
Isotope dependence of the H-mode

pedestal in JET-ILW plasmas

Laszlo Horvath

Doctor of Philosophy

University of York

Physics

September 2019





Abstract

In tokamak H-mode plasmas, the level of energy and particle transport at the plasma

edge is reduced and a steep pressure gradient is formed, giving rise to an edge pressure

“pedestal”, which positively affects the global energy confinement. A positive isotope mass

scaling of the thermal energy confinement time in H-mode plasmas has been observed

in several tokamaks, however, this favourable isotope dependence has not yet been fully

understood theoretically. This thesis examines the pedestal structure, edge transport,

linear MHD stability and inter-ELM edge current evolution in a series of JET-ILW

Hydrogen (H) and Deuterium (D) type I ELMy H-mode plasmas with the aim to better

understand the isotope dependence of the pedestal and its contribution to the favourable

isotope scaling. Simulations of the inter-ELM edge current evolution showed that current

diffusion contributes little to the time evolution of the total edge current prior to the ELM

crash. Therefore, current diffusion does not explain why JET-ILW type I ELMy pedestals

at high gas rate and moderate to high βN are found to be stable to Peeling-Ballooning

modes. The pedestal pressure is typically higher in D than in H at the same input

power and gas rate, with the difference mainly due to lower density in H than in D.

Analysis of the pedestal structure and power balance, and results of interpretative 2D

edge transport simulations with EDGE2D-EIRENE indicate that the difference in neutral

penetration between H and D leads only to minor changes in the pedestal density and

temperature profiles, and differences in heat and particle transport must also play a

role in the favourable isotope scaling of the pedestal. The effect of the isotope mass on

linear MHD pedestal stability is small, but an indirect isotope dependence through the

separatrix temperature is qualitatively consistent with the reduced pedestal confinement

in H and could play a role in JET-ILW H-mode plasmas at low gas rate.
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Chapter 1

Introduction

There are many approaches to meet the energy demand of the world. One of them, which

is already in the service of mankind, is the release of atomic binding energy. Today’s

nuclear power plants generate electricity by nuclear fission of heavy elements. Another

way of utilising atomic binding energy for electricity production would be nuclear fusion.

Nuclear fusion is a reaction in which two or more light atomic nuclei are combined to

form heavier nuclei. Fusion could provide a clean and safe energy source with practically

inexhaustible fuel [1]. However, several physics and engineering challenges remain to be

solved before sustainable energy production from fusion reactions to the electricity grid

can be achieved [2].

1.1 Nuclear fusion

A natural occurrence of fusion energy production is the Sun, which provides energy to

life for several billions of years on Earth. Its hydrogen (1H) fuel is converted to helium

(4He) in different astrophysical reaction chains [3]. These reaction chains have a very

low reaction rate as a proton-neutron decay has to occur. Therefore, the fusion power

density of the core of the Sun is in the order of 200 W/m3 [4]. The low power density is

compensated by the astronomically large mass of the Sun, but terrestrial reproduction

of stellar core conditions for the generation of electricity would be highly inefficient. For

terrestrial realisation of a fusion power plant, other fusion reactions need to be chosen

with light elements such as deuterium (2H ≡ D), tritium (3H ≡ T) or 3He [5]:

D + D ⇒ 3He (0.82 MeV) + n (2.45 MeV),

D + D ⇒ T (1.01 MeV) + p (3.02 MeV),
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D +++ T ⇒⇒⇒ 4He (3.52 MeV) +++ n (14.1 MeV),

D + 3He ⇒ 4He (3.66 MeV) + p (14.6 MeV).

The reaction rates for the above mentioned fusion reactions are shown in figure 1.1. The

reaction rate is given by the integral of the energy dependent fusion cross-section over

a Maxwellian energy distribution. As shown in figure 1.1, the most favourable fusion

reaction is the deuterium-tritium (DT) reaction [6]. Its reaction rate peaks at a lower

temperature and at a higher value than the other reactions commonly considered for

fusion energy.
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Figure 1.1: The reaction rates of fusion reactions commonly considered for terrestrial fusion
power plants [7].

In terms of the required fuel, the use of the DT reaction is challenging. On one hand,

large amount of deuterium is available in nature and can easily be extracted at a low

cost. In natural water resources there is one atom of deuterium for every 6700 atoms

of hydrogen [5]. However, tritium is not naturally extractable as it only exists in trace

quantities [8]. It is a radioactive isotope with a half-life of 12.3 years. Since there is no

external tritium breeding technology, which could satisfy the demand of a fusion power

plant, the required tritium must be produced by the reactor itself. The proposed way of

tritium breeding in a power plant is taking advantage of the fusion reaction generated

neutrons and the following lithium reactions [5]:
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6Li + n = 4He + T

7Li + n = 4He + T + n

As illustrated in figure 1.2, the fusion-born neutrons can be utilised for tritium breeding

as they hit the wall containing lithium. Tritium can then be extracted and burnt in the

fusion reaction. Thus, in practical terms, the fuel for a DT fusion reactor is deuterium and

lithium. In quantities required for fusion, lithium can even be extracted from seawater

providing practically inexhaustible reserves [9].

lithium

deuterium

deuterium helium

tritium neutron
helium

tritium

Figure 1.2: Operational scheme of tritium breeding. The fusion-born neutrons, by hitting the
wall containing lithium, produce tritium.

For a fusion reaction to occur, the positively charged atomic nuclei must collide at

high enough energies to overcome their strong electrostatic repulsion. As the cross-section

of Coulomb scattering is several orders of magnitude higher than the cross-section of the

fusion reaction [10], a simple scheme of an accelerator firing particles into a target cannot

achieve positive energy balance. Too much energy would be lost from the reacting region

through Coulomb collisions. The most promising method is the so-called thermonuclear

fusion, where the fusion fuel is heated to sufficiently high temperature such that the

thermal velocities are high enough to produce fusion reactions [7]. In such a case the

Coulomb collisions just redistribute the energy between the particles, but it does not get

lost from the system.
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The necessary conditions for thermonuclear fusion can be estimated by a simple power

balance argument. Initially, external heating is required to heat the fuel to high enough

temperatures for fusion reactions. But, in an ideal, steady state case, the energy produced

in fusion reactions can heat the reaction region and keep the system self-sustained with

no external heating. This is called ignition. To reach ignition, the fusion heating (Pfus)

needs to exceed the losses (Ploss):

Pfus ≥ Ploss . (1.1)

In a DT reaction - as imposed by momentum conservation - 4/5 of the fusion energy is

carried by the neutrons. As the neutron has no charge, it interacts weakly with matter,

thus immediately escapes the reaction region. Therefore, self-sustained fusion relies on the

heating of the fusion-born α-particles, which - assuming Maxwellian energy distribution

and 50-50 % DT mixture - is given by

Pfus = Pα =
1

4
n2〈σv〉Eα , (1.2)

where n is the density, 〈σv〉 is the fusion reaction rate and Eα = 3.52 MeV is the energy

of the fusion-born α-particle. The losses are expressed in terms of the energy confinement

time (τE), which measures the rate at which the system loses energy to its environment:

τE =
W

Ploss
, (1.3)

where W = 3nTV is the total energy content with T the temperature and V the volume

of the reaction region. Substituting eq. (1.2) and eq. (1.3) into eq. (1.1) gives:

nτE >
12T

Eα〈σv〉
. (1.4)

Replacing T/〈σv〉 with its minimum value, which is around 25 keV, leads to the Lawson

criterion for ignition [11]:

nτE > 1.5 · 1020s/m3. (1.5)

This shows that the fusion fuel has to be confined for long enough time (τE) and

sufficiently high density around the optimal temperature to reach ignition. The fusion

power gain (Q) is the ratio of the fusion power and the power required to maintain

the plasma in steady state. Ideally, the fusion power gain is Q = ∞ in case of

ignition. However, in practice, fusion ignition is not necessarily needed for fusion energy

18



production. Net energy gain can be reached by a small amount of external heating and

Q ≈ 20− 40, but α-heating must dominate the heating mix [8].

1.2 The tokamak

Due to the excessive temperatures required for fusion, contact between the hot core of

the reaction volume and any solid wall material is impracticable. One way of confining

the fusion fuel is to employ a magnetic field. At temperatures necessary for the fusion

reaction, the particles are ionised and the fuel is in the plasma state. Charged particles

(ions and electrons) in a magnetic field are subject to the Lorentz force:

F = q(E + v ×B) , (1.6)

where q is the charge and v is the velocity of the particle, E is the electric field and B is

the magnetic field. The Lorentz force acts perpendicular to both v and B. As a result,

particles are free to move along magnetic field lines, but are trapped in a circular orbit in

the perpendicular direction. This helical motion - the so-called gyromotion - is suitable

to confine the plasma, because it does not allow the particles to move perpendicular to

the magnetic field.

The problem of losses at the ends of a linear device can be solved by bending the

magnetic field lines into a torus. The coordinates used in a toroidal system are shown in

figure 1.3. The distance measured from the centre of the torus to the centre of the plasma

column is the major radius (R0). The minor radius (r = a) is measured from the centre

of the plasma column to the edge. The toroidal direction is the long way, the poloidal

direction is the short way around the torus. The corresponding coordinates to toroidal

and poloidal directions are denoted by Φ and Θ, respectively.

In a torus shaped geometry, the strength of the toroidal magnetic field (BΦ) is

inversely proportional to R, because the higher current density in the toroidal field coils on

the inner side of the torus results in a stronger magnetic field there. This inhomogeneity

leads to a charge dependent drift (∇B drift) [7], which causes the electrons and ions to

move in vertically opposite directions. The resulting vertical electric field creates a charge

independent E × B drift [7], which moves the entire plasma towards the outside of the

torus. This electric field between the top and the bottom of the torus needs to be cut

short by helically twisting the magnetic field lines.

A type of magnetic confinement device, where the magnetic field lines are helically

twisted by a toroidal plasma current is the tokamak [7]. Figure 1.4 illustrates the main
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Figure 1.3: The coordinates in a toroidal system. R0 is the major radius, a is the minor radius
(r = a), Φ is the toroidal coordinate (long way around the torus) and Θ is the
poloidal coordinate (short way around the torus).

components of a tokamak. The plasma is shown in magenta, surrounded by the vacuum

vessel (in light grey) and the toroidal field coils (in cyan). The toroidal plasma current

(Ip) is driven by a transformer coil, which is shown in grey inside the toroidal field coils

in figure 1.4. The plasma current generates a poloidal magnetic field (BΘ), which twists

the magnetic field lines. The twist of magnetic field lines is described by the safety factor

q, which is the number of toroidal transits per single poloidal transit of a magnetic field

line [12]:

q =
1

2π

∮
1

R0

BΦ

BΘ
ds ≈ r

R0

BΦ

BΘ
. (1.7)

If q is a low order rational, the field line joins up on itself after a few turns, and such a

configuration is subject to instabilities. For stable tokamak operation q is kept above 3

at the plasma edge and slightly above 1 at the magnetic axis [12].

The circular orbit of the particles in gyromotion is defined by the gyroradius:

ρ =
mv⊥
qB

. (1.8)

In a typical tokamak plasma, the gyroradius is much smaller than the macroscopic size

of the plasma (ρ � a). This scale restriction is required to treat the plasma as an

electrically conducting fluid and leads to the theory of magnetohydrodynamics (MHD).

Further assumptions and derivation of the MHD model can be found in [13]. MHD is
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Figure 1.4: Schematic drawing of a tokamak. The plasma is shown in magenta, surrounded
by the vacuum vessel (in light grey) and the toroidal field coils (in cyan). The
transformer coil inside the toroidal field coils and the poloidal field coils at the top
and bottom of the device are shown in grey.

a fluid model, which together with the Maxwell-equations, describes the macroscopic

equilibrium and stability properties of a plasma.

The MHD equilibrium in a magnetised plasma is given by the following force balance

equation:

j×B = ∇p , (1.9)

where j is the current density and ∇p is the pressure gradient. Eq. (1.9) shows that the

plasma pressure is balanced by the j × B force. It also implies that both j and B are

perpendicular to the pressure gradient, meaning that magnetic field lines and current lie

on surfaces of constant pressure. These surfaces are called magnetic flux surfaces and

as a result of the axisymmetric nature of a tokamak (to good approximation), these are

organised as a series of closed, nested surfaces. Since the particles can move freely along

the magnetic field lines, several plasma parameters - so-called flux surface quantities -

are approximately constant on a magnetic flux surface. It is convenient to label the flux

surfaces with one of these flux surface quantities. The poloidal flux contained within any

given pressure contour is often used for this purpose:

Ψ =

∫
B · dSp , (1.10)

where dSp is the poloidal surface element.
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The balance of the plasma pressure and magnetic field can be described by the plasma

beta, β:

β =
p

B2/2µ0
. (1.11)

In some sense, β describes the efficiency of plasma confinement at a given magnetic field.

For fusion energy, high values of β are required (maximising plasma pressure at a given

magnetic field), but MHD equilibrium and stability requirements limit the maximum

achievable value in a given configuration. Often the following normalisation of β is used:

βN = β
aBΦ

Ip
(1.12)

where a is measured in [m], BΦ in [T], Ip in [MA] and βN is expressed in percentage.

In a tokamak, the plasma sits inside a torus shaped vacuum chamber, which is usually

located inside the magnetic field coils. High vacuum is required because the plasma

density is ∼ 5 orders of magnitude lower than the atmosphere. The inductively driven

toroidal plasma current provides heating (Ohmic heating) through the resistance caused

by electron-ion collisions. The resistance of the plasma scales with ∼ T
−3/2
e (with Te

the electron temperature), thus the efficiency of Ohmic heating sharply drops at high

temperatures. As a result, Ohmic heating alone in a tokamak would only be enough to

heat a plasma to ≈ 1 keV [7], which is not sufficient for ignition. In order to top-up the

Ohmic heating, several different external heating methods can be applied. One method

used for auxiliary heating is Neutral Beam Injection (NBI), where ions are accelerated

to typically 40 keV to 1 MeV [8]. The ion beam is neutralised before injection so

that the beam can travel into the plasma unaffected by the magnetic field. The beam

atoms then become ionised and transfer their energy to the background plasma through

collisions. The other important external heating method is radio frequency (RF) heating.

Electromagnetic waves with a frequency either around the ion cyclotron, the electron

cyclotron or the lower hybrid frequency can be injected such that the waves are absorbed

in the plasma. Accordingly, these heating systems are named as ion cyclotron resonance

heating (ICRH), electron cyclotron resonance heating (ECRH) or lower hybrid (LH)

heating.

As described above, closed magnetic flux surfaces are essential for the confinement of

the plasma. However, flux surfaces at the edge of the plasma inevitably intersect with the

plasma facing wall components. In tokamak terminology, magnetic field lines outside the

last closed flux surface (LCFS) are called open field lines. In order to control the plasma

shape and position, a tokamak is installed with so-called poloidal field coils (grey coils
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in figure 1.4). Non-circular shapes can have a positive effect on plasma performance and

stability. The two main shaping parameters are triangularity (δ) and elongation (κ). κ is

the ratio of the height of the plasma and the minor radius. Upper or lower triangularity

is defined as the horizontal distance between the major radius and the highest or lowest

vertical point of the LCFS divided by the minor radius.

By driving current in the direction of Ip in a poloidal field coil under the plasma,

a so-called X-point can be generated on the LCFS as shown in figure 1.5. In such a

configuration the plasma wall interaction is localised to the so-called divertor, away from

the core plasma. This helps to keep sputtering of the wall material far from the confined

region, thus reducing the impurity content in the plasma. In divertor configuration a

magnetic separatrix separates the open and closed field lines and defines the LCFS. The

region outside the separatrix, where the plasma streams along open field lines is called

the scrape-off layer (SOL). The private plasma region is under the X-point. Where the

separatrix hits the divertor is called the strike point.

separatrix

X-point

private
plasma
region

divertor
targets

Figure 1.5: Schematic figure of the poloidal cross-section of a tokamak, showing the different
regions of the plasma.

Tokamak experiments are in the focus of fusion energy research all over the world. The

most important devices currently in operation or under upgrade are the Joint European

Torus (JET) in the UK [14], ASDEX-Upgrade in Germany [15], DIII-D in the US [16],

JT-60SA in Japan [17, 18], KSTAR in South Korea [19] and EAST in China [20]. Since the

1950s invention of the tokamak, considerable improvement has been achieved in plasma

confinement and the plasma performance is approaching the burning plasma regime. In
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1997, JET achieved a maximum of 16 MW fusion power using 25 MW of external heating

in a transient discharge [21]. The next step large tokamak experiment currently being

built in the south of France is ITER [22]. Its goal is to demonstrate burning plasma

operation, namely 500 MW fusion power using only 50 MW of auxiliary heating. The

first plasma is foreseen in 2025 [22].

In order to realise fusion energy production, further optimisation of plasma confine-

ment is needed. The energy confinement time of the plasma is determined by how rapidly

particles and energy are lost from a plasma by means of transport. Plasma transport can

be characterised by continuity equations for the particles, heat and momentum for each

plasma species. These equations describe the response of the density, temperature and

rotation profiles to the fluxes and sources. For example, the continuity equation for the

density can be written in the following form:

∂n

∂t
+∇ · Γ = Sn , (1.13)

where Γ is the particle flux and Sn is the particle source. Similar equations can also be

written for the temperature and momentum. The task of transport theory is to calculate

the fluxes.

Transport through Coulomb collisions in toroidal geometry is described by neoclas-

sical theory [23]. However, in a tokamak plasma transport is typically dominated by

turbulence driven micro-instabilities, which is also called anomalous transport. Turbulent

transport is generally discussed within the framework of gyrokinetic theory [24–26]. The

first principles description of magnetised plasmas is the kinetic description. In kinetic

theory, the time evolution of the particle distribution function is described in the 6

dimensional phase space. The 7 dimensional (3 spatial, 3 velocity and 1 time), full kinetic

description is very difficult to solve for macroscopic plasma behaviour. However, the

trajectory of the plasma particles can be decomposed into a slow drift of the guiding

centre and the fast gyromotion. The gyrokinetic equation can be obtained by averaging

over the gyromotion. In this way the number of dimensions is reduced by one and the

plasma is described as the evolution of charged rings with a guiding centre position.

Instead of reducing the dimensions of the model, the kinetic description can also be

simplified by taking various velocity moments of the kinetic equation. This leads to a

set of fluid equations for each plasma species. The two-fluid model describes the plasma

as interacting electron and ion fluids, including self-consistent calculation of the electric
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and magnetic fields. The briefly introduced MHD theory is a one-fluid description of the

plasma.

These theories are implemented in simulations codes and continuously being improved

and validated against the experiments. It is important to note that the majority of

current tokamak experiments are operating with a deuterium plasma. In fact, the only

two experimental campaigns with DT plasma were in the 90s at JET and TFTR. As a

result, most of the tokamak plasma simulation tools are optimised and validated with

deuterium plasmas. From the plasma physics point of view, the main difference when

the isotope of the main ion is modified is the change in ion gyroradius. This influences

the transport and thereby affects the confinement. The different isotope mass potentially

also effects how neutral atoms, which are injected into the vacuum chamber or recycled

from the walls, penetrate into the plasma. The isotope effect in fusion plasma physics is a

subject currently undergoing intense study in preparation for upcoming DT experiments

on JET and ITER.

1.3 High confinement mode

Over the long history of magnetic confinement fusion research, significant improvement

in the performance of tokamak plasmas has been achieved through exploiting enhanced

confinement regimes. The most developed enhanced confinement regime is the so-called

High confinement mode or H-mode was discovered in 1982 at the ASDEX tokamak [27]

and is now routinely accessed in most experiments. H-mode can be reached when the

heating power is high enough to exceed a certain threshold. The mode below this power

threshold is correspondingly called the low confinement mode or L-mode. With the H-

mode confinement regime, about a factor of 2 improvement in global confinement can be

gained compared to L-mode. The improvement in confinement is due to the formation of

a narrow transport barrier in the outer region of the plasma. Inside the transport barrier

the level of energy and particle transport is reduced and a steep pressure gradient is

formed, which gives rise to a pressure pedestal as illustrated in figure 1.6. Although the

physics of the transition to H-mode is not fully understood, it is widely accepted that

sheared flows play an important role. Zonal flow and equilibrium E ×B flow shear can

lead to a reduction in anomalous transport by breaking up the turbulent eddies, thus

suppressing the dominant transport mechanism [28, 29].

The heightened edge pressure in H-mode also leads to higher pressure in the plasma

core due to core profile stiffness, thus positively affecting the global confinement [30, 31].
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Figure 1.6: Schematic drawing of the pressure profile in L- and H-mode. In H-mode, the
transport is reduced at the plasma edge leading to a steep pressure gradient region,
called the pedestal.

Profile stiffness occurs, when the temperature profiles are limited by a critical gradient

length, LT = T/∇T , above which the heat flux rises sharply. If the temperature gradient

significantly exceeds the critical value, the profiles would quickly relax towards it, leading

to a “stiff” temperature profile. Experimental evidence for stiff temperature profiles has

been found in several tokamak experiments [30–33].

The steep pressure gradient at the edge, however, can trigger Edge Localised Modes

(ELMs). ELMs are MHD related periodic instabilities of the plasma edge [34–36], which

are leading to the collapse of the pedestal and followed by a transient loss of energy and

particles from the plasma. Following the crash, the pedestal recovers and rises until it

reaches the associated MHD stability limit, which leads to a consecutive ELM event. The

repetition rate of the ELM cycle - also referred to as ELM frequency (fELM) - is typically

in the order of 10-500 Hz. The effect of ELMs on global energy confinement is limited,

but the associated high heat loads onto the divertor are a major concern. The transient

heat load on the divertor following the ELM crash does not cause any problem in current

tokamaks, but extrapolations indicate that large ELMs on ITER could substantially

exceed the limit for material damage at the divertor and significantly reduce the lifetime

of the plasma facing components [37–39]. Future devices may need to utilise ELM control

techniques or ELM-free scenarios [40, 41] to reduce the transient heat fluxes to a tolerable

level.
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ELMs can have distinct behaviours depending on the discharge conditions. Detailed

comparison of different ELM types is discussed in [34]. In the present thesis only type I

and type III ELMs will be discussed. Type I ELMs typically occur when the heating

power sufficiently exceeds the power threshold required for H-mode. The ELM frequency

increases with heating power. Type I ELMs are associated with large energy losses and,

thus, large transient heat loads on plasma facing components. Type III ELMs are small,

frequent ELMs occurring typically at power levels just above the LH power threshold.

Their ELM frequency decreases with increasing heating power.

The edge pedestal structure determines the boundary condition for the heat transport

in the plasma core. Thus, the understanding of the physical processes governing the

behaviour of the edge transport barrier is crucial in order to predict the plasma

performance in future devices. The physics of the pedestal in a developed H-mode regime

is discussed in detail in chapter 2.

1.4 The JET tokamak with ITER-like wall

The data presented in this thesis were collected on the JET tokamak. JET is the world’s

largest operational tokamak. The main parameters of the device are shown in table 1.1.

One of the most important features of JET is its plasma facing component configuration,

the so-called ITER-like wall (ILW). The main objective for ITER is to demonstrate the

scientific and technological feasibility of fusion energy as a large-scale energy source by

achieving sustained burning plasma operation with 500 MW fusion power and Q = 10

for longer than 300 seconds. Such long-pulse and high power operation introduces new

challenges related to plasma–wall interaction. This includes the control of wall power

loads and material erosion, the achievement of sufficient lifetime of the plasma facing

components and the problem of tritium inventory. The primary choice of plasma facing

material for fusion experiments has been carbon. Carbon tolerates high heat loads and the

low atomic number of carbon allows for relatively high carbon impurity concentrations in

the plasma without deleterious effects. However, the use of carbon is prohibited in ITER

or other future burning plasma devices due to its high tritium retention property [42].

Therefore, the choice of plasma facing component material for ITER is not carbon, but a

combination of beryllium (Be) in the main chamber and tungsten (W) in the divertor [39,

43]. Tungsten has been selected due its high melting point (3695 K), while beryllium has

been chosen because it has a low atomic number, thus - like carbon - it has low impact

on core plasma performance.
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Plasma current [44] ≤ 6 MA

Magnetic field [44] ≤ 4 T

Major radius ≈ 2.9 m

Minor radius ≈ 0.9 m

NBI heating power [45] ≈ 34 MW

ICRH heating power [46, 47] ≤ 10 MW

Table 1.1: Main parameters of the JET-ILW tokamak.

The JET carbon wall (JET-C) has been replaced with the ITER-like wall (JET-ILW)

with remote handling between 2009 and 2011 in order to test the ITER first wall and

divertor materials in terms of acceptable tritium retention and the ability to operate

a large high power tokamak with metallic plasma facing components [44, 48, 49]. As

shown in figure 1.7 the main chamber is made of beryllium, while the divertor comprises

a combination of bulk tungsten and tungsten coated carbon fibre composite tiles. The

fuel retention properties of JET-ILW fulfilled the expectations. An order of magnitude

reduction has been observed in deuterium retention of the ITER-like wall compared to

the carbon wall [50].

Be

W
Figure 1.7: The material composition of the JET ITER-like wall. The main chamber is made of

beryllium (green) and the divertor is a combination of bulk tungsten and tungsten
coated carbon fibre composite tiles (red).
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Beside the positive effect on fuel retention properties, the new wall material has also

affected the plasma performance. A reduction in the global confinement has been observed

in type I ELMy H-mode plasmas in JET-ILW compared to JET-C at low βN (βN ∼

1.2) [51, 52]. The confinement is affected by the requirement of an increased gas fuelling

to avoid tungsten impurity accumulation in the plasma core [51, 52]. This reduction in

confinement is primarily due to a degraded temperature pedestal, which in combination

with core profile stiffness leads to generally lower confinement in JET-ILW than in JET-C

at given input power [51–55]. Better performance at higher βN > 2 and low gas fuelling

rate was demonstrated first at low plasma current (Ip = 1.4 MA) [53, 56]. However,

these low gas rate plasmas were prone to impurity accumulation. Good performance

plasmas were also obtained in the previous experimental campaign at high plasma current

(Ip = 3.0 MA) with increased heating power and βN ' 2.1 using low injected gas fuelling

rate [57, 58]. The impurity accumulation was mitigated by means of tungsten control

with ICRH [59] and possibly by the combination of low gas and ELM pacing pellet

injection [57, 58].

JET is the only tokamak capable of tritium operations [60]. In support of ITER,

JET is currently preparing for a deuterium-tritium campaign to demonstrate fusion

power generation with the ITER-like wall. Preparations include operations with H, D,

T hydrogen isotopes and their mixtures, which place JET to an excellent position for

studying the isotope dependence of the core and pedestal confinement.

Although considerable success has been made in the past decades, fusion energy still

has a long way to go before becoming commercially available. The present thesis attempts

to contribute to the understanding of the physics governing the plasma edge, which has

particular importance in achieving high performance plasma operation. This work also

pays special attention to the isotope dependence of the H-mode pedestal.

1.5 Motivation and thesis outline

As it will be explained in chapters 2 and 3, the global confinement in H-mode strongly

depends on the pedestal performance and there is experimental evidence that the isotope

mass plays an important role in the edge transport barrier. The present thesis focuses on

the isotope dependence of the pedestal with the aim to make a contribution towards better

understanding of pedestal and global plasma confinement and provide input for future

pedestal simulation tools concerning which physics mechanisms need to be considered for

accurate pedestal predictions.
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The next two chapters provide the physics background for the topics discussed

in this thesis. Chapter 2 discusses the physics of the H-mode pedestal, including the

Peeling-Ballooning and EPED models. Chapter 3 summarises the latest developments in

understanding the isotope dependence of plasma confinement.

Chapter 4 first introduces the diagnostic and analysis methods used in the present

thesis and then discusses the role of the edge current evolution in the inter-ELM cycle.

The saturation of the pressure gradient prior to the ELM crash has been observed in

many tokamaks. This observation raises a question on the nature of the ELM trigger. A

possible explanation could be a time lag in the build-up of the total edge current with

respect to the pressure gradient due to current diffusion, which leads to a delay of the

ELM crash. In order to test this hypothesis in JET-ILW H-mode pedestals, the time

evolution of the edge current during the ELM cycle is analysed, investigating both the

edge bootstrap current density profile and the Ohmic component.

From chapter 5 onward, the thesis focuses on the isotopic dependence of the H-mode

pedestal. The pedestal structure, edge transport and linear MHD stability are analysed

in a series of JET-ILW H and D type I ELMy H-mode plasmas. Chapter 5 introduces the

data set of the JET-ILW H-modes investigated in this work and the characterisation of

the pedestal structure and neutral penetration for the edge density profile are discussed.

The analysis of the pedestal structure will reveal differences between H and D plasmas,

the most important of which is that the pedestal pressure is typically lower in H than

in D at the same input power and fuelling gas rate, primarily due to lower density

in H. Chapter 6 shows the analysis carried out to understand the changes in pedestal

transport when the isotope mass is different. First, a power balance analysis is presented

to compare the inter-ELM transport between H and D, followed by a study of the ELM

particle losses, which could play an important role in setting the lower density in the H

pedestals. Interpretative simulations with EDGE2D-EIRENE, a two-dimensional plasma

fluid code coupled to a kinetic Monte Carlo code for the neutrals are also presented for

better understanding of the edge transport and neutral penetration.

In chapter 7, the isotope dependence of pedestal stability is investigated. The potential

effect of the change in isotope mass on the bootstrap current is discussed. The isotope

dependence of linear MHD stability, introduced through diamagnetic stabilisation, is

examined with the HELENA equilibrium and ELITE ideal MHD stability codes. The

sensitivity of pedestal stability on the separatrix temperature is also discussed. The

conclusions and future work are presented in chapter 8.
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Chapter 2

Physics of the H-mode pedestal

Physics-based modelling is essential to predict plasma performance beyond the current

experiments and optimise the plasma confinement. As briefly discussed in the previous

chapter, the pedestal structure determines the boundary condition for the core plasma

transport. Thus, integrated simulation tools require predictive capabilities for the pedestal

structure. This motivates the understanding of the physics governing the pedestal.

The H-mode pedestal is governed by at least three interacting processes: pedestal

stability, transport and sources. The stability of the pedestal is generally described by

MHD theory. The high pressure gradient and the edge current density at the edge drive

MHD modes unstable, which limit the maximum achievable pedestal pressure. In order

to reach high pedestal pressure - and thus maximising global confinement and fusion

gain - several plasma parameters need to be optimised to extend the limits posed by

MHD instabilities. H-modes with so called “type I ELMs” are the most common high

confinement regimes in current tokamaks. This regime provides good confinement and

there is good confidence that the regime can be accessed in ITER, where it has been

chosen as the reference operating scenario [61]. It is widely accepted that type I ELMs

are an MHD related phenomenon and the stability of the pedestal in a type I ELMy regime

can be explained by the peeling-ballooning (P-B) model [62, 63], which is discussed in

section 2.1 in detail.

The crash following the trigger of the ELM is a transient event (∼ 0.1 − 1 ms),

where significant amount of energy (5-30 % of the energy stored in the pedestal) is

lost from the confined region and transported to the SOL towards the plasma facing

components. The ELM crash is responsible for up to 1/3 of the total plasma transport

in the pedestal. Non-linear MHD theory would be required to predict the heat and

particle fluxes during the ELM crash. This is beyond the scope of the present thesis,
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but experimental characterisation of the ELM losses in JET-ILW Hydrogen (H) and

Deuterium (D) H-modes is discussed in chapter 6.

The inter-ELM evolution of the temperature pedestal between two ELM events is

determined by the balance of the pedestal transport and the heat reaching the pedestal

from the core. The particle channel behaves somewhat differently. Beyond the particle

source from the core, which is typically provided by fuelling due to NBI, the ionisation of

neutral atoms penetrating into the pedestal is also important. Neutrals are injected into

the vacuum chamber for fuelling purposes or recycled from the walls. The constraints

provided by inter-ELM transport and stability together define the maximum achievable

pedestal height. Inter-ELM transport is introduced in more detail in section 2.3.

The pedestal structure is usually characterised by the pedestal height, width and

gradient as illustrated in figure 2.1 for the pressure. Similarly to the pressure, the width

and height can also be defined for the density and temperature. The pedestal height is

an essential parameter to set the boundary condition for core transport modelling. The

average pedestal pressure, density or temperature gradient is often estimated by ratio of

the height and width of the pedestal.

pedestal
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Figure 2.1: Illustration of the width and height of the pedestal.
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2.1 The Peeling-Ballooning model

The trigger of type I ELMs can be understood by means of the P-B model, which is

based on ideal MHD theory. The MHD equations provide a single fluid description of the

plasma [13]:
∂ρ

∂t
+∇ · (ρv) = 0 , (2.1)

ρ
dv

dt
= J×B−∇p , (2.2)

d

dt

(
p

ργ

)
= 0 , (2.3)

where ρ is the mass density, v is the fluid velocity, p is the pressure, J is the current

density, B is the magnetic field, γ is the ratio of specific heats and d/dt = ∂/∂t + v · ∇

is the convective derivative.

Eq. (2.1) is the continuity equation describing the conservation of mass. Atomic

processes which could act as a source or sink for the particles are negligible in the

MHD time scale. The momentum equation (eq. (2.2)) describes the balance between

the inertial force ρdv/dt, the magnetic force J × B and the pressure gradient ∇p. The

energy equation (eq. (2.3)) expresses an adiabatic evolution of the plasma. To obtain the

final set of MHD equations, the above three need to be completed with the low-frequency

Maxwell equations and with Ohm’s law:

E + v ×B = 0 , (2.4)

where E is the electric field. Adding ηJ on the right-hand side of eq. (2.4), resistivity (η)

could be introduced in the system, leading to resistive MHD. In ideal MHD, the plasma

is a perfect conductor, η = 0.

There are two important assumptions, which are required to derive the MHD

equations from the two-fluid equations [64]. First, the vacuum permittivity is eliminated

in the Maxwell equations (ε0 → 0), which means that the displacement current ε0∂E/∂t

and the net charge ε0∇ · E are neglected. This leads to the low-frequency Maxwell

equations. The neglect of ε0∂E/∂t implies the local quasineutrality of the plasma:

ni = ne ≡ n, where ni and ne are the ion and electron densities, respectively. The second

assumption is that on MHD time scales, the electrons have an infinitely fast response due

to their relatively small mass. Formally this means that the electron inertia is neglected:

me → 0.
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The static (v = 0), steady state (∂/∂t = 0) solution of the MHD equations provide the

equilibrium in a given geometry. In a two-dimensional axisymmetric toroidal geometry,

the equilibrium is described by the Grad-Shafranov equation [65, 66]. In practical appli-

cations the Grad-Shafranov equation is solved numerically to obtain the experimental or

model equilibria. Free boundary equilibrium codes solve the Grad-Shafranov equation in

an iterative way to find an equilibrium that best matches the magnetic measurements

and possibly other constraints on the pressure and current profiles. Fixed boundary

equilibrium solvers require the plasma boundary as input and typically use constraints

on the pressure profile and complex models for the parallel current density.

For a given equilibrium, the next question to ask is whether the equilibrium is stable

or unstable. The simplest way to evaluate the stability of a given MHD equilibrium

is to study its linear stability. Linear stability can be examined by applying a small

perturbation to the system in the form of a plasma displacement. If the displacement

leads to a restoring force, then the equilibrium is stable and the result - in the absence

of damping in ideal MHD - is an oscillation around the equilibrium. If the resulting force

enhances the initial perturbation, then the equilibrium is unstable and the displacement

grows indefinitely. This linear approach is useful to examine the stability of the system.

In order to obtain the behaviour of any instability away from the equilibrium, non-linear

theory is needed. Non-linearly, instabilities can reach a saturated state (for e.g. turbulence

driven micro-instabilities) or exhibit an explosive behaviour (for e.g. ELMs), where linear

theory is not applicable anymore.

In linear MHD stability analysis, the primary interest is typically to determine

whether the equilibrium is stable or unstable and the precise value of the growth rate

of unstable modes is not important. Thus, MHD codes typically adopt the formulation

known as the Energy Principle [13, 67]. It is a simple and convenient way to determine the

stability of MHD modes and it provides a reasonable estimate for the MHD growth rate.

The derivation of the Energy Principle formulation starts with expressing all perturbed

quantities in terms of the displacement of a plasma fluid element, ξ(x, t). A perturbation

to ξ is applied in the form of a Fourier harmonic: ξ = ξ(x) exp(iωt). Substituting the

perturbed displacement into the MHD equations leads to:

ρ0
∂2ξ

∂t
= F(ξ) , (2.5)
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where F(ξ) is the MHD force operator:

F(ξ) =
1

µ0
(∇×B0)×B1 +

1

µ0
(∇×B1)×B0 +∇(p0γ∇ · ξ + ξ · ∇p0) . (2.6)

In eq. (2.6) the zero subscript denotes the equilibrium quantities. The perturbed magnetic

field, B1 still appears in the MHD force operator, but it can be substituted with ξ using:

B1 = ∇× (ξ ×B0) . (2.7)

Using the Fourier decomposition of the perturbation allows to express eq. (2.5) as an

eigenvalue problem:

− ω2ρ0ξ = F(ξ) , (2.8)

where ω is the mode frequency.

Multiplying eq. (2.8) with ξ∗ and integrating over the plasma volume V leads to the

following form, which allows the use of the Energy Principle:

ω2 =
δW (ξ∗, ξ)

K(ξ∗, ξ)
, (2.9)

δW = −1

2

∫
V
ξ∗ · F(ξ∗)dV , (2.10)

K =
1

2

∫
V
ρ|ξ∗|2dV . (2.11)

K is the kinetic energy of the system and δW is the potential energy.

Assuming that the plasma is surrounded by a vacuum region and a conducting wall,

the potential energy can be written in the following intuitive form:

δW = δWF + δWS + δWV , (2.12)

where

δWF =
1

2

∫
Fluid

[
|B1⊥|2

µ0
+
B2

0⊥
µ0

∣∣∣∇ · ξ⊥ + 2ξ⊥ · κ
∣∣∣2 +

+ γp
∣∣∣∇ · ξ∣∣∣2 − 2(ξ⊥ · ∇p)(κ · ξ∗⊥)− j‖(ξ∗⊥ ×B0) ·B1

]
dV , (2.13)

35



is the fluid contribution with κ the curvature vector of the equilibrium magnetic field:

κ = B/B · ∇(B/B).

δWS =
1

2

∫
Surface

∣∣∣n · ξ⊥∣∣∣2n ·
[
∇
(
p0 +

B2
0

2µ0

)]
dS , (2.14)

is the surface contribution with n the normal vector on the surface and

δWV =
1

2

∫
Vacuum

|B1|2

µ0
dV . (2.15)

is the vacuum contribution.

As the force operator is self-adjoint [13], the eigenvalues ω2 are real and the stability

properties are as follows: if the potential energy (δW ) of the system is negative for any

displacement then the equilibrium is unstable as the perturbation moves the plasma to

a more favourable state. Positive δW indicates a stable equilibrium.

Eq. (2.13) shows the fluid term δW in a form that allows the interpretation of the

different terms [67]. The first three terms are positive and thus stabilising. The first term

is related to the Shear Alfven wave, the second is related to the compressional Alfven

waves and the third term is related to the sound waves. The last two terms can either

be negative or positive, thus these are the potential sources of instability. The sources

of free energy to drive unstable modes are the pressure gradient and the parallel current

density, respectively.

First, the pressure-driven instabilities are discussed. The sign of the fourth term in

eq. (2.13) depends on the relative alignment of the pressure gradient and the curvature.

In the inboard side of the torus (it is also called the high field side (HFS) due to

the higher toroidal magnetic field) ∇p and κ point to opposite directions, thus the

curvature is stabilising. This is why the HFS is also referred to as the “good curvature”

region. On the outboard side of the torus (low field side - LFS, “bad curvature” region),

∇p and κ point to the same direction, in which case term 4 is negative. This could

lead to conditions where the stabilising effect from magnetic field line bending cannot

compensate for the destabilising pressure gradient. The so-called ballooning modes are

pressure-driven instabilities, which are concentrated in regions with the least favourable

magnetic curvature, thus on the outboard side of the tokamak.

Besides the pressure gradient, the parallel current density is also a source of free

energy. The current density at the edge is usually dominated by the bootstrap current,

which can be efficiently driven by the steep pressure gradient. Figure 2.2 sketches the
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edge current density profile at the plasma edge. The physical mechanism of the bootstrap
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Figure 2.2: The edge current density is usually dominated by the bootstrap current, which can
be efficiently driven by the steep pressure gradient.

current is described here based on Peeters’s work [68]. In a tokamak, due to the radial

gradient in the magnetic field, particles with low enough parallel velocity (v‖) follow

banana orbits. When the particle moves from the LFS to the HFS, it experiences a

magnetic mirror effect and its v‖ is decreasing. If v‖ becomes zero, the particle gets

reflected. These particles are called trapped particles and they bounce backwards and

forwards around the outboard side of the plasma. Due to the drifts in the plasma, particles

are moving up- and down when they are moving relative to the magnetic field gradient. As

a result, the shape of the particle orbit is “banana shaped” in the poloidal cross-section,

as shown in figure 2.3.

Figure 2.3: A trapped particle orbit projected onto the poloidal plane. Figure is adapted
from [69].
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Two trapped ions at a given flux surface with opposite sign of parallel velocity are

drifting to opposite directions: one drifts inwards, while the other drifts outward. If a

density gradient exists in the plasma, the number of trapped particles populating the

orbit drifting inward is higher than the number of trapped particles populating the

orbit drifting outward. As a consequence, there will be a net flow of ions in the toroidal

direction. As electrons drift in the opposite direction, the net toroidal flow of electrons

points to the opposite direction, leading to a net toroidal current. This toroidal current

is called the banana current and it serves a seed current for the bootstrap current. The

main part of the bootstrap current is carried by the passing particles and is generated

through collisional coupling of trapped and passing particles.

The last term of eq. (2.13) describes the current driven modes, which are also called

kink modes. These modes are primarily driven by the parallel current density. The name

arises from the nature of this instability, such as it deforms the plasma into a kink shape.

The so-called peeling mode, which is important for the stability of the pedestal, is a limit

of the kink mode when the current gradient is infinitely large over an infinitesimally small

region at the plasma boundary [70]. Intuitively, the peeling mode is strongly localised at

the edge, and is driven by the rapid change in parallel current across the separatrix. It

is also important to note that the kink drive is negligible at large toroidal mode number

(n), but the peeling drive is not.

Eqs. (2.12)-(2.15) are very complex and simplified numerical approaches are required

to investigate the stability in experimental cases with realistic geometry. Local, high-n

treatment of the problem allows to examine the behaviour of peeling and ballooning

modes [71, 72], the two instabilities, which are associated with ELMs. Such an approach

implies that the main drive for the ballooning modes is the pressure gradient, while

the current density can stabilise ballooning modes through reduced magnetic shear.

The magnetic shear is the variation in the field pitch angle between flux surfaces:

s = d ln(q)/dr, where q is the safety factor.

The local, high-n limit of MHD modes can easily be calculated, but in a realistic

pedestal finite Larmor-radius effects stabilise high-n modes and the pedestal is typically

limited by finite-n modes. These modes are radially extended enough that different

poloidal harmonics may couple to each other. Furthermore, peeling and ballooning modes

may couple leading to the so-called coupled peeling-ballooning (P-B) modes, which have

enough radial extent to affect the whole pedestal.

To calculate the stability of P-B modes in the pedestal, first an equilibrium is needed

that matches the actual plasma as closely as possible (the operational point or OP). The
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growth rate (γMHD) for a range of toroidal mode numbers can then be calculated. The

equilibrium is stable if the growth rate is 0 for all mode numbers and unstable if there

is any non-zero growth rate. In numerical stability codes the stability criterion is often

set as a small proportion of the Alfven-frequency γMHD > c× ωA, instead of γMHD > 0.

c is typically ≈ 0.02 − 0.05 and ωA = B0/(R0
√

4πρ0) with ρ0 the mass density. Using

such a stability criterion, the stability of the pedestal can then be mapped around the

operational point as a function of the normalised pressure gradient and the edge current

density, which are the two main drives of P-B modes. A detailed description of the analysis

method can be found in [73]. New, perturbed equilibria are generated by multiplying the

pressure and current density profiles of the operational point with a Gaussian function

that is centred in the middle of the pedestal and has the same width as the pedestal. The

stability of these perturbed equilibria is then evaluated and visualised on the j−α space,

as illustrated in figure 2.4. j corresponds to the maximum normalised current density in

the edge and α is the normalised pressure gradient as defined in [74]:

α =
−2∂V/∂Ψ

(2π)2

(
V

2π2R0

)1/2

µ0
∂p

∂Ψ
, (2.16)

where V is the volume enclosed by the flux surface, R0 is the geometric centre of the

plasma and Ψ is the poloidal flux. The pink solid line in figure 2.4 is the P-B stability

boundary as defined by the applied stability criterion. The area below the pink curve is

the stable region, everything outside is linearly unstable. At low current and high α, high

n ballooning modes are dominant, while at low α and high current low n peeling modes

are more unstable. Mid-n, coupled P-B modes are typically unstable at the “nose” of the

P-B stability boundary. As indicated with the black arrows, in this model the pedestal

builds up in the recovery phase and hits the stability boundary just before the type I

ELM crash. The operational point of the so-called pre-ELM pedestal is indicated with

the cyan star. Note that in a realistic case the P-B boundary is not fixed during the

inter-ELM phase, but evolves as the plasma equilibrium changes.

In an ideal case, the OP of a pre-ELM pedestal is at or close to the stability boundary.

However, due to uncertainties either in α, j or the underlying plasma equilibrium, the OP

can be either in the stable or unstable side of the boundary. Inaccuracies in the equilibrium

reconstruction typically arise from the uncertainties of the magnetic measurements, which

are affected by slow data acquisition and the screening of the vacuum vessel and other

conducting structures. The equilibrium is also affected by the chosen set of additional

constraints on the pressure and current profiles and their uncertainties. α is generally
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Figure 2.4: Peeling-Ballooning stability diagram of the pedestal. The operational point (cyan
star) is shown as a function of j and α. The stability boundary is in magenta. The
black arrows represent the ELM cycle.

affected by the uncertainty of the kinetic profile measurement and the regularisation

introduced by the profile fit. In most tokamaks there is no reliable edge current density

measurement, thus j is typically estimated using bootstrap models. Accuracy of j relies

on the uncertainty of the kinetic profiles, the equilibrium, the validity of the bootstrap

current model and the assumption on the electric field profile for the Ohmic current.

In order to quantify the proximity of the OP to marginal stability, the pedestal

temperature is scaled up and down with respect to the operation point, which provides

a scan in ∇p. ∇p which is closest to marginal stability is called the critical pressure

gradient. The ratio of the critical and the experimental∇p provides a measure to quantify

the stability of the pedestal [73, 75]. This method can also be used to determine the

maximum pedestal height for a given pedestal width. In order to simultaneously predict

the width and height of the pedestal another constraint is required.

2.2 The EPED model

The EPED [76, 77] model provides predictions for both the height and the width of the

pedestal in a type I ELMy regime. According to this model, the pedestal is limited by

two instabilities, namely the kinetic ballooning modes (KBMs) and P-B modes. KBM is

a micro-instability, which can be described by introducing kinetic effects in the high-n

ideal ballooning MHD formalism [78]. Although the suppression of micro-instabilities via

sheared E×B flows at the edge of the plasma plays an important role in the formation of

the edge transport barrier, KBMs are not entirely suppressed [76]. It has been found in
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gyrokinetic simulations that the onset of the KBM instability is highly stiff [79, 80], i.e. the

mode growth rate increases quickly above the stability threshold, and that the stability

threshold of the KBM is close to that of the n =∞ ideal ballooning mode [81, 82]. Due

to the stiff onset and the insensitivity to E × B shear, KBM is proposed as a gradient

limiting instability in pedestal inter-ELM evolution.

The pedestal evolution during the type I ELM cycle according to the EPED model

assumption is illustrated in figure 2.5. After the ELM crash, the pedestal starts to build

up and is first limited by KBMs (arrow 1 in figure 2.5). The KBM is a nearly local

mode, which constrains the pressure gradient. In the EPED model the pedestal width

can further widen (with a limited gradient), until the P-B mode is triggered (arrow 2 in

figure 2.5). This leads to the crash and the pedestal collapses (arrow 3 in figure 2.5).

1

2

3

Figure 2.5: Evolution of the pedestal according to the EPED model assumptions. Figure is
adapted from [77].

The EPED model predicts the pedestal pressure height with the following inputs: the

toroidal magnetic field, the plasma current, the major radius, the minor radius, the plasma

triangularity and elongation, the pedestal density and the global β. These parameters are

used to construct a series of model equilibria with different pedestal widths. As shown in

figure 2.5, the stability of KBMs and P-B modes are evaluated for each pedestal width

to obtain the critical pedestal height. The intersection of the two curves representing the

stability constraints gives the EPED prediction for the height and width.

EPED does not calculate the KBM stability directly using gyrokinetic codes, but uses

a proxy to estimate the limit posed by KBMs. One approach is based on the experimental

evidence (originating from data at DIII-D) that there is a strong correlation between the

pedestal width and pedestal poloidal beta (βpol,PED). βpol,PED is the ratio of the pedestal
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pressure and the energy of the poloidal magnetic field:

βpol,PED =
pPED

B2
p/2µ0

. (2.17)

Based on the sensitivity of KBM stability on the magnetic shear, a heuristic scaling for

the pedestal pressure width is introduced in [76]:

∆Ψ = cEPED ·
√
βpol,PED , (2.18)

where ∆Ψ is measured in ΨN and is estimated as the average of the density and

temperature pedestal widths (∆Ψ = ∆ne/2 + ∆Te/2) and cEPED = 0.076 is a

constant obtained from a fit on experimental DIII-D data [76]. There is also significant

experimental evidence from other tokamaks that ∆Ψ ∼
√
βpol,PED [83–87]. An other

approach to estimate the KBM stability is evaluating the stability of the n = ∞ ideal

ballooning mode. With the so-called ballooning critical pedestal (BCP) technique [77],

the edge pressure gradient is taken to be critical, when the central half of the pedestal is

unstable to the n =∞ ideal ballooning mode.

Although the EPED model has successfully reproduced the experimentally observed

parameters of the pedestal in many studies [77, 86, 88, 89], there are examples, where the

EPED width scaling is not fully consistent with experimental observations. Many studies

have reported that the pedestal width increases with increasing gas rate at fixed βpol,PED

in JET-ILW H-modes [53, 54, 90, 91]. These observations suggest that the pedestal

transport assumption of EPED (i.e. KBMs are limiting the pedestal gradient) may not

be valid in all experimental conditions. Gyrokinetic simulations of H-mode pedestals in

different tokamaks have shown that other microinstabilities could also be unstable in the

edge transport barrier. These are discussed in section 2.3 in more detail.

Furthermore, the EPED model is not fully predictive as it requires the global β and

the pedestal density as input. These two parameters, however, are not known prior to

the experiment. The use of the global β for the pedestal prediction can be eliminated by

the use of integrated core-pedestal modelling [75, 92–96]. With this approach the global

β can be replaced by the heating power as input, which is known in advance of the

experiment. The global β can be predicted using core transport models, which however

require the pedestal density and temperatures as a boundary condition. As the pedestal

stability is affected by the global β, the core and edge parts of the simulations needs

to be executed in an iterative way. First the core transport model can be run assuming

an initial guess for the pedestal parameters. The global β output can then be used for
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the pedestal prediction providing the boundary condition for the core transport. This

process is then continued until the edge and core solutions are converged and provide a

self-consistent prediction for the global confinement.

The other input to the EPED model that is not known prior to the experiment is the

pedestal density. In some circumstances the density can be controlled with pellets or gas

fuelling, however this is not always the case. For example, in JET-ILW high triangularity

plasmas, the gas fuelling has very little effect on the pedestal density [90]. Also, the gas

fuelling rate may need to be specified to control the ELM frequency avoiding high Z

impurity accumulation in the core plasma. Thus, for a fully predictive pedestal model,

the pedestal density needs to be predicted. One approach, which is used to predict the

pedestal density is based on the Neutral Penetration Model (NPM) [97]. This model

assumes that the pedestal density is set by the edge particle flux and that the pedestal

width is proportional to the neutral penetration length. As the mean free path of the

neutrals is different with different isotope mass, due to the different velocities at the same

temperature, a difference in neutral penetration is expected between H and D plasmas.

The isotope dependence of the neutral penetration is investigated experimentally and

with edge transport simulations in sections 5.4 and 6.3, respectively.

2.3 Inter-ELM pedestal transport

Although the formation of the pedestal is associated with a strong reduction of turbulent

transport at the plasma edge, the remaining residual transport has a fundamental role in

defining the pedestal structure. The inter-ELM transport determines the trajectory of the

density and temperature profiles evolution prior to the ELM crash and thus it ultimately

defines the operating point at which the plasma becomes unstable to peeling-ballooning

modes. The heat source in the pedestal is given by the outward heat flux from the core,

while the density pedestal is maintained by particle flux from NBI in the core, ionisation

of neutral particles from the edge and, possibly, a turbulent particle pinch.

As it has been discussed in the previous section, the EPED model assumption is that

the dominant microinstability responsible for the residual transport in the edge transport

barrier is the KBM. Several studies utilising linear and nonlinear global gyrokinetic

simulations emphasise the role of other microinstabilities in the pedestal of JET-ILW

plasmas [82, 98–102]. The most recent analyses [101, 102] point out that in typical

JET-ILW plasmas the ratio of the electron heat diffusivity (χe = Qe/∇Te, with Qe

the electron heat transits) far exceeds the particle diffusivity (D = Γ/∇n, with Γ the
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particle flux), implying that the particle source is small compared to the heat flux from

the core1 [102, 103]. In the case of a small particle source, MHD-like instabilities (like

KBM) would mostly impact the particle transport as they produce equal diffusivities

in both the particle and heat transport channels. Thus, other microinstabilities such as

electron temperature gradient modes (ETGs), ion temperature gradient modes (ITG)

or microtearing modes (MTMs) are likely to be responsible for dominating the heat

transport. For example, the degradation of the temperature pedestal in JET-ILW (where

significant gas injection is needed for core W control) in comparison to JET-C can partly

be explained by more robust ITGs and ETGs in the JET-ILW pedestal, leading to limited

pedestal temperature and demanding more heating power to achieve similar pedestal

pressure compared to JET-C [99, 102]. These new results do not necessarily contradict

the EPED model. KBMs could clamp the pressure gradient by acting on the density, but

not contribute much to the heat transport [102]. In the present thesis, the EPED width

scaling will be discussed in view of the pedestal structure analysis of JET-ILW plasmas

and the inter-ELM transport is analysed experimentally by means of a power balance

analysis, but the isotope effect on KBMs and other microinstabilities in the pedestal is

beyond the scope of this work.

1The use of effective diffusivities in this manner assumes neither the absence of pinches nor the absence
of nonlocal effects, but is, rather, a convenient measure of the gradient that can be supported by a given
flux or source.
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Chapter 3

Isotope dependence of plasma

confinement

In order to predict the performance of burning plasma experiments, it is particularly

important to understand how the isotope mass of the fuel affects the plasma transport

and confinement. In present tokamaks typically pure deuterium plasmas are examined.

As most of the existing data was collected in deuterium experiments, the majority of

the current models and simulations are optimised and/or validated with deuterium only

plasmas. However, the isotope composition will be changed to a deuterium-tritium (DT)

mixture for future fusion plasmas such as JET-DTE2 [46, 58] and ITER [22]. Although

a positive isotope mass scaling of the thermal energy confinement time in H-mode

plasmas has been observed in several tokamaks such as JET [104], JT-60U [83, 105, 106],

DIII-D [107], ASDEX [108, 109] and ASDEX-Upgrade [110], this favourable isotope

dependence has not yet been fully understood theoretically. This chapter summarises the

current understanding on the isotope dependence of confinement in tokamak plasmas.

3.1 Isotope dependence of global confinement

An overview on the effect of isotope mass on confinement can be gained from scaling

laws. Scaling laws are developed to provide an empirical prediction for the performance

of new devices. These are based on data regression of large amounts of data collected

in several different tokamak experiments, but do not rely on any fundamental laws of

physics. The most widely used scaling for the thermal energy confinement time (τE,th) of

ELMy H-modes is the so called IPB98(y,2) scaling [111, 112]:

τE,th = 0.0562×A0.19I0.93
p B0.15

T P−0.69
abs n0.41R1.97ε0.58κ0.78 , (3.1)
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where τE,th is measured in [s], A is the effective isotope mass (A = mion/mproton), Ip is the

plasma current in [MA],BT is the toroidal magnetic field in [T], Pabs is the absorbed power

in the plasma [MW], n is the averaged plasma density in [1019 m−3], R is the plasma

major radius in [m], ε is the inverse aspect ratio (ε = a/R) and κ is the elongation.

The experimental thermal energy confinement is often normalised to the scaling law

prediction. This parameter is called the H-factor: H98 = τE,th/τIPB98(y,2). The IPB98(y,2)

scaling is based on data collected from 11 different tokamaks and it shows a positive

isotope scaling (∼ A0.19) of the thermal energy confinement time. The energy confinement

in most of the H-mode experiments is in qualitative agreement with the positive isotope

mass dependence appearing in the IPB98(y,2) scaling [104, 106–110].

The plasma transport in the core of a tokamak plasma is typically dominated by

turbulent fluctuations on the scale of the ion Larmor radius [113]. Simple random walk

estimates of the turbulent transport results in the so-called gyro-Bohm scaling of the

local heat transport [114, 115]:

χgyro−Bohm = ρ∗ · χBohm , (3.2)

where χgyro−Bohm is the gyro-Bohm heat diffusivity, ρ∗ is the ion Larmor radius

normalised to the plasma minor radius and χBohm is the Bohm heat diffusivity: χBohm ∼

T/eB [23]. As ρ∗ scales as ρ∗ ∼
√
A, the Gyro-Bohm scaling predicts an unfavourable

dependence of local transport on isotope mass:

χgyro−Bohm ∼
√
A . (3.3)

In ideal circumstances (such as fixed density, temperature, heating and fuelling profiles),

this leads to [116]:

τE,th ∼
1√
A
, (3.4)

which implies that the energy confinement time should decrease with increasing isotope

mass. However, this simplistic picture does not capture all elements of the underlying

physics mechanisms and theory predicts that gyro-Bohm scaling breaks in many different

ways.

One mechanism, which can break up the effect of local gyro-Bohm heat transport

on a global scale is profile stiffness. Due to profile stiffness, even in the case of the local

heat transport being gyro-Bohm (χ ∼
√
A), the global energy confinement time does

not necessarily follow the gyro-Bohm scaling (τE,th ∼ 1/
√
A), but Bohm or nearly Bohm
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scaling instead [117]. Modelling the core transport of JET-ILW L-mode plasmas with the

TGLF quasi-linear turbulence code [118, 119] demonstrated that stiffness can overcome

the local gyro-Bohm scaling, which explains the absence of isotope mass dependence of

energy confinement in the plasma core for the investigated H and D JET-ILW L-mode

plasmas [120]. Note that the isotope dependence of τE in L-modes is generally found to

be weaker than in H-modes [104, 109, 121, 122].

The plasma heating mix is another important factor when the isotope effect is studied.

A favourable isotope dependence on the global confinement in ECRH heated L-mode

plasmas on ASDEX-Upgrade could be explained by the isotope mass dependence of the

collisional electron-ion energy heat exchange [121]. The heat exchange between ions and

electrons due to collisions depends on the ion mass (mi) [7]: Pei ∝ Z2n2(Te−Ti)/(miT
3/2
e ).

As a result, the additional electron heating in H was transported by the ion channel

in the cited ASDEX-Upgrade L-modes. Transport simulations with the same transport

coefficients for H and D (thus, the ion mass only appears in the energy exchange term)

could explain the lower energy confinement time in H and the experimental kinetic profiles

could be reproduced [121]. The inverse mass dependence of the energy exchange term also

plays a role in the weak, but favourable isotope dependence of τE in JET-ILW Ohmic

plasmas [123, 124].

The gyro-Bohm scaling of local heat transport is confirmed by gyrokinetic simulations

for electrostatic fluctuations with adiabatic electrons, no collisions and no background

flows [125], but any departure from these assumptions could modify the mass scaling.

The electromagnetic stabilisation of ITGs can be stronger at higher isotope mass [126].

Similarly, the effect of E × B flow shear (γE×B), which is known to suppress ITG

turbulence [127], can have a stronger impact with increasing isotope mass, because γE×B

has no dependence on A, while the ITG growth rate scales as γITG ∼ A−1/2 for same

kinetic profiles [128]. Thus, the E × B flow shear can more effectively suppress ITGs

at higher isotope mass, at constant γE×B. The effect of collisions could also break the

gyro-Bohm scaling as demonstrated by non-linear gyrokinetic simulations for JET-ILW

H-mode plasmas [129]. The fast ion pressure may also lead to turbulence suppression.

Different heating power settings and fast ion slowing down times in plasmas with different

main ion species can break the gyro-Bohm scaling through fast ion stabilisation [126, 130].

Although, this is not an intrinsic isotope dependence of the transport, but is due to

differences in the heating schemes in different species.
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3.2 Isotope dependence of the H-mode pedestal

Changing edge conditions with isotope mass could also break the gyro-Bohm scaling of

the global confinement. Transport simulations on JET H, D and T plasmas with a model

that has pure gyro-Bohm scaling for the local transport, indicate that the increase in the

edge temperatures with isotope mass could lead to a favourable isotope scaling of the

global confinement [116].

Previous studies investigating the isotope dependence of the pedestal include reports

from JT-60U, JET and ASDEX-Upgrade. A series of H, D, T and DT ELMy H-modes

were executed in JET with the Carbon wall (JET-C), which showed a weak isotope

dependence of the thermal energy confinement time [131, 132]. The strong positive

isotope dependence of the pedestal stored energy was compensated with a weak negative

isotope dependence of the core plasma, which indicates that the effect of the pedestal in

understanding the isotope dependence on confinement is essential.

Isotope experiments on JT-60U found a positive isotope dependence of the thermal

energy confinement time [83, 105, 106], but analysis of the core transport suggests that

this effect arises from the core and the pedestal structure has no direct dependence

on the isotope mass [106]. The improved confinement is attributed to higher inverse

normalised temperature gradient length (R/LT = R∇T/T ) in the core in D compared to

H and/or higher fast-ion pressure in D than in H. Figure 3.1a shows the ion heat transport

coefficient (χi) as a function of R/LTi (or ∇Ti/Ti) in the core (at r/a = 0.6) for a series

of H and D ELMy H-modes in JT-60U. The horizontal grey line denotes plasmas with

similar input power, showing that the temperature gradient length is higher in D than in

H at given input power, indicating a reduction in heat transport with increasing isotope

mass. Although the pedestal pressure increased with increasing isotope mass at given

input power, it is a result of the reduced transport in D leading to higher total poloidal β

(βTOT
p ), which has a stabilising effect on the pedestal [133–135]. The increase in the

slowing down time of the fast ions for D compared to H could also contribute to the

higher βTOT
p in D.

Recent experiments on ASDEX-Upgrade attempted to obtain similar pedestal

pressures in H and D at similar input power and fuelling gas rates by varying the plasma

triangularity (δ) at the edge [136, 137]. The pedestal stability is expected to improve

with increasing triangularity [36, 62], thus the degraded pedestal pressure in H can be

compensated by higher δ. The analysis of the above plasmas indicated that the pedestal

has a dominant role in the isotope dependence on global confinement, although differences
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(a) (b)

JT-60U JET-ILW

Figure 3.1: (a) The ion heat transport coefficient (χi) as a function of R/LTi
(or ∇Ti/Ti) in

the core (at r/a = 0.6) for a series of H and D ELMy H-modes in JT-60U. Figure
is adapted from [106]. (b) Effective heat diffusivity (electron+ion) as a function of
R/LTe

∼= R/LTi in the core (at ρTOR = 0.5) for JET-ILW type I ELMy H and D
H-modes. Figure is adapted from [104].

in core confinement between H and D were also observed at high input power most likely

due to higher fast ion pressure in D compared to H.

Type I ELMy H-mode plasmas in JET with the ITER-like Wall (JET-ILW) showed a

positive scaling of τE,th with the isotope mass: τE,th ∝ A0.4 [104, 138]. At the same input

power and fuelling gas rate, the pedestal pressure is typically reduced in H compared

to D, primarily due to lower pedestal density in H. In contrast to the above mentioned

JT-60U experiments, in JET-ILW the gradient length (R/LT ) of core temperature profiles

was nearly identical in H and D, despite large variations in the heat flux as shown

in figure 3.1b [104, 138]. This suggests that the isotope effect may originate in the

pedestal [104]. In JET-ILW, at similar pedestal pressure in H and D, the pedestal density

and temperatures are not matched, but lower density in H compared to D is compensated

with higher temperature. This is in contrast to JT-60U experiments, where density and

temperature profiles were matched in H and D when the stored energy was matched by

raising the H-NBI heating [83, 105, 106] and points to a difference in particle confinement

in the two tokamaks [104].
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Chapter 4

Role of the edge current in

H-mode pedestal stability

As discussed in chapter 2, the ELM trigger is associated with the increase of the edge

pressure gradient and/or the edge current density, which can drive coupled P-B modes

unstable. It has been observed in JET-ILW type I ELMy H-modes that the pedestal

stability is consistent with the P-B model in discharges with low D2 gas fuelling rates,

while, at higher gas rates and medium to high β, pre-ELM pedestals are found to be

stable to P-B modes, although type I ELMs occur experimentally [53]. Furthermore, at

high gas rates, the inter-ELM temperature pedestal growth is saturated half way through

the ELM cycle leading to plasmas with reduced confinement [54].

Saturation of the pedestal temperature and its gradient prior to the ELM crash has

also been observed on ASDEX-Upgrade [139, 140], DIII-D [141] and on C-mod [142],

although the dependence of the saturation on the fuelling gas rate is not discussed in these

studies. These reports have also found that the recovery time of the density pedestal is

generally shorter than that of the temperature pedestal. Furthermore, the saturation

of the pedestal temperature gradient is correlated with the onset of quasi-coherent

fluctuations, implying that these fluctuations may play a role in regulating the edge

transport. Possible explanations for the delay of the ELM crash when the pedestal

evolution is saturated are also considered. The report on DIII-D pedestals [141] argues

that quasi-coherent fluctuations limit and saturate the pedestal gradient, but allow the

width and height to possibly further increase. However, experimental data where both

the density and temperature heights and gradients are saturated is also presented, leaving

the question of the ELM crash delay open. A recent study on ASDEX-Upgrade pedestals

shows that the total stored energy increases while the pedestal parameters are saturated,
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possibly causing stabilisation of P-B modes and delaying the ELM crash [140]. A time

lag in the build-up of the total edge current with respect to the pressure gradient due to

current diffusion could also be responsible for the delay of the ELM crash. This possibility

has been investigated on ASDEX-Upgrade [139, 143], showing that the current diffusion

only plays a minor role in the edge of ASDEX-Upgrade H-mode plasmas.

In order to try and understand the origin of the inconsistency between the pedestals

stable to P-B modes and the experimentally observed type I ELMs on JET-ILW, in

this chapter the time evolution of the edge current during the ELM cycle is analysed,

investigating both the edge bootstrap current density profile (jBS) and the Ohmic

component (jOH). A similar approach is taken as in [139, 143] for ASDEX-Upgrade,

but this investigation accounts for pedestals at higher temperature, where potentially

the effect of current diffusion is more dominant due to the higher plasma conductivity.

The bootstrap current is calculated with the local neoclassical code NEO [144, 145],

and the Ohmic contribution to the total current is accounted for, by solving the current

diffusion equation in the plasma. For this analysis the JETTO [146] transport code has

been utilised to consider a realistic geometry.

In the present chapter, first the diagnostic and analysis methods used to investigate

the pedestal structure are introduced. These measurements and techniques are used

throughout this thesis. In section 4.2 the calculation of the edge bootstrap current in

JET-ILW H-modes is discussed. The inter-ELM evolution of the edge bootstrap current

is studied in section 4.3. Section 4.4 analyses the effect of current diffusion on the evolution

of the edge current inter-ELM for a range of JET-ILW pedestal collisionalities.

4.1 Diagnostics and analysis methods

The measurement of the edge current density is very challenging, and to date there is no

available diagnostic for this purpose on JET. However, many other plasma parameters

can be measured, which then can be used to evaluate the bootstrap current using models.

These measurements and other techniques, which are utilised throughout this thesis to

examine the pedestal structure are introduced here. The main quantities investigated in

this work are the electron density, electron and ion temperatures and the divertor target

conditions.
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Thomson scattering

The main workhorse for kinetic profile measurements on JET is the high resolution

Thomson scattering (HRTS) [147]. The Thomson scattering diagnostic (TS) is able to

measure the electron density and temperature in the plasma. A high energy laser pulse is

injected into the plasma and the light scattered by free electrons is collected. The electron

density can be calculated from the total intensity of the scattered light, while the Doppler

broadening of the scattering spectrum carries information on the electron temperature [8].

One very important feature of TS is the intrinsic alignment of the electron temperature

and density profiles as it is measured in the same scattering volume. The TS system on

JET measures profiles in 63 points along the outer radius of the plasma as shown in

figure 4.1 with a 8 mm spatial resolution. The pulse duration of the laser is 20 ns with a

20 Hz repetition rate. The low repetition rate limits the information collected from the

ELM cycle, thus the ELM-synchronisation technique is used to improve signal statistics,

as discussed in the next subsection.
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Figure 4.1: The geometry of the TS and edge interferometry is shown in a poloidal cross-section
of JET.
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The steep gradient region is of particular importance for understanding the pedestal

behaviour. However, in this region the gradient length of the kinetic profiles is comparable

to the scattering length of a given TS channel. This leads to higher weighting of the

temperature in the high density region within the scattering length. Thus, the instrument

function of the diagnostic system has to be taken into account. In the fitting code being

used here, a density weighted deconvolution method [148] is implemented, which uses the

instrument function and the separately recovered density profile for the deconvolution of

the temperature profile. The instrument function applied is described in detail in [149].

ELM synchronisation of kinetic profiles

As the typical ELM frequency on JET is of the order of 10-100 Hz, the time resolution

(20 Hz) of the TS diagnostic is too low to be able to describe the inter-ELM evolution

before an individual ELM. In order to maximise the number of profiles characterising a

given phase of the evolution, the so-called ELM synchronisation technique is used. For

this purpose, the TS profiles are collected from a steady time window of the discharge,

assuming that each individual inter-ELM evolution is similar. The ELM cycle is divided

into intervals with a given percentage, as shown in figure 4.2 with 20 % bins. The ELM

marker in figure 4.2 is the outer divertor photon flux of the 527 nm Beryllium line

which is a good indicator for the ELMs. 100 % corresponds to the ELM crash and 0 %

corresponds to the ELM crash of the preceding ELM cycle. In this case, the 0-20 %

interval is excluded from the analysis as the profiles in this interval are dominated by

the ELM crash. Composite profiles are taken from each 20 % bin and a modified tanh

function [148] is fitted to the profiles. To account for the variation of the plasma position

during the discharge, the radial position of each profile is aligned relative to the separatrix

position provided by the EFIT [150, 151] equilibrium reconstruction. The systematic

error introduced due to the variation of the radial shift when overlaying the TS profiles

is negligible compared to the stochastic errors [152]. The ELM synchronisation technique

assumes that the ELM cycles during the steady phase of a discharge are nearly identical.

However, several studies have reported differences in the ELM period and/or ELM energy

losses between ELMs even in steady plasmas as for example shown in [153–156]. These

differences certainly introduce systematic errors in the ELM synchronisation analysis,

nevertheless, the composite profile represents the average behaviour of the ELM cycles

in a given discharge. The mtanh fit gives the height, width, position and slope of the

profiles. Furthermore, the profiles can be used as input for further analysis as shown in

the next section in case of bootstrap profiles calculation. The pedestal fitting method
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outlined above is implemented in the HRTSfit pedestal fitting tool, which code has been

used for the work presented in this thesis.
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Figure 4.2: ELM cycle is normalised to a relative time scale (from 0 % to 100 %) and divided
into 20 % long intervals.

Interferometry

Plasma interferometry is a routinely applied technique to measure the line integrated

plasma density [157]. The refractive index in the plasma is a function of the plasma

density. Thus, a probing wave directed through the plasma suffers a phase shift in

comparison to a reference wave propagating in vacuum. The phase shift is proportional

to the line-integrated plasma density:

∆φ = − ω

2cnc

∫
nedl , (4.1)

where ω is the frequency of the probing light, nc is the critical density and c is the speed

of light. JET is equipped with a far infrared interferometer measuring the plasma density

with a submillisecond time resolution using 4 vertical and 4 lateral channels [158, 159].

In the present thesis, the edge interferometer channel will be used, which is shown by the

solid red line in figure 4.1.

Electron cyclotron emission

The electron cyclotron emission (ECE) diagnostic provides local electron temperature

measurements in the plasma [157]. Electrons in the plasma emit microwave radiation

at the gyrofrequency: f = eB/2πme with me the electron mass. In an optically thick
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plasma (which is typically the case in the core of a tokamak) the radiated intensity can

be assumed as black body radiation and the electron temperature can be evaluated. As the

magnetic field in a tokamak scales as 1/R, the gyrofrequency of electrons is a function of

the radial position, thus a radial localisation of the Te measurement is possible. On JET,

the ECE diagnostic has 96 channels and measures the electron temperature profile with a

millisecond time resolution [160]. In this thesis, ECE is not used for profile measurement,

because in the investigated plasmas the pedestal is optically thin. However, ECE channels

measuring just radially inward the pedestal are utilised to follow the fast time evolution

of the ELM crash.

Charge exchange recombination spectroscopy

Charge exchange recombination spectroscopy (CXRS) is used to measure the ion

temperature and the plasma rotation velocity. CXRS is usually applied on the NBI

heating beam. Due to the presence of the neutrals, charge exchange recombination

reactions take place along the beam lines. Charge is transferred from the neutral beam

to the main ions and plasma impurities. The recombined ion is born in an excited state

leading to photon emission at characteristic wavelengths. The ion temperature and plasma

rotation are measured from the Doppler broadening and the shift of the spectral lines

using dedicated spectrometers

JET has separate observation systems for the edge [161, 162] and core [163, 164]

profiles. The core CXRS diagnostic has recently been upgraded enabling simultaneous

measurement of main ion and impurity charge exchange [164]. The impurity charge

exchange measurements in JET-ILW is typically carried out using diagnostic Ne puffs.

The maximum time resolution of the diagnostic is 10 ms and the spatial resolution is

≈ 5 cm.

Langmuir probes

Langmuir probes are small electrodes inserted into the plasma to determine the electron

density, temperature and ion saturation current [157]. This is an invasive technique as

the probe is in direct contact with the plasma. Thus, in tokamaks, Langmuir probes are

only used at the plasma edge. Langmuir probes are typically installed on the limiters and

divertor targets. The probes are externally biased with respect to the plasma. Information

on ne and Te can be gained by sweeping the bias on the probe and registering the

current-voltage characteristics. Figure 4.3 shows the position of the Langmuir probes in
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the JET-ILW divertor. These probes were used to support the results of edge transport

simulations in section 6.3

C/C
V/H

Figure 4.3: Position of the Langmuir probes (in red) in the JET divertor. The magnetic
configuration and the position of the strike points for two frequently used divertor
configuration are also shown. The so-called ”Corner” or C/C divertor configuration,
where both divertor strike points are close to the pumping duct is shown in green.
The so-called V/H configuration, where the inner strike point is on the vertical
target and outer strike point is on the horizontal target is shown in blue.

Infrared thermography

Heat deposition onto the divertor target can be estimated by infrared (IR) thermography.

The photon flux emitted from a radiating body at a given wavelength depends on its

surface temperature. With a carefully chosen wavelength and known emissivity, the

surface temperature can be evaluated using IR thermography. The heat flux deposition

can be reconstructed from the time evolution of the surface temperature by solving the

heat diffusion equation in the divertor target. On JET, several cameras are installed

to view most of the divertor target area [165]. The systems provide reconstruction of

the heat deposition profiles with time resolution in the submillisecond range, which are

utilised in section 6.3 to constrain edge transport simulations.

4.2 Edge bootstrap current density profile

In the steep pressure gradient region at the edge of H-mode plasmas, the current density

is usually dominated by the bootstrap current. In the present section only the bootstrap

current is considered and the effect of the Ohmic current on the inter-ELM evolution of

the total edge current is discussed in section 4.4.
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Trapped particles that are scattered into passing orbits before completing their

banana orbits do not contribute to the bootstrap current. As the bootstrap current is

associated with the existence of trapped particles, it strongly depends on the collisionality.

Collisionality (ν) is the ratio of the particle collision frequency and the banana bounce

frequency. The electron collisionality is calculated in this thesis as defined by eq. (18b)

in [166]:

ν∗e = 6.921× 10−18 qRneZeff ln Λe

T 2
e ε

3/2
, (4.2)

where Zeff is the effective ion charge, ln Λe = 31.3− ln(
√
ne/Te) is the Coulomb logarithm

and ε = a/R the inverse aspect ratio.

The bootstrap current can either be evaluated using first principle neo-classical

transport solvers or several formulas exist, which express the bootstrap current as a

function of geometric parameters of the magnetic equilibrium and the gradients of the

kinetic profiles. One widely used formula is the Sauter-formula [166, 167], which is an

analytical fit to the results of the CQLP neoclassical transport solver for various plasma

conditions using an approximate linearised collision operator. It expresses the bootstrap

current as a function of density and temperature gradients:

jSauter
BS =

I(Ψ)p(Ψ)

Bax

[
L31︸︷︷︸

coeff. of ∇ne

∂ lnne
∂Ψ

+Rpe(L31 + L32)︸ ︷︷ ︸
coeff. of ∇Te

∂ lnTe
∂Ψ

+

+ (1−Rpe)(1 +
L34

L31
α)L31︸ ︷︷ ︸

coeff. of ∇Ti

∂ lnTi
∂Ψ

]
, (4.3)

where I(Ψ) = RBt, Rpe = pe/p and α, L31, L32, L34 are coefficients, which can be

analytically computed from equations (13) through (18) in [166]. Due to the approximate

electron-ion collision operator used in the simulation and also due to the simplified fitting

formula used at high collision frequency, the Sauter-formula is less accurate at higher

electron collisionality [168].

In this chapter the bootstrap current density is computed from first principles with the

local neoclassical transport code NEO [144, 145], which solves the drift-kinetic equation

with the full linearised Fokker-Planck collision operator including all inter-species

collisions. This approach provides a more accurate estimation of the bootstrap current

than the Sauter-formula, especially at high collisionality, where the Sauter-formula has

been shown to overestimate the bootstrap current by up to 100 % compared to NEO for

JET-ILW pedestals [53]. The parallel bootstrap current density (jBS) and the parallel

component of the total current density (jtot) profiles in this chapter are expressed in the
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form of a flux surface average:

jBS =
〈jjjBS ·BBB〉
Bax

, jtot =
〈jjjtot ·BBB〉
Bax

, (4.4)

where BBB is the magnetic field and Bax is the magnetic field on axis.

The inputs for NEO are the plasma equilibrium reconstructed with EFIT, the electron

(Te) and ion (Ti) temperatures and the electron (ne) and ion density (ni) profiles.

The kinetic profiles are obtained by fitting the electron kinetic profiles from the TS

measurements, assuming equal electron and ion temperatures (consistent with charge

exchange measurements at the pedestal top), constant line averaged Zeff measured by

visible Bremsstrahlung and Be as the intrinsic impurity.

In order to track the time dependent evolution of jBS during the JET-ILW type I ELM

cycle, it is divided into 20 % long intervals and the kinetic profiles are ELM-synchronised.

The 0-20 % interval is excluded from the analysis as the profiles in this interval are often

dominated by the particular dynamics of each ELM crash. Composite profiles are taken

from each 20 % bin of a steady phase of the discharge (> 10 × τE,th) and an mtanh

function is fitted to both the electron temperature and density profiles.
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Figure 4.4: The ne and Te experimental data for the 20-40 % and 80-99 % intervals in #84794.

Examples of fitted ne and Te profiles derived from composite TS measurements are

shown in figure 4.5a and 4.5b, respectively, for JET-ILW discharge #84794 (1.4 MA/1.7

T, input power PIN ' 16 MW, average triangularity δ = 0.27, injected gas rate ΓD =

2.8 · 1021 e/s) for the four inter-ELM intervals from 20-40 % to 80-99 %. The ne and Te

experimental data for the 20-40 % and 80-99 % intervals in figure 4.4a and b show that

the observed difference in the fitted profiles is beyond any experimental uncertainty, as

seen in the scatter in the data points. Figure 4.5c shows the inter-ELM evolution of the

edge electron pressure gradient. In this discharge the peak pressure gradient continuously
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increases during the inter-ELM cycle as typically observed in H-modes with low gas

injection rate. The inter-ELM evolution of the jBS profile is shown in figure 4.5d, showing

a similar time evolution to that of the pressure gradient, as expected.
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Figure 4.5: Time evolution of (a) the edge electron density (ne); (b) the edge electron
temperature (Te); (c) the edge electron pressure gradient (∇pe) and (d) the edge
bootstrap current density (jBS) profiles in the inter-ELM cycle of pulse #84794,
evaluated for the four intervals: 20-40 %, 40-60 %, 60-80 %, 80-99 % of the total
ELM cycle.

The sensitivity of the jBS profiles to the uncertainties of the input parameters ne, Te

and Zeff , has been investigated. For this purpose, “modulated” ne and Te profiles were
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constructed, whereby each fitted parameter of the mtanh function (width, height, position

and slope) was substituted with a Gaussian random number. The mean and variance of

the Gaussian random numbers are given by the mean and variance of the parameter

estimates of the mtanh fit. For each case, the jBS profile calculation with NEO is then

repeated several times (∼ 50) using as input the different “modulated” profiles. The line

averaged Zeff is varied within the experimental uncertainty of ±10 %. The result of the

sensitivity analysis is shown in figure 4.6, where all three parameters (ne, Te, Zeff) are

modulated within their uncertainties. The percentile of the resulting jBS profiles gives

the 1σsd and 2σsd error bars where σsd is the standard deviation. The error bars are

visible in figure 4.6 in red and blue, respectively. Since all three parameters (ne, Te, Zeff)

were assumed to be independent in the uncertainty analysis, the resulting error bars are

somewhat overestimating the error. Systematic errors were not taken into account in this

analysis.

Tests where only one input parameter is“modulated”have shown that the uncertainty

in the calculated jBS is dominated by the uncertainty in the Te profiles. This is due to

the fitted TS Te profiles having a larger uncertainty than the ne profiles in the JET-ILW

dataset analysed in this study. In the remainder of this chapter the 1σsd error bars are

used as the uncertainty in the jBS profile.
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Figure 4.6: Edge jBS profile for pulse #84794 in the last 20 % of the ELM cycle (black) and
1-σsd (red) and 2-σsd (blue) uncertainties, derived from the sensitivity analysis on
the jBS calculation to ne, Te and Zeff uncertainties.
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4.3 Inter-ELM evolution of the edge bootstrap current

In JET-ILW type I ELMy H-modes at low D2 gas rates the edge pressure gradient

continuously increases during the inter-ELM phase, until the ELM crash [54]. On the

other hand, at high D2 gas fuelling rates and at high β, the pressure edge gradient is

typically saturated in the second half of the ELM cycle and the pre-ELM pedestals have

been shown to be stable to P-B modes [53, 54]. In the latter cases, the global confinement

(H98) is lower than in pulses with low gas rates at the same input power, primarily due to

lower temperature pedestals. In this section the inter-ELM evolution of the edge bootstrap

current is investigated and compared to the time evolution of the density, temperature

and pressure gradients in the ELM cycle.

The set of type I ELMy Deuterium H-mode discharges studied in [53, 54] are

considered here. The plasmas were at 1.4 MA/1.7 T, low triangularity (δ), Psep = 4→ 14

MW, gas rate: ΓD2 = 2.8 → 18 · 1021 e/s, normalised β: βN = 1.2 → 2.8 and

ELM frequency: fELM = 12 → 120 Hz. Psep is the power across the separatrix:

Psep = Ploss−Prad,bulk = Pabs−dW/dt−Prad,bulk, where Pabs is the total absorbed power

given by the sum of the Ohmic power, the absorbed neutral beam power (accounting for

shine through) and absorbed ion cyclotron heating power (where applicable). Prad,bulk

is the total radiated power inside the separatrix as estimated by a weighted sum of

representative bolometer channels, Ploss is the loss power given by Ploss = Pabs − dW/dt

and dW/dt is the rate of change of the total stored energy, which is negligible in the

steady phases of the discharges.

In the experiment, at a given Psep, the electron pressure at the pedestal top

(pe,PED [Pa] = 1.602×ne,PED [10−19m−3]×Te,PED [eV], where 1.602 originates from the

elementary charge as Te is measured in eV) is reduced with increasing gas rate mainly via

a reduction in the pedestal temperature. The pedestal collisionality (νe,PED) is mainly

driven by the variation in the pedestal temperature in the power and gas scans [53] and

varies between νe,PED = 0.3→ 4.5.

Figure 4.7 compares the inter-ELM evolution of jBS at different gas rates: at low

Psep = 4 MW (4.7a) and at high Psep = 13 MW (4.7b). jBS is reduced at low power

due to the lower Te and thus higher ν∗ compared to the high Psep case. At “low” gas

injection (where the pre-ELM stability is consistent with the P-B model [53]), the peak

jBS continuously increases during the ELM cycle. This change in peak jBS is beyond the

uncertainties indicated with the 1σ error bars. Conversely, at “medium” and “high” gas

rates the evolution of peak jBS is roughly constant throughout the second half of the
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ELM cycle within the 1σ error bars. This saturation of peak jBS during the ELM cycle

at high gas rate is observed both at low and high input power.
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Figure 4.7: Evolution of peak jBS during the ELM cycle in type I ELMy H-modes at low
(2.8 · 1021 e/s), medium (8.4 · 1021 e/s) and high (18 · 1021 e/s) gas rates at constant
Psep: (a) lowest power and (b) highest power of the power and gas scans dataset.

It is interesting to compare the inter-ELM jBS evolution to that of the separate drives

of ∇pe, namely the temperature and density gradients, as shown in figure 4.8, where all

values are normalised to the pre-ELM phase value. Figure 4.8 shows the evolution of the

peak of the edge jBS profile and the peak of the gradients, thus the radial location the

data corresponds to is changing in time. For all shots of the dataset, it has been observed

that peak jBS , peak∇pe and peak∇Te always exhibit the same time evolution, regardless

of the ∇ne inter-ELM evolution. Figure 4.8a shows the case of pulse #84794 where the

pedestal ν∗ is lowest in the scan: peak ∇ne, peak ∇Te and peak ∇pe all increase during

the ELM cycle. In figure 4.8b a higher ν∗ case (#87342) is shown, where the evolution of

peak ∇pe is saturated and closely follows the evolution of peak ∇Te, but the evolution

peak∇ne is different, with∇ne first increasing and then decreasing. This latter behaviour

is typical of the whole dataset, suggesting that the evolution of peak ∇pe is driven by

the time evolution of peak ∇Te.

The dominant effect of the temperature gradient on jBS can be understood by

separately evaluating the ∇ne and ∇Te terms of ∇pe ∼ ne∇Te + Te∇ne. In JET-ILW

pedestals, the maximum ∇Te is typically located radially inwards of the maximum

∇ne [169–171], as can be seen e.g. in figure 4.5 for pulse #84794. This relative radial

shift between Te and ne gradients leads to a smaller contribution of the Te∇ne term to

∇pe, as the temperature is low where the density gradient peaks, explaining why the

pressure gradient is dominated by the ne∇Te term. The ratio of ne∇Te/Te∇ne is ∼ 4 in

the dataset at the maximum ∇pe.
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Figure 4.8: Inter-ELM evolution of peak jBS and peak of pe, ne, Te gradients at low and high
gas rates at Psep = 13 MW. All values are normalised to the pre-ELM phase. The
error bars are shown only for peak jBS to avoid overcrowding of the plot, but all
data points have error bars of magnitude similar to those shown.

For the study of the separate contributions from ∇ne, ∇Te and ∇Ti to the bootstrap

current, Sauter’s analytical formula is used as it expresses the bootstrap current as a

function of density and temperature gradients as shown in eq. (4.3). The NEO code

solves the drift-kinetic equation and its output is the particle distribution function, thus

it is not straightforward to extract information on the separate drives of the density and

temperature gradients. The coefficient of ∇ne is larger than the coefficient of ∇Te and

∇Ti in the range of pedestal collisionalities considered in this chapter. Despite the higher

coefficient for ∇ne, the bootstrap current is dominated by the ∇Te term of Sauter’s

formula. The ratio of ne, Te and Ti drives is approximately 1:3:1 in the dataset at the

maximum ∇pe. This result also implies that (in case of local calculation of the bootstrap

current) the error introduced by the Te = Ti ⇒ ∇Te = ∇Ti approximation is not

significant as the contribution from ∇Ti to the bootstrap current is small.

4.4 Effect of Ohmic current diffusion on the total edge

current

JET-ILW pre-ELM pedestals at high gas rates and medium to high β (βN ≈ 2 − 3) are

stable to P-B modes, indicating that additional physics may be required to explain the

ELM trigger [53]. Furthermore, in high β, high gas rate discharges both the pressure

gradient [53, 54] and the peak bootstrap current (see section 4.3) reach their steepest

gradient well before the ELM crash. Therefore, a possible explanation for the “delay” in

the ELM crash could be a time delay in the build up of the total edge current inter-
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ELM due to current diffusion with respect to the inter-ELM recovery of density and

temperature gradients (which drive the bootstrap current recovery).

The bootstrap current profiles presented in section 4.3 are calculated from the

measured kinetic profiles assuming steady-state conditions. As a result, the time evolution

of jBS follows that of the pressure gradient. The effect of inter-ELM current diffusion can

be assessed by taking into account the contribution of the Ohmic current. In [139] and

[143], a simple model for current diffusion is used, which helps to understand the dynamics

of the edge current in the inter-ELM period. The model includes Ohm’s law:

jtot = σE + jBS , (4.5)

where E is the electric field and σ the plasma conductivity. In general, the second term

in eq. (4.5) includes any non-inductively driven current. Here, only the bootstrap current

is considered. Substituting Faraday’s law into eq. (4.5) gives a current diffusion equation:

∂E

∂t
=

1

σ

(
∇2E

µ0
− E∂σ

∂t
− ∂jBS

∂t

)
, (4.6)

where µ0 is the vacuum permeability and ∂/∂t is the time derivative. Eq. (4.6) shows

that an increase in bootstrap current (∂jBS/∂t) reduces the electric field in the pedestal

build-up phase, such that the electric field opposes the build-up of the total current. Any

change in the electric field relaxes in a diffusive process (∇2E/µ0/σ) on the resistive

timescale, which is proportional to the plasma conductivity.

The JETTO [146] code was used to solve the current diffusion equation in realistic

geometry. JETTO is a plasma transport code calculating the evolution of plasma

parameters in an axisymmetric MHD equilibrium. The simulations were run within the

JINTRAC framework [172], which is a set of linked codes for the integrated simulation

of all phases of a tokamak scenario. Here only the JETTO part of the framework was

used. The energy and particle transport were not simulated in the JETTO runs: the

simulations were run in predictive mode for the current, and in interpretative mode for

density and temperature. Since NEO is not implemented in JETTO for the calculation

of the bootstrap current, the NCLASS code [173] was used for this purpose. NCLASS

is a neoclassical code based on the fluid moment approach with a simplified collision

operator, in contrast to NEO that solves the drift kinetic equation with the full linearised

Fokker-Planck collision operator. The difference between NEO and NCLASS calculated

bootstrap currents is less than 10 % in the investigated cases.
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The input kinetic profiles for the JETTO runs are the same as those used for the

NEO calculations (see section 4.2). However, in order to enable JETTO to simulate the

inter-ELM evolution of the total current, the inter-ELM profiles have to be interpolated

on a finer time grid. In particular, the collapse of the profiles during the ELM crash

have to be included. Due to the relatively slow time resolution of the TS diagnostic

(20 Hz), the short time scale of the ELM crash (≤ ms) cannot be resolved. Thus, the

temperature and density profile evolution during the ELM-crash is modelled by a simple,

linear interpolation in time between the pre-ELM and the post-ELM profiles. In order

to obtain a more realistic picture of the sudden change of the pedestal profiles at the

ELM crash, the timescale of the crash is estimated from the interferometry and electron

cyclotron emission (ECE) measurements, both equipped with higher time resolution than

TS (<1 ms for ECE and 1.5 ms for interferometry). An ECE channel located close

to the pedestal top and an interferometry line-of-sight through the plasma edge are

chosen. The duration of the ELM crash is evaluated by taking the time difference between

the maximum and minimum of these signals in the vicinity of the ELM crash. ECE

and interferometry are only used for this purpose, while the shape of the density and

temperature profiles rely solely on the TS measurements.

The effect of any long time-scale evolution in the plasma is eliminated by running the

JETTO simulations with steady (pre-ELM) profiles for 5 seconds. Following this period,

10 consecutive ELM cycles are simulated. This approach ensures that the simulation

reaches a dynamic equilibrium in which the ELM cycles become identical. Figure 4.9

illustrates the evolution of the electron pressure close to the pedestal top in the JETTO

simulations. In what follows, the results shown belong to the evolution of the last ELM

cycle of the sequence.

The fixed boundary equilibrium code ESCO [146] is used to calculate the equilibrium

by taking into account the steep pressure gradient at the plasma edge. The plasma

boundary is taken from EFIT. ESCO is run only at the very beginning of the simulation

to provide the grid on which the current diffusion equation is solved. In the later stage

of the simulation, the equilibrium is not self-consistently recalculated, only the current

density and q profiles are evolved according to the redistribution of the current.

The boundary condition at the separatrix is a key element in the simulation. However,

it is challenging to determine the boundary condition experimentally on the time scale of

the ELM cycle, as the magnetic measurements are affected by slow data acquisition and

the screening of the vacuum vessel and other conducting structures. In order to examine
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Figure 4.9: Evolution of the electron pressure close to the pedestal top (ρTOR = 0.9, with
ρTOR the normalised toroidal flux) in the JETTO simulations. After 5 seconds
of simulation time with steady kinetic profiles, 10 consecutive ELM cycles are
simulated. In what follows, the results shown belong to the evolution of the last
ELM cycle of the sequence, indicated with the red shaded area. Some simulations
were continued with fixed pre-ELM profiles to test the diffusion term in eq. (4.6).
This is indicated with the blue shaded area.

the effect of the choice of boundary condition on the edge current density evolution, two

options are tested here:

1. the total plasma current is held constant,

2. the loop voltage is held constant.

It is expected that current diffusion could have a significant effect on the total current

build-up if the resistive timescale is comparable to the inter-ELM period. Thus, in

section 4.4.1 two extreme cases of JET-ILW type I ELMy pedestals at low Ip (1.4 MA)

are investigated in detail: in the first case (pulse #84794), the pedestal collisionality is

ν∗e,PED ' 0.3, the ELM frequency is fELM ' 35 Hz and the pedestal temperature is

Te,PED ' 0.9 keV, thus the conductivity is high and the resistive timescale is longer;

the second case is a higher collisionality (ν∗e,PED ' 0.9) pulse (#87342) with the highest

power in the high gas rate scan, with a colder pedestal, Te,PED ' 0.6 keV, but much

higher ELM frequency, fELM ' 120 Hz, thus the ELM period may be short enough to

be comparable to the resistive timescale. A connection to high Ip JET-ILW type I ELMy

H-modes is achieved by analysing a pedestal obtained at Ip = 3.0 MA. This is presented in

section 4.4.2, together with sensitivity calculations on the ELM duration and magnitude.

Section 4.4.3 discusses the impact of current diffusion on pedestal stability analyses.
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4.4.1 Comparison of pedestals at different fuelling gas rates

First, the simulation results of the highest pedestal temperature discharge (#84794,

high power, low gas rate) are presented. In figure 4.10 the inter-ELM evolution of the

edge total and bootstrap current profiles are shown, comparing the impact of the two

different boundary conditions on the current evolution. Figure 4.10a shows the result

of the simulation where the total current is held constant at the experimental value:

Ip = 1.4 MA. Figure 4.10b shows the result of the JETTO run with a fixed loop voltage

at the separatrix. Uloop = 0.11 V is chosen, so that the total plasma current on average

is close to 1.4 MA. As a consequence of the flattened kinetic profiles during the ELM

crash, the bootstrap current profile (dashed lines in figure 4.10) drops in the first few ms

of the ELM cycle. However, the electric field significantly increases as a response to the

bootstrap current drop, mitigating the reduction in the peak total current (solid lines

in figure 4.10). This is visible in figure 4.11, where the time evolution of the parallel

electric field is shown. Note that the profiles corresponding to 0 % (ELM onset) and

100 % (ELM onset of the subsequent ELM) are almost identical both in figure 4.10 and

4.11. This confirms that any long time-scale evolution of the electric field is relaxed in

the simulation and the ELM cycle can be examined in steady-state.

(a) (b)

Boundary condition:
Ip = 1.4 MA

Boundary condition:
Uloop = 0.105 V
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Total current
Bootstrap current

Total current
Bootstrap current

j to
t, j

BS
  [

M
A

/m
2 ]

j to
t, j

BS
  [

M
A

/m
2 ]

Figure 4.10: Inter-ELM evolution of the total (solid curves) and bootstrap current (dashed
curves) profiles in the plasma edge for pulse #84794 (Te,PED = 0.9 keV). (a)
The total current, (b) the loop voltage held constant as a boundary condition.
The bootstrap current profile drops during the ELM crash, but the total current
decreases on a slower time scale due to the increase in the electric field (see
figure 4.11).

The inter-ELM evolution of the bootstrap and total current profiles with the two

different boundary conditions are shown in figure 4.12a at a radial coordinate close to

the peak value (ρTOR = 0.95, with ρTOR the normalised toroidal flux). In both cases,

the jBS (dashed lines) significantly drops at the ELM crash, while the drop in the total

edge current (solid lines) is relatively small and slightly delayed in time. However, in the
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Figure 4.11: Inter-ELM evolution of the parallel electric field profiles for pulse #84794 (Te,PED =
0.9 keV). (a) Total current held constant as boundary condition, (b) loop voltage at
the separatrix held constant as a boundary condition. The electric field significantly
increases during the ELM crash (blue curve) as a response to the drop in the edge
bootstrap current. The dashed lines show the time-average of the electric field
profile over the ELM cycle, which is close to the fully diffused electric field.

second half of the ELM cycle, the peak total current builds-up on a similar timescale as

the bootstrap current and the pressure gradient (see figure 4.12b).

The difference between the two simulations can be explained by the effect of the

boundary condition on the time evolution of the electric field profile. The time evolution

of the loop voltage at the separatrix (which is the boundary of the simulation) is shown in

figure 4.12c. In the Ip = const. case, U sep.
loop is set so that ∂E/∂ρ = 0 at the separatrix (see

figure 4.11a), thus the total plasma current is conserved in the system. The prescribed

electric field (Uloop = 2πR0E) at the separatrix also affects the electric field inside the

separatrix through the first term on the r.h.s. of eq. (4.6). This difference is visible in

figure 4.12a: the minimum of the total current is ∼ 20 % lower in the U sep.
loop = const. case,

as some current is lost from the plasma. This can also be seen in figure 4.12d which shows

that the total plasma current is reduced after the ELM crash. Furthermore, it is visible

in figure 4.11b, that ∂E/∂ρ < 0 at the plasma edge after the ELM crash, implying that

current is lost from the system.

The opposite process occurs in the build-up phase of the ELM cycle, thus the peak

total current is higher in the U sep.
loop = const. case than in the Ip = const. simulation prior

to the ELM crash. Note that despite having the same input kinetic profiles evolution, the

jBS evolution is slightly different with the two different boundary conditions. This is due

to the different total current profile evolution in the two simulations, which affects the

jBS profile through the q-profile and the collisionality.

Both simulations indicate that the electric field induced by the second and third terms

on the r.h.s. of eq. (4.6) mitigates the effect of the changing bootstrap current on the
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Figure 4.12: (a) Inter-ELM evolution of the total (solid curves) and bootstrap current (dashed
curves) close to the position of peak jBS (at ρTOR = 0.95) in #84794. The
simulation with Ip = const. boundary condition is shown in black, and with
U sep.

loop = const. boundary condition in red. The lower panels show the inter-ELM
evolution of the: (b) pressure gradient at ρTOR = 0.95 normalised to the maximum,
(c) the loop voltage at the separatrix, (d) the total plasma current.

total current evolution. As this process is present both at the ELM crash and at the

recovery phase of the inter-ELM cycle, it leads to a dynamic equilibrium in which the

Ohmic current is redistributed in a way that the peak total current evolution closely

follows the build-up of the pressure gradient.

Eq. (4.6) and the simulation result suggest that the magnitude of the electric field

oscillation at the edge during the ELM cycle is proportional to the lost bootstrap current

in the ELM crash. The higher the current loss, the larger the induced electric field in the
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pedestal to keep the total current constant. The opposite applies to the recovery phase

of the ELM cycle: the higher the bootstrap current increase, the lower the electric field.

Thus, if the ELM magnitude is large (which is likely to lead to large bootstrap current

drop through low and/or wide post-ELM crash pedestal), the electric field oscillation is

also high. In the JETTO simulation of #84794 the ELM magnitude is large enough (the

ELM energy loss normalised to the pedestal stored energy is ∆WELM/WPED ' 0.15) that

the electric field decreases to negative values, as can be seen in figure 4.11. This leads

to higher bootstrap current than total current at ρTOR = 0.95 in the pre-ELM phase, as

shown in figure 4.12a.

Figure 4.12 suggests that the effect of current diffusion on the evolution of the total

current in the second half of the ELM cycle is negligible. On the other hand, note that

the electric field profile is not fully diffused by the end of the ELM cycle (see black and

red curves in figure 4.11). It is expected that in a simulation with constant profiles (i.e.

no ELMs) the electric field reaches a fully diffused state. In the JETTO runs presented

in this chapter, the time-averaged electric field over the ELM cycle (dashed lines in

figure 4.11) is very close to the fully diffused electric field which would be obtained in a

time independent (i.e. no ELMs) simulation. Therefore, in what follows, I refer to this

time-averaged electric field as fully diffused.1

In order to understand why the electric field is not fully diffused, but is lower than the

time-average by the end of the ELM cycle, all 3 terms on the r.h.s. of eq. (4.6) and the

boundary conditions need to be considered. As mentioned earlier in this section, U sep.
loop

changes in the Ip = const. simulation in a way to keep ∂E/∂ρ = 0 at the separatrix. It

can be seen in figure 4.11a that the electric field at the separatrix is significantly lower

than the fully diffused value, preventing the electric field profile from reaching the fully

diffused state. On the other hand, this constraint does not exist when U sep.
loop is fixed in

the simulation (see figure 4.11b), but also in this case the electric field profile is still not

diffused by the end of the ELM cycle. This is because the third term on the r.h.s. of

eq. (4.6) also plays a role in the inter-ELM evolution of the electric field. This term is

inversely proportional to the rate of change of jBS. Since, in pulse #84794 jBS increases

in the second half of the inter-ELM cycle as shown in figure 4.12a, the ∂/∂t = 0 solution

1In stationary conditions, the loop voltage Upl = dΨ/dt evaluated at fixed ρTOR is constant in
time and flat as function of ρTOR if the vacuum magnetic field is constant (dB0/dt = 0 is the case
in most present day tokamaks) [174]. In figure 4.11, the flux surface averaged parallel component of
the electric field E‖ = 〈E · B〉/B0 = U‖/(2πR) is shown, thus this quantity is not exactly radially
constant in steady state conditions. Upl can be evaluated from E‖ = 2πRU‖ in the following way:
Upl = U‖dV/dρTOR/(4π

2ρTORR0) [174].
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of eq. (4.6) (assuming a constant, negative −∂jBS/∂t/σ term) is smaller than the fully

diffused electric field.

It is interesting to evaluate the time scale required for the electric field to reach the

fully diffused state, if only the diffusion term was considered in eq. (4.6). In order to

quantify this, the JETTO simulations were continued after the last ELM cycle but with

constant pre-ELM profiles, as depicted with the blue shaded area in figure 4.9. This

simulation represents the evolution of the electric field when only the first term on the

r.h.s. of eq. (4.6) is non-zero, as conductivity and jBS do not change in time when the

kinetic profiles are kept constant.2 Figure 4.13 shows the evolution of the parallel electric

field close to the peak of the total current profile (at ρTOR = 0.95). The inter-ELM

evolution of E‖ in the last ELM cycle is shown in red. The rest of the JETTO simulation

when the kinetic profiles are kept constant in time and E‖ relaxes towards the fully

diffused state is in blue. It can be seen that the resistive timescale on which the relaxation

process takes place is very long (τres ∼ 20 ms).
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Figure 4.13: The evolution of the parallel electric field close to the peak of the total current
profile (at ρTOR = 0.95) in #84794. After the last ELM cycle (in red), the
simulation continues with the kinetic profiles kept constant in time (in blue).

In conclusion, although the resistive time scale in the pedestal is comparable to the

ELM period, when the whole ELM cycle (including the ELM crash) is simulated, the

resulting time evolution of the peak total current in the second half of the ELM cycle

closely follows that of the bootstrap current and pressure gradient, as shown in figure 4.12.

2Since the current diffusion modifies the total current distribution, there is also a slight change in jBS

through the altered q-profile, but this effect is negligible compared to the diffusive process.

72



This is a result of the complex interplay between the different terms of the current

diffusion equation (eq. (4.6)) and the boundary conditions.

Qualitatively, similar conclusions are reached for the JET-ILW pedestal at lower

pedestal temperature, but higher ELM frequency (#87342, Te,PED = 0.6 keV, fELM '

120 Hz, νe,PED ' 0.9). For this pedestal, the results of the JETTO simulations with

Ip = const. boundary condition is shown in figure 4.14. The inter-ELM evolution of the

total and bootstrap current at a radius close to the peak jBS (ρTOR = 0.95) is shown in

red and at a radius close to the pedestal top (ρTOR = 0.93) in black. At ρTOR = 0.95,

jtot reaches saturation slightly later than jBS and ∇p. The time lag is less than 1 ms,

thus this delay is considered non-significant compared to the inter-ELM period (≈ 8 ms).

The peak jBS in the second half of the ELM cycle is saturated and the total current

evolves similarly, but it slightly decreases towards the end of the ELM cycle. The slight

decrease in peak jBS in this discharge can be understood by taking into account the

bootstrap current evolution at the top of the pedestal. Figure 4.15 shows the inter-ELM

evolution of the bootstrap and total current profiles. It is visible that the jBS profile

substantially changes inside the peak of the profile around ρTOR = 0.93. This is also

shown in figure 4.14a with black, where it can be seen that in the second half of the

ELM cycle jBS is roughly constant at ρTOR = 0.95, but it increases at ρTOR = 0.93. This

increase in jBS leads to a decrease in the electric field at ρTOR = 0.93 (see figure 4.15b),

which also affects the electric field evolution at ρTOR = 0.95 through the diffusive term

of eq. (4.6). The evolution of the total current in pulse #87342 shows that the effect

of current diffusion on the time evolution of the total current is complex and it is not

sufficient to study the profile evolution at the peak.

4.4.2 Edge current evolution at high plasma current

It is important to investigate whether the conclusions reached for the JET-ILW power and

gas scans at low plasma current are still relevant for H-mode scenarios at high Ip, which

are more relevant for optimising fusion performance. Thus, a representative JET-ILW

pulse (#92432) was chosen to examine the inter-ELM edge current evolution in pedestals

at high Ip [54]. In this pulse, good performance (H98 ' 1, βN ' 2.1) type I ELMy H-mode

operation has been achieved at Ip = 3.0 MA and Bt = 2.8 T with ≈ 33 MW auxiliary

heating.

The pedestal temperature of this discharge (Te,PED = 1.1 keV) and the ELM frequency

(fELM = 25 Hz) are similar to those of the highest Te,PED pulse in the low current

scan (#84794), but the pedestal top density is roughly a factor of 2 higher in #92432
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Figure 4.14: (a) Inter-ELM evolution of the total (solid curves) and bootstrap current (dashed
curves) profiles at two radial coordinates close to the peak, ρTOR = 0.95, and close
to the pedestal top ρTOR = 0.93 in #87342 with Ip = const. boundary condition.
(b) The evolution of the pressure gradient in the inter-ELM cycle.

(ne,PED = 5.9 × 1019m−1) due to the high plasma current [54]. The pressure gradient is

significantly higher in #92432 compared to #84794, which leads to a higher bootstrap

current at the plasma edge as shown in figure 4.16. The inter-ELM evolution of the kinetic

profiles for this discharge in the pedestal has been presented elsewhere [54]. Considering

that the ELM frequency and Te,PED in #92432 are close to those of discharge #84794

(leading to similar conductivity, thus comparable current diffusion time scale), similar

results are expected to those obtained for #84794. Figure 4.16a shows the bootstrap and

total edge current evolution at fixed radial position close to the peak (ρTOR = 0.96) in

the ELM cycle with Ip = 3.0 MA as boundary condition (in red). Similarly to the low

Ip pedestals, in this case the timescales of the total and bootstrap current evolution are

also very similar in the second half of the ELM cycle.

Due to the low time resolution of the measurements, the kinetic profile evolution

during the ELM crash has high uncertainties. In order to account for these uncertainties,

sensitivity tests on the ELM crash duration and ELM magnitude were carried out for

pulse #92432. The nominal value of 1.5 ms assumed in the JETTO simulations for the

ELM crash duration was determined using the ECE and interferometry measurements
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Figure 4.15: (a) Inter-ELM evolution of the total (solid curves) and bootstrap current (dashed
curves) profiles in #87342 with Ip = const. boundary condition. (b) Inter-ELM
evolution of the parallel electric field.

and it is consistent with the studies reported in [155]. In the sensitivity test, the ELM

duration was reduced to 400 µs. Figure 4.16 shows that changing the duration of the ELM

crash from 1.5 ms to 400 µs has no impact on the edge current evolution inter-ELM.

It is difficult to accurately quantify the ELM energy losses using the TS diagnostic

only. Thus, the effect of an artificially increased ELM magnitude on the edge total

current evolution was tested. The normalised ELM energy loss in pulse #92432 is

∆WELM/WPED ' 0.08 as evaluated from the fitted kinetic profiles. In the test, this

was increased with a factor of 5 to ∆WELM/WPED ' 0.4 in order to provoke a large

drop in the bootstrap current as a result of the ELM crash. The resulting inter-ELM

evolutions of jtot and jBS are shown in blue in figure 4.16. The absolute values of the

total and bootstrap currents changed significantly in the initial phase of the ELM cycle, as

the average bootstrap current is reduced, however, no significant delay is found between
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Figure 4.16: (a) Inter-ELM evolution of the total (solid curves) and bootstrap current (dashed
curves) profiles at a given radial coordinate close to the peak (ρTOR = 0.96) in the
high Ip discharge (#92432) with red. Even in the case of a short ELM duration (in
black) or large ELM magnitude (in blue), there is no significant delay in the total
current evolution with respect to the pressure profile build-up. (b) The evolution
of the peak pressure gradient in the inter-ELM cycle.

total current and jBS in the second half of the ELM cycle. When the ELM magnitude

is large, the associated large electric field oscillation can lead to a smaller peak jtot than

peak jBS. This can be seen in figure 4.16a (blue curves) and in the case of pulse #84794

where ∆WELM/WPED ' 0.15 (see figure 4.12).

4.4.3 Impact of current diffusion on linear MHD pedestal stability

Despite the small effect of current diffusion on the evolution of the total edge current

density, there are some implications of the results presented in this chapter on pedestal

stability calculations. As a consequence of the dynamic equilibrium of bootstrap current

and electric field profiles during the ELM cycle, the electric field in the pedestal is typically

higher after the ELM crash and lower in the second half of the ELM cycle, compared

to the fully diffused state. This could be important for pedestal linear MHD stability

calculations, where usually a fully diffused electric field profile is assumed to evaluate

the Ohmic contribution to the total current. Figure 4.17a compares the Ohmic and

total edge currents for #84794 in three different cases: the two JETTO simulations with
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different boundary conditions reported above and a calculation assuming fully diffused

electric field profile. It can be seen that if a fully diffused electric profile is assumed,

the peak total edge current is overestimated by ∼ 15 − 20 % if Ip is held constant and

by ∼ 5 − 10 % if the loop voltage is held constant. Although this uncertainty is small

compared to other uncertainties associated with edge stability analysis, this exercise

shows that the boundary condition affects the absolute value of the electric field profile

and the systematic error introduced in calculations assuming a fully diffused electric

field profile cannot be precisely quantified without the knowledge of the experimental

boundary condition.

Figure 4.17b shows a linear MHD stability diagram calculated using the HE-

LENA/MISHKA [175] codes for the pre-ELM phase of #84794. The black circle shows

the operational point as calculated with the HELENA equilibrium code using the input

kinetic profiles, the Sauter-formula for the bootstrap current3 and assuming fully diffused

electric field (this corresponds to the black curves in figure 4.17a). The red and green

circles show the operational point for the JETTO fixed Ip and fixed U sep.
loop simulations,

respectively. The edge stability analysis was not self-consistently recalculated using the

current profile outputted from JETTO, but the operational point was scaled according to

the peak of the current profiles in figure 4.17a. As the shape of the total current density

profile does not change significantly between the different cases in figure 4.17a, this is

a good approximation to show the impact of current diffusion on P-B mode stability in

the pre-ELM phase. As it can be seen in figure 4.17b, the impact of current diffusion is

small compared to the uncertainties arising from the profile measurement indicated by

the error bars. The error bars on the operational points were calculated with a sensitivity

analysis as explained in section 4.2. The effect of current diffusion on the magnetic shear is

negligible (' 5 % at the peak of the total edge current density, ρTOR = 0.95). Figure 4.17c

shows the shear at the plasma edge from the JETTO simulation with fixed Ip in red and

from the fully diffused electric field assumption in black. This comparison is outputted

from the simulation shown in figure 4.13: the red curve corresponds to the end of the

ELM cycle, the black curve shows the magnetic shear 100 ms later when the electric field

is fully diffused at the edge.

In summary, although the current diffusion simulations show that the resistive

timescale is comparable to the ELM period in the investigated pedestals, when the

3 The equilibrium for the MISHKA stability analysis is calculated with the HELENA code in a
self-consistent way, namely that the bootstrap current and the equilibrium are calculated iteratively until
the solution converges. The result of the Sauter formula for the calculation of jBS is in good agreement
with that of NEO for the low collisionality pedestal of #84794. Thus, the usage of the Sauter formula in
HELENA provides a sufficiently accurate and quick way to produce the equilibrium in this case.
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Figure 4.17: (a) Comparison of the edge total and Ohmic currents in the last 20 % of the
ELM cycle in the highest Te,PED pulse (#84794): jtot (solid lines) and jOH (dashed
lines) when the Ohmic contribution is calculated assuming a fully diffused electric
field profile (black); jtot and jOH when simulated in JETTO using constant total
current (red) and constant loop voltage (green) as boundary condition, respectively.
(b) Result of linear MHD stability analysis for #84794. The operational point was
scaled to show the impact of current diffusion on P-B mode stability in the pre-ELM
phase. The y axis in figure 4.17b is the maximum of the toroidal component of the
total current density, the x axis is the ballooning α. (c) The magnetic shear from
the JETTO simulation with fixed Ip (red) and from the fully diffused electric field
assumption (black) are compared.

full ELM cycle (including the ELM crash) is simulated, the Ohmic current is always

redistributed so as to mitigate the effect of the varying bootstrap current. As a result, the

effect of current diffusion on the time evolution of the total edge current is not significant

in the second half of the ELM cycle. Therefore, inter-ELM current diffusion does not
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explain why JET-ILW pedestals at high gas rate and medium to high βN are stable to

P-B modes, as found by linear MHD stability analysis with HELENA/ELITE [53].

One caveat of the simulations with JETTO is that the plasma shape and size are fixed

during the simulation. Although the effect of total plasma current loss was investigated

in the simulations with constant U sep.
loop, no current loss through filaments or fast loss of a

current-carrying plasma layer during the ELM crash were modelled.

Accurate modelling of the total edge current profile evolution requires a precise

knowledge of the evolution of the kinetic profiles (including the ELM crash) and an

accurate measurement of the loop voltage at the separatrix for the boundary condition.

Without these it is difficult to quantify the effect of the Ohmic current contribution on

pedestal stability analysis, although some qualitative conclusions can be made. Generally,

linear MHD pedestal stability calculations estimate the contribution of the Ohmic current

by assuming a fully diffused electric field profile. However, as a result of the dynamic

equilibrium of the bootstrap current and electric field profiles in the ELM cycle, the

electric field in the pedestal is typically larger in the early phase, and lower in the second

half of the ELM cycle compared to the fully diffused state. Therefore, the assumption of

a fully diffused electric field may overestimate the total current in the pre-ELM phase.

This work estimates this error to be of order of 10-20 % at the maximum of the total

current density profile in the pedestal. Although, this uncertainty error is not large, it

adds to all other uncertainties that feed into the edge stability analysis, such as those

arising from the profile measurements and the bootstrap current models. In addition, as

a consequence of the large profile changes in the first half of the ELM cycle, the fully

diffused electric field assumption can potentially lead to higher errors in this phase. This

might have an impact on pedestal stability analysis such as presented in [82, 156], where

the stability of the n =∞ ideal MHD ballooning mode as a proxy for Kinetic Ballooning

Mode was investigated during the inter-ELM cycle.
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Chapter 5

Pedestal structure in JET-ILW H

and D type I ELMy H-modes

This chapter presents the differences in pedestal structure between H and D pedestals

in JET-ILW type I ELMy H-modes at low plasma triangularity (δ ≈ 0.2) with mostly

NBI heating. This study focuses on type I ELMy H-modes only, the separation between

type I and type III ELMy H-modes in these plasmas has already been reported in [104].

The H and D isotope dataset includes power (PNBI = 3− 16 MW) and gas scans at two

different plasma current and magnetic field combinations (1.0 MA/1.0 T with q95 = 3.0

and 1.4 MA/1.7 T with q95 = 3.7), βN = 1.3− 2.8. Hereinafter, the H2/D2 gas rates will

be referred to as “low” = 3 − 4.5 · 1021 e/s, “medium” = 8 − 10 · 1021 e/s and “high” =

16− 18 · 1021 e/s. NBI was operated with the ion species of the plasma (H-NBI in H and

D-NBI in D plasmas). The plasma isotope purity was higher than 97 % both in H and

D, as measured by Balmer-α spectroscopy at the plasma edge.

The majority of the dataset is in the so-called “Corner” or C/C divertor configuration

(see figure 4.3), where both divertor strike points are close to the pumping duct. One

power scan (1.4 MA/1.7 T, at low gas rate) is in the so-called V/H configuration, where

the inner strike point is on the vertical target and outer strike point is on the horizontal

target. Due to a 2-3 fold increase in sub-divertor neutral pressure, and thus improved

cryo-pumping, operation in C/C configuration leads to a 10 − 15 % decrease in ne,PED

and a similar increase in Te,PED at similar pe,PED values than in V/H configuration [53].

In the present chapter, the two different divertor configurations are treated together as

the main scope of this paper is to present the differences between H and D plasmas. The

effect of divertor configuration on the pedestal parameters has already been published

in [53].
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The pedestal structure in the D plasmas of the 1.4 MA/1.7 T dataset has already

been characterised elsewhere [53, 54], but here some of those findings are recalled for

comparison with the H plasmas. First, the ELM frequency (fELM) as a function of the

power crossing the separatrix (Psep) is shown in figure 5.1 to demonstrate the type I

nature of the ELMs and to show some other important features in the dataset. In the

1.4 MA/1.7 T dataset fELM increases with Psep and fELM is higher in H than in D at

a low gas rate at given input power (figure 5.1a). Note that NBI heating was limited to

10 MW in H in order to maintain the power load on the ion dump of the NBI within

engineering limits [45]. Thus in the “medium” and “high” gas H plasmas at 1.4 MA/1.7 T,

2-5 MW ion cyclotron resonance heating (ICRH: 51 MHz, H majority, 2nd harmonic) was

added to the heating mix to reach type I ELMy H-modes, which is expected to lead to

an increase in fELM compared to NBI only plasmas [176]. All other plasmas were NBI

heated only.

Psep [MW]Psep [MW]

f EL
M

 [H
z]

f EL
M

 [H
z]

1.0 MA/1.0 T1.4 MA/1.7 T

(b)(a)

D, medium gas
D, high gas
H, very low gas

H, low gas
H, medium gas
H, high gas

D, low gas
D, medium gas
D, high gas

H, low gas
H, medium gas

H, high gas, NBI+ICRH
H, medium gas, NBI+ICRH

Figure 5.1: ELM frequency as a function of net power crossing the separatrix for the (a)
1.4 MA/1.7 T and the (b) 1.0 MA/1.0 T dataset. Note that most of the medium
and high gas pulses at 1.4 MA/1.7 T (open symbols on figure (a)) were heated also
with ICRH.

At 1.0 MA/1.0 T two different “low” gas levels are distinguished: “very low” = 3 ·

1021 e/s and “low” = 4.5 · 1021 e/s. As it is visible in figure 5.1b, fELM decreases with

Psep for the “low gas” power scan and is constant for the “high gas” power scan. Despite

the fELM behaviour, other parameters such as βN and the ELM signature in the divertor

Be II (λ = 527 nm) photon flux suggest that these pulses are in the type I ELMy

regime. It is possible that the decreasing trend of fELM with the input power for the

“low gas” dataset is a consequence of the density being very close to the point where the

type III-type I ELMy power threshold (PIII−I) “rolls over” from the low density branch

to the high density branch and the small density variation between pulses could lead to
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some plasmas accessing type I ELMy H-mode from the low density branch, while others

from the high density branch. In the low density branch, PIII−I increases very rapidly with

decreasing density. Thus, a given Psep is closer to the type III to type I power threshold in

the low than in the high density branch. This may lead to lower fELM in the low density

branch than in the high density branch even at higher Psep, resulting in the observed

decreasing trend of fELM with the input power. In D, at 1.0 MA/1.0 T stable H-mode

operation was not possible at “low gas” rate due to W and mid-Z impurity accumulation

in the core. The “medium gas” power scan with a factor of 2 variation in Psep provides

a good basis for comparison between H and D at this plasma current (Ip) and magnetic

field (Bt), thus the analysis of the 1.0 MA/1.0 T dataset will mostly focus on these data.

The pedestal structure analysis is carried out for the pre-ELM phase (namely the

last 20 % of the ELM cycle) and is based on the mtanh fitted electron density (ne)

and temperature (Te) profiles as measured by Thomson scattering (TS). The kinetic

profiles, collected from a steady time window (> 10 × τE,th) of the discharge, are ELM-

synchronised to improve signal statistics. The width and height of the pedestal electron

density and temperature are taken directly from the mtanh fit. The error bars on the

pedestal structure parameters are defined as the standard deviation of the parameter

estimates of the mtanh fit.

5.1 Pedestal height

Figure 5.2 shows the electron pedestal pressure (pe,PED [Pa] = 1.602 ×

ne,PED [10−19m−3] × Te,PED [eV]) as a function of Psep. Both at 1.0 MA/1.0 T and

1.4 MA/1.7 T, pe,PED decreases with increasing gas rate both in H and D. In general,

pe,PED is higher in D than in H at a given Psep.

At 1.0 MA/1.0 T and medium gas rate pe,PED is comparable in H and in D, but the

total thermal stored energy is still higher in D. This is due to higher Te peaking in D than

in H, when the core temperature is compared to Te,PED as shown in figure 5.3a. However,

when Te peaking is defined as Te(ρTOR = 0.3)/Te(ρTOR = 0.8), the difference between H

and D diminishes as shown in figure 5.3b, which is consistent with R/LTe being similar

at ρTOR = 0.5 as shown in figure 18 in [104]. This can also be seen in figure 5.4, where

the electron kinetic profiles on a log scale are shown for a pair of H and D pulses at

the same Psep as a representative example. Gradient lengths in the core are very similar

and any difference in the temperature gradient length arises at ρTOR > 0.8. Therefore,

for the 1.0 MA/1.0 T medium gas rate dataset as well, the difference in thermal energy
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Figure 5.2: The electron pressure at the pedestal top as a function of net power crossing the
separatrix for the (a) 1.4 MA/1.7 T and the (b) 1.0 MA/1.0 T dataset.

confinement between H and D is emerging at the edge, but in this case it is not well

represented by the pedestal top values as derived from the mtanh fit. This may be due to

the lack of TS data in H just inside the pedestal, which could lead to higher uncertainties

in the profile fitting method.
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Figure 5.3: Te peaking in the 1.0 MA/1.0 T medium gas dataset defined in two different ways:
(a) Te(ρTOR = 0.3)/Te,PED and (b) Te(ρTOR = 0.3)/Te(ρTOR = 0.8).

The ion temperature (Ti) is similar to Te at the pedestal top within the measurement

uncertainties of the edge CXRS system. Discharges with good Ti data in the pedestal

gradient region confirm Te ≈ Ti, although Ti at the separatrix cannot be resolved. The

line-averaged Zeff in the 1.4 MA/1.7 T dataset varies between 1.1 and 1.5 for D and

between 1.2 and 1.8 for H. For the 1.0 MA/1.0 T dataset it varies between 1.2 and 1.4

for D and between 1.1 and 1.4 for H. Assuming Be as single impurity and Te = Ti, the

ion dilution leads to at most 10 % difference between the total pressure (calculated as

p = pe + pi) and 2 × pe, thus the conclusions drawn from the analysis of the electron

pressure also apply to the total pressure.
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Figure 5.4: Pre-ELM (80-100 % of the ELM cycle) electron kinetic profiles from TS for a pair
of H (#91417, in red) and D (#90443, in blue) pulses at 1.0 MA/1.0 T at the same
Psep as a representative example. (a) Electron density, (b) electron temperature and
(c) electron pressure are shown on a log scale to compare the gradient lengths in the
core. Profiles are radially shifted to have Te,sep = 100 eV.

The edge ne-Te diagram in figure 5.5 shows that the pedestal density is typically lower

in H than in D. Pedestals at the same pe,PED (typically obtained with more heating power

in H than in D) have lower density, but higher temperature in H compared to D. In other

words, by varying input power and/or gas rate it was not possible to simultaneously

match ne and Te in H and D, as for example in JT-60U experiments [83, 105, 106].
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Figure 5.5: ne,PED-Te,PED diagram for the (a) 1.4 MA/1.7 T and the (b) 1.0 MA/1.0 T dataset.
The dashed black lines are isobars at a pressure level indicated in the figure.

5.2 Pedestal gradient

The peak pedestal pressure gradient is comparable in H and D within error bars at the

same pedestal top poloidal beta (βpol,PED) at both plasma current levels, as shown in

figure 5.6. However, at 1.4 MA/1.7 T ∇ne is lower and ∇Te is higher in H compared

to D (see figure 5.7a for ∇ne and figure 5.8a for ∇Te), while at 1.0 MA/1.0 T ∇ne and

∇Te are comparable in H and D (see figure 5.7b for ∇ne and figure 5.8b for ∇Te). At

1.4 MA/1.7 T, ∇pe increases with increasing βpol,PED and more power is needed in H

than in D to reach the same βpol,PED, thus ∇pe is typically larger in D than in H at the

same Psep.
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Figure 5.6: The peak electron pressure pedestal gradient (∇pe) as a function of βpol,PED for the
(a) 1.4 MA/1.7 T and the (b) 1.0 MA/1.0 T dataset.
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Figure 5.7: The average density pedestal gradient (∇ne) as a function of βpol,PED for the (a)
1.4 MA/1.7 T and the (b) 1.0 MA/1.0 T dataset. ∇ne = ne,PED/∆ne.
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Figure 5.8: The average electron temperature pedestal gradient (∇Te) as a function of βpol,PED

for the (a) 1.4 MA/1.7 T and the (b) 1.0 MA/1.0 T dataset. ∇Te = Te,PED/∆Te.

5.3 Pedestal width

The pedestal pressure width, defined here as ∆ne/2+∆Te/2
1, has a much larger variation

at a given βpol,PED than is expected by the EPED model (∆pe,PED = cEPED × β1/2
pol,PED

with cEPED = 0.076 [76]) both in H and D as shown in figure 5.9. βpol,PED is the poloidal

normalised pressure at the pedestal top calculated using the expression given by [87, 177].

At 1.4 MA/1.7 T ∆pe broadens with increasing gas rate at constant βpol,PED, which is

not consistent with EPED (with constant width multiplier cEPED) [54, 177]. No clear

trend with βpol,PED is observed in the variation of ∆pe at 1.0 MA/1.0 T. The difference

in pe,PED between H and D at the same Psep at 1.4 MA/1.7 T (shown in figure 5.2a) is

mainly due to lower ∇pe in H than in D and similar pedestal pe width.

1The EPED pedestal pressure width definition [76] is used here for comparison with the EPED pedestal
width scaling. ∆ne and ∆Te are the full widths of the mtanh profiles, not only the part up to the LCFS.
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Figure 5.9: The electron pressure pedestal width in normalised poloidal flux (ΨN ) for the (a)
1.4 MA/1.7 T and the (b) 1.0 MA/1.0 T dataset. The solid black lines indicate

the 0.076 × β
1/2
pol,PED EPED scaling [76] and the dashed black lines indicate the

0.1× β1/2
pol,PED curve to show the variation in the dataset.

5.4 Edge density profile and neutral fuelling

It is anticipated that the penetration of neutrals and the resulting particle source at the

edge of the plasma could be an important mechanism in setting the density pedestal.

Indeed, the neutral penetration model (NPM) assumes that the pedestal density is set by

the edge particle flux and that the pedestal width is approximately equal to the neutral

penetration length [97]. This model is tested here against the experimental pedestal

density width of H and D plasmas. At similar temperature, H neutrals have a higher

thermal speed than D neutrals, thus larger mean free path and neutral penetration length

is expected in H. According to the NPM this should lead to a wider density pedestal in

H.

The neutral penetration model [97] describes the width of the density pedestal as

∆ne =
2VN

SiEne,ped
, (5.1)

where ∆ne is the pedestal width at the midplane (in real units), VN is the neutral velocity,

E is a flux expansion parameter, ne,ped is the pedestal top density and Si is the ionisation

rate, which is approximated as σiVe [97] with σi the cross section for electron impact

ionisation and Ve the electron thermal velocity. If the fuelling location is maintained,

Te/Ti ≈ constant and assuming that the neutrals are in equilibrium with the ions, the

NPM predicts the following relation between ∆ne and ne,ped:

∆ne ∼
1√

Ane,ped
. (5.2)

88



This assumption can easily be tested against the experimental pedestals analysed in the

present paper. Previous JET-ILW studies in D plasmas indicated that for some datasets at

low δ, ∆ne is broadly consistent with the 1/ne,ped dependence of the pedestal density, while

for other cases (for example a high δ dataset [54] or a dimensionless ν∗ scan [178]) the

density pedestal broadens at roughly constant ne,ped, in contradiction to the assumptions

of the NPM.

In figure 5.10 ∆ne ×
√
A is shown as a function of ne,ped for the H and D pedestals

discussed in this section. At 1.0 MA/1.0 T (figure 5.10b), the pedestal width in H follows

the 1/ne,ped scaling at all fuelling gas rates, but the pedestals are significantly narrower

in H than in D in contradiction to the NPM. Figure 5.10a shows the comparison for

the 1.4 MA/1.7 T dataset, where the result depends on the gas fuelling rate. At low gas

rate (circles), the H pedestals are narrower than the D pedestals, in contradiction to the

NPM. At medium (triangles) and high (squares) fuelling gas rates, ∆ne is similar in H

and D in accordance with the NPM. In summary, this comparison of the experimental

observations with the NPM suggests that the changes in neutral fuelling due to the

change of the isotope mass is not sufficient to fully describe the difference in pedestal

density between H and D. Inter-ELM pedestal transport and/or ELM losses must also

play a role. This is also supported by the interpretative EDGE2D-EIRENE simulations,

which will be discussed in section 6.3. Results indicate that the difference in the kinetic

profiles between H and D is due to significantly higher perpendicular particle and heat

diffusivities at the edge in H than in D.
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Figure 5.10: ne,width ×
√
A as a function of ne,ped for the (a) 1.4 MA/1.7 T and the (b)

1.0 MA/1.0 T datasets.
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5.5 Ratio of the electron density and temperature gradient

length

In view of recent gyrokinetic analysis of the pedestal in JET with Carbon wall (JET-C)

and JET-ILW [99, 102, 171], I compare the ratio of the electron density and temperature

gradient length ηe between H and D plasmas. η = Lne/LTe , with Lne = ne/∇ne and

LTe = Te/∇Te being the density and temperature gradient lengths, respectively. The

growth rate of temperature gradient driven micro turbulence is expected to increase with

ηe, generating increasing levels of heat transport inside the pedestal [99, 102]. It has been

reported in [99] and [102] that the degradation of the temperature pedestal in JET-ILW,

where significant gas injection is needed for core W control, can partly be explained by

an increase in ηe and ηi in JET-ILW producing more robust slab-like ion temperature

gradient (ITG) and electron temperature gradient (ETG) instability, leading to limited

pedestal temperature and demanding more heating power to achieve similar pedestal

pressure as in JET-C. The experimental characterisation of ηe for the JET-ILW H and D

isotope dataset is attempted here, in order to collect any evidence for differences in the

inter-ELM transport between H and D pedestals, which may shed light on the physics

mechanism behind the lower H pedestals.

ηe is calculated here in two different ways. In one case, ηe is evaluated from the

mtanh fit of the Te and ne TS profiles for the pre-ELM pedestals in a region 0.02ΨN

wide around the centre (peak gradient) of the Te pedestal.2 A representative example is

shown in figure 5.11 for discharge #84793. It shows the fitted pre-ELM ne and Te profiles

in figures a and b, respectively, and the calculated ηe in figure c. The colour scales

indicate ΨN , which will be useful for comparison with subsequent figures. It is clear from

figure 5.11c that the variation of ηe at the plasma edge is high and this is typical for the

whole dataset. The 0.02ΨN wide region around the centre of the Te pedestal, from where

the ηe values are taken for this type of analysis is shown with the grey area in figure 5.11.

Another way of calculating ηe utilises the TS data directly without any regularisation

introduced by the mtanh fit. Given that ηe can be expressed as

ηe =
d log(ne)

d log(Te)
, (5.3)

2The temperature pedestal width is typically > 0.03ΨN in the dataset, thus the 0.02ΨN wide region
only covers the gradient region and not the “knee” and the “bottom” of the pedestal.
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Figure 5.11: Fitted pre-ELM ne and Te profiles in figures a and b, respectively, and the
calculated ηe in figure c for discharge #87342. The colour scales indicate ΨN for
comparison with figure 5.13b.

in this method the gradient of log(ne)/ log(Te) is analysed. This method also exploits

that there is no relative uncertainty in the position of ne and Te measurements from TS.

Figure 5.12 shows Te as a function of ne for the pre-ELM pedestal TS data from the

pedestal top to the foot on a logarithmic scale for discharge #87342. A linear fit to the

data was obtained taking into account the uncertainties both in ne and Te. The slope of

the linear fit provides an estimate for ηe in the pedestal.

The results of the two methods are compiled in figure 5.13. for comparison. Both

figure a and b show the TS data points on a logarithmic scale in black and the linear

fit in red. The ηe profile evaluated from the mtanh fits is also shown in these figures in

colors. In figure 5.13a, the color scale indicates ηe, while it shows ΨN in figure 5.13b. It

is clear from figure 5.13 that the ηe profile estimate from the mtanh fits implies a large

variation in the pedestal, which is not captured by the linear fit.

In the following figures ηe is compared for the H and D dataset with both methods.

For the mtanh fit estimate, given that the variation of the ηe profile is typically large

in the pedestal, in figure 5.14 ranges of ηe between the lowest and highest values in the

0.02ΨN wide region are compared. For the linear fit estimate (shown in figure 5.15), the
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Figure 5.12: The pre-ELM pedestal Te as a function of ne directly from the TS data for discharge
#87342. In order to estimate ηe, a linear fit to the data was obtained taking into
account the uncertainties both in ne and Te.
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Figure 5.13: Comparison of the two different methods used to estimate ηe in the pedestal for
a representative example (discharge #87342). Both figure a and b show the TS
data points on a logarithmic scale in black and the linear fit in red. The ηe profile
evaluated from the mtanh fits is also shown in these figures in colors. The color
scale shows ηe in figure a, and ΨN in figure b.

region of interest is extended to 2 times the wdith of the Te pedestal in order to increase

statistics for the fit.

Despite the different approaches, ηe from the two different methods showing qualita-

tively similar results for the H and D dataset as can be seen in figures 5.14 and 5.15. In

the 1.4 MA/1.7 T dataset, there is some separation in ηe for the discharges at different

gas rates in D, as shown in figure 5.14a and 5.15a. ηe increases with increasing gas

rate for Psep > 6 MW in D, which is consistent with the larger relative radial shift

between Te and ne pedestals at higher gas rates and power [169–171]. The position of

92



the ne pedestal is radially outwards with respect to the Te pedestal, thus in the region

of maximum Te gradient the density gradient is smaller, leading to higher values of ηe.

There is no significant difference between the ηe values of the H and D plasmas (see

figure 5.14a). Lne and LTe at given Psep are also similar in H and D for this dataset. This

suggests that the mechanism identified in [99] and [102] explaining the differences between

JET-C and JET-ILW pedestals through differences in ηe does not apply here. Differences

in the inter-ELM transport between the H and D pedestals due to other mechanisms

are not excluded and future work should focus on studying transport with gyrokinetic

simulations in order to identify these. Figure 5.14b shows that at 1.0 MA/1.0 T, ηe is

typically larger in H than in D, which is a result of the ne pedestal being very narrow and

shifted radially outwards with respect to the Te pedestal. Figure 5.15b shows somewhat

different behaviour. The very high values of ηe seen in H at the top of the Te pedestal (see

figure 5.14b) are not captured by the linear fit. However, except for the high gas D cases,

ηe is typically larger in H than in D at given Psep. Higher ηe in H may imply differences

in pedestal heat transport between H and D, although the degradation of the pedestal

is the least pronounced in this dataset, thus further transport analysis and comparison

with gyrokinetic simulations would be required to clarify the relation between the heat

transport and ηe at 1.0 MA/1.0 T.

In summary, the main differences in the pedestal structure between H and D are that

the pedestal pressure is typically reduced in H compared to D at the same input power

and gas rate, primarily due to lower pedestal density in H. The pedestal electron pressure

gradient is typically lower in H than in D at similar pedestal pressure widths. The neutral

penetration model is not consistent with differences in the density pedestals between H

and D, indicating that transport is likely to play a role in the isotope dependence of the

pedestal.
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Figure 5.14: ηe = Lne
/LTe

is calculated for the pre-ELM pedestals from the mtanh fits. The
figure shows the range of ηe between the lowest and highest values in a 0.02ΨN

wide region around the centre of the Te pedestal for the (a) 1.4 MA/1.7 T and the
(b) 1.0 MA/1.0 T datasets.
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Figure 5.15: ηe as evaluated from the linear fit on log(Te) as a function of log(ne) directly from
the TS data in the pedestal. The figure shows ηe for the (a) 1.4 MA/1.7 T and the
(b) 1.0 MA/1.0 T datasets.
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Chapter 6

Pedestal transport in JET-ILW H

and D type I ELMy H-modes

The previous chapter revealed numerous differences between H and D pedestals in

JET-ILW type I ELMy H-modes and indicated that the understanding of pedestal

transport is essential to explain the observed favourable isotope dependence of the

pedestal. Thus, in the present chapter, pedestal transport is investigated experimentally

in detail. Section 6.1 presents a power balance analysis of the pedestal to separate the

ELM and inter-ELM losses. Section 6.2 examines the potential role of ELM particle

losses in setting the lower density in H. The edge transport and neutral penetration

are then investigated using interpretative 2D edge transport simulations with the

EDGE2D-EIRENE code. These results are presented in section 6.3.

6.1 Power balance analysis

In this section a power balance analysis is presented to compare JET-ILW H and D

type I ELMy H-modes in terms of radiation, ELM losses and inter-ELM transport. Psep

in the power balance equation here is separated into inter-ELM and ELM components

and dW/dt is omitted as only the steady phases of the discharges are examined, where

the rate of change of stored energy on time scales longer than the ELM cycle is negligible:

Psep = Pinter−ELM + PELM = Ploss − Prad,bulk (6.1)

The ELM energy loss (∆WELM) - which gives PELM = ∆WELM × fELM - has been

evaluated from two independent measurements: a) the stored energy drop from EFIT

equilibrium reconstruction (∆WMHD) and b) Thomson scattering electron kinetic profile
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measurements (∆WTS). ∆WMHD is estimated by the difference between the maximum

and the minimum of the WMHD signal in the vicinity of the ELM crash, as illustrated by

the red arrow in figure 6.1. ∆WMHD is evaluated for all ELMs individually in the steady

phase of the discharge. The ELM energy losses are then averaged and their standard

deviation provides a measure for the scatter in ∆WMHD, which will be represented with

error bars.

WMHD [MJ]
Be II photon �ux [a. u.]

W
M

H
D
 [M

J]

Time [s]
6.40 6.42 6.44 6.46 6.48

Figure 6.1: Stored energy signal (WMHD) from EFIT equilibrium reconstruction (in blue) during
an ELM crash in H pulse #91554. The inner divertor BeII (λ = 527 nm) photon
flux (in black) is used as an ELM marker.

∆WTS is evaluated by applying the method explained in [155]. In the steady phase of

the pulse, the pre- and post-ELM TS profiles are fitted using the ELM synchronisation

technique to compensate for the low time resolution (20 Hz) of the TS diagnostic. The

post-ELM profile fit represents roughly the 5-15 % interval of the ELM period. TS

measurements taken during the ELM crash are excluded, as the profiles in this interval

are often dominated by the particular dynamics of each ELM crash. Typically 2 or 3 TS

measurements following the ELM crash are selected. An example is shown in figure 6.2,

where pre-ELM (80-97 %) and post-ELM (5-15 %) electron density (figure 6.2a) and

temperature (figure 6.2b) TS profiles can be seen for D discharge #84796. The ELM

energy loss is calculated from the difference between the pre- and post-ELM TS profiles

volume integrated in the region ΨN = [0.5, 1.05]. Ti = Te is assumed and line-averaged

Zeff measurements (assuming Be as single impurity) are taken into account to evaluate

the total ELM energy loss. Due to ELM synchronisation, ∆WTS is already an average

over the steady phase of the discharge. The uncertainty of ∆WTS is estimated from the

errors of the pedestal top values of the mtanh fit.
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(a) (b)

Figure 6.2: The mtanh fitted pre-ELM (80-97 %) and post-ELM (5-15 %) electron density (a)
and temperature (b) profiles of D pulse #84796.

A comparison of ELM losses evaluated from ∆WMHD and ∆WTS for selected type I

ELMy H-modes of the JET-ILW H and D isotope dataset is shown in figure 6.3. The ELM

losses evaluated by the two measurements are broadly consistent, especially in controlled

parameter scans, but differences between individual discharges can be as high as a factor

of 2 due to the intrinsic uncertainties of this analysis. These include uncertainties in

∆WMHD due to slow data acquisition of the magnetic diagnostics, screening of the vacuum

vessel and other conducting structures and uncertainties in ∆WTS due to uncertainties in

the TS measurement and errors introduced by ELM-synchronisation and regularisation

of the profile by the mtanh fit. Due to these difficulties with the measurements, ELM

energy losses can only be evaluated below fELM ≈ 50 − 60 Hz. Thus, figure 6.3 shows

a subset of JET-ILW H and D type I ELMy H-modes, where the ELM frequency

satisfies this condition. In figure 6.3, ∆WTS is typically lower than ∆WMHD. This may

be a consequence of the low time resolution of the TS diagnostic, which results in an

underestimate of the ELM losses, as it is difficult to capture the very fast recovery phase

of the pedestal in the beginning of the ELM cycle.

The power balance analysis is presented here for selected discharges with plasma

current Ip = 1.4 MA, toroidal magnetic field Bt = 1.7 T, fuelling gas rate Γe = 3 − 4 ×

1021 e/s and NBI heating as reported in table 6.1. The ELM-averaged pedestal kinetic

profiles of the selected pulses are shown in figure 6.4. It shows the pedestal profiles of

electron density, temperature and pressure for a H reference discharge in red (#91554)

and two deuterium plasmas, one with similar thermal stored energy (in blue, #84793) and

one with similar input power (in black, #84796) with respect to the hydrogen counterpart.

The main parameters of these 3 discharges can be seen in table 6.1.
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Figure 6.3: Comparison of ELM losses normalised to the pedestal stored energy (WPED)
evaluated from WMHD and TS profiles on a subset of JET-ILW H and D type I
ELMy H-modes.

Shot Isotope Ip Bt ΓD δ PNBI Ploss Wth fELM

[MA] [T] [1021 e/s] [MW] [MW] [MJ] [Hz]

#84793 D 1.4 1.7 2.8 0.2 4.4 4.6 1.2 14.2
#84796 D 1.4 1.7 2.8 0.2 10.6 10.4 1.9 18.7
#91554 H 1.4 1.7 4 0.2 10.0 9.4 1.1 31.3

Table 6.1: Main parameters of the H and D plasmas selected for comparison of power balance.
PNBI is the NBI heating power, Ploss is the loss power (i.e. the total absorbed power
compensated with the time derivative of the total stored energy), Wth is the thermal
stored energy calculated as 2 times the electron stored energy from TS measurements
and fELM is the ELM frequency.

The comparison of H and D type I ELMy H-modes at similar stored energy (#91554

and #84793) shows that roughly two times higher heating power is needed in H to match

the stored energy of the D counterpart. In this comparison the pedestal pressure is also

similar and the lower density in H is compensated by the higher temperature as shown

in figure 6.4. When the heating power is similar in H and D (#91554 and #84796), the

pedestal temperature is similar too, but the pedestal density is significantly lower in H.

The result of the power balance analysis for the 3 discharges characterised above is

summarised in table 6.2. The comparison of H and D plasmas at similar stored energy

(#91554 and #84793) shows that roughly double inter-ELM separatrix loss power is

required in H than in D to maintain similar pedestal top pressure. This is in agreement

with observations from ASDEX-Upgrade H-mode plasmas [110]. When the heating power

98



ΨN

ΨN

ΨN

Te
m

pe
ra

tu
re

 [k
eV

]
D

en
si

ty
 [1

019
 m

-3
]

Pr
es

su
re

 [k
Pa

]

PIN match - D #84796
Wth match - D #84793

H #91554

(a)

(b)

(c)

Figure 6.4: ELM-averaged (0-100 % of the ELM cycle) electron kinetic profiles from TS of the
pedestal for the hydrogen reference discharge (#91554) and two deuterium plasmas,
one with similar thermal stored energy (#84793) and one with similar input power
(#84796) with respect to the hydrogen counterpart. (a) Electron density (b) electron
temperature (c) electron pressure. These profiles are radially shifted to have Te,sep =
100 eV.

is similar in H and D (#91554 and #84796), the inter-ELM separatrix loss powers are

also similar (but pe,PED is higher in D than in H).
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Shot Isotope Ploss Prad PELM Psep inter-ELM pe,PED

[MW] [MW] [MW] [MW] [kPa]

#84793 D 4.6 1.1 1.1 2.4 2.2
#84796 D 10.4 2.2 2.4 5.8 3.1
#91554 H 9.4 2.0 2.3 5.1 2.1

Table 6.2: Power balance analysis for the three discharges at 1.4 MA/1.7 T and low gas rate
introduced in table 6.1.

6.2 ELM particle losses

It is now analysed how ELMs affect the particle and energy channels. Figure 6.2a and b

show the pre-ELM (80-97 %) and post-ELM (5-15 %) TS profiles for D discharge #84796.

In this example, the ELMs primarily affect the density, not so much the temperature

profiles. This behaviour is general in the analysed dataset and applies to both H and

D plasmas as indicated by figure 6.5, where the relative drop of the pedestal top

density and temperature is shown for H and D plasmas at 1.4 MA/1.7 T (circles) and

1.0 MA/1.0 T (triangles). A comparison of the fuelling sources in representative plasmas

(from EDGE2D-EIRENE simulations, see section 6.3) and an order of magnitude estimate

for the ELM particle losses utilising the TS measurement suggests that ELMs could be

responsible for ∼ 20 − 30 % of the total particle losses. In view of this, ELM particle

losses are investigated here in detail.

ELM energy losses primarily due to the loss of particles have also been observed in low

triangularity JET-C experiments, where fELM was increased by increasing the fuelling

gas rate [38, 153]. At low fELM, ELM energy losses (relative to the total stored energy)

and the relative temperature drop were high, with smaller relative density drop. With

increasing fELM, the ELM energy losses decreased, primarily due to the reduction of the

relative temperature drop and no change in the relative density drop. Hence, the high

frequency ELMs mainly affected the density pedestal, similarly to the ELMs observed in

the JET-ILW isotope experiments described here.

As it was shown in chapter 5, the pedestal density in D is higher than in H at similar

Psep and gas rate in the JET-ILW isotope dataset. However, it has also been shown that

the ELM frequency is typically higher in H in these conditions. Figure 6.6a shows the

pedestal top density as a function of fELM in H and D for the low gas 1.4 MA/1.7 T and

the medium gas 1.0 MA/1.0 T datasets. In these low triangularity plasmas (δ ≈ 0.2),

ne,PED decreases as fELM is increased by increasing input power at constant gas rate. H

and D pedestals at similar fELM (obtained at different Psep) have comparable pedestal
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Figure 6.5: The relative drop of the pedestal top density and temperature during ELMs for H
(open symbols) and D (full symbols) plasmas at 1.4 MA/1.7 T low gas rate (circles)
and 1.0 MA/1.0 T medium gas rate (triangles).

densities, as highlighted by the black dashed circles in figure 6.6a. This suggests that the

higher ELM frequency in H may also play a role in setting the observed lower ne,PED.
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Figure 6.6: (a) Pedestal top density as a function of fELM in low δ(≈ 0.2) H and D plasmas at
1.4 MA/1.7 T (full circles) and 1.0 MA/1.0 T (open triangles). H and D pedestals at
similar fELM (but different Psep) have comparable pedestal densities as highlighted
by the black dashed circles. (b) Average drop in edge interferometer signal during
ELMs per second. D pulses are indicated in blue, H pulses in red. The error bars
represent the statistical variation of the ELM particle loss throughout the steady
phase of the discharge.

The increase in “density pump out” with increasing fELM has been observed in JET

experiments utilising ELM pacing via fast vertical plasma motion (vertical kick) [179].
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Vertical kicks trigger ELMs by introducing a local perturbation of the current density

close to the separatrix. A kick is an intermittent perturbation and only affects the

transport by triggering extra ELMs but not modifying the inter-ELM transport [179]. It

has been reported that the correlation between the density pump-out and fELM suggests

that the reduction in the plasma particle content is a consequence of the increase in the

time averaged ELM particle loss [179].

In order to understand the cause of the correlation between fELM and ne,PED in the

H and D isotope database, the ELM particle losses are investigated. High time resolution

density profile measurements were not available for the plasmas in the analysed dataset.

The TS system has slow time resolution (20 Hz) and the reflectometry is not available

on JET below Bt = 2 T. Therefore, an edge interferometer LOS with submillisecond

time resolution was utilised to estimate the particle loss in an ELM crash. The drop in

the line-averaged interferometer signal during the ELM crash multiplied by the ELM

frequency is taken as proxy for the total ELM induced particle loss, fELM × ∆nELM,

where ∆nELM is the particle loss caused by the ELM.

Figure 6.6b shows that at low fELM (< 40 Hz) ELM particle losses increase with

ELM frequency. This implies that the higher fELM in H than in D at similar Psep and gas

rate may contribute to the observed lower pedestal density in H. However, ELM particle

losses saturate at higher fELM, both in H and in D, indicating that other mechanisms may

also play a role in setting lower density in H. EDGE2D-EIRENE simulations discussed

in the next section indicate that higher particle transport (ELM and inter ELM particle

transport together in these simulations) in H than in D is likely to play an important

role in the observed lower pedestal density in H.

6.3 Interpretative EDGE2D-EIRENE simulations

In order to support the experimental analysis on the H and D pedestals presented in

this thesis, interpretative 2D edge transport simulations were also carried out. These

simulations help to understand how transport and neutral penetration affect the pedestal

performance when the isotope mass is changed. Furthermore, an important boundary

condition, namely the electron temperature at the separatrix, can also be tested with

such simulations. As it will be shown in chapter 7, the value of the separatrix temperature

affects the MHD stability of the pedestal. The edge transport code utilised for the

simulations described here is EDGE2D-EIRENE [180–182].
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6.3.1 EDGE2D-EIRENE

EDGE2D solves the multi-fluid equations in a two-dimensional, realistic divertor

geometry. Due to the relatively cold temperature in the edge region of the plasma, the

presence of neutral atoms and molecules are important and their interaction with the

plasma needs to be taken into account for accurate treatment of the sources due to

atomic physics effects such as radiation, ionisation, charge exchange, etc. As the density

of neutrals is relatively low, neutral-neutral collisions can be neglected and the neutrals

can be tracked with the Monte Carlo transport code, EIRENE [180, 182].

The fluid equations for species s solved by EDGE2D are the following:

∂ns
∂t

+∇ · (nsvs) = Sneut
s,part , (6.2)

∂(ρsvs)

∂t
+
(
∇ · (ρsvsvs + πs) +∇ps

)
= esns(E + vs ×B) +

∑
s 6=s′

Rss′ + Sneut
s,mom , (6.3)

∂

∂t

(
3

2
ps

)
+

5

2
ps∇ · vs +∇ · qs =

∑
s 6=s′

Wss′ + vs∇ps + Sneut
s,en + Srad

e,en . (6.4)

Eq. (6.2) is the particle conservation equation, which shows that the number of particles

in a differential volume are changed by the sources (or sinks) and the particle flux out of

the volume. Eq. (6.3) is the momentum conservation equation. On the left hand side of

eq. (6.3) the first term is the rate of change of the momentum and the second term is the

momentum flow out of the differential volume with πs the viscosity tensor. On the right

hand side of eq. (6.3) the first term is the Lorentz force, the second term is the collisional

friction between the different species and momentum source as a result of interactions

with neutrals is represented by the third term. Eq. (6.4) represents the conservation of

the internal energy in the rest frame of species s. On the left hand side of eq. (6.4) the

first term is the rate of change of the internal energy density (i.e. the pressure ps). The

second term is the work done in compressing the fluid and the third term represents the

heat flowing out the differential volume with qs the heat flux. The first term on the right

hand side of eq. (6.4) is the energy gain due to collisions with other species, the second

term is the convection of the pressure gradient, the third term is the energy loss due to

interactions with neutrals and the fourth term is the energy loss due to radiation which

only applies to the electrons. Viscosity is neglected in the energy conservation equation

in EDGE2D.

Eqs. (6.2)-(6.4) are solved in EDGE2D for the electrons, bulk ions and impurity ions.

Assuming axisymmetry, the equations are written in a curvilinear coordinate system
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representing the poloidal plane. The coordinate system relies on the EFIT equilibrium

reconstruction for the plasma being simulated and the simulation cells are aligned

with the magnetic flux surfaces. The parallel transport is calculated using the so-called

“21 moment” description [183], which is an extension of the Braginskii equations [184]

and is valid for arbitrary impurity concentrations. In the perpendicular direction the

transport is simulated as a diffusive process and the perpendicular heat and particle

transport coefficients are user defined. These perpendicular transport coefficients are

usually set in a way that the upstream profiles for density and temperature match

with those measured in the plasma being modelled. At the sheath region in front of the

divertor targets the Bohm criterion is applied, which assumes that ions enter the sheath

with a parallel velocity equal to, or greater than the sound speed. In the simulations

presented in this thesis, it is assumed that this criterion is marginally satisfied, i.e. the

ion parallel velocity is equal to the sound speed. The neutral source terms are treated

by EIRENE, which is a Monte-Carlo kinetic neutral code. The atomic and molecular

processes considered in the default version of EDGE2D-EIRENE are ionisation, charge

exchange, radiative recombination, 3-body recombination and dissociative recombination,

dissociative excitation and dissociative ionisation. For impurity ions, only ionisation and

recombination processes are considered.

6.3.2 Edge plasma properties in H and D type I ELMy H-modes

In this thesis, EDGE2D-EIRENE is used in an interpretative way to investigate the edge

properties of H and D type I ELMy H-modes. A pair of type I ELMy H-modes at low

gas rate (#91554 and #84793) with similar stored energy were selected (see table 6.1).

Note that the input power is doubled in H compared to D to reach similar stored energy

and pedestal pressure, and the H pulse has lower ne,PED and higher Te,PED than the D

pulse (see figure 6.4). In these interpretative runs the perpendicular transport coefficient

of electron particle diffusion D⊥ (Γe = D⊥∇ne), electron and ion heat transport χe,i

(qe,i = −ne,iχe,i∇Te,i) and the pump albedo were iterated until the solution fitted the

upstream ne and Te profiles (measured by TS) and the outer target heat deposition profile

(measured by IR-camera). χe and χi were assumed to be the same. χ in the SOL was

set such that the heat deposition profile at the outer divertor target matched the IR

camera measurements. The aim here was to approximately match the width of the heat

deposition profile in order to constrain the width of the SOL, which potentially affects

Te,sep. Cross-field drifts were not taken into account in the simulations.
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The grid for EDGE2D relies on EFIT equilibrium reconstruction and is shown in

cyan in figure 6.7a. The EDGE2D simulation domain extends to ∼ 10− 15 cm inside the

separatrix to the core plasma. The input power in EDGE2D was set to the power crossing

the separatrix inter-ELM, i.e. the ELM power loss (PELM) was excluded. The ELM crash

was not simulated and it was assumed that PELM does not contribute to the power balance

in the SOL, which sets the separatrix temperature inter-ELM. For simplicity, both the H

(#91554) and the D (#84793) case were simulated in the corner-corner (C/C) divertor

target configuration, albeit discharge #84793 was in vertical-horizontal (V/H) divertor

target configuration in the experiment. For the C/C configuration, the wall structure of

the grid had to be slightly modified around the outer strike-point so that the EDGE2D

grid does not cross wall surfaces, as shown in figure 6.7b. In this way, the real JET divertor

geometry (in green) is slightly altered to be aligned with the outermost grid elements.

This modification could possibly lead to some differences in the neutral pressure around

the outer strike point compared to that in the real geometry, but the aim here was to

compare a pair of H and D simulations and not to carry out comprehensive validation

of the code. Thus, both the H and the D cases were simulated using the same grid.

A quantitative answer on how much the wall structure alteration used here affects the

simulated target and upstream profiles could only be given by testing this effect with an

edge transport code such as SolEdge2D [185, 186] that is capable of handling complex

geometries, but this is out of the scope of the present work.
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Figure 6.7: (a) The EDGE2D simulation grid in cyan. (b) The real divertor geometry (in green)
is slightly altered at the outer strike point to be aligned with the outermost grid
elements. The pump surfaces are shown in cyan close to the strike points.
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As explained in chapter 5, divertor cryopumping is more effective in the C/C

configuration, thus the pump albedo is likely to be overestimated in our EDGE2D-

EIRENE simulations for the D case (which is in V/H configuration in the experiment).

The gas fuelling was set in accordance with the experiment. The impact of divertor

configuration (C/C vs V/H) on the pedestal density has been investigated in a separate

study, where all input parameters of the interpretative simulation for #84793 (transport

coefficients, pump albedo, input power, gas fuelling, etc.) were kept fixed, but the

divertor configuration was changed from C/C to V/H. The pedestal density increased

by approximately 15-20 %, while Te,PED decreased leading to virtually no change in

pedestal pressure, which is consistent with the experimental observations [53].

Figure 6.8 shows the “inter-ELM” (40-80 % of the ELM cycle) ne and Te profiles

measured by TS (in grey) and the profiles of the EDGE2D-EIRENE solutions (in red

for H and blue for D). The “inter-ELM” outer target heat flux profiles are evaluated by

averaging the profiles from the IR camera in the 40-80 % part of the ELM cycle and

are compared with the EDGE2D simulations in figure 6.9. The time evolution of heat

deposition reconstructed from IR measurements can be very uncertain in the vicinity of

the ELM crash due to the transient heat flux arriving to the target. Thus, the 40-80 %

interval was chosen to represent the inter-ELM parameters and exclude any artefacts

in the heat deposition profiles. TS data are also filtered for the 40-80 % part of the

ELM cycle for consistency. The implications on the separatrix temperatures indicated in

figure 6.8 will be discussed in section 6.3.3.
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Figure 6.8: Inter-ELM TS profiles (40-80 % of the ELM cycle) for ne and Te (in grey) in the
steady phase of the H (#91554: 5.7-8.2 s) and D (#84793: 5.0-6.3 s) discharges.
The resulting upstream ne and Te profiles of the interpretative EDGE2D-EIRENE
simulations for the H pulse (#91554) in red and for the D pulse (#84793) in blue.
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Figure 6.9: Inter-ELM (40-80 % of the ELM cycle) outer target heat deposition profiles as
evaluated from IR camera measurements in the steady phase of the H (#91554:
5.7-8.2 s) and D (#84793: 5.0-6.3 s) discharges with dashed lines. Outer divertor
target heat deposition profiles from EDGE2D-EIRENE with solid lines for H (red
#91554) and D (blue #84793).

In the simulations, the pumping surfaces were placed at the corners of the simulated

divertor (see figure 6.7b), where - in experiment - neutrals would be moving into the

sub-divertor region by the action of the cryopump. The pump efficiency is defined by the

pump albedo, which gives the probability that a neutral - which reaches the pumping

surface - is reflected. The pump albedo was set to 0.4 for H and to 0.7 for D to obtain

a match of the upstream profiles for these two discharges. However, these values are

not consistent with testbed results on the sticking coefficients (αs) of H2 and D2 at a

cryopump surface [187, 188]. The sticking coefficient is the ratio of the number of particles

sticking to the cryosurface related to the total number of particles impinging on it. The

sub-divertor structures and the cryopump are not modelled in these EIRENE simulations,

thus a one-to-one comparison between the albedo defined in EDGE2D-EIRENE and the

testbed results for the sticking coefficients on a cryosurface is not possible, but the albedo

is roughly proportional to (1−αs). The testbed results show that the sticking coefficient

is higher in D than in H [187, 188], implying lower albedo in D than in H in contrast

to the EDGE2D-EIRENE pump albedo settings. A possible reason for this disagreement

could be that the much hotter ions, electrons and neutrals in the SOL of the H discharge

may have resulted in different neutral recycling at the wall.

Figure 6.10 shows the anomalous transport coefficients used in the simulations to

match the experimental upstream and divertor target profiles. The anomalous heat

transport coefficients inside of the pedestal are higher in H than in D, but are comparable
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in the edge transport barrier (ETB). D⊥ is higher in H than in D everywhere inside the

separatrix. This implies that larger particle transport in H than in D could be responsible

for the different pedestals, which is consistent with the experimental observations

suggesting higher ELM particle losses in H than in D as discussed in section 6.2. Note

that in the EDGE2D-EIRENE simulations, D⊥ represents the total particle transport,

which - in the experiment - is a sum of the ELM and the inter-ELM particle losses. The

“steps” in D⊥ and χe,i in the ETB (see figure 6.10) were needed in EDGE2D-EIRENE

to match the TS data as closely as possible, but it is important to note that Te,sep is

not sensitive to these fine details in the shape of the perpendicular transport coefficients.

χe,i outside the separatrix is constrained by the outer target IR heat deposition profile,

but there is insufficient information from IR to distinguish between H and D. Similarly,

there is no available TS density data outside the separatrix to constrain D⊥, which was

therefore imposed to be the same in H and D. It is important to note that an edge

particle pinch, which may have an important role in the particle transport [189–191]

is not introduced in these EDGE2D-EIRENE simulations. The experimental ne profile

shape could be reproduced with different variations of the diffusion coefficient and the

pinch velocity, due to the lack of additional constraints. The particle pinch is not taken

into account in these EDGE2D-EIRENE simulations, although its role in edge particle

transport is not excluded and is the subject of ongoing research.

The effect of change in mean free path of neutrals between H and D in the

EDGE2D-EIRENE simulations is investigated with a test where all input parameters

(transport coefficients, pump albedo, input power, gas fuelling, etc.) are kept fixed, but

only the isotope mass is changed from D to H. The input parameters of the interpretative

simulation for the D case (#84793) were taken. The results of the change from D to H

for otherwise fixed conditions is only a ∼ 10 % increase in the pedestal top density and a

slight decrease in the temperature, as shown in figure 6.11. The change in the upstream

profiles is small and opposite to experimental observations (see figure 6.4). This result

- together with the previous findings that higher transport coefficients are required in

H (#91554) than in D (#84793) to match the experimental profiles - indicate that the

change in neutral penetration due to different isotope mass does not explain the observed

lower density in H pedestals and therefore transport must also play a role.

6.3.3 Separatrix temperature in H and D type I ELMy H-modes

The EDGE2D-EIRENE simulations yield a more accurate value for the electron

separatrix temperature than the typically used Te,sep ≈ 100 eV for JET H-modes obtained
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Figure 6.10: Electron particle diffusion (D⊥) and electron and ion heat transport (χe = χi =
χe,i) coefficients of the EDGE2D-EIRENE simulations for the inter-ELM phase
(40-80 %) of the H (red #91554) and D (blue #84793) discharges. The edge
transport barrier (ETB) is indicated by the grey shaded area.
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Figure 6.11: Upstream ne and Te profiles of a pair EDGE2D-EIRENE simulations where all
parameters were kept fixed (transport coefficients, pump albedo, input power, gas
fuelling, etc.), but the isotope was changed from D to H.
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by the 2-point model [192, 193]. Te,sep is required to constrain the separatrix position for

the radial alignment of the measured kinetic profiles. The position of the separatrix from

EFIT is uncertain and typically implies unphysical separatrix temperatures (� 100 eV)

due to the uncertainties in the magnetic equilibrium reconstruction. An estimate for

Te,sep can be obtained by taking into account the parallel heat conduction and pressure

and power balance in the scrape-off-layer (SOL), thus obtaining a relation between the

upstream (Te,upstream ≡ Te,sep) and divertor target temperatures (Te,target). Assuming a

conduction limited divertor regime, the upstream temperature at the separatrix can be

approximated by the two point model equation [193]:

Te,upstream =

(
T

7/2
e,target +

7PsepL

2Aqκ

) 2
7

, (6.5)

where L is the connection length, Aq is the projection of the wetted area perpendicular to

the heat flux and κ is the parallel heat conductivity coefficient. Te,target is often neglected

as T
7/2
e,upstream � T

7/2
e,target is satisfied in a conduction limited divertor regime. It is common

practice to assume that in eq. (6.5) Psep is the only significantly varying parameter and

thus Te,upstream weakly varies with power (Te,upstream ∼ P 2/7
sep ), and approximately equals

100 eV for JET H-modes. However, Aq could also change from discharge to discharge and

the condition of the conduction limited divertor regime is not necessarily satisfied in all

cases. In the sheath limited regime, the value of T
7/2
e,target cannot be neglected. Thus, in

realistic experimental conditions, Te,sep could vary from ≈ 100 eV and in extreme cases

it might have a significant effect on pedestal stability [194, 195], as it will be discussed

in section 7.3.

As highlighted in figure 6.8, the EDGE2D-EIRENE simulations indicate that Te,sep

is higher in the H discharge (≈ 205 eV) than in the D pulse (≈ 95 eV). This difference is

due to the fact that roughly two times more power crosses the separatrix at lower density

in the H case. As a result, the H discharge in the EDGE2D-EIRENE simulation is found

to be in the sheath limited regime with Te,upstream ≈ 205 eV and Te,target ≈ 200 eV. In

contrast, for the D case Te,upstream ≈ 95 eV and Te,target ≈ 75 eV. These are still high

temperatures at the divertor target, but the temperature drop between upstream and

target is larger in the D case than in H. This suggests that the D discharge is closer to

the conduction limited regime, while the H discharge is in the sheath limited regime.

The outer divertor target Te obtained in the EDGE2D-EIRENE simulation for the

D case is supported by Langmuir probe measurements, as shown in figure 6.12. Note

that these high Te,target values are not typical of JET-ILW operation but of the low
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gas fuelling of this discharge. In the H pulse (#91554), due to lack of Langmuir probe

measurements, the high Te,target suggested by the EDGE2D-EIRENE simulation cannot

be compared with experiment. Note that at such high divertor target temperature, above

100 eV as indicated by EDGE2D-EIRENE simulations in H, secondary electron emission

could also be important. Secondary electrons are emitted due to high energy plasma

particles striking the solid surface. This effect, which would act as an extra electron heat

sink in the SOL, is not included in the EDGE2D model. Thus, the high Te,sep = 205 eV

obtained for the H discharge should only be taken as an upper limit and must not be

considered at face value.

D - Langmuir probe
D - EDGE2D

Distance from separatrix - outer target [m]

T e [e
V

]

D

Figure 6.12: Inter-ELM (40-80 %) outer target Te profile as evaluated from Langmuir probe
measurements for the steady phase of the D pulse #84793 (5.0-6.3 s) in grey and
Te from EDGE2D-EIRENE in blue.

The interpretative EDGE2D-EIRENE simulations indicate that Te,sep is mostly

affected by the input power and χe,i values in the SOL, which are constrained by the

outer target heat flux profile from IR. When both the upstream kinetic profile and outer

target heat flux constraints are given, Te,sep is a robust parameter in the simulation and

is not sensitive to the D⊥ and χe,i profiles inside the separatrix. The higher power and

lower density in the H discharge compared to the D discharge result in a sheath limited

divertor regime in the H case, which leads to high electron temperatures both upstream

and at the target. The simulation result suggests higher Te,sep in H than in D, while

Te,sep(D) ≈ 100 eV as originally assumed using the 2-point model. This difference in

divertor regime between the two discharges is a consequence of the density and input

power difference in the H and D pair and not to the isotope mass alone. Due to the

limitations of the EDGE2D-EIRENE model as discussed above, the Te,sep value quoted
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in figure 6.8, must not be regarded as the exact solution for the H case, but as an

indication that Te,sep could be larger than 100 eV in the H pulse. Note that the selected

pair of discharges are representative of the divertor conditions of JET-ILW at low gas

fuelling rates. It is expected that at higher gas rate (and density) the divertor regime

shifts towards conduction limited regime also in H, where lower target and upstream

temperatures are expected than those obtained in the EDGE2D-EIRENE simulations

for the H discharge at low gas rate (#91554).

The effect of a possible higher separatrix temperature in H on pedestal stability is

discussed in the next chapter. The main conclusion of this modelling exercise is that

the experimentally observed lower pressure and density pedestal in H compared to

D cannot be explained by the changes in neutral penetration. In order to match the

experimental pedestal profiles, higher perpendicular transport coefficients need to be set

for the H pulse compared to D in EDGE2D-EIRENE, indicating that pedestal transport

must play a role in setting the different pedestals when the isotope mass is changed.

This is consistent with the conclusions of the experimental analysis, which showed that

the density pedestals of the investigated plasmas are not consistent with the neutral

penetration model (section 5.4), higher inter-ELM Psep is needed in H compared to

D to maintain similar pedestal pressure (section 6.1) and ELM particle losses may be

higher in H than in D due to higher ELM frequency at similar input power and gas rate

(section 6.2).
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Chapter 7

Pedestal stability of JET-ILW

Hydrogen type I ELMy H-modes

After discussing the potential isotope dependence of pedestal transport and neutral

penetration, in this chapter the pedestal MHD stability is investigated. Modification

of the bootstrap current due to finite orbit width effect, when the isotope mass is

changed, could potentially affect pedestal stability. This is discussed in section 7.1.

It is followed by the analysis of linear MHD pedestal stability in view of the isotope

dependence, when diamagnetic stabilisation is taken into account. Finally, a sensitivity

of pedestal stability on the separatrix electron temperature, motivated by the results of

the EDGE2D-EIRENE simulations, is discussed in section 7.3.

7.1 Isotope dependence of the bootstrap current

As the current density at the edge is typically dominated by the bootstrap current in H-

mode plasmas, any isotope dependence of jBS could potentially affect the MHD stability

of the pedestal. An isotope dependence of the bootstrap current is only expected if the

ion orbit width is comparable to the density and temperature gradient scale lengths.

In the local limit, the bootstrap current does not depend on the ion mass. In order to

understand this, the explanation of the source of jBS presented in section 2.1. needs to

be elaborated here. As discussed, in the presence of a density gradient, the difference in

the number of particles populating the banana orbits in different radial positions leads

to a net toroidal current, the banana current. The banana current (jb) can be estimated

by the number of particles going in the direction of the current (δnb) times their average

parallel velocity (v‖) [68]. δnb is roughly the banana orbit width (wb) times the density

gradient. wb is proportional to the Larmor radius (rL), which scales as rL ∼
√
m. At a
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given temperature the 1/
√
m scaling of v‖ cancels out the

√
m scaling of δnb, leading to

no ion mass dependence of the banana current.

However, the bootstrap current is mostly carried by the passing particles due to

collisional coupling of trapped and passing particles. Thus, the current is arising from the

difference in velocity between the passing ions and the passing electrons. The momentum

exchange between the passing ions and electrons is proportional to the electron-ion

collision frequency and the bootstrap current (νeijBS) [7]. For the passing electrons this

is balanced by the momentum exchange between the passing and trapped electrons,

which is proportional to the electron-electron collision frequency and the banana current

(νeejb) [7]. Equating the two expressions for the momentum exchange for the passing

electrons shows that the relation between jBS and jb is proportional to νee/νei. The ratio

of the e-e and e-i collision frequencies is independent of the ion mass [64]:

νee =
ln Λee

4ne

12
√

2π3/2ε20m
1/2
e T 3/2

, (7.1)

νei =
ln Λee

4ne

6
√

2π3/2ε20m
1/2
e T 3/2

, (7.2)

where ln Λe is the Coloumb logarithm. Consistently, jBS evaluated with local neoclassical

transport solvers such as NEO has no isotope dependence.

The isotope mass could play a role in the bootstrap current when finite orbit

width effects are important. When the ion orbit width is comparable to the density

and temperature gradient lengths, the small orbit width approximation used by local

neoclassical codes breaks down. In this section the finite orbit width effect of the bootstrap

current is discussed based on Hager’s work [168]. Given that the bootstrap current is

mostly carried by the electrons (in the laboratory frame) and the electron orbit width

is typically much smaller than the kinetic profile gradient lengths, one may think that

finite orbit-width effects of jBS are negligible. However, finite orbit-width effects do play

a role by entering the electron flow indirectly through the radial electric field (Er). Er

emerges to keep the plasma quasi-neutral in the presence of the ion orbit motion. Er

drives a parallel flow in the same way as ∇p does. As Er is in the same direction as ∇p,

Er counteracts the ion bootstrap current, but adds to the electron bootstrap current due

to the sign change in the radial electric field force. In other words, Er transfers the ion

bootstrap current to the electrons. The finite orbit width effect influences the bootstrap

current in the non-local regime, because the orbit averaged electric fields experienced by

ions and electrons differ.
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An attempt to quantify the finite orbit width effect on the bootstrap current is

presented here, using the analytical formula reported in Hager’s work [168]. It is important

to note that some low collisionality JET-ILW pedestals may fall outside the validity

domain of Hager’s formula, as it will be shown later in this section. Hager’s formula

improves on Sauter’s formula by eliminating the inaccuracies explained in section 4.2

and it also includes corrections for finite orbit width effects. The formula is an analytic

fit on the results of numerous gyrokinetic simulations with the XGCa code using

various magnetic equilibria and plasma kinetic profiles. XGCa is a non-local, gyrokinetic

neoclassical code, which uses a fully non-linear Fokker-Planck collision operator with

highly accurate conservation of energy, momentum, and mass. The improved formula

takes the following form [168]:

jBS = −(βcol + β∇Ti)
Ipe
B0

(
γ31L31

1

pe

dP

dΨ
+
γ32L32

Te

dTe
dΨ

+

+(γ34L34)(γααi)
1

ZTe
×
(

1− 2∆Ψ

(
− 3

2
L−1
Ti

+ L−1
n + L−1

q

))dTi
dΨ

)
, (7.3)

which is similar to Sauter’s formula shown in eq. (4.3). The definitions of the parameters

in eq. (7.3) can be found in [168]. Here the focus is on β∇Ti , which is a correction term

to take into account the finite orbit width effects:

β∇Ti = − Λ1ν
∗
i

1 + Λ2ν∗2i + Λ3ν∗4i
(1− ε)Λ4 |∆R|Λ5

∆Ψ

Ti

∣∣∣∣dTidΨ

∣∣∣∣ , (7.4)

where ∆R is the Shafranov shift, ∆Ψ is the half of the ion orbit width 1 in units of poloidal

flux, ν∗ is the collisionality and Λn (n = 1, 2, 3, 4, 5) are the numerical parameters of the

fit. The finite orbit width correction is proportional to the ion temperature gradient and

it becomes weaker at higher collisionality, because the ion orbits are interrupted more

frequently.

A comparison of Hager’s formula with the local jBS solution from NEO is compared

in Hager’s work for three DIII-D like pedestals with different pedestal temperatures [168].

This is shown in figure 7.1. The pedestal profiles can be seen in figure 7.1a. The pedestal

top collisionalities (ν∗) are 5.2, 2.0 and 0.9 for the 250 eV, 500 eV and 1000 eV pedestals,

respectively. Figure 7.1b shows the bootstrap current profiles from the XGCa code (solid

black), Hager’s formula (dotted red), the NEO code (dashed green) and Sauter’s formula

(dotted-dashed blue). There is a small reduction in jBS when the finite orbit width effect

1[168] refers to ∆Ψ as the ion orbit width, but personal communication with the author has revealed
that in eq. (17) in [168] ∆Ψ is correctly defined as the half of the ion orbit width.
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is taken into account (XGCa and Hager’s formula) compared to the local solution (NEO).

The difference is increasing with decreasing collisionality as expected from eq. (7.4).

(a)

(b)

Figure 7.1: jBS profiles calculated for DIII-D like pedestals with different pedestal temperatures.
(a) Density and temperature profiles of the investigated pedestals. (b) jBS profiles
as evaluated with XGCa, NEO, Hager’s formula and Sauter’s formula. Figures are
adapted from [168].

An attempt has been made to quantify the isotope dependence of the bootstrap

current in JET-ILW pedestals with Hager’s formula. jBS profiles from NEO and Hager’s

formula assuming H (A = 1) and D (A = 2) isotope mass are show in figure 7.2 for the

three reference discharges (#84793, #84796 and #91554) introduced in section 6.1 and

for #84794, a D pulse from the same power scan as #84793 and #84796, but at higher

input power (PNBI = 16 MW) to test low ν∗ pedestals. It can be seen that the correction

(with respect to the local NEO jBS) introduced to account for finite orbit width effects
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is slightly different in H and D. However, the relative magnitude of the finite orbit width

correction is significantly higher in the lowest ν∗ JET-ILW case (#84794) than in the

DIII-D pedestals shown in figure 7.1. This is most probably due to the difference in

ν∗ (0.3 for #84794 and 0.5 for the 1000 eV DIII-D case) and the difference in ion orbit

width normalised to the Ti gradient length, ρi/LTi ( 1 for #84794 and 0.4 for the 1000 eV

DIII-D case). The unexpectedly large finite orbit width correction implies that the low

collisionality JET-ILW pedestals may fall outside the validity domain of Hager’s formula.

In order to quantify the finite orbit width correction for jBS and its isotope dependence,

one would need to run the XGCa code on the specific JET-ILW cases. In conclusion, a

small isotope dependence of the bootstrap current is expected due to finite orbit width

effects, but accurate quantification of this effect is out of the scope of the thesis. Thus,

any isotope dependence of the bootstrap current is not taken into account in the following

sections. Note that if the finite orbit width correction is excluded from Hager’s formula

(dashed orange curves in figure 7.2), it closely reproduces the jBS profiles calculated by

NEO in the investigated pedestals.
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Figure 7.2: jBS profiles calculated for JET-ILW pedestals using Hager’s formula assuming
different isotope mass (A = 1 and A = 2), Hager’s formula without the finite orbit
width correction and NEO.
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7.2 Isotope dependence of linear MHD stability

The linear growth rate (γMHD) of ideal MHD modes scales as ∼ A−1/2. In numerical

stability codes the stability criterion is often set as a small proportion (c ≈ 0.02− 0.05)

of the Alfven-frequency: γMHD > c×ωA. As ωA and γMHD scale with isotope mass in the

same way, this stability criterion is independent of A.

An isotope dependence of the linear stability is introduced when diamagnetic

stabilisation [196] is considered. The diamagnetic drift is expected to stabilise modes

- particularly at high toroidal mode number n - when the diamagnetic frequency (ωdia)

is comparable to γMHD. ωdia = m/r × Ti/(eiB0) × d ln pi/dr, where Ti, ei and pi are

temperature, charge, and pressure of the ions, B0 is the equilibrium magnetic field, r is

the minor radius, and m is the poloidal mode number which is linked to the toroidal

mode number (n) via the safety factor (q): m = nq. Diamagnetic stabilisation can be

taken into account in ideal MHD stability analysis by modifying the stability criterion to

γMHD > c × ωdia [62, 77]. As ωdia is independent of A, but since γMHD ∼ A−1/2, larger

isotope mass leads to more stable pedestals when this stability criterion is applied.

Figure 7.3 shows the j − α pedestal stability diagram for the 3 reference discharges

of section 6.1 as calculated with the HELENA equilibrium [197] and the ELITE ideal

MHD stability codes [62, 63]. j is the normalised current density as calculated self-

consistently with HELENA using Sauter’s formula for the bootstrap current (jBS) and

assuming neoclassical resistivity and a fully diffused Ohmic current. Note that Sauter’s

formula has no isotope mass dependence. α is the normalised pressure gradient as defined

in [74]. The inputs for HELENA/ELITE were the fitted kinetic profiles evaluated from

Thomson scattering, assuming Te = Ti (consistent with charge exchange measurements),

line averaged Zeff with Be as a single impurity. The kinetic profiles here are radially

aligned so that the separatrix temperature is 100 eV. The effect of Te,sep on pedestal

stability is discussed later in the next section.

In figure 7.3, the stability boundary (white dashed lines) is obtained using γMHD >

0.03× ωA stability criterion. The white stars show the operational point of the pedestal

as obtained in the experiment. The pedestals in these low gas rate (Γ = 3 · 1021 e/s) H

and D plasmas are close to the P-B boundary within the uncertainties of the operational

point. This observation is confirmed with the same analysis performed on a wider dataset,

although H pedestals tend to be on the stable side of the stability boundary. At medium

and high gas rate, the operational point moves to the stable region in H, which is similar

to what has been found in D at higher input power [53]. Pedestals of the 1.0 MA/1.0 T
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Figure 7.3: Linear MHD pedestal stability analysis for the hydrogen reference discharge
(#91554) and the two deuterium plasmas matching the total stored energy (#84793)
and the input power (#84796) of the hydrogen counterpart. Ip = 1.4 MA, Bt =
1.7 T.

dataset at medium gas are also stable to P-B modes both in H and D, especially at higher

power.

The effect of diamagnetic stabilisation is investigated by performing linear ideal MHD

stability analysis with HELENA/ELITE on the hydrogen pedestal. Figure 7.4 shows the
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j-α stability diagram for H shot #91554 profiles using γMHD > 0.5 × ωdia as stability

criterion, assuming A = 2 (dashed blue line) and A = 1 (solid red line) isotope. When

diamagnetic stabilisation is taken into account, the stable region shrinks from A = 2 to

A = 1 in the calculations indicating less stable pedestals. The critical pedestal pressure

height can be evaluated by scaling up and down the experimental pressure profile and

calculating the associated current profile self-consistently. The pressure profile which is

closest to marginal stability gives the critical pressure gradient. The difference between

the stability boundaries when the isotope mass is changed from A = 2 to A = 1 for

discharge #91554 translates to ≈ 4 % reduction in the critical pedestal pressure height.

Thus, the isotope dependence of linear MHD stability is small and alone does not explain

the higher pedestal pressure observed in D type I ELMy H-modes in JET-ILW.
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Figure 7.4: P-B stability of the pre-ELM pedestal of H type-I ELMy H-mode #91554 as
calculated with HELENA/ELITE with the stability criterion γMHD > 0.5 × ωdia.
The black star indicates the operational point. The stable region shrinks when the
isotope mass is changed from D (blue dashed line) to H (red solid line). The kinetic
profiles are radially aligned so that Te,sep = 100 eV.

The effect of diamagnetic stabilisation in JET pedestals has already been demon-

strated using a more rigorous treatment of the diamagnetic drift with an extended MHD

model [198, 199]. This approach could be the subject of further studies, however, the

results of ideal MHD analysis used in the present work suggest that only a weak isotope

dependence is expected. The effect of sheared rotation on pedestal stability [200] is not

discussed here, but it may lead to differences in the pedestal stability between H and D

plasmas, as for example the different input power to achieve the same pedestal pressure

in H and D (see chapter 5) could lead to differences in the NBI torque and thus in the

sheared rotation.
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7.3 Effect of the separatrix temperature on pedestal sta-

bility

While so far the pedestal stability has been investigated assuming Te,sep = 100 eV for both

H and D pedestals, now the effect of a potentially higher Te,sep in H on pedestal stability,

as suggested by EDGE2D-EIRENE simulations presented in section 6.3, is assessed. The

linear ideal MHD stability analysis for the hydrogen pulse #91554 is shown in figure 7.5a,

assuming Te,sep = 100 eV (black), Te,sep = 150 eV (purple) and Te,sep = 200 eV (green) as

a sensitivity test. The difference in boundary condition at the separatrix translates into

significant differences in the linear MHD P-B stability boundary, with both ballooning and

peeling boundaries shrinking due to destabilisation of P-B modes as Te,sep is increased,

similarly to the analysis reported in [195]. As illustrated in figure 7.5b, the higher Te,sep

shifts the maximum pressure gradient closer to the separatrix, thus moving to a region of

higher magnetic shear, which leads to destabilisation of ballooning modes. At the same

time, the edge current profile - which is dominated by the bootstrap current - is also

shifted radially outward, leading to higher current at the separatrix, which destabilises

peeling modes. The difference in the critical pedestal pressure height between Te,sep ≈

100 eV and 200 eV cases is approximately 15 %. This change is qualitatively consistent

with type I ELMs being triggered at lower pedestal densities in the H case. As described

in section 6.3, however, such high Te,sep in the H discharge is unrealistic and certainly

too high, but the qualitative picture illustrated here warrants further investigation and

direct measurement of Te,sep in H and in D.

121



0.4

0.6

0.8

1.2

αmax

<j
ed

ge
> m

ax
/<

j>

1.5 2 2.5 3 3.5 4

1.0 Te,sep = 150 eV

Te,sep = 200 eV
T

e,sep  = 100 eV

ΨN 1

magnetic shear

p, j

∆

increasing Te,sep

se
pa

ra
tr

ix

(a) (b)

Figure 7.5: (a) Effect of Te,sep on P-B stability of the pre-ELM pedestal of discharge #91554 as
calculated with HELENA/ELITE using the stability criterion γMHD > 0.5 × ωdia.
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Te,sep = 200 eV (green). (b) Illustration of the maximum pressure gradient and edge
current moving radially outwards, closer to the separatrix with increasing Te,sep to
a region with higher magnetic shear.

122



Chapter 8

Conclusions and future work

The work described in this thesis has contributed to the understanding of pedestal

physics in H-mode plasmas with special attention to the isotope dependence. Since the

pedestal structure determines the boundary condition for the core plasma transport,

understanding of pedestal physics is essential to optimise the confinement in H-mode

plasmas. In the first part of the thesis the inter-ELM evolution of the edge current

density was investigated in an attempt to explain the ELM trigger in type I ELMy

H-mode plasmas where the pedestals are stable to P-B modes. The second part focused

on the isotope dependence of the pedestal with the aim to make a contribution towards

better understanding of the pedestal in future DT plasmas. The main results of the thesis

on linear MHD stability, ELM losses and neutral penetration can provide input for future

pedestal simulation tools concerning which physics mechanisms need to be considered for

accurate pedestal predictions.

Contributions to the physics of inter-ELM edge current evolution

The inter-ELM evolution of the edge current density has been studied in JET-ILW type I

ELMy H-mode pedestals of varying collisionality and total plasma current. The bootstrap

current density, which contributes most to the total edge current, has been evaluated with

the neoclassical transport code NEO. In JET-ILW type I ELMy H-modes at low gas rate

the peak jBS is found to continuously increase during the ELM cycle. In contrast, with

increasing gas rate the peak jBS tends to saturate during the ELM cycle. The time

evolution of jBS closely follows that of ∇pe, as expected, and ∇pe is dominated by the

ne∇Te term.

The effect of current diffusion on the total edge current density has been investigated

with the JETTO transport code. JET-ILW pedestals with varying Te,PED and ELM
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frequencies have been investigated in detail. The simulations show that there is no

significant delay of the total edge current evolution with respect to the build-up of the

pressure gradient inter-ELM. Sensitivity tests indicate that the conclusions are robust

against ELM crash duration and/or ELM amplitude.

In the investigated pedestals, the resistive timescale was comparable to the ELM

period, but the Ohmic current always redistributed in a way to mitigate the effect of

the varying bootstrap current. As a result, the effect of current diffusion on the time

evolution of the total edge current was not significant in the second half of the ELM

cycle. Therefore, inter-ELM current diffusion could not explain why JET-ILW pedestals

at high gas rate and high βN are stable to P-B modes, as found in previous works by linear

MHD stability analysis with HELENA/ELITE. It has also been observed that the electric

field in the pedestal is typically larger in the early phase, and lower in the second half

of the ELM cycle compared to the fully diffused state. This implies that the assumption

of a fully diffused electric field used in HELENA/ELITE and HELENA/MISHKA may

overestimate the total current in the pre-ELM phase. The deviation is not large, but it

adds to all other uncertainties that feed into the edge stability analysis, such as those

arising from the profile measurements and the bootstrap current models.

Contributions to understanding of the isotope dependence of the H-

mode pedestal

In JET-ILW Hydrogen and Deuterium type I ELMy H-modes a favourable isotope scaling

of the thermal energy confinement is observed and the isotope dependence originates at

the pedestal in conditions where core ∇T/T is approximately constant. In the present

thesis, the pedestal structure, linear MHD stability and ELM losses have been analysed

to gain insight on the dependence of JET-ILW type I ELMy pedestals on the isotope

mass.

The pedestal pressure is typically reduced in H compared to D at the same input

power and gas rate, primarily due to lower pedestal density in H. The pedestal electron

pressure gradient is typically lower in H than in D at similar pedestal pressure widths. The

pedestal density width is typically narrower in H than in D, which is in contradiction

to the neutral penetration model and implies that transport also plays a crucial role

in setting the density pedestal. Interpretative EDGE2D-EIRENE simulations required

higher anomalous perpendicular transport coefficients (D⊥ and χ⊥) in H than in D to

match the experimental edge kinetic profiles, indicating that the higher transport in H

than in D is the main reason for the different pedestals and not neutral penetration.
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The inter-ELM separatrix loss power is higher in H than in D at similar pedestal

top pressure, similar to results from ASDEX-Upgrade. For the isotope dataset, the ELM

losses are dominated by particle losses both in H and D plasmas. At low ELM frequencies

(fELM ≈ 10−20 Hz), the ELM particle loss increases with increasing fELM, in correlation

with decreasing pedestal top density. Thus, the typically higher ELM frequency in H

than in D at the same input power and gas rate possibly contributes to density pump

out leading to low pedestal density in H.

Pedestal linear MHD stability has been investigated in H and D, showing that P-B

modes are more unstable at lower isotope mass. The direct isotope dependence of linear

MHD pedestal stability becomes apparent when the diamagnetic frequency is included

in the stability criterion to account for its stabilisation effect. P-B modes are more stable

in D than in H, but the effect is small and alone does not explain the higher pedestal

pressure observed in D. Interpretative EDGE2D-EIRENE simulations indicate that the

electron temperature at the separatrix could be higher in H than in D in a pair of type I

ELMy H-modes with similar stored energy achieved at twice the power in H, at low gas

rate. The largest difference in boundary conditions at the separatrix between H and D

translates into significant destabilisation of P-B modes for the H pedestal compared to D.

This effect is qualitatively consistent with type I ELMs being triggered at lower pedestal

densities in the H case, although the Te,sep value in the sensitivity test was chosen as

an extreme case and should not be considered at face value. The physics mechanism

underlying the profile changes at the plasma edge when the isotope mass is varied is not

yet understood. Note that direct measurement of the separatrix location would be needed

in order to confirm or disprove the higher indicated Te,sep in H than in D, but it is not

available.

The results presented in this thesis indicate that ELM and inter-ELM transport and

pedestal stability could possibly be affected by the isotope mass, leading to a favourable

isotope dependence. Further studies are required to be able to provide quantitative

predictions beyond the qualitative findings of this work. Changes in pedestal transport

in T and DT plasmas with respect to H and D are expected to play an important role in

the pedestal and global confinement. The indirect isotope dependence on pedestal MHD

stability, through the separatrix temperature, is not considered to be dominant in T and

DT, because at the higher densities expected in T and DT (compared to H and D) the

divertor is likely to be in a conduction limited divertor regime, with similar target and

upstream temperatures to those found in EDGE2D-EIRENE for the D case.
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Future work

Future work should include further studies with the EDGE2D-EIRENE code to examine

the role of the particle source and transport in setting the density pedestal. These could

also investigate the relative importance of ELM and inter-ELM particle losses by utilising

time dependent simulations with simplified ELM models.

Further experiments are planned in the upcoming JET campaigns to examine the

ELM particle losses in different isotopes by applying ELM trigger techniques to match

the ELM frequency in H, D and T plasmas. Experimental analysis and interpretative edge

transport analysis suggest that the pedestal transport is likely to play an important role

in setting the pedestal height and shape and may be the primary difference between H

and D pedestals. Thus, future work should also focus on studying the turbulence driving

the inter-ELM pedestal transport with gyrokinetic simulations, which is ongoing.
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