + 𝟐𝟏𝟗𝟐 + 𝟐𝟗𝟔 − 𝟏 6-6

Algorithm 6.3 Modified Comba Multiplication Technique ... 6-7

Algorithm 6.4 Modified Jacobian doubling (𝐚 = −𝟑) .. 6-9

Algorithm 6.5 Modified (X, Y)- only co-Z addition with update XYCZ - ... 6-10

file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481432
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481433
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481434
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481435
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481436
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481437
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481438
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481439
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481440
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481441
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481442
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481443
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481444
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481445
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481446
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481447
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481448
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481448
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481448
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481448
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481448
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481448
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481449
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481450
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481451
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481452
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481453
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481454
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481455
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481456
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481457
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481458
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481459
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481460
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481461
file:///C:/Phd%20Sheffield/Phd/Thesis/PhD_Theis/Ready%20For%20Print/ready%20for%20print%202/Efficient%20Elliptic%20Curve%20Cryptography%20software%20implementation%20on%20Embedded%20platforms.docx%23_Toc510481462

Glossary

 xii

Glossary
AES Advance Encryption Standard

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

FPGA Field Programmable Gate Arrays

FLT Fermat’s Little Theorem

GF Galois Field

GF2 Galois Field in the field characteristic two

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

MD Message Digest

MSB Most Significant Bit

NAF Non-Adjacent Form

NIST National Institute of Standards and Technology

PKC Public Key Cryptography

RFID Radio Frequency Identification

RSA Rivest-Shamir-Adleman

SHA-1 Secure Hash Algorithm-1

SECG Standard for Efficient Cryptography Group

WSNs Wireless Sensor Nodes

XOR Exclusive OR (logical Operation)

τNAF τ-adic Non-Adjacent Forms

Chapter 1: Introduction of Thesis

 1-1

Chapter 1 Introduction of Thesis

This chapter provides an overview of the complete thesis. It starts by expressing the demands

of cryptography in securing the new technology of WSN and IoT. Then, it illustrates how the

aims of the thesis been developed, followed by the main contribution. Finally, a detailed list of

the published papers is given.

Chapter 1: Introduction of Thesis

 1-2

1.1 Overview

The emergence of new technologies related to the Wireless Sensor Network (WSN),

Wireless Body Area Network (WBAN), Internet of Things (IoT) and Radio Frequency

Identification (RFID) is based on embedded microcontroller platforms. It is considered that

these microcontrollers are resource constrained devices, which can accommodate small sized-

code memory and have low-speed processors working with limited battery resources. The main

functionality of these microcontrollers in such applications is to aggregate the information

produced by the sensors connected to them and transmit the data over a communication

channel to its destination. For example, WBAN could be designed to help patients and doctors

with real-time data about the vital life parameters related to patients, such as blood pressure,

pulse heart rate, body temperature and other parameters. A new advancement in medication

related to WBAN goes beyond the scope of merely transmitting the data, and may involve

injecting the medicine into the patient, such as an online insulin pump system. Therefore, such

highly critical applications related to human health hazards, lead to concern over the security of

these applications and their networks.

However, modern cryptography plays a vital role in ensuring the security of these

applications. For that, a different type of symmetric cryptography could be used to guarantee

confidentiality, integrity, and authenticity for the provided services [13]. However, employing

highly effective Public Key Cryptography (PKC), such as RSA or ECC on microcontrollers,

can lead to many technical challenges and problems that need to be addressed in advance, like

the deployment of ECC schemes delay the processes within the processor due to the

complexity of the arithmetic operations associated with this scheme [13].

In this context, there have been many attempts to improve the ECC efficiency of

constrained devices, which in turn resulted in the possibility of implementing the ECC

algorithm in such devices. As a result, researchers have been encouraged to undertake further

evolutionary researches that have also demonstrated the ability of ECC to provide the same

level of security provided by RSA with lower key size in these devices. The fundamental

approach of ECC allows end users to make ECC implementation more flexible and selectable.

For example, ECC could be built based on either over a binary finite field or prime finite field

arithmetic. However, the latest research shows possibilities of implementing the ECC as

hardware, software or even combination of software/ hardware. This could lead to further

Chapter 1: Introduction of Thesis

 1-3

investigation for the identification of the best solutions that provide higher performance with

low power consumption and high-security level.

1.2 Thesis Aims and Scope

 Overall, there is an ongoing debate over the enhancement of the ECC performance

without the loss of its strength when executed on the embedded microcontroller of IoT, WSN,

and WBAN. In fact, the feasibility of implementing highly-efficient ECC in a microcontroller

and integrating them with other functions, such as actual network communication, is still

difficult primarily due to two facts (1) designing the architecture of the microcontroller

platform with limited power consumption, speed of the processor, and memory size; and (2)

ECC cryptosystem is based on complex arithmetic operation with operands size (≥ 163 −

𝑏𝑖𝑡), which may result in decreasing the overall performance of the microcontroller and

subsequently having a negative impact on the overall performance of the application.

 Therefore, based on the above concerns, we aim to provide solutions that can result in

an optimal ECC performance along with maintaining the efficiency of the applications.

Therefore, we address such concerns by attempting to enhance the performance with the help

of an ECC software implementation. Our selection is based on the flexibility and simplicity of

integrating ECC with application architecture. Hence, in this thesis, we used two different

approaches, detailed below, to provide directions for our research.

Firstly, evaluating the possibilities of enhancing the overall ECC performance on a

software implementation on single core microcontroller, using an open source reconfigurable

library. Thereby, importing a Relic Toolkit [14] in such constrained devices helps in

understanding and analyzing the behavior of the microcontroller. Also, this methodology

addresses the issue of the best combination of a finite field, point doubling, point addition and

scalar point multiplication algorithms that could lead to better ECC performance as well as

understanding the influence. In particular, through this procedure, we can observe the impact

of these factors on the overall performance of the ECC scheme and the Microcontroller.

Furthermore, designing ECC security level is highly dependent on the underlying layer,

known as finite field arithmetic operations, and its size. Therefore, a flexible tool that could

support different ECC curves over the binary field or prime field is a necessity. Such

mechanisms allow the selection of the required level of security. Also, this enables a smooth

Chapter 1: Introduction of Thesis

 1-4

communication between the microcontroller and applications when an application has different

security requirements.

Secondly, research on the possibility of implementing ECC on a homogeneous multi-

core microcontroller and exploring its capabilities to boost the ECC performance.

Homogeneous multicore microcontrollers are designed to support simultaneous tasks. Different

types of microcontroller have been designed with a multi-core processor, including XMOS,

Parallax, and Ultra-Reliable Multi-core ARM-based processor.

Among these types of multicore microcontrollers, XMOS is considered the best since it

works similar to an ordinary microcontroller and due to its ability to tackle issues beyond the

capabilities of a traditional microcontroller. Additionally, it has a multiple core processor that

allows simultaneous execution of sequential or multiple tasks. It can also provide timing

analysis along with hardware simulation, using a powerful IDE known as Xtimecomposer

[15]. Design and implementation on an XMOS multicore microcontroller is very flexible since

the parallelization can be invoked in the main function or within all the functions of the

programs. Calling for parallelizing multiple tasks from the primary function will also allow the

developer to assign a particular core for his parallel tasks while calling for parallelization on

other functions to automatically select the core allocation by the system. Thus, for complex

implementation where only a particular function is required for conducting parallelization, the

latter should be implemented within these functions instead of the main function, and the tasks,

logic cores will be dynamically distributed by the system based on the availability of the

resources.

In fact, having such features and functionalities makes the development of such

platforms more suitable for accommodating complex algorithms. In the later stages this could

particularly lead to the integration of some application (such as IoT, WSN, or WSN) with

parallel reading from sensors along with the possibility of conducting the parallel tasks of

implementation necessary for secure key generation, encryption, and security protocol in

parallel approaches.

 Further, examining the reconfiguration and scalability within the multi-core

microcontroller are the concerns that need to be specifically addressed during implementation.

With this knowledge, the National Institute of Standards Technology (NIST) has published

Chapter 1: Introduction of Thesis

 1-5

different ECC curves, including: curves over binary fields 𝐺𝐹(2𝑚) where m=163, m=233,

m=283, m=409 and m=571 as well as curves for ECC implementation over prime field 𝐺𝐹(𝑝)

where p=192, p=224, p=256, p=384 and p=521[16]. Having said that, parallelizing such

complex ECC algorithms using a software implementation approach is not an easy task.

However, the possible features and functionalities in the XMOS multicore microcontroller and

its powerful Xtimecomposer IDE can help in tackling such challenges. As mentioned before,

our selection for such a platform is not only based on implementing the ECC, but also

specifically considering the flexibility and simplicity of integrating the ECC cryptosystem with

the applications’ sensors data collection and overall communication protocols.

Hence, the focus of this thesis is at a different level of ECC cryptosystem layers. Thus,

we initially attempt to adopt the well-known algorithms that are assigned to each layer in order

to obtain an effective speedup of the sequential and parallel performance. However, some

algorithms are considered to improve the overall ECC performance. In a way, the proposed

technique will serve the purpose of enhancing the ECC performance on microcontrollers that

could be used in different applications, such as RFID, WSN and IoT. The end-to-end

encryption and decryption, higher-level protocol communication, power consumption analysis

and system failure analysis are not considered in this thesis.

1.3 Thesis Main Contributions

The current published works are mainly focused on enhancing the ECC performance of

a single core microcontroller. Many of them attempted to create their own library for their

targeted devices. However, we noticed that these works are limited with few algorithms that

should be supported by the ECC. ECC is a highly algorithmic-based cryptosystem with many

algorithms in place that could either increase or decrease their performance. When the

algorithms for implementing the ECC is limited then the speedup efficiency of the ECC

processor is not enhanced to the desired level. Hence, in this work, we initially started by

importing a highly effective open-source library that allows flexible and reconfigurable

features, along with increasing the ECC efficiency by selecting the best combination from a

wide range of algorithms provided by the tool.

Also, there are a significant number of published works that are related to improving

the ECC efficiency in large scale computer and processors. However, none of the published

Chapter 1: Introduction of Thesis

 1-6

works make any attempts to improve the ECC in a homogeneous multicore microcontroller.

Therefore, to our knowledge, we are the first to propose boosting the ECC on a multicore

microcontroller, despite the overall complexity of implementing ECC in such a constrained

device.

The initial research indicated the presence of some open-source tools that help in

boosting the efficiency of ECC in microcontroller-based platforms. However, some of them are

limited to supporting just a specific platform and some of the others could be used to support a

wide range of microcontrollers. To overcome this limitation, we managed to import relic tool

open-source to our microcontroller and accordingly managed to prove the enhancement in the

performance of the ECC. The novelty of our contribution is summarized below:

● Experimental analysis and evaluation for Elliptic Curve Digital Signature

(ECDSA) on both an 8-bit and a 32-bit platform (Arduino mega2560 and

Arduino Due) has been carried out using Relic library [14], and comparative

results of the implementation are provided. To our knowledge, no such analysis

and results have been reported till date.

● We are the first to use the configuration features provided by an open source

tool for enhancing the performance of ECC, which could be considered as a

guidance and benchmark for the developers planning to use the relic tools in

Arduino-mega2560 and Arduino-due. In this, we reported ECDSA key

generation on Arduino Due can be achieved in (90ms) when compared to

(263ms) on the Arduino Mega for m=163.

 Accordingly, we consider enhancing the ECC performance based on the second

approach mentioned in subsection 1.2. Where we attempted to introduce the concept of a

homogeneous multicore microcontroller. Thus, we managed to achieve the following novelties:

● The first-ever novel parallel Comba multiplication over 𝐺𝐹(2163) was

implemented using an XMOS multicore microcontroller. Our implementation

showed an improvement in 85% of the measured time in comparison to a single

core implementation. This result also considered the performance of Comba

multiplication algorithm with and without fast modular reduction for different

word sizes (8-bit, 16-bit and 32-bits). Another contribution to this novelty is the

Chapter 1: Introduction of Thesis

 1-7

fast reduction algorithm to support the 8-bit word size, which was a result of

modifying the 32-bit reduction algorithm.

● Our second novelty related to the second approach in the overall proposed

improvement in ECC scalar multiplication over the binary field 𝐺𝐹(2𝑚) for

m=163, m=233, m=283, m=409 and m=571, using an XMOS homogeneous

multicore microcontroller. In this work, we managed to report a 63%

improvement in ECC point multiplication, in comparison to its sequential

implementation in a single core implementation. Furthermore, in this particular

work, three algorithms listed below have been modified and optimized:

I. Modified Point Doubling in LD coordinate system by implementing a

parallelization principle in it. Accordingly, we managed to reduce the

number of algorithm steps from 14 to 9.

II. Modified Point Addition in LD coordinate system by implementing a

parallelization principle in it. Hence, we were able to reduce the number

of algorithm steps from 26 to 20 steps.

III. Modified left to right binary method point multiplication algorithm has

been proposed. The enhancement is achieved by performing an initial

scanning of the most significant bit (MSB) of k in order to track down

the first non-zero bit from the MSB. If the non-zero first bit is found,

then the coordinates are filled in Q to start the loop operation. P's

coordinates will be filled in Q to start the loop operation.

● The third novelty presented relates to the second proposed approach is our

contribution towards improving the ECC point multiplication over GF(P),

where P=128, P=192, P=256 and P=384 using XMOS homogenous multicore

microcontroller. In this work, we obtained an 80% improvement of ECC point

multiplication, which is higher when compared to its sequential implementation

in a single-core implementation. Also, in this study we modified the algorithms

listed below.:

I. We were able to parallelize the Comba algorithm proposed by the

scholars in [17] and [18] and replaced the original algorithm proposed

by the scholars in [19] with this new modified parallelized algorithm.

II. We modified (X, Y)- only co-Z conjugate addition with update XYCZ -

ADDC algorithm, in turn we were able to reduce the original sequential

Chapter 1: Introduction of Thesis

 1-8

operational steps of the algorithm from 19 to 13, only with the cost of

5M+3+16A by involving of 6 field registers in this operation.

III. We modified (X, Y)- only co-Z addition with update XYCZ -ADD

algorithm, as a result reduced the original sequential operations steps of

the algorithm from 13 steps to only 7 steps.

IV. We modified the Jacobian doubling (𝑎=−3) algorithm for reducing the

original sequential point doubling operation steps from 18 to 15.

 Hence, it can be observed that our effective software design for efficient ECC tackles

ECC over the binary field as well as ECC over the prime field. Furthermore, in this work, we

considered three different types of data width 8, 16 and 32 bits. This is the first-ever effort that

attempts to enhance the performance of ECC by considering curves over the binary as well as

the prime fields.

 Finally, in this research, we have been able to enhance the performance of the ECC on

a microcontroller that could be used for different applications. For that, our thesis contributions

point to the fact that PKC could be used in the constrained devices and secure communication

could be established easily – taking into account the various types of microcontrollers

mentioned in this thesis.

1.4 Thesis Outlines

 Immediately after this chapter, the next chapter provides the reader with essential

background and historical information about cryptography. In addition to that, a detailed

explanation and differentiation between symmetric and asymmetric cryptography is also

provided. Furthermore, details about the elliptic curve cryptography group's law and point

multiplication algorithms, have been provided. Finally, the chapter 2 presents a discussion

about the domain parameters and protocols of ECC.

 In Chapter 3, our first effective ECC implementation is discussed. This chapter

introduces the concept of ECC and highlights the related research., Further this chapter

provides a brief introduction to the Arduino microcontroller architectures, followed by detailed

implementation of the proposed solution. This chapter is concluded by presenting an analysis

of the obtained results.

Chapter 1: Introduction of Thesis

 1-9

 Chapter 4 introduces a new concept of emerging technology related to microcontrollers.

This chapter presents the implementation of parallelizing the Comba algorithm in a

homogeneous multicore microcontroller. First the concept of the algorithm and its relationship

and importance in ECC over binary field cryptosystem is described. Then, a detailed

parallelization concept for the algorithm is provided. Finally, the chapter is concluded by

analyzing the obtained results.

 In Chapter 5, presents the concept of parallelizing the ECC point multiplication over a

binary field. The chapter begins with the introduction of the overall concept of ECC over a

binary field, followed by a related mathematical background. Then the proposed solution to

increase the performance of ECC point multiplication is elaborated. The details of

implementing the proposed solutions is provided in subsection 5.4. Finally, the performance

analysis is presented along with the conclusions drawn from the analysis.

 Chapter 6 elaborates the proposed solution to enhance the scalar point multiplication of

ECC, but this time for ECC over the prime field. Initially a general description for ECC over a

prime field along with its mathematical background is provided. Then the proposed solution is

described along with the technical details of its implementation. Finally, the results are

analyzed and the conclusions drawn from it are mentioned.

 Finally, the Chapter 7, provides a summary of the complete research along with the

suggestions for the future work that can be conducted.

Chapter 1: Introduction of Thesis

 1-10

1.5 Published Papers

 Albahri, M. S., and M. Benaissa. "Parallel comba multiplication in GF (2163) using

homogenous multicore microcontroller." In Electronics, Circuits, and Systems (ICECS), 2015

IEEE International Conference on, pp. 641-644. IEEE, 2015.

 Albahri, M.S., Benaissa, M. and Khan, Z.U.A., 2016, December. Parallel

Implementation of ECC Point Multiplication on a Homogeneous Multi-Core Microcontroller.

In Mobile Ad-Hoc and Sensor Networks (MSN), 2016 12th International Conference on (pp.

386-389). IEEE.

 Albahri, M. S., and M. Benaissa. "Parallel elliptic Curve Cryptography over GF(P) on a

Homogeneous a Multi Core Microcontroller." To be submitted to IEEE Embedded Systems

Letters (ESL).

Chapter 2: Background Theory

 2-1

Chapter 2 Background Theory

This chapter discusses historical information about cryptography and its goals. We further

provide a preliminary related background and fundamental terminologies for public key

cryptography including RSA and Elliptic Curve Cryptography. Hence, details about ECC

Field arithmetic over 𝐺𝐹(𝑃) and 𝐺𝐹(2𝑚) are given. We also discuss some algorithms

related to the Point of Multiplication that is employed in this thesis, along with elliptic curve

domain parameters protocols.

Chapter 2: Background Theory

 2-2

2.1 Cryptography History

In the past, steganography, a Greek originated word meaning “covered writing”, was

referred to as a technique for communication of secure messages. In contrast to cryptography,

steganography means concealing the message itself by covering it with something else,

whereas cryptography means concealing the content of the message by enciphering [20].

Also, the word ‘cryptography’ originally came from the Greek root words kryptos and

gráphō, which together mean “hidden writing” [21]. Cryptography has very long and

interesting history, dating back to 4000 years ago. The best description for the history of

cryptography can be found in [22]. In this book, the author traced its history from the initial

use of cryptography by the Egyptians in 1900 B.C to the 20th century.

 As per [1] and [2], the first attempt to cipher a plain text was developed by Roman

generals in the 1st century B.C. They ciphered the message by shifting a fixed number of

letters down to the alphabet. This procedure of ciphering came to be known as Caesar's

Cipher.

 However, the principle of substitution ciphers was created by a Greek historian

Polybius in the 2nd century B.C. This technique is based on replacing the letter of the alphabet

and placing it within a Polybius square using numbers.

 It is believed that the first transposition cipher was used by Spartan in 5th century B.C

[21]. They used to exchange secret messages by wrapping slender bar parchment and wound

it in something called a scytale. To decipher the message, the papyrus needed to be rewound

it in the scytale of identical thickness.

 In the 9th century, the first code-breaking textbook Istikhraj al-Kotob Al-Mu'amah was

published by Islamic mathematician named Abū Yūsuf Yaʻqūb ibn Isḥāq al-Kindī. In his

book, al-Kindī introduced the alphabetic cipher and frequency analysis techniques [21] .

 The Middle Ages witnessed more progress in the cryptographic field. During this

time, most of the Western European governments used cryptography to be in touch with their

ambassadors. The most significant enhancements were developed in Italy in 1452. Venice

established a new organization with three secretaries responsible to cipher and deciphers the

government's messages [23].

http://en.wikipedia.org/wiki/Al-Kindi
http://en.wikipedia.org/wiki/Al-Kindi

Chapter 2: Background Theory

 2-3

In 1553, a new concept of a Vigenere cipher was published by Italian Renaissance Leon

Basttista Alberti. This new concept was considered as strong as polyalphabetic substitution

cipher at that time [21].

 The invention of telegraph communication in 1844 triggered a dramatic rise in

cryptography. Thus, the Vigenere cipher was used in telegraph communication until Friedrich

W. Kasiski developed all periodic polyalphabetic ciphers in 1863 [23].

 Furthermore, the historical information shows that cryptography played a vital role in

the outcome of both world wars. For example, in 1895, the invention of radio transmission

made a remarkable change of using cryptography in telegraphic communication – when the

French military managed to intercept German communication during the First World War.

This is because the French cryptanalysts managed to break the double columnar transposition

created by German military [23]. The Enigma machine is an encryption gadget created and

utilized in the mid-twentieth century to ensure business, discretionary and military

correspondence. It was utilized widely by Nazi Germany during World War II, in all parts of

the German military. But, the Enigma encryption demonstrated to be vulnerable to

cryptanalytic attacks by Germany's foes, at first Polish and French and, later, a gigantic effort

by the United Kingdom at Bletchley Park. While Germany acquainted a progression of

enhancements with Enigma and these hampered efforts of decryption to fluctuating degrees,

they didn't decisively keep Britain and its partners from misusing Enigma-encoded messages

as a noteworthy source of knowledge during the war. Numerous observers state that this flow

of intelligent communication reduced the duration of the war altogether and may even have

modified its result.

 The growth of computers and communication systems, starting in the 1960s,

introduced cryptography as a requirement to secure the digital information. Historically, Data

Encryption Standard (DES) is considered the first standard for encrypting unclassified

information. It was adopted by the U.S Federal Information Processing Standard as a result of

the work conducted by Feistel at IBM 1970s. In fact, DES is the most well-known

cryptographic mechanism in history. It continues to be a standard technique for protecting

electronic commerce provided by different financial organizations around the world [24].

 However, the work published by Diffie and Hellman in 1976 created new directions

in cryptography. In fact, this work is considered the most impressive development in the

Chapter 2: Background Theory

 2-4

history of cryptography. The authors introduced a new concept of public-key cryptography

and an innovative method for key exchange based on a discrete logarithm problem. Despite

the fact that there was no practical acknowledgement of public-key cryptography scheme at

that time, the idea creates an extensive interest in the cryptography community.

 Accordingly, a new practical public-key encryption and digital signature scheme

proposed by Rivest, Shamir and Adleman in 1978 is now known as RSA. The idea of RSA is

mainly based on the intractability of factoring large integers. This approach of cryptography

energized efforts to research for better techniques for factorization.

2.2 Goals of Cryptography

 Cryptography has become a hot topic in the existing research due to high demand for

applications and computer networks. Currently, cryptographic algorithms are required in all

the secure communications and digital data authentication. However, cryptography should

not be considered as the only means of securing information, but rather one set of techniques

responsible in providing security. In principle, cryptography has primary goals, as

summarized below [1, 20, 25]:

● Data Confidentiality: Content of a message sent from A to B cannot be read by

somebody else and is protected from an unauthorized user.

● Entity Authentication: This is a procedure of verifying the user identity to ensure

that each arriving message came from a trusted source.

● Data Origin Authentication: To enable a received entity and verify that the

incoming message has been sent by a trusted entity and the message has not been

altered thereafter.

● Data Integrity: This method allows the received entity to verify that the inbound

message has not been tampered in transit.

● Non-Repudiation: This procedure ensures that it is impossible for the sender to turn

around later and deny sending the message.

2.3 Private Key Cryptography

Private key cryptography also known as symmetric-key or single-key encryption, was the

only used type cryptography scheme until the end of the 1970s. This scheme played a

primary role in providing security services in many network devices. It was in use until the

Chapter 2: Background Theory

 2-5

development of public-key cryptography, which was developed for tackling the drawbacks of

this scheme. The concept of this scheme is based on using a single key during the encryption

and decryption processes. It consists of five main components as listed below [20, 26]:

➢ Plaintext

➢ Encryption Algorithm

➢ Secret Key

➢ Ciphertext

➢ Decryption Algorithm

Figure 2.1 illustrates the symmetric key cryptography. Here, the plaintext represents the

original message, which is fed into the encryption algorithm. The purpose of having an

encryption algorithm is to conduct various substitutions and transformation in the plain

text.

 The secret key K used in this scheme is completely independent of the plaintext and

encryption algorithm. The key is generally selected to be the binary alphabet 0,1. To the

plain text X the sender needs to form the cipher Y as a function of K. Based on this, the

encryption transformation could be written in the form given below:

Public Key
Algorithms

IFP (e.g RSA)
DLP(e.g
Diffie-

Hellman)

ECDLP(e.g
ECDH and

ECDSA)

Figure 2.1 Main Families Public Key Cryptography

Chapter 2: Background Theory

 2-6

𝑌 = 𝐸𝑘(𝑃)

The output of the encryption algorithm, transformation processes, substitution processes

is totally dependent on the secret key. The encryption process yields the cipher text, which

is mainly a scrambled message and is heavily dependent on the secret key – wherein, if

two different secret keys used by the same message then it must result in two different

cipher texts. Apparently, the cipher text is a random stream of data that is unintelligible.

The decryption process allows the receiver to retrieve the original message, X, using the

below decryption function:

𝑋 = 𝐷𝑘(𝑌)

 During the decryption process, the decryption algorithm must apply the same secret

key that has been used in the encryption process. Therefore, the algorithm being used

must enable any person to perform the deciphering process, without using the pre-shared

key or even figuring out the secret key from the ciphered text. Thus, it is important to note

the minimum specifications required while using the encryption algorithm. Accordingly,

such an implementation must ensure the secrecy of the secret key, because all the

information will be readable to the opponent if he/she knows the secret key and

encryption algorithms.

 In general, the security of this scheme is maintained by ensuring that the security

mechanisms are being used by the sender and receiver. It should be also noted that

encryption algorithms are not kept secret for the following reasons:

➢ To help manufacturers in developing a low-cost implementation of data

encryption algorithms

➢ To help in providing a number of products with different cost allowing end-users

to select from varieties.

 Symmetric key cryptography has two categories: stream cipher and block cipher. The

concept of the former is based on encrypting bit individually by adding a bit from secret

keystream to the plaintext. The stream cipher is further divided into two types:

synchronous stream cipher and asynchronous stream cipher. The synchronous stream

cipher is only dependent on the secret keystream, whereas asynchronous stream ciphering

the keystream depends on the cipher text.

Chapter 2: Background Theory

 2-7

 The synchronous stream cipher is the most practically-used stream cipher, and

an A5/1 cipher, an example of it, particularly used in the GSM mobile phone standard.

The concept of the block cipher is based on encrypting the entire block of the plaintext at

a time using the secret key.

 Advance Encryption Standard (AES) and Data Encryption Standard (DES) or triple

(3DES) are standards comes under the block cipher. The AES has a block length of 128

bits (16 Bytes) and DES has a block length of 64 bits. To summarize, the symmetric key

cryptography is still playing a major role in providing the security services, such as

confidentiality, integrity and authenticity due to its efficiency and short key length.

Although it does have powerful advantages, it has some cons which are listed below:

1. It requires a secure transmission channel before exchanging the secret key

between the sender and receiver.

2. Setting up shared key manually results in losing control over the secret keys,

especially when it is used in the large network which contains a large number of

entities.

3. More storage requirements will be needed for storing a large number of key pairs.

These drawbacks can be tackled by using public-key cryptography in line with symmetric

key efficiencies and functionalities.

2.4 Public Key Cryptography

Public key cryptography was invented by Diffe Halmen and Markle in 1976. The concept of

the public cryptography is based on using two different keys (public or private key) during

encryption and decryption processes. Both of the keys are to be generated by the receiver

party. Accordingly, the receiver must communicate his public key to the transmitter side.

Upon receiving the public key, the transmitter will be in a position to encrypt the data using

the public key provided by the receiver party. To decrypt the message, a receiver must use

his private key. Although their keys need to be communicated between sender and receiver,

the main disadvantage here is that these two keys are transmitted over insecure channels, as

shown in Figure 2.1. The use of a public-key algorithm is not limited to exchanging the key,

but it can also be used for proving the authentication through the digital signature.

Furthermore, there are three basic mechanisms for the public-key algorithm:

Chapter 2: Background Theory

 2-8

1. Digital Signature

2. Encryption

3. Key Establishment Protocol and Key Transport Protocol

In addition to the above mechanisms, the public key schemes allow implementing all

required functionalities for modern security protocols, such as SSL/TLS [27]. However,

implementing public-key schemes is not an easy task due to its high computational

requirements. For that, implementing cryptographic system requires a mixed implementation

of symmetric and asymmetric key cryptography, which could be nominated as a hybrid

cryptosystem. Hybrid cryptosystem can be achieved by using the public key algorithm for the

Title Title

Plain Text

Public key

Plain Text

(Output)

Insecure

Channel
Encryption Decryption

Title

Cipher Text

Title

Cipher Text

Key Generation

To Public

Public Key

Distribution

Private Key

Figure 2.2 Public key cryptography model

Chapter 2: Background Theory

 2-9

key establishment, and the symmetric key algorithm will be used to perform the data

encryption processes.

 There are three main families for public key cryptography listed in Figure 2.3:

The first category of the public key algorithms referred to as Integer Based Problem (IFP).

The concept of these algorithms is based on determining the prime factors of a given positive

integer. RSA, which refers to its developers of the algorithm Rivest, Shamir and Adleman, is

one of the famous IFP families [27].

 The second type of public key algorithms is called a Discrete Algorithm

Problem (DLP). These types of algorithms are based on finding positive integer k of a given

α and β such that β =∝ 𝑘 𝑚𝑜𝑑 𝑝. The two examples of this algorithm are Diffie-Hellman Key

exchange protocol and digital key exchange.

 The last type of this family is called Elliptic Curve Discrete Logarithm Problem

(ECDLP). Its concept is based on finding the positive integer, K, on a given points P and Q in

the elliptic curve that is defined over a finite field, such that Q=K.P. Elliptic Curve Diffie

Hellman (ECDH) key exchange protocol and Elliptic Curve Digital Signature Algorithm

(ECDSA) are examples of ECDLP based algorithms.

Title Title

Plain Text

(Input)

X

Secret Key Shared

by Sender and

Receiver

Transmitted

Cipher text

Secret Key Shared

by Sender and

Receiver

Plain Text

(Output)

Y= E(K,X)

Encryption

Algorithm (e.g

AES, DES)

Decryption

Algorithm

Reverse of

Encryption

Algorithm)

X= D(K,Y)

Figure 2.3 Symmetric-key cryptography model

Chapter 2: Background Theory

 2-10

2.4.1 Some Definitions From Number Theory

A finite group and field are the primary mathematical constructs used in public-key

cryptography. These constructs contain a non-empty set of elements, and they have the ability

to generate other set of elements if it is jointly operated with one or more functions. In this

thesis, we consider some definitions concerning elementary common algebraic structures.

These include groups, rings and fields. Seeking further detail, we refer the reader to [28] as it

provides in-depth details for a finite field.

Groups

DEF. 2.1 A group (G) is defined as a set of elements along with binary operation "*",

satisfying four properties. An Abelian group is the most common type of algebraic groups

that satisfies the four properties defined below [1, 20, 29]:

1. Closure: The group is called closure if a and b are elements of G, then 𝑐 = 𝑎 ∗ 𝑏 is

also an element of G – in which the result obtained after applying the operation on

any two elements in the set.

2. Associatively: The group is to be considered associative if a, b and c are elements of

G, then (a*b)*c=a*(b*c) – in which the operations can be applied in any order.

3. Commutativity: To satisfy a commutative rule all of a and b in G should satisfy

a*b=b*a.

4. Existence of identity: For all ‘a’ in G, there exists an element e, called the identity

element, such that e*a=a*e=a.

5. Existence of an inverse: The existent element for each a in G is 𝑎′ and known as

inverse of a and such that 𝑎 ∗ 𝑎′ = 𝑎′ ∗ 𝑎 = 𝑒.

 Despite the groups that involve one single operation, the properties provided

on the operation allow using the pairs of operations. For example, addition and subtraction

operations could be supported by defined addition operation in the group, as long as addition

is using inverse – in which, if the identity element e=0, then the inverse is 𝑎−1 = −𝑎.

DEF. 2.2 If the set has a finite number of elements, it is said to be a finite group; otherwise, it

is known as an infinite group [20]. The number of elements in a finite group is referred to as

the order of the group, |G|. However, if the group is not finite, its order also is infinite; if the

group is finite, the order is finite.

Chapter 2: Background Theory

 2-11

DEF. 2.3 A subset H of a group G is a subgroup of G, if H itself is a group with respect to

the operation on G. Therefore, if 𝑮 =< 𝑆,•> is a group, 𝐻 =< 𝑇,•> is a group under the

same operation, and T is a non-empty subset of S, H is a subgroup of G [28]. In accordance

with this, the definition implies the following [20]:

1. The groups share the same identity element.

2. Each group has a subgroup of itself.

3. The group made of the identity element of G, H=<[5],•> is a subgroup of G.

4. If a and b are members of both groups, then c=a*b is also a member of the groups.

5. If a is a member of both groups, the inverse of a is also a member of both groups.

DEF. 2.4 A multiplicative finite group G is called cyclic if all elements of the group 𝑎 ∈ 𝐺

can be generated by repeated application of group operation. Thus, if there is an element 𝑎 ∈

𝐺 such that for any 𝑎 ∈ 𝐺, there is some integer j with 𝑏 = 𝑎𝑗. However, such an element is

nominated as a generator of the cyclic group and to be written as 𝑮 = 〈𝑎〉 [28].

DEF. 2.5 If a subgroup of a group can be produced by applying the power of an element,

then it is known as the cyclic subgroup. The term “power” here stands for repeatedly

employing the group process to the element, which is presented below[20] :

𝑎𝑛 → 𝑎 ∗ 𝑎 ∗ ⋯∗ 𝑎(𝑛 𝑡𝑖𝑚𝑒𝑠)

Ring

DEF. 2.6 A ring is an algebraic structure having two operations, and denoted as 𝑅 =< {⋯ },∗

, >. All of the abelian group properties must be fulfilled by the first operation. The second

operation must satisfy only the first two properties, and it must distribute over the first

operation.

DEF. 2.7 A ring is called distributive if all a,b and c elements of R have 𝑎□(𝑏 ∗ 𝑐) =

(a□b)*(a□c) and (a*b)□c=(a□c)*(b□c). A commutative ring is a ring in which the

commutative property is also satisfied for the second operation.

Field

DEF. 2.8 A field represented by F=<{⋯},*,□> is a commutative ring in which the second

operation satisfies all five properties defined for the first operation, except that the identity of

the first operation and (sometimes called the zero elements), which has no inverse.

Chapter 2: Background Theory

 2-12

 2.4.2 RSA

 RSA, whose concept was first introduced by Diffie-Hellman, was developed by

Revest, Adi Shamir and Len Adleman in 1978. Their main objective was the development of

a cryptographic algorithm that could meet the requirements of the public-key cryptosystem.

The RSA algorithm can be categorized under the block cipher. The format of the plaintext

and ciphertext in the RSA, whose typical size is 1024 bits or 309 decimal digits < 21024, is

referred to as integers between 0 and n-1. 21024.

 RSA is involved in various applications like key transport, encrypting small pieces of

data. Digital signature is another application of RSA which can be utilized for the digital

certificates on the internet. RSA is unable to replace the symmetric cipher since it is very

much slower due to higher number of computations in comparison with the AES. The main

purpose of having RSA encryption feature is to provide highly secure key exchanges for a

symmetric cipher. The primary objective of RSA encryption feature is proving the highest

security for key exchanges in a symmetric cipher, which means that the RSA is generally

used along with symmetric ciphers like AES since it has the responsibility of performing bulk

encryption of the data [20]. The RSA encryption is accomplished by using ring 𝑍𝑛 and

modular computation. The functions below describe the RSA encryption and decryption.

RSA Encryption:

Given the public key (n,e) ≡ 𝐾𝑝𝑢𝑏 and Plaintext Y=e. 𝐾𝑝𝑢𝑏 (x) ≡𝑋𝑒 modn where, x,y ϵ 𝑍𝑛

RSA Decryption:

Given the private key d ≡ 𝐾𝑝𝑟𝑖𝑣𝑎𝑡𝑒 the ciphertext Y, X ≡ d. 𝐾𝑝𝑟𝑖𝑣𝑎𝑡𝑒 (Y) ≡ Yd modn where, X,Y ϵ 𝑍𝑛

 Generally, implementing RSA is more critical in comparison with 3DES or AES since

it involves the exponation of large numbers. Additionally it involves algorithms of modular

multiplication, squaring and multiply [20]. As the RSA has high computational complexity,

the Elliptic Curve Cryptography (ECC) is another option for implementing public key

cryptosystem due to its attractive features and reported efficiencies [1]. Some of the merits of

ECC are listed below:

● ECC can provide the same level of security as that of RSA with smaller key sizes.

● ECC requires lesser memory size and faster arithmetic operations.

Chapter 2: Background Theory

 2-13

● There exists a high possibility of implementing ECC in the constrained devices like

mobiles, as it requires less memory and less power consumption.

Therefore, based on the ECC advantages, we consider it as the main scope of this thesis.

 2.4.3 Digital Signature Algorithm (DSA)

 The main concept of a digital signature scheme is to provide the same services

provided by traditional signature. Normally, a conventional signature is included in the

document, whereas a digital signature is a separate entity. To verify the conventional

signature, the recipient needs to compare the signature with a signature in the document,

whereas to verify a digital signature, the recipient needs to apply a verification process to the

documents and signature. Different services that could be provided by digital signature

include message authentication, integrity and non- repudiation.

 A confidential communication cannot be provided by a digital signature. Thus, if

confidentiality is needed, the message and the signature must be encrypted using either secret

key or public-key cryptosystem. For example, the RSA digital signature scheme uses the

RSA cryptosystem, and also the ElGamal digital signature uses ElGamal cryptosystem. In

normal public key cryptography communication, we use the public key and private key of the

receiver. In contrast, with digital signature communication, the public and private key of the

sender is used.

 Besides the RSA digital signature and ElGamal digital signature, Elliptic Curve

Digital Signature Algorithm came as an alternative solution for providing confidential

service. ECDSA consists of three processes, which are key generation process, signing

process and signature process. These processes are explained in detail below and are based on

implementing ECDSA between the sender Alice and the receiver Bob:

➢ Key Generation process:

1. Alice selects elliptic curve 𝐸𝑃(𝑎, 𝑏) with 𝑝 is a prime number.

2. Alice selects 𝑞 which to be used in the calculation

3. Alice selects the private key 𝑑

4. Alice selects the point in the curve 𝑒1(… . . , … . .)

5. Alice calculate 𝑒2 which can be obtained by multiplying 𝑑 × 𝑒1 = 𝑒2

6. Alice is now ready to send the public key which includes (𝑎, 𝑏, 𝑝, 𝑞, 𝑒1, 𝑒2)

Chapter 2: Background Theory

 2-14

➢ Signing Process: The main purpose of the signing process is selection of a random

number, creation of a third point, calculation of the signature and sending the message

with the signature.

1. Alice selects random number 𝑟 between 1 and 𝑞 − 1

2. Alice calculates the third point 𝑃 = 𝑟 × 𝑒1(… . , … .)𝑃 = (𝑈, 𝑉)

3. Alice calculates the first signature 𝑠1 = 𝑈𝑚𝑜𝑑𝑞

4. Alice calculates the second signature 𝑠2 = (ℎ(𝑀) + 𝑑 × 𝑠1)𝑟−1𝑚𝑜𝑑 𝑞 where

(ℎ)𝑀 = message digest,𝑑 = private key 𝑟 = secret random number

5. Alice sends 𝑠1, 𝑠2 and the message

➢ Verification Processes

1. Bo calculates the intermediate result (𝐴 𝑎𝑛𝑑 𝐵)as below:

▪ 𝐴 = ℎ(𝑀)𝑠1−1𝑚𝑜𝑑𝑞 and 𝐵 = 𝑠2−1𝑠1 𝑚𝑜𝑑𝑞

2. Bob constructs the 𝑇 𝑝𝑜𝑖𝑛𝑡 𝑇(𝑥, 𝑦) = 𝐴 × 𝑒1(⋯ ,⋯)𝑎𝑛𝑑 𝐵 × 𝑒2(⋯ ,⋯) if

𝑥 = 𝑠1 then the signature is True.

2.5 Elliptic Curve Key Cryptography

 Although the RSA and ElGamal cryptosystems are providing considerably secure

symmetric key cryptosystems, their security comes with a price due to their large keys. To

overcome this issue, researchers have looked for alternatives that offer the same level of

security with smaller key sizes. One of the promising solutions is the Elliptic Curve

Cryptography (ECC). The principle of Elliptic Curve, backdated to the mid of 19th century,

was discovered by Victor Miller (IBM) and Neil Koblitz (University of Washington) in 1985.

 Table 1 clearly exemplifies the fact that ECC requires a much smaller key size in

comparison to RSA for providing the same level of security since the security per key bit rate

is much higher. For example, the level of security offered by a 3072-bit legacy key (RSA) is

Table 2.1 NIST Guidelines for Public key size [2]

ECC key RSA/DH key Size Key-Size Ratio AES Key Size

163 bit 1024 bit 1:6 N/A

256 bit 3072 bit 1:12 128 bit

384 bit 7680 bit 1:20 192 bit

512 bit 15360 1:30 256 bit

Chapter 2: Background Theory

 2-15

the same as that offered by a 256 bit ECC key, and thus ECC offers better performance with a

key size that is 1/12th of RSA key. This type of performance efficiency gets better on

increasing the security level. Hence, they can be effectively used in constrained platforms

like wireless devices, handheld computers, smart cards, etc. [30]

 The Concept of Elliptic Curve Cryptography is very rich with theories and deep

arithmetic. Therefore, ECC implementation requires a focus on different arithmetic and

operations and algorithms. Figure 2.4 describes the system level of elliptic curve

cryptography implementation. The top layer in the pyramid represents the implementation of

ECC Protocols levels, such as Elliptic Curve Digital Signature Algorithm (ECDSA), Elliptic

Curve Diffie Hellman ECDH and Elliptic Curve Integrated Encryption Schemes (ECIES).

Scalar point multiplication is considered as a second level before ECC protocol. The

fundamental operation of the elliptic curve cryptography is scalar point multiplication, which

is defined in equation (2.1) as follows:

 Q = k.P (2.1)

 The scalar point multiplication is based on point addition and point multiplication.

The point addition operation for two given points 𝑃, 𝑄 ∈ 𝐸, resulting in point known as the

sum of P and Q,𝑃 + 𝑄 ∈ 𝐸, whereas the point multiplication is the process concern of

Figure 2.4 ECC Implementation Pyramid

ECC Protocols

Scalar Point
Multiplication

Elliptic Curve (Point
Addition,

Point Doubling)

Field Arithmetic operations

Chapter 2: Background Theory

 2-16

multiplying two elements in the multiplication group GF*(q) for integer modulo a prime P.

Different point multiplication algorithms are presented in [1] to compute (1). The

performance of ECC depends on the point multiplication and its associated coordinates

systems. The scalar point multiplication for two points 𝑄, 𝑃 ∈ 𝐸 𝐺𝐹(𝑞)⁄ which belongs to

elliptic curve 𝐸 ∈ 𝑮𝐹(𝑞) is basically defined over an Abelian group as shown below:

𝑄 = 𝐾.𝑃 = 𝑃 + 𝑃⋯𝑃 + 𝑃⏟
𝑘−1 𝑡𝑖𝑚𝑒𝑠

 The implementation of Elliptic Curve Cryptography is based on scalar point

multiplication and Elliptic Curve Discrete Logarithm Problem (ECDLP). The concept of

ECDLP based on finding K for a given Q and P, where the parameter of K is called discreet

algorithm of Q to the base P and K= 𝑙𝑜𝑔𝑝 Q Despite the availability of this algorithm, it does

not have the capability to solve the ECDLP, as it can only be used for factorizing a large

number. For this reason, the RSA requires a larger key size, and ECC can provide the same

level of security with a shorter key length.

 An elliptic curve E over a field K could be defined over either the field R of the real

numbers, the field Q of rational numbers, the field C of complex numbers, or finite field 𝐹𝑞 of

𝑞 = 𝑝𝑟elements. Figure 2.5 shows an elliptic curve over the rational field Q. Thus, an elliptic

Figure 2.5 The Elliptic Curve 𝒚𝟐 = 𝒙𝟑 − 𝟓𝒙 + 𝟒 over R

Chapter 2: Background Theory

 2-17

curve over K is to be defined as a set of points (𝑥, 𝑦) where 𝑥, 𝑦 ∈ 𝐾 that satisfies the

following equation:

 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏 (2.3)

where 𝑎, 𝑏 ∈ 𝑘 is to be a cubic polynomial with no multiple roots and K is to be a field of

characteristic ≠ 2,3.

Therefore, the elliptic curve E over finite field 𝐺𝐹 is to be defined using the following long

Weierstrass equation in the projective form [1]:

𝐸: 𝑌2𝑍 + 𝑎1𝑋𝑌𝑍 + 𝑎3𝑌𝑍
2 = 𝑋3 + 𝑎2𝑋

2𝑍 + 𝑎4𝑋𝑍
2 + 𝑎6𝑍

3 (2.4)

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ 𝐺𝐹.

Weierstrass equation (2.4) represents a smooth elliptic curve in projective coordinates. It has

the correspondence in the affine (Euclidean) coordinates, containing the form:

𝐸: 𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥
3 + 𝑎2𝑥

2 + 𝑎4𝑥 + 𝑎6 (2.5)

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 ∈ 𝐺𝐹. and ∆≠ 0 and ∆ is discriminante of 𝐸 which defined as below:

∆= −𝑑2
2𝑑8 − 8𝑑4

3 − 27𝑑6
2 + 9𝑑2𝑑4𝑑6

𝑑2 = 𝑎1
2 + 4𝑎2

𝑑4 = 2𝑎4 + 𝑎1𝑎3

𝑑6 = 𝑎3
2 + 4𝑎6

𝑑8 = 𝑎1
2𝑎6 + 4𝑎2𝑎6 − 𝑎1𝑎3𝑎4 + 𝑎2𝑎3

2 − 𝑎4
2}

However, the below simplified Weierstrass equations provided by [1] shows that it is not

necessary to use whole equations (2.4 and 2.4). In which, the same original Weierstrass

equation could be rewritten in a simpler way, depending upon the field characteristics.

Simplified Weierstrass equations:

1. When characteristics of K is not equal to either 2 or 3 then E transforms to a curve

where 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ 𝐾 𝑎𝑛𝑑 ∆= −16(4𝑎3 + 27𝑏2).

2. When characteristics of K is 2 and if 𝑎1 ≠ 0, then E transforms to non-super singular

curve where 𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑎, 𝑏 ∈ 𝐾 𝑎𝑛𝑑 ∆= 𝑏.

3. When characteristics of K is 2 and if 𝑎1 = 0 then E transforms to a supersingular

curve where 𝐸: 𝑦2 + 𝑐𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑎, 𝑏, 𝑐 ∈ 𝐾 𝑎𝑛𝑑 ∆= 𝑐4.

Chapter 2: Background Theory

 2-18

4. When characteristics of K is 3 and 𝑎1
2 ≠ −𝑎2, then E transforms to a non-super

singular curve where 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑎, 𝑏, 𝑐 ∈ 𝐾 𝑎𝑛𝑑 ∆= −𝑎3𝑏.

5. When characteristics of K is 3 and 𝑎1
2 = −𝑎2, then E transforms to a supersingular

curve where 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏, 𝑎, 𝑏, 𝑐 ∈ 𝐾 𝑎𝑛𝑑 ∆= −𝑎3.

Points on the Elliptic Curve

 The points in the elliptic curve E over the field L are defined below:

𝐸(𝐿) = {∞} ∪ {(𝑥, 𝑦) ∈ 𝐿 × 𝐿|𝑦2 +⋯ = 𝑥3 +⋯}

The points in the elliptic curve are to be known as the set of a collection in the union of the

point at infinity where (𝑥, 𝑦) that belongs to L, which satisfy the original curve equation

(2.5). The point at infinity is kind of a point sitting at the top of y-axis and bottom of the y-

axis. Using the Diophantus techniques drawing a vertical line between two points in the

elliptic curve, these two points should intersect in the elliptic curve in the third point.

However, in the case of the point at infinity, the points will actually intersect again in the

elliptic curve at the point of infinity. In fact, this is very useful as it helps in defining the

concept of the group, which is very much needed in order to apply the elliptic curve concept

for various applications. In principle, the elliptic curve should form an abelian group as it has

two points P and Q in a defined field over the elliptic curve, resulting in a third point denoted

by P+ Q lays on E the field. Thus, given two points 𝑃, 𝑄 in 𝐸(𝐹𝑝) yield a third point, denoted

by 𝑃 + 𝑄 on 𝐸(𝐹𝑝), which should satisfy the following properties:

▪ 𝑃 + 𝑄 = 𝑄 + 𝑃 (Commutativity) – in which adding P and Q should be identical if we

are adding Q and P.

▪ (𝑃 + 𝑄) + 𝑅 = 𝑃 + (𝑄 + 𝑅) (Associativity) – which means it does not matter in

which order we are performing the addition operation.

▪ 𝑃 + 𝑂 = 𝑂 + 𝑃 = 𝑃 (existence of an identity element). This means there should be an

identity element, and if we add P and O, then we should get back as the same as O

plus P because of the commutativity property. Also, both of them should actually go

back to P as there is O. However, O is generally referred to as the point of infinity,

which is assumed to be the identity element in the plus operation.

▪ Three exists (−𝑃) such that −𝑃 + 𝑃 = 𝑝 + (−𝑃) = 𝑂 (Existence of Inverse). This

property means that another point exists as (−𝑃), such that if we take (−𝑃) and

Chapter 2: Background Theory

 2-19

added with (−𝑃) that additive is the inverse of P, which should give us back O point

on infinity again. Therefore, a minus P is the additive inverse of P.

Point Addition Point Doubling

For example, if we have two points 𝑃 𝑎𝑛𝑑 𝑄 in the elliptic curve:

𝑦2 = 𝑥3 − 𝑥 + 1

which shows the form of an elliptic curve that we have chosen here, if 𝑃 𝑎𝑛𝑑 𝑄 are two

points in this curve. Thus, we can define the addition operation for the 𝑃 𝑎𝑛𝑑 𝑄 using

Diophantus techniques – in which we can draw a straight line through them, and it will

intersect in the elliptic curve in the third point. Accordingly, we take the reflection of the

third point in x-axis as the sum, and we refer 𝑅 as the sum of P 𝑎𝑛𝑑 𝑄 . In fact, this has a

very close relationship with Diophantus techniques.

2.5.2 Elliptic Curve Parameter Selection

 In general, the implementation of ECC requires more focus and a number of decisions

taken at different levels are presented in the ECC pyramid (Figure 2.4).

Figure 2.6 The Elliptic Curve Point Addition 𝒚𝟐 = 𝒙𝟑 − 𝒙 + 𝟏

Chapter 2: Background Theory

 2-20

▪ At the ECC protocol layer

o Appropriate selection of protocols (key exchange or signature)

▪ At the Scalar Point Multiplication layer

o Selecting the algorithm for scalar point Multiplication 𝑘. 𝑃

▪ At the Elliptic Curve layer

o To select a proper point addition and point doubling algorithms

o To choose the type of representation for the points (affine or projective

coordinates)

▪ At the Field Arithmetic layer

o A decision for selecting an underlying field (𝐺𝐹(2𝑚), 𝐺𝐹(𝑝), 𝐺𝐹(𝑝𝑚)) need

to be taken.

o A selection of the field representation (e.g polynomial or normal basis)

o Appropriate selection for the finite field algorithms (Addition, Multiplication,

Squaring, Reduction, Inversing)

 Having such choices and huge flexibility makes ECC feasible for both constrained

devices and high-performance servers. Subsequently, we first provide a fundamental

arithmetic for the curve defined over prime field 𝐺𝐹(𝑝) (Section 2.5.3) and elliptic over the

binary field 𝐺𝐹(2𝑚) (Section 2.5.4). In general, in this thesis, we only present the algorithms

that are applied in our research. Further detail of different algorithms could be obtained in [1,

25].

2.5.3 Elliptic Curve Arithmetic Over 𝑮𝑭(𝑷)

 Finite field or Galois field was invented by (Evariste Galois) in the 19th century [31].

The finite filed is a field included with finite field order. The order of finite field could be

represented by the prime or the power of a prime [32]. In practice, the finite field is used in

many applications besides the cryptography like number theory, algebraic geometry Galois

theory and quantum error correction. ECC could be implemented in constrained devices

underlying three types of finite fields which include: elliptic curve over prime field GF(p),

elliptic Curve over binary fled GF(2m) and over a prime extension field GF(pm). However,

in this thesis, our research is based only on the binary field and prime field. Further details

will be provided in the next sections, but they are limited to those related to this thesis.

The elliptic curve over prime field is represented by the following equation:

Chapter 2: Background Theory

 2-21

𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝, 𝑤ℎ𝑒𝑟𝑒 4𝑎3 + 27𝑏2𝑚𝑜𝑑 𝑝 ≠ 0

The finite field elements for the above equation are integers number between 0 and p − 1.

The integers to be involved in all of the Elliptic Curve modular arithmetic operations include

addition, subtraction, multiplication, division and multiplicative inverse. The selection of

prime number is to be conducted based on SEC specification, where p is rated between 112-

521 bits. Figure 2.5 shows points generated by Sagemath tool for the prime field of size y2 =

x3 + x

Projective coordinate representations

 Mathematically, elliptic curve over prime field consisting of integer P over finite field

𝐺𝐹(𝑝) and the elements 𝑎, 𝑏 ∈ 𝐹𝑝 can be defined by the equation below:

E: y2 ≡ x3 + ax + b (mod p)

Basically, (𝑥, 𝑦) points are to be represented by the coordinate referred to as Affine

Coordinates (Α). However, it is a very common practice that projective coordinates are used

in replacing the Affine Coordinates and represent the points P and Q. This is because Affine

Coordinates over the prime field is expensive due to the necessary field inversion operations

during the Elliptic Curve Scalar Point Multiplication (ECSPM) computations.

▪ Using the standard projective coordinates, the affine point (X Z⁄ , Y Z⁄) could be used

in correspondence to the projective point (X: Y: Z), Z ≠ 0. The point at infinity ∞

Figure 2.7 Elliptic Curve Point for 𝒚𝟐 = 𝒙𝟑 + 𝒙

Chapter 2: Background Theory

 2-22

corresponds to corresponds to (0: 1: 0), and the negative of (X: Y: Z) is (X:−Y: Z).

The elliptic curve equation that corresponds to the standard projective coordinates is:

Y2Z = X3 + aXZ2 + bZ3

▪ Using the Jacobian projective coordinates, the affine point (X Z2⁄ , Y Z3⁄) could be

used in correspondence to the projective point (X: Y: Z), Z ≠ 0. The point at infinity ∞

corresponds to (0: 1: 0), and the negative of (X: Y: Z) is (X:−Y: Z). The elliptic curve

equation corresponding to the Jacobian projective coordinates is:

Y2Z = X3 + aXZ4 + bZ6

The calculation of point addition and point doubling is highly dependent on the type of the

selected projective coordinates. Thus, these representations can be considered as

advantageous if the inversion operation is more expensive when compared to multiplication

in the finite field. To accomplish the processes of elliptic curve arithmetic, a single inversion

at the end of point addition and point doubling is needed. This can be achieved using the

Fermat's Little Theorem: x−1 ≡ xp−2 mod p. However, Table 2.2 illustrates different

complexity concerning group operations for a different type of coordinates representation on

𝑦2 = 𝑥3 − 3𝑥 + 𝑏. Where A=affine representation, J=Jacobin, P=Standard Projective, I=

Field Inversion, M=Field Multiplication, S=Field Squaring.

 2.5.4 Field Arithmetic over 𝑮𝑭(𝑷)
 In this section, we present some of the algorithms functioning as arithmetic in the

prime field 𝐺𝐹(𝑃). In fact, the elliptic curve cryptography is to be defined on a finite field

known as Galois Field GF. The selected GF is used to define a set of operations that are used

to compute point doubling and point addition. However, in the case of GF(P) the

performance of modular arithmetic is very essential, as its performance directly affects the

Table 2.2 Point addition and Point Doubling Operation Counts[1]

Point Doubling General Addition Mixed

Coordinates

2A →A 1I,2M,2S A+A→A 1I,2M,1S J+A→J 8M,3S

2P → P 7M, 3S P+P→P 12M,2S

2J → J 4M,4S J+J→J 12M,4S

Chapter 2: Background Theory

 2-23

overall performance of ECC algorithms on GF(P). Since field arithmetic over GF(P) consists

of several algorithms, we presented some of these algorithms along with their functionality.

Modular Reduction:

The modular operation is to be used for reducing to modulo P, where P is large. In which, a

finite field of order P, GF(P) with P prime is to be identified as the set 𝑍𝑝 of integers

{0,1,⋯ , 𝑃 − 1}. The main concept of modular 𝑅 arithmetic is based on dividing C by M

where C, M ∈ 𝑍 such that 𝑀 < 𝐶. In which, the modular reduction is a process of computing

𝑅 = 𝐶 𝑚𝑜𝑑 𝑀 – i.e., the remainder R of the division C is to be represented as below:

𝑅 = 𝐶 − ⌊
𝐶

𝑀
⌋𝑀

 Having a modular reduction in place would help in avoiding an expensive operation.

For example, the expensive operations to be conducted by division operation could be

avoided by using modular reduction. Additionally, having a special form of reduction steps

for modulo P can result in archiving a considerable acceleration, which would directly

enhance the performance of ECC. Performing ECC computation consists of conducting a

variety of modulo P arithmetic. Different modular reduction algorithms have been proposed

by researchers to help in achieving fast reduction. For example, a classical method could be

replaced by Barret methods, due to its powerful mechanism on conducting a reduction with

less-expensive operations. Alternatively, when the cost of input and output conversions is

cancelled out, the Montgomery’s method could be selected because it is capable of reducing

the number of intermediate multiplications [1]. In addition to that, there are five

recommended elliptic curves by FIPS 186-2 standard with moduli, as shown below, that can

yield fast reduction algorithms, especially on word size 32 [1]:

𝑃192 = 2
192 − 264 − 1

𝑃224 = 2
224 − 296 + 1

𝑃256 = 2
256 − 2224 + 2192 + 296 − 1

𝑃384 = 2
384 − 2128 − 296 + 232 − 1

𝑝521 = 2
521 − 1

Chapter 2: Background Theory

 2-24

 Considering the above prime properties, a powerful reduction algorithm could be

obtained especially with a machine with 32-word size. In fact, these properties could be

presented as sum or differences of a small number of power 2. However, these powers appear

to be a multiple of 32. For example, a 𝑃 = 𝑃192 = 2
192 − 264 − 1 could be reduced using a

congruence arithmetic. Thus, let c be an integer with 0 ≤ 𝑐 < 𝑃2

𝑐 = 𝑐5𝑐
320 + 𝑐42

256 + 𝑐32
192 + 𝑐22

128 + 𝑐12
64 + 𝑐0

where the base of 264 representation of c where each 𝑐𝑖 ∈ [0,2
64 − 1] reduce the higher

power of 2 in (2.) using the congruence

𝑐 ≡ 𝑐52
128 + 𝑐52

64 + 𝑐5 + 𝑐42
128 + 𝑐42

64 + 𝑐32
64 + 𝑐3 + 𝑐22

128 + 𝑐12
64 + 𝑐0 (𝑚𝑜𝑑 𝑃)

and 𝑐 𝑚𝑜𝑑𝑢𝑙𝑜 𝑝 can obtained by adding the four 192-bit integers 𝑐52
128 + 𝑐52

64 +

𝑐5, 𝑐42
128 + 𝑐42

64, 𝑐32
64 + 𝑐3, 𝑐22

128 + 𝑐12
64 + 𝑐0 and continually subtracting P until the

result is less than p. This procedure can be illustrated on fast modular reduction for modulo

𝑃192 = 2
192 − 264 − 1 Algorithm 2.1 [1]. However, in chapter 6, we consider using a

Generic Generalized Mersenne Reduction procedure as proposed by [19].

 Algorithm 2.1 Fast Reduction modulo𝑷𝟏𝟗𝟐 = 𝟐
𝟏𝟗𝟐 − 𝟐𝟔𝟒 − 𝟏

INPUT: An integer 𝑐 = (𝑐5, 𝑐4, 𝑐3, 𝑐2, 𝑐1, 𝑐0) in base 264 with 0 ≤ 𝑐 < 𝑃162
2 .

OUTPUT: 𝑐 𝑚𝑜𝑑𝑃192
1) 𝐷𝑒𝑓𝑖𝑛𝑒 192 − 𝑏𝑖𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠

 𝑠1 = (𝑐2, 𝑐1, 𝑐0), 𝑠2 = (0, 𝑐3, 𝑐3),
 𝑠3 = (𝑐4, 𝑐4, 0),) 𝑠4 = (𝑐5, 𝑐5, 𝑐5)

2) Return (𝑠1 + 𝑠2 + 𝑠3 + 𝑠4) 𝑚𝑜𝑑 𝑃192

Chapter 2: Background Theory

 2-25

Addition and Subtraction: The mechanism for performing the field addition and subtraction

is quite straightforward. [1] proposed Algorithm 2.2 and Algorithm 2.3 performs the addition

and subtraction respectively of multiword integers where assigning in the form “(ε,z)←w” for

an integer w means that 𝑧 ← 𝑤 𝑚𝑜𝑑2𝑊 and 𝜀 ← 0 𝑖𝑓 𝑤 ∈ [0, 2𝑊), otherwise 𝜀 ← 1.

 However, to compute modular addition ((𝑥 + 𝑦)𝑚𝑜𝑑 𝑃) and subtraction ((𝑥 −

𝑦)𝑚𝑜𝑑 𝑃), some modification with additional reduction steps on reduction modulo P are

required. These steps start by performing the steps mentioned in Algorithms 2.2 and

Algorithm 2.3, then processed with If and Else If statements, as shown below:

Modular Addition:

If 𝜀 = 1, then substract 𝑃 𝑓𝑟𝑜𝑚 𝑐 = (𝐶[𝑡 − 1],⋯ , 𝐶[2], 𝐶[1], 𝐶[0]);

Else if 𝑐 ≥ 𝑃 𝑡ℎ𝑒𝑛 𝑐 ← 𝑐 − 𝑝

 Algorithm 2.2 Multi-precision addition

INPUT: Integers 𝑎, 𝑏 ∈ [0, 2𝑊𝑡). 𝑐
OUTPUT: (𝜀, 𝑐)𝑤ℎ𝑒𝑟𝑒 𝑐 = 𝑎 + 𝑏 𝑚𝑜𝑑2𝑊𝑡 𝑎𝑛𝑑 𝜀 𝑖𝑠 𝑐𝑎𝑟𝑟𝑦 𝑏𝑖𝑡.

1) (𝜀, 𝐶[0]) ← 𝐴[0] + 𝐵[0].

2) For 𝑖 from 1 to 𝑡 − 1 do.

2.1 (𝜀, (𝐶[𝑖]) ← 𝐴[𝑖] + 𝐵[𝑖] + 𝜀

3) Return (𝜀, 𝑐)

 Algorithm 2.3 Multi-precision subtraction

INPUT: Integers a,b ∈ [0, 2Wt).

OUTPUT: (ε, c) where c = a + b mod 2Wt and ε is the carry bit.

1. (ε,C[0])← A[0] + B[0].

2. For i from 1 to t −1 do

2.1 (ε, C[i])← A[i] + B[i] +ε.

3. Return(ε, c).

Chapter 2: Background Theory

 2-26

Modular Subtraction:

If 𝜀 = 1, then add 𝑃 𝑡𝑜 𝑐 = (𝐶[𝑡 − 1],⋯ , 𝐶[2],𝐶[1], 𝐶[0]);

Modular Multiplication:

 The efficiency of modular multiplication plays a very important role in the overall

performance of ECC. However, to perform a field multiplication of 𝑎, 𝑏 ∈ 𝐹𝑃, the

multiplication process of a and b as integers need to be accomplished first. Then, they need to

be processed with a reduction process of the result modulo p. Operand-scanning, product

scanning, Comba Algorithm, Montgomery Multiplication and Karatusba Multiplication are

the most popular modular multiplication algorithms. The operand scanning method and

product scanning method are based on obtaining the bit quantity (U V) by concatenating of

W-bit word U and V. Algorithm 2.4 illustrates the integer multiplication using the operand

scanning method. In this algorithm, the main operation is to be executed in step 2.2, known as

inner product operation. The calculation process is used to be represented by 𝐶[𝑖 + 𝑗] + 𝐴[𝑖] ∙

𝐵[𝑗] + 𝑈 and operands are w-bit values. In general, the inner product in this algorithm is

bounded by 2(2𝑤 − 1) + (2𝑤 − 1)2 = 2𝑤 − 1, which can be depicted by (UV).

 A product scanning Algorithm 2.5 is based on calculating the product c = a. b from

right to left. However, a (2w) bit of w− bit operand is required and values of

R0, R1, R2, U and V are presented by w-bit words. Another form of product scanning

algorithm is so-called a Comba algorithm, proposed by [33]. The idea of Comba algorithm is

quite similar to the product scanning, since the outer loops move through the words of

product P. As shown in Algorithm 2.6, a Comba algorithm mainly consists of two inner loops

and two outer loops. The inner loops are responsible for performing a bulk of computation.

This includes executing Multiply-Accumulate (MAC) operations (i.e., two bits words are

multiplied and 2 w − bit products to be added to the accumulative sum). Therefore, three w-

bit registers are needed for storage purposes, since the same operation can be easily longer

than w-bit long. The accumulative sum of the values (t,U,V) represent the integer value

𝑡. 22𝑤 +𝑈. 2𝑤 + 𝑉. As shown in the Algorithm 2.6, it is very clear that line 7 and 14 are just

performing right -shift of accumulative sum (t,U,V) [17]. After conducting the integer

multiplication using the Comba algorithm, a fast modular reduction algorithms proposed by

[1] or [19] could be used in order to reduce the result of modulo P.

Chapter 2: Background Theory

 2-27

 However, these new techniques of multiplication created a consolidated background for

the researchers to select between them during the implementation. Also, it opens trapdoor to

them for further enhancement, such as the work conducted by [17].

 Algorithm 2.4 Integer Multiplication - Operand Scanning

INPUT: INPUT: Integers 𝑎, 𝑏 ∈ [0, 𝑃 − 1]
OUTPUT: 𝑐 = 𝑎. 𝑏 .
1) 𝑆𝑒𝑡 𝐶[𝑖] ← 0𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑡 − 1
2) For i from 0 to 𝑡 − 1 do.

2.1 𝑈 ← 0.
2.2 For j form 0 to 𝑡 − 1 do
 (𝑈 𝑉) ← 𝐶[𝑖 + 𝑗] + 𝐴[𝑖]. 𝐵[𝑗] + 𝑈
 𝐶[𝑖 + 𝑗] ← 𝑉.

 2.3 𝐶[𝑖 + 𝑡] ← 𝑈

3) Return (𝑐)

 Algorithm 2.5 Integer Multiplication - Product Scanning

INPUT: INPUT: Integers 𝑎, 𝑏 ∈ [0, 𝑃 − 1]
OUTPUT: 𝑐 = 𝑎. 𝑏 .

1) 𝑅0 ← 0,𝑅1 ← 0, 𝑅2 ← 0

2) For 𝑘 from 0 to 2𝑡 − 2 do.

2.1 For each element of {(𝑖, 𝑗)|𝑖 + 𝑗 = 𝑘, 0 ≤ 𝑖, 𝑗 ≤ 𝑡 − 1} do
 (𝑈 𝑉) ← 𝐴[𝑖]. 𝐵[𝑗]
 (𝜀, 𝑅0) ← 𝑅0 + 𝑉.
 (𝜀, 𝑅1) ← 𝑅1 + 𝑈 + 𝜀.
 𝑅2 ← 𝑅2 + 𝜀.
 2.2 𝐶[𝑘] ← 𝑅0, 𝑅0 ← 𝑅1, 𝑅1 ← 𝑅2, 𝑅2 ← 0

3) C[2𝑡 − 1] ← 𝑅0.
4) Return (𝑐)

Chapter 2: Background Theory

 2-28

Modular Squaring:

 In general, a field squaring of 𝑎 ∈ 𝐹𝑃 could be completed by firstly squaring a as an

integer, then reducing obtained result modulo P. The principle of squaring long integer A is

considered to be faster compared to multiplication operation 𝐴. 𝐵. This is due to the

symmetries of the squaring operation. However, the 2w-bit terms of the form 𝑎𝑥 . 𝑎𝑦 appears

to be once for 𝑥 = 𝑦 and twice for 𝑥 ≠ 𝑦. In fact, as 𝑎𝑥 . 𝑎𝑦 and 𝑎𝑦. 𝑎𝑥 are similar, the

squaring computation is to be accomplished by one-time multiplication and performing left

shift in accordance.

 In addition to the multiplication, the Comba Algorithm could be also used for

squaring. This is because the Comba squaring is structured with a nested loop. The nested

Algorithm 2.6 Comba Algorithm

INPUT: 𝐴 = (𝑎𝑠−1 , ⋯ , 𝑎1, 𝑎0,) 𝑎𝑛𝑑 𝐵 = (𝑏𝑠−1 , ⋯ , 𝑏1, 𝑏0,).

OUTPUT: Product = 𝐴. 𝐵 (𝑃2𝑠−1,⋯ , 𝑃1, 𝑃0)

1: (𝑡, 𝑢, 𝑣) ← 0

2: for i from 0 by 1 to s do

3: for j from 0 by 1 to i do

4: (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗

5: end for

6: 𝑃𝑖 ← 𝑣

7: 𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0

8: end for

 9: for i from s by 1 to 2s-1 do

10: for j from i+1--s by 1 to s do

11: (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗

12: end for

13: 𝑃𝑖 ← 𝑣

14: 𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0

14: end for

15: 𝑃2𝑠−1 ← 𝑣

Chapter 2: Background Theory

 2-29

loop in Comba squaring is to be only iterated by 𝑠
2

2⁄ compared to (𝑠2 + 𝑠)/2 in single

precision multiplication. In which, the operation in inner loop could be presented by the

following form:

(𝑡, 𝑈, 𝑉) ← (𝑡, 𝑈, 𝑉) + 2(𝑎𝑗 + 𝑎𝑖−𝑗)

Modular Inversion:

 The process of finding the inversion in a prime field can be done using a direct

exponentiation technique. Thus, if 𝐵 is an element of prime field 𝐺𝐹(𝑃) and 𝐶 an inverse of

field 𝐵, then the inverse could be computed using a direct exponentiation of 𝐶 = 𝐵−1 =

𝐵𝑃−2. However, direct exponentiation is considered to be costly, as it involves modular

multiplication, modular squaring and modular reduction. Therefore, a binary extended

Euclidean Algorithm could be considered as the most effective way of implementing

inversion [1]. This is because the only divisions done are by 2 and accordingly processed

with a right-shift. The normal process of computing 𝑔𝑐𝑑 of positive integers 𝑎 𝑎𝑛𝑑 𝑏 is

implemented through a classical Euclidean Algorithm. The algorithm is based on dividing

𝑏 𝑏𝑦 𝑎 and obtaining a quotient and a remainder where 𝑏 ≥ 𝑎. The overall process should

satisfy 𝑏 = 𝑞𝑎 + 𝑟 and 0 ≤ 𝑟 ≤ 𝑎. However, to achieve this, 𝑔𝑐𝑑 (𝑎, 𝑏) is to be reduced by

computing 𝑔𝑐𝑑 (𝑟, 𝑎) until the argument (𝑟, 𝑎) is obtained smaller than the argument (𝑎, 𝑏)

and the process need to be repeated until one of the argument is 0 with a result of

𝑔𝑐𝑑 (0, 𝑑) = 𝑑. Therefore, at this point, the algorithm could be terminated, as there are no

negative remainders to be reduced. Hence, this method is very efficient, since division steps

could be shown at most 2𝑘 where 𝑘 is the length of 𝑎. The mechanism above could be

extended to Euclidean Algorithm 2.7 to find integers 𝑥 𝑎𝑛𝑑 𝑦 in which 𝑎𝑥 + 𝑏𝑦 =

𝑑 where 𝑑 = 𝑔𝑐𝑑 (𝑎, 𝑏) .

Chapter 2: Background Theory

 2-30

 However, finding a modular inversion using Extended Euclidean could be achieved

by slightly modifying Algorithm 2.7. For that, let P prime, 𝑎 ∈ [1, 𝑃 − 1] and Algorithm 2.8

is processed with input (𝑎, 𝑃). Thus, the last none zero remainder 𝑟 encountered in step 3.1 is

𝑟 = 1. In which, the integers 𝑢1, 𝑥 𝑎𝑛𝑑 𝑦1 is to be updated in step 3.2 where 𝑎𝑥1 + 𝑃𝑦1 = 𝑢

with 𝑢 = 1. These results 𝑎𝑥1 ≡ 1 (𝑚𝑜𝑑 𝑃) 𝑎𝑛𝑑 𝑎
−1 = 𝑥1𝑚𝑜𝑑 𝑃 considering that

𝑦1 𝑎𝑛𝑑 𝑦2 are not required for determining 𝑟1.

 Algorithm 2.8 𝑭𝑷 Inversion using Extended Euclidean

INPUT: INPUT: Prime 𝑃 𝑎𝑛𝑑 𝑎 ∈ [1, 𝑃 − 1]
OUTPUT: 𝑎−1 𝑚𝑜𝑑 𝑃.

1) 𝑢 ← 𝑎, 𝑣 ← 𝑝

2) 𝑥1 ← 1, 𝑦1 ← 0, 𝑥2 ← 0

3) While u ≠ 0 do

 3.1 𝑞 ← ⌊𝑣 𝑢⁄ ⌋, 𝑟 ← 𝑣 − 𝑞𝑢, 𝑥 ← 𝑥2 − 𝑞𝑥1

 3.2 𝑣 ← 𝑢, 𝑢 ← 𝑟, 𝑥2 ← 𝑥1, 𝑥1 ← 𝑥

4) Return (𝑥1𝑚𝑜𝑑 𝑃)

 Algorithm 2.7 Extended Euclidean Algorithm for Integers

INPUT: INPUT: Positive Integers 𝑎 and 𝑏 with 𝑎 ≤ 𝑏.

OUTPUT: 𝑑 = gcd(𝑎, 𝑏) and integers 𝑥, 𝑦 satisfying 𝑎𝑥 + 𝑏𝑦 = 𝑑

1) 𝑢 ← 𝑎, 𝑣 ← 𝑏

2) 𝑥1 ← 1, 𝑦1 ← 0, 𝑥2 ← 0, 𝑦2 ← 1

3) While u ≠ 0 do

 3.1 𝑞 ← ⌊𝑣 𝑢⁄ ⌋, 𝑟 ← 𝑣 − 𝑞𝑢, 𝑥 ← 𝑥2 − 𝑞𝑥1, 𝑦 ← 𝑦2 − 𝑞𝑦1
 3.2 𝑣 ← 𝑢, 𝑢 ← 𝑟, 𝑥2 ← 𝑥1, 𝑥1 ← 𝑥, 𝑦2 ← 𝑦1, 𝑦1 ← 𝑦

4)𝑑 ← 𝑣, 𝑥 ← 𝑥2, 𝑦 ← 𝑦2
5) Return (𝑑, 𝑥, 𝑦)

Chapter 2: Background Theory

 2-31

2.5.5 Elliptic Curve Arithmetic over 𝑮𝑭(𝟐𝒎)

 The general form of Elliptic Curve over binary field 𝐸(2𝑚) is to be presented by the

following equation:

𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 (2.1)

where 𝑎, 𝑏 are parameters ∈ 𝐺𝐹(2𝑚), 𝑏 ≠ 0 and {(𝑋𝑖, 𝑌𝑖), for 𝑋𝑖, 𝑌𝑖 ∈ 𝐺𝐹(2
𝑚)} are set of

solutions for equation (2.1). However, the number of the points in 𝐺𝐹(2𝑚) are denoted by

#𝐸(2𝑚), whereas the addition inverse point 𝑅𝑖(𝑋𝑟 , 𝑌𝑟) of 𝐸(2𝑚) is defined as −𝑅(𝑋𝑟 , 𝑋𝑟 −

𝑌𝑟) and the elliptic curve 𝐸(2𝑚) points from addition group are normally satisfying closure,

identity and inverse properties. [1] proposed the below set of rules for defending the

operations of Elliptic Curve over 𝐺𝐹(2𝑚)

Point Addition Rule:

The result of adding two points, P and Q, where 𝑃: (𝑋𝑝, 𝑌𝑝) ∈ (2
𝑚), 𝑄: (𝑋𝑞 , 𝑌𝑞) ∈ (2

𝑚),

𝑋𝑝 ≠ 𝑋𝑞 and the coordinates of R is (𝑋𝑟 , 𝑌𝑟) is given by

𝑋𝑟 = 𝑠
2 + 𝑠 + 𝑋𝑝 + 𝑋𝑞 + 𝑎, 𝑌𝑟 = 𝑠(𝑋𝑝 + 𝑋𝑟) + 𝑌𝑝 + 𝑋𝑟 , 𝑤ℎ𝑒𝑟𝑒 𝑠 =

𝑌𝑝+𝑌𝑞

𝑋𝑝+𝑋𝑞
 (2.2)

Point doubling rule:

The result of doubling points P where 𝑃: (𝑋𝑝, 𝑌𝑝) ∈ (2
𝑚), 𝑋𝑝 ≠ 0 and the coordinates of R

is (𝑋𝑟 , 𝑌𝑟) is given by

𝑋𝑟 = 𝑠
2 + 𝑠 + 𝑎, 𝑌𝑟 = 𝑋𝑝

2 + (𝑠 + 1)𝑋𝑟 , 𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑋𝑝 +
𝑌𝑝

𝑋𝑝
 (2.3)

Projective coordinate representations

 The process of elliptic curve key generation and elliptic curve digital signature

contain modular inverse operations. In fact, as mentioned previously, the modular inversion

is considered to be too costly in terms of time complexity compared to multiplication

computation. Therefore, an alternative way to avoid such cost is to convert the affine

coordinates (𝑋, 𝑌) of elliptic curve point to the projective coordinate (𝑋∗, 𝑌∗, 𝑍∗) and to take

care of denominator part of the operations with 𝑍∗. The process is to be finalized by returning

back the projective coordinates (𝑋∗, 𝑌∗, 𝑍∗) to affine coordinates (𝑋, 𝑌). There are different

types of projective coordinates considering the elliptic curve of a non super-singular formula

shown:

Chapter 2: Background Theory

 2-32

𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏

1. Standard projective coordinates

 The projective equation of elliptic curve is presented by the following equation:

𝑌2𝑍 + 𝑋𝑌𝑍 = 𝑋3 + 𝑎𝑋2𝑍 + 𝑏𝑍3

where the point of infinity ∞ corresponds to (0:1: 0), negative points of (𝑋: 𝑌: 𝑍) is (𝑋:𝑋 +

𝑌: 𝑍). The projective point (𝑋: 𝑌: 𝑍) for 𝑍 ≠ 0 corresponds to Affine point (𝑋 𝑍⁄ , 𝑌 𝑍⁄)

where 𝑐 = 1 𝑎𝑛𝑑 𝑑 = 1.

2. Jacobian Projective Coordinates

 In this type of projective coordinate, the projective point (𝑋: 𝑌: 𝑍) corresponds to

Affine points (𝑋 𝑍2, 𝑌 𝑍3⁄)⁄ where, 𝑍 ≠ 0, 𝑐 = 2, 𝑑 = 3, Point at infinty ∞ corresponds

to (1: 1: 0) and negative points of (𝑋: 𝑌: 𝑍)is (𝑋: 𝑋 + 𝑌: 𝑍). Also, the projective equation

of elliptic curve is to be presented as below:

𝑌2 + 𝑋𝑌𝑍 = 𝑋3 + 𝑎𝑋2𝑍2 + 𝑏𝑍6

3. Lopez-Dahab(LD) Projective Coordinates

 The projective equation of elliptic curve is presented by the following equation:

𝑌2 + 𝑋𝑌𝑍 = 𝑋3𝑍 + 𝑎𝑋2𝑍2 + 𝑏𝑍4

where the point of infinity ∞ corresponds to (1:0: 0), negative points of (𝑋: 𝑌: 𝑍) is (𝑋:𝑋 +

𝑌: 𝑍). The projective point (𝑋: 𝑌: 𝑍) for 𝑍 ≠ 0 corresponds to Affine point (𝑋 𝑍⁄ , 𝑌 𝑍2⁄)

where 𝑐 = 1 𝑎𝑛𝑑 𝑑 = 2.

2.5.6 Field Arithmetic over 𝑮𝑭(𝟐𝒎)

 In practice, there is no practical use of implementing elliptic curve over the real

numbers. This is due to the computational limitation and constraints. Therefore, in this

subsection, we discuss the mechanism and related computation arithmetic of implementing

elliptic curve over binary field 𝐺𝐹(2𝑚), where the order of elliptic curve can be defined up to

𝑚 − 𝑏𝑖𝑡. Until recently, most of the applications, such as ECDSA over 𝐺𝐹(2𝑚), defines 𝑚 to

be equal or greater than 163 bits. Thus, most of the ECDSA operations over 𝐺𝐹(2𝑚) involve

m-bit integers. In the other words, the size of elliptic curve coefficients, points and elliptic

Chapter 2: Background Theory

 2-33

curve are all m-bit numbers. However, performing elliptic curve over binary field 𝐺𝐹(2𝑚)

requires many binary arithmetic functions that include modular reduction, addition,

multiplication, squaring and inverse.

 The practical implementation of the arithmetic operations on embedded processors

normally works using 4-bit, 8-bit,16-bit and 32-bits words. In this, we normally do not

perform m-bit arithmetic bit by bit as it is time consuming. Taking into account that, we can

handle 𝐺𝐹(2𝑚) field elements most of the time as 32-bit words. Thus, we can present the 32-

bits word elements as 𝑋 = (𝑥[𝑛 − 1],⋯ , 𝑥[2], 𝑥[1], 𝑥[0]) of 𝐺𝐹(2𝑚), where 𝑛 = [𝑚 32⁄]

and the right most bit 𝑥[0] is LSB bit of the m-bit field elements. Whereas, the Left most 𝑡 =

(32𝑛 −𝑚) bit of 𝑥[𝑛 − 1] are not used and to be set to zero. For example, if 𝑚 = 163 then

𝑛 = 6 words, which can be presented as (𝑥[5], 𝑥[4], 𝑥[3], 𝑥[2], 𝑥[1], 𝑥[0]) with left-most 𝑡 =

29 bits that to be set to zero in 𝑥[5].

Modular Reduction with 𝐟(𝐱):

A modulus computation for 𝑓(𝑥) based on the output of 𝐺𝐹(2𝑚) can be achieved if 𝑓(𝑥) =

𝑥𝑚 + 𝑟(𝑥) is irreducible binary (Primitives) polynomial of degree of 𝑚 and if the elements

of degree 𝑚 and if the elements of 𝐺𝐹(2𝑚) is also generated using primitive polynomial

𝑓(𝑥), where the elements of 𝐺𝐹(2𝑚) of the degree at most 𝑚 − 1. Additionally, the 𝐺𝐹(2𝑚)

field elements is an 𝑚 − 𝑏𝑖𝑡 member, which can be presented in polynomial form as 𝑎(𝑥) =

𝑎𝑚−1𝑥
𝑚−1 +⋯+ 𝑎2𝑥

2 + 𝑎1𝑥 + 𝑎0 or 𝐴 = [𝑎𝑚−1, 𝑎𝑚−𝑥 , ⋯ , 𝑎2, 𝑎1, 𝑎0] for a vector form

representation.

The binary arithmetic for squaring and multiplication with 𝑚 − 1 polynomial resulting the

output polynomial with a degree of 2𝑚 − 2. Therefore, we can compute 𝑌(𝑥) 𝑚𝑜𝑑𝑢𝑙𝑜 𝑓(𝑥)

if the output of 𝑌(𝑥) is greater than the degree of the primitive polynomial. Having such

mechanism, we will be to ensure that the output result 𝑌(𝑥) polynomial is less than 𝑚. It is

very often that the binary field arithmetic 𝑖 is to be normally consider true for 𝑥𝑖 =

𝑥𝑖−𝑚 𝑟(𝑥)(𝑚𝑜𝑑 𝑓(𝑥)) 𝑖𝑓 𝑖 ≥ 𝑚. For example, if we consider 𝑚 = 163 then 2𝑚 − 2

degree 𝑌(𝑥). Accordingly, we can use 32 − 𝑏𝑖𝑡 𝑤𝑜𝑟𝑑 by utilizing a 32-bit vector, which

could be represented as below:

𝑌 = (𝑦[10], 𝑦[9]⋯ , 𝑦[2], 𝑦[1], 𝑦[0])

Chapter 2: Background Theory

 2-34

Assuming that 𝑓(𝑥) is to be trinomial or pent-nominal having middle terms close to each

others. Accordingly, we can process a reduction process of 𝑌(𝑥)𝑚𝑜𝑑𝑢𝑙𝑜 𝑓(𝑥) in very

effective way by reducing 32 − 𝑏𝑖𝑡 at a time. The reduction process of 𝑦[9] starts by adding

𝑦[9] four times to 𝑌. In detail, the process is to be accomplished by using 0th of 𝐿𝑆𝐵 belongs

to 𝑦[9] and added to bit 132,131,128 and 125 of 𝑌. Then, we can add the first 𝐿𝑆𝐵 of 𝑦[9] to

bit 133,129 and 126 of 𝑦[9] and so on. For example, if 𝑓(𝑥) = 𝑥163 + 𝑥7 + 𝑥6 + 𝑥3, then

the computation for the modular reduction for 𝑦[9] should start from bit 288 to 319 of 𝑌 as

shown below:

𝑥288 = 𝑥132 + 𝑥131 + 𝑥128 + 𝑥125 (𝑚𝑜𝑑 𝑓(𝑥))

𝑥289 = 𝑥133 + 𝑥132 + 𝑥129 + 𝑥126 (𝑚𝑜𝑑 𝑓(𝑥))

⋯

𝑥318 = 𝑥162 + 𝑥161 + 𝑥158 + 𝑥155 (𝑚𝑜𝑑 𝑓(𝑥))

𝑥319 = 𝑥163 + 𝑥162 + 𝑥159 + 𝑥156 (𝑚𝑜𝑑 𝑓(𝑥))

For further detail about modular reduction over binary field, that related can be found in

Chapter 4 (Section 4.4.2) and [1] .

Chapter 2: Background Theory

 2-35

Finite Field Multiplication over Binary Field:

The third field elements known as 𝑐(𝑧) = 𝑎(𝑧). 𝑏(𝑧) 𝑚𝑜𝑑 𝑓(𝑧). In fact, conducting finite

field multiplication could involves two steps: polynomial multiplication and reduction

process of modulo using irreducible polynomial. In fact, there are two benefits of using

irreducible polynomial: firstly, it simplifies a reduction process, and secondly, it can help to

fewer nonzero especially with spare irreducible. However, many algorithms have been

proposed by researchers to help implement binary field multiplication, which include: Pencil

and Paper Polynomial Multiplication algorithm, Karatusba-Ofman Algorithm, Montgomery

Algorithm and Comba Multiplication Algorithm.

 The concept of Pencil and Paper Multiplication illustrated in Algorithm 2.9 is

basically based on modifying the Shift-and-add multiplication Algorithm proposed by [34].

The method of Pencil and Paper Polynomial Multiplication is denoted by ⨂. However, the

principle is normally conducted by multiplying individually the word 𝐴[𝑖] and 𝐵[𝑗] where

𝑎(𝑥) = (𝐴[𝑡 − 1],⋯ , 𝐴[1], 𝐴[0]) and 𝐵(𝑥) = (𝐵[𝑡 − 1],⋯ , 𝐵[1],𝐵[0]), which accordingly

result in two words output. The process of obtaining the word level polynomial product

involves the following:

● Scanning the coefficients of 𝐵[𝑗] from 𝑏𝑤−1 to 𝑏0

● Summing the partial product 𝐴[𝑖]𝑏𝑘 to the running sum

 Algorithm 2.9 Pencil and Paper Polynomial Multiplication

INPUT: binary Polynomial 𝑎(𝑥) = (𝐴[𝑡 − 1]⋯𝐴[1], 𝐴[0])𝑎𝑛𝑑 𝑏(𝑥) = (𝑏[𝑡 −
1],⋯𝐵[1], 𝐵[0]) of the degree max 𝑚− 1

OUTPUT: Polynomial product (C[2t-1],⋯ ,𝐶[1], 𝐶[0]) = 𝐴⊗ 𝐵

1) 𝑓𝑜𝑟 (𝑖 = 0 𝑡𝑜 2(𝑡 − 1)
 C[i]← 0

 End for

2) for (i= 0 𝑡𝑜 𝑡 − 1)
 For (𝑗 = 0 𝑡𝑜 𝑡 − 1)
 P,Q← 𝐴[𝑖]⨂𝐵[𝑗]
 C[i+j]← 𝐶[𝑖 + 𝑗]⨁𝑃

 C[i+j+1]← 𝐶[𝑖 + 𝑗 + 1]⨁𝑃

 End for

 End for

Chapter 2: Background Theory

 2-36

However, the partial product could be either 0 if 𝑏𝑘 = 0 or multiplicand 𝐴[𝑖] if 𝑏𝑘 = 1.

Accordingly, after each partial addition the product is to be multiplied by 𝑥 (just one bit left

shifting) to make the necessary alignment for the next partial product.

 Alternatively the Karatusba- Ofman Algorithm [35] proposed a recursive divide-and

conquer approach to multiply two polynomials plus reducing the number of single precision

multiplication. This mechanism works on replacing the multiplication operations with many

additions operations – due to the fact that addition operation can be accomplished and

processed faster on microprocessor compare to the multiplication operations.

 The procedure for multiplying 𝑎(𝑥) and 𝑏(𝑥) of degree at most 𝑚− 1 using

Karatusba- Ofman Algorithm mainly consists of the two steps. The first step is to split 𝑎(𝑥)

and 𝑏(𝑥) into two polynomials of degree at most (
𝑚

2
) − 1. However, in case m is odd, then

the polynomials are to be pretended with zeros. Thus, A(x) = A1(x)X + A0(x) − B(x) =

B1(x)X + B0(x),where X = x
m
2⁄ . Accordingly, 𝑎(𝑥). 𝑏(𝑥) = 𝐴1𝐵1𝑋

2 + [(𝐴1 + 𝐴0)(𝐵1 +

𝐵0) + 𝐴1𝐵1 + 𝐴0𝐵0]𝑋 + 𝐴0𝐵0 and 𝑋 products is to be derived from three products of degree

(𝑚 2 − 1⁄) per the following steps:

• 𝑚 − 𝑏𝑖𝑡 multiplication is performed by two 𝑚 2⁄ bit multiplication.

• one (𝑚 2 + 1) − 𝑏𝑖𝑡⁄ multiplication responsible to handle the output of sum term

• Several multi-precision addition

 Accordingly, the results, of
𝑚

2
𝑎𝑛𝑑 𝑚 2 + 1⁄ could be recalculated again using

Karatusba Ofman Algorithm which could lead to have a recursive multiplication algorithm.

However, the practical implementation shows that the number of used recursion levels will be

finally dictated by the amount of overhead associated with algorithm implementation. Also, it

will be relatively dictated by the performance of the multiplication and addition process. For

instance, applying 192-bit binary polynomials with a 32-word-length processor leads to the

following recursions [29]:

192 → 96 + 96 → 32,32,32 + 32,32,32 𝑜𝑟

192 → 64 + 64 + 64 → 32,32 + 32,32 + 32,32

 The initial attempt of computing 𝑎. 𝑏 in 𝐺𝐹(2𝑚) was proposed by Koc and Acar

and proposed in [36]. Their proposal was based on computing 𝑎. 𝑏. 𝑟−1 in 𝐺𝐹(2𝑚), where 𝑟

Chapter 2: Background Theory

 2-37

is to be considered special fixed elements of 𝐺𝐹(2𝑚). Accordingly, Montgomery in [37]

proposed modular multiplication of integers. The recent software implementation of

Montgomery proposal shows its capabilities to enhance the overall performance of integer

multiplication. However, such proposal is highly dependent on the selection of 𝑟(𝑥) = 𝑥𝑚,

where 𝑟 is the element of the field denoted by 𝑟(𝑥)𝑚𝑜𝑑 𝑓(𝑥) 𝑖. 𝑒 if 𝑓 =

(𝑓𝑚−1, 𝑓𝑚 ,⋯ , 𝑓1, 𝑓0) then 𝑟 = (𝑓𝑚 , ⋯ 𝑓1, 𝑓0). Additionally, to implement Montgomery

multiplication, it necessary that 𝑟(𝑥)𝑎𝑛𝑑 𝑓(𝑥) are to be relatively prime 𝑖. 𝑒

𝑔𝑐𝑑 𝑔𝑐𝑑 𝑟(𝑥). 𝑓(𝑥) = 1 in which 𝑓(𝑥) should not be divisible by 𝑥. Whereas, the 𝑓(𝑥) is

an irreducible polynomial over 𝐺𝐹(2) as well as 𝑟(𝑥) and 𝑓(𝑥) are relatively primes. This

resulting two polynomials known as 𝑟−1(𝑥) and 𝑓′(𝑥) with the propriety:

𝑟(𝑥)𝑟−1(𝑥) + 𝑓′(𝑥)𝑓(𝑥) = 1

where 𝑟−1 is the inverse of 𝑟(𝑥) modulus 𝑓(𝑥).

 The Extended Euclidean algorithm could be used to compute the 𝑟−1(𝑥) and 𝑓′(𝑥)

polynomial. In order to compute the word level of Montgomery products, it is required to

calculate the w-length of f0(x) rather than computing the entire polynomial f(x) which is

normally known as the length of 𝑘 = 𝑡𝑤. It is worth mentioning here that the efficiency of

the inversion algorithm is based on observing the polynomial of f0(x),in which its inverse

should satisfy 𝑓0(𝑥)𝑓
′(𝑥) = 1 𝑚𝑜𝑑 𝑥𝑖 for 𝑖 = 1,2,3⋯𝑤.

On the other hand, Comba [33] proposed accelerating the multiplication by reducing the

number of extended references during the time of execution. The proposed idea is based on

eliminating the write-back operation just by changing the order of partial product

generation/accumulation. In which, each result is to be computed in its entirety and sequence.

This operation is to be carried out with least significant word-only as well as values of 𝐴[𝑖]

and 𝐵[𝑗] to be read from memory. Further improvement of comba could help significantly

the storage overhead. All polynomials 𝑢(𝑥) could be obtained by computing 𝑢(𝑥)𝑏(𝑥) of

degree less than 𝑤 (Window Length). However, further detail about Comba algorithm is

discussed in Chapter 4.

2.5.7 Group Law

 It is very essential to define an algebraic structure for a cryptosystem that is based on

elliptic curve 𝐸 over the filed 𝐾. The purpose of the algebraic structure is to explain the

arithmetic rules and the relationship of the points on a selected curve as well as defining the

Chapter 2: Background Theory

 2-38

identity, zero and inverse elements. However, as we described the Elliptic Curve earlier in

(section 2.5) the idea of the elliptic curve is based on having two points in the elliptic curve,

and accordingly, we can produce other points. Therefore, in this section, we provide a

detailed description of the group laws for the elliptic curve over the prime field and binary

field.

Elliptic over Prime field 𝐅𝐩 Group Laws:

 In general, an elliptic curve 𝐸 over prime field 𝐾 with characteristic 𝐾 ≠ 2,3 is a set

of solutions that usually satisfy the following simplified Weierstrass equation:

𝐸 𝐾: 𝑦2⁄ = 𝑥3 + 𝑎𝑥 + 𝑏

where 𝑎, 𝑏 ∈ 𝐾 and 4𝑎3 + 27𝑏2 ≠ 0 combined with point at infinity ∞. In which, the group

laws of an elliptic curve over the prime field as shown below[1]:

Identity

 𝑃 +∞ = ∞+ 𝑃 = 𝑃 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃 ∈ 𝐸(𝐾)

Negatives

If 𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐾) then 𝑃 + 𝑄 = ∞ where the point 𝑄 = (𝑥, −𝑦) ∈ 𝐸(𝐾) which is

known as negative of 𝑃 and denoted by −𝑃. Note that, −∞ = ∞.

Point Addition

Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐾) and 𝑄 = (𝑥2, 𝑦2) ∈ 𝐸(𝐾), where 𝑃 ≠ ±𝑄. Then 𝑃 + 𝑄 = (𝑦3, 𝑥3),

where

𝑥3 = (
𝑦2−𝑦1

𝑥2−𝑥1
)2 − 𝑥1 − 𝑥2 and 𝑦3 = (

𝑦2−𝑦1

𝑥2−𝑥1
) (𝑥1 − 𝑥3) − 𝑦1.

Point Doubling

Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐾), where 𝑃 ≠ −𝑃. Then 2𝑃 = (𝑦3, 𝑥3), where

𝑥3 = (
3𝑥1

2+𝑎

2𝑦1
)2 − 2𝑥1 and 𝑦3 = (

3𝑥1
2+𝑎

2𝑦1
) (𝑥1 − 𝑥3) − 𝑦1.

Chapter 2: Background Theory

 2-39

Elliptic over Binary field 𝑭𝟐𝒎 Group Laws:

An elliptic curve 𝐸over non-super singular 𝐹2𝑚 is the set of solutions to be represented by

the following simplified Weierstrass equation[1]:

𝐸 𝐹2𝑚⁄ : 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏

Identity

𝑃 + ∞ = ∞+ 𝑃 = 𝑃 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃 ∈ 𝐸(𝐹2𝑚)

Negatives

If 𝑃 = (𝑥, 𝑦) ∈ 𝐸(𝐹2𝑚) then 𝑃 + 𝑄 = ∞ where the point 𝑄 = (𝑥, 𝑥 + 𝑦) ∈ 𝐸(𝐹2𝑚) which

is known as negative of 𝑃 and denoted by −𝑃. Note that, −∞ = ∞.

Point Addition

Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹2𝑚) and 𝑄 = (𝑥2, 𝑦2) ∈ 𝐸(𝐹2𝑚), where 𝑃 ≠ ±𝑄. Then 𝑃 + 𝑄 =

(𝑦3, 𝑥3), where

𝜆3 = 𝜆
2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎 and 𝑦3 = 𝜆(𝑥1 + 𝑥3)𝑥3 + 𝑦1

with 𝜆 = (𝑦1 + 𝑦2) (𝑥1 + 𝑥2)⁄ .

Point Doubling

Let 𝑃 = (𝑥1, 𝑦1) ∈ 𝐸(𝐹2𝑚), where 𝑃 ≠ −𝑃. Then 2𝑃 = (𝑦3, 𝑥3), where

𝑥3 = 𝜆
2 + 𝜆 + 𝑎 = 𝑥1

2 +
𝑏

𝑥1
2 and 𝑦3 = 𝑥1

2 + 𝜆𝑥3 + 𝑥3 with 𝜆 = 𝑥1 + 𝑦1 𝑥1⁄

2.5.8 Point Multiplication Algorithms

 In this section, we present different methods related to the computation of [k]P, where

P is a point in the elliptic curve and k is an integer. Thus, our aim is primarily focused on

describing the methods of scalar points multiplication utilized in this thesis. Therefore, for

further understanding and information, we refer the reader to [38]. In fact, point

multiplication can be considered as a scalar multiplication operation. Its principle is based on

conducting a series of point doubling and point addition operations. In which, the Q = kP is

to be generated after performing the full series of point addition and point doubling. It is

worth mentioning here that the alternative name of point multiplication is scalar point

multiplication.

Chapter 2: Background Theory

 2-40

Elliptic Curve Over 𝑮𝑭(𝑷) Scalar Multiplication:

Scalar multiplication is considered dominant of the ECC operation, which consumes about

80% of the time spent to execute the ECC operation [4]. A scalar point multiplication could

be implemented using various algorithms include: Double and Addition in binary Algorithm,

window method, NAF and wNAF Algorithm, sliding window Algorithm and Montgomery

Ladder Algorithm.

a) Double and Addition in Binary Algorithm

The idea of this algorithm is based on interpreting 𝑘 to binary format, then performing the

point addition and point doubling, accordingly. However, to process with such an algorithm,

we need to conduct point doubling operation for the ′0′ bit, whereas point doubling and

addition need to be conducted for the ′1′ bit. For example, if 𝑘 = 19 = (10011)2, then the

following point addition and point doubling will be performed as per Table 2.3.

b) Non adjacent Form (NAF) addition-subtraction

The main purpose of this algorithm is to come up with a binary format in which 𝑘 is not

adjacent nonzero bit close to each other. Thus, the binary form of the previous example could

be tackled by changing it below, using the NAF algorithm:

𝑘 = (10011)2 = (1010 − 1)2

Table 2.3 Double and Addition in Binary Algorithm

1 P Initializing

0 2P Doubling

0 4P Doubling

1 9P Doubling and Addition

1 19P Doubling and Addition

Chapter 2: Background Theory

 2-41

a) Montgomery Ladder Algorithm

The initial principle of proposing this concept was to develop an algorithm that was capable

of handling the operations of scalar multiplication in a very efficient way for a specific type

of elliptic curves. In accordance with that, such a proposal managed to report better

performance from the speed point-of-view, just by introducing the concept of computing

(X, Z) coordinates of the presented intermediate points. In fact, such an enhancement made

the Montgomery ladder allow more involvement of other algorithms, such as the differential

addition algorithm. The differential addition algorithm helps calculating the sum of two

points so that their difference is well known. Further explanation about Montgomery ladder

algorithm and XYCZ-ADDC algorithms and others are given in Chapter 6.

Elliptic Curve Over 𝑮𝑭(𝟐𝒎) Scalar Multiplication:

In this part, we particularly consider scalar multiplication over the binary curve. In which, an

elliptic curve is defined using the below Weierstrass equation:

𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 𝑤𝑖𝑡ℎ 𝑎, 𝑏 ∈ 𝐹2𝑚

where 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2) are two points on a curve𝐸(𝐹2𝑚). Thus, to compute

the point addition, the following should be considered:

{
𝑥3 = 𝜆2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎,

𝑦3 = (𝑥1 + 𝑥3)𝜆 + 𝑥3 + 𝑦1

Table 2.4 NAF with Addition and Subtraction

1 P Initializing

0 2P Doubling

1 4P Doubling and addition

0 9P Doubling

-1 19P Doubling and subtraction

Chapter 2: Background Theory

 2-42

Where 𝜆 = {

𝑦1+𝑦2

𝑥1+𝑦2
 𝑖𝑓 𝑃1 ≠ 𝑃2

𝑦1

𝑥1
+ 𝑥1 𝑖𝑓 𝑃1 = 𝑃2

 From the above, it is very obvious that point addition and

point doubling involve of an inversion

From the above, it is very obvious that point addition and point doubling involve of an

inversion operation in 𝐺𝐹(2𝑚), which is considered a costly operation. Therefore, it is

recommended to use a projective coordinate instead, as it has the capability to perform the

curve operation with a bit more field multiplication operations without field operations.

 However, there are different types of coordinates system that include: standard

projective coordinate system, Lòpez-Dahab projective coordinate system, Jacobian Projective

coordinate system and affine coordinate system. While carefully planning to use any one of

these, it is suggested to consider the number of field operations, as summarized in the

following table:

 However, the standard projective coordinates system 𝑃 = (𝑋: 𝑌: 𝑍) is to be

corresponded to the affine coordinates (𝑋 𝑌, 𝑌 𝑍)⁄⁄ that should satisfy the curve equation (1),

whereas the Lòpez-Dahab projective coordinates (𝑋: 𝑌: 𝑍) match to the affine coordinates

(𝑋 𝑌⁄ , 𝑌 𝑍2)⁄ . Computing the scalar point multiplication for a point 𝑃 ∈ 𝐸(𝐺𝐹𝑚) and scalar

𝑘 ∈ 𝑁: where 𝑘. 𝑃 = 𝑃 + 𝑃 +⋯+ 𝑃⏞
𝐾 𝑡𝑖𝑚𝑒𝑠

 is to be achieved using different methods.

2.6 Elliptic Curve Domain Parameters & Protocols

 Elliptic curve domain parameters play a very important role in ECC protocol

implementation. Thus, in the coming subsections, we highlighted these parameters based on

ECC standards.

Table 2.5 Number of operations for point addition and point doubling[1]

Coordinate system General addition General addition (mixed

coordinates)

Doubling

Affine V+M --- V+M

Standard projective 13M 12M 7M

Jacobian projective 14M 10M 5M

Lòpez-Dahab 14M 8M 4M

Chapter 2: Background Theory

 2-43

2.6.1 Elliptic Curve Domain Parameters

 To ensure a proper implementation of elliptic curve cryptography, domain parameters

need to be highly considered beside the curve parameter a and b. The purpose of using

Elliptic Curve domain parameters are to validate the primitives of GF(2m) and GF(p). More

description on Elliptic Curve domain parameters and how they are generated can be obtained

from[39].

The main domain parameters for Elliptic Curve over prime GF(P) are p,a,b,G,n and h. These

parameters are defined as below:

1. a and b: These two parameters are responsible for defining the curve 𝑦2 𝑚𝑜𝑑 𝑝 =

𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝

2. p: It is used to define the prime for the finite field.

3. G: Is the parameter used to generate the points (𝑋𝐺 , 𝑌𝐺).

4. n: The parameter is used while selecting the scalar for multiplication.

5. h: It represents the number of points on an elliptic curve where h is a cofactor.

 On the other hand, the elliptic curve domain parameter over the binary field GF(2𝑚)

is nominated by 𝒎, 𝒇(𝒙), 𝒂, 𝒃, 𝑮, 𝒏 𝒂𝒏𝒅 𝒉. Each of these parameters are described below:

1. 𝒎: An integer value used to define finite field of GF(2𝑚)

2. 𝒇(𝒙): Represents the irreducible polynomial of the GF(2𝑚) degree (𝑚)

3. 𝒂, 𝒃: Used to define the GF(2𝑚) curve 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏

4. 𝑮: The role of G is to generate the (Gx, Gy) points in the elliptic curve

5. 𝒏: Used to represent the order of the elliptic curve.

6. 𝒉: Represents the cofactor and h =≠ E(GF(
2m)

n
) . ≠ E(GF(2m).

2.6.2 Elliptic Curve Protocols

 In symmetric cryptography, such as RSA and ECC, the number of bit operations is to

be powered to K, in which (log k log3q) and log notation without base presents a natural

logarithm [40]. However, the number of bit operations reflects the number needed to

calculate the coordinates of multipleK. P . Accordingly, it is possible to drive efficient public

protocols by adopting the ECC [41].

Chapter 2: Background Theory

 2-44

I. Elliptic Curve Key Pair Generation:

 The key generation procedure in ECC is defined as outcomes of multiple additions of

one or more points in a finite field 𝐺𝐹(𝑞) and point 𝑃 ∈ 𝐸/𝐺𝐹(𝑞) with order 𝑛.

Consequently, if a user 𝐴 intends to generate the elliptic curve pairs, he/she should validate

elliptic curve parameters 𝑇 = (𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ) for elliptic curve over 𝐹𝑃or 𝑇 =

(𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺𝑛, ℎ) for elliptic curve over 𝐹2𝑚 [24, 39].

II. Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

 Historically, a principle of Diffie - Hellman key exchange was initially proposed by

[42]. Their proposal was aimed to show the possibilities of communicating selected keys over

insecure channels. However, [43] develop a detailed recommendation and specification on

implementing the Diffie - Hellman key exchange principle based on Discrete Logarithm

Cryptography and Problem. In general, the steps of implementing the key exchange start by

the domain verification 𝑇 = (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ)𝑜𝑟 (𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺, 𝑛, ℎ) to be conducted by

sender and receiver. However, all parties involved in the key generation should maintain its

key pairs and its domain parameters. The set of domain parameters could be used in different

key generation scheme and could be used for a certain time without changing them. For

example, consider that Alice and Bob have to conduct a sort of insecure form of

communication, in which they are aware that someone is going to be eavesdropping on any

message they pass back and forth. Therefore, Diffie -Hellman allows them to use public and

private key pairs to pass messages – in a way such that they need to agree on parameters for

some elliptic curve so they can pass a secret back and forth by computing points along the

curve based on these public parameters. In which, the elliptic curve discrete logarithm gets

involved based on the fact that they need to publicly reveal their points. The ECDH is

summarized as shown in Algorithm 2.11.

 Algorithm 2.10 Elliptic Curve Key Pair Generation

INPUT: Domain Parameters T= (𝑃, 𝑎, 𝑏, 𝐺, 𝑛, ℎ)𝑜𝑟(𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺, 𝑛, ℎ)
OUTPUT: Elliptic Curve Key Pair (𝑑, 𝑄)𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑇

1. Randomly selection for Integer 𝑑 in the interval[1, 𝑛 − 1].
2. Compute 𝑄 = 𝑑𝐺
3. Output (𝑑, 𝑄)

Chapter 2: Background Theory

 2-45

III. Elliptic Curve Digital Signature Algorithm EDSA (Generation)

The process of ECDSA involves different domain parameters that include

(𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), where a signed message 𝑚 ∈ 𝐸/𝐺𝐹(𝑞) – assuming that both 𝐴 and 𝐵

have similar authentication parameters plus the public key 𝑄𝐵 [24]. Therefore, to perform

ECDSA tasks, a user 𝐴 is required to use his key pair (Q,𝐾𝐴)) [1] as shown in Algorithm

2.12.

IV. Elliptic Curve Digital Signature Algorithm EDSA (Verification)

The EDSA verification process is to be achieved by considering the domain parameters

(𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), a message 𝑚 and proposed signature information. Algorithm 2.13

illustrates the process involving the acceptance or rejection for the entire digital signature

 Algorithm 2.11 Elliptic Curve Digital Signature Algorithm (Generation)

INPUT: Domain Parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), 𝑃𝑟𝑖𝑣𝑎𝑡𝑒 𝑘𝑒𝑦 𝐾𝐴 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚
OUTPUT: Signature for the message 𝑚 with the pair (𝑠, 𝑟)

1. 𝐴 select a random integer 𝐾𝐴in the interval [1,n-1]
2. Compute𝐾𝐴, 𝑃 = (𝑥1, 𝑦1). Then,
Let 𝑠 = 𝑥1, where 𝑠 is supposed to be in the interval [1, 𝑛 − 1], 𝑖𝑓 𝑠 = 0 return to
step1
3. Compute ℎ(𝑚) denotes the hash function SHA-1

4. Compute (𝐾𝐴
−1) 𝑀𝑜𝑑 𝑛.

5. Compute 𝑟 = 𝐾𝐴
−1. (ℎ(𝑚) + 𝐾𝐴𝑠)𝑀𝑜𝑑 𝑛

If 𝑟 = 0 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑠𝑡𝑒𝑝 1
6. Return (𝑠, 𝑟)

 Algorithm 2.12 Elliptic Curve Diffie-Hellman Key exchange(ECDH)

INPUT: Domain Parameters T= (𝑃, 𝑎, 𝑏, 𝐺, 𝑛, ℎ)𝑜𝑟(𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺, 𝑛, ℎ)

OUTPUT: A shared secret Key Z

1. Compute Elliptic Curve Point 𝑃 = (𝑥𝑝, 𝑦𝑝) = 𝑑𝑢𝑄𝑣

2. Check if 𝑃 ≠ 𝑂, output "Invalid" and stop

3. Return Z

Chapter 2: Background Theory

 2-46

 assigned with the message. However, this process required a user 𝐵 to validate a user 𝐴′𝑠

signature (𝑠, 𝑟) assigned to message 𝑚. Accordingly, user 𝐵 need to accomplish the rest of

the algorithm’s steps by using the provided authenticated copy of the 𝐴′𝑠 public key 𝑄.

V. Elliptic Curve Analogue of ElGamal - Encryption

In the assumption that both users 𝐴 and 𝐵 have already communicated their key using public

key using Algorithm 2.11, user 𝐴 could encrypt the required message 𝑚 ∈ 𝐸/𝐺𝐹(𝑞), where

a given point 𝑃 ∈ 𝐸/𝐺𝐹(𝑞) with 𝑛 order. Therefore, a message 𝑚 needs to be depicted as

points in 𝐸. Particularly, this process is to be carried out by integrating a message 𝑚 as a

point in a curve. However, a full detail of such steps is provided in [40]. Thus, the user 𝐴

would encrypt the points 𝑀 just by including it to 𝐾𝐴, 𝑄, where 𝐾𝐴 is an integer which should

be arbitrarily selected and 𝑄 is the public key of the user 𝐵. After that, the originated message

could be sent by user 𝐴 to 𝐵 a ciphered text containing the pair of points (𝐶1, 𝐶2).

 Algorithm 2.13 Elliptic Curve Digital Signature Algorithm (Verification)

INPUT: Domain Parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑠, 𝑟),𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚
OUTPUT: Signature Acceptance or Rejection

1. Verify that (𝑠, 𝑟) are integers and the interval [1,n-1] else the signature is
rejected.

2. Compute ℎ(𝑚).
3. Compute 𝑢 = 𝑟−1 mod n.
4. Compute 𝑣1 = 𝑢. ℎ(𝑚)𝑚𝑜𝑑 𝑛& 𝑣2𝑄 and let 𝑤 = 𝑥2𝑚𝑜𝑑 𝑛.

5. Compute (𝐾𝐴
−1) 𝑀𝑜𝑑 𝑛.

6. Compute (𝑥2, 𝑦2) = 𝑣1𝑃 + 𝑣2𝑄 and let 𝑤 = 𝑥2 𝑚𝑜𝑑 𝑛.
7. If 𝑤 = 𝑠 the signature is verified else rejected

 Algorithm 2.14 Elliptic Curve ElGamal Analogue Encryption

INPUT: Domain Parameters (𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), 𝑃𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 𝑄 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚
OUTPUT: Cipher text of message 𝑚(𝐶1 , 𝐶2)

1. Represent the message 𝑚 as a point 𝑀 in a curve 𝐸/𝐺𝐹(𝑞)
2. A selects a random integer 𝐾𝐴in the interval [1,n-1].
3. Compute𝐶1 = 𝐾𝐴. 𝑃.
4. Compute 𝐶2 = (𝑀 + 𝐾𝐴. 𝑄)
5. Return(𝐶1, 𝐶2).

Chapter 2: Background Theory

 2-47

VI. Elliptic Curve Analogue of ElGamal - Decryption

Algorithm 2.15 shows the process of restoring the plaintext message, which requires user 𝐵

to use the same domain parameters shown in Algorithm 2.14. In addition to that, user 𝐵 needs

to use his private key inline with the cipher text (C1, C2)in which, B needs to multiply the

first point with his private key and deduce the obtained result from the second point until

retrieving the plain text.

2.7 Conclusions

 Throughout this chapter, we provided the background details associated with

cryptography, such as its history and the differences between symmetric and asymmetric

types of cryptography. Accordingly, we introduced fundamental information related to

Elliptic Curve Cryptography such as Finite Field algorithms, point addition, point doubling

and ECC protocols. However, the main focus of this chapter was to provide preliminary

information relevant to work in this thesis.

 Algorithm 2.15 Elliptic Curve ElGamal Analogue Encryption

INPUT: Domain Parameters
(𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝑃, 𝑛, ℎ), 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑘𝑒𝑦 𝐾𝐵𝐶𝑖𝑝ℎ𝑒𝑟 𝑡𝑒𝑥𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑚(𝐶1,𝐶2)
OUTPUT: Message 𝑚

1. Compute 𝑑1 = 𝐶2 −𝐾𝑏 . 𝐶1
2. Compute 𝑀 = 𝐶2 −𝐾𝐵 . 𝐶1
3. Extract 𝑚 from M
4. Return 𝑚

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-1

Chapter 3 Software Design:

ECC Implementation on

8-bit & 32-bit Single

Core Microcontroller
In this chapter, a detailed description for implementing ECC on an 8-bit microcontroller and

32-bit microcontroller using Relic toolkit is provided. Throughout such implementation, we

managed to provide the users of this tool in such constrained devices a best level of obtaining

an optimal and efficient performance. Knowing that a relic tool provides a wide range of

algorithms related to finite field arithmetic, point addition, point doubling, point

multiplication and protocols; in fact, getting them combined during a project compilation

process could help to achieve better performance as it has been proofed in this work.

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-2

3.1 Introduction
The recent and expected proliferation of wireless sensor networks (WSN) with all its

economical and societal benefits across a range of applications spanning healthcare, home,

environment, and defense will face serious limitations if security concerns are not addressed.

Cryptography plays a very important role in achieving security.

 Elliptic Curve Cryptography (ECC) is increasingly becoming the first choice for

public key cryptography implementation, as it requires much shorter key sizes compared to

the RSA for the same level of security. The implementation of ECC on sensor node platforms

remains a challenge due to the resources limitation in these nodes. Therefore, optimal low

resource ECC implementations are required with optimization techniques to speed up the

ECC operations and to reduce the memory usage without prohibitive complexity.

 The Relic-toolkit developed by the scholars in [16] is an attractive platform for

providing security in WSN. It has many features in comparison to the other ECC open

sources libraries, such as those in [44-46]. And it supports many modern cryptographic

functions and protocols, such as ECDSA, ECDH, RSA and ECMQV.

 Experimental analysis and evaluation for Elliptic Curve Digital Signature (ECDSA)

on both an 8-bit and a 32-bit platform (Arduino mega2560 and Arduino Due) has been

carried out and comparative implementation results are given. To our knowledge, no such

analysis and results have been reported to date.

The implementation results obtained, show that ECDSA key generation on Arduino

Due can be achieved in (90ms) compared to (263ms) on the Arduino Mega for m=163.

Furthermore, implementation optimisation (such as multi-precision GF(2m) arithmetic)

configurations are shown to enhance the performance of the ECDSA on the Arduino Due to

(83 ms). These results will act as a useful benchmark and guidance in selection of the

optimization techniques provided by the tool for a given WSN application.

This chapter is organized as follows: Section 3.2 provides the related work of

software implementation on microcontroller and ECC background. The third section

illustrates the arduino mega2560 and arduino Due architectures. The efficient implementation

and optimizations provided by the relic-toolkit are presented in section 3.4. Our proposed

optimization using the relic code is discussed in section 3.5. Accordingly, our implementation

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-3

work is described and results analyses are illustrated in section 3.5. Finally, we conclude this

discussion in section 3.6.

3.2 Background
 In 1985, both Neal Koblitz and Victor S. Miler independently proposed Elliptic Curve

Cryptography which is based on Elliptic Curve theories. Currently, ECC is considered to be

one of the main players for implementing security in different applications. Basically, ECC

has better features and a better future for cryptography since it has the capability to provide

many cryptography schemes, such as key management, digital signature and verification.

Beside these services and its powerful security, ECC has more powerful computation with

shorter key length sizes compared to other public key cryptography solutions, such as RSA

and Diffie-Hellman. ECC could be defined over prime fields and binary fields. However, for

the purpose of this work, we consider Elliptic Curve over binary fields. The equation below

represents the elliptic curve over binary fields:

y2 + xy = x3 + ax2 + b

where 𝑏 ≠ 0 and the value of 𝑥, 𝑦, 𝑎 and 𝑏 are polynomials representing 𝑛 − 𝑏𝑖𝑡 words.

Finding points on the curve could be achieved by using generator for polynomials and

irreducible polynomial. The rules for points addition in 𝐺𝐹(2𝑚) is different from 𝐺𝐹(𝑝).

Therefore, if 𝑃 = (𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2) and 𝑄 ≠ 𝑃, then can be determined as shown

below:

𝜆 =
𝑦2 + 𝑦1
𝑥2 + 𝑥1

𝑥3 = 𝜆
2 + 𝜆 + 𝑥1 + 𝑥2 + 𝑎

𝑦3 = 𝜆(𝑥1 + 𝑥3) + 𝑥3 + 𝑦1

and if 𝑄 = 𝑃 then 𝑅 = 𝑃 + 𝑃 or 𝑅 = 2𝑃 as below:

𝜆 = 𝑥1 + 𝑦1/𝑥1

𝑥3 = 𝜆
2 + 𝜆 + 𝑎

𝑦3 = 𝑥2 + (𝜆 + 1)𝑥3

On the other hand, the point doubling 2𝑃 can be found as below:

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-4

Let 𝑃1 = (𝑥1, 𝑦1) ∈ 𝐸(𝐺𝐹(2
𝑚) where 𝑃1 ≠ −𝑃 and 2𝑃 = (𝑥3, 𝑦3) then,

𝑥3 = 𝑥1
2 + 𝑏

𝑥1
2⁄ & 𝑦3 = 𝑥1

2 + 𝜆𝑥3 + 𝑥3

where [
𝑦2 + 𝑦1

𝑥2 + 𝑥1
⁄] 𝑃1 ≠ 𝑃2 & 𝜆 = 𝑥𝑥1 + 𝑦1/𝑥1𝑃1 = 𝑃2

Elliptic Curve Digital Signature (ECDSA) is used for digital signature purposes consisting of

three main procedures: key pair generation, signature generation and signature verification.

The Elliptic Curve Diffie Hellman (ECDH) protocol is used for exchanging the keys between

two parties over an insecure channel. The purpose for having the ECC schemes is to provide

a high level of security with smaller key sizes. Therefore, it is important for both parties

involved in the communication to have pre-defined and agreed domain parameters for each

scheme. The detailed specification can be found in Chapter 2, section 2.6.2.

3.3 The Arduino Mega2560 and Arduino Due Architecture

I. Arduino Mega 2560 Architecture:

 This type of microcontroller is based on ATmega2560. This microcontroller is

designed to support 54 digital input and output pins. Additionally, a 16 MHz crystal oscillator

with a USB connection are accommodated in this microcontroller. In general, it contains

everything that will allow the end-user to simply plug it in with his computer using USB

cable, or power it using an AC-DC adaptor and accordingly getting started. This type of

arduino microcontroller consists of 256 KB flash memory that will allow storing the required

code in addition to 8 KB of SRAM and 4 KB for EEPROM purposes [47].

II. Arduino Mega Due Architecture:

In fact, this is the first arduino microcontroller that has been equipped with 32 bit ARM core

processor. This type of arduino microcontroller is also designed to support 54 digital

input/output ports. In which, 12 of them could be used as PWM outputs. However, compared

to the arduino mega2560, this microcontroller has much higher oscillator, which can reach up

to 84 MHz. Furthermore, it has been also equipped with USB OTG capable connection and

JTAG header as well as reset and erase button. Additional information could be found in

[47].

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-5

3.4 Efficient Method of Improving Relic toolkit on Arduino

Devices
 The primary objective for the relic-toolkit is to construct an efficient and configurable

cryptographic software capable to implement a certain level of security and algorithms.

Therefore, we achieved these objectives through different design principles that we

considered during the various stages of implementation.

Security: Security: The relic-toolkit is designed to provide cryptography protocols such as

RSA, ECDH, ECDSA, ECSS and ECMQV. In addition to that, relic-toolkits support the

implementation of ECC over the prime field and ECC over the binary field. This includes

different Elliptic Curve parameters recommended by the Standard for Efficient Cryptography

Group (SECG), such as Secp160k1, Secp160r1 and Secp160r2 detailed by [39].

Configurability: The principle of configurability is achieved by allowing the user to select

the desired components for the targeted platform during the process of developing the library.

Furthermore, the desired performance can be achieved by combining and selecting different

types of mathematical optimization provided by the tool.

Portability: The relic-toolkit can be used with different types of the wireless sensor

platforms, such as ARM, AVR and MSP. Additionally, the library could be built in different

types of operating system such as windows (using MingW), Ubuntu and Mac OS. In this

work, we consider importing and testing the relic library in Arduino mega260 (AVR- 8-bit

processor) and Arduino Due (ARM-cortex-32 bit processor).

Efficiency: In order to accomplish the desired efficiencies from the tool, we decided to

implement the ECC over binary fields based on the potential result reported by the end to end

security. We also used an assembly version (shown as K163-asm) file in order to achieve

better performance as recommended by [48] wherein a new secure and energy-efficient

communication model for the Constrained Application Protocol (CoAP), was developed for

smart object networks. This model ensured authenticity over a network of multi-hop

topology.

Functionality: This principle is ensured through the practical implementation for different

public key cryptography schemes provided by the relic-toolkit such as ECDH and ECDSA.

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-6

3.4 Proposed Design
In this section, we aim to provide relevant optimization techniques accomplished with the

optimization algorithms available in the tool. The details provided in this regard is limited to

the optimization techniques used in this thesis.

Optimization for Multiple Precision Arithmetic:

Comba Algorithm: The Comba algorithm is a technique in which the partial products are

ordered and scheduled. The multiple precision is required for big number arithmetic. In the

multiple precision arithmetic the computations are carried out on the digits whose precision

are constrained by the host system memory availability. It is highly efficient for public key

cryptography implementations in resolving memory limitations as well as overcoming

overflow issues. The contribution of multiple precision on solving such problems is achieved

by increasing the integer representation while using single precision data type [49] shows

better performance compared to the school book multiplication method. However, the relic-

toolkits allow users to select from different types of multiple precision arithmetic algorithms

besides the comba algorithm such as school book multiplication, Karatsuba multiplication

and others.

Montgomery-Comb Modular Reduction Algorithm:

A modular reduction is a process of finding the reminder of dividing two products:

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑐) where 𝑏 is restricted with range 0 ≤ 𝑏 < 𝑐2

The implementation of the Montgomery modular reduction algorithm involves fewer single

multi precision multiplications in comparison with Barrett Modular reduction, which requires

two modified multipliers [86]. Previous software implementation of the Montgomery

algorithm reported slower speed. This challenge has been tackled and resolved by the

researchers through combing the Montgomery modular reduction and comba algorithms. The

combination methodology can be achieved by allowing the comba algorithm to act as a

multiplier.

Comba Squaring Algorithm:

 Multiple Precision Squaring, which affects the overall implementation performance,

is a process of multiplying two equal multiplicands. The software implementation for

squaring can be performed using multiplication algorithms or using specialized squaring

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-7

methods. Using specialized squaring helps to reduce the load operand approximately by half

over using multiplication algorithms. Additionally, it helps to enhance the computation

performance for the duplicated partial products. Moreover, specialized squaring algorithms

contribute to overcome the limitation of baseline multiplication algorithms. These limitations

can be summarized into two main points. First, the needs for processing single precision shift

inside the nested loop. Second, the challenges of performing the products doubling process

inside the inner loop.

 The comba squaring algorithm could be used to solve these drawbacks. The concept

of comba squaring is to some extent similar to the comba multiplication algorithm with some

differences that help to accommodate the single precision shifting and doubling processes.

The relic toolkit supports three different multiple precision square algorithms besides the

comba squaring, which are the Karatsuba Squaring, the recursive karatsuba and the School

book method [49]. In this work, we configure the relic library with Comba squaring to obtain

better performance.

Optimization for Elliptic Curve Arithmetic

Point Representations: There are different coordinate systems that can be used to represent

the elliptic curve, the most popular being the affine coordinates and projective coordinates.

The projective coordinates can be considered an option that can help avoid the costly and

expensive multiplication and inversion operations. The results reported by [38] show better

performance achievement compared to the affine. The relic-toolkit has been designed to

support both, and we selected the projective coordinate to achieve a higher performance.

Point Multiplications: Point multiplication or scalar multiplication is implemented through a

series of point addition and point doubling operations. The key has to be obtained after

conducting a full cycle of addition and doubling operations. The point multiplication over the

binary elliptic curve can be implemented with different algorithms such as left-to-right binary

algorithm, halving, right-to-left width-w and others. The relic library consists of six different

algorithms, such as the basic binary point multiplication algorithms, Lopez-Dahab point

multiplication and right-to-left width-w (T)NAF. Since the sliding windows method is more

helpful on speeding up the scalar multiplication, we selected the right-to-left width (T) NAF

algorithm for performing the point multiplication. The concept of sliding windows is based

on scanning a bit at a time and performing the point doubling for them at the same time [44].

Simultaneous Point Multiplications: Enhancement of the efficiencies and speeding up

computation of point multiplication has been extensively considered by many researchers due

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-8

to its significance in some ECC schemes. For example, the implementation of ECDSA

required two types of point multiplication, the first for signature generation which is fixed,

the second for signature verification process, which is also fixed but unknown. However, the

speed of the signature verification process can be increased by using simultaneous multiple-

point multiplication [1]. Different methods have been proposed for simultaneous point

multiplications such as Shamir's trick, Joint sparse form and interleaving. With this aspect,

the relic-toolkits support all of these methods plus the basic simultaneous point multiplication

methods that can be selected during the relic building process

3.5 Implementation Results and Analysis
Point Representations:

We imported the relic-toolkit] into the arduino mega 2560 (8-bit AVR processor) [47] and

arduino Due (32-bit ARM processor). Our selection for these platforms is based on the fact

that we targeted to implement the ECC schemes on a processor that does not require an

operating system support. Furthermore, the 8-bit to 32-bit processor range is a representative

range for resource embedded applications. We imported relic-0.3.1 onto the two platform

boards, and experimented with the performance of ECDSA and ECDH over binary fields

using different NIST curve standard (NIST-K163,NIST-B163). In order to obtain better

performance, we examined the presets provided by [46]. The execution timings of the codes

were measured using inbuilt millis() function provided by Arduino.h library. Furthermore, we

measured the amount of RAM using "MemoryFree.h" library beside the avr-size and arm-

none-eabi-size tools.

Experiment Setup:

In order to build the library, we installed the avr-gcc version 4.5.3 compiler and cmake cross-

platform version 2.8.7. The recommended presets by [16] shown in Figures 4 and 5 in the

Appendix were used for building the library with low memory arm-none-eabi-size tools.

optimization algorithms and faster time execution respectively, compared to the original

recommended presets. For importing the relic-toolkit in arduino Due, we installed arduino

extension plug-in (embedxcode) in Xcode IDE MAC OS X version 10.7.3, and then we

imported the relic-toolkits into the XCode IDE.

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-9

 Due to the importance of time and memory usages, we considered evaluating our

ECC implementation based on these two factors. The arduino mega2560 is an 8-bit micro-

controller, but it has the capability to manipulate 16X16 bit operations by using two separate

registers. From the other perspective, the arduino Due is a 32bit micro-controller and can

easily handle 8- and 16-bit operations. We measured the execution time using the inbuilt

CC=avr-gcc CXX=c++ LINK="-mmcu=atmega2560 -Wl,-gc-sections" COMP="-O2 -

ggdb -Wa,-mmcu=atmega2560 -mmcu=atmega2560 -ffunction-sections -fdata-sections"

cmake -DARCH=AVR -DWORD=8 -DOPSYS=NONE -DSEED=LIBC -DSHLIB=OFF

-DSTBIN=ON -DTIMER=NONE -DWITH="DV;BN;FB;EB;EC;CP;MD" -

DBENCH=20 -DTESTS=20 -DCHECK=off -DVERBS=off -DSTRIP=on -DQUIET=on

-DARITH=avr-asm-163 -DFB_POLYN=163 -

DBN_METHD="COMBA;COMBA;MONTY;SLIDE;STEIN;BASIC" -

DFB_METHD="INTEG;INTEG;QUICK;BASIC;BASIC;BASIC;EXGCD;BASIC;BASI

C" -DFB_PRECO=off -DFB_TRINO=off -DBN_PRECI=160 -DBN_MAGNI=DOUBLE

-DEB_PRECO=on -DEB_METHD="PROJC;RWNAF;LWNAF;INTER" -

DEB_MIXED=on -DEB_KBLTZ=on -DEB_ORDIN=off -DEB_SUPER=off -

DEC_METHD="CHAR2"-DMD_METHD=SHONE ./CMakeLists.txt

Figure 3.2 Recommended Arduino High Speed Preset

CC=avr-gcc CXX=c++ LINK="-mmcu=atmega2560 -Wl,-gc-sections" COMP="-O2 -

ggdb -Wa,-mmcu=atmega2560 -mmcu=atmega2560 -ffunction-sections -fdata-sections"

cmake -DARCH=AVR -DWORD=8 -DOPSYS=NONE -DSEED=LIBC -DSHLIB=OFF

-DSTBIN=ON -DTIMER=NONE -DWITH="DV;BN;FB;EB;EC;CP;MD" -

DBENCH=20 -DTESTS=20 -DCHECK=off -DVERBS=off -DSTRIP=on -DQUIET=on

-DARITH=easy -DFB_POLYN=163 -

DBN_METHD="COMBA;COMBA;MONTY;SLIDE;STEIN;BASIC" -

DFB_METHD="INTEG;INTEG;QUICK;BASIC;BASIC;BASIC;EXGCD;BASIC;BASI

C" -DFB_PRECO=off -DFB_TRINO=off -DBN_PRECI=160 -

DBN_MAGNI=DOUBLE -DEB_PRECO=on -

DEB_METHD="PROJC;RWNAF;LWNAF;INTER" -DEB_MIXED=on -

DEB_KBLTZ=on -DEB_ORDIN=off -DEB_SUPER=off -DEC_METHD="CHAR2" -

DMD_METHD=SHONE ./CMakeLists.txt

Figure 3.1 Recommended Arduino Low area Preset

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-10

function millis() provided by the ardunio library. This function returns the timing result in

milliseconds using the arduino internal timer #0 or TCNT0. However, the timer runs at 16

MHz in arduino mega2560 and at 84 MHz in arduino DUE. On the other hand, we measured

the amount of RAM using arm-none-eabi-size tool for arduino DUE, and we used the avr-

size tool for measuring the RAM utilization in arduino mega2560.

ECDSA: In this part, we demonstrate the main obtained results with regards the ECDSA

performance. Figure3.3 below shows the time execution for ECDSA key generation on both

platforms.

As expected, the arduino mega2560 takes more time to generate the ECDSA keys, as

it runs at a much lower clock than the arduino Due The figure 3.4 presents a comparison of

the binary field arithmetic with basic and comba algorithms. The binary field arithmetic with

BASIC algorithm configuration resulted in an improved performance on the DUE as shown

in Figure 3.4.

Figure 3.1 Time Execution for EDSA

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-11

 The performance on the mega2560 was improved using the assembly code provided in the

library. This enhancement is represented by the figures which include the time execution

improvement and memory usages, respectively. These results show even better performance

compared to the results reported by [44] and [45].

Figure 3.2 Time Execution for EDSA

Figure 3.3 Time Execution for EDSA

Chapter 3: Software Design: ECC Implementation on Single Core Microcontroller

 3-12

3.6 Conclusions

 In this work, we illustrated the potential of implementing relic-toolkits on sensor node

platforms. We also evaluated some of the optimization methods and their effectiveness in the

ECDSA implementation performance. The configuration features provided by the relic-

toolkit can help enhance the ECC performance, which could be considered as a benchmark

and guidance for the developer planning to use the relic in resource constrained processor

platforms, such as the ones presented in this thesis.

Figure 3.4 Time Execution for EDSA

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-1

Chapter 4 Software Design: Efficient

Field Arithmetic over

𝑮𝑭(𝟐𝟏𝟔𝟑)Implementation on

A Homogeneous Multicore

Microcontroller

Some parts of this work have been published in [50].

Efficient field arithmetic over 𝐺𝐹(2163) is proposed in this chapter. Thus, our novel proposal

here was trying to enhance the performance of Comba algorithm. The reason for such an

attempt was to examine the possibility of enhancing its performance using a homogeneous

multi core microcontroller. Therefore, we started this chapter by providing and highlighting

the importance of multiplication processes in the overall performance of ECC. Then we

detailed our proposal of parallelizing the Comba algorithm. After that, we provide the

analytical details for the obtained results. In this work, we managed to enhance the Comba

Algorithm by about 90%.

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-2

4.1 Introduction
 The modern technologies of inexpensive constrained devices help to motivate the

researchers to use these devices in Wireless Sensor Networks (WSN), such as a hazardous

environments, military operations and medical monitoring with high attention of maintaining

the necessary security requirement. Recently, Elliptic Curve Cryptography (ECC) proved to

be a competitive substitute for standard public key cryptosystems like RSA, DSA and DH.

Particularly, it can provide the same level of security provided by RSA with short key size,

low processing time and less memory size.

 ECC can be implemented based on prime finite field arithmetic GF(p) or binary finite

field arithmetic GF(2m) where m is prime and its performance highly dependent on the

multiplication operation of the finite field arithmetic. Indeed, [51] states that around 80% of

the time execution is consumed by the multiplication operation in a software implementation.

Therefore, various attempts were conducted to reduce the time execution such as the work

done by [52] and [53], where they suggested modified algorithms and provided new

multiplication techniques suited to microcontroller platforms that can be used in WSNs.

Lately, the work conducted by [54] expressed the benefits of employing multicore embedded

platforms in WSNs through energy savings and time execution improvements.

 Therefore, this work is an attempt to answer the question of whether it is possible to

enhance the software implementation performance of binary finite field multiplication in

ECC using homogeneous multicore platforms for resource constrained applications. Even

though there are many earlier attempts [51, 53, 55-58] to enhance multi precision

multiplication in single core microcontroller. To the best of our knowledge, our work in this

paper is the first endeavor aiming at boosting the efficiency of multi precision multiplication

using a homogenous multicore microcontroller suitable for low resource environments. We

develop a novel parallel software implementation of multi precision multiplication for the

comba algorithm suitable for a homogenous multicore implementation. We also propose and

deploy a fast algorithm for the reduction operation with word sizes of 8, 16 and 32 bits.

Performance is investigated and analyzed on both single and multicore platforms, and the

results obtained are presented and compared.

In this chapter, we organized our works as follows. Firstly, we introduced the ECC

concept and how multiplication play an importance role in ECC performance in section 4.1.

In section 4.2, we discussed the related works that have been conducted to enhance the

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-3

Comba multiplication algorithms. Accordingly, we highlighted the XMOS a homogeneous

multi core microcontroller in section 4.3. Parallel Comba multiplication on a multicore

microcontroller has been discussed in section.4.4. Our implementation results and analysis

are detailed in section 4.5. Finally, we conclude our work in section 4.6.

4.2 Related Work
The performance of the polynomial multiplication plays very important role in the overall

performance of the ECC. Consequently, having a solid and effective binary polynomial

multiplication will result from duplication, squaring and reversal in GF(2 m), and thus can

assist in creating a substantial improvement in the entire ECC procedure.

 Therefore, many attempts have been made by researchers to enhance the performance

of multi-precision multiplication. For instance,[11] suggested a simple architectural

improvement using a general-purpose processor core that could assist execute arithmetic

operations in GF(2 m) finite binary areas. Their suggestion is based on a recent modification

of the MULSC instruction supplied by SPARC V8 Architecture, which was implemented by

Lopez and Dahab in the left-to-right comb technique. The authors utilized this technology to

describe an increase in the speed of 90 per cent in addition to a remarkable reduction in the

use of RAM. It utilizes polynomial bias as well as special polynomials such as trinomials,

pentanomial and all one polynomial (AOP) to develop an extensive and careful study of finite

field multiplication over GF (2 m). The Montgomery multiplication scheme carries out this

multiplication and application of it is also described. It focuses on different arithmetical

operation on the elliptic curve cryptography over GF (2m). The parameter performance is

also discussed in term of a number of component, latency, space and time complexity.

 Michael Hutter and Erich Wenger [53] proposed a new novel multiplication technique

to help to increase the performance of multiplication. Their technique is based on the product

scanning approach, but it divides the calculation into several rows. In this method, the authors

reduced the number of necessary load instructions through caching of operands. The method

significantly reduces the number of load instructions required, which is usually one of the

most expensive operations on modern processors. I evaluated the new technique on an 8-bit

ATmega128 microcontroller and compared the result with existing solutions. The application

requires only 2,395 clock cycles for a 160-bit multiplication that exceeds associated job by a

factor of 10% to 23%. The amount of load orders required is decreased from 167 (needed to

multiply the best-known hybrid) to just 80. Even for larger Integer sizes (required for RSA)

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-4

and limited register sets, the implementation scales are perfect. It also fully complies with

existing multiply-accumulate instructions integrated into most of the processors available.

The proposed method was implemented in ATmega128 microcontroller and showed by 23 %

compared to the result reported by [51]. The number of load instructions required is usually

one of the most expensive operations on modern processors and is reduced by the method.

The new technique is evaluated on an 8-bit ATmega128 microcontroller, and the result is

compared with existing solutions. There is need of only 2,395 clock cycles for a 160-bit

multiplication in the application that exceeds associated job by a factor of 10% to 23%. The

amount of load orders required has been reduced from 167 to just 80. The implementation

scales are perfect for larger Integer sizes and limited register sets. It also fully complies with

existing multiply-accumulate instructions integrated into most of the processors available.

 Next, Seo, Hwajeong [58] proposed a novel method nominated as carry-once capable

to perform multi-precision multiplication having accumulation of intermediate results. The

principal idea of this technique is to optimize the number of addition instructions required for

intermediate result update. Through this method, the authors reported better performance of

multi-precision multiplication while they implemented 160-bit multiplication over

ATmega128.

 Z. Liu and J. Großschädl [59] proposed a new software technique for improving the

performance of Montgomery modular multiplication on a 8-bit AVR microcontroller. Using

assembly language, the authors managed to implement six hybrid Montgomery multiplication

algorithms in AVR microcontroller. In fact, the authors take the advantages of the hybrid

multiplication and combine it with Montgomery's multiplication to enhance the modular

multiplication. Accordingly, they evaluated the performance of the new method for different

operands ranging from 160 to 1024 bits.

 The work in [5] proposed a new efficient techniques for improving the multiplication,

squaring modular reduction and inversion in 𝐺𝐹(2163) and 𝐺𝐹(2233) using MICAz Mote

microcontroller. In this work, the authors proposed using Karatsuba’s multiplication

algorithm to divide the multiplication problem into two sub-problems. These two

subproblems are to be manipulated separately. In addition to that, they suggested saving the

already shifted results produced in the first phase. This process can help to reload the

intermediate result into registers for multi-precision shifting of some of the read memory

already released during the first phase.

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-5

 [60] describes new techniques for parallelizing binary fields in computers equipped

with modern vector instruction sets. The authors’ detailed methods for implementing field

multiplication, squaring and square root, and they present a constant memory lookup-based

multiplication mechanism. In this work, the authors implemented the finite field arithmetic as

an arithmetic backend of the relic toolkit [16] for testing and benchmarking purposes.

 A new record for enhancing the multi-precision multiplication on AVR 8-bit

microcontroller has been reported by [56]. In this work, the authors optimized Karatsuba

multiplication in AVR 8-bit microcontroller. To help in achieving that, the authors proposed

tuning the instruction scheduling in order to minimize the number of live registers that to be

used during the Karatsuba multiplication process. Accordingly, the authors managed to

obtain new multiplication speed record for multiplying integers between 48 and 256 bits on

the ATmega family of microcontrollers.

 Speed-up of the arithmetic operation and enhancing its effectiveness in the software

implementation of 𝐺𝐹(𝑝) is the work proposed by [61]. Their work was mainly focused on

increasing the performance of finite field multiplication for 32-bit and 64-bit platform using

the Comba algorithm. In this work, the authors suggested implementing carry accumulation

by the addition of 32-bit variables in the 64-bit variable accumulator to avoid accounting

carry after the addition of variables. However, they proposed to accumulate the carry in the

final iteration.

 H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim [55] presented further techniques for

improving the performance of multi-precision multiplication on an embedded

microprocessor. The authors proposed enhancing carry-once method by applying the operand

caching methodology and further optimization for multiplication and accumulation (MAC),

unbalanced comb and comb-window methods. In this work, the authors managed to optimize

the product scanning method by reducing the number of required registers.

 However, despite the amount of works that have been conducted to enhance the

performance of multi-precision multiplication, we noticed none of the previous works

attempted to improve it using the multicore microcontroller. Thus, in the present work, we

introduce new methodologies of enhancing the multi-precision multiplication in the multicore

microcontroller.

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-6

4.3 The Xmos Architecture
 xCORE Multicore Microcontroller starter kit is a 32-bit multicore microcontroller

capable of providing low latency and timing determinism of the xCORE architecture to

different embedded applications. The main advantage of xCORE microcontroller is its

capability to execute multiple tasks concurrently as well as the possibilities of conducting the

communication between tasks using a high-speed network

 As shown in Figure 4.1, the starting kit xCORE microcontroller is equipped with

analog and digital nodes. The digital node consists of xCORE Tile, a switch, and PLL (Phase-

Looked-Loop), whereas, the analog node comprises the USB PHY, multi-channel

ADC(Analog to Digital Converter), deep sleep memory, an oscillator, a real-time counter and

power supply control. To establish the communication between analog and digital node, a

necessary link that is capable to switch to the digital node is required.

 The system is however programmed using high-level programming language C / C++

and the language XMOS-originated. The XC language is designed to provide extensions to C

and to simplify the control over concurrency. Also, it allows the end user to control I/O and

timing as well as to use low-level assembler. The xCORE tile is to be considered as a

Figure 4.1 XSI -U Series 16 core devices

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-7

flexible multicore microcontroller component. It consists of the integrated I/O and on-chip

memory and multiple logical cores, which can be run simultaneously. In fact, each of the

logical cores guaranteed a slice of processing power, can execute computational code and

provide a control software and I/O interfaces. The logical cores use channels to exchange

data within a tile or across tiles, while the tiles are to be connected using switch network

known as xCONNECT. The xCONNECT uses the proprietary of physical layer protocol to

add additional resources to a design. Additionally, the I/O pins are determined through

intelligent ports, which can help for serializing data, interpret strobe signals, wait for

scheduled times or events and make the device ideal for real-time control applications.

 Each tile consists of 8 active logical cores, which have a capability to issue the

instructions down a shared four-stage pipeline. The instructions generated from active cores

are issued using round-robin. However, if up to four logical cores are in use, then each core is

allocated with a quarter of the processing cycles. In contrast, activating more than four logical

cores results in each core being allocated at least with 1/𝑛 cycles (for 𝑛 cores).

 Another benefit of using Xmos devices is its capability to work as a scalable

architecture, in which the xCORE devices can be connected together allowing the end user to

construct one system. Each of xCORE device has an xCONNECT interconnect feature to

communicate different tasks that run on the various xCORE tiles on the system.

For further detail about xmos multicore microcontroller, we refer the reader to [14].

4.4 Parallel Comba Multiplication on Multicore Microcontroller
Comba Multiplication is considered as one of the most important multiplication

techniques used in public key cryptography computations – be it in modular form in RSA or

in finite field form in Elliptic Curve Cryptography, for example. The efficiency of these

public key cryptography implementations depends heavily on the efficiency of the

implementation of the multiplication operation. Multicore architectures are becoming

increasingly important platforms for modern computation. However, cryptography

implementations on these platforms is still in its infancy. In this work, we propose a parallel

software implementation of the comba multiplication in 𝐺𝐹(2163) using a homogenous

multicore microcontroller.

We obtain performance results and compare these to sequential implementation of

comba multiplications with and without modular reduction for different word size 8, 16 and

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-8

32 bits on single core microcontrollers. Our obtained results outperform most of the

published single core modular multiplication implementations and require much fewer

cycles. We achieve more than 85% enhancement of the measured latency in comparison to a

single-core implementation.

4.4.1 Finite Field Multiplication

 Multi-precision algorithms are important to handle arithmetic operations on general

processors by splitting the operation into smaller blocks. There are many techniques to

implement muti-precision multiplication over 𝐺𝐹(2𝑚); these include product scanning [33],

hybrid scanning, operand caching, and consecutive operand-caching techniques [11].

Product scanning techniques (known also as Comba) are considered to be the most efficient

for large operands. Comba, as illustrated in Algorithm 4.1, is based on two individual outer

loops to generate the multiplier operands index and inner loops for generating multiplicand

operands index. The multiplicand and multiplier operands are to be produced in column-wise

style as explained in Figure 4.2, where t = 4 and the inner loop is iterating 42 or 16 times in

total.

 Algorithm 4.1 Comba's Algorithm over GF(2m)

INPUT: Two 𝑚 bit polynomials 𝑎(𝑧). 𝑏(𝑧) ∈ 𝐺𝐹(2𝑚) and consisting of 𝑡[𝑚 𝑊⁄] − 𝑤𝑜𝑟𝑑

each where 𝑊 is the word size of the processor.
OUTPUT: 𝑐(𝑧) = 𝑎(𝑧). 𝑏(𝑧) = (𝑐2𝑚−1,⋯ 𝑐0)

1) 𝑠 ← 0
2) For 𝑖 in 0 to 𝑡 − 1 do (𝑖 denotes column number)

a. For 𝑗 in 0 to 𝑖 do
i. 𝑆 ← 𝑆 + (𝑎𝑗 × 𝑏𝑖−𝑗)

End For;
b. 𝑐𝑖 ← 𝑆 𝑚𝑜𝑑 2𝑤 (Partial sum of each column)

c. 𝑆 ← 𝑆
2𝑤⁄ (Word is right shifted by 𝑤 −bits)

End For;
3) For 𝑖 in 𝑡 to 2𝑡 − 2 do

a. For 𝑗 in (𝑖 − 𝑠 + 1) to(𝑠 − 1) do
i. 𝑆 ← 𝑆 + (𝑎𝑗 × 𝑏𝑖−𝑗)

End For;
b. 𝑐𝑖 ← 𝑆 𝑚𝑜𝑑 2𝑤 (Partial sum of each column)

c. 𝑆 ← 𝑆
2𝑤⁄ (Word is right shifted by 𝑤 −bits)

End For;
4) 𝐶2𝑑−1 ← 𝑆 𝑚𝑜𝑑2𝑤

5) Return 𝐶(𝑧)

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-9

Recently, a number of recently research works based on single core microcontroller

implementations attempted to improve Comba techniques and to provide a comprehensive

explanation for these methodologies on these platforms. In [53], the authors proposed 160-bit

multiplication on ATmega128 microcontroller by dividing the product scanning method into

individual rows, achieving 23 % fewer clock cycles than [51]. A carry-once method

demonstrated in [58] managed to optimize and decrease the number of intermediate product

calculation and even led to much better results than [53].

 Recently, Comba algorithms have also been shown to be efficient in enhancing the

implementation performance of Fully Homomorphic Encryption Schemes [62] and [63]. In

this work, we propose enhancing mutli-precision multiplication using comba on a

homogenous multi core microcontroller, which allows to carry out multiple instruction flows

Figure 4.2 Schematic representation 𝟒 × 𝟒word multiplication using Comba Algorithm

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-10

concurrently. This could form a basis for further research on implementations on such

platforms.

 4.4.2 Modular Reduction

 A fundamental operation in ECC computations is a modular reduction, which is

required in the finite field operations. According to Algorithm 4.2 [64] adopted in this work,

it could be observed that the primary operations associated with reduction are XOR and left

or right shifts. In order to consider the implementation of Algorithms 1 and 2 on

microcontrollers with word sizes of 8, 16 and 32 bits, a necessary adjustment in Algorithm

4.2 was made, as will be explained in the next section.

4.4.3 Proposed Design

 Both functional-parallelism and data-parallelism have been exploited in the design

process adopting the Foster design methodology [65]. The Comba algorithm was executed by

calling the two parallel tasks at the main loops 2 and 3, as depicted in Algorithm 4.1. For the

partitioning step in the sequential Comba algorithm, we divided the two main loop 2 and 3

into two tasks, since there is one common input consisting of two arrays 𝐴(𝑎𝑠−1, ⋯ 𝑎1, 𝑎0)

and 𝐵(𝑏𝑠−1, ⋯ , 𝑏1, 𝑏0) with word size 𝑤 − 𝑏𝑖𝑡, where 𝑤 represents the word size of the

processors (𝑖. 𝑒 𝑤 = 16,𝑤 = 8 𝑎𝑛𝑑 𝑤 = 32). However, to overcome the constraints of the

internal linkage code due to the carry [5], we used the tasks functions in XC programs that

are able to call tasks in parallel on separate logic cores without thinking about the priority and

scheduling of the communication between tasks.

 Algorithm 4.2 Comba's Fast reduction method with 𝑾 = 𝟑𝟐 for 𝑮𝑭(𝟐𝟏𝟔𝟑)

𝒇(𝒛) = 𝒛𝟏𝟔𝟑 + 𝒛𝟕 + 𝒛𝟔 + 𝒛𝟑 + 𝟏

INPUT: A binary polynomial 𝑐(𝑧) of degree at most 324
OUTPUT: 𝑐(𝑧)𝑚𝑜𝑑 𝑓(𝑧)

1) For 𝑖 from 10 down to 6 do { Reduce 𝐶[𝑖]𝑧324 modulo 𝑓(𝑧) }
a. 𝑇 ← 𝐶[𝑖]
b. 𝐶[𝑖 − 6] ← 𝐶[𝑖 − 6] ⊕ (𝑇 ≪ 29)
c. 𝐶[𝑖 − 5] ← 𝐶[𝑖 − 5] ⊕ (𝑇 ≪ 4)⊕ (𝑇 ≪ 3)⊕ 𝑇⊕ (𝑇 ≫ 3)
d. 𝐶[𝑖 − 4] ← 𝐶[𝑖 − 4] ⊕ (𝑇 ≫ 28)⊕ (𝑇 ≫ 29)

2) 𝑇 ← 𝐶[5] ≫ 3 { Extract 33-31 of 𝐶[5]}
3) 𝐶[0] ← 𝐶[0] ⊕ (𝑇 ≪ 7)⊕ (𝑇 ≪ 6)⊕ (𝑇 ≪ 3)⊕ 𝑇
4) 𝐶[1] ← 𝐶[1] ⊕ (𝑇 ≫ 25)⊕ (𝑇 ≫ 26) {Clear the reduced bits of 𝐶[5]}
5) Return (𝐶[5], 𝐶[4], 𝐶[3], 𝐶[2], 𝐶[1], 𝐶[0])

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-11

4.5 Implementation Results and Analysis
 In this work, we used XMOS, a low cost development stratKit which consists of a

two-tile XCORE device and eight 32 bit with 500 MIPS xCORE multicore microcontroller

[14]. Also, we used Arduino Mega260 (16-bit AVR) processor and Arduino Due (32-bit

ARM) processors to compare our parallel multicore approach with a single core approach.

4.5.1 Modified Comba Algorithm - Parallel Multiplication

 The implementation of GF(2163) multiplication using the parallel comba algorithm

for different word sizes (which include w = 16,w = 8 and w = 32) is shown in Algorithm

4.3.

Accordingly, the multiplication is performed using two outer loop functions and

simultaneously called from the main function as shown in Figure 4.3.

 Algorithm 4.3 Modified Comba's Algorithm over GF(2m)

INPUT: Two 𝑚 bit polynomials 𝑎(𝑧). 𝑏(𝑧) ∈ 𝐺𝐹(2𝑚) and consisting of 𝑡[𝑚 𝑊⁄] − 𝑤𝑜𝑟𝑑

each where 𝑊 is the word size of the processor.
OUTPUT: 𝑐(𝑧) = 𝑎(𝑧). 𝑏(𝑧) = (𝑐2𝑚−1,⋯ 𝑐0)

1) 𝑠 ← 0
2) {Task -1 Function Parallel }

a. For 𝑖 in 0 to 𝑡 − 1 do (𝑖 denotes column number)
i. For 𝑗 in 0 to 𝑖 do

1. 𝑆 ← 𝑆 + (𝑎𝑗 × 𝑏𝑖−𝑗)

End For;
ii. 𝑐𝑖 ← 𝑆 𝑚𝑜𝑑 2𝑤 (Partial sum of each column)

iii. 𝑆 ← 𝑆
2𝑤⁄ (Word is right shifted by 𝑤 −bits)

3) {Task -1 Function Parallel }
a. For 𝑖 in 𝑡 to 2𝑡 − 2 do

i. For 𝑗 in (𝑖 − 𝑠 + 1) to(𝑠 − 1) do
1. 𝑆 ← 𝑆 + (𝑎𝑗 × 𝑏𝑖−𝑗)

End For;
ii. 𝑐𝑖 ← 𝑆 𝑚𝑜𝑑 2𝑤 (Partial sum of each column)

iii. 𝑆 ← 𝑆
2𝑤⁄ (Word is right shifted by 𝑤 −bits)

End For;
4) 𝐶2𝑑−1 ← 𝑆 𝑚𝑜𝑑2𝑤
5) Return 𝐶(𝑧)

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-12

We applied the 32-bit fast modular multiplication per Algorithm 2, whereas for the 8-bit and

16-bit, we modified algorithm 2, as seen in Algorithm 4.4 and Algorithm 4.5 below, which

illustrate fast modular reduction for 8 and 16 bit, respectively. The reduction process started

after the multiplication, which is to be based on the 326 bits of the 163 arithmetic

multiplication bit result. In this, the 326 is to be divided into 𝑤 = 8 for 8-bit word size, and

the calculation of the number of word size is based on (
(163 × 2)

8⁄) =

41 𝑤𝑜𝑟𝑑𝑠 𝑤0 𝑡𝑜 𝑤40. Also, we used the following reduction irreducible polynomial

recommended by NIST [64] to execute the reduction process for 𝐺𝐹(2163):

𝑓(𝑧) = 𝑧163 + 𝑧7 + 𝑧6 + 𝑧3 +1

Figure 4.3 Xtimecompsoer Task-1 Flow Diagram

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-13

For the 8-bit word size, there will be no shifting instruction required at the initial step, and the

bits will be copied as it is, and after that, the 3 bits shifting (of bit 163-325) is to be

implemented by 6-bit and 7-bit left shift. Following each shift, extra bits moving out of the

325-bit mark due to shifting are replaced back into the starting positions left vacant by

shifting.

Then, the extra bit will be serially shifted by 3, 6 and 7 bits. Afterwards, to obtain the 163

reduction in output, all columns starting from bit 0 to bit 163 are to be sequentially added

using XOR instruction. Moreover, a similar strategy is used for performing reduction with

word size = 16.

 Algorithm 4.4 Fast reduction Modification using Word size =8

INPUT: Binary polynomial 𝑊(𝑧) of degree ≤ 324
OUTPUT: 𝑊(𝑧)𝑚𝑜𝑑 𝑓(𝑧) of degree ≤ 163 where 𝑓(𝑧) is irreducible polynomial

1) 𝑊20 → 𝑊0⨁𝑊20 ≫ 3⨁(𝑊20 ≫ 3) ≪ 3⨁(𝑊20 ≫ 3) ≪ 6⨁(𝑊20 ≫ 3) ≪
7⨁𝑊21 ≪ 5

2) For 𝒊 in 1 to 19 (by one) do
a. 𝑊𝑖 = 𝑊𝑖⨁𝑊(20+𝑖) ≫ 3⨁𝑊(20+𝑖)⨁𝑊(20+𝑖) ≪ 3⨁𝑊(20+𝑖) ≪

4⨁𝑊(21+𝑖) ≪ 5⨁𝑊(19+𝑖) ≫ 4

b. End For;
3) 𝑊20 → 𝑊20⨁𝑊40 ≫ 3⨁𝑊40⨁𝑊39 ≫ 5⨁𝑊39 ≫ 4
4) 𝑊1 → 𝑊1⨁𝑊40⨁𝑊40 ≫ 2
5) 𝑊0 → 𝑊0⨁𝑊40 ≫ 3⨁(𝑊40&0𝑋7)⨁(𝑊40&0𝑋7) ≪ 3⨁(𝑊40&0𝑋7) ≪ 6⨁𝑊40 ≪

1⨁(𝑊40&0𝑋7) ≪ 4⨁𝑊39 ≫ 7⨁(𝑊39 ≫) ≪ 3⨁(𝑊39 ≫ 7) ≪ 6⨁(𝑊39 ≫ 7) ≪
7

6) 𝑊20 → 𝑊20&0𝑋7
7) Return 𝑊20,𝑊19,⋯ ,𝑊1,𝑊0

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-14

 For the 8-bit word size, there will be no shifting instruction required at the initial step,

and the bits will be copied as it is and after that, the 3 bit shifting (of bit 163-325) is to be

implemented by 6-bit and 7-bit left shift. Following each shift, extra bits moving out of the

325-bit mark due to shifting are replaced back into the starting positions left vacant by

shifting. Then, the extra bit will be serially shifted by 3, 6 and 7 bits. Afterwards, to obtain

the 163 reduced output, all columns starting from bit 0 to bit 163 are to be sequentially added

using XOR instruction. Moreover, a similar strategy is used for performing reduction with

word size = 16.

 We patterned our design using C and XC programming Language on the xmos

startKit. Also, we used xTIMEcomposer development tools for the design and for performing

time analysis. Additionally, we implemented the sequential Comba algorithm on different

single-core microcontroller platforms for comparison purposes. These include Arduino

Mega2560 (AVR 16 bit), Arduino Due (ARM 32 bit) and Xmos (32 bit single core) with

different data width (W = 8, 16 and 32 bits), as reported in Figure 4.4 and Figure 4.5.

 We further provide to summarize and compare the obtained number of cycles for

𝐺𝐹(2163) using Comba parallel multiplication in single and multicore in comparison with

state of art for 𝐺𝐹(2163) and 𝐺𝐹(160) multiplication. It is apparent that different types of

algorithms, platforms and finite field types were used in previous state of art works. This

makes evaluations more difficult for a fair comparison between our work and other published

works. Therefore, we used the number of cycles as a reasonable metric for

 Algorithm 4.5 Fast reduction Modification using Word size =16

INPUT: Binary polynomial 𝑊(𝑧) of degree ≤ 324
OUTPUT: 𝑊(𝑧)𝑚𝑜𝑑 𝑓(𝑧) of degree ≤ 163 where 𝑓(𝑧) is irreducible polynomial

8) 𝑊0 → 𝑊0⨁𝑊10 ≫ 3⨁(𝑊10 ≫ 3) ≪ 3⨁(𝑊10 ≫ 3) ≪ 6⨁(𝑊10 ≫ 3) ≪
7⨁𝑊11 ≪ 13

9) For 𝒊 in 1 to 9 (by one) do
a. 𝑊𝑖 =𝑊𝑖⨁𝑊(10+𝑖) ≫ 3⨁𝑊(10+𝑖)⨁𝑊(10+𝑖) ≪ 3⨁𝑊(10+𝑖) ≪

4⨁𝑊(11+𝑖) ≪ 4⨁𝑊(11+𝑖) ≪ 13⨁𝑊(9+𝑖) ≫ 13⨁𝑊(9+𝑖) ≫ 12

b. End For;
10) 𝑊10 → 𝑊10⨁𝑊20 ≫ 3+𝑊20⨁𝑊19 ≫ 13⨁𝑊19 ≫ 12
11) 𝑊0 → 𝑊0⨁𝑊20 ≫ 3⨁(𝑊20&0𝑋7)⨁(𝑊20&0𝑋7) ≪ 3⨁𝑊20 ≪ 6⨁𝑊20 ≪

1⨁𝑊19 ≫ 15(𝑊20&0𝑋7) ≪ 4⨁(𝑊19 ≫ 15) ≪ 3⨁(𝑊19 ≫ 15) ≪ 6⨁(𝑊19 ≫
15) ≪ 7⨁𝑊20 ≪ 8

12) 𝑊10 → 𝑊10&0𝑋7
13) Return 𝑊10,𝑊9, ⋯ ,𝑊1,𝑊0

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-15

comparisons and evaluation. Furthermore, [66] used 21 registers out of 32 to execute the LD

Multiplication Algorithm on a single core ATmega128 8-bit processor, whereas our approach

of using xmos 32 bits multicore microcontroller used only 12 registers for single core

multiplication and 4 registers in each task for performing simultaneous Comba.

Figure 4.5 Result Analysis of Implemented Comba Algorithm Without Reduction

0

2000

4000

6000

8000

10000

12000

14000

16000

Comba
Algorithm

(W=32)

Comba
Algorithm

(W=16)

Comba
Algorithm

(W=8)

ARDUINO MEGA2560 616 14116

ARDUINO DUE 380 689

Xmos (single core) 1.064 0.816 0.76

Xmos (two cores) 0.99 0.788 0.784

Ti
m

e
(μ

s)

Figure 4.4 Result Analysis of Implemented Comba Algorithm with Fast Reduction

0
2000
4000
6000
8000

10000
12000
14000
16000

Comba Algorithm
_Reuction(W=16)

Comba
Algorithm_Reduction

(W=8)

ARDUINO MEGA2560 1040 14340

ARDUINO DUE 553 901

Xmos (single core) 198.686 311.972

Xmos (two cores) 97.596 151.76

Ti
m

e(
μ

s)

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-16

 Table 4.1 Comparison with State of Art of Comba Implementation

Author Platform Algorithm Word

Size (bit)

No of

Cycles

Field

Aranha et al[5] ATMega128L LD Mult. (new variant) 8 9738 𝐺𝐹(2163)
Kargl et al[7] ATMega128L Comb multiplication with

windows4

8 5057 𝐺𝐹(2163)

Kargl et al[7] ATMega128L Comb multiplication 8 2593 𝐺𝐹(160)
This work -

Single core

without reduction

Xmos StartKit Sequential Comba

Multiplication

8

95

𝐺𝐹(2163)

This work -
Single core with

reduction

Xmos StartKit Sequential Comba
Multiplication

8

1140

𝐺𝐹(2163)

This work -

Single core

without reduction

Xmos StartKit Parallel Comba

Multiplication

8

149

𝐺𝐹(2163)

This work - two

cores with

reduction

Xmos StartKit Parallel Comba

Multiplication

8

129

𝐺𝐹(2163)

Gouve [10] MPY32 Comba Multiplication

16

741

𝐺𝐹(160)

Gouve [10] MSPX LD Multiplication

16

3585

𝐺𝐹(2163)

This work -

Single core

without reduction

Xmos StartKit Sequential Comb

multiplication

16

214

𝐺𝐹(2163)

This work- Two

cores without

reduction

Xmos StartKit Parallel Comba

Multiplication

16

114

𝐺𝐹(2163)

This work Single
core with

reduction

Xmos StartKit Sequential Comb
multiplication

16

102

𝐺𝐹(2163)

This work - Two

cores with

reduction

Xmos StartKit Parallel Comba

Multiplication

16

129

𝐺𝐹(2163)

P. Szczechowiak

[11]

PXA271 Karatusba Multiplication

32

13183

𝐺𝐹(2271)

L. B.

Oliveira[12]

PXA271 wMMX Lopez-Dahab Algorithm

32

1411

𝐺𝐹(2271)

This work -

Single core

without reduction

Xmos StartKit Sequential Comb

multiplication

32

139

𝐺𝐹(2163)

This work- Two

cores without

reduction

Xmos StartKit Parallel Comba

Multiplication

32

155

𝐺𝐹(2163)

This work-

Single core with

reduction

Xmos StartKit Sequential Comb

multiplication

32

1402

𝐺𝐹(2163)

This work- Two

cores with
reduction

Xmos StartKit Parallel Comba

Multiplication

32

155

𝐺𝐹(2163)

Chapter 4: Software Design: Efficient Field Arithmetic over 𝐺𝐹2163

 4-17

4.6 Conclusions
 In this work, we have shown that homogenous multicore microcontroller platforms

are a feasible option to enhance the performance of Comba multiplication over binary finite

fields, thereby enhancing the performance of ECC implementations. We have detailed the

design of a modified Comba multiplier over the binary finite field 𝐺𝐹(2163) corresponding to

an ECC curve using an Xmos startKit homogenous multicore platform that can be adopted in

WSN applications. The design required a modification of both the Comba algorithm and the

the fast reduction step to accommodate the reduction process for 8- and 16-bit word sizes.

About 90% improvement in cycle performance was achieved compared to the single core

implementation. Further work will concentrate on implementing the ECC point multiplication

based on the modified Comba multiplier.

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-1

Chapter 5 : Software Implementation

of Parallelized Elliptic Curve Scalar

Point Multiplication over Binary

Field
Some parts of this work have been published in [67]

Software implementation of parallelized Elliptic Curve Scalar Point Multiplication over

binary field is presented in this chapter. In fact, we start this chapter by providing a much

detail on the importance of scalar point multiplication while implementing Elliptic Curve

Cryptography. Accordingly, we take the reader to the background of point multiplication and

detailing the relationship between them. We also provide our novel proposal for enhancing

the ECC point multiplication over𝐺𝐹(2𝑚). This is followed by a detail description of how we

managed to achieve such proposal using a homogeneous multicore microcontroller known as

XMOS. Eventually, we analyzed the performance concern different ECC curves this include:

𝐺𝐹(2163), 𝐺𝐹(2233), 𝐺𝐹(2283), 𝐺𝐹(2409) 𝑎𝑛𝑑 𝐺𝐹(2571).

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-2

5.1 Introduction

Elliptic curve cryptography (ECC)-based security has potential use in resource

constrained applications, such as RFID tags and wireless sensor networks (WSN) and

therefore the Internet of Things (IoT). Compared to RSA, ECC requires shorter length keys

for the same level of security and is computationally more efficient, and therefore, it has the

ability to provide high security with faster processing time and fewer resources. In general,

scalar point multiplication (PM) is the main operation in Elliptic Curve Cryptography [1].

The PM can be implemented either over binary extension fields GF(2m) or over prime fields

GF(P). In the ECC PM, the public key is computed by multiplying a base point on the elliptic

curve, P with a private key (integer), K. A Koblitz curve [38] is a special elliptic curve that is

resource friendly due to its simplicity, and therefore, it is used in this work; however, a

random binary curve can also be implemented with an extra latency overhead. The ECC PM

can be implemented in software, hardware, and as a software/hardware co-design. A pure

software implementation is attractive on battery-run devices due to its flexibility and low

resource requirements.

The crucial problem of software implementations is the latency due to the word-level

computations required and frequent memory operations. Thus, different efforts have been

conducted by researchers to enhance ECC performance in pure software design by modifying

ECC related algorithms as reported by [68] and [69]. General purpose multicore processors

are being increasingly adopted as alternative platforms to single core architectures for high-

performance domain specific applications, such as ECC. For example, in [11], the authors

proposed hardware design for separated hybrid scanning parallelization for Montgomery

Multiplication using multicore approach by constructing two, four and eight soft cores on

FPGA. The reported results in this work show good speed, large communication latency

tolerance and good scalability. [70] proposed fully programmable curve-based crypto

processors to accelerate scalar point multiplication of ECC using the GEZEL

hardware/software co-design platform. Also, ECC multi-core software implementations on

Intel Xeon Quad-Core processors using OpenMP are reported in [71] and [72]. Another

example for software multicore implementation is reported by [8] where right to left double

and add algorithm is parallelized using two threads through OpenMP library. We observed

that almost all of the previous ECC multicore software implementations were implemented

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-3

on powerful platforms that may not be suited to low-resource WSN type applications using

devices with limited resources and lower clock speeds.

Therefore, in this work, we consider multicore ECC implementation as an enabler for

deployment of public key protocols in the low-resource end of applications. We advocate the

use of a homogeneous, low-power, multicore microcontroller that is suitable for adoption in

resource constrained environments, such as (WSN). Key to ECC implementation on

multicore platforms is parallelism by avoiding data dependency in the point operations. This

requires careful task scheduling and core partitioning.

The contribution of the work presented in this chapter is to demonstrate the

possibilities of obtaining better performance for ECC point multiplication by using suitable

methodologies on partitioning the tasks between the available processor cores coupled with

two novel fundamental algorithmic modifications for performing ECC point multiplication.

The first proposed modification is based on performing a vertical parallelization on point

doubling and point addition operations. The vertical parallelization approach is based on

performing multiple finite field operations that have no data dependency by different parallel

logical cores. The second proposed modification is based on modifying the left to right

double and add binary point multiplication [1] to remove data dependencies. In this modified

algorithm, we initialize point multiplication by scanning the position of the leftmost bit of

key with a value of ‘1’. The scanning can accelerate point multiplication if some of the most

significant bits of the key are zeros. In PM, point doubling is then carried out for every bit of

key zeros and the point addition operation is performed when 𝑘𝑖 = 1 where 𝑘𝑖 is the 𝑖𝑡ℎ bit

of 𝑘. The advantage of binary fields 𝐺𝐹(2𝑚) is that addition and subtraction are simply

bitwise xor operations. We also adopt projective coordinate based ECC point multiplication

to avoid the expensive field inversion operation.

Here, the proposed multicore ECC point multiplication with a single core version

implemented on same Xmos device and on Arduino (Due) for 𝐺𝐹(2163). The proposed

multicore implementation performs 60% better than single core-based implementation. It is

also evident that multicore design perfomed better on embedded implementation.

The remainder of this chapter is organized as follows: Section 5.1 gives a

mathematical preliminary of ECC. Section 5.3 introduces proposed parallel ECC point

multiplication scheme. In Section 5.3, 5.4 and 5.5 we present multi core implementation of

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-4

the proposed ECC and results. Finally, we end this chapter with some conclusions in section

5.6

5.2 Background

The elliptic curve over binary field (E) is defined as a set of points combined with

point of infinity, and O is expressed by the Weierstrass equation:

𝐸: 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 (5.1)

where 𝑎, 𝑏 ∈ 𝐺𝐹(2𝑚) and 𝑏 ≠ 0. The fundamental operation of the elliptic curve

cryptography is scalar point multiplication, which is defined in (2) as follows:

 Q = k.P (5.2)

where k is an integer, P is a point on the elliptic curve and Q is a new point on the elliptic

curve. The new point, Q, is produced by scalar point multiplication, .k P = P+…+P+P, where

Q is a result of k-1 times point addition of P.

 Different point multiplication algorithms are presented in [1] to compute (2). The

performance of ECC depends on the point multiplication and its associated coordinates

systems. In this work, standard coordinates-based Lopez-Dahab Projective is chosen to avoid

the expensive field inversion operation that is involved in the affine coordinates systems.

Moreover, the standard coordinates offer less computation than the Jacobian Projective [1]

coordinates. Again, in Lopez- Dahab (LD) Projective coordinate, a point [𝑋, 𝑌, 𝑍] be point on

the elliptic curve corresponding to the affine points [𝑋/𝑍, 𝑌, 𝑌/ 𝑍2] where 𝑍 ≠ 0 [1].

5.2.1 Point Doubling

In (2), a group of operations of adding two points (P, Q) on curve E is performed for k-1

times. The point addition can be obtained by point doubling while the value k bit is zero. An

advantage of the point doubling is that the computation overhead is lower than that of point

addition. The point doubling operations is based on [73], where the point doubling of point

P[𝑋1, 𝑌1, 𝑍1] to be given as 2P [𝑋3, 𝑌3, 𝑍3] and to be calculated per the following steps:

𝑍3 ← 𝑋2𝑍2

𝑋3 ← 𝑋4 + 𝑏𝑍1
4

𝑌3 ← 𝑏𝑍1
4𝑍3 + 𝑋3(𝑎𝑍3 + 𝑌1

2 + 𝑏𝑍1
4)

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-5

The point doubling based on the LD projective coordinate [1] has 4 finite field multiplication

operations, 5 finite field squaring operations and 4 finite field addition operations, as shown

in Algorithm 5.1. The algorithm has two temporary variables 𝑇1 and 𝑇2 to save intermediate

results of point doubling.

5.2.2 Point Addition

The point addition in LD projective coordinate system allows mixing the coordinates for the

point addition, where the projective points 𝑃[𝑋1, 𝑌1, 1] could be added with affine point

𝑄[𝑥1, 𝑦1] to produce 𝑃 + 𝑄[𝑋3, 𝑌3, 𝑍3] where 𝑄 ≠ ±𝑃 using the steps as shown below[73].

𝐷 ← 𝐵3(𝐶 + 𝑎𝑍1
2)

𝑍3 ← 𝐶
2

Algorithm 5.1 Point Doubling in LD coordinate system where 𝒂 ∈ {𝟎, 𝟏}

INPUT: 𝑃 = (𝑋1: 𝑌1: 𝑍1) 𝑖𝑛 𝐿𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑛
𝐸

𝐾:𝑌2
+ 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏

OUTPUT:2𝑃 = (𝑋3: 𝑌3: 𝑍3) in LD coordinates

1: If P = ∞ then (∞)

2: T1 ← Z1
2 { T1 ← Z1

2}

3: T2 ← X1
2 {T1 ← X1

2}

4: Z3 ← T1. T2{Z3 ← X1
2. Z1

2}

5: X3 ← T2
2{X3 ← X2

4}

6: T1 ← T1
2{T1 ← Z1

4}

7: T2 ← T1. b{T2 ← b. Z1
4}

8: X3 ← X3 + T2{X3 ← X1
4 + bZ1

4}

9: T1 ← Y1
2{T1 ← Y1

2}

10: If a = 1 then T1 ← T1 + Z3{T1 ← aZ3 + Y1
2}

11: T1 ← T1 + T2{T1 ← aZ3 + Y1
2 + bZ1

4}

12: Y3 ← X3. T1{Y3 ← X3(aZ3 + Y1
2 + bZ1

4)}

13: T1 ← T2. Z3{bZ1
4Z3}

14: Y3 ← Y3 + T1{Y3 ← bZ1
4Z3 + X3(aZ3 + Y1

2 + bZ1
4)}

15: Return (X3: Y3: Z3)

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-6

𝐸 ← 𝐴.𝐶

𝑋3 ← 𝐴
2 +𝐷 + 𝐸

𝐹 ← 𝑋3 + 𝑥2. 𝑍3

𝐺 ← (𝑥2 + 𝑦2). 𝑍3
2

𝑌3 ← (𝐸 + 𝑍3). 𝐹 + 𝐺

The point addition algorithm has 8 finite field multiplications, 5 squaring and 9 additions as

shown in Algorithm 5.2. In addition to that, 𝑇1, 𝑇2, 𝑇3 are temporary variables to be used for

the adder operations.

Algorithm 5.2 Point Addition in LD coordinate system where 𝒂 ∈ {𝟎, 𝟏}

INPUT: 𝑃 = (𝑋1: 𝑌1: 𝑍1) 𝑖𝑛 𝐿𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑛𝑄 = (𝑥2, 𝑦2) in affine coordinate on

𝐸 𝑌 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏⁄

OUTPUT:2𝑃 = (𝑋3: 𝑌3: 𝑍3) in LD coordinates

1: If P = ∞ then (∞)

2: If P = ∞ then (x2: y2: 1)

3: T1 ← Z1X2{T1 ← X1Z1}

4: T2 ← Z1
2{T1 ← Z1

2}

5: X3 ← X1. T1{X3 ← B = X1. Z1 + X1}

6:T1 ← Z1. X3{T1 ← C = Z1B}

7: T3 ← T2. y2 {T3 ← Y2Z1
2}

8: Y3 ← T1 + T3 {Y3 ← A = Y2. Z1
2 + Y1}

9: If X3 = 0 then (a)if

Y3
= 0 use Point doubling Algorithm to compute (X3: Y3:Z3)

= 2(x2: y2: 1)and return (X3: Y3: Z3)

10: Z3 ← T1
2{Z3 ← C

2}

11: T3 ← T1. Y3{Z3 ← E = AC}

12: (b) If a =1 then T1 ← T1 + T2 {T1 ← C+ aZ1
2}

13: T1 ← T2. Z3 {T1 ← bZ1
4Z3}

14: X3 ← T2. T1 {X3 ← D = B
2(C + aZ1

2)}

15: T2 ← Y3
2{T2 ← A

2}

16: X3 ← X3 + T2 {A
2 + D}

17: (X3 ← X3 + T3){X3 ← A
2 + D + E}

18: (T2 ← x2. Z3){T2 ← X2Z3}

19: T2 ← T2 + X3{T2 ← F = X3 + X2Z3}

20: T1 ← {T1 ← Z3
2}

21: T3 ← T3 + Z3{T3 ← E+ Z3}

22: Y3 ← T3. T2{Y3 ← (E + Z3)F}

23: T2 ← x2 + y2{T2 ← X2 + Y2}

24: T3 ← T1. T2{T3 ← G = (X2 + Y2)Z3
2}

25: Y3 ← Y3 + T3{Y2 ← (E + Z3)F + G}

26: Return (X3: Y3: Z3)

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-7

5.2.3 Scalar Point Multiplication

The scalar point multiplication is to be defined as a series of point doubling and addition

operations. Again, the result of the LD point doubling and point addition algorithms is the

𝑄[𝑋, 𝑌, 𝑍] will be projective coordinates that can be easily converted into affine coordinates

𝑄[𝑥2 , 𝑦2] by using the steps below:

𝑥2 ← 𝑋 𝑍⁄ and 𝑦2 ← 𝑌 𝑍2⁄

For the projective to affine coordinate conversion, a single field inversion is used. In this

work, we consider implementing left-to-right binary method for the point multiplication as

shown in Algorithm 5.3 [1] that is suitable for an initial operation.

5.2.4 Binary Field Arithmetic

 Binary fields are attractive for ECC-based public key cryptography [15, 29]. The

point operations involve finite field multiplication, finite field squaring, finite field addition

and finite field inversion over 𝐺𝐹(2𝑚) [1]. The finite field inversion is the costliest operation

but can efficiently be performed by using multiplicative inversion. Thus, field multiplication

is the most crucial and complex arithmetic operation.

5.2.5 Finite Field Multiplication

 The efficiency of ECC is highly dominated by the efficiency of the field

multiplication operation [51]. The field multiplication is performed by multiplying two

elements 𝑎(𝑥). 𝑏(𝑥) ∈ 𝐺𝐹(2𝑚) yielding a binary elements of degree (2𝑚 − 1) followed by

decreasing the product modulo an irreducible polynomial 𝐹(𝑥) ∈ 𝐺𝐹(2𝑚) [1]. There are

Algorithm 5.3 Left-to-right binary method for point multiplication

INPUT: 𝑘 = (𝑘𝑡−1,⋯ 𝑘1, 𝑘0)2, 𝑃 ∈ 𝐸(𝐹𝑞)

OUTPUT:𝑘𝑃

1) 𝑄 ← ∞

2) For 𝑖 from 𝑡 − 1down to do

a. 𝑄 ← 2𝑄

b. if 𝑘𝑖 = 1 𝑡ℎ𝑒𝑛 𝑄 ← 𝑄 + 𝑃

3) Return (𝑄)

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-8

various approaches to implementing multiplication over 𝐺𝐹(2𝑚) using a word-level

computational environment (i.e., embedded processor); these include product scanning [33],

hybrid scanning, operand cashing, and consecutive operand-cashing techniques [11].

 In this work, we adopt the product scanning algorithm (i.e. Comba algorithm) for its

reported efficiencies [74]. The algorithm runs using two individual nested loops as outer loop

and inner loop. The outer loop handles the index of the multiplier and the inner loop is

responsible for generating the index of the multiplicand. The amount of time the inner loop

iterates relies on the amount of words required for a given field (m). For example, if there are

"t" words, the number of iteration will be ′t′. In each inner loop iteration, there is one

𝐺𝐹(2𝑚) multiplication, one xor and two load operations for collecting each column products.

The column products are 2w size. Thus, a second store operation is essential at the outer loop

to hold the result of the partial product.

5.2.6 Finite Field Squaring

 Squaring over binary fields is a linear operation. The square operation can be

implemented by manipulating the simple bits of the original polynomial a(z). To speed up the

process of the squaring operation, a look-up table are used with a size of 512 bytes. The look

up table is based on squaring needing pre-computing of 8-bit polynomials input into 16-bit

squared results. The disadvantage of the look-up table method is that it requires large

memory that may increase with the increase of field size. In this work, we consider a linear

polynomial squaring [1].

 The main idea of the linear algorithm is to accomplish the squaring by inserting zeros

between every corresponding bit of a(z) from bit position "1". In this process, the odd

positions are to be filled up with zeros and even positions loaded with bits of the input

polynomial. After the square operation, the output is 2m-1 bit that is required to be reduced to

m bit by using a reduction operation.

5.2.7 Finite Field Addition

 The addition of two elements is simply calculated using a bit wise XOR operation. In

this work, the field addition is a word level XOR operation [75].

5.2.8 Modular Reduction

 Each of the resulting field multiplication and field squaring operation is 2m-1 bits

without reduction. We need to reduce the result to m bit. In this chapter, we consider NIST

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-9

fast reduction polynomials [1]. Thus, a modified 8-bit fast reduction algorithm we proposed

in [74] is implemented over 𝐺𝐹(2163) with the irreducible polynomial. Additionally, the rest

of 𝐺𝐹(2𝑚) were adopted and implemented as described in [1].

 𝑓(𝑧) = 𝑍163 + 𝑍7 + 𝑍6 + 𝑍3 + 1 (3)

 𝑓(𝑧) = 𝑍233 + 𝑍74 + 1 (𝑤𝑖𝑡ℎ 𝑤 = 32)

 𝑓(𝑧) = 𝑍283 + 𝑍12 + 𝑍7 + 𝑍5 + 1 (𝑤𝑖𝑡ℎ 𝑤 = 32)

 𝑓(𝑧) = 𝑍409 + 𝑍87 + 1 (𝑤𝑖𝑡ℎ 𝑤 = 32)

 𝑓(𝑧) = 𝑍571 + 𝑍10 + 𝑍5 + 𝑍2 + 1 (𝑤𝑖𝑡ℎ 𝑤 = 32)

As illustrated in Figure 5.1, the result of multiplication or square operation is 325 bits. We

need to reduce the 325 bits to 163 bits (i.e. 162 to 0). In the fast reduction method, the 163 th

to 325 th bits are added with 0th to 162th bit with shifting. For the irreducible polynomial in (3)

over 𝐺𝐹(2𝑚), the bitwise addition is performed with: no-shifting, 3-bit shifting, 6-bit shifting

and finally, 7-bit shifting. Moreover, the 3-bit shifting, 6-bit shifting and 7-bit shifting shifts

Figure 5.1 Shifting Operation in Fast Reduction Process with word size=8

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-10

extra bits over the 162𝑡ℎ bit as shown in the Figure 5.1. For example, three extra bits

overflow due to the 3-bit shifting, and therefore, it is required to add the extra bits with the

bits from the rightmost side bit (0𝑡ℎ bit) in a shifted fashion as per the order of the irreducible

polynomial. Thus, in 3-bit shifting, the extra bits (323𝑡ℎ, 324𝑡ℎ and 325𝑡ℎ) are added with

no-shift, 3-bit shift, 6-bit shift and finally 7-bit shift from the rightmost bit (0th bit). The

same approach applies for the 6-bit shifting and 7-bit shifting cases, as shown in Figure 5.1.

5.3 Proposed Concurrent ECC Point Multiplication

There are data dependencies in the LD point operation algorithms that can prohibit

achieving parallel field operations [8]. We extract potential field operations from the LD

algorithm that can be performed in parallel by avoiding data dependency. We present a new

vertical parallelism mechanism for both point doubling and point addition separately by

avoiding data dependency. The parallel operation utilizes separate cores or a group of cores

to operate several instructions concurrently.

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-11

5.3.1 Parallel Lopez-Dahab Point Doubling

 The point doubling algorithm is modified to perform parallel operations. A Read-After-

Write (RAW) dependency is investigated to extract possible parallel operations. In addition,

we accomplish several parallel operations in the point doubling that are compatible with our

target platform. For example, we parallelized two field operations as shown in Algorithm 5.4:

(𝑍3 ← 𝑇1𝑇2) with (𝑋3 ← 𝑇2
2), since there is no dependency.

 Similarly, three fields operations are performed concurrently, as shown in step 8.

However, step 9 (𝑌3 ← 𝑌3 + 𝑇1) cannot be parallelized since it depends on the output of

previous step(𝑌3 ← 𝑋3. 𝑇1). With a careful rescheduling in the point doubling operations

algorithm proposed by [1], we were able to minimize the total steps down to 9 as shown in

the modified Algorithm 5.4.

5.3.2 Parallel Lopez-Dahab Point Addition

Algorithm 5.4 Modified Point Doubling in LD coordinate system where a ϵ {0,1}

INPUT: 𝑃 = (𝑋1: 𝑌1: 𝑍1) 𝑖𝑛 𝐿𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑛
𝐸

𝐾:𝑌2
+ 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏

OUTPUT:2𝑃 = (𝑋3: 𝑌3: 𝑍3) in LD coordinates

1: If 𝑃 = ∞ then (∞)

2: 𝑇1 ← 𝑍1
2 { 𝑇1 ← 𝑍1

2}

3: 𝑇2 ← 𝑋1
2 {𝑇1 ← 𝑋1

2}

4: 𝑍3 ← 𝑇1. 𝑇2{𝑍3 ← 𝑋1
2. 𝑍1

2}||𝑋3 ← 𝑇2
2{𝑋3 ←

𝑋2
4}||𝑇1 ← 𝑇1

2{𝑇1 ← 𝑍1
4}||𝑇2 ← 𝑇1. 𝑏{𝑇2 ←

𝑏. 𝑍1
4}[Parallel Operation]

5: 𝑋3 ← 𝑋3 + 𝑇2{𝑋3 ← 𝑋1
4 + 𝑏𝑍1

4}

6:𝑇1 ← 𝑌1
2{𝑇1 ← 𝑌1

2}

7:𝐼𝑓 𝑎 = 1 then 𝑇1 ← 𝑇1 + 𝑍3{𝑇1 ← 𝑎𝑍3 + 𝑌1
2}

8:𝑇1 ← 𝑇1 + 𝑇2{𝑇1 ← 𝑎𝑍3 + 𝑌1
2 + 𝑏𝑍1

4}||𝑌3 ←

𝑋3. 𝑇1{𝑌3 ← 𝑋3(𝑎𝑍3 + 𝑌1
2 + 𝑏𝑍1

4)}||𝑇1 ←

𝑇2 . 𝑍3{𝑏𝑍1
4𝑍3}[Parallel Operation]

9: 𝑌3 ← 𝑌3 + 𝑇1{𝑌3 ← 𝑏𝑍1
4𝑍3 + 𝑋3(𝑎𝑍3 + 𝑌1

2 + 𝑏𝑍1
4)}

10: Return (𝑋3: 𝑌3: 𝑍3)

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-12

 The point addition implementation in Algorithm 5.2 was modified by removing

dependencies to enable vertical parallelism.

n Algorithm 5.2, there are 26 steps, including the conditional step that is triggering the point

doubling operation, 𝑌1 = 0. In the modified algorithm, Algorithm 5.5, we managed to

minimize the number of steps to 20. Furthermore, in this work, we advocate a new approach

of parallelization, namely interleaving parallelization as shown, for example, in the modified

algorithm for step 16.

5.3.2 Proposed Left to Right Double and Add Scalar Point Multiplication

Algorithm 5.5 Modified Point Addition in LD coordinate system where a ϵ {0,1}

INPUT:𝑝 = (𝑋1: 𝑌1: 𝑍1)𝑖𝑛 𝐿𝐷 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑜𝑛 𝑄 = (𝑥2, 𝑦2)in affine coordinates
𝐸

𝐾:𝑌2
+ 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏

OUTPUT:2𝑃 = (𝑋3: 𝑌3: 𝑍3) in LD coordinates

1: If 𝑃 = ∞ then (∞)

2: If 𝑃 = ∞ then (𝑥2, 𝑦2: 1)

3: 𝑇1 ← 𝑍1𝑋2{𝑇1 ← 𝑋1𝑍1}

4: 𝑇2 ← 𝑍1
2{𝑇1 ← 𝑍1

2}

5: 𝑋3 ← 𝑋1. 𝑇1{𝑋3 ← 𝐵 = 𝑋1. 𝑍1 +𝑋1}

6:𝑇1 ← 𝑍1. 𝑋3{𝑇1 ← 𝐶 = 𝑍1𝐵}

7: 𝑇3 ← 𝑇2 . 𝑦2 {𝑇3 ← 𝑌2𝑍1
2}

8: 𝑌3 ← 𝑇1 + 𝑇3 {𝑌3 ← 𝐴 = 𝑌2. 𝑍1
2 + 𝑌1}

9: If 𝑋3 = 0 𝑡ℎ𝑒𝑛 (𝑎)if 𝑌3 =

0 use Point doubling Algorithm to compute (𝑋3: 𝑌3:𝑍3) =
2(𝑥2: 𝑦2: 1)and return (𝑋3: 𝑌3: 𝑍3)

10: 𝑍3 ← 𝑇1
2{𝑍3 ← 𝐶2}||𝑇3 ← 𝑇1. 𝑌3{𝑍3 ← 𝐸 =

𝐴𝐶}[ParallelOperation}

11: (b) If a =1 then 𝑇1 ← 𝑇1 + 𝑇2 {𝑇1 ← 𝐶 + 𝑎𝑍1
2}

12: 𝑇1 ← 𝑇2 . 𝑍3 {𝑇1 ← 𝑏𝑍1
4𝑍3}

13: 𝑋3 ← 𝑇2. 𝑇1 {𝑋3 ← 𝐷 =

𝐵2(𝐶 + 𝑎𝑍1
2)}

14: 𝑇2 ← 𝑌3
2{𝑇2 ← 𝐴

2}

15: 𝑋3 ← 𝑋3 + 𝑇2 {𝐴
2 +𝐷}

16: Interleaving Parallel[(𝑋3 ← 𝑋3 +

𝑇3){𝑋3 ← 𝐴
2 +𝐷 + 𝐸}||(𝑇2 ←

𝑥2. 𝑍3){𝑇2 ← 𝑋2𝑍3}||(𝑇2 ← 𝑇2 +

𝑋3{𝑇2 ← 𝐹 = 𝑋3 +𝑋2𝑍3}||𝑇1 ←

 {𝑇1 ←

𝑍3
2}[Parallel inside Parallel operation]

17: 𝑇3 ← 𝑇3 + 𝑍3{𝑇3 ← 𝐸 + 𝑍3}||𝑌3 ←

𝑇3 . 𝑇2{𝑌3 ← (𝐸 +

𝑍3)𝐹}[Parallel Oeration]

18: T2 ← x2 + y2{T2 ← X2 + Y2}

19: 𝑇3 ← 𝑇1 . 𝑇2{𝑇3 ← 𝐺 = (𝑋2 +

𝑌2)𝑍3
2}||𝑌3 ← 𝑌3 + 𝑇3{𝑌2 ←

(𝐸 + 𝑍3)𝐹 + 𝐺}[Parallel Operation]

20: Return (𝑋3: 𝑌3: 𝑍3)

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-13

 In order to obtain better time complexity performance, we modified the left to right

algorithm[1]. The enhancement is achieved by performing the initial scanning most

significant bits (MSB) of k in order to track down the first none zero bit from MSB. If the non-

zero first bit is found, then P's coordinates will be filled in Q to start loop operation is shown

in Algorithm 3. The start position of the loop is the position of the first non-zero bit that is

listed in variable “pos” as shown in the algorithm. The loop operation then continues from

“pos-1” to 0th bit of k. The scanning process reduces latency for the case of k input with zeros

in the MSBs. In [1], the time complexity for point addition (A) and point doubling (D) are mD

and (m⁄2)A respectively. In the proposed Algorithm 3, the loop operation of the main

algorithm starts only after finding of the first from the MSBs. Thus, the number of point

addition operations will be (m/2-1) and point-doubling operations would be (m-(m-1-pos))

where (m-1-pos) represents the number at the MSB. Therefore, the expected running time for

the scalar point multiplication could be represented by (m/2-1).A+(m-(m-1-pos)-1)D, which

is potentially lower than original algorithm in [1].

Algorithm 5.6 Modified Left-to-right binary method for point multiplication

INPUT: Base Point 𝑃 = (𝑃𝑥 , 𝑃𝑦) and scalar 𝑘 = (𝑘𝑖−1,⋯ , 𝑘1, 𝑘0)2, 𝑃 ∈ 𝐸(𝐹𝑞)

OUTPUT: Point 𝑄on the elliptic curve such that

Q=kP=(𝑄𝑥 , 𝑄𝑦 , 𝑄𝑧)

1: 𝑄 ← ∞

2: For i From t-1down to do

a) if 𝐾𝑖 =
′ 0′then

1. break

2. end if

b) else if 𝐾𝑖 =
′ 1′then

1. load Q = P

2. store i in pos

3. end if

c) end for

3: For i in pos-1 to 0 do

a) Perform_point_doubling: 𝑄 ← 2𝑄

b) if 𝐾𝑖 =
′ 1′then

1. Perform_point_addition: 𝑄 ← 𝑃 +𝑄

2. end if

c) end for

4: Return (Q)

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-14

5.4 Implementation Details

The proposed ECC scalar point multiplication based on the modified algorithms is

implemented kit using xtimecomposer IDE. The Xmos Kit consists of a two tiles XCORE

device and eight 32-bit logic cores that can support up to 500 MIPS xCORE multi-core

microcontroller and 100MHz processor speed [14]. A sequential implementation was first

carried out to help identify any performance bottlenecks in the execution of the point

operations, as shown in Figure 5.2.

In addition to that, we analyzed our sequential implementation on two different

platforms including Arduino Due (ARM processor) and Xmos platform as shown in Figure 5.

3. In fact, these two figures show that around 63% the scalar point multiplication is taken by

point addition operations.

Figure 5.2 Sequential ECC Scalar Point Multiplication Intel Vtune Analysis [3]

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-15

5.5 Performance Analysis

 We analyzed our sequential implementation on two different platforms, including

Arduino Due (ARM processor) and Xmos platform, as shown in Fig 5.3. In fact, these two

figures show that around 63% of the scalar point multiplication is taken by point addition

operations. After a successful implementation, the proposed vertical parallelization managed

to enhance the performance of ECC scalar point multiplication up to 49% and around 44% in

point addition operations, as illustrated in Fig. 4. In Table 5.1, we show the number of logic

cores used, execution time and number of clock cycles for some steps that we parallelized in

Algorithms 4 and 5 to conduct point doubling and point addition. These cores are

automatically assigned by the tools as we are using the parallel instruction, “par statement”

outside the main function. To achieve, a further parallel operation, we assigned “par

statement” to some of the arithmetic functions belonging to the main point doubling and point

addition functions individually.

 The optimal utilization of the core is a key part of the optimization of ECC point

multiplication, as shown in Table 5.1. In this work, we managed to utilize all of the existing 8

cores provided. Notably, the performance of each binary finite field arithmetic operation that

is implemented on a particular core of the Xmos can be obtained. Again, the parallel

Figure 5.3 Parallel ECC Scalar Point Multiplication xmos single core

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-16

operation consumes a latency that is equivalent to a multiplication latency, whereas the other

operations (field squaring and field addition) are operating on the fly. Furthermore, the

overall number of processors for performing the scalar point multiplication over projective

coordinates is tested for k=3{“00…011”}, where a load Q operation for the MSB of k, 1

followed by point doubling and point addition for the last bit of k, 1.

To quantify, a k input of the best case (k=3), average case (as same as the complexity in [8])

and worst case (k=0x”07ff..f”) inputs were investigated. Table 5.2 illustrates the time

complexity of the scalar point multiplication for different inputs.

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-17

 Table 5.1 Time Complexity Table

k

Operations involved

No of Clock Cycles Time Execution (s)

𝑘 = 0

Infinity

69093

64

𝑘 = 1

Loading

70270

65

𝑘 = 2

Loading+Doubling

374095

369

𝑘 = 3

Doubling+Addition

1523 × 103

1518

𝑘 = 0𝑥07⋯0𝑥𝐹𝐹

 (Worst Case)

163 Doubling +163

Addition

24750 ∗ 103

247501

 Table 5.2 Operation Details and Performance

Operation

Number logic Cores

used

Operation

Time

Execution

(s)

No of Clock Cycles

Point Doubling for

Step Number 4

4 logic cores (core 0

To core 3)

Multiplication

5

318

Squaring 5.648 353

Addition

1.536

96

Point Addition

Step No 10

One Core used

(Core 0)

Multiplication 5

318

Squaring 5.648 353

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-18

As already stated, to our knowledge, our work is the first attempt to implement ECC scalar

point multiplication on a homogeneous multicore microcontroller. For comparisons, we tried

to put context more than provide like for like comparisons as the platforms are not

comparable in terms of resources available, as shown in Table 5.3.

 Table 5.3 Comparison With State of Arts

Author

platf

orm
Algorithm

Time

Execution

(s)

No of Clock Cycles Operation Field

C. Negre[6]
Intel Core

i7

Parallel

(Double, Halve)-

and-add with NAF4

29

97 × 103

𝐺𝐹(2233)

C. Negre[6]

Qualcom

m

SnapDrag

on

Parallel

(Double, Halve)-

and-add with NAF4

1060

1591 × 103

𝐺𝐹(2233)

J.M[8]
Intel Core

i7

Halve-Double and

add

130696

𝐺𝐹(2233)

This Work
Xmos

Start Kit

left to right double

and add scalar point

51.32

1523 × 103

𝐺𝐹(2163)

This Work
Xmos

Start Kit

left to right double

and add scalar point

18.590

8887 × 103

𝐺𝐹(2233)

This Work
Xmos

Start Kit

left to right double

and add scalar point

77.489

1059 × 103

𝐺𝐹(2283)

This Work
Xmos

Start Kit

left to right double

and add scalar point

109.835

2111 × 103

𝐺𝐹(2409)

This Work
Xmos

Start Kit

left to right double

and add scalar point

151.778

3956 × 103

𝐺𝐹(2571)

Chapter 5: Software Implementation of Parallelized ECC Scalar Point Multiplication over Binary Fields

 5-19

5.6 Conclusions

In this chapter, we proposed new modified algorithms that overcome data

dependencies in ECC computations and hence enable parallel implementation of ECC on

multi-core platforms efficiently. A pure software implementation for ECC scalar point

multiplication over 𝐺𝐹(2𝑚) using the Xmos multi-core microcontroller was implemented

using these algorithms, which confirmed the feasibility and improvements of adopting

parallelism in ECC implementations. It is advocated that homogeneous multicore platforms

can be useful for resources constrained applications where strong security is required.

Potentially, our parallelization approach could be adopted to improve cryptography

operations and to open up the potential of having strong public key cryptography in software

with high performance and flexibility on a range of multicore microcontroller platforms.

Hence, future work will investigate deploying these algorithms on alternative multicore

platforms.

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-1

Chapter 6 Software Design:

Fast Parallel ECC Point

Multiplication over Prime

Fields
This chapter presents fast parallel ECC Point Multiplication over prime Field 𝐺𝐹(𝑃). In this

work, we attempted to enhance the performance of ECC point Multiplication over prime field

𝐺𝐹(128),𝐺𝐹(192),𝐺𝐹(256)𝑎𝑛𝑑 𝐺𝐹(384) by using a homogenous multicore

microcontroller. Our aim is based on the fact of necessity of providing highly-secure

communication on resource constrained devices, which can accordingly use in different

applications such RFID, Wireless Sensor Network, and IoT. This chapter provides an overall

description of ECC over prime field with some mathematical descriptions of Modular

Multiplication, Modular reduction, and point multiplication. Accordingly, we detailed our

proposal to enhance the ECC point multiplication. This is followed by a detailed description

of our implementation and a final presentation of the enhancement as shown in the result

analysis

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-2

6.1 Introduction

There is an expectation that the emergence of multicore processing would enable a

new generation of sensor nodes that suits the anticipated growth of information-rich

applications using Wireless Sensor Nodes (WSNs) [76]. Specifically, the lower power

homogeneous multicore microcontrollers can be very attractive for sensing the necessary data

and carrying out the required computations across the multicores concurrently. The security

remains a major concern, similar to that of single core sensor nodes. Hence there is a need to

consider the safety of the devices at the time of implementation has developed as an

alternative to RSA in the applications of public key-based security due to its enhanced

performance of security per bit. However, the complex ECC computations based on either

binary 𝐺𝐹(2𝑚) or prime 𝐺𝐹(𝑃) fields make their implementation on small, low-power

devices challenging.

Although [77] concluded that ECC over binary fields is faster than ECC over prime

fields in hardware implementation, the timing result reported by [1] for the ECC software

implementation using Intel Pentium Processors shows the opposite. In fact, [1] reported faster

performance when using for NIST recommended prime fields compared to the binary fields

curves. A pure ECC software implementation over prime fields optimized for high

performance would be attractive for implementation on sensor node processors. Different

efforts have been made by researchers to enhance the ECC performance in these devices like

the works reported by [78-80].

Parallel ECC implementations over prime fields have been reported for both hardware

and software platforms [8, 81, 82]. For example, [8, 81, 82] managed to improve the ECC

performance over prime field for 256-bit and 160-bit in GF(P) using Read after Write (RAW)

strategy implemented in Modular Arithmetic Logic Unit (MALU) using hardware design.

Similarly, in [8, 81, 82] the authors proposed software parallel approach for enhancing the

scalar point multiplication over the prime field (p = 2255 −19) in an Intel Core 2 workstation.

We noticed that ECC over prime field parallel software was implemented on powerful

platforms. These implementations may not suit to low-resource, WSN-type applications using

devices with limited resources and lower clock cycles.

The contribution of this work is mainly to further explore the feasibility and potential

for parallelizing improve ECC scalar point multiplication over prime field for four SECG

curves Spec128r1, Spec192r1, Spec256 and Spec384r1 on a homogeneous multicore

microcontroller(xmos) [15] and [14]. To our knowledge, this is the first ECC over prime

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-3

implementation reported on such platform.

The proposed implementation is based on three novel fundamental algorithmic

modifications. Firstly, we present first time parallel Comba Algorithm proposed by [17] and

[18] on multicore microcontroller. Secondly, we proposed a novel parallel approaches for

parallelizing Jacobian point doubling proposed by [83], and we managed to reduce it

computational steps to 15 steps. Also, we presented a new parallel approach for parallelizing

point addition algorithms proposed by [83]. We used Read After Write (RAW) investigation

and data dependencies check to extract possible parallel operations. Finally, we analyze the

timing performance of our implemented techniques on the xmos start kit platform using its

xTimecomposer IDE. The obtained results show 85% improvement compare to single core

implementation.

The remainder of this chapter is organized as follows. Section 6.3 details the Elliptic

Curve Cryptography design and implementation. The implementation results and analysis are

devoted in sections 6.4 and 6.5. Finally, the chapter is concluded in 6.5.

6.2 Mathematical Background

Mathematically, the elliptic curve over prime field consists of an integer P over finite

field 𝐹𝑃 and the elements 𝑎, 𝑏 ∈ 𝐹𝑝 are to be defined by the equation below:

𝐸: 𝑦2 ≡ 𝑥3 + 𝑎𝑥 + 𝑏 (𝑚𝑜𝑑 𝑝) (6.1)

Recently, ECC has been standardized by different standard bodies such as ANSI

(American National Standard), NIST (National Institute of Standards and Technology) and

others. In this work, we specifically used the following recommended elliptic domain

parameters over 𝐹𝑃 for secp128r1, secp192, secp256r1 and secp384r1, as specified by [15].

The domain parameters for these curves consists of six main parameters nominated as

sextuple and presented as below:

𝑇 = (𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ)
where 𝑎, 𝑏 ∈ 𝐹𝑃 and 𝑃 represents an integer of modulus to specify the finite field, and for the

purpose of our work, we consider the following recommended modulus:

 𝑃128 = 2
128 − 297 − 1,𝑃192 = 2

192 − 264 − 1,𝑃256 = 2
224(232 − 1) + 2192 + 296 −

1,𝑃384 = 2
384 − 2128 − 296 + 232 − 1.

The purpose of parameters 𝐺, 𝑛, ℎ are to define the base point, define the order of G

and define the cofactor, respectively. These four curves are following the definition specified

by equation (1). In fact, these curves have the same basic arithmetic operations which work

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-4

for all of them. The only differences between them are the modulus and size of the numbers

change. Therefore, in the coming subsections. we provide more detail for the arithmetic

prime finite field operations involved in our work.

In principle, the construction of Elliptic Curve is mainly depending on the selection of

point representation, point doubling, point addition and point multiplication. Having these

operations implemented will allow to create a trapdoor for implementing different protocols

such Digital Signature Algorithm (DSA) and Diffie-Hellman based encryption. However,

there are different ECC standard bodies recommended to implement ECC underlying finite

field, a Galois Field (GF) prime field or binary fields 𝐺𝐹(2𝑚) [15].

6.2.1 Modular Multiplication

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-5

In addition to the replacement of the multiplication algorithm, we also propose

parallelizing the Comba algorithm which is elaborated in section 6.3.1.

In this work, we considered the FIPS 186-2 standard that is used to provide different moduli

illustrated below that can help creating fast reduction algorithms especially on word size 32.

We also provide an example of these algorithms (Algorithm 6.2). Therefore, for further

information and algorithms, we refer the reader to [1] section 2.2.6:

𝑃192 = 2
192 − 264 − 1

𝑃256 = 2
256 − 2224 + 2192 + 296 − 1

Algorithm 6.1 Comba Multiplication Technique

INPUT: 𝐴 = (𝑎𝑠−1 , ⋯ , 𝑎1, 𝑎0,) 𝑎𝑛𝑑 𝐵 = (𝑏𝑠−1 , ⋯ , 𝑏1, 𝑏0,).

OUTPUT: Product = 𝐴. 𝐵 (𝑃2𝑠−1,⋯ , 𝑃1, 𝑃0)

1: (𝑡, 𝑢, 𝑣) ← 0

2: for i from 0 by 1 to s do

3: for j from 0 by 1 to i do

4: (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗

5: end for

6: 𝑃𝑖 ← 𝑣

7: 𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0

8: end for

 9: for i from s by 1 to 2s-1 do

10: for j from i+1--s by 1 to s do

11: (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗

12: end for

13: 𝑃𝑖 ← 𝑣

14: 𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0

14: end for

15: 𝑃2𝑠−1 ← 𝑣

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-6

𝑃384 = 2
384 − 2128 − 296 + 232 − 1

6.3 Proposed Design ECC point Multiplication over Prime Fields

The point multiplication is to be accomplished by adding a point to itself for a certain

number of times and denoted by kP, where k is a scalar number of times that we intend to add

P to itself. For example, 3P could be literally represented as P+P+P, which specifically

consist of point double and addition. The scalar point multiplication dominates the execution

time for Elliptic Curve Cryptography scheme. Because of this, several algorithms have been

proposed to help enhance scalar point computation, such as [81, 84] and [83]. [19] proposed a

Montgomery Ladder with (X, Y)-only co-Z addition algorithm suggested by [83] to conduct

scalar point multiplication. The algorithm contains three main computations that include: (n-

1) XYCZ-ADDC algorithm, (n-1) XYCZ-ADD computations, point doubling algorithm and

Final inversion of Z operations.

6.3.1 Proposed Elliptic Curve Point Representation

Basically, (x,y) points are to be represented by the coordinate referred to as Affine

Coordinates (Α). However, it is very common practice that projective coordinates are used in

replacing the Affine Coordinates. This is because Affine Coordinates over prime field is

 Algorithm 6.2 Fast Reduction modulo𝑷𝟐𝟓𝟔 = 𝟐
𝟐 + 𝟐𝟐𝟐𝟒 + 𝟐𝟏𝟗𝟐 + 𝟐𝟗𝟔 − 𝟏

INPUT: An integer 𝑐 = (𝑐15,⋯ , 𝑐2, 𝑐1, 𝑐0) in base 232 with 0 ≤ 𝑐 < 𝑃256
2 .

OUTPUT: 𝑐 𝑚𝑜𝑑𝑃256

1) 𝐷𝑒𝑓𝑖𝑛𝑒 256 − 𝑏𝑖𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠

 𝑠1 = (𝑐8, 𝑐7𝑐6, 𝑐4, 𝑐3𝑐2, 𝑐1, 𝑐0),
 𝑠2 = (𝑐15, 𝑐14, 𝑐13, 𝑐12, 𝑐11, 0,0,0),
 𝑠3 = (0, 𝑐15, 𝑐14, 𝑐13, 𝑐12, 0,0,0),
 𝑠4 = (𝑐15, 𝑐14, 0,0,0, 𝑐10, 𝑐9, 𝑐8),
𝑠5 = (𝑐8, 𝑐13, 𝑐15, 𝑐14, 𝑐13, 𝑐11, 𝑐10, 𝑐9),
𝑠6 = (𝑐10, 𝑐8, , 0,0,0, 𝑐13, 𝑐12, 𝑐11),
𝑠7 = (𝑐11, 𝑐9 , 0,0,0, 𝑐15, 𝑐14, 𝑐13, 𝑐12),
𝑠8 = (𝑐12, 0, , 𝑐10, 𝑐9, 𝑐8, 𝑐8, 𝑐15, 𝑐14, 𝑐13),
𝑠9 = (𝑐13, 0, 𝑐11, 𝑐10, 0, 𝑐15, 𝑐14),

2) Return (𝑠1 + 2𝑠2 + 2𝑠3 + 𝑠4 + 𝑠5 − 𝑠6 − 𝑠7 − 𝑠8 − 𝑠9) 𝑚𝑜𝑑 𝑃256

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-7

costly due to the operations of field inversion which are required during the Elliptic Curve

Scalar Point Multiplication (ECSPM) computations.

There are several types of projective coordinates that can help avoid the inversion

operations; these include Standard Projective coordinates, Jacobian Projective Coordinates

and Chudnovsky coordinates. Hence, we used nano-ecc [19], which is an open-source library,

and the Jacobian Coordinates is considered in this work. The selection of this type is based on

the good results reported by [1] and [65], [69],[85].

6.3.2 Proposed Parallel Comba Multiplication over Prime Fields

Finite field multiplication is an important operation for every ECC system. [19] proposed to

use the Comba algorithm designed by [85]. However, we noticed this algorithm could be

optimized using the Comba algorithm, as shown in Algorithm 6.1, and which was proposed

by [17] and [18]. Comba algorithm mainly consists of two outer loops and two simple inner

loops to perform a bulk of computations.

Algorithm 6.3 Modified Comba Multiplication Technique

INPUT: 𝐴 = (𝑎𝑠−1,⋯ , 𝑎1, 𝑎0,) 𝑎𝑛𝑑 𝐵 = (𝑏𝑠−1,⋯ , 𝑏1, 𝑏0,).

OUTPUT: Product = 𝐴. 𝐵 (𝑃2𝑠−1,⋯ , 𝑃1, 𝑃0)

1: (𝑡, 𝑢, 𝑣) ← 0

2: par{

3: for i from 0 by 1 to s do

4: for j from 0 by 1 to i do

5: (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗
6: end for

7: 𝑃𝑖 ← 𝑣

8: 𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0

10: end for

11: end par}

12: par{

13: for i from s by 1 to 2s-1 do

14: for j from i+1--s by 1 to s do

15: (𝑡, 𝑢, 𝑣) ← (𝑡, 𝑢, 𝑣) + 𝑎𝑗 × 𝑏𝑖−𝑗

16: end for

17: 𝑃𝑖 ← 𝑣

18: 𝑣 ← 𝑢, 𝑢 ← 𝑡, 𝑡 ← 0

19: end for

20: end par}

21: 𝑃2𝑠−1 ← 𝑣

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-8

During each iteration, the inner loops are responsible for performing a Multiplication

and Accumulate operations, in which 2w-bit words is multiplied, and in accordance to that,

2w-bit product is to be added to the cumulative sum. However, the output of sum operation is

most likely to be longer than 2w bit, which will require three w-bit registers to store them. In

fact, as shown Algorithm 6.1, cumulative sum process is presented by (t,u,v) which are used

to present the integer value 𝑡. 22𝑤 + 𝑢. 2𝑤 + 𝑣. Meanwhile, the operations carried out in line

7 and 14 illustrated in Algorithm 6.1 is used to represent w-bit right-shift of the cumulative

sum (t,u,v).

6.3.3 Proposed Parallel Jacobian Point Doubling

 The point doubling formula used in this library is based on the modified point

doubling formula described by [83]. As it can be seen from the following formula, the cost

of point doubling operations has been reduced from 4M+6S+8A for the general Jacobian case

to 4M+4S+9A [1]:

𝑋3 = 𝐵
2 − 2𝐴, 𝑌3 = 𝐵(𝐴 − 𝑋3) − 𝑌1

4, 𝑍3 = 𝑌1𝑍1 (6.2)

where 𝐴 =
3(𝑋1+𝑍1

2)(𝑋1−𝑍1
2)

2
 𝑎𝑛𝑑 𝐵 = 𝑌1𝑍1 with formula (6.2).

The above algorithm can be calculated using 6 field registers when 𝑎 = −3. In this library, a

modified Jacobin point doubling (Algorithm 14) developed in [83] has been selected.

However, we propose a modification to speed up the point doubling computation process.

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-9

Our proposed modification is based on performing parallel operations for finite field

operations that are to be executed within the point doubling algorithm. This has been

achieved after conducting Read After Write (RAW) investigation in the algorithm to extract

possible parallel operations. Accordingly, we managed to conduct several parallel operations

in point doubling that are compatible with our target platform. For example, we parallelized

step 3 (T4 ← T4
2) with step 4 (T2 ← T2. T3) since there is no data dependency. Using this

methodology and in line with careful rescheduling, we managed to reduce the point doubling

steps to 15 steps compared to 18 steps reported by [83]. The following algorithm provided a

low-level description for the new parallel Modified Jacobian Algorithm depicted in [83].

6.3.4 Proposed Parallel co-Z addition point doubling addition

[19] has taken into account the advantages of using co-Z addition proposed by [83].

The co-Z addition works by sharing the same Z-coordinate for the two input points. Let P =

(X1, Y1, Z) and Q = (X3, Y3, Z3) nominated as co-Z addition of P and Q (with (P ≠ Q) is

defined as P + Q = (X3, Y3, Z3), where:

𝑋3 = 𝐷 − (𝐵 + 𝐶), 𝑌3 = (𝑌2 − 𝑌1)(𝐵 − 𝑋3) − 𝐸 𝑎𝑛𝑑 𝑍3 = 𝑍(𝑋2 − 𝑋1) (6.3)

Algorithm 6.4 Modified Jacobian doubling (𝐚 = −𝟑)

INPUT: 𝑷 ≡ (𝑋1, 𝑌1, 𝑍1)
OUTPUT: : 𝟐𝑷(𝑋3, 𝑌3, 𝑍3)

 𝑇1 = 𝑋1, 𝑇2 = 𝑌1, 𝑇3 = 𝑍1)
1: 𝑇4 ← 𝑇2

2 [𝑌1
2]

2: 𝑇5 ← 𝑇1. 𝑇4 [𝑋1𝑌1
2 = 𝐴]

3: 𝑇4 ← 𝑇4
2 [𝑌1

4]|| 𝑇2 ← 𝑇2 . 𝑇3 [𝑌1𝑍1 = 𝑍3]||
 𝑇3 ← 𝑇3

2 [𝑍1
2] [Parallel Operations]

4:𝑇1 ← 𝑇1 + 𝑇3 [𝑋1 + 𝑍1
2] || 𝑇3 ← 𝑇3 + 𝑇3 [2𝑍1

2] [Parallel Operation]

5: 𝑇3 ← 𝑇1 − 𝑇3 [𝑋1 − 𝑍1
2]

6: 𝑇1 ← 𝑇1 . 𝑇3 [𝑋1
2 − 𝑍1

4]
7: 𝑇3 ← 𝑇1 + 𝑇1 [2(𝑋1

2 − 𝑍1
4)]

8: 𝑇1 ← 𝑇1 + 𝑇3 [3(𝑋1
2 − 𝑍1

4)]

9:𝑇1 ← 𝑇1/2 [
3

2(𝑋1
2−𝑍1

4)
= 𝐵]

10: 𝑇3 ← 𝑇1
2 [𝐵2]

11: 𝑇3 ← 𝑇3 − 𝑇5 [𝐵2-A]

12: 𝑇3 ← 𝑇3 − 𝑇1 [𝐵2 − 2𝐴 = 𝑋3]
13: 𝑇5 ← 𝑇5 − 𝑇3 [𝐴 − 𝑋3]
14: 𝑇1 ← 𝑇1 . 𝑇5 [𝐵(𝐴 − 𝑋3)]
15: 𝑇1 ← 𝑇1 − 𝑇4 [𝐴 − 𝑋3) − 𝑌1

4 = 𝑌3]

Return (𝑇3 , 𝑇1 , 𝑇2)

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-10

with 𝐴 = (𝑋2 − 𝑋1)
2, 𝐵 = 𝑋1𝐴, 𝐶 = 𝑋2𝐴,𝐷 = (𝑌2 − 𝑌1)

2 𝑎𝑛𝑑 𝐸 = 𝑌1(𝐶 − 𝐵) (6.4)

This mechanism yields very efficient co-Z point addition with a cost of 5M+2S+7A

point addition. In this work, we proposed parallel co-Z point addition by removing

dependencies to help speed up the point addition process. Therefore, we reduced the steps

required for trigging the co-Z point addition to 7 steps compared to the 13 steps reported by

[83], as shown in Algorithm 6.4.

 In addition to the proposed parallelization shown in Algorithm 6.4, we advocate a

new way for parallelizing a sequence of multiple of parallel operations within one of the

outer parallel loop to help speed the co-Z addition. Also, [83] proved the possibilities to

obtain the conjugate P − Q coordinate with little cost, since it is sharing the same Z-

coordinates with P + Q. In which, P − Q = (X3
′ , Y3

′ , Z3) where:

𝑋3
′ = 𝐹 − (𝐵 + 𝐶), 𝑌3

′ = (𝑌1 + 𝑌2)(𝑋3 − 𝐵) − 𝐸 𝑎𝑛𝑑 𝑍3 = 𝑍(𝑋2 − 𝑋1) (6.5)

with F = (Y1 + Y3)
2 and (A, B, C, D, E) as defined in (4). In [83], the authors proposed co-Z

conjugate addition algorithm with 19 steps with cost of 5M+3+16A by involving 6 field

registers in this operation. However, in this work, the proposed approach requires just 15

steps as shown in the Algorithm 6.4.

Algorithm 6.5 Modified (X, Y)- only co-Z addition with update XYCZ -

INPUT: (𝑋1, 𝑌1) and (𝑋2, 𝑌2)𝑠. 𝑡 𝑃 ≡ (𝑋1: 𝑌1: 𝑍) 𝑎𝑛𝑑 𝑄 ≡ (𝑋2: 𝑌2: 𝑍)for some 𝑍 ∈ 𝐹𝑞 , 𝑃, 𝑄 ∈ 𝐸(𝐹𝑞)

OUTPUT: : (𝑋3, 𝑌3) and (𝑋′2, 𝑌′2)𝑠. 𝑡 𝑃 ≡ (𝑋
′
1: 𝑌

′
1: 𝑍3) 𝑎𝑛𝑑 𝑃 + 𝑄 ≡ (𝑋3: 𝑌3: 𝑍3)for some 𝑍3 ∈ 𝐹𝑞

 (𝑇1 = 𝑋1, 𝑇2 = 𝑌1, 𝑇3 = 𝑋2, 𝑇4 = 𝑌2)
1: 𝑇5 ← 𝑇3 − 𝑇1 [𝑋2 − 𝑋1]
2: 𝑇5 ← 𝑇5

2 [(𝑋1 − 𝑋1)
2 = 𝐴]

3: 𝑇1 ← 𝑇1. 𝑇5 [𝑋1𝐴 = 𝐵]|| 𝑇3 ← 𝑇3. 𝑇5 [𝑋2𝐴 = 𝐶][Parallel

Operations]

4:𝑇4 ← 𝑇4 − 𝑇2 [𝑌2 − 𝑌1]
5: 𝑇5 ← 𝑇4

2 [(𝑌2 − 𝑌1)
2 = 𝐷]

6: 𝑇5 ← 𝑇5 − 𝑇1 [𝐷 − 𝐵]
7: 𝑇5 ← 𝑇5 − 𝑇3 [𝑋3] || 𝑇3 ← 𝑇3 − 𝑇1 [𝐶 − 𝐵]
 𝑇2 ← 𝑇2. 𝑇3 [𝑌1(𝐶 − 𝐵)] || 𝑇3 ← 𝑇1 − 𝑇5 [𝐵 − 𝑋3]
 𝑇4 ← 𝑇4. 𝑇3 [(𝑌2 − 𝑌1)(𝐵 − 𝑋3)]|| 𝑇4 ← 𝑇4 − 𝑇2 [𝑌3]
[Parallel Operations]

Return ((𝑇5, 𝑇4)(𝑇1, 𝑇2))

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-11

6.4 Implementation Details

 In this work, we implemented an efficient parallel ECC on an xmos start kit

development board. This development board consists of 8 logical cores CPU allowing

parallel execution design using XC programming language and C codes. We used

xTIMEcompser development tool to execute our implementation and to perform timing

analysis.

6.5 Result Analysis

 In this work, we first implemented a sequential implementation for ECC in xmos

device for the four prime curves, and performance results are illustrated in Figure 6.1.

Then, we implemented our parallelization in Comba algorithm, point doubling, and point

Algorithms, as shown in Figure 6.2.

As it can be seen from these figures, we managed to reduce the time and number

clock cycles for computing ECC scalar point multiplication by 85% for some curves. In this

work, we utilized 6 logic cores from the 8 logic cores provided by the xmos start kit.

 To our knowledge, our work is the first attempt to implement ECC scalar point

multiplication over prime field GF(P) on a homogenous multicore microcontroller. We

reported the latest contribution concerned with software parallel implementation. In this

table, we tried to put context more than like-for-like comparison, as the platforms are not

Figure 6.1 Sequential Single Core ECC Scalar Point Multiplication in xmos

125510 129024

223455

250688

1004

383.208

1786

363.928

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

50000

100000

150000

200000

250000

300000

Spec128r1 Spec192r1 Spec256r1 Spec384r1

Ti
m

e
(µ

s)

N
o

 o
f

C
yc

le
s

No of Cycles ECC _PM_Time (µs)

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-12

comparable with respect to resource availability. To sum up, our implementation shows the

feasibility of using parallel approach in a homogenous multicore microcontroller to improve

ECC performance in constrained devices. This is an attractive option in case of low-resource

applications that contribute to towards enabling the strong public key cryptography schemes

and protocols to be implemented faster in smaller devices.

Figure 6.2 Parallel Multicore ECC Scalar Point Multiplication in xmos

Multiplication in xmos

10286 10781

18714

15235

123.432 129.732

224.568

18.82

0

50

100

150

200

250

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Spec128r1 Spec192r1 Spec256r1 Spec384r1

Ti
m

e
 (

µ
s)

N
o

 o
f

C
yc

le
s

No of Cycles ECC _PM_Time (µs)

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-13

 Table 6.1 Comparison With State-Of-Art

Author Platform Time
Execution
(s)

Algorithm

Clock
Cycles

Operation Field GF(P)

[4]

IMX6Quad- 1.00 GHz.

0.84 µs 1 Thread-
Best seq.

128

0.47 µs 256

0.61 µs 384

2.21 µs 2 Threads -
Montgomery
Bipartite

128

0.85 µs 256

0.97 µs 384

1.01 µs 3 Threads -
Montgomery
2-ary Multi.
v2

128

1.17 µs 256

1.10 µs 384

1.16 µs 4 Threads
Montgomery
4-ary Multi.
v2

128

1.23 µs 256

1.32 µs 384

Intel Core I7

1.22 µs 1 Thread-
Best seq.

128

1.84 µs 256

2.78 µs 384

2.95 µs 2 Threads -
Montgomery
Bipartite

128

3.52 µs 256

3.86 µs 384

3.10 µs 3 Threads -
Montgomery
2-ary Multi.
v2

128

3.62 µs 256

2.08 µs 384

3.52 µs 4 Threads
Montgomery
4-ary Multi.
v2

128

2.01 µs 256

2.22 µs 384

[8]

Intel Core i7r-2600 Sandy
Bridge 3.4GHz,

NAF D&A 207000 WCurve25519

NAF D&A 176000 JQCurve25519

[9]

AMD Athlon 64x2, 2.4GHz
Dual Core Processor

3.203 ms

Karatsuba

32

7.187 ms 64

13.203 ms 96

18.203 ms 128

28.188 ms 160

47.203 ms 192

3.187 ms

Montgomery

32

6.219 ms 64

12.219 ms 96

16.219 ms 128

26.234 ms 160

46.234 ms 192

This work Xmos strat kit – 6 logical
cores

123.432µs Montgomery
Ladder

10286 128

129.732
µs

10781 192

224.568
µs

18714 256

18.82 15235 384

Chapter 6: Software Design: Fast Parallel ECC Point Multiplication over Prime Fields

 6-14

6.6 Conclusion

In this chapter, we addressed the practical feasibility of parallel software

implementation of ECC scalar point multiplication on a homogeneous multicore

microcontroller. In particular, we proposed an efficient ECC scalar point multiplication

implementation which can be hosted on the xmos start kit so that it scales to target different

ECC standard curves underlying prime field GF(P) recommended by SECG [16]. To

maximize the performance of ECC point multiplication on multicore microcontroller, three

novel modified parallelization have been proposed. These include: the parallelization of finite

field multiplication Comba algorithm, point doubling and point addition algorithms. This

implementation runs the whole ECC point multiplication in only 123µs for Spec128r1, 129µs

for Spec192r1, 224µs for Spec256 and 18.82µs for Spec384r1. Potentially, our proposed

methods were able to boost cryptography operations and provide the potential of having

strong public key cryptography in parallel software implementation with high performance

and flexibility using a multicore microcontroller platform.

Chapter 7: Conclusion and Future Research

 7-1

Chapter 7 : Conclusions and

Future Research Work

This chapter provides an overview of the research and the new concepts offered in this thesis.

In addition to that, a number of the suggested future works and open up ideas for further

researches are discussed here.

Chapter 7: Conclusion and Future Research

 7-2

7.1 Summary and Conclusions

In this research, we have specifically concentred on providing a cutting-edge contribution

for enhancing the Elliptic Curve Cryptography performance on constrained devices. Our

proposed solutions could be used in different applications, such as WSN, WSBN and IoT.

Knowing that these applications are a microcontroller-based technology and providing

communication, security is one of the major challenges. This is because of the

microcontroller limitations, such as speed of the microcontroller built-in processor, the power

consumption and the number of input/output ports. Thus, trying to encapsulate a powerful a

symmetric cryptography scheme such as ECC is one of the concerns that required higher

attention and research. Therefore, in this work, we managed to provide solutions where a

powerful software implementation of ECC is implemented in microcontrollers suitable for

such mentioned applications.

Throughout the third chapter of this thesis, we proposed enhancing the performance of

ECC in arduino 8-bit and 16-bit microcontrollers. In this work, we imported a very well-

known modern cryptographic supporting C code relic-toolkit. A relic toolkit managed to

provide high efficiency and flexibility of modern cryptography. Also, the toolkit could

support different types of cryptographies protocols such EDSA, ECDH, ECMQV and ECSS.

Additionally, it supports a wide range of configurable structure algorithms, which could be

configured during the relic setup. In particular, in this work, relic-0.3.1 is imported onto the

two platform boards, and we experimented with the performance of ECDSA and ECDH over

binary fields using different NIST curves standard (NIST-K163,NIST-B163). Accordingly,

we enhanced the performance of ECDSA by providing the best combination of algorithms in

the relic presets and succeed to report better performance in arduino DUE compared to

arduino mega2560.

In the fourth chapter, an effort has been taken to enhance multiplication operation

of 𝐺𝐹(2163). Two novelties have been demonstrated here. Firstly, we managed to parallelize

Comba algorithm using a Homogenous multi core microcontroller (XMOS). This, in fact,

results in much better performance compared to a single core Comba multiplication in

software implementation in a microcontroller.

A second novel claim is that we modified a fast modular reduction 32-bit algorithm to

support 8-bit in 𝐺𝐹(2163) and get it integrated with Comba algorithm. In this, we were able

Chapter 7: Conclusion and Future Research

 7-3

to report better performance of Comba algorithm for both implementations of parallel Comba

without reduction and Comba multiplication with reduction.

In Chapter 5, we illustrate the capability of a homogenous multicore microcontroller

(XMOS) to improve overall performance of scalar point multiplication for ECC

implementation over 𝐺𝐹(2𝑚). Therefore, we hereby summarized the novelties related to this

work:

A new modified parallelized Lopez-Dahab point doubling been proposed here. Such a

novel idea helps us to obtain high performance for overall ECC scalar point multiplication.

Our method shows that we were able to reduce the number of steps from 14 steps of point

doubling operations algorithm to only 9 steps.

The second novel contribution concerns on modifying the Lopez-Dahab point addition

algorithm and accordingly the parallelizing some of its steps. We also managed to reduce the

algorithm steps from 26 steps to 20 steps using parallelization mechanisms. Furthermore, we

also introduce the concept of parallelizing inside a parallelized round.

Thirdly, we enhanced the overall performance of Left to Right Double and Add Scalar

Point Multiplication algorithm. This was achieved by designing the algorithm that should

work initially by performing the initial scanning most significant bits (MSB) of k in order to

track down the first none zero bit from MSB. If the non-zero first bit is found, then P's

coordinates will be filled in Q to start loop operation.

From all over all that, in this work, we able to report much higher performance in ECC

point multiplication over binary fields for all related standardized curves, including:

𝐺𝐹(2163), 𝐺𝐹(2233), 𝐺𝐹(2283), 𝐺𝐹(2409), 𝐺𝐹(2571).

In addition to all that is mentioned above, we tried to tackle improving the ECC over

constrained devices from different perspectives. Thus, in Chapter 6, we managed to obtained

better performance of ECC point multiplication over the prime field 𝐺𝐹(𝑃). We also here

claimed three more novelties that could be summarized as below:

 The first claimed novelty is parallelizing the Comba Algorithm for 𝐺𝐹(𝑃) gets the

benefits from the previous novelty of parallelizing Comba Algorithm in 𝐺𝐹(2163). In this, we

managed to parallelize the multiplication arithmetic of ECC over 𝐺𝐹(𝑃).

Chapter 7: Conclusion and Future Research

 7-4

Secondly, we proposed Parallel Jacobian Point Doubling over 𝐺𝐹(𝑃). Implementing such

a solution helps us to reduce the steps involved in a sequential manner from 18 steps to 15

steps. Such enhancement positively impacted the overall performance or ECC point

multiplication over 𝐺𝐹(𝑃).

The third novelty has been achieved by parallelizing co-Z addition point addition. In this

approach, we proposed a parallel implementation for this algorithm and managed to reduce

the steps to 7 steps compared to 13 steps proposed by the original algorithm.

In this thesis, we considered how to improve the efficiency of software implementation for

Elliptic Curve Cryptography on Microcontroller platform. Therefore, for a purpose of our

research we considered implementation mainly on three types of Microcontrollers, which

include: Arduino Mega2560 with 8-bit microcontroller, Arduino DUE with 32-bit ARM

processor Microcontroller and XMOS start Kit. We also confirm the scalability of

implementing different types of curves per SEC1 standard, in which different SEC1 curves

have been implemented for both 𝐺𝐹(2𝑚) and 𝐺𝐹(𝑃) and bench mark results have been

presented.

 In fact, several attempts have been made to improve the performance of ECC on software

implementation methodology. Besides that, there are also different efforts to boost

efficiencies using assembly programming language or by modifying the existing related

algorithms. However, none of these attempts have tried to improve the ECC performance

using a homogenous multicore microcontroller.

Therefore. to our knowledge proposed solutions herein for boosting the ECC performance

in a homogenous device is the first ever proposal of enhancing the ECC performance in such

type of microcontroller at the time of writing this thesis. It is also worth mentioning that our

proposed solution could be easily acquired to be smoothly integrated with any application

using XMOS microcontroller or arduino microcontroller. Through this, ECC is to be used as

a security service provider in these platforms.

7.1 Future Research Works

 Our aim in this thesis was to come up with solutions that can help with implementing

ECC on a constrained microcontroller. Although we had shown a significant improvement of

the ECC performance, there are still some other concerns that could be considered for future

work or that remain as open problems as provided below:

Chapter 7: Conclusion and Future Research

 7-5

 Besides the speed enhancement the ECC performance that we have achieved in this

work, power consumption is one of the counter measures part that need to taken into

consideration. Considering that, our implementation is proposed for a microcontroller to be

used in applications (WSN, IoT) that are highly depending on low-power resources like

batteries. Introducing such ECC algorithms alongside the process and communication related

to the data sensing and others inside these microcontroller should be highly evaluated and

addressed.

 One of challenges that needs to considered while implementing cryptography for any

system is studying the strength of a security system from any cryptanalysis mechanisms and

algorithms. In fact, lightweight applications, such as the devices we used in our work, need to

evaluated against any side-channel attacks. Using strong cryptography in such applications

does not mean that these devices are strong enough to defend from any side-channel attack.

The side-channel attack could be implemented in a passive manner, where time and power

are simultaneously used during the attack. One possible way to defend such an attack is to

use resistance algorithms, but such a solution requires large memory and double execution

time. Therefore, a deep investigation on how to prevent the ECC on XMOS and arduino

devices from side-channel attacks is one of the issues that could further investigated.

 Another potential future work is parallelizing lattice-based cryptography on a

homogeneous multicore microcontroller, which is an area of research that needs to be

tackled. One advantage of lattice-based cryptography in any system include its ability to

defend from a quantum attack. So, getting such cryptography in a constrained well adds a lot

of security benefit to these devices and applications involved.

 End-to-end encryption for parallelizing ECC using XMOS devices is one of the open

problems we suggested here. Therefore, we recommend implementing our proposed solutions

to check the effectiveness in a real-time network environment. This environment might be

WSN or IoT.

 Examining our proposed solution with different platforms, such as parallax, is one of

open problems, since we have examined our solutions with only one type of a homogenous

multicore microcontroller. This work can help to understand how other platforms will be able

to react and cope with such solutions.

Chapter 7: Conclusion and Future Research

 7-6

 To conclude, the existing growth of technology shows a very high demand on

Wireless Sensor Network and IoT. Such an application requires a powerful security system

that could prevent them from different types of attacks. However, until recently, people used

to hesitate to implement cryptography in these constrained devices due to the microcontroller

limitation. This lead to widely impression that implementing cryptography in such devices is

infeasible, since a symmetric cryptography is excessively massive and cannot be

accommodated in such devices. This could additionally contribute towards scaling down the

entire efficiency of a microcontroller.

References

 1

[1] D. Hankerson, S. Vanstone, and A. J. Menezes, Guide to elliptic curve cryptography. Springer,
2004.

[2] The Basics of ECC [Online]. Available: https://www.certicom.com/index.php/the-basics-of-
ecc

[3] (2016). IntelÂ® Parallel Studio XE 2016: High Performance for HPC Applications and Big Data
Analytics | IntelÂ® Developer Zone. Available: https://software.intel.com/en-us/blogs/Intel-
Parallel-Studio-XE-2016

[4] Y. R. Venturini and U. Sorocaba, "Performance analysis of parallel modular multiplication
algorithms for ECC in mobile devices," Revista de Sistemas de Informaçao da FSMA, no. 13,
pp. 57-67, 2014.

[5] D. F. Aranha, R. Dahab, J. López, and L. B. Oliveira, "Efficient implementation of elliptic curve
cryptography in wireless sensors," Advances in Mathematics of Communications, vol. 4, no.
2, pp. 169-187, 2010.

[6] C. Negre and J.-M. Robert, "New parallel approaches for scalar multiplication in elliptic curve
over fields of small characteristic," Computers, IEEE Transactions on, vol. 64, no. 10, pp.
2875-2890, 2015.

[7] A. Kargl, S. Pyka, and H. Seuschek, "Fast Arithmetic on ATmega128 for Elliptic Curve
Cryptography," IACR Cryptology ePrint Archive, vol. 2008, p. 442, 2008.

[8] J.-M. Robert, "Software Implementation of Parallelized ECSM over Binary and Prime Fields,"
2014.

[9] U. S. Kanniah and A. Samsudin, "Multi-threading elliptic curve cryptosystems," in
Telecommunications and Malaysia International Conference on Communications, 2007. ICT-
MICC 2007. IEEE International Conference on, 2007, pp. 134-139: IEEE.

[10] C. P. Gouvêa, L. B. Oliveira, and J. López, "Efficient software implementation of public-key
cryptography on sensor networks using the MSP430X microcontroller," Journal of
Cryptographic Engineering, vol. 2, no. 1, pp. 19-29, 2012.

[11] S. Tillich and J. Großschädl, "A simple architectural enhancement for fast and flexible elliptic
curve cryptography over binary finite fields GF (2 m)," in Advances in Computer Systems
Architecture: Springer, 2004, pp. 282-295.

[12] L. B. Oliveira et al., "TinyPBC: Pairings for authenticated identity-based non-interactive key
distribution in sensor networks," Computer Communications, vol. 34, no. 3, pp. 485-493,
2011.

[13] C. Alcaraz, J. Lopez, R. Roman, and H.-H. Chen, "Selecting key management schemes for WSN
applications," Computers & Security, vol. 31, no. 8, pp. 956-966, 2012.

[14] (2015). What is startKIT? | XMOS. Available: http://www.xmos.com/startKit/what
[15] (2014). sec1_final.pdf (application/pdf Object). Available:

http://www.secg.org/collateral/sec1_final.pdf
[16] D. F. A. a. C. P. L. Gouv. RELIC is an Efficient LIbrary for Cryptography. Available:

http://code.google.com/p/relic-toolkit/
[17] A. Szekely and S. Tillich, "Algorithm exploration for long integer modular arithmetic on a

SPARC V8 processor with cryptography extensions," in null, 2005, pp. 187-194: IEEE.
[18] R. Brumnik, V. Kovtun, and A. Okhrimenko, "Techniques for performance improvement of

integer multiplication in cryptographic applications."
[19] (2016). iSECPartners/nano-ecc. Available: https://github.com/iSECPartners/nano-ecc
[20] B. A. Forouzan, Cryptography And Network Security (Sie). Tata McGraw-Hill Education, 2011.
[21] (2016). http://www.billthelizard.com/2009/05/brief-history-of-cryptography.html.
[22] D. Kahn, The codebreakers. Weidenfeld and Nicolson, 1974.
[23] F. Cohen, "A short history of cryptography," Fred Cohen & Associates, 2001.
[24] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography.

CRC press, 2010.

https://www.certicom.com/index.php/the-basics-of-ecc
https://www.certicom.com/index.php/the-basics-of-ecc
https://software.intel.com/en-us/blogs/Intel-Parallel-Studio-XE-2016
https://software.intel.com/en-us/blogs/Intel-Parallel-Studio-XE-2016
http://www.xmos.com/startKit/what
http://www.secg.org/collateral/sec1_final.pdf
http://code.google.com/p/relic-toolkit/
https://github.com/iSECPartners/nano-ecc
http://www.billthelizard.com/2009/05/brief-history-of-cryptography.html

References

 2

[25] S. William and W. Stallings, Cryptography and Network Security, 4/E. Pearson Education
India, 2006.

[26] C. Paar and J. Pelzl, Understanding cryptography: a textbook for students and practitioners.
Springer, 2010.

[27] S. S. Kumar, "Elliptic curve cryptography for constrained devices," Ruhr University Bochum,
2006.

[28] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cambridge
university press, 1994.

[29] I. Branovic, R. Giorgi, and E. Martinelli, "Instruction Set Extensions for Elliptic Curve
Cryptography over Binary Finite Fields."

[30] ECC Holds Key to Next-Gen Cryptography [Online]. Available: http://www.design-
reuse.com/articles/7409/ecc-holds-key-to-next-gen-cryptography.html

[31] F. Brechenmacher, "A history of galois fields," 2012.
[32] E. W. Weisstein. (2014). Finite Field -- from Wolfram MathWorld [Text]. Available:

http://mathworld.wolfram.com/FiniteField.html
[33] P. G. Comba, "Exponentiation cryptosystems on the IBM PC," IBM systems journal, vol. 29,

no. 4, pp. 526-538, 1990.
[34] D. Knuth, "The Art of Computer Programming. Seminumerical Algorithms, vol. 2, 1981,"

Distributed Sensor Networks International Journal of Mechanical Engineering Advances in.
[35] A. Karatsuba and Y. Ofman, "Multiplication of multidigit numbers on automata," in Soviet

physics doklady, 1963, vol. 7, p. 595.
[36] C. Koc and T. Acar, "Montgomery Multiplication in GF(2k)," An International Journal, vol. 14,

no. 1, pp. 57-69.
[37] P. L. Montgomery, "Modular multiplication without trial division," Mathematics of

computation, vol. 44, no. 170, pp. 519-521, 1985.
[38] D. Hankerson, J. L. Hernandez, and A. Menezes, "Software implementation of elliptic curve

cryptography over binary fields," in Cryptographic Hardware and Embedded Systems—CHES
2000, 2000, pp. 1-24: Springer.

[39] S. Certicom, "SEC 2: Recommended elliptic curve domain parameters," Proceeding of
Standards for Efficient Cryptography, Version, vol. 1, 2000.

[40] N. Koblitz, A course in number theory and cryptography. Springer Science & Business Media,
1994.

[41] N. Koblitz, A. Menezes, and S. Vanstone, "The state of elliptic curve cryptography," Designs,
codes and cryptography, vol. 19, no. 2-3, pp. 173-193, 2000.

[42] R. C. Merkle, "Secure communications over insecure channels," Communications of the ACM,
vol. 21, no. 4, pp. 294-299, 1978.

[43] E. Barker, L. Chen, A. Roginsky, and M. Smid, "Recommendation for pair-wise key
establishment schemes using discrete logarithm cryptography," NIST special publication, vol.
800, p. 56A, 2013.

[44] A. Liu and P. Ning, "TinyECC: A configurable library for elliptic curve cryptography in wireless
sensor networks," in Information Processing in Sensor Networks, 2008. IPSN'08. International
Conference on, 2008, pp. 245-256: IEEE.

[45] S. C. Seo, H. Dong-Guk, H. C. Kim, and H. Seokhie, "TinyECCK: Efficient Elliptic Curve
Cryptography Implementation over< I> GF</I>(< I> 2</I>< I>< SUP> m</SUP></I>) on 8-Bit
Micaz Mote," IEICE transactions on information and systems, vol. 91, no. 5, pp. 1338-1347,
2008.

[46] (2014). AVRCryptoLib. Available: http://www.emsign.nl/
[47] (2014). Arduino - HomePage. Available: http://www.arduino.cc/

http://www.design-reuse.com/articles/7409/ecc-holds-key-to-next-gen-cryptography.html
http://www.design-reuse.com/articles/7409/ecc-holds-key-to-next-gen-cryptography.html
http://mathworld.wolfram.com/FiniteField.html
http://www.emsign.nl/
http://www.arduino.cc/

References

 3

[48] M. Sethi, J. Arkko, and A. Keranen, "End-to-end security for sleepy smart object networks,"
in Local Computer Networks Workshops (LCN Workshops), 2012 IEEE 37th Conference on,
2012, pp. 964-972.

[49] T. S. Denis, BigNum Math: Implementing Cryptographic Multiple Precision Arithmetic.
Syngress Publishing, 2006.

[50] M. Albahri and M. Benaissa, "Parallel comba multiplication in GF (2163) using homogenous
multicore microcontroller," in Electronics, Circuits, and Systems (ICECS), 2015 IEEE
International Conference on, 2015, pp. 641-644: IEEE.

[51] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, "Comparing elliptic curve
cryptography and RSA on 8-bit CPUs," in Cryptographic Hardware and Embedded Systems-
CHES 2004: Springer, 2004, pp. 119-132.

[52] R. Brumnik, V. Kovtun, A. Okhrimenko, and S. Kavun, "Techniques for Performance
Improvement of Integer Multiplication in Cryptographic Applications," Mathematical
Problems in Engineering, vol. 2014, 2014.

[53] M. Hutter and E. Wenger, "Fast multi-precision multiplication for public-key cryptography on
embedded microprocessors," in Cryptographic Hardware and Embedded Systems–CHES
2011: Springer, 2011, pp. 459-474.

[54] A. Munir, A. Gordon-Ross, and S. Ranka, "Multi-core embedded wireless sensor networks:
Architecture and applications," Parallel and Distributed Systems, IEEE Transactions on, vol.
25, no. 6, pp. 1553-1562, 2014.

[55] H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim, "Binary and prime field multiplication for public
key cryptography on embedded microprocessors," Security and Communication Networks,
vol. 7, no. 4, pp. 774-787, 2014.

[56] M. Hutter and P. Schwabe, "Multiprecision multiplication on AVR revisited," 2014.
[57] H. Seo and H. Kim, "Implementation of Multi-Precision Multiplication over Sensor Networks

with Efficient Instructions," Journal of Information and Communication Convergence
Engineering, vol. 11, no. 1, pp. 12-16, 2013.

[58] H. Seo and H. Kim, "Optimized multi-precision multiplication for public-key cryptography on
embedded microprocessors," International Journal of Computer and Communication
Engineering, vol. 2, no. 3, pp. 255-259, 2013.

[59] Z. Liu and J. Großschädl, "New speed records for montgomery modular multiplication on 8-
bit AVR microcontrollers," in Progress in Cryptology–AFRICACRYPT 2014: Springer, 2014, pp.
215-234.

[60] D. F. Aranha, J. López, and D. Hankerson, "Efficient software implementation of binary field
arithmetic using vector instruction sets," in Progress in Cryptology–LATINCRYPT 2010:
Springer, 2010, pp. 144-161.

[61] V. Kovtun and A. Okhrimenko, "Approaches for the performance increasing of software
implementation of integer multiplication in prime fields," IACR Cryptology ePrint Archive,
vol. 2012, p. 170, 2012.

[62] C. Moore, M. O'Neill, N. Hanley, and E. O'Sullivan, "Accelerating integer-based fully
homomorphic encryption using Comba multiplication," in Signal Processing Systems (SiPS),
2014 IEEE Workshop on, 2014, pp. 1-6: IEEE.

[63] C. Moore, M. O'Neill, E. O'Sullivan, Y. Doroz, and B. Sunar, "Practical homomorphic
encryption: A survey," in Circuits and Systems (ISCAS), 2014 IEEE International Symposium
on, 2014, pp. 2792-2795: IEEE.

[64] (2014). sec2_final.pdf (application/pdf Object). Available:
http://www.secg.org/collateral/sec2_final.pdf

[65] M. J. Quinn, Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education
Group, 2003.

http://www.secg.org/collateral/sec2_final.pdf

References

 4

[66] D. F. Aranha, R. Dahab, J. López, and L. B. Oliveira, "Efficient implementation of elliptic curve
cryptography in wireless sensors," Adv. in Math. of Comm., vol. 4, no. 2, pp. 169-187, 2010.

[67] M. Albahri, M. Benaissa, and Z. U. A. Khan, "Parallel Implementation of ECC Point
Multiplication on a Homogeneous Multi-Core Microcontroller," in Mobile Ad-Hoc and Sensor
Networks (MSN), 2016 12th International Conference on, 2016, pp. 386-389: IEEE.

[68] J. Taverne, A. Faz-Hernández, D. F. Aranha, F. Rodríguez-Henríquez, D. Hankerson, and J.
López, "Software implementation of binary elliptic curves: impact of the carry-less multiplier
on scalar multiplication," in Cryptographic Hardware and Embedded Systems–CHES 2011:
Springer, 2011, pp. 108-123.

[69] J. López and R. Dahab, "Fast multiplication on elliptic curves over GF (2m) without
precomputation," in Cryptographic Hardware and Embedded Systems, 1999, pp. 316-327:
Springer.

[70] F. Rodrıguez-Henrıquez, N. A. Saqib, and A. Dıaz-Pérez, "A fast parallel implementation of
elliptic curve point multiplication over GF (2 m)," Microprocessors and Microsystems, vol. 28,
no. 5, pp. 329-339, 2004.

[71] J. V. Tembhurne and S. R. Sathe, "Performance evaluation of long integer multiplication
using OpenMP and MPI on shared memory architecture," in Contemporary Computing (IC3),
2014 Seventh International Conference on, 2014, pp. 283-288: IEEE.

[72] M. Purnaprajna, C. Puttmann, and M. Porrmann, "Power aware reconfigurable
multiprocessor for elliptic curve cryptography," in Design, Automation and Test in Europe,
2008. DATE'08, 2008, pp. 1462-1467: IEEE.

[73] J. López and R. Dahab, "Improved algorithms for elliptic curve arithmetic in GF (2n)," in
Selected areas in cryptography, 1998, pp. 201-212: Springer.

[74] M. Albahri and M. Benaissa, "Parallel comba multiplication in GF (2163) using homogenous
multicore microcontroller," in 2015 IEEE International Conference on Electronics, Circuits,
and Systems (ICECS), 2015, pp. 641-644: IEEE.

[75] J. Großschädl and E. Savaş, "Instruction set extensions for fast arithmetic in finite fields GF
(p) and GF (2 m)," in Cryptographic Hardware and Embedded Systems-CHES 2004: Springer,
2004, pp. 133-147.

[76] A. Munir, A. Gordon-Ross, and S. Ranka, "Multi-core Embedded Wireless Sensor Networks:
Architecture and Applications," 2013.

[77] E. Wenger and M. Hutter, "Exploring the design space of prime field vs. binary field ECC-
hardware implementations," in Information Security Technology for Applications: Springer,
2011, pp. 256-271.

[78] T. VanAmeron and W. Skiba, "Implementing efficient 384-bit NIST Elliptic Curve over prime
fields on an ARM946E," in Military Communications Conference, 2008. MILCOM 2008. IEEE,
pp. 1-7: IEEE.

[79] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab, "NanoECC: Testing the
limits of elliptic curve cryptography in sensor networks," in Wireless sensor networks:
Springer, 2008, pp. 305-320.

[80] Z. Liu, J. Großschädl, and D. S. Wong, "Low-weight primes for lightweight elliptic curve
cryptography on 8-bit AVR processors," in Information Security and Cryptology, 2013, pp.
217-235: Springer.

[81] K. Sakiyama, E. De Mulder, B. Preneel, and I. Verbauwhede, "A parallel processing hardware
architecture for elliptic curve cryptosystems," in Acoustics, Speech and Signal Processing,
2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on, 2006, vol. 3, pp. III-
III: IEEE.

[82] S.-C. Chung, J.-W. Lee, H.-C. Chang, and C.-Y. Lee, "A high-performance elliptic curve
cryptographic processor over GF (p) with SPA resistance," in Circuits and Systems (ISCAS),
2012 IEEE International Symposium on, 2012, pp. 1456-1459: IEEE.

References

 5

[83] M. Rivain, "Fast and Regular Algorithms for Scalar Multiplication over Elliptic Curves," IACR
Cryptology ePrint Archive, vol. 2011, p. 338, 2011.

[84] P. Longa and A. Miri, "Fast and flexible elliptic curve point arithmetic over prime fields,"
Computers, IEEE Transactions on, vol. 57, no. 3, pp. 289-302, 2008.

[85] P. Longa and C. Gebotys, "Efficient techniques for high-speed elliptic curve cryptography," in
Cryptographic hardware and embedded systems, CHES 2010: Springer, 2010, pp. 80-94.

