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Abstract 

The RAC1 specific GEF, DOCK4, has been identified as an essential component in the 

Rho GTPase signalling pathway, imperative for correct vascular patterning and lumenisation 

during sprouting angiogenesis in vitro. As RAC1 has been previously implicated in the 

signalling events involved in vascular regrowth within a hypoxic environment, it was 

hypothesized that DOCK4 may be an important effector in the response to vascular injury 

and oxygen deprivation. To test this hypothesis, a DOCK4 depleted endothelial co-culture 

assay was carried out in both hypoxic and normoxic conditions. DOCK4 driven activation of 

RAC1 has been demonstrated under VEGF signalling, however FGF2 signalling pathways have 

also been strongly implicated in vascular response to blood vessel injury and hypoxia. 

Therefore, co-culture assays were carried out to assess sprouting angiogenesis with DOCK4 

knockdown in response to FGF2 supplementation. Further, a heterozygous DOCK4 depleted 

murine model in ischemia studies using a model of HLI was employed together with LDI 

monitoring of vascular response and regrowth, comparing the response of heterozygous 

Dock4 KO mice and their WT littermate controls.  

DOCK4 interacts with the CDC42 GEF DOCK9 but the molecular basis of the 

interaction is unknown, as is the role of GEF heterodimerization in cell signalling. This study 

aims to further understand the function of DOCK4 within a pathological sprouting 

angiogenesis while also investigating the mechanism of interaction between DOCK4 and 

DOCK9.  

The two pro-angiogenic growth factors VEGFA and FGF2 drive different phenotypical 

growth responses during sprouting angiogenesis in vitro. DOCK4 was demonstrated as being 

an important component of FGF2 stimulated angiogenesis under hypoxia, indicating DOCK4 

as important for mechanisms involved in the angiogenic response to ischemia. The specific 
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site of DOCK9 which interacts with the SH3 domain of DOCK4 was not elucidated during this 

study, however it was determined that DOCK9 proline rich regions identified as PRR 2, 3, 4, 

and 9 were unlikely to be involved in the interaction. The small molecule inhibitor QL-47 was 

demonstrated to be a potent anti-angiogenic compound with VEGFA stimulated ECs being 

particularly sensitive to QL-47. However, it is highly unlikely that the anti-angiogenic effects 

are due to disruption of the DOCK4-DOCK9 interaction, as the p.C628 cysteine residue was 

found to not be involved in DOCK4 SH3 domain interaction.  

Understanding how Rho GTPases are regulated and mechanisms underpinning their 

activity will progress the understanding of events that drive blood vessel growth while 

gaining insight into dysregulation during angiogenic pathologies.  
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Preface 

The overarching aim of this thesis is to expand upon the understanding of the RhoG 

pathway (RhoG-DOCK4-RAC-DOCK9-CDC42) and its role in the process of angiogenesis. 

DOCK4 and its interaction with DOCK9 are the central components of the pathway, as 

together they drive some of the hallmarks of angiogenic growth, filopodia formation and 

sprouting (Abraham et al., 2015).  
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1 Introduction 

1.1 The mammalian vascular system 

The mammalian vascular system serves as a multifunctioning network of tubes, or 

hollow cords, which enables flow of blood for maintenance of cellular homeostasis, 

distribution of essential nutrients and oxygen in concert with removal of metabolic waste 

and carbon dioxide. It also allows the trafficking of growth factors (GFs), cytokines, hormones 

and immune cells around the body (Wacker and Gerhardt, 2011b). The vascular system is 

essential in maintenance of homeostasis of ionic concentration, physiological pH, body 

temperature, and glucose concentration (Wacker and Gerhardt, 2011b). 

The cardiovascular system is an enclosed organ system composed of a contractile 

four chambered muscular pump, the heart, and a complex network of multicellular tubes 

organized into three subsystems based on structure and function; the arterial system, 

venous system, and the lymphatic system (Carmeliet, 2000), as is seen in figure 1.1.  

The arterial system delivers blood from the heart to the other organs, tissues, and 

limbs of the body. Blood pumped from the right ventricle of the heart and flows through the 

pulmonary artery, allowing for oxygenation of the blood in concert with removal of carbon 

dioxide. Oxygenated blood then flows into the left atrium of the heart where it is pumped 

into the left ventricle. The left ventricle contracts to force the blood to flow through the 

aorta, the largest of the arteries. Blood flows at high pressure through the aorta into arteries, 

arterioles, and capillaries of decreasing diameter to the other organs, brain, and tissues of 

the body (Udan et al., 2013).  

 

 

 



2 

   

Figure 1-1 The human circulatory system 

Diagram of the human circulatory system: the heart, arteries, veins and capillaries. 

Arteries possess three structural layers: the Tunica Adventitia, Tunica Media, and Tunica Intima. 

The Tunica Adventitia is the outer layer of arteries and consists of connective tissue, collagen, 

and elastic fibres. The middle layer, the Tunica Media, contains smooth muscle cells and elastic 

fibres. The Tunica Intima is the inner most layer of the arteries and is comprised of endothelial 

cells. There are three distinct types of arteries: elastic arteries, muscular arteries, and arterioles. 

Veins also have three layers; the Tunica Adventitia, Tunica Media, and the Tunica Intima. The 

Tunica Media of veins possesses an irregular covering of vascular smooth-muscle cells and 

pericytes. In the lumen of veins also lie valves which act to prevent the backflow of blood through 

the less pressurized vascular structures. Capillaries are small, thin vessels comprised of a single 

layer of flattened ECs with no muscular layer. There are three types of capillaries: continuous, 

fenestrated, and discontinuous. 
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The venous system allows blood to flow from the periphery, tissues, and organs 

through vessels which increase in diameter from venules to veins and then into the vena 

cava, the largest of the veins. Through the vena cava blood flows back to the heart, entering 

through the right atrium (Udan et al., 2013). 

The lymphatic system serves as a system of vessels that provide passage for 

interstitial fluid to flow from the organs and tissue to re-enter circulation through the 

subclavian vein (Udan et al., 2013). 

The vessels forming the three subsystems possess unique composition allowing for 

their distinct function. Within humans and rodents the cardiovascular system is the first 

organ formed during embryogenesis (Udan et al., 2013). Formation of the precursor 

structures of the cardiovascular system begins during the early stages of embryo 

development through a process called vasculogenesis (Galan Moya et al., 2009). Once 

formed the vascular structures may further specialize to adopt characteristics essential for 

the vessel’s physiological function within its specified organ or tissue.  

Dysregulation of endothelial cells (ECs) due to vascular injury or cellular dysfunction 

can contribute towards many pathological conditions including vascular disorders: 

atherosclerosis, peripheral artery disease, hypertension, and inflammatory disorders such as 

sepsis and inflammatory syndromes to name a few (Galley and Webster, 2004; 

Vanlandewijck et al., 2018). 

1.2 Blood vessels 

Vascular structures may display some variability in functional characteristics to allow 

for specialization within the context of their location. Despite these differences, human 

blood vessels retain the same histological organization of a single layer of ECs, with a luminal-

abluminal polarity, located on the intima of all vessels. The layer of ECs form into hollow 

cords with the abluminal side of the EC layer connected to vascular basement membrane 
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(Lammert and Axnick, 2012) and a layer mural cells, smooth muscle cells and pericytes, at 

the external side of the basement membrane (Lammert and Axnick, 2012). Once blood 

vessels have fully formed and blood flow is established, ECs exhibit features of planar cell 

polarity in response to blood flow (Lizama and Zovein, 2013). 

 The endothelium 

The endothelium is a heterogeneous and multi-functional disseminated organ which 

not only forms vascular structure but is vital in maintenance of a non-thrombogenic blood-

tissue interface responsible for regulating blood flow, vascular tone, thrombosis, 

thrombolysis, and platelet adherence (Cines et al., 1998). ECs which form the endothelium 

also function in secretory, synthetic, metabolic, and immunologic roles in addition to forming 

a semi-permeable barrier (Cines et al., 1998).  

 Growth of blood vessels 

In the healthy adult, vasculature and ECs are largely quiescent with the exception of 

during pregnancy, the menstrual cycle, and wound healing (Adams and Alitalo, 2007; Rizov 

et al., 2017). ECs may remodel their morphology, to form new vessel under pathological 

conditions, such as tissue ischemia, in order to meet the metabolic needs of the tissue (Egami 

et al., 2006).  

1.2.2.1 Vasculogenesis 

The vascular system first forms through vasculogenesis, a process initiated when 

endothelial precursor cells differentiate from blast-like bi-potential cells called angioblasts 

(Carmeliet, 2000), as depicted in figure 1.1. The ventral floor of the dorsal aorta gives rise to 

mesenchymal cells. The pluripotent mesenchymal cells differentiate into angioblasts that in 

turn differentiate into intermediate pre-ECs; cells capable of differentiating into either a 

committed haematopoietic cell line or ECs. ECs may also display plasticity to 

transdifferentiate into mesenchymal cells and intimal smooth muscle cells. Once the EC 

phenotype has been acquired, further specialisation may take place to adapt the cell to the 
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specific type and location of the vascular structure (Choi et al., 1998; Galley and Webster, 

2004). 

Forming vascular structures recruit smooth muscle expressing mural cells, such as 

vascular smooth muscle cell (VSMC) and pericytes. These cells form the smooth muscle layer 

which envelopes vascular structures on the external surfaces of the basement membrane at 

the abluminal side of the endothelium (Drake et al., 1998; Hirschi and D'Amore, 1996). The 

phenotypical features and organisation of mural cells associated with a vascular structure 

varies based on size and type of vascular structure.  
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Figure 1-2 Mechanisms of vascular growth 

During embryogenesis the primitive capillary plexus is formed through 

differentiation and expansion of angioblasts derived from the mesoderm, which assemble 

into cords, forming the beginning of vascular structures. Further remodelling, expansion, 

and recruitment of smooth muscle cells and pericytes giving rise to blood vessels and 

lymphatic vessels through the process of angiogenesis and lymphangiogenesis respectively. 

Image taken with permission from Adams & Alitalo (2007). 
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1.2.2.2 Mural cells 

Mural cells provide scaffold to vascular structures and are responsible for 

contraction and dilation of blood vessels. Mural cells directly contact ECs to co-regulate 

vascular function via paracrine signalling and direct physical contact. Direct physical contact 

between mural cells and ECs allow for mechanical signalling through contractile forces via 

junction complexes between the two cell types; which include (but are not limited to) β-

catenin-based adherent junctions, N-cadherin, cell-adhesion molecules, and extracellular 

matrix (ECM) components (Gerhardt et al., 2003; Vanlandewijck et al., 2018).  

VSMCs have been associated with larger vessels and have not been observed to 

embed into the basement membrane of vascular structures, a characteristic of pericytes 

(Gerhardt et al., 2003). Arterioles are coated with a thick and continuous layer of VSMCs and 

elastic and collagenous fibres (Cleaver and Melton, 2003; Vanlandewijck et al., 2018) that 

control contraction and relaxation of arterioles.  

Pericytes form an intermittent single cell layer over capillaries and post-capillary 

venules, and anchor to ECs through adhesion plaques. Unlike VSMC, pericytes embed into 

the basement membrane of vascular structures, allowing direct contact between pericytes 

and the endothelium. Pericytes extend longitudinal cytoplasmic projections along the length 

of blood vessels, to allow for integration of signalling along the vessel and may connect 

multiple capillaries within the vasculature (Rucker et al., 2000). Pericytes may also develop 

contacts between discontinuities in the vessel basement membrane, through peg-and-

socket contacts (Rucker et al., 2000; Vanlandewijck et al., 2018). 

 Vascular structures 

There are a number of different types of vascular structures which form the 

circulatory system, to allow for circulation of blood in tune to the beat of the heart. The 

differences in structure of each vessel type aids in the particular function required for 
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maintaining circulation of blood to and from the heart, regulation of blood pressure, 

exchange of gases and substances, and movement of immune cells.  

1.2.3.1 Arteries 

Arteries are the largest of the vascular structures and are constructed of 

concentrically arranged smooth-muscle cells, which form elastic vessel walls made to 

withstand higher blood pressures (Shepherd, 1983; Aaronson et al., 2012). Arteries possess 

three structural layers: the Tunica Adventitia, Tunica Media, and the Tunica Intima. The 

Tunica Adventitia is the outer layer of arteries and consists of connective tissues, collagen, 

and elastic fibres. The middle layer, the Tunica Media, contains the smooth muscle cells and 

elastic fibres, this layer regulates vascular contraction, relaxation, and vascular tone 

(Shepherd, 1983; Aaronson et al., 2012). The Tunica Intima is the inner most layer of the 

arteries and is comprised of ECs. The Tunica Intima lies directly in contact with the arterial 

blood flowing. A hollow lumen lies throughout the centre of the arteries, through which 

blood flows (Shepherd, 1983; Aaronson et al., 2012). The lumen of arteries are typically 

smaller than that of veins, a structural feature specialised to aid in the high pressure of blood 

flow from the heart (Shepherd, 1983; Aaronson et al., 2012).  

There are three distinct types of arteries: elastic arteries, muscular arteries, and 

Arterioles. Elastic arteries, the aorta and pulmonary artery, have thin vessel walls with a high 

level of elastin to aid in expansion and recoil of the vessels in response to the high-pressured 

flow of blood from the heart. Muscular arteries contain a smooth muscle rich wall capable 

of modifying blood flow through the vessel via contraction and relaxation of the muscular 

layer. Arterioles are the smallest of the arterial vessels which contain concentric rings of 

smooth muscle within the tunica media layer and connect blood flow from other arteries to 

capillary beds (Cleaver and Melton, 2003; Sandoo et al., 2010; Aaronson et al., 2012). 
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1.2.3.2 Veins 

Veins retain a similar structure to that of arteries with the same three layers; the 

Tunica Adventitia, Tunica Media, and the Tunica Intima (Shepherd, 1983; Aaronson et al., 

2012). However, the Tunica Media layer of veins is considerable thinner when compared to 

arteries. The cellular structure of the Tunica Media also differs between the two vascular 

sub-groups, with the intermediate layer of arteries primarily being formed by a thick layer of 

VSMCs and veins possessing an irregular covering of VSMCs and pericytes (Aaronson et al., 

2012). 

Throughout the lumen of veins also lie valves which act to prevent the backflow of 

blood through the less pressurised vascular structures (Aaronson et al., 2012). 

1.2.3.3 Capillaries 

Capillaries are small, thin vessels comprised of a single layer of flattened ECs with no 

muscular layer. There are three types of capillaries continuous, fenestrated, and 

discontinuous (Shepherd, 1983; Aaronson et al., 2012; Bennett et al., 1959). While capillaries 

do not have an adventia layer, continuous capillaries possess intermittent pericytes. 

Fenestrated capillaries possess fenestrations, or pores, which aid in movement of larger 

molecules. Discontinuous capillaries are only found in the liver. The structure formed 

between the ECs and hepatocytes creates clefts through which macromolecules and blood 

cells to pass through (Galley and Webster, 2004; Vanlandewijck et al., 2018).  

Capillaries connect arterioles to venules and facilitate passive diffusion and 

pinocytosis of nutrients and cellular wastes between the blood and the tissue cells. The 

absence of the muscular layer, thinness of the capillary walls, and distribution of intercellular 

junctions, aid in movement of substances and white blood cells between circulation and 

tissues (Galley and Webster, 2004; Vanlandewijck et al., 2018). 
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1.2.3.4 Collateral arteries 

Collateral arteries are narrow arterioles which provide circulation interconnections 

between nearby arteries or arterioles (Antoniucci et al., 2002; Schaper, 2009; Faber et al., 

2014; Simons and Eichmann, 2015). Networks of native collateral arteries function to divert 

blood flow in instances of arterial occlusion, allowing for continuation of circulation to the 

affected tissue and organ (Heil et al., 2006; Schaper, 2009; Simons and Eichmann, 2015; 

Ramo et al., 2016). Once blood flow to the collateral circulation has been initiated, sheer 

force of the blood flow drives arteriogenesis of the collateral arteries to develop into efficient 

conductance arteries (Ramo et al., 2016). The number and patterning of pre-existing 

collateral arteries prior to an occlusion greatly affects the adequacy of the diversion of blood 

flow to the affected tissue/organ (Ramo et al., 2016). 

1.2.3.5 Lymphatic vessels 

Lymphatic vessels make up the lymphatic component of the vascular system and are 

functionally and structurally unique from the blood vessel circulatory element of the vascular 

system. They are structurally unique from blood vessels, with features which aide in their 

function to uptake fluid, macromolecules, and cells. Lymphatic vessels are formed of a single 

layer of attenuated, non-fenestrated, ECs (Schmid-Schönbein, 1990; Aukland and Reed, 

1993).  

The lymphatic system serves to aid in multiple biological functions; primarily in 

regulation of fluid and fluid pressure within the interstitium, movement of fluid and 

macromolecules to and from blood circulation, as well as immunological functions involving 

movement of immune cells and antigens between tissues and lymph nodes (Pepper and 

Skobe, 2003). 
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1.3 Mechanisms of blood vessel growth 

 Sprouting angiogenesis 

Expansion and remodelling of the vascular system beyond vasculogenesis is 

propagated via angiogenesis; either through sprouts branching (as seen in figure 1.3) from 

pre-existing blood vessels (sprouting angiogenesis) or through splitting of existing vessels to 

a larger number via intussusception (Adams and Alitalo, 2007). In adults, angiogenesis occurs 

typically in response to nutrient and oxygen deprivation, tissue damage, or in response to 

aberrant cell signalling arising from pathological stimuli (Egami et al., 2006; Potente et al., 

2011). Parenchymal cells respond to hypoxia by secreting pro-angiogenic GFs such as 

vascular endothelial growth factor A (VEGFA; described in detail in section 1.3.6.1). 

During sprouting angiogenesis, quiescent ECs lining blood vessels excrete protease 

to degrade the basement membrane, break away from the vessel wall, and alter their 

morphology while they rapidly proliferate and invade the surrounding tissue to form new 

sprouts (Blanco and Gerhardt, 2013). Under pro-angiogenic signalling, ECs coordinate in a 

migratory hierarchy of leading ‘tip cells’ and trailing ‘stalk cells’ dependent upon local 

chemotactic gradients and juxtacrine Notch signalling (Jakobsson et al., 2010). At the 

angiogenic front this organization of cells is malleable, with tip cells and stalk cells frequently 

changing position (Jakobsson et al., 2010). 

VEGFA stimulation of the VEGF-receptor 2 on ECs induces a Delta-Notch signalling 

response which prompts a tip-cell phenotype (Jakobsson et al., 2010; Hellstrom et al., 2007). 

Within mammals the Notch signalling pathway regulates angiogenesis through multiple 

Notch receptors (Notch1-4) and their interactions with multiple membrane bound ligands: 

Delta-like (DLL1, 3, 4) and Jagged (Jag-12) (Lawson et al., 2002; Iruela-Arispe, 2017). VEGFA 

driven Notch receptor-ligand interaction drives proteolytic cleavage of the Notch receptor 

and release of the intracellular domain which relocates to the nucleus to function as a 
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transcription factor, binding to DNA and modulating gene expression (Lawson et al., 2002; 

Iruela-Arispe, 2017). 

Expression of Delta-like-4 (Dll4) stimulates Notch receptors on neighbouring ECs, 

initiating neighbouring cells to adopt a stalk cell morphology through suppression of VEGF-

receptor 2 production (Adair and Montani, 2010). Stalk cells display a much higher level of 

proliferation with lower migratory behaviour than that of tip cells (Adair and Montani, 2010).  

Tip-cells produce multiple filopodia at the distal end of the cord (as depicted in figure 

1.3) which probe the extracellular environment for growth cues aiding in organised and 

guided growth through detection of a gradient of pro and anti-growth signalling cues 

(Gerhardt et al., 2003; Wacker and Gerhardt, 2011b). Upon the meeting of two EC sprouts, 

the growths connect and join to create an enclosed vessel in a process termed anastomosis 

(Wacker and Gerhardt, 2011b). ECs wrap and form a polarised luminal-abluminal 

organization which initiates cord hollowing and subsequent lumenisation of the newly 

formed vessel (Wacker and Gerhardt, 2011b). 

 

 

https://www.ncbi.nlm.nih.gov/books/n/c00017isp009/glossary1/def-item/Delta-like/
https://www.ncbi.nlm.nih.gov/books/n/c00017isp009/glossary1/def-item/Notch/
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Figure 1-3 Basic schematic diagram of sprouting angiogenesis 

During sprouting angiogenesis quiescent ECs within a blood vessel (1) respond to 

binding of an extracellular ligand or cue to a transmembrane receptor (2). This initiates tip 

cell selection and filopodia production at the leading edge of the tip cell (3). Intracellular 

signalling event within the tip cell convey a signal to adjacent cells, prompting a stalk 

phenotype in the neighbouring cells (4). Stalk cells rapidly proliferate to establish an 

elongated cord of cells (5). Depletion of GF (6; or contact with other growing cords) is 

hypothesized to results in extension of lateral filopodia (7). Luminal-abluminal polarity is 

established within ECs of the cell cord, initiating lumenisation. 
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 Endothelial cell filopodia 

Filopodia are actin-rich cytoplasmic protrusions found on actively motile cells in 3D 

spaces, they are also found in ECs and were initially observed on tip cells. EC filopodia probe 

the surrounding environment for chemical and mechanical signals and direct migration 

towards chemotactic signals such as VEGF. The interaction between filopodia and the ECM 

produces points of cell-ECM attachment allowing generation of tension necessary for 

propulsion towards the direction of migration (Blanco and Gerhardt, 2013). Interactions 

between filopodia and chemotactic cues promote rapid extension and directional growth of 

the vessel sprouts while guiding correct patterning of the newly forming vessels (DeLisser, 

2011).  

Recently filopodia have been described at lateral sites (Abraham et al., 2015) which 

develop along a tubule and give rise to lateral sprouts (DeLisser, 2011). Lateral filopodia are 

thus required for the dynamic remodelling of newly forming vessels and correct patterning 

prior to lumen formation (DeLisser, 2011). Once lateral junctions between ECs establish, ECs 

may polarize and initiate lumen formation. The formation of filopodia requires changes of 

the actin cytoskeleton with rapid F-actin polymerisation proceeded by actin contraction 

within the projections (Blanco and Gerhardt, 2013).  

While filopodia promote sprouting both in vivo and in 3D tissue culture models 

(DeLisser, 2011; Hetheridge et al., 2011), lamellipodia have been shown to promote EC 

migration in a 2D substratum. Interestingly when filopodia are inhibited, lamellipodia-like 

structures may promote the growth of blood vessels in vivo (Gerhardt et al., 2003). 

 Lumen Formation 

Once the blood vessels have expanded through the process of filopodia-driven 

sprout formation, the blood vessels have to form enclosed tubes to allow blood flow and 

gain functionality. During angiogenic sprouting, ECs migrate as cords that form a hollow 

interior, or lumen, as they grow through and invade the surrounding matrix (Iruela-Arispe 
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and Davis, 2009). The process of lumen formation is complex and the cellular and molecular 

mechanisms are only partially understood. Multiple mechanisms have been described, 

including cord hollowing, cell wrapping, cell hollowing, budding, and cavitation (Lammert 

and Axnick, 2012). Of those mechanisms cell and cord hollowing are those that have been 

investigated in greater detail. Cell hollowing entails formation of an intracellular vacuole 

which expands through neighbouring ECs in a cord, giving rise to the lumen (Lizama and 

Zovein, 2013). Cord hollowing involves either the invagination of unicellular membranes; a 

hollow centre forming between multicellular cords (Iruela-Arispe and Davis, 2009); or 

formation of a lumen at sites of lateral EC-cell adhesions (Strilic et al., 2009).  

Before lumen formation may take place, ECs must acquire polarity through 

recruitment of proteins to the apical membrane. One such protein is the glycoprotein 

podocalyxin, the accumulation of which at the apical domain marks initiation of the process 

of lumen formation (Sigurbjornsdottir et al., 2014). This establishment of luminal-abluminal 

polarity results in accumulation of a negative charge in the apical surface and opening of the 

lumen via electrostatic repulsion (Sigurbjornsdottir et al., 2014; Debruin et al., 2014; Gebala 

et al., 2016). Cord hollowing has been more widely accepted as the process by which lumens 

form in vivo, although the latest studies in zebrafish show that within intersegmental vessels 

the apical membrane expands through both laterally adjacent, and single cells to form the 

lumen (Gebala et al., 2016). 

 Blood vessel elongation 

During angiogenesis, growth of blood vessels proceeds not only through 

proliferation of ECs and development of new sprouts but also through elongation of a 

developing tubule that fuses with other growing or established blood vessel. Elongation may 

take place at the single cell level, or results from proliferation of cells arranged in a cord 

(Gebala et al., 2016). Cell elongation occurs through internally driven remodelling of the 

cytoskeleton which allows cells to grow in a directional fashion (Gebala et al., 2016). 
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Interestingly, brain microvascular cells resist cell elongation and minimize lateral cell-cell 

junctions in response to curvature and sheer stress, resulting in the characteristic radial 

arrangement of cells, as opposed to axial, within the brain micro-vessels (Merks et al., 2006). 

Therefore, the ability of ECs to elongate can have profound effects on the structure and 

function of blood vessels (Merks et al., 2006). Little is known about the molecular 

mechanisms underlying blood vessel elongation, at the single or multi-cellular level. Within 

a 3D organotypic angiogenesis model tubules stimulated with the GF fibroblast growth factor 

(FGF) develop an elongated phenotype (Scarcia M, unpublished data), however it is not 

known whether this is due to cells becoming more elongated, or that cells proliferate more 

at the axial orientation. However, other studies have described FGF as inducing both 

proliferation of ECs and elongation of individual cells (Lee and Kay, 2006; Ornitz and Itoh, 

2015). 

 Arteriogenesis 

Arteriogenesis describes a mechanism through which pre-existing collateral 

arterioles (described in 1.2.3.4) remodel from narrow vessels with little to no blood flow to 

become large conducting arteries, in response to sheer stress following occlusion of a 

secondary supply blood vessel (Antoniucci et al., 2002; Schaper, 2009; Faber et al., 2014). 

Unlike angiogenesis, arteriogenesis is initiated by mechanical forces and has thus far been 

shown to occur without stimulation of hypoxic factors (Heil et al., 2006; Grant and Karsan, 

2018). Sheer stress has been seen to drive monocyte recruitment to the collateral arteries, 

leading to monocyte and endothelial secretion of GFs cytokines and proteases; driving matrix 

degradation, proliferation of smooth muscle, and enlargement of the collateral arteries 

(Ramo et al., 2016). 

 Growth factor signalling  

Chemical stimulation which drives the growth of blood vessels integrates the activity 

of a diverse repertoire of proteins including GF signalling molecules, cell surface receptors, 
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integrins, and prostaglandins, just to name a few of the many components driving the 

complex process of blood vessel growth (Ucuzian et al., 2010; Simons et al., 2016). The GF 

signalling pathways, VEGF and FGF, are two pathways that have been described to drive 

angiogenesis in similar but unique ways. Canonical VEGF signalling has been well described 

in the context of embryogenesis and development, in addition to the vascular response to 

hypoxia (Ucuzian et al., 2010; Simons et al., 2016). VEGF signalling has been implicated in 

driving tip/stalk cell selection. Canonical FGF signalling has been strongly implicated in 

response to wound healing and drives a highly proliferative endothelial phenotype (Ornitz 

and Itoh, 2015). This section will overview the two signalling pathways in the context of 

vascular biology and pathologies related to dysregulation of the two pathways. 
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Figure 1-4 Schematic diagram of canonical VEGF signalling mechanisms in ECs 

Binding of a VEGF ligand leading to homodimerisation of VEGF receptors driving 

intracellular tyrosine kinase activity of the receptor. Activated VEGF receptor leads to 

activation of signalling pathways Src, Erk, Rho GTPase, PI3K/AKT, and P38/MAPK. 
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1.3.6.1 Vascular endothelial growth factor 

VEGF signalling is complex, with the potential to stimulate multiple cell surface 

receptors and subsequent activation and integration of a vast number of cell signalling 

pathways. For the aforementioned reasons, only VEGF characteristics and signalling 

components relevant to this report and the primary VEGF signalling components shall be 

discussed in detail within this introduction. 

VEGFs are a sub-group of the platelet-derived GF family of cysteine-knot GFs 

(Ucuzian et al., 2010; Simons et al., 2016). VEGF is an EC mitogen that acts as a major 

regulator of blood vessel formation through vasculogenesis, angiogenesis, and 

arteriogenesis, in addition to maintenance and function of vascular structures (Ucuzian et 

al., 2010; Simons et al., 2016). 

During sprouting angiogenesis VEGF binds to the VEGF receptor of the ECs and 

controls directional vascular growth through a chemotactic gradient, created via VEGF 

secreted by oxygen deprived cells (Gerhardt et al., 2003). Both VEGF and the VEGFR 

expression are upregulated within angiogenic sprout tip cells, with VEGF antibody inhibition 

leading to significant decrease in micro-vessel sprouting (Gerhardt et al., 2003; Brown et al., 

1996b). 

There are several variants of VEGF, vertebrate VEGFs A–D, placenta GF (PlGF), 

Parapoxvirus VEGFE and snake venom VEGFF. Each variant differs in their affinity for the 

different VEGF receptor subtype, of which there are 3, as well as their ability to bind co-

receptors and initiate homodimerisation/heterodimerisation of receptor complex formation 

(Simons et al., 2016). The type of VEGF molecule driving a signalling response dictates the 

activity and complex formation of the target receptor, thus regulating the downstream 

cellular response to binding of the VEGF ligand (Simons et al., 2016). 

VEGFA is the classical VEGFR activating ligand, and is often referred to simply as 

VEGF. VEGFA has been strongly characterised as a primary component in proliferation, 
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survival, and migration of ECs (Simons et al., 2016). VEGFA has multiple isoforms, each 

resulting from alternative splicing of the same gene product. Each isoform varies in their 

ability to activate the VEGF receptor, due to the differences in their affinity for binding co-

receptors, such as neuropilin (NRP) family members NRP1 and NRP2 and to heparin sulfate 

proteoglycans (HSPGs) (Simons et al., 2016). 

VEGF receptors act as receptor tyrosine kinases and binding of a VEGF ligand leads 

to homodimerisation of VEGF receptors driving intracellular tyrosine kinase activity of the 

receptor (as is seen in figure 1.4). Activated VEGF receptor leads to activation of signalling 

pathways Src, Erk, Rho GTPase, PI3K/AKT, and P38/MAPK (Iruela-Arispe, 2017). 

Each sub-type of the VEGFR greatly differ in effect following ligand binding (Iruela-

Arispe, 2017). There are numerous VEGF receptor subtypes with VEGFR1, VEGFR2, and 

VEGFR3 being the best characterised. VEGFR1 is a negative regulator of angiogenesis which 

is expressed by blood vascular ECs, macrophages, trophoblasts, tumour cells, and other cell 

types (Wu et al., 2006; Tsuchida et al., 2008) and can exist in a membrane bound or secreted 

form. VEGFA, VEGFB, and PIGF are the known canonical ligands which bind to VEGFR1.  

VEGF binds to VEGFR1 with a higher affinity than to VEGFR2, however VEGFR1 has 

not been seen to activate a downstream signalling response and is therefore assumed to act 

as a decoy receptor, potentially sequestering free VEGF molecules (Hiratsuka et al., 1998; 

Iruela-Arispe, 2017). Constitutive knockout of VEGFR1 in a murine model is embryonic lethal 

on day E9 due to excessive EC overgrowth (Fong et al., 1995). VEGFR2 is expressed on blood 

vascular ECs and to a lesser degree on the surface of lymphatic vascular ECs (Simons et al., 

2016). VEGFR2 is known as the primary endothelial receptor responsible for conferring the 

mitogenic signal induced by VEGF. VEGFR2 is canonically activated by VEGFA and processed 

VEGFC and VEGFD. VEGFR2 may also be non-canonically activated via multiple mechanisms: 

Shear stress due to changes in blood flow; the bone morphogenic protein antagonist 

gremlins, which has been seen to bind VEGFR2 with a similar affinity of VEGF and is able to 
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stimulate similar downstream activity (Mitola et al., 2010); Galectin-1, a β-galactoside-

binding protein, which prompts phosphorylation of VEGFR2 extending cell surface retention 

of the receptor, with inhibition of galectin-1 greatly reducing tumour associated 

angiogenesis; Lactate has been observed to upregulate expression of VEGF and VEGFR2 

(Kumar et al., 2007) as well as upregulating the ligands which activate the latter (Ruan and 

Kazlauskas, 2013); Low density lipoproteins (LDL) may negatively affect VEGFR2 activity, with 

presence of LDL leading to a reduced endothelial response to VEGFA and a decrease in 

VEGFR2 expression. Unlike VEGFR1, constitutive VEGFR2 deletion in a murine model is 

embryonic lethal on day E9 due to insufficient EC lineage commitment (Simons et al., 2016; 

Sakurai et al., 2005; Takahashi et al., 2001). 

1.3.6.2 VEGFR2 functions and pathways activated 

Of all receptors capable of binding VEGF, VEGFR2 has the second highest binding 

affinity for VEGF, second only to VEGFR1. While VEGF binds to VEGFR1 with a significantly 

higher affinity than to VEGFR2, the tyrosine kinase (TK) activity of VEGF bound VEGFR2 is 10-

fold stronger than the TK activity of VEGF stimulated VEGFR1. Activated VEGFR2 transduces 

a strong positive angiogenic signal to the EC (Shalaby et al., 1995) indicating VEGF-VEGFR2 

as the primary signal transducer of angiogenesis stimulation (Shibuya, 2013). 

Endothelial VEGFR2 activation stimulates a multitude of intracellular signalling 

pathways, some of which have been better characterised than others. Activated VEGFR2 

preferentially signals to phospholipase Cγ (PLCγ), protein kinase C (PKC) and p42/44 mitogen-

activated protein kinases (MAPK) (Shibuya, 2013) and is essential for vasculogenesis during 

embryogenesis (Sakurai et al., 2005) and EC proliferation (Xia et al., 1996; Takahashi and 

Shibuya, 1997; Takahashi et al., 1999). The VEGFR2-PLC-γ-PKC pathway regulates EC 

proliferation and migration through activation of the protein kinase D (PKD)-histone-

deacetylase 7 (HDAC7) pathway (Wang et al., 2008). Sase et al. (2009) demonstrated that 

differentiation of endothelial stem cells to ECs strongly depends on the VEGFR2- PLC-γ 
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pathway, while zebrafish mutants of the PLC-γ1 gene results in lethal deficiency of 

arteriogenesis (Sase et al., 2009; Lawson et al., 2002).  

VEGFR2 activation controls vaso-motion, barrier function, and cell survival through 

regulation of phosphatidylinositol-3-kinase (PI3K)/Akt and mammalian target of rapamycin 

(mTOR) signalling pathways (Zhuang et al., 2013) while also partaking in regulation of von 

Willebrand factor (vWF) release from ECs, an essential component of the coagulation system 

(Xiong et al., 2009). Activation of the VEGFR2 also mediates tip cell selection in initiation of 

sprouting angiogenesis, leading to modulation of Notch signalling and initiation of the stalk 

cell phenotype of adjacent ECs which proliferate along a newly forming sprout. This 

regulation is a characteristic not described in an FGF signalling context and demonstrates the 

clear differences the two signalling pathways drive during angiogenesis (Xiong et al., 2009). 

Activated VEGFR2 has also been described to regulate signalling via the Rho family 

of small GTPases driving changes to the actin cytoskeleton; activity necessary for regulation 

of cell shape, polarity, junction conformation, migration, and cellular growth in response to 

growth signalling cues (Rodrigues and Granger, 2015). Luke Hoeppner et al (2015) described 

how in vitro VEGF-VEGFR2 driven activation for the small RhoGTPase RhoC promotes a 

proliferating and a migratory phenotype. RhoC binds to and stabilises nuclear localised β-

catenin; prompting an increase in expression of the cell cycle intermediate cyclin D. 

However, RhoC was also described to inhibit migration in a MAPKs and myosin light chain 2 

dependent manner and downregulate the PLCγ calcium (Ca2+) endothelial nitric oxide 

synthase (eNOS) cascade, leading to decreased vascular permeability (Hoeppner et al., 

2015). 

During sprouting angiogenesis VEGF-VEGFR2 driven activation of the small Rho 

family GTPases ras-related C3 botulinum toxin substrate (RAC) and cell division control 

protein 42 homolog (CDC42) drive directional migration and correct vascular patterning via 

regulation of the actin polymerisation required for lateral filopodia production, along cords 
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of newly forming vascular sprouts, in addition to lumen formation of the newly forming 

vessels (Abraham et al., 2015).  

VEGFR2 has also been indicated in control of many other signalling pathways 

including: Src, p38 MAPK, STATs and G protein-coupled receptor (GPCR)-dependent 

signalling (Simons et al., 2016). 

VEGFR3 is highly expressed on the cell surface of lymphatic ECs and blood vascular 

ECs (Simons et al., 2016). VEGFR3 binds and transduces signals from the ligands VEGFC and 

VEGFD. VEGFR3 may also be non-canonically activated by sheer stress (Byzova et al., 2000; 

West et al., 2012). VEGFR3 constitutive deletion within a murine model is embryonically 

lethal at day E9.5 as a result of vascular remodelling defects (Simons et al., 2016). 
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Figure 1-5 Schematic diagram of canonical FGF signalling mechanisms in ECs 

Binding of an FGF ligand leading to homodimerisation of FGF receptors drives 

intracellular tyrosine kinase activity of the receptor. Activated FGF receptor stimulates 

activation of signalling pathways RAC/MAP kinase, PI3K/AKT, Rho GTPase RAC1 and CDC42, 

PLCγ/PKC, and STAT 1,3,4.  
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1.3.6.3 Fibroblast Growth Factor 

The FGF family of GFs and their receptors have been implicated in many 

developmental and post developmental processes affecting multiple tissues and organs 

throughout the body. During embryogenesis and development, FGF signalling regulates 

tissue patterning, organogenesis, branching morphogenesis, and limb development. Within 

the vascular system, FGF acts as a potent endothelial mitogen (Gospodarowicz et al., 1977; 

Maciag et al., 1981; Thornton et al., 1983) which is stored within the vascular basement 

membrane and acts as an angiogenic factor during vascular development and progression 

(Ucuzian et al., 2010; Javerzat et al., 2002).  

There are four FGF receptors (FGFR), with each subtype differing in kinase domain 

and ligand binding affinity (Trueb et al., 2013; Beenken and Mohammadi, 2009). As depicted 

in figure 1.5, binding of an FGF ligand leading to homodimerised FGF receptor molecules 

drives intracellular TK activity of the receptor. Activated FGFR stimulates activation of 

signalling pathways RAC/MAP kinase, PI3K/AKT, Rho GTPase RAC1 and CDC42, PLCγ/PKC, 

and STAT 1,3,4 (Beenken and Mohammadi, 2009; Dailey et al., 2005).  

Stimulation of FGFRs primarily leads to intracellular regulation of two main 

intracellular substrates; PLCγ1 and FGFR substrate 2 (FRS2; (Beenken and Mohammadi, 

2009)). Phosphorylation of FGFRs leads to PLCγ phosphorylation and activation. FRS2 

associates with a juxtamembrane region of FGFR to drive constitutive activation of the FRS2, 

inducing activation of the Ras–mitogen-activated protein kinase (MAPK) and 

phosphoinositide 3-kinase–Akt signalling pathways (Beenken and Mohammadi, 2009; Dailey 

et al., 2005).  

FGF ligands also signal through the low-affinity heparin sulphate transmembrane 

proteoglycan, syndecan 4 (Kitamura et al., 2008). FGF stimulation of S4 independently of FGF 

receptors is due to the receptor’s ability to activate PKC (Horowitz et al., 1999; Partovian et 
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al., 2008). FGF activated S4 associates with a ubiquitous cytoplasmic protein, synectin (Gao 

et al., 2000). 

The family of FGFs consists of 22 structurally similar signalling ligands, FGF1 -FGF23, 

of which 18 eighteen (FGF1-FGF10 and FGF15-FGF22) have been identified as ligands capable 

of binding to FGF receptor tyrosine kinases (Smallwood et al., 1996; Olsen et al., 2003). 

Similarly to VEGF, FGF proteins also possess heparin binding affinity (Shing et al., 1984). Due 

to the vast and varied activity of the FGF family of ligands and receptors, only FGF 

characteristics and signalling components relevant to this report and the primary FGF 

signalling components shall be discussed in detail within this introduction.  

The FGF ligands FGF1 and FGF2, regulate vascular tone and thus blood pressure 

(Cuevas et al., 1991) and have been implicated in regulating NOS activity (Cuevas et al., 

1996). Mice with FGF1 or FGF2 depletion are viable with no known defects and maintain 

normal vascularization (Miller et al., 2000) potentially due to redundancy, or action of 

alternative angiogenic GFs in their absence. 

FGF1 is capable of binding to all FGF-receptor subtypes, a characteristic unique to 

FGF1. FGF1 is a potent angiogenic mitogen (Blaber et al., 1996) under the condition of 

hypoxia, and is able to drive the FGF1 proliferation and differentiation of the endothelial and 

smooth muscle cells necessary for construction of an arterial vessel (Stegmann, 1998; 

Khurana and Simons, 2003). FGF1 has been implicated in driving a protective response in 

cardiac ischemia, with higher levels of FGF1 found within pericardial fluid following an 

ischemic cardiac event (Iwakura et al., 2000). FGF1 treatment within cardiovascular disorders 

have also demonstrated FGF1 function in collateral artery growth, capillary proliferation 

(Schumacher et al., 1998) and in improving perfusion within the lower extremities following 

ischemia (Comerota et al., 2002; Nikol et al., 2008). FGF1 has also been implicated in nerve 

repair following injuries (Cheng et al., 1996; Takahashi and Shibuya, 1997; Lin et al., 2005; 
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Cheng et al., 2004). In vitro, FGF1 induces microvascular branching within cultured ECs (Uriel 

et al., 2006).  

During wound healing FGF1 and FGF2 stimulate the proliferation of fibroblasts and 

ECs, necessary for angiogenesis, and developing granulation tissue (Ornitz and Itoh, 2001). 

FGF2 plays a role in a broad spectrum of processes, regulating multiple mitogenic 

and cell survival activities (Ornitz and Itoh, 2001). FGF2 is a more potent stimulator of 

angiogenesis than either VEGF or PDGF (but not FGF1) and promotes angiogenesis through 

stimulating proliferation and physical organization of ECs into tube-like structures (Ornitz 

and Itoh, 2001).  

FGF2 function has been implicated in embryonic development, morphogenesis, 

tissue repair, and functions in regulating migration and proliferation of ECs, mitogenesis of 

smooth muscle cells and fibroblasts, anti-apoptotic responses, adipogenesis, and 

inflammation (Ware and Simons, 1997; Yanagisawa-Miwa et al., 1992; Scholz et al., 2001; 

Hutley et al., 2004; Keller et al., 2008). 

In vivo, FGF2 plays a role in migration and proliferation of ECs (Ware and Simons, 

1997), and has been implicated in the development of large collateral vessels with adventitia 

(Scholz et al., 2001). Use of FGF2 as a treatment following cardiac ischemia has been 

demonstrated to reduce the size of ischemic regions in the myocardium, reduce the 

frequency of angina (Unger et al., 2000; Laham et al., 1999), and has also been established 

to improves peripheral circulation of people suffering from claudication; pain within the 

lower limbs due to obstruction of blood flow (Lazarous et al., 2000). FGF2 inhibition in 

tumours has been shown to impede vascularisation (Wang and Becker, 1997) but does not 

impact on microvessel density in tumours (Presta et al., 2005). 

FGF1 and FGF2 induced vascular growth develops features distinctly different when 

compare to VEGF induced vascular growth; with a marked reduction in fenestrations, and 

https://www.nature.com/articles/nrd2792#ref83
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thus permeability, of blood vessels produced under FGF driven vascular growth (Cao et al., 

2004; Hori et al., 2017). 

1.3.6.4 FGF stimulation of RhoG, RAC1, and CDC42 activity 

FGF2 binding to syndecan-4 drives RAC1 activation in a RhoG dependent mechanism 

(these Rho GTPases are described in detail in section 1.4), through initiating release of RhoG 

from an inhibitory ternary protein complex S4–synectin–RhoGDI1 (a RhoGTPase inhibitory 

protein described in section 1.4). FGF stimulation of RhoG activation of RAC1 leads to the 

activation of PKC in rat fat pad ECs (Elfenbein et al., 2009). 

FGF2 stimulated endothelial activation of PI3K induces the reorganization of actin 

cytoskeleton to the cortex, and stimulation of changes in cell morphology, to induce and 

elongated phenotype in a Rho GTPase dependent manner (Lee and Kay, 2006). 

Jeong Goo Lee and EunDuck P. Kay (2006) demonstrated that FGF2 stimulation of 

cultured corneal ECs, a type of non-vascular ECs, drives formation of protrusive processes in 

a CDC42/RAC1 dependent manner, in parallel with Rho inactivation. All FGF2 driven Rho 

GTPase regulation was observed to be blocked through administration of a PI 3-kinase 

inhibitor, LY294002.  

RAC1 and CDC42 have also been demonstrated to be required for internalisation of 

FGF2 in complex with syndecan-4 on the surface of smooth muscle cells in vitro (Tkachenko 

et al., 2004). FGF2 bound syndecan-4 interacts with dextran during endocytosis of the 

complex. In vitro dominant negative RAC1 within smooth muscle cells blocks internalisation 

of FGF2 and syndecan-4. Smooth muscle cells with dominant-negative CDC42 blocked 

endocytosis of FGF2, syndecan-4 and dextran (Tkachenko et al., 2004).  

With consideration to the literature it can thus be considered that FGF signalling in 

angiogenesis drives EC proliferation and elongation during wound healing. The FGF 

stimulation of EC elongation occurs in a RAC1 and CDC42 specific context. As DOCK4 is an 
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activator of RAC1, DOCK4 may serve as a potential component in conferring the cellular 

response to FGF.  

 Peripheral artery disease 

Peripheral artery disease (PAD) describes a pathologically driven reduction in blood 

flow to the lower extremities and, within the Western world, is a predominant cause of 

mortality (Ferraro et al., 2010; Rissanen et al., 2001). In severe cases, PAD may manifest as 

critical limb ischemia (CLI), which often results in a requirement for limb amputation. Limb 

ischemia has been attributed to insufficient neovascularisation following blood vessel 

occlusion (Carmeliet, 2003). While patients suffering from PAD may receive physical therapy 

(Gardner and Poehlman, 1995; Robeer et al., 1998), treatment is aimed to reduce underlying 

pathological instigators of PAD (i.e. atherosclerosis), or surgical procedures to introduce a 

catheter or stimulate re-vascularisation (Norgren et al., 2007). Despite the use of these 

interventions there is currently no effective treatments for CLI (Aviles et al., 2003).   

FGF signalling ligands and receptors have been indicated as critical for 

neovascularisation following injury and have been indicated as potential therapeutics for 

treating CLI (Ferraro et al., 2010; Bobek et al., 2006).  

Sunday S. Oladipupo et al (2014) utilised both FGFR1 and FGFR2 deficient mice to 

demonstrate that FGF signalling via either of the FGFR1 or FGFR2 TKs is not required for 

embryonic vascular development or maintenance of vascular integrity under homeostatic 

conditions. However, depletion of FGFR1/2 led to impairment of neovascularisation 

following injury to the skin or cornea. Analysis of post-injured murine skin samples indicated 

a heightened level of FGF2, VEGF, and PIGF, this finding was attributed to disruption of 

feedback mechanisms regulating levels of gene expression. This finding indicates FGF 

signalling through the FGFR1/2 primarily functions within neovascularisation during wound 

healing.  
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Bernadette Ferraro et al. (2010) found electroporation-mediated intradermal 

delivery of plasmid FGF2 (pFGFE+) treatment of hind limb ischemia (HLI) in rats, following 

occlusion of the femoral artery, was observed to significantly increase blood flow to the 

affected hind limb (Ferraro et al., 2010). This study supported the earlier work of Fujii, et al. 

(2008) which demonstrated that intramuscular injection of an FGF2 expressing plasmid 

greatly enhanced hind limb perfusion to an ischemic limb via VEGF driven enhancement of 

placental GF signalling (Fujii et al., 2008). Together these findings implicate FGF as an 

important mediator of the vascular response to tissue ischemia. Further, understanding the 

mechanisms involved in regulating downstream vascular signalling events activated by FGF 

signalling may lend insight into potential therapeutic targets for treatment of pathological 

peripheral ischemia.  

1.4 The Rho family of small GTPases 

The Ras homolog (Rho) family of low molecular weight proteins form a distinct group 

of proteins within the large Ras superfamily of regulatory guanine tri-phosphate (GTP) 

hydrolases (Sadok and Marshall, 2014). In parallel with other GTPase proteins, each family 

member possesses a conserved 20kDa GTP-binding domain (Sadok and Marshall, 2014). 

Activation of Rho GTPases arises through alternation in binding of GTP/GDP (guanine di-

phosphate) inducing a switch-like control mechanism in activating or deactivating the Rho 

GTPase respectively, as is seen in figure 1.6 (Cherfils and Zeghouf, 2013). Once activated, Rho 

GTPases modulate multiple downstream targets that are involved in the organisation of the 

actin cytoskeleton and the microtubule network. 

Guanine nucleotide exchange factors (GEFs) induce activation of GTPases through 

release of GDP enabling binding of GTP (Cherfils and Zeghouf, 2013). There are two distinct 

groups of Rho GEFs, both of which have GDP exchange activities but no sequence homology. 

Diffuse B-cell lymphoma (Dbl)-family GEFs mediate nucleotide exchange through a Dbl 
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homology-pleckstrin homology (DH-PH) domain (Cherfils and Zeghouf, 2013). The PH domain 

can be auto inhibitory and also permits binding to phospholipids allowing for localisation at 

the plasma membrane (Meller et al., 2008; Sadok and Marshall, 2014). 

The DOCK180 family make up the second group of Rho GEFs. DOCK180 proteins 

possess DOCK homology region (DHR) 1 and 2 domains. The DHR2 domain controls 

nucleotide exchange, while the DHR1 domain is thought to control plasma membrane 

localisation (Cote and Vuori, 2007; Patel et al., 2011). The majority of DOCK180 proteins lack 

a PH domain with the exception of three members: DOCK9, DOCK10, and DOCK11 (Meller et 

al., 2008). DOCK1 proteins possess an SH3 domain (SH3 domains are described in section 

1.4.6.4) capable of binding adaptor proteins containing a proline-rich motifs such as ELMO 

(Patel et al., 2011). GEF proteins will be described in more detail in section 1.4.6.  



32 

Alternation in binding of the Rho GTPase to GTP/ or GDP induces a switch-like control 

mechanism in activating or deactivating the Rho GTPase respectively. Once activated Rho 

GTPases modulate multiple downstream targets that are involved in the organisation of the 

actin cytoskeleton and the microtubule network. GEFs induce activation of GTPases through 

mediating release of GDP enabling the binding of GTP. GAPs drive inactivation of Rho-

GTPases via stimulation of GTP hydrolysis. GAPs catalyse the intrinsic GTPase activity of Rho 

proteins that hydrolyses GTP to GDP thus leading to inactivation of the Rho protein. 

 

 

 

 

 

 

Figure 1-6 Schematic diagram of RAC1 activation and inactivation 
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GTPase activating proteins (GAPs) drive inactivation of Rho-GTPases via stimulation 

of GTP hydrolysis (Sadok and Marshall, 2014). Rho guanine nucleotide dissociation inhibitors 

(GDIs) are also capable of regulating Rho-GTPase activity through binding to the C-terminal 

prenyl group, and retaining the GTPase in the cytoplasm (Sadok and Marshall, 2014; Etienne-

Manneville and Hall, 2002). Interestingly, the Rho GAP, RhoGDI 1, acts as a chaperone to 

multiple Rho proteins, acting to facilitate correct folding and prevent ubiquitination and 

degradation (Etienne-Manneville and Hall, 2002). 

It must also be noted that atypical Rho-GTPase proteins remain continually bound 

to a GTP molecule, effectively rendering the protein permanently activated yet under the 

control of alternative mechanism (Sadok and Marshall, 2014). 

The switch-like control mechanisms of the Rho-GTPase proteins enables integration 

of a fast acting and local stimulus. The existence of over 70 GEFs and 80 GAPs, which have 

thus far been identified (Sadok and Marshall, 2014; Hall, 2012), allows for diverse and 

complex fine tuning of Rho GTPase protein activation and localisation. The extensive 

repertoire of GEFs, GAPs, and GDIs lend to the Rho GTPase capacity to modulate and 

integrate multiple signals and their involvement in numerous cellular responses. 

Multiple signalling transduction pathways (MAPK, PI3K, PLCγ, and Rho-family of 

small GTPase) have been noted to regulate the dynamic plasticity of ECs (Etienne-Manneville 

and Hall, 2002). Of the many signalling molecules involved, the Rho family of small GTPases 

have been found to be integral in transmitting extracellular stimuli and converting them to 

cellular responses during angiogenesis (Etienne-Manneville and Hall, 2002). In ECs, Rho-

GTPases are primarily essential in regulating actin cytoskeletal dynamics thereby controlling 

cell migration, adhesion to the ECM, and lumen formation. They are also important in cell 

polarity, maintenance of endothelial barrier integrity, and may influence angiogenic 

metabolism, transcription factor activity, and transportation pathways as reviewed in 

Etienne-Manneville & Hall (2002). 
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 Actin cytoskeleton  

The cytoskeleton of a cell is a network of fibrous elements found within the 

cytoplasm which provides morphological diversity, cellular structure, and migratory 

capabilities. The cytoskeleton is comprised of microtubules, actin microfilaments, and 

intermediate filaments (Fletcher & Mullins, 2010). Networks of highly dynamic actin 

filaments are typically found beneath the cell cortex and consist of globular proteins (G-actin) 

assembled into long double helix filaments (F-actin; (Fletcher and Mullins, 2010)).  

Actin filament remodelling is dynamic and tightly regulated through complex 

mechanisms. Growth of actin filaments occurs through addition of G-actin monomers onto 

either the fast growing barbed end of the F-actin filaments, or the pointed slow growth end 

of F-actin filaments, via polymerization (Fletcher and Mullins, 2010). Depolymerisation 

occurs through cleaving of G-actin from either end of the F-actin filaments (Holmes et al., 

1990; Oda and Maéda, 2010). Existing actin filaments are maintained in a caped state, with 

uncapping and nucleation of the barbed end required for initiation of polymerisation. Three 

major classes of actin nucleators have been identified: the Arp2/3 complex, formins, and 

tandem actin-binding domain nucleators (Weston et al., 2012). 

Nucleation-promoting factors (NPFs) of the Wiskott–Aldrich syndrome protein 

(WASP)/WASP-family verprolin-homologous protein (WAVE) family activates and binds the 

F-actin bound Arp2/3 complex in conjunction with also binding G-actin monomers 

(Chesarone and Goode, 2009). This complex formation initiates creation of a nucleation core 

prompting actin nucleation and polymerisation of a new actin filament from a pre-existing 

actin filaments (Chesarone and Goode, 2009). The Arp2/3 complex also catalyses the 

production of branched F-actin filaments via increasing the number of barbed ends through 

binding to the side of filaments at the pointed end, forming the base of a new branch (Egile 

et al., 2005). 
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The Formin family of proteins also bind to the barbed ends of actin filaments to 

prompt the formation of linear actin filaments (Chesarone and Goode, 2009).  

Cofilin is an actin binding protein capable of initiating actin nucleation via 

depolymerisation of actin filaments. Cofilin cleaves actin monomers from actin filaments, 

creating barbed ends aiding nucleation and actin polymerisation (Ichetovkin et al., 2002; 

Andrianantoandro et al., 2006). Gelsolin also drives depolymerisation of F-actin and 

increases the number of free pointed ends, with a considerably higher binding affinity than 

that of cofilin (Ressad et al., 1998). 

The actin binding capping protein blocks actin polymerisation, terminating filament 

elongation, through binding to the F-actin barbed ends (Caldwell et al., 1989; Cooper and 

Pollard, 1985; Jo et al., 2015). 

 RhoA, RAC1, and CDC42 

Of the 20 known Rho family members, member A (RhoA), RAC, and CDC42 have been 

the most extensively studied, with these three considered to be hallmark family members 

(Sadok and Marshall, 2014). These three proteins have been noted through numerous 

studies to each regulate different aspects of cell shape changes through interactions with 

the cytoskeleton (Sadok and Marshall, 2014). CDC42 and RAC1 may regulate activation of 

one another, dependent on the signalling context, whereas RAC1 and RhoA often act in 

opposition (Machacek et al., 2009). The three canonical Rho GTPases RhoA, RAC1 and CDC42 

act in co-ordination with one another to regulate cytoskeleton dynamics.  

Within fibroblasts, the three Rho GTPases have been observed to fluctuate in activity 

within sub-minute times of one another and at a micro-meter length scales apart (Martin et 

al., 2016). RAC and/or CDC42 influence migration in distinctly different ways despite sharing 

some common GEF activators, indicating that RAC and CDC42 are activated within different 

sub-cellular locations simultaneously while acting upon distinctly different downstream 

targets (Cook et al., 2013). The mechanisms occurring downstream of each Rho-GTPase may 
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differ greatly dependent on the proteins through which they interact and their localisation 

within the cell (Cook et al., 2013). 

1.4.2.1 RhoA 

In the most basic sense, RhoA drives bundling of actin filaments into contractile 

stress fibers, increases cell contractility, and initiates assembly of focal adhesions. RhoA is 

most commonly recognised as the Rho-GTPase responsible for inducing contractility at the 

trailing edge of a migrating cell in 2-D motility. However, RhoA has also been implicated in 

events occurring at the leading edge of migrating cells (Wacker and Gerhardt, 2011b). 

There are multiple recognised mechanisms through which RhoA promotes EC 

migration. RhoA activation of the downstream target ROCK is the most studied activity of 

RhoA (Wacker and Gerhardt, 2011b). RhoA-ROCK signalling enables actomyosin contractility 

through phosphorylation of myosin light chain in addition to phosphorylating and inhibiting 

myosin phosphatase (Wacker and Gerhardt, 2011b). RhoA activation of the formin, mDia, 

also initiates actomyosin contractility and force generation (Sadok and Marshall, 2014). 

During initiation of cell migration, recruitment of RhoA from cell junctions to the leading 

edge of the cell, in a Rab-13-dependent manner, allows for activation of RhoA induced by 

the RhoGEF Syx. The p110α subunit of PI3K may also influence migration through RhoA 

signalling (Wacker and Gerhardt, 2011a). 

Reorganisation of the actin cytoskeleton may be further controlled through RhoA-

ROCK signalling via ROCK phosphorylation of LIM-Kinase, leading to phosphorylation of the 

actin-regulatory protein cofilin (a protein responsible for actin capping and 

depolymerisation) thus reducing accumulation of F-actin (Arber et al., 1998; Olson et al., 

1995). 

Rho signalling via ROCK has also been described in regulating EC protrusion and 

branching. ROCK activation during sprouting through stiffer ECM results in enhanced 
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directional growth and reduced EC branching (Fischer et al., 2009; Wacker and Gerhardt, 

2011a). 

1.4.2.2 RAC1 

RAC1 is ubiquitously expressed signal transducer which integrates signals from 

numerous cell signalling pathways (see figure 1.7) following stimulation of receptor kinases, 

G protein-coupled receptors, or integrins (Bosco et al., 2009). RAC1 has been implicated to 

be fundamental in several cellular functions and has been well described as a primary 

regulator of actin cytoskeletal reorganisation, axonal guidance, as well as cell migration and 

cell transformation. RAC1 has also been implicated in the induction of DNA synthesis and 

superoxide production (Bosco et al., 2009). 

RAC1 interacts with multiple proteins involved in various aspects of cytoskeletal 

dynamics including cytoskeleton remodelling, microtubule stability, and gene transcription 

(Bosco et al., 2009). Activated RAC1 binds a number of effector molecules such as IQ Motif 

Containing GTPase Activating Protein 1 (IQGAP), IRSp53/WAVE, PAK, and mixed-lineage 

protein kinases 2 and 3(MLK2/3) (Bosco et al., 2009). WASP family of verprolin-homologous 

proteins and the formin family of proteins promote actin nucleation downstream of RAC1 

(Galan Moya et al., 2009). RAC1 may also activate cofilin and gesolin, driving actin capping 

and depolymerisation. RAC1 control of spectrin activation drives membrane-associated actin 

binding (Galan Moya et al., 2009). The described RAC1 targets may also cooperate in 

exportation of proteins to expanding filaments thus further promoting migration.  

RAC1 effectors, protein family of p21 activating kinases (PAK), bind RAC1-GTP 

potently stimulating PAK kinase activity and leading to cytoskeletal dynamics, adhesion, and 

transcription (Frost et al., 1996; Brown et al., 1996a).. RAC1 driven activation of PAK leads to 

c-Jun N-terminal kinase (JNK) activation (Westwick et al., 1997) and MLK2/3 driven activation 

of the JNK pathway through RAC1 mediated nuclear (Nagata et al., 1998; Teramoto et al., 

1996). RAC1 is also involved in canonical JNK regulated Wnt-signalling to the TCF 
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transcription factor (Wu et al., 2008). Also, RAC1 leads to activation of PAK transmembrane 

guanylyl cyclase activity and the second messenger cGMP production (Guo et al., 2007).  

RAC1 may also antagonise RhoA driven actomyosin contractility via signalling 

through PAK. RAC1-GTP activity may also drive stabilisation of cell-cell contacts through 

targeting the scaffold protein Ras GTPase-activating-like protein (IQGAP). RAC1 bound 

IQGAP1 displacing α-catenin from the cadherin-catenin cellular adhesion complex through 

binding β-catenin (Noritake et al., 2005). 

RAC1 accumulates at the leading edge of migrating cells and was initially identified 

as driving cytoskeletal changes and formation of actin-rich lamellae at the leading edge of 

fibroblasts in response to microtubule growth. RAC1 also promoted neurite extension 

through prompting lamellipodia formation within the neural growth cone (Kozma et al., 

1995). E-cadherin stimulated RAC1 activity is also fundamental in actin recruitment to 

epithelial cell-cell adherens junctions (Vasioukhin et al., 2000; Ehrlich et al., 2002). RAC1 also 

drives actin polymerisation in stimulated blood platelets, lymphocytes, mast cells, and ECs 

(Hall, 1998) and is also involved in endocytosis/trafficking, and pinocytosis within dendritic 

cells (Nobes and Marsh, 2000).  

RAC1 also prompts actin nucleation and polymerisation through IRSp53 dependent 

N-WASP activation of the Arp2/3 complex (Miki et al., 2000). RAC1 signalling is crucial within 

immune defence via its involvement in phagocytosis; RAC1 regulates polymerisation of actin 

fibres at membrane sites of micro-organism and particle uptake (Etienne-Manneville and 

Hall, 2002); RAC1 partakes in activation of NADPH oxidase within phagocytic cells leading to 

the superoxide ions production required to kill bacteria (Bokoch, 1995; Abo et al., 1992); 

RAC1 regulates macrophage cell immunoglobulin-receptor mediated phagocytosis; RAC1 

also activates MAPK and JNK pathways enabling an inflammatory response (Caron and Hall, 

1998). 
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RAC1 is also a prominent regulator of NADPH-dependent membrane oxidase (NOX), 

a primary source of reactive oxygen species (ROS). Through ROS production RAC1 signalling 

is also involved in senescence, p53 activity, and genomic stability (Debidda et al., 2006; 

Joneson and Bar-Sagi, 1998; Cheng et al., 2006) with double negative RAC1 fibroblasts unable 

to generate ROS (Irani et al., 1997).  

RAC1 signalling may also induce cellular changes in gene transcription through 

activation of the activator protein-1 (AP1) transcription factors via activating nuclear factor 

kappa-light-chain-enhancer of activated B cells (NFkB), JNK, and MAPK (Caron, E, 1998). This 

modulation of transcription by RAC1 has been described to induce G1/S progression of the 

cell cycle through upregulating cell cycle proteins such as cyclin D1 and c-myc (Olson et al., 

1995; Chiariello et al., 2001). RAC1 is essential for the growth of major blood vessels, 

developmental angiogenesis and formation of lymphatic vessels (D'Amico et al., 2009; Tan 

et al., 2008), functions which will be described in detail later on within this introduction. 
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Figure 1-7 RAC1 signal transduction 

RAC1 transduces external stimulus transmitted through receptor kinases, G protein-

coupled receptors, or integrins via GEFs. GTP bound RAC1 targets effector molecules such as 

IQGAP, IRSp53/WAVE, PAK, and MLK2/3, prompting intracellular activities such as cytoskeleton 

remodelling, microtubule stability, and gene transcription. 
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1.4.2.3 CDC42 

CDC42 possess similar feature to RAC1 in that this small cyclic GTPase has many 

downstream effectors yet is highly specific in activity, integrating signals concerning specific 

functions transduced via distinct pathways. This is regulated through the diverse repertoire 

of GEFs which drive CDC42 activation downstream of surface receptors. CDC42 signalling is 

crucial for regulating changes to cell morphology, as well as cell cycle progression, cell 

migration, and endocytosis (Barry et al., 2015). 

CDC42s principal function is in conveying signals from the external environment 

prompting modification of the actin-cytoskeleton. CDC42 is also a predominant signalling 

transducer in establishing correct cell polarity in response to external signalling cues 

(Etienne-Manneville and Hall, 2002). CDC42’s ability to modulate the actin cytoskeleton is 

directed via multiple downstream targets including; Pak2, Pak4; cofilin; N-WASP and Arp2/3 

complex; IRSp53/Mena complex; Myosin light-chain kinase (MLCK); myotonic dystrophy 

kinase-related CDC42 binding kinase (MRCK); and IQGAP (Govek et al., 2005; Etienne-

Manneville, 2004).  

During migration CDC42 exerts much of its effects towards filopodia formation and 

has typically been described as an upstream regulator of RAC activation; with the exception 

of RAC1 dependent CDC42 activation under the control of VEGF stimulated RhoG activity 

within sprouting angiogenesis (Abraham et al., 2015). CDC42 function in regulating formation 

of filopodia has been attributed to its signalling via N-WASP and Pak2/4-mediated non-

muscle myosin IIA heavy chain (NMIIA) signalling (Etienne-Manneville, 2004). CDC42 

activates N-WASP in an IRSp53/Mena complex dependent mechanism inducing Arp2/3 

activation and subsequent actin nucleation and polymerisation (Lim et al., 2008). 

CDC42 may also act to inhibit myosin light chain phosphatase (MYPT), an activity 

more commonly associated with RhoA-ROCK signalling, via activation of MRCK (Zhao and 

Manser, 2015). Thus, CDC42 activation can cooperate with RhoA-ROCK in instigating cell 
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motility (Machacek et al., 2009; Zhao and Manser, 2015). However, the ability for one 

pathway to dominate control of MLC2 phosphorylation dictates the cell morphology 

displayed by the cell during migration, with Rho signalling prompting a more rounded 

morphology and CDC42 signalling instilling the more elongated morphology (Wilkinson et al., 

2005), as is seen in EC angiogenic migration.  

In quiescent ECs, CDC42 activity has been observed to influence intercellular gaps 

between adjacent cells and between cell-ECM (Zihni and Terry, 2015; Etienne-Manneville, 

2004). CDC42 may also impact EC polarity and EC lumenisation (Etienne-Manneville, 2004). 
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Figure 1-8 CDC42 signal transduction pathways 

CDC42 transduces external stimulus transmitted through T-cell receptor, tyrosine 

kinase receptors, G-protein coupled receptors, integrins, Cadherins, and Nectins are all 

capable of transmitting extracellular stimulus inducing CDC42 activation via GEF. GTP bound 

CDC42 targets effector molecules such as IRSp53/Mena complex, WASP, PAKs, Par6/aPKC 

and IQGAP prompting intracellular activities such as cytoskeleton remodelling, microtubule 

stability, and membrane trafficking. 
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1.4.2.4 RhoG 

RhoG is a ubiquitously expressed member of the RAC1 subfamily of RhoGTPase and 

has primarily been described to function within cell migration and regulation of 

macropinocytosis and caveolar endocytosis (Ellerbroek et al., 2004; Prieto-Sanchez et al., 

2006). RhoG stimulates a cellular migratory morphology through activation of RAC1 (Cote 

and Vuori, 2007). DOCK180 activation of RhoG leads to binding of the adapter protein ELMO 

and subsequent activation of RAC1 (Katoh et al., 2006; Katoh and Negishi, 2003). 

RhoG has been found to be regulated by a number of GEFs. TRIO driven activation 

of RhoG has been found to promote GF-induced neurite outgrowth in PC12 cells (Estrach et 

al., 2002). Within ECs the RhoG specific GEF, SGEF (Src homology 3 domain-containing 

guanine nucleotide exchange factor), stimulates RhoG activation of RAC1 in a VEGF 

dependent signalling pathway. RhoG activation of RAC1 signals via the RAC1 specific GEF 

DOCK4 (Cote and Vuori, 2007). DOCK4 driven RAC1 activation downstream of RhoG initiates 

CDC42 activation via DOCK9 activation, leading to actin cytoskeleton rearrangement and pro-

growth and migratory endothelial phenotype during sprouting angiogenesis (Abraham et al., 

2015). RhoG activation also induces macropinocytosis within fibroblasts (Ellerbroek et al., 

2004) and apical cup assembly in ECs. Dbs, ECT2, VAV2 and VAV3 GEFs have also been 

implicated in RhoG activation (Wennerberg et al., 2002; Schuebel et al., 1998; Movilla and 

Bustelo, 1999). 

 Rho GTPase signalling in EC filopodia formation 

During the initiation of migration stimulation of Rho GTPase signalling downstream 

of pro-angiogenic factors is a pivotal stage in inducing the dynamic remodelling of cell shape 

during angiogenic sprouting (Wacker and Gerhardt, 2011b). Filopodia are cytoplasmic rich 

actin projections which extend out from the cell to probe the extracellular space for growth 

signalling cues (Krugmann, 2001). Filopodia are present in abundance at the leading edge of 
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tip cells but have also been observed to a lesser degree along the elongating stalk of newly 

developing cords of ECs (Abraham et al., 2015). 

During filopodia production, CDC42 induces F-actin bundles through activating actin-

associated proteins, including fascin, formin (mDia2) and Ena/VASP (Mattila and 

Lappalainen, 2008; Chhabra and Higgs, 2007). CDC42 also regulate filopodia in a RhoG 

dependent manner (Abraham et al., 2015). In vitro CDC42 instigates actin polymerisation 

through cooperation with WASP and Pak2/4-mediated NMIIA signalling (Barry et al., 2015) 

which results in activation of Arp2/3 actin nucleation complex (Rohatgi et al., 1999).  

RAC1 has also been found to be essential in filopodia formation through activation 

of CDC42 (Abraham et al., 2015). Abraham, et al (2015) observed disruption of lateral 

filopodia formation following RAC1 knockdown in a tissue culture organotypic angiogenesis 

assay. Suppression of lateral filopodia was also seen in ECs following knockdown of DOCK4, 

a known RAC1 GEF (Abraham et al., 2015). Reduction of lateral filopodia prevented lumen 

formation within sprouting vessels, resulting in elongated unbranched sprouts. Knockdown 

of either RAC1 or DOCK4 appeared to have little effect on tip filopodia, indicating that 

different control mechanisms are involved in the development of the two types of filopodia. 

Interestingly Phng LK et al. (2013) reported that in vivo inhibition of actin polymerisation with 

latrunculin B reduced the presence of tip cell filopodia and speed of EC migration while 

guidance was unaffected (Phng et al., 2013). 

1.1 Rho GTPase signalling in blood vessel lumen formation 

In addition to their role in protrusive activity and EC migration, CDC42 and RAC1 are 

also necessary for lumen formation (Wacker and Gerhardt, 2011b). Studies performed in 

tissue culture in 3D collagen matrices have shown that RAC1 and CDC42 are required for 

changes in EC polarity during lumen formation taking place through the process of cell 
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hollowing (Lizama and Zovein, 2013), which entails formation an intracellular vacuole which 

expands through other cells giving rise to the lumen. 

RAC1 stimulation of PAK2, in addition to CDC42 activation of Pak2, Pak4, Par3, and 

Par6 all influence lumen formation, potentially in a protein kinase C dependent manner (Koh 

et al., 2008; Iruela-Arispe and Davis, 2009). Koh et al (2008) also describe potential 

interactions between CDC42, RAC1 and polarity protein complexes in driving lumen 

formation during cell hollowing. CDC42’s ability to regulate vascular lumen formation in vitro 

has been linked to CDC42-Par3-Par4-PKC atypical complex (Koh et al., 2008; Hoang et al., 

2011); the four proteins form a quaternary complex, with loss of any of the four components 

of the complex disrupting lumen formation (Koh et al., 2008). Knockdown of Pak2 and Pak3 

disrupt formation lumens (Hoang et al., 2011; Barry et al., 2015). CDC42 may further promote 

lumenisation through phosphorylation and inhibition of glycogen synthase kinase-3β (GSK-

3β) (Hoang et al., 2011). 

Barry et al (2015) found deletion of CDC42, in Tie2-Cre driver line mouse model, 

blocked angiogenic tubulogenesis while the deletion was lethal due to blood vessel defects. 

Additionally, EC specific RAC1 knockout in Cre/Flox mice has been seen to disrupt correct 

formation of major blood vessels and resulted in an absence of small-branched vessels (Tan 

et al., 2008; D'Amico et al., 2009). The EC RAC1 knockout is embryonic lethal at mid-gestation 

(Sugihara et al., 1998). 

Abraham et al (2015) described delineation of the Rho-GTPase pathway downstream 

of VEGF signalling essential for lateral filopodia formation, a process potentially imperative 

for lumenisation (as seen in figure 1.9). VEGF signalling resulting in activation of SGEF, a GEF 

which targets and activates RhoG, initiating a pathway which results in RAC1 activation (via 

binding of an ELMO and DOCK4 complex) and CDC42 activation downstream of RAC1 

(through binding of DOCK9 and potential interactions with DOCK4) (figure. 1.6; Abraham et 

al., 2015). 
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Figure 1-9 RhoG signalling in angiogenesis 

Schematic diagram of intracellular signal transduction downstream of activated 

VEGF and FGF. (A) VEGF stimulation induce filopodia formation and sprouting angiogenesis. 

The Rho GEF SGEF activates RhoG, which in turn activates Rac GEF DOCK4 allowing binding 

of DOCK4 to ELMO. DOCK4-ELMO then translocate to the plasma membrane to activate 

Rac1. Abraham et al. (2015) described formation of an ELMO-DOCK4-DOCK9 complex 

capable of activating Cdc42 and stimulating filopodia formation. (B) Previous work in the 

laboratory has shown that FGF2 stimulation of ECs results in the activation of RhoG via the 

GEF Trio. 

A B 
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 RhoGTPase in EC elongation 

Little is known in regard to Rho GTPase activity in driving EC elongation. However, 

RAC1 has been implicated in driving EC elongation downstream of the GEF Tiam-1 through a 

TNF-α-mediated re-arrangement of F-actin (Cain et al., 2010). Recently, Jiahui Cao et al. 

(2017) described a RAC1 dependent mechanism which, in cooperation with microtubules, 

drives cell elongation following VEGF stimulation of ECs. This RAC1 dependent signal 

transduction led to an increase in cell perimeter and decrease in junctional concentration of 

VE-cadherin. RAC1 activity stimulated formation of an actin-driven junction-associated 

intermittent lamellipodia (JAIL) via regulation of the WASP/WAVE/ARP2/3 complex, thus 

implicating RAC1 as a potential prominent component within EC elongation (Cao et al., 

2017).  

SiRNA mediated knockdown of cingulin-like 1 was found to impair the elongated 

phenotype via loss in Tiam-1 driven Rac1 activation (Chrifi et al., 2017). Marghe Scarcia 

(Thesis, 2013) found supplementing EC in vitro with FGF2 propagated EC elongation through 

initiating Trio driven RhoG activation.  

 Guanine nucleotide exchange factors 

GEFs, as previously described in section 1.4, can be grouped into two separate 

categories due to their distinct functional domains. Atypical DOCK1 related GEFs, as depicted 

in figure 1.10, are characterised by their evolutionary conserved DOCK homology region1 

(DHR1); which has been described to bind phospholipids, and DOCK homology region 2 

(DHR2), a domain which has been observed to bind target Rho GTPases and drive activation 

(Cote and Vuori, 2007; Meller et al., 2005; Brugnera et al., 2002).  
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Figure 1-10 Schematic diagram of DOCK protein functional domains 

DOCK1-related proteins are classified by their domain organisation and sequence 

similarity into four sub-groups: DOCKA (DOCK1, DOCK2, and DOCK5), DOCKB (DOCK3, and 

DOCK4), DOCKC (DOCK6, DOCK7, and DOCK8), and DOCKD (DOCK9, DOCK10, and DOCK11. 

DOCKA subgroup each possess an SH3 domain, helical region, DHR1, DHR2, PBR, and proline rich 

motif. DOCKB subgroup each possess an SH3 domain, DHR1, DHR2, and proline rich motif. 

DOCKC subgroup each contain only the DHR1 and DHR2 domains. DOCKD subgroup are the only 

DOCK proteins to contain a PH domain in addition to DHR1 and DHR2 domains.  
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1.4.5.1 The DOCK atypical GEF activity 

The DOCK atypical GEFs bear a mechanism of Rho GTPase activation that is distinct 

from the Dbl GEFs (as described in section 1.4). The DHR2 domain of DOCK proteins contain 

a conserved nucleotide sensor region with an essential valine residue within an insert in the 

α10 helix of the DHR2 domain. The specific valine residue binds to its target GDP-bound Rho 

GTPase and drives exclusion of an Mg2+ ion from the nucleotide pocket. The nucleotide free 

Rho GTPase can then bind a GTP molecule, in addition to activating the Rho GTPase this also 

induces conformational changes to the DOCK GEF through displacement of the DOCK a10 

helix insert resulting in the release of the activated GTPase (Yang et al., 2009; Gadea and 

Blangy, 2014). 

DOCK180-related proteins can be further classified by their domain organisation and 

sequence similarity into four sub-groups (see figure 1.-10): DOCKA (DOCK1, DOCK2, and 

DOCK5), DOCKB (DOCK3, and DOCK4), DOCKC (DOCK6, DOCK7, and DOCK8), and DOCKD 

(DOCK9, DOCK10, and DOCK11) (Cote and Vuori, 2007; Laurin and Côté, 2014).  

The DOCKA (DOCK1, DOCK2, and DOCK5) and DOCKB (DOCK3 and DOCK4) 

subfamilies both possess a SH3 domain, DHR1 domain, and DHR2 domain. DOCKA and 

DOCKB proteins also have a proline rich region (PRR) at the carboxyl terminus, which binds 

Crk proteins (Gadea and Blangy, 2014). DOCKA proteins also have a polybasic region (PBR) 

and helical region. Both DOCKA and DOCKB have been identified as DOCK proteins able to 

drive RAC1 activation.  

The DOCKC (DOCK6, DOCK7, and DOCK8), and DOCKD (DOCK9, DOCK10, and 

DOCK11) subfamilies lack both the SH3 domain and the proline-rich region but do have a 

pleckstrin homology domain at the amino-terminus. DOCKD subgroup of DOCK180 family 

proteins have been identified as CDC42 activating GEFs (Hiramoto-Yamaki et al., 2010; Côté 

and Vuori, 2002; Côté and Vuori, 2006). DOCKC subgroup of GEFs have been described as 

possessing dual specificity driving activation of both RAC1 and CDC42 (Harada et al., 2012; 
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Kulkarni et al., 2011; Miyamoto et al., 2013; Watabe-Uchida et al., 2006; Gadea and Blangy, 

2014). 

1.4.5.2 DOCK homology region1 

 The DHR1 domain of DOCK GEFs is approximately 200 amino acid residues and has 

been implicated in protein complex localisation to the plasma membrane. Côté et al. (2005) 

described the DHR1 domain of DOCK1 as capable of interacting with Phosphatidylinositol 

(3,4,5)-trisphosphate within the plasma membrane, driving localisation of a protein complex 

involved in RAC1 activation to the leading edge of migrating cells. Deletion of the DHR1 

region of DOCK1 did not disrupt DHR2 domain RAC1 loading but prevented the localisation 

of DOCK1 to the leading edge of the cell, impeding cell migration (Côté et al., 2005). 

1.4.5.3 DOCK homology region2 

 The DHR2 domain of DOCK GEFs are approximately 500 amino acid residues that 

bind in high specificity to either RAC1 or CDC42, driving Rho GTPase activation. Amino acid 

residue variances of the DHR2 domains between the different subgroups of DOCK GEFs 

facilitates the specificity in Rho GTPase targeting.  

 Crystal structural analysis of the DOCK2 (Kulkarni et al., 2011; Hanawa-Suetsugu et 

al., 2012; Ferrandez et al., 2017) and DOCK9 DHR2/GTPase complexes has demonstrated that 

the DHR2 is a symmetrical dimer comprised of three lobes: lobes A, B, and C. Lobe A of the 

DHR2 region was determined to be required for dimerisation of DOCK proteins. Lobe B and 

lobe C were seen to form the catalytic pocket which interact with the GTPase nucleotide-

sensing switch. Lobe B and C were determined to bear unique functions in GTPase activation 

with lobe B binding to and opening switch 1 of the GTPase nucleotide sensing switch. Lobe 

C drives GDP dissociation by binding to switch 2 and inserting a nucleotide sensor loop into 

the nucleotide-binding site (Kulkarni et al., 2011; Hanawa-Suetsugu et al., 2012; Ferrandez 

et al., 2017; Yang et al., 2009). 
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 Kulkami et al. 2011 described explicit differences between the amino acid sequences 

of RAC1 and CDC42, which enable specific binding of the DOCK2 DHR2 domain and DOCK9 

DHR2 domain, respectively. A phenylalanine or tryptophan at Rho GTPase residue 56 of the 

β3 strand, and an alanine or lysine at residue 27 drives Rho GTPase interaction within a 

region of the GEF DHR2 domain called switch 1 (Kulkarni et al., 2011). This finding 

demonstrated that DOCK proteins bind to their target Rho GTPase in a highly specific manner 

that is determined by the amino acid sequence of their DHR2 domain and target Rho GTPase.   

1.4.5.4 SH3 domain 

 The DOCKA and DOCKB subfamilies possess a SRC Homology 3 (SH3) domain at the 

amino-terminus. SH3 domains have been identified in approximately 250 proteins and are 

associated with aiding a large number of signalling pathways (Pollard et al., 2016). SH3 

domains are short peptide sequences, approximately 60 amino acids, which drive weak and 

transient interactions with proline-rich regions of interacting proteins. Aromatic residues 

within the SH3 domain shallow grove bind polyproline regions of proteins which form left 

handed type II polyproline helices (Pollard et al., 2016). 

 The SH3 domain of DOCK1 acts in an auto-inhibitory mechanism through weak 

interaction with the protein’s own DHR2 domain. The inhibitory conformation can be 

overcome through binding of the adaptor molecule, ELMO (Engulfment and Motility) (Gadea 

and Blangy, 2014). The SH3 domain of DOCK1 has been described as a site capable of binding 

the three isoforms of ELMO (Gadea and Blangy, 2014); ELMO acts as an adaptor molecule 

that couples RAC to specific downstream effectors (Katoh et al., 2006). 

1.4.5.5 Pleckstrin-homology (PH) domains  

 Pleckstrin-homology (PH) domains are found in the DOCKD sub-group of DOCK GEFs 

and also within Dbl GEFs, downstream of the DH domain. PH domains form weak interactions 

with phosphoinositide of the plasma membrane. Within the context of Dbl GEFs, the binding 

of PH domain to phosphoinositide of the plasma membrane has been suggested to facilitate 
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allosteric changes within the DH–PH array instigating Rho GTPase nucleotide exchange. 

However, it is also plausible that PH domain-phosphoinositide binding may function to guide 

precise subcellular localisation of Dbl proteins and engagement of membrane-bound 

GTPases. PH domains of the DOCKD group of GEFs may also function in localisation of DOCKD 

proteins to the plasma membrane (Rossman et al., 2005).  

1.4.5.6 Proline rich regions 

 Proline rich regions describe amino acid sequences with multiple proline residues 

within close proximity to one another (Yu et al., 1994; Alexandropoulos et al., 1995). 

Members of the DOCKA and B subfamilies possess a proline-rich region downstream of the 

DHR2 domain. DOCK9 was also determined to possess 11 PRRs with 9 of the 11 containing 

the typical PxxP or PxxxP motif which forms a continuous hydrophobic patch which 

preferentially binds to the amino acid sequence of SH3 domains. 

1.4.5.7 PBR 

 A polybasic region (PBR) within DOCK1 and DOCK2 was initially thought to bind PIP3, 

but more recent data suggest that it binds the signalling lipid phosphatidic acid (PA) 

(Kobayashi et al., 2001; Nishikimi et al., 2009; Sanematsu et al., 2013). 

1.4.5.8 DOCK9 

 DOCK9 signalling has yet to be well characterised, but has thus far been identified as 

a CDC42 specific GEF (Meller et al., 2002), however a recent study characterising the 

phenotype driven by over expression of DOCK9 in HeLa cells implicated DOCK9 in inducing 

RAC1 activation and membrane ruffling (Ruiz-Lafuente et al., 2018). DOCK9 expression drives 

filopodia production when expressed within cells. DOCK9 activity has been described as 

necessary within neuronal development (Kuramoto et al., 2009), angiogenesis (Abraham et 

al., 2015), and has been implicated in a number of diseases. DOCK9 is also expressed in 

steady-state circulating human CD3+ T cells, although the function of this expression has not 

yet been described (Ruiz-Lafuente et al., 2018). 
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 Variants in the DOCK9 gene have been implicated in bi-polar disorder (Detera-

Wadleigh et al., 2007). DOCK9 variant c.2262A>C has been associated in the development of 

the ocular degenerative disease Keratoconus (Karolak et al., 2016). DOCK9 has also been 

detected as a biomarker of tuberculosis (de Araujo et al., 2016). During the late stages of 

neuronal development DOCK9 is highly expressed in the hippocampus and cerebral cortex 

and activates CDC42, through which DOCK9 acts as a prominent regulator of dendritic 

growth in hippocampal neurons (Kuramoto et al., 2009). DOCK9 is able to homodimerise via 

the DHR2 domain (Meller et al., 2004) and is also able to auto-inhibit through binding of the 

DHR1 domain to the DHR2 domain, the mechanism through which DOCK9 overcomes auto-

inhibition is not yet known (Meller et al., 2008). Within angiogenesis DOCK9 driven CDC42 

activation is imperative for lateral filopodia of growing vascular sprouts (Abraham et al., 

2015).  

1.4.5.9 DOCK4 

 DOCK4 signalling is complex and has been described as an active component in 

multiple different cell signalling pathways within various cell types. DOCK4 activity has been 

termed as both pro and anti-oncogenic. DOCK4 has also been designated as required for 

correct growth of neuronal and ECs, with mutations within DOCK4 being implicated in a 

number of neurological diseases. 

 The pro-oncogenic potential of mutated DOCK4 was identified through a mouse 

model genetic based screening study (Yajnik et al., 2003). DOCK4 mutation Pro1718Leu was 

detected in prostate and ovarian cancers and led to DOCK4 being ineffective in activating 

Rap1 GTPase, however, the Pro1718Leu mutation led to an increase in RAC1 and CDC42 

activation (Yajnik et al., 2003). The change in Rho GTPase signalling prompted by DOCK4 

mutation Pro1718Leu, was seen to disrupt correct localisation of β-catenin to the sites of 

adherens junctions and resulted in the disruption of formation of intercellular junctions, 

leading to a loss of contact inhibition within cultured cells (Yajnik et al., 2003). In addition to 
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disrupting the formation of intercellular junctions, the DOCK4 Pro1718Leu mutation drove 

formation of filopodia protrusions (Yajnik et al., 2003). Together the characteristics driven 

by the DOCK4 mutation led to a tumour invasive phenotype which was also confirmed within 

a nude mouse model. Through this study, the tumour suppressor effect of wild type (WT) 

DOCK4 was also demonstrated through the use of a cancer invasion mouse model assay, 

during which cancer cells expressing WT DOCK4 were significantly less capable of invasion 

and metastasis when compared to tumours established from cell expressing DOCK4 

Pro1718Leu mutant (Yajnik et al., 2003). 

 DOCK4 has also been described to have oncogenic potential within breast cancer, 

leading to an increased invasive potential of breast cancer cells. Hiramoto-Yamaki et al., 

(2010) established evidence describing a mechanism through which RhoG activation within 

breast cancer cells drives a complex formation at the tip of cortactin-rich protrusions 

between ELMO2, DOCK4, and a member of the Eph receptor family, EphA2. The formation 

of the ELMO2-DOCK4-EphA2 complex was seen to induce formation of protrusions within 

breast cancer cell, increasing cell mobility in a RAC1 dependent manner (Hiramoto-Yamaki 

et al., 2010).  

 Further evidence linking to the pro-ongogenic activity of DOCK4 was described by 

Jia-Ray Yu et al (2015) through investigation of TGF-β driven RAC1 activation via inducing an 

increase in DOCK4 expression. TGF-β initiated increase in DOCK4 expression occurs 

downstream of the Smad signalling pathway, prompting an increase in tumour cell 

extravasation and metastasis. TGF-β-induced DOCK4 expression within lung 

adenocarcinoma induces an epithelial to mesenchymal transition independent increase in 

cell protrusion, motility, and invasion (Yu et al., 2015). 

 Upadhyay et al have previously demonstrated in vitro that pro-oncogenic Wnt 

signalling may induce RAC1 activation via GSK3-β driven β-catenin stabilization, through 

interaction with and phosphorylation of DOCK4. Activity which led to DOCK4 driven 
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stabilisation of the cellular levels of β-catenin via DOCK4 interaction with the β-catenin 

degradation protein complex; Adenomatosis Polyposis Coli (APC), Axin, and GSK3-β proteins 

(Upadhyay et al., 2008).  

 While activation of Wnt signalling during cancer progression has been described as 

driving a more aggressive phenotype (Polakis, 2000), DOCK4 involvement within the Wnt 

signalling pathway was later established to have a tumour suppressor effect (Yajnik et al., 

2003). 

 Debruyne et al. demonstrated that β-catenin induces an anti-proliferative 

mechanism via a feed forward loop to increase and accumulate its own nuclear activity 

through multiple mechanisms which regulate DOCK4 expression (Debruyne et al., 2018). 

GSK3-β activation and β-catenin transcriptional activity is required for DOCK4 mRNA and 

protein expressions (Debruyne et al., 2018). β-catenin directly binds to the 5’ regulatory 

sequence of the DOCK4 gene, regulating transcriptional activity of DOCK4. DOCK4 is also 

required for expression and transcriptional activity of β-catenin, thus creating a β-catenin 

driven feed-forward loop. Interaction of active GSK3-β with, and phosphorylation of, DOCK4 

induces β-catenin stabilisation and nuclear accumulation, activity which is driven by miR-302 

(Debruyne et al., 2018). β-catenin/DOCK4/miR-302 regulatory circuitry has been described 

as promoting a non-proliferative state with higher levels of DOCK4 expression leading to 

repression of glioblastoma multiform (GBM) proliferation stemness markers. Thus, GBM 

patients with increased DOCK4 expression possess a better survival prognosis (Debruyne et 

al., 2018).  

 The DOCK4 isoform (DOCK4-Ex49) is expressed within the brain, eye, and inner ear. 

Within the inner ear, this DOCK4 isoform has been found to regulate actin cytoskeleton 

organisation in stereocilia, via a RAC-DOCK4-ABP harmonin-activated signalling pathway 

(Yan et al., 2006). 
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 DOCK4 regulates essential processes during neural development and differentiation 

(Ueda et al., 2013; Xiao et al., 2013). DOCK4 driven RAC activation has also been proven to 

be imperative for the formation of dendritic spines within hippocampal neurons via DOCK4 

interaction with the actin-binding protein cortactin (Ueda et al., 2013).  

During neuron differentiation, the SH3 domain of DOCK4, but not the proline-rich C-

terminus, drives modulation of actin-enriched protrusions on the neurites leading to 

differentiation and extension and the establishment of the axon-dendrite polarity and the 

arborisation of dendrites (Xiao et al., 2013).  

 Further genetic based screening studies also identified DOCK4 as a candidate gene 

with mutations within the DOCK4 gene being associated with several neurological disorders, 

including autism (Pagnamenta et al., 2010), dyslexia (Pagnamenta et al., 2010) and 

schizophrenia (Alkelai et al., 2012). Microdeletion DOCK4 mutants lacking the GEF domain 

led to defective neuronal polarisation and neurite overgrowth, a phenotype which has been 

linked to autism and dyslexia (Xiao et al., 2013). A maternally inherited microdeletion 

encompassed chr7:110,663,978-111,257,682 leading to a DOCK4-IMMP2L fusion transcript 

was identified within people with autism spectrum disorder (Pagnamenta et al., 2010). 

Alkelai et al. (2012) identified a SNP (rs2074127) positioned within the DOCK4 gene (intron 

6) to be frequently present in a study group which represented schizophrenic people from 

within a Jewish population.    

 With the mounting evidence associated with DOCK4 functionality within multiple 

cell types, it is apparent that DOCK4 serves as a multi-functional protein important for 

numerous cell signalling pathways. However, evidence is still limited in the ability to decipher 

how, when, and under what context is DOCK4 expressed, activated, and regulated.  
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 Role of DOCK4 in vascular patterning and interaction with DOCK9 and generation of 

DOCK9 mutants in proline-rich regions 

The function of the RAC1 GEF DOCK4 within EC biology was investigated by Dr. 

Mavria’s research group. This work published within Nature Communications (Abraham et 

al., 2015) outlined the requirement of DOCK4 functionality for VEGF driven sprouting 

angiogenesis. Within an organotypic angiogenesis model, EC depletion of DOCK4 lead to a 

loss in stalk cell filopodia along the lateral edge of endothelial cords, but not filopodia 

extending from the tip cells during VEGF stimulated angiogenesis. This loss of lateral filopodia 

was accompanied by a reduction in branching and thus less dynamic endothelial structures. 

DOCK4 depletion also reduced the ability for EC cords to form a lumen (Abraham et al., 2015). 

Together these results suggest a role for DOCK4 in correct vascular patterning and formation 

of new functional vessels through sprouting angiogenesis under VEGF stimulated 

angiogenesis (Abraham et al., 2015). However, the role of DOCK4 activation of Rac1 within 

FGF stimulated angiogenesis is unknown, as is the requirement for DOCK4 activity within 

vascular biology in vivo. 

In order to further explore the function of DOCK4 signalling within mammalian 

biology the signalling context through which DOCK4 functions, and the protein complexes 

formed with DOCK4 while the protein is active, will allow for a deeper understanding into 

the relevance of DOCK4 for vascular biology. Investigating the effect of DOCK4 depletion 

within a murine model will also generate insight into the requirement for DOCK4 in 

mammalian physiology. However, a complete ablation of DOCK4 results in embryonic 

lethality. Thus, a heterozygous deletion, resulting in a 50% reduction of DOCK4 expression, 

would provide a robust model for exploring the biological effect of reduced DOCK4 bio-

availability.  

As VEGFA and FGF2 signalling pathways are both capable of initiating angiogenesis, 

yet both prompt growth of phenotypically different endothelial sprouts, and each control 
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angiogenesis under differing signalling context (i.e. during development and in response to 

hypoxia (Ucuzian et al., 2010; Simons et al., 2016) vs during wound healing (Ornitz and Itoh, 

2015), respectively, elucidating the control mechanisms which regulate DOCK4 activity will 

deepen the current knowledge of the mechanisms through which ECs respond to growth 

cues, while also giving insight into the signalling context through which DOCK4 functions.  

Abraham et al. (2015) also demonstrated a heterodimerisation between DOCK4 and 

the CDC42 specific GEF, DOCK9. The site of DOCK4 required for this interaction was 

determined to be the SH3 domain of DOCK4, indicating that DOCK4 binds a PRR of DOCK9, 

however, the PRR region of DOCK9 involved in this interaction was not determined.  
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Figure 1-11 Identification of DOCK9 PRRs  

(A) The GEF DOCK9 possess 11 proline PRR. Nine PRR have the typical PxxP or PxxxP 

motif. The small molecule QL-47 binds DOCK9 at the cysteine residue within PRR 3. (B) The 

predicted model of DOCK4 and DOCK9 interaction. The GEF DOCK4 homodimerises through bind 

of the DHR2 domains. DOCK4 SH3 domain also interacts with the adaptor protein, ELMO. DOCK4 

and DOCK9 interact via the SH3 domain of DOCK4 and an unknown region of DOCK9, predicate 

to be one of nine typical PRRs.  

 

  

 

A 
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1.5 Hypothesis 

1. DOCK4 signalling is required for FGF2 driven angiogenesis. 

2. The SH3 domain of DOCK4 interacts with a PRR of DOCK9. 

3. DOCK4 expression is required for recovery from HLI in a murine model. 

1.6 Aims 

The overarching aim of this thesis is to understand the function of DOCK4 within 

pathological sprouting angiogenesis with consideration to the potential involvement of 

DOCK4 within FGF2 signalling. This thesis also investigates the mechanism of interaction 

between DOCK4 and DOCK9 within the RhoG signalling pathway (RhoG-DOCK4-RAC-DOCK9-

CDC42) and its role in angiogenesis.  

Aim 1. To investigate the role of DOCK4 in FGF2 signalling using an in vitro co-culture model. 

Aim 2. To elucidate the molecular basis of the DOCK4-DOCK9 interaction using Co-IP and 

chromatography. 

Aim 3. To investigate whether DOCK4 influences vascular response and recovery under 

conditions of ischemia in a Dock4+/- murine model.    
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2 Materials and methods  

All materials used were purchased from Sigma-Aldrich or Thermo Scientific unless 

indicated otherwise in the text. Common laboratory standard solutions can be found in Table 

2-1 at the end of this chapter. 

All experimental work presented within this thesis was carried out by Leander 

Stewart, with the exception of the point mutagenesis generation of DOCK9 PxxP plasmids, 

as described in section 2.4 carried out by Ms. Anne Sanford. Hind limb surgical procedures, 

as described in section 2.28, were performed by Dr. Nadira Yuldasheva. 

2.1 Primary cells and cell lines   

Human Umbilical Vein Endothelial Cells (HUVECs) and Angiokit-tested (AGK) Human 

Dermal Fibroblasts (HDFs) were purchased from TCS cellworks. Human Embryonic Kidney 

Cells 293T (HEK 293T) cells were purchased from Clontech Laboratories.  

2.2 Coating of tissue culture plates  

Collagen I coating for the culture of HEK 293T cells after thawing: Plastic bottomed 

T-75cm2 flasks were coated with 5mL of 50μg/mL Collagen I rat-tail (BD Biosciences); 5mg/mL 

stock of Collagen rat tail I was diluted in 0.02M glacial acetic acid. Coated plates were 

incubated at room temperature for 1 hour, and then washed three times with PBS.  

Fibronectin coating for the culture HEK 293T in immunoprecipitation (IP) 

experiments: 100mm plastic plates were coated with 4ml of 10μg/mL fibronectin solution; 

1mg/ml stock human plasma Fibronectin (Sigma-Aldrich) diluted in Phosphate Buffered 

Saline solution (PBS). Dishes were incubated at 37ᵒC for 3 hours before excess solution was 

removed and plates washed 3 times with PBS.  
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2.3 Cell culture conditions  

HEK 293T cells, stored in liquid nitrogen at passage 4 and passage 7, were thawed 

and seeded onto collagen I coated T-75 cm2 flasks. HEK 293T were maintained in high glucose 

Dulbecco’s modified eagle medium (DMEM) containing 10% v/v foetal bovine serum (FBS), 

supplemented with 1% v/v L-Glutamine, and 1% v/v penicillin-streptomycin.  

Media was changed every 48 hours. Upon reaching 80% confluence cells were 

trypsinised, using 0.5% v/v Trypsin/EDTA, and split at a ratio of 1:6 and seeded onto T- 

150cm2 flasks.  

HUVEC were purchased at passage 2 and used in co-culture assays until passage 5. 

Cells were stored in liquid nitrogen and once thawed were seeded onto T-75cm2 flasks and 

maintained in Large Vessel Endothelial Medium (LVEM, TCS cellworks) supplemented with 

100μg/mL of penicillin and endothelial growth supplements. HUVEC LVEM was replenished 

every 48 hours. Upon reaching 80% confluence HUVEC were washed in PBS and trypsinised 

using 0.5% v/v Trypsin/EDTA. Cells were split in a 1:5 ratio onto T-75cm2 flasks.  

AGK HDF were cultured in high glucose DMEM containing 10% FBS, supplemented 

with 1% v/v L- Glutamine, and penicillin-streptomycin.  

All cell culture work was carried out using aseptic techniques within a sterile HEPA 

filtration NuAire CellGuard class II biological safety cabinet and all cells were grown a 

humidified chamber at 37ᵒC with 5% CO2.  

2.4 Plasmids  

All plasmids used within this thesis are described in Table 2.2. Plasmid maps of each 

construct can be found in Appendix 7.1.2.  

PEF4 Myc-Flag–DOCK9 (Meller et al., 2008) was obtained from Professor Martin 

Schwartz, University of Virginia, USA. pC3 EGFP-DOCK4 and pBABE puro Flag-DOCK4 were 
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obtained from Dr Vijay Yanik, Harvard Medical School, Massachusetts, USA. Plasmid pC3 

EGFP-DOCK4 harbours a kanamycin resistance gene, for antibiotic selection in bacterial 

cultures. pEF4 Myc-Flag-DOCK9 and pBABE puro Flag-DOCK4 harbour an ampicillin 

resistance gene for antibiotic selection in bacterial cultures. 

DOCK9 point mutants (proline-alanine) were previously developed in the laboratory 

(by Ms. Anne Sanford) using the pEF4 Myc-Flag–DOCK9 construct by means of the 

StratageneQuickchange II XL site- directed mutagenesis kit. 

For expression of truncated DOCK4 proteins (as described table 2.1) human DOCK4 

complementary DNA fragments were isolated from a pBABE puro Flag-DOCK4 plasmid and 

cloned into the pOPIN-F vector (Addgene). For the expression of full length or truncated 

DOCK9 proteins (as described table 2.1), fragments of the human DOCK9 complementary 

DNA was isolated from a pEF4 Myc-Flag-DOCK9-His plasmid and cloned into a pOPIN-F 

vector. Vector pOPINF harbours a C-terminal His tag, resulting in all expressed peptides being 

tagged at the C-terminal with the His tag. Constructs based on pOPIN-F harbor an ampicillin 

resistance gene for antibiotic selection. The pOPIN-F constructs also harbor a CMV enhancer, 

Chicken β -Actin promoter, T7 promoter/lac operator and ORFs Lef-2603 and 1629 for 

expression within mammalian cells, bacteria and insect cells. Primers used for sequencing 

confirmation of PCR amplified gene fragments can be found in Appendix 1 Tables 7.1 and 

7.2.  

 

 

 

 

 

 

 



65 

 

DOCK4 primers Forward primer sequences  

pOPIN vector sticky ends in lower case 

text 

Reverse primer sequences 

pOPIN vector sticky ends in 

lower case text 

SH3 1M-72K 

AT=51oC 

5’-aagttctgtttcagggtacc 

ATGTGGATACCTACGG-3’  

5’-Ctggtctagaaagcttaat 

TTTGTTCTTTACACAGGC-3’  

SH3-CC 1M-

174D 

AT=52oC 

5’-aagttctgtttcagggtacc 

ATGTGGATACCTACGG-3’  

5’-ctggtctagaaagcttaat 

GTCTTCCGGATCCACCATTGC

G-3’ 

SH3-CC 1M-

196Q 

AT=48oC 

5’-aagttctgtttcagggtacc 

ATGTGGATACCTACGG-3’ 

5’-ctggtctagaaagcttaat 

CCGGTTAGTCACTCTCTAAA-

3’  

DHR2 1169M-

1594A 

AT=56oC 

5’-aagttctgtttcagggtacc 

ATGAAAATGGGAGAGG-3’  

5’-ctggtctagaaagcttaa 

tAGCAGAGAACTCCTGTATCC

C-3’  

DOCK9 primers Forward primer sequences  

pOPIN vector sticky ends in lower case 

text 

Reverse primer sequences 

pOPIN vector sticky ends in 

lower case text 

Full-length 

AT=54oC 

 

5’-aagttctgtttcagggtacc 

ATGGAGGAATTTGTGCCCTGC-3’ 

5’-ctggtctagaaagctt 

AATCTGAGTATACACTGTAGA

AACC-3’  

PH-DHR1 

AT=48oC 

5’-aagttctgtttcagggtacc 

ATGGGTTCCCAGAAGGGTGGG-3’ 

5’-ctggtctagaaagctt 

AATCTGAGTATACACTGTAGA

AACC-3’  

PCIP-DHR1 

AT=59oC 

 

5’-aagttctgtttcagggtacc 

ATGTCGCAGCCGCCGCTGCTCCC-3’  

5’-ctggtctagaaagctt 

TCATCCCAGCTGCTCATGC-3’  

Table 2-1 Primers for nucleotide amplification for cloning of human DOCK4 and human 

DOCK9 gene sequences into plasmid constructs for protein expression. DOCK4 and DOCK9 

gene sequences isolated from pBABE puro Flag-DOCK4 and pEF4 Myc-Flag-DOCK9, 

respectively. AT=Annealing temperatures used for each primer pair during PCR reaction. 
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Plasmid Gene Vector Antibiotic 

selection gene 

pC3 EGFP-DOCK4 DOCK4 pC3 EGFP  Kanamycin 

pBABE puro Flag-
DOCK4 

DOCK4 pBABE puro Ampicillin 

pEF4 Myc-Flag-
DOCK9 

DOCK9 pEF4 Ampicillin 

pOPINF DOCK4-
SH3  

DOCK4 SH3 domain pOPINF HIS6-3C-POI Ampicillin  

pOPINF DOCK4-
DHR2 

DOCK4 DHR2 
domain 

pOPINF HIS6-3C-POI Ampicillin 

pOPINM DOCK9 DOCK9 pOPIN3SC HIS6-SUMO-
3C-POI 

Ampicillin 

pOPINF PH-PCIP-
DOCK9  

DOCK9 PH-DHR1 
domain 

pOPINF HIS6-3C-POI Ampicillin 

pOPINF PCIP-DHR1-
DOCK9 

DOCK9 DHR1 
domain 

pOPINF HIS6-3C-POI Ampicillin 

pGIPz Lentiviral packaging plasmid Ampicillin 

psPAX Lentiviral packaging plasmid Ampicillin 

pMD2.G VSV G pMD2.G Ampicillin 

Table 2-2 List of plasmid construct used for experimental purposes 
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1.5 PCR 

DOCK4 and DOCK9 DNA fragments were PCR amplified from the pBABE puro Flag-

DOCK4 and pEF4 Myc-Flag-DOCK9, respectively, with a Q5 high-fidelity DNA polymerase and 

master mix (1x Q5 reaction buffer, 200μM dNTPs, 0.02U/μl Q5 high-fidelity polymerase, 1x 

Q5 high-fidelity enhancer, <1ng plasmid DNA, nuclease-free water). PCRs were carried using 

a Veriti™ 96-Well Thermal Cycler. Conditions are as follows: 30 sec denaturation at 98ᵒC, 35 

cycles of 5 sec, 30 sec annealing with temperature optimised for each primer pair (see table 

2.1), elongation at 72ᵒC for 4mins for full length DOCK9 constructs and 30 sec for all other 

constructs), 2 min final extension at 72ᵒC.  

2.5 PCR clean-up 

15μl of PCR product per reaction was purified using a Monarch® PCR & DNA Cleanup 

Kit in accordance with manufacturer’s protocol. 

2.6 Cloning 

DOCK4 SH3 domain amplified from pBABE puro Flag-DOCK4, DOCK9 PH-PCIP domain 

amplified from pEF4 Myc-Flag-DOCK9) and DOCK9 p.PCIP627-630 domain amplified from 

pEF4 Myc-Flag-DOCK9 by PCR were sub-cloned into a modified a pOPINF HIS6-3C-POI vector, 

which had been ligated by the restriction enzymes NcoI and MscI. Full length DOCK9 was 

sub-cloned into pOPIN3SC HIS6-SUMO-3C-POI. Sub-cloning was carried out using a NEB 

builder HiFi DNA assembly kit. All primers described within this section are listed within Table 

2.1. 

2.7 Bacterial transformation and plasmid preparation  

BL21 pLYsS E.coli competent cells were quickly thawed on ice. 1μl of DNA was added 

to 50μl of E.coli then incubated on ice for 30 minutes. Cells were then heat shocked at 42ᵒC 
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for 45 seconds then placed on ice for 2 minutes. Cells were supplemented with 250μl of 

super optimal broth and placed on a shaking incubator at 37ᵒC for 1 hour. The pEF4 Myc-

Flag–DOCK9 plasmids contain an ampicillin selectable marker thus were streaked onto 

lysogeny broth (LB) agar plates prepared with 100μg/ml of ampicillin. BC21 bacteria 

transformed with pC3 EGFP-DOCK4 and pC3 EGFP-EV (empty vector) plasmids were cultured 

on LB agar containing 50μg/mL of kanamycin; as these plasmids possess the kanMX cassette. 

Cultures were incubated overnight at 37ᵒC. After 18 hours of growth one colony per plate 

was selected and inoculated into a 3ml aliquot of LB broth containing the antibiotics that 

corresponds with the plasmids selectable marker. The 3ml cultures were incubated at 37ᵒC 

in a shaking incubator for 8 hours, following which the 3ml cultures were inoculated into 

antibiotic containing 100mL of LB broth and returned to the shaking incubator at 37ᵒC for 18 

hours.  

DOCK9 point mutation plasmids were extracted and purified using PureLink® HiPure 

Plasmid Midiprep Kit (Invitrogen) according to manufacturer’s protocol. Plasmid 

concentrations were determined using Nanodrop spectrophotometry.  

2.8 Production of pOPINF-DOCK4 SH3, DOCK9 PH-PCIP, DOCK9 PCIP-DHR1, and 

pOPIN3SC-DOCK9 plasmids in E.coli. 

E.coli strain DH5α were transformed, as previously described, using 500pg of the 

described plasmid constructs pOPINF-DOCK4 SH3, DOCK9 PH-PCIP, DOCK9 PCIP-DHR1, and 

pOPIN3SC-DOCK9. Cultures were streaked onto ampicillin agar plates and grown over 72 

hours at 16oC. Colonies were selected using blue white screening and inoculated into 10ml 

of LB broth containing ampicillin and incubated overnight at 37ᵒC. Plasmids were extracted 

from DH5α cells using the Wizard MagneSil plasmid purification system.  
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All constructs were sequenced using Sanger sequencing, incorporating multiple 

primers designed to complement the DNA sequence in 700 base pair increments. Sequencing 

was carried out by ThermoFisher. 

2.9 Production and purification of Plasmids for mammalian cell expression 

Plasmids pEF4 Myc EV Flag, pEF4 Myc-Flag–DOCK9, and pEF4 Myc-Flag–DOCK9 PRR 

mut2, pEF4 Myc-Flag–DOCK9 PRR mut3, pEF4 Myc-Flag–DOCK9 PRR mut4, pEF4 Myc-Flag–

DOCK9 PRR mut5, pEF4 Myc-Flag–DOCK9 PRR mut9 were cultured from glycerol stocks and 

inoculated in BL21 (DES) competent cells (Invitrogen™, Carlsbad, California USA), in 

accordance with manufacturers protocol.  

Transformed competent cells were cultured on agar plates in the presence of either 

ampicillin (pEF4 Myc EV Flag, pEF4 Myc-Flag–DOCK9, and pEF4 Myc-Flag–DOCK9 PRR mut2, 

pEF4 Myc-Flag–DOCK9 PRR mut3, pEF4 Myc-Flag–DOCK9 PRR mut4, pEF4 Myc-Flag–DOCK9 

PRR mut5, pEF4 Myc-Flag–DOCK9 PRR mut9) or kanamycin (pC3 EGFP-DOCK4 and pC3 EGFP-

EV) and cultured over night at 37oC. Individual colonies was inoculated into 15ml of LB, 

supplemented with the appropriate antibiotics, cultures for 6 hours in a shaking incubator at 

37ᵒC. 15ml start-up cultures were then inoculated into 50ml of LB supplemented with 

antibiotics and placed in a shaking incubator at 37ᵒC overnight. Bacterial cultures were 

centrifuged at 5,000g for 15 minutes. Supernatant was discarded and pellet retained. 

Plasmids were extracted from bacterial pellets using a PureLink HiPure Plasmid Midiprep kit 

(Invitrogen™, Carlsbad, California USA), in accordance with manufacturers protocol. 

2.10 Restriction Enzyme Digestion  

Plasmids pEF-EV Flag pEF4 Myc EV Flag, pEF4 Myc-Flag–DOCK9, and pEF4 Myc-Flag–

DOCK9 PRR mut2, pEF4 Myc-Flag–DOCK9 PRR mut3, pEF4 Myc-Flag–DOCK9 PRR mut4, pEF4 

Myc-Flag–DOCK9 PRR mut5, pEF4 Myc-Flag–DOCK9 PRR mut9 were digested with NotI and 
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KpnI in NEB buffer 2.1 (New England Biosciences) according to the manufacturer’s protocol. 

Plasmids pC3 EGFP-DOCK4 and pC3-EGFP were digested with BamHI in NEB buffer 3.1 in 

accordance with the manufacture’s protocol. Digested plasmids were resolved on a 0.7% 

agarose gel using agarose gel electrophoresis.  

2.11 Transformation of competent cells for protein expression  

Optimal competent cells were selected through screening of a panel of competent 

cells (BL21 (DES), BL21 pLYsS (DES), BL21 (DES) RP, BL21 (DES) RIL, NiCo21), all competent 

cells produced in-house at the Protein Production Facility (Faculty of Biological Science, 

University of Leeds). Transformations of pOPINF and pOPIN3SC constructs were carried out 

as previously described. Transformed competent cells were streaked onto lysogeny broth 

(LB) agar plates prepared with selectable antibiotic markers (ampicillin 100μg/ml: BL21, 

NiCo21. Ampicillin plus chloramphenicol 34μg/ml: BL21 pLYsS (DES), BL21 (DES) RP, BL21 

(DES) RIL). Cultures were incubated overnight at 37ᵒC. Individual colonies were selected and 

inoculated into 1ml of LB supplemented with antibiotics and incubated overnight at 37ᵒC. 

20μl of overnight culture was inoculated into 2ml of LB plus antibiotic. Cultures were 

incubated in a shaking incubator at 37ᵒC until reaching an optical density (OD) 600 of 0.6nm 

(measured using spectrophotometer). Once cultures reach 0.6nm cultures were treated with 

0.2mM of Isopropyl β- d-1-thiogalactopyranoside (IPTG). Cultures were grown overnight at 

18ᵒC.  

For large scale cultures 1 colony was selected per agar plate. Each colony was 

inoculated into 100ml of LB supplemented with antibiotics, cultures were grown overnight 

at 37ᵒC. 100ml start-up culture was inoculated into 900ml of LB supplemented with 

antibiotics and placed in a shaking incubator at 37ᵒC until reaching an optical density at 

600nm (OD600) of 0.6 (measured using spectrophotometry). Once cultures reached OD600 

0.6 cultures were treated with 0.2mM of IPTG. Cultures grown overnight at 18ᵒC.  
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2.12 Bacterial culture lysis 

Bacterial cultures treated with IPTG were centrifuged at 5,000g for 15 minutes. 

Supernatant was discarded and pellet retained and re-suspended in a His wash buffer (20mM 

Imidazole, 150mM NaCl, 20mM Tris ph7.6). Cultures were lysed by sonication with 10x 10 

second sonication pulses with 30 second pauses in-between the pulses. All cultures were 

kept on ice during lysis protocols. Lysed cell cultures were then centrifuged at 17,000g for 35 

minutes. Supernatants were retained and pellets discarded. 

2.13 Transfection of plasmid DNA  

Plasmid DNA was transfected into HEK 293T cells using Lipofectamine 2000 

(Invitrogen) in accordance with manufacturer’s protocol. 3x106 HEK 293T cells were plated 

onto fibronectin coated 100mm plates in 10ml of DMEM supplemented with 10% v/v FBS, L-

Glutamine, and antibiotics. Cells were cultured overnight at 37ᵒC after which time the DMEM 

medium was removed and cells were washed 4x with antibiotic-free DMEM with 10% v/v 

FBS and L-Glutamine and 10ml antibiotic-free medium was left on each plate.  

For each 100mm plate 20μL of Lipofectamine 2000 was added to 480μL of reduced 

serum OptiMEM medium. 5μg of plasmid was suspended in reduced serum OptiMEM 

medium to a total volume of 500μL. Plasmid and Lipofectamine 2000 containing aliquots 

were combined, vortexed for 15 seconds, then incubated at room temperature for 30 

minutes. The combined solution was then added dropwise onto the cells. Transfected cells 

were incubated at 37ᵒC + 5% CO2 for 48 hours without medium change.  

2.14 Affinity chromatography 

His-tagged proteins were purified from bacterial lysates using a nickel column on an 

ÄKTA pure system (GE healthcare). The His-column was washed with 70% v/v ethanol then 
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equilibrated with a His wash buffer (20mM Imidazole, 150mM NaCl, 20mM Tris ph7.6). The 

sample was loaded onto the column at a rate of 1ml/min. The protein loaded column was 

then washed with His wash. Sample was eluted from the column through application of an 

elution buffer (50mM Tris pH 7.6, 300mM NaCl, 300mM imidazole, 5% v/v glycerol, 0.075% 

v/v β-mercaptoethanol) that was diluted with His wash buffer at increasing concentrations 

until reaching 100% elution buffer. DOCK4-SH3 domain and DOCK9 PCIP-DHR1 proteins 

purified through using affinity chromatography were stored in 20mM Tris pH7.6, 150mM 

NaCl, and 1mM DTT. 

2.15 Size exclusion chromatography 

Affinity chromatography of purified peptides DOCK4-SH3 domain and DOCK9 PCIP-

DHR1 were concentrated using a 3K MWCO Pierce™ Protein Concentrators PES for 

concentrating DOCK4-SH3 and 10K MWCO Pierce™ Protein Concentrators PES for 

concentrating DOCK9 PCIP-DHR1, prior to size exclusion chromatography (SEC). 

Protein samples were purified according to size using a Superdex® 75 Gel filtration 

column (GE Healthcare). In order to test DOCK4-SH3 and DOCK9 PCIP-DHR1 domain 

interaction, approximately 1ml of 1mg/ml DOCK4-SH3 was loaded onto the Superdex® 75 

Gel filtration column using a 2.5ml loop. Immediately afterwards, approximately 1ml of 

1mg/ml DOCK4-SH3 was loaded onto the Superdex® 75 Gel filtration column using a 2.5ml 

loop. Equal concentrations of DOCK4-SH3 and DOCK9 PCIP-DHR1 were combined then 

loaded onto the Superdex® 75 Gel filtration column using a 2.5ml loop. All samples were 

collected and analysed using SDS PAGE gel separation and Coomassie staining. 
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2.16 Lentiviral shRNA particle generation 

In order to knock down DOCK4 protein in HUVEC, two different DOCK4 shRNA and a 

non-silencing pGIPZ construct (Thermo Scientific, Open Biosystems) were used: 

DOCK4 shRNA 3 mature antisense - CTCAGTATTTGCAGATATA  

DOCK4 shRNA 4 mature antisense - CGCAAGGTCTCTCAGTTAT 

Non-silencing pGIPZ - ATCTCGCTTGGGCGAGAGTAAG 

HEK 293T cells were seeded onto poly-L-lysine coated 100mm dishes at a density of 

3x106. Cells were washed with 5ml of Opti-MEM and maintained in 7ml of Opti-MEM per 

plate prior to transfection. Cells were transfected with lentiviral packaging plasmids pMD2.G 

(3 µg) and psPAX2 (7 µg), and DOCK4 shRNA (10 µg) with 40μl of transfection reagent 

Lipofectamine 2000 per tissue culture plate. DNA and Lipofectamine were prepared 

separately in 500μl of Opti-MEM then combined, vortexed, and added dropwise to confluent 

HEK 293T cells. Cells were incubated at 37ᵒC with 5% CO2 for 4 hours after which Opti-MEM 

media was replaced with high glucose DMEM containing 10% v/v FBS, supplemented with 

1% v/v L- Glutamine. Cells were maintained at 37ᵒC with 5% CO2. 

Media was removed and replaced with fresh DMEM 24 hours post transfection and 

returned to the incubation cabinet at 37ᵒC with 5% CO2. 

Viral rich medium was removed and replaced with fresh media after 48 hours. The 

collected supernatant was centrifuged at 3000 x g for 20 mins then filtered through a 0.45 

µM syringe filter and stored at 4ᵒC for use within 7 days following particle production. 

All cell culture work was carried out using aseptic techniques within a sterile HEPA 

filtration NuAire CellGuard class II biological safety cabinet and all cells were grown a 

humidified chamber at 37ᵒC with 5% CO2.  
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2.17 Lentiviral transduction  

HUVEC were seeded onto 6 well flat bottom plastic culture plates at a density of 

1.5x105 cells per well, using cell culture conditions described in section 1.3. Approximately 

24 hours post seeding cells were treated with shRNA viral supernatant diluted in large vessel 

media in a 2:3 ratio.  

2.18 Cell lysis for Co-immunoprecipitation (Co-IP) 

Cells growing in 6 well plates or 100mm plates were washed with PBS and then lysed 

in 50μl or 400μl cold RAC lysis buffer (50mM TRIS pH 7.4, 10% v/v Glycerol, 1% v/v NP40, 

5mM MgCl2, 100mM NaCl, 5X Complete Protease Inhibitor EDTA free (Roche Applied 

Science), 1mM dithiothreitol (DTT)) respectively. Lysates were cleared by centrifugation at 

13,000g on a bench-top centrifuge for 30 minutes.  

2.19 Co-immunoprecipitation assay   

GFP-DOCK4 protein was extracted from total cell lysate through 

immunoprecipitation using GFP-trap (Chromotek) beads. GFP-trap beads were prepared 

according to manufacturer’s protocol. Cell lysates were added to 20μL of washed GFP-trap 

slurry and incubated with rotation at 4ᵒC for 1 hour.  

Samples were then centrifuged for 2 minutes at 12,000 g, the supernatants were 

removed and the beads were resuspended in RAC wash buffer (TBS, 10mM MgCl2, 5x EDTA 

free Complete Protease Inhibitor, 1mM DTT) and washed twice. After the final wash the 

pelleted beads with bound protein were resuspended in 40μl 4x Sodium dodecyl sulfate 

(SDS) sample buffer (Invitrogen) and 1.5μL of 1M DTT. The samples were then denatured at 

95ᵒC for 10 minutes.  
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2.20 SDS polyacrylamide gel electrophoresis  

3-8% v/v 12 well Tris-Acetate NuPAGE Novex® Pre-Cast Gel (Invitrogen) was used for 

the electrophoretic separation of proteins in an XCell4 SureLockTM Midi-Cell electrophoresis 

tank (Invitrogen). 1 litre of 1x NuPAGE® MES SDS running buffer (Invitrogen) was used to fill 

the tank, along with 465μl of NuPAGE® antioxidant (Invitrogen). 40μL of prepared protein 

sample was used per well and 5μL of Precision Plus ProteinTM All dual colour Standards (Bio-

Rad) was dispensed into the 10μL wells provided on either ends of the gel. Electrophoretic 

separation of proteins was carried out at 150V for 120 minutes.  

2.21 Western blotting  

Proteins were transferred onto an Immobilon® polyvinylidine difluoride membrane 

(PVDF) (Sigma-Aldrich) in a TE42 Standard Transfer Tank (Hoefer) submerged in 6L of 1x 

Towbin buffer (25nM Tris, 193mM Glycine, pH 8.3, 20% v/v methanol). The tank was 

positioned in a 4ᵒC cold-room and protein transfer was performed for 2 hours at 1A.  

Target proteins were probed using HRP labelled antibodies (see figure 2.3) diluted in 

TBS+0.1% (v/v) Tween-20 (TBST) in accordance with manufacturers recommendations. An 

ECL detection kit (Amersham) was used to visualise target proteins.  

2.22 Colorimetric quantification of Co-IP proteins 

Western blots analysis of the GFP-trap Co-IP of EGFP-DOCK4 and Flag-DOCK9 

proteins (WT; Proline rich regions 2, 3, 4, 5, and 9) were quantified using ImageJ colorimetric 

analysis software. GFP-tagged protein levels were detected through anti-GFP primary 

antibody and an appropriate HRP-labelled secondary antibody probing of the Western blots, 

followed by ECL detection, blot exposure and imaging. The concentration of GFP-tagged 

proteins was determined by the ratio of signal through ImageJ colorimetric analysis. 
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Quantification of GFP-DOCK4 was used as a control to depict the level of IP protein 

concentration. Quantification of Flag-tagged proteins was determined through anti-Flag 

primary antibody and an appropriate HRP-labelled secondary antibody probing of the 

Western blots, followed by ECL detection and blot exposure and imaging. The concentration 

of GFP-tagged proteins was determined through ImageJ colorimetric analysis and then 

normalised to the GFP-tagged DOCK4 concentration. Ratio of signal analyses was performed 

using GraphPad Prism 7.0a. 

2.23 Stripping and blocking  

PVDF membranes were washed with dH2O for 10 minutes on a rocker at RT. 

Membranes were then submerged in 50ml of 0.5M NaOH and returned to the rocker for 10 

minutes at RT. The washing step in dH2O was then repeated. PVDF membranes were then 

blocked in TBST containing 5% w/v skimmed milk powder for 1 hour at RT.  
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No. Primary antibody Dilution Reactivity Cat No./ Source 

1 Rabbit anti-CD31  1:30 Mouse, 
Human, Pig 

Ab28364/ ABCAM 

2 Mouse anti-CD31  1:20 Human M0823/ DAKO  

3 Mouse anti-CD31  1:400 Human KC1004/ Caltag medical systems 

4 Rabbit anti-DOCK4 1:100 Human, 
Mouse 

A302-263A/  Bethyl 
Laboratories 

5 Rabbit  anti-DOCK9  1:1000  Human A300-530A/ Bethyl Laboratories 

6 Mouse  anti Flag-M2  1:1000   Human F1804/ Sigma Aldrich 

7 Rabbit  anti-GFP  1:1000  Human sc-8334/ Santa Cruz  

8 Mouse anti-RFP Ab 1:1000 Mouse GTX82561/ GeneTex 

No. Secondary antibody Dilution Reactivity Cat No./ Source 

1 ImmPRESS™ HRP 
Anti-Rabbit IgG  

1:1000 Rabbit MP-7401/ Vector lab 

2 ImmPRESS™ HRP 
Anti-mouse IgG  

1:1000 Mouse MP-7402/ Vector lab 

3 Alkaline phosphatase 
conjugated anti-

mouse IgG1  

1:500 Goat KC1005 Caltag medical systems 

Table 2-3 List of primary and secondary antibodies. 
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2.24 Organotypic angiogenesis assay  

Human dermal fibroblasts (Caltag Medsystem) were seeded onto 24 well plastic 

tissue culture plates at a density of 2x104 cells per well. Fibroblasts cells were maintained in 

DMEM, as described in section 2.3. Fibroblasts were incubated at 37ᵒC +5% CO2 for 7 days. 

After 7 days of fibroblasts growth the medium was removed. 1x104 HUVEC were seeded on 

top of confluent fibroblasts per well. Where required, cells were stimulated with either 

10ng/mL FGF2 (Peprotech) or 25ng/mL of recombinant human VEGFA (Sigma-Aldrich) on 

days 4 and 6 post HUVEC seeding. On day 7, all media was removed from cultures and cells 

were fixed in 70 % ice cold ethanol for later analysis.  

2.25 Angiogenesis co-culture treatment with small molecule QL-47 

QL-47 inhibitor reconstituted in DMSO, to a concentration of 10mM, was gifted from 

the Nathanael Gray Lab (Dana Farber Institute, USA). QL-47 was used to treat HUVEC within 

an organotypic angiogenesis assay. HUVEC and HDF co-cultures were treated with QL-47 at 

a concentration of 5μM, or with DMSO at a 1-1000 dilution on days 4 and 6. Co-cultures were 

also treated with 10ng/ml FGF2, 25ng/mL of recombinant human VEGFA, or cultured without 

supplementation of addition GFs. On day 7 media was removed from cultures and cells fixed 

for later analysis.  

2.26 Hypoxic angiogenesis co-culture assay  

Hypoxic angiogenesis co-culture assays were carried out in accordance with the 

organotypic co-culture assay previously described, with modification to the GF treatment 

protocol. Co-cultures were supplemented with 10ng/ml FGF2 4 days following HUVEC 

seeding and immediately placed into a hypoxic incubator at 1% O2 and 5% CO2. Cultures were 

removed from the hypoxic incubator on day 6 and supplemented with 10ng/mL FGF2. 
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Cultures were returned back to the hypoxic incubator for a further 24 hours. After the 

remaining 24 hours, cultures were removed from the incubator and immediately fixed in 

70% ice cold ethanol for 30 minutes at RT. 

2.27 Angiogenesis co-culture fixation and immuno-histochemical staining  

 24 well plated fibroblasts and HUVEC co-cultures were washed once using PBS then 

fixed in 70% ice cold ethanol for 30 minutes at RT. Cells were stained using a commercially 

available CD31 tubule staining kit supplied by TCS cell works (Caltag Med systems). Tubules 

were permanently stained through binding of anti-CD31 primary antibody coupled to an 

alkaline phosphatase conjugated secondary anti-IgG antibody. Insoluble chromogenic 

substrates nitro-blue tetrazolium (NBT) and 5- bromo-4-chloro-3'-indolyphosphate (BCIP) 

were used for colourmetric detection of CD31 expressing ECs.  

2.28  In vivo mouse models 

All In vivo experiments were conducted in accordance with the Animal (Scientific 

Procedures) Act 1986 Amended Regulations 2012 (ASPA 2012) and NCRI Guidelines 

approved by the University of Leeds Animal Welfare and Ethical Review Committee. The 

Dock4 conditional knockout line was generated and verified by Ozgene, Australia and the 

iVEC-Cre; Rosa26tdTomato line was kindly provided by Dr Karen Blyth, Beatson Institute, 

Glasgow. The two lines were maintained and intercrossed under Project license 

(PFE6DC80B) at the St James’s Biological Services (SBS) animal facility unit. 

The project and personal licenses used to carry out all animal research described 

within this thesis are as follows: 

Project License: Stephen Wheatcroft P144DD0D6 

Personal License: Leander Stewart I91EAEBOC 

Personal License: Nadira Yuldasheva ICB059380 
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2.29 Mouse line breeding  

For global heterozygous Dock4 deletion, heterozygous Dock4 mice (Abraham et al 

2015) lacking exons 3, 4 and 5 were used (C57BL/6J background) as homozygous deletion is 

embryonic lethal (Abraham et al 2015). The line was maintained and experimental cohorts 

were generated through intercrossing with C57BL/6J mice (Appendix 3, Figure 7.13).  

For conditional Dock4 deletion, the mouse line Dock4f/f (Dock4 exon 6 flanked by 

LoxP sites for recognition by Cre recombinase, depicted in Appendix 3, Figure 7.14) was 

intercrossed with the mouse line iVEC-Cre; mice. Rosa26tdTomato double transgenic line for 

Cre recombinase expressed under the control of the endothelial specific VE-cadherin 

promoter (Wang et al., 2010), for tamoxifen inducible Cre expression and Cre deletion of the 

loxP site flanked exon, and the tdTomato Cre reporter protein designed to have a loxP-

flanked STOP cassette preventing transcription of a CAG promoter-driven red fluorescent 

protein (RFP) variant (tdTomato), all inserted into the Gt(ROSA)26Sor locus (originally from 

The Jackson Laboratory). The LoxP sites flank exon 6 of the Dock4 gene (Appendix 3, Figure 

7.15), activation of Cre expression results in expression of an unstable truncated Dock4 

peptide. Dock4 and tdTomato immunofluorescent staining of the hind limb tissues was used 

to confirm knockdown of Dock4 expression (Figure 5.10). Knockout of the Dock4 gene 

expression was further confirmed through tdTomato immunofluorescent staining of brain 

sections of iVEC-Cre; Rosa26tdTomato mice (Teklu Egnuni, Thesis 2018). 

All pups produced for each mouse line were ear biopsied at 3 weeks old and 

genotyping was carried out by Transnetyx (TN, USA). Wild type littermates were used as an 

experimental control model. Both male and female mice were used during all experiments, 

as no difference in result was detected between the two genders. All mice were 21 weeks of 

age at the point of femoral artery ligation.  

Primers used for conditional mouse model genotyping by Transnetyx (TN, USA): 
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2.30 In vivo ischemia model 

Surgical procedures were carried out by Dr Nadira Yuldasheva. 24 hours prior to 

surgery the lower abdomen, groin, and legs of each mouse were depilated with hair removal 

cream (Veet, Reckitt Benckister UK). Mice were anaesthetised by inhalation of isoflurane-vet 

(Merial Animal Health Ltd, Essex, UK); initially isoflurane gas was delivered within a Perspex 

containment unit, then maintained via a nose cone mask. Each mouse was placed on a 

heating plane (Vettech, UK) in the supine position with the upper paws fixed on the mask 

and lower extremities abducted and extended. The surface area on and around the hind 

limbs were cleaned with providone-iodine 0.75% w/w (Vetasept animal care, York, UK).  

The left femoral artery extending from the region under the inguinal ligament to the 

saphenous artery was exposed and the adipose pad with epigastric artery was cauterised. 

The iliac artery was encircled with 8.0 Vicryl suture (Ethicon, Belgium) then dissected. The 

femoral artery, proximally at the inguinal ligament and distally at the bifurcation to 

saphenous and popliteal vessels, was separated from the vein, encirculated with 8.0 Vicryl 

sutures, and the intervening arterial segment was excised. 

Following surgery the mice were maintained at 38ᵒC within a warm chamber 

(Thermal cage; Vettck, UK) until regaining consciousness and motility. The operation was 

performed with the assistance of the surgical microscope (Ziess, OPMI 1-FC) under the 

appropriate magnification (x7.2-x30). 

2.31 Tamoxifen treatment 

iVEC-cre+ve; Rosa26-lsl-tdTomato; Dock4 f/f mice (n=9) and iVEC-cre-ve; Rosa26-lsl-

tdTomato; Dock4 f/f mice (n=8) underwent daily intraperitoneal injections of a 2mg dose of 

tamoxifen for 5 consecutive days. Seven days following the final tamoxifen dose all mice 

underwent a HLI operation to surgically ligate and transect the left femoral artery. 
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2.32 Laser Doppler Imaging techniques 

Approximately one hour following surgery, superficial blood flow within the hind 

limbs was analysed using a moorLDI2-HIR Laser Doppler imager (Moor Instruments LTD). 

Mice were anaesthetised by inhalation of isoflurane-vet (Merial Animal Health Ltd); 

delivered within a Perspex containment unit. The anaesthetic was then maintained via a 

mask. Data readings of vascular perfusion were obtained via dynamic light scattering analysis 

of which is converted to a signal proportional to the tissue perfusion. From this data a color-

coded perfusion image is generated by the moorLDI V6 PC Software (Moor Instruments LTD) 

which then generates a numerical value to represent the level of tissue perfusion of both 

hind legs. The region of hindlimb from the ankle to the foot was selected for comparative 

analysis, as this region of limb is the area most affected by the femoral artery ligation 

(Hellingman et al., 2010). The ratio of perfusion in the ischemic to non-ischemic limb was 

calculated to normalise the blood flow of the ischemic limb to that of the non-ischemic limb. 

Laser Doppler imaging (LDI) readings were taken 7, 14, and 21 days after surgical femoral 

artery ligation. 

2.33 Muscle harvest and fixation  

Approximately 2 hours after generating the final LDI reading mice were 

anaesthetised by inhalation of isoflurane-vet (Merial Animal Health Ltd); delivered within a 

Perspex containment unit. Mice were placed on a surgical table in a supine position on a 

heating plane (Vettech) with the upper paws fixed on the mask and lower extremities 

abducted and extended. Anaesthetic was then maintained via a nose mask.   

Each mouse was exsanguinated via caudal vena cava transection and whole body 

perfused. Abdominal cavity and pericardial cavity were exposed through a lower abdominal 

longitudinal incision, approximately 2 cm long, and a 3cm ventral midline incision. The Caudal 
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vena cava was dissected free of surrounding fascia and cut. Whole body vasculature was 

flushed through with injection of 10ml of 10% v/v PBS into the cardiac left ventricle. Muscle 

was fixed via injection of 10ml of 4% v/v paraformaldehyde into the cardiac left ventricle.  

All skin and fascia were removed from the lower extremities and the gastrocnemius 

and soleus muscles were surgically removed from both legs and placed together within a 

tissue storage cassette. All tissue samples were submerged in 4% v/v PFA for 24 hours then 

transferred to 70% v/v ethanol for approximately one week. Muscles were embedded in 

paraffin wax in a longitudinal orientation.  

2.34 Muscle sectioning 

Longitudinally orientated gastrocnemius and soleus embedded in paraffin wax were 

sectioned into 50x 5μm thick floating sections per block using a microtome (Leica Biosystem, 

Wetzlar, Germany). Initial 10 x 10μm sections of each muscles block were removed and 

discarded prior to selecting sections for mounting on non-frosted glass slides (Thermo 

Scientific).  

2.35 Immunohistochemistry 

 Dewaxing and rehydration 

Optimal slides were selected for immuno-histochemical (IHC) staining, with one slide 

selected after approximately every 10th slide. Slides were placed on a hotplate at 70ᵒC for 

20 minutes then transferred to 24-slide baskets. Slides were dewaxed in four separate 

consecutive Xylene containers for 5 minutes increments. Slides were then rehydrated in 

consecutive separate containers: absolute ethanol for 2x2 minutes, 90% v/v ethanol for 2 

minutes, and 70% v/v for 2minutes. Slides were then thoroughly rinsed in running tap water 

for 1 minute. 
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 Antigen retrieval and IHC staining 

Slides were submerged and incubated in Antigen Unmasking Solution, Tris-Based 

(Vector Laboratory) within a pressure cooker reaching 125ᵒC, then removed from Antigen 

Unmasking Solution and submerged in running water for 1 minute. Tissue section region was 

encircled using an ImmEdge™ Pen (H-4000) hydrophobic pen (Vector Laboratory). Slides 

were submerged in Tris buffered saline for 1 minute. Endogenous antibodies of tissue 

sections were incubated in BLOXALL Endogenous Peroxidase and Alkaline Phosphatase 

Blocking (Vector Laboratory) for 15 minutes followed by a 5 minute incubation in TBS-Tween. 

Tissue proteins were then blocked in 1/10 Casein Solution (Vector Laboratory) for 20 

minutes. Antibodies prepared in Antibody Diluent (ThermoFisher) to their optimised 

concentration (see table 2.3) then dispensed onto slides and incubated at ambient 

temperature for 1 hour followed by 2x 5 minute washes in TBS-Tween. Slides were incubated 

in the appropriate secondary antibody (see table 2.3) for 30 minutes, then washed for 2x 5 

minute washed in TBS. Slides were stained in ImmPACT DAB Peroxidase (HRP) (Vector 

Laboratory) prepared in ImmPACT DAB solution (Vector Laboratory).  

Cell nuclei were counterstained with Mayer’s haemotoxylin for 30 seconds, followed 

by a wash under running water and 1 minute immersion in Scott’s Tap water. Slides were 

placed in lithium carbonate for 2 minutes then rinsed in running water then placed in Xylene. 

 Dehydration, clearing and mounting 

IHC stained slides were dehydrated and cleared through submersion in 3 consecutive 

20 second absolute ethanol washes. Slides were air dried for 5 minutes and cleared in 4 

consecutive changes of Xylene. Glass slides were mounted onto slides with DEPEX (Sigma).  

 IHC quantitative image analysis 

CD31 IHC stained tissue sections were scanned using Apeiro AT Virtual Slide scanner 

(Leica Biosystems, Wetzlar Germay) and area for analysis selected using Apeiro ImageScope 

software (Leica Biosystems, Wetzlar Germay). Eight randomly selected 500μm x 500μm 
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boxes were placed over each section image. ImageJ software (National Institutes of Health) 

was utilised for quantification of all visible CD31 stained vasculature within the 500μm x 

500μm boxes. TVL and branch points within the defined areas were quantified within each 

box. RFP and DOCK4 IHC stained tissue sections were imaged at 20x using a Nikon light 

microscope (Nikon Instruments Inc, Edgewood NY). 

2.36 Statistical analysis  

All data within this thesis was collected and analysed by Leander Stewart. Data 

acquisition and analysis of organotypic co-cultures was blinded throughout. The genotypes 

of all mice to undergo HLI surgery were blinded from the outset and throughout the surgical 

procedure. However, genotypes of the mice utilised for the HLI was known during LDI data 

acquisition, and data analysis. 

 Organotypic angiogenesis assays 

Organotypic angiogenesis assay cultures were imaged using an Olympus CKX41 light 

microscope with 9 images taken per well. Images were analysed manually using ImageJ 

software, generating a measurement of total vessel length (TVL), average vessel length, and 

branch point index (BPI) for each image.  

Quantification of angiogenesis parameters (number of branches, tubules and tubule 

length) were performed as previously described (Hetheridge et al., 2011). The mean average 

of each data output was generated per experiment for each of the organotypic co-culture 

conditions. Gaussian distribution of calculated mean ± SD values of QL-47 treated 

organotypic co-cultures and DOCK4 shRNA knockout cultures were verified using Levene's 

and Bartlett's test and a Kruskal–Wallis one-way analysis of variance or One-way ANOVA 

analysis of variance were performed were appropriate using Origin 2015 software (OriginLab 

Corp., Northampton, MA) to assess significance. 
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 Laser Doppler Imaging 

Numerical values representing blood flow of tissues imaged by the Laser Doppler 

Imager Data were calculated as mean ± standard deviation. When comparing the ischemic 

limbs between experimental groups, the ratio of blood flow between the ischemic limb and 

non-ischemic limb was calculated, then the mean ± standard deviation ratio of blood flow of 

each experimental group was generated to compare hind limb perfusion between the 

different experimental groups using a One-way ANOVA with Tukey’s multiple comparisons. 

For analysis of non-ischemic limb, mean ± standard deviation of the absolute value of the 

non-injured limbs were calculated and compared using One-way ANOVA with Tukey’s 

multiple comparisons. Statistical analysis was performed with GraphPad Prism 7.0a. 

Area under the curve was also measured using GraphPad Prism 7.0a, the software 

uses the trapezoidal rule algorithm for area under the curve calculations, values were 

compared between experimental groups using one-way ANOVAs, with LSD post-hoc analyses 

where appropriate.  Statistical analysis was performed with GraphPad Prism 7.0a.  

Linear regression and slope intersects of the blood flow recovery over time of each 

experimental group were also analysed using GraphPad Prism 7.0a. Statistical analysis 

comparing linear regression and slope intersects were performed using GraphPad Prism 

7.0a. 

 Histological analysis 

TVL of all CD31 stained vasculature within the defined areas were quantified and 

used to generate a mean value of TVL for each section. All branch points of all CD31 stained 

vasculature within the defined areas were quantified and used to generate a BPI (defined as 

total branch points/TVL). The mean value of total BPI of each box was used to calculate a 

mean BPI for each muscle section. Gaussian distribution of calculated mean ± SD values were 

verified using Levene's and Bartlett's test and a One-way ANOVA analysis of variance was 

performed using GraphPad Prism 5 to assess significance. 



87 

 

Sr.No. Solution   Recipes or Cat. No 

1 PBS 500ml dH20 + 2 PBS tablets (Cat.No. P4117, Sigma) + 1 PBS 

tablet (Ca.No. BR0014G, OXOID) 

2 Lysis Buffer 

(PCR) 

100 mM Tris (pH 8.5), 5 mM EDTA, 0.2% v/v SDS, 200 mM 

NaCl 

3 Lysis buffer 

(WB) 

50mM TRIS pH7.4, 10% v/v Glycerol, 1% v/v NP40, 5mM MgCl2 

100mM NaCl  

4 RAC Lysis 

buffer 

50mM TRIS pH 7.4, 10% v/v Glycerol, 1% v/v NP40, 5mM 

MgCl2, 100mM NaCl, 25x Complete Inhibitor (no EDTA) and 

1mM DTT 

5 10xTBS 100ml 1M Tris-Base pH 7.5 + 200ml 5M NaCl  

(900ml dH20 + 24 gm Tris Base + 88 gm NaCl) 

6 1xTBS 900ml dH20 + 100ml 10xTBS  

7 TBST 1xTBS + 0.1% v/v Tween-20  

(900 ml dH20 + 200ml 10TBS + 1ml Tween-20) 

8 Running 

Buffer 

50ml 20xT.A + 950 ml dH20 

9 Transfer 

Buffer 

70% dH20, 20% v/v methanol and 10% v/v of 10XTBS  

10 4% PFA 500 ml PBS + 20 g PFA powder + 200 ul 1M NaOH 

11 5X DMEM 100ml dH20 + 6.74 g DMEM + 40g or 1.85 g or 0.37g NaHC03 

12 Lysogeny 

Broth (LB) 

medium  

20g LB powder in 1 litre dH20  

13 LB agar  15g agarose powder in 1 litre LB medium 

14 Tris-EDTA (TE) 

buffer (PCR) 

5ml 1M Tris (pH8), 1ml 0.5M Na2EDTA 

15  Access 

Revelation 

(10x) 

Antigen Retrieval (Cat.No. MP-607-X500, MenaPath) 

16 TBS (20x) Washing buffer (Cat. No. MP-945-X500, MenaPath) 

Table 2-4 Common laboratory standard solutions. 
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3 Results chapter I: In vitro investigation of DOCK4 signalling 

during sprouting angiogenesis 

3.1 Introduction 

Healthy vascular growth capable of adequately providing the precise blood flow to 

the organs and tissues depends strongly upon the correct vascular patterning. Developing 

vasculature with adequate, but not excessive branching, along with the correct level of 

tubule elongation is imperative for healthy physiological function of the body’s organs and 

tissues (Eilken and Adams, 2010). 

The precise cellular mechanisms which underlie the coherent processes of vascular 

pattering during sprouting angiogenesis rely strongly upon an intricate repertoire of 

interplaying GFs. Stimulation of ECs by each GF potentially prompts differing intracellular 

events which induce different cellular responses. The GEF, DOCK4, has been described as 

required for the signalling events downstream of VEGFA driven angiogenesis, with depletion 

of DOCK4 leading to a loss in lateral filopodia and vascular branching; inducing growth of 

long thin but unbranched tubules (Abraham et al., 2015). As much of post developmental 

angiogenesis occurs in response to oxygen deprivation, it is important to consider this 

signalling mechanism within the context of hypoxia, while also considering the potential 

interplay of DOCK4 in the cellular response to grow factors other than VEGF. To further 

understand the functionality of DOCK4 within the signalling pathways which drive 

angiogenesis, in vitro techniques were conducted with inhibition of DOCK4, and the DOCK4 

interaction partner DOCK9, through shRNA induced inhibition and small molecule inhibition, 

respectively; with consideration of hypoxic conditions. As FGF2 has previously been 

described as the predominant regulator of peripheral sprouting angiogenesis in response to 

ischemia (Ferraro et al., 2010), in vitro assays were carried out under VEGFA or FGF2 

stimulation.  
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In order to study these signalling mechanisms in vitro, an organotypic co-culture 

model was employed (figure 3.1). The co-culture model creates a 3D culture environment 

with HDF grown to produce an extracellular matrix, through which the ECs may form dynamic 

cords; which more closely resemble physiological vasculature than other 3D angiogenesis 

models (Hetheridge et al., 2011). 

QL-47, a DOCK9 binding small molecule inhibitor, was utilised as a tool for expanding 

upon the understanding of the DOCK4-DOCK9 signalling mechanism within angiogenesis. QL-

47 is capable of covalently binding to p.C628 within the DHR1 domain of the DOCK9 protein 

(unpublished data Gray, N. Appendix 2); a cysteine residue which lies within a proline-rich 

region of DOCK9 identified as a potential interaction site of the DOCK4 SH3 domain.  
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Seed 
Fibroblasts 7 
days prior to 

HUVEC

Day 0: Seed 
HUVEC

Day 4 & 6: 
Treat with 

growth 
factor

Day 7: Fix 
and stain co-

culture

Figure 3-1 Schematic diagram of organotypic angiogenesis co-culture assay 

An organotypic co-culture model was used to investigate sprouting angiogenesis within 

a 3D in vitro model. HDF cells were grown to form a confluent monolayer, forming a matrix 

through which ECs can sprout and develop into vascular structures. HUVEC were seeded on top 

of HDF, 7 days post HDF seeding. Where it was required, cells were stimulated with either 

10ng/mL FGF2 or 25ng/mL of recombinant human VEGFA on days 4 and 6 post HUVEC seeding. 

The time point of co-culture fixation is adaptable according to the phenotypical readout of 

results required. Co-cultures described within this thesis were cultured until day 7, post HUVEC 

seeding, allowing for dynamic remodelled of cords of EC to form into more established tubules. 

CFs=Confluent fibroblasts. 

Image adapted from Abraham et al (2015), with author permission. 
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3.2 Results 

 Effect of FGF2 stimulation on EC sprouting and elongation during tubule formation in 

the co-culture assay  

The organotypic angiogenesis co-cultures were carried out to investigate the 

phenotypical difference in sprouting angiogenesis stimulated by the GF VEGFA when 

compared to the GF FGF2 (figure 3.2). Co-culture assays were supplemented with VEGFA, 

FGF2, or no GF on days 4 and 6 following HUVEC seeding onto a HDF monolayer. Following 

7 days of endothelial growth within the co-culture model, cultures were fixed in ice cold 70% 

ethanol and IHC stained using an anti-CD31 antibody. Each co-culture condition was grown 

in duplicate (with two wells per condition) and each organotypic assay was repeated three 

times, as such n=6 per co-culture condition. Nine images per co-culture well, at random 

locations, were obtained using an inverted light microscope (example images given in figure 

3.2). Of the nine images, five were randomly selected. All visible tubules within the field of 

view were quantified, with tubules measuring below 20μm being excluded. ImageJ software 

was employed to analyse a number of quantifiable characteristics of the formed tubules, 

indicative of the total amount of tubule formation, tubule elongation and branching: number 

of tubules, total tubule length, mean tubule length, longest tubule length, branch points, and 

BPI. Quantified data sets were analysed comparing data of each culture condition using a 

One-way analysis of variance (ANOVA). Data presented in figure 3.3. 
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(C) FGF2 (B) VEGFA (A) No GF 

Figure 3-2 Growth factor stimulation of blood tubule growth within an organotypic angiogenesis 

co-culture assay 

HUVECs were seeded onto a confluent monolayer of HDFs. Co-cultures were either (A) not 

treated with GF, (B) stimulated with VEGFA (25ng/ml) or (C) FGF2 (10ng/ml) on days 4 and 6 post 

HUVEC seeding. Co-cultures were fixed on day 7 with 70% ethanol and stained by IHC with an 

antibody against CD31. Images were taken under a light microscope (4x objective).  
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3.2.1.1 Mean tubule length 

Mean tubule length values represents the average length of all tubules measured 

within each individual image, representative images given in figure 3.2. Mean value from 

each image were combined to generate the mean values for each condition (figure 3.3). 

Analysis of the mean tubule length demonstrated that addition of VEGFA or FGF2 to culture 

media led to an increase in mean tubule length, when compared to the control (non-GF 

supplemented). The mean tubule length of VEGFA supplemented cultures increased from 

118μm, the mean measurement of the control cultures, to 142μm, this difference was not 

found to be statistically significant. Cultures supplemented with FGF2 developed an even 

larger increase in mean tubule length, to 193.1μm, with a significant difference 0.00005 

when compared to the control. 

3.2.1.2 Total tubule length 

Total tubule length readings depict the overall growth of endothelial tubules, 

without consideration of the number of tubules or individual tubule length (figure 3.3). 

Representative images given in figure 3.2. 

In cultures supplemented with VEGFA, total tubule length (10291μm) was increased, 

but the increase was not found to be statistically significant when compared to cultures 

without additional GF supplement (6863μm; figure 3.3). FGF2 supplemented cultures also 

developed a greater total tubule length (8985μm) when compared to control, however, this 

was also not found to be statistically significant. 

3.2.1.3  Number of tubules 

The number of tubules reading depicts how many tubules (defined as an elongated 

cord of CD31 positive cells) were detected within each co-culture image, with mean values 

for each condition used for statistical comparison (figure 3.3). Representative images given 

in figure 3.2. 
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The number of tubules detected in the VEGFA supplemented culture (75.25) 

increased when compared to the control (59.62), this increase was not statistically 

significant. FGF2 supplemented cultures had a slight reduction in the number of detected 

tubules, although this difference was not significant when compared to the control. 

However, statistical comparison between the number of tubules in VEGFA treated co-

cultures to FGF2 treated cultures found that VEGFA treated cultures had develop a 

statistically significant increase in the number of detected tubules (p=0.01004).  

3.2.1.4 Longest tubule length 

As FGF2 stimulation of co-cultures led to an observed increase in tubule lengths, the 

longest detected tubule from each co-culture image were used to generate a mean value of 

longest tubule length for each co-culture condition (figure 3.3). Representative images given 

in figure 3.2.  

The measure of the longest detected tubules (average of 6 wells, with 5 images per 

well) of FGF2 supplemented cultures (548.8μm) was significantly higher compared to control 

cultures (219.4μm), with a p value greater than 0.0001. FGF2 supplemented cultures showed 

a significant increase in the longest detected tubules (548.8μm) when compared to VEGFA 

supplemented cultures (436.8μm) in respect to control (219.4μm) with a p value of 0.018. 

VEGFA supplemented cultures also developed an increase in length of the longest detected 

tubule with a p value of 0.0013 when compared to the control cultures. 

3.2.1.5 Branch points 

Branch points were counted within each co-culture image and a mean per well was 

generated. Mean values were then compared between the three GF conditions, to 

demonstrate how branched endothelial tubules were within the co-cultures (figure 3.3). 

Representative images given in figure 3.2.  

Supplementation of culture media with VEGFA led to a significant increase in the 

number of detected branch points (51.86) when compared to the control (31.93) but not 
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FGF2 supplemented cells (33.38). FGF2 supplemented cultures had a level of branching 

similar to the control cultures (figure 3.3). 

3.2.1.6 Branch point index 

Calculation of the BPI (number of branch points/total tubule length) for each co-

culture image depicts the ratio of branch points to TVL (figure 3.3). With representative 

images of co-culture given in figure 3.2. Comparative analysis of the BPI of co-cultures under 

no-GF, VEGFA, or FGF2 treatment demonstrates how branched tubules are between the 

different co-culture conditions (no-GF=0.0045; VEGFA=0.0057; FGF2=0.00369). 

Supplementing culture media with FGF2 led to a decrease in BPI , while this was not found 

to be significantly different between the co-culture conditions, the trend of reduced BPI of 

FGF2 supplemented cultures indicates a reduction in the number of branches of FGF2 

supplemented cultures in comparison to the outgrowth of tubules; a measurement which 

reflects the observed phenotype of FGF2 supplemented cultures as longer and less branched 

in comparison to the control and VEGFA supplemented cultures.  

To summarise the data accumulated through comparison of FGF2 to VEGFA 

stimulation, sprouting angiogenesis within the organotypic co-culture model shows a 

different phenotype dependent on the angiogenic GF used to supplement the growth 

medium. FGF2 stimulation induces an increase in endothelial cord elongation with less 

branching and a trend for reduced number of tubules when compared to VEGFA 

supplemented cultures.  
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HUVEC were seeded onto confluent monolayer of HDFs. Co-cultures were grown 

within a humidified chamber at 37 ̊C with 5% CO2. On days 4 and 6 post HUVEC seeding, 

Figure 3-3 Comparative quantification of VEGFA vs FGF2 stimulated endothelial tubule 

growth within an organotypic angiogenesis co-culture assay 
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cultures were stimulated with VEGFA (25ng/ml), FGF2 (10ng/ml), or no GF. On day 7 cultures 

were fixed with 70% ethanol and stained using IHC with an antibody against CD31. N= 

number of wells analysed. Five images were taken per well under a light microscope, with 3 

independent experiments and 2 wells per condition, per experiment (n=6). Total tubule 

length, mean tubule length, number of tubules, and number of branch points, were 

measured manually per image using ImageJ software. Calculated values of each image were 

used to generate mean values and standard deviation per co-culture with readouts for: mean 

tubule length; total tubule length; longest detected continuous tubule; number of branch 

points; and BPI (branch points/TVL). Mean values of each co-culture well were analysed using 

a one-way analysis of variance (ANOVA) through Origin 2015 Software (OriginLab). Error bars 

signify standard deviation. Significant differences indicated by asterisks: *=P value equal to 

or lower than 0.05; **=P value equal to or lower than 0.01; ***=P value equal to or lower 

than 0.001; ****=P value equal to or lower than 0.0001; *****=P value equal to or lower 

than 0.00001. 
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 The impact of FGF2 stimulation on tubules with shRNA mediated DOCK4 depletion 

within an organotypic angiogenesis co-culture assay  

A DOCK4 Kd organotypic co-culture assay was utilised to investigate whether DOCK4 

expression is required during FGF2 stimulated angiogenesis, in normoxia and hypoxia 

(representative images in figure 3.4 and data analysis in figure 3.5).  

DOCK4 expression was attenuated in HUVEC by a method previously validated in Dr 

Mavria’s laboratory via transduction of a lentivirus harbouring a shRNA oligonucleotide 

targeting DOCK4 (figure 3.4A). Two DOCK4 shRNA lenti-viruses were selected to induce 

DOCK4 Kd in HUVEC, the two shRNAs were selected on the basis of previous optimisation 

(Gary Grant, Thesis 2016). Successful shRNA Kd of DOCK4 within HUVECs was determined 

through western blot (figure 3.4 A). The DOCK4 specific shRNA labelled shRNA 4 was found 

to proficiently deplete DOCK4 expression, the shRNA labelled shRNA 3 was not found to 

successfully deplete DOCK4 expression. Therefore cells transduced with the DOCK4 shRNA 4 

were used for the DOCK knockdown co-culture assays.  

HUVEC transduced with the DOCK4 shRNA and control non silencing (NS) shRNA 

lentiviruses were seeded on a monolayer of HDF and co-cultured for a duration of 4 days at 

20% O2 with GF supplementation of either FGF2 (10ng/ml), or in the absence of additional 

GF, after which time cultures were placed in a hypoxic incubator in 1% O2. On day 6 post 

HUVEC seeding, cultures were briefly removed from the hypoxic incubator and the media 

and FGF2 supplement were changed before being returned to the hypoxic incubator for a 

further 24 hours. Co-cultures were fixed and stained for CD31. For each well, 5 selected 

regions were imaged using brightfield microscopy, for each of the following conditions: 

HUVEC with DOCK4 shRNA, or control NS shRNA, supplemented with 10ng/ml FGF2 and 

cultured in hypoxic conditions; HUVEC with DOCK4 shRNA, or control NS shRNA, without 

FGF2 supplement and cultured in hypoxic conditions; HUVEC with DOCK4 shRNA, or control 

NS shRNA, supplemented with 10ng/ml FGF2 and cultured in normoxic conditions; HUVEC 
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with DOCK4 shRNA, or control NS shRNA, without additional FGF2 supplement and cultured 

within normoxic conditions. The impact of FGF2 stimulation of shRNA mediated DOCK4 

knockdown on angiogenesis, in the organotypic co-culture assay, was assessed under 

hypoxic conditions and compared to normoxic conditions. As this co-culture assay contains 

only 2 wells for each condition from a single experiment, statistical analysis could not be 

performed. However trends detected in this assay gave preliminary data which indicate a 

potential role for DOCK4 function during angiogenesis within a hypoxic environment. Light 

microscope images of the CD31 stained co-cultures (5 images X 2 wells per condition) were 

analysed using ImageJ software to characterise a number of quantifiable read outs: mean 

tubule length; total tubule length; number of tubules; longest tubule length; branch points; 

and BPI.  
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(A) Anti-DOCK4 Western blot analysis of HUVECs transduced with  either a (i) NS  

shRNA expressing lentivirus, or (ii) DOCK4 targeting shRNA lentivirus 3, or (iii) or DOCK4 

targeting shRNA lentivirus 4. Successful DOCK4 shRNA driven DOCK4 knockdown was 

determined through absence of a detectable band at 250kDa. (B) DOCK4 shRNA 4 depleted 

HUVEC and Non-silencing shRNA HUVEC, each co-cultured with HDF, were grown in a 

humidified chamber at 37oC with 20% O2 and 5% CO2. On days 4 and 6 post HUVEC seeding 

cultures were stimulated with FGF2 (10ng/ml), or no GF. Immediately following FGF2 

supplementation, the cell-culture plate with both FGF2 treated co-cultures and non-GF 

treated cells was placed back into the humidified chamber at 37oC with 20% O2 and 5% CO2. 

On day 7 cultures were fixed with 70% ethanol and stained by IHC with an antibody against 

CD31. Five images per well were taken under a light microscope.  
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Figure 3-4 FGF2 stimulation of DOCK4 depleted ECs within an organotypic angiogenesis co-

culture assay 
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Figure 3-5 FGF2 stimulation of DOCK4 depleted ECs under hypoxia within an organotypic 

angiogenesis co-culture assay 

DOCK4 shRNA 4 depleted HUVEC were seeded onto confluent monolayer of HDF. 

Non-targeting shRNA HUVEC were also seeded onto a confluent monolayer of HDF to 

produce control co-cultures as a point of comparison. Co-cultures were initially grown in a 

humidified chamber at 37oC with 20% O2 and 5% CO2. On days 4 and 6, post HUVEC seeding, 

cultures were stimulated with FGF2 (10ng/ml), or no growth factor. Immediately following 

FGF2 supplementation one cell culture plate with both FGF2 treated co-cultures and non-

growth factor treated cells was placed within a hypoxic humidified chamber at 37oC with1% 

O2 and 5% CO2. On day 7 cultures were fixed with 70% ethanol and stained by IHC with an 

antibody against CD31. Five images per well were taken under a light microscope. 
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3.2.2.1 Mean tubule length 

The mean tubule length analysis demonstrated that the average length of measured 

tubules within NS co-cultures, under all 4 condition, were similar in measurements NS non-

hypoxic no GF=134.70μm; NS non-hypoxic FGF2=129.50μm; NS hypoxic no GF=128.50μm; 

NS hypoxic FGF2=153.95μm; figure 3.4, 3.5 and 3.6), with FGF2 treatment of cultures grown 

in hypoxia leading to an increase in average tube length.  

DOCK4 depleted co-cultures demonstrated a reduction in mean tubule length 

(DOCK4 non-hypoxic no GF=122.35μm; DOCK4 non-hypoxic FGF2=160.23μm; DOCK4 

hypoxic no GF=74.17μm; DOCK4 hypoxic FGF2=133.87μm). The reduction in mean tubule 

length of DOCK4 depleted tubules, when compared to NS tubules, was most pronounced in 

hypoxic conditions without FGF2 treatment. Within non-hypoxic conditions, FGF2 treatment 

lead to a strong increase in average tubule length. While FGF-treatment of hypoxic DOCK4 

depleted co-cultures grew tubules of a similar average length as NS co-cultures without GF 

treatment in hypoxia, and with FGF2 treatment of normoxic cultures. 

To summarise, FGF2 treatment appears to lead to an increase in average tubule 

length in hypoxia. DOCK4 depletion in ECs leads to a slight reduction in mean tubule length 

that becomes more pronounced under hypoxia. FGF2 treatment overcame this reduction of 

mean tubule length of DOCK4 deficient tubules, in both normoxia and hypoxia, with FGF2 

treatment of DOCK4 depleted cultures in normoxia leading to a strong increase in average 

tube length.  

3.2.2.2 Total tubule length 

The total tubule length of NS co-cultures were found to develop a similar level of 

overall tubule growth within non-GF treated cultures, grown in both hypoxia and normoxia, 

as well as FGF-supplemented co-cultures grown in hypoxia. However, NS co-cultures treated 

with FGF, but grown in normoxia, had a near 2-fold increase in total tubule length (NS non-
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hypoxic no GF=3991.42μm; NS non-hypoxic FGF2=6621.10μm; NS hypoxic no 

GF=3025.51μm; NS hypoxic FGF2=3643.37μm; figure 3.4, 3.5 and 3.6).  

In contrast, DOCK4 depleted cultures had an overall decrease in total tubule length 

across all conditions (DOCK4 non-hypoxic no GF=1286.12μm; DOCK4 non-hypoxic 

FGF2=5723.86μm; DOCK4 hypoxic no GF=1651.09μm; DOCK4 hypoxic FGF2=300.2224μm). 

FGF2 treatment of DOCK4 depleted co-cultures, grown in hypoxia, had a strong decrease in 

total tubule length.   

To summarise, FGF2 treatment greatly increase overall tubule length in normoxic 

conditions but does not impact on total tubule length under oxygen deprivation. DOCK4 

depletion leads to a reduction in total tubule length. This reduction in total tubule length is 

over-come by treatment with FGF2, within normoxic conditions. The FGF2 driven increase in 

total tubule length is strongly diminished in DOCK4 depleted cultures grown in hypoxic 

conditions. This result suggests DOCK4 signalling within FGF2 driven angiogenesis differs 

depending on oxygen availability. The total tubule length analysis demonstrated high 

variation in the overall growth of sprouting HUVEC when comparing the 8 different culture 

conditions (figure 3.5 and 3.6). 

3.2.2.3 Mean number of tubules 

Analysis of the number of detected tubules within NS co-cultures found a slight 

decrease in number of tubules under FGF2 stimulation (NS non-hypoxic no GF=30.2; NS non-

hypoxic FGF2=23.4; NS hypoxic no GF=30.2; NS hypoxic FGF2=23.2; figure 3.4, 3.5 and 3.6), 

normoxic and hypoxic NS co-culture were found to have a similar number of tubules.  

In DOCK4 depleted co-cultures, non-GF treatment led to a 3-fold decrease in the 

number of tubules of cultures grown in normoxia, and an almost 10-fold decrease in the 

number of detected tubules in cultures grown under hypoxia. Within FGF2 supplemented 

cultures, the number of tubules increased when compared to the NS cultures. This increase 

in tubule numbers was strongly decreased under hypoxia, with almost half the average 
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number of tubules detected in the FGF2 treated DOCK4 deficient co-cultures grown within 

hypoxia (DOCK4 non-hypoxic no GF=10.5μm; DOCK4 non-hypoxic FGF2=35.7; DOCK4 

hypoxic no GF=3.9; DOCK4 hypoxic FGF2=12.5μm).  

To summarise, FGF2 treatment appeared to have little impact on the number of 

tubules which develop during sprouting angiogenesis. In the absence of DOCK4, the number 

of tubules were greatly decreased, a phenotype that was rescued by FGF2 treatment. Under 

hypoxic conditions FGF2 treatment was seen to be less effective in prompting the growth of 

new sprouts. 

3.2.2.4 Longest tubule length  

Longest tubule length measurements were used to detect the difference in tubule 

lengths between GF treatment conditions (figure 3.4, 3.5 and 3.6) as FGF2 treated cultures 

were observed to have obviously longer tubules than the non-GF treated cultures. All tubules 

were measured and the longest tubule per image was selected, the longest tubule lengths 

from each image were averaged per well. The numbers given are the mean average longest 

tubule length per well.   

Analysis of the longest tubule length of NS co-cultures demonstrated that tubule 

length was increased in the presence of FGF2, and was further increased within hypoxic 

conditions (NS non-hypoxic no GF=364.88μm; NS non-hypoxic FGF2=401,36μm; NS hypoxic 

no GF=336.32μm; NS hypoxic FGF2=603.48μm; figure 3.5 and 3.6). 

DOCK4 Kd led to a slight reduction in the longest tubule length of non-GF treated co-

cultures under normoxia. This decrease was overcome with FGF2 treatment of DOCK4 

depleted cultures, resulting in an increase in the average lengths of longest tubules 

compared to the NS co-cultures. DOCK4 depleted co-cultures grown with hypoxia developed 

shorter vessels, with FGF2 treated DOCK4 Kd cultures developing the tubules with a similar 

length to the non-GF treated NS cultures from in hypoxia (DOCK4 non-hypoxic no 
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GF=247.44μm; DOCK4 non-hypoxic FGF2=519.91μm; DOCK4 hypoxic no GF= 101.10μm; 

DOCK4 hypoxic FGF2=339.10μm).  

To summarise, FGF2 treatment appeared to have little impact on the number of 

tubules which develop during sprouting angiogenesis. In the absence of DOCK4, the number 

of tubules were decreased, a phenotype that was reversed by FGF2 treatment. Under 

hypoxic conditions FGF2 treatment was seen to be less effective in prompting the growth of 

new sprouts. 

3.2.2.5 Branch points 

Mean values of all branch points within each co-culture image (figure 3.5 and 3.6) 

determined that FGF2 treatment of co-cultures prompted a strong increase in branching. 

This increase was greatly reduced under the conditions of hypoxia, with non-growth factor 

treated co-cultures developing slightly less branch points, and FGF2 treated co-cultures 

developing a 3-fold decrease in the number of branch points (NS non-hypoxic no GF=9.7; NS 

non-hypoxic FGF2=33.9; NS hypoxic no GF=7.2; NS hypoxic FGF2=9.1; figure 3.5 and 3.6).  

DOCK4 depletion led to a decrease in overall branching detected in non-growth 

factor supplemented and FGF2 supplemented co-cultures grown in normoxia; with non-

growth factor supplemented co-cultures showing a much higher reduction in branching. The 

growth of DOCK4 depleted co-cultures supplemented with FGF2 under hypoxic conditions 

led to a decrease in detected branch points similar to that of the DOCK4 depleted non-FGF2 

supplemented co-cultures, grown in both normoxia and hypoxia (DOCK4 non-hypoxic no 

GF=1.5; DOCK4 non-hypoxic FGF2=13.7; DOCK4 hypoxic no GF=0.3; DOCK4 hypoxic 

FGF2=2.5). DOCK4 depleted co-cultures supplemented with FGF2 and grown within 

normoxia develop a level of branch points similar to the number of branch points seen in in 

NS FGF2 supplemented and non-growth factor supplemented co-cultures grown in hypoxia, 

and non-growth factor supplemented NS co-cultures grown in normoxia.  
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To summarise, FGF2 treatment induces a higher number of branch points. This 

increase in branch point numbers greatly reduced by DOCK4 depletion and is almost 

diminished by culture of DOCK4 depleted cells in hypoxia. 

3.2.2.6 Branch point index  

Calculation of the BPI for each co-culture image (figure 3.5 and 3.6) demonstrated 

that supplementing culture media with FGF2 in normoxic conditions led to an increase in BPI 

when compared to the no GF, thus reflecting the increase in the number of branches in 

comparison to total tubule length of FGF2 supplemented co-cultures; a result in 

contradiction with the previous findings within this chapter (3.2.1.6). All other NS co-culture 

conditions were found to have very similar BPI, indicating no difference in the number of 

branch points per vessel length under hypoxia when compared to normoxia (NS non-hypoxic 

no GF=0.0024; NS non-hypoxic FGF2=0.005; NS hypoxic no GF=0.0021; NS hypoxic 

FGF2=0.0025; figure 3.5 and 3.6).  

The BPI was slightly reduced in DOCK4 depleted, no GF treated, non-hypoxic co-

cultures. However, the BPI was unaffected in the hypoxic equivalent; suggesting a lower level 

of branching in the cells grown in normoxia. Within hypoxia this result was reversed, with no 

GF treated co-cultures having the same ratio of branch points to tubule length as the NS co-

culture. However, DOCK depleted hypoxic co-cultured treated with FGF2 had a marked 

decrease in BPI, indicating much fewer branches per vessel length (DOCK4 non-hypoxic no 

GF=0.0012; DOCK4 non-hypoxic FGF2=0.002; DOCK4 hypoxic no GF=0.0023; DOCK4 hypoxic 

FGF2=0.0005). 

In summary, the comparison of FGF2 stimulation in normoxic and hypoxic conditions 

showed that under normoxic conditions within this assay, sprouting angiogenesis was 

enhanced with FGF2 stimulation leading to an increase in the overall length of tubules and 

number of branch points. However, culture under hypoxic conditions abolished this FGF2 
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driven stimulation, with the exception of average tubule length which was higher in the 

presence of FGF2 in hypoxic conditions.  

DOCK4 depletion had little impact on FGF2 stimulated cultures when grown under 

normoxia, leading to an increase in the length of the longest detected tubules while reducing 

the number of branch points; suggesting DOCK4 depletion had induced the phenotype 

described by Abraham et al. (2015) whereby DOCK4 depletion drove growth of endothelial 

cords that were elongating yet less branched.  

FGF2 stimulated DOCK4 depleted ECs grown under hypoxic conditions showed 

impairment in both tubule elongation and branching, with profoundly fewer tubules, total 

tubule length, and number of branch points.  



108 

DOCK4 Kd or DOCK4 NS HUVECs were seeded onto confluent monolayer of HDFs. 

Co-cultures were initially grown with in a humidified chamber at 37oC with 20% O2 and 5% 
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Figure 3-6 Comparative analysis of DOCK4 depleted HUVEC within a hypoxic organotypic 

angiogenesis co-culture assay 



109 

CO2. On days 4 and 6 post HUVEC seeded cultures were stimulated with FGF2 (10ng/ml), or 

no GF. Immediately following FGF2 supplementation one cell culture plate with both FGF2 

treated co-cultures and non-GF treated cells placed within a hypoxic humidified chamber at 

37oC with 1% O2 and 5% CO2, a second co-culture plate also possessing FGF2 treated co-

cultures and non-GF treated co-cultures were placed within a humidified chamber at 37oC 

with 20% O2 and 5% CO2. On day 7 cultures were fixed with 70% ethanol and stained by IHC 

with a CD31 targeting antibody. N= number of wells analysed. Five images per well were 

taken under a light microscope, with 2 co-cultures per condition (n=2). Total tubule length, 

mean tubule length, number of tubules, and number of branch points, were measured 

manually per image using ImageJ software. Calculated values of each image were used to 

generate mean values and standard deviation per co-culture with readouts for: mean tubule 

length; total tubule length, longest detected continues tubule; number of branch points; and 

BPI (branch points/TVL). Graphs representing the mean values of each co-culture were 

generated through Origin 2015 Software (OriginLab). Error bars signify standard deviation.  
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 The effect of QL-47 treatment on blood vessel tubule growth in an organotypic 

angiogenesis co-culture assay  

QL-47 is a small molecule inhibitor which has been demonstrated to inhibit Cd42 

activation (Appendix 2). QL-47 binds DOCK9 at p.C628, a cysteine residue of DOCK9. In-order 

to test whether QL-47 has anti-angiogenic potential, an organotypic angiogenesis co-culture 

assay was carried as previously described with incorporation of QL-47 treatment at a 5μM 

concentration, or DMSO as a treatment control, on days 4, and 6 post seeding, control co-

cultures were treat with DMSO in place of QL-47. Working concentrations of QL-47 used 

within this study were based on previously determined concentrations (Wu et al., 2014). It 

must be noted that QL-47 was found to aggregate once added to media and cell culture. This 

became apparent through observation of QL-47 treated cell cultures using light microscopy; 

where QL-47 was easily observed within cell culture plates. In order to properly dissolve the 

compound, QL-47 was diluted in warm media and vortexed for approx. 5 mins. Successful 

solubilisation of the compound was confirmed through loss of visible aggregates on cells 

within tissue culture. On day 7 post seeding co-cultures were fixed in 70% ethanol and 

staining using CD31 tubule staining kit. Cultures were imaged using light microscopy. 

In co-cultures treated with a combination 5μM QL-47 and VEGFA, endothelial growth 

was ablated (figure 3.7). The ablation of ECs was not observed within co-cultures treated 

with 5μM QL-47 in the absence of additional GF supplementation, or in cultures treated with 

5μM QL-47 and supplemented with FGF2 (figure 3.8). Treatment of co-culture with 5μM of 

QL-47 led to a reduction in overall sprouting angiogenesis. In co-cultures without additional 

GF or FGF2 stimulation, QL-47 treatment also inducing a slight tortuous phenotype of the 

observed vascular cords, with tubules displaying a more curved appearance (figure 3.8). 
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 The effect of QL-47 treatment on sprouting angiogenesis within an organotypic 

angiogenesis co-culture assay following VEGFA or FGF2 stimulation 

To further understand the effect of QL-47 on sprouting angiogenesis, the co-culture 

model was carried out in the presence of QL-47 with supplementation of either VEGFA or 

FGF2, to determine if the small molecule elicited a GF signalling specific effect. The 

organotypic angiogenesis co-cultures treated with either DMSO or QL-47 and supplemented 

with VEGFA, FGF2, or no GF were imaged using light microscopy. ImageJ software was 

employed to analyse a number of quantifiable characteristics which represent sprouting 

angiogenesis: mean tubule length; total tubule length; number of tubules; longest tubule 

length; branch points; and BPI. Quantified data were analysed using a one-way test of 

variance (Anova) test comparing data sets between each culture condition.  
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VEGFA + DMSO No Growth factor + DMSO 

VEGFA + 5µM QL-47 No Growth factor + 5µM QL-47 

Figure 3-7 Comparative quantification of VEGFA vs no growth factor supplemented ECs 

treated with the small molecule QL-47 within an organotypic angiogenesis co-culture assay. 

HUVECs were seeded onto a confluent monolayer of HDFs. Co-cultures were 

stimulated with VEGFA (25ng/ml) on days 4, and 6 post HUVEC seeding. Cells were treated 

with QL-47 at concentrations of 5µM on days 4 and 6 post HUVEC seeding. Co-cultures were 

fixed on day 7 with 70% ethanol and stained by IHC with a CD31 targeting antibody. Images 

were taken under a light microscope (4x magnification).  
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FGF2 + DMSO No Growth factor + DMSO 

FGF2 + 5µM QL-47 No Growth factor + 5µM QL-47 

Figure 3-8 The effect of QL-47 treatment on EC tubule growth in an organotypic angiogenesis co-

culture assay following FGF2 stimulation 

HUVECs were seeded onto confluent monolayer of HDFs. Co-cultures were stimulated with 

FGF2 (10ng/ml) on days 4 and 6 post HUVEC seeding. Cells were treated with QL-47 at concentration 

of 5µM on days 4 and 6 post HUVEC seeding. Co-cultures were fixed on day 7 with 70% ethanol and 

stained by IHC with a CD31 targeting antibody. Images were taken under a light microscope.  
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3.2.4.1 Mean tubule length 

Mean tubule length values represents the average length of all tubules measured 

within each individual image. Mean value from each image was then used to calculate mean 

values for each condition (figure 3.9).  

Analysis of the mean tubule length in untreated control co-cultures followed the 

trend seen in previously described co-cultures, with no significant increase in mean tubule 

length of VEGFA supplemented co-cultures (over all mean=149μm) when compared to non-

GF supplemented control cultures (over all mean=140.5μm). FGF2 supplemented untreated 

control co-cultures developed a statistically significant increase in mean tubule length 

(overall mean=196.9μm) when compared to both non-GF and VEGFA supplemented control 

co-cultures.  

Co-cultures treated with QL-47 saw an overall reduction in mean tubule length in all 

three GF conditions (No GF=133.7μm; VEGFA=17.47μm; FGF2=107.5μm), with VEGFA 

experience the most significant reduction in mean tubule length following QL-47 treatment 

due to ablation of the majority of ECs within the VEGFA and QL-47 treated co-cultures.   

3.2.4.2 Total tubule length 

Total tubule length readings depicted the overall growth of endothelial cords of cells, 

without consideration of the number of tubules or length of individual tubules (figure 3.9).  

In control cultures, non-QL-47 treated cultures supplemented with VEGFA total 

tubule length (12822μm) was significantly increased when compared to cultures without 

additional GF supplement (8529μm) with a p value of <0.001 (figure 3.9). In FGF2 

supplemented control cultures there was also a significant increase in total tubule length 

(10720μm; p<0.01). 

Treatment of cultures with the small molecule QL-47 lead to significant decrease in 

total tubule length within all three GF conditions (no-GF=3843μm; VEGFA=42.28μm; 

FGF2=1678μm), with the non-GF treated cultures total length being the least reduced of the 
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three conditions and VEGFA having the largest decrease in total tubule length; with a p value 

of <0.001 when compared to the non-GF supplemented QL-47 treated cultures. FGF2 

supplemented QL-47 treated cultures also had a significantly lower total tubule length when 

compared to the non-GF treated co-cultures (0.0025; p<0.01). 

3.2.4.3 Mean number of tubules 

Mean number of tubules lengths were measured within each individual image 

(figure 3.9). Mean value from each image was then used to calculate mean values for each 

condition.  

Within control co-cultures, VEGFA stimulation lead to a highly significant increase in 

the number of tubules (89.95), with a p value <0.01 when compared to the non-GF treated 

cultures (64.9), and a p value of <0.001 when compared to FGF2 treated cultures (56.06). QL-

47 treatment of co-cultures significantly reduced the number of tubules within all three GF 

conditions (no GF=26.68; VEGFA=0.625; FGF2=12.94). Cultures stimulated with VEGFA 

experienced a near total loss of sprouted ECs (figure 3.7 and figure 3.9). While both non-GF 

cultures and FGF2 supplemented cultures experienced a reduction in the number of tubules 

(figures 3.8 and 3.9), the trend between the two GF conditions reflected that of the control 

co-cultured cells (with p<0.01), with a slight decrease in the number of tubules grown when 

stimulated with FGF2. 

3.2.4.4 Longest tubule length measurements 

Longest tubule length measurements were used to detect the difference in tubule 

lengths between GF treatment conditions (figure 3.9). Mean value from each image were 

then used to calculate mean values for each condition.  

Co-culture experiments with culture media supplemented with either VEGFA or 

FGF2 demonstrated how the two GFs impact differently upon tubule length, with FGF2 

stimulation inducing growth of longer tubules with a p value of <0.0001 when compared to 

non-GF stimulated cultures, and p < 0.01 when compared to VEGFA stimulated cultures. 
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Treatment of co-cultures with QL-47 lead to a marked decrease in branch points 

within VEGFA supplemented cultures, primarily due to an almost complete loss of sprouting 

ECs. QL-47 treatment led to a significant decrease in branch points in non-GF treated 

compared to FGF2 treated cultures (p<0.01). 

3.2.4.5 Mean branch point number 

The mean branch point number were measured (figure 3.9) to reflect how branched 

and dynamic the co-culture endothelial tubules between GF treatment conditions. Mean 

value from each image was then used to calculate mean values for each condition. 

In control co-cultures, supplementation of culture media with VEGFA led to a 

significant increase in the number of branch points (VEGFA=55.15), when compared to the 

control non-GF co-culture (No GF=34.75; p<0.01; figure 3.9). This trend was not observed in 

FGF2 treated cells (FGF2=47.5), however FGF2 treated cultures did have a slight increase in 

the number of branch points when compared to the non-GF supplemented cultures. Within 

QL-47 treated co-cultures, the overall trend for a reduction in the number of observed 

branch points was seen across all three GF conditions (No GF=14.95; VEGFA=0.00 

FGF2=6.889). Non-GF supplemented cultures branch point numbers were the least affected 

by QL-47. The almost total ablation of ECs within the QL-47 treated VEGFA stimulated 

cultures led to no detectable branch points within any of the co-culture wells. FGF2 and QL-

47 treated cultures experienced a substantial reduction in the presence of branch points.  

3.2.4.6 Branch point index 

The BPI were measured to reflect how many branches tubules produce within the 

angiogenic co-cultures (figure 3.9) and thus how dynamic the co-culture endothelial tubules 

between GF treatment conditions. BPI defined as the number of branch points per co-culture 

image divided by the total tubule length per image. Mean value from each image was then 

used to calculate mean values for each condition. 



117 

Within the VEGFA supplemented control cultures total tubule length measurements 

and number of branch points were increased when compared to the non-GF stimulated 

control cultures, leading to an increase in the BPI of the VEGFA stimulated control cultures 

(BPI=0.007774; figure 3.9) when compared to the non-GF controls (BPI= 0.00391) with a p 

value of <0.01. FGF2 supplemented control cultures also saw a slight increase the BPI (BPI= 

0.005408) when compared to the non-treated cultures, however this was not statistically 

significant. 

Treatment of cultures with QL-47 saw a slight reduction in BPI detected within the 

non-GF supplemented culture images, with a mean of 0.00254. As VEGFA supplemented 

cultures grew little to no EC sprouts, the BPI of these cultures was 0, yielding a significant 

difference of <0.05 when compared to the non-GF treated cultures. The FGF2 supplemented 

QL-47 treated cultures had a reduction in BPI following QL-47 treatment (BPI=0.00254), 

however there was no significant difference in the mean BPI when compared to the non-GF 

supplemented cultures.   

To summarize the overall effect of QL-47 treatment on sprouting angiogenesis in 

vitro; the small molecule inhibitor led to an angiogenic impairment, reducing the number of 

endothelial cords formed, and the elongation of these endothelial cords, while driving a 

more tortuous phenotype. Reduction in tubule growth resulting in fewer sites of tubule 

branching, however, this reduction was relative to the reduction in the amount of overall 

tubule growth within non-GF stimulated cultures (figure 3.7 and figure 3.8). The anti-

angiogenic effect of QL-47 was greatly amplified in the presence of the angiogenic GF VEGF; 

leading to an almost complete ablation of ECs at a 5μM concentration of QL-47. Endothelial 

cultures supplemented with FGF2 were less affected by QL-47 treatment than VEGFA 

supplemented cultures. However, in comparison to the non-GF supplemented cultures the 

FGF2 supplemented cultures experienced a greater loss of endothelial cord elongation, a 
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reduction in average tubule length, and, unlike the non-GF supplemented cells, a reduction 

in the relative number of branch points in relation to the overall level of tubule growth.  
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HUVECS were seeded onto confluent monolayer of HDFs. Co-cultures were grown 

within a humidified chamber at 37oC with 5% CO2. Co-cultures were cultured with either non-

No G
F D

M
SO

VEGF D
M

SO

FG
F D

M
SO

No G
F 5

µm
 Q

L4
7

VEGF 5
µm

 Q
L4

7

FG
F 5

µm
 Q

L4
7

-50

0

50

100

150

200

250

300

350 Average tubule length of QL-47 treated co-cultures 

M
ea

n
 T

u
b

u
le

 L
en

gt
h

 (
M

)

*****

******

****

***

No G
F D

M
SO

VEGF D
M

SO

FG
F D

M
SO

No G
F 5

µm
 Q

L4
7

VEGF 5
µm

 Q
L4

7

FG
F 5

µm
 Q

L4
7

-2000

0

2000

4000

6000

8000

10000

12000

14000

16000
Total tubule length of QL-47 treated co-cultures

To
ta

l T
u

b
u

le
 L

en
gt

h
 (

M
)

**

***

*****

**
***

No G
F D

M
SO

VEGF D
M

SO

FG
F D

M
SO

No G
F 5

µm
 Q

L4
7

VEGF 5
µm

 Q
L4

7

FG
F 5

µm
 Q

L4
7

-200

0

200

400

600

800
Longest tubule length of QL-47 treated co-cultures

Lo
n

ge
st

 T
u

b
u

le
 L

en
gt

h
 (

M
)

*****
**

******

*****

**

No G
F D

M
SO

VEGF D
M

SO

FG
F D

M
SO

No G
F 5

µm
 Q

L4
7

VEGF 5
µm

 Q
L4

7

FG
F 5

µm
 Q

L4
7

-20

0

20

40

60

80

100

120 Number of tubules in QL-47 treated co-cultures 

N
u

m
b

er
 o

f 
tu

b
u

le
s

**

*****

**

***
**

No G
F D

M
SO

VEGF D
M

SO

FG
F D

M
SO

No G
F 5

µm
 Q

L4
7

VEGF 5
µm

 Q
L4

7

FG
F 5

µm
 Q

L4
7

-20

0

20

40

60

80

Number of branch point between QL-47 treated co-cultures

N
u

m
b

er
 o

f 
b

ra
n

ch
 p

o
in

ts

*

**

No G
F D

M
SO

VEGF D
M

SO

FG
F D

M
SO

No G
F 5

µm
 Q

L4
7

VEGF 5
µm

 Q
L4

7

FG
F 5

µm
 Q

L4
7

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Branch point index between QL-47 treated co-cultures

B
ra

n
ch

 p
o

in
t 

in
d

ex
 (

to
ta

l t
u

b
u

le
 le

n
gt

h
/b

ra
n

ch
 p

o
in

ts
)

*****
**

***

**

Figure 3-9 Comparative quantification of VEGFA vs FGF2 supplemented ECs treated with 

QL-47 within an organotypic angiogenesis co-culture assay. 
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GF supplemented or stimulated with FGF2 (10ng/ml) on days 4 and 6 post HUVEC seeding. 

Cells were treated with QL-47 at concentrations of 5µM on days 4 and 6 post HUVEC seeding. 

Co-cultures were fixed on day 7 with 70% ethanol and stained by IHC with a CD31 targeting 

antibody. N= number of wells analysed. 2 independent experiments were carried out, with 

3 wells per condition, 5 images per co-culture well were taken under a light microscope 

(n=6). Total tubule length, number of tubules, and number of branch points, were measured 

manually per image using ImageJ software. Calculated values of each image were used to 

generate mean values and standard deviation per co-culture, with readouts for: mean tubule 

length; total tubule length, longest detected continues tubule; number of branch points; and 

BPI (branch points/TVL). Mean values of each co-culture were analysed using a one-way 

analysis of variance (ANOVA) through Origin 2015 Software (OriginLab). Error bars signify 

standard deviation. Significant differences indicated by asterisks: *=P value equal to or lower 

than 0.05; **=P value equal to or lower than 0.01; ***=P value equal to or lower than 0.001; 

****=P value equal to or lower than 0.0001; *****=P value equal to or lower than 0.00001. 
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3.3 Discussion 

To expand upon the understanding of DOCK4 function within sprouting angiogenesis 

DOCK4 signalling was investigated under FGF2 stimulation. In order to adequately establish 

the distinct characteristics between FGF2 driven angiogenesis compared to VEGFA driven 

angiogenesis, an organotypic angiogenesis co-culture model was employed and assays were 

set up with either FGF2 or VEGFA stimulation (figure 3.2). This investigation showed 

differences in sprouting angiogenesis phenotypes between the two GFs (figure 3.3) and 

served as a model for investigating any differences in DOCK4 signalling under the stimulation 

conditions. 

Lentiviral DOCK4 targeting shRNA transduced ECs were incorporated into the co-

culture assay under both normoxic and hypoxic conditions (figure 3.4-3.6). DOCK4 was found 

to not be required for sprouting angiogenesis under FGF2 stimulation in normoxia. However, 

the preliminary results indicated DOCK4 may be required for FGF2 driven angiogenesis 

within a hypoxic environment. 

 Comparison of VEGFA vs FGF2 stimulated sprouting angiogenesis in vitro 

To further understand the downstream mechanisms of FGF2 signalling within ECs, 

an organotypic co-culture assays was employed. The organotypic angiogenesis assay, 

adapted to incorporate FGF2 within the growth culture media, demonstrated how FGF2 

stimulation of sprouting angiogenesis induces growth of fewer number of tubules, however, 

the cords of ECs produced were more elongated and less branched than the VEGFA 

stimulated counterparts (figure 3.6). Thus implying that FGF2 signalling either directly, or 

indirectly, induces an intracellular response within the ECs which stimulates signalling to 

drive cord elongation, or cell proliferation of the forming cord.  

The accumulated data within this study was unable to distinguish whether 

elongation of the endothelial cords were due to elongation of the individual cells within the 

tubules or due to an increase in cell proliferation of growing tubules. Distinguishing between 
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the two potential characteristics would lead to insight into the EC response to FGF2 

stimulation. The potential of FGF2 signalling to impact on both cell proliferation and cell 

elongation has been demonstrated in previous studies (Ware and Simons, 1997; Ornitz and 

Itoh, 2001). It has been established that FGF2 promotes EC proliferation, migration and 

physical organisation of ECs into tube-like structures (Ware and Simons, 1997; Ornitz and 

Itoh, 2001). FGF2 stimulated endothelial activation of PI 3-kinase induces the reorganization 

of actin cytoskeleton to the cortex and stimulates changes in cell morphology to induce an 

elongated phenotype in a Rho GTPase dependent manner (Lee and Kay, 2006). Thus lending 

evidence to the concept that the observed FGF2 driven phenotype has potential to be driven 

by an increase in EC proliferation and recruitment to elongating vascular cords, as well as 

elongation of the individual cells within each cord of cells. This does not however explain the 

loss of branching observed within the FGF2 stimulated cultures (figure 3.6). Interestingly, it 

could suggest that FGF2 signalling acts to inhibit VEGF-driven branching. It would be 

interesting to test this hypothesis in future studies. It would also be interesting to analyse 

the number of nuclei, and individual cell length and orientation, of growing cords within the 

organotypic co-culture during FGF2 stimulation to determine whether the FGF driven 

phenotype is due to cell proliferation or elongation.  

It must also be noted that the DOCK4 Kd organtotypic angiogenesis assays found a 

slight increase in the branching of tubules under FGF2 stimulation, when compared to no GF, 

which directly contradicts the finding of the VEGFA vs FGF2 co-culture result (figure 3.2-3.3 

and 3.4-3.6). Further repeats of both assays would be required to determine if loss of 

branching is a true characteristic of FGF2 stimulated angiogenesis. 

While a difference in the characteristics of sprouting angiogenesis was observed 

when comparing FGF2 to VEGFA stimulated phenotype, the limitations of the experimental 

model need to be taken into consideration when attributing the observed results to 

physiological function. When comparing the two GF conditions it must be noted that 
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experiments were conducted in vitro, within an environment without the presence of the 

physiological variables found in vivo, such as: inflammatory factors, immune cell influence of 

angiogenesis, tissue specific signalling, the presence of pre-existing vasculature, and other 

signalling molecules within the tissue environment (Bishop et al., 1999; Stryker et al., 2019; 

Vailhé et al., 2001). Another limitation of the co-culture model lies within the lack of the GF 

gradient which would exist in vivo (Hetheridge et al., 2011). Growth factor gradients that 

induce angiogenesis drive polarisation of ECs, and guide directional growth of newly forming 

sprouts (Hetheridge et al., 2011). It must also be noted that all experiments were conducted 

using a single batch of commercially purchased angiogenesis tested HDF and a single batch 

of pooled HUVEC; in-order to reduce variability and maintain reproducibility. To confirm the 

robustness of the observed result, in demonstrating a physiological difference between 

angiogenesis stimulation between VEGFA and FGF2, these results should be replicated in 

HDF and HUVEC from other sources, to demonstrate that the observed results are not 

specific to the batch of cells (Abo et al., 1992). 

In order to fully evaluate the findings of this study, it is also necessary to consider 

potential elements of the culture conditions which may confound the results. A limitation of 

this assay is the presence of different angiogenic factors in the LVEM, which makes the 

delineation of GF specific effects challenging, as it is not possible to eliminate other GFs in 

the system as such factors are required for EC survival (Huttala et al., 2015). 

The growth serum present in the LVEM and additional FBS used to supplement the 

Dulbecco's Modified Eagle Medium, within all co-culture studies, possess a composition of 

proteins and hormones required for culture of both the HUVEC and HDF, respectively. The 

exact composition of proteins and hormones are unknown but have been equally maintained 

in all co-culture experiments in-order to establish a basal level of growth from which the 

growth characteristics, prompted by the two GFs, were investigated. It is however known 

that the media used contain a very small concentration of FGF2. Further to this, it must be 
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considered that VEGFA is produced by the HDFs in the assay, levels of which may not be 

equal across each experiment (Mavria et al., 2006). However, each assay was treated equally 

to reduce variability, and as such produced quantifiable results that served as a baseline from 

which an in-depth analysis was carried out.  

FGF2 has been demonstrated, in part, to act on EC-associated fibroblasts and prompt 

fibroblasts to secrete VEGF; which in turn stimulates an angiogenic response within ECs 

leading to an increase in angiogenesis. However the results of this study demonstrate 

stimulation of angiogenesis by the two GFs induce different growth characteristics of 

sprouting angiogenesis, thus suggesting a role for FGF2 signalling in angiogenesis which acts 

independently from VEGFA signalling in driving a unique phenotype. Further dissection of 

each growth factor pathways involved in angiogenesis will expand our understanding of the 

complex mechanisms which drive the growth of new vasculature and offer insight in to 

potential therapeutic targets for manipulating how the new vasculature grows and develops.  

 DOCK4 function within sprouting angiogenesis 

The small RhoGTPase RAC1 serves as an important component in the intracellular EC 

response to FGF2, inducing changes to the actin cytoskeleton required for the elongation of 

the individual cells. DOCK4 is a GEF involved in endothelial RAC1 activation downstream of 

VEGFA (Abraham et al., 2015) but has not yet been described as a component in the FGF2 

angiogenic response. DOCK4 depletion within an organotypic angiogenesis co-culture model 

indicated that loss of endothelial DOCK4 expression leads to a loss in lateral branch points 

and less branching, without impacting endothelial cord elongation (Abraham et al., 2015), a 

phenotype similar to that of the FGF2 stimulated sprouting. Thus is possible to hypothesis 

that DOCK4 may act in RAC1 activation within a FGF2 driven sprouting angiogenesis context.  

To investigate whether DOCK4 was involved in FGF2 stimulated sprouting 

angiogenesis, a preliminary co-culture was conducted incorporating lentiviral DOCK4 

targeting shRNA transduced HUVEC into the organotypic angiogenesis co-culture model, 
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with FGF2 stimulation, along with lentiviral NS shRNA transduced HUVEC to serve as a control 

(figures 3.4-3.6). The results of this single experiment indicated that DOCK4 depletion led to 

a reduction in overall tubule growth when growth medium had no additional GF supplement, 

resulting in loss in total tubule length, the number of tubule, and the number of branch 

points. Supplementing growth medium with FGF2 rescued the loss in total tubule length, 

increasing mean tubule length, and inducing growth of the number of tubules and BPI back 

to the level of non-GF stimulated control cultures (figure 3.5 and 3.6). This finding indicates 

that in the absence of DOCK4, FGF2 stimulation of sprouting angiogenesis may overcome 

growth deficiencies prompted by loss of DOCK4 expression. Thus indicating that DOCK4 may 

not be required for FGF2 driven sprouting angiogenesis.  

It must be noted, as previously mentioned, that within this experiment FGF2 

treatment led to an increase in BPI (figure 3.6), a result which contradicts previous 

experiments. Further repeats of the experiment would be required to determine if this 

finding was an anomaly of this singular experiment. It should be considered that the 

variables, introduced by the conditions involved in treating cells with the NS shRNA, may 

have impacted upon branching, and would require further investigation to confirm the NS 

shRNA control cultures reflect the growth of non-transduced co-cultures.  

Also, further investigation would be required to attribute the observed phenotype 

to loss of DOCK4 driven RAC1 activation, under FGF2 signalling. It would be necessary to 

measure changes in RAC1 activity within the cellular assay, to attribute the changes in 

phenotype to changes in RAC1 regulation. Measuring changes to RAC1 activation within the 

DOCK4 depleted co-cultures may prove challenging, as RAC1 may be involved in non-DOCK4 

related activity within the same ECs during FGF2 driven sprouting angiogenesis (Shin et al., 

2004). Investigating changes between DOCK4 depleted vs NS control ECs through observing 

any differences between the level of RAC1 activation, changes to RAC1 localisation within 
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the ECs, and changes to activation of RAC1 targets, may offer insight into DOCK4 involvement 

in RAC1 regulation during FGF2 vs VEGFA driven sprouting angiogenesis. 

 DOCK4 signalling in sprouting angiogenesis within hypoxia 

FGF2 has been strongly linked to the angiogenic response within ischemia (Unger et 

al., 2000; Laham et al., 1999; Comerota et al., 2002; Nikol et al., 2008). As gene expression 

and cellular response within a hypoxic environment can differ greatly to a normoxic 

environment, it was imperative to also investigate the effect of DOCK4 functionality within 

FGF2 signalling under hypoxic conditions. For this purpose, the previously described culture 

was also conducted with co-cultures incubated in a hypoxic incubator (1% 02) following GF 

stimulation 4 days following HUVEC seeding to the HDF monolayer.  

The culture of FGF2 stimulated NS HUVEC, within a hypoxic environment, led to a 

sprouting response similar to that of the non-GF supplemented cells grown in normoxia 

(figures 3.4-3.6), with only the FGF2 driven increase in mean length being maintained and 

longest tubule increasing. Thus indicating that FGF2 stimulation maintains the proliferative 

phenotype of ECs when experiencing oxygen deprivation. Conversely this phenotype was 

reversed when DOCK4 expression was depleted. Co-cultures of DOCK4 depleted HUVEC 

produced significantly fewer sprouts, resulting in loss in overall tubule length and fewer 

branch points than the NS FGF2 stimulated co-cultures also grown within hypoxia (figures 

3.4-3.6). This result indicates a potential requirement for DOCK4 expression within FGF2 

induced angiogenesis under oxygen deprivation.  

While this experiment demonstrates a distinct response, a number of elements need 

to be evaluated when interpreting the results, and for use in optimising future investigations. 

It must be noted that the hypoxic environment will have been disrupted during the opening 

and closing of the incubator, and during additional GF treatments. Thus leading to some 

intermittent hypoxia during the sprouting angiogenesis. Using a hypoxia chamber, such the 

Modular Incubator Chamber manufactured by Billups-Rothenberg, Inc. (San Diego, CA USA), 
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would reduce instances of intermittent oxygen exposure and potentially provide more 

reproducible experimental results. Also, further confirmation must be carried out to ensure 

no off-target effect have been introduced by the NS shRNA or conditions which occur during 

treatment of the HUVECs with the shRNA lentiviral particles.   

While this experiment was purely a preliminary test (with only 2 replicates within a 

single assay) to evaluate whether DOCK4 is relevant for FGF2 stimulation of sprouting 

angiogenesis, the outcome of the hypoxic DOCK4 depleted co-cultures indicates a potential 

role of DOCK4 within FGF2 driven sprouting angiogenesis within hypoxia. Implicating DOCK4 

is required for the proliferation and branching of tubules within these conditions.  

 QL-47 treatment of organotypic angiogenesis co-cultures 

It has been established that DOCK4 is required for development of functional 

vascular structures through sprouting angiogenesis. The interaction of DOCK4 with the 

CDC42 GEF DOCK9 has also been implicated in conferring the angiogenic response to VEGFA 

stimulation. To further understand the functionality of the SGEF-RhoG-DOCK4-RAC1-DOCK9-

CDC42 signalling module, the interaction between DOCK4 and DOCK9 was investigated. 

Previous evaluation by Abraham et al. (2015) confirmed that the SH3 domain of DOCK4 is 

required for interaction with DOCK9, implicating a PRR of DOCK9 as important for DOCK4-

DOCK9 interaction. Evaluation of the amino acid sequence of DOCK9 detected 11 potential 

PRRs of DOCK9, with 8 possessing the typical PxxP or PxxxP motif of a PRR. During the course 

of this study a DOCK9 binding small molecule inhibitor, QL-47, was gifted to the Mavria 

research group by Prof. Nathaniel Grey’s research group (Dana-Farber Cancer Institute, MA 

USA).  

QL-47 had been demonstrated to specifically bind to p.C628, a cysteine located 

within the 4th identified PRR of DOCK9. While the specific site of DOCK9 which binds DOCK4 

had not been established, QL-47 offered the opportunity to utilise the compound to 

investigate whether the PRR4 of DOCK9 was a DOCK4 binding site. Before utilising the 
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compound to investigate DOCK4-DOCK9 interaction it was imperative to establish whether 

QL-47 possessed the ability to impact on angiogenesis.  

3.3.4.1 The effect of QL-47 on sprouting angiogenesis 

The organotypic co-culture model was adapted to include the covalently binding 

small molecule QL-47. As it had been established that angiogenic response to VEGFA and 

FGF2 stimulation differed, and that DOCK4 function may differ between VEGFA and FGF2 

stimulated sprouting angiogenesis. For this reason co-cultures were carried out either in the 

absence of additional GF or under either VEGFA or FGF2 stimulation. This experiment 

strongly validated that QL-47 induced an anti-angiogenic effect under all three GF conditions, 

reducing both the number of endothelial cords formed and the elongation of these 

endothelial cords, while also driving a more tortuous phenotype (figures 3.7-3.9). Reduction 

in tubule growth resulted in fewer sites of tubule branching, however this reduction was 

relative to the reduction in the amount of overall tubule growth within non-GF stimulated 

cultures (figure 3.9). QL-47 induced a much more profound anti-angiogenic response when 

cultures were also supplemented with VEGFA; with an almost complete ablation of the ECs. 

Co-cultures grown without additional GF stimulation experienced a less profound anti-

angiogenic affect (figures 3.7 and 3.9). The small molecule inhibitor led to an angiogenic 

impairment in all GF culture conditions. 

Endothelial cultures supplemented with FGF2 were less affected by QL-47 treatment 

than VEGFA supplemented cultures, however, FGF2 supplemented cultures experienced a 

greater loss of endothelial cord elongation, a reduction in average tubule length, and, unlike 

the non-GF supplemented cells, a reduction in the relative number of branch points in 

relation to the overall level of tubule growth.  

Within non-GF supplemented cultures the mean tubule length was not impacted, 

but did result in a reduction in total tubule length and the number of tubules, potentially 

indicating that that the inhibitor does not affect the outgrowth of endothelial cords but 
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impacts the overall proliferation of ECs and number of cords developed (figure 3.9). Branch 

point index was also unaffected, indicating that, while there was no reduction in the number 

of branch points tubules developed in comparison to overall length of tubules (figure 3.9). 

The accumulated data investigating QL-47 indicate that the small molecule 

stimulates an apoptotic response under VEGFA signalling mechanisms, and also impairs 

correct FGF2 induced angiogenesis. While the DOCK9 binding molecule activity reflects the 

DOCK4 depleted cultures within VEGFA driven sprouting angiogenesis, and, to a lesser 

degree, DOCK4 within FGF2 driven sprouting angiogenesis, these results can only indicate a 

correlation but not causation. Investigation of the non-DOCK9 binding activity of QL-47 

within ECs would be required to validate the anti-angiogenic phenotype as being a DOCK9 

specific response. It would also be imperative to validate whether QL-47 disrupts DOCK4 

interaction with DOCK9, a subject which will be discussed in results chapter 2.  

QL-47 was originally developed as an inhibitor of the non-receptor tyrosine kinase 

BTK (Bruton's tyrosine kinase). BTK is not expressed within ECs, however, the BTK Family 

Tyrosine Kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is expressed 

within endothelia and is targeted by QL-47; with QL-47 binding inducing a reduction in the 

tyrosine kinase activity of BMX (Wu et al., 2014). BMX is a cytoplasmic tyrosine kinase 

expressed within endocardium and in arterial endothelia and has been indicated as required 

for angiogenesis under inflammatory conditions not physiological angiogenesis (He et al., 

2006; Luo et al., 2010). BMX is not expressed within capillaries and in not required for 

angiogenesis during development; with BMX null mice developing normal health vasculature 

(He et al., 2006; Luo et al., 2010). As the organotypic angiogenesis co-culture model is not 

designed to reflect the conditions of pathological angiogenesis it is unlikely BMX would be 

expressed within the experimental ECs used within the organotypic angiogenesis co-culture 

system employed within this study.  
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However, expression of BMX should be determined within the organotypic co-

culture model, in-order to eliminate this protein as the QL-47 target driving the observed 

phenotype. Future experiments should also be carried out to confirm the observed 

phenotype is not due to BMX inhibition, through repeating QL-47 treatment of co-cultures 

with added BMX inhibition.   

The findings of these studies establish the phenotypical differences in sprouting 

angiogenesis between VEGFA and FGF2 driven angiogenesis in vitro. DOCK4 has been 

implicated as a potential component in FGF2 signalling under hypoxic conditions, and to a 

much lesser degree under normoxic conditions. The small molecule inhibitor QL-47 is a 

potent anti-angiogenic compound, with VEGFA stimulated ECs being particularly sensitized 

to QL-47, however it cannot be concluded that the anti-angiogenic effects are due to 

inhibition of the CDC42 GEF DOCK9 or disruption of the DOCK4-DOCK9 interaction. 
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4 Results chapter II: Elucidating the site of DOCK4-specific 

binding to DOCK9  

4.1 Introduction 

The VEGFA-SGEF-RhoG-DOCK4-RAC1-DOCK9-CDC42 signalling module is required 

for correct vascular patterning and lumenisation during sprouting angiogenesis (Abraham et 

al., 2015). As part of this signalling module, DOCK4 has been demonstrated to 

heterodimerise with DOCK9, and is the first time a DOCKB subfamily protein has been seen 

to interact with a DOCKD subfamily protein (Abraham et al., 2015). Abraham et al. (2015) 

found the DOCK4 SH3 domain was the site of DOCK9 interaction. SH3 domains are short 

peptide sequences with aromatic residues that drive weak and transient interactions via 

their shallow groove, with PRR of interacting proteins to form left handed type II polyproline 

helices (Pollard et al., 2016). A PRR is a sequence of amino acids with multiple proline 

residues within close proximity of one another (Yu et al., 1994; Alexandropoulos et al., 1995). 

DOCK9 possesses 11 PRRs with 5 of them containing the typical PxxP or PxxxP motifs which 

form a continuous hydrophobic patch that preferentially binds to the amino acid sequence 

of SH3 domains.  

In order to examine further the site of interaction between DOCK4 and DOCK9, five 

DOCK9- N-terminal Flag-tagged mutants had been cloned previously in the lab by Ms. Anne 

Sanford, each with a single point mutation within one of the five typical PRR regions (figure 

4.1). DOCK9 mutant expression vectors were co-transfected together with an N-terminal 

GFP-tagged DOCK4 expression vector into HEK 293T cells and Co-IP assays were carried out 

analysing the DOCK4-DOCK9 interaction in the presence of the DOCK9 PRR mutations. A 

DOCK9 binding small molecule compound, QL-47, which binds within one of the PRR regions 

(figure 4.1), was used to determine whether it was capable of disrupting the DOCK4-DOCK9 
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interaction. SEC was also utilised to investigate the direct interaction between the DOCK4-

SH3 domain and the DOCK9 DHR1 domain. 
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Figure 4-1 Identification of DOCK9 PRRs and site of QL-47 binding 

The GEF DOCK9 possess 11 PRR. Five PRR have the typical PxxP or PxxxP motif. The 

small molecule QL-47 binds DOCK9 at the cysteine residue p.C628 within PRR 3. 
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4.2 Results 

Figure 4-2 DNA plasmid preparation and restriction enzyme digestion. 

(A) DNA plasmid pEF4 Myc-Flag-DOCK9, non-digested (12.3kbp), and digested with 

restriction enzymes NotI and KpnI, cutting out the Flag-DOCK9 insert (6.4kbp) from the pEF4 

myc vector (5.9kbp). (B) DNA plasmids pC3 EGFP DOCK4 (12.4kbp) (C) and pC3 EGFP-EV (4.7kbp) 

were linearized using restriction enzyme BamHI. (D) Enzymes NotI and KpnI were used to 

separate Flag-DOCK9 insert (6.4kb) from the pEF4 vector (5.9kb) of the mutation variants of 

pEF4 Myc-Flag-DOCK9 (mutants 2, 3, 4, 5, and 9). Linearized plasmid fragments were resolved 

on a 0.7% agarose gel containing ethidium bromide. Kbp= Kilo base pairs. PRR= Proline rich 

region. 
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 Plasmid preparation and verification of DOCK9 mutant plasmids 

DNA plasmids to be used for overexpression of EGFP-DOCK4 (pC3 EGFP-DOCK4), 

Flag-DOCK9 proteins (pEF4 Myc-Flag-DOCK9), EGFP-EV (pC3 EGFP), and five Flag-DOCK9 

constructs with mutated PRR 2, 3, 4, 5, and 9 (pEF4 Myc-Flag-DOCK9 PRR mut 2, pEF4 Myc-

Flag-DOCK9 PRR mut 3, pEF4 Myc-Flag-DOCK9 PRR mut 4, pEF4 Myc-Flag-DOCK9 PRR mut 5, 

pEF4 Myc-Flag-DOCK9 PRR mut 9), were purified from E. coli cultures (as described in 

methods 2.9). Confirmation of extraction of the correct plasmid was determined through 

restriction enzyme digestion.  

Each construct was confirmed based on kilobase pair size. Flag-DOCK9 plasmids 

(including all five Flag-DOCK9 mutants) were digested with restriction enzymes NotI and 

KpnI, cutting out the DOCK9-Flag insert (6.4kbp) from the pEF vector (5.9kbp). EGFP DOCK4 

(12.4kbp) and EGFP-EV (4.7kpb) were linearized using restriction enzyme BamHI. Linearised 

plasmid fragments were resolved on a 0.7% agarose gel containing ethidium bromide. 

Agarose gel electrophoresis demonstrated that digestion of the plasmids, with the 

appropriate enzymes, yielded the expected DNA fragment sizes (figure 4.2). Non-digested 

constructs were determined to be supercoiled and thus detected as having a lower molecular 

weight than the linearized counterparts.  
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 Confirming the presence of a complex between the RAC GEF DOCK4 and CDC42 GEF 

DOCK9 in HEK 293T. 

The ability for DOCK4 and DOCK9 to interact and form a complex has previously been 

demonstrated (Abraham et al., 2015). This interaction was successfully reproduced through 

Co-IP of overexpressed DOCK4 and DOCK9 proteins, purified from HEK 293T cell lysates 

(figure 4.3). This condition formed the baseline for interaction between DOCK4 and DOCK9 

in-order to investigate the loss of interaction through point mutation of prolines within 

identified PRR of DOCK9. 

HEK 293T cells were transfected with EGFP-DOCK4 and Flag-DOCK9. Immunoblotting 

of total cell lysate was used for confirmation of successful expression of over-expressed 

proteins (figure 4.3). 48 hours after transfection, cells were lysed under mild conditions and 

GFP-DOCK4 and Flag-DOCK9 were precipitated in complex from TL using a GFP-trap 

(Chromotek). IP and Co-IP proteins were resolved by Western blot, and presence of Flag-

tagged and GFP-tagged proteins was determined using HRP-conjugated anti-EGFP and anti-

Flag antibodies and ECL detection as described in Materials and Methods (section 2). 
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Figure 4-3 EGFP-DOCK4 overexpression and interaction with Flag-DOCK9 

EGFP-DOCK4, pEF4-DOCK9, and EGFP-EV expression vectors were co-transfected into 

confluent HEK 293T. 48 hrs post transfection cells were lysed under mild lysis conditions. GFP-

tagged proteins and interacting proteins were precipitated out of TL using a GFP-trap 

(Chromotek). TL and Co-IP products were resolved using Western blot and the ECL system. 

Representative Western blots depicts precipitated EGFP-DOCK4, Flag-DOCK9, EGFP-EV, and TL 

Flag-DOCK9 and EGFP-DOCK4  

Ab=Antibody; MW=Molecular weight; kDa= kilodalton; IP=Immunoprecipitated; TL=Total lysate 
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 Investigation of the DOCK4 interaction site of DOCK9 

Once the ability for DOCK4-DOCK9 to form a complex was established, the regions 

of DOCK9 required for the interaction were investigated. Previous work in the laboratory (by 

Ms. Anne Sanford, unpublished) had led to selection of 5 proline-rich regions of DOCK9 as 

potential candidates as the site of DOCK4 binding. Five pEF4 Myc-Flag-DOCK9 plasmids had 

then been generated using a Stratagene Quickchange II XL site-directed mutagenesis kit (by 

Ms. Anne Sanford), each with a mutation of proline to alanine within each of the five 

identified PRRs. Each of the DOCK9 mutants was co-expressed together with GFP-DOCK4 in 

HEK 293T (figure 4.4-4.6), and precipitated from whole cell lysates using a GFP Trap. 

Immunoblotting of Co-IP proteins was used to identify potential disruption of the 

DOCK4-DOCK9 complex, this was determined through the presence or absence of the DOCK9 

mutant protein, following anti-Flag probing.  

Co-IP of DOCK4 and DOCK9 mutant 2 consistently showed that a mutation within the 

2nd PRR had no obvious effect on the complex, as can be seen by the presence of a strong 

band in the representative blot imagine in figure 4.4 and colourimeteric analysis in figure 4.7. 

This results indicates that this point mutation does not disrupt binding between 

overexpressed DOCK4 and DOCK9. 

In initial experiments with samples derived from cells expressing DOCK9 mutant 3, 

anti-Flag probed Western blot bands yielded a much weaker, if not absent, signal than that 

of the positive control, suggesting this PRR may be necessary for DOCK4 binding. However, 

probing for GFP showed that this could be due to less IP of EGFP-DOCK4. Repeats of this 

experiment yielded conflicting results, with DOCK9 mutant 3 successfully precipitated with 

GFP-DOCK4, giving a signal equal to the positive control in Western blot analysis (figure 4.4) 

This variability has been demonstrated through combined colorimetric analysis (figure 4.7).  

Analysis of lysates derived from DOCK9 mutant 4 initially yielded a weaker Western 

blot signal, when compared to the positive control in two out of four repeat experiments, 
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with the latter two repeat experiments showing a DOCK4 interaction with DOCK9 mutant 4 

which was equivalent to that of the control (figure 4.4, 4.5, 4.7). DOCK9 mutant 4 consistently 

had a lower level of detectable protein within TL samples, something not seen with the other 

four DOCK9 mutant expression vectors, which further supported the conclusion that the 

reduction in the DOCK9 mutant 4 Co-IP product was likely due to a lower level of protein 

expression. Interaction of DOCK4 was also detected with DOCK9 mutant 5 (figure 4.5 and 

4.7).  

In initial experiments, DOCK9 mutant 5 also appeared to have less interaction with 

DOCK4, as the Western blot signal of Co-IP product were less pronounced than the positive 

control. However, this result was not reproducible in 3 out of 4 repeat experiments, which 

all yielded results which indicated that the interaction between DOCK4 and DOCK9 mutant 

5 was equal to that of DOCK4 with WT DOCK9 (figure 4.5 and 4.6), and thus an unlikely site 

of direct DOCK4-DOCK9 interaction.  

Co-IP product of DOCK9 mutant 9, with GFP-DOCK4, consistently yielded results 

equal to that of WT DOCK9 (figure 4.6 and 4.7). The results suggest that DOCK9 PRR 9 is 

unlikely to be involved in a direct interaction with DOCK4. 

DOCK9 mutant 2 (figure 4.4) and mutant 9 (figure 4.6) both consistently gave a 

strong signal, which was comparable to the positive control, indicating the interaction 

between DOCK4 and DOCK9 was maintained in the presence of mutation within these PPR 

regions. DOCK9 mutant 5 Co-IP results were less consistent, but as 3 out 4 Co-IP experiments 

led to a strong level of DOCK9 mutant 5 pull down, the DOCK9 PRR 5 may not be required 

for direct interaction. Thus, it could be hypothesised that the PRR regions mutated in these 

experiments are unlikely to be required for the direct interaction of DOCK4 with DOCK9.  

The Co-IP results obtained through analysis of DOCK4 interaction with DOCK9 PRRs 

3 and 4 were non-conclusive. While initial experiments indicate a potential loss of DOCK4 

interaction, the loss of these points of interaction between DOCK4 and DOCK9 PRR mutants 
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3 and 4 in these Co-IP experiments were not reproducible and thus a conclusion cannot be 

drawn from these experiments.  

The conflicting results obtained in these assays suggest that DOCK9 PRR 3 and 4 may 

be involved in interaction between DOCK4 and DOCK9, however, the Co-IP model used 

within this chapter may not be a proficient method to elucidate if the selected PRR are 

involved in the interaction between the DOCK4 SH3 domain and DOCK9.  
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Figure 4-4 Co-IP EGFP-DOCK4 and Flag-DOCK9 mutants 2 and 3 

Analysis of DOCK9 PRR through Co-IP of proteins overexpressed in HEK 293T 

cells. EGFP-DOCK4 was over expressed with one Flag-DOCK9 mutant 2 (green box) or 

mutant 3 (red box), mutant 4 also depicted. Flag-DOCK9 was also overexpressed with 

EGFP-EV. 48 hrs post transfection cells were lysed under mild lysis conditions. GFP-

tagged proteins were precipitated out of total cell lysates using a GFP-trap (Chromotek).  

Co-IP and TL were resolved through Western blot and presence of Flag-tagged and GFP-

tagged proteins were determined through targeted HRP conjugated antibody binding 

and ECL detection analysis. 

Ab=Antibody; MW=Molecular Weight; kDa= kilodalton; IP=Immunoprecipitation; TL= 

Total lysate; D4=DOCK4; D9=DOCK9; EV=Empty vector. 
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TL 
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Figure 4-5 Co-IP of EGFP-DOCK4 and Flag-DOCK9 mutants 4 and 5  

Analysis of DOCK9 PRR through Co-IP of proteins overexpressed in HEK 293T cells.  

EGFP-DOCK4 was over expressed with one Flag-DOCK9 mutant 4 (green box) or mutant 5 

(red box). Flag-DOCK9 was also overexpressed with EGFP-EV. 48 hrs post transfection cells 

were lysed under mild lysis conditions. GFP-tagged proteins were precipitated out of total 

cell lysates using a GFP-trap (Chromotek).  Co-IP and TL were resolved through Western blot 

and presence of Flag-tagged and GFP-tagged proteins were determined through targeted 

HRP conjugated antibody binding and ECL detection analysis. 

Ab=Antibody; MW=Molecular Weight; kDa= kilodalton; IP=Immunoprecipitation; TL= Total 

lysate; D4=DOCK4; D9=DOCK9; EV=Empty vector. 
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Figure 4-6 Co-IP EGFP-DOCK4 and Flag-DOCK9 mutant 9 

Analysis of DOCK9 PRR through Co-IP of proteins overexpressed in HEK 293T cells.  EGFP-

DOCK4 was over expressed with either Flag-DOCK9, or Flag-DOCK9 mutant 9. Flag-DOCK9 was 

also overexpressed with EGFP-EV. 48 hrs post transfection cells were lysed under mild lysis 

conditions. GFP-tagged proteins were precipitated out of TL using a GFP-trap (Chromotek).  Co-

IP and TL were resolved through Western blot and presence of Flag-tagged and GFP-tagged 

proteins were determined through targeted HRP conjugated antibody binding and ECL detection 

analysis. 

Ab=Antibody; MW=Molecular Weight; kDa= kilodalton; IP=Immunoprecipitation; TL= Total 

lysate; D4=DOCK4; D9=DOCK9; EV=Empty vector. 
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Figure 4-7 Quantitative colorimetric analysis of DOCK4 interaction with DOCK9 PRR mutant 

during Co-IP 

Western blots of GFP-trap Co-IP experiments following co-transfection of EGFP-

DOCK4 and Flag-DOCK9 proteins (WT or mutant PRRs 2, 3, 4, 5 and 9) were quantified from 

independent repeats of the experiments shown in figures 4.6 (n=3 for each PRR mutant co-

culture) using Image J software. The values of each column represents the mean+SD of the 

ratio of Western blot signal when compared to a positive WT-Flag-DOCK9 Western blot 

signal, which was given a value of 1. Western blot band signal representing a mutant PPR 

DOCK9 complex with GFP-DOCK4. Data graph generated using GraphPad Prism 7.0a 

software. WT=Flag-DOCK9 expressed with EGFP-DOCK4; Neg ct=EGFP-EV negative control 

expressed with Flag-DOCK4; mut2=Flag-DOCK9 mutant 2 expressed with EGFP-DOCK4; 

mut3=Flag-DOCK9 mutant 3 expressed with EGFP-DOCK4; mut4=Flag-DOCK9 mutant 4 

expressed with EGFP-DOCK4; mut5=Flag-DOCK9 mutant 5 expressed with EGFP-DOCK4; 

mut9=Flag-DOCK9 mutant 9 expressed with EGFP-DOCK4. 
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 Effect of the DOCK9 binding small molecule inhibitor QL-47 on disruption of the DOCK4-

DOCK9 complex 

QL-47 is a small molecule inhibitor which has been demonstrated to inhibit Cd42 

activation and disrupt VEGFA driven angiogenesis (appendix 2, figure 7.10). QL-47 binds 

DOCK9 at p.C628, a cysteine residue which lies within PRR 3 (p.PCIP627-630) of DOCK9 

(figure 4.1). When considering DOCK4-DOCK9 PRR mutant 3 Co-IP experimental results, 

which indicated a potential role for PRR 3 in disrupting DOCK4-DOCK9 interaction, QL-47 

served as a potential tool for investigating whether this region serves as the site of DOCK4-

DOCK9 binding (figure 4.1).   

Immunoprecipitation experiments of over expressed GFP-DOCK4 and Flag-DOCK9 

from cell lysates of HEK 293T were carried out following treatment of 293T for 24 hours with 

5μM of QL-47; a previously determined concentration (Wu et al., 2014) that was found to 

also disrupt angiogenesis in an organotypic angiogenesis co-culture model (Chapter 3. 

figures 3.7-3.9). 

Western blot analysis of TLs of QL-47 treated cells showed an initial mild disruption 

of DOCK4-DOCK9 interaction (figure 4.8), however this could not be demonstrated through 

repeat experiments. Review of literature describing use of QL-47 in cell culture treatment 

(Wu et al., 2014) indicated QL-47 was unable to infiltrate cells to successfully bind the target 

protein (Wu et al., 2014). The lack of solubility of QL-47 had been apparent during use of the 

compound within the co-culture assays (Chapter 3, figures 3.7-3.9), this was overcome by 

adding QL-47 to warm media and vortexing for approx. 5 minutes. While this approach 

overcame the solubility issues within the co-culture, proper entry into the cell could not be 

determined within the transfected HEK 293T cells. Wu et al (2014) addressed this issue by 

treating cell lysates as opposed to cultured cells, therefore QL-47 treatment was carried out 

on TLs and cultured cells in order to overcome any issues of uptake by the cells. Western blot 
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analysis of Co-IP proteins treated with QL-47 established that QL-47 was unable to disrupt 

the DOCK4-DOCK9 interaction in either pre-treated cells or cell lysate experiments. 
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Figure 4-8 Co-IP of overexpressed EGFP-DOCK4 and Flag-DOCK9 following treatment of HEK 

293T cells with the compound QL-47 

Analysis of the effect of QL-47 treatment on the DOCK4-DOCK9 interaction through 

Co-IP of proteins overexpressed in HEK 293T cells. EGFP-EV and Flag-DOCK9, or EGFP-DOCK4 

and Flag-DOCK9, expression vectors were co-transfected into HEK 293T cells. 24 hours post 

transfection cells were treated with 5µM QL-47. Cells were lysed 24 hrs post QL-47 treatment. 

Co-IP of protein complexes from TL was performed using a GFP-trap (Chromotek). Precipitated 

proteins and proteins of TL were resolved through Western blot and presence of Flag-tagged 

and GFP-tagged proteins were determined through targeted HRP conjugated antibody binding 

and ECL detection analysis. 

Ab=Antibody; MW=Molecular Weight; kDa= kilodalton; IP=Immunoprecipitation; TL= Total 

lysate; D4=DOCK4; D9=DOCK9; EV=Empty vector. 
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 Size exclusion analysis of DOCK4 SH3 domain and DOCK9 PCIP-DHR1 domain 

interaction 

The SH3 domain of DOCK4 has already been established as the domain which drives 

DOCK4 interaction with DOCK9 (Abraham et al., 2015). Co-IP analysis of DOCK9 PRR mutants 

indicated PRR 3 (p.PCIP627-630), which lies just upstream of the DHR1 domain, and PRR 4, 

which lies within the DHR1 domain (figure 4.1) may be involved in the DOCK4-DOCK9 

binding. Hence, a DOCK9 construct was generated to include a nucleotide sequence which 

encompasses the p.PCIP627-630 residues and the DHR1 domain.  

Nucleotide sequences for DOCK4 SH3 domain and DOCK9 PCIP-DHR1 domain were 

cloned into pOPIN-F expression vectors with inclusion of a His-tag (figure 7.4; figure 7.5). 

DOCK4 SH3-His (figure 4.9) and DOCK9 PCIP-DHR1-His peptides (figure 4.10) were produced 

in BL21 (DE3) competent cells and purified using affinity chromatography, then both further 

purified using SEC (figure 4.11). All protein lysates were concentrated to approximately 

100μM/ml. Purified DOCK4 SH3 His-tagged peptides were diluted in a 1:1 ratio with elution 

buffer and aliquoted into 2ml fractions. Diluted peptides were further purified and separated 

according to size using SEC (figure 4.12).  

The concentration of peptide particles within each 1ml fractions were determined 

by UV light spectroscopy (mAU), generating a line graph which indicates concentration of 

each fraction, with peaks indicating the UV absorbance and therefore hydrodynamic volume 

of the molecules. Fractions represented by the large peak in figure 4.12 A.1 were then 

resolved using a SDS PAGE gel and confirmed as DOCK4 SH3 moieties through Coomassie 

blue staining of the gel based on the molecular weight of the detectable band by comparison 

to a Bio-Rad molecular weight ladder (Figure 4.12 B, well 1). Purified DOCK9 PCIP-DHR1 

peptides were then further purified and separated according to size using the same 

methodology as the DOCK4 SH3 domain peptides. Fractions represented by the large peak 
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in figure 4.12 A.2 were then resolved using a SDS PAGE gel and confirmed as DOCK9 PCIP-

DHR1 through Coomassie blue staining of the gel (Figure 4.12 B, well 2).
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POPINF DOCK4-SH3-HIS construct was cloned to express DOCK4-SH3 peptides. His-tagged 

DOCK4-SH3 peptides expressed in BL21 (DE3) competent cells were purified using affinity 

chromatography and a His Trap HP column, connected to an ÄKTA pure protein purification 

system (GE Lifesciences). (A) PCR agarose gel of DOCK4 SH3 gene fragment isolated from a 

pBabe puro DOCK4-Flag expression vector, and amplified through PCR amplification. DOCK4 

SH3 domain nucleotide sequence (216 bp,) confirmed through Sanger sequencing 

(ThermoFisher), was cloned into a pOPINF-HIS vector using cloning NEBuilder® HiFi DNA 

Assembly Cloning Kit. Correct gene insert was determined by agarose gel DNA separation. 

(B) Graph depicting an affinity chromatography elution profile of DOCK4 SH3 domain 

Figure 4-9 Expression vectors of DOCK4 truncated peptide regions of interest.  
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peptides. DOCK4 SH3 domain peptide purification from a BL21 (DES) competent cell lysate. 

mAU= Milli absorbance units; ml=Millilitre of eluted sample, collected in 1ml aliquots on a 

96 well collection plate; UV1_280= UV absorbance at 280 nm and represents protein 

concentration within lysate samples as they are eluted from the His-column; Cond= 

Conductivity monitor used to follow column equilibration; Cond B= Conductivity monitor 

used to monitor salt gradient formation. (C) Coomassie stained SDS-Page gel of affinity 

chromatography purified DOCK9 PCIP-DHR1 domain peptide. pOPINF DOCK4-SH3-His 

plasmid was transformed into BL21 (DE3) competent cells, grown in 1l cultures, lysed, and 

purified using affinity chromatography. C.1= Whole bacterial culture sample. C.2= Bacterial 

pellet sample. C.3= Sample of initial elution of the His-column wash of DOCK4-SH3 domain 

peptide containing lysate, during affinity chromatography.  C.4= Second sample of elution of 

the His-column wash of DOCK4-SH3 domain peptide containing lysate, during affinity 

chromatography.  C.5-11=Samples of affinity chromatography eluents corresponding to the 

eluted purified proteins in ml samples 63-68ml of the given chromatography elution peak. 

(D) Anti-His Western blot of DOCK4 SH3 proteins purified through affinity chromatography. 

Western blot lane 1-3 correspond to lanes labelled 8 and 9 of the Coomassie stained SDS-

Page gel (C), respectively. AB=Antibody; BP=Base pair; MW=Molecular Weight; kDa= 

Kilodalton 
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pOPINF DOCK9 PCIP-DHR1-His construct was cloned to express DOCK9 PCIP-DHR1 

peptides. His-tagged DOCK9 PCIP-DHR1 peptides expressed in BL21 (DE3) competent cells 

were purified using through affinity chromatography using a using a His Trap HP column 

connected to an ÄKTA pure protein purification system (GE Lifesciences). (A) PCR agarose gel 

of DOCK9 PCIP-DHR1 gene fragment (well 2; BP 663) was isolated from a Flag-DOCK9 

expression vector and amplified through PCR amplification. DOCK9 PCIP-DHR1 domain 

nucleotide sequence was cloned into a pOPINF-HIS vector using cloning NEBuilder® HiFi DNA 

Assembly Cloning Kit. Correct gene insert was determined by agarose gel DNA separation. 

(B) Affinity chromatography peak of DOCK9 PCIP-DHR1 domain peptide purification from a 

BL21 (DES) competent cell lysate. mAU= Milli absorbance unit; ml=Millilitre of eluted sample, 
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collected in 1ml aliquots on a 96 well collection plate; UV1_280= UV absorbance at 280 nm 

represents concentration of protein within lysate samples as they are eluted from the His-

column; Cond=Conductivity monitor used to follow column equilibration; Cond 

B=Conductivity monitor used to monitor salt gradient formation. (C) Coomassie stained SDS-

Page gel of affinity chromatography purified DOCK9 PCIP-DHR1 domain peptide. pOPINF 

DOCK9 PCIP-DHR1-His construct was transformed into BL21 (DE3) competent cells, grown in 

1l cultures, lysed, and purified using affinity chromatography. C.1=Sample of initial elution 

of the His-column wash of DOCK9 PCIP-DHR1 domain peptide containing lysate, during 

affinity chromatography. C.4=Bacterial pellet sample. C.6-10=Samples of affinity 

chromatography eluents corresponding to the ml of eluted purified proteins in samples 118-

122ml of the given chromatography elution peak. (D) Anti-His Western blot of DOCK9 PCIP-

DHR1 proteins purified through affinity chromatography. Western blot lanes 1-3 represent 

affinity chromatography elutions detected on the Coomassie stained SDS-Page gel (C) lanes 

6-8, respectively. AB=Antibody; BP=Base pair; MW=Molecular Weight; kDa= Kilodalton 
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His-tagged DOCK4-SH3 peptides and DOCK9 PCIP-DHR1 peptides expressed in BL21 

(DE3) competent cells were purified from bacterial lysates using affinity chromatography and 

further purified through SEC using a Superdex® 75 10/300 GL column connected to an ÄKTA 

pure protein purification system (GE Lifesciences). (A1) DOCK4-SH3 peptide SEC elution 

peaks and (B1) DOCK9 PCIP-DHR1 peptide SEC elution peaks. mAU= Milli absorbance unit; 

ml=Millilitre of eluted sample, collected in 1ml aliquots on a 96 well collection plate; 

UV1_280= UV absorbance at 280 nm represents concentration of protein within lysate 

samples as they are eluted from the His-column; Cond= Conductivity monitor used to follow 

column equilibration; Cond B= Conductivity monitor used to monitor salt gradient formation. 

(A2) Coomassie stained SDS-Page gel of affinity chromatography purified DOCK4-SH3 

domain peptide and (B2) DOCK9 PCIP-DHR1 domain peptide. (A2 and B2) Peptides purified 

using affinity chromatography were further purified using SEC (A2) SDS PAGE gel lanes 

correspond to specific 1ml DOCK4 SH3 SEC protein sample eluents as follows: A2 lanes 1-2 

correspond to sample collected from A1 SEC peak 1. A2 lanes 3-5 correspond to sample 

collected from A1 SEC peak 2. A2 lanes 6-8 correspond to sample collected from A1 SEC peak 

3.  (B2) SDS PAGE gel lanes correspond to specific 1ml SEC DOCK9 PCIP-DHR1 protein sample 

eluents as follows B2 lanes 1-6 correspond to sample collected from A1 SEC peak 1. B2 lanes 

7-9 correspond to sample collected from A1 SEC peak 2. B2 lane 10 corresponds to sample 

collected from A1 SEC peak 3.   

Figure 4-11 SEC purification of DOCK4-SH3 and DOCK9 PCIP-DHR1 peptides 

1     2     3      4      5     6       7      8     9    10       1      2      3       4      5        6       7     8       

A.1 

A.2 B.2 

B.1 
1 2           3  1    2       3  
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To determine whether the DOCK4 SH3 domain binds directly to the DOCK9 PCIP 

residues and/or the DHR1 domain, 50μM of DOCK4 SH3-His peptides were combined with 

50μM of DOCK9 PCIP DHR1-His peptides.   

Combined peptides were diluted with non-denaturing elution buffer and 

fractionated through SEC into aliquots based on size, with larger proteins being eluted first. 

The concentration of peptide particles within each 1ml fractions was determined by UV light 

spectroscopy (mAU), generating a line graph that indicates concentration of each fraction 

with peaks signifying the UV absorbance and therefore hydrodynamic volume of the polymer 

molecules. Should the proteins interact and have formed a complex, the peak, currently 

indicated in figure 4.12 A3, would have shifted to the left; indicating complex of the two 

proteins resulting in a larger molecule, and an earlier elution of the proteins.. However, the 

peaks generated by elution of the combined lysates indicate lack of interaction between the 

two peptides, with each protein eluting separately with peaks that reflected the peaks 

generated by SEC of the individual peptides. Proteins collected in fractions represented by 

the two large peaks were resolved on an SDS PAGE gel and visualised with Coomassie blue. 

Peptides of the correct molecular weight for DOCK4 SH3-His and DOCK9 PCIP DHR1-His were 

confirmed (figure 4.12 B, wells 3 and 4). These results show lack of direct interaction between 

the DOCK4 SH3 domain and the DOCK9 p.PCIP627-630 residues encompassing PRR 3, nor the 

DOCK9 DHR1 domain encompassing PPR 4. This result also nullifies the hypothesis that the 

DOCK9 binding small molecule inhibitor QL-47 disrupts the DOCK4-DOCK9 interaction 

through binding to residue p.C628 which lies within the PPR region 3 of DOCK9.  
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Analysis of DOCK4 SH3 and DOCK9 PCIP-DHR1 interaction using SEC followed by 

confirmation using SDS PAGE gel confirmation. (A) Affinity chromatography purified DOCK4 

SH3 and DOCK9 PCIP-DHR1 peptides were separated by size through SEC, using a Superdex® 

75 10/300 GL column connected to an ÄKTA pure protein purification system (GE 

Lifesciences). (Blue line) 100μM of DOCK4 SH3 peptides in 1ml of lysate were loaded onto a 

Superdex® 75 10/300 GL column through a 500μl loop. Peptides were resolved through SEC 

and detected based on size. (Orange line) 100μM of DOCK9 PCIP-DHR1 peptides in 1ml of 

lysate were loaded onto a Superdex® 75 10/300 GL column through a 500μl loop. Peptides 

were resolved through SEC and detected based on size. (Green line) 50μM of DOCK4 SH3 

and 50μM of DOCK9 PCIP-DHR1 peptides were combined to a volume of 1ml of lysate then 

loaded onto a Superdex® 75 10/300 GL column through a 500μl loop. Peptides were resolved 

through SEC and detected based on size. Right peak indicates DOCK4 SH3 domain peptides. 

Left peak indicated DOCK9 DHR1 peptides. (B) Peptides eluted by SEC were resolved on a 

SDS PAGE gel followed by Coomassie blue. Peptides in eluents corresponding to SEC peaks 

were confirmed as DOCK4 SH3 and DOCK9 PCIP-DHR1 peptides based on molecular weight: 

DOCK4 SH3 domain peptides (11kDa; blue line) indicated on Coomassie gel (B) lane 1. DOCK9 

DHR1 domain peptides (25kDa; orange line) indicated on Coomassie gel (B) lane 2. DOCK4 

SH3 domain peptides (right peak, green line) indicated on Coomassie gel (B) lane 3. DOCK9 

DHR1 domain peptides (left peak, green line) indicated on Coomassie gel (B) lane 4. 

 

 

Figure 4-12 SEC interaction analysis of DOCK4 SH3 and DOCK9 PCIP-DHR1 purified peptides 
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4.3 Discussion 

The interaction analysis carried out within this study were unable to elucidate the 

DOCK9 residues which serve as the binding site of the DOCK9 interaction with the DOCK4 

SH3 domain (figures 4.3-4.7). The DOCK9 binding small molecule QL-47 was unable to disrupt 

the DOCK4-DOCK9 interaction within Co-IP assays, indicating that the p.C628 residue of 

DOCK9 may not be involved in a direct interaction between the two proteins (figures 4.8). 

Further to this, the truncated peptides DOCK4 SH3 and DOCK9 PCIP-DHR1 were found to not 

directly interact within SEC analysis (4.12). 

The signalling pathways that are activated in ECs during angiogenesis are complex 

and not entirely understood. The ability to dissect and gain further understanding of the 

events that drive blood vessel growth, will give further insights into dysregulation of the 

process during pathological angiogenesis and may identify new therapeutic targets for those 

pathologies. This study has set out to further understand the RhoG-DOCK4-RAC1-DOCK9-

CDC42 signalling pathway recently identified (Abraham et al., 2015). Previous work had 

demonstrated that the DOCK4-DOCK9 complex acts as an effector downstream of RhoG 

signalling (Abraham et al., 2015). Rho GEF proteins can heterodimerise as well as 

homodimerise. The ability of these proteins to form such complexes indicates their potential 

to act in-concert to finely tune Rho GTPase activity, throughout the highly organised and 

dynamic cellular events that take place during sprouting angiogenesis and lumen formation 

(Abraham et al., 2015). Different GEFs may modulate activation and inactivation of Rho 

proteins at key stages of blood vessel development, while also regulating other protein-

protein interactions and protein localisation (Barlow and Cleaver, 2019). The function of 

DOCK4 and DOCK9 are required for the outgrowth of lateral filopodia along sprouting vessels 

in 3D tissue culture (Abraham et al., 2015). This function has been stipulated as necessary 

for lumenisation and therefore functionality of newly forming blood vessels (Abraham et al., 

2015). The ability for DOCK4 and DOCK9 to heterodimerise during angiogenesis may be 
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required for signalling mechanisms involved in development of lateral filopodia. Elucidating 

how these two proteins interact will allow for further understanding of the signalling 

mechanisms involved in angiogenesis. 

 DOCK4-DOCK9 interaction 

Purified GST-tagged DOCK4 SH3 domain has been demonstrated as capable of 

pulling down endogenous WT DOCK9 from HEK 293T cellular lysates (Abraham et al., 2015). 

Currently the specific DOCK9 site that interacts with the DOCK4 SH3 domain has not yet been 

determined. Initial attempts in this study to utilise the commercially available GFP-trap, to 

identify a putative PRR within DOCK9 that mediates the interaction with DOCK4, have been 

convoluted. DOCK9 mutations within PRRs identified as DOCK9 PRRs 2 and 9 demonstrated 

little effect on DOCK4-DOCK9 interaction, leading to the hypothesis that these PRRs are not 

required for the interaction (figures 4.4, 4.6, and 4.7). Mutations within the PRRs identified 

as DOCK9 PRRs 3, 4, and 5 were found to yield somewhat conflicting results via western blot 

analysis of the Co-IP of DOCK4 and DOCK9 proteins (figures 4.4, 4.5, and 4.7). Co-IP of EGFP-

DOCK4 and Flag-DOCK9 PRR 3 and 4 mutants yielding the most varied results with EGFP-

DOCK4 showing the least affinity for binding DOCK9 PRR 4 when compared to the control, 

and the other DOCK9 PRR mutants, however this result was not statistically significant 

through colorimetric analysis (figure 4.7); although it should be noted that the profoundly 

strong GFP signal detected through Western blot within the TL samples led to oversaturation 

which may not present a true representation of the level of GFP expression within the GFP 

TL samples, thus potentially confounding any differences in DOCK4 expression between 

samples. This may be corrected by testing repeat blots of decreasing concentration of loaded 

protein in-order to create a gradient, and a more true representation of protein 

concentration (Ghosh et al., 2014). 

The variability of results indicates that Co-IP may not be sensitive enough to detect 

the loss of interaction between the two proteins. A number of elements within this model 
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should be considered and addressed, should this experiment be carried out for future 

purposes. Firstly, non-specific binding of the Flag-tag of the DOCK9 proteins should be 

investigated to determine if this epitope binds either the DOCK4 protein or GFP tag, as Flag-

tags have been previously described to bind a number of proteins non-specifically (Free et 

al., 2009). Consideration should also be given to the level of protein expression of both 

DOCK4 and DOCK9, as both proteins are large proteins with similar sequence homology, and 

both capable of homodimerisation, there is potential that over-expression may lead to non-

specific interaction. It should be noted that the GFP tag was determined to not bind the 

DOCK9 protein non-specifically, as seen in the EGFP-EV samples (figure 3.3, 3.4, and 3.5).  

As both DOCK4 and DOCK9 proteins possess structural similarities, both with the 

ability to homodimerise, overexpression within HEK 293T cells may likely result in forced and 

non-sensitive interaction (Sommer et al., 2014; Marcotte and Tsechansky, 2009). Through 

optimization of the Co-IP experiments, the concentration of transfected plasmid was tittered 

to reduce the level of protein expression, in-order to overcome false interaction. However, 

both the CMV promoter of the pC3 EGFP-DOCK4 plasmid and EF-1α promoter of the pEF4 

Myc-Flag-DOCK9 plasmid both induce a high level of expression which may maintain too high 

a level protein expression (Xia et al., 2006), it may therefore be necessary to use expression 

vectors with a weaker, or less active, promoter in order to better control the level of 

expression. The Co-IP approach also lacks the ability to detect direct interaction, which may 

be overcome by purified fusion protein-pull down experiments or SEC of purified proteins 

(Hall, 2005). Further to this, detection of interacting proteins via Western blot lacks 

sensitivity and produces unreliable results that may not distinguish between genuine 

interaction and non-specific interaction (Zhu et al., 2017).  

In an attempt to overcome the variability in results, the initial protocol TLs were also 

optimized to reduce detection of non-specific interaction. The TL buffer (RAC lysis buffer) 

was optimised with an increase in sodium chloride concentrations in an attempt to further 
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disrupt any non-specific binding of proteins. These experiments ultimately showed 

inconsistent results, with little or no difference in the binding ability of EGFP-DOCK4 to Flag-

DOCK9 PRR 3 and 5 mutants when compared to the control, EGFP-DOCK4 binding to WT Flag-

DOCK9 (figures 4.4, 4.5 and 4.7). In regards to the DOCK9 PRR 4 mutant, analysis of lysates 

from the optimised Co-IP experiment yielded results similar to the previous experiments, 

with EGFP-DOCK4 having a reduced affinity for binding DOCK9 PRR 4 mutant when compared 

to the WT and other DOCK9 mutants (figure 4.5 and 4.7), however this result was not 

significant and it was also noted that DOCK9 PPR 4 mutant appeared to express less total 

protein when compared to TL of HEK 293T transfected with the other 4 DOCK9 mutant 

constructs (figure 4.4 and figure 4.6). The variability within those results led to the 

consideration that the experimental design may not be suitable for demonstrating loss of 

DOCK4 and DOCK9 interaction, perhaps due to forced interaction of the two large 

overexpressed proteins (Sommer et al., 2014; Marcotte and Tsechansky, 2009). 

Furthermore, the ability for mutations within 3 separate PRRs to show some level of 

disruption of the DOCK4-DOCK9 interaction may suggest that more than one PRR binding 

site may be required for the interaction, a concept which could be further explored through 

inclusion of wider protein domains within interaction analysis.  

 The effect of QL-47 on the DOCK4-DOCK9 interaction 

Within the interim of the DOCK4-DOCK9 PRR mutant Co-IP experiments, a small 

molecule compound, QL-47, was identified by Nathanial Gray’s research group as a DOCK9 

binding compound. QL-47 specifically binds to the cysteine residue p.C628 within the PRR 3 

(p.PCIP627-630). Experiments reported within the previous results chapter of this thesis 

(figure 3.8 and 3.9) established that QL-47 disrupts correct sprouting angiogenesis and 

promotes an angiogenic phenotype. For the aforementioned reasons, it was considered that 

the phenotypic effect of QL-47 may involve disruption of DOCK4 and DOCK9 interaction.  
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To test this hypothesis the EGFP-DOCK4 Flag-DOCK9 co-expression and Co-IP 

analysis was carried out in the presence of QL-47, at a concentration of 5μM, equal to the 

concentration required to induce a phenotypical effect on angiogenesis in vitro. In separate 

experiments cells were either treated with QL-47 before transfection with the EGFP-DOCK4 

and Flag-DOCK9 expression vectors, or prior to cell lysis. Using anti-Flag and anti-GFP 

Western blot analysis it was not possible to conclusively demonstrate any disruption to the 

DOCK4-DOCK9 complex (figure 4.8).  

The results of the DOCK4-DOCK9 PRR mutant Co-IP experiments in combination with 

the QL-47 supplemented DOCK4-DOCK9 Co-IP experiments substantiated that the Co-IP 

approach may not provide a reliable experimental model for investigating the interaction. 

To remedy the influence of potential variables within the live cell cultures, an experimental 

approach utilising only purified DOCK4 and DOCK9 peptides was carried out.  

 SEC analysis of DOCK4 SH3 domain interaction with the DOCK9 DHR1 domain 

The previously mentioned experiments demonstrated that investigation of the wider 

domains of DOCK9 may be required to elucidate the binding site for DOCK4. In order to 

investigate this, SEC was carried out using specific domains of DOCK4 and DOCK9. SEC 

analysis of protein interactions is a robust and widely used technique for determining 

whether two proteins interact directly (Bloustine et al., 2003; Busch et al., 2017).   

Constructs were generated with the gene sequence for expression of a truncated 

DOCK9 protein, cloned into a pOPINF expression vector (plasmid maps can be found in 

Appendix 7.1.2). A truncated portion of DOCK9 was cloned into the pOPINF expression 

vector, and included only the DHR1 region, which encompasses PRR4, and the PPR region 

directly upstream of the DHR1 binding domain, identified as PRR 3 (p.PCIP627-630). The 

DOCK4 SH3 domain gene sequence was also cloned into a pOPINF expression vector. Both 

the DOCK4 SH3 and DOCK9 PCIP-DHR1 construct incorporate a histidine tags. Both the 

DOCK4 SH3 and DOCK9 PCIP-DHR1 truncated proteins were successfully expressed in BL21 
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(DES) competent cells. Bacterial cultures were lysed and proteins purified using affinity 

chromatography (figures 4.9 and 4.10). Proteins were then further purified using SEC (figure 

4.11)  

To determine whether the SH3 domain of DOCK4 directly binds to either/or both of 

the DOCK9 PRRs 3 and 4 equal concentrations (approx. 50μM) of purified protein samples 

were resolved using SEC, under non-denaturing conditions (figure 4.11). In-order to establish 

a size-based peak, 100μM of each protein were first resolved individually, and then 

combined and resolved via SEC, under non-denaturing conditions. Proteins capable of 

binding one another would be expected to remain bound during SEC, however the results 

demonstrated that the DOCK4-SH3 domain does not bind DOCK9 PRR3-DHR1 peptides 

directly. SEC of DOCK4-SH3 and DOCK9 PCIP-DHR1 was repeated, in-order to confirm the 

absence of direct interaction (Figure 4.12). The repeat experiment yielded the same result, 

strongly suggesting that the DOCK9 PRR3 and PRR4 are not involved in a direct interaction 

between the DOCK4-SH3 domain and DOCK9. Furthermore, it is likely that the DOCK4-SH3 

domain does not interact directly with the DHR1 domain of DOCK9.  

While this experiment indicates that the DOCK4 SH3 domain residues do not bind 

directly to residues within the DOCK9 DHR1 domain, it does not give consideration to the 

requirement of secondary structures within the interaction, as the purified peptides may lack 

the correct folding of the native proteins. As the full structure of DOCK9 as not yet been 

determined  

In consideration of the overall outcome of these experiments, it can be concluded 

that the experimental design for elucidating the site of DOCK9 which binds the DOCK4 SH3 

domain would need to be further optimised in-order to yield a more reliable result. The 

acquired results indicate that the DOCK4-SH3 domain does not directly bind to the DOCK9 

DHR1 domain, and is unlikely to interact with the DOCK9 PRRs 2, 3, 4, 5 and 9, however this 

cannot be considered a conclusive result. It can however suggest that it is likely that the small 
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molecule QL-47 does not disrupt DOCK4 and DOCK9 interaction, as there was no apparent 

binding of the DOCK4 SH3 domain to an individual residue of the DOCK9 p.C628. Therefore 

the phenotypic effects of QL-47 on sprouting angiogenesis in vitro are unlikely to be due to 

disruption of the interaction of DOCK4 with DOCK9.  

Additional experiments will be required in-order to further understand the precise 

nature of the DOCK4-DOCK9 interaction. Generation of expression constructs which 

encompass wider regions of DOCK9 would be ideal for encapsulating which wider region of 

the protein truly binds DOCK4. Data of the DOCK4 and DOCK9 interaction partners, identified 

through previous work in the laboratory, could help elucidate how these two proteins 

interact potentially via an indirect mechanism (Abraham et al., 2015). Defining true binding 

partners of these two DOCK180 family members will afford a more in-depth understanding 

of their function, while also potentially shed more light into the purpose of the DOCK4-

DOCK9 heterodimerisation.  
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5 Results chapter III: Dock4 genetic deletion impairs vascular 

recovery following an ischemic event in vivo 

5.1 Introduction 

The GEF DOCK4 is essential for correct vascular growth during sprouting 

angiogenesis in vitro (Abraham et al., 2015). Depletion of DOCK4 expression results in growth 

of less dynamic vascular structures in vitro, and impaired lumenisation both in vitro and in 

vivo (Abraham et al., 2015). The DOCK4 effector protein, RAC1, is a multifunctional dynamic 

Rho GTPase which has been implicated as an essential component for blood vessel growth, 

during development and post developmental sprouting angiogenesis (Ramo et al., 2016; Cao 

et al., 2017). RAC1 drives directional migration and correct vascular patterning via regulation 

of the actin polymerisation required for lateral filopodia production, during sprouting 

angiogenesis (Abraham et al., 2015). Understanding how blood vessels grow in response to 

oxygen deprivation is imperative for deciphering the mechanisms that underpin vascular 

pathologies, which result from inadequate angiogenic response (Ramo et al., 2016; Cao et 

al., 2017).  

To expand upon current knowledge of the function of DOCK4 in angiogenesis, a 

global Dock4 heterozygous knockout C57BL/6J murine model (which will be referred to as 

Dock4 het throughout this chapter) was employed. This Dock4 het mouse model overcomes 

embryonic lethality of homozygous Dock4 deletion, and was used for analysis of Dock4 

function in vivo. The Dock4 het murine model was previously demonstrated to express only 

50% of the normal expression level of DOCK4 (Abraham et al., 2015). An EC specific 

conditional Dock4 knockout murine model, iVEC-cre+ve; Rosa26-lsl-Tomato; Dock4f/f mice, 

was also employed, to allow for inducible deletion of endothelial Dock4 (which will be 

referred to as EC Dock4 KO throughout this chapter).  
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To investigate how DOCK4 functionality influences vascular response and recovery, 

under pathological conditions of ischemia in vivo, the global heterozygous DOCK4 knockout 

model, and EC Dock4 KO model, were both employed in a HLI assay in vivo. The HLI model 

provides a model of arteriogenesis and angiogenesis within the hind limbs of mice, and is a 

widely performed and validated model of ischemia (Hellingman et al., 2010). All surgical 

procedures carried out by Dr Nadira Yuldasheva. 

LDI was utilised to monitor vascular recovery and response, following removal of a 

portion of the femoral artery (figure. 5.1). The moorLDI2-HIR High Resolution Laser Doppler 

Imager allowed for deep penetrative imaging of small blood vessels, ideal for detecting blood 

flow within solid tissues. 

Loss of blood flow through the femoral artery leads to redirection of blood flow via 

the pre-existing collateral arteries, and subsequent arteriogenesis and widening of the 

collateral arteries (van Royen et al., 2001; Limbourg et al., 2009). While blood flow through 

the collateral arteries allows some circulation to the lower appendage. Inadequate level of 

blood perfusion induces a strong angiogenic response within the muscles of the lower limb, 

the gastrocnemius and soleus (Limbourg et al., 2009; Niiyama et al., 2009). The strong 

angiogenic response within the gastrocnemius makes the muscle ideal for histological 

analysis of vascularity (Limbourg et al., 2009; Niiyama et al., 2009). Antibody staining of the 

endothelial specific surface protein, CD31, allows for visualisation of the blood vessels within 

the gastrocnemius and thus provides a method of comparative analysis of vascularisation of 

the gastrocnemius of the injured leg, compared to that of the un-injured leg (Hellingman et 

al., 2010). 

Gastrocnemius and soleus muscles of the mouse hind limbs were harvested, 

embedded in paraffin wax, sectioned and stained for DOCK4, the vascular specific marker, 

CD31, and RFP (for confirmation of the Td Tomato reporter for EC DOCK4 deletion in the 

inducible DOCK4 KO mouse). IHC stained muscle sections were electronically scanned and 
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analysed using ImageJ, in-order to quantify the vascularity of the tissue and analyse key 

features of the vascular structures.  

Numerical data generated through LDI detection of cell velocity, within the hind 

limbs of mice, was statistically analysed using a one-way analysis of variance (ANOVA), blood 

flow area under the curve, and linear regression and slope intersect analysis, to determine 

significant changes in vascular recovery. 

Overall this chapter will provide evidence that the RAC1 GEF, DOCK4, is required for 

normal vascular recovery from severe HLI. 
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Figure 5-1 Schematic of the HLI model 

The HLI surgery removes a portion of the left femoral artery. The femoral artery is 

separated from the iliac vein, encircled with 8.0 Vicryl sutures, and the intervening arterial 

segment is excised. 
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5.2 Results 

 Dock4 het mice have lower gross body weight compared to WT littermate control mice 

Gross body weight of each mouse was tracked and recorded through-out the 

duration of the HLI experiment (table 5.1). Body weight was monitored to ensure each 

mouse was healthy and thriving throughout the duration of all murine experiments. Both 

male and female Dock4 het mice were found to have typically lower body weights, when 

compared to the WT littermate mice, at each time point. The reason for the lower body 

weight was not further investigated and has not yet been elucidated.  

 

 

DOCK4 het WT littermates 

ID Day 0 Day 7 Day14 Day 21 ID Day 0 Day 7 Day14 Day 21 

608 16g 17g 18g 17g 611 16g 16g 17g 17g 

609 16g 16g 17g 17g 631 19g 19g 20g 20g 

610 18g 18g 20g 20g 632 17g 18g 19g 19g 

630 17g 17g 17g 17g 641 20g 20g 20g 20g 

638 16g 16g 16g 16g 642 19g 19g 20g 20g 

645 15g 15g 15g 15g 643 19g 19g 19g 20g 

614 22g 23g 24g 24g 612 26g 27g 29g 28g 

633 24g 24g 25g 26g 613 22g 23g 24g 24g 

634 20g 21g 22g 23g 635 27g 28g 29g 29g 

636 20g 21g 22g 22g 637 25g 26g 29g 29g 

639 23g 23g 23g 23g 640 27g 27g 27g 27g 

646 23g 23g 24g 24g 647 26g 26g 26g 26g 

Table 5-1 Weight of each mouse in grams 

Table of the weight of each mouse, in grams. Each mouse was weighed directly 

before LDI was carried out. ID= Identification number of each mouse. Numbers highlighted 

in pink are female mice. Numbers highlighted in blue are male mice. 

 Dock4 het mice show reduced rate of hind limb mobility recovery compared to WT 

littermates 

Response to HLI was studied in the Dock4 het mice, following surgical removal of a 

portion of the femoral artery. Hind limb mobility of each mouse was monitored following 
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surgery, in order to determine if any differences in loss of hind limb mobility and recovery 

could be observed between the experimental groups. Immediately following HLI both the 

WT mice and Dock4 het mice demonstrated substantial loss in left hind limb mobility 

(qualitative observations). Over 28 days post-surgery WT mice began to regain mobility of 

the injured hind limb, while Dock4 het mice were observed to have less mobility of the 

injured limb by comparison to the WT littermate controls. By day 21, WT mice regained full 

mobility of their hind limb, and no longer appeared to be physically impacted by loss of the 

portion of the femoral artery. Dock4 het mice continued to experience loss of full leg 

extension and flexibility, with the injured left hind limb being held in a retracted position 

with full manual extension of the hind limb not possible.  

 

 Dock4 het mice develop necrosis of the ischemic foot  

Throughout the experiment all mice were monitored for any signs of necrosis of the 

ischemic limb, representative images and all recorded results are given in figure 5.2. Out of 

twelve Dock4 het mice, eleven experienced necrosis within the ischemic foot, which ranged 

from mild necrosis (blackening of the toe tips) to profound necrosis (auto-amputation of the 

ischemic foot). Three Dock4 het mice experienced auto-amputation of toe tips and an 

additional two Dock4 het mice experienced auto-amputation of toes. One Dock4 het mouse 

experienced auto-amputation of the affected foot (figure 5.2B). In summary, 5 out of 12 

Dock4 het mice experienced some form of auto-amputation. There was no auto-amputation 

or evidence of necrosis observed in the WT littermate control mice.  

 

 
 
  A B 
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 Dock4 het mouse hind limb blood flow is equal to the hind limb blood flow of WT 

littermates under physiological conditions 

The hindlimb blood flow of the uninjured leg of both experimental groups were 

analysed through LDI, to determine whether any differences in hindlimb blood flow could be 

detected between the two experimental groups (figure 5.3 and 5.4). Blood flow of the 

uninjured limbs of both experimental groups followed the same trend (figure. 5.3 and 5.4), 

with blood flow appearing higher immediately following surgery, then decreasing each week 

post operation. Higher levels of post-operative blood flow were most likely due to mice being 

maintained on a heated surface prior to LDI.  

Comparative analysis of blood flow to the non-injured limbs of Dock4 het mice to 

WT littermates determined there was no significant difference between the normal hind 

limb circulation of the two experimental groups before ligation of the left femoral artery 

(figure 5.3 and figure 5.4). 
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B 

Figure 5-3 Effect of Dock4 het deletion on hind limb vascular recovery following surgical 

ligation of the femoral artery  
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Representative images of LDI detected mean/area of blood flow perfusion in the 

hind limbs of Dock4 het mice and WT littermates, in a supine position, over a 21 day time 

period, following HLI surgery. Surgery to ligate and transect the left femoral artery was 

carried out to occlude blood flow to the left hind limb. Blood flow was analysed using LDI on 

day 0 (2 hours post-surgery), 7, 14, 21, and 28 following surgical ligation of the left hind leg 

femoral artery on day 0. (A) Experiment 1: WT mice (n=4) Dock4 het KO mice (n=4). (B) 

Experiment 2: WT mice (n=5); Dock4 het KO mice (n=4). (C) Experiment 3: WT mice (n=3) 

Dock4 het KO mice (n=4).  
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Figure 5-4 Quantification of LDI of non-injured hind limbs of Dock4 het KO mice during 

ischemia recovery 

Combined data of blood flow perfusion detected by LDI in the hind limbs of WT mice 

(n=12) versus Dock4 heterozygous mice (n=12) following HLI surgery. A portion of the left 

femoral artery of each mouse was removed on day 0. Blood flow to the lower extremities of 

both injured and non-injured limbs of each mouse was monitored using LDI immediately 

following surgery, then every 7 days for a 21 day duration. Values plotted are mean blood flow 

perfusion divided by the area of each non-injured limb. Linear regression of Dock4 het mice was 

compared to the linear regression of the WT mice to detect differences in recovery over time. 

One-way ANOVA with Tukey’s multiple comparisons was carried out to compare mean blood 

perfusion by area of Dock4 het mice to WT mice at each time point showed no significant 

differences at any time point.  
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 Global heterozygous deletion of Dock4 resulted in a significant reduction in blood flow 

recovery following HLI surgery.  

Response to HLI was studied in the Dock4 het mice, following surgical removal of a 

portion of the femoral artery. LDI was carried out to determine velocity of motile cells, and 

thus blood perfusion, in the dermal tissue of the mouse hind limbs. Three separate HLI 

experiments were conducted to compare blood flow recovery of Dock4 het mice to the WT 

littermate controls, with a combined N number of 24 mice for each of the experimental 

groups.  

LDI data was generated over 3 separate HLI experiments, each for a duration of a 21 

day time period, following femoral artery ligation of the left hind limb in order to monitor 

the recovery of blood flow following femoral artery ligation (figure. 5.4, and figure. 5.5).  

LDI of blood flow to the left (injured) hind limbs of the 12 Dock4 het mice and 12 WT 

littermates immediately following hind limb surgery, on day 0, showed a loss of blood flow 

to the left hind limb in all 12 Dock4 het mice and 12 WT mice (figure. 5.3 and figure. 5.5). 

There was no significant difference in blood flow to the injured limbs of the Dock4 het mice 

when compared to the WT littermates (figure. 5.3 and figure 5.5) immediately following HLI 

surgery.  

LDI analysis of injured hind limbs on day 7 showed no significant difference in blood 

flow between the two experimental groups (figure. 5.4 and figure 5.5). 

However, by 14 days post operation, the global Dock4 het mice had a significantly 

lower level of blood flow to the ligated limbs when compared to the WT littermates 

(P=0.0047) (figure. 5.4 and figure 5.5). The lower level of blood flow to the hind limbs, of 

Dock4 het mice when compared to the WT, was also observed on day 21, however the 

difference was not statistically significant.  

The overall blood flow recovery following femoral artery ligation was reduced in the 

Dock4 het mice when compared to WT littermate controls. Analysis of the area under the 
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curve demonstrates a significant difference (P<0.005) between the WT data set and the 

Dock4 het deletion data set, signifying a significant impact of reduced Dock4 expression on 

blood flow recovery following removal of a portion of the femoral artery. 

Using linear regression analysis, the slope of the lines of best fit of the WT data set 

and the Dock4 het deletion data set are not significantly different, but only marginally not 

significant (P=0.056). However, the intercept of these two lines are significantly different 

(P=0.016). This signifies that the trend of vascular recovery between the WT and Dock4 het 

mice was similar, however the increase in blood perfusion over time was significantly higher 

in the WT mice when compared to the Dock4 het mice. 

Overall the data generated through LDI analysis indicate an impairment in recovery 

from HLI surgery when global levels of Dock4 are reduced. This loss in Dock4 results in a delay 

in the recovery of blood flow to the affected limb.  
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Figure 5-5 Quantification of LDI of injured hind limbs of Dock4 het KO mice during ischemia 

recovery 

Combined data of LDI detection of blood flow perfusion in the hind limbs of WT mice 

(n=12) versus Dock4 het KO mice (n=12) following HLI surgery. A portion of the left femoral 

artery of each mouse was removed on day 0. Blood flow to the lower extremities of each mouse 

was monitored using LDI immediately following surgery, then every 7 days for a 21 day duration. 

Mean blood flow perfusion divided by the area of each injured limb was normalized to the non-

injured limb, then calculated as a percentage. One-way ANOVA with Tukey’s multiple 

comparisons were carried out to compare mean blood perfusion by area of Dock4 het mice to 

WT mice at each time point. Significant differences indicated by asterisks: ***=P value equal to 

or lower than 0.005. 
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 IHC analysis of vasculature within the gastrocnemius tissue of Dock4 het mice following 

HLI 

The hindlimb muscles of all experimental mice were posthumously fixed and 

harvested for the purpose of analysing and comparing the vasculature of the hind limb 

tissues of each experimental group. One hour following the final LDI scan all mice were 

exsanguinated through ligation of the major vena cava. Whole animal fixation of each mouse 

was carried out through administration of 4% PFA through the left ventricle. The 

gastrocnemius and soleus muscles were harvested from both the injured and non-injured 

hind-limbs of each mouse and placed in 4% PFA for 24 hours before being transferred to 70% 

ethanol. Following fixation, gastrocnemius muscle tissue from both the injured and non-

injured legs were imbedded in paraffin wax in a longitudinal orientation. The muscle was 

then section into 50 x 5μm thick sections using a floating sectioning technique.  

Every 10th section from each muscle block was selected and IHC stained with an anti-

CD31 antibody. Slides were electronically scanned and imaged. Imagescope software was 

utilised to randomly select 8 500μm x 500μm boxes per muscle section (figure. 5.8). ImageJ 

analysis software was employed to quantify the length of every detectable CD31 stained 

vessel and number of branch points per 500μm x 500μm area of analysis. The mean values 

of TVL and BPI (number of branch points/TVL) were then calculated per muscle section for 

both the injured and non-injured limbs of both Dock4 het mice and their WT littermates. 

Data was analysed using a One-way ANOVA with Tukey’s multiple comparisons. 

The TVL of non-injured gastrocnemius of the Dock4 het mice were compared to the 

mean values of TVL generated from the non-injured gastrocnemius of the WT littermates 

Statistical analysis demonstrated no significant difference between the TVL of CD31 stained 

vasculature of the non-injured limbs of the Dock4 het mice when compared to their WT 

littermates (figure. 5.4, 5.6, and 5.9).  
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Analysis of the gastrocnemius muscle sections from the injured legs of the two 

experimental groups demonstrated a significant increase in TVL within the muscle sections 

from the Dock4 het mice when compared to the WT littermates (p=0.043) (figure 5.5, 5.7, 

5.9).  

When comparing the BPI of the gastrocnemius sections from the non-injured limbs 

between the two experimental groups, there was a significant decrease in BPI of Dock4 het 

CD31 stained gastrocnemius sections compared to the WT littermates gastrocnemius 

sections (p=0.046), signifying a less branched vascular phenotype in the gastrocnemius of 

the non-injured Dock4 het mice (figure. 5.4, 5.6, and 5.10). However, in gastrocnemius of the 

injured limbs, there was no significance in the BPI between the two experimental groups 

(figure. 5.5, 5.7, 5.10). 

To summarise the findings: IHC analysis detected differences between the pre-

existing vasculature of the Dock4 het mice and the wild-type littermates. While the 

gastrocnemius of both experimental groups appeared to have a similar overall level of 

vascularisation, the reduction in branching of the Dock4 het experimental group indicates 

patterning differences in the pre-existing vasculature.  

The vasculature within the gastrocnemius of the injured limbs also differed between 

the two experimental groups. However, following hind limb ischemia there was no significant 

difference between the BPI of the Dock4 het mice injured legs compared to the WT. 

Differences did however occur in the overall level of vascularisation between the two 

experimental groups, with the Dock4 het mice developing a much greater increase in TVL 

following vascular injury than was seen in the WT control group (figure. 5.7; figure. 5.9). 

These results were unexpected considering the reduction in blood flow to the injured hind 

limbs of the Dock4 het mice.  
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Wild Type Dock4 het KO 

Figure 5-6 CD31 IHC staining of non-injured hind limb gastrocnemius muscle sections 

comparing DOCK4 het verses WT littermates. 

Representative images of gastrocnemius muscle harvested from non-injured hind limbs 

of Dock4 het KO and WT littermates, 21 days post HLI operation. Muscle from 24 Dock4 het mice 

and 24 WT littermates were fixed in 4% paraformaldehyde, embedded in paraffin wax. 8 Dock4 

het mice and 8 WT littermate muscle blocks were sectioned into 5μm floating sections and IHC 

stained using an antibody against CD31.  Slides were scanned using an Apeiro AT Virtual Slide 

scanner and 500μm x 500μm boxes for analysis selected using Apeiro ImageScope software. 
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Wild type Dock4 het KO 

Figure 5-7 CD31 IHC staining of injured hind limb gastrocnemius muscle sections comparing 

DOCK4 het KO mice versus WT littermates. 

Effects of het DOCK4 depletion on angiogenesis within the gastrocnemius following 

ligation and transection of the left femoral artery of global DOCK4 het deleted mice and WT 

littermates. Representative images of gastrocnemius muscle harvested from injured hind limbs 

of Dock4 het mice and WT littermates 21 days post HLI operation. Muscle from 24 Dock4 het 

mice and 24 WT littermates were fixed in 4% paraformaldehyde, embedded in paraffin wax.  

Muscle blocks of 8 Dock4 het mice and 8 WT littermates were sectioned into 5μm floating 

sections and IHC stained using an antibody against CD31.  Slides were scanned using an Apeiro 

AT Virtual Slide scanner and 500μm x 500μm area for analysis were selected using Apeiro 

ImageScope software. 
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Figure 5-8 Selection for analysis and quantification of gastrocnemius section regions following 

anti-CD31 IHC staining. 

(A) Representation diagram of anatomical location of gastrocnemius muscle in the 

hindlimb of mice. (B) Representative image of selection of area for analysis of IHC anti-CD31 

immuno-stained 5μm thick floating sections of gastrocnemius muscle from injured and non-

injured hind limbs of Dock4 het mice and WT littermate controls. Slides were electronically 

scanned using an Apeiro AT Virtual Slide scanner and characterised using Apeiro ImageScope 

software was utilized to randomly select 8 500x500m boxes per muscle section. 
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Figure 5-9 Quantification of CD31 IHC staining of hind limb gastrocnemius muscle sections 

comparing TL of WT versus DOCK4 het vessels detected in tissues sections 

Combined data of quantification of total vessel length measured from anti-CD31 stained 

gastrocnemius muscle sections harvested from the injured and non-injured limbs of global 

DOCK4 heterozygote deleted mice and WT littermates 21 post HLI surgery. Gastrocnemius 

muscle fixed in 4% paraformaldehyde was harvested from non-injured and injured hind limbs of 

DOCK4 heterozygous and WT littermates, 21 days post HLI operation. Muscle was imbedded in 

paraffin wax and sectioned into 5μm floating section then immuno-stained using a CD31 

antibody. IHC anti-CD31 sections were scanned using an Apeiro AT Virtual Slide scanner and 

characterised using Apeiro ImageScope software. Sixteen 500μm x 500μm areas of analysis were 

randomly selected. TVL of CD31 stained vessels within the 500μm x 500μm areas were 

quantified using ImageJ analysis. Histogram shows total vessel length per section SEM. N=3 

sections per mouse with 4 mice per condition. *P<0.05; **P<0.01; **P<0.001 by one-

way analysis of variance (ANOVA).  
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Figure 5-10  Quantification CD31 IHC staining of hind limb gastrocnemius muscle sections 

comparing BPI of WT versus DOCK4 het mouse. 

Combined data of quantification of BPI (number of branch points/total vessel length) 

measured from anti-CD31 stained gastrocnemius muscle sections harvested from the injured 

and non-injured limbs of global DOCK4 heterozygote deleted mice and WT littermates 21 post 

HLI surgery. Gastrocnemius muscle fixed in 4% paraformaldehyde was harvested from non-

injured and injured hind limbs of DOCK4 heterozygous and WT littermates, 21 days post HLI 

operation. Muscle was imbedded in paraffin wax and sectioned into 5μm floating section then 

IHC stained using a CD31 antibody. IHC anti-CD31 sections were scanned using an Apeiro AT 

Virtual Slide scanner and characterised using Apeiro ImageScope software. Sixteen 500μm x 

500μm areas of analysis were randomly selected. CD31 stained vessels and vessel branch points 

within the 500μm x 500μm areas were quantified using ImageJ analysis software. Histogram 

shows BPI calculated as the number of total number of branches per section divided by the total 

tubule length SEM. N=3 sections per mouse with 4 mice per condition. *P<0.05; **P<0.01; 

**P<0.001 by one-way analysis of variance (ANOVA). Graphs generated using Graph Pad 

software. 
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 Tamoxifen induced EC specific Dock4 deletion does not impact on blood flow recovery 

following HLI surgery.  

In-order to analyse whether the reduction in blood flow recovery following femoral 

artery ligation, detected in the Dock4 het mice, was due to reduction in endothelial specific 

Dock4 expression, an EC Dock4 KO model was used within the HLI experiment. Two separate 

HLI experiments were conducted using EC Dock4 KO mouse model in-order to study the 

effect of an endothelial specific homozygote Dock4 deletion on the recovery of blood flow 

to the hind limb following femoral artery ligation. In-order to deplete Dock4 expression EC 

Dock4 KO mice (n=9), and, iVEC-cre-ve; Rosa26-lsl-Tomato; Dock4f/f mic (which will be 

referred to as Cre-negative mice from this point forward) (n=8), underwent daily 

intraperitoneal injections of a 2mg dose of tamoxifen for 5 consecutive days. Tamoxifen 

induced Cre expression, leading to targeted deletion of the Dock4 gene, which was flanked 

by the Cre targeted lox sites (Dock4f/f). Seven days following the final tamoxifen dose, all 

mice underwent a HLI operation to surgically ligate and transect the left femoral artery. LDI 

was carried out immediately following surgery, then 7, 14, and 21 days post hind limb 

surgery. Comparative One-way ANOVA analysis of percentage of blood flow to the injured 

hind limb, normalised to the non-injured limb, was calculated for each weekly time point, in 

addition to linear regression analysis, and area under the blood flow curve.  

LDI data was generated over 2 separate HLI experiments, each for a duration of a 21 

day time period, following femoral artery ligation of the left hind limb. Each of the two 

experiments demonstrated no significant difference in blood flow of the non-injured hind 

limb of the 9 analysed EC Dock4 KO mice when compared to the 8 Cre negative control 

littermates (figure. 5.12). Each of the two experiments also demonstrated no significant 

difference in blood flow recovery of the injured hind limb of the 9 analysed EC Dock4 KO 

mice when compared to the 8 Cre negative control littermates (figure. 5.13) at any of the 4 

time points. 



185 

From visual analysis of the linear regression of the rate of blood flow recovery 

between the analysed EC Dock4 KO mice and the 8 Cre negative control littermates (figure. 

5.13) it can be noted that the level of detected blood flow of the mice with an inducible 

Dock4 deletion have a lower level of blood flow in comparison to the Cre negative control 

group. However, using linear regression analysis the slope of the lines of best fit, of the Cre 

negative data set and the EC Dock4 KO mice data set, were not significantly different 

(p=0.155). The intercept of the two lines representing the different data sets were also not 

significantly different (p=0.093). This signifies that while the Cre neg control group appear to 

recover marginally faster than the EC Dock4 KO experimental group, data analysis does not 

detect a significant difference between the rates of recover of the two experimental groups. 

Area under the blood flow curve analysis supported the linear regression analysis and found 

no significant difference between the data sets of the two experimental groups (p=0.179). 
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Figure 5-11 Effect of EC specific inducible Dock4 deletion on hind limb vascular recovery 

following surgically induced HLI  

Representative images of Laser Doppler detected mean/area of blood flow 

perfusion in the hind limbs of tamoxifen Cre neg control and EC Dock4 KO mice, in a supine 

position, over a 21 day time period, following HLI surgery. EC Dock4 KO mice and cre-

negative control mice were treated with once daily intraperitoneal injections of 2mg of 

tamoxifen for 5 consecutive days. Surgery to ligate and transect the left femoral artery of 

9 mice was carried out 7 days prior to tamoxifen treatments to occlude blood flow to the 

left hind limb. Blood flow within the hind limbs was analysed using LDI on day 0, 7, 14, 

and 21, following surgical ligation of the left hind leg femoral artery on day 0. Cre negative 

control (n=8) EC Dock4 KO mice (n=9). 
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Figure 5-12 Quantification of LDI of EC Dock4 KO non-injured hind limbs during ischemia 

recovery 

Combined data LDI detection of blood flow perfusion in the uninjured hind limbs 

of EC Dock4 KO mice (n=9) versus Cre-negative control littermates (n=8) following HLI 

surgery. EC Dock4 KO mice and Cre-negative control mice were treated with once daily 

intraperitoneal injections of 2mg of tamoxifen for 5 consecutive days. Surgery to ligate 

and transect the left femoral artery of 9 mice was carried out 7 days prior to tamoxifen 

treatments to occlude blood flow to the left hind limb. Blood flow within the hind limbs 

was analysed using LDI on day 0, 7, 14, and 21, following surgical ligation of the left hind 

leg femoral artery on day 0. (Cre neg) Cre negative control (n=8) (Cre pos) EC Dock4 KO 

mice (n=9). 
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Figure 5-13 Quantification of LDI of EC Dock4 KO mice injured hind limbs during ischemia 

recovery 

Combined data of LDI detection of blood flow perfusion in the injured hind limbs 

of EC Dock4 KO mice (n=9) versus Cre-negative control littermates (n=8) following HLI 

surgery. EC Dock4 KO mice and Cre-negative control mice were treated with once daily 

intraperitoneal injections of 2mg of tamoxifen for 5 consecutive days. Surgery to ligate 

and transect the left femoral artery of 9 mice was carried out 7 days following tamoxifen 

treatments to occlude blood flow to the left hind limb. Blood flow within the hind limbs 

was analysed using LDI on day 0, 7, 14, and 21, following surgical ligation of the left hind 

leg femoral artery on day 0. (Cre neg) Cre negative control littermates (n=8) (Cre pos) EC 

Dock4 KO mice (n=9). 
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 Tamoxifen treatment of EC Dock4 KO mice successfully depleted Dock4 expression 

The hindlimb muscles of all experimental mice were posthumously fixed and 

harvested, for the purpose of analysing and comparing the vasculature of the hind limb 

tissues of each experimental group. One hour following the final LDI scan, all mice were 

exsanguinated through ligation of the major vena cava. Whole animal fixation of each mouse 

was carried out by administration of 4% PFA, through the left ventricle. The gastrocnemius 

and soleus muscles were harvested from both the injured and non-injured hind-limbs of each 

mouse, and placed in 4% PFA for 24 hours, before being transferred to 70% ethanol. 

Following fixation, gastrocnemius muscle tissue from both the injured and non-injured legs, 

were imbedded in paraffin wax in a longitudinal orientation. The muscle was sectioned into 

5μm thick sections using a floating sectioning technique.  

Muscle section slides were selected from each experimental group and were IHC 

stained with an anti-DOCK4 antibody to detect presence of absence of Dock4 expression and 

RFP to detect the Td Tomato reporter; indicating successful tamoxifen induced depletion of 

DOCK4 (figure 5.14). Analysis of the anti-RFP stained muscle sections indicated Td Tomato 

expression within the vasculature of EC Dock4 KO mice, but not in Cre negative control 

littermates (figure 5.14). Dock4 expression was detected in the Cre negative mouse, anti-

DOCK4 stained gastrocnemius muscle sections, but was not detected in the Cre positive 

muscle sections (figure 5.14).  
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Figure 5-14 IHC staining of hind limb gastrocnemius muscle sections detecting vascular specific 

expression of DOCK4 

Representative images of anti-RFP and anti-DOCK4 IHC stained gastrocnemius muscle 

sections of the hind limbs of tamoxifen treated (A) EC Dock4 KO mice and (B) Cre neg control 

littermates. Mice were treated with once daily intraperitoneal injections of 2mg of tamoxifen 

for 5 consecutive days. Muscles were fixed in 4% paraformaldehyde, embedded in paraffin wax, 

sectioned into 5μm floating sections and IHC stained using an antibody against RFP or DOCK4. 

Images were taken at 20x using a Nikon light microscope. White arrows indicate vessels of 

interest. 
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5.3 Discussion 

Understanding the complex cellular signalling mechanisms which underlay the 

dynamic process of angiogenesis, in response to a hypoxic environment, is imperative for 

furthering the knowledge of vascular pathologies that relate to the dysregulation of 

angiogenesis, such as peripheral ischemia. The ability to identify proteins essential for the 

growth of fully functional, normal blood vessels, is key for understanding how blood vessels 

form and grow in response to oxygen deprivation and other extracellular cues. In addition to 

expanding the understanding of vascular cell signalling mechanisms, the identification of 

potential therapeutic targets may also lead to improvement in the approach to treating such 

vascular pathologies. 

In the current study, global Dock4 het deletion severely impacted upon the vascular 

response to the loss of blood flow in a model of HLI, leading to inadequate vascular perfusion 

when Dock4 expression was reduced (figure 5.5). Reduction of Dock4 expression affected 

the mobility of the ischemic murine hind limbs, leading to necrosis of the toes and loss of the 

foot, in 2 out of 12 Dock4 het mice (figure 5.2). Thus, adequate levels of global Dock4 

expression are important for functional blood vessel growth following an ischemic event. 

Laser Doppler analysis of murine hind limbs following transection and removal of a 

portion of the femoral artery, inducing HLI, demonstrated that WT mice recovered from HLI 

within 21 days post operation (figure 5.5). This is in agreement with previous studies 

describing the expected normal response to HLI (Hellingman et al., 2010). However, global 

Dock4 het depleted littermates did not adequately recover from HLI (figure 5.5), as assessed 

by laser Doppler analysis of perfusion. Indicating that unlike controls, blood flow in the Dock4 

het mice had not recovered by day 21.  

When a conditional EC Dock4 KO model was employed, a trend towards reduced 

perfusion and vascular recovery from femoral artery ligation in response to HLI was 
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observed, however the level of reduction was not statistically significant (figure 5.13). This 

was unexpected as a complete ablation of Dock4 expression in ECs in the conditional 

knockout model had been hypothesised to re-capitulate, or exaggerate, the impaired 

recovery from HLI observed in the global het deletion model. This unexpected result may 

have been due to a number of different reasons: A potential inadequate knockdown of Dock4 

expression, and the efficiency of the RFP reporter system, Td Tomato. Although IHC 

assessment did indicate a successful depletion of Dock4 expression and expression of Td 

Tomato, in the EC Dock4 KO model (5.14). Isolation and culturing of ECs from experimental 

mice, for example pulmonary ECs, could be utilised for genetic confirmation of DOCK4 KO via 

analysis of the level of DOCK4 RNA within the ECs (Fehrenbach et al., 2009). However, 

isolation of pulmonary ECs from the DOCK4 het and conditional KO mice, used within this 

thesis, had been attempted but found to be unsuccessful. This was likely due to the age of 

the mice used within this thesis (24 weeks at the point of sacrifice). It has previously been 

reported that isolated pulmonary ECs harvested from adult mice have a reduced ability to 

proliferate, with an increase in susceptibility for fibroblast overgrowth (Fehrenbach et al., 

2009).  

Consideration also needs to be given to any compensatory cellular mechanisms 

which occur in response to Dock4 depletion. Cells may evoke transcription and post-

transcription mechanisms to overcome loss of an individual protein (El-Brolosy and Stainier, 

2017). When comparing genetic knockout and knockdown, of the same protein within a 

mouse model, phenotypical differences can arise (De Souza et al., 2006). The differences 

observed between a knockout and a knockdown can be attributed, in part, to compensatory 

mechanisms of the cell in response to ablation of a protein (De Souza et al., 2006). 

Considering such evidence in light of the conditional EC specific Dock4 deletion, which 

experiences a knockout of Dock4 expression, there may be potential for an endothelial 

compensatory mechanisms to overcome the loss of Dock4 expression within the adult 
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mouse, thus caution should be used when interpreting the findings of the HLI results in 

comparison to the Dock4 het mouse. 

Furthermore, global Dock4 het deletion affected Dock4 expression throughout the 

duration of development, unlike the conditional endothelial specific Dock4 deletion, which 

deletes Dock4 in the adult following tamoxifen treatment. The significant reduction in the 

vascular branching of the gastrocnemius of non-injured limbs of the Dock4 het mice (figure 

5.10) supports this concept as this observation indicates that 50% reduction in global Dock4 

expression, throughout development and post-developmental growth, impacts on vascular 

patterning.  

However, it should be noted that the EC DOCK4 KO mice did experience a reduction 

in the rate of vascular recovery compared to the control littermates, however, the difference 

between the two experimental groups was not statistically significant (figure 5.13). 

Expanding this study to include larger number of mice may have been necessary for the 

experiment to reach statistical significance. 

The significant difference in body weight between the global Dock4 depleted mice 

in comparison to their WT littermates indicates reduction in Dock4 expression has a greater 

over-all effect on the developing mouse, which may go beyond the vascular response to 

ischemia. This is also evident through many other studies which implicate DOCK4 

dysregulation in a number of pathologies; such as neural developmental functions of DOCK4 

(Ueda et al., 2013; Xiao et al., 2013) cancer (Yajnik et al., 2003; Hiramoto-Yamaki et al., 2010; 

Yu et al., 2015), and mental health related effects of DOCK4 mutations (Pagnamenta et al., 

2010; Alkelai et al., 2012). Thus demonstrating that DOCK4 depletion affects more biological 

mechanisms than is currently understood.   

It is also noteworthy that the heterozygous deletion is also global, unlike the 

conditional endothelial specific deletion. The potential involvement of non-endothelial 

Dock4 expression in driving the phenotypical effects seen in the global Dock4 KO model, but 



194 

not the EC DOCK4 KO mouse, should also be considered. Other requirements of DOCK4, such 

as for stromal cell paracrine signalling to the endothelium, or for the correct recruitment of 

perivascular cells, may also be relevant when considering the differences in impact of global 

versus EC Dock4 KO. However such functions have not yet been explored in relation to 

DOCK4, but may be of interest in fully understanding the function of DOCK4 in angiogenesis. 

Within normal vascular models, ischemia prompts a significant increase in total 

amount of vasculature. IHC CD31 staining of gastrocnemius muscle harvested from the hind 

limbs of global Dock4 het depleted mice and WT littermates, 21 days post HLI surgery, 

indicated distinct difference in the vascular growth in both the injured and non-injured hind 

limbs of the Dock4 het deleted mice and the WT littermates (figures 5.3-5.7). Dock4 depleted 

mice were found to have a normal amount of pre-existing vasculature in tissue harvested 

from the non-injured limbs in comparison to the wildtype littermates, although there may 

potentially be differences in patterning of the vasculature in Dock4 het mice, as they were 

found to have a less branched vasculature phenotype (figures 5.6, 5.9). Angiogenesis in 

response to ischemia was increased significantly in Dock4 depleted mice when compared to 

the WT littermates, as Dock4 het mice were found to have an increase TVL in the 

gastrocnemius following HLI in comparison to the wildtype littermates (figures 5.7 and 5.9)

 The findings indicate the DOCK4 depleted mice potentially experience differences in 

vascular patterning during development and/or during post developmental growth 

unrelated to HLI. The differences detected in vascular growth between the two experimental 

groups show that Dock4 depletion drives an increase in angiogenesis within the lower limbs. 

This may be due to blood vessel elongation as opposed to lateral branching, the latter of 

which is reduced by DOCK4 depletion in vitro(Abraham et al., 2015). However, BPI was not 

significantly impacted by Dock4 depletion following loss of blood flow. Similar phenotypes 

have been observed in other HLI model studies, which have investigated disruption of 

signalling mechanisms implicated in regulating angiogenesis that leads to an increase in 
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vascular structures but reduction in blood flow reperfusion (Ramo et al., 2016; Dor et al., 

2002; Clayton et al., 2008; Herold et al., 2017).    

Roma et al. found disruption of the MLK-JNK signalling pathway during development 

led to increased sprouting angiogenesis in conjunction with an inadequate response to HLI 

(Ramo et al., 2016). Interestingly, disruption of the signalling pathway in adult mice prior to 

hind limb surgery resulted in no significant difference in the recovery of hind limb blood flow. 

Impairment of hindlimb vascular of JNK deficient mice was only observed in mice which had 

experienced JNK protein depletion throughout development. This affect was attributed to 

the irregular growth of the collateral arteries during development, leading to loss of 

compensatory collateral blood flow in response to femoral artery ligation (Katoh et al., 2006). 

As the collateral arteries of either the Dock4 het or EC Dock4 KO experimental mice were not 

analysed, the findings of this study cannot be attributed to differences in vascular patterning 

or arteriogenesis of the collateral arteries. However, while this study investigates a non-

Dock4 related pathway, their results demonstrate how a genetic depletion can impact on 

vascular recovery to hind limb ischemia, when the depletion is present throughout 

development and adulthood, but for the same genetic depletion to have no impact on 

vascular recovery when induced only during adulthood. This finding offers potential insight 

to the differences observed between the global Dock4 het mouse recovery to hind limb 

ischemia when compared to the inducible EC Dock4 KO model. Further exploration into the 

impact of Dock4 expression on the hindlimb vasculature would be of great interest in 

understanding the true role of Dock4 within vascular biology.  

Data generated from LDI and IHC analysis together suggest reduction in Dock4 

expression impacts upon functionality of the vasculature, which grows through angiogenesis 

in the lower limbs or arteriogenesis in the upper limbs, in response to loss of the femoral 

artery. Despite the increase in angiogenesis within the gastrocnemius of the injured limbs, 

the global Dock4 het deleted mice appeared more physically impacted by the femoral artery 
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ligation, resulting in limited mobility, differing levels of necrosis, and a reduced rate of blood 

flow recovery to the injured limb when compared to the WT mice.  

The observation of increase in angiogenesis within the gastrocnemius, despite less 

blood flow to the hind limbs of Dock4 het mice compared to WT, may potentially be due to 

differences in the arteriogenesis within the collateral arteries. An investigation into the role 

of exogenous factor VII activating protein in vascular recovery, found application of 

exogenous factor VII activating protein inhibited arteriogenesis of the collateral arteries, 

resulting in an impairment in blood flow to the hind limbs and a pronounced increase in 

angiogenesis of the gastrocnemius. This effect was determined to be due to sustained 

hypoxia of the lower limbs due to a decrease in blood flow through the collateral arteries 

(Herold et al., 2017).  

Considering the wider implications of the combined Dock4 het deletion data it is 

possible to speculate that Dock4 depletion impacts upon the development of the pre-

existing vasculature of the hind limb. It is also possible to hypothesis that Dock4 depletion 

may impact on the ability to form functional vasculature in response to ischemia, leading to 

an overgrowth of less functional vasculature structures, as DOCK4 depletion in vitro results 

in loss of lumenisation of EC cords during angiogenesis (Abrahams et al. 2015). Abraham et.al 

(2015) demonstrated that Dock4 expression was found to be required for lumenisation and 

growth of functional vasculature. Abraham et.al described how Dock4 deletion within an 

organotypic angiogenesis co-culture in vitro resulted in long unbranched cords of ECs unable 

to form a lumen.  

This current study therefore supports the findings that DOCK4 is required for 

formation of functional vasculature during blood flow recovery following ischemia. 

Investigation into Dock4 function during vasculogenesis and angiogenesis during 

development would be of key interest to understand how DOCK4 impacts upon the growth 



197 

of functional blood vessels. Further investigation into the patterning of the collateral arteries 

may also add further insight into the role of DOCK4 function.  

The study demonstrates the requirement for Dock4 signalling in growth and 

formation of functional vasculature, with reduction in global Dock4 expression impacting on 

a functional angiogenic response to oxygen deprivation. 
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6 Overall Discussion 

Sprouting angiogenesis describes the dynamic outgrowth of new blood vessels from 

existing vasculature in response to external stimuli. Chemotactic initiated sprouting 

angiogenesis integrates a dynamic repertoire of external stimuli, driving complex 

intracellular remodelling to permit growth of new vascular sprouts. The VEGFA driven small 

Rho GTPase signalling module SGEF-RhoG-DOCK4-RAC1-DOCK9-CDC42 is an important 

component for development of lateral filopodia and vessel lumenisation in vitro, and thus is 

likely to be required for correct patterning and functionality of newly sprouted vasculature 

(Abrahams et al., 2015). Depletion of the endothelial expression of RAC1 GEF, DOCK4, results 

in loss of filopodia along the lateral edge of newly forming vascular sprouts, leading to 

deficiencies in tube formation (Abraham et al., 2015). As dysregulation in vascular patterning 

and tube formation impairment are characteristics of some pathological angiogenesis driven 

disorders (Matucci-Cerinic et al., 2013; Maruotti et al., 2006; Maruotti et al., 2008; Cantatore 

et al., 2017), expanding upon the understanding of DOCK4 function within angiogenesis 

could lend insight into mechanisms affected during pathological angiogenesis. This study 

strove to expand upon the understanding of the DOCK4-DOCK9 interaction, while also 

investigating whether DOCK4 activity was required for pathological angiogenesis.  

The small molecule inhibitor QL-47 was demonstrated to be a potent anti-angiogenic 

compound with VEGFA stimulated ECs being particularly sensitive to QL-47 (figures 3.7-3.9). 

However, it is highly unlikely that the anti-angiogenic effects are due to disruption of a direct 

DOCK4-DOCK9 interaction at this site, as in this study no evidence was obtained that the 

p.C628 cysteine residue was found to bind the DOCK4 SH3 domain (figure 4.12). It is largely 

plausible that the QL-47 inhibitor disrupts DOCK9 through non-DOCK4 specific mechanism; 

perhaps through disruption of localisation, or inhibition of interaction with other DOCK9 

binding partners. Abraham et al (2015) described an extensive list of proteins which 
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specifically bind DOCK9. Repetition of the Abraham et al (2015) Co-IP with LC-MS/MS 

Orbitrap Elite mass spectrometer and MASCOT analysis of DOCK9 binding partners in the 

presence of QL-47 would potentially elucidate which DOCK9 interaction partners may be 

disrupted by the small molecule inhibitor. 

The specific site of DOCK9 which interacts with the SH3 domain of DOCK4 was not 

elucidated during this study, the results suggested that DOCK9 PRRs identified as PRR 2,3,4, 

5, and 9 were unlikely to serve as singular points of direct interaction between the two 

proteins (figures 4.3-4.12). Use of the Co-IP overexpression system and SEC of truncated 

peptides both present discrepancies which may have confound results. Forced interaction 

between the two large GEFs within an overexpression system within HEK 293T cells may have 

yielded non-specific interaction and a false positive pull down of Flag-DOCK9 due to non-

specific interaction of the peptide tags (Free et al., 2009), excessively high level of protein 

expression due to overly active promoters (Xia et al., 2006), and also the lack of sensitivity of 

the Western blotting technique which lacks sensitivity, with the potential to produce 

unreliable results that may not distinguish between genuine interaction and non-specific 

interaction (Zhu et al., 2017).  

Detecting an interaction between two truncated peptides using SEC may also prove 

difficult as the peptides may not provide a true representation of the secondary structures 

of the complete protein and thus they may lose the potential binding affinity between the 

site of interaction (Wingfield, 2015). 

Use of a MultiBac™ system designed to co-express both DOCK4 and DOCK9, followed 

by trypsin digest to expose crosslinking residues, and cryoEM analysis would allow for 

detection of the interacting residues of the two large proteins, with cryoEM providing an 

optimal technique for structural analysis of two large proteins within a complex (Serna, 

2019). Such an approach would offer a more highly sensitive approach for elucidating the 

site of interaction between the two proteins. 
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Through this study, DOCK4 was demonstrated as being a potential component of 

FGF2 stimulated angiogenesis under hypoxia in vitro, (figure 3.5 and 3.6) indicating DOCK4 

as important for mechanisms involved in the angiogenic response to ischemia.  

FGF2 has a protective effect during wound healing, and when used as a treatment 

improves outcomes of cardiac ischemia (Unger et al., 2000; Laham et al., 1999), and the 

peripheral circulation of people suffering from claudication (Lazarous et al., 2000). Such 

effects of FGF2 signalling may be attributed to the GFs function in EC proliferation and 

elongation in angiogenesis in response to vascular pathologies in vivo (Unger et al., 2000; 

Laham et al., 1999). The protective mechanisms of FGF2 has been indicated to occur in a 

RAC1 and CDC42 dependent mechanism (Lee and Kay, 2006). As DOCK4 is an activator of 

RAC1, it can be considered that DOCK4 may serve as a potential component in conferring the 

FGF2 protective response to pathological angiogenesis, a concept which has been supported 

by the results presented throughout this thesis. 

This finding was further supported through in vivo analysis of blood flow recovery in 

the hind limbs of het global DOCK4 deleted mice following femoral artery ligation. LDI of 

injured mouse hind limbs demonstrated a reduction in global Dock4 expression results in 

impairment of blood flow recovery (Figures 5.3 and 5.5). The reduction in blood flow 

recovery of the EC Dock4 KO mice was also seen to be impaired, but to a much lesser and 

non-significant degree (figures 5.11 and 5.13). This finding may potentially indicate 

additional non-EC functions of DOCK4 during pathological angiogenesis. The data also 

indicates that Dock4 may be required for the growth and correct patterning of hind limb 

vasculature during development (figure 5.4 and 5.10), with Dock4 deficiencies leading to 

differences in pre-existing vasculature in the mature mice; findings which are similar to other 

proteins which are not required for normal vasculature but impact on an adequate vascular 

response to hind limb ischemia (Herold et al., 2017; Ramo et al., 2016). 
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The IHC analysis of muscle tissue from the ischemic hind limbs of DOCK4 deficient 

mice indicated DOCK4 depletion may impair vessel functionality, as an increase was 

observed in the overall abundance of vascular structures despite a reduction in blood flow 

(Figures 5.4 and 5.9). This finding was in line with in vitro analysis of the impact of DOCK4 

depletion on sprouting angiogenesis, with loss of DOCK4 resulting in growth of less dynamic 

vascular structures with impaired tube formation (Abraham et al., 2015).  

In light of previous studies, which highlight the importance of correct vascular 

patterning of the collateral arteries during development for a proficient response to HLI 

(Ramo et al., 2016; Dor et al., 2002; Herold et al., 2017), consideration should be given to the 

effect of Dock4 depletion on the correct vascular patterning of the collateral circulation. Pre-

existing defects in the collateral vascular patterning, or arterogenesis response to ischemia, 

have both been observed to induce a similar phenotype to the global Dock4 depletion, in 

response to hind limb ischemia; with loss of blood flow recover to the hind limbs combined 

with an increase in angiogenesis detected in the gastrocnemius (Ramo et al., 2016; Dor et 

al., 2002; Herold et al., 2017). The detected difference in vascular recovery between the 

Dock4 het mouse model and the EC Dock4 KO mouse model may potentially indicate Dock4 

vascular signalling as being required for developmental blood vessel development, but not 

adult angiogenesis. Thus the collateral arteries of the Dock4 deficient mice should be further 

explored in future experiments to determine whether DOCK4 may be involved in collateral 

artery development, patterning, and/or arteriogenesis.  

MicroCT imaging of hind limb vasculature of both the DOCK4 het and EC Dock4 KO 

mouse lines, following HLI, would allow for analysis of intact whole leg vascular structures, 

including the collateral arteries, and would perhaps give insight into non-luminized 

structures when comparing Micro-fil perfused vessels to those detected through IHC analysis 

(Schaad et al., 2017). Comparison of Dock4 het mouse whole leg vasculature to that of non-
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Dock4 depleted littermates whole leg vasculature, would lend an interesting insight into how 

vascular Dock4 impairs recovery of blood flow following an ischemic event.  

The accumulated results of this thesis have strongly indicated that DOCK4 is a critical 

component of the vascular response to ischemia driven angiogenesis. Further investigation 

of DOCK4 function during development, formation of collateral arteries, correct 

lumenisation in vivo, and within the context of pathological angiogenesis during peripheral 

ischemia, would be required to determine how aberrant DOCK4 expression and regulation 

may underlie angiogenesis driven pathologies, such as peripheral ischemia. However, these 

finding highlight the importance of DOCK4 in growth of healthy vasculature that is capable 

of adequately responding to critical ischemia. Elucidating the vascular function of DOCK4 

during development and within the response to ischemia may further our understanding of 

how blood vessels grow, and expand our understanding of how angiogenesis may differ 

during development in comparison to a pathological context. 
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7 Appendices 

7.1 Appendix 1. Nucleotide sequences of primers for Sanger sequencing and 

Expression vector cloning  

 Primer design for Sanger sequencing 

1 pBABE Flag-DOCK forward 1 5’-GTTCAGTGAATCAGAAC-3' 

2 pBABE Flag-DOCK forward 2 5’-GGATGAAGGACGTGAAG-3' 

3 pBABE Flag-DOCK forward 3 5’-TTTCTCATGGAGTATCC-3' 

4 pBABE Flag-DOCK forward 4 5’-AGTAAAGTTTCTGCAGG-3' 

5 pBABE Flag-DOCK forward 5 5’-AAGGACCTGATCATGTG-3' 

6 pBABE Flag-DOCK forward 6 5’-CAGCCAGATCTTCGGAATG-3' 

7 pBABE Flag-DOCK forward 7 5’-CCAGCAACGTCTTGAAC-3' 

8 pBABE Flag-DOCK forward 8 5’-AGCTGATGCTTGAGCAG-3' 

9 pBABE Flag-DOCK forward 9 5’-AGAACATGTCGGATAGTG-3' 

10 pBABE Flag-DOCK forward 10 5’-AGTTGCTGATCTAAAACGC-3' 

Table 7-1 Primer sequences for Sanger sequencing of the pBabe puro Flag-DOCK4 plasmid 

construct designed for expression of human DOCK4.  

Human DOCK4 expression vector pBABE puro Flag- DOCK4; a plasmid gifted by Dr 

Vijay Yanik (Harvard Medical School, Massachusetts, USA) was sequenced using Sanger 

sequencing by GATC Biotech (Konstanz, Germany). 
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1 pEF4 Myc-Flag-DOCK9 forward 1 5’-ACTATAGGGAGACCCAAGCTG-3' 

2 pEF4 Myc-Flag-DOCK9 forward 2 5’-CTGGCAAAGCCAAAGCTAATTGAG-3' 

3 pEF4 Myc-Flag-DOCK9 forward 3 5’-CTTCCCTTACGATGACTTTCAGAC-3' 

4 pEF4 Myc-Flag-DOCK9 forward 4 5’-AAACCTATAACTCTGACTGGCATC-3' 

5 pEF4 Myc-Flag-DOCK9 forward 5 5’-AAAGTTCAGACTCTTCTAAGGTGG-3’ 

6 pEF4 Myc-Flag-DOCK9 forward 6 5’-CAAGGACATTGTTTAAGGATGC-3’ 

7 pEF4 Myc-Flag-DOCK9 forward 7 5’-GCTCAAGTTACTTGCAGACTTTCG-3’ 

8 pEF4 Myc-Flag-DOCK9 forward 8 5’-AAACTCCCATCACGTTTGAAG-3’ 

9 pEF4 Myc-Flag-DOCK9 forward 9 5’- GACCCAAAGACCCTCTTTGAATAC -3’ 

10 pEF4 Myc-Flag-DOCK9 forward 10 5’-GGGCATGACTGTGAAGGATG-3’ 

Table 7-2 Primer sequences for Sanger sequencing of the pEF4 Flag-DOCK9 plasmid 

construct designed for expression of human DOCK9.  

Human DOCK9 expression vector pEF4 Myc-Flag–DOCK9 (Meller et al., 2008); a 

plasmid gifted by Professor Martin Schwartz (University of Virginia, USA) was sequenced 

using Sanger sequencing by GATC Biotech (Konstanz, Germany). 
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 Plasmid maps 

 

 

 

 

Figure 7-1 Plasmid vector map of pOPINM DOCK9 

Full length DOCK9 was sub-cloned into pOPIN3SC HIS6-SUMO-3C-POI with ampicillin 

resistance gene sequence.  Full length DOCK9 gene inserted in recombinant plasmid vectors 

designed for expression of full length DOCK9 was PCR amplified from the template plasmid pEF4 

Myc-Flag–Dock9 (Meller et al., 2008) using the primer sequences described in Table 7.1. Plasmid 

map generated using Snapgene software. 
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Figure 7-2 Plasmid vector map of pOPINF PH-PCIP-DOCK9 

DOCK9 PH-PCIP-DHR1 domain PCR fragments were sub-cloned into a modified a 

pOPINF HIS6-3C-POI vector with ampicillin resistance gene sequence. DOCK9 gene fragments 

inserted in recombinant plasmid vectors designed for expression of full length DOCK9 was 

PCR amplified from the template plasmid pEF4 Myc-Flag–DOCK9 (Meller et al., 2008) using 

the primer sequences described in Table 7.1. Plasmid map generated using Snapgene 

software. 
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Figure 7-3 pOPINF PCIP-DHR1-DOCK9 

DOCK9 PCIP-DHR1 domain PCR fragments were sub-cloned into a modified a pOPINF 

HIS6-3C-POI vector with ampicillin resistance gene sequence. DOCK9 gene fragments inserted 

in recombinant plasmid vectors designed for expression of full length DOCK9 was PCR amplified 

from the template plasmid pEF4 Myc-Flag-DOCK9 (Meller et al., 2008) using the primer 

sequences described in Table 7.1. Plasmid map generated using Snapgene software. 
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Figure 7-4 pOPINF DOCK4-SH3 

DOCK4 SH3 domain PCR fragments were sub-cloned into a modified a pOPINF HIS6-

3C-POI vector with ampicillin resistance gene sequence. DOCK4 gene fragments were PCR 

amplified, using the described primer sequences, from the template plasmid pBABE puro 

Flag- DOCK4; a plasmid gifted by Dr Vijay Yanik (Harvard Medical School, Massachusetts, 

USA). Plasmid map generated using Snapgene software. 
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Figure 7-5 pOPINF DOCK4-DHR2 

DOCK4 DHR2 domain PCR fragments were sub-cloned into a modified a pOPINF HIS6-

3C-POI vector with ampicillin resistance gene sequence. DOCK4 gene fragments were PCR 

amplified, using the described primer sequences, from the template plasmid pBABE puro 

Flag- DOCK4; a plasmid gifted by Dr Vijay Yanik (Harvard Medical School, Massachusetts, 

USA). Plasmid map generated using Snapgene software. 
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Figure 7-6 pGIPz lenti viral plasmid for DOCK4 shRNA expression 

Plasmid map of pGIPz lenti viral vector backbone with Dock4 SHRNA and non-

silencing pGIPZ nucleotide sequence.  Plasmid map generated using Snapgene software. 
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Figure 7-7 pEF4 Flag-DOCK9 plasmid map 

PEF4 Myc-Flag–DOCK9 (Meller et al., 2008) was obtained from Professor Martin 

Schwartz (University of Virgina, USA). Plasmid map generated using Snapgene software.  
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Figure 7-8 psPAX plasmid map 

Plasmid psPAX plasmid map, generated by Snapgene software. 
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Figure 7-9 pMD2.G plasmid map 

Plasmid map of pMD2.G plasmid map generated using Snapgene software. 
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7.2 Appendix 2. The small molecule QL-47 binds to c628 of DOCK9 

 

 

 

 

A 

B 

Figure 7-10 The small molecule inhibitor QL-47 and YKL-04-126 

Molecular structure of the (A) covalent small molecule inhibitor QL-47 and (B) a 

tagged form of the covalent QL-47 inhibitor YKL-04-126. QL-47 is a compound developed by 

Prof. Nathanael Gray’s research group (Dana Farber Cancer Institute Harvard Medical 

School), MA). 
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Figure 7-11 Covalent inhibitor target-site-identification and Liquid chromatography–mass 

spectrometry of QL-47 targeted proteins  

Inhibitor competition assay between a tagged (YKL-04-126) form of the covalent QL-47 

inhibitor and QL-47. This assay screen 1656 proteins for QL-47 specific binding. Purified tagged 

inhibitor peptides were identified via Liquid chromatography–mass spectrometry (LC-MS/MS) 

to distinguish between true targets of QL-47 and non-specific interactions. DOCK9 was detected 

to have a very high degree of competitiveness for QL-47. QL-47 was determined to bind 

irreversibly to distinct cysteine residues on target proteins. For DOCK9 this residue is cysteine 

628. Assays carried out and diagram generated by Dr Christopher Browne, of Prof. Nathanael 

Gray’s research group (Dana Farber Cancer Institute Harvard Medical School, MA). 
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Figure 7-12 Proteins identified as targets of QL-47 through Covalent inhibitor target-site-

identification and Liquid chromatography–mass spectrometry 

Purified tagged inhibitor peptides were identified via Liquid chromatography–mass 

spectrometry (LC-MS/MS) following an inhibitor competition assay between a tagged (YKL-

04-126) form of the covalent QL-47 inhibitor and QL-47; to distinguish between true targets 

of QL-47 and non-specific interactions. DOCK9 was detected to have a very high degree of 

competitiveness for QL-47. Of 1656 proteins screened, 9 were found as specific targets of 

QL-47. QL-47 was determined to bind irreversibly to distinct cysteine residues on DOCK9. 

Assays carried out by, and histogram generated by, Dr.Christopher Browne of Prof. 

Nathanael Gray’s research group (Dana Farber Cancer Institute Harvard Medical School, 

MA). 
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7.3 Appendix 3. DOCK4 murine line genetic background 

Figure 7-13 Retroviruses used in the in vivo tumour co-injection model and generation of 

the Dock4 het mouse line. 

Schematic diagram showing the WT and the targeted KO Dock4 alleles. In the 

targeted allele, exons 3-5 were replaced by the targeting cassette for frameshift of the open 

reading frame. Yellow boxes show exons, main black lines show homology regions, grey lines 

show homology outside of the targeting vector. SA = Splice Acceptor, IRES = Internal 

Ribosomal Entry Site, β Gal= Beta galactosidase. Black boxes show position of the Southern 

probe that detects bands shown upon NsiI digestion for the purpose of genotyping. Figure 

provided by Dr. Georgia Mavria. 
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Figure 7-14 Schematic showing the EC Dock4 KO alleles and excision site of Dock4 exon 6. 

Diagram depicting the targeted strategy for the EC Dock4 KO model, generated by Ozgene. 

Dock4f/f mice were crossed with VE-cadERT2-CreTd tomato gene carrying mice. FRT sites 

flanking, SA (splice acceptor), IRES (internal ribosomal entry site), β Gal (Beta galactosidase). 

Expression of FLP recombinase enzymes targets FRT sites, deleting the internal 

compartment. Cre recombinase expression, under the control of the VE-Cadherin reporter, 

targets and deletes the LoxP sites flank the Dock4 exon 6, and also Lox. The Td Tomato gene 

lies downstream of a transcriptional/translational-floxed stop cassette, allowing for strong 

expression of the Td Tomato gene in the presence of Cre recombinase expression. The VE-

cadERT2-CreTd tomato mouse line was originally generated by the lab of Prof. Ralf Adams 

(London Research Institute), and is commercially available via purchase from Taconic 

Biosciences (Germantown, NY USA). VE-cadERT2-CreTd tomato mouse line carries a gene for 

tamoxifen inducible Cre recombinase expression, under the control of the VE-Cadherin 

reporter. VE-cadERT2-CreTd tomato alleles not depicted within this diagram. Black boxes 

show exons, main black lines show homology regions. SA = Splice Acceptor; IRES = Internal 

Ribosomal Entry Site; B-gal = β-galactosidase; FR= FLP recombinase; PGK: Neo= 

Phosphoglycerine Kinase: neomycin resistance gene. Figure provided by Dr. Georgia Mavria. 
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