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ABSTRACT 

There is a long tradition of studying economic decision making, where humans 

often fail to maximise expected gain. More recently, attention has been directed 

towards decision making in mathematically equivalent sensorimotor tasks, where 

humans often approach maximum expected gain. But numerous everyday tasks 

have ‘cognitive’ and ‘sensorimotor’ costs. This raises a fundamental, but hitherto 

neglected research question about the factors that influence decision making when 

an economic choice has sensorimotor risks. We created a ‘game’ in virtual reality 

where participants needed to hit targets in order to win points. The game required 

participants to choose between two targets where one was easier to hit (closer and 

on permanent display) and the alternative was a harder-to-hit ‘risky’ target worth 

more points (further away and programmed to time-out). The time allowed to hit 

the ‘risky’ target was the median of the individual’s baseline trials. Participants 

deceased their movement time during the baseline trials so the risky targets were 

more likely to be hit than not regardless of their distance (this resulted in the risky 

targets having a higher expected gain with respect to the extrinsic reward). In 

Experiment 1, we found participants (n = 40) were motivated by the reward (so 

frequently selected the higher value target). Nevertheless, the behaviour was also 

influenced by the sensorimotor costs, such that participants were more likely to 

choose the safe option (despite this decreasing expected gain) when the high 

reward target (worth twice as many points) was further. We found gender 

differences whereby women were less likely to reach for the high reward target 

when it was further away. Subsequently, the same selection frequencies were 
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found in two separate groups (both n = 40) despite the high reward target having 

three and five times more points than the safe option, suggesting that a 

sensorimotor cost threshold acts as an upper bound on the selection choice 

process. In Experiment 2, we added motor noise whilst keeping the expected gain 

constant and found that this manipulation did not affect decision making (i.e. we 

found same selection frequencies as in Experiment 1). In Experiment 3, we added 

perceptual noise and again found that this did not affect the decision making. 

Experiments 2 and 3 suggest that adults are well tuned to the costs of their 

sensorimotor actions. The data from all 200 participants showed a bias to: (i) select 

a risky target after a safe trial; (ii) select a risky target after a high reward target 

was hit (compared to when it was missed). These behavioural phenomena are well 

captured by a partially observable Markov decision process (pom-dp), and a pom-

dp model was able to capture the behaviour by integrating extrinsic rewards and 

sensorimotor costs in a choice selection process. The pom-dp predicted that 

participants should increasingly select the risky target across multiple sessions, 

with the result that males and females should converge on similar selection rates 

across the different target distances. Experiment 4 tested this prediction with 

participants repeating the task across multiple sessions over three days. This 

resulted in an increased probability of the high reward target being selected, and 

by the end of the sessions the gender differences were not observed. The first four 

experiments always contained a known ‘safe’ target so Experiment 5 introduced a 

selection task where the choices needed to be made in a more dynamic fashion 

and there was not always an obvious ‘safe’ target. Experiment 5 confirmed that 

participants rapidly combine extrinsic rewards and sensorimotor costs in order to 
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choose between targets on a trial-by-trial basis. Experiment 6 investigated decision 

making in younger children and showed that the combination of extrinsic rewards 

and sensorimotor costs occurs in even 7-8 year old children (though there was 

greater evidence of sub-optimal selections occurring on some trials when the age 

of the group was younger).  
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 CHAPTER 1: INTRODUCTION  

1.1 Introduction  

Humans make countless decisions on a daily basis - from selecting which 

movement to execute through to selecting how the movement should be 

executed. This can be seen in even a simple activity such as picking an apple from a 

tree. There may be a bias towards selecting the closest apple to reach-and-pick. But 

what if the further apple is riper? The decision could be based on the reward only 

(apple ripeness) or the sensorimotor cost (the distance of the apple) or perhaps a 

combination of both factors (i.e. reward and cost). Little is known about the 

underlying mechanisms that govern such decision-making and how these factors 

(sensorimotor cost and cognitive reward) interact.  

Decision-making is defined by the Cambridge dictionary as: “a choice that you 

make about something after thinking about several possibilities”. It is defined 

according to the MIT Encyclopaedia of Cognitive Science as: “the process of 

choosing a preferred option or course of action from among a set of alternatives” 

(Wilson & Keil, 2001). When the probability is known the decision-making is being 

made under risk, however when the probability is unknown, the decision-making is 

being made under uncertainty. Uncertainty plays a big role in most of the decisions 

we face in daily life. The possible options can be explained by a probability 

distribution on potential outcomes that takes the form:  
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(𝑷𝟏, 𝑶𝟏; … … ; 𝑷𝒏, 𝑶𝒏)       (1) 

where O1, …, On represents potential outcomes, and P1, …, Pn, represents the 

corresponding probabilities. The decision problems depend on the level of 

knowledge about the probability. Therefore, they are divided into three categories; 

complete uncertainty (no knowledge about probability), ambiguity (some 

knowledge about probability), and risk (complete informed probability) (Martinez-

Correa, 2012). 

This thesis is concerned with two different types of decisions that humans make on 

a daily basis: ‘cognitive’ and ‘sensorimotor’ decisions. The vast majority of the 

research literature on human decision-making has focussed on cognitive decision 

processes (e.g. economic decision-making). More recently, there has been interest 

in how humans choose between two different actions. There have also been 

attempts to conceptualise sensorimotor control as a continuous set of decisions. 

This thesis will distinguish between the continual processes of control that are 

involved in sensorimotor action (which will be called ‘sensorimotor control’) and 

the discrete choices that need to be made about which action is chosen (that will 

be called ‘sensorimotor decision-making’). Nevertheless, it is recognised that 

sensorimotor control’ and ‘sensorimotor decision-making’ are highly integrated 

processes. It is further recognised that sensorimotor decision-making and cognitive 

decision-making are highly integrated – and the major topic of this thesis is how 

these different decision processes interact when humans choose one option rather 

than another. This introductory chapter will provide a brief summary of decision-

making before providing a general overview of the sensorimotor control literature. 
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The consideration of the sensorimotor control literature will lead to recent work 

that proposes how the human nervous system makes sensorimotor decisions. 

1.2 Cognitive decision-making  

Expected utility theory was first developed by Bernoulli (1738). The main idea of 

the theory is that the best decision is the one that comes from the largest expected 

value. It predicts that people should choose the largest expected gain or smallest 

expected loss. When the expected gain or loss remains the same, people should 

choose each option about equally often on average, provided they have an 

unlimited source of funds and behave rationally.  

The problem with expected utility theory is that human performance in decision-

making under risk is characterised by sub-optimality. Human performance is 

affected by different cognitive biases that can cause some limitations and deficits 

when making rational decisions. Framing the outcome of human performance in 

terms of losses and gains with an overestimation of loss-aversion was one of the 

patterns noticed with sub-optimality according to Kahneman and Tversky (1979). 

Loss aversion can be seen as people dislike a loss (even little losses) more than they 

like a gain of the same size.  Another feature of sub-optimality is the propensity to 

overweight the low probability outcomes (Tversky & Kahneman, 1992). It has also 

been found that humans tend to incorrectly estimate the frequency of rare events 

(Lichtenstein et al., 1978). The prospect theory developed by Kahneman and 

Tversky (1979) captures these behaviours by including a probability weighting 

function along with assuming that participants maximise the loss and gain trade-

off. 
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Kahneman and Tversky (1979) proposed four components of prospect theory: (i) 

reference dependence; (ii) loss aversion; (iii) diminishing sensitivity; (iv) probability 

weighting. According to the theory, people obtain utility from gains and losses, 

which are evaluated against a reference point instead of an absolute value. This 

assumption is called a “reference dependence”, which can be reflected in our 

perceptual system. For example, our body is more adjustable to changes in the 

temperature (increase or decrease) rather than the absolute degree of change. The 

second component of the theory is loss aversion, which can be defined as people 

disliking a loss (even small losses) than like a gain of the same size. The theory 

value function considers winning £100 less valuable compared to losing £100.  

The third component of prospect theory is diminishing sensitivity, which is defined 

by the value function concavity in the gains area and convexity in the losses area. 

This sensitivity means that replacing £100 gain (or loss) with £200 gain (or loss) has 

greater impact compared to replacing £1,000 gain (or loss) with £1,100 gain (or 

loss). The concavity over the gains area represents the risk-averse behaviour in 

people over moderate probability gain. Kahneman and Tversky (1979) found that 

people preferred a definite gain of £500 over a gain of £1000 with 0.5 probability. 

On the other hand, the convexity over the losses area represents risk-seeking 

behaviour. Kahneman and Tversky (1979) found that people preferred a 0.5 

probability of losing £1000 over the definite loss of £500 (panel A in Figure 1.1).  

The last component of prospect theory is probability weighting. According to 

prospect theory, people weight their outcomes according to the weighted 

probability instead of the true probability. Thus, humans overweigh small 

probabilities and under weigh high probabilities. Kahneman and Tversky (1979) 
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found that people preferred a 0.001 probability of gaining £1000 to a definite gain 

of £1, but they also preferred a definite loss of £1 to a 0.001 probability of losing 

£1000 (panel B in Figure 1.1). 

 

Figure 1.1 Panel A shows the prospect theory value function, the x-axis represents 
the gain and losses while the y-axis represents the positive or negative value. The 
concavity of the function over the gains represented with green arrow and the 
convexity over the losses represented with red arrow. Dashed lines showing the 
negative and positive value (-60 and +40) of the same gain or loss of £100. Panel B 
shows the probability weighting function, the true probability on the x-axis and the 
weighted probability on the y-axis. The dashed line is the linear probability function 
according to the utility theory, and the blue non-linear probability is the weighting 
probability according to the prospect theory. 

The study of human decision-making developed over time from focusing on 

economic models into creating biological models of the proposed processes 

(Bossaerts & Murawski, 2015). Early economic theories, such as rational choice 

theory and revealed preferences theory (Coleman & Fararo, 1992; Richter, 1966), 

focused on choices and how these choices can be linked to maximising 

mathematical function (value or utility function). Subject preference was not 

considered of great importance within these theories, and they considered 

preference and choice as an equivalent. The work of Kahneman and Tversky (1979) 
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meant that new value functions were developed to improve the fit of the original 

models with empirical data. Utility maximisation was the framework that started to 

capture the human choice behaviour in a manner consistent with the earlier 

economic theories.  

The neuroeconomics field emerged from advances in biological research aimed at 

improving our understanding of brain functions and activities (Bossaerts & 

Murawski, 2015). Neuroeconomics focuses on the description of choice algorithms 

and their biophysical implementation. This way of study helped to improve 

understanding of how value functions are represented in the brain at a neural 

level. Neuroeconomic data were used mainly to improve our understanding of 

valuation models when data were not enough. Neurobiology studies have shown 

that choice under uncertainty might be based on mean variance rather than 

traditional expected utility theory. Decision neuroscience is a new field of decision-

making where biology plays a major role in capturing the biological variations that 

even the best economic models fail to capture (Shiv et al., 2005). One area of 

research in neuroscience is studying the effect of neurotransmitters on behaviour. 

It has been found that an increase of dopamine level in the brain affects the 

economic choice of subjects and was found to be speeding the learning rate in two-

armed bandit task (Pessiglione et al., 2006). However, there is some controversy 

over whether the information gathered from the neuroeconomics studies is 

relevant, and it has been argued that neuroeconomics is not important for the 

future of choice theory (Bossaerts & Murawski, 2015).   

The efficient coding hypothesis states that economic choices are irrational because 

they are easily affected by variation in the local context (Summerfield & Tsetsos, 
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2015). Perceptual decision-making experiments usually tend to show optimal 

behaviour because the tasks made in single and static context. If the environment 

becomes more variable and violates this static condition, the decision-making 

behaviour will show economic-like decision-making. Other studies have found that 

subjects give more credits to the outcomes that are close to category boundary 

compared to those far away. When information about the target is variable and 

consistent humans integrate information robustly neglecting the redundant 

information. The information available affects the evaluation of feature values 

according to the efficient coding hypothesis (Barlow, 2013). In line with this 

hypothesis, subjects process information that has higher probability with higher 

gains. Sufficient information encoding is important to obtain good decision-making. 

Economical biases might be explained by a model in which the gain of neural 

processing is easily adaptable to the environmental context. The perceptual 

decision-making exhibit sub-optimal behaviour. However, the optimal behaviour 

may occur when the environment is stable (Summerfield & Tsetsos, 2015).  

Optimal decision theories link neurobiology and behaviour in two ways; by 

enabling the identification of decision-making models agreement, and by 

improving the understanding of current data (Bogacz, 2007). Perceptual decision-

making has three processes; first the sensory evidence to support the choices, then 

integrating the information available over time, and the last process is when a 

specific criteria has been checked (Mazurek et al., 2003). To decide between two 

alternatives, there are two models proposed; a race model and a diffusion model 

(Ratcliff, 1978; Vickers, 1970). According to the race model, the decision is made 

when the integrated evidence exceeds a specific threshold. In contrast, the 
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diffusion model suggests that a decision is made when the difference between the 

winning choice and the losing choice exceeds a threshold. There are different 

cortical models (e.g. Shadlen & Newsome, 2001; Usher & McClelland, 2001) 

presented to explain the cortical process in decision-making. When deciding 

between two alternatives, there are two neural integrators linked to the possible 

alternatives, and when the activity level in one of the integrators exceeds a 

threshold, a decision is made. The cortical models are equivalent to the diffusion 

model for value that optimises their performance. 

True optimisation requires a meta-optimisation that takes into consideration the 

benefits and costs of the internal processes employed in making decisions 

(Boureau et al., 2015). Boureau et al., (2015) proposed that the brain has at least 

two decision controllers; one is responsible for selecting the controller to perform 

the optimisation processes and the other is responsible for selecting the final 

outcome according to the controller’s preference. Choosing between alternatives 

involves comparing between different expected values. Finding the difference 

between the value of the final outcome and the cost associated with that outcome 

yields the net value of any decision process. Choosing the most rewarding choice 

depends on accurately knowing the value of other alternatives. Computational 

models of how the use of resource could be translated into gain: (i) assume that 

the particular amount of resource use gets better information (Keramati et al., 

2011; Payne et al., 1988); (ii) specify some mechanisms that might produce more 

accurate responses (Bogacz et al., 2006; Dehaene et al., 1998); (iii) explain how 

complex cognitive representations might lead to a better outcome (Baum & Smith, 

1997; Daw et al., 2005).  
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The study of metacognition aims to understand the basis of certainty states and 

their role in regulating mental resources to a specific task (Ackerman & Thompson, 

2017). Two levels must be considered in order to understand the metacognitive 

processes such as; object-level processes, where basic cognitive work is carried out, 

and meta-level processes, where it monitors the basic-level processes to examine 

functioning (Nelson, 1990). In the meta-reasoning framework, the object-level 

processes involved in reasoning are; identifying the components and goals, 

generating initial responses, and selecting choices. The processes that control 

cognition are low level, and cue based, even in activities such as reasoning.  

Current theories of decision-making are based on optimisation and might not be 

feasible in some situations (Bossaerts & Murawski, 2017). Bossaerts and Murawski 

(2017) proposed ‘computational complexity theory’ to deal with the computational 

problems that other theories cannot deal with. Rational choice theory, for instance, 

presents the problem of decision-making as an optimisation problem. These 

theories do not explain how the decision maker would behave optimally, and 

whether finding the optimal solution is possible. Another challenge is the utility 

idea in decision-making studies, where subjects are presented with limited number 

of alternatives (usually two). Models of human decision-making need to take into 

consideration the resources available to the decision maker in different decision 

circumstances. However, the availability of the resources is usually context-

dependent. In ‘computational complexity theory’ the decision-making and 

cognitive control are linked and cannot be thought of as a separate systems 

(Bossaerts & Murawski, 2017). 
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In summary, there is a large literature on cognitive decision-making. The research 

literature has established that cognitive decision-making is subject to a number of 

biases and is often not rational. The underlying mechanisms of decision-making in 

cognitive tasks have been investigated extensively and a better understanding of 

how humans make decisions (and the neural substrates of these decision-making 

processes) has been developed. There has been much less work on understanding 

how cognitive decision-making interacts with the sensorimotor system. 

1.3 Sensorimotor control  

Motor control is defined as the ability to regulate or direct the mechanisms 

essential to movement (Shumway-Cook & Woollacott, 2007). Movement emerges 

from three main factors; the task, the environment, and the individual. Constraints 

within individual factors are cognition, action, and perception which are important 

to understand the full picture of motor control. There are many theories for motor 

control; the reflex theory, hierarchical theory, motor programming theory, systems 

theory, dynamic action theory and ecological theory.  

Sherrington (1947) developed the reflex theory which suggested that complex 

behaviour could be explained through the combined action of individual reflexes 

that were chained together. There were many limitations to this theory – such as 

the fact that the reflex cannot be the basic unit of behaviour especially if 

spontaneous and voluntary movements are recognised as acceptable classes of 

behaviour because the reflex must be activated by an outside agent (Rosenbaum, 

2009). Reflex theory also failed to adequately explain the movements that occur in 

the absence of a sensory stimulus, fast movements or the fact that a single 
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stimulus can result in a varying response depending on context and descending 

commands. Finally, reflex theory was unable to explain the ability to perform novel 

movements. 

The issues faced with reflex theory resulted in the development of motor 

programming theory – which was based on the central motor pattern concept 

(Schmidt, 1980). This concept is more flexible than the reflex theory, because 

movements could be activated by either sensory stimuli or the central processes. 

The motor programme could be identified as a central pattern generator that is the 

spinal motor programmes that can produce movement without any input (cortical 

or sensory). On the other hand, the motor control term also could be used to 

describe the higher level motor programme. This represents actions in more 

abstract way. Motor programming theory clearly suggested that the hierarchal 

organisation of the motor programme could store the rules of generating the 

movement. One of the limitations to this theory is that it’s not intended to replace 

the importance of sensory input in controlling movement. The central motor 

programme cannot be the sole determinant of action (Bernstein, 1967). Moreover, 

this theory doesn’t take in consideration the environmental and musculoskeletal 

variables in executing the movement control.  

Instead, Gibson (1966) suggested the ecological theory of movement control. 

Gibson’s research considered how we detect information in our environment that 

is relevant to our action, and how this information is used to control our 

movement. Actions require perceptual information that is specific to a desired 

goal-directed action performed within a specific environment. Gibson’s theory of 

ecological perception focused on the role of perception in detecting information in 
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the environment that can support the actions necessary to achieve the goal. The 

organisation and function of the nervous system were given much less emphasis in 

this theory and many researchers who follow Gibson also identify closely with the 

ideas of system theory (Bernstein, 1967).  

System theory was developed by Bernstein (1967) and concerned mostly with the 

degree of freedom issue. The human body has many degrees of freedom to 

control, in other words, we have many joints and each joint can move in a number 

of different ways. Bernstein suggested hierarchical control exists to simplify the 

control of the degrees of freedom. The higher levels of the nervous system activate 

lower levels, and the lower levels activate synergies that act together as a unit. This 

theory has been criticised for its broad and general explanation of motor control 

and the fact that it doesn’t account for the interaction between the organism and 

the environment. Thus, the ideas of Bernstein were developed further into 

dynamic action theories of action control. 

Dynamic action theory suggests that new movements emerge due to a critical 

change in one of the system’s control parameters (Kamm et al., 1990; Thelen et al., 

1987). These control parameters are variables that regulate changes in the 

behaviour of the entire system. The dynamic action perspective has de-emphasised 

commands from the CNS in controlling the movement and emphasised the physical 

constraints of the movement. The motor behaviour is thought to be determined by 

the relationship between the physical systems of the human, and the environment 

in which the human operates. Combining both the dynamic and system theories of 

motor control produced a dynamic system model. This model proposes that the 
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movement underlying action results from the interaction of both physical and 

neural components.  

More recently, Shumway-Cook and Woollacott (2007) developed the ‘integrated 

system-based theory’ which reflects the key elements of the motor control theories 

discussed earlier (i.e. hierarchical, systems, dynamic action and ecological 

theories). This theory conceptualises movement as a product of an interaction 

across the task, the environment, and the individual. The task attributes mainly 

define and constrain the execution of a movement task. Tasks are classified based 

on the movement variability, the base of support (whether it is stationary or 

changing), and finally the manipulation requirements. The environmental 

constraints can be divided into regulatory and non-regulatory conditions. 

Regulatory conditions are factors that shape the movement while the non-

regulatory conditions are those factors that may affect performance but do not 

directly shape the movement. The individual constraints according to this theory 

can be divided into three categories: action (involving the motor system), 

perception (factors that limit the internal integration of sensory information), and 

cognition (relate to attention, emotions, and motivations). 

1.4 Computational approaches to sensorimotor control  

Functions and activity of daily living involve a series of actions that are executed to 

complete a specific goal. Decision-making processes are evident in all the different 

levels of such an activity, such as; planning, selection, execution, feedback and 

correction.  The initial work of the quantitative models on goal-directed movement 

focused on movement planning. One of the main problems is movement 
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redundancy, which simply means that each action (such as reaching to a cup of 

water) has multiple possible movement trajectories.  

One solution that it has been proposed the human brain uses to resolve this issue is 

to choose an action associated with the lowest motor cost. Most planning models 

concentrate on the framework of optimising cost. The system is trying to optimise 

performance and certain functions. There were different suggestions in the 

literature about what is being optimised. Some have suggested the system seeks to 

minimise energy (Chow & Jacobson, 1971; Rancourt & Hogan, 2001), minimise jerk 

(Flash & Hogan, 1985), minimise torque (Uno et al., 1989), or minimise spatial error 

(Harris & Wolpert, 1998) as a way of optimising the function. 

Flash and Hogan (1985) suggested that the brain tries to minimise the cost of 

movement by minimising jerk (movement acceleration). They presented studies of 

the coordination of voluntary arm movements and developed a mathematical 

model to predict the feature of a multimodal arm movement (minimum-jerk 

model). Using dynamic optimisation theory, the best movement performance was 

determined. The best movement was defined by the minimum rate of change of 

acceleration (jerk). They compared their model to human subjects performing a 

voluntary movement and found similarities between the predicted and measured 

trajectories. The steepness of the rising and falling velocity, acceleration curves, 

and time to acceleration were similar between the predicted and measured results. 

There are different frameworks and mechanisms proposed in the literature that 

might be used by the brain to optimise movement (Franklin & Wolpert, 2011). First, 

predictive control can be used to overcome common problems like delays and 

noise. Second, impedance control can be used to control the noise and uncertainty 
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in the system. By increasing the resistance to displacement, the impedance control 

mechanism controls the changes in the sensorimotor system. Third, learning 

mechanisms can be used by the brain to optimise movement control. Humans are 

learning machines and they develop, learn, and adapt with time. Learning can be 

used to overcome some of the problems mentioned earlier, like nonlinearity and 

non-stationarity. Two mechanisms specifically proposed in the literature for 

movement control are Optimal Feedback Control and Bayesian Decision Theory 

and they are discussed in detail below.  

Optimal feedback control (OFC) is a model proposed by Todorov and Jordan (2002) 

and suggests that the system is trying to optimise the feedback gained from a 

movement. OFC is concerned with studying the optimisation of cost function and 

modelling human performance. The controller in this framework needs an optimal 

estimation of the system and appropriate adjustment of the feedback gained. An 

optimisation technique is used to find the feedback control law that minimises the 

error in task performance. The optimal feedback control law is initiated after the 

task is selected, then a motor command is sent to the muscle to execute a specific 

function. Another signal (‘efferent copy’) is simultaneously sent to the optimal 

state estimator to overcome the delay in the feedback and correct the movement 

pattern as the function is executed (i.e. reducing error). The task-relevant errors 

are corrected and those errors irrelevant to the task are ignored (the so called 

minimum intervention principle). This principle is used in the OFC model to 

minimise the potential effect of noise. The feedback gains are optimised in this 

framework and therefore the movement. To optimise the movement, the Bayesian 

decision theory framework is used (Figure 1.2). 
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Figure 1.2 Optimal feedback control (OFC) framework as proposed by Todorov & 
Jordan, (2002). 

Bayesian decision theory (BDT) is a framework that consists of Bayesian inference 

and decision theory (Blackwell & Girshick, 1954). The framework is used to describe 

how the nervous system could perform optimal estimation and control the 

inherent uncertainties within the system. This theory relies on prediction of both 

the internal and external state of the world. Knowing the state of the world and the 

objectives of the movement (the decision) are the main two challenges in Bayesian 

decision theory. When Bayesian estimation provides an accurate estimate of state, 

then decision theory can be used to choose the optimal function given the inherent 

uncertainties within the system. According to Bayes’ rule, the probability of 

receiving new information (termed the likelihood) is combined with the prior 

beliefs to obtain the probability of different possible states (termed the posterior). 

The other part of the BDT framework is concerned with the ‘decision’ and deals 

with the problem of selecting the decision or action based on the current 
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information. The goal is to minimise the expected loss given our current 

knowledge. This loss function quantifies the value of taking each possible action for 

each possible state of the world, L (action, state). To calculate the optimal action, 

the expected loss for a specific action is calculated and this loss is averaged across 

the possible states weighted by the degree of belief in the state: 

           ∑𝐋(𝐚𝐜𝐭𝐢𝐨𝐧, 𝐬𝐭𝐚𝐭𝐞)𝐏(𝐬𝐭𝐚𝐭𝐞|𝐬𝐞𝐧𝐬𝐨𝐫𝐲 𝐢𝐧𝐩𝐮𝐭)   (2) 

Where ∑ denotes a summation over all possible states, and then the action which 

has the smallest expected loss can be chosen as an optimal action.  

In summary, good progress has been made in developing computational models of 

sensorimotor control. These models provide some insights into possible 

mechanisms that the brain could use to deal with the complexities of controlling 

movement in an uncertain world. The work in this thesis is based on an 

experimental task where participants must choose between targets that have 

different sensorimotor costs. The sensorimotor costs were manipulated by pacing 

targets at different distance. The further targets had a higher sensorimotor cost 

because reaching to further targets places greater demands on the postural control 

system. The development of postural stability is an important milestone in 

childhood development, and the ability to maintain a stable posture is a foundation 

for a myriad of different motor skills. It is therefore worth considering the 

processes involved in maintaining posture, and how these processes develop. 

1.5 Posture and postural control  

Posture is defined as the relative position of body parts with respect to a reference 

frame (Hadders-Algra & Carlberg, 2008). Postural control includes controlling the 
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body’s position in space for stabilising or orienting it. Postural orientation is 

referred to as the ability to maintain a proper relationship between the body 

segments on one side and between the body and the environment for a task on the 

other (Horak & Macpherson, 2010). 

Postural stability, or balance, is the ability to maintain the centre of mass (COM) 

within the base of support (BOS). The base of support is the area where the body is 

in contact with the support surface. The centre of mass (COM) is a point where the 

body mass is centred. COM is proposed to be the variable maintained by the 

postural control system. The vertical projection of this point on the BOS is called 

the centre of gravity (COG). To ensure stability the nervous system produces forces 

to counteract the COM movement. Centre of pressure (COP) is the centre of the 

distribution of all forces applied to the supporting surface. To keep the COM within 

the support base, the COP moves continuously around the COM (Benda et al., 

1994; Winter et al., 1991). 

Postural control occurs from an interaction of the individual with the task and the 

environment (Shumway-Cook & Woollacott, 2007). The postural control system, 

which consists of a complex interaction between the musculoskeletal and neural 

systems, has the main ability to control our body in space. These musculoskeletal 

components include joint range of motion, muscle properties, spinal flexibility, and 

biomechanics of body segments. The neural components include things like motor 

process, sensory or perceptual process, and the higher level process.  

Quiet stance posture is characterised by very little amount of postural sway. There 

are several factors that affect the stability in quiet stance - the body alignment, the 

muscle tone, and the postural tone. Perfect body alignment allows the body to 
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keep equilibrium with minimum expenditure of internal energy. This is possible by 

keeping a hypothetical line going down vertically from the mastoid process to a 

point just in front of the ankle joint and passing through the knee and hip joints. 

Muscle tone is another way to stabilise quiet stance. It is the force with which the 

muscle resists being lengthened. The last factor contributing to stance is the 

postural tone. Postural control is the increase in antigravity postural muscles to 

overcome the force of gravity.  

There are three postural movement strategies to control disturbed stance; the 

ankle strategy, the hip strategy, and the stepping strategy (Nashner, 1976). Each 

strategy depends on the degree of perturbation and disturbance. In case of a small 

perturbation, the system uses an ankle strategy where the COM is centred on the 

ankle joint. When the perturbation is larger, the hip strategy is used. It controls the 

COM movement by producing big and quick motion at the hip joints with 

concurrent rotation in the ankle joint (Horak & Nashner, 1986). The last strategy is 

the stepping strategy, where the perturbation is large and can’t be controlled by 

moving the hip alone. The system is trying to keep COM within the BOS and 

therefore takes a step further to ensure this happens. These movement strategies 

are used in both a feedback and feedforward control mode. Feedback control is 

used in response to a sensory feedback (somatosensory, visual, or vestibular). 

Feedforward control appears when the system anticipates the movement with 

potential disturbance.  

There are different systems involved in postural control; the somatosensory, 

vestibular, and visual system. The central nervous system (CNS) organises the 

information from these different sources to determine the body’s position in space. 
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For example, visual inputs provide information of the position and motion of the 

head with regards to the surrounding objects. The somatosensory system helps 

maintain our stability by providing the accurate position and motion information of 

the body with reference to the supporting surface. The vestibular system is an 

important source of information for postural control. It provides the CNS with 

information about the head position and movement with regard to the gravity 

forces.  

Postural adjustment strategies are used to maintain body equilibrium and balance 

(Nashner & McCollum, 1985). Falls caused by postural disturbance are reduced by 

using anticipatory postural adjustment (APA) or compensatory postural adjustment 

(CPA). On one hand, APA includes muscle responses or limited body shifts that 

arise before the postural disturbance. The key role of APA is to minimise the 

postural disturbance that about to occur and it is mainly based on the previous 

knowledge and learning (Aruin & Latash, 1995; Li et al., 2007), on the other hand, 

CPA is a reactionary strategy which is associated with muscle activity and body 

movements after postural disturbance. This strategy meant to reduce the effect of 

postural disturbance and are initiated by the sensory feedback signals (Alexandrov 

et al., 2005; Park et al., 2004). 

1.6 Development of postural control  

Children develop some vital skills during early years such as crawling, sitting, 

walking, climbing, and eye-hand coordination in different ways. The evolution of 

these skills requires the development of postural activity to support the primary 

movement. Classic theories of development depend on the reflexes while some 
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other recent theories suggest that postural control emerges from a complex 

interaction between musculoskeletal and neural system (i.e. postural control 

system). 

Several researchers have investigated the postural reflex in the past (Magnus, 

1926; Schaltenbrand, 1928). They developed a model based on the reflex-

hierarchical theory, which looks at the importance of postural reflexes in motor 

control. Examining postural reflexes is an important way of identifying motor 

development delays in children. Attitudinal tonic reflexes; such as asymmetric tonic 

neck reflex (ATNR), symmetric tonic neck reflex (STNR), and tonic labyrinthine 

reflex (TLR), are a sign of developmental delays in infants, where the body posture 

altered when the head position has changed (Milani-Comparetti & Gidoni, 1967). 

According to the reflex-hierarchical model, the righting reaction considers the 

position of the head in space and the orientation of the body in relation to the 

head and surface. These righting reactions are meant to help a person to predict 

the normal standing position and keep stability when position is altered. There are 

three main righting reactions that orient the head in space; optical righting 

reaction, labyrinthine righting reaction, and body-head righting reaction. The other 

two reflexes that interact with the body position and the surface are neck-on-body 

righting reaction and body-on-body righting reaction (Cupps et al., 1976). 

Balance reactions are important to acquire stability which is vital for meeting 

developmental milestones. According to the reflex theory, balance develops with a 

series of equilibrium reactions. These balance reactions are the tilting reaction 

parachute or protective responses, and staggering reaction. Tilting reaction is used 

to control the centre of gravity in response to a tilting board. The parachute 
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reaction is used to prevent the body from falling. The staggering reaction mainly 

appears when a disturbance from the side direction is evident. 

More recent theories of motor development, as mentioned previously, consider 

the interaction between multiple systems in controlling posture. Changes in 

musculoskeletal system, development of coordination, development of sensory 

systems, development of sensory strategies of organisation, and development of 

adaptive and anticipatory mechanisms influence postural development. Balance 

and postural control development may follow a cephalocaudal sequence or top 

down approach (Gesell, 1946). Head control is shown to be evident in the first six 

months of infancy. Some research suggests that neck muscle contraction appears 

as early as the first month of age (Hedberg et al., 2005, 2004). The development of 

independent sitting happens after the infant controls the sway in head and trunk. 

This balance sitting develops during the 6th to 8th month of age (Butterworth & 

Cicchetti, 1978).  

During the process of learning to stand independently, the infant must learn two 

main things. First, the infant must learn to balance in more challenging situations 

(standing compared to sitting). Second, the infant must learn to control many new 

different degrees of freedom (controlling leg and thigh with trunk and head). 

Thelen and Fisher (1982) suggested that muscle strength is necessary to develop 

standing balance and walking in infants. On the other hand, Roncesvalles et al., 

(2001) suggest that infants are capable of producing force beyond their body 

weight before the development of independent stance. This means that muscle 

strength is not the main constraint of stance postural control in infant. 
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1.7 Sensorimotor decision-making  

The focus of this thesis is on the topic of how the system decides to choose one 

action rather than another (sensorimotor decision-making). This topic was 

neglected in the research for many decades but has more recently become the 

focus of research interest. For example, Trommershauser et al., (2003b) developed 

a task where subjects had to reach towards a screen and hit a reward circle within 

a specific period of time whilst avoiding a penalty circle (Figure 1.3). Subjects knew 

that landing in the penalty circle would result in a loss of points whilst landing in 

the reward circle would result in gaining points. This task was formulated in term of 

statistical decision theory, which tries to capture a simple movement planning task 

into a decision between different options that is mathematically equivalent to 

decision-making under risk.  

 

Figure 1.3 Reaching under risk task (adopted from Trommershauser, et al., 2003). 
On the left hand side the display screen that participants must reach and touch. If 
the hand landed on the green circle, participants gain 2.5, and if the hand landed 
on the red circle, 12.5 is deducted. Each circle has a radius of 9 mm. 
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The experiment allowed Trommershauser et al., (2003) to compare economic 

decision-making task with an equivalent motor task, and understand the decision-

making strategies implemented by subjects. The main question would be where to 

aim? If subject tries and aims too close to the centre of the reward circle there is 

high chance landing in the penalty circle, and if subject aims away from the centre 

of the reward circle to avoid the penalty circle, there is a high probability of missing 

it. They found that most of the participants used a movement plan that maximises 

the expected gain. These results reveal fundamental differences between cognitive 

decisions (which frequently do not maximise expected gain) and sensorimotor 

decisions.  

Neyedli and Welsh (2013) showed that the motor system achieves optimality by 

optimising the reward gained from the movement (movement outcome not 

movement execution). They used a similar task to that employed in 

Trommershauser et al., (2003), and examined the end-point location during an 

aiming task with external rewards. Participants completed 300 trials aiming at a 

target overlapped with a penalty area, then a 50 trial interval was analysed 

separately. Neyedli and Welsh (2013) found that participants learned with time the 

optimal end-point selection to maximise the gain. At an early stage of the task, the 

end-point was mainly at the circle centre (suboptimal end-point selection) and this 

shifted when task experience increased. Another finding was the effect of feedback 

provided to participants on the performance and decision-making process. The 

feedback gained after each trial, fail or success, affected the movement variability 

and end-point selection. Feedback and experience are required for participants to 

perform the aiming task optimally.  
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Neyedli and Welsh (2013) presented three possible explanations of the change in 

the behaviour towards optimality in their task; motor learning factors, probability 

of hitting the target, and the value of the target. This progression in precision and 

performance is in consistent with the motor learning literature (H. et al., 2004), and 

is possibly a result of motor plan accuracy improvement (Schmidt, 1975) or online 

correction process (Elliott, Digby; Helsen, Werner; Chua, 2001). These early models 

tends to rely more on the feedforward planning process, and not focused as much 

on the feedback received from the environment and processed by the system 

(Gallivan et al., 2018).  

The main question when planning a movement under risk (i.e. choosing between a 

winning or losing option) is how to optimally balance the trade-off between these 

two options. Maximising the total winning of the movement or the task is 

important. Two main features of movement that affects the decisions we make and 

need to be taken into consideration when making motor decision; the cost 

associated with it and the noise produced by the movement.  

Trommershauser, Maloney and Landy’s (2003) model tries to answer the question 

of how the movement should be planned. They considered the movement planning 

problem as a decision-making problem and developed a model for movement 

planning based on statistical decision theory (Blackwell & Girshick, 1954). The 

model has two key concepts; first, the decision maker will include the possible 

costs associated with movement. These costs can be considered as monetary gain 

or loss. Second, the decision maker will take into account motor uncertainty when 

planning movements. Executing a simple task (i.e. reaching for a cup) has multiple 

movement trajectories which is determined by a movement plan. The motor 
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uncertainty affects the execution of this movement plan effectively which induces a 

probability distribution on the possible costs associated with the movement. The 

optimal movement decision is to select a plan that maximise the expected value. 

Previous models of movement planning focused mainly on the minimisation of the 

biomechanical features of the movement by reducing the cost associated. The 

optimisation goal of such models (as discussed previously) is to minimise some 

measure of stress on the muscles and joints, for instance; minimising joint mobility 

(J. F. Soechting & Lacquaniti, 1981), minimising change of acceleration (Flash & 

Hogan, 1985), minimising torque change (Uno et al., 1989), minimising energy 

expenditure (Alexander, 1997), and minimising peak work (J. Soechting & Flanders, 

1995). However, none of these models can capture human performance related to 

decision-making tasks that have some cognitive loads (i.e. extrinsic rewards and 

penalties).  

Statistical decision theory (SDT) provides a method for finding the best possible 

movement plan that would maximise the expected gains (Blackwell & Girshick, 

1954). It is a mathematical method of selecting optimal actions under uncertainty 

and can model a goal-directed movement with motor and sensory uncertainty. The 

theory consider three components: the state of the world, the sensory information, 

and the possible actions. There are three functions within the theory. First, there is 

the likelihood function that links the state of the world to the sensory information 

(which can be thought of as a function that captures all relevant information to 

estimate the current state of the world). Second, there is the gain function which 
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determines the gain or loss from a particular action. Finally, there is the decision 

function which captures the decision-making strategy used by a decision maker.  

Statistical decision theory can be used as a mathematical framework to model a 

simple movement (reach to hit screen). Fundamentally, SDT is used to combine 

information about uncertainty and gain to achieve the maximisation goals. It is 

used to explain the decision-making and motor tasks with a common mathematical 

language (Trommershauser et al., 2003b). This translation can be useful in 

understanding how the movement could be framed in economic terms, and 

translating the economic decision-making into a mathematically equivalent motor 

task. This framework can be used to model different tasks with action and 

perception components that have gain or loss associated with.  

A series of decision-making processes are involved in optimal sensorimotor 

interactions with the surrounding environment. These processes help someone to 

decide what movements to execute and when and how to execute them. Thinking 

of a baseball player task where he/she should follow the approaching ball in order 

to intercept it in the right time, and another task where he/she needs to decide 

whether to hit the ball or not. The intercepting task is known as a continuous space 

task and is the core of sensorimotor control studies, whilst the selection task is 

known as a discrete space task. The concept of optimisation is central in both; 

continuous space tasks and discrete space tasks. In the following section, we 

introduce and review experiments in these two spaces. 

The traditional serial models of target selection suggest that movement execution 

comes after action selection (McClelland, 1979; Miller et al., 1960). However, Cisek 
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et al., (Cisek, 2007) proposed that movement planning and decision-making 

operate simultaneously. Evidence for this idea was driven by behavioural studies 

that showed reaching movement trajectories will deviate away from the initially 

displayed target (Welsh & Elliott, 2004). In neural correlate studies on primates, it 

has been shown that competing reach targets triggered different sensorimotor 

areas in the brain before a single target is selected (Cisek & Kalaska, 2005). 

Therefore selecting and moving toward a specific target might be suggested to 

occur at the same time, which might imply on the decision-making process used in 

a simple reaching task. 

The main question from these experiments is how the human brain decides 

between possible actions? On the one hand, there is the goal-based model where a 

subjective value of the possible actions is computed by integrating different factors 

(gains, risks, cost, etc.). The brain then prepares an appropriate action plan towards 

the preferable target (Padoa-Schioppa, 2011). On the other hand, there is an 

action-based model where the subjective value of possible actions is computed and 

then multiple actions compete against each other (Cisek, 2006). These findings 

drive the understanding of decision-making and sensorimotor control interaction.  

Previous studies showed that when human make free choices between two 

possible reaching movements, they are likely to choose the movement that has 

lowest movement-related cost (Cos et al., 2011, 2012). In another study it was 

suggested that when choosing between two different actions, the decision-making 

process evaluates the future biomechanical cost of the possible movement and 

then select the movement that associated with the lowest cost. Transcranial 

magnetic stimulation was applied on the motor cortex and showed that the 
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estimation of the effort associated with the possible movements is calculated 

rapidly and influences the movement decision within 200ms of the object 

presentation (Cos et al., 2014). These findings suggest that the future 

biomechanical cost of possible movement is known and the decision-making 

processes compare between them in order to select the lowest-cost option.  

Chen et al., (2018) examined the influence of Pavlovian biases on motor decision-

making and whether these biases are reduced with ageing in motor decision-

making (as was the case in previous motor performance studies). Choice behaviour 

was considered in both value dependent and value-independent processes. An 

app-based motor decision task examined subject’s behaviour towards gaining and 

losing points when making go/no-go decisions. The game require subjects to 

execute a tapping movement on a predefined path and trajectory within a limited 

timeframe. The subject had to decide before taking the actions whether to take the 

motor gamble (the risk) or skip the trial. There were reward and punishment 

combinations for each trial, and subjects started with 250 points and needed to 

collect as many points as possible. Chen et al., (2018) tested 26,532 participants 

with the age varying from 18 years to more than 70 years old and an additional 120 

participants were recruited for an experiment on the estimation of motor 

performance. Older adults collected fewer points compared to the younger adults. 

Points collected depended on two factors; motor performance and the decision 

made. Smaller screen size, smaller target size and older age were factors that were 

found to be associated with the reduction in motor performance (i.e. success rate). 

Older adults moved slower than younger adults and therefore when the task was 

more difficult they failed more often. To test the assumption that participants had 
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good estimates about their success probability, participants were asked to estimate 

their probability of success and then execute the motor part of the task (i.e. 

without doing the decision-making part). The probability of motor success was 

estimated accurately by participants within the different age group. Participants 

showed less risky behaviour (decreased gamble selection) with age in reward trials, 

and less in the punishment trials.  Age-related changes in the two trial types (i.e. 

reward and punishment) for both value-dependent and value-independent 

parameters were found. Similar decision-making tendencies were found across 

motor and economic domains. Low risk aversion in the value-dependent process 

indicated that risk aversion was present in reward trials and risk seeking in 

punishment trials. The risk preference parameter was reduced with age suggesting 

that older adults increase value-dependent biases (which means more risk aversion 

in reward and more risk seeking in punishment trials).  

1.8 Cognitive vs sensorimotor decisions  

The production of the high-level skills observed in humans requires both the motor 

and cognitive systems to work together. According to Fitts and Posner (1967), 

motor learning has three phases; the cognitive phase (memorising the movement 

sequence); the associative phase (linking the parts into one smooth action) and the 

automatic phase. In three experiments that aimed to study sequence learning 

ability, Raw and colleagues (2019) compared young and older adult movement 

performance in a sequence learning task. In the first experiment, participants used 

a tablet PC and standard computer mouse to learn a movement sequence between 

targets located in the screen. The number of correct recalls and the recall 
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movement time were measured for older and younger adults. The results show 

that participants with different age groups learned and recalled the movement 

sequence over test trials (14 trials). In another experiment, participants completed 

the same task as the previous experiment but comparing the preferred and non-

preferred hand performance. Similar improvement in sequence recalling was 

evident as the previous experiment but especially for the younger adults and the 

preferred hand condition. The movement time was faster for the younger adults 

and when using the preferred hand compared to older adults and the non-

preferred hand. The final experiment used the same sequence learning task but 

with two different conditions that varied the motor demands. In the first condition 

the mouse used in natural place (on a desk) whilst the other condition the mouse 

used in a rotated position (against an inverted T-shape stand). The learning 

sequence was reduced with tht sideway orientation compared to the regular 

orientation indicated by lower number of recalls and slower movement time.  

In the dual-task literature, the cognitive system and motor system are presented as 

two separate systems that interfere with each other. Raw and colleagues (2019) 

introduced the Cognition Action Interaction Theory (CAIT) to capture the idea that 

most activities of daily living require both the motor and cognitive system to 

operate in an interactive manner. It recognises that cognitive and motor systems 

are different systems and can be studied separately whilst conceptualising them as 

mutually dependent systems. The CAIT suggests that increasing the motor 

elements in a sequence learning task will lead to reduction in the cognitive 

elements and thereby limit learning rate. The results presented in Raw et al., 

(2019) showed that the cognitive and motor systems play an interacting role in skill 



32 
 

learning, and this observation could expand to decision-making tasks. This thesis 

therefore studied the way in which sensorimotor costs and extrinsic (cognitive) 

rewards interact to determine which action is selected. 

1.9 The use of Virtual Reality in research  

Virtual reality (VR) systems are opening windows and new opportunities for science 

and research. Behavioural research is one of the fields that benefit from the 

advancement in the software and hardware in VR. The concept of VR started in the 

sixties when Sutherland described VR like a window that user perceive the virtual 

world as real (Sutherland, 1965). Since then different definition of VR was 

presented, for instance Fuchs and Bishop (1992) defined VR as “real-time 

interactive graphics with 3D models, combined with a display technology that gives 

the user the immersion in the model word and direct manipulation” (Fuchs and 

Bishop, 1992, p. 156). On the other hand VR described as “The illusion of 

participation in a synthetic environment rather than external observation of such 

an environment. VR relies on a 3D, stereoscopic head-tracker displays, hand/body 

tracking and binaural sound. VR is an immersive, multi-sensory experience” 

(Gigante, 1993, p. 4). 

Three main features that emerged from the VR system definitions such as; 

immersion in an environment, interaction with an environment, and perception of 

an environment. The immersion feature is concerned with the number of senses 

stimulated, the interactions with the virtual environment, and the similarity to 

reality in the stimuli used in the virtual environment. The level of immersion might 

vary and depends on the technological system used (Slater, 2009). There are three 
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types of immersion in VR systems; (i) non-immersive systems which use the 

desktop to provide the image of the world, (ii) semi-immersive systems which 

produce a stereo image of a three dimensional (3D) pictures presented on a 

monitor, and (iii) full-immersive systems which give a full simulated experience by 

using the head-mounted display (HMD) for increasing the stereoscopic view of the 

environment through head movement in addition to haptic and audio devices. 

 The usr of virtual reality systems is wide and varys from gaming (Meldrum et al., 

2012; Zyda, 2005) to military training (Alexander et al., 2017), to education 

(Englund et al., 2017), and psychological treatment (Freeman et al., 2017; Neri et 

al., 2017). The ability to present the stimuli in scientific research with high realism 

in VR allows the researchers to implement this technology in different fienlds such 

as psychological research related to phobia and pain adaptation or motor 

rehabilitation (Botella et al., 2017; Llorens Rodríguez et al., 2014). 

1.10 Overview of the thesis 

The body of experimental work presented in this thesis focuses on the interaction 

between the sensorimotor system and the cognitive system when making 

decisions. Many factors could contribute and bias the decision-making process in a 

task with both cognitive reward and sensorimotor cost, for instance; level of cost, 

value of reward, gender of the participant, noise in motor or sensory system, and 

age group. The key research question within this thesis was whether or not the 

sensorimotor cost and cognitive reward interact in different decision-making 

processes. Another aim of this thesis was to identify and examine possible biases 

that influence the decision-making processes.  
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The first experimental chapter of this thesis investigated the way that extrinsic 

‘cognitive’ rewards and sensorimotor costs interact in decision-making processes. 

This experiment also explored whether there are gender differences in the ways 

that participants combine extrinsic rewards and sensorimotor costs. There is a 

large body of literature that suggests females show less risk taking behaviour 

compared to males (Bruce & Johnson, 1996; C. Harris et al., 2006; Powell & Ansic, 

1997). These differences in risk aversion are shown in a number of different ways 

within real world settings: females rate risk more highly than males in a variety of 

scenarios including: driving, fire, crime, food safety and medical surgery (Breakwell, 

2014). It seemed reasonable, therefore, to hypothesies that there might be gender 

differences in the way that our participants behaved in response to the extrinsic 

rewards and sensorimotor costs within our task. 

The second experimental chapter explores the impact of increasing motor noise on 

the way that participants choose which action to select. Noise is defined as random 

or unpredictable fluctuations and disturbances that are not part of a signal (Faisal 

et al., 2008). Noise occurs at every level of the nervous system and cause a main 

problem for information processing. These levels vary from the perception of 

sensory information to the generation of motor activities. The main goal of the 

brain is to receive and process information. There are different stages in the 

nervous system where noise is presented; cellular noise, sensory noise and motor 

noise. In this experiment, participants used their non-preferred hand to execute 

actions and make decisions. Our experimental design was such that the expected 

value of the targets did not change as a function of the noise manipulation 

(because the length of time that the targets were present took into account the 
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fact that the additional noise caused an increase in movement duration). This 

meant that the experiment allowed us to explore whether participants were tuned 

to the actual sensorimotor costs or whether the action selection process would be 

affected because of a higher level awareness of the task being more difficult. 

The third experimental chapter added another type of noise, sensory noise, where 

participants couldn’t follow the online visual feedback of their hands. The rationale 

for this experiment was identical to the hypothesis testing within the second 

experimental chapter – but was focussed on whether perceptual noise rather than 

motor noise per se affected the decision-making process. 

In the fourth experimental chapter, the effect of repeating the task over period of 

time on the decision-making process was examined. This chapter was motivated by 

an analysis of the data across all the participants in the first three experiments. 

These data allowed identification of factors that biased the decision-making 

process. These biases could be captured using a Partially Observable Markov 

Decision Process model. The pom-dp model predicted that the participants should 

increase the extent to which they selected the ‘risky’ option in the experimental 

task. 

The fifth experimental chapter was concerned with the effect of reward and cost 

manipulation within participant. This design allowed us to explore the extent to 

which participants traded off exploration and exploitation when choosing one 

action over another. There are three possible models to address the problem of 

how to trade-off between exploration and exploitation in unstable environment 

(Daw et al., 2006). On the first model, a simple decision rule was used where the 

subject remembers the expected value for each alternative based on their previous 
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experience. Usually the decision maker chooses the option with the greatest value 

(exploitation) however sometimes, with a fixed probability, the decision maker 

choose randomly among the other alternatives (exploration). This model usually 

called “greedy”; where the decision maker chose the greedy alternative that 

believed to be best. For the second model, alternatives are chosen with probability 

weighted by their estimated values. The decision maker in this model prefer the 

option with a higher value, however this behaviour is reduced by the value of the 

alternative options and the noise added to the decision maker. Therefore the 

balance between exploration and exploitation is maintained by relative value of 

alternatives and the gains. With higher gain, decisions are determined more by 

relative value (exploitation), but with lower gain those decisions are evenly 

distributed at random (exploration). In the last model, the choices are made 

similarly to the previous model but adding “uncertainty bonus” to the alternatives 

that have not been selected. This bonus would promote the probability of the 

unchosen alternative (i.e. exploration) (Daw et al., 2006).  

The final experimental chapter investigated differences between age groups in 

decision-making and action execution. It has been found that children as young as 

three to six years old can differentiate between low value and high value options 

(Davidow et al., 2018). Children’s and adolescence’s selective attention was 

compared with young adults and the results showed that young adults consistently 

responded more to high value targets compared to low value. Younger adults also 

responded faster to the high value targets compared to the adolescents and 

children. It has been found that younger children (4 to 5 years) make use of reward 

in improving their performance in a developmentally appropriate task. However, 
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this reward influence on performance was limited when the task complexity 

increased. When cognitive task difficulty is similar to the subject’s ability, children, 

adolescents, and adults improved their control performance for rewarding 

outcome when compared to a neutral outcomes. Adolescents can make use of 

value in simple tasks but the importance of value in action execution is limited in a 

more difficult tasks. Adults and adolescents showed similar accuracy in value 

dependent learning. These observations were challenged when the task has 

greater learning demands (i.e. increased number of objects to learn, reduce 

reinforcement probability, or increased feedback complexity). Adolescents showed 

lower accuracy level in complex learning tasks compared to adults. Moreover, they 

learned the task without feedback integration which might suggest that 

adolescents learn better in less complex environments.  

Davidow et al., (2018) found that children were similar to adults and showed faster 

motor response to cues that linked to higher values. One limitation in these kind of 

studies is that monetary evaluation is different across development. Previous 

research has found that adolescents and adults judge money similarly. Some 

research has demonstrated that adults improve their goal-directed actions 

selectively when high value goals are at stake. When looking at younger adults, 

they are more likely to improve their control when acting upon high value targets 

compared to a low value targets. Cognitive control improves from childhood to 

adolescence but cognitive control in adolescence is undergoing continuous 

development and changes when compared to adults in challenging scenarios with 

difficult task demands. These developments are correlated with the functional 

development of the brain systems (e.g. prefrontal cortex and parietal cortex). 
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These observations in adolescence suggest that the recruitment of control systems 

in the brain becomes more stable and strategic and therefore performance is 

improved. 
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 CHAPTER 2: Task development and piloting work  

2.1 Introduction  

Using immersive technology is becoming more common in research as the 

investment in hardware and software increased. Virtual reality (VR) has already 

been used in different areas of research including; rehabilitation (Adamovich et al., 

2009), medical surgery (Gurusamy et al., 2008), and sport training (Gray, 2019; 

Neumann et al., 2018). In set of experiments, Harris et al., (2019) used VR golf 

putting simulation to examine the physical and psychological fidelity. The golf 

putting performance was compared between novice and expert participants and 

found that simulation was able to recognise the experts and novice participants. In 

another research, Hasan et al., (2020) used VR system to examine object-reaching 

behaviour in cluttered environment and compared the data collected from VR with 

robots.   

This chapter includes the piloting work involved in the task development and the 

general methodology of the experiments carried out. In order to develop the task 

and to test all possible alterations and variables, four pilot studies were carried out. 

A total of 33 participants aged 18 to 29 years helped to finalise and develop the 

task. The aim of this piloting work was to come with a final task that would capture 

the reward and cost in sensorimotor decision making. The final task should have 

some element of difficulty so it is not easy to execute, measures the decision 

making skills, and does not take long time to complete.   
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2.2 Materials and apparatus  

The Oculus Rift (CV 1) Virtual Reality (VR) system was used to collect the data. The 

Oculus Rift comprised a head-mounted display (HMD), two controllers and two 

sensors. A gaming-grade laptop (ASUS ROG GL 502VM, Intel Core i5-7300HQ, 

Nvidia GTX 1060) was used to run the Oculus Rift. The HMD was first calibrated 

using the built-in procedure, which set the virtual floor level to match the physical 

floor. The virtual environment was an empty room with a 3m height, 6m width, and 

6m depth (Figure 2.1Error! Reference source not found.).  

 

Figure 2.1 Panel A shows a schematic of a participant wearing the head-mounted 
display with red cross and the dimensions of the virtual room; 3m height, 6m 
width, and 6m depth. Panel B shows the virtual room from participant’s 
prospective with the red cross, dimensions, and a white spot where the participant 
stood. 

2.3 First pilot to examine the Go/No-Go design in decision-making  

The first pilot assessed the GO/No-Go procedure in decision-making using the 

virual reality. The primary idea was to present participant with a target and allow 

them to either reach (Go) or skip (No-Go). It involved five postgraduate researchers 

(three males and two females) aged from 24 to 29 years old. The aim of this pilot 

was to examine that the design is effective and captures the decision making 
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behaviour. There were three sessions in this pilot; practice session, baseline 

session, and decision-making session. 

2.3.1 Practice session 

In the practice session, the participants held the controller on the starting target 

(red bubble) and waited until it change colour. The target (white bubble) appeared 

in front of the participants and then the starting target turns into green which 

indicates that participants must reach to the target. Then the participants need to 

reach to the target and pop it. In this session, the participants saw one target per 

trial and it appeared on three different distances (0.50 arm’s span, 0.57 arm’s span, 

and 0.65 arm’s span). They reached four times per target distance in quasirandom 

order (total of 12 trials) to familiarise themselves with the task. 

2.3.2 Baseline session  

In the baseline session, the participants held the controller on the starting target 

(red bubble) and waited until it change colour. The target (white bubble) appeared 

in front of the participants and then the starting target turned into a green which 

indicates that participants must reach to the target. In this session, the participants 

introduced with one target per trial without reward (stars). This target appeared on 

three different distances (0.50 arm’s span, 0.57 arm’s span, and 0.65 arm’s span). 

The participants needed to reach to the target as fast as possible to measure their 

movement time. The median movement time was calculated and used in the 

decision-making session as a bubble appearance time. The participants were 

introduced with a feedback message “Please pop the bubble as fast as you can” 

and told verbally by the experimenter to reach as fast as possible for each trial. The 
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participants reached eight times for each target distance in a quasirandom order 

(total of 24 trials). 

2.3.3 Decision-making session  

The last session is the decision-making session, where the participants needed to 

decide whether to reach to the target or not (Go/No-Go). Similar to the previous 

sessions, the participants held the controller on the starting target (red bubble) and 

wait until it change colour. The target (white bubble) appeared in front of the 

participants and then the starting target turns into a green which indicates that a 

decision must be made. The decision in this pilot was either to move the controller 

and reach to the target or keep the controller at the starting target (red bubble). 

The target appearance time depends on the participants' movement time in the 

baseline session. The median movement time was calculated for each target 

distance from the participants' performance in the baseline session. Should the 

participants decided to reach to the target, the controller must be moved toward it 

and haptic feedback (vibration) felt when the target is hit.  

A screen with feedback of the trial outcome appeared in front of the participants to 

indicate whether the target was missed “Too slow!” or hit “Bubble popped!”. The 

feedback colour when the participants hit the target is blue and when miss the 

target is red. These different colours were used to emphasise the visual feedback 

difference between the two trial outcomes. There are three outcomes for each trial 

in this pilot; hit when the participants reached to the target and hit it on time, miss 

when the participants reached to the target but didn’t hit on time, and the last 

outcome was no go should the participants decided not to reach at all and instead 
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kept the controller on the starting target (red bubble). The participants reached 16 

times for each target distance in a quasirandom order (total of 48 trials). 

2.3.4 First pilot results 

Observing the participant’s behaviour in this pilot gave a clear idea about this 

design. The participants reached most of the time toward the target regardless of 

their outcome and the target distance. The participants hit the target around 75% 

of the time while miss the target around 25% of the time (Figure 2.2).  

 

Figure 2.2 The selection in the first pilot. Around 75% of the time they hit the target 
and around 25% they miss the target.  

As participants have only one target to reach for, the participants had the feeling of 

the need to reach when the starting target went green. This might be attributed to 

the time given to make the decision or it was a reactive behaviour rather than a 

decision making. Therefore, the second pilot was designed to eliminate these two 

factors as shown below.  
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2.4 Second pilot to examine the two choice decision-making design 

In the second pilot, the target appearance design was manipulated to allow more 

time and to facilitate the decision-making process. Compared to the previous pilot, 

another target was introduced (fixed target) in addition to the main target 

(disappearing target). The main difference was in the decision-making session 

where two targets appeared instead of one, more details of this session below. The 

other two sessions (practice and baseline) were the same as the first pilot. Nine 

postgraduate researchers recruited in this pilot (two males and seven females) with 

an age ranged from 24 to 29 years old. 

2.4.1 Decision-making session  

In the decision-making session, participants chose between two targets. They held 

the controller on the starting target (red bubble) and waited until it change colour. 

As mentioned earlier, the participants were introduced with two targets (white 

targets); fixed target and disappearing target. There were four differences between 

the fixed target and disappearing target. First, the fixed target distance always 

appeared at 0.35 arm’s span while the disappearing target appeared in three 

different distances (0.50 arm’s span, 0.57 arm’s span, and 0.65 arm’s span). 

Second, the fixed target appeared randomly in the opposite direction to the 

disappearing target (right vs left). Third, the value of the reward each target has. 

The fixed target always has one star reward while the disappearing target has two 

stars of reward. The last difference was the appearance time, the fixed target 

appeared for longer time compared to the disappearing target. The appearance 
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time for both targets depends on the median movement time of each participant in 

the baseline session. 

When the target appeared in front of the participants, participants waited for the 

starting target to change colour to green, which indicates that a decision must be 

made. Then the participants moved the controller toward one of the targets; the 

fixed target or the disappearing target. Should the participants decided to reach to 

the target, they move the controller towards it and haptic feedback (vibration) felt 

when the target is hit. A screen with feedback of the trial outcome appeared in 

front of the participants to indicate whether the target is missed “Too slow!” or hit 

“Bubble popped!”. The feedback colour when the target is hit was blue and when 

the target is missed was red. These different colours were used to emphasise the 

visual feedback difference between the two trial outcomes.  

There were four trial outcomes in this pilot; high reward hit when the participants 

reach for the disappearing target and hit it on time, miss when the participants 

reach for the disappearing target and don’t hit it on time, low reward hit when the 

participants reach for the fixed target and hit it, no go when the participants didn’t 

move the controller from the starting target (Figure 2.3). The participants reached 

16 times for each target distance in a quasirandom order (total of 48 trials). 
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Figure 2.3 The selection percentage in the second pilot as a function of the trial 
outcome. 

2.4.2 Second pilot results 

In this pilot, the participants showed different behaviour compared to the previous 

pilot. Participants showed risky behaviour (i.e. reaching for the disappearing target 

more often compared to the fixed target). Participants reached to the disappearing 

target (risky choice) more often regardless of the target distance. Figure 2.5 shows 

the selection percentage for each target distance. 
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Figure 2.4 The mean selection percentage in the second pilot as a function of target 
distance with standard error bars. 

The hit rate is high for all the target distances which means that the participants 

reached most of the time to the disappearing target (the risky choice) and hit the 

target. Figure 2.5 shows the hit for each target distance. 
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Figure 2.5 The mean hit percentage in the second pilot as a function of target 
distance with standard error bars. 

The noticed decision-making behaviour might be attributed to the target distance. 

The target distances used might not be hard (far) enough, so participants reached 

and hit the target (regardless of the distance) all the time. The next pilot tested this 

idea and made the target appears further.  

2.5 Third pilot to examine the target distance effect on decision-

making 

In the third pilot we examined the target distance effect on the decision-making 

behaviour. After the results from the previous pilot, in this pilot we changed the 

target distance in the decision-making session as explained in the next section. Ten 

psychology undergraduate students were recruited in this pilot (four males and six 

females) aged from 18 to 23 years. Similar to the previous pilot, this pilot has three 

sessions (practice session, baseline session, and the decision-making session). The 
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only difference was in the target distances, which became 0.50 arm’s span, 0.65 

arm’s span, and 0.75 arm’s span in all sessions.  

2.5.1 Decision-making session 

In the decision-making session, participants chose between two targets. Similar to 

the previous pilot procedure, the only difference in this pilot was the disappearing 

target distance. The disappearing target appeared in three different distances (0.50 

arm’s span, 0.65 arm’s span, and 0.75 arm’s span). There were four trial outcomes 

in this pilot, Figure 2.6 shows the percentage of each outcome.  

 

Figure 2.6 The selection percentage in the third pilot as a function of the trial 
outcome. 

2.5.2 Third pilot results 

The results from this pilot were closer to what we aimed for. Figure 2.7 shows the 

riskiness behaviour shift from risk-seeking (i.e. reaching to the disappearing target) 

to risk-averse (i.e. reaching to the fixed target) when the target appears at far 
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distance compared to the near distance. The participants reached for the further 

target (0.75 arm’s span), however, hit it less frequently compared to the other 

target distances (0.5 arm’s span and 0.65 arm’s span). This allows us to conclude 

that the 0.75 arm’s span target is within reach distance for the participants but not 

too easy to hit in every attempt.  

 

Figure 2.7 The mean selection percentage in the third pilot as a function of target 
distance with standard error bars. 

When looking at the riskiness behaviour of participants, we notice that the trend is 

affected by the target distance. The further the target the safer the behaviour 

noticed from participants. The hit rate for different target distances differs from 

the previous pilot as shown in Figure 2.8. The observed results gives an evidence 

that the target distances used in this pilot is acceptable and helping to capture the 

main aim of the intended experimental body. Therefore, these target distance 

were used for the upcoming experiments. 
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Figure 2.8 The mean hit percentage in the third pilot as a function of target 
distance with standard error bars. 

In the previous pilots the targets were presented randomally (left vs right). A 

question worth investigating was wether or not the appearance randomisation 

would play a role in the decision-making process. The next pilot trys to answer this 

question.  

2.6 Fourth pilot to examine the randomisation effect on decision-

making  

To examine the appearance order effect, nine undergraduate students from the 

school of psychology (eight females and one male) were recruited with an age 

ranged from 18 to 23 years. The design was similar to the previous pilots, however 

the appearance order of the target was changed. The target appearance was in 

pseudorandom order to examine the difference between this order appearance 

and the random appearance. The practice and baseline sessions were similar to the 
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previous pilot, however the baseline trials increased in this pilot compared to the 

previous pilot (27 trials) to get better median movement calculations. The median 

has been used over the mean to make sure the movement time is not affected by 

the skewed data. 

2.6.1 Decision-making session  

In the decision-making session, participants chose between two targets. Similar to 

the previous pilot procedure, the only difference was the target appearance order. 

The pseudorandom target order was fixed per participant with three trials in the 

right direction and the consecutive three trials appeared on the left direction. 

There were five trial outcomes in this pilot; hit when the participants reach for the 

disappearing target and hit it on time, miss when participants reach for the 

disappearing target and don’t hit it on time, low reward hit when the participants 

reach for the fixed target and hit it, no go when the participants didn’t move the 

controller from the starting target, and the last outcome is premature where the 

experimenter failed the participants trial because of stepping out the white circle 

(Figure 2.9). Participants reached 16 times for each target distance in a 

quasirandom order (total of 48 trials). 
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Figure 2.9 Participants selection percentage in the fourth pilot as a function of the 
trial outcome. 

2.6.2 Fourth pilot results  

The target appearance order effect was tested in this pilot. There was no order 

effect on the participants’ behaviour between the two appearance orders 

examined. Therefore, the random order was the best design to carry out applying 

in the experiment. The results from this pilot were closer to what we aimed for. 

Figure 2.10 shows the riskiness behaviour shift from risk-seeking (i.e. reaching to 

the disappearing target) to risk-averse (i.e. reaching to the fixed target). 

Participants reached for the further target (0.75 arm’s span), however, hit it less 

frequently compared to the other target distances (0.50 arm’s span and 0.65 arm’s 

span). This allows us to conclude that the 0.75 arm’s span target is within reach 

distance for the participants but not too easy to hit in every attempt. 
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Figure 2.10 The mean selection percentage in the fourth pilot as a function of 
target distance with standard error bars. 

When looking at the riskiness behaviour of participants, we notice that the trend is 

affected by the target distance. The further the target the safer the behaviour 

noticed from the participants (Figure 2.11). 
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Figure 2.11 The mean hit percentage in the fourth pilot as a function of target 
distance with standard error bars. 

After the pilot work carried out, the final design is presented in the next section 

with a general methods explained for the different experiment. 

2.7 General methods  

The previous four pilots help to develop the task used in the different experiment 

presented in this thesis. This general method section presenting the main features 

and layout of the task that was in different experiments. 

2.7.1 Baseline data 

First, participants’ age, preferred hand, height, and arm span were measured 

(panel C in Figure 2.12). The University of Leeds Ethics and Research Committee 

approved this study and participants gave their written, informed consent. They 

stood on a dedicated spot on the floor with their feet shoulder width apart. Height 
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was measured by calculating the distance between the VR headset and the physical 

floor. Arm span was measured by asking the participants to hold two controllers 

(one in each hand) and spread their arms horizontally and the distance between 

the two controllers was recorded.  

Three measures of postural stability were taken (eyes open, eyes closed, and 

oscillating room) by measuring the movement of the Oculus headset. The location 

of HMD in the virtual room was recorded at a frequency of 90 Hz. The postural 

stability was measured by computing the path length (sum of all point to point 

distance over time). In the eyes open condition, participants were asked to fixate a 

red cross placed on the wall in the virtual room for 10 seconds. In the eyes closed 

condition, the virtual room was turned to black and participants were asked to 

close their eyes while maintaining their posture for 10 seconds. In the oscillating 

room condition, participants kept their eyes open and were instructed to remain 

stable for 10 seconds while the room moved forward and backward on an 

amplitude of 5° and rate of 0.25 Hz. The postural stability data were removed from 

the experimental chapters analysis because the results were not informative.  

2.7.2 General task structure  

Participants undertook three sessions: a practice session, a baseline session, and a 

decision-making session, and took seven minutes on average to complete the task. 

In the practice session, participants were provided with a visible target that 

appeared at one of three distances: 0.50, 0.65, and 0.75 arm span from the start 

position. The participant’s objective was to move a controller held in the hand to 

hit the target. The target remained visible until the participants hit it successfully. 
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In order to complete a trial, participants first moved the controller to a starting 

position (a red bubble) that was located on the midline at a height equivalent to 

0.75 of the participant’s height and at a distance of 0.20 arm’s span. The red 

bubble then turned to amber. There was a randomly generated inter-stimulus 

interval of 750 to 1500ms after which the target appeared. Following a further 

interval of 300 to 500ms (allowing the participant advance time to choose an 

option), the amber bubble turned green and an auditory signal (whistle) acted as 

the imperative signal to move. The participants had six trials in the practice session 

(two trials for each target distance in a randomised order) to familiarise themselves 

with the task. After each trial finished, participants returned to the red bubble to 

start another trial at their own pace.  

In the baseline session, participants were asked to reach as fast as possible to the 

target under the same design as the practice trials. There were 27 trials in the 

baseline session with participants reaching nine times to each target distance (0.50, 

0.65, 0.75 arm span). The target location was randomised. The feedback presented 

in text within the virtual display was either “Well done, that was fast” when the 

participant’s movement time was faster than the previous trial for the same target 

distance, or “Too slow, try to be faster” when the movement time was slower than 

the previous trial for the same target distance. Following the baseline session, the 

median movement time (reach time) was calculated for each target distance from 

the kinematic data generated from the controller. This movement time was used as 

the target appearance time in the decision-making session (panel A in Figure 2.12). 

The last session was the decision-making component, where the participant had to 

decide between two targets – a low reward option and a high reward option. As in 



58 
 

the practice and baselines, the targets were represented as bubbles that 

participants were asked to reach towards in order to “pop”. The same trial 

initiation was used as in the previous sessions. The low reward option was always 

closer and at the same distance (0.35 arm span), and never disappeared. The high 

reward option was further (either 0.50, 0.65 or 0.75 arm span) and disappeared 

after a set time interval (this time interval was determined by the median time 

taken to hit the target during the baseline session calculated for each participant). 

If the high reward target was selected then the trial would time out if the target 

was not hit and a ‘miss’ was recorded. If the low reward target was selected then 

this target would remain until it was hit, meaning miss trials only occurred in 

response to high reward target selections. Target selection was determined by 

checking whether the hand was on the right or left of the midline at the high 

reward target’s elapse time (i.e. the median time taken from baseline session). 

The targets could appear randomly either on the left or the right of the midline 

(high and low targets were randomly assigned to each side). The angular separation 

between the targets was 25 degrees (each target positioned 12.5 degrees from the 

midline). The start bubble was located on the midline at a height equivalent to 0.75 

of the participant’s height and at a distance of 0.20 arm’s span. Participants 

reached 16 times for each bubble configuration in a quasi-random order (total of 

48 trials). Participants were asked to keep their feet on the white spot on the 

virtual floor (panel B in Figure 2.12). 
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Figure 2.12 Panel A shows the participant from above in the practice and baseline 
sessions where one target appears at either 0.50 or 0.65 or 0.75 arm span at the midline. 
The lower line represents the sequence of the trial in milliseconds; from the participant 
landing on the start position (red target) to hearing the whistle (signal to move). Panel B 
shows participant from above in the decision-making session where the closer target (one 
star) appears at 0.35 arm span and the further target (three stars) appears at either 0.50 or 
0.65 or 0.75 arm’s span with an angular separation of 25°. The lower line represents the 
sequence of the trial; from the participant landing on the start position (red target) to 
hearing the whistle (signal to move). Panel C shows the participant standing on the 
dedicated spot wearing the VR headset; height is measured as the distance from the 
headset to the floor and the red target is presented in front of the participant at a distance 
of 0.20 arm span and 0.75 participant’s height. 
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In principle, selecting the median movement time from the baseline session as the 

display time for the high reward targets should mean that the participants hit these 

targets on half of all trials in which they move to that target. This logic does not, 

however, account for the participants learning to move the controller more 

effectively within the virtual environment over the course of the experiment. In 

fact, pilot work suggested that the participants were able to hit the high reward 

target around 70% of the time when it was displayed for the median baseline 

movement time. This means that the high reward target had a greater expected 

value than the low reward target on every trial. This arrangement means that an 

entirely rational agent should select the high reward target on every trial once the 

expected value was learned, unless there were other costs associated with these 

targets. In the current experiment, it is reasonable to assume that the high reward 

targets had ‘motor costs’. These costs include the greater energy expenditure 

associated with reaching to further targets, but also the increased risk of falling 

when the centre of gravity is perturbed through extended arm reach. 

2.7.3 General statistical analysis approach 

Before conducting any inferential statistics, data were examined for violations of 

assumptions of normality through box- plots, Q–Q plots, histograms and Shapiro–

Wilk test (P < 0.05), with transformations performed where necessary. A Z-score 

was calculated and ± 3 were assigned as a threshold to deal with outliers. To 

compare between experimental conditions, mixed model ANOVAs were computed, 

with target distance set as a repeated measures factor and Gender as a between-

subjects factors with two levels. The primary analyses used frequency of selection 
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as the dependent variable. Specific variations on this ANOVA are detailed within 

the methodology of individual experiments. Wherever sphericity was violated 

(examined via Mauchly’s test), Greenhouse-Geisser corrections were applied and 

the adjusted p-values are reported (Bakeman, 2005). The statistical significance 

threshold was set at p <.05. Where significant main effects were observed, 

Bonferroni-corrected post-hoc p values are reported. Generalised eta squared (𝜂𝐺
2 ) 

was calculated to indicate effect size. This effect size approach was adopted as it 

more readily allows comparisons between different research designs [(Olejnik & 

Algina, 2003); c.f. Partial eta squared]. Statistical analyses were performed using R 

version 3.3.1 running inside the R Studio Integrated Development Environment 

(RStudio, Boston, MA). Data wrangling was performed using the “Tidyverse” library 

(Wickham, 2017) and the “ezANOVA” package was used to compute ANOVAs. 

GGPlot2 was used to visualise the data (Wickham, 2016). The sample size in the 

thesis was similar to previous experiments carried out in the research lab (see; 

(Brookes et al., 2019; Flatters et al., 2014; Raw et al., 2019; Shire et al., 2016).   
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 CHAPTER 3: EFFECT OF REWARD AND DISTANCE ON 

DECISION-MAKING (EXPERIMENT 1) 

3.1 Introduction 

Economical choices are an essential part of the decision-making processes but it is 

involved in small number of the decisions that human make in a daily bases. The 

sensorimotor system is involved in most of these daily decisions, to ensure the 

action execusion. However, researchers have barely draw attention to the 

influence of sensorimotor system in decision-making. As discussed earlier, 

Trommershauser et al., (2008) investigated combined the motor and cognitive 

aspect of decision-making. The experimental design presented here integrates the 

cognitive and sensorimotor decision-manking in the task execution. A simple daily 

action of reach to grasp, involves not only the reward expected from this action but 

also it encounter the sensorimotor cost associated with the action. This integration 

in decision-making has gain attention in recent years (Green et al., 2010; McDougle 

et al., 2016, 2019; Parvin et al., 2018). 

In this chapter we are going to examine the effect of the reward on the decision-

making behaviour. To do so three manipulations of the disappearing target were 

carried out. These manipulations were; two stars, three stars and the five stars for 

the disappearing target and one star for the fixed target.  
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Tha aim of this experiment was to examine the reward influence on the 

sensorimotor decision making. Two hypothesis were examined in this experiment; 

(i) reward would influence participants decision making in the virtual reality task 

and (ii) participants would reach more to the high reward target when the value is 

five stars compared to two stars and three stars.  

3.2 Methods 

3.2.1 Participants 

One hundred and twenty adults (60 males; 57 right handed and 60 females; 57 

right handed) from the University of Leeds participated in this study (mean age = 

21 years, SD = 2.8). The participants were assigned randomly to one of three 

different groups: Two star (20 males and 20 females, mean age = 21.97 years, SD = 

3.38) where the disappearing target worth two stars and the fixed target one star; 

Three star (20 males and 20 females, mean age = 20.45 years, SD = 2.73) where the 

disappearing target worth three stars and the fixed target one star; and Five star 

(20 males and 20 females, mean age = 20.80 years, SD = 1.83) where the 

disappearing target worth five stars and the fixed target one star. All participants 

gave their written informed consent, and the experiment complied with the ethical 

guidelines approved by the University of Leeds ethical committee (ethical approval 

number: 17-0181, date approved: 16/06/2017). 

3.2.2 The task design  

Participants undertook three sessions: a practice session, a baseline session, and a 

decision-making session as described in the general methods section. The 
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participant’s task in this experiment was to move a controller held in the preferred 

hand to hit the target. The controller position was tracked, and a virtual 

representation of the controller was visible throughout the experiment. 

Participants were assigned to one of three groups (two star; three star; and five 

star). The high reward target in the two star group had a value of two stars, in the 

three star group had a value of three stars, and in the five star group had a value of 

five stars. In all cases, the alternative option, the low reward target, was worth 1 

star. The high reward targets were positioned at one of three distances from the 

starting position (0.50, 0.65 or 0.75 arm span). The low reward target was always 

positioned at 0.35 arm span (Panel A, B, and C in Figure 3.1). This produced a 2 

(gender: female, male; between subjects) x 3 (groups: 2 star, 3 star, 5 star; between 

subjects) x 3 (target distance: near, medium, far; within-subjects) design. 
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Figure 3.1 Panel A shows participant from above in the decision-making session 
where the closer target (one star) appears at 0.35 arm span and the further target 
(three stars) appears at either 0.50 or 0.65 or 0.75 arm’s span with an angular 
separation of 25°. The lower line represents the sequence of the trial; from the 
participant landing on the start position (red target) to hearing the whistle (signal 
to move). Panel B and C show the same but for three stars and five stars 
manipulation. 
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3.3 Results  

Before conducting any inferential statistics, data were examined for violations of 

assumptions of normality through box- plots, Q–Q plots, histograms and Shapiro–

Wilk test (P < 0.05), with transformations performed where necessary. A Z-score 

was calculated and ± 3 were assigned as a threshold to deal with outliers. There 

were five possible trial outcomes in the experimental session: high reward target 

hit when the participants reached the high reward target on time, high reward 

target miss (when the participant selected but did not reach the high reward target 

on time), low reward target hit, premature (when they reached too early), and no-

go (when participants did not move at all). Table 3.1 shows the percentage of each 

possible outcome. 

Table 3.1 Percentage of trial outcomes with mean and standard deviation (SD). 

Trial outcome  Mean (%) SD (%) 

High reward target hit 41.3  0.38 

High reward target miss 12.1 0.70 

Low reward target hit 38.5 0.39 

Premature 5.7 1.03 

No-go  2.4 1.57 

Target distance had a significant main effect on the premature trials [F(2, 228) = 

15.99, p <.001, 𝜂𝐺
2  = 0.05] and no-go trials [F(2, 228) = 4.38, p =.013, 𝜂𝐺

2  = 0.02]. 

There was a clear gradient whereby the most premature and no-go trials occurred 

when the high reward target was displayed near, and the least when it was 

displayed far. It is not clear why this pattern arose. The increased perceptual 

salience of the near target and a greater propensity for this high reward target to 
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be selected might explain the premature trial pattern. The no-go pattern might 

have arisen because the values of expected utility are more similar when the high 

reward target is closer. There were no significant effects of gender or group on 

these no-go or premature trials (or any significant interactions F’s < 2.01, p’s > .13). 

We excluded the premature and no-go trials from further analysis of the data (i.e. 

8.1% of trials in total were excluded). 

3.3.1 Points obtained 

The objective for participants was to collect as many points as possible. Thus, we 

first analysed the points obtained as a function of group, gender and target 

distance. A mixed model ANOVA showed no significant three way interaction 

between target distance, gender, and group [F(4, 228) = 0.69, p = .59,  𝜂𝐺
2  = 0.004] 

and no significant interaction between target distance and gender [F(2, 228) = 0.26, 

p = .76, 𝜂𝐺
2  = 0.0009]. There was a significant interaction between gender and 

group [F(2, 114) = 3.80, p = .02, 𝜂𝐺
2  = 0.03] and between group and target distance 

[F(4, 228) = 11.9, p < .001, 𝜂𝐺
2  = 0.07]. There was a significant main effect of target 

distance [F(2, 228) = 53.55, p < .001, 𝜂𝐺
2  = 0.16], gender [F(1, 114) = 8.53, p = .004, 

𝜂𝐺
2  = 0.04], and group [F(2, 114) = 41.44, p < .001, 𝜂𝐺

2  = 0.3] (Figure 3.2). 



68 
 

 

Figure 3.2 Average number of points obtained for females (unfilled bars) and males 
(filled bars) at each target distance (near, medium and far) across the three groups 
(left column = 2 stars, middle = 3 stars, right = 5 stars). Error bars show standard 
error of the mean. 

As is evident from Figure 3.2 and the main effect of distance, fewer points were 

accrued as target distance increased, suggesting the participants were less likely to 

go for high reward target in these trials. In terms of the main effect of gender, 

males accrued more points than females (suggesting a greater propensity to go for 

high reward target).  With regards to group; more points accrued when the high 

reward target had more points attached (a natural consequence if the participants 

were selecting the high reward target on some of the trials).  The two-way 

interactions can be predicted from the three behavioural patterns above. 

3.3.2 High reward target selection  

We next looked at how often participants selected the high reward target. Figure 

3.3 shows the percentage of high reward target selections (includes hits and 

misses) across all target distances and group for both genders. A mixed model 
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ANOVA on the high reward target selections showed no significant three way 

interaction between target distance, gender, and group [F(4, 228) = 0.46, p = .76, 

𝜂𝐺
2  = 0.002]. There was no significant interaction between target distance and 

gender [F(2, 228) = 0.44, p = .63, 𝜂𝐺
2  = 0.001], nor between gender and group [F(2, 

114) = 1.11, p = .33, 𝜂𝐺
2  = 0.01] or group and target distance [F(4, 228) = 0.25, p 

=.90, 𝜂𝐺
2  = 0.001]. There was a significant main effect of target distance [F(2, 228) = 

160.86, p < .001, 𝜂𝐺
2  = 0.31] with participants being less likely to choose the high 

reward target as distance increased.  There was also a significant main effect of 

gender [F(1, 114) = 7.06, p = .009, 𝜂𝐺
2  = 0.04] with males choosing the high reward 

target more frequently than females  (supporting the theory behind the gender 

difference for points obtained). There was no main effect of group [F(2, 114) = 

0.10, p = .90, 𝜂𝐺
2  = 0.001].  
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Figure 3.3 High reward target selection (percentage of trials in which the high 
reward target was selected; includes hits and misses) for females (unfilled bars) 
and males (filled bars) at each target distance (near, medium, far) across the three 
groups (left column = 2 stars, middle = 3 stars, right = 5 stars).  Error bars show 
standard error of the mean.  

3.3.3 High reward target hit  

A mixed model ANOVA on the high reward target hits (as a percentage of high 

reward targets selected) across the group showed no significant three way 

interaction between target distance, gender, and group [F(4, 228) = 1.35, p = .25, 

𝜂𝐺
2  = 0.01]. There was no significant interaction between target distance and 

gender [F(2, 228) = 0.44, p = .64, 𝜂𝐺
2  = 0.001], nor between gender and group [F(2, 

114) = 2.31, p = .10, 𝜂𝐺
2  = 0.02] or group and target distance [F(4, 228) = 0.22, p 

=.92, 𝜂𝐺
2  = 0.001]. There was a significant main effect of target distance [F(2, 228) = 

25.64, p < .001, 𝜂𝐺
2  = 0.09] reflecting the fact that the target was missed more 

frequently when it was further, and a significant main effect of gender [F(1, 114) = 

9.37, p = .003, 𝜂𝐺
2  = 0.04] with males hitting the high reward target more frequently 
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than females.  There was no main effect of group [F(2, 114) = 0.20, p = .81, 𝜂𝐺
2  = 

0.001] (Figure 3.4). 

 

Figure 3.4 High reward target hits (percentage of selected targets) for females 
(unfilled bars) and males (filled bars) at each target distance (near, medium and 
far) across the three groups (left column = 2 stars, middle = 3 stars, right = 5 stars). 
Error bars show standard error of the mean. 

The median time in which participants had to reach the high reward target was a 

function of the baseline trials, so there should not have been a target distance 

effect per se. The fact that one emerged presumably reflects the greater risks 

associated with moving further (in extreme falling over but, less dramatically, the 

potential need for on-line postural corrections).  

3.4 Discussion 

We designed a task in which participants needed to choose between two targets 

where one target was easier to hit (closer and on permanent display) versus a 

harder-to-hit target (further away and programmed to time-out).  Our task forced 
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participants to choose between two targets that differed in terms of their extrinsic 

value (number of stars) and their intrinsic (sensorimotor) cost. The data show that 

participants were influenced by the higher intrinsic costs of the further targets; 

when the high reward target was further away participants were less likely to 

select it. The data also show that males were more likely to select the high reward 

target than females.  This is consistent with a plethora of studies employing classic 

cognitive decision-making tasks (e.g. gambling) where females show less risk taking 

behaviour compared to males (Bruce & Johnson, 1996; C. Harris et al., 2006; Powell 

& Ansic, 1997). These differences in risk aversion manifests in a number of away 

the confines of an experimental testing environment too: females rate risk more 

highly than males in a variety of scenarios including: driving, fire, crime, food safety 

and medical surgery (Breakwell, 2014).  

Finally, it is noteworthy that the same selection frequencies were found across all 

groups (2, 3 and 5 star groups) despite the difference in the points available via the 

high reward target, suggesting that a sensorimotor cost threshold acts as an upper 

bound on the selection process. Participants could have ignored the intrinsic costs 

and just reached for the target that gave the highest extrinsic reward. The 

experimental arrangement would have meant the participants always reached for 

the high value target. The fact that this did not happen indicates that the 

participants were taking account of the intrinsic costs within the task.  

Alternatively, participants could have ignored the extrinsic value and have simply 

sought to minimise the intrinsic costs. This would have resulted in participants 

always selecting the low value target. The fact that this did not happen means that 

the participants were taking account of the extrinsic value of the targets and the 
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sensorimotor costs within the task. Thus, the data indicate that participants are 

estimating value on the basis of both the extrinsic value of the targets and the 

intrinsic costs of the reaching movements.  

Next, we sought to investigate whether the same pattern of results would emerge 

when motor noise was added to the paradigm. We hypothesised that the 

introduction of extrinsic motor noise in addition to the intrinsic and extrinsic costs 

present in Experiment 1 could push participants into a more risk-averse strategy. 

To this end, we asked participants to complete the task with their non-preferred 

hand, reasoning that use of the non-preferred hand would provide an elegant 

means of increasing sensorimotor noise.  

We expected that by performing the task with the non-preferred hand, 

performance would be compromised. This assumption was predicated in previous 

research which has consistently show slower performance with the non-preferred 

hand relative to the preferred hand (Cramond et al., 1989; Fromm-Auch & Yeudall, 

1983). Movements with the non-preferred hand are also less accurate and more 

variable (Carey & Liddle, 2013; Carson, 1993; Elliott et al., 1993; Schaffer & 

Sainburg, 2017). There is also a body of work demonstrating interference when 

tasks which have an additional component to them are employed (Baddeley & 

Della Sala, 1996; Theill et al., 2011; Yogev et al., 2005)- this effect is most 

pronounced when participants are asked to execute actions with their non-

preferred hand (Strenge & Niedekberger, 2008; Yamashita, 2010). Consistent with 

this, neuroimaging research has also shown increased cortical activity when simple 

motor tasks are completed with the non-preferred hand relative to the preferred 

(Mattay et al., 1998). Crucially however for this manipulation, the impairments in 
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handedness seem to be exclusive to the control component of action and not the 

prediction element (Mathew et al., 2019). Recent research coupling eye tracking 

with a hand tracking task showed the expected asymmetry in handedness for 

accuracy, but eye tracking, providing an index of the participants ability to predict 

the visual consequences of their hand movements, did not vary according to hand 

condition. Here, to ensure that the task was comparable to the first experiment in 

all elements with the exception of motor control, task difficulty was manipulated in 

the same way (calculated the baseline median movement times).  
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 CHAPTER 4: EFFECT OF MOTOR NOISE ON DECISION-

MAKING (EXPERIMENT 2) 

4.1 Introduction  

Hand control is contralateral; the left hemisphere of the brain controls the right 

hand and the right hemisphere of the brain controls the left hand (Annett, 1981). 

Handedness is divided into measures of preference and performance. Hand 

preference is defined as the preferred hand to complete a specific task while hand 

performance is to differentiate between right and left hand on task execution 

(McManus & Bryden, 1992). It has been reported that performance increased 

when using the preferred hand opposed to the non-preferred hand. Annett (1981) 

examined the manual speed and hand preference and found that subject moves to 

the objects faster when used their preferred hand compared to the non-preferred 

hand. The task was moving pegs from one end of a table to another end while 

recrding the movement time. Moreover, other researchers have suggested that 

more effort is required when the non-preferred hand is used in task execution 

(Jäncke et al., 1998). 

Motor control and performance is more efficient when using the preferred hand 

compared to the non-preferred hand. Using non preferred hand is supposed to 

reduce the motor performance level. Some studies have reported that both right 
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and left handed subjects showed similar motor performance level when the 

preferred hand is used. However, when using the non-preferred hand, left-handed 

subjects performed better compared to their right-handed peers when the non-

preferred hand is used (Hoffmann, 1997). Several studies have found that the time 

to complete manual dexterity tests is less for the preferred compared to the non-

preferred hand (Bryden & Roy, 2005; Wang et al., 2011). Moreover, the reaching 

movement accuracy and variability is better when using the preferred hand 

compared to the non-preferred hand (Carey & Liddle, 2013; Elliott et al., 1993; 

Schaffer & Sainburg, 2017). 

The concept of motor equivalence is one of the main concepts in motor control. 

The idea that one can achieve same goal or task using different limb or muscles 

(Bernstein, 1967; Head et al., 1920). On aiming movement studies, Zuoza et al., 

(2009) examined right handed male participants and found that the preferred hand 

was more accurate than the non-preferred hand. Moreover the preferred hand 

showed less average and peak velocity in task execution.  

In this experiment we examined the effect of handedness on the decision-making 

in our task. The aim of this experiment was to examine the effect of motor noise 

(using the non-preferred hand) on the decision making. We hypothesised that 

participants would reach to the high reward target less frequently in the motor 

noise group compared to the control group.  



77 
 

4.2 Methods 

4.2.1 Participants   

Eighty adults (40 males; 37 right handed and 40 females; 35 right handed) from the 

University of Leeds were included in this study (mean age = 20.8 years, SD = 2.6). 

Forty participants were recruited to from a ‘motor noise’ group. The group were 

recruited in the same manner as the participants in the first experiment so 

allocation to the group was random. The ‘motor noise’ group used their non-

preferred hand to complete the task (20 males and 20 females, mean age = 21.2 

years, SD = 2.4). We used the three star group from the first experiment (20 males 

and 20 females, mean age = 20.4 years, SD = 2.7) to act as a control group. All 

participants gave their written informed consent, and the experiment complied 

with the ethical guidelines approved by the University of Leeds ethical committee 

(ethical approval number: 17-0181, date approved: 16/06/2017). 

4.2.2 The task design 

Participants undertook three sessions: a practice session, a baseline session, and a 

decision-making session as described in the general methods section. The 

participant’s task in the motor noise group was to move a controller held in the 

non-preferred hand to hit the target. The control group had performed the same 

task but with their preferred hand. The controller position was tracked and a virtual 

representation of the controller was visible throughout the experiment. The 

experiment configuration for both groups (motor noise and control group) was low 

reward target (one star) vs high reward target (three star).  As in Experiment 1, the 

high reward targets were positioned at one of three distances from the starting 



78 
 

position (0.50, 0.65 or 0.75 arm span). The low reward target was always 

positioned at 0.35 arm span (Figure 4.1). This produced a 2 (gender: female, male; 

between subjects) x 2 (group: control, motor noise; between subjects) x 3 (target 

distance: near, medium, far; within subjects) design. 

 

Figure 4.1 Participant from above in the decision-making session where the closer 
target (one star) appears at 0.35 arm span and the further target (three stars) 
appears at either 0.50 or 0.65 or 0.75 arm’s span with an angular separation of 25°. 
The lower line represents the sequence of the trial; from the participant landing on 
the start position (red target) to hearing the whistle (signal to move). 

4.3 Results  

Before conducting any inferential statistics, data were examined for violations of 

assumptions of normality through box- plots, Q–Q plots, histograms and Shapiro–

Wilk test (P < 0.05), with transformations performed where necessary. A Z-score 

was calculated and ± 3 were assigned as a threshold to deal with outliers. There 

were five possible trial outcomes in the experimental session: high reward target 

hit when the participants reached the high reward target on time, high reward 
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target miss (when the participant selected but did not reach the high reward target 

on time), low reward target hit, premature (when they reached too early), and no-

go (when participants did not move at all). Table 4.1 shows the percentage of each 

possible outcome. 

Table 4.1 Percentage of trial outcomes with mean and standard deviation (SD). 

Trial outcome  Mean (%) SD (%) 

High reward target hit 42.7 0.47 

High reward target miss 11.9 0. 89 

Low reward target hit 38.1 0. 49 

Premature 5.7 1.2 

No-go  1.5 2.5 

There was a significant main effect of target distance [F(2, 152) = 5.88, p = .003, 𝜂𝐺
2  

= 0.02] in the premature trials but not in the no-go trials [F(2, 152) = 1.74, p = .17, 

𝜂𝐺
2  = 0.01]. There was no effect of gender in the premature trial [F(1, 76) = 0.04, p = 

.84] nor the no-go trials [F(1, 76) = 0.01, p = .90, 𝜂𝐺
2  = 0.0001]. We excluded the 

premature and no-go trials from further analysis of the data (i.e. 7.2% of trials in 

total were excluded). 

4.3.1 Points obtained  

A mixed model ANOVA on the on points obtained showed that there was not a 

significant three way interaction between target distance, gender, and group [F(2, 

152) = 0.46, p = .62, 𝜂𝐺
2  = 0.002]. There was no significant interaction between 

target distance and gender [F(2, 152) = 0.38, p = .68, 𝜂𝐺
2  = 0.002], nor between 

target distance and group [F(2, 152) = 0.05, p = .94, 𝜂𝐺
2  = 0.0003], or between group 

and gender [F(1, 76) = 1.64, p = .20, 𝜂𝐺
2  = 0.01]. There was a significant main effect 
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of target distance [F(2, 152) = 46.34, p < .001, 𝜂𝐺
2  = 0.19] with more points being 

obtained when the high reward target was closer, but no main effect of gender 

[F(1, 76) = 3.04, p = .08, 𝜂𝐺
2  = 0.02] nor of group [F(1, 76) = 0.01, p = .91, 𝜂𝐺

2  = 

0.0001] (Figure 4.2). 

 

Figure 4.2 Average number of points obtained for females (unfilled bars) and males 
(filled bars) at each target distance (near, medium and far) across the two groups 
(left column = control group, right column = motor noise group). Error bars show 
standard error of the mean. 

4.3.2 High reward target selection  

A mixed model ANOVA on the high reward target selection showed that there was 

no significant three way interaction between target distance, gender, and group 

[F(2, 152) = 1.83, p = .16, 𝜂𝐺
2  = 0.007]. There was no significant interaction between 

target distance and gender [F(2, 152) = 0.71, p = .49, 𝜂𝐺
2  = 0.003], nor between 

target distance and group [F(2, 152) = 0.002, p = .99, 𝜂𝐺
2  = 0.0001]. However the 

interaction between group and gender was significant [F(1, 76) = 3.77, p = .05, 𝜂𝐺
2  = 
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0.03] with gender differences appearing more apparent in the control group 

compared to the motor noise group. There was a significant main effect of target 

distance [F(2, 152) = 170.43, p < .001, 𝜂𝐺
2  = 0.42] with participants being less likely 

to choose the high reward target as distance increased, and main effect of gender 

[F(1, 76) = 6.8. p = .01, 𝜂𝐺
2  = 0.05] with males selecting the high reward target more 

often than females, but no main effect of group [F(1, 76) = 0.004, p = .94, 𝜂𝐺
2  = 

0.0001] (Figure 4.3). 

 

Figure 4.3 High reward target selection (percentage of trials in which the high 
reward target was selected; includes hits and misses) for females (unfilled bars) 
and males (filled bars) at each target distance (near, medium and far) across the 
two groups (left column = control group, right column = motor noise group). Error 
bars show standard error of the mean. 

4.3.3 High reward target hit  

A mixed model ANOVA on the high reward target hits across the group showed 

that there was no significant three way interaction between target distance, 

gender, and group [F(2, 152) = 1.59, p = .20, 𝜂𝐺
2  = 0.009]. There was no significant 
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interaction between target distance and gender [F(2, 152) = 0.47, p = .62, 𝜂𝐺
2  = 

0.002], nor between target distance and group [F(2, 152) = .17, p = .84, 𝜂𝐺
2  = 0.001] 

or between group and gender [F(1, 76) = 3.17, p = .07, 𝜂𝐺
2  = 0.02]. There was a 

significant main effect of target distance [F(2, 152) = 15.52, p < .001, 𝜂𝐺
2  = 0.08] 

with participants being less likely to hit the high reward target as distance 

increased, but no main effect of gender [F(1, 76) = 2.6, p = .10, 𝜂𝐺
2  = 0.01] nor main 

effect of group [F(1, 76) = 0.17, p = .67, 𝜂𝐺
2  = 0.001] (Figure 4.4). 

 

Figure 4.4 High reward target hits (percentage of selected targets) for females 
(unfilled bars) and males (filled bars) at each target distance (near, medium and 
far) across the two groups (left column = control group, right column = motor noise 
group). Error bars show standard error of the mean. 

4.4 Discussion  

The task from the previous experiment was repeated, but this time manipulating 

motor noise (whilst keeping the expected gain constant) by asking one group of 

participants to complete the task using their non-preferred hand. Using the 
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preferred hand improves the motor performance level compared to the non-

preferred hand. Hoffman et al., (1997) have reported that handedness did not 

affect the motor performance, but left handed participants performed better when 

using the non-preferred hand than the right handed participants. We found the 

same selection frequencies as in Experiment 1, with males selecting the high 

reward target more often than females (although this was mediated by group and 

more evident in the control group than the motor noise one), and participants 

being less likely to select the high reward target as the distance of that target 

increased.  The motor noise manipulation had no effect, suggesting that 

participants were well-tuned to the sensorimotor costs associated. This result was 

not possible to predict a priori. The participants all reported a strong hand 

preference and thus would have been fully aware of their reduced abilities with 

their non-preferred hand. Some studies have shown that reaching movement 

accuracy is better in preferred hand compared to the non-preferred hand (Carey & 

Liddle, 2013; Schaffer & Sainburg, 2017). It is reasonable to expect that this 

knowledge might have been sufficient to alter the decision over whether to select 

the safe or risky target. The fact that this group of participants made the same 

selection choices as the control group indicates that human adults are well tuned 

to the task relevant sensorimotor capacity.  



84 
 

 

 CHAPTER 5: EFFECT OF SENSORY NOISE ON 

DECISION-MAKING (EXPERIMENT 3) 

5.1 Introduction  

We next decided to examine the effects of sensory noise. As with motor noise, we 

hypothesised that the introduction of extrinsic sensory noise in addition to the 

intrinsic and extrinsic cost presented in Experiment 1 might drive participants into 

more risk-averse behaviour. Thus, we asked participants to complete the task 

without online visual feedback of the controller, as the absence of online visual 

feedback should induce sensory noise.  

The removal of visual feedback regarding the hand position should hinder the 

action selection and execution processes. It delays the error correction in action 

execution as shown in previous studies (for review see Elliott, Digby; Helsen, 

Werner; Chua, 2001). This idea stems from the notion that the online correction in 

reaching movement comes from the visual information gathered during action 

execution (Saunders, 2004). The absence of visual feedback of the hand has been 

found to produce: (i) end-point variability in reaching (Hay & Beaubaton, 1986; 

Keele & Posner, 1968); (ii) a tendency to underestimate the target distance 

(Prablanc & Péisson, 1990); (iii) an increase in reaching path curvature (Goodbody 

& Wolpert, 1999); (iv) decreased error correction (Khan & Franks, 2000) and (v) 

increased reaction times (Bennett & Davids, 1996). 
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The aim of this experiment was to examine the effect of sensory noise (no online 

visual representation of the controller) on the decision making. We hypothesised 

that participants would reach to the high reward target less frequently in the 

sensory noise group compared to the control group.  

5.2 Methods  

5.2.1 Participants  

Eighty adults (40 males; 38 right handed and 40 females; 36 right handed) from the 

University of Leeds participated in this study (mean age = 21.8 years, SD = 3.6). The 

participants were assigned randomly to one of two different groups: a sensory 

noise group (20 males and 20 females, mean age = 23.1 years, SD = 3.8); and a 

control group (20 males and 20 females, mean age = 20.4 years, SD = 2.7). The 

control group is presented from the first experiment (the three star group). All 

participants gave their written informed consent, and the experiment complied 

with the ethical guidelines approved by the University of Leeds ethical committee 

(ethical approval number: 17-0181, date approved: 16/06/2017). 

5.2.2 The task design 

Participants undertook three sessions: a practice session, a baseline session, and 

decision-making session as described in the general methods section. The 

participant’s task in this experiment was to move a controller held in the preferred 

hand to hit the target. For the sensory noise group, the controller position was 

tracked and a virtual representation of it was visible in the practice session only. 

For the remaining sessions the controller disappeared after the whistle. When the 
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participant hit the target, the controller would appear again to help them navigate 

to the starting position (a red bubble). A virtual representation of the controller 

was visible throughout the experiment for the control group. The experiment 

configuration for both groups (sensory noise and control group) was low reward 

target (one star) vs high reward target (three star). As in Experiment 1, the high 

reward targets were positioned at one of three distances from the starting position 

(0.50, 0.65 or 0.75 arm span). The low reward target was always positioned at 0.35 

arm span (Figure 5.1). This produced a 2 (gender: female, male; between subjects) 

x 2 (group: control, sensory noise; between subjects) x 3 (target distance: near, 

medium, far; within subjects) design. 

 

Figure 5.1 Participant from above in the decision-making session where the closer 
target (one star) appears at 0.35 arm span and the further target (three stars) 
appears at either 0.50 or 0.65 or 0.75 arm’s span with an angular separation of 25°. 
The lower line represents the sequence of the trial; from the participant landing on 
the start position (red target) to hearing the whistle (signal to move). The controller 
disappears at the whistle (signal to move).  
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5.3 Results  

Before conducting any inferential statistics, data were examined for violations of 

assumptions of normality through box- plots, Q–Q plots, histograms and Shapiro–

Wilk test (P < 0.05), with transformations performed where necessary. A Z-score 

was calculated and ± 3 were assigned as a threshold to deal with outliers. There 

were five possible trial outcomes in the experimental session: high reward target 

hit when the participants reached the high reward target on time, high reward 

target miss (when the participant selected but did not reach the high reward target 

on time), low reward target hit, premature (when they reached too early), and no-

go (when participants did not move at all). Table 5.1 shows the percentage of each 

possible outcome. 

Table 5.1 Percentage of trial outcomes with mean and standard deviation (SD). 

Trial outcome  Mean (%) SD (%) 

High reward target hit 41.1 0.46 

High reward target miss 13.4 0.81 

Low reward target hit 38.6 0.48 

Premature 5.1 1.32 

No-go  1.6 2.36 

There was a significant main effect of target distance [F(2, 152) = 6.39, p = .002, 𝜂𝐺
2  

= 0.03] with the premature trials but not with the no-go trials [F(2, 152) = 1.71, p = 

.18, 𝜂𝐺
2  = 0.01]. There was no effect of gender in the premature trials [F(1, 76) = 

0.27, p = .6, 𝜂𝐺
2  = 0.002] nor the no-go trials [F(1, 76) = 0.43, p = .51, 𝜂𝐺

2  = 0.001]. 

We excluded the premature and no-go trials from further analysis of the data (i.e. 

6.7% of trials in total were excluded). 
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5.3.1 Points obtained  

A mixed model ANOVA on the on points obtained showed that there was no 

significant three way interaction between target distance, gender, and group [F(2, 

152) = 0.23, p = .79, 𝜂𝐺
2  = 0.001]. There was no significant interaction between 

target distance and gender [F(2, 152) = 0.09, p = .91, 𝜂𝐺
2  = 0.0005], nor between 

target distance and group [F(2, 152) = 0.93, p = .39, 𝜂𝐺
2  = 0.005], or between group 

and gender [F(1, 76) = 2.08, p = .15, 𝜂𝐺
2  = 0.01]. There was a significant main effect 

of target distance [F(2, 152) = 51.5, p < .001, 𝜂𝐺
2  = 0.22] with more points being 

obtained when the high reward target was closer, but no main effect of gender 

[F(1, 76) = 2.29, p = .13, 𝜂𝐺
2  = 0.01] nor of group [F(1, 76) = .56, p = .45, 𝜂𝐺

2  = 0.004] 

(Figure 5.2). 

 

Figure 5.2 Average number of points obtained for females (unfilled bars) and males 
(filled bars) at each target distance (near, medium and far) across the two groups 
(left column = control group, right column = sensory noise group). Error bars show 
standard error of the mean.  
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5.3.2 High reward target selection  

A mixed model ANOVA on the high reward target selection showed that there was 

not a significant three way interaction between target distance, gender, and group 

[F(2, 152) = 0.70, p = .49, 𝜂𝐺
2  = 0.003]. There was no significant interaction between 

target distance and gender [F(2, 152) = 0.55, p = .57, 𝜂𝐺
2  = 0.002], nor between 

target distance and group [F(2, 152) = 0.93, p = .39, 𝜂𝐺
2  = 0.004]. However, there 

was a significant interaction between group and gender [F(1, 76) = 4.61, p = .03, 𝜂𝐺
2  

= 0.03] with group differences appearing more apparent in the control group 

compared to the sensory noise group. There was a significant main effect of target 

distance [F(2, 152) = 200.25, p < .001, 𝜂𝐺
2  = 0.47] with participants being less likely 

to choose the high reward target as target distance increased, and main effect of 

gender [F(1, 76) = 7.25, p = .008, 𝜂𝐺
2  = 0.05], with males being more likely to select 

the high reward target than females, but not main effect of group [F(1, 76) = 0.02, 

p = .87, 𝜂𝐺
2  = 0.0002] (Figure 5.3). 
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Figure 5.3 High reward target selection (percentage of trials in which the high 
reward target was selected; includes hits and misses) for females (unfilled bars) 
and males (filled bars) at each target distance (near, medium and far) across the 
two groups (left column = control group, right column = sensory noise group). Error 
bars show standard error of the mean. 

5.3.3 High reward target hit 

A mixed model ANOVA on the high reward target hits across the group showed 

that there was no significant three way interaction between target distance, 

gender, and group [F(2, 152) = 0.92, p = .39, 𝜂𝐺
2  = 0.006]. There was also no 

significant interaction between target distance and gender [F(2, 152) = 0.22, p = 

.79, 𝜂𝐺
2  = 0.001], nor between target distance and group [F(2, 152) = 0.70, p = .49, 

𝜂𝐺
2  = 0.004] or between group and gender [F(1, 76) = 2.45, p = .12, 𝜂𝐺

2  = 0.01]. There 

was a significant main effect of target distance [F(2, 152) = 24.14, p < .001, 𝜂𝐺
2  = 

0.13] with participants being less likely to hit the high reward target as target 

distance increased, and main effect of gender [F(1, 76) = 3.87, p = .05, 𝜂𝐺
2  = 0.02], 
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with females less likely to hit the target than males, but no main effect of group 

[F(1, 76) = 1.41, p = .23, 𝜂𝐺
2  = 0.009] (Figure 5.4). 

 

Figure 5.4 High reward target hits (percentage of selected targets) for females 
(unfilled bars) and males (filled bars) at each target distance (near, medium and 
far) across the two groups (left column = control group, right column = sensory 
noise group). Error bars show standard error of the mean. 

5.4 Selection biases across experiments 1 – 3  

5.4.1 Lateral or ipsilateral selection  

We assumed that if there was no laterality bias, the participant would reach to the 

ipsilateral side 50% of the time (the same side as their preferred hand) because the 

targets were randomly distributed on the two sides. For 200 participants (between 

subject and noise group), the ipsilateral side was selected 51% of the time. A one 

sample t-test shows that this was not statistically significant from 50% [t(199) = 

1.85, p = .06].  We also examined right vs left selection, and a paired sample t-test 
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showed no significant difference between the right and left side selected [t(199) = -

0.89, p = .37]. 

5.4.2 Selection bias based on previous trial – laterality  

We calculated the probability of participants selecting a target direction (right or 

left) based on the previous direction selected (i.e. the probability that the left 

target would be selected on a trial following selection of the left target). Repeated 

measure ANOVA revealed no significant interaction between selected side and 

target distance [F(2, 594) = 0.70, p = .49, 𝜂𝐺
2  = 0.002]. There was no main effect of 

selected side [F(1, 594) = 0.10, p = .74, 𝜂𝐺
2  = 0.001] or target distance [F(2, 594) = 

0.85, p = .42, 𝜂𝐺
2  = 0.003]. Thus, the previous side selected did not affect the 

subsequent target selection. These results show that participants were not showing 

a laterality bias and choosing one side more than the other. 

5.4.3 Selection bias based on previous trial – reward magnitude  

The probability of participants selecting a safe or risky target according to the 

previous trial behaviour was calculated (i.e. if they chose the risky target how likely 

were they to select the safe target on the subsequent trial). A repeated measures 

ANOVA showed a significant interaction between previous selection (risky vs safe) 

and target distance [F(2, 593) = 3.7, p = .02, 𝜂𝐺
2  = 0.01]. There was no main effect of 

previous selection [F(1, 593) = 0.82, p = .36, 𝜂𝐺
2  = 0.001], but there was a main 

effect of target distance [F(2, 593) = 127.9, p < .001, 𝜂𝐺
2  = 0.30]. If the previous trial 

was safe then the participant was more likely to subsequently select a risky trial 

than they were if the previous trial was risky, but this effect interacted with target 

distance such that it was negligible at near, moderate at the middle target distance, 
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and largest for further targets (Figure 5.5). These results suggest there was a 

tendency towards exploration across the participants. 

 

Figure 5.5 Probability of selection (risky or safe) compared to the previous trial as a 
function of target distance. Mean and standard error with dots as a single 
participant’s observation. Red dots are showing the observations when the 
previous trial selection was risky, and blue dots are showing the observations when 
the previous trial selection was safe. 

5.4.4 Selection bias based on previous trial – success rate 

We analysed the participant’s selection (risky or safe) according to whether the 

previous trial outcome was successful. Repeated measure ANOVA showed a 

significant interaction between outcome and target distance [F(2, 597) = 3.1, p = 

.04, 𝜂𝐺
2  = 0.01]. There was a significant main effect of outcome [F(1, 597) = 216.6, p 

< .001, 𝜂𝐺
2  = 0.26], and of target distance [F(2, 597) = 89.5, p < .001, 𝜂𝐺

2  = 0.23]. 

Figure 5.6 shows that participants were more likely to select the risky target if the 

previous target was successfully hit than if it was missed – and this effect was 



94 
 

greatest for the middle distance targets. These results suggest there was a 

tendency towards exploitation across the participants. 

 

Figure 5.6 Probability of selecting the risky target compared to the previous trial 
outcome as a function of target distance. Mean and standard error with dots as a 
single participant’s observation. Blue dots are showing the observations when the 
previous trial outcome was hit, and yellow dots are showing the observations when 
the previous trial outcome was miss. 

5.4.5 Selection bias based in previous trial: success rate, target distance and 

reward magnitude   

In order to explore further the effect of outcome and previous choice on current 

trial selection, a repeated measure ANOVA was conducted. The ANOVA had three 

factors: previous outcome (hit vs miss), target distance (near, medium, far) and 

previous trial selection type (risky vs safe). The ANOVA showed a significant three 

way interaction [F(2, 1102) = 16.07, p < .001, 𝜂𝐺
2  = 0.02]. There was a significant 

interaction between the previous outcome and previous trial selection type [F(1, 

1102) = 508.63, p < .001, 𝜂𝐺
2  = 0.31], between the previous outcome and target 
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distance [F(2, 1102) = 31.81, p < .001, 𝜂𝐺
2  = 0.05], and between previous trial 

selection type and target distance [F(2, 1102) = 22.21, p < .001, 𝜂𝐺
2  = 0.41]. There 

were significant main effects of previous outcome [F(1, 1102) = 1618.31, p <.001, 

𝜂𝐺
2  = 0.59], previous trial selection type [F(1, 1102) = 218.36, p < .001, 𝜂𝐺

2  = 0.16], 

and target distance [F(2, 1102) = 142.7, p < .001, 𝜂𝐺
2  = 0.20]. Figure 5.7 shows that 

participants are more likely to select the risky target if the previous trial was hit 

rather than missed (cf blue dots on the left with those on the right). For the far 

target distance, participants were more likely to choose a risky target if their 

previous selection was safe than if it was risky even though they had hit the risky 

target successfully. This result suggest a balance between exploitation (reinforcing 

successful behaviours) and exploration (an increased risk towards selecting risky 

targets after successfully completing a previous action).  

 



96 
 

 

Figure 5.7 Probability of selecting the target compared to the previous riskiness 
behaviour as a function of target distance. Mean and standard error with dots as a 
single participant’s observation. Blue dots show the observations when the 
previous trial selection was risky, and yellow dots are showing the observations 
when the previous trial selection was safe. 

5.4.6 The risk switch threshold distance 

One way of considering the group and individual differences in propensity to select 

the further ‘risky’ target is to conceptualise each participant as having a probability 

gradient where the probability of accepting the sensorimotor costs increases as the 

distance from the body increases. For simplification, this gradient can be thought of 

as linear in nature with a point where the probability is 50:50 (the risk switch 

threshold distance). The ‘risk switch threshold distance’ (i.e. the point beyond 

which participants were less likely to select the risky target) was calculated by 

conducting a logistic regression for each individual participant across the near, 

medium and far targets. The median threshold was found to be at 0.72 of arm span 

(Figure 5.8). Ten participants were removed from this analysis because they always 
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selected the risky target (i.e. reached for the high reward target every trial). Figure 

5.8 shows that there is a large degree of individual variability with regard to where 

the ‘risk switch threshold distance’ is located. 

 

Figure 5.8 Density of the risk switch threshold distance, dashed line is the median 
threshold predicted (median = 0.72). 

5.4.6.1 The risk switch threshold distance with gender  

The ‘risk switch threshold distance’ was calculated for both gender (females and 

males) as in the previous section. The median threshold for females was found to 

be at 0.69 and males to be at 0.73 arm span (Figure 5.9). Figure 5.9 shows that 

there are group differences (on average) with regard to where the ‘risk switch 

threshold distance’ is located, but also note the great degree of overlap across 

these distributions. 
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Figure 5.9 Density of the risk switch threshold distance (female is black; male is 
grey). Dashed lines are the median threshold predicted (black dashed line showing 
the female median at 0.69 and grey dashed line showing the male median at 0.73). 

5.5 Kinematics across experiment 1 – 3   

Kinematic data were analysed over 200 participants in the decision-making session. 

Movement duration was defined as the time taken to hit the selected target (i.e. 

high reward or low reward target) from the time the controller left the starting 

position. Trial duration was recorded from the time controller was on the starting 

position until the chosen target was hit. Reaction time was defined as the duration 

from starting position change colour (and whistle heard since both happened 

simultaneously) to controller movement from starting position. Therefore, 

movement duration was calculated as the difference between the trial reaction 

time and end of trial time (i.e. target hit). 
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5.5.1 Movement duration  

A mixed ANOVA on the mean movement duration with gender (female and male), 

target distance (near, medium, far) and groups (control, motor noise, sensory 

noise) showed no significant interaction between the three factors [F(4, 388) = 

1.15, p = .33, 𝜂𝐺
2  = 0.01]. The interaction between group and target distance was 

not significant [F(4, 388) = 0.54, p =.70, 𝜂𝐺
2  = 0.006], nor between gender and target 

distance [F(2, 388) = 0.29, p =.74, 𝜂𝐺
2  = 0.002], or between gender and group [F(2, 

194) = 0.08, p = .91, 𝜂𝐺
2  = 0.001]. There was a main effect of target distance [F(2, 

388) = 50.17, p < .001, 𝜂𝐺
2  = 0.20] with movements taking longer as target distance 

increased, but there was no main effect of group [F(2, 194) = 2.63, p = .07, 𝜂𝐺
2  = 

0.02], nor gender [F(1, 194) = 0.96, p = .32, 𝜂𝐺
2  = 0.005] (Figure 5.10). 

 

Figure 5.10 Mean movement duration (seconds) as a function of target distance 
(near, medium and far). The left hand panel shows the control group, middle one is 
the motor noise group and the right is the sensory noise group. Error bars 
represent standard error of the mean. 



100 
 

5.5.2 Movement duration over time for high and low reward hit in control 

group   

A mixed model ANOVA on the mean movement duration for the high reward hits in 

the control group showed no significant interaction between target distance and 

trial number [F(94, 4512) = 1.20, p = .09, 𝜂𝐺
2  = 0.02]. There was a significant main 

effect of target distance [F(2, 4512) = 7.60, p = .001, 𝜂𝐺
2  = 0.003] but not trial 

number [F(47, 2256) = 1.01, p = .45, 𝜂𝐺
2  = 0.02]. A mixed model ANOVA on the 

mean movement duration for the low reward hits in the control group showed no 

significant interaction between target distance and trial number [F(94, 4204) = 

1.01, p = .45, 𝜂𝐺
2  = 0.02]. There was a significant main effect of target distance [F(2, 

4204) = 333.71, p < .001, 𝜂𝐺
2  = 0.13] and trial number [F(47, 2102) = 1.68, p = .003, 

𝜂𝐺
2  = 0.36] with participants generally getting faster across time. This pattern is 

illustrated in Figure 4.10 but it is also clear from this visualisation that the effect 

seems to be most pronounced with far condition, where movements are slowest at 

their outset (Figure 5.11). 
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Figure 5.11 Movement duration in the control group plotted over trials (48 trials) 
with target distance (near; green, medium; blue, far; red). The left panel shows the 
high reward hit and the right panel shows the low reward hit trials. 

5.5.3 Postural stability 

Finally, we explored whether the effects were related in any way to the 

participant’s postural abilities but there was no relationship between the target 

selection and any of our measures of postural stability as captured in the baseline 

assessments. We had reasoned that poor levels of postural stability at baseline 

(indexed by increased path length) would dampen risk seeking behaviour- with 

participants more averse to select tasks with greater demands on postural stability. 

This type of phenomenon is often observed in the sensorimotor literature, with 

compensatory strategies emerging – e.g. loss based selection (Gignac et al., 2002; 

Lang et al., 2002). However, contrary to these predictions, there was no 

relationship between any of the measures of stability captured by the experiment 

and task performance following corrections for multiple comparisons. Instead, the 
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measures of postural stability showed the expected patterns whereby the posture 

was more stable with eyes open than with eyes closed. The oscillating room 

produced greater sway than either the eyes open or eyes closed condition.  

5.6 Discussion  

In Experiment 3 we repeated the task from Experiment 1, but this time 

manipulated sensory noise (whilst keeping the expected gain constant) by 

removing the virtual representation of the controller. The results were similar to 

those found in Experiment 2. We found the same selection frequencies as in 

Experiment 1, with males selecting the high reward target more often than females  

(although this was mediated by group and more evident in the control group than 

the sensory noise one), and participants less likely to select the high reward target 

as the target distance increased. It was shown previously that removing the visual 

feedback alter movement end-point location, misgudjung target distance, and 

increase the reaching path length (Keele & Posner, 1968; Goodbody & Wolpert, 

1999; Prablanc & Péisson, 1990). The sensory noise manipulation had no effect, 

suggesting that participants were well-tuned to the sensorimotor costs associated 

with the increased perceptual noise. Once more, this was not possible to predict a 

priori as it might have been expected that the increased task difficulty would have 

pushed participants towards more conservative strategies. The fact that, again, the 

participants showed the same pattern of selection bias suggests strongly that adult 

humans are well tuned to the sensorimotor costs, and use these cost estimates 

when selecting between actions – rather than the more cognitively penetrable 

phenomenological experience of performance on the task. 
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It was possible to collapse the results of the first three experiments together (as 

increasing the reward in Experiment 1 had no impact on behaviour and because 

the motor noise and perceptual noise did not cause different selection strategies). 

This allowed us to explore the factors that biased the decision-making process 

across 200 participants. We established that there was not a bias to select a target 

on the basis of its laterality, or the laterality of the previous target. We did find that 

there was a bias for the participant to subsequently select a risky trial if the 

previous trial was safe, but this effect interacted with target distance such that it 

was negligible at near, moderate at the middle target distance, and largest for 

further targets. These results suggest there was a tendency towards exploration 

across the participants.  

The usefulness of collecting these data in the virtual reality system was 

demonstrated by the wealth of kinematic data provided by the system. The 

kinematic data revealed the normal relationship between target distance and 

movement duration, and showed a tendency for participants to move slightly 

faster towards the safe target as the session progressed (presumably because of 

practice effects). Notably, there was no change in movement duration for the risky 

targets.     

One critical question was how participants changed their behaviour in response to 

success or failure on the task. Notably, participants were more likely to select the 

risky target if the previous target was successfully hit than if it was missed. This 

finding suggests that participants update their estimates of the probability of 

success after each trial. The result of such updating is that participants will be more 

likely to select a previously successful trial type. This finding is consistent with 
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models of decision-making developed in computer science – Partially Observable 

Markov Decision Processes (pom-dp). We tested whether a pom-dp would be able 

to capture the findings observed throughout these experiments, and found that 

the pom-dp was indeed able to produce the observed set of results (by Warburton 

et al. In Prep). A pom-dp model deals with the action selection problems where the 

environment is partially observable and appears in sequence. There are different 

elements of pom-dp; action, state, possible observations, and cost. The model 

makes the prediction that participants should shift towards selecting the ‘risky’ 

target over time (with this effect being most notable at the furthest distance target 

as this target starts being selected reasonably infrequently). The model was able to 

capture the gender differences we observed but it did not reveal any differences 

between the values attached to the values of the rewards, sensorimotor costs or 

selection biases. Instead, it appeared that the males as a group had a disposition 

towards risk (i.e. a further ‘risk switch threshold distance’)– a disposition that has 

been reported consistently throughout the research literature. The prediction from 

the pom-dp is that the gender differences should disappear over repeated sessions 

of the task (because all participants show a bias to update the probability estimates 

of success – which would lead to the further ‘risky’ target being selected as 

frequently as the middle and close distances over time removing any population 

differences). We tested these predictions in the fourth experiment. 

Having identified that increasing motor and sensory noise did not have a 

substantial impact on choice selection at a group level averaged across trials, we 

sought to understand the strategies employed by participants across all three 

experiments and explore what factors might be biasing influence trial-by-trial 
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selection. To this end, we collapsed across Experiments 1 – 3 (control group, motor 

noise group, and sensory noise group) and this provided a sample of 200 

participants and allowed us to probe the influence of target location, previous 

target selection, and previous trial success rate on choice selection from these 

aggregated datasets.  

We were also interested in selection bias. Examining this across all Experiments is 

possible due to the similar nature of the paradigms, and affords a much larger 

number from which to make conclusions. In this chapter we present the biases 

result in the previous three experiments and the model used to explain the data.  
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 CHAPTER 6: REPETITION EFFECT ON DECISION-

MAKING (EXPERIMENT 4) 

6.1 Introduction  

The first three experiments all involved participants selecting the target under 

conditions where the task was entirely novel. In this experiment, we were 

interested in exploring how the selection choice changed over time. The modelling 

of the first three experiments showed that the data were well described by a 

Partially Observable Markov Decision Process (pom-dp). The pom-dp model 

assumed that participants update their estimates of probable success after they 

complete a trial (so increase the probability estimate of a hit after a successful trial 

and vice versa). The results of Expriments 1 – 3 show that participants successfully 

hit the ‘risky’ target more often than not. Thus, the pom-dp model suggests that 

participants should become increasingly biased towards the risky target over time. 

This effect would be expected to be particularly pronounced for the furthest target 

(as this was selected less frequently in the first three experiments). The pom-dp 

model suggests that ultimately the effects of target distance should dissipate over 

repeated trials – and the effect of gender (whereby males show riskier behaviour 

than the females) should ultimately disappear. In the fourth experiment we 

examined the effect of repeating the task over a series of sessions on the riskiness 

behaviour of participants to test the predictions of the pom-dp model.  
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The aim of this experiment was to examine the effect of task repetition on the 

decision making. We hypothesised that participants would always reach to the high 

reward target in the last session of the experiment.  

6.2 Methods  

6.2.1 Participants  

Twenty adults (10 male; 9 right handed and 10 female; 10 right handed) from the 

University of Leeds participated in this study (mean age = 23 years, SD = 3.3). All 

participants gave their written informed consent, and the experiment complied 

with the ethical guidelines approved by the University of Leeds ethical committee 

(ethical approval number: 17-0181, date approved: 16/06/2017). 

6.2.2 The task design 

Participants visited the lab six times over three consecutive days (one visit in the 

morning and one visit in the afternoon each day). Each visit consisted of three 

blocks, with participants completing eighteen blocks in total. The first block had 

three sessions; a practice session, a baseline session, and decision-making session 

as described in the general methods section (81 trials in total). For the remaining 

seventeen blocks, participants completed only a practice session and a decision-

making session (54 trials in total) (Panel B Figure 6.1). The task was to move a 

controller held in the preferred hand to hit the target. The controller position was 

tracked and a virtual representation of the controller was visible throughout the 

experiment. The total points obtained were reported to the participants after each 

block and they were encouraged to increase their score in the next block. The 



108 
 

experiment configuration was low reward target (one star) vs high reward target 

(three star).  As in the previous Experiments, the high reward targets were 

positioned at one of three distances from the starting position (0.50, 0.65 or 0.75 

arm span). The low reward target was always positioned at 0.35 arm span (Panel A 

Figure 6.1). This produced a 2 (gender: female, male; between subjects) x 3 (target 

distance: near, medium, far; within subjects) x 18 (block number: 1:18; within 

subjects) design.  

 

Figure 6.1 Panel A participant from above in the decision-making session where the closer 
target (one star) appears at 0.35 arm span and the further target (three stars) appears at 
either 0.50 or 0.65 or 0.75 arm’s span with an angular separation of 25°. The lower line 
represents the sequence of the trial; from the participant landing on the start position (red 
target) to hearing the whistle (signal to move). Panel B shows the days, blocks, and trial 
sessions for each visit (grey cells the session took place and white cells there is no session).  
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6.3 Results  

Before conducting any inferential statistics, data were examined for violations of 

assumptions of normality through box- plots, Q–Q plots, histograms and Shapiro–

Wilk test (P < 0.05), with transformations performed where necessary. A Z-score 

was calculated and ± 3 were assigned as a threshold to deal with outliers. 

6.3.1 Points obtained  

A mixed model ANOVA on the points obtained revealed that there was no 

significant three way interaction between target distance, gender, and block 

number [F(2, 710) = 0.06, p = .93, 𝜂𝐺
2  = 0.001]. There was a significant interaction 

between target distance and block number [F(2, 710) = 5.15, p = .006, 𝜂𝐺
2  = 0.005], 

showing that the effect of distance decreased as block number increased and 

between gender and target distance [F(2, 710) = 3.99, p = .01, 𝜂𝐺
2  = 0.04]. There 

was no significant interaction between gender and block number [F(1, 355) = 1.67, 

p = .19, 𝜂𝐺
2  = 0.002]. There was a significant main effect of target distance [F(2, 710) 

= 14.54, p < .001, 𝜂𝐺
2  = 0.01] with fewer points being obtained as distance 

increased, suggesting the participants were less likely to go for high reward target 

in these trials, and block number [F(1, 355) = 100.65, p < .001, 𝜂𝐺
2  = 0.14] with 

participants accruing more points across time, and gender with males accuring 

more points than females [F(1, 355) = 4.87, p = .02, 𝜂𝐺
2  = 0.008]. Figure 6.2 shows 

average points obtained from each target distance divided by gender. 
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Figure 6.2 Average number of points obtained for females (upper panel) and males 
(lower panel) across blocks (with standard error bars) for each target distance 
(near; circle, medium; triangle, far; square). Dashed lines represent the end of each 
day. 

6.3.2 High reward target selection  

A mixed model ANOVA on the high reward target selection showed that there was 

no significant three way interaction between target distance, gender, and block 

number [F(2, 710) = 2.07, p = .12, 𝜂𝐺
2  = 0.002]. There was a significant interaction 

between target distance and block number [F(2, 710) = 20.37, p < .001, 𝜂𝐺
2  = 0.02], 

and between gender and target distance [F(2, 710) = 0.47, p = .60, 𝜂𝐺
2  = 0.0006]. 

There was a significant interaction between gender and block number [F(1, 355) = 

4.34, p = .03, 𝜂𝐺
2  = 0.006]. There was a significant main effect of target distance 

[F(2, 710) = 61.3, p < .001, 𝜂𝐺
2  = 0.07], block number [F(1, 355) = 85.5, p < .001, 𝜂𝐺

2  = 

0.11], but not for gender [F(1, 355) = 0.40, p = .52, 𝜂𝐺
2  = 0.0006]. Figure 6.3 shows 

average high reward target selection for each target distance divided by gender. 
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Figure 6.3 Percentage of high reward target selection for females (upper panel) and 
males (lower panel) across blocks (with standard error bars) for each target 
distance (near; circle, medium; triangle, far; square). Dashed lines represent the 
end of each day. 

6.3.3 High reward target hit  

A mixed model ANOVA on the high reward target hit showed that there was no 

significant three way interaction between target distance, gender, and block 

number [F(2, 710) = 0.41, p = .66, 𝜂𝐺
2  = 0.0006]. There was a significant interaction 

between target distance and block number [F(2, 710) = 7.14, p < .001, 𝜂𝐺
2  = 0.009], 

and between gender and target distance [F(2, 710) = 5.48, p = .004, 𝜂𝐺
2  = 0.007]. 

There was a significant interaction between gender and block number [F(1, 355) = 

4.95, p = .02, 𝜂𝐺
2  = 0.007]. There was a significant main effect of target distance 

[F(2, 710) = 16.62, p < .001, 𝜂𝐺
2  = 0.02], block number [F(1, 355) = 64.43, p < .001, 

𝜂𝐺
2  = 0.08], but not for gender [F(1, 355) = 1.02, p = .31, 𝜂𝐺

2  = 0.001]. Figure 6.4 

shows high reward target hit for each target selection divided by gender.  
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Figure 6.4 Percentage of high reward target hits for females (upper panel) and 
males (lower panel) across blocks (with standard error bars) for each target 
distance (near; circle, medium; triangle, far; square). Dashed lines represent the 
end of each day. 

6.3.4 High reward target selection and points obtained difference between the 

first and last visit  

High reward target selection and points obtained averaged across the first visit (1st, 

2nd, and 3rd block) and across the last visit (16th, 17th, and 18th block) and analysed. 

A mixed model ANOVA on the high reward target selection showed no significant 

three way interaction between gender, visit, and target distance [F(2, 72) = 1.27, p 

= .28, 𝜂𝐺
2  = 0.009]. There was a significant interaction between the visit and target 

distance [F(2, 72) = 13.48, p < .001, 𝜂𝐺
2  = 0.08], but not with gender and target 

distance [F(2, 72) = 0.33, p = .71, 𝜂𝐺
2  = 0.002], nor with gender and visit [F(1, 36) = 

1.45, p = .23, 𝜂𝐺
2  = 0.02]. There was a significant main effect of target distance [F(2, 

72) = 21.09, p < .001, 𝜂𝐺
2  = 0.13], and of visit [F(1, 36) = 21.85, p < .001, 𝜂𝐺

2  = 0.31], 

but no main effect of gender [F(1, 36) = 0.67, p = .41, 𝜂𝐺
2  = 0.01]. Figure 6.5 shows 
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high reward target selection from each target distance averaged across the first 

and last visit. The accumulation of the data at the last visit around 100% is due to 

the ceiling effect observed as participants selected the high reward target with 

time.  

 

Figure 6.5 Percentage of high reward target selection across the first visit (left 
panel) and across the last visit (right panel) fir dender (female; circle, male; 
triangle) with mean and standard error for each target distance (near, medium, 
far). 

A mixed model ANOVA on the points obtained showed no significant three way 

interaction between gender, visit, and target distance [F(2, 72) = 0.11, p = .89, 𝜂𝐺
2  = 

0.008]. There was no significant interaction between the visit and target distance 

[F(2, 72) = 3.09, p = .05, 𝜂𝐺
2  = 0.02], nor between gender and target distance [F(2, 

72) = 0.85, p = .43, 𝜂𝐺
2  = 0.006], or with gender and visit [F(1, 36) = .56, p = .45, 𝜂𝐺

2  = 

0.01]. There was a significant main effect of target distance [F(2, 72) = 3.44, p = .03, 

𝜂𝐺
2  = 0.02], and of visit [F(1, 36) = 26.77, p < .001, 𝜂𝐺

2  = 0.35], but no main effect of 
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gender [F(1, 36) = 0.07, p = .78, 𝜂𝐺
2  = 0.001]. Figure 6.6 shows points obtained from 

each target distance averaged across the first and last visit. 

 

Figure 6.6 Average points obtained across the first visit (left panel) and across the 
last visit (right panel) fir dender (female; circle, male; triangle) with mean and 
standard error for each target distance (near, medium, far). 

6.4 Discussion  

The Partially Observable Markov Decision Process model predicted that 

participants would become increasingly likely to select the ‘risky’ further target as 

they undertook the task over repeated sessions. The reason for this prediction is 

that the model updates its probability estimate after each trial so that a successful 

hit causes the system to increase its estimate of success and this results in the 

same target having an increased probability of being selected on future trails. This 

prediction was borne out by the data. One consequence of this long term effect 

would be to remove the gender differences observed when participant groups are 

first introduced to the task. This prediction was also borne out by the data. It can 
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be concluded that the behaviour observed in the first four experiments are well 

predicted by a Partially Observable Markov Decision Process model. The 

implication of this conclusion is that adult humans combine the rewards and 

sensorimotor costs when determining the relative value of targets in a binary 

selection task. The sensorimotor costs are continually updated on the basis of 

performance. This simple notion can explain well the behaviours observed across 

the first four experiments within this thesis.  
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 CHAPTER 7: DYNAMIC DECISION MANIPULATION 

(EXPERIMENT 5) 

7.1 Introduction  

The first four experiments described in this thesis always provided participants with 

a consistent choice – whether to reach for the ‘safe’ target (which was continually 

visible and not timed out) or to reach for the ‘risky’ target (albeit that the ‘risky’ 

target had different sensorimotor costs on a trial-by-trial basis). In Experiment 5, 

we set out to explore decision-making in a more dynamic context where both 

target choices would time out and where the choice was not simply between ‘low 

reward-sensorimotor cost’ versus ‘high reward-sensorimotor cost’. In the fifth 

experiment, a variety of trials were presented where participants needed to 

determine the cost-reward ratio in order to make their selection. This allowed us to 

explore whether participants defaulted to simple heuristics (select the highest 

reward or select the lowest sensorimotor costs) or whether they combined the 

rewards and sensorimotor costs (as found in the first three experiments). 

The hypothesis of this experiment was that participants would combine the 

sensorimotor cost and target reward in their decision making process as shown in 

the previous experiments. 



117 
 

7.2 Methods  

7.2.1 Participants  

Forty adults (20 males; 19 right handed and 20 females; 19 right handed) from the 

University of Leeds participated in this study (mean age = 25.1 years, SD = 6.8). All 

participants gave their written informed consent, and the experiment complied 

with the ethical guidelines approved by the University of Leeds ethical committee 

(ethical approval number: PSC-416, date approved: 07/09/2018). 

7.2.2 The task design  

Participants undertook three sessions: a practice session, a baseline session, and 

decision-making session as described in the general methods section. There were 6 

trials in the practice session, 12 trials in the baseline session, and 24 trials in the 

decision-making session. The participant’s task was to move a controller held in the 

preferred hand to hit the target. The controller position was tracked and a virtual 

representation of the controller was visible throughout the experiment. 

The experiment configuration used a low reward target (one star) and a high 

reward target (two star). The targets appeared in three possible distances (either 

0.50, 0.65 or 0.75 arm span). In the decision-making session, the two targets 

appeared in three possible combinations: reward advantage (both targets at the 

same distance: 0.50; 0.65; 0.75 but one target worth twice as much as the other); 

distance advantage (targets both worth one star and configured as 0.50-0.65; 0.65-

0.75; 0.50-0.75); mixed (one star target at 0.5 vs two star target at 0.65; one star 

target at 0.65 vs two star target at 0.75; one star target at 0.5 vs two star target at 
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0.75) (Panel A, B and C in Figure 7.1) . The targets were presented in a random 

order but the same random order was used for all participants so we could 

compare like-with-like when looking at the effects of age.  

 

Figure 7.1 Panel A shows participant from above in the decision-making session for 
the reward advantage trial types, panel B shows the distance advantage trial type 
and panel C shows the mixed trial type (see text for details). The lower line 
represents the sequence of the trial; from the participant landing on the start 
position (red target) to hearing the whistle (signal to move).  
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This produced a 2 (gender: female, male; between subjects) x 3 (trial 

configurations: reward advantage, distance advantage, mixed; within subjects) x 6 

(target selected: high reward, low reward, closer distance, further distance, low 

reward and closer distance, high reward and further distance; within subjects) x 4 

(disparity size: same, small, medium, large; within subject) design.  

Disparity size is determined by the sensorimotor cost associated with targets but 

where the cost is assumed to grow in a non-linear fashion with increasing distance 

(thus the cost differential is higher between the furthest and middle distance target 

than between the middle distance and closest target). Therefore if a target is at 

0.50 and the other target is at 0.65 then the sensorimotor disparity is relatively 

small; if a target is at 0.65 and the other target is at 0.75 then the sensorimotor 

disparity will be medium, and finally when a target is at 0.50 and the other target is 

at 0.75 then the sensorimotor disparity will be large. The disparity size is the same 

when there is no sensorimotor cost difference between the two targets (i.e. both 

of them at the same distance). Table 7.1  shows the various target configurations 

with the disparity size. 
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Table 7.1 Trial configuration for each target combination. The number in each cell 

refers to the distance as a proportion of arm span, and number of stars is given in 

parentheses. The final column categorises the magnitude of the functional 

difference in reach distance (same, small, medium or large). The disparity size 

refers to the difference in sensorimotor costs where the furthest target has the 

greatest risk of falling. This means that the risk difference is greater between the 

medium and furthest target than the nearest and medium ones (despite the 

distance difference being equal). 

Trial configuration  Target 1 Target 2 Disparity size 

Reward Advantage  

0.5 (1) 0.5 (2) same 

0.5 (2) 0.5 (1) same 

0.65 (1) 0.65 (2) same 

0.65 (2) 0.65 (1) same 

0.75 (1) 0.75 (2) same 

0.75 (2) 0.75 (1) same 

Distance Advantage 

0.5 (1) 0.65 (1) small 

0.65 (1) 0.5 (1) small 

0.65 (1) 0.75 (1) medium 

0.75 (1) 0.65 (1) medium 

0.5 (1) 0.75 (1) large 

0.75 (1) 0.5 (1) large 

Mixed 

0.5 (1) 0.65 (2) small 

0.65 (2) 0.5 (1) small 

0.5 (1) 0.65 (2) small 

0.65 (2) 0.5 (1) small 

0.65 (1) 0.75 (2) medium 

0.75 (2) 0.65 (1) medium 

0.65 (1) 0.75 (2) medium 

0.75 (2) 0.65 (1) medium 

0.5 (1) 0.75 (2) large 

0.75 (2) 0.5 (1) large 

0.5 (1) 0.75 (2) large 

0.75 (2) 0.5 (1) large 



121 
 

7.3 Results  

Before conducting any inferential statistics, data were examined for violations of 

assumptions of normality through box- plots, Q–Q plots, histograms and Shapiro–

Wilk test (P < 0.05), with transformations performed where necessary. A Z-score 

was calculated and ± 3 were assigned as a threshold to deal with outliers. There 

were four trial outcomes in the experimental session: hit when the participants 

reached the target on time, miss when the participant did not reach the target on 

time, premature when they reached too early, and no-go when they did not move 

at all. For reasons of clarity and interest we examined only which target was 

selected. Table 7.2 shows the percentage of each possible outcome. 

Table 7.2 Percentage of trial outcomes with mean and standard deviation (SD). 

Trial outcome  Mean (%) SD (%) 

Hit  74.47 1.26 

Miss  18.22 2.54 

Premature 2.70 6.60 

No-go  4.58 5.08 

7.3.1 Reward advantage trial configuration  

Repeated measure ANOVA showed no significant interaction between gender and 

target selected [F(1, 38) = 0.37, p = .54, 𝜂𝐺
2  = 0.01]. There was a main effect of 

target selected with participants selecting the high reward target more often than 

the low reward target [F(1, 38) = 276.96, p < .001, 𝜂𝐺
2  = 0.87] but no main effect of 

gender [F(1, 38) = 0.97, p = .32, 𝜂𝐺
2  = 0.01] (Figure 7.2).  
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Figure 7.2 Target selection percentage in the reward advantage trial configuration 
for females (unfilled bars) and males (filled bars) at each target selected (high 
reward and low reward). Error bars show standard error of the mean. 

7.3.2 Distance advantage trial configuration 

Repeated measure ANOVA showed no significant interaction between gender and 

target selected [F(1, 38) = 0.09, p = .76, 𝜂𝐺
2  = 0.002]. There was a main effect of 

target selected with participants selecting the closer distance target more often 

than the further distance target [F(1, 38) = 424.37, p < .001, 𝜂𝐺
2  = 0.91] but not 

gender [F(1, 38) = 0.97, p = .32, 𝜂𝐺
2  = 0.01] (Figure 7.3).  
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Figure 7.3 Target selection percentage in the distance advantage trial configuration 
for females (unfilled bars) and males (filled bars) at each target selected (closer 
distance and further distance). Error bars show standard error of the mean. 

We explored whether the magnitude of the difference between the nearer and 

further target (disparity size) had an effect on selection. A repeated measure 

ANOVA revealed no significant two way interaction between the target selected 

and disparity size [F(2, 111) =1.52, p = .22, 𝜂𝐺
2  = 0.001]. There was a main effect of 

target selected  where participants selected the closer distance target more often 

compared to the further distance targets [F(1, 111) = 485.38, p < .001, 𝜂𝐺
2  = 0.75], 

but no main effect of disparity size [F(2, 111) = 0.12, p = .88, 𝜂𝐺
2  = 0.02]. 

7.3.3 Mixed trial configuration  

Repeated measure ANOVA showed no significant interaction between gender and 

target selected [F(1, 38) = 0.47, p = .49, 𝜂𝐺
2  = 0.02]. There was no main effect of 

target selected [F(1, 38) = 2.49, p =.12, 𝜂𝐺
2  = 0.003] nor of gender [F(1, 38) = 0.51, p 

= .47, 𝜂𝐺
2  = 0.06] (Figure 7.4).  
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Figure 7.4 Target selection percentage in the mixed trial configuration for females 
(unfilled bars) and males (filled bars) at each target selected (low reward & closer 
distance and high reward & further distance). Error bars show standard error of the 
mean. 

We explored whether the magnitude of the difference between the nearer and 

further target had an effect on selection. A repeated measure ANOVA revealed a 

significant two way interaction between the choice and disparity size [F(2, 115) 

=6.51, p = .002, 𝜂𝐺
2  = 0.14]. There was a main effect of target selected [F(1, 115) = 

5.94, p = .01, 𝜂𝐺
2  = 0.01], and main effect of disparity size [F(2, 115) = 6.51, p = .002, 

𝜂𝐺
2  = 0.09] (Figure 7.5). 
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Figure 7.5 Target selection percentage in the mixed trial configuration as a function 
of the disparity size (small, medium, and large). Filled bars showing the lower point 
and closer distance targets and unfilled bars are the higher point and further 
distance targets. Error bars show standard error of the mean. 

7.4 Discussion  

In the fifth experiment, we examined how participants selected targets when they 

needed to make dynamic decisions between different targets (i.e. there was no 

consistent ‘safe’ target). The results showed clearly that the participants were 

biased towards targets with lower sensorimotor costs. The results showed equally 

clearly that the participants were biased towards targets with higher rewards. 

Nevertheless, neither sensorimotor costs nor rewards completely dominated the 

decision-making process. If sensorimotor cost differences were small then there 

was a bias towards the higher reward target, but this changed as the sensorimotor 

costs increased (so clearly individuals were sensitive to costs and rewards, and 
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decisions were influenced ultimately by a combination of rewards and 

sensorimotor costs). 

Thus, the results suggest (in line with the first four experiments) that participants 

base their decisions on the ‘value’ of a target through a combination of its 

sensorimotor costs and its rewards. This is consistent with the Partially Observable 

Markov Decision Process model outlined in the fourth chapter. It is notable that 

participants did not always select the optimal target in situations where one target 

was clearly a better choice than another (i.e. when the rewards were equal but not 

the sensorimotor costs or vice versa). There are two possible explanations for this 

observation. One explanation is that the participants were actively engaging in 

exploring the task design (i.e. selecting a suboptimal target in order to better 

understand the task dynamics). This explanation seems unlikely given the game 

scenario presented (where participants were motivated to gain the highest possible 

score) and the fact that practice trials were provided. The alternative and more 

plausible explanation is that participants took too long to weight the relevant costs 

and rewards, and therefore defaulted to selecting one target regardless of its 

merits (rather than gain zero points by being timed out). This conjecture would be 

consistent with an ‘evidence accumulation’ model (Donkin & Brown, 2018; Huk et 

al., 2013; Lee & Cummins, 2004; Newell & Lee, 2011; Ratcliff & McKoon, 2008) 

where the system needs sufficient time for a threshold to be reached – it is 

plausible to suggest that on occasion there was insufficient time in this dynamical 

decision task and this caused suboptimal behaviours to appear (albeit relatively 

infrequently).  
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The following experiment aimed to examine the effect of age on the dynamic 

decision-making behaviour.  
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 CHAPTER 8: DEVELOPMENTAL EFFECT OF DYNAMIC 

DECISION-MAKING (EXPERIMENT 6) 

8.1 Introduction  

The first five experiments involved adult humans. These experiments showed that 

adults are capable of combining the extrinsic rewards and sensorimotor costs 

associated with selecting one target over another. This raises the question of when 

this ability emerges in the childhood trajectory.   

Childhood is a period associated with rapid cognitive and sensorimotor 

development (Johnson & Munakata, 2005). Work in classical decision-making tasks 

has shown children to be more risk seeking when two options with equal expected 

value are presented relative to adolescents and adults (Defoe et al., 2015; Paulsen 

et al., 2011). Explanations for such effects rely on the ability to mentally represent 

choice options along with psychology and neurobiological differences in reward 

sensitivity and behavioural inhibition and cognitive control (Hargreaves & Davies, 

1996; Mushtaq et al., 2015; Reyna & Brainerd, 2011; Reyna et al., 2015). However, 

to the author’s knowledge, there is no such work examining the developmental 

trajectory of risk-taking on sensorimotor decision tasks. To this end, we decided to 

explore this issue by conducting the same task as reported in Experiment 5 on a 

range of different aged children. 
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The aim of this experiment was to examine the sensorimotor decision making over 

different age groups. The hypothesis was that the younger children would show 

risky behaviour compared to the older group of age.  

8.2 Methods  

8.2.1 Participants 

A total of 166 participants were included in this study (including the 40 adults from 

Experiment 5). Table 8.1 provides details about the gender and age distribution. 

Overall age groups, twenty one participants were left handed and 145 participants 

were right handed. For the 7-8 year old group seven participants were left handed 

and 41 participants were right handed. For the 9-10 year old group eight 

participants were left handed and 34 participants were right handed. For the 11-12 

year old group four participants were left handed and 23 participants were right 

handed. For the ≥ 18 year old group two participants were left handed and 38 

participants were right handed. All participants (parents/teachers for children) 

gave their written informed consent, children were asked and informed fully with 

the experiment before taking part, and the experiment complied with the ethical 

guidelines approved by the University of Leeds ethical committee (ethical approval 

number: PSC-416, date approved: 07/09/2018). 
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Table 8.1 Age and gender distribution of the participants in Experiment 6. 

Age group  Male (n = 90) Female ( n = 76) Total (n = 166) 

7 -8  24 24 48 

9 - 10 30 21 51 

11 - 12 16 11 27 

≥ 18 20 20 40 

8.2.2 The task design 

The task was the same as Experiment 5. 

8.3 Results  

Before conducting any inferential statistics, data were examined for violations of 

assumptions of normality through box- plots, Q–Q plots, histograms and Shapiro–

Wilk test (P < 0.05), with transformations performed where necessary. A Z-score 

was calculated and ± 3 were assigned as a threshold to deal with outliers. A one-

way ANOVA revealed that there was a significant difference between age groups in 

the points obtained [F(3, 1620) = 12.59, p < .001, 𝜂𝐺
2  = 0.18]. A post-hoc analysis 

using bonferroni method revealed that > 18 year old group collected more points 

when compared with the 7-8 and 9-10 year old group (p’s < .001), however the 

obtained points were not significantly different between the > 18 and the 11-12 

year old group. The 11-12 year olds collected more points when compared to the 7-

8 year old group, but not the 9-10 year olds (p’s < .7) (Figure 8.1).  
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Figure 8.1 Average number of points obtained as a function of age group with 
standard error bars. 

8.3.1 Reward advantage trial configuration  

A repeated measure ANOVA showed a significant interaction between target 

selection and age group [F(3, 162) = 5.73, p = .001, 𝜂𝐺
2  = 0.42]. There was a main 

effect of target selection [F(1, 162) = 333.06, p <.001, 𝜂𝐺
2  = 0.64], and main effect of 

age group [F(3, 162) = 7.28, p < .001, 𝜂𝐺
2  = 0.37] (Figure 8.2).  
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Figure 8.2 Target selection percentage in the reward advantage trial configuration 
as a function of age; the higher point target is unfilled bars and the lower point 
target is the filled bars. Error bars show standard error of the mean. 

8.3.2 Distance advantage trial configuration  

A repeated measure ANOVA showed no significant interaction between target 

selection and age group [F(3, 161) = 2.46, p = .06, 𝜂𝐺
2  = 0.14]. There was a main 

effect of target selection [F(1, 161) = 674.5, p <.001, 𝜂𝐺
2  = 0.47], and a main effect 

of age group [F(3, 161) = 2.62, p = .05, 𝜂𝐺
2  = 0.2] (Figure 8.3).  
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Figure 8.3 Target selection percentage in the distance advantage trial configuration 
as a function of age; the closer distance target is unfilled bars and the further 
distance target is the filled bars. Error bars show standard error of the mean.  

8.3.3 Mixed trial configuration  

A repeated measure ANOVA showed a significant interaction between target 

selection and age group [F(3, 162) = 9.03, p < .001, 𝜂𝐺
2  = 0. 4]. There was a main 

effect of target selection [F(1, 162) = 7.44, p =.007, 𝜂𝐺
2  = 0.25], and a main effect of 

age group [F(3, 162) = 6.95, p < .001, 𝜂𝐺
2  = 0.74] (Figure 8.4).  
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Figure 8.4 Target selection percentage in the mixed trial configuration as a function 
of age; filled bars showing the lower point and closer distance targets and unfilled 
bars are the higher point and further distance targets. Error bars show standard 
error of the mean. 

We explored whether the magnitude of the difference between the nearer and 

further target had an effect on selection in the three groups of children. We found 

the same pattern as reported in the adults with a significant interaction between 

target selection and disparity size in the 7-8 year old group [F(2, 138) = 5.08, p = 

.007, 𝜂𝐺
2  = 0.14], the 9-10 year old group [F(2, 147) = 6.74, p = .002, 𝜂𝐺

2  = 0.04] and 

the 11-12 year old group [F(2, 78) = 5.17, p = .008, 𝜂𝐺
2  = 0.24]. There were main 

effects of target selection in the 7-8 and 9-10 year old group, F’s < 85.1, p’s < .001, 

however it was not significant for the 11-12 year old group [F(1, 78) = 0.25, p = .61, 

𝜂𝐺
2  = 0.001]. There were no main effects of disparity size in the 7-8 and 9-10 year 

old group F’s > 2.2, p’s > .55, however it was significant for the 11-12 year old 

group [F(2, 78) = 2.43, p = .09, 𝜂𝐺
2  = 0.04].  
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8.4 Discussion  

In this experiment, we examined the effect of age on decision-making when targets 

had different sensorimotor cost and extrinsic rewards. There were clear age effects 

whereby higher performance levels were found as the age group of the 

participants increased. However, interestingly all age groups showed adult-like 

behaviour with their choices biased towards targets with lower sensorimotor cost 

and targets with higher extrinsic rewards.  

There were age differences in the biases shown across the groups such that the 

younger age group showed a larger bias towards selecting a target with a lower 

sensorimotor cost. This result makes sense in the light of the lower motor control 

abilities of younger children (Klingberg, 2014). It suggests, however, that even 

young children are tuned into their sensorimotor capabilities and use this 

information to choose between targets. The results also showed that it was more 

likely that children would select a sub-optimal target in situations where one target 

was clearly a better choice than another (i.e. when the rewards were equal but not 

the sensorimotor costs or vice versa). The most likely explanation of this finding is 

that the children took longer to weigh the relevant costs and rewards, and 

therefore defaulted to selecting one target regardless of its merits rather than gain 

zero points by being timed out. This provides further evidence for our suggestion 

that the decision-making process might involve an ‘evidence accumulation’ aspect 

where the system needs sufficient time for a threshold to be reached. It seems 

reasonable to suggest that the younger the child, the longer it takes to reach 
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threshold. This would explain the observation of a higher frequency of suboptimal 

behaviour being observed as the age group of the group decreased.  
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 CHAPTER 9: DISCUSSION AND CONCLUSIONS 

9.1 Introduction  

This thesis reports 6 experiments which involved 386 participants taking part in a 

novel sensorimotor decision-making task. The experimental task was designed to 

capture participants’ behaviour towards extrinsic value (reward) and intrinsic cost 

(sensorimotor cost) in functionally relevant decision-making tasks (i.e. reaching for 

objects in the environment). Using virtual head-mounted displays, participants 

were presented with two targets with different reward and sensorimotor cost 

across experiments. The influence of reward and cost on decision-making was 

evident in this body of experiments and the specific pattern of results are described 

in the previous chapters. Here, we summarise the key findings and contributions of 

this work to the literature after reviewing the experimental investigation.  

9.2 Review of experimental investigation  

Detailed discussions have been introduced in each chapter, in this section we 

present the main findings and summary of each chapter. Table 9.1 presents the 

summary of results for the six experiments. 

 

 



138 
 

Table 9.1 The summary of results for each experiment.  

Experiment  Summary of results   

Experiment 1  • Participants were influenced by the higher intrinsic 

costs of the further targets.  

• Males were more likely to select the high reward target 

than females (three star manipulatin only).  

• Same selection frequencies were found across all 

manipulations (2, 3, and 5 star) despite the difference in 

the points available. 

Experiment 2 • Participants were less likely to select the high reward 

target as the distance increased. 

• There is no effect of the motor noise manipulation.  

Experimient 3 • Participants were less likely to select the high reward 

target as the distance increased. 

• There is no effect of the sensory noise manipulation. 

Experiment 4 • The behaviour observed in this experiment is well 

predicted by a POM-DP model. 

• The selection behaviour changed after the repetition of 

the task and the gender diference noticed at the 

beginning disappears.  

Experiment 5 • Participants biased toward the lower sensorimotor cost 

and the higher rewards targets. 

• If the sensorimotor cost is small then there was a biase 

towards the higher reward target.  

• If the sensorimotor cost increased, then there was a 

biase towards the closer target.  

• Participants were sensitive to costs and rewards. 

Experiment 6 • There were an age effect on the decision making.  

• The older the participants the higher performance level 

found.  

• All age group showed adult-like behaviour with their 

choices biaed towards targets with lower sensorimotor 

cost and targets with higher extrinsic rewards. 

Chapter two outlined the general methods used in this thesis and the piloting work 

that guided the development of the task. A virtual reality framework was 

developed to investigate human behaviour in different domains, for instance motor 
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learning, decision making, interceptive timing, etc. This allowed for different 

parameters manipulation in the body of the experimental work presented in this 

thesis.  

In chapter three of this thesis the reward and cost effect on decision making were 

examined. The manipulation of the target distance and reward given allowed for 

some understanding of the role cognitive system plays in sensorimotor decision 

making tasks. Increasing the extrinsic reward of the targets did not change the 

behaviour of participants, which further underline the importance of the 

sensorimotor cost (target distance) and the cognitive reward (value of the target).  

In the fourth and fifth chapter, the effect of motor noise and sensory noise on the 

decision making task was examined. Removing the visual feedback and using the 

non-preferred hand of the participant did not affect participants’ evaluation of the 

extrinsic and intrinsic value of the target. Chapter six examined the effect of task 

repetition over three days. The selection behaviour changed with repetition and 

the gender difference noticed at the beginning disappears.  

Chapter seven examined the effect of dynamic manipulation of the cost and 

reward on decision making and found subject making optimal decisions when the 

cost and reward are equal, and they were biased towards the closer distance and 

higher reward targets. Chapter eight examined the dynamic decision making on 

children and found that age does not affect the riskiness behaviour and younger 

age showed similar behaviour as the older peers.  



140 
 

9.3 Overall discussion  

A key contribution of this thesis comes from the novelty of the approach to tackling 

the topic of decision-making. Psychology has a long and illustrious history for 

decision-making research. Indeed, Nobel prizes have been awarded to Herbert 

Simon (Simon, 1979), Daniel Kahneman (Kahneman & Tversky, 1979; Tversky & 

Kahneman, 1974) and more recently, Richard Thaler (Thaler, 2016) for their 

contributions to understanding how humans process information related to 

alternative choices and select actions on this basis. However, it is also notable that 

in all of these cases, the prizes have been awarded for contributions to the field of 

economics. It is clear that economic choices are an important part of the decision-

making process, but it is also evident that they make up only a tiny fraction of the 

types of decisions humans make hundreds of times a day and billions of times 

across a lifespan. These choices invariably involve the sensorimotor system - for 

choice selection to be implemented and have impact on the world around us, it 

necessitates action execution. Yet, investigations into the influence of this 

component of decision-making has largely been neglected. Indeed, almost the 

entirety of psychological sciences investigations into the topic have involved 

experimental designs that either minimise the involvement of the sensorimotor 

system (relegating action execution element to the press of a button on a stimulus 

response pad) or make sensorimotor errors an impossibility or rare exception (to 

be excluded from analysis) in their research designs. 

In the mid-2000s, predicated on this body knowledge and clear gap, a new area of 

research on “sensorimotor decision-making” emerged (Trommershauser et al., 
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2003a, 2008, 2005, 2011, 2003b). Yet, the majority of this work has involved 

adapting principles from cognitive decision-making under risk and modelling 

responses from simple sensorimotor decision tasks with little to no cognitive 

demands (see for example Trommershauser et al., (2008)) in an analogous fashion. 

The experimental design employed in this thesis takes a different approach to 

these two bodies of work. Instead of relegating sensorimotor execution to bit-part 

player, or stripping sensorimotor choice of any reasonable cognitive demands, the 

experiments presented in this thesis involve integrating the two. This intersection is 

where a large proportion of real-world decisions reside. Take for example the 

everyday case of reaching for a cereal box at the back of top shelf of the 

supermarket. Not only does a decision maker have to factor in the expected reward 

of achieving the goal, but one must also consider the sensorimotor costs of carrying 

out the action. In some cases, this might result in asking for help from a taller 

shopper passing by.  It is this integration into decision-making that has finally 

started to gain traction (Green et al., 2010; McDougle et al., 2016, 2019; Parvin et 

al., 2018) and this thesis adds to this nascent body of work. 

A related benefit to this sensorimotor - cognition approach to decision-making are 

potential contributions that this type of approach could have in the future in 

applied settings. As a Paediatric physiotherapist, my motivations for carrying out 

this thesis were focussed on the limitations of extant approaches to assessing 

children’s movements in the clinic (Graham et al., 2004; Henderson et al., 2007; 

Russell et al., 2004). Many cases involve rudimentary tasks and subjective clinical 

judgements. My experiences have taught me that many children with underlying 

difficulties can effectively carry out tasks in a clinical setting, but such assessments 
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do not accurately capture the difficulties they face outside of the clinic and in the 

home or school (Faught et al., 2008; Rosenblum, 2006; Tieman et al., 2004). Here, 

not only does a child have to be able to execute an action whilst maintaining 

postural stability and/or execute a fine motor control task without dropping an 

object, they might also be holding in their working memory a myriad of related and 

unrelated tasks that they must carry out (which some may in some cases be 

immediately pressing - e.g. pick up object A to carry out Action B). It is these types 

of challenges that are not well captured in physiotherapist practice but where the 

types of tasks employed in this thesis might be able to gain some traction.   

It is also worth speaking to the experimental environment that the tasks in this 

thesis were performed in. The potential for virtual reality technology in 

psychological research has long been recognised (Loomis et al., 1999; Wann & 

Mon-Williams, 1996) and its use in psychology is becoming more mainstream, 

however, the dominant methodology for studying decision-making involves 

traditional 2D technology and a keyboard and mouse (or a stimulus response pad) 

for interaction. In traditional sensorimotor control laboratories, these methods 

may be extended to sensor based tracking and bespoke objects. However, it was 

clear from an early stage in this thesis that the novel experiments reported in this 

thesis would have been impractical to impossible to carry out in such a setting. 

Thus, in collaboration with colleagues with expertise in VR task programming 

(which has since been formalised as a series of tools known collectively as the Unity 

Experiment Framework [UXF; (Brookes et al., 2019)], we developed this 

experimental task- which provided a level of scalability and adaptability that 

allowed me to collect data on a large number of participants (total of 386 
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participants in the reported experiments alongside 503 participants involved in the 

preceding period of several iterations of piloting and refining the task design). 

It is clear that as the cost associated with these devices continues to reduce and 

computational power increases, which this type of approach will start to become 

ubiquitous in this field. Data collected from the baseline assessments described in 

this thesis provided a proof of concept for a recent methods behaviour advocating 

for behavioural sciences to take advantage of the power of VR and the UXF library 

(Brookes et al., 2019). The work presented here provides a canonical example of 

the value of VR for examining the processes underlying cognitive and sensorimotor 

processes. The tasks employed in this thesis will be made available to the research 

community to help in supporting more researchers to make the leap over to VR for 

psychological sciences research. 

9.4 Limitations and future work  

There are several limitations in this thesis that could be overcome in the future 

research. These are described below: 

1. An experiment with no time-out in the decision making session might help 

us to understandthe relationship between the cost and reward in more 

details. For example, participants might feel there is enough time for them 

to carry on the movement endlessly to hit the target.  

2. Due to time restrictions, recruiting children in experiment one to compare 

their decision making behaviour with adult data presented would 

strengthening our understanding of the developmental differences in the 

decision making processes captured in the task.  
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3. Experiment four sample size is relatively limited compared to other 

experiments presented because it was difficult to recruit participants willing 

to come twice a day for three consecutive days. Thus the sample was 

limited only to 20 participants. Moreover, the sample size in experiment six 

is not equally distributed across different age groups, which might have 

some implications on the observed results.  

4. An advantage of using a virtual reality systems is portability and 

accessibility, however changing the experimental settings (i.e. laboratory 

setting and museum settings) might have some effect on the results 

observed. Experiments one to four carried out at a laboratory setting and 

experiments five and six were carried out in both settings (i.e. laboratory 

and museums).  

5. Due to time restrictions, some of the analysis was not carried out. For 

instance the movement trajectories data were not investigated carefully in 

the presented thesis. Further investigation and deeper look into the rest of 

the data available under our hands would shed more light into the 

movement trajectories behaviour in decision making using virtual 

environment.  

6. There were no effect of noise in experiment two and three (motor and 

sensory noise). One explanation could be that the level of noise presented 

was not enough, and a stronger source of noise could lead to another 

observation.  

7. The same control group was used in experiment two and three, which 

might affect our results.   
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9.5 Concluding remarks  

The work presented in this thesis support the idea that decision making processes 

are complex and there are different underlying mechanisms involved. The balance 

between extrinsic reward and intrinsic cost of a specific target are examined in the 

data presented. Both of these features might be important in making optimal 

decisions especially in virtual environment. The results might help understand how 

the interaction between motor and cognitive functioning influence decision 

making. Using virtual reality in this thesis might open new windows on the use of 

immersive technologies in understanding human behaviour. 
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