
Software Influenced Composition

Investigating the influence of software on compositional methods in electroacoustic

music

James Robert Surgenor

A thesis submitted in partial fulfilment of the requirements for the

degree of

Doctor of Philosophy

The University of Sheffield

Faculty of Arts and Humanities

Department of Music

Oct 2019

ii

Abstract

This research presents an autoethnographic investigation, through composition, performance and soft-

ware development, into how composition is influenced by the use of software, utilising acousmatic com-

position as a case study.

Through the composition and performance of music, in addition to the development of software,

it presents a framework for investigating acousmatic composition and its relationships to both the use

and development of software in creative applications. Using this framework, it proposes a number of

influences on compositional practice, and suggests that in the research of composition, software functions

as part of both composition and performance rather than being an encapsulation of the tasks themselves.

It is accompanied by a number of compositions, sound examples and computer programs that both

informed the investigations themselves, and explain their results.

It suggests a number of avenues for future research in both composition and performance, with rela-

tion to the utilisation and development of software, taking these results into account.

iii

iv

Dedication

For my grandparents.

Maureen Boyle & James A. Boyle

Ivy Surgenor & Robert O. Surgenor

v

vi

Acknowledgements

This research would not have been possible without a great many people. I would like to thank the

following:

My parents, Michèle and Peter. I cannot begin to express my gratitude for their constant love and

support—this work would not have been possible without such a supportive team behind me. My brother

Phillip and sister-in-lawAllie, for supporting me over the years. My supervisor, Professor Adrian Moore

for his time, patience, unwavering support and constant guidance—I cannot thank him enough for the

support and opportunities he has givenme. Dr. Adam Stanović, for his advice, support and friendship that

have been a constant source of guidance throughout my time in Sheffield. Dr. DaveMoore, for constantly

pushing me to believe in myself; his patience, technical support and friendship have been a source of

great strength. Elsa Marshall, for providing an amount of tea, science-fiction and companionship that

made the final year possible. My colleagues at the USSS for lending their time and ears: Alejandro

Albornoz, Ian Baxter, Chris Bevan and Dimitrios Savva. Dr. Stephen Pearse for his friendship, guidance,

encouragement and technical knowledge. My colleagues at the Department of Music for the community

of support we worked hard to create: Ioanna Filippidi, Helen Gubbins, Tim Knowles, Shen Li, Yiyun

Liu, Michael Walsh, Fengyi Zhang. Abbie Hill, for sharing a great deal of time and stories. Katharine

Stone, for reguarly checking I was ok. Katie Williamson and Matthew Malone for their friendship and

support. The amazing support staff in the Department of Music who have provided an incredible amount

of help throughout my studies: Victoria Berry, Alley Bridge-York, Claire Cooper, Matt Jones, Rachel

Plumb, and Nick Walsh. To everyone who has been a part of this adventure—I thank you.

vii

viii

Contents

1 Introduction 1

1.1 Research Question . 2

1.2 Methodology . 3

1.3 Overview . 4

2 Composition 5

2.1 Overview . 5

2.2 Existing work . 5

2.2.1 Rules and Restrictions . 6

2.2.2 MOSART Project . 7

2.2.3 Plans and Situated Actions . 8

2.2.4 Existing Models . 9

2.3 Identifying Composition . 13

2.3.1 Twist and Turn: Reflection . 17

2.4 The Fluid Framework . 21

2.4.1 Overview . 21

2.4.2 Reasons . 22

2.4.3 Motivations . 22

2.4.4 Intentions . 23

2.4.5 Activities . 24

2.4.6 Receptions . 25

2.5 Conclusion . 25

3 Software in Composition 29

3.1 Existing work . 30

3.1.1 MOSART Project . 30

3.1.2 The importance of memory . 30

3.1.3 Attitudes to software . 31

3.1.4 The role of software . 32

3.1.5 The influence of software . 33

3.2 Background . 33

3.3 Defining RT and NRT . 34

3.4 Developing software and composition . 37

3.5 Investigating NRT . 38

3.5.1 linkEngine . 38

3.5.2 NRT: On approach . 40

3.5.3 NRT: On method . 42

ix

x CONTENTS

3.5.4 NRT: Conclusion . 43

3.6 Investigating RT . 44

3.6.1 le2 . 44

3.6.2 RT: On approach . 46

3.6.3 RT: On method . 46

3.7 The Software Duality . 47

3.8 Data . 50

3.9 Investigating No-Time . 51

3.9.1 SOClib . 52

3.9.2 Under the Spreading Chestnut Tree . 53

3.9.3 Under the Spreading Chestnut Tree: Reflection 59

3.9.4 Something from Nothing . 62

3.9.5 Something From Nothing: Reflection . 63

3.9.6 lwae . 67

3.9.7 Chronon . 68

3.9.8 Limitations and future work . 71

3.10 Conclusion . 72

4 Software in Performance 75

4.1 Performing acousmatic music . 75

4.2 Hardware-based and software-based . 76

4.3 SuperDiffuse . 77

4.3.1 System Design . 78

4.3.2 Future improvements . 80

4.4 Multi-channel composition . 82

4.5 Performance in composition . 83

4.6 Under the Fractured Chestnut Tree . 85

4.7 Techniques for studio-based diffusion . 87

4.8 Conclusion . 90

5 Conclusion and Future Work 93

A Accompanying Materials 95

A.1 Sound examples . 95

A.2 Software manuals . 95

Bibliography 97

CHAPTER 1

Introduction

This research has been focused on understanding the relationship between electroacoustic composers and

the various software that they choose to utilise to create their music—more specifically, identifying the

influence(s) that the software has on the compositional methods that develop. In order to do this, we must

first outline such a compositional method, from which we can identify software’s area of effect. Having

done this, we can then begin to question what these effects might be.

Electroacoustic is primarily used as an encompassing term to describe a variety of musical activ-

ities involving electro-mechanical (re)production of sound: music requiring some form of electronic

mediation—often that of reproduction over loudspeakers. As such, this term is of little use to us in our

investigation, as there are potentially an incalculable number of approaches to the use of technological

mediation. As we are trying to identify a compositional method, from the outset we must settle on the

form of composition we are discussing.

Acousmatic composition has been chosen as a case study. In terms of composition, acousmatic music

is primarily concerned with the exploration of musical properties in recorded and/or generated sounds,

exploring musical relationships between them and their variations, created through manipulations with

available technologies. The choice of acousmatic music allows us to focus on our question, without the

need to consider additional complications such as the addition of musical instruments in live-electronics

pieces, or the addition of visuals in the mixed-media realms.

Acousmatic music can be seen as music designed to be approached with, or presented so as to induce,

1

2 CHAPTER 1. INTRODUCTION

an acousmatic listening stance. This approach emphasises the importance of considering sound itself a

musical entity, regardless of what created it1. The advent of technology led to the ability to record and

reproduce sound, freeing composers to treat any sonic entity at their disposal as musical material, not

just the sounds of musical instruments. As a result, there are no visual stimuli during performances, thus

allowing listeners to focus on the sound itself. Schaeffer investigated the use of the available technologies

not just to reproduce sound, but to manipulate it and create new musical materials. This practice of

transforming sound and exploring relationships between them continues today, although in a different

form. Schaeffer was experimenting in the late 1940s and 1950s, but just around the corner the digital

revolution lay in wait. The technologies at our disposal today in acousmatic music are primarily software-

based and are therefore the focus of this research.

For much of the last 40 years it has been acknowledged that the technologies we use have an impact

on the ways that we work. Computers and the software running on them are often viewed as tools. As

a result this impact is seen as an accepted risk or limitation. Despite the warnings that have quietly

rumbled through the last four decades, little work has been done to understand what these influences

are, and what role they play in composition. This research has sought to address this by conducting an

autoethnographic study into acousmatic composition. It establishes a compositional framework within

which these questions can be asked, and identifies the roles and influences of software in this context.

Music and software have been written throughout as a primary data source.

1.1 Research Question

The main question of this research is whether software has an impact on compositional methods, what

the impact might be, and how software might be designed in the future to accommodate these findings.

• How does software operate within the composition of acousmatic music?

• How does software influence the composition of acousmatic music?

• Can these influences suggest alternative designs for software?

1Acousmatic is a term derived from the teaching of Pythagoras, who taught from behind a screen or curtain. This enabled

the students (Akousmatikoi) to focus on what was being said, rather than being distracted by the source of information.

Schaeffer applied this term to musique concrète, where we aim to focus on the sound rather than its perceived source.

1.2. METHODOLOGY 3

1.2 Methodology

The choice of method for this research is a result of attempting to address concerns from previous investi-

gations. Perhaps the most obvious are interviews and/or observations. Interviews, although often rich in

information surrounding compositional approaches, have tended to result in responses that converge on

spontaneity and serendipity when dealing with compositional methods (Clowes, 2000; Eaglestone et al.,

2007; Tracy, 2002; Upton, 2004). Observations, including speak-aloud techniques, have their usual con-

cerns relating to the possible impact on the behaviour of those being observed (Eaglestone et al., 2007;

Upton, 2004). As a result, this research has been carried out as an autoethnographic study.

Autoethnography is an under-utilised technique in this field of study (Magnusson, 2011). It is a

process of positioning the researcher themselves (auto-) in the research, evaluated within a social and

cultural context (-ethno-), through written documentation (-graphy). As such, this thesis tells the story

of my lived experiences as an acousmatic composer, and serves as both data and analysis. As a method,

it can be used to challenge long-held beliefs within fields. I must therefore begin by identifying myself

within the wider context of what I’m researching. I am from Belfast, Northern Ireland, UK. I am an

electroacoustic composer. I can write music in several electroacoustic domains, but I primarily write

acousmatic music, and can therefore be considered, perhaps more accurately, an acousmatic composer.

Before beginning this research, I studied Music Technology and Sonic Arts at The Queen’s University

of Belfast (2010–13), and Sonic Arts at The University of Sheffield (2013–14). I am therefore very

much within the UK acousmatic tradition, whatever that might mean, and so many of my experiences are

steeped in the works of Manuella Blackburn, Jonty Harrison, Adrian Moore, Denis Smalley, and Trevor

Wishart.

Autoethnography has also been chosen to remove concerns about the different approaches of indi-

vidual composers. It allows for variations between composers to be controlled. There are variations in

practice that make them not entirely comparable (Adkins, 2014). There are variations in practice between

pieces, even for a single composer, but such is the nature of creating a new work. Composition and the

use of software is therefore best explored through autoethnography.

In terms of a more specific approach to this research, given that I am both a composer and a pro-

grammer, a cyclic flow of composition – reflection – programming was undertaken. Reflection mostly

took the form of post-activity documentation: notes, an extended composition notebook, and personal

reflection. These notes and notebooks are not included as part of the thesis, as their contents form the

thesis itself. The programming was then informed by the reflections, and the cycle began again.

4 CHAPTER 1. INTRODUCTION

The research takes the form of a number of investigations into the various aspects that arose during

this process. I began by identifying what I do when I compose (see Chapter 1), by composing a piece

(Twist and Turn). From there, I gained insight into how software operates within my composition, and

designed software to investigate those aspects (see Chapter 2: linkEngine, le2, SOClib, lwae, chronon).

1.3 Overview

The thesis looks at the two activities in acousmatic music: composition and performance. Chapter 2

introduces my compositional framework, as well as the piece Twist and Turn. Chapter 3 presents the

role of software and its influences, including the software duality, as well as introducing the SOClib and

the piece Under the Spreading Chestnut Tree. Chapter 4 identifies where software influences current

performance practice, as well as exploring the links between composition and performance suggested in

Chapter 2, investigating the influences of software on performance. It presents the software SuperDiffuse,

and the piece Under the Fractured Chestnut Tree.

CHAPTER 2

Composition

2.1 Overview

The first stage in understanding the impact of software on compositional methods is to have an under-

standing of compositional method. This chapter presents the background for and the results of the initial

investigation of this research: the composition of an acousmatic work, Twist and Turn, and the develop-

ment of the Fluid Framework for investigating composition.

2.2 Existing work

As noted, we must first outline what composition might be. Importantly, we are not trying to define

composition—this is often where the concerns surrounding individual differences arise—but to form

an appreciation that allows us to question it. Adrian McKerracher states that ‘Any effort to clarify the

meaning of creativity, although productive, risks limiting this important concept to a singular defini-

tion at the exclusion of other valuable interpretations’ (McKerracher, 2016). McKerracher presents a

survey of metaphors commonly used to describe creativity, dividing them into the following broader

categories: madness, possession, evolution, incubation, illumination, divergence, algorithm, investment,

place, breaking a boundary, organism, and democratic attunement. If we first begin with the assertion that

composition is a deliberate act, then it cannot rely on notions of mysticism. This is not to say that there

are no elements of the unexpected, but rather that everything is expectable—the results of certain actions

5

6 CHAPTER 2. COMPOSITION

may not have been predicted, but they must always be predictable—whether the composer is themselves

able to predict the outcome is irrelevant (Boulez, 1986, p. 5)1. Applying this assertion to McKerracher’s

metaphors, we can disregard those of madness and possession.2 The remaining metaphors occur fre-

quently in other literature surrounding composition, and as such these references will provide examples

of their meaning. As such, it is useful to keep these metaphors in mind throughout these discussions.

Horacio Vaggione challenges the idea that composition can be broken down into a set of processes

or an algorithm (Vaggione, 2001). He suggests that it is something other than the sum of its activities,

and whilst it may make use of plans and algorithms and scientific ideas, we must be careful not to reduce

composition to one of these elements. This does not mean that we cannot gain an understanding of

composition, but again reinforces that we should not aim to define it.

We have seen that composition/creativity ought not be defined, but can be appreciated; that it does not

rely on mystery, but can involve the unexpected; and that it contains elements of chance and algorithm,

but cannot be reduced to them. Taking this into account, we can contextualise existing research.

2.2.1 Rules and Restrictions

Composition involves making decisions. We are interested in how these decisions are made and what

influences them. Margaret Boden proposes that creativity occurs when existing ideas are combined in

new ways that form new ideas (Boden, 1995). Boden highlights that when presented with absolute

freedom, our creative faculties cease to operate, proposing these rules and restrictions can answer the

question of beginnings. Boden appears to suggest that these rules come from the creator3 themselves,

and their conceptual spaces. Boden’s conceptual space is described as the mental realm within which

the creator’s mind is operating. It is perhaps easier to view the conceptual space as the framework of

rules and restrictions that is constructed, within which the creator can be creative. It is the questioning

within these spaces, and expansion of their boundaries where creativity occurs. This idea is additionally

expressed by Jonathan Harvey, re-contextualising thoughts by Stravinsky, ‘[software aids] compositional

freedom because they ‘narrow down’ the field of possibilities which then expand to reveal new worlds.’

(Harvey, 1986, p. 190).

Our question remains where these rules and restrictions come from and how they develop. Monty

Adkins’s concept of nodalism offers some assistance here (Adkins, 2014). Adkins suggests that these

1For discussion of myths and mystery, see Gruenwals (1974), McClary (1989), Boden (2004), and Burnard (2012)
2Indeed, McKerracher notes that these metaphors are from historic philosophies, included to represent previous thoughts

on the topic.
3I have used the term creator here as Boden is not specifically talking about composition, but rather creativity as a whole.

2.2. EXISTING WORK 7

rules and restrictions can be thought of as memes: cultural ideas and practices thought of as behaving

like genes with regards to evolution (mutation, etc), coming from Dawkins (1976). Nodalism posits that

these memes are nodes within a neural network, combining the ideas of Boden and Dawkins. Nodes of

thought and practice can mutate and evolve: either by the connections with other nodes (no matter how

disparate), or by exposure to other nodes from other neural networks (the sharing of ideas and experiences

with other people). The key factors of nodalism are that these networks are decentralised, and distributed.

Nodes do not require a discernible starting point, and they can exist in isolated or localised forms without

relying on others. This can account for the likes of individual differences and geographic variations in

practice. If a node from another network is added, a copy is assimilated, rather than impacting the other

network/node—although, any mutations of the node may indeed be incorporated back into the original.

This is very similar to open source software, where each developer has their own copy of the program’s

code, and any changes are sent back to the maintainer of the project whomight decide to incorporate those

changes. These nodes are the result of everything someone has encountered, and new forms of practice

or moments of specific creativity can be seen as the combination of disparate nodes in an individual’s

network. Nodalism can be viewed as the mechanism by which Boden’s conceptual spaces expand.

2.2.2 MOSART Project

As part of the MOSART (Music Orchestration Systems in Algorithmic Research Technology) Project,

there were a number of investigations into electroacoustic composition and the software in use. The

methods used included interviews (Upton, 2004), surveys (Clowes, 2000), and observation (Nuhn et al.,

2002; Tracy, 2002). Whilst each of these produced interesting and valuable results, it is important to

be critical of the issues with the methods used. Interviews with composers may tend towards mystery

and extremely personal aspects of their activities, as one might expect. There are also concerns around

experimenter bias: most questions were asked from a software engineering perspective, as the ultimate

aim was to inform the development of future software. There are also concerns over the design of such

surveys, as well as the means through which they are disseminated and collected4. It is also a concern

that Observation techniques may cause participants to behave differently.

Upton’s work, ‘An investigation into the compositional processes of Electro-acoustic composers’,

interviewed composers to identify their compositional processes. The term ‘compositional processes’ is

understandably problematic given that it implies a reductionist stance. Regardless of this, however, Upton

identified that composers work differently, with ‘some valuing the scientific aspects of sound as primary

4In this case, the surveys were only sent to an online mailing-list

8 CHAPTER 2. COMPOSITION

working elements’ and ‘some valuing the more functional properties of sound’. Upton is referring to

composers who focus on the potential musical function of a sound within a phrase or piece, rather than

for example, the investigation of particular synthesis techniques.

Nuhn’s work, ‘A Qualitative Analysis of Composers at Work’, used observation, speak-aloud proto-

cols, and a reflective interview. While the experiment seemed not to work as planned, Nuhn identifies

some interesting aspects of composition. It concluded that more research needed to be done in order to

understand the sensitising parameters required to conduct further research. It was clear, however, that

composers used both convergent and divergent thought processes5 in order to compose, and that time

spent away from composing is vital. These exemplify McKerracher’s metaphors of divergence, as well

as incubation and illumination.

An interesting discovery as part of the MOSART project is the inclusion of the idea of memory as

an important factor in creativity. This concurs with Adkins’s nodalism, where disparate nodes of the

network make connections to stimulate new ideas.

At this point, we are only concerning ourselves with composition. As such, the other findings from

the MOSART project will be discussed later in Chapter 3. I am consciously separating the MOSART

Project’s findings on software here in order to avoid making assumptions about the role played by soft-

ware.

2.2.3 Plans and Situated Actions

While researching human-computer interaction (HCI), Lucy Suchman identified the concepts of plans

and situated actions:

…this study adopts a view of plans just as formulations of antecedent conditions and conse-

quences of action, which account for action in a plausible way…plans are necessarily vague,

insofar as they are designed to accomodate the unforseeable contingencies of actual situa-

tions of action. Reconstructed retrospectively, plans systematically ignore the necessary ad

hocness of situated action in favour of an account of the action as in accord with the plan

…we need to look at how it is that actors use the circumstances that a particular occasion

provides—including, but crucially not reducible to, formulations like plans—to provide for

their action’s developing purpose and intelligibility (Suchman, 1985)

Suchman describes situated actions as ‘ad hoc responses to the actions of others and to the contingencies

of particular situations’, demonstrating this with the navigational methods of the Trukese who, ‘[begin]

with an objective rather than a plan [and set] off toward the objective and [respond] to conditions as they

arise in an ad hoc fashion …his effort is directed to doing whatever is necessary to reach the objective’

5Nuhn actually uses the phrase ‘voyage of discovery’

2.2. EXISTING WORK 9

(Suchman, 1985). Suchman goes on to note that this navigational style, in direct contrast with the plans

of European navigators, uses the situation currently being dealt with and the information arising from

it to progress, allowing the navigator to be able to ‘point to his objective at any moment, but he cannot

describe his course’.

As we have seen, composition is often viewed as a plan: a logical set of steps that produce the

desired output. Upon building models to replicate it, something is always missing. These issues were

exemplified by the work of Nick Collins, who used Music Information Retrieval (MIR) to build a set

of tropes (essentially building Markov chains) from the canon of electroacoustic music, that he used

to emulate the creative process of a composer (Collins, 2012). The identification of musical features

through machine listening is interesting, and useful when used as part of an analytical framework, but as

evidenced by Collins’s Autocousmatic project the use of this to form models of compositional processes

is problematic. The issue here is that composition is not the result of a plan, but rather the result of a

series of situated actions that may or may not produce plans.

These concepts of plans and situated actions potentially account for the unforeseen. Situated actions

tend not to be accounted for in the existing ideas of composition we have seen—they are the missing

part of existing theories of which they themselves speak. So it is clear that we must not aim for a model

of composition, but our understanding of what the act of composition is must be informed by situated

action. This is not to say, however, that nothing can be learned from attempting to model composition.

2.2.4 Existing Models

While it is important to be wary of definitions, if we are to suspend our criticism of modelling creativity

briefly, it is useful to consider what we can learn from those that have attempted it.

Richard Polfreman undertook a task analysis to develop a model of composition for use in the devel-

opment of a piece of software. Task analysis is often used in the research of usability. It aims to identify

what steps are required, often through observation, for a certain task to be completed. To do this, one

must understand what the task is in its entirety and what completion means for the task. A summary

of Polfreman’s model is shown in Figure 2.1. Although Polfreman’s research goes much further than

the General Task Model shown here, from this overview we can clearly see two strongly linked opera-

tional paradigms: a knowledge-based research and planning paradigm, and an activity-based production

paradigm. It is worth highlighting some aspects of this model, as they are present in what we have al-

ready seen, as well as other work yet to be discussed. In the knowledge/research paradigm, we see the

10 CHAPTER 2. COMPOSITION

d
m

et
ho

do
lo

gy
d

pe
rfo

rm
an

ce
 s

ys
te

m
s

d
ov

er
al

l f
or

m
at

se
le

ct
 to

ol
s

de
si

gn
 fr

am
ew

or
k

d
ge

ne
ra

tio
n

sy
st

em
s

d
m

us
ic

al
 s

tru
ct

ur
e

In
iti

al
 P

oi
nt

r m
od

el
s

r s
ys

te
m

s

co
lle

ct
 s

ou
nd

s

r f
or

m
at

 m
ed

ia

r e
xt

an
t w

or
ks

r t
oo

l a
bi

lit
ie

s

r i
ns

tr
te

ch
ni

qu
es

r p
er

fo
rm

er
 a

bi
lit

ie
s

r s
ty

lis
tic

 c
on

ve
nt

io
ns

r p
er

fo
rm

an
ce

 lo
gi

st
ic

s

r n
ot

at
io

ns
/re

pr
es

en
ta

tio
ns

re
se

ar
ch

w
rit

e
ch

un
k

m
od

ify
 c

hu
nk

fo
rm

at
 c

hu
nk

pr
od

uc
e

m
us

ic
C

om
po

se
 M

us
ic

 W
or

k
au

di
tio

n
ch

un
k

Figure 2.1: Polfreman’s General TaskModel (GTM) ofTop Level Goals. Adapted fromPolfreman (1999)

2.2. EXISTING WORK 11

Generate Reflect Accumulate

Mix

Figure 2.2: Moore’s work-reflect process (A. Moore, 2016, p. 161)

design of generation systems and musical structures and selection of tools (see discussion ofWishart and

Moore) and the design of a framework (see Boden and nodalism). There are also the incorporations of

stylistic conventions, extant works (see Boden and nodalism) etc.

In Figure 2.1, we see certain elements labelled with ‘d’, for design, and ‘r’ for research. These denote

the category of the goal within the model. The nodes within the diagram are top-level goals and as such

are not aimed at identifying intricate details of the task but rather serving as descriptions of larger goals.

Overall, Polreman’s model contains three goals. Firstly, the design of a framework that ‘covers both

music-related constraints (e.g. instrumentation, musical structure) and practical ones (e.g. tools to be

used in the composition process, the final format of the work)’. Secondly, the research goal, involving

aspects such as the investigation of extant works, collection of sounds and stylistic conventions. Finally,

Polfreman identifies the ‘produce music’ goal, shown at the bottom of the diagram. This incorporates

activities that go towards the ‘creation of the final deliverable product’. Importantly, Polfreman states

that ‘in general terms, the goals of design framework and research are carried out, at least partially,

before that of produce music which leads to the completion of the piece’. Finally, it is important to

note that Polfreman incorporates the idea of partial completion for these goals, which can lead to partial

completion of other goals. Additionally, the composer can jump between these goals at any point as

work on the piece progresses. It is worth keeping in mind the aspects of this model as we discuss other

approaches (Polfreman, 1999).

Adrian Moore identified a process for composition based around his own practice, shown in Figure

2.2. Here, Moore suggests that the Generation of materials may start with the recording, or synthesis, of

sound; most likely the starting point of a piece. Then, the Reflections on the generated sound drive new

generation(s) of material which begin to Accumulate. The process by which these new generations are

developed, i.e. what transformations are utilised, is based on the Moore’s Theory of Opposites: ‘…we

choose transformations based upon a reaction against a sound’s most potent descriptor.’ (A. Moore,

2016, p. 93). The Mix stage is where a composer begins to combine these materials to form compos-

ites, which are then treated as materials and the process repeats. These then grow from individual sound

12 CHAPTER 2. COMPOSITION

Observation

Hypothesis

Experiment

Results

Figure 2.3: Scientific Method

objects, into phrases and sections, and eventually an entire piece. It is interesting to compare the pro-

cess to that of the scientific method (Figure 2.3): an observation is made about a sound (reflection), an

experiment is devised and implemented (generation, mixing), with the results stimulating further inves-

tigation (accumulation, reflection). The links between science and art have been discussed many times6

but it is interesting to see such a direct parallel coming from composition research. It is also important

to point out the links between Moore’s process and Polfreman’s model. If we remove the knowledge-

based paradigm from Polfreman’s model, we see a variation on the work-reflect process. Neither one is

wrong, but the difference highlights their contrasting approaches to the question. Polfreman’s model can

be viewed as grounded in Suchman’s idea of plans, whereas Moore’s process utilises situated actions—

suggesting that a piece is derived from the development of materials; coming from the sounds themselves

(A. Moore, 2016, p. 7). It is important to consider that in Moore’s process, although knowledge is not

specifically mentioned, it is by necessity embedded in each of the stages. I would additionally propose

that each stage has its own knowledge with which it is informed and expanded. This is in contrast to

Polfreman’s model which suggests that knowledge is a separate activity.

TrevorWishart has written on three major topics concerning electroacoustic music composition: aes-

thetics (Wishart, 1996), sound manipulation techniques (Wishart, 1994), and structuring of materials

(Wishart, 2012). Wishart (1994) is concerned with identifying what can happen to certain sounds when

put through certain manipulations, creating an understanding of sound, process and output. This is cer-

tainly a large part of composition, and indeed Moore agrees that most time is spent in this generation/re-

flection stage. Wishart states that each book covers a specific topic, so Audible Design does not cover

why specific processes might be chosen. He notes that this is covered in On Sonic Art, but as this text

focuses primarily on aesthetics and what musical aspects of sound are at the disposal of a composer, the

why here is somewhat different. As such, the rationale behind choosing certain procedures is left largely

to the reader. Wishart’s third and most recent book, Sound Composition, discusses the structuring of

6See Auger (1981), Jaumotte (1972), Lionnais et al. (1969), Loeb (1971), Monro (1997), Preusser (1973)

2.3. IDENTIFYING COMPOSITION 13

sound materials once they have been created. In it, Wishart documents how he composed a great number

of his most influential pieces. From it, we learn that Wishart’s primary compositional interest is sound

transformation. As such, the book details how he decided to transform from ‘soundA’ to ‘sound B’. This

could be seen as proposing that one knows where one wishes to end up, with it being a matter of getting

there, however this is not the case—this text focuses on what happens after manipulations are performed

and materials are generated.

2.3 Identifying Composition

In order to identify my own compositional practice(s) I first wrote a piece. It is however interesting to

note that I did not start out writing a piece, but rather with some related activities. When I arrived in

Sheffield to undertake my research, I decided to take it as an opportunity to work with some new sounds.

I had been composing with the same materials for a number of years and this was as good a time as any

to work with new sounds—a clean slate for the start of a new adventure. At this point, I was not creating

a new piece, but gathering sounds that might eventually be used in a future piece.

At the time, I had been watching videos on how foley was created for films and television and was

intrigued by what appeared to be the frequent use of fruit and vegetables as sources. Foley artists per-

form with these physical objects to (re)create or replace sounds for visual media. Thinking in terms of

acousmatic music, the links are strong and inspiring. The sounds created during foley are not only re-

moved from their sources, as with acousmatic music, but new sources are inferred from their application

to visual media. This can be seen as one evolutionary step away from acousmatic music. As such, I

decided to investigate what would happen if some of the practices from foley were used in acousmatic

music, where new sources are inferred from listening rather than visual media. I organised a recording

session with a fellow PhD student, Chris Bevan, to capture some sounds with fruit and vegetables. As

is common in Sheffield, composers will often hold long recording sessions together. This may not be

common elsewhere, but the main reason is most likely to do with practicalities: studios and microphones

take time to set up, so working together makes everything easier. The understanding with these joint

recording sessions is that each composer will bring the objects that they wish to record, and the other will

act as a recording engineer. Additionally, composers will tend to share the recordings with one another

afterwards, so everyone gains from the collaboration. All of this was true for this session. Of the objects

I brought, the most important turned out to be oranges, celery and plastic straws. We recorded using two

microphone arrays: a spaced pair (cardioid) and a mid-side pair (omni mid). I chose this as I was not

14 CHAPTER 2. COMPOSITION

ultimately sure what would work best and did not want to spend a great deal of valuable recording time

figuring that out. The clue here is the use of mid-side, as it allows us to alter the stereo-image after the

recording is made; although it is not without its side effects. My concern was with the sounds I wished to

capture, not the technology used to capture it. We recorded about an hour’s worth of audio, although the

session lasted several; most time was spent setting up microphones, or discovering what manipulations

of the objects resulted in interesting sounds.

Following the recording session, I returned to the studio a day or so later to edit out the in-between-

takes. I was left with ultimately very little material and was quite demoralised at this discovery. A lot of

the sounds that I thought had been really interesting at the time of recording seemed now to be useless,

or worse, to have some technical issue in the recording rendering them useless. As such, I did not take

these sounds any further and began working on other aspects of my research, mostly reading and software

development.

Amonth or so later, I was working on learning a particular aspect of the SuperCollider programming

language: the pattern system (PS). It provides a relatively simple way to describe complex patterns of

behaviours that can be applied to sound generation. The PS is primarily an event scheduling system and

anything that SuperCollider can do can be an event. The patterns can be changed at any time and the

PS will automatically cross-fade between the two, avoiding any glitches. Quite often it is used in live-

coding performances and due to its nature is primarily used to create rhythmic, beat-based material. I

was interested in discovering a way to utilise the pattern system to generate something other than regular,

rhythmicmaterial. It turned out to be possible with a variety of techniques, from randomising the duration

between each event, to having each event manage its own duration; thereby only using the PS to trigger

the start of an event, allowing events to overlap. To test this, I was triggering a simple playback Synth7.

Each triggering of a Synth was an event, and each Synth could playback a soundfile, or section thereof,

at a particular speed. The soundfiles I used were from the aforementioned recording session, but it is

important to note that I was at this stage only testing what would happen as a result of the PS being used

in this way. I grouped the soundfiles according to source, and began experimenting with the patterns.

If the soundfile remained the same for each event, as one might expect, it produced a form of granular

synthesis. However, I now had full playback controls for each grain, including which soundfile it used.

I could therefore have large grains, exceeding 1 or 2 seconds, and create very dense textures of sound.

I sat in the chair and listened to the various results I was producing. It was only when I realised I had

7A Synth in SuperCollider is a collection of unit generators (following the work of Max Matthews). Put simply, it is a

way of describing how sound is synthesised/processed, and should not be confused with a synthesiser (although they can be

written to perform the same function). Other languages may use the term instrument but this is naturally problematic.

2.3. IDENTIFYING COMPOSITION 15

been sitting for 20 minutes listening to this generation algorithm that I realised that there was something

interesting. If I could sit and listen to this process for such a long time, then there must be something to

work with. It was at this point I decided to write a piece.

I began by simply recording long outputs from the process, letting it run as before but this time

capturing the output. This made the sounds concrete—these recordings would not change, whereas the

output of the PS was constantly changing. I would simply walk away from the computer, returning

sometimes 20 minutes later. Once I had these for each group of sounds, I did the same for combinations

of them. I now had clouds of sound for each group and each combination of groups. I noticed that certain

combinations of groups, when given certain playback rates, were generating what sounded like rain and

so purposefully set about to record a cloud of sounds with this texture.

It occurred to me that these textures were on the whole quite noisy, given their sources. I added a

bandpass filter to the playback Synth. Now each grain had its own controllable filter. I re-ran the patterns,

incorporating this new filter control. As I was actively generating materials, I was constantly recording

the output to capture what was going on. I began with a wide bandwidth, letting most sound through,

and after several minutes of one width, I modified the pattern to be slightly more narrow. I continued

this process, narrowing the bandwidth until almost pure sine waves were left. The snaps of the celery

were producing incredibly interesting results at this point, exciting the filter into action and leaving a

pure tone. It should be noted that by this point I was creating multiple grains simultaneously, each

with a harmonically related filter frequency—thereby creating chords. These chords changed randomly

according to a set of possibilities I had predetermined. The chords were chosen so as not to fully resolve

onto each other, or at least as best I could, in order to avoid a tonal centre. Once I was left with the

sinusoidal chords being articulated by the source recordings, I began to open the filters again and return

to the noisier material. It took a long time to figure out the chords, and the bandwidths to move to, so it

must be made clear that there were several recordings of me trying to achieve this flow from noise-pitch-

noise.

This ABA structure is almost exactly how the piece ended up. I opened my DAW8, and began to

assemble the various parts I had created; layering the clouds of sound together. The piece ended up

primarily as a collage of these elements, structured around the noise-pitch-noise element. If one was to

look at the timeline of the project, Twist and Turn is quite simple. No more than 10 tracks.9 I was initially

8Digital Audio Workstation—ProTools at this time.
9During my PhD, I transitioned to Cubase as my DAW, and no longer have a ProTools license to open the Twist and Turn

session. This somewhat highlights the issues with a subscription-based licensing model for software—I still have the session,

but I cannot open it.

16 CHAPTER 2. COMPOSITION

worried that the piece was too simple, but whenever I listened to it there was something in its simplicity

that was exciting. It did what it needed to do and nothing more. Interesting sound materials, shifting into

interesting harmonies and back into a combination of the two.

While structuring the piece, and indeed generating the materials themselves, it must be noted how

much listening and reflecting was a part of the process. Not just on a sound object level, but on a macro,

structural level. I would stop, take a moment, and listen to the whole piece (in whatever state it was).

This would allow me to situate the phrase or section I was working on within the context of the piece as

a listening experience. Whilst listening, I would take notes of times and what I noted about the piece.

These could be as vague as “something needs to change/happen here”, or as detailed as “filter material X

at time Y to make room for material Z”. A key feature in this activity was the temporary nature of these

notes. They were not taken electronically but rather pen and paper, not in a notebook but on a notepad

or refill pad; often simply scraps of paper nearby, whatever was available. The role these notes played

in the act of composition was not as a permanent record, but as suggestions for what might be done. On

reflection, it is clear that I was not even following my own advice. Often, I would contradict my notes,

or simply ignore them. The reasons for this included anything from changing my mind, to solving the

issue another way, or simply getting used to what I had previously considered needed changing. There

were also several occasions where I did not execute what I had noted because on reflection, it was good

enough. This mostly occurred closer to the deadline for finishing a piece when it became important to

prioritise certain aspects of the composition over others in order to finish on time. If there was time at

the end, I could go back and fix whatever was still problematic.

It is also important to note why I finished Twist and Turn. It took about three months to write, the

longest I had ever spent on a piece. Importantly, I was not solely composing. Most of this time was not

spent working on the piece. I was stuck on the structuring of the elements for a long time, so postponed

working on it; only as I had the luxury of time at this stage, given the lack of a fixed deadline. However,

Sound Junction (SJ) was approaching. SJ is Sheffield’s electroacoustic concert series, a weekend of

music from the USSS10, and invited guests. I had already not performed at the first of these since starting

my PhD and I was determined to have the piece finished in time for a world première at SJ, so I did.

It is important to note, during this final stint of composition, I was asking other composers to listen to

the work-in-progress. Alejandro Albornoz was also working on a piece at the same time, in a different

studio, so he kindly listened to an early version of the piece and provided valuable feedback.

Twist and Turn was premièred at SJ, 15th May 2016. Due to its tonal nature, it was a very different

10University of Sheffield Sound Studios

2.3. IDENTIFYING COMPOSITION 17

kind of piece than what I had previously produced. Composers familiar with my previous work noted

this change in style and commented that it was a good direction, whatever that might mean. I recall my

colleagueDimitrios Savva tellingmewhat hewould have done differently, which I found very interesting;

it must be noted that Dimitrios and I often had these kinds of discussions, so this was not unusual, although

it may appear so given the context. Ultimately, as the composer with a finished piece, advice such as

this initially seems bizarre, but will always be taken away and reflected upon. After the concert, several

attendees commented on the piece, mostly positively with some focusing on aspects of the composition

and others on specific aspects of the performance. I am a keen performer of electroacoustic music,

with many years of experience in sound diffusion. A passing thought I have often had is whether my

skills as a performer are able to ‘cover up some crimes’ in the composition itself. It is fair to say in my

case that this is not true, as I am constantly thinking about performance while writing my music. If some

apparently troublesome aspect present in another listening environment (i.e. the studio) seems resolved in

performance, it is precisely because that is the way it was composed—one tends to write for the expected

listening environment, as Moore writes, ‘Although the composer is in control, unless you want to play

your music only to yourself, you should consider your audience. It is important to listen to your music

as others might hear it otherwise you tend towards self-affirmation …’ (A. Moore, 2016, p. 4). Moore is

talking about compositional aspects in this quote, but given that your work will most likely only be heard

by an audience in a performance we must always be considering what our performance will be. In the

case of acousmatic music, the established performance is that of multi-channel sound diffusion.

Shortly before the première, there was call for submissions to the Music Nova competition. I remem-

ber feeling conflicted about submitting a piece that had yet to be publicly performed to a competition,

but I decided to enter regardless. At this stage in my career as a composer, the aim of entering the com-

petition was not for the prize itself, but rather for establishing myself as a composer. In all honesty, I had

forgotten that I had entered when an email arrived informing me that Twist and Turn had been awarded

first prize11. As a result, Twist and Turn now has a history of national and international performances,

which is also useful to reflect upon.

2.3.1 Twist and Turn: Reflection

The composition of Twist and Turn has highlighted several aspects of my practice, namely the use of algo-

rithms, layering of textural materials and considerations of performance practice. I am using Emmerson’s

11Musica Nova, 2016. Category A: Autonomous Electroacoustic Music

18 CHAPTER 2. COMPOSITION

Language Grid (Emmerson, 1986) 12, as it affords a greater reflective analysis of my work.

When looking at Twist and Turn, the syntax is dominantly abstracted; it focuses on aural relationships

such as density of textures, pitch and gestural shapes—the materials are chosen and positioned based on

aural relationships. Asmentioned in 2.3 certain elements are algorithmically determined but their position

and relation to other materials was decided through abstracted means—in practice, moving sounds in

relation to each other with respect to time, using a DAW to both adjust and assess what I felt to be

correct. In terms of musical discourse, the piece is a combination of aural and mimetic, with neither

being particularly dominant; the pitched sections are roughly equal, in length and prominence, to the

more textural, non-pitched sections.

The introduction to Twist and Turn presents the majority of the materials used throughout the piece.

As more of the piece was written this section was revised to provide additional signposting for what

was to come. It begins with a fluctuating drone, struggling to stabilise itself. On the third attempt it

explodes into the expansive granular textures that form the core of the piece; patterns of three are used

throughout the piece to both create and subvert anticipation and expectation. In order to avoid becoming

predictable themselves, the sets of three repeating gestures that are used to create anticipation take two

main forms, based on the same underlying low frequency material: an attack gesture, and a rise-fall

drone gesture. The first example can be seen in Figure 2.4 at markers 1–3, as well as 5–7. The same

signifying sounds are used in isolation at markers 10 and 11. Throughout the piece, these sounds are

used to facilitate transitions rather than serving to mark them out. Markers 5 and 12 provide examples

of the drone gesture, with Markers 1–4, 6, 7, 10 and 11 exemplifying the more abrupt attack gestures. In

combination with the textures, I created rhythmical accelerations and decelerations using short grain sizes

and dynamic grain rates (the number of grains per second). These are entirely derived from the textural

materials, providing a sense of sonic coherency within the piece. The section then tries to establish itself

three times, lasting slightly longer each time, as well as introducing new materials, before being swept

away by an attack gesture with SectionA slowly forming as a result (see Figure 2.4, markers 1–4). These

textures then ebb and flow in accordance with their underlying algorithm, attempting to become more

pitched; these transitions to pitch being made interactively in real-time, as described previously, rather

12Emmerson presents two continua onto which we can position a piece: syntax and discourse. The syntax of a piece exists

between the extremes of abstract and abstracted, and the discourse lies between aural and mimetic. Abstract syntax describes

where the relationships between sounds and the structuring of materials is primarily chosen through some systematic process

rather than purely how the sounds relate to one another sonically. Abstracted syntax is therefore the opposite, where sounds

are chosen for their aural relationships to one another and the structure is determined by similar means.

In terms of musical discourse, aural discourse describes the structuring of materials in ways that ascribe to the traditional

concepts such as pitch, harmony or rhythm. In contrast, therefore, mimetic discourse is that which utilises the listener’s ability

to associate sounds with their own real-world experience of sound - imitations of real-world sounds, or even ‘aspects of human

culture’.

2.3. IDENTIFYING COMPOSITION 19

Figure 2.4: Twist and Turn: Waveform

20 CHAPTER 2. COMPOSITION

than algorithmically. The reason the transitions to pitch are successful is that the the filters that create

the pitch are always present in materials that transition into pitch—there is no cross-fade into pitch, the

bandwidths of the filters are just slowly tightened until pitch emerges naturally. As a result, the movement

of the filters is hard to detect because they have always been there—this provides a particularly unique

sense of transition that the piece relies upon.

Section A begins with an isolated granulation of one source set (in this case, plastic straws). Other

source sets emerge, in particular that of the oranges, and although is it not necessarily immediately ob-

vious, the accelerating iterative materials heard here are, in fact, the algorithmic orange materials being

put through additional granulation, as with similar materials in the introduction. The straw material is

swept away by a drone, revealing the orange materials. An attack gesture was added to coincide with the

pitches becoming more dominant, introducing Section B. It is not important that the listener identifies

the sources here, as the piece is exploring developing textures through granulation, specific sources are

only mentioned here as a way to highlight their repeated use in different contexts, which additionally

functions as the preparation of those materials for later use.

Section B primarily utilises pitched materials, but again contains iterative materials to provide con-

trast. Some layers are also sent to a reverb for additional contrast. I added a filter swept noise signal whose

timing was purposefully aligned with an articulation in the underlying material, serving to highlight this

moment. Section B then gestates for a time, with the rapid activity of the materials providing perfor-

mance opportunities in diffusion; for example, dynamic spatial movement. An attack gesture eventually

signals and transitions into the final section of the piece.

Section A/B begins with the more aggressive materials, utilised in the introduction. As with the

previous section, this establishes itself for enough time to allow for some more dramatic performance

practices, with the material itself suggesting dynamic spatial movement. Another attack gesture is used

to sweep away the majority of the textures, transitioning into a more calm, contemplative refrain of the

textural materials from earlier before becoming more pitched. From marker 12, most materials are sent

to the reverb and back again, with no reverb by marker 13. Reverberation is used twice more, once to

highlight a particular articulation and again on the final articulation to conclude the work. This transition

to reverb and back again facilitates a homecoming of sorts, signalling the ending of the piece, but it was

primarily to allow the piece to be diffused more widely in performance and then returning for a close,

more intimate finale. As shown, reverberation in this piece functions not only as a suggestion of distance

but also as a naturally occurring colouration device.

Variation is a key feature of the piece. The constant fluctuation of granular textural material seem-

2.4. THE FLUID FRAMEWORK 21

ingly becomes uniform and serves to be predictable, forming a background rather than foreground. The

variations, or perhaps more accurately ornaments, mostly took the form of the additional iterative ma-

terials that accelerate or decelerate, often deliberately placed to highlight certain changes in underlying

material. My approach here was to use these additional materials to articulate the underlying material, not

distracting from it but rather to provide an additional layer to accompany the ongoingmaterial—providing

a shifting contrast between foreground and background, renewing the textural materials as foreground.

In addition, as the piece progresses I added randomised vibrato (by varying the centre frequency of the

filters) to create interesting variations in the later pitched materials.

In conclusion, this piece was largely successful and well received. The most important aspects have

been highlighted here and have demonstrated both the use and influence of software in my composition.

2.4 The Fluid Framework

Documenting and reflecting on all of these experiences has led me to the following understandings of my

own composition. It is important to start this section by highlighting that what follows is not a prescription

for composition, but a reflective description. The aim here is the understanding of my composition

focusing on the influence of software in order to begin questioning its impact. The framework that

follows is somewhat compromised by the linear nature of text, as each aspect in some way informs the

others. I have termed these elements of my composition.

2.4.1 Overview

Firstly, I am a composer—a composer of acousmatic music. I identify myself as such, and in so doing

I align my activities within an established framework. As with nodalism, this framework is formed

from what I have encountered; in this case, the UK acousmatic tradition. Furthermore, as a composer,

I compose pieces of music. Although these pieces have starting points which may vary from piece to

piece, what is more fundamental is that I decide to start them, something only I as the composer can do.

Our question then becomes how these decisions become manifest. What are the factors that coalesce to

require and drive a piece to be begun? In the case of Twist and Turn, I knew that I had to write a piece

for my PhD, so I recorded some sounds. However, I started composing when I became interested in the

sounds I was working with. In addition, I had to write a piece for an upcoming event, so it is clear that

there are multiple forces at work. Upon deciding that I am writing a piece, it is clear that I am setting up a

22 CHAPTER 2. COMPOSITION

framework of rules and restrictions within which to be creative (cFramework13): choosing to work with

a particular set of sounds, a particular process or algorithm, etc. But is it also evident that there are rules

and restrictions I am not actively choosing, that are imposed upon me from some of my other choices; as

mentioned, even identifying myself as an acousmatic composer has this effect. I then proceed to operate

within this cFramework, following Moore’s process. Some elements of composition contribute more to

the cFramework than they are influenced by it (such as Reasons), but each element contributes to and

is impacted by the cFramework for a given piece. A diagram summarising the elemental interactions is

provided at the end of the chapter, in Figure 2.5.

2.4.2 Reasons

The first element of my compositional work is reasons. Reasons are the general why. Why I compose,

why I compose electroacoustic music, why I compose acousmatic music. What is important is that we

recognise that they exist, and that it is where I identify with a particular practice or set of practices. In

terms of the cFramework, reasons can be seen as being responsible for my aesthetic decision making.

They naturally apply to all of my compositions, and I would propose that they are likely only to be

affected by exposure to other philosophies or activities, as outlined in nodalism. It should be evident that

these reasons persist within the other elements. I am never too far away from why I am doing something,

whether I realise it or not. I can always explain what I’m doing and why it’s necessary. They are the

reasons behind starting any piece.

2.4.3 Motivations

The next element to consider is motivations. In contrast to motivation in psychological terms, which can

often include the aspect of why, I more specifically consider these the driving force(s) behind starting

a specific piece. As such, they are unique to each piece. The motivations for a piece can be influenced

by the motivations of a previous piece, or any of the other elements. If the motivations change during a

composition, it is most likely that a new, or different, piece is being written. By reflecting on my practice,

I have identified the following motivations: personal, commission, competition, and exhibition. With

the exception of personal, the motivations will all contribute aspects of aesthetics, duration, and format

(number of channels etc.) to the cFramework, however they are not actively chosen but rather passively

applied.

13cFramework is the framework of rules and restrictions that are constructed—hereafter, this termwill be used to distinguish

between the Fluid Framework

2.4. THE FLUID FRAMEWORK 23

Personalmotivations are those of an ars gratia artis nature: as a composer, I must write a piece. This

also includes the kind of spontaneous composition that arises from flashes of inspiration. As mentioned,

Twist and Turn utilises this motivation. Personal motivations are unique in that the idea of completion

is not necessarily embedded. This gives them the ability to change. As noted with Twist and Turn, the

motivation for starting was personal, but its completion was driven by another (exhibition). As one might

expect, this motivation potentially imposes the fewest rules and restrictions; although the cFramework

from Reasons will apply here, and will be further refined by the Intentions element.

Commission motivation is where one is asked to write a piece. This will most likely be for a specific

event, and so a number of compositional aspects will be affected. The event might have a particular

function, so aesthetic decisionsmay be impacted. In addition, things like the duration and format (number

of channels etc.), may be dictated by the commission. It may be possible to view the personal motivation

as a ‘self-commission’, but a true commission will provide a certain cFramework, whereas the personal

motivation relies on the Intentions element to provide the cFramework.

As noted with Sound Junction, there are certain regular events that one might compose for. These

constitute the exhibition motivation. They might include conferences, gallery exhibitions, installations,

and regular concert series. The distinction here is that we are not necessarily being asked to compose a

piece for it. The expectation of the event is to play an existing piece, but there are certainly occasions

when I have used such events as motivation to write a new piece, specifically writing a piece for the

event. As with a Commission, cFramework aspects include aesthetics, duration, and format.

Although Twist and Turn was submitted to a competition after completion, there have been occasions

in the past where I have contemplated writing a piece specifically for a competition. Having spoken to

other composers, several have admitted to doing so. Some competitions even require new compositions,

acting as both commission and competition. Again, cFramework impact is that of aesthetics, duration,

and format.

2.4.4 Intentions

When I use the term intentions (and later, receptions), it is not necessarily as deemed by RobWeale as part

of ‘The Intention/Reception Project’ (Weale, 2005). Weale was referring to the ideas that composers were

trying to convey to listeners, how effective they were at doing so, and how such communications could be

improved. Here, I am simply referring to compositional intentions—what I as a composer want to do for

a given piece. Intentions for me are the conscious, actively chosen rules and restrictions that are specific

24 CHAPTER 2. COMPOSITION

to that piece. It may be the desire to work with a particular sound, or set of sounds, a particular process or

technique, or even a particular structure. It is additionally the element where aspects of the cFramework

can be rejected, with the exception of absolute limitations; for example, the maximum duration for a

competition submission cannot be altered, but aesthetic restrictions like the use of pitch/harmony/rhythm

can be challenged. Intentions may very well be the start of a piece, but in this sense they will mostly

lead to motivations—“I want to write a piece exploring this sound” may be the intention that leads to

the personal motivation of, “I am writing a piece exploring this sound”. Intentions are influenced by the

Reasons and Motivations, but where Intentions lead to a change in Motivations, there is the creation of

a different piece. Intentions are also influenced by the Receptions element, but only insofar as it applies

to a future composition, as the current piece must be finished for Receptions to occur.

2.4.5 Activities

The other elements contribute to and develop the cFramework for a given piece, but there comes a point

where one acts. Activities are these compositional actions. Once I have decided to work with a particular

sound in a particular way, I have to actually do that work. Activities primarily utilise the cFramework,

but the outcomes from it can result in changes to Motivations or Intentions. For example, processing a

sound in a particular way may result in a new intention being developed, shifting the focus of the piece.

However, where the intentions for a piece shift so much that these new developments become the focus,

it is entirely possible that the motivations for the piece change, thereby beginning a new piece.

Activities can be thought of as consisting of two components: approaches and methods. These cannot

be separated in practice, but it can be useful to describe them separately. The term approaches here refers

to the theoretical aspects of action. The choice of a particular process with a particular sound, or the choice

of which sounds to combine to form a composite. Methods are the doing of the action; for example,

having decided to apply a filter to a sound, one must then apply a filter to the sound. This requires

knowledge of what is available, both in terms of what processes might produce interesting results, and

what software actually implements those processes. I view approaches as “what I bring to the table”, and

methods as “what I do while I’m there”. Together, these form the Activities element, which follows (at

least for me) Moore’s work-reflect process; as evidenced by Twist and Turn.

Recording or synthesis ofmaterials is part of theGenerate stage, and so fits here. Twist and Turn began

with a recording session, but without motivation or intention to write a piece. It may be argued that Twist

and Turn began here, but the recordings I made were not for a specific piece. I was, however, inspired by

2.5. CONCLUSION 25

some sounds I was working with, which then resulted in a personal motivation and the development of

some intentions for a specific piece. It is therefore possible to start a piece with Activities. It may even

be the case that all pieces arising from personal motivation start here. As we have seen, Activities can

influence the Intentions for the piece, or a future piece; are clearly influenced by the Intentions for the

piece; and influence the motivations of a future piece. It is hopefully self evident that this is the element

where technology, including but not limited to software, is utilised. With this, we see the position of

software and its area of influence. We can therefore turn our attention to what these influences are.

2.4.6 Receptions

As shown, once a piece has been completed it must be performed. Performance is an embedded need

in electroacoustic music, as without it the piece remains an intangible stream of binary digits. With

Twist and Turn, and indeed all of my pieces, this need manifests itself in the composition. However,

the receptions element encompasses what happens after completion: both performance, and the results

thereof. It is here that my role as composer (for this piece, and this piece alone) halts, and I switch to

being performer. This composer/performer duality is somewhat unique to electroacoustic music. Whilst

I would argue that only future pieces are hereby affected, it may be the case that once a piece is performed

a composer chooses to revise it. However, I have never done so. My philosophy has been, andmost likely

will remain, that a piece is a timestamp of the position in my compositional development; so once a piece

is performed, the only lessons to take are for future works. As I perform this music, I learn how sound

moves in space, which may inform certain structural or other compositional elements in a later piece.

I also receive feedback from specialists and non-specialists that may inform future decisions: the next

motivation, set of intentions, particular approaches or methods, etc. Receptions essentially constitute the

performance, and Reflection (as work-reflect) for the finished piece, which goes on to inform the next

piece. Receptions therefore play a vital role in composition, even though the role of composer is not

directly a part.

2.5 Conclusion

Composition cannot be defined, but it can be appreciated. It can be understood without resorting to

mysticism. Through the composition of Twist and Turn, the Fluid Framework was identified, which

does not seek to prescribe composition but to provide a detailed enough description to conduct further

26 CHAPTER 2. COMPOSITION

Element Components cFramework

Reasons — Aesthetics

Motivations
Personal, Commission, Competition, Ex-

hibition
Aesthetics, Duration, Format

Intentions —
As from Reasons and Motivations, addi-

tion or subtraction of rules specific to piece

Activities Approaches, Methods
indirect via influence of Intentions andMo-

tivations

Receptions
Performance, Response (specialist, non-

specialist)
future work

Table 2.1: Fluid Framework: Summary of Elements

Reasons

Motivations

Intentions

Activities

Receptions

Figure 2.5: Fluid Framework: Elemental Influences

(dotted lines indicate influence on a future work)

2.5. CONCLUSION 27

investigation. My composition comprises five elements, each containing their own knowledge-sets, and

relying upon and informing/interacting with the others.

The use of software has been identified as a key factor in most aspects of composition and is situated

within the Activities element. The Activities element consists of Approaches and Methods, and software

plays a part in each of these components. Knowledge of what software is available, how it works, what

it might do to sound, will inform the Approach to working with material. In the case of Twist and Turn,

I knew what SuperCollider’s PS was capable of, what filters would do to the sound, etc. Following on

from this, we see that Methods are not just informed by software but are in fact dictated by the software:

how a piece of software works is how the composer will work. It cannot be anything other than this. The

Methods are facilitated by the software. Moore’s text is particularly interesting in that it discusses the

use and rationale behind the software, whilst providing the software itself. Wishart’s text also provides

guidance on the use of software, referencing the Composer’s Desktop Project (CDP), but as mentioned, it

appears to focus on the creative output of the software. The CDP can perform the manipulations Wishart

discusses, but because other software could do the same, the specifics of using the CDP itself are not

covered. It is interesting to note that Wishart outlines the rationale behind the processing itself, so one

could use the text to develop software based around these concepts.

28 CHAPTER 2. COMPOSITION

CHAPTER 3

Software in Composition

In the previous chapter the use of software was located within the context of composition. However,

its role remains unknown. As we will see in this chapter, the studies that examine the role of software

do so from a perspective of identifying the task of composition itself, with the goal of creating software

better suited to the task. In order to do this, however, they must identify what completion means for the

task. Software is therefore viewed as the sequence of actions needed to compose. We can relate this

approach to Suchman’s concept of plans as opposed to situated action (see 2.2.3). Existing work posits

that composition is a rule-governed activity that can be systematically encoded in software.

In contrast to existing work, this research has identified software as playing amuchmore integral role,

not just replicating human activity, but actually facilitating it. The composition of acousmatic music, as

we understand it today, would not be possible without the use of software. Rather than posing a recursive

ontological dependency, this simply shows that the software is not separate from composition, but rather

a part of it—software serves to enable the act of exploration required by the activity itself, as in situated

action.

In viewing software as the embodiment of the process of composition how the software functions as

part of that task is not considered. This chapter will seek to address this by taking forward the idea that

software plays a role in composition, discussing existing work in the field and presenting a number of

investigations into software inmy compositional work. It begins with investigations into the two software

paradigms of real-time (RT) and non-real-time (NRT), assessing them as part of composition. The design

29

30 CHAPTER 3. SOFTWARE IN COMPOSITION

of the software created will be discussed, as it is important to be able to identify any limitations in the

assessment of the conclusions drawn from its use. The compositions created alongside the software will

also be discussed in order to contextualise both the software and the conclusions.

3.1 Existing work

3.1.1 MOSART Project

Returning once more to the work of the MOSART project, they confirmed that composers used a variety

of software. Their initial assumption was that this proved problematic, as switching software disrupted

the work being done. However, it became clear that because composers use a combination of divergent

and convergent thought processes, this switching ultimately proved beneficial as it encouraged divergent

thought (Nuhn et al., 2002; Upton, 2004). As a result, they concluded that the creation of a single software

environment for composition should not be the goal of future work.

Tracy began by reviewing the work of Nuhn et al. As mentioned previously, this study attempted

to utilise naturalistic observation. Unfortunately, the environment in the study was not natural, with

the composer not using their own computer and usual software. In addition, the composer knew they

were being observed, which calls into question whether their behaviour was natural at all. Taking this

into account, Tracy’s conclusions are certainly marred by these concerns. However, Tracy concluded, in

relation to software, that (Tracy, 2002):

• Improvising with the software is part of the compositional process

• Software limitations can be motivating as well as frustrating

• Knowledge of a program’s capabilities may be at the root of some frustrations

• The[re] may be an unwillingness to use manuals amongst composers

3.1.2 The importance of memory

The MOSART project also identified the importance of memory in composition. This was on a rather

large scale, reducing to the idea that a composer must have a working recollection of the sounds at their

disposal. Eaglestone’s idea was to incorporate a searchable database to reduce the requirement of memory

and possibly assist, or pre-empt, composers in their choices (Eaglestone et al., 2007).

3.1. EXISTING WORK 31

However, significantly earlier, when discussing the design of interfaces for computer music, Otto

Laske identified several important roles of memory in composition. Laske proposed a memory model

used in composition, suggesting six key factors that interact with productions (to be understood as a

heuristic), that combine to form a production system. Events occurring at various levels of time (audio,

conscious, interpretive), are perceived at corresponding cognitive levels (sonic, syntactic, semantic).

The ways in which a composer’s time levels and cognitive levels interact with short-term and long-term

memory dictate the kind of interactions that one can have (O. E. Laske, 1978).

3.1.3 Attitudes to software

Separating the attitudes towards software and technology in general is rather difficult, as they tend to

be discussed interchangeably. The following presents a summary of the attitudes that can be found in

existing literature.

In a letter to the Computer Music Journal, Otto Laske suggested three different attitudes towards the

use of computers in art: result-oriented, tool-oriented, and process-oriented (O. Laske, 1984). He classed

these as analytical, pragmatic and cognitive respectively. Rather than explain these as Laske does, it is

perhaps more interesting to consider the somewhat similar work of Nuhn et al. The conclusion drawn

with regards to attitudes here is that composers fall into one of three groups:

…composers for whom creation of computer related tools (i.e. software, hardware inter-

faces) is a natural accompaniment to composition and is inseparable from the process of

composing. …[those who are] more concerned with engaging with the sounds themselves,

i.e. composing with the tools available to them, but seem to feel the need to deal with as-

pects of tool creation, i.e. computer programming etc. …[those who] are similar to the

second [group], with regards to their natural preoccupation with sounds rather than with the

tools [, however] …they do not worry about the technical sophistication …but will rather

try to push the tools they know to new boundaries to create original sound events. (Nuhn

et al., 2002)

From this we can draw an interesting parallel between these attitudes and the standard computer users

groups: Super-User, Power-User, User (respectively). There are those who write the software, those who

know enough to modify the programs to suit their needs, and those who use whatever is available to them.

It is also important to appreciate how these attitudes have shifted over time. Laurie Spiegel proposed

a series of assumptions that, although purely speculative, ring somewhat true. In summary, Spiegel posits

that as the influence of commercialism grew in computer music, attitudes to software moved away from

the composer being both the “tool maker and tool user”, to the “tool user and the tool builder [being]

32 CHAPTER 3. SOFTWARE IN COMPOSITION

different people who never interact”, amongst a variety of other important aspects (Spiegel, 1996). This

may in part explain the different attitudes seen by Nuhn et al. (2002).

3.1.4 The role of software

As with creativity, it is useful to consider metaphors used in the description of software to form an un-

derstanding rather than a definition. It is, however, once again difficult to separate the computer from

the software, particularly when referring to early writing on the subject given the landscape in which

software was written. Regardless, what follows is a summary of the metaphors relating to software in

composition.

Initially, studies focused on using computers to control external hardware, like a synthesiser (Bayer,

1977; Lawson & Mathews, 1977). However, as computers got faster, we began to see more varied

descriptions emerge: the computer being a musical instrument (Bedworth, 1998; Bertelsen et al., 2009;

Charrieras & Mouillot, 2016; Mathews, 1963); a tool (Bedworth, 1998; Keane, 1986, p. 116; McNabb,

1986, p. 148; Truax, 1986, p. 160); a calculator, type-writer, or word-processor (Pope, 1992); a creative

partner or assistant (Bedworth, 1998; McAlpine et al., 1999; Miranda, 2001). These metaphors can help

us identify how computers are being used. By far the most common is that of tool, or instrument.

Where instrument is used, we tend to see a very strong association with traditional musical instru-

ments and an attempt to emulate them in either control or timbre. In contrast, the use of tool varies, often

having two different uses. Firstly, where software has no particular role and is merely a tool to accom-

plish a task. This is also usually where other metaphors of calculator or type-writer are seen. Secondly,

where software can be used, but where it is not fixed; where computers are viewed as a general purpose

problem solver that can be made to work with a variety of problems—whether the software currently

does something, is not a limiting factor, if one can modify it.

These differences might be seen as the attribution of agency to the computer, but it is perhaps more

appropriate to apply the concepts of technological determinism and technological constructivism (Mag-

nusson, 2019, p. xi). Here, Magnusson uses determinism to describe the idea that software entirely dic-

tates composition, with constructivism relating to the creation of software being dictated by composition,

providing a warning that we should not rely too heavily on either one. If one’s attitude to software is that

of tool, then it is fair to attribute this to constructivism. Alternatively, if one views the role of software

more highly, it is likely to be rooted more firmly in determinism.

3.2. BACKGROUND 33

3.1.5 The influence of software

It is somewhat of a truism that software has an influence on composition. This has been written about

many times: Belet et al. (1992), O. Laske (1984), Pope (1992), Pope et al. (1995), Truax (1986). However,

the research conducted so far has failed to ask and/or answer the question of software itself. We have been

warned that software has an influence, but as yet this influence has been overlooked. Of those that have

questioned the influence, the prevailing attitude has been that of tool, and so the most common approach

has been task-based. As a result, the studies have considered software a single entity aimed at replicating

a human activity. However, when we consider software in the context of composition, I would argue that

it is not simply a tool encoding some aspect(s) of compositional activity. Instead, if we ask the question,

“how does the software operate?”, we quickly discover that this has not been an aspect that has been

previously considered. The questions have so far been “what software do composers use?”, and “how

might we make improvements to the software currently in use?”. For example, Eaglestone et al. (2007)

did not question the software paradigm as a factor in the use of software.

We have seen the perceived role of software, and a number of attitudes towards it. The factor we

are most concerned with is that of its influence. The attitudes and roles we have seen suggest a certain

perceived importance of any influence there might be. If one has no say in the software, its influence

cannot be negated, and so any influence it may have can be safely disregarded as a part-of-the-task. If

one can mediate the influence, it can be managed. Yet, if one can create one’s own software, the influence

can be controlled, within limits of the realm—becoming somewhat of a compositional parameter.

3.2 Background

At this point, it is important to consider briefly my own attitudes to software and technology in general;

identifying into which of the groups I fit. This is included in the hope that the context it provides will

alleviate concerns of bias in the discussions that follow. Rather than simply state which group I believe

I fit into, I decided that it was better to consider how I could test this.

In order to classify attitudes towards software, building on those we have seen, I would like to propose

the following statements as their appropriate litmus tests:

• “If the software existed, I would use it. If it did not do what I needed, I would use an alternative

that provided the functionality I require.”

• “If the software existed, I would use it. If it did not do what I needed, I would try to modify it to

34 CHAPTER 3. SOFTWARE IN COMPOSITION

suit my specific needs. If this was not possible, I would try to find an alternative.”

• “If the software existed, I would use it. If it did not do what I needed, I would try to modify it . If

it did not exist, I would make it.”

Taking into account technological constructivism and determinism, these can be seen as increasingly

deterministic. However, if we combine these with the metaphors we have seen, a different perspective

emerges. I personally align with the final statement. It is not that I wish to reinvent the wheel, but in

cases where the technology doesn’t exist, I will try to create it. In terms of metaphors, however, I do

not particularly agree with any of them. As such, considering my view as deterministic based on the

statement alone is misleading. For example, the relationship one has with a tool is not that which I have

with computers, and I am reluctant to use the metaphor of assistant as it ascribes too much agency to

the computer. I would propose an additional metaphor, that of substrate. One might consider the plastic

of magnetic tape, acting as a substrate for recordings, but I am instead thinking of agar jelly. Agar jelly

is used in the field of biology to grow bacterial cultures, providing all of the required nutrients. Like

software, it must be made, and then used under certain conditions to produce intended results. However,

it is important to note that the substrate does not act alone. It requires intervention by us, and in turn

our interventions change the substrate itself. The addition of penicillin, for example, is something that

we might apply to agar, but the substrate itself reacts to this process with the combination of the two

modifying the result of the experiment. The metaphor of substrate conveys a push-pull relationship, of

one influencing the other to cultivate something new—in this case, music.

3.3 Defining RT and NRT

The way that we define real-time and non-real-time becomes of primary importance in our investigation.

The difference is not about speed, as one might expect. RT software is not necessarily faster than NRT;

in fact, quite the opposite. NRT software was initially much slower than RT, but as computers gained

speed there was a point at which it could run much faster than RT. To generate a sound of 1 minute would

take 1 minute in RT, whereas it can now take a few seconds in NRT; although previously it would have

taken much longer than in NRT with slower machines. When we talk about RT, we must be careful to

specify that which we are discussing. Following theComputerMusic Journal through its history, we see a

fascination with real-time, but with a definition that changes over time. In the beginning, excluding Bayer

(1977) and Lawson and Mathews (1977) which refer to controlling a synthesiser, we see a definition of

3.3. DEFINING RT AND NRT 35

RT as it pertains to the generation of sound. However, as time continues and computers improve, as

generation becomes a standard feature of personal computers with the likes of the PDP-11 (Truax, 1977),

the focus shifts rather unmarkedly to referring to the ability to control parameters of the generation; to

being about real-time control of software. As a result, from this point RT will be used to describe in a

general sense, but where required, RT-G andRT-Cwill refer to RT-generation and RT-control respectively.

In order to determine whether or not a piece of software is RT or NRT, it became necessary as part of

this research to develop a simple test that could determine the paradigm. As noted, the main difference

is the interaction with the software and when it occurs in the process. With RT software, one runs the

program and can modify the result as it is produced. With NRT software, everything is configured in

advance, and we later observe the result. As such, the test for being RT and NRT relies on the notion of

what is set up in advance and where observation occurs in the process. This is the basis for the domino

test. As with a set of dominoes, one might carefully set up the Rube Goldberg-esque domino show, and

watch as everything falls into place. Changing the course of the toppling dominoes once set in motion is

impossible and we must rebuild the entire display. Any software matching this description is inherently

NRT.

In contrast, if we were able to change the course one might be able to consider the software to be RT.

There is one exception to this: in cases where changing the course causes an audible glitch, the software

is NRT. The following examples are provided to give clarification to this caveat:

• CDP. Processes and parameter values are chosen in advance and passed to the relevant executable.

CDP is therefore inherently NRT.

• Csound. Instruments and scores are designed in advance and passed to the csound executable.

Csound is therefore inherently NRT. While it does provide RT-G, in my experience RT-C has been

unreliable—as such I would be reluctant to consider Csound as RT.1

• SuperCollider. Synths are designed in advance. Once a Synth is requested, parameters can be

changed in RT, and the Synth itself can be replaced at any time without glitching the audio. Super-

Collider is inherently RT.

• A digital audio workstation (DAW) (e.g. Cubase). Processing is chosen in advance, parameters

1It is hard to follow how Csound operates. The code is quite old and hard to understand, and some may even be legacy

code that the program no longer uses. The RT-G appears to be using a blocking call to the audio API, but there are references

to threads. It is difficult to see how these threads are being used. The RT-C appears to be handled through pipes with a FIFO

(first in, first out) mechanism, but it is not clear how the changes are communicated—if the FIFO read is called in the audio

thread, this can block the audio and cause a glitch.

36 CHAPTER 3. SOFTWARE IN COMPOSITION

can be changed in RT, but one cannot add a process (i.e. plugin) without glitching the audio stream.

DAWs are inherently NRT.

• PureData. Patches are designed in advance. Patches can be changed in RT without glitching the

audio stream. PureData is inherently RT.

Using the terms RT and NRT themselves, it is not necessarily clear in which paradigm the software

works. NRT, while it was initially slower than RT, can now run significantly faster in some contexts than

RT. In others, for instance with intense processes such as complex FFT (fast Fourier transform), NRT can

take longer than RT. The same can be said, however, for RT processes—in intense processes it can also

be too slow to generate audio. RT has time bounded constraints. If the audio is not calculated in time,

the output will glitch. Having said this, if the RT audio process writes to disk correctly, by buffering on

a separate thread, these glitches can be limited to the RT-G and not the recorded output (i.e. the audio)

of the process. By this point, however, any benefits of RT are lost as the feedback loop is disrupted by

the glitching audio.

In some ways, it is possible to view RT software as no different to NRT software—with RT being

NRT that is guaranteed to run within real-time-safe boundaries. The buffer size configured in programs

sets the amount of frames that the software has in which to calculate in RT. Increasing the size of the

buffer to give the computer more time before running out may help in some circumstances. However, it

will also increase the amount of delay between a parameter being changed and its result made audible.

This in turn results in the software being perceived as not entirely RT.

These definitions of RT and NRT only take into consideration the computational requirements, and

cannot account for the way in which we interact with these processes. Therefore, it is important to

understand how the control of software in these two paradigms functions in relation to composition. This

understanding is the focus of the following investigations.

We must first consider what it means to be RT. RT-G alone is not enough, as the usage of the software

is that of NRT. RT-C is then a required addition, but what form this control takes is also important. If

the software allows something to be done in RT, it should not glitch the audio in either the RT output

or the soundfile output. If adding a plugin to a DAW causes a glitch, then that aspect is not RT. Taking

into account the context in which the software is used is important here. A DAW is not used in a RT

critical context, so a glitch when adding a plugin is not a requirement, as the primary context is NRT

use—positioning a sound or control and then listening to the result. Therefore, even though it provides

RT-C and RT-G, its usage suggests NRT, in a similar way to Csound. As the software is being used, if

3.4. DEVELOPING SOFTWARE AND COMPOSITION 37

it allows the user to do something that glitches the RT-G, then it cannot be considered a RT program. If

however, the program provided RT-C and RT-G, but for instance did not allow the user to do something

during the process of RT-G that caused a glitch, it would be classed as RT. The key here is the RT-G, the

audio stream, and whether the software allows us to do something that isn’t RT-safe.

In summary, NRT software offers neither RT-G nor RT-C. RT software allows RT-G and RT-C, but

can only be considered RT if it performs within RT-safe limitations. As presented so far, it seems that

there is some aspect of working with RT and NRT systems which we have yet to explain. Later in this

research, an addition to the classification of paradigms was discovered that removes the need for the

caveats: see discussion of Data.

3.4 Developing software and composition

During this research, several pieces of software were created alongside compositions in order to evaluate

their impacts. It is important to outline the goals of the software and the investigations. Firstly, software

is created from composition. As Wishart outlines, software designed from a technical standpoint will

produce technology, ‘an arbitrary, number-crunching program will produce an arbitrary result’ (Wishart,

1994, p. 5). Building on this, we might consider that software designed from a musical standpoint could

produce sounds that would be of greater musical interest to the composer. Wishart’s writing in particular

goes to great lengths to explain the sonic reasoning behind the transformations that the software might

be capable of rather than focusing on the implementation. Secondly, I am not aiming to create the best

software, but to create software that may both ask and answer questions about composition. The initial

question is one of requirement, but not from a HCI standpoint. Rather, we are concerned with identifying

what it is about NRT and RT software that we need to question further. To answer this, I will follow the

line of questioning from Chapter 2—how does the software interact with Approach and Method. In so

doing, we approach the question of impact not from a standpoint of how well the software embodies the

composition process, but from a position that considers software as a part of the composition.

If we imagine for a moment two pieces of software: one operating in RT, and the other in NRT, where

the underlying sound processing algorithm is the same, and the parameters are set to the same values,

what then could we say about their outputs? They would be equal, down to the very sample. This being

the case, what role then does the operational paradigm play in the use of software, if the difference is not

in their sonic output?

In developing software for composition, I have taken an agile approach. With an agile approach,

38 CHAPTER 3. SOFTWARE IN COMPOSITION

software is developed in a modular fashion through periods of rapid iteration. The modularity we speak

of can be determined by what are known as user stories. A user story tends to be based on statements

similar to the following: “As a user, I have to be able to…”, and “As a user, I would like to be able to…”.

Taking these stories, I can then implement them so that everything that is required is possible. Desired

features may or may not be implemented, depending on workload and applicability. Importantly, user

stories are not used to build a set of requirements, but a set of features; each story can be responded to

individually. This is in contrast to waterfall approaches, where a list of requirements is obtained, and the

software is written. If a requirement is not accounted for the entire project may need to be revisited.

Themethodology used in the following investigations is outlined below. Taking the Fluid Framework

as a starting point:

• Develop software in order to question its use in composition

• Use software to compose short phrases

• Document thoughts on Approach and Method

• Identify potential influences of software

This was conducted with both RT and NRT software. The software used was written in C++, allowing

the control of experimental variables outside of the operational paradigms—providing the guarantee of

the same processing whether in RT or NRT.

Much of the existing work looking into software has not taken into account the operational paradigm

of the software. Instead, choosing to focus on the user interface, whether it is text-based or graphical.

While this information is valuable, it cannot be used to answer the question of how the software interacts

with composition, because it focuses on how the user works with the software to complete the task, rather

than how the software influences the user’s actions. Throughout the following investigations of both NRT

and RT, software will be considered as part of the process, and not an encoding of the process itself.

3.5 Investigating NRT

3.5.1 linkEngine

The first experiment was the development of linkEngine: a NRT audio processing engine. Following on

from the Fluid Framework’s concept of Activities, the question became how NRT software impacts the

3.5. INVESTIGATING NRT 39

ideas of Approach and Method. To evaluate Approach, I must outline my thoughts about working with

sound in relation to the software available. The evaluation of Method requires the use of the software

and critical reflection on the interaction with the software.

As a NRT engine, it offers no controls once it has been asked to run. Everything must be specified

in advance. The design of the linkEngine came directly from the Fluid Framework: take a sound, decide

what to do with it, and do it. The user specifies a chain of processes on an input file to produce an

output file, specifying each link in the chain. As the goal of linkEngine was to question the use of NRT

software, it was not really necessary to have a large selection of processes, but it contained enough to

investigate with: gain, delay, high-pass filter, low-pass filter, channel split, and normalisation. Any

number of processes could be specified, and there could be multiple chains within one request. These

chains were described in XML, and these XML files were passed to the program via the command line

to be executed. Aminimal example is shown in Listing 1.

1 <LINK>

2 <CHAIN inFile="in.wav" outFile="out.wav">

3 <PROCESS name="Gain">

4 <PARAM name="gain">0.5</PARAM>

5 </PROCESS>

6 </CHAIN>

7 </LINK>

Listing 1: Simple linkEngine XML example

linkEngine could transform one sound into another, but it could not really produce two outputs from

a single input, nor could it take two inputs to produce an output. However, as noted by A. Moore et al.

(2013), this is not necessarily required: one-to-many processing in this context can be broken down into

separate one-to-one processes.

The core of linkEngine is the Engine. This is responsible for reading the XML descriptions and

building the processing chains. The main function of the program passes the XML file to the Engine

and requests that it runs. Upon running, the Engine will initialise the next chain, then process it, before

moving on to the next one.

A chain in linkEngine processes a single audio file. It contains a single audio bus on which all the

audio is written and read. During the initialisation stage three things happen. First, the input file for

the chain is opened. From here, the audio bus is initialised with the same number of channels as the

input file. Then the processes are initialised, having their parameters reset, allowing the length of the

40 CHAPTER 3. SOFTWARE IN COMPOSITION

processing tail (the maximum number of additional frames to be added by any one process, like a delay)

to be calculated. When the chain is asked to process, it will create the output file and run through each

process in the chain, in the order specified in the XML.

The processing is handled by Effects. These are what I have been referring to as a process. An

Effect is a simple processing class that requires it to accept: an input bus, an output bus, a number of

channels to process, and a number of frames to process. The function signature is as below:

1 virtual void process(float** in, float** out, const int numChannels,

const int numFrames);↪→

A feature added much later in the development of linkEngine was the error reporting. It was important

for me to have human-readable error messages that explain where the program has gone wrong. If the

XML file does not exist, it will report exactly that; if a breakpoint is missing a time or a value, it will

report which parameter within which process is missing a value, etc. This made tracking down mistakes

in the specification much easier.

The overall design of linkEngine was to provide a processing engine that had a way of interacting

with processes. The engine acts as a host for these processes and guarantees that they all behave in a

standardised way. It would be possible to implement any processing as a linkEngine Effect. Even

complex pre-process analysis is possible, because each process is given the details of the file that its

audio is coming from. The Normalise process is a good example of this, but the initialisation could

really contain anything; waveset creation or FFT analysis to name a few. Therefore, linkEngine provides

a framework in which NRT processing can be written using a simple API2. Adding a new process is a

matter of deriving from Effect and implementing the constructor, process and reinitmethods, as

shown in Listing 2. These processes are not dynamically loadable (i.e. plugins), as there are limits to the

number of dynamic libraries a single executable can link against, but also because greater integration into

the engine is made possible. As the software is open source, it is easy to add or modify processes—and

even the engine itself—as may be required.

3.5.2 NRT: On approach

As a result of developing the software myself, I was conscious that the knowledge of its limitations

was changing my approach to the software, even without necessarily using it. I knew that it could not

2Application Programming Interface

3.5. INVESTIGATING NRT 41

1 #include "effect.h"

2

3 class MyProcess : public Effect

4 {

5 MyProcess(const EffectData& data)

6 : Effect(data)

7 {

8 // name, minVal, maxVal, initVal

9 addParam("myParam", 0, 1, 0);

10

11 // do we add extra frames?

12 addsTail(false);

13 }

14

15 void reinit()

16 {

17 // initialisation code

18 }

19

20 void process(float** in, float** out, const int numChannels, const

int numFrames)↪→

21 {

22 // DSP code

23 }

24 };

Listing 2: linkEngineAPI example

process things independently, or at least some complex combination of split andmultiple chains would

ensue. Consequently, I ended up utilising more simple sets of processing, even though greater complexity

was possible. As shown in Listing 3, the split process could be placed anywhere in the chain to

produce independent output files per channel, and from there another chain could be used to process

those files further. The result of using a direct, in-place processing system was that although it was a

literal interpretation of the composition process, it failed to encapsulate the complexities of the kinds

of processing utilised—it was impossible to take the output of a specific process and have both it and

another chain operate on it. Although this might have been made possible with an additional render

process, one aspect of the linkEngine that was promising was that because each chain knows about its own

input and output, it would be possible with little effort to have the program scale to high-performance

computing environments and process all chains in parallel for large-scale performance improvements.

This would require the chains to be completely independent of each other, so even the existing split

operation would cause problems with this as it creates a dependency between the chains.

So far we have seen how linkEngine influenced my Approach to even thinking about what might

42 CHAPTER 3. SOFTWARE IN COMPOSITION

be possible. Knowledge of processes, although limited by design, was definitely a factor in producing

even short phrases with which to test. However, when it came to using the software, the NRT aspect

played its part. Not only did I have to know what processes were available to begin with, I also had

to have an understanding of what both that process and its parameters would do to a sound. The most

common word that recurred throughout my notes was, perhaps as one might expect, experimentation.

The software produced nothing without everything being accounted for. As such, a great deal of time

was spent planning and writing the chain specifications. This could quite often be frustrating, as without

sound being produced, it often felt as though no progress was being made on the composition itself.

1 <LINK>

2 <CHAIN inFile="in.wav" outFile="out.wav">

3 <PROCESS name="Delay">

4 <PARAM type="static" name="delayTime">22050</PARAM>

5 <PARAM type="static" name="feedback">0.9</PARAM>

6 </PROCESS>

7

8 <PROCESS name="Gain">

9 <PARAM type="breakpoint" name="gain">

10 <BREAKPOINT time="0" value="1" />

11 <BREAKPOINT time="10" value="0.5" />

12 </PARAM>

13 </PROCESS>

14

15 <PROCESS name="Split" />

16 </CHAIN>

17

18 <CHAIN inFile="out-0.wav" outFile="out0-processed.wav">

19 <PROCESS name="Delay">

20 <PARAM name="delayTime">512</PARAM>

21 <PARAM name="feedback">0</PARAM>

22 </PROCESS>

23 </CHAIN>

24 </LINK>

Listing 3: Complex linkEngine XML example

3.5.3 NRT: On method

If we consider what is produced from this process, there is a complete set of instructions that can be

used to reproduce the output; provided the input and the chain description are retained. However, it is

also important to consider the characteristics of the output files. Whilst the duration of the output can

be increased, with something like the delay process, it is also important to realise that this is a fixed

3.5. INVESTIGATING NRT 43

time—a known duration that can be, and in fact is, calculated based on the input parameters. So, whilst

processes in NRT can alter the duration of the input file, it can by its nature only create output of fixed

duration. At which point, the output is heard, evaluated, and the next iteration of the NRT processing

begins. As a result, the utilisation of NRT appears to lend itself to iterative developments of material that

by its nature produces closely related, but clearly distinguishable sounds. There is a clear delineation for

each sound, and if all intermediary sounds are retained, there exists an uninterrupted evolution of material

from one sound to another.

We have seen that NRT produces finite, concrete sound objects that have an evolutionary relationship

to one another. Although we have seen method already in terms of how I work with the software itself,

it is also important to now consider the resultant method of working with those sounds as materials

themselves, once they have been made. It is perhaps important to note these two forms of method: how

to use the software, and what is done with its output. The audio files produced from NRT can be thought

of as discrete sound objects. They are somewhat indivisible in that to change its properties, I must either

modify the NRT processing itself, producing an entirely new sound object with different properties, or

use it as the starting point for further development. Either of these result in the creation of a new sound

object which, by virtue of the process, does not modify the original sound file itself. By taking this into

account, I am therefore either required to combine them into larger, more complex objects, or use them

to generate new material. Additionally, in cases where the processing did not prove useful, it is important

to consider that this too informs the next process.

3.5.4 NRT: Conclusion

It is now possible to identify, with respect to NRT software, how my compositional approach and method

are thereby affected. By using linkEngine to create short phrases, it became clear that two aspects proved

greatly important.

Firstly, the assumed knowledge of the software and its capabilities and idiosyncrasies. This impacts

not only how I think about the sounds, but also how I consider working with them. If a process is too

complicated to achieve, I am less likely to do it, potentially at the expense of musical exploration. A

greater degree of planning is required in NRT as a result. The delay between deciding what to do and

hearing the results is greatly increased by the amount of time spent in the specification of parameters. I

have deemed this an experimental approach: design an experiment, conduct it, analyse the results. This

constitutes an effect on approach.

44 CHAPTER 3. SOFTWARE IN COMPOSITION

Secondly, the use of the software results in a collection of discrete, finite sound objects. Whether these

sounds are used or not within a phrase or piece, something is learned from these intermediary sounds.

When continuing to develop these materials, I either add them together to form more complex sounds,

or choose some aspect on which to focus for the next round of processing. Taking any two sounds, we

have a some tangible path of sound objects in between: a clear evolution of materials. This can prove

very useful in acousmatic composition, as I am able to work with a collection of sounds that are related

to one another; I can worry about how to combine them into phrases later, knowing that there are stages

in between on which I can rely. This presents an effect in relation to method.

In conclusion, I have observed that the use of NRT enforces an iterative, experimental approach,

which in turn results in an additive working method.

3.6 Investigating RT

Following on from the NRT investigation, I explored RT in the same way. I took the linkEngine and

added RT capabilities. As with linkEngine, there were several iterations of program to incorporate ideas

as they were encountered.

3.6.1 le2

le2 was the successor to linkEngine, as the name implies. As mentioned, it added a RT audio engine. It

was also the first of the audio engines from this research to utilise a node-based graph system. The audio

engine would wait for a graph—in this case, akin to a chain as before—to process, and then process it in

RT. In a later re-write of le2, hereafter le3, the parameters were modified to allow for RT-C, accepting

input fromMIDI (OSCwas later planned), although nowaywas added to specify these programmatically.

RT-C was tested using the later version, but source for this version has been lost. For these reasons, le2

is not distributed with this thesis, as it does not fully represent the software used in this investigation.

However, the observations as outlined in this section were later additionally confirmed by the use of both

SOClib and lwae (see No-Time), and so its discussion remains important.

With the addition of the node system, processes were now able to exchange audio. In order to ac-

complish this, the idea of having a single audio bus was no longer feasible. It became necessary for each

node in the graph to have its own buffer on which to operate; therefore allowing any node to operate on

any other node’s audio without the need for an intermediary output file. To accomplish this, it was first

necessary for the nodes to know about one another’s input and output types. For example, a process that

3.6. INVESTIGATING RT 45

required a mono input could not connect to a node that produced a multi-channel output—nodes have to

be compatible. This was implemented using a bit-flag, as demonstrated in Listing 4.

1 // Based on audiographnode.h

2 // known integers representing individual states

3

4 // 0001

5 const int mono = 1;

6 // 0010

7 const int stereo = 1 << 1;

8 // 0100

9 const int multi = 1 << 2;

10 // 0111

11 const int any = mono | stereo | multi;

12

13 // using the bitwise AND, we can check if certain

14 // bits are set

15

16 int input_required = stereo;

17 int output_given = mono

18

19 int compatible = input_required & output_given;

20

21 // if both bits are 1 then 1, else 0

22 // 0010

23 // 0001

24 // ||||

25 // vvvv

26 // 0000

27

28 if(compatible != 0) {

29 // compatible - can connect

30 }

31 else {

32 // incompatible - cannot connect

33 }

Listing 4: Bit-flag example

As the goal was to make as few changes as possible to linkEngine, it used the same XML speci-

fication to describe processing. The assignment of RT-C was carried out by whatever graphical user

interface (GUI) was implemented, as it would have direct access to the nodes, their parameters, and

Parameter::setMIDIConfig.

It operated in much the same way as linkEngine, reading and building processing chains, processing

them in blocks, and outputting the result. The only real difference was the RT-G and RT-C. le2 in its

initial state provided RT-G without RT-C. The difference with the addition of RT-G was that I no longer

46 CHAPTER 3. SOFTWARE IN COMPOSITION

had to wait for the process to finish before opening another program to listen back to what had been

created. We can therefore conclude that the addition of RT-G on its own really only acts as a time-saver.

In later versions that allowed RT-C through GUI my observations were quite different.

3.6.2 RT: On approach

In knowing that I could hear the sound immediately, without necessarily considering the settings of all

of the parameters, I noticed a change in my approach to working with the software. I would not hesi-

tate to select a process without knowing the effect it would have on a given sound. In direct contrast to

NRT software, it appears that RT has less of an assumed knowledge-base. Coupled with the feedback of

parameters on the audio, I was quick to begin to associate controls with their audible change. This, there-

fore, presents itself as an interactive discovery process between input and process, through parameters.

RT-C offers the way in which these correspondences are learned. The terms play and improvisation were

most often found in my personal notes. These are representative of my approach, rather than method, as

it reflects how I was thinking about working with the software: knowing it was improvisatory, I would

perhaps consider using combinations of a sound or process with which I was not familiar. It is interesting

to relate this to the findings of Tracy (2002), who concluded that improvisation was an important part of

the use of software. Improvisation is not a term I have associated with NRT, so it is fair to conclude that

the software used in Tracy’s investigation was actually RT, although this was not accounted for given that

operational paradigms weren’t considered.

3.6.3 RT: On method

The influence that RT software had on my method was noticeably different than that of NRT. The im-

provisatory approach to interaction led to a somewhat improvisatory method. In le2 and its variants, the

output lasted as long as the input. This is not particularly common in RT programs, but was still enough

to identify, albeit to a lesser extent, a resultant working method with the output of the RT process. With

the utilisation of RT, parameters are under the sole control of the user, as and when the control is desired.

As a result, it is possible to make audible mistakes: moving a parameter too quickly or not smoothly

enough, or not moving a parameter at exactly the desired moment, to provide a few examples. This is

the only point at which RT processing can be audibly distinguishable from NRT. In the case of mouse

control for single parameters, I found that the inaccuracies in the control method would quite often result

in audible differences that could only be attributed to RT-C.

3.7. THE SOFTWARE DUALITY 47

le2 and le3 produced files of the length of the soundfile (or slightly longer as necessitated by the

processing tail). le3 is unusual in this regard, compared to other programs that offer RT-C. Quite often,

a RT program will loop the input. This puts le3 in a unique position, whereby objects have a more finite

state than they otherwise would. In programs that produced indefinite output durations, I found myself

rehearsing parameter changes, resetting controls to known-good states before proceeding to re-enact what

I had discovered to be interesting, and these would all be captured within a single soundfile. In the case

of le3, each attempt at parameter control was captured in a separate soundfile. The important point to

consider here is that from one iteration of the process to the next, parameters began from where they were

at the end of the previous iteration. In the case of continuous output, if a resetting was desired, it was

captured in the soundfile itself.

In terms of the soundfiles generated from RT, they tend to contain an amount of audio not necessarily

intended to be captured. As a result, the output of RT software tends to need editing to extract what I

am calling the golden moments—where all the parameters aligned and something of interest occurred. It

is perhaps more obvious with RT software utilising continuous output, but even with programs like le3

using finite output, there are many soundfiles that contain little usable material.

We can then determine RT software to utilise a subtractive method. The sounds that are created

are likely reduced to golden moments. Although, it is important to note that once these moments are

extracted, there can be little material in between them. Between one moment and the next, the parameters

may have moved so far apart, with the transition being technologically marred, that there is little relating

them. This is in direct contrast to NRT, where every iteration is conceivably a usable sound object with

a clear lineage; enabling what Wishart refers to as transformation throughout his texts.

3.7 The Software Duality

Whether by choice or not, previous investigations into software we have seen have ignored the software

itself, focusing on the composer and encoding their practice within the software. We must only ask the

question “How does the software work?” to expose this concern. This is not to say that nothing can be

learned about composition from software, but rather providing another approach to the investigations.

It is again important to note that this research is not concerned with identifying or creating the best

software, or even an all-encompassing program, but rather using software in general to answer questions

about composition. As seen with Clowes (2000), if we concern ourselves with specific pieces of software

our findings are most likely limited to the lifespan of that program. We must therefore be careful to deal

48 CHAPTER 3. SOFTWARE IN COMPOSITION

in more general terms, whilst additionally avoiding gross generalisations. So far, investigations have

taken the point-of-view of the User. This ultimately leads to software being regarded simply as a tool:

buttons are pressed and a result comes out. If, however, we were able to take the stance of a Power-User

or Super-User we realise that software itself has a way of working, into which our own activities while

using it must fit—which we might be able to modify.

Software is written, primarily, based on the way we want to interact with it; the difficult part being

the design of such interactions. If one were to survey the approaches to the design of audio software,

one would quickly see the two operational paradigms emerge: RT and NRT. This in itself is not a new

concept, but has been overlooked by existing research. Without taking into account how the software

operates, any conclusions are surely limited. These paradigms directly correlate to the development of

the computer.

Audio is stored as discrete values of amplitude at specific times, typically ±1. Initially, computers

simply were not fast enough to generate the numbers as they were needed to (re)create an analogue audio

signal. These numbers, the audio samples, were stored on tape that could then be played back. As such,

the generation and playback of the samples were by necessity separate activities. Such an approach is

NRT. The desire was then, as one might expect, to be able to generate the samples as quickly as they were

required, calculating at least 44100 samples per second. This may sound simple, but if these numbers are

not simply being read back (from a storage medium), they must be computed in full. To illustrate this,

take a sine-wave, the basic building block of audio:

n = sin

(
2πfn

N − 1

)
Here, n is the given sample, f is the frequency, and N is the number of samples (in this case, the

sample rate). Using the simplest of optimisations, if n is the only variable, the value of 2πf
N−1

can be stored

in advance, allowing the instructions to be reduced to a multiplication and a sine of the result. Even

though sin is likely a single instruction, unless it uses a lookup table it might take multiple CPU cycles

to calculate the result.

Computers were not fast enough to perform the calculation of the next sample(s) in addition to the

outputting them to a digital-to-analogue converter. As such, they wrote their output to a tape (Mathews,

1963) and played it back later. This feedback system is noted by Joel Chadabe (Chadabe, 1977).

In NRT software, such specific concerns over the number of CPU cycles a process will take are not

really necessary; the program will just take slightly longer to run and the delay between requesting and

3.7. THE SOFTWARE DUALITY 49

auditioning the sound is protracted. However, when it comes to RT, these concerns cannot be ignored.

If the RT process has not completed within the necessary time limit, the audio will glitch, disrupting the

immediate feedback loop that RT software creates.

RT software has long been seen as a target. This is discussed in the work of Wishart (Wishart, 1994,

pp. 7–8). Although, importantly, Wishart is also cautious about RT at the expense of NRT. He points

out the benefits of both, and the results of this research agree with that assessment. This research relates

strongly to the ideas ofWishart with respect to explicit and intuitive knowledge (Wishart, 1994, pp. 5–7),

providing corroborating evidence to support them, and identifying potential causes and additional impacts

not previously discussed.

We have seen that the utilisation of NRT software produces data for every stage: input, process, pa-

rameter changes, and output. Taking into account the output data, we can see that these can be considered

discrete, concrete sound objects. As a result, an additive method is adopted. In contrast, when using RT

software, the data for parameter changes are not necessarily stored or recallable. In addition, the RT

output data can either contain errors inherent to the use of control input devices or, in the case of soft-

ware that can create continuous output, multiple sound objects that may or may not be desired later on.

The importance of the output data here is that it will often result in the need to edit or remove content:

resulting in a subtractive method.

This presents software paradigms as diametrically opposed: polar opposites in both approach and

method. As we have seen from other research, this does not necessarily present a concern: alternating

between different software was highlighted as a benefit (Eaglestone et al., 2007), and the operational

paradigm could be considered to have the same effect. It could be argued from the evidence provided in

this chapter that RT encourages divergent thinking, whereas NRT favours convergent thinking.

We are not concerned with determining the best paradigm to use, but rather understanding how each

paradigm impacts composition. For example, generating a soundfile of an hour’s duration with slowly

changing parameters would be terribly difficult and time consuming in RT, whereas it may be consider-

ably easier and faster to do so in NRT. However, NRTdoes not necessarily provide an immediate response

to parameter changes, so perhaps requires a greater degree of advance understanding. Neither one is bet-

ter than the other, but their operational differences are important to take into account in any investigation

of composition. It would appear that software dictates my method and informs my approach. As has

been discussed before, utilising different software is more of a positive than a negative, but our question

becomes one of necessity. Is it possible for software to present itself in such a way that it does not require

the user to consider the operational paradigm?

50 CHAPTER 3. SOFTWARE IN COMPOSITION

3.8 Data

When it comes to software and composition, it is important to consider what is being produced from each

paradigm. This has been mentioned repeatedly in previous sections. In NRT software, all the informa-

tion that is needed for the execution of the synthesis is given in advance: the control, or ‘performance’

parameters are specified. From these, it produces the new generated sound. In the case of acousmatic

music, there will also be the use of an input soundfile. If we were to run the process again, it would take

the input file and apply the control parameters again, producing the same output file.

In the case of RT software, there is a marked difference. The program is started. What can be loaded

at this point depends on the program, but typically it starts in an initial blank state. The performance

parameters are not specified in advance. The input file is not specified in advance, but rather dynamically

loaded into memory after the program starts. In terms of what is generated, only the output file is created.

If one were to run the process again, the parameters would be where they last were, and it would be

impossible to recreate exactly the previous interactions—RT is essentially stateless and where controls

are changed interactively it cannot in practice be recreated later on.

Wishart mentions the creation of data. The use of the CDP is particularly evident in the following:

As a record of this process (as well as a safeguard against losing my hard-won final product)

I would keep copious notes and copies of many of the intermediate sounds, to make recon-

struction (for variation) of the final sound possible. Today, I store only the source and a brief

so-called “batch file” …[that can] create the goal sound. (Wishart, 1994, p. 4)

Wishart goes on to suggest the creation of software that, ‘…also recorded my hand movements [that

would]…store these intuitively chosen values and these could be reapplied systematically in new sit-

uations, or analysed to determine their mathematical properties so I could consciously generalise my

intuitive knowledge to different situations’ (Wishart, 1994, p. 9).

The conclusion we can draw from these discussions is one of reproducibility. NRT is inherently

reproducible. RT is more likely than not, irreproducible. How this difference then manifests itself in

compositional practice is therefore one of the key questions in this research.

RT–NRT modification

It might be possible in some cases, depending on the software, to have RT behave like NRT. In the case of

software in dataflow languages like Pd, it is possible to modify the program to use predefined parameter

changes (most often by specifying lines). In something like SuperCollider, it is possible to do something

similar, using envelopes and/or sequencing through a Routine.

3.9. INVESTIGATING NO-TIME 51

Paradigm Input Data Parameter Data Output Data Data loss

Real-time Partial No* Yes Yes

Non-real-time Yes Yes Yes No

Table 3.1: Software data by paradigm

*see RT–NRT modification

NRT–RT modification

It is impossible for a user to run NRT software as RT. Not only does RT have specific constraints, but it

must also connect to audio hardware to function correctly, requiring significantly more code. However,

an example of the NRT–RT modification can be seen in Csound. It is possible to run Csound in RT, as

the code connecting to audio hardware is already in place, but the way it handles RT-C is not particularly

graceful and often leads to glitches.

Conclusion

In accounting for the data for the operational paradigms, we can identify the differences in method. In

accounting for the interactions, we can identify the differences in approach. These relationships are key to

understanding the influence of software at a more fundamental level. It is only by taking into account the

data from software that we can understand the difference between RT and NRT. In general, RT software

is not reproducible, in contrast to NRT. The difference is not just about speed, nor is it entirely about

interaction. The final aspect to consider in determining the operational paradigms are the data produced

along the way. For a program to be NRT, it must be supplied with information and produce the same

output each time. A RT program must provide RT-G and RT-C, but does not necessarily provide enough

data to allow the output to be recreated. The differences in data between the paradigms are summarised

in Table 3.1. As a composer, I have come to understand these implicitly, but it is important that these be

actively considered in research into composition, as well as the design of software.

3.9 Investigating No-Time

As a result of the NRT and RT investigations, I wondered if it was possible to create software that operated

outside of the two paradigms. We have previously mentioned software that can switch, or be manipulated

into working in either way. For example, Csound can run in RT, but control becomes very difficult and in

many cases is unstable. This may be a result of the CsoundQt program’s own instability, but regardless

52 CHAPTER 3. SOFTWARE IN COMPOSITION

of this the RT aspect is very much an afterthought. We are required to learn an entirely new language

(FLTK), or attach long-winded commands to our scores, making them unreadable as their original states

would be. SuperCollider can be run in NRTmode, but wemust codify our activities into a rather awkward

score syntax that is almost too complicated to be useful3. I would like to borrow a term from the study of

English literature in order to demonstrate my concerns here. The work of Joanna Gavins on Text World

Theory poses two main concepts: world-repair and world-replacement. To summarise all too briefly,

world-repair is the idea that at some point in the narrative of a story, information is revealed that causes

the reader to re-evaluate certain aspects of the world within which the story is set. World-replacement

is when this information so drastically reshapes the reader’s view on the world that they must entirely

reconstruct the world they created in their minds, based on this new information. For a moment, let us

apply the same concept to interaction with software. We develop ways of working with software, be it

NRT or RT. This would be the world that we construct. Thinking of how both Csound and SuperCollider

switch paradigms, it may be understood as a form of world-replacement: we must entirely reconstruct

our approach and interactions based on this context switch. As these examples show, it is often a difficult

change to make. The question then becomes whether or not it is possible to design software that does not

force this re-evaluation.

This, then, is where the No-Time Ideal emerges. Here, I define No-Time (NT) as software designed

to operate in either paradigm, RT or NRT, without forcing a contextual shift. If the paradigm is not

something I am actively considering as a composer it would be ideal if it was not a factor in the software

itself. The investigations that follow present a first attempt at discovering and outlining the requirements

of NT, as well as potential approaches to software implementation.

3.9.1 SOClib

SOClib, the Sound Object Composition Library, was a first attempt at No-Time software. It is a Quark for

SuperCollider that provides an object-oriented approach to creating and processing sound objects. The

design was to allow interaction at a sound object level, with parameters and their values being abstracted

behind the programming interface. Once values have been set, the object can simply be told to play,

recalling all of its processing and parameter settings. The creation of sound objects is simply:

1 ~mySoundObject = SOC_SoundObject("path/to/soundfile");

3There are additions to the language that can make this process easier, but we are discussing the native NRT/RT behaviour

of the software.

3.9. INVESTIGATING NO-TIME 53

From there, it was a matter of adding processes to the sound object. Most processes do not generate their

own audio, so the first process to add is usually soundfile playback:

1 ~mySoundObject.add(SOC_Player());

The SOC_Player gives access to simple playback parameters, such as speed and amplitude. The most

important thing about SOClib is that it employs the idea of No-Time. If you want to use it in RT, you

can. If you want to use it in NRT, you can. To use it in RT, you can ask for the GUI window:

1 ~mySoundObject.gui;

At which point, a graphical interface will appear, representing the sound object and its processing. It

contains a waveform view of the entire soundfile it relates to, but a selection can be made to reduce the

SoundObject to a specific section of a given soundfile. This makes it possible to have several SoundOb-

jects referring to different points within the same soundfile. As a result, it is not entirely necessary to

extract clips from the sounds in advance of using SOClib, although it would still be a useful stage, as the

selection is not necessarily saved.

For use in NRT, the inbuilt scheduling of SuperCollider can be used. I primarily opt for Routines

given my experience with them. An example of a Routine as used with SOClib is given in Listing 3.1.

The development of SOClib was driven by the piece alongside which it was written. It was designed

to be completely modular, providing a framework within which to quickly add new processes as they

were needed. As a result, it is not particularly well written, but as evidenced by the music created with

it, it is very much a useful collection of processes. Its design is influenced by that of le2/3, consisting of

controllable parameters within a process, the difference here being that instead of an audio graph SOClib

uses a SOC_SoundObject. It is perhaps of greater use to explain SOClib in situ, and interesting to

note that its development exemplifies that of situated action.

3.9.2 Under the Spreading Chestnut Tree

Asmentioned, SOClibwas created alongside a piece, which would eventually be titledUnder the Spread-

ing Chestnut Tree (UTSCT). I had just read Orwell’s Nineteen Eighty-Four. It had a profound effect on

the way I viewed the world around me, and came at a time when his words rang perhaps truer than ever. I

felt compelled to write a piece. Not with the goal of retelling the story, which would ultimately be futile,

54 CHAPTER 3. SOFTWARE IN COMPOSITION

1 (

2 var soundObject, gainProcess, routine;

3

4 soundObject = SOC_SoundObject("/path/to/soundfile.wav");

5

6 gainProcess = SOC_Gain();

7

8 soundObject.add(gainProcess);

9

10 routine = Routine({

11 var gainParam;

12

13 // get the gain parameter of SOC_Gain

14 gainParam = gainProcess.getParam("gain");

15

16 // set the value

17 gainParam.value = 1;

18

19 // wait 1 second

20 1.wait;

21

22 // change the value

23 gainParam.value = 0.5;

24 });

25

26 routine.play;

27)

Listing 3.1: Simple SOClib Routine example

but rather a sonic environment inspired by its setting. UTSCT, therefore, fits firmly within the Personal

motivation.

It was around October 2017 when I finished the book and decided to write the piece. Luckily, as a

result of the time of year, by the time I got to making source recordings in early November, Sheffield

was experiencing the remnants of a large storm. At the time, I lived in an area that contained a small

wild area with trees. As I was walking home I was taken by the sound of the storm through the trees and

borrowed portable recording equipment the next day, hoping that the weather would return. Luckily it

did, and I braved the weather that evening in the hopes of reducing the surrounding traffic. I recorded

roughly 30 minutes of a soundwalk through the trees and surrounding area as the weather kept up. Rather

fortunately, it was not raining.

After returning to my apartment, I was keen to listen back to the sounds, so set about offloading them

from the recording equipment. The cheap hi-fi speakers attached to my computer at the time revealed

some promising materials, but on listening back in the studio the following day, it was clear that what had

3.9. INVESTIGATING NO-TIME 55

been recorded was not what I, as a listener in the environment, had experienced. I was primarily left with

fluctuating noise that barely portrayed what I had heard. I’m sure that the experience of the environment

whilst making the recording was only really something I could connect with upon subsequent listening,

having been the one who was actually there; the connection being made by my own memory. As this

piece was aimed at presenting my experience of the book, this would be something I’d have to address

in the composition of the piece.

There were four main elements of the book that I wished to encapsulate in the piece: the environment

of the world, the Department of Truth, Room 101, and the ending. As the goal was not to retell the

story, adherence to the overall theme for the piece was not limiting in any real sense, mostly providing

a frame within which to work. Having these four elements, it seemed quite obvious to me that the piece

ought to be in sonata form—not for any classical reason, but rather a way of exploring two smaller ideas

(environment and DoT) that merge into a more complex environment (Room 101) to produce a larger

piece.

Once in the studio, having listened back and made a series of clips from the source recordings, I

thought about what I might do with the sounds. I set about trying to create the environment section,

which would be the first subject of the sonata form. The source sounds did not have the sense of space

and motion that I had experienced, and so I set about trying to artificially create this sense of dynamism.

I wanted to retain some naturalism in the sound, so it was important that any processing did not introduce

too many digital artefacts.

First subject: The environment

I decided that granular synthesis would allow me to control the parameters I required and having large,

overlapping grains would retain enough of the original sound to remain convincing. As such, I added

the SOC_Granular process to SOClib. This posed a particular problem with the library, given that

SOClib relies on the sound finishing at some point; granular synthesis in this case being a continuous

generation process. However, the need to continue composing superseded the need to find a solution

to that particular issue and so it remains unresolved. I proceeded to create an SOC_SoundObject

with the opening soundwalk material, adding the new SOC_Granular process. Being unsure about the

resultant sound, I instinctively opted for RT operation. After modifying some parameters, it was clear

that the process was appropriate, however, the aspect of spatial movement was still rather constrained.

At this point, I added the SOC_Balance and SOC_Pan processes to SOClib. These allowed me to

pan the sound between two speakers with a random element. Given the dramatic nature of the desired

56 CHAPTER 3. SOFTWARE IN COMPOSITION

sound, the randomisation was created with stepped randomness, making the sound jump from point to

point, as opposed to smoothly transitioning. As the output from the granular process was stereo, I used

SOC_Balance to control the panning. Once I had set the amount of randomisation to an appropriate

value, I began working in RT to see what controls would produce interesting effects. As the pan controls

had been set, I was utilising the controls of the granular process. In order not to lose anything while

changing parameters in RT, it was important to record the audio output of the system. As a result, I ended

up with long recordings of granular material panning randomly. Through the process, I learned how the

sound was reacting to the parameter changes, and discovered some interesting parameter movements.

Unfortunately these changes were too quick and frequent to be sensibly encoded using the Routine

scheduling, but had there been a way to easily do so, I would have. This is not a limitation of the

NT concept, but rather the SOClib’s control implementation; had SOClib used a more dynamic control

system utilising control buses it would have been much easier to codify the changes in parameters I was

performing in RT. Regardless, I ended up with some very dynamic environmental material, and taking

this back into the DAW session I was able to combine it with the original source recordings to create the

opening of the piece, starting with the source and gradually introducing the granular material created an

environment that represented what I had experienced, but also adding a sense of the unreal that helped

to create a sense of unease.

Second subject: The Department of Truth

The second subject, based around theDepartment of Truth, explores the idea of information being created,

edited and discarded. This section relies almost entirely on source-bonded material, utilising largely raw

recordings. Throughout this section, silence is used as a compositional element to emphasise the void

left when something is removed. The section used little processing, rather using sequencing in the DAW

and simple delay-based and filtering processes with DAW plugins.

The use of theDAWfor this processingwas one of structural necessity. The filter sweeps, for example,

needed to happen at a more macro level and needed to be adjustable at a structural level for the piece,

rather than at an individual sound object level. The timing for the parameter changes were not in relation

to the sound object itself but rather the other sound objects that comprised the phrase or section, the

reason being that if those sound objects moved in relation to each other, it may be necessary to adjust

the durations of certain parameters to account for these changes so having them encoded in the object

would require the generation of a new sound, which may prove very difficult, particularly with respect to

RT. These should be thought of as trans-object changes, related to the objects around it within a phrase.

3.9. INVESTIGATING NO-TIME 57

As the DAW is responsible for sequencing sounds in time, so too is it responsible for these structural

level, trans-object, parameter changes that are not necessarily part of the sound object themselves, but

rather part of how they relate to other objects in the phrase. Since the composition of UTSCT, this idea

has been incorporated into SOClib with the addition of composite sound objects: a sound object made

up from other sound objects, with a time offset in between. If this was used to create an entire phrase,

and the parameter system updated to be better scriptable in the SuperCollider language, the need for the

DAW-based processing might somewhat diminish.

Development: Room 101

Starting at around 04:11, the piece slowly intensifies, culminating in the sonic representation of Room

101. It was during this section that the NT system came more greatly into play. This section makes

heavy use of the SOC_Playback process, with combinations of fixed, scheduled and RT playback-rate

changes. There are also a great number of RT granular explorations. Importantly, whether RT or NRT, I

would begin with RT and move towards either NRT, or if the movement was too active, have a specific

trajectory in mind to perform during the RT recording. Previous sections of the piece were exported as

their own sound files, and processed using the granular processing, including similar parameter changes

to the initial material. One thing I noted during the process was, again, that had I been able to script these

dynamic changes to precise values, it would have been a preferred way of working.

The culmination in Room 101 is a 10kHz sine wave punctuated by a rather large, compressed attack

gesture. Both of these were entirely synthesised using SuperCollider specifically for the section. The

duration of this particular section was timed to coincide with my own limit for tolerance of the sine

wave at a given level. The processed environmental recordings return here to give relief, and the section

fades away to the original source recordings that begin the closing section, this transition forming the

recapitulation of the sonata form.

Coda

A coda was added to UTSCT. In part due to a frustration with the ending of the book, this section served

thematically to present the idea of hope. The material here is entirely synthesised using the Karplus-

Strong algorithm (Karlplus & Strong, 1983), controlled by random algorithm, all within SuperCollider.

The tonalities and timbre are suggested throughout the piece, being the source of many of the pitched

elements.

58 CHAPTER 3. SOFTWARE IN COMPOSITION

The ending has proved somewhat divisive, with several listeners questioning its necessity. It is in-

teresting to note that this is really the only compositional decision directly related to the theme of the

piece. I believe that a piece should stand on its own without the use of programme notes, as anything

to be communicated should be done in the music itself, if that is even the goal of the piece. For me, the

ending is required, but it raises the question of whether or not there should be alternative versions of this

piece, both with and without the coda.

Initial Conclusion

In cases of NT, when I am unsure of how a sound will behave, there is a clear trend towards first utilising

the RT aspects. Alternatively, where there is a greater certainty of output, I have a tendency to begin

with NRT. As the idea of what processing a sound requires becomes more concrete, my desire to utilise

NRT processing becomes greater. In the case of SOClib, due to the limitations of the control system, the

creation of complex parameter changes became very difficult. As a result of writing UTSCT, it became

clear that the idea of a composite sound object was needed, as well as the addition of breakpoint controls

that allowed NRT control to be specified more usefully. Although the breakpoint system is yet to be

written, the SOC_CompositeSoundObject was later added, and it allowed a single sound object to

be made up of several others with individual time offsets. In theory, an entire piece could be made this

way. However, the likes of SOC_Granular that have no fixed duration proved problematic and so this

has yet to be finalised. Since work on SOClib gave way to other investigations, it has become evident

that a SOC_Envelope process that can terminate objects gracefully would likely solve this.

To conclude this initial investigation, it has become clear that there is a tendency to work from RT to

NRT, or use NRT throughout, provided that NRT provides a way to adequately specify dynamic changes

in parameter values. In the absence of adequate parameter control, RT will be utilised and an approach of

good-enough will prevail. Additionally, whilst not full world-replacement, SOClib provides an example

of world-repair—switching from the graphical RT-C to the text-based scheduling for NRT was a change,

but because the use of Routines are natural SuperCollider, it did not present as great a challenge. It may

be the case that if everything was graphical, or indeed text-based, this may remove even the world-repair

aspect of switching operational paradigms.

3.9. INVESTIGATING NO-TIME 59

3.9.3 Under the Spreading Chestnut Tree: Reflection

As mentioned, the motivation for this piece was personal. The main intention was to create a piece

inspired by Orwell’s Nineteen Eighty-Four but intentions also included the use of field recordings and

the use of sonata form as an overall structuring device. In terms of more broad activities, my approach

was primarily to improvise with the field recordings and discover interesting relationships to develop

further. The approach resulted in the generation of materials, through the methods (discussed below) that

were suggested by the materials themselves. This led to more approaches for working with these new

materials and the piece developed from there. Among my methods were the use of SOClib to granulate

and randomly pan materials, and the positioning of materials in time with the DAW to create phrases

from those materials. Additionally, the DAW provided reverb and filter-sweeps, much in the same way

as the previous piece.

In terms of influences from the previous composition, I did not want to use the same structure, or

to use pitch in exactly the same way. I did, however, use similar attack and drone gestures to facilitate

transitions and prepare sounds for later use—primarily the coda—as well as granulation of the previous

sections to generate an additional section (constituting approach, using the method of SOClib granulation

and panning in RT), and the use of filter-sweeps between materials. In addition, I was keen to have

this piece be very performative and as with Twist and Turn it contains several sections that may appear

slightly long in a stereo listening environment, the goal being that the use of diffusion would be the

focus of the work for that time; for example, the development and recapitulation sections, where their

dynamic materials are composed to suggest large spatial movements that can be explored in performance.

Another key influence from the previous piece was ensuring that each section was as long as it needed

to be. In previous pieces I have moved on too quickly to another section or introduced new material—

this is mostly driven by a sense that something always needs to be happening, but I learned a lot about

allowing materials to gestate from composing, in particular, shift4 and Twist and Turn; although it is still

very difficult to overcome this need for constant activity.

Positioning the piece on Emmerson’s language grid, I consider UTSCT to have a combination of

abstract and abstracted syntax, with primarily mimetic discourse. Although the overall structure is im-

posed by sonata form the sections were not rigidly constrained by it—the phrases within the sections are

still very much governed by aural relationships between materials and not that of conventional pitch or

rhythm, with the exception of the coda.

4shift is a composition from my MA portfolio, composed in 2014

60 CHAPTER 3. SOFTWARE IN COMPOSITION

Figure 3.1: UTSCT - Waveform

3.9. INVESTIGATING NO-TIME 61

This first subject of the sonata form serves to present the real-world and somewhat harsh environment—

this being the intention for the subject, realised by the use of field recordings. The reality of this envi-

ronment is then challenged by the introduction of the granular materials, and this real/unreal transition is

mirrored at the end of the piece—see markers 1 and 13 of Figure 3.1 respectively. As with the previous

piece, I used patterns of three to set up and subvert expectations; an example of this can be heard in the

first subject which swells three times, each time introducing new materials.

The bridge between the two subjects serves, rather literally, to move the piece from outside to inside,

using the sounds of footsteps and doors to facilitate the transition. I used this to my advantage during

performance, mimicking the transition in physical space by reducing the spatialisation down to a pair

of distant loudspeakers—in the case of Sheffield this happened to be on the stage of the auditorium and

resulted in the effect of a performer physically walking across the stage. It proved very effective, with

several listeners commenting afterwards and provides an example of using the specific traits of a given

venue to highlight certain compositional aspects during performance, and as I knew the piece would be

performed in Sheffield I was conscious of this during composition.

The second subject represents the day-to-day job of Winston Smith at the Ministry of Truth—the

sound of written words being crossed out, with the silence that follows; the transition to the modern

equivalent, using computers as the method of deletion; the constant, mindless, unquestioning repetition

of these tasks being highlighted with the use of delays and echoes–using of technology for its own effect,

rather than for any particular musical/functional purpose—the effect of the technology being the purpose,

mirroring the intention to replicate repetition. Whilst this section contains a number of references to

the intention for the piece, this only represents an influence on my approach—the exact method(s) of

processing, positioning and phrasing were still devised through listening and reacting, primarily through

the use of RT aspects of the SOClib and NRT aspects of the DAW.

The development section explores the first and second subjects, notably using tape-based manipula-

tions to create vibrato and pitch variations. I used contrary motion in pitch between several sources to

create tension and build momentum in the section. This is swept away by the first of three attack gestures

at marker 8, revealing pitched materials (derived from reversed excerpts of the theme from the coda,

heard between 05:17-05:24). A deceleration gesture leads into a slow accumulation of granular mate-

rials, providing a build into an attack gesture at marker 9 of Figure 3.1 which ushers in more dynamic

materials. This then culminates in Room 101, starting at marker 11. The third attack gesture is used at

the introduction of the 10kHz sine wave, seen at marker 12.

The pitched material used in the coda is prepared throughout the piece, although in the form of drones

62 CHAPTER 3. SOFTWARE IN COMPOSITION

and short excerpts, as seen at markers 2, 5, 7 and 9 of Figure 3.1. As mentioned, the coda was created

as a reference to hope and I often regarded it, at least in my own mind, as Julia’s theme. The use of a

randomised algorithm serves to represent the idea of beauty from chaos, or perhaps more appropriately a

sense of hope from disorder/despair. It isn’t important that a listener identifies any of the representations

in the piece, as mentioned it should be able to stand on its own.

UTSCT is the first piece I have written with such a strong sense of symbolism, even if I was conscious

to keep it constrained and rather abstract. As such, being in new territory, I am not sure how successful

certain aspects were. I am convinced that the coda was required by the piece, but as others have com-

mented it could perhaps have been more successfully prepared. On reflection, I am conscious that certain

aspects were chosen for extra-musical reasons and it may be the case that these are the least successful

moments. However, I remain pleased with the resulting piece and its performance.

3.9.4 Something from Nothing

Something from Nothing (SFN) was another piece created using SOClib. It focused on utilising the pro-

cesses that did not have a fixed duration: SOC_Granular and SOC_Stack5 in an attempt to confirm

previous findings with RT software.

SFN was primarily created for the Sound Junction concert series. This would be my last opportunity

to perform at Sheffield before the end of my studies and as such I required a new piece to perform.

SFN therefore exemplifies the Exhibition motivation. At the time, I was conscious of my long-forgotten

instrument, a clarinet, that was sitting in the corner of my flat. I had always loved the way that it gave

me the ability to create sound from silence, through breath to pitch. As with UTSCT, this theme served

as a structural element within which to work.

Work on the piece began with the recording of clarinet material. In a moment of uncharacteristic cer-

tainty, I knew how I wished to set up the microphones. I used two microphones, traditionally positioned

to record clarinet: at the bell and the upper joint. However, in the studio I treated these as a stereo pair,

panning hard-left and hard-right. This was done to make use of the stereo image as I played, without

the need for physical movements that would create extra unwanted noise. I recorded a variety of breath

sounds, and as I moved around the instrument, various panning was encoded in the source recording.

This created some rather dynamic material to work with, not only having timbral variation but with the

addition of spatial motion. I recorded categories of sound, corresponding to the three sections: breath,

breath-to-pitch, pitch. Naturally, silence would be handled by the lack of sound itself. Having made

5The Stack process is based on CDP’s stack.

3.9. INVESTIGATING NO-TIME 63

recordings, as has evidently become custom, I proceeded to extract the material that I thought would be

useful—as before, mostly removing what had been marred by technical errors.

At this stage, it is important to highlight the DAW I was using: Cubase 10. This particular ver-

sion contains a host of new features that make the composition of acousmatic music much easier than

other DAWs. For example, the opening material was not only created using the new Sampler Track6,

but utilised Cubase’s Restrospective MIDI Recording7. Additionally, while writing various phrases and

sections of the piece, I heavily utilised the new improvements to Direct Offline Processing (DOP) as

introduced in Cubase 10. This was particularly important, given that DOP provided semi-concrete sound

objects—the data from all processing were stored alongside the input files. With regards to the investiga-

tion, this addresses the challenge from SOClib and relative trans-object changes (parameters that might

require adjustment if objects move within relation to each other), as even the destructive processing is

non-destructive; at least until “make offline processing permanent” is activated.

There were, of course, some processes that were not possible in Cubase. For example, granular

processing is not available, so it was all achieved with SOClib. The final materials were also created

using SuperCollider—with the chordal material, similar to Twist and Turn, being created by filtering the

original material with band-pass filters to form chords, articulated by the underlying material, using a

randomised chord generation algorithm.

The granular processing created soundfiles of long duration, each containing a number of sound

objects that may or may not be related aurally. Additionally, most of them contained materials that would

not be used in the piece. This confirms that software operating in RT, as is essentially the case here with

SOClib, utilises improvisation with subtraction. Interestingly, as with Twist and Turn, I struggled with

the ending of the piece. I exported the entire piece as it was at that point and used it as the input to the

granular processing. The resultant material was used almost verbatim as the ending of the piece. As the

position in the input soundfile was manipulated in RT, different sections of the piece came to the fore,

and sections began to combine in interesting variations.

3.9.5 Something From Nothing: Reflection

Representing an exhibition motivation, several intentions for the piece were guided by knowledge of

the concert format and venue. As a result, the duration of the piece is around 10 minutes and contains

dynamic gestural materials particularly suited to diffusion. It is perhaps important to note that the du-

6The Sampler Track, since Cubase 9.0, allows the creation of a single-sample sampler instrument.
7Retrospective MIDI Recording allows the user to recall the most recently played MIDI, even if recording was not active.

The earliest references I could find to this feature are from Cubase 4.

64 CHAPTER 3. SOFTWARE IN COMPOSITION

rations for each of the pieces composed as part of this research are similar in duration. This is likely

a subconscious acknowledgement of the requirements for performances—writing a piece of long dura-

tion severely limits performance opportunities as concerts tend to include a number of shorter pieces,

commonly 10–15 minutes, to allow a greater number of composers to perform.

The main intention for the piece was the use of clarinet materials, exploring noise to pitch. The

previous pieces used object-based, mimetic sounds and field recordings, so the choice of instrumental

sources was driven by that influence as an alternative. As a result of using a pitched instrumental source,

I decided to approach the use of pitch in a similar way to that of Twist and Turn—the harmonic material

of SFN being derived from filtered noise material, taken from the instrument, in the same way.

The overall structure of SFN was again derived from the intention of the piece—exploring the pitch-

noise continuum. As a result, the piece naturally became ternary form, similar to Twist and Turn. Posi-

tioning it on Emmerson’s language grid, I consider it to have abstracted syntax andmimetic discourse: the

materials were chosen, developed and structured based on their aural relationships; and they are mostly

source-bonded, with sections relying on harmonic relationships.

It begins with a set of three phrases, getting progressively longer and more developed until the third

which expands into the rest of the section: see Figure 3.2, markers 1–3. Similar to Twist and Turn

SFN uses iterative granular materials to provide ornamentation and variation. Instead of a violent attack

gesture, however, SFN makes use of a more subtle stacking gesture (both ascending and descending)

throughout, serving as a recurring motif with differences in stack offsets providing sources of variation:

see markers 4, 5, 8–12, 14, 17 and 19 for the most notable examples.

The second section begins with a transition from noise to pitch—a raw source recording of a perfor-

mance, at markers 6 and 7. It perhaps wasn’t the best instrumental performance but it was the only one

that didn’t have technical issues; the earlier recordings had better performances but the preamps weren’t

calibrated correctly and the later performances were marred by my own fatigue—as such the choice was

quite limited. This is punctuated by descending gestures, which introduces the underlying drone ma-

terial. As these gestures lose energy they are replaced by breath and key-noise gestures, and these are

then slowly filtered to produce pitches from the breath materials—in the same way as Twist and Turn

filters are always present in this material but they slowly become more focused to reveal their centre

frequencies, producing pitches and harmonies, see markers 13 and 14 for filtered breath materials. This

then gestates for a time. As with the previous pieces this was to allow material to develop and facilitate

performance opportunities—in this case, rather than having dynamic materials as the focus, SFN uses

the separation between the gentle drone materials and the articulations to allow for spatial exploration—

3.9. INVESTIGATING NO-TIME 65

Figure 3.2: SFN: Waveform

66 CHAPTER 3. SOFTWARE IN COMPOSITION

the more pitched materials can be positioned around the audience to create an envelopment, with gentle

movements between speakers (reflective of the ebb and flow of the materials) being highlighted by the

ornamentation and other materials.

The second section then fades out, followed by a distant drone (applying additional reverb) refer-

encing the opening section (see marker 15). The silence between the fade out and the drone entering

is deliberately timed to allow a movement in performance: sending the sound to more distant speakers,

mimicking the distance in the material. Again, the drone crossfades into the final section in such a way

that allows the piece to be effectively moved back into a closer speaker position in performance. The

final section begins with a return of the opening materials from the first section quickly followed by

the filtered breath material from the second section. The filters tighten more than before leaving almost

pure sine waves articulated by the underlying breath material. A descending stack gesture then ushers

in a granulation of the previous sections at marker 18, similar to both Twist and Turn and UTSCT. By

exporting and using the other two sections, scrubbing backwards and forwards in time with large grain

durations, it becomes possible to combine elements from all the previous sections into an interesting

blurred collage that ebbs and flows between snippets of known material in new ways. These dynamic

morphs allow for dramatic spatialisation in performance.

The pacing of this piece is quite different to the others in this research. It is much slower and fairly

consistent, ebbing and flowing in line with the materials. I was conscious, as with previous pieces, to

allow the materials to gestate and given their sources the materials have plenty of variation over time.

This is particularly useful in performance given that there are moments of subtle movement but also

moments of significantly greater activity which can be accentuated by spatialisation.

SFN is a tribute to my past and present, and somewhat representative of my hope for the future. While

composing I was conscious that it would be the last piece of this research and that it was quite possibly

the final piece I would perform in Sheffield. I have not previously had much emotional investment in

the materials I use in my music, and I have no doubt that this changed the way I approached working on

the piece. In fact, Adam Stanović commented after the first performance that an emotional attachment

to the materials was audible, in a way that hasn’t been manifest in my other works. I feel that this piece

is successful in much the same way as Twist and Turn: there is something in its simplicity that is both

comforting and interesting. I am pleased with this piece and as with the others I will continue to learn

from it and its performances.

3.9. INVESTIGATING NO-TIME 67

3.9.6 lwae

lwae (lightweight audio engine) is a C++ audio library aimed at creating NT systems. It combines the

linkEngine breakpoint system with the le2 RT engine, adding a switchable value for each parameter. In

lwae, everything is calculated at audio rate8, however, to avoid zipper-noise all RT parameter changes

are linearly interpolated over 2ms.

The core of the library is the AudioGraphNode class. As before, these nodes can be connected

together in any combination, provided the nodes can be connected. One of the key differences is the

inclusion of a switching mechanism for all parameters—allowing them to hold both a RT and NRT value,

and dynamically switch between the two. To switch, a call to the Parameter::setStatemethod is

made, passing an argument of either State::DYNAMIC or State::AUTOMATED. The dynamic state

corresponds to RT control, and the automated state corresponds to NRT breakpoint control.

The parameters themselves provide a value method, which will return the value of the currently

active state. This is implemented rather simply by the use of a pointer. Changing the state alters what

the pointer refers to, and a pointer swap is a guaranteed atomic operation so should not result in any data

tearing. Each parameter is ticked per sample, which is used to advance both the interpolation of the RT

value and the position within the breakpoint.

Nodes can be connected together as before, but to ensure that they are processed in the correct order,

rather than relying on manual ordering, it was necessary to re-write the audio graph. The AudioGraph

class in lwae is a container forAudioGraphNodes, as with le2/3. In contrast to le2/3 nodes are automat-

ically sorted as their connections aremade to ensure dependencies are accounted for. The topological sort-

ing algorithm used here is an implementation of what is known as Kahn’s algorithm for topological sort-

ing, which can sort directed acyclic graphs, such as those in audio processing. This was important, as it

allowed the creation of graphs in an ad-hoc fashion, which is most likely the way a GUI application would

be used. As nodes are added to the graph, the ownership of the node is transferred. If the graph is asked

to connect nodes it does not own, it will take ownership. This means that the use of the AudioGraph

will ensure not only the correct node order, but also that all allocated AudioGraphNodes are deleted

alongside the graph. There may be an occasion when a node is added to the graph that doesn’t have any

connections, an orphaned node. In order to reduce CPU load, particularly in RT, these nodes shouldn’t

be processed. Due to the topological sorting, the AudioGraph can identify such nodes, and remove

them from the active processing graph. The idea of an active graph for processing, in addition to the list

8It must be noted that at higher sample rates, this may prove problematic.

68 CHAPTER 3. SOFTWARE IN COMPOSITION

of all nodes, is a key difference from other software in this research, that was made possible by the use

of the topological sorting.

In order to facilitate as much flexibility as possible, it was necessary to redesign how audio files were

handled by the system. In lwae, disk input and output are themselves implemented asAudioGraphNodes.

This means that they can be placed at any point in the graph, and even allow graphs to input and output

multiple files, potentially with completely independent processing. In order for this to be possible, it

was necessary to make the file accessing RT-safe. As such, both DiskIn and DiskOut utilise separate

threads that read/write buffered audio to disk, preventing the audio thread from blocking and glitching

the RT-G.

Initially, lwae used the XML specification of the linkEngine variants. However, as will be discussed

in the next section it became necessary to utilise a simpler system of communication that allowed graphs

to be created from graphical programs.

3.9.7 Chronon

The chronon was a theoretical particle of time, proposed as a way of understanding some of Einstein’s

theories. Later, other theories removed the need for the idea of time being a particle, but it was based on

the idea of wave-particle duality. In much the same way, the software presented here, Chronon, provides

an insight into the software duality of NRT and RT.

It was developed alongside, and utilises, lwae. It provides a graphical front-end for lwae, allowing

the creation of audio processing graphs. Crucially, learning from SOClib, it does require an operational

domain shift on the part of the user. Additionally, it allows the user to select which of the parameters

from whichever of the processes in the graph they wish to work with. Upon running, the user can listen

to the product as it is generated, but they are also free to take control of a parameter in RT and have that

become the output. The RT interaction will then be recorded and pulled back into the system to be used

as if it had been the NRT input from the beginning.

Until this point, lwae had been using the XML specification of the previous engines. This proved

useful, but ultimately the use of XML was an unnecessary overhead. As such, AGScript was created.

AGScript (AudioGraph Script) is a lightweight command-based scripting language used to create audio

graphs for lwae. It uses a simple set of commands that can easily be remembered once the concept of

graphs is understood. It consists of 6 commands, each taking a number of parameters. The full specifi-

cation is provided in Listing 5.

3.9. INVESTIGATING NO-TIME 69

P
ar

am
et

er

- m
_n

am
e

:s
td

::s
tr

in
g

- m
_m

in
: d

sp
_t

- m
_m

ax
: d

sp
_t

- m
_i

ni
t:

ds
p_

t
- m

_d
yn

am
ic

V
al

ue
:

ds
p_

t
- m

_a
ut

om
at

ed
V

al
ue

:
ds

p_
t

- m
_b

pt
: s

td
::u

ni
qu

e_
pt

r<
B

re
ak

po
in

tT
ab

le
>

- m
_i

va
lu

e:
 s

td
::u

ni
qu

e_
pt

r<
In

te
rp

ol
at

in
gV

al
ue

>
- m

_v
al

ue
: d

sp
_t

*
- m

_s
ta

te
: S

ta
te

+
 n

am
e(

):
 c

on
st

 s
td

::s
tr

in
g&

+
 s

et
V

al
ue

(d
sp

_t
)

+
 v

al
ue

()
: d

sp
_t

+
 ti

ck
()

+
 r

es
et

()
+

 s
et

S
ta

te
(S

ta
te

)
+

 s
ta

te
()

: S
ta

te
+

 m
in

V
al

()
: d

sp
_t

+
 m

ax
V

al
()

: d
sp

_t
+

 in
itV

al
()

: d
sp

_t

A
ud

io
G

ra
ph

-
m

_n
od

es
: s

td
::v

ec
to

r<
A

ud
io

G
ra

ph
N

od
e*

>
-

m
_a

ct
iv

eG
ra

ph
 :

st
d:

:v
ec

to
r<

A
ud

io
G

ra
ph

N
od

e*
>

+
 in

it(
)

+
 p

ro
ce

ss
(u

in
t3

2_
t)

+
 n

um
N

od
es

()
: s

iz
e_

t
+

 n
um

A
ct

iv
eN

od
es

()
: s

iz
e_

t
+

 a
dd

N
od

e(
A

ud
io

G
ra

ph
N

od
e*

):
 b

oo
l

+
 c

re
at

eN
od

eB
yN

am
e(

st
d:

:s
tr

in
g&

):
 A

ud
io

G
ra

ph
N

od
e*

+
 r

em
ov

eN
od

e(
A

ud
io

G
ra

ph
N

od
e*

):
 b

oo
l

+
 c

on
ta

in
s(

co
ns

t A
ud

io
G

ra
ph

N
od

e*
):

 b
oo

l
+

 n
od

eA
tIn

de
x(

si
ze

_t
):

 A
ud

io
G

ra
ph

N
od

e*
+

 c
on

ne
ct

(A
ud

io
G

ra
ph

N
od

e*
, A

ud
io

G
ra

ph
N

od
e*

):
 b

oo
l

+
 d

is
co

nn
ec

t(
A

ud
io

G
ra

ph
N

od
e*

, A
ud

io
G

ra
ph

N
od

e)
+

 g
et

C
on

ne
ct

io
ns

()
: c

on
st

 s
td

::v
ec

to
r<

C
on

ne
ct

io
n>

+
 a

ct
iv

eG
ra

ph
()

: c
on

st
 s

td
::v

ec
to

r<
A

ud
io

G
ra

ph
N

od
e*

>
&

-
ac

tiv
eG

ra
ph

C
on

ta
in

s(
co

ns
t A

ud
io

G
ra

ph
N

od
e*

):
 b

oo
l

-
bu

ild
()

-
so

rt
()

-
so

rt
B

yD
eg

re
es

(s
td

::v
ec

to
r<

A
ud

io
G

ra
ph

N
od

e*
>

&
)

-
to

ta
lD

eg
re

ss
(s

td
::v

ec
to

r<
A

ud
io

G
ra

ph
N

od
e*

>
&

):
 in

t3
2_

t

A
ud

io
G

ra
ph

N
od

e

m

_s
ou

rc
es

: s
td

::v
ec

to
r<

A
ud

io
G

ra
ph

N
od

e*
>

m

_s
in

ks
: s

td
::v

ec
to

r<
A

ud
io

G
ra

ph
N

od
e*

>

m
_n

am
e:

 s
td

::s
tr

in
g

m

_i
np

ut
: C

on
ne

ct
or

m

_o
ut

pu
t:

C
on

ne
ct

or

m
_b

uf
fe

r:
 A

ud
io

B
uf

fe
r

-
m

_p
ar

am
s:

 s
td

::v
ec

to
r<

P
ar

am
et

er
>

-
m

_i
nh

er
its

: b
oo

l
-

m
_a

dd
sT

ai
l:

bo
ol

-
m

_t
ai

lS
iz

e:
 s

iz
e_

t
-

pr
_s

or
tD

eg
re

e:
 in

t3
2_

t

+
 in

it(
)

+
 c

al
cT

ai
l()

+
 p

ro
ce

ss
(u

in
t3

2_
t)

+
 b

uf
fe

r(
):

 A
ud

io
B

uf
fe

r&
+

 p
ar

am
B

yI
D

(p
ar

am
ID

_t
):

 P
ar

am
et

er
*

+
 p

ar
am

B
yN

am
e(

co
ns

t s
td

::s
tr

in
g&

):
 P

ar
am

et
er

*
+

 n
um

P
ar

am
s(

):
 s

iz
e_

t
+

 is
C

yc
lic

(A
ud

io
G

ra
ph

N
od

e*
, A

ud
io

G
ra

ph
N

od
e*

):
 b

oo
l

+
 is

C
on

ne
ct

ed
To

(A
ud

io
G

ra
ph

N
od

e*
, A

ud
io

G
ra

ph
N

od
e*

):
 b

oo
l

+
 c

an
C

on
ne

ct
(A

ud
io

G
ra

ph
N

od
e*

, A
ud

io
G

ra
ph

N
od

e*
):

 b
oo

l
+

 c
on

ne
ct

(A
ud

io
G

ra
ph

N
od

e*
, A

ud
io

G
ra

ph
N

od
e*

):
 b

oo
l

+
 d

is
co

nn
ec

t(
A

ud
io

G
ra

ph
N

od
e*

, A
ud

io
G

ra
ph

N
od

e*
):

 b
oo

l
+

 n
um

S
ou

rc
es

()
: s

iz
e_

t
+

 n
um

S
in

ks
()

: s
iz

e_
t

+
 n

am
e(

):
 c

on
st

 s
td

::s
tr

in
g&

ad

dP
ar

am
et

er
(c

on
st

 s
td

::s
tr

in
g&

, d
sp

_t
, d

sp
_t

, d
sp

_t
):

 p
ar

am
ID

_t

ad
dS

ou
rc

e(
A

ud
io

G
ra

ph
N

od
e*

)

re
m

ov
eS

ou
rc

e(
A

ud
io

G
ra

ph
N

od
e*

)

ad
dS

in
k(

A
ud

io
G

ra
ph

N
od

e*
)

re

m
ov

eS
in

k(
A

ud
io

G
ra

ph
N

od
e*

)

su
m

S
ou

rc
es

(u
in

t3
2_

t)

tic
kP

ar
am

s(
si

ze
_t

 =
 1

)

m
ax

In
pu

tC
ha

nn
el

s(
):

 s
iz

e_
t

-
in

he
rit

O
ut

pu
tT

yp
e(

)
-

no
tif

y(
)

-
on

N
ot

ify
()

1
1.

.*
0.

.*
0.

.1

Figure 3.3: AudioGraph and AudioGraphNode UML diagram

70 CHAPTER 3. SOFTWARE IN COMPOSITION

1 AddNode <id> <nodeName> <xPos> <yPos>

2 ConnectNode <srcID> <sinkID>

3 SetNodeProperty <id> <propName> <propValue>

4 AddBreakpoint <id> <paramName> <time> <value>

5 SetParamMode <id> <paramName> <mode>

6 SetParamValue <id> <paramName> <paramValue>

Listing 5: AGScript specification

AGScript can describe any audio graph that lwae can create and run in a NRT context. This is why it

does not have commands like RemoveNode, for example. AGScript was developed as part of Chronon to

make save files easier to create/read. The AGScript parser written as part of Chronon connects directly to

the respective lwae functionality. AGScript represents the NRT aspect of lwae. Chronon itself provides

the RT functionality—connecting directly into lwae’s RT aspects, while creating a AGScript record of its

activity at the same time. A simple example of AGScript can be seen in Listing 6.

1 AddNode 0 DiskIn 0 0

2 AddNode 1 Gain 0 100

3 AddNode 2 DiskOut 0 200

4 AddNode 3 RtOut 200 200

5

6 ConnectNode 0 1

7 ConnectNode 1 2

8 ConnectNode 2 3

9

10 SetParamMode 1 gain dynamic

11 SetParamValue 1 gain 0.5

Listing 6: Simple AGScript Example

Chronon provides a graphical representation of the graph and allows it to be edited. Importantly, it

cannot be modified during RT-G. It became clear frommy earlier investigations that being able to modify

the graph in RT was not necessary, as I would decide the processing in advance where possible, leaving

the exact parameter values to RT-C if allowed. The parameters that are controlled in RT are chosen in

advance of any interactions. In contrast to SOClib, however, these are not presented on a process-by-

process basis. Instead, the user can choose the parameters from whichever process in the graph to control

in RT—in effect, designing a control interface. These are currently displayed as simple sliders, but the

software could by modified to display any graphical widget. Those that are not assigned as RT-C can still

be set to specific values, either static or automated with breakpoints, in advance of generation. Having

decided the process, and the parameters to control, the user can then generate audio. It is possible to

3.9. INVESTIGATING NO-TIME 71

assign all the parameters from all the processes to RT-C.

Chronon features a render function, that runs a loaded AGScript file entirely in NRT to produce an

output. However, it additionally features a play function. Here, the program will operate as RT-G only,

utilising the breakpoints as previously requested. If and when the user modifies a control in RT, Chronon

will signal the parameter to switch to dynamic mode, offering RT-C. At this point, the value of the slider

is passed to the parameter directly. However, before the value change is requested, it obtains a time-

stamp from Chronon (with a clock that restarts each time the program is asked to create audio). This

time-stamp, along with the value and parameter, is stored in a queue as a record of the event. This is

used to fill in a breakpoint table, that is crucially not part of the audio engine. This secondary, hidden,

breakpoint table is used to generate NRT save file, once the processing stops. Chronon is responsible for

creating these AGScript files, whereas lwae is only responsible for handling RT events (responding to

parameter changes, processing audio, writing soundfiles). This separation of duties aims to prevent RT

glitches. The AGScript file created post-processing is then loaded into the program for further work.

As a result, Chronon handles the AGScript and user interaction, whereas the audio engine (lwae) is

responsible for the audio. I have tried as best as possible to follow model-view-controller paradigms

where possible. If the source files, in addition to the AGScript file, are retained, it would be possible to

utilise these to recreate the output soundfiles.

3.9.8 Limitations and future work

The requirements for a NT program are that it provides NRT and RT functionality, in such a way that

it does not constitute a context shift resulting in world-replacement. It should produce data in line with

NRT, but provide RT-G and RT-C.

Chronon and lwae come close in this regard. A longer study of the use of a NT program such as this

would be necessary to understand more of its limitations, but it is a promising start. I have found that

abstracting the RT/NRT paradigms behind the NT facade has led me to focus less on how the software

forces me to work, and more on how I wish to work with it. It is important to note though that there are

many aspects that could be improved. Having said this, Chronon serves as a proof-of-concept—an initial

implementation. It does not provide all the functionality a composer might desire, but it was not created

for that purpose.

Future work would include the addition of undo to Chronon, and more processes for lwae, to name a

few. Additionally, it would be interesting to investigate the addition of a sequencing engine to facilitate

72 CHAPTER 3. SOFTWARE IN COMPOSITION

the creation of more complex sound objects, similar to composites in SOClib. With regards to NT, this

research has outlined the requirements for such a system, and demonstrated its possibility.

Perhaps the most exciting avenue for the NT ideal is the further study of composition. By capturing

all data, NT systems could be used in studies to analyse not only what composers used in their work,

but might also provide insights into where composers chose not to investigate further— particularly if a

sequencing engine was incorporated.

3.10 Conclusion

Software has historically been viewed as a tool for composition. However, on more investigation, we

have discovered this not to be the case. The misconception has been perpetuated by the use of software in

instrumental composition, where it serves as a mere number-crunching device for generating combina-

tions of notes and rhythms. The impact of software has largely been ignored, either by sheer dismissal or

with research based on an assumption of prescriptive and formulaic approaches to composition, as with

HCI research.

Software traditionally ascribes to either RT or NRT operational paradigms. The definition of RT

shifted, seemingly largely unnoticed, to focus on interaction rather than generation. This research has

proposed the Domino Test as a way of distinguishing which paradigm a particular piece of software

best fits. Upon discovering which paradigm, a series of investigations were devised in order to discover

the impact. RT and NRT software do not affect the sonic entity produced. This realisation is either

unsurprising or latent, but leads to more important questions: if it does not affect sound, then what does

it affect? The difference between them is one of interaction, certainly, but how does that manifest itself

in composition? Perhaps most importantly of all, does this difference matter?

This chapter has proposed that we interact with RT software in an improvisational way, and as a

result this forces composers to adopt a subtractive method. In contrast, NRT software imposes a more

contemplative, iterative approach, that produces smaller more finite sound objects, enforcing an additive

method.

When I, as a composer, approach a musical problem, I am almost immediately confronted with soft-

ware. In the event that it is a musical problem I have faced before, even though I cannot predict the

actual sonic output, the paradigm of the software becomes less important; the software that helped solve

it can be used to produce the anticipated output. Alternatively, if I’m not sure, I am often more inclined

to investigate with RT software initially. My uncertainty manifests itself as an improvisatory need, and

3.10. CONCLUSION 73

the instant sensory feedback loop provided by RT software helps to quickly discover ways that both do

and do not work in the particular situation. Rather than a journey with no destination, it is perhaps better

to think of any destination being acceptable, navigating in response to the situation at hand: situated

action. However, as these RT experiments continue, I begin to discover the combinations of parameters

that produce the most interesting output. At this point, I will switch to a more NRT approach, and in the

case of RT software will attempt a RT-NRT modification if possible.

The concept of narrowing down possibilities through RT experimentation, resulting in NRT, or NRT-

like approaches has not been discussed in other work. More often than not, RT is held as the gold-

standard; however, this is most likely due to the promise of instant gratification. We have seen that

RT shifted meaning, focusing on interaction rather than generation, but also that RT interaction is by

definition somewhat mythical. A RT computer is an impossibility—we strive instead for a fast-enough

approach, where the computer can respond within our reaction times and appear to be RT. When we

communicate with a computer in RT, we are really saying, “I wish that had happened”. The computer

is always catching up. When we look at the development of RT audio software, we see the ring-buffer.

In the context of RT control, this is a queue of commands saying “the user wanted this to happen”. In

more musical terminology, a ring-buffer is the core of a delay-line, so we see that RT is merely a delayed

response to user input, with the hope of being fast enough that we do not notice. CPUs can do branch

prediction, which tries to guess the branch of a conditional expression, but that cannot predict user input

(and even if it could, it could not guess what the input would be).

As demonstrated, software not only informs my approach, but dictates my method. We have seen

that provided the underlying audio processing algorithm is the same, RT and NRT software, when given

the same parameter values, will produce identical audio output. As a result, it is clear that the impact of

software lies not in the audio, but elsewhere: how I work with it, and by extension how I work with and

think about my sounds. The operational paradigms of RT and NRT result in polar opposite compositional

activities: improvisation with subtraction and iteration with addition. From existing work, we know that

this is not necessarily a negative aspect, as divergent thought processes can be vital for creativity, but it

is not clear whether this is something I must consider, even passively.

NT has been presented as a potential ideal when it comes to the design of software, inspired by

the notion that the operational paradigm is not something actively considered by the composer. To be

considered NT, software must provide RT-C and RT-G, as well as NRT processing. It must provide the

necessary data to recreate any sound it has generated. Parameters should be switchable, during RT-G,

between RT-C or NRT-style breakpoint control. In addition, the act of switching should not constitute a

74 CHAPTER 3. SOFTWARE IN COMPOSITION

world-repair context shift and should ideally also avoid world-replacement. Whether NT is operating as

RT or NRT, the user should not be actively considering which paradigm is in use at any given moment.

The idea is to provide paradigm shifts that do not represent a challenge to the user: the reproducibility of

NRT combined with the interactivity of RT.

CHAPTER 4

Software in Performance

In Chapter 2, it was identified that performance had a role in composition. This chapter will briefly outline

how acousmatic music is performed, highlighting the software and technology involved. It presents

the idea that performance is an embedded need in acousmatic composition, and investigates the use of

performance systems in the composition of multi-channel acousmatic music. It presents the software and

techniques used in the creation of a multi-channel work based on these ideas.

4.1 Performing acousmatic music

The performance of acousmatic music is known as sound diffusion. The fixed-media is performed over

multiple loudspeakers distributed within a performance space. The performer, most often the composer

themselves, will use a system designed to allow the sound to be manipulated throughout the space in

real-time during the performance.

In 1999, Jonty Harrison outlined the BEAST style of diffusion (Harrison, 1999). He suggested that

sound diffusion can serve as a way to present a piece written for a certain number of channels in a larger

venue than that in which it was written. The system proposed by Harrison utilises additional loudspeak-

ers, at least eight, positioned around the space in an extension of stereo. The goal, as noted by Harrison,

is not necessarily to move sound dramatically around a space, but rather to provide a changeable focal

point of sound to ensure that each listener can experience the sound in the space equally well. The spatial

information written by the composer, for example in stereo, may not necessarily translate well into a

75

76 CHAPTER 4. SOFTWARE IN PERFORMANCE

given venue. Diffusion offers this required control and redistribution within the venue. It would appear

that Harrison’s view of the performer in this context is a form of live-mastering engineer. The loud-

speaker configurations as proposed here have had a lasting effect on the performance of electroacoustic

music in the UK, with most concert loudspeaker arrays seemingly being arranged in-line with Harrison’s

recommendations1.

4.2 Hardware-based and software-based

From what can be seen of diffusion systems, at least in the UK, there appear to be two approaches:

focusing on either hardware or software. What I am considering a hardware system is one based around

a traditional mixing desk: either analogue or digital. These are usually fixed installations, and appear

to be designed in conjunction with the venue itself; as seen with the likes of the Sonic Laboratory at

the Sonic Arts Research Centre (SARC) in Belfast, based around the Studer Vista 5 console (Queen’s

University of Belfast, 2019).

Whilst these systems have the benefit of often being custom designed for the venue, they pose a few

challenges. Firstly, that of cost. Taking SARC as an example, prices for the console itself can start from

around £100,0002. Although it would be possible to reduce the cost of a hardware system, the second

difficulty with this approach is that of permanence inside a venue. For mobile rigs, or even those with no

fixed venue, like those at Birmingham or Sheffield, it becomes difficult to design the system, let alone

transport it. Additionally, hardware systems tend to be difficult or costly to expand later on as they are

specified for the installation. Having said this, an expansion might also be made difficult if the space is

fully equipped in the first instance and as a result has no additional space to expand.

Alternatively, it is possible to make use of a software-based system. In contrast to hardware-based

systems, the software approach can be independent of specific hardware. It requires: a computer running

specialised software, a soundcard with the required number of outputs, and some sort of hardware control

surface with MIDI or OSC. In terms of cost, compared to hardware-based systems it is significantly

cheaper. Additionally, it most often would not require the replacement of the entire system in order to

expand it later on—by replacing the soundcard, or adding more DACs depending on the situation. The

software that runs on it can also easily be modified or updated—providing its source is available. It is

most likely for these reasons that many institutions have opted for software-based systems. Software-

1For more discussion of diffusion, see Austin (2000, 2001), MacDonald (1995)
2Rough estimate provided by HHB Communications Ltd.

4.3. SUPERDIFFUSE 77

based diffusion offers the most flexibility at the least cost, making it an ideal choice. As mentioned,

there are several systems already in existence. It is interesting here to note that BEAST transitioned to a

software-based system (Wilson & Harrison, 2010). Of those that utilise software, each institution in the

UK appears to have its own in-house system: University of Birmingham has BEAST (Wilson&Harrison,

2010), University of Manchester has MANTIS, University of Sheffield had M2. It remains to be seen

whether this is related to how applicable the system is, the openness and availability of the software, or

simply Not-Invented-Here Syndrome (Antons & Piller, 2015).

Although there are systems available, they are either closed-source (M2), platform-specific (BEAST,

M2), have limited channel counts, or are overly complicated and difficult to learn. If we were to design

a new system, it should be: agnostic to channel counts, both input and output; open-source, so that one

might learn from and adapt the system to our needs; and most importantly cross-platform, so that it is not

hardware-specific. These, alongside the expectations mentioned previously, were the main influencing

factors in the development of SuperDiffuse.

4.3 SuperDiffuse

SuperDiffuse is an n-channel diffusion system for the performance of acousmatic music. It is written

in SuperCollider and distributed as a Quark. It was designed with the goal of running the Sound Junc-

tion concert series at The University of Sheffield, with large-scale public concerts twice per year. Its

predecessor at TUoS was M2, written by Dave Moore, to which much is owed. As it was designed to

run concerts, a concert was the starting point of the design. Each concert is made up of pieces, so there

must be a way of adding, removing and swapping pieces. Each piece might be made up of any number

of channels of audio, and each piece might need its own, per-channel, proportional distribution between

the loudspeakers. Each loudspeaker must be able to be controlled from a physical input device, most

likely a fader over MIDI or OSC. In cases where there are not enough physical controls to control each

loudspeaker individually, it must also be possible to control multiple loudspeakers from a single control

fader.

If the goal is to run a series of concerts, then speed and simplicity are key. This is exemplified most

when the venues are not permanent. At Sheffield, the 32-channel speaker array is only set up in the venue

for the duration of the festival (2-3 days). Therefore, time is a vital factor. Performers may only have 10

minutes to rehearse their piece, which is often the duration of the piece itself. The system must not be

an obstruction here. The more features a system has, the more complicated its set up becomes. Once the

78 CHAPTER 4. SOFTWARE IN PERFORMANCE

speakers are connected, it must begin to produce sound. Each year, the speakers may be connected to

different outputs on the system, and speakers may be added, removed, or swapped; so it is not possible

to have the same profile for each concert. Each feature of the system must incur a minimal lead-time. If

pieces can be added to a concert in advance, and the output layout is also known, then the first two steps

of the process can be removed, further reducing lead-time. From starting SuperCollider, the creation of

a 32-channel concert (adding a piece, configuring routing, and MIDI configuration) can take as little as

2 minutes3.

SuperDiffuse uses amodel-view-controller (MVC) framework to communicate between the data layer

(the Concert itself), and the GUI that appears. By design, it is entirely possible to create a concert without

the GUI and control everything from SuperCollider’s language.

The version of SuperDiffuse submitted as part of this thesis is fully documented in the SuperCollider

Help System. The following sections present a more technical outline of the system.

4.3.1 System Design

The overall design of SuperDiffuse is quite simple. There are two audio buses: input and output. There

is a single control bus, where the external controller values are written. There are a number of groups

to ensure that processing happens in the correct order. Input Group, Input FX Group, Patcher Group,

Output FX Group, Output Group.

A playback synth, streaming audio from a soundfile on disk, writes to the input bus. An output synth

reads from the output bus and multiplies it by the control bus values (representing the amplitude values),

writing to the soundcard. There is no direct connection between input and output buses. The only way

to connect is by creating a series of SD_Patcher synths. These are mono synths that can read a single

channel from the input bus and write it to a single channel on the output bus. As a result, there are no

limits to the routing capabilities—any input can be routed to any output in any combination. When a

matrix point is added, a patcher is created between the corresponding input and output channels of the

respective buses. Each patcher synth has its own amplitude, which is taken from the value in the matrix,

acting as a DCA—this is what facilitates proportional routing.

The use of a routing matrix was inspired by M24 (D. Moore, 2004). Alternative panning/routing

systems, like VBAP (Pulkki, 1997) or ambisonics (Austin, 2001), require that the system knows the

position of the speakers in the space. Given that SuperDiffusewas designed to be independent of specific

3It should be admitted that my familiarity with the system is a factor here, but it is possible to turn up at a venue and create

the concert in a short space of time—this has been the case for several smaller concerts in Sheffield.
4SuperDiffuse does not use the same control system as M2, however.

4.3. SUPERDIFFUSE 79

Playback Synth

Input FX

Patchers

Output FX

Output Synth

Control

Figure 4.1: SuperDiffuse signal path

hardware, such a requirement was unsuitable. The proportional routing can still be used to create phantom

images, but it is up to the user to specify the amplitudes directly.

Before the patcher synths read from the input bus, the Input FX are applied. This is a group set

aside to perform in-place manipulations on the input bus. Synths added to this group should read from

the input bus and ReplaceOut (replacing the audio on the bus). The group ensures that this happens

before the routing. Once the patcher has written its audio to the output bus, the next stage is the Output

FX group. Similar to the Input FX, this allows post-routing processing to take place. Following this,

the output synth applies the amplitudes as defined by the control system and the audio is sent to the

loudspeakers. The signal path is outlined in Figure 4.1.

The control system, whilst not being as sophisticated as M2, is still well suited to diffusion. There are

master faders5 that control the real level of a single output channel, but SuperDiffuse uses an abstraction

layer to offer configuration possibilities. The graphical sliders presented in the GUI are actually control

faders6. These communicate with the master faders using the Observer Pattern (Gamma et al., 1995,

pp. 293–304). Amaster fader takes its value from a control fader—it subscribes to the value of the control

fader. This way, a control fader can have any number of master faders attached to it; thus allowing for a

single control fader to set the values for multiple master faders. Any time the control fader changes its

5SD_MasterFader
6SD_ControlFader

80 CHAPTER 4. SOFTWARE IN PERFORMANCE

value, it notifies all of the master faders that are attached to it and each master fader responds by setting

the real value of the output level to which it corresponds.

4.3.2 Future improvements

SuperDiffuse has, at the time of writing, reached version 1.4.0. It has been used in venues across Sheffield

to facilitate in excess of 25 public concerts, ranging from 8 to 32 channels. It is, however, neither perfect

nor finished. Firstly, speed is a great concern. While most pieces load within a reasonable time, the speed

at which the waveforms are drawn becomes troubling in larger pieces—in duration, or channel-count, or

worse, both. This has the potential to stall a concert. So far, given that the concerts at Sheffield contain

pieces from a variety of composers, the applause of the audience between pieces is enough to cover the

transition. However, in feature-concerts, with a single special guest composer, there have been several

instances where I have been asked if it is possible to have pieces run into each other. This is firstly not

possible given the piece selection mechanism, but it is also made potentially worse by having a large

enough pause between loading pieces. In order to address this, it would be necessary to write a custom

SoundFileView that could store waveform information to disk, thus avoiding the cost of calculating it

each time the piece loads.

In terms of technical concerns, there is currently no way to have pieces of mixed sample rate within

a single concert. This would involve restarting the server at the new rate, which would in turn require

the entire concert to be restored in order to recreate the synths, groups, etc. Unfortunately there is no

clear way to eloquently achieve this within SuperCollider itself. Therefore, I would need to implement a

custom audio engine to allow this behaviour. As a result, work on such a standalone version, without the

need for SuperCollider, is under way.

The most requested feature has so far been the addition of live input. This was not originally added

as it was not required for the events at Sheffield, but it would allow a broader range of performances,

not just fixed-media music. There are several solutions, but the best is as yet undecided. A future ver-

sion of the software will allow for this, and will probably necessitate the implementation of Mooney’s

coherent audio source sets (Mooney, 2005; Mooney & Moore, 2008). This would allow routing based

on combinations of different sources (live input or soundfile playback), to be sent through the routing

matrix. An implementation is outlined in Figure 4.2. The control could be simplified by having, as with

M2, the control embedded within the routing matrix, with faders controlling the matrix itself, rather than

the input and/or output of the matrix.

4.3. SUPERDIFFUSE 81

Tape Input Bus

Tape Input FX

Tape Patch Bay

Tape Output FX

Tape Output Bus

Output Bus

Live Input Bus

Live Input FX

Live Patch Bay

Live Output FX

Live Output Bus

Tape Control Bus Live Control Bus

Master Control Bus

Figure 4.2: Future SuperDiffuse signal path

It would also be advantageous, as has been suggested by others, to have VCA-like faders. In this

case they would really be DCA (digitally controlled amplifier), but the principle remains the same: a

fader that controls others relative to their own position, similar to a group fader. These were initially

not implemented because of the complexity of configuring them, adding additional start-up time to the

overall system. However, there are ways to implement this that could minimise the impact, but significant

development time would be needed to ensure it functioned correctly.

There are also additional effect synths that it would be useful to have. For example, being able to

delay specific speakers (as an output effect), would be useful for compensating for distant loudspeakers.

Additionally, the likes of phase decorrelation would prove useful to avoid cancellation within certain

spaces (Kendall & Cabrera, 2011).

In order for SuperDiffuse to be able to suit all electroacoustic concert types, it would be necessary to

have video playback to facilitate mixed-media works. In almost all cases, it would be possible to utilise

the live input system to accommodate this, having a separate system feeding both the video and audio,

going to the projector and SuperDiffuse respectively. However, in cases of fixed, mixed-media (video

and tape, for example), it would be useful to have a video playback engine within the diffusion system.

This would allow the audio to be diffused while outputting the video, without the need for external

synchronisation (pressing play on two devices). In its current state, SuperCollider does not support video

playback, and so it would not be possible to implement. However, I plan to investigate the incorporation

of video playback into the standalone version.

In conclusion, SuperDiffuse has been largely successful as a performance system. It has been demon-

82 CHAPTER 4. SOFTWARE IN PERFORMANCE

strated in a large number of public concerts, and has received a great deal of feedback and interest from

many of those that have used it. Much of the feedback has in fact already been incorporated, but there is

still much that can be done. As more features are added, and to make it more distributable, it seems that

the standalone version is the correct direction.

The SuperCollider version did provide the inspiration for the work to follow, however. SuperDiffuse

was written to facilitate performances. We found that composers had more time to rehearse and reflect

on the spatial realisation of their works. As I observed this, I had the opportunity to reflect on the future

development of the software. I realised that because it was written in SuperCollider, it was already

capable of capturing an audio recording of the performance without the need to modify the code. This

was initially exciting, as the piece could be performed in the same space, over the same system, after the

initial performance. I was not considering this a replacement of performance practice, but was interested

in the idea of preserving performances that could be later analysed—something that may in the future

result in historically informed performance practices for diffusion. However, I also realised that the

system could be taken into the studio and used to create multi-channel soundfiles. In a studio context the

creation of multi-channel audio recordings, a by-product of using SuperCollider, could provide another

approach to creating multi-channel source materials for use in multi-channel compositions.

4.4 Multi-channel composition

A. Moore (2016, pp. 188–201) echoes Harrison’s thoughts on performance, but goes on to expand on

some practicalities when it comes to multi-channel compositions, incorporating both Smalley’s idea of

canopies (Smalley, 1997) and the ideas of fractured composition (A. Moore, 2008). Here, Moore sug-

gests that splitting sounds into separate stems for combinations of live triggered sounds as well as fixed-

reproduction and diffusion would allow more complex and potentially rewarding compositions. This

idea appears to have been explored by a few composers, as noted by Wilson and Harrison (2010).

Peters et al. (2011) conducted a large survey of the technologies used in the composition of spatial

music. Their findings are too many to document here, but it is worth drawing particular attention to a few

of the most relevant here. Spatialisation tends to be primarily used for concert contexts, with composers

aiming to “enhance the listening experience”, use spatial aspects “as a paradigm for artistic expression”,

or “organi[s]e and structure sounds”. Crucially, they discovered that “more than 50 percent of the com-

posers ‘never’ use, or do not have access to, seven- or eight-loudspeaker configurations.”. Of the venues

for performance, “acoustical conditions”, “technical limitations of the venue”, “time constraints”, and

4.5. PERFORMANCE IN COMPOSITION 83

“non-ideal loudspeaker and audience location” were reported as the main challenges faced in venues. It

is perhaps for these reasons that some of the more complex, and perhaps more accurate, spatialisation

techniques are simply not used.

Wishart (1996, pp. 191–235) documents a variety of potential spatial motions that one might aim to

utilise. He also discusses the aesthetics of spatial motion and how they might serve musical purposes.

Many of the movements proposed by Wishart are based on the use of geometric patterns within the

listening space (or frame). It has been shown that a lot of material can be observed to not willingly

translate to arbitrary motions in a studio, so musical consideration is of key importance. The reasons

for this may have something to do with the speaker arrangements as proposed by Harrison, although it

appears likely to be more greatly rooted in psychoacoustic phenomena (some of which are related to the

nature of loudspeakers in a space), as noted by Kendall and Cabrera (2011).

Multi-channel composition is something I have never investigated, for two main reasons. Firstly, as

has been pointed out by others, increasing the channel count also changes the nature of the performance.

I have always greatly enjoyed performing stereo pieces in concert, and the benefits of specific position-

ing of individual materials never outweighed the aspects of diffusion that I liked most. Secondly, it is

unnecessarily complicated. The point at which I might apply spatialisation would be while working in a

DAW. The DAW has different requirements when it comes to multi-channel audio—often referred to as

surround sound, after the cinematic heritage of the supported layouts. Unless I am writing in a standard-

ised speaker layout7 (and, crucially, BEAST-style eight is not a standardised layout), it is very difficult.

The reason for utilising a DAW here has been, as with other materials, I thought of spatial changes as

trans-object which may need to be modified later if their relationships change with respect to time.

4.5 Performance in composition

For much of the last 60 years, composition and performance have been seen as separate activities. How-

ever, in acousmatic music, we see a trend where the composer is also the performer. To answer the

question of why this is the case, we must look again at what this composition is in its physical, or rather

digital, form. We do not wish to discuss the concept of work here, but rather the medium through which

performance is enabled—a sound-file on a computer hard-drive, a CD in a player. The information con-

tained therein is digital—binary digits. Whether CD or digital file, what is stored is the stream of binary

7Cubase 10 Pro supports: LRCS, 5.0, 5.1, LRC, LRS, LRC+LFE, LRS+LFE, Quadro, LRCS+LFE, Quadro+LFE, 6.0

Cine, 6.0 Music

84 CHAPTER 4. SOFTWARE IN PERFORMANCE

digits that represent the discretised fluctuations in amplitude, that when converted to a continuous volt-

age represents the movement of a speaker cone, that when detected by the human hearing system may or

may not be perceived as sound. What we realise is that until this music is performed, it does not exist in

any tangible form. Unlike notated music that is stored in human-readable form, fixed-media music can

only be read by machine, whereas instrumental music might be able to be read from a score, producing

a rendition in one’s mind. It is only through the mediation of technology that acousmatic works become

perceivable as music. We can therefore conclude that this music has an embedded need to be performed,

in a different sense than instrumental music, lest it remain this intangible stream of binary digits. This

embedded need can be seen as why the composer is most often the performer. The performance can be

viewed as the final stage of composition. This is not to say that a performer of acousmatic music cannot

exist, but rather explains why composition and performance are so strongly linked in acousmatic music.

Given the embedded need for performance, we can conclude that performance must play a large part in

the composition itself. Indeed, we have already seen that notions of performance influence certain com-

positional decisions. This notion builds upon that which we have seen before, and I am proposing that

composition and performance are, at least in this context, part of the same process. Our question becomes

how then might it influence decisions that are not wholly based on the practicalities of a given venue—

each venue will require different performance techniques, but we are instead interested in decisions that

one might make irrespective of the venue, for example, some venues may have loudspeakers at height

but the choice to use them will be specific to that venue during a performance, rather than something to

necessarily consider whilst composing.

In their article, Wilson and Harrison (2010) are primarily concerned with presenting the idea of n-

channel pieces, as opposed to fixed channel-counts. In doing this, we see the diffusion system become

more of a live performance system that can trigger and position sounds dynamically during performance.

This is an exciting idea, and one I hope to explore, but for now I am focusing on composition for a known

number of speakers.

Knowing how a sound ought to be positioned amongst loudspeakers is only part of the solution. We

must realise it by the utilisation of software, placing the sound in the desired position. As we have seen

with other software, the mouse is the primary input device. It represents a single, point-source on a two-

dimensional plane. A majority of software uses this point-source as the positioning of a sound source

within a top-down view of a speaker array. As such, they require the layout of the speakers to be known,

and as we have seen this cannot always be the case. Additionally, an issue arises when movements

between arbitrary sets of loudspeakers are desired, as a point-source cannot represent this.

4.6. UNDER THE FRACTURED CHESTNUT TREE 85

I am considering these behaviours whilst composing in the first instance, not just during perfor-

mance. These thoughts are echoed by Smalley (Austin, 2000), among others (MacDonald, 1995). As

two mutually inclusive activities, it is therefore important to consider the role that performance plays in

composition.

Considering space as a compositional element that is explored through performance, it is also im-

portant to consider multi-channel composition. We have already looked at software in composition, but

we must also ask what role performance software plays in composition. Having looked at the design of

SuperDiffuse, we can use it to investigate.

As a composer, I have learned how sound behaves while moving through space through my ex-

periences as a performer. When composing for two channels, a standard pan control makes absolute

sense: left and right. However, when composing in multiple channels this point-based system has al-

ways eluded me, mostly because the commonly available point-based panning does not accommodate

the BEAST-style main-eight configuration. Using such a system, I am able to position a point-source

within the speaker-field, and move it as such. This might be suitable for certain kinds of materials, but

how might I implement more complex movement that is not based on point-sources? It is incredibly

difficult to position a sound at two points and move them independently; for example, in diffusion it is

possible to position the sound on a pair of distant loudspeakers while also moving around a set of more

nearfield loudspeakers which, instead of functioning as panning, serve as two independently localisable

scenes. It is even more difficult to have the same sound moving between specific sets of speakers that

are not related in terms of a standard speaker configuration.

4.6 Under the Fractured Chestnut Tree

SuperDiffuse was created at the same time as UTSCT. As a result, multi-channel composition became

an interest. I realised that if there was a way to utilise the diffusion system in the studio, then it should

therefore be possible to encode spatialisation at the point of composition. Answering this question became

the focus of this research—could a performance system could be utilised as a spatial composition system?

This investigation differs from the work of Wilson and Harrison (2010) in that the stems would be used

in the composition and the piece would remain fixed.

It was at this point that the composition of UTSCT began. As a result, from the beginning, I planned

for this piece to be multi-channel. However, I felt that it was important to first confirm my suspicions

about how the sounds would behave in space—discovering if my studio-based intuitions were reasonable.

86 CHAPTER 4. SOFTWARE IN PERFORMANCE

Therefore, I proceeded to write the piece in stereo, as I normally would, with the intention of using

the première of the piece to investigate how the sounds behaved in a concert setting. I planned to re-

write the piece after this, creating the multi-channel version, incorporating what I had learned from the

performance. The following represents my thoughts and experience of composing and performing in this

way.

During the composition stage, several moments clearly stood out as spatialisation opportunities.

Firstly, for the opening I wanted the environment to feel like it was being presented rather than a fully

enveloping sound. The soundworld was to be observed as a foreign environment, as if projected on

a screen, to avoid listeners considering themselves a part of the world itself. Therefore, I knew that I

wanted to start the piece on a pair of loudspeakers. It is probably most common for this sort of material

to be presented over a great number of channels to create such an environment in the space, but this was

not an environment I wanted to place the audience in, but rather observe. As the granular environmental

sounds enter, I knew that I wanted to use the spatialisation as a special effect to enhance the aspect of

the untoward, having the sound swirl throughout the space. Secondly, the Department of Truth. This

section is a small room, containing footsteps moving from outside to inside. I knew that I wanted to use

the space to highlight this aspect, so I wanted to try to move from a larger group of speakers to a single

pair. It was also clear that Room 101 needed to be loud enough to have the desired effect, so that, when

it is swept away by the environmental material, it serves as respite.

The performance of the piece involved the use of SuperDiffuse, over the Sound Junction 32-channel

rig, set up in Firth Hall. The first stage for me in performing any piece is to listen to each pair of loud-

speakers within the space individually. I took a moment to do this, listening for spectral variations and

sound localisation, for a number of sections. This was during the rehearsal slot allotted to me for the

performance later that day. Having gained an understanding of the loudspeaker sets, I began to have full

run-throughs of the piece, experimenting with what I consider to be scenes—sets of loudspeakers that

suit certain sections of the piece. It is unclear whether this corresponds directly to the concept of coherent

loudspeaker sets (CLS), as proposed by Mooney and Moore, which appears to have been discussing the

configuration of the diffusion system itself rather than the act of diffusion (Mooney & Moore, 2008).

However, the term seems an accurate description of my practice here. In this discussion, I am using the

term CLS to describe a specific subset of loudspeakers within a larger array.

After the performance, I returned to the studio. Armed with the knowledge of the materials’ be-

haviours in a larger concert space, which mostly corresponded to my studio-based intuitions, I began to

4.7. TECHNIQUES FOR STUDIO-BASED DIFFUSION 87

deconstruct UTSCT. Studio 6 of the Soundhouse features an 8.x configuration8. I started by recording

a full stereo diffusion of the piece using that configuration, almost exactly as I had described earlier in

this discussion. This was then used as the basis for the more detailed work to follow. This soundfile is

provided in the accompanying sound examples to this thesis. Listening back to this, I knew that I wanted

to make certain materials behave in more specific manners. I proceeded to create a set of stems for the

piece, simply exporting the tracks from the Cubase session. This later proved problematic when it came

to working with specific materials, as I often reuse the same tracks for different sound objects in an effort

to reduce the session track-count, so figuring out which material was in which stem required some effort.

The design of SuperDiffuse provided a separation between the system itself and the GUI that users

interact with. The SuperDiffuse_Concert is an object within the SuperCollider environment, and

it provides direct access to most of its underlying features from within the SuperCollider language. The

idea was to encode specific spatial information into the individual stereo/mono stems to produce multi-

channel versions. Each stem was individually loaded as a piece into the system and its multi-channel

result was recorded. The stems did not need to be the same length, but they did all have to start from

the beginning of the piece. This was to ensure that upon reconstruction, the stems aligned and the piece

itself remained unaltered by the process, other than the addition of spatialisation. For this to be possible,

it was necessary to write an extension for SuperDiffuse that made the creation of diffused stems easier. It

essentially provided a record button that would setup a multi-channel audio file, then trigger the playback

of the given piece (i.e. stem) within SuperDiffuse. Provided each recording began at the beginning of

the piece, the diffused stems would line up again.

The reconstruction of the piece was rather simple. I took the diffused stems, along with the stere-

o/mono stems I did not choose to spatialise, and added them together again to produce the final multi-

channel piece. I refer to UTFCT as a spatial reconstruction, rather than a multi-channel work, as it is

impossible to say that I would have made the same compositional choices had I been working in multi-

channel from the beginning. What follows is a summary of the techniques I used during this process, and

some recommendations for further investigation.

4.7 Techniques for studio-based diffusion

Of the writings I have seen, none appear to deal with the practicalities of diffusion, choosing instead to

focus on aesthetics. Over the years, I have developed a set of techniques that I tend to resort to, which

8It also has an additional front-centre speaker to facilitate 5.x

88 CHAPTER 4. SOFTWARE IN PERFORMANCE

may help explain my choices. Some of what follows is passed from composer to composer anecdotally,

but little appears documented.

Firstly, always bring something up before bringing something down. This goes for moving between

loudspeakers. In my experience, sounds only appear to transition between speakers once the initial CLS is

reduced. In addition to affecting the movement, this technique also guarantees sound is always produced;

if attempting both at once, it is entirely possible to misjudge the crossover between the CLSs and have the

level audibly drop. The worst case of this misjudgement is accidentally having all faders down, resulting

in there being no audio at all.

When controlling larger numbers of speakers, in my experience, a natural instinct when an enveloping

sound is desired would be to use many loudspeakers. However, in reality, given the phase alignments, this

only serves to increase the overall volume, not the sense of immersion. If the system could decorrelate

the signals going to each speaker, this might help to compensate, as described by Kendall and Cabrera

(2011). Additionally, lower volumes allow the space to be articulated with the sound, rather than having

the sound imposed on the space. All too often I have heard material played, simply too loudly. With many

materials, this can cause distortion in the ear itself: most likely distortion product otoacoustic emissions

(DPOE). The act of playing at a reduced volume can in most cases remedy this, although these concerns

are mostly raised by performance rather than composition.

From my own experience, when composing in stereo, I must consider left and right. Translating this

to performance, I have to consider this encoded left and right within the front-back and up-down fields of

performance. Having performed in various venues over a number of years, I am always considering how

certain materials will behave in a space. For example, consider a noise signal that pans from left to right

over a given time. In performance, I can place that left-right anywhere front-back-up-down statically in

the venue, and it is still a left-right movement. However, if I move the same sound from front to back, for

example, this then becomes a diagonal movement across the space. The act of performance has entirely

modified the spatial characteristics of the sound. Suppose then that I take a sound composed of sinusoidal

material and do the same. Given the perception system of the human ear, the movement will not be so

pronounced, if perceivable at all. If I then take a combination of the two sounds, if things align as such,

it is entirely possible to split the material in the two channels across the space—having the sinusoidal

material appear stationary, whilst the noise material moves diagonally across the space. Composition in

stereo is not reduced to left and right. Through performance it becomes something altogether different.

Although not possible, in general, during performance, we can create motion between speakers in

many of the patterns suggested byWishart when using the diffusion system in a studio context. Many of

4.7. TECHNIQUES FOR STUDIO-BASED DIFFUSION 89

a) Clockwise b) Counter-clockwise

Figure 4.3: SuperDiffuse circular motion

these are made possible by having assignable faders, as with SuperDiffuse. Rather than having traditional

mappings, we can use alternative fader assignments to create movement patterns, while maintaining

traditional wave movement patterns with physical controls—having a learned physical motion map to

different spatial motion. The configurations for circular motion (both clockwise and counter-clockwise)

are shown in Figure 4.3. Other movements are possible through the proportional routing matrix, such as

reducing a stereo set to a single speaker while moving through the space. In combination, a great variety

of motion is possible. Diagonal movement, for example, can be achieved in a few ways. If a stereo

signal pans from left to right, then the diffusion becomes a motion from front to back. Alternatively, in

the case of a mono signal, it may only require routing the same sound to each loudspeaker, controlling

one at a time. It would also be possible to route a stereo signal to CLSs, and have positional control on

this level too. This particular approach would have the effect of rotating the listening frame, as outlined

by Wishart.

So far, we have primarily considered stereo and mono materials as source for stem-based diffusion.

Given that the diffusion system can handle any number of input channels, it would potentially be possible

to create a single multi-channel file containing all the stems, using that to record spatialisation. This was

briefly investigated, but disparity between the number of input channels and output channels made it too

easy to accidentally remove entire stems if they were forgotten about. I found that it was much easier to

work with smaller channel-count materials and build up the overall spatialisation from there—encoding

spatialisation at a sound object level, first, rather than a structural one.

90 CHAPTER 4. SOFTWARE IN PERFORMANCE

The creation of stems was somewhat arbitrary for UTFCT, being related to the tracks in the DAW. If

spatial reconstruction were to be attempted again, it would perhaps be of greater benefit for an alternative

creation process. Perhaps grouping materials by spectral characteristics would be best, as this is often

how we might consider sounds when thinking of movement. It is important to note, however, that the

creation of stems would only be necessary for spatial reconstruction. If the system was used throughout

the composition itself, rather that afterwards, each sound object would itself be multi-channel from the

beginning. At this point, a need for contextualised listening becomes apparent. One might not wish to

hard-code spatial movement, as it might depend on its relation to other materials within the phrase or

section. Therefore, a composition-focused diffusion system would be ideal. It should provide a way to

audition one set of materials that are not affected by the control changes, whilst creating a spatialised

recording of other, independent sounds.

Another feature, that was not utilised in the case of UTFCT, is the possibility of loudspeaker-specific

processing. SuperDiffuse already provides this with its FilterSets for input and output, but as these

are focused on a performance environment, they serve a functional purpose. The SuperDiffuse_

Concert object in SuperCollider provides access to the underlying groups and buses. As such, it is

possible to add any processing Synth to the Input and Output FX groups, on a channel-by-channel basis.

In the studio, this could foreseeably be used creatively to have sounds be manipulated differently as

they are moved throughout the space. For example, consider a per-loudspeaker filter, each with different

settings—suddenly, a source material is given multi-channel spectral-split, dependent on its position in

space. This is a rather simple example, but there are many more complicated avenues still left to explore.

4.8 Conclusion

The use of the performance system during composition has been shown to present an additional method

for creating multi-channel source materials. Its main advantage is the utilisation of the knowledge-base,

including that of physical controls, concerning the movement of sound in space that I have gained from

performance experience. From the creation of UTFCT, it became clear that several features were missing

from the software, and that a different approach had to be considered. The concept of spatially recon-

structing a piece is one I find interesting, but I am more excited by the use of it to compose a piece from

the start. The use of the diffusion system in the studio opens up a new world of possibilities to explore

space-specific processing.

Taking into consideration thework ofNT from the previous chapter, we can begin to see another future

4.8. CONCLUSION 91

development. If a diffusion system was written from a NT perspective, it could prove a considerable

boon in studio-based composition of multi-channel music. Currently, SuperDiffuse only records audio,

not control. This was initially by design, as automated performance is a divisive topic. However, in the

context of composition, it becomes a requirement. The future standalone version of SuperDiffuse utilises

lwae as its audio engine, and so it is already partly there. The difficulty is in deciding what the GUI

becomes, as the needs of performance and composition are different in this respect. It would be possible

to write the diffusion matrix as an AudioGraphNode, and have it reside within Chronon. The goal

of my future work would be the creation of a multi-channel composition environment that utilises NT,

based on the proportional routing and control system of SuperDiffuse.

92 CHAPTER 4. SOFTWARE IN PERFORMANCE

CHAPTER 5

Conclusion and Future Work

This research has taken a different approach in trying to understand the influence of software in the

composition of acousmatic music. Throughout, software and music have been created in a cyclic manner,

with each informing the other, holistically viewing software as part of the process of composition and

performance. It has presented the idea that software can make a composer work in diametrically opposed

fashions, but that this may not present a concern in itself provided it is not ignored and attributed to some

other factor.

Software, composition and performance represent very exciting areas of research. As mentioned, it

is my hope to continue to develop the concept of No-Time, and incorporate the ideas of performance

systems into composition.

As an autoethnographic study, the conclusions within this thesis are naturally limited to my own

experiences. It is hoped, however, that most of the work presented here resonates with others and can

inspire future work, and perhaps lead to more software informed by its use as part of the composition of

acousmatic music.

The software included as part of this research is available under open-source licenses. The submis-

sion of this research does not constitute the completion of these programs, and they will continue to be

developed and the focus of my future work.

Software has previously been considered the embodiment of compositional activities. This research

has presented that by taking an approach that engages with composition, performance and computer

93

94 CHAPTER 5. CONCLUSION AND FUTURE WORK

programming we can search for new knowledge and experience.

APPENDIXA

Accompanying Materials

A.1 Sound examples

The sound examples that accompany this thesis provide clarification of several of the key points made in

the thesis. There is a folder of examples for each chapter, as labelled, made up of examples from the pieces

submitted alongside the thesis. The NRT folder contains examples of the iterative, additive process. The

RT folder contains an example of an entire RT output, and the moments that were selected for use in a

piece. The Chapter 4 folder provides examples of the stem-based diffusion used in the creation of Under

the Fractured Chestnut Tree, as well as some examples of specific spatial movements. The exact contents

are outlined in the README file contained within the main Sound_Examples folder.

A.2 Software manuals

The user manuals for the software distributed with this thesis are contained with the software distributions

themselves. In the case of SuperDiffuse its documentation resides within the SuperCollider help system,

accessible from within SuperCollider.

95

96 APPENDIX A. ACCOMPANYING MATERIALS

Bibliography

Adkins, M. (2014). Nodalism and Creative Practice, In Proceedings of the Conference of Computation,

Communications, Aesthetics and X, 2014. xCoAx.

Antons, D. & Piller, F. T. (2015). Opening the Block Box of “Not Invented Here”: Attitudes, decision

biases, and behavioural consequences. Academy of Management Perspectives, 29(2), 193–217.

Auger, P. (1981). On Creativity and Discovery in the Fine Arts and in the Natural Sciences. Leonardo,

14(2), 144–145.

Austin, L. (2000). Sound Diffusion in Composition and Performance: An Interview with Denis Smalley.

Computer Music Journal, 24(2), 10–21.

Austin, L. (2001). Sound Diffusion in Composition and Performance Practice II: An Interview with Am-

brose Field. Computer Music Journal, 25(4), 21–30.

Bayer, D. L. (1977). Real-Time Software for a Digital Music Synthesizer. Computer Music Journal, 1(4),

22–23.

Bedworth, J. (1998). Computer music and human expression. Digital Creativity, 9(2), 115–120.

Belet, B., Jaffe, D., Brümmer, L., Maverick, V. & Spiceley, A. (1992). The Composer and the Computer.

Computer Music Journal, 16(2), 7–10.

Bertelsen, O., Breinbjerg, M. & Pold, S. (2009). Emerging Materiality: Reflections on Creative Use of

Software in Electronic Music Composition. Leonardo, 42(3), 197–202.

Boden, M. (1995). Creativity and Unpredictability. SEHR: Constructions of the Mind, 4(2).

Boden, M. (2004). The Creative Mind: Myths and Mechanisms.

Boulez, P. (1986). Technology and the Composer. In S. Emmerson (Ed.), The Language of Electroacoustic

Music (pp. 5–16). The Macmillan Press Ltd.

Burnard, P. (2012). Musical Creativities in Practice.

Chadabe, J. (1977). Some Reflections on the Nature of the Landscape within Which Computer Music

Systems are Designed. Computer Music Journal, 1(3), 5–11.

Charrieras, D. & Mouillot, F. (2016). Getting Out of the Black Box: analogising the use of computers in

electronic music and sound art. Organised Sound, 20(2), 191–199.

Clowes,M. (2000).An investigation of compositional practices in the field of electro-acoustic music, with

an evaluation of the main software environments currently in use (Master’s thesis). University of

Sheffield.

97

98 BIBLIOGRAPHY

Collins, N. (2012). Automatic Composition of Electroacoustic Art Music Utilizing Machine Listening.

Computer Music Journal, 36(3), 8–23.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press.

Eaglestone, B., Ford, N., Brown, G. &Moore,A. (2007). Information systems and creativity: an empirical

study. Journal of Documentation, 63(4), 443–464.

Emmerson, S. (1986). The Relation of Language to Materials. In S. Emmerson (Ed.), The Language of

Electroacoustic Music (pp. 17–40). The Macmillan Press Ltd.

Gamma, E., Helm, R., Johnson, R. &Vlissides, J. (1995).Design Patterns: Elements of Reusable Object-

Oriented Sotware. Addison-Wesley.

Gruenwals, I. (1974). Mysticism, Science and Art. Leonardo, 7(2), 123–130.

Harrison, J. (1999). Sound, space, sculpture: some thoughts on the ‘what’, ‘how’, and ‘why’ of sound

diffusion. Organised Sound, 3(2), 117–127.

Harvey, J. (1986). The Mirror of Ambiguity. In S. Emmerson (Ed.), The Language of Electroacoustic

Music (pp. 175–190). The Macmillan Press Ltd.

Jaumotte, A. (1972). Art, Science and Technology. Leonardo, 5(2), 165–168.

Karlplus, K. & Strong,A. (1983). Digital Syntheis of Plucked-String andDrumTimbres.ComputerMusic

Journal, 7(2), 43–55.

Keane, D. (1986). At the Threshold of an Aesthetic. In S. Emmerson (Ed.), The Language of Electroa-

coustic Music (pp. 97–118). The Macmillan Press Ltd.

Kendall, G. S. & Cabrera, A. (2011). Why Things Do not Work: What you need to know about spa-

tial audio, In Proceedings of the International Computer Music Conference 2011. International

Computer Music Association.

Laske, O. (1984). Definitions of Computer Art. Computer Music Journal, 8(4), 9–11.

Laske, O. E. (1978). Considering Human Memory in Designing User Interfaces for Computer Music.

Computer Music Journal, 2(4), 39–45.

Lawson, J. &Mathews, M. (1977). Computer Program to Control a Digital Real-Time Synthesizer. Com-

puter Music Journal, 1(4), 16–21.

Lionnais, F. L., Agoston, G. & Bentley-Koffler, P. (1969). Science is an Art. Leonardo, 2(1), 73–78.

Loeb, A. L. (1971). Structure and Patterns in Science and Art. Leonardo, 4(4), 339–346.

MacDonald, A. (1995). Performance Practice in the Presentation of Electroacoustic Music. Computer

Music Journal, 19(4), 88–92.

Magnusson, T. (2011). Confessions of a Live Coder, In Proceedings of the International Computer Music

Conference 2011. International Computer Music Association.

Magnusson, T. (2019). SonicWriting: Technologies of material, Symbolic and Signal Inscriptions. Blooms-

bury Academic.

Mathews, M. (1963). The Digital Computer as a Musical Instrument. Science.

McAlpine, K., Miranda, E. & Hoggar, S. (1999). Making Music withAlgorithms. Computer Music Jour-

nal, 23(2), 19–30.

McClary, S. (1989). Terminal Prestige: The Case ofAvant-Garde Music Composition. Cultural Critique,

Spring(12), 57–81.

BIBLIOGRAPHY 99

McKerracher,A. (2016). UnderstandingCreativity, OneMetaphor at aTime.Creativity Research Journal,

28(4), 417–425.

McNabb, M. (1986). Computer Music: SomeAesthetic Considerations. In S. Emmerson (Ed.), The Lan-

guage of Electroacoustic Music (pp. 141–153). The Macmillan Press Ltd.

Miranda, E. R. (2001). Composing Music with Computers. Focal Press.

Monro, G. (1997). This Is Art, Not Science. Leonardo Music Journal, 7, 77–80.

Mooney, J. (2005). Sound Diffusion Systems for the Live Performance of Electroacoustic Music (Doctoral

dissertation). University of Sheffield. Department of Music.

Mooney, J. & Moore, D. (2008). A concept-based system for the live diffusion of sound via multiple

loudspeakers, InProceedings of the Digital Music Research Network, Unpublished. DigitalMusic

Research Network Conference 2008.

Moore, A. (2008). Fracturing the acousmatic: merging improvisation with disassembled acousmatic mu-

sic, In Proceedings of the International Computer Music Conference 2008. International Com-

puter Music Association.

Moore, A. (2016). Sonic Art: An Introduction to Electroacoustic Music Composition. Routledge.

Moore, A., Moore, D., Pearse, S. & Stansbie, A. (2013). Tracking Production: Identifying compositional

methods in electroacoustic music. Journal of Music, Technology & Education, 6(3), 323–336.

Moore, D. (2004). Real-time Sound Spatialization, Software Design and Implementation (Doctoral dis-

sertation). University of Sheffield. Department of Music.

Nuhn, R., Eaglestone, B., Ford, N., Moore,A. & Brown, G. (2002).AQualitativeAnalysis of Composers

at Work, In Proceedings of the International Computer Music Conference, 2002. International

Computer Music Association.

Peters, N., Marentakis, G. &McAdams, S. (2011). Current Technologies and Compositional Practices for

Spatialization: A Qualitative and Quantitative Analysis. Computer Music Journal, 35(1), 10–27.

Polfreman, R. (1999). A task analysis of music composition and its application to the development of

Modalyser. Organised Sound, 4(1), 31–43.

Pope, S. T. (1992). Editor’s Notes: The Composer and the Computer. Computer Music Journal, 16(2), 4.

Pope, S. T., Rahn, J., Cerana, C., Katayose, H., Pecquet, F. & Karpen. (1995). Touched by Machine?:

Composition and Performance in the Digital Age. Computer Music Journal, 19(3), 13–17.

Preusser, R. (1973). Relating Art to Science and Technology: An Educational Experiment at the Mas-

sachusetts Institute of Technology (M.I.T.) Leonardo, 6(3), 199–206.

Pulkki, V. (1997). Virtual Sound Source Positioning Using Vector Base Amplitude Panning. Journal of

the Audio Engineering Society, 45(6), 456–466.

Queen’s University of Belfast. (2019). Sonic laboratory specifications. Retrieved September 17, 2019,

from http://www.sarc.qub.ac.uk/home/sarc/facilities/soniclab/

Smalley, D. (1997). Spectromorphology: explaining sound-shapes. Organised Sound, 2(2), 107–126.

Spiegel, L. (1996). That was Then: This is Now. Computer Music Journal, 20(1), 42–45.

Suchman, L. (1985). Plans and Situated Actions: The problem of human-machine communication (Doc-

toral dissertation). Palo Alto Research Centre.

Tracy, H. (2002). An investigation of composers’attitudes towards the user interfaces of electro-acoustic

compositional software and how to support the compositional process in a software environment

(Master’s thesis). University of Sheffield.

http://www.sarc.qub.ac.uk/home/sarc/facilities/soniclab/

100 BIBLIOGRAPHY

Truax, B. (1977). The POD System of Interactive Composition Programs.Computer Music Journal, 1(3),

30–39.

Truax, B. (1986). Computer Music Language Design and the Composing Process. In S. Emmerson (Ed.),

The Language of Electroacoustic Music (pp. 155–173). The Macmillan Press Ltd.

Upton, C. (2004).An investigation into the compositional processes of Electro-acoustic composers (Mas-

ter’s thesis). University of Sheffield.

Vaggione, H. (2001). Some ontological remarks about music composition processes. Computer Music

Journal, 25(1), 54–61.

Weale, R. (2005). The Intention/Reception Project: Investigating the relationship between composer in-

tention and listener response in electroacoustic compositions (Doctoral dissertation). DeMontfort

University, Leicester.

Wilson, S. & Harrison, J. (2010). Rethinking the BEAST: Recent developments in multichannel compo-

sition at Birmingham ElectroAcoustic Sound Theatre. Organised Sound, 15(3), 239–250.

Wishart, T. (1994). Audible Design. Orpheus the Pantomime Ltd.

Wishart, T. (1996). On Sonic Art. Harwood Academic Publishers.

Wishart, T. (2012). Sound Composition. Orpheus the Pantomime Ltd.

	Introduction
	Research Question
	Methodology
	Overview

	Composition
	Overview
	Existing work
	Rules and Restrictions
	MOSART Project
	Plans and Situated Actions
	Existing Models

	Identifying Composition
	Twist and Turn: Reflection

	The Fluid Framework
	Overview
	Reasons
	Motivations
	Intentions
	Activities
	Receptions

	Conclusion

	Software in Composition
	Existing work
	MOSART Project
	The importance of memory
	Attitudes to software
	The role of software
	The influence of software

	Background
	Defining RT and NRT
	Developing software and composition
	Investigating NRT
	linkEngine
	NRT: On approach
	NRT: On method
	NRT: Conclusion

	Investigating RT
	le2
	RT: On approach
	RT: On method

	The Software Duality
	Data
	Investigating No-Time
	SOClib
	Under the Spreading Chestnut Tree
	Under the Spreading Chestnut Tree: Reflection
	Something from Nothing
	Something From Nothing: Reflection
	lwae
	Chronon
	Limitations and future work

	Conclusion

	Software in Performance
	Performing acousmatic music
	Hardware-based and software-based
	SuperDiffuse
	System Design
	Future improvements

	Multi-channel composition
	Performance in composition
	Under the Fractured Chestnut Tree
	Techniques for studio-based diffusion
	Conclusion

	Conclusion and Future Work
	Accompanying Materials
	Sound examples
	Software manuals

	Bibliography

