
SOClib Manual

Installation 1

Using SOClib 1

Creating SoundObjects 2

Adding Processes 2

The Graphical Interface 2

Parameters 3

SOClib Reference 4

Installation
SOClib ​is written as a Quark for SuperCollider. As such, it requires that SuperCollider is
installed first, from:
h​ttps://supercollider.github.io/download

Once SuperCollider is installed, the source for ​SOClib ​must be installed in the appropriate
location for SuperCollider to locate it.

1) Launch SuperCollider
2) File > Open User Support Directory
3) If it does not exist, create a folder called ​Extensions
4) Copy the ​SOClib ​folder from:

- Software/2-SOClib
into the Extensions folder

5) Close and restart SuperCollider

Using SOClib
SOClib ​is a language extension for SuperCollider, so some familiarity it is required. A
demonstration file is included alongside this manual to provide example usage. This file can
be opened within SuperCollider, and sections of the code (denoted by round-brackets) can
be executed by placing the text-cursor within the section and typing ​Ctrl+Enter ​ on
Windows or Linux, or ​Cmd+Enter ​ on Mac.

A brief video demonstrating its use is included alongside this manual.

https://supercollider.github.io/download

Creating SoundObjects
To create a SoundObject, create an instance of ​SOC_SoundObject ​, passing the path to a
sound file as an argument​:

~myObj = SOC_SoundObject(Platform.resourceDir+/+"sounds/a11wlk01.wav");

Adding Processes
At this point, the ​SOC_SoundObject ​exists, but we must add at least one ​SOC_Process
to hear anything.

The processes (as distributed) are listed in the ​SOClib ​reference at the end of this manual.

The following code demonstrates adding a process:

~myObj = SOC_SoundObject(Platform.resourceDir+/+"sounds/a11wlk01.wav");

~myObj.add(SOC_Player());

Processes are applied in the order in which they are added.

Once a process has been added, it can be accessed again from the SuperCollider language
using array indexing, as shown below:

~myObj[0]; // returns the first process, SOC_Player

The Graphical Interface
If we now request the GUI, using the code below, a window similar to the following will be
created:

~myObj.gui;

The waveform view allows a smaller section of the sound file to be used by clicking and
dragging to make a selection. The waveform view can be zoomed in and out with
Shift+Right-Mouse-Button (click and drag).
The processes are listed underneath the waveform view, and to their right are the parameter
controls. These are, with the exception of silent parameters (see below), all controllable in
real-time.

The SoundObject can be requested to process its audio at any time from the language with
the ​process ​ method:

~myObj.process;

Parameters
Each process has a number of parameters. There are two kinds, a standard ​SOC_Param
and a ​SOC_SilentParam ​. These are both the same, except that ​SOC_SilentParam ​ does
not send real-time updates. This was required for parameters that cannot change in
real-time, for example, the stack size in ​SOC_Stack ​ must be calculated in advance of any
processing. Parameters have a minimum, maximum, and default value.

Parameters can be accessed by name through the Process to which they belong. Each
parameter has a value method that allows their exact value to be set:

~myObj[0].getParam("Rate").value = 2;

Parameters also have a variation mechanism, accessible from the SuperCollider language.
The request to vary can be set through the process itself, passing the name of the parameter
to vary:

~myObj[0].vary("Rate");

At which point, a new value for the parameter will be generated.

In addition to vary, the restore method offers a way to revert back to the value before
variations were requested. This is demonstrated below:

~myObj[0].getParam("Rate") = 0.5;

~myObj[0].vary("Rate");

~myObj[0].vary("Rate");

~myObj[0].vary("Rate");

~myObj[0].restore("Rate"); // value = 0.5

SOClib Reference
*indicates SOC_SilentParam

Process Parameter Limits

SOC_Player Start Pos, Rate, Gain, Wobble
Freq, Wobble Width

0-1, 0.01-20, 0-2, 0-100, 0-2

SOC_RingMod Freq, Width 0-1000, 0-1

SOC_Pan Position, Random Speed,
Random Width

-1-1, 0.01-20, 0-1

SOC_Balance Position, Random Speed,
Random Width

-1-1, 0.01-20, 0-1

SOC_Stack Stack Size*, Freq Coef*, Freq
Offset, Time Offset, Gain

1-800, 0.1-10, 0-100, 0-100,
0-10

SOC_Granular Grain Rate, Grain Size, Grain
Pos, Grain Pos Rand,
Playback Rate, Playback Rate
Rand

0.01-20, 0.001-2, 0-1, 0-1,
0.01-20, 0-1

SOC_BPF Freq, rQ, Amp 10-15000, 0.001-2, 0-5

SOC_Comb Note, Decay, Amp 0-127, 0-2, 0-1

SOC_Envelope Attack Time, Sustain Time,
Sustain Level, Release Time,
Gate

0-20, 0-20, 0-1, 0-20, -1-1

