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Abstract

The contemporary challenge of engineering verifiably secure software
has motivated various techniques for measuring and regulating the flow
of confidential data from systems to their users. Unfortunately, these
techniques suffer from a lack of integration with modern formal methods
for software development, which inhibits their application in practice.

This thesis proposes a novel approach for integrating information
flow security concerns with formal methods. Working in the Unifying
Theories of Programming (UTP), this thesis presents a generic framework
for modelling interactions between users and systems. This framework
can be applied to encode information flow about a system’s activities to
its users. It thereby allows confidentiality properties to be formalised in
the UTP as upper bounds on information flow to users.

The main contribution of this thesis is a unified platform for designing
software that is not only functionally correct, but also secure by design.
This platform specialises the information flow encoding to the Circus

formal method, making it possible to specify confidentiality properties
within Circus processes. In this setting, conflicts between functional-
ity and confidentiality are represented as miracles, rendering insecure
functionality infeasible.

The platform provides techniques for verifying that functionality and
confidentiality properties are mutually consistent. These techniques can
be applied to develop a process through a series of feasibility-preserving
refinement steps, to achieve a system implementation that does not leak
secret information to untrusted users. These techniques are evaluated
with a brief case study.
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1 Introduction

1.1 Confidentiality

Any organisation which handles private or sensitive information assets
is obliged to protect the confidentiality of those assets. The U.S. National
Institute of Standards and Technology defines confidentiality as:

“Preserving authorized restrictions on information access and dis-
closure, including means for protecting personal privacy and pro-
prietary information.” (NIST, 2006)

The choice of security mechanisms for protecting confidential data
should be proportionate to the sensitivity of those data (Anderson, 2003).
In particular, the cost of implementing security measures should be
balanced against the risk of disclosing those data to unauthorised persons:

• For governmental or military establishments, the compromise of
national secrets could have catastrophic consequences.

• Likewise, a business may possess valuable trade secrets, where un-
authorised exposure may result in financial or legal repercussions.

• The revelation of sensitive data about individuals — such as their
banking, employment or medical records — may compromise their
privacy and facilitate identity theft or blackmail against them.

In practice, software systems which store confidential data are com-
monly guarded with firewalls, access control and encryption. Each of
these measures are important, but they do not guarantee security: all
too often, a determined adversary can bypass them by identifying and

1



1 Introduction

exploiting flaws in their design and implementation. For this reason, it is
widely accepted that bolting security mechanisms onto a software system
is insufficient to obtain reliable assurances that the system is really secure
(McLean, 1987).

With the advent of ubiquitous Internet connectivity, the demand for
software systems that are secure by design is greater than ever before. In
the words of Santen et al. (2002):

“The consent is growing that secure systems cannot be built by
adding security features ex post to an existing implementation, but
that “security-aware” engineering of systems and software must
take security concerns into account, starting from requirements en-
gineering through architectural and detailed design to coding, test-
ing and deployment.”

This sentiment is echoed by Jones (2009), reporting the outcomes
of an international meeting of security experts drawn from academia,
commerce and government. These experts envisage:

“The development and procurement of software and systems which
are resilient and sustainable by design, where requirements such as
security and privacy are, as a matter of course, defined at project
initiation and implemented and assured throughout in risk-based,
whole-life processes.”

In circumstances where the confidentiality of information is critical, it
is therefore imperative that software systems are developed to minimise
the possibility of undesirable leakages of confidential information. These
developments demand the application of precise and robust software
engineering techniques.

1.2 Formal Methods and Security

An influential school of thought in software engineering holds that pro-
grams should be treated as mathematical objects (Hoare, 1969; Scott and

2



1.2 Formal Methods and Security

Strachey, 1971; Dijkstra, 1976; Gries, 1981; Morgan, 1994). This philo-
sophy has motivated the production of a broad spectrum of deductive
techniques, collectively known as formal methods, for constructing and
analysing models of computer systems with logical rigour. The field
of formal methods is surveyed by Wing (1990), Saiedian (1996) and
Woodcock et al. (2009), among others.

Software engineers can apply formal methods to provide a high level
of assurance that software products are correct by construction. These
methods emphasise the value of creating abstract models to specify the
desired characteristics of systems. These models can be subjected to rigor-
ous consistency checks to determine whether they faithfully represent the
customer’s requirements for the system. A satisfactory model can then be
developed — through a series of correctness-preserving refinement steps
— into an implementation of the system (Wirth, 1971).

In the study and application of formal methods, correctness is predom-
inantly interpreted in terms of functionality properties, which dictate the
relation between the inputs and outputs of systems. Functionality places
a lower bound on the information that a system reveals to its users. In
contrast, confidentiality is a non-functional property: in fact, it imposes
an upper bound on the disclosure of information to untrusted users.
Since these bounds oppose each other, standard methods for developing
systems to achieve functional correctness may fail to achieve a secure
system (Jacob, 1992).

The advantages of applying formal methods in the development of
security-critical systems are well documented by Wing (1998) and Ryan
(2001). Indeed, it is widely recognised that formalisation is essential
for designing trustworthy cryptographic protocols (Burrows et al., 1989).
However, much of the theory associated with formal notions of confid-
entiality has been developed independently from formal methods and
other software engineering practices. As a consequence, well-established
formal development platforms — such as VDM (Jones, 1990) and the
B-Method (Abrial, 1996; Schneider, 2001) — do not incorporate facilities
for encoding confidentiality requirements within system designs. Hence,

3



1 Introduction

practitioners of formal methods need specialised knowledge to integrate
confidentiality properties within the development of systems successfully.

1.3 A Platform for Secure Software Development

This thesis describes a formal platform for designing software systems
that satisfy a joint specification of confidentiality and functionality prop-
erties. By promoting confidentiality to the status of a first-class citizen,
we make it accessible to formal methods practitioners who do not possess
specialised security knowledge.

At the heart of our platform is a generic framework for modelling
systems with multiple users, presented in Chapter 3. Based on the Unify-
ing Theories of Programming (UTP) (Hoare and He, 1998), this framework
is suitable for modelling a user’s interactions across different semantic
models of systems. In Chapter 4, we study how the framework can
be applied to formalise users’ knowledge about a system’s behaviour,
providing a medium for the specification of confidentiality properties.

We elevate the framework to a fully fledged formal development plat-
form by embedding it within Circus. The Circus notation, introduced by
Woodcock and Cavalcanti (2001), combines the process algebra known as
CSP (Hoare, 1985a; Roscoe, 1997; Schneider, 1999) and the state-based
style of Z (Spivey, 1992; Woodcock and Davies, 1996) to provide facilities
for modelling state-rich concurrent and reactive systems.

In Chapter 5, we extend the UTP theory of Circus processes to support
new constructs for expressing confidentiality attributes over the state and
behaviour of Circus processes. This construct integrates seamlessly with
the Circus syntax; it can be mixed with regular Circus constructs to specify
a wide range of confidentiality properties.

It is possible to specify a process where its functionality and confidenti-
ality properties conflict with each other. Such conflicts between properties
are undesirable, because no implementation can possibly satisfy a contra-
dictory specification. Chapter 6 presents a technique for detecting these
conflicts, which draws inspiration from Dijkstra’s weakest precondition

4



1.4 Structure of this Thesis

P0

Pi

Pn Code

Func Conf

v

v

translate

Figure 1.1: A depiction of a formal system development strategy incor-
porating both functionality and confidentiality requirements.
Both functionality and confidentiality properties can be added
to the development at each design step. These correctness
properties are inherited under refinement, leading to a final
design that may be implemented as code.

calculus. Moreover, this technique can be applied in combination with
the Circus refinement calculus, to develop processes with the assurance
that refinement steps do not induce conflicts between functionality and
confidentiality.

To evaluate the effectiveness of these techniques, we present a case
study development in Chapter 7.

1.4 Structure of this Thesis

Following this introduction, this thesis is structured as follows:

• Chapter 2 provides an overview of the UTP and Circus.

• Chapters 3 through 6 present the main contributions of the thesis.

• Chapter 7 delivers a case study that applies the techniques delivered
in previous chapters.

5



1 Introduction

• Chapter 8 summarises the contributions of the thesis and identifies
topics for future work.

• The Appendix contains formal proofs of all theorems and lemmas
given in the thesis.

This thesis is written with a formal methods audience in mind, owing
to the nature of the material it covers. In particular, the reader should be
familiar with the first-order predicate calculus and the algebra of CSP.

A discussion of the ethical issues surrounding computer security and
information confidentiality is beyond the scope of this thesis. The reader
interested in these issues may wish to consult Stoll (1988) and Schneier
(2004) for various perspectives on this topic.

6



2 Background

2.1 Unifying Theories of Programming

This chapter provides a whistle-stop tour of Hoare and He’s Unifying
Theories of Programming (UTP). The UTP framework imparts a uniform
semantics to a range of programming paradigms, spanning imperative,
object-oriented and functional languages, across sequential and concur-
rent models of computation in timed and untimed domains.

The UTP strives for simplification: it achieves a separation of concerns
by building semantic models of programming on top of more elementary
programming models. The power of this modular approach is its ability to
reveal connections between different programming paradigms, enabling
results from one paradigm to be translated to other paradigms.

This chapter does not cover all aspects of the UTP, but focuses only on
aspects that are relevant to this thesis. The reader who is familiar with
the UTP may wish to proceed directly to Chapter 3. Likewise, the reader
who desires a more comprehensive account of the UTP is directed to:

• the tutorial by Woodcock and Cavalcanti (2004), which focuses on
the UTP theory of designs;

• the tutorial by Cavalcanti and Woodcock (2006), which constructs a
UTP semantics for CSP processes; and

• the textbook by Hoare and He (1998), which is the definitive refer-
ence work for UTP.

7



2 Background

2.2 Programs as Predicates

The semantic foundation of the UTP is the first-order predicate calculus,
augmented with fixed point constructs from second-order logic.

Following the tradition of Hehner (1984a,b), programs are predicates in
the UTP, and there is no distinction between programs and specifications
at the semantic level. In the words of Hoare (1984b):

“A computer program is identified with the strongest predicate de-
scribing every relevant observation that can be made of the beha-
viour of a computer executing that program.”

In UTP parlance, a theory is a model of a particular programming
paradigm. A UTP theory is composed of three ingredients:

• an alphabet, which is a set of variable names denoting the attributes
of the paradigm that can be observed by an external entity;

• a signature, which is the set of programming language constructs
intrinsic to the paradigm.

• a collection of healthiness conditions, which define the space of pro-
grams that fit within the paradigm.

In the UTP, healthiness conditions are typically defined as monotonic1

idempotent predicate transformers. Given a healthiness condition F, a
predicate P is said to be F-healthy if and only if P = F(P).

2.3 Relations

The most basic UTP theory is the alphabetised predicate calculus, which
has no alphabet restrictions or healthiness conditions.

The theory of relations is slightly more specialised. It requires the
alphabet of a relation to consist of only:

1F is monotonic if and only if P1 v P2 implies F (P1) v F (P2), for all P1 and P2.
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• undecorated variables (a, b, c, . . .), modelling an observation of the
program at the start of its execution; and

• primed variables (a′, b′, c′, . . .), modelling an observation of the pro-
gram at a later stage of its execution.

Hereafter, we write x to denote the list of all undecorated variables in a
relation’s alphabet, and x′ to denote all primed variables in the alphabet.
The alphabet is homogeneous if the names of its primed variables match
the names of its undecorated variables.

A relation models all observable behaviours of a program by mapping
initial states (over x) to final states (over x′).

Example 2.1. The relation F2C , c′ = (f − 32)× 5/9 models a program
that converts temperature measurements from the Fahrenheit scale (f ) to
the Celsius scale (c′). By renaming c′ and f to c and f ′ respectively:

C2F , F2C[c, f ′/c′, f ] = f ′ = (c× 9/5) + 32

we derive a program that performs the inverse conversion. ♦

2.3.1 Refinement

Program P1 is refined by program P2 — i.e. every observation of P2 is an
observation of P1 — if and only if:

P1 v P2 , [P2 ⇒ P1 ]

where the square brackets [ · ] denote universal quantification over all
variables in the alphabet (Dijkstra and Scholten, 1990).

Refinement succinctly captures the notion of program correctness: if
P1 v P2 holds, then P2 correctly implements P1. This notion of refinement
is the same across all UTP theories.

The v relation is a partial order and induces a complete lattice over
the space of relations. At the bottom of the lattice, the least refined

9
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II , x′ = x (skip)

a := E , a′ = E ∧ u′ = u (assignment)

P1 ; P2 , ∃ x0 • P1[x0/x′] ∧ P2[x0/x] (sequence)

P1 u P2 , P1 ∨ P2 (non-determinism)

P1 C C B P2 , (C ∧ P1) ∨ (¬ C ∧ P2) (conditional)

µ X • F(X) ,
l
{X | F(X) v X} (recursion)

Figure 2.1: The relational semantics of program constructs.

program true (sometimes called abort) has no constraints whatsoever on
its behaviour. The lattice top is false, which admits no behaviour at all
and cannot be implemented. Yet this “program” satisfies all specifications,
which makes it a miracle (Nelson, 1989; Morgan, 1994). Miracles are
conceptually very useful, because they give meaning to contradictory
specifications.

Sometimes we write P1 @ P2 to specify P2 is a strict refinement of P1;
i.e. P1 and P2 are not equivalent:

P1 @ P2 , P1 v P2 ∧ P2 6v P1

2.3.2 Defining Program Constructs

The language constructs in the signature of the theory of relations are
defined in Figure 2.1. Each construct is explained as follows:

• The skip statement, which does not alter the program state in any
way, is modelled as the relational identity II .

• The assignment of value E to a state variable a is defined by setting
a′ to E and keeping all other variables (denoted by u) constant.

• The sequential composition of two programs is just relational com-
position over their intermediate state.

10
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• Non-deterministic choice between programs is their greatest lower
bound.

• Conditional choice between programs is specified using a ternary
operator, C C B , where C is a relation.2

• A semantics for recursion is given by the weakest fixed point µ F of
a monotonic predicate transformer F. In particular, we have:

µ F = µ X • F(X)

A corollary of the definition of µ F is that an infinite recursion µ X • X
is equivalent to abort:

µ X • X =
l
{X | X v X} = true

2.4 Designs

Hoare and He (1998) identify an inconsistency between the theory of
relations and our intuitive understanding of programs. Consider the
relation (µ X • X) ; a := 1. By calculation, we find that:

(µ X • X) ; a := 1

= true ; a := 1 [as above]

= ∃ x0 • true[x0/x′] ∧ a := 1[x0/x] [def ; ]

= ∃ x • a := 1 [renaming]

= a′ = 1 [def :=]

This result implies that a program can break out of a non-terminating
loop, which is inconsistent with the reality of programming. To resolve
this inconsistency, a theory of programming needs to distinguish between
terminating and non-terminating programs. This goal is met by the theory
of designs.

2The notation P1 C CB P2 should be read “P1 if C else P2” (Hoare, 1985b).
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A design models a program as a precondition and a postcondition.
It also introduces two special Boolean observational variables into the
alphabet:

• ok holds if the program has started properly; while

• ok′ holds if the program has terminated.

The theory of designs is characterised by two idempotent monotonic
healthiness conditions, H1 and H2:

H1(P) , ok⇒ P

H2(P) , P ; ((ok⇒ ok′) ∧ v′ = v)

where v denotes the list of state variables excluding ok.
H1 specifies that a design makes no predictions about its behaviour

before it is started. H2 specifies that a design cannot insist on non-
termination by forcing ok′ to be false.3

Provided P’s alphabet includes ok and ok’, H1 and H2 are commutative.
Any relation that is H1 and H2-healthy can be written in the form:

Pre ` Post , (ok ∧ Pre)⇒ (ok′ ∧ Post)

A design Pre ` Post reflects a contract between the customer and the
programmer: if the design is started in a state satisfying Pre, then it
must terminate in a state such that Post is satisfied. By this construction,
refinement of a design corresponds to weakening its precondition and
strengthening its postcondition (Hoare and He, 1998, Theorem 3.1.2).

Some program constructs in the theory of relations are not designs in
their own right. These constructs need to be redefined as designs:

IID , true ` II (design-skip)

a := E , true ` a′ = E ∧ u′ = u (design-assignment)
3The definition of H2 presented here is taken from Cavalcanti and Woodcock (2006).

Its semantics is equivalent to Hoare and He’s definition, but reformulated as an
idempotent monotonic predicate transformer.
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2.5 Reactive Processes

A reactive process communicates with its environment by engaging in a
series of events. Therefore, a model of a reactive process needs to admit
intermediate observations at points during its execution.

The theory of reactive processes is defined over an extended alphabet,
featuring four pairs of distinguished observational variables. The Boolean
variables ok and wait model the process status at the initial observation:

• ok ∧ wait: the process is waiting to start its execution;

• ok ∧ ¬ wait: the process has started its execution properly;

• ¬ ok: the process has not been started properly;

Likewise, the primed Boolean variables ok′ and wait′ model the process
status at subsequent observations:

• ok′ ∧ wait′: the process has reached a stable intermediate point in
its execution and is awaiting interaction with the environment;

• ok′ ∧ ¬ wait′: the process has terminated in a stable point.

• ¬ ok′: the process has neither reached a stable intermediate point
nor has terminated: it is said to have diverged.

The variables tr and tr′ record the sequence of events observed by
the environment. tr records all events prior to the process starting,
while tr′ records events that occur up to the point when the subsequent
observation is made. Hence, the process trace is given by tr′ − tr.

The ref and ref ′ variables record the events that may be refused by the
process. They are unconstrained by the theory of reactive processes.

Reactive processes are characterised by three healthiness conditions:

R1(P) , P ∧ tr ≤ tr′

R2(P) , P[〈〉, tr′ − tr/tr, tr′]

R3(P) , (II rea C wait B P)

13
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where the reactive identity II rea is defined as follows:

II rea ,

(
¬ ok ∧ tr ≤ tr′

∨ ok′ ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ = ref ∧ v′ = v

)

A R1-healthy process can only extend the trace; in other words, it has
no control over events prior to starting. A R2-healthy process is oblivious
to events that occurred before it starts. A R3-healthy process has no effect
on the observation until it commences execution.

Since R1, R2 and R3 are idempotent and commute with each other,
they can be combined into a single healthiness condition R:

R(P) , R1 ◦ R2 ◦ R3(P)

2.6 Reactive Designs

The theories of designs and reactive processes each have valuable qualities.
Designs are useful for modelling programs in terms of preconditions and
postconditions, while reactivity enables the intermediate behaviour of
programs to be captured. However, the healthiness conditions H1 and R1

do not commute with each other:

H1 ◦ R1(P) = ok⇒ (P ∧ tr ≤ tr′)
6= (ok⇒ P) ∧ tr ≤ tr′

= R1 ◦ H1(P)

Intuitively, a H1-healthy relation allows any observation whatsoever
when ok is false, whereas a R1-healthy relation enforces tr ≤ tr′ in all
circumstances. This non-commutativity between H1 and R1 implies that
no design is a reactive process, and vice versa.

The space of reactive designs is a sub-space of the reactive processes,
which is derived by applying R to the space of designs.4 Reactive designs

4Contrary to their name, reactive designs are not designs, since they are not H1-healthy.
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have the shape:

P = R (Pre ` Post)

where Pre specifies the conditions in which P does not diverge; and Post
specifies all possible non-diverging outcomes of executing P in any state
satisfying Pre. In this way, reactive designs facilitate the definition of
process semantics in a design-like manner.

In particular, the bottom of the lattice of reactive designs is:

R (false ` true) = R(true)

which diverges whenever it is permitted to start execution. The top of
the lattice of reactive designs is:

R (true ` false) = R(¬ ok)

which would achieve the impossible (postcondition false) if it could ever
be executed. This process is the reactive design miracle (Woodcock, 2010).

The theory of reactive designs is extended by Hoare and He (1998) and
Cavalcanti and Woodcock (2006) to give a UTP semantics to CSP processes.
Two healthiness conditions characterise the sub-space of reactive designs
corresponding to CSP processes:

CSP1 (P) , P ∨ (¬ ok ∧ tr ≤ tr′)

CSP2 (P) , P ;

(
(ok⇒ ok′) ∧ wait′ = wait ∧ tr′ = tr

∧ ref ′ = ref ∧ v′ = v

)

CSP1 specifies that, if a process diverges, then only the extension of
the trace is guaranteed. CSP2 recasts H2: it specifies a process may not
require non-termination.

Every CSP process is expressible in the form of a reactive design.
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Theorem 2.2 (from Hoare and He (1998)). For each CSP process P:

P = R
(
¬ Pf

f ` Pt
f

)
where Pb

c abbreviates P[b, c/ok′, wait].

The theory of CSP processes serves as a baseline for the semantics of
Circus actions. For brevity, we skip over this theory and jump straight to
the closely related theory of Circus actions in Section 2.8.

2.7 Circus

Circus is a formal specification language which fuses the CSP process al-
gebra with a notion of state, to achieve a cohesive platform for modelling
state-rich concurrent and reactive systems.

The specification constructs of Circus are called actions. Circus actions
can be grouped into three classes:

• CSP constructs, modelling interaction with the environment over a
collection of named channels;

• Z schema expressions and specification statements (Morgan, 1994),
representing state operations; and

• guarded commands (Dijkstra, 1976), orchestrating control flow
according to the state.

A Circus process specifies an internal state (hidden from the environ-
ment), a state invariant and a collection of named actions. The behaviour
of a Circus process is defined by a distinguished nameless main action,
which follows the declarations of the other actions.

Example 2.3. Figure 2.2 presents a Circus process modelling a memory
cell that stores an integer value from the in channel. The cell can be
switched between two modes. In public mode, the value currently stored
in the cell is broadcast on the out channel; whereas in private mode, an
arbitrary value is broadcast on out. ♦
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MODE == {PUB, PRV}
channel on, off
channel in, out : N

process Cell , begin
state Mem , [val : N, m : MODE]
Init , [Mem′ |val′ = 0 ∧ m′ = PUB ]

Read ,
(

m = PUB & out!val→ Skip
2 m = PRV & u n : N • out!n→ Skip

)
Write , in?n→ val := n?
Switch , (on→ m := PRV) 2 (off → m := PUB)
• Init ; µ X • (Read 2 Write 2 Switch) ; X

end

Figure 2.2: An example Circus process: a memory cell.

2.8 Circus Actions

A UTP theory of Circus actions is defined by Oliveira et al. (2009), based
on work by Woodcock and Cavalcanti (2002) and Oliveira (2005). This
theory enriches the theory of CSP processes with facilities for accessing
and manipulating state variables.

The primitive actions of Circus are inherited from CSP. The action Skip
terminates immediately, while Stop deadlocks and Chaos diverges:5

Skip , R
(
true ` tr′ = tr ∧ ¬ wait′ ∧ v′ = v

)
Stop , R

(
true ` tr′ = tr ∧ wait′

)
Chaos , R (false ` true)

A specification statement (Morgan, 1994) is a construct for specifying
operations on state, in terms of a precondition, a postcondition and a
frame w of variables, whose values the operation may change. The Circus

5Notice the Chaos here is that of Hoare (1985a), rather than Roscoe (1997).
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semantics of specification statements is:

w : [Pre, Post] , R
(
Pre ` Post ∧ ¬ wait′ ∧ tr′ = tr ∧ u′ = u

)
where u denotes all state variables outside the frame w. Normalised Z
schemata can be translated to specification statements using the basic
conversion rules given by Cavalcanti and Woodcock (1998).

Following Morgan (1994), assignments, assumptions and coercions6

are defined in terms of specification statements:

a := E , a :
[
true, a′ = E

]
{C } , : [C, true]

[C ] , : [true, C]

It follows from the semantics of the specification statement that:

a := E = R
(
true ` a′ = E ∧ ¬ wait′ ∧ tr′ = tr ∧ u′ = u

)
{C } = R

(
C ` ¬ wait′ ∧ tr′ = tr ∧ v′ = v

)
[C ] = R

(
true ` C ∧ ¬ wait′ ∧ tr′ = tr ∧ v′ = v

)
Assumptions and coercions are annotation constructs, specifying con-

ditions that are expected to be satisfied by the process state. The assump-
tion {C } behaves as Skip if the process state satisfies C, and diverges
otherwise. The coercion [C ] forces the process state to satisfy C.

Example 2.4. The coercion [C ] behaves as Skip if C holds; for instance:

h := 1 ; [ h = 1 ] = h := 1 ; [ true ] = h := 1

h := 0 ; [ h = 1 ] = h := 0 ; [ false ] = R(¬ ok)

but behaves as the reactive design miracle otherwise. ♦

6The terms “assumption” and “coercion” are adopted by Morgan (1994). In the design
space, { · } and [ · ] are called “assertions” and “assumptions” respectively by Hoare
and He (1998). To avoid confusion, we use Morgan’s terms throughout this thesis.
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As Example 2.3 shows, Circus actions can be composed using the CSP
operators. As before, sequential composition ( ; ) is relational composition,
internal choice (u) is disjunction and recursion is defined in terms of
the weakest fixed point operator. Other CSP operators are given a UTP
semantics by Oliveira et al. (2009). We now outline the semantics of three
Circus operators.

Prefixing A prefixing c.e→ Skip never diverges and awaits synchronisa-
tion on channel c. Once it has made that synchronisation, it terminates:

c.e→ Skip , R

true `

 tr′ = tr ∧ (c, e) /∈ ref ′

C wait′ B
tr′ = tra 〈(c, e)〉

 ∧ v′ = v


Here, an event is represented in the trace as a pair of a channel name and
the value transmitted on that channel. The semantics of a CSP prefixing
c→ Skip (where channel c does not communicate values) is defined as
c.Sync→ Skip, where Sync denotes a generic synchronisation event.

The prefixing c.e→ A can be rewritten as c.e→ Skip ; A.

External choice An external choice A1 2 A2 offers the environment the
ability to select between the events offered by A1 and A2. Its semantics is:

A1 2 A2 , R

¬ A1
f
f ∧ ¬ A2

f
f `

 A1
t
f ∧ A2

t
f

C tr′ = tr ∧ wait′ B
A1

t
f ∨ A2

t
f




This choice does not diverge provided that neither A1 nor A2 diverge.
Provided that A1 and A2 do not terminate instantaneously, then the
environment can select from the initial events offered by either action.
The prefixing operator specifies its refusals negatively, so the refusal set
of A1

t
f ∧ A2

t
f cannot contain any event that is accepted by either A1 or A2.

Once an event is performed, the choice between A1 and A2 is resolved.
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Guards A guarded command g & A behaves as A if g holds, and as Stop
otherwise:

g & A , R
(
(g⇒ ¬ Af

f ) ` (At
f C g B tr′ = tr ∧ wait′)

)
Definitions of the remaining Circus operators — including parallel

composition and hiding — are given by Oliveira et al. (2009). Their
details are not necessary to follow the rest of this thesis.

The UTP semantics of Circus actions facilitates the definition of a
refinement calculus (Oliveira, 2005), featuring a wide variety of laws
proved directly from the semantics. This refinement calculus enables
software engineers to transform abstract process designs into concrete
implementations, without exposure to the underlying Circus semantics.

2.9 The Circus Family

Building on the reference Circus semantics, several versions of Circus have
been defined to address specialised domains in software engineering.
These domains include (but are not limited to) object-oriented program-
ming (Cavalcanti et al., 2005), real-time specification (Wei et al., 2010) and
synchronously-clocked systems (Gancarski and Butterfield, 2009).

In the body of this thesis, we describe how notions of information
confidentiality can be captured in the UTP and, from there, embedded
into the reference Circus semantics. We speculate that our work could be
replicated across the other versions of Circus, giving rise to languages in
each domain with a confidentiality-sensitive semantics.
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3.1 Introduction

This chapter presents techniques for formally reasoning about shared
computing systems that offer services to multiple end-users. This class of
multi-user systems encompasses a wide variety of software products, ran-
ging from operating systems and database servers to telecommunications
networks and cloud computing facilities.

The word “user” has many connotations in computing but, in this
chapter, we use the term to mean any entity that can interact with a
computer system or be influenced by its behaviour. Thus, a user may
denote a client that issues requests to the system and receives timely
responses; an administrator responsible for monitoring the system; or an
entity that observes the system’s behaviour in a passive way.

3.1.1 Motivation

When designing a multi-user system, it is important to characterise the
relationship between the system and its users, to determine whether the
system will satisfy the expectations of its users.

A multi-user system may offer different services to different users.
Hence, it is usual for the system to supply each user with its own
dedicated interface. These interfaces impose structure upon the system’s
environment, enabling the system to distinguish between its users.

Many formal methods for software development treat the environment
of a system as a single uniform entity. In these formalisms, the users of a
system are conventionally modelled as components of the specification
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of the system itself. For instance, in state-based formalisms such as B
and Z, a user’s interface to a system is typically defined as a collection of
operations that are considered to be accessible to the user. Likewise, when
working with process algebras such as CSP, it is usual to model users
as individual processes that synchronise with a process representing the
operations offered by the system. Using a tool such as FDR (Roscoe,
1994), this approach can be used to verify that a process delivers the
functionality expected by its users, by analysing the synchronisations
between these processes for the absence of deadlock or divergence.

Modelling users as implicit components of a system works well for
analysing the functionality delivered by the system to its environment.
However, by failing to distinguish the users from the environment, this
approach does not distinguish the interactions of users from the beha-
viours of the system. This shortcoming is inconvenient when dealing with
correctness properties — such as confidentiality properties — where the
relation between behaviours and interactions has intrinsic significance.

3.1.2 Contributions of this Chapter

In this chapter, we investigate an alternative approach for modelling
users of systems. The core of this approach is outlined in Section 3.2:
we specify a user’s interface separately from a system, in terms of the
elements of a system’s behaviour that are visible to that user. In this way,
we become able to analyse the interactions that users may perform with
the system, and thence verify that a system design upholds the users’
expectations about their interactions.

Section 3.3 presents a method for calculating the space of interactions
that a user may perform with a given system. We explore how this
approach can be applied to the theories of designs in Section 3.4 and
reactive processes in Section 3.5.

We also investigate how knowledge of the interfaces of users can
be used to justify certain kinds of functional design decisions in system
developments. In Section 3.6, we outline a weakened notion of refinement
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applicable to multi-user systems that is framed by the observational
abilities of isolated users or groups of collaborating users.

The work in this chapter constitutes the foundations of later chapters
of this thesis, which build on the model of users to formalise the notion
of information flow in the UTP and in Circus.

3.2 Modelling Users

Recall from Chapter 2 that, in the UTP theory of relations, a system is
modelled in terms of all possible observations that an external entity
could make of the system.

When reasoning about multi-user systems modelled as relations, we
draw a distinction between two kinds of observations:

Behaviours are observations of a system made by the global environment.

Interactions are local observations of a system made by a single user.1

We assume that users cannot monitor the system directly, but can
only observe the system through their respective interfaces. We capture
this assumption by introducing a secondary observation space to model
interactions separately from behaviours. To do this, we introduce two
new lists of observational variables, xV and x′V, to encode interactions as
alphabetised predicates:

• the xV variables model the state of the user’s interface before an
interaction takes place; whereas

• the x′V variables model the state of the interface after the interaction
takes place.

1Although the term “interaction” suggests that users actively engage with the system
and influence its behaviour, this need not be so.
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3.2.1 Views

In general, a user’s interface to a system relays only partial information
about the system’s behaviour to that user; after all, users need not be
concerned with every detail of the system’s behaviour. Hence, a user’s
interaction is a projection of the behaviour through that user’s interface.

A view is a predicate expressing a relation between observation spaces.
More precisely, we define a view as a relation from the space of beha-
viours to the space of interactions. Hence, a view formalises a user’s
interface to a system, because it determines which aspects of the system’s
behaviour show through the user’s interface.

Example 3.1. Suppose that x and y are integer-valued observational
variables. Consider the following views:

V1 , a1 = x ∧ b1 = y

V2 , c2 = max(x, y)

V3 , d3 = x ∧ (e3 = 0 C x < y B e3 = 1)

V1 provides the exact values of x and y, since there is a one-to-one
correspondence between these variables and a1 and b1. V2 provides the
value of the larger of x and y, but no indication of whether x < y, x = y
or x > y. V3 provides the value of x, but offers only partial information
about y’s value in relation to x’s value. ♦

When dealing with multiple views, each representing a different user,
we require that each view’s alphabet of interaction variables is disjoint
from those of the other views. (All of the views listed in Example 3.1 are
pairwise disjoint.)

Definition 3.2 (Disjoint views). A pair of views V1 and V2 are disjoint if
and only if their alphabets have no interaction variables in common:

αV1 ∩ αV2 ⊆ x∪ x′
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The abstractness of views allows us to describe the observational
abilities of users in exact relation to the behaviour of systems. We note
in passing that a view’s structure should conform to the UTP theory in
which it is applied; we return to this point in Sections 3.4 and 3.5.

3.2.2 Healthiness Conditions for Views

To ensure that all views represent a viable mapping between behaviours
and interactions, it is necessary to impose some healthiness conditions
on the structure of views.

Our first healthiness condition ensures that views do not restrict the
behaviour of systems in any way.

Definition 3.3 (VH1). A view V is VH1-healthy if and only if V maps each
behaviour to at least one interaction:

VH1(V) , (∃ xV, x′V • V)⇒ V

VH1 may be more comprehensible when presented in a form that
asserts the VH1-healthiness of a view, as given by Lemma 3.4.

Lemma 3.4 (VH1 reformulated).

VH1 (V) = V if and only if
[
∃ xV, x′V • V

]
A VH1-healthy view is a total relation from behaviours to interactions.

If V does not map a behaviour φ to at least one interaction, then VH1(V)

maps φ to every interaction. Hence, VH1-healthy views do not restrict the
behaviour of systems in any way.

Remark 3.5. An alternative formulation of VH1 would transform views
by mapping behaviours associated with zero interactions to a nominated
“null” interaction. However, our definition of VH1 is simpler, because it
avoids the need to specify what that null interaction should be.
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Example 3.6. Predicates such as a = b ∧ cV > 0 and false are not
VH1-healthy, because they restrict the behaviour space. For instance:

VH1(a = b ∧ cV > 0)

= (∃ xV, x′V • a = b ∧ cV > 0)⇒ (a = b ∧ cV > 0) [def VH1]

= a = b⇒ (a = b ∧ cV > 0) [pred calc]

= a = b⇒ cV > 0 [prop calc]

which does not equal a = b ∧ cV > 0. ♦

We could write a “precognitive” VH1-healthy predicate — for example,
aV = a′ — where the initial variables of an interaction depend upon
the values of the final behavioural variables. Such a predicate does
not correspond to any user interface in reality, because no interface can
predict the behaviour of an unspecified system before that system starts
its execution. We exclude these unrealistic predicates from the space of
views by defining a second healthiness condition VH2.

Definition 3.7 (VH2 healthiness condition). A view V is VH2-healthy if
and only if its alphabet contains only unprimed variables:

VH2(V) , ∃ x′, x′V • V

The definition of a healthiness condition to rule out precognitive predic-
ates over the initial and final observational space would be complicated.
With VH2, we cut this Gordian knot by assuming that a user’s interface
does not change during the system’s execution.

By assuming that a user’s interface is constant, we are free to encode
views over the unprimed variables alone. The notation:

∆V , V ∧ V′

denotes the interface corresponding to the VH2-healthy view V, where V′

denotes V with all unprimed variables renamed with a prime.
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3.2 Modelling Users

We now present some useful properties of VH1 and VH2. Both VH1 and
VH2 are idempotent.

Law 3.8 (VH1 idempotent). VH1 ◦ VH1(V) = VH1(V)

Law 3.9 (VH2 idempotent). VH2 ◦ VH2(V) = VH2(V)

Law 3.9 is a trivial consequence of the definition of VH2. Unfortunately,
VH1 and VH2 do not commute with each other.

Law 3.10 (VH1-VH2 non-commutative). VH2 ◦ VH1(V) v VH1 ◦ VH2(V)

We say that a view that is both VH1-healthy and VH2-healthy is VH-
healthy. In light of Law 3.10, we define VH as the stronger combination
of VH1 and VH2.

Definition 3.11 (VH healthiness condition).

VH (V) , VH1 ◦ VH2(V)

Corollary 3.12 (VH idempotent). By Law 3.8 and the definition of VH:

VH1 ◦ VH(V) = VH(V)

Likewise, since the x′ and x′V variables are free in VH-healthy views:

VH2 ◦ VH(V) = VH(V)

It follows from these results that VH is idempotent.

All of the views in Example 3.1 are VH-healthy, as are all the views that
we consider in the following sections.

3.2.3 Conjoining Views

Given two disjoint views V1 and V2, the view V1 ∧ V2 models the
combined interactions of a pair of users. This view represents those
users sharing knowledge of their interactions with the system with each
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other: conjoining V1 and V2 ensures that pairs of V1-interactions and
V2-interactions are consistent with the same behaviour.

Lemma 3.13 (Conjunction preserves VH). If V1 and V2 are disjoint VH-
healthy views, then V1 ∧ V2 is also VH-healthy.

3.2.4 Functional Views

While VH1 insists that a view describes a total mapping from behaviours
to interactions, this mapping need not be functional. A non-functional
view would correspond to a user’s interface that can yield different inter-
actions for the same behaviour.

Example 3.14. A lossy communications channel can be modelled as a
VH-healthy view. For instance, the view aV ∈ [a− k, a+ k] could represent
a signal that fluctuates by up to k units. This view could serve as a crude
model of a physical wire carrying the signal. ♦

However, the interfaces to a system are typically designed to yield a
deterministic projection of the system’s behaviour, at a reasonable level
of abstraction.2 We define the space of these functional views in terms of
a new healthiness condition VH3.

Definition 3.15 (VH3 healthiness condition). A view V is VH3-healthy if
and only if V maps each behaviour to exactly one interaction or indefinitely
many interactions:

VH3(V) , (∃1 xV, x′V • V)⇒ V

Every VH3-healthy view is also VH1-healthy.

Example 3.16. Provided k > 0, the VH1-healthy view aV ∈ [a− k, a + k]
from Example 3.14 is not VH3-healthy:

VH3(aV ∈ [a− k, a + k])

2Quantum mechanics suggests that no physical interface can be truly deterministic at
the lowest level, but this is generally not a concern for system designers in practice!
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= (∃1 xV, x′V • aV ∈ [a− k, a + k])⇒ aV ∈ [a− k, a + k] [def VH3]

= false⇒ aV ∈ [a− k, a + k] [not deterministic]

= true [prop calc]

The resulting view true models a user whose interface is disconnected
from the system, so the user’s interaction bears no resemblance whatso-
ever to the system’s behaviour. ♦

From here onwards, the views we consider in examples are VH3-healthy,
to aid intuition. However, unlike VH1 and VH2, the special functional
property of VH3 is not essential to justify the theorems and lemmas
presented in the following sections. For this reason, we do not restrict the
framework to VH3-healthy views; rather, we appeal to VH3 only when it
is needed.

3.3 Calculating Interactions

In this section, we formalise procedures for translating a model of a
system’s behaviour into a complementary model representing a user’s
interactions with that system, and vice versa.

3.3.1 Localisation

Given a view V and (a behavioural model of) a system P, the predicate
L (V, P) is the image of P projected through V. In other words, this
predicate encodes all interactions with P that can be made through V.

Definition 3.17 (L predicate transformer).

L (V, P) , ∃ x, x′ • ∆V ∧ P

Example 3.18. Consider the condition Ex:

Ex , x ≥ 0 ∧ y ≥ 0 ∧ x + y = 10
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The images of Ex corresponding to each view listed in Example 3.1 are:

L (V1, Ex) = a1 ≥ 0 ∧ b1 ≥ 0 ∧ a1 + b1 = 10

L (V2, Ex) = c2 ≥ 5 ∧ c2 ≤ 10

L (V3, Ex) = (d3 ≥ 0 ∧ d3 < 5 ∧ e3 = 0) ∨ (d3 ≥ 5 ∧ d3 ≤ 10 ∧ e3 = 1)

Notice that L hides the behavioural variables of Ex, modelling a user’s
inability to observe those variables directly. ♦

We now describe three properties of L that we use later in this chapter.

Distributivity Each interaction with a system that behaves either as P1

or P2 is an interaction either with P1 or with P2.

Law 3.19 (L (V) is disjunctive). L (V, P1 ∨ P2) = L (V, P1) ∨ L (V, P2)

Monotonicity If P1 v P2, then every V-interaction with P2 (where V is
VH-healthy) will also be a V-interaction with P1.

Law 3.20 (L (V) is monotonic). Provided P1 and P2 share an alphabet:

P1 v P2 implies L (V, P1) v L (V, P2)

Splitting views If a view V is divided into two disjoint views V1 and
V2, such that V = (V1 ∧ V2), then L (V1, P) ∧ L (V2, P) is potentially
weaker than L (V, P) itself. Intuitively, this is because the interactions
given by L (V1, P) and L (V2, P) are not synchronised with each other. We
generalise this result to an arbitrary number of views in Law 3.21.

Law 3.21 (Splitting views weakens projections). Provided V1, . . . , Vn are
pairwise disjoint views:

∧
i∈1..n

• L (Vi, P) v L

(( ∧
i∈1..n

Vi

)
, P

)
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3.3.2 Globalisation

Given an image U of interactions formed by projecting a system P through
view V, some knowledge of the structure of P can be recovered by
substituting V back into U. This procedure is formalised by the G

predicate transformer.

Definition 3.22 (G predicate transformer).

G (V, U) , ∀ xV, x′V • ∆V ⇒ U

The relation G (V, U) is the weakest specification of a system such that
each behaviour of G (V, U) projects through V to an interaction of U.

Example 3.23. Continuing from Example 3.18, the conditions recovered
by applying G to each L-projection of Ex are:

G (V1, L (V1, Ex)) = x ≥ 0 ∧ y ≥ 0 ∧ x + y = 10

G (V2, L (V2, Ex)) = max(x, y) ≥ 5 ∧ max(x, y) ≤ 10

G (V3, L (V3, Ex)) = (x ≥ 0 ∧ x < 5) C x < y B (x ≥ 5 ∧ x ≤ 10)

Observe that G (V1, L (V1, Ex)) = Ex, because view V1 preserves the
values of x and y in a1 and b1. However, both G (V2, L (V2, Ex)) and
G (V3, L (V3, Ex)) are weaker than Ex, because information about the
values of x and y is discarded by applying L (V2) or L (V3) to Ex. ♦

The predicate G (V, U) features all behaviours that V only maps to
interactions in U. However, if V is VH3-healthy, then V maps each
behaviour to exactly one interaction. This property of V enables the
definition of G (V, U) to be reshaped, as Lemma 3.24 shows.

Lemma 3.24 (G and VH3). Provided V is VH3-healthy:

G (V, U) = ¬ G (V,¬ U) = ∃ xV, x′V • ∆V ∧ U
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P L (V, P)

G (V, U) U

L (V)

G (V)

v v

Figure 3.1: The Galois connection between L and G.

3.3.3 A Galois Connection

As Example 3.23 demonstrates, the L and G predicate transformers are
not inverses of each other, since a view need not define a one-to-one
correspondence between behaviours and interactions. They do, however,
form a Galois connection under the refinement ordering.

Theorem 3.25 (L and G form a Galois connection). The L and G predicate
transformers form a Galois connection between the space of behaviours
and the space of interactions linked by a given view. Thus:

U v L (V, P) if and only if G (V, U) v P

Theorem 3.25 enables us to apply existing results on Galois connec-
tions from the literature. For instance, Corollary 3.26 is an immediate
consequence of Theorem 3.25.

Corollary 3.26. Substituting L (V, P) for U in Theorem 3.25 yields:

G (V, L (V, P)) v P

Corollary 3.26 justifies the intuition that applying L (V) to a system P
may discard information about P’s behaviours that cannot be recovered
by applying G (V) to the result.

In Chapter 4 of the UTP textbook, Hoare and He emphasise the value
of Galois connections for linking UTP theories. Theorem 3.25 links UTP
theories with counterparts of those theories defined over the space of
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user interactions. We explore these counterpart theories in Section 3.4
and Section 3.5.

Remark 3.27. A view V can be interpreted as a linking predicate between
two data types, where behaviours are instances of the concrete data type,
while interactions are instances of the abstract data type. In this setting,
L (V) is an abstraction function and G (V) is a concretisation function.

This insight suggests how abstract interpretation (Cousot and Cousot,
1977, 1992) — a theory for approximating the behaviour of programs to
simplify proofs of correctness properties, by abstracting away irrelevant
detail — could be formulated in the UTP. By defining a view V to retain
only information about a program P essential for a property, it would be
more efficient to prove the property over L (V, P) rather than P.

3.3.4 Inference

Suppose a user knows the structure of a system P and its own view V.
On making a interaction ψ with P, the user can calculate the space of all
behaviours of P that may have generated ψ. This calculation is specified
by Definition 3.28.

Definition 3.28 (Inference function).

infer (P, V, ψ) , P ∧ ¬ G (V,¬ ψ)

Corollary 3.29. Lemma 3.24 implies that whenever V is VH3-healthy:

infer (P, V, ψ) = P ∧ ∃ xV, x′V • ∆V ∧ ψ

A function similar to that presented in Corollary 3.29 is called the
inference function by Jacob (1988, 1989a). It expresses the maximum in-
formation that a user at V can deduce about the behaviour of P from its
interaction ψ alone.

Example 3.30. Suppose Alice plays a simple guessing game GUESS0. In
this game, a number n ∈ 1..10 is chosen and concealed from Alice. Alice
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makes a guess g of the value of n, whereupon she is informed whether
her guess is correct or greater or smaller than n, via the response variable
r′. We specify the guessing game as follows:

GUESS0 , n ∈ 1..10 ∧ g ∈ 1..10 ∧

 g > n⇒ r′ > 0
∧ g = n⇒ r′ = 0
∧ g < n⇒ r′ < 0


Alice’s view allows her to observe the values of g and r, but not n:

ALICE , gA = g ∧ rA = r

If Alice guesses g = 7 and she is informed that r′ > 0, we find:

infer (GUESS0, ALICE, gA = 7 ∧ r′A > 0)

= GUESS0 ∧ ∃ gA, rA, g′A, r′A, • ∆ALICE ∧ gA = 7 ∧ r′A > 0 [def infer]

= n ∈ 8..10 ∧ g = 7 ∧ r′ > 0 [pred calc]

Hence, Alice can infer that n ∈ 8..10 from her interaction. ♦

From the perspective of the user at V, each behaviour of infer (P, V, ψ) is
consistent with ψ. The stronger infer (P, V, ψ) is, the fewer behaviours of P
are consistent with ψ, enabling the user at V to draw stronger inferences
about the behaviour of P.

Remark 3.31. The inference function can also be used to calculate what
information a user at V1 can infer about the possible interactions through
a disjoint view V2 belonging to another user. For instance:

L (V2, infer (P, V1, ψ))

models all V2-interactions with P that comply with a V1-interaction ψ.
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3.4 Multi-User Designs

So far, we have studied multi-user systems in the basic setting of alphabet-
ised relations. We now investigate how the concepts we have developed
can be specialised for the theory of designs.

3.4.1 Views for Designs

We interpret a UTP design D as starting in an initial state consisting of
user inputs and terminating (or aborting) in a final state output to users.

It is reasonable to expect that the users of D can observe whether D
has started or has terminated. Since the behavioural variables ok and ok′

are hidden from users, it is necessary to extend the alphabet of a view V
by introducing a new interaction variable okV to mirror ok. We formalise
the expectation that okV = ok (and ok′V = ok′ by extension) with a new
healthiness condition.

Definition 3.32 (OK healthiness condition).

OK(V) , V ∧ okV = ok

Definition 3.33 (VHD). A view is VHD-healthy if and only if it is both
VH-healthy and OK-healthy.

Henceforth, we require that views applied to designs are VHD-healthy.

3.4.2 Projecting Designs

The predicate that results from projecting a design through a VHD-healthy
view is not itself a design, because it is defined over interactions, not
behaviours. Yet this predicate is isomorphic to designs, so it possesses the
special properties of designs in a renamed observational space. For this
reason, we introduce a notation for projected designs in Definition 3.34.

35



3 Multi-User Systems

Definition 3.34 (Local design). Let V denote a view and Pre, Post denote
predicates with alphabet xV, x′V:

Pre `V Post , okV ∧ Pre⇒ ok′V ∧ Post

The L predicate transformer can be applied to a VHD-healthy view V
and design D, to obtain an interface design that expresses the behaviours
of D as projected through V.

Lemma 3.35 (L and designs). Provided V is VHD-healthy, L (V, Pre ` Post)
can always be expressed as a local design:

L (V, Pre ` Post) = ¬ L (V,¬ Pre) `V L (V, Post)

Moreover, if Pre is a condition (i.e. its alphabet contains only undecorated
variables), then:

L (V, Pre ` Post) = (∀ x • V ⇒ Pre) `V L (V, Post)

The precondition PreL = (∀ x • V ⇒ Pre) is the weakest predicate over
interactions such that all behaviours of D that are consistent with each
interaction of PreL satisfy Pre. Therefore, if a user’s interaction with D
satisfies okV ∧ PreL, then that user can be certain that ok ∧ Pre holds. In
turn, the user can ascertain that Post (and its projection L (V, Post)) will
hold upon D terminating.

Remark 3.36. If no projection of D through V guarantees that Pre holds,
then the precondition of L (V, D) collapses to false. It follows that:

false `V L (V, Post)

= okV ∧ false⇒ ok′V ∧ L (V, Post) [Definition 3.34]

= true [prop calc]

and so a user at V can infer nothing about the final state of L (V, D).
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3.4.3 Worked Example: A Byte Register

We now consider how the theory developed in the previous sections can
be applied to a simple multi-user system. The aim of this example is to
demonstrate how the specification and design of multi-user systems may
be guided by knowledge of user interactions.

We focus on a register capable of storing a single (8-bit) byte. We
model the register’s value by an integer variable reg with domain 0..255.
The register also features a binary-valued flag err that indicates numeric
overflow when raised. The state space of the register is described by:

ST , reg ∈ 0..255 ∧ err ∈ 0..1

Consider an operation that doubles the value stored in reg, provided
that the initial value of reg lies in the range 0..127 and the overflow flag
is not raised. We model this operation as a UTP design as follows:

DBL , reg ∈ 0..127 ∧ err = 0 ` reg′ = reg× 2 ∧ err′ = 0

Suppose that two users can observe the register: the first user can
observe the values of the higher four bits of the value of reg, and the
second user can observe the lower four bits of reg. The overflow flag err
is visible to both users. The views of these users are defined as follows:

H , OK
(

regH =
⌊ reg

16

⌋
∧ errH = err

)
L , OK (regL = reg mod 16 ∧ errL = err)

Effectively, the H view masks out the lower four bits of the register
from the first user’s perspective, while the L view hides the higher four
bits from the second user. Both of these views are VHD-healthy.

Example 3.37. Consider the instantiation φ = (reg = 60 ∧ err = 0) of ST.
This state projects through H and L as follows:

L (H, φ) = regH = 3 ∧ errH = 0
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L (L, φ) = regL = 12 ∧ errL = 0

Notice the binary representation of reg (00111100) is given by concatenat-
ing regH (0011) with regL (1100). ♦

Using Lemma 3.35, we now calculate the projections of DBL’s behaviour
through the views H and L, constrained by the register’s state space ST.

L (H ∧ ST, DBL)

=

(
∀ x • (H ∧ ST)⇒ reg ∈ 0..127 ∧ err = 0
`H ∃ x, x′ • ∆(H ∧ ST) ∧ reg′ = reg× 2 ∧ err′ = 0

)

=

(
regH ∈ 0..7 ∧ errH = 0
`H (reg′H = regH × 2 ∨ reg′H = (regH × 2) + 1) ∧ err′H = 0

)

This calculation indicates the user at H can be sure that DBL’s pre-
condition is satisfied if and only if regH ∈ 0..7 (i.e. reg ∈ 0..127), since
any other value of regH corresponds to a value of reg that violates the
precondition of DBL.

In the postcondition of DBL, the value of the fifth most significant bit of
reg determines whether reg′H = regH × 2 or reg′H = (regH × 2) + 1. Since
that bit of reg cannot be observed through H, the user at H can only be
sure of the value of reg′H once the operation is complete.

It is instructive to consider what can be observed of DBL through L:

L (L ∧ ST, DBL)

=

(
∀ x • (L ∧ ST)⇒ reg ∈ 0..127 ∧ err = 0
`L ∃ x, x′ • ∆(L ∧ ST) ∧ reg′ = reg× 2 ∧ err′ = 0

)
= false `L (reg′L = (regL × 2) mod 16 ∧ err′L = 0) [pred calc]

= true [Remark 3.36]

Since an observation at L provides no information regarding the most
significant bit of reg, a user at L cannot distinguish between reg ∈ 0..127
or reg ∈ 128..255. Hence, that user cannot determine in any circum-
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stances whether the precondition of DBL is satisfied. The outcome of
this calculation reflects that, from that user’s perspective, nothing can be
guaranteed about DBL’s behaviour.

Depending on the context in which the register is used, this limitation
may be unacceptable. Hence, we relax the precondition of DBL to cover
all values of reg that can be stored by the register and, when reg ≥ 128,
to assign an arbitrary value from the range 0..255 to reg′ and set err′ to 1:

DBL2 , reg ∈ 0..255 ∧ err = 0 `

 reg′ = reg× 2 ∧ err′ = 0
C reg ∈ 0..127 B

reg′ ∈ 0..255 ∧ err′ = 1


Observe that DBL v DBL2, because the postcondition of DBL2 reduces

to the postcondition of DBL when the precondition of DBL is satisfied.

The projection of DBL2 through L is as follows:

L (L ∧ ST, DBL2)

=


∀ x • (L ∧ ST)⇒ reg ∈ 0..255 ∧ err = 0

`L ∃ x, x′ • ∆(L ∧ ST) ∧

 reg′ = reg× 2 ∧ err′ = 0
C reg ∈ 0..127 B

reg′ ∈ 0..255 ∧ err′ = 1




=

regL ∈ 0..15 ∧ errL = 0

`L

(
reg′L = (regL × 2) mod 16 ∧ err′L = 0

∨ reg′L ∈ 0..15 ∧ err′L = 1

)
After the DBL2 operation completes, the user at L can verify the doub-

ling operation was successful by checking that its interaction satisfies the
precondition of L (L, DBL2) and that err′L = 0.

Remark 3.38. If the state of DBL2 is data-refined, then the corresponding
data refinements must also be made to the H and L views. For instance,
if we were to data-refine reg into eight binary variables r7, . . . , r0 to
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represent the bits of the register, we would replace H with the view:

OK (r7H = r7 ∧ r6H = r6 ∧ r5H = r5 ∧ r4H = r4 ∧ errH = err)

which could be calculated by projecting a linking predicate through H.

3.5 Multi-User Reactive Designs

We now apply our framework to the UTP theory of reactive processes.
This work allows us to formalise users’ interactions with CSP or Circus

processes, since these formalisms have a reactive design semantics.

3.5.1 Reactive Views

Our first task is to formalise how users can interact with reactive pro-
cesses, by defining a family of reactive views. It is natural to interpret a
user’s interface in terms of the events that a reactive process communic-
ates with its environment.

Definition 3.39 (Window). A user’s window is the set of events commu-
nicated by a reactive process which are visible to the user.

We now consider which observational elements of a reactive process
are relayed to a user with windowW .

State A process does not expose its internal state to the external environ-
ment. Hence, a view should not convey any information about the
state variables v to the user.

Stability We suppose the user can observe whether the process has
reached a stable point in its execution by requiring its view to
be OK-healthy, for the same reasons as those given in Section 3.4.

Progress We enable the user to determine whether the process is waiting
to start, is waiting for any interaction with the environment or has
terminated, by expanding the user’s view with a local variable
waitV corresponding to wait.
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Trace Since events take place sequentially, we model a user as perceiving
their order of occurrence. Hence, a user’s observation of the global
trace tr is given by restricting tr to only those events inW :

trV = tr �W

where tr �W denotes tr, but with all events outsideW erased.

Refusals A user who interacts with the process directly may discover
that, at some point, the events it wishes to perform with the process
are refused. We model the projection of a process’s refusal set as:

refV ∩W ⊆ ref

This expression only reveals information about the events of ref in
W to the user.

Remark 3.40. At first glance, it would seem more natural to define:

refV ⊆ ref ∩W

but this expression implies that, from the user’s perspective, the process
can never refuse any event outsideW . When combined with the projec-
tion functions for the other observational elements, this expression leads
to projected processes that violate the failures model of CSP: they would
not engage in events outsideW , but would not refuse those events either.

We impose these expectations on views by defining another healthiness
condition VHR.

Definition 3.41 (VHR healthiness condition).

VHR (W , V) ,

 ∃ v • VH (V)

∧ okV = ok ∧ waitV = wait
∧ trV = tr �W ∧ refV ∩W ⊆ ref


where v denotes the list of state variables, excluding ok, wait, tr, ref .
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Following VHD, the inclusion of ok in VHR is vital to support any
meaningful model of a user’s interactions with a process. The wait
variable, while not essential, is still important if we wish to study a user’s
interactions with a process in terms of its component actions. (Indeed,
compositional reasoning plays a key role in Chapter 5.)

The inclusion of the trace and refusal variables is less important. If we
takeW = ∅, then we derive a minimal interface representing a user who
cannot engage in activity with the process, but who could still perceive
divergence and termination via ¬ ok′V and ¬ wait′V respectively.

Remark 3.42. We may supply VHR with views modelling other facets of
a user’s interface to a process. For instance, an interface that indicates
whether the process engages in an event in Y before an event in Z (where
Y and Z are disjoint fromW) is modelled by the view:

VHR

(
W , xyV ⇔ ∃ α, β •

(
tr = αa β ∧ α �Y 6= 〈〉

∧ α �Z = 〈〉 ∧ β �Z 6= 〈〉

))

These more elaborate views inhibit compositional reasoning about
users’ interactions with processes, which would be a hindrance in later
chapters. For this reason, we do not consider these views further.

Recall from Section 2.5 that a R2-healthy process P is insensitive to the
value of tr. If we limit our attention to R2-healthy processes, then the
projection trV of tr given by VHR is redundant:

R2 (trV = tr �W ∧ tr′V = tr′ �W)

= (trV = tr �W ∧ tr′V = tr′ �W)[〈〉, tr′ − tr/tr, tr′] [def R2]

= trV = 〈〉 �W ∧ tr′V = (tr′ − tr) �W [substitution]

= trV = 〈〉 ∧ tr′V = (tr′ − tr) �W [property of �]

= trV = 〈〉 ∧ tr′V − trV = (tr′ − tr) �W [property of −]

We adopt a slight variation of ∆VHR (W , true) as our model of a user’s
interface to a reactive process, given in Definition 3.43. This variation
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omits the trV = 〈〉 conjunct.

Definition 3.43 (Reactive interface).

R (W) ,


okV = ok ∧ ok′V = ok′

∧ waitV = wait ∧ wait′V = wait′

∧ tr′V − trV = (tr′ − tr) �W
∧ refV ∩W ⊆ ref ∧ ref ′V ∩W ⊆ ref ′


To some extent, the decision to work with interfaces of the R (W) form

is arbitrary. Nevertheless, there is a close relationship between this form
and existing work in the literature, which is revealed in Subsection 3.5.3.

Remark 3.44. While R (W) includes a projection of ref , that variable has
no significance when dealing with CSP3-healthy processes, such as Circus

actions (Oliveira et al., 2009).

3.5.2 Projecting a Reactive Process

For convenience, we define a specialised version of the L predicate trans-
former that encodes R (W) in place of a view.

Definition 3.45 (LR predicate transformer). Provided P is R2-healthy:

LR (W , P) , L (VHR (W , true) , P)

= ∃ x, x′ • R (W) ∧ P

Applying LR to a R-healthy reactive process does not yield a R-healthy
process, but a predicate that is isomorphic to a R-healthy process.

Definition 3.46 (Local R). Let RV(P) , R1V ◦ R2V ◦ R3V(P) and:

R1V(P) , P ∧ trV ≤ tr′V

R2V(P) , P[〈〉, tr′V − trV/trV, tr′V]

R3V(P) ,
(
(∃ v, v′ • II rea)[xV, x′V/x, x′] C waitV B P

)
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If P is R-healthy, then LR (W , P) is RV-healthy. Since a reactive design
is expressible as a design made R-healthy, Lemma 3.47 presents a result
similar to Lemma 3.35.

Lemma 3.47 (LR and reactive designs). Provided P is a reactive design:

LR (W , P) = RV

((
∀ x, x′ • R (W)⇒ ¬ Pf

f

)
`V LR

(
W , Pt

f

))
where Pb

c abbreviates P[b, c/ok′, wait] (as used in Theorem 2.2).

The predicate ∀ x, x′ • R (W) ⇒ ¬ Pf
f describes all interactions for

which a user at W can be certain that P does not diverge. The same
effect manifests in the preconditions of multi-user designs, as described
in Section 3.4.

Example 3.48. The reactive design semantics of a→ b→ Skip is:

R

true `

 (tr′ = tr ∧ a /∈ ref ′) ∨ (tr′ = tra 〈a〉 ∧ b /∈ ref ′)
C wait′ B

tr′ = tra 〈a, b〉




The LR-projection of a→ b→ Skip through the window {a} is:

LR ({a} , a→ b→ Skip)

= RV

((
(∀ x, x′ • R ({a})⇒ ¬ (a→ b→ Skip)f

f )

`V LR ({a} , a→ b→ Skip)t
f

))
[Lemma 3.47]

= RV

(
true `V LR

(
{a} , (a→ b→ Skip)t

f

))
[no divergence]

Focusing on the postcondition of the interior local design, we obtain:

LR
(
{a} , (a→ b→ Skip)t

f

)

= LR

{a} ,


(

tr′ = tr ∧ a /∈ ref ′

∨ tr′ = tra 〈a〉 ∧ b /∈ ref ′

)
C wait′ B

tr′ = tra 〈a, b〉


 [semantics]
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=


(

LR ({a} , tr′ = tr ∧ a /∈ ref ′)
∨ LR ({a} , tr′ = tra 〈a〉 ∧ b /∈ ref ′)

)
C wait′V B

LR ({a} , tr′ = tra 〈a, b〉)

 [Law 3.19]

=

 (tr′V = trV ∧ a /∈ ref ′V) ∨ (tr′V = trV
a 〈a〉)

C wait′V B
tr′V = trV

a 〈a〉

 [def LR]

Hence, LR ({a} , a→ b→ Skip) is equal to:

RV

true `V

 (tr′V = trV ∧ a /∈ ref ′V) ∨ (tr′V = trV
a 〈a〉)

C wait′V B
tr′V = trV

a 〈a〉




which is isomorphic to the semantics of the process a→ (Skip u Stop).
Likewise, the projection of a→ b→ Skip through the window {b} is:

RV
(
true `V

(
tr′V = trV C wait′V B tr′V = trV

a 〈b〉
))

which is isomorphic to the process Stop u b→ Skip. ♦

3.5.3 Lazy Abstraction

In two papers (Roscoe et al., 1994; Roscoe, 1995), Roscoe introduced the
notion of the lazy abstraction of a CSP process. The lazy abstraction of a
process P, denoted by Lazy (W , P), is a process describing the interactions
that a user with windowW can make of P.

Definition 3.49 reproduces Roscoe’s definition of lazy abstraction.

Definition 3.49 (Lazy abstraction). The lazy abstraction of a CSP process
P to the user at windowW is:

Lazy (W , P) , (P |[H ]| (µ X • Stop u (u e : H • e→ X))) \ H

where H denotes (Σ \W), the set of all events outsideW .
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The process3 µ X • Stop u (u e : H • e → X) represents the activities
of P that are controlled by the other users of P. Placing this process in
parallel with P and hiding the H events models the behaviours of P as
observed by the user atW .

Example 3.50. The lazy abstractions of a → b → Skip through the win-
dows {a} and {b} respectively are:

Lazy ({a} , a→ b→ Skip) = a→ (Skip u Stop)

Lazy ({b} , a→ b→ Skip) = Stop u b→ Skip

These processes mirror those derived in Example 3.48. ♦

Roscoe (1997) presents multiple forms of lazy abstraction defined over
the various semantic models of CSP and proves their equivalence. We
build on this work to establish a correspondence between the failures-
divergences version of lazy abstraction and our LR predicate transformer.

Theorem 3.51 (Lazy abstraction as projection). For any divergence-free CSP
process P, Lazy (W , P) is isomorphic to LR (W , PR), where PR denotes
the reactive design formulation of P.

Theorem 3.51 is useful, because it allows us to characterise LR algeb-
raically. Hence, existing tools and techniques designed for calculating
and analysing lazy abstractions can be ported to our framework. The-
orem 3.51 also validates our reactive interface R (Definition 3.43). In the
opposite direction, Theorem 3.51 suggests that lazy abstraction could be
generalised by adopting a different interface specification instead of R.

3.6 Refining Multi-User Systems

In previous sections, we have described how the UTP can be applied to
calculate a user’s interactions with systems. Following Jacob (1987), this

3This process is called CHAOS(H) by Roscoe (1997). It should not be confused with the
Chaos action of Circus: while CHAOS(H) can accept or refuse any sequence of events
drawn from H, it never diverges, whereas Chaos can diverge.
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section argues that it is permissible to weaken the canonical notion of
refinement when developing multi-user systems. We also define multi-
user notions of refinement in terms of the canonical refinement relation.

Intuitively, P1 v P2 formalises the following correctness criterion:

CC1 P2 may replace P1 without its environment detecting the change.

This criterion assumes the existence of an entity which can monitor the
entire environment of the system, and thereby observe its behaviour com-
pletely. However, in a multi-user system, the environment is structured
by the interfaces of its users. If no user’s interface spans the entirety of
the environment, then the criterion is arguably too strong.

If we are developing a multi-user system, we may wish to weaken our
correctness criterion to:

CC2 P2 may replace P1 without its users detecting the change.

Depending on the users’ views, there are instances of P1 and P2 which
uphold this criterion, but for which P1 v P2 fails to hold.

Example 3.52. Returning to the byte register (Subsection 3.4.3), consider
the following variant of the DBL2 operation that doubles the lower four
bits of reg and the upper four bits of reg separately:

INDBL2 , reg ∈ 0..255 ∧ err = 0 `

 HDBL ∧ LDBL ∧ err′ = 0
C reg ∈ 0..127 B

reg′ ∈ 0..255 ∧ err′ = 1


HDBL =

⌊
reg′/16

⌋
= (breg/16c × 2)

LDBL = reg′ mod 16 = (reg× 2) mod 16

INDBL2 allows the users at H and L to access separate registers without
needing to keep those registers synchronised, which means that an
implementation of INDBL2 may provide each user with their own local
instance of the register.

Notice that DBL2 6v INDBL2, because when reg ∈ 0..127 and err = 0,
INDBL2 always sets the fourth most significant bit of reg′ to 0 regardless
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of the value of the fifth most significant bit of reg. However, the users
at H and L cannot individually distinguish INDBL2 from DBL2, because
INDBL2 provides the same interactions to each user as does DBL2. ♦

This section outlines a class of refinement relations — based on work
by Jacob (1987, 1989b, 1992) — formulated over user interactions with
a system, rather than the behaviours of the system. These refinement
relations are more relaxed than behavioural notions of refinement: they
satisfy CC2 but not necessarily CC1.

3.6.1 Local Refinement

We call P2 a local refinement of P1 with respect to a view V if and only if
each V-interaction with P2 is also a V-interaction with P1.

Definition 3.53 (Local refinement).

P1 vV P2 , L (V, P1) v L (V, P2)

Local refinement allows new behaviours to be added to a system,
provided these new behaviours do not induce new interactions through V.
Hence, if P1 vV P2 holds, then a user at V cannot detect the replacement
of P1 with P2.

Corollary 3.54. Definition 3.53 and Law 3.20 imply, for all V:

P1 v P2 implies P1 vV P2

Unlike v, the vV ordering is not antisymmetric in general, because two
different systems offering the same interactions through V are equivalent
under vV. Nevertheless, vV is always a pre-order.

Remark 3.55. If P1 and P2 are CSP processes and V = VHR (W , true)
then, by Theorem 3.51, P1 vV P2 is equivalent to the condition:

Lazy (W , P1) v Lazy (W , P2)

48



3.6 Refining Multi-User Systems

This result implies P1 vV P2 can be tested with a CSP model checker.

Since local refinement is formulated in terms of a single user, it needs
to be extended if we wish to reason about multiple users.

3.6.2 Co-operating and Independent Refinement

Jacob (1987) proposed two notions of refinement, known as co-operating
refinement and independent refinement, intended for the development of
multi-user systems.

Co-operating refinement assumes that users can exchange information
with each other about their interactions with a system. This means
the users could reconstruct more information about the system
behaviour than they could infer from their individual interactions.

Independent refinement assumes users cannot communicate with each
other; instead, the only information that each user can obtain about
the behaviour of a system is from their own interaction.

Jacob defined co-operating and independent refinement in the form:

P1 vco
A P2 , ∀ φ2 : ω(P2) • ∃ φ1 : ω(P1) • ∀U : A • φ1

∼=U φ2

P1 vind
A P2 , ∀U : A • ∀ φ2 : ω(P2) • ∃ φ1 : ω(P1) • φ1

∼=U φ2

where A denotes a set of users, ω(P) denotes the space of behaviours of
P (with respect to some semantic model), and φ1

∼=U φ2 holds if and only
if the behaviours φ1 and φ2 yield the same interaction to the user U.

We express co-operating and independent refinement in the UTP by
extending the definition of local refinement to a set of pairwise disjoint
views VS (representing multiple users) in different ways.

Definition 3.56 (Co-operating and independent refinement).

P1 vco
VS P2 , P1 v∧VS P2

P1 vind
VS P2 ,

∧
V∈VS

P1 vV P2
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The UTP style obscures the essential equivalence between these defin-
itions and Jacob’s. For co-operating refinement, P1 v∧VS P2 demands
that for each behaviour φ2 of P2, there exists a behaviour φ1 of P1 such
that φ1 and φ2 yield the same (

∧
VS)-interaction, where the view

∧
VS

represents the combined interactions made by the users (Subsection 3.2.3).
A similar comparison can be made for independent refinement.

As with vV, the vco
VS and vind

VS orderings are pre-orders but not partial
orders (Jacob, 1989b). When VS = {V}, both vco

VS and vind
VS reduce to vV.

Co-operating refinement is no stronger than behavioural refinement:

P1 v P2 implies P1 vco
VS P2

which follows from Law 3.20 and the definition of local refinement.
Similarly, it follows from Law 3.21 that independent refinement is no
stronger than co-operating refinement:

P1 vco
VS P2 implies P1 vind

VS P2

Even though cooperating and independent refinement are generally
weaker than behavioural refinement, they are strong enough to preserve
the functionality inherent in a system’s specification from the perspectives
of the users, provided their assumptions about users are upheld.

Example 3.57. Returning to Example 3.52, it is the case that:

DBL2 vind
{H,L} INDBL2 but not DBL2 vco

{H,L} INDBL2

Provided the register can only be accessed through H and L — and
the users at H and L do not co-operate — the replacement of DBL2
with INDBL2 is justified by independent refinement. However, this
replacement is not justified by co-operating refinement, because if the
users at H and L combine their interactions, they can identify behaviours
of INDBL2 that are not behaviours of DBL2. ♦

We do not study co-operating or independent refinement further in this
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thesis. Nevertheless, as Example 3.57 demonstrates, they provide system
developers with an extra degree of flexibility in making design choices
than behavioural refinement can offer. Indeed, they would be particularly
appropriate in the design of distributed multi-user systems, because they
offer the opportunity to distribute a system’s workload across multiple
processors without needing to keep those processors synchronised.

3.7 Conclusion

This chapter has presented a generic framework for studying the inter-
actions between systems and their users. By separating the concern of
modelling users from designing systems, we can specify directly which
elements of a system’s behaviour are viewable by users. With predicate
transformers, these specifications of views can be applied to calculate a
user’s interactions with a system, as well as a user’s inferences about the
system’s behaviour from those interactions.

This framework fits seamlessly within the predicate semantics of the
UTP. Hence, it can be applied to derive a multi-user interpretation of
any UTP theory. We have demonstrated its application to the theories of
designs and reactive processes and, in the latter case, have identified a
link with Roscoe’s lazy abstraction.

We have also applied the framework to capture weaker notions of
refinement that are suitable for multi-user system development. The
connections between our framework, Roscoe’s lazy abstraction and the
notions of co-operating and independent refinement together imply there
is scope for using model checkers for CSP for automatically verifying
these weaker refinement relations hold between processes.

The notions of views and inferences are taken forward to the next
chapter, where we study information flow security in the UTP context.
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4 Confidentiality Properties

4.1 Introduction

Confidentiality demands that a system only releases secret information
— such as cryptographic keys or classified documents — to users who
are authorised to access that information. Since the advent of time-
sharing computer systems in the late 1960s, much research has focused
on protecting the confidentiality of data stored within multi-user systems.
The concepts of access control and inference control have proved influential,
in different ways.

4.1.1 Access Control

Access control models — most famously, the Bell–La Padula (BLP) model
(Bell and La Padula, 1973, 1976) — describe an abstract mechanism
for controlling the operations on the system’s state that each user of
the system is entitled to perform. It is intended that, if a system is
implemented in accordance with this mechanism, then the mechanism
will prevent a user from invoking an operation (or sequence of operations)
to access data that it is not authorised to access.

Access control is readily comprehensible by software engineers and is
widely deployed in software products. Yet despite its intuitive appeal,
its adequacy for describing security policies has been criticised on both
theoretical and practical grounds:

Covert channels A covert channel allows users to communicate data in a
manner unanticipated by the system’s designers (Lampson, 1973).
These channels often emerge from shared resources: for instance, a
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high-level user (or a Trojan horse program invoked with high-level
privileges) may modulate its consumption of a system resource
(such as processor time or memory) to signal data to a low-level
user. Covert channels lie outside the domain of access control,
because they are an emergent property of the system’s resources.

Narrow focus Access control models are formulated in terms of active
subjects (users) operating over a collection of passive objects, such
as files and database records. However, confidentiality requirements
may apply to other facets of a system, such as whether a high-level
user has engaged in particular activities.

Semantic ambiguity It is the job of software engineers to determine how
an access control model should be mapped onto a system design.
For instance, models such as BLP are specified in terms of “read”
and “write” operations, but the semantics of these operations is
not made precise. Such ambiguities can lead to insecurity: for
instance, McLean (1987) outlined a hypothetical “System Z” which
implements BLP, but downgrades the security level of all data
objects for the duration of each operation it performs, enabling
low-level users to access any object whatsoever.

4.1.2 Inference Control

A radically different philosophy for protecting the confidentiality of
information is to regulate the information flow from systems to their users.
We observed in Subsection 3.3.4 that a user can infer information about
the system’s behaviour by analysing its interaction with the system. By
extension, that user can calculate information about the system’s state, or
the activities of other users (Denning, 1982).

A confidentiality property specifies which aspects of a system’s beha-
viour are secret (in some way) and prescribes an upper bound on the
flow of information about those aspects to low-level users. The meaning
of confidentiality properties is unambiguous and is independent of the
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system under consideration. Unlike access control models, they do not
prescribe any mechanism for safeguarding confidential data. Hence,
confidentiality properties grant system designers the flexibility to choose
how to implement security measures as they see fit (McLean, 1994b).

Various specialised techniques for verifying a system design against
particular confidentiality properties have been proposed in the literature.
However, the topic of integrating these techniques with existing high-
integrity software engineering practices has remained under-explored.

4.1.3 Contributions of this Chapter

Building on the framework of user interactions developed in Chapter 3,
this chapter outlines a style for specifying confidentiality properties over
any aspect of the observation space defined by a UTP theory. This
formulation of confidentiality properties provides a starting point for
integrating notions of confidentiality into specification and programming
languages with a UTP semantics.

Section 4.2 applies the predicate semantics of the UTP — coupled
with the notion of views described in Chapter 3 — to formalise a user’s
inferences about the behaviour of systems. This work provides a se-
mantic foundation for our definition of confidentiality properties, which
is presented in Section 4.3.

Since confidentiality properties are inherently non-functional, they are
typically kept separate from the functional specification of a system. In
Section 4.4, we show how a specification of a secure system may be derived
by merging a functionality specification with confidentiality properties.
Then, in Section 4.5, we investigate why confidentiality properties are
not preserved by refinement, but also show how this problem is resolved
by merging functionality and confidentiality together.

In Section 4.6, we show how various information flow properties
defined in the literature can be expressed in our confidentiality frame-
work. We also compare our approach for specifying confidentiality with
the body of existing work on information flow security in Section 4.7.
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4.2 An Indistinguishability Semantics

Information flow is a product of the relationship between a system’s
behaviours and a user’s inferences about those behaviours. In this section,
we describe a method for extending UTP theories to encode information
flow: in effect, we model a user’s inferences about the behaviour of a
system in terms of the system’s behaviours themselves.

The cornerstone of our method is a mapping from the behaviours
of a system to an isomorphic space of behaviours that we call the fog
space. Intuitively, if a behaviour φ is mapped to a fog behaviour φ̃, then φ̃

represents an alternative explanation for φ in some respect. It is important
to stress that our fog space is a fiction: we do not expect fog behaviours
to manifest in any real system.

The fog space is conceptually very useful, because it enables us to
formulate relational properties between behaviours that cannot be defined
in the observable space alone. In particular, we employ the fog space to
capture two different security concerns. In this section, we study how a
user’s inferences about the process’s behaviour can be encoded in the
fog. In Section 4.3, we investigate how the fog can serve as the medium
underlying the specification of confidentiality properties.

4.2.1 Lifting Relations

We derive a fog alphabet x̃, x̃′ by renaming the observation variables x, x′.
Given a relation P, the lift of P relates the observable behaviours of P
to a renaming of those behaviours over the fog variables. Definition 4.1
presents a predicate transformer U (“up”) for lifting relations.

Definition 4.1 (U predicate transformer). Let P̃ denote P[x̃, x̃′/x, x′]:

U (P) , P ∧ P̃

From this point onwards, we say that a predicate is a lifted relation if its
alphabet contains the x, x′ variables and the x̃, x̃′ fog variables.
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Example 4.2. To understand the structure of lifted relations, it is helpful
to expand them into a form where observable behaviours are paired with
fog behaviours. For instance:

U (h = 0 ∨ h = 1)

= (h = 0 ∨ h = 1) ∧ (h̃ = 0 ∨ h̃ = 1) [def U]

=

(
(h = 0 ∧ h̃ = 0) ∨ (h̃ = 0 ∧ h̃ = 1)

∨ (h = 1 ∧ h̃ = 0) ∨ (h̃ = 1 ∧ h̃ = 1)

)
[prop calc]

Here, each observable behaviour is paired with each fog behaviour. ♦

Remark 4.3. The U function is related to the separating simulation func-
tions defined by Hoare and He (1998). Separating simulations rename
the alphabet of a relation, to facilitate reasoning about updates to shared
variables. Here, U (P) models two completely separate instances of a
system with no shared variables between them.

Theorem 4.4 highlights an important property of U: it preserves the
structure of a UTP theory.

Theorem 4.4 (U is an order-embedding). The U predicate transformer is
both monotonic and order-reflecting under the refinement ordering:

P1 v P2 if and only if U (P1) v U (P2)

A consequence of this order-embedding is that, by hiding the fog
variables of a lifted relation U (P), we can recover the relation P. The D

(“down”) predicate transformer does just that.

Definition 4.5 (D predicate transformer).

D (Q) , ∃ x̃, x̃′ • Q

Lemma 4.6 is a simple consequence of Definition 4.5.
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Lemma 4.6 (D inverse of U). Provided P is a relation:

D (U (P)) = P

Since U is defined in terms of conjunction, it is conjunctive. Likewise,
D is disjunctive, because existential quantification is disjunctive.

Law 4.7 (U is conjunctive). U (P1 ∧ P2) = U (P1) ∧ U (P2)

Law 4.8 (D is disjunctive). D (Q1 ∨ Q2) = D (Q1) ∨ D (Q2)

However, U is not disjunctive, and D is not conjunctive.

Law 4.9 (U and disjunction). U (P1 ∨ P2) v U (P1) ∨ U (P2)

Law 4.10 (D and conjunction). D (Q1) ∧ D (Q2) v D (Q1 ∧ Q2)

Since the conditional is defined as a disjunction (Subsection 2.3.2),
Law 4.11 is a direct consequence of Law 4.9.

Law 4.11 (U conditional). U (P1 C C B P2) v U (C ∧ P1) ∨ U (¬ C ∧ P2)

We established in Theorem 4.4 that U is monotonic. Likewise, D is
monotonic, because existential quantification is monotonic.

Law 4.12 (D is monotonic). Q1 v Q2 implies D (Q1) v D (Q2)

Finally, negation does not distribute through U or D.

Law 4.13 (U and negation). ¬ U (P) v U (¬ P)

Law 4.14 (D and negation). D (¬ Q) v ¬ D (Q)

4.2.2 Modelling Inference

A long-standing principle for evaluating the security of a system is
commonly known as Shannon’s maxim (Shannon, 1949):

“the enemy knows the system being used”
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According to this principle, we should assume this “enemy” — in our
case, an adversarial user of a system P — possesses complete knowledge
of the design of P. The user’s complete knowledge of P is reflected by
the definition of U: the space of fog behaviours in U (P) is no larger than
the space of observable behaviours in U (P).

It follows from Shannon’s maxim that a user can analyse its interaction
ψ with P in tandem with its knowledge of P (and its interface) to infer all
behaviours of P that are consistent with ψ. In Chapter 3, we modelled
these deductions with the inference function (Definition 3.28). We now
formalise a user’s inferences about P’s behaviour in the lifted space.

Recall from Subsection 3.2.1 that a view V maps behaviours to inter-
actions. We say two behaviours φ1 and φ2 are indistinguishable through a
view V if and only if ∆V maps both φ1 and φ2 to the same interactions.

Definition 4.15 (Indistinguishability). φ1, φ2 are V-indistinguishable if
and only if L (V, φ1) = L (V, φ2)

We capture a user’s inability to distinguish between behaviours by
defining an indistinguishability relation over the lifted space. An indis-
tinguishability relation I relates the observable behaviour φ1 to the fog
behaviour φ̃2 (and φ2 to φ̃1) if and only if φ1 and φ2 yield the same inter-
action to the user. In this way, I partitions the space of behaviours into
equivalence classes.

Definition 4.16 presents a predicate transformer for constructing a
(symmetric) indistinguishability relation from V, by reflecting the xV

variables back on themselves.

Definition 4.16 (IR predicate transformer).

IR (V) , ∆ (∃ xV • V ∧ V[x̃/x])

By imposing IR (V) upon the lifted space of U (P), we model a user’s
inferences about the behaviour of P in terms of the Low-indistinguishable
fog behaviours of P̃. Definition 4.17 introduces a special form of U that
incorporates IR in this way.
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Definition 4.17 (UI predicate transformer).

UI (V, P) , U (P) ∧ IR (V)

UI (V, P) relates each observable behaviour φ of P to only those fog
behaviours of P that are indistinguishable to φ through V. Therefore, it
reflects the user’s ability to infer all behaviours of P that are consistent
with its interaction with P. It works in a similar way to the inference
function, but abstracts away from the user’s interactions with the process.

The UI predicate transformer inherits the characteristics of U; it too is
an order-embedding from relations to lifted relations.

Example 4.18. Recall the guessing game described in Example 3.30. The
indistinguishability relation corresponding to Alice’s view is:

IR (ALICE) = g = g̃ ∧ r = r̃ ∧ g′ = g̃′ ∧ r′ = r̃′

The lifted form of GUESS0 with respect to g = g̃ ∧ r′ = r̃′ is: g ∈ 1..10
∧ n ∈ 1..10 ∧ ñ ∈ 1..10
∧ g = g̃ ∧ r′ = r̃′

 ∧
 g > n⇒ r′ > 0 ∧ g̃ > ñ
∧ g = n⇒ r′ = 0 ∧ g̃ = ñ
∧ g < n⇒ r′ < 0 ∧ g̃ < ñ


This lifted relation indicates that Alice can distinguish between runs
where g > n, g = n and g < n. ♦

Remark 4.19. We could have defined UI to accommodate multiple fog
alphabets, in order to represent behavioural indistinguishability with
respect to multiple views. However, a single fog alphabet suffices to
illustrate the main topics in this chapter, so we avoid cluttering the
presentation with multiple fog alphabets.

In the sections that follow, we use views only to construct indistin-
guishability relations. This enables us to dispense with user interactions
and work exclusively in the lifted space of behaviours.
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4.3 Encoding Confidentiality

Some of a system’s behaviours may entail the communication of secret
data. The confidentiality of those data is violated if an adversarial low-
level user Low can infer significant information about that data. Hence,
regulating Low’s inferences about the system’s behaviour is crucial to
safeguard the confidentiality of those data.

This section presents a scheme for encoding confidentiality properties
that fits naturally with the semantics of lifted relations. We first outline
the philosophy of this scheme, before explaining how these properties
can be applied to evaluate the security of a system design.

4.3.1 Secrets and Cover Stories

Let φ denote a behaviour of a system P which is secret in some respect.
If P behaves as φ, then it is imperative that Low cannot establish that fact,
in order to maintain the confidentiality of φ.

Our scheme for specifying that φ is confidential is based on cover stories.
Intuitively, a cover story behaviour for φ is a designated alternative
behaviour of P that lacks the secret aspect of φ. The role of these cover
story behaviours is to confuse Low; they prevent Low from determining
when the system’s actual behaviour is φ. Exactly which behaviours
of a system are classed as secret — and which behaviours should be
designated as cover stories — depends on the system’s functionality and
its security policy.

Example 4.20. Consider a military commander who issues the order
“attack at dawn”. If the attack is a secret, then we may interpret an order
to “do not attack” as an appropriate cover story. However, if we suppose
that an enemy (Low) knows an attack is inevitable (by observing troop
movements) and the secret is the time of the attack, then “attack at noon”
or “attack at dusk” may serve as cover stories instead. ♦

For a behaviour to be an effective cover story for φ, it must be Low-
indistinguishable from φ. It follows that, if a system P features both φ and
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a Low-indistinguishable cover story for φ, then Low cannot determine
(with certainty) from its interaction when P behaves as φ. Hence, if P
does behave as φ, then the presence of Low-indistinguishable cover story
behaviours in P maintains the confidentiality of φ, because Low cannot rule
out the possibility that a cover story behaviour took place instead. We
now formalise these concepts in the lifted space.

4.3.2 Obligations

Obligations1 are our basic unit for expressing confidentiality properties.
An obligation is a lifted relation, where the observable space represents
secret behaviours and the fog space represents cover story behaviours.

Example 4.21. The obligation:

h = 0⇒ h̃ > 0

specifies that each behaviour where h̃ > 0 serves as a cover story for each
behaviour where h = 0. ♦

An obligation may relate a behaviour to itself, meaning that behaviour
is not confidential. For instance, Example 4.21 maps behaviours where
h 6= 0 to themselves.

Example 4.22. Consider a program which accepts an integer h as its
input and produces an output l′ that is computed from h (in an unspe-
cified manner). Given that Low views l′ but not h, we may define some
obligations to model certain confidentiality properties over the value of h:

θ1 , h̃ 6= h

θ2 , h̃ mod 2 6= h mod 2

θ3 , h mod 2 = 1⇒ h̃ mod 2 = 0

θ4 , h = 0⇒ h̃ 6= h

1The term “obligation” is borrowed from Seehusen and Stølen (2007, 2009), but we
ascribe a different meaning to the term.
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θ1 specifies that every value of h is secret, while every non-equal value
of h̃ is a cover story. In short, θ1 specifies that Low must be unable to
establish the exact value of h. θ2 specifies that Low cannot determine the
parity of h. θ3 specifies that any even value of h is a cover story for any
odd value of h. Finally, θ4 specifies that Low must be unable to determine
that h = 0. ♦

Remark 4.23. In this chapter, we focus on specifying confidentiality prop-
erties over the whole behaviour of the system. However, it is sometimes
desirable to limit Low’s inferences about a high-level (High) user’s in-
teractions with a system. Given a relation θH — defined over High’s
interaction variables xH, x′H and fog variables x̃H, x̃′H — the obligation:

∀ xH, x′H, x̃H, x̃′H • ∆ (H ∧ H[x̃, x̃H/x, xH])⇒ θH

projects θH through H to yield an obligation over x, x′ and x̃, x̃′.

4.3.3 Conformance

Let P denote a relation and θ denote an obligation. Informally, P conforms
to θ with respect to a view L if, for each behaviour φ exhibited by P, there
exists at least one behaviour φ̃ of P̃ such that:

• φ̃ is indistinguishable through L from φ; and

• θ prescribes φ̃ as a cover story for φ.

If P fails to conform to θ, then Low could rule out all cover stories for a
particular behaviour of P. In this case, we interpret P as being able to
leak secret information to Low.

Definition 4.24 codifies this conformance condition.

Definition 4.24 (Conformance).

P ∝L θ , [P ⇒ D (UI (L, P) ∧ θ) ]
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Example 4.25. The following table evaluates a selection of candidate
programs against the obligations listed by Example 4.22 according to the
conformance condition, assuming Low’s view LV is defined as lL = l.

Program θ1 θ2 θ3 θ4

l′ = h × × × ×
l′ = 0 X X X X

l′ = h mod 2 X × × X

l′ = bh/2c X X X X

l′ = h ∨ l′ = 0 × × X X

(Each X indicates P ∝L θ and each × indicates otherwise.)

The program l′ = h allows Low to establish the exact value of h, so it
violates each of the obligations. Conversely, the program l′ = 0 reveals
no information about h to Low, so it conforms to all the obligations.

The program l′ = h mod 2 enables Low to distinguish between h ∈ {0, 2}
and h ∈ {1, 3}, so Low can determine the parity of h, in violation of θ2

and θ3. The program l′ = bh/2c enables Low to distinguish between
h ∈ {0, 1} and h ∈ {2, 3}, but this does not violate any of the obligations.

The program l′ = h ∨ l′ = 0 gives Low perfect information about h
when l′ ∈ {1, 2, 3}. However, when l′ = 0, Low cannot determine any
information about the value of h. ♦

Obligations need to be defined with respect to the UTP theory in which
a system is modelled. However, they may be defined without making
presumptions about the system’s functionality.

4.3.4 The Lattice of Obligations

The ordering over obligations is simply the refinement ordering. If
θ1 v θ2, then for each behaviour φ, θ2 prescribes no more cover stories
for φ as does θ1. Therefore, if a relation P conforms to θ2, then P must
also conform to θ1.
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Lemma 4.26 (v is closed under ∝L).

θ1 v θ2 ∧ P ∝L θ2 implies P ∝L θ1

Example 4.27. Recalling Example 4.22, we have θ3 v θ2 and θ4 v θ1.
It follows that each program in Example 4.25 conforming to θ2 also
conforms to θ3, and each program conforming to θ1 conforms to θ4. ♦

The refinement ordering induces a complete lattice over the space of
obligations, with a unique top and bottom. Every system conforms to
the weakest obligation true, but only the miracle false conforms to the
strongest obligation false.

We denote a set of obligations by Θ. The least upper bound and
greatest lower bound of Θ are standard.

Definition 4.28 (obligation lub).
⊔

Θ ,
∧

Θ

Definition 4.29 (obligation glb).
d

Θ ,
∨

Θ

Even if a system P conforms to θ1 and θ2 individually, P need not
conform to θ1 ∧ θ2, as Example 4.30 shows.

Example 4.30. Suppose θ1 and θ2 prescribe mutually exclusive cover
stories: for instance, θ1 = h̃ = 1 and θ2 = h̃ = 2. Then θ1 ∧ θ2 = false. ♦

It follows from Lemma 4.26 that, if a system conforms to θ1 ∧ θ2, then
it conforms to θ1 and θ2 separately.

Law 4.31 (lub conformance). P ∝L (θ1 ∧ θ2) implies P ∝L θ1 ∧ P ∝L θ2

There is a dual law for the greatest lower bound of obligations, which
also follows from Lemma 4.26.

Law 4.32 (glb conformance). P ∝L θ1 ∨ P ∝L θ2 implies P ∝L (θ1 ∨ θ2)

4.3.5 Multi-Obligations

The notion of conformance is rather weak: it demands that Low is unable
to rule out at least one cover story behaviour — out of possibly many
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cover stories that an obligation prescribes — for each behaviour of a
system. However, confidentiality properties often demand that Low
cannot rule out any cover story drawn from a set of behaviours, which is
a more severe imposition.

We now define an extension of obligations to encode properties such as
these. Following the style of Mantel (2003), we specify a multi-obligation
(σ, τ) as a pair:

• The obligation template τ is an obligation with alphabet including
auxiliary variables.

• The restriction σ is a predicate transformer; given a system design
P, σ(P) is a predicate over the auxiliary variables.

The purpose of σ is to specify a range of values to fill the auxiliary
variables of the obligation template. Hence, a multi-obligation (σ, τ) en-
codes a set of obligations, where each valuation of the auxiliary variables
satisfying σ(P) is substituted into τ to instantiate a separate obligation.

Example 4.33. The multi-obligation (λ P • i ∈ S, h̃ = i) specifies that Low
must be unable to rule out each of the individual values in S for h. It
encodes the set of obligations {h̃ = i | i ∈ S}. ♦

Definition 4.34 extends the conformance condition to multi-obligations.
A relation P conforms to (σ , τ) if and only if P conforms to each σ-
instantiation of τ. We assume the alphabet of P is disjoint from the
auxiliary variables named by σ and τ; if they are not, then we may
rename those auxiliary variables to resolve such clashes.

Definition 4.34 (Multi-obligation conformance).

P ∝L (σ, τ) , [P ∧ σ(P) ⇒ D (UI (L, P) ∧ τ) ]

Typically, we specify σ to be a constant function. Nevertheless, some
kinds of confidentiality properties are sensitive to the details of a system’s
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behaviours. These properties can be encoded by defining σ as a predicate
transformer over the space of systems.

Definition 4.35 presents one possible formulation of the least upper
bound of an indexed set {(σ1 , τ1) , . . . , (σn , τn)} of multi-obligations.

Definition 4.35 (Multi-obligation least upper bound).

⊔
i • (σi , τi) ,

(
λ P •

∧
i • j = i⇒ σi(P) ,

∧
i • j = i⇒ τi

)
where j is a fresh variable that is free in each σi and θi.

Since the indexing variable is part of the alphabet of the obligation tem-
plate and restriction of the multi-obligation

⊔
i • (σi , τi), it is quantified

by the universal closure of the multi-obligation conformance condition
(Definition 4.34). Hence, we have:

P ∝L
⊔

i • (σi , τi) if and only if ∀ i • P ∝L (σi , τi)

4.4 Deriving Secure Specifications

So far, we have treated obligations (i.e. specifications of confidentiality)
separately from specifications of the functionality of systems. In this
section, we show how confidentiality properties can be combined with a
functional specification, to realise a secure specification of a system.

4.4.1 Reconciling Obligations

Let FC denote the combination of a lifted functionality specification of
the form UI (L, P) and an obligation θ:

FC = UI (L, P) ∧ θ

FC maps each behaviour φ of P to only those fog behaviours of UI (L, P)
that θ lists as cover stories for φ. If P conforms to θ, then each behaviour
of P is present in FC. On the other hand, if P does not conform to θ, then
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P features at least one behaviour φ that UI (L, P) associates with no fog
behaviour that θ prescribes as a cover story for φ. Hence, a contradiction
is induced in FC which renders the behaviour φ infeasible.

Example 4.36. Recall the program l′ = h ∨ l′ = 0 from Example 4.25 and
the obligation θ1 , h̃ 6= h from Example 4.22. By lifting the program
(with respect to Low’s view LV) and conjoining θ1, we derive:

UI (LV, l′ = h ∨ l′ = 0) ∧ h̃ 6= h

= (l′ = h ∨ l′ = 0) ∧ (l̃′ = h̃ ∨ l̃′ = 0) ∧ l′ = l̃′ ∧ h̃ 6= h [def UI]

= ((l′ = h ∧ l′ = h̃) ∨ l′ = 0) ∧ l′ = l̃′ ∧ h̃ 6= h [prop calc]

= (false ∨ l′ = 0) ∧ l′ = l̃′ ∧ h̃ 6= h [contradiction]

= l′ = 0 ∧ l′ = l̃′ ∧ h̃ 6= h [prop calc]

Here, each behaviour of the original program where l′ 6= 0 — revealing
the value of h to Low — is made infeasible. ♦

The purpose of combining a functional system design (a lifted relation)
with a confidentiality specification (an obligation) is to disable functional-
ity that potentially reveals a secret to Low. A remarkable consequence of
this combination is that it makes the system design secure.

In extreme cases, P’s functionality may be irreconcilable with θ. Then,
FC admits no behaviour whatsoever, as Example 4.37 demonstrates.

Example 4.37. Applying θ1 to the lifted form of program l′ = h yields:

UI (LV, l′ = h) ∧ h̃ 6= h

= l′ = h ∧ l̃′ = h̃ ∧ l′ = l̃′ ∧ h̃ 6= h [def UI]

= false [contradiction]

Since l′ = h always reveals h to Low, no cover story for l′ = h prescribed
by θ1 remains in the fog space. With no supporting fog behaviours, l′ = h
itself is rendered infeasible. ♦

Indeed, it is entirely appropriate for the combination of irreconcilable
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specifications of functionality and confidentiality to be a miracle, because
only a miracle could ever satisfy both specifications.

4.4.2 Fixed Points of Confidentiality

An anomaly induced by conjoining UI (L, P) with θ is that observable
behaviours made infeasible by θ are not necessarily made infeasible in
the fog space. This anomaly is illustrated by Example 4.38.

Example 4.38. Consider a very simple system h = 0 ∨ h = 1 and the
obligation θ = h 6= h̃ ∧ (h = 0⇒ h̃ = 2). We have:

UI (true, h = 0 ∨ h = 1) ∧ h 6= h̃ ∧ (h = 0⇒ h̃ = 2)

= U (h = 0 ∨ h = 1) ∧ h 6= h̃ ∧ (h = 0⇒ h̃ = 2) [def UI]

= (h = 0 ∧ h̃ = 1 ∨ h = 1 ∧ h̃ = 0) ∧ (h = 0⇒ h̃ = 2) [def U]

= h = 1 ∧ h̃ = 0 [prop calc]

Here, the behaviour h = 0 is infeasible, but its counterpart h̃ = 0 remains
in the fog space. It is as though Low cannot rule out the infeasible h = 0,
which is incompatible with our expectation that Low knows the system’s
construction (Subsection 4.2.2). ♦

To rectify this anomaly, we define a new predicate transformer C over
the space of lifted relations.

Definition 4.39 (C predicate transformer).

C (Q) , Q ∧ D̃ (Q)

The result of applying C to Q is a lifted relation that allows all observ-
able behaviours of Q, but makes infeasible all fog behaviours that do not
correspond to any of those observable behaviours.

Lemma 4.40 (C is monotonic). Q1 v Q2 implies C (Q1) v C (Q2)
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C is not idempotent. Its application to Q has the potential to make yet
other observable behaviours of Q infeasible, if the fog counterparts of
those behaviours are excluded from the fog space of C (Q).

Example 4.41. Let Q = h > 0 ∧ h̃ > 0 and θ = h̃ = h− 1. Then:

FC = Q ∧ θ = h > 1 ∧ h̃ = h− 1

Repeatedly applying C to FC reveals a pattern:

C(FC) = h > 1 ∧ h̃ = h− 1 ∧ h̃ > 1 = h > 2 ∧ h̃ = h− 1

C2(FC) = h > 2 ∧ h̃ = h− 1 ∧ h̃ > 2 = h > 3 ∧ h̃ = h− 1

Cn(FC) = h > n + 1 ∧ h̃ = h− 1

The application of C to FC does not converge because Cn(FC) @
Cn+1(FC) for n ≥ 0. In the limit, we obtain false: every behaviour
is made miraculous. ♦

Let CC (Q) denote the fixed point of C applied to Q.

Definition 4.42 (CC predicate transformer).

CC (Q) , µ X • C (Q ∧ X)

Since C is monotonic (Lemma 4.40) and the lifted space is a complete
lattice, the Knaster-Tarski theorem (Tarski, 1955) implies CC (Q) is well-
defined for every point Q in the lifted space. Unlike C, CC is idempotent.

Lemma 4.43 (CC is idempotent). CC (CC (Q)) = CC (Q)

The idempotence of CC is significant. Let Y = CC (UI (L, P) ∧ θ). By
definition, the fog space of Y is no larger than its observable space. In
particular, the observable space of Y contains only behaviours that θ maps
to at least one cover story in the fog space of Y. It follows that projecting
Y back to the unlifted space yields a relation D (Y) that conforms to θ.
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Theorem 4.44 (Fixed point of confidentiality).

D (CC (UI (L, P) , θ)) ∝L θ

4.4.3 Reconciling Multi-Obligations

Since multi-obligations are not defined as predicates, they cannot be con-
joined with lifted system designs in the same manner as obligations. The
procedure for conjoining obligations can be extended to multi-obligations,
by treating each instantiation of a multi-obligation as an obligation in its
own right.

Given a multi-obligation (σ , τ) and a relation P, we can instantiate the
obligation template τ with a valuation of the auxiliary variables emitted
by σ(P). The instantiated obligation θ can be reconciled against the lift
of P, to identify a lifted relation Q (where P v D (Q)) such that D (Q)

conforms to θ. Then, the procedure can be repeated with D (Q) in place
of P and instantiations of τ generated from σ(D (Q)).

This procedure needs to be applied until a relation Pω is identified
that conforms to each σ(Pω)-instantiation of τ. In the worst case, the
derivation of Pω may be extremely long-winded. For reasons described
in Section 4.5, P1 ∝L θ and P1 v P2 do not together imply P2 ∝L θ, so the
procedure needs to be restarted whenever P1 is replaced by P2.

4.5 Refinement and Confidentiality

Refinement steps that reduce non-determinism may fail to preserve
confidentiality properties. Example 4.45 demonstrates how refinement
can introduce insecurity into a system design.

Example 4.45. Recall from Example 4.25 the program l′ = h ∨ l′ = 0 and
the obligation θ4 , h = 0 ⇒ h̃ 6= h, where l′ = h ∨ l′ = 0 conforms to
θ4. While l′ = h ∨ l′ = 0 is refined by l′ = h, the program l′ = h does
not conform to θ4 (Example 4.25), because Low can establish h = 0 if it
observes l′ = 0. ♦
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This problem was first noted in print by Jacob (1989a) and was sub-
sequently termed the “refinement paradox” by Roscoe (1995). This term
is perhaps misleading, because the “paradox” is readily explained. By
resolving non-determinism, refinement resolves uncertainty about the
behaviours of a system, so Low’s inferences about those behaviours are
never weakened but may be strengthened. Therefore, naïve refinement steps
may increase Low’s inferences beyond the upper limit on information
flow imposed by a confidentiality property, thus violating the property.

Roscoe (1995) argues the root of the so-called paradox lies in the fact
that formal specification notations typically draw no distinction between
two different roles that non-determinism may serve:

Under-specification is “don’t-care” non-determinism, providing software
engineers with freedom to choose how to implement a specification.

Unpredictability is non-determinism intended to limit Low’s inferences
about secret information.

It is safe to refine away under-specification non-determinism within a
specification. However, care is needed when reducing the unpredictability
of a system design, in order not to jeopardise confidentiality properties.

Our formulation of confidentiality in the lifted space naturally distin-
guishes between under-specification and unpredictability. By introducing
a secondary observation space to model Low’s inferences, we become
able to reason about unpredictability at the semantic level. Furthermore,
the effect of conjoining an obligation θ to a lifted relation Q — in the
style of Section 4.4 — is to specify that P’s behaviour can be no more
predictable (to Low) than θ allows.

Example 4.46. Returning to the insecure refinement described in Ex-
ample 4.45, we now attempt the same refinement in the lifted space.

UI (LV, l′ = h ∨ l′ = 0) ∧ (h = 0⇒ h̃ 6= h)

v UI (LV, l′ = h) ∧ (h = 0⇒ h̃ 6= h) [order embedding]
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= UI (LV, l′ = h) ∧ (h = 0⇒ h̃ 6= h ∧ h̃ = h) [def UI]

= UI (LV, l′ = h) ∧ (h = 0⇒ false) [contradiction]

= UI (LV, l′ = h) ∧ h 6= 0 [prop calc]

Since the program fails to provide the cover story h̃ 6= h when h = 0, the
obligation excludes behaviours where h = 0 from taking place. ♦

The so-called refinement paradox evaporates in the consistent lifted
space, because refining a lifted system with embedded obligations cannot
make the system behave in a way that violates those obligation. Since
obligations are never weakened by refinement (by Lemma 4.26), they
remain within the system design at each step of its development.

4.6 Specifying Noninterference Properties

This section examines how many information flow security properties
defined in the literature can be formulated within the framework. By
doing so, we demonstrate that our framework is sufficiently expressive
for capturing these recognised notions of confidentiality.

A side-effect of this work is that we link our UTP formulation of
confidentiality properties to the body of existing work on information
flow properties. This link could potentially be used to port existing
results from the literature to our framework.

4.6.1 Noninterference

The canonical information flow property is noninterference (Goguen and
Meseguer, 1982, 1984). Noninterference mandates that High’s inputs to
a system must have no effect on the system’s outputs to Low; in other
words, Low must be unable to rule out any possible High interaction
with the system (or even that High has interacted with the system at all).
Therefore, a system satisfying noninterference does not disclose to Low
any information about High’s interaction.
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In Goguen and Meseguer’s original definition of noninterference, a
system is modelled as a deterministic state machine, where outputs to
Low are a function of the inputs from High and Low. This model allows
analysis of whether High’s choice of inputs can influence the outputs
visible to Low. However, this model does not support reasoning about
non-deterministic systems. Moreover, this model also requires the system
to be input total: in every state, the system must be willing to accept every
input provided by the environment. This requirement is unrealistic in
practice, since a system with a finite memory can only buffer a finite
series of inputs pending computation.

Despite the limitations of its original definition, the notion of noninter-
ference has been highly influential in theoretical studies of information
flow security. A multitude of noninterference-like properties have been
defined to replicate the intent of noninterference in a non-deterministic
setting. Typically, these properties are formulated in a trace semantics,
where the interactions between a system and its users are recorded as
events within the trace. These properties include, but are not limited to,
the following:

Noninference (O’Halloran, 1990) requires that for every trace of P fea-
turing a high-level event, there is a Low-indistinguishable trace
featuring no high-level events.

Generalised noninference (McLean, 1994a) is similar to noninference, but
is weaker: it requires only that for every trace of P featuring a high-
level input event, there is a Low-indistinguishable trace featuring
no high-level input events.

Generalised noninterference (McCullough, 1987) requires that perturbing
a trace by changing high-level inputs does not imply a change in
subsequent low-level events.

Forward correctability (Johnson and Thayer, 1988) requires that a perturb-
ation of a trace that inserts or deletes a high-level input event can
be rectified by inserting or deleting high-level output events.
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Separability (McLean, 1994a) is an extremely strict property, which pro-
hibits any information flow between High and Low. A system
which enforces separability between High and Low is equivalent
to two physically separate (“air-gapped”) sub-systems, where one
sub-system interacts with High alone and the other with Low alone.

Separability is based on a proposal by Rushby (1981) for verifying
security, which involves cutting known communication channels
between different components of the system and establishing the
resulting system can be split into separate components.2

4.6.2 Worked Example: Basic Security Predicates

Several frameworks for expressing a range of information flow properties
in a uniform manner have been presented in the security literature (Jacob,
1991; McLean, 1994a; Focardi and Gorrieri, 1995; Zakinthinos and Lee,
1997; Mantel, 2000b). The objective of these frameworks is to consolidate
the existing definitions of noninterference-like properties in the literature,
in order to evaluate and compare these properties rigorously and to
enable new information flow properties to be formalised.

These frameworks formulate confidentiality properties as closure con-
ditions over an observation space (typically trace sets). We hypothesise
that multi-obligations are sufficiently expressive to encode these closure
conditions. We aim to substantiate this hypothesis by demonstrating how
the closure conditions from one such framework can be encoded in our
own framework.

The Modular Framework for Information Flow Properties (MAKS), intro-
duced by Mantel (2000b) (as the Modular Assembly Kit for Security) and
later elaborated by Mantel (2003), is capable of expressing a wide range of
noninterference-like properties from the security literature in a uniform
trace-based style. It defines a collection of basic security predicates (BSPs)
to express a variety of transformations on high-level components of sys-

2Jacob (1990) observed this proposal is subtly flawed, because cutting known channels
may hide the presence of undesired covert channels.
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tem traces, capturing low-level users’ uncertainty about high-level inputs
and outputs. These BSPs are closure conditions that share a common
structure that is similar to our structuring of multi-obligations. Therefore,
we can translate the BSPs defined by Mantel (2003) into multi-obligations,
in the context of the UTP theory of reactive processes.

In the MAKS, the events communicated between a system and its users
are partitioned into three sets:

• V , denoting non-confidential events visible to Low;

• N , denoting non-confidential events not visible to Low; and

• C, denoting confidential events not visible to Low.

We identify V with Low’s window and identify C with High’s win-
dow. The BSPs assume that Low can observe a projection of the system
trace, so a suitable choice of Low’s view would be a VHR-healthy view
(Definition 3.41) constructed from window V .

Example 4.47 presents multi-obligation encodings of a selection of BSPs
from the MAKS. We summarise the meaning of these BSPs as follows:

• R (removal) demands that each trace of P that contains confidential
events can be perturbed — by deleting all confidential events — to
reach another trace of P.

• BSD (backwards strict deletion) demands that each trace tr of P that
contains a confidential event can be perturbed — by deleting the
final confidential event c in tr but not changing the events leading
up to c — to reach another trace of P.

• BSI (backwards strict insertion) is the dual of BSD. It demands that
each trace tr of P can be perturbed by inserting any confidential
event c after all other confidential events in tr, but not changing the
events leading up to the inserted c.

• BSIApc (backwards strict insertion of admissible events) is a weaker
form of BSI, which applies only to those traces of P that can be
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Information flow property Multi-obligation
Noninference R(H)
Generalised noninference R(HI)
Generalised noninterference BSD(HI) t BSI(HI)
Separability (over P) BSD(H) t BSIApc(H)

Table 4.1: MAKS definition of noninterference properties from Mantel
(2003), where H = (L, ∅,H), HI = (L,H \ I ,H∩ I) and I is
a subset of V ∪N ∪ C denoting input events.

constructed by appending a confidential event to a trace in P. This
BSP needs to be initialised with the specification of P, to filter the
traces satisfying this condition.

The definition of conformance implies the perturbations of each trace
tr must themselves be Low-indistinguishable from tr.

The BSPs of MAKS can be conjoined to express many (but not all) of the
noninterference-like information flow properties defined in the literature.
Table 4.1 reproduces the MAKS definitions of the noninterference-like
properties described in Subsection 4.6.1, but in terms of the least upper
bounds of the multi-obligations in Example 4.47. Full justifications of
these definitions are given by Mantel (2003).

4.7 Related Work

Since the advent of the noninterference property, many researchers have
studied the problem of restricting information flow from systems to their
users. This section surveys some of their work, and compares it with the
approach presented in this chapter.

4.7.1 The Limitations of Noninterference

Information flow properties based on noninterference typically require
that a system does not leak any information about High’s activities to
Low. This blanket security policy often conflicts with a system’s func-
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tional requirements, which may require High to be able to communicate
non-confidential data to Low through the system. In these cases, nonin-
terference from High to Low is simply not appropriate.

No consensus has been reached in the literature about which non-
deterministic formulations of noninterference are most suitable for ex-
pressing the security requirements of realistic information systems (Ryan,
2001). Indeed, the strictness of noninterference-like properties has led
researchers such as Ryan et al. (2001) to question whether these properties
are relevant to secure software development.

The position elaborated in this thesis is that software engineers should
be able to specify custom confidentiality properties that are tailored to
the intricacies of the system domain, rather than choosing from a limited
range of ready-made information flow security properties.

4.7.2 Security Specifications

Our notion of obligations for specifying confidentiality has much in
common with the security specifications defined by Jacob (1988).

A security specification f is a function from Low’s interactions to sets
of system behaviours. A system P satisfies f if, for each interaction ψL

with P that Low can make, f (ψL) is a subset of Low’s inference set for ψL.

There is a duality between obligations and security specifications: f spe-
cifies the maximum information that Low may establish about the system’s
behaviour; whereas an obligation specifies the minimum information
that Low cannot rule out about the system’s behaviour.

Security specifications do not incorporate the notion of cover story
behaviours. Hence, if we wish to specify that φ̃ is a cover story for φ

using a security specification, then it is necessary that φ serves as a cover
story for φ̃ as well. Moreover, we can define obligations that offer a
choice of which cover stories are present in a system, whereas security
specifications provide no such choice.
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4.7.3 Other Approaches

This chapter is primarily concerned with one flavour of confidentiality
properties. Nevertheless, a variety of alternative approaches towards
information flow security have been studied extensively in the literature.
These approaches have advantages over our confidentiality framework,
but they also have drawbacks.

Active and Passive Flows Jacob (1991) and Roscoe (1997) identify two
scenarios for information leakage between users. These are passive
flows, where Low tries to infer information about the system’s
behaviour without the help of other users; and active flows, where
a treacherous High user tries to leak secret information to Low by
interacting with the system according to a pre-arranged protocol.
The framework set out in this chapter is intended to counter passive
flows, but it does not guarantee the prevention of active flows.
Nevertheless, if such a protocol could be established by High and
Low then, in many situations, High could pass secrets to Low
outside the boundaries of the system anyway.

Quantifying Flow Small leaks of data from high-level users to low-level
users are often tolerable (and sometimes unavoidable) in realistic
systems, provided that a low-level user cannot infer any significant
details about confidential data from such a leak. However, our
notion of confidentiality is qualitative: an obligation is violated if
the slightest amount of data deemed secret by a confidentiality
property is leaked to Low. This effect motivates defining confiden-
tiality properties in terms of a quantitative measure of information
flow between users. Recent research has addressed quantitative
confidentiality properties using information theory (Shannon, 1948)
as a foundation; Mu (2008) surveys this work and its applications.

Probability Another limitation of our treatment of confidentiality prop-
erties is that we do not address the probability distribution of a
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system’s behaviours. This shortcoming could lead to serious se-
curity breaches, because if Low has knowledge of this distribution,
then it may be able to deduce confidential data with near certainty
but without violating the confidentiality property.

Some research has investigated probabilistic confidentiality prop-
erties which account for the likelihood of alternative high-level
activities (Santen, 2006, 2008). While these properties are attractive
in theory, their application in practice is not without difficulty: the
probability distribution of a system’s behaviours may be unknown.
Even if that distribution is known, it may be intractable to determ-
ine whether a non-trivial system model satisfies a probabilistic
confidentiality property (Ryan, 2001).

The security of confidential information need not rest on technical
measures alone. Measures such as access control and inference control are
complemented by physical security mechanisms for computer terminals,
such as barriers and surveillance systems (Anderson, 2001).

Sociological factors also have a role to play in system security: for
instance, ethics training or the threat of punishment may deter users from
attempting to access confidential information without the appropriate
clearance (Jacob, 1989a; Workman and Gathegi, 2007).

4.7.4 Refinement and Confidentiality

Most notions of confidentiality-preserving refinement in the literature
are realised in two ways:

1. by limiting the space of confidentiality properties to those that are
refinement closed — that is, if a system satisfies such a property, then
all refinements of the system will also satisfy that property; or

2. by strengthening the refinement relation to ensure it preserves
confidentiality properties in specifications.

Obligations are refinement closed in the lifted space. The method
proposed in Section 4.4 for deriving a secure specification of a system P is
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refinement-closed. If P is refined in an insecure fashion with respect to θ,
then that insecurity is manifested when the lifted form of P is conjoined
with θ. Therefore, the notion of confidentiality-preserving refinement
described in Section 4.5 is just the standard notion of refinement in the
UTP, but over the space of lifted relations.

Roscoe et al. (1994) describe a noninterference-like property over CSP
processes in the line of the first approach. The property requires Low’s
interface to a process — formulated using the concept of lazy abstraction
(described in Subsection 3.5.3) — to be deterministic. If this property is
met — as can be verified with a model checker — then noninterference
is assured, because High’s interaction with the process cannot influence
Low’s interactions in any way. Furthermore, no (failures-divergences)
refinement of the process can induce new sources of information flow
from High to Low, because Low’s interface must remain deterministic.
While this property is theoretically appealing, Ryan (2001) argues that
it is unsuitable for a large class of systems which contain unavoidable
non-determinism in their outputs to Low.

Seehusen and Stølen (2007, 2009) have proposed a further instance of
the first approach. They advocate structuring a system specification as a
set of trace sets. Each trace set represents under-specification, while the
presence of multiple trace sets within a specification represents unpre-
dictability. Traces can be refined away from the specification, so long as
doing so makes no trace set in the specification empty. Indeed, this notion
of refinement generalises the structure of a confidentiality refinement
relation defined by Jacob (1992).

Instances of the second approach that are specialised to particular
confidentiality properties are detailed by Mantel (2001) and Alur et al.
(2006), among others. A generic approach for strengthening refinement
to preserve any given confidentiality property is described by Banks
and Jacob (2010a). In that work, the standard refinement ordering is
combined with a confidentiality ordering, which dictates that refinement
does not strengthen Low’s inferences about behaviours of a system
marked as secret. This notion of refinement is very strong indeed: it
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prohibits some refinement steps that do not jeopardise security. To make
it tractable, it may be necessary to adopt a multi-user refinement relation
(see Section 3.6) in place of the canonical notion of refinement.

4.8 Conclusion

This chapter has presented an abstract framework for defining confid-
entiality properties in a UTP style. The framework cleanly captures the
essence of confidentiality properties in an abstract manner, without spe-
cialising to any particular UTP theory. By specialising the framework to
a particular UTP theory, it could be deployed to formulate confidentiality
properties over the program state (in the theory of designs); the trace gen-
erated by a process (in the theory of reactive processes); or the execution
period of operations (in timed theories).

A further novelty of the framework lies in how it enables confidentiality
properties to be integrated with a functional specification of a system. To
our knowledge, our approach for uniting functionality and confidentiality
concerns with a single semantics is original. In the next chapter, this
novelty is applied to incorporate both functionality and confidentiality
attributes within a single specification language.

Not all conceivable confidentiality properties can be expressed as
obligations. The notion of multi-obligations allows us to widen the space
of confidentiality properties that can be expressed within the framework.
As Section 4.6 demonstrates, the addition of multi-obligations gives
expressive power that suffices to capture many of the information flow
properties detailed in the literature.

The abstractness of the framework undermines its practicality as a
platform for developing secure software. Some significant obstacles that
hinder the practical application of the framework are as follows:

Compositionality Compositionality is essential for understanding a sys-
tem in terms of its individual components. But the framework
is defined over the totality of a system’s behaviour. To make the
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framework practical, it is necessary to identify how it can be applied
to individual components of a system.

Localisation Confidentiality requirements are often directly related to
particular aspects of a system, principally those involving interac-
tions with high-level users. To formulate these requirements within
our framework, they must be encoded indirectly over the space of be-
haviours of a system. This indirection adds undesirable complexity
to specifying confidentiality properties in the framework.

Verification The conformance condition is defined purely semantically.
Without proof rules, it is necessary to translate a system into its
underlying semantics in order to verify it against an obligation,
which is cumbersome and inefficient.

The next chapter overcomes these obstacles with a tighter integration
of the confidentiality framework with the syntax and semantics of Circus.
It demonstrates how the framework can be made tractable, but at the
expense of sacrificing some of the framework’s generality.
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5.1 Introduction

In this chapter, we specialise the confidentiality framework presented
in Chapter 4 to express confidentiality properties over Circus processes.
This work paves the way towards an integrated language for specifying
the functionality and confidentiality attributes of systems alongside each
other. The philosophy of this integrated language is to exploit the facilities
provided by Circus as far as practicable, in order to maintain compatibility
with the existing laws and refinement calculus of Circus.

In Section 5.2 and Section 5.3, we lift the UTP semantics of Circus

actions and operators to model Low’s inferences about the execution of
those constructs in a compositional fashion. Section 5.4 presents a simple
extension of the Circus syntax that is needed to ensure processes in our
lifted language have an unambiguous semantics.

The central novelty of this chapter is a specification construct for
expressing confidentiality properties within the body of a Circus process.
We define confidentiality annotations in Section 5.5, in terms of the lifted
semantics of Circus and the obligations described in Chapter 4. These
annotations can be used in tandem with the specification facilities of
Circus to formulate a variety of confidentiality properties over the state
and behaviour of Circus processes.

In Section 5.6, we show how confidentiality annotations can be applied
to express a diverse variety of confidentiality properties in terms of a
process’s interactions with its environment. This work culminates with a
technique for superposing confidentiality annotations with existing Circus

processes, enabling the specification of noninterference-like properties in
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our integrated language.
In Section 5.7, we discuss how the integrated language may be extended

to accommodate the declassification of secret information. Finally, in
Section 5.8, we draw comparisons between our integrated language and
recent work on accommodating security concerns within formal methods.

This chapter emphasises the theoretical aspects of the integrated lan-
guage. We defer the study of a tractable method for developing systems
from specifications expressed in the language until the next chapter.

5.2 Lifting the Circus Semantics

The first step towards defining our integrated language is to codify
Low’s inferences about the behaviour of Circus actions at the semantic
level. We accomplish this step by lifting the UTP semantics of Circus

actions, following the approach described in Subsection 4.2.1. This lifted
semantics supplies the foundation we need for defining confidentiality
annotations in Section 5.5.

5.2.1 Lifting Circus Actions

Since Circus actions are reactive designs, we model Low’s interactions
(and hence inferences) with a Circus process in terms of the reactive views
defined in Subsection 3.5.1. The indistinguishability relation formed by
applying the IR predicate transformer (Definition 4.16) to the reactive
interface R (L) (Definition 3.43) corresponding to Low’s window L is
equivalent to:

ok = õk ∧ ok′ = õk′

∧ wait = w̃ait ∧ wait′ = w̃ait′

∧ (tr′ − tr) �L = (t̃r′ − t̃r) �L
∧ ref ∩ L = r̃ef ∩ L ∧ ref ′ ∩ L = r̃ef ′ ∩ L


We can simplify this indistinguishability relation in the context of Circus

actions. Each Circus action A is CSP3- and CSP4-healthy; that is, A does
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not depend upon ref , nor does it restrict ref ′ on termination (Oliveira
et al., 2009). Hence, our Circus indistinguishability relation need only
constrain the relation between ref ′ and r̃ef ′ on non-termination.

Definition 5.1 (Circus indistinguishability relation).

I(L) ,


ok = õk ∧ ok′ = õk′

∧ wait = w̃ait ∧ wait′ = w̃ait′

∧ (tr′ − tr) �L = (t̃r′ − t̃r) �L
∧ wait′ ⇒ ref ′ ∩ L = r̃ef ′ ∩ L


The I(L) relation codifies the expectation that Low’s observation of

the behaviour of a Circus process amounts to a projection of its trace
through L, together with knowledge of whether the process has started
correctly, is waiting for interaction from the environment, or has termin-
ated. Henceforth, we adopt I(L) as our model of Low’s observational
abilities of Circus actions and processes.

By lifting the semantics of Circus actions and conjoining I(L), we
can model Low’s inferences about an action’s behaviour in terms of the
fog behaviours. Definition 5.2 presents a specialised form of the lifting
function UI (Definition 4.17) which incorporates I(L).

Definition 5.2 (UC predicate transformer).

UC (L, A) , U (A) ∧ I(L)

We call UC (L, A) the lift of the Circus action A with respect to L.
Reassuringly, there exists an order-embedding between Circus actions
and UC-lifted actions, which is a special form of Theorem 4.4.

Lemma 5.3 (UC order-embedding).

A1 v A2 if and only if UC (L, A1) v UC (L, A2)

Furthermore, Lemma 4.6 applies to lifted Circus actions too.
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Law 5.4 (Recovering actions). For all Circus actions,

D (UC (L, A)) = D (U (A)) = A

5.2.2 Lifting Reactive Designs

While Circus actions are reactive designs, their lifted counterparts are not
reactive, because UC does not commute with R3:

UC (L, R3(P)) = U (II rea C wait B P) ∧ I(L)

6= II rea C wait B (U (P) ∧ I(L))

= R3 ◦ UC (L, P)

Nevertheless, the UC-lifts of Circus actions can be reshaped into a form
with the character of reactive designs. Given an action A, its fog counter-
part Ã (with alphabet x̃, x̃′) satisfies the following healthiness conditions:

R̃1(A) = A ∧ t̃r ≤ t̃r′

R̃2(A) = A[〈〉, t̃r′ − t̃r/t̃r, t̃r′]

R̃3(A) = (ĨI rea C w̃ait B A)

Naturally, R̃1, R̃2 and R̃3 are idempotent and commute with each other.
Moreover, R̃1 and R̃2 commute with R1 and R2. However, R3 and R̃3 do
not commute with each other in general, because R3(A) behaves as II rea

when wait holds, but R̃3(A) behaves as ĨI rea when w̃ait holds. To side-
step this mismatch, we insist that wait = w̃ait and define a compound
healthiness condition:

R̂3(A) , R3(A) ∧ R̃3(A) ∧ wait = w̃ait

=
(
(II rea ∧ ĨI rea) C wait B A

)
∧ wait = w̃ait

R̂3 is idempotent and commutes with R1, R̃1, R2 and R̃2. We call the
composition of these healthiness conditions R̂.
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Definition 5.5 (R̂ healthiness condition).

R̂(A) , R1 ◦ R̃1 ◦ R2 ◦ R̃2 ◦ R̂3(A)

Since the exterior I(L) term of UC (L, A) implies wait = w̃ait, we can
express UC (L, A) — where A is R-healthy — in terms of R̂.

Lemma 5.6 (Lifted reactive process). Provided A is R-healthy:

UC (L, A) = R̂ (U (A)) ∧ I(L)

Theorem 5.7 builds on Lemma 5.6 by reformulating the interior U (A)

term as a design, which is justified because I(L) implies the condition
ok = õk ∧ ok′ = õk′.

Theorem 5.7 (Lifted reactive design). Provided A is a reactive design:

UC (L, A) = R̂
(
¬ U (A)

ff
ff ` U (A)tt

ff

)
∧ I(L)

where Bbc
de denotes B[b, c, d, e/ok′, õk′, wait, w̃ait].

The semantics of UC (L, A) from Theorem 5.7 is clarified by Lemma 5.8,
which expresses A in the form R (Pre ` Post).

Lemma 5.8 (Unfolded lifted reactive design). Provided Pre is a condition:

UC (L, R (Pre ` Post)) = R̂
(

Pre ∨ P̃re ` U (Pre⇒ Post)
)
∧ I(L)

Lemma 5.8 can be instantiated with the semantics of the Circus specific-
ation statement, to derive a lifted specification statement presented in
Lemma 5.9. The lifted forms of assignments, assumptions and coercions
are all derivable from Lemma 5.9.

Lemma 5.9 (Lifted specification statement).

UC (L, w : [Pre, Post]) =

R̂
(

Pre ∨ P̃re ` U (Pre⇒ (Post ∧ ¬ wait′ ∧ tr′ = tr ∧ u′ = u))
)
∧ I(L)
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where u denotes all variables outside of the frame w.

Reasoning about Low’s inferences about a Circus action’s behaviour
can be simplified by studying the lifted postcondition of that action.
Example 5.10 demonstrates how this principle can be applied.

Example 5.10. Consider the action OO = on → h := 0 2 off → h := 1.
Its semantics is:

R

true `


v′ = v ∧ tr′ = tr ∧ (on, Sync), (off , Sync) /∈ ref ′

C wait′ B

u′ = u ∧
(

h′ = 0 ∧ tr′ = tra 〈(on, Sync)〉
∨ h′ = 1 ∧ tr′ = tra 〈(off , Sync)〉

)



where u denotes the list of state variables excluding h; and s1, s2 /∈ S
abbreviates s1 /∈ S ∧ s2 /∈ S.

Suppose L = {(on, Sync)}. Unfolding the postcondition of UC (L, OO)

shows how its fog behaviours are reduced in the presence of I(L):

U


v′ = v ∧ tr′ = tr ∧ (on, Sync), (off , Sync) /∈ ref ′

C wait′ B

u′ = u ∧
(

h′ = 0 ∧ tr′ = tra 〈(on, Sync)〉
∨ h′ = 1 ∧ tr′ = tra 〈(off , Sync)〉

)
 ∧ I(L)

=
[
I(L) implies wait′ = w̃ait′

]


U (v′ = v ∧ tr′ = tr ∧ (on, Sync), (off , Sync) /∈ ref ′)
C wait′ B

U

(
u′ = u ∧

(
h′ = 0 ∧ tr′ = tra 〈(on, Sync)〉
∨ h′ = 1 ∧ tr′ = tra 〈(off , Sync)〉

))
 ∧ I(L)

=
[
I(L) implies (tr′ − tr) �L = (t̃r′ − t̃r) �L

]


U (v′ = v ∧ tr′ = tr ∧ (on, Sync), (off , Sync) /∈ ref ′) (1)
C wait′ B

U (u′ = u ∧ h′ = 0 ∧ tr′ = tra 〈(on, Sync)〉) (2)
∨ U (u′ = u ∧ h′ = 1 ∧ tr′ = tra 〈(off , Sync)〉) (3)

 ∧ I(L)
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At the semantic level, this result models Low as being able to distinguish
between the labelled alternative behaviours and therefore being able to
infer information about the state: In case (1), Low observes deadlock, so
it infers h′ = h. In (2), Low observes termination and the on event, so it
infers h′ = 0. In (3), Low observes termination without observing the off
event, so it infers the occurrence of off and h′ = 1. ♦

5.2.3 Addressing Divergence

Although A and Ã may diverge individually, Lemma 5.8 makes clear that
UC (L, A) may only diverge in its own right — i.e. ¬ ok′ ∧ ¬ õk′ — if
neither of the preconditions of A or Ã are satisfied, or if the lifted process
has already diverged. If UC (L, A) does diverge, the exterior I(L) term
forces the diverging behaviour of Ã to be Low-indistinguishable from
the behaviour of A. This effect is not problematic, because all diverging
behaviours of A are present in UC (L, A) (via the order embedding).

Of course, the possibility of divergence evaporates if A has true as its
precondition. In practice, divergence is undesirable (Hoare, 1985a) and
tools (such as FDR) for establishing that CSP constructs are divergence-
free are readily available.

5.3 Composing Lifted Actions

To analyse Low’s inferences about a Circus process, it is helpful to divide
the process into multiple parts, so that each part can be conquered by
analysing it separately. However, we need to compose those separate
analyses, in order to study Low’s inferences about the whole process.

Circus actions can be composed using the Circus operators. However,
the definitions of the Circus operators given by Oliveira et al. (2009) are
unsuitable for composing lifted actions, because they do not include
the fog variables. In this section, we rectify this problem by lifting the
definitions of these operators to make them suitable for composing lifted
actions. Moreover, these lifted operators are also needed for composing
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confidentiality properties with lifted actions, as we see later.

For each Circus operator ⊕, we denote its lifted counterpart by ⊕̂. We

now describe three principal conditions to guide the definition of ⊕̂.

These conditions ensure that ⊕̂ can be used to compose lifted actions in
the same way that ⊕ composes Circus actions.

Condition 5.11. Lifted operators respect the order-embedding between
Circus actions and lifted actions:

⊕
i • Ai = D

(⊕̂
i • UC (L, Ai)

)

This condition ensures that applying ⊕̂ to the lifts of actions A1 and A2

yields a lifted action with exactly the same observable behaviours as the
Circus action A1 ⊕A2.

Condition 5.12. Decomposing a lifted action into parts and combining
those parts with lifted operators respects the refinement ordering:

UC
(
L,
⊕

i • Ai

)
v

⊕̂
i • UC (L, Ai)

Splitting a lifted composite action UC (L, A1 ⊕A2) into its constituents
and composing those lifted constituents with ⊕̂ preserves correctness, but

not necessarily equivalence. The construct
⊕̂

i • UC (L, Ai) models Low
as being able to observe the execution of each sub-action Ai individually.
This means

⊕̂
i • UC (L, Ai) represents an over-approximation of the

information Low can deduce about the behaviour of
⊕

i • Ai.

This condition is a compromise. It would be preferable to insist on the
stronger condition that UC (L,

⊕
i • Ai) =

⊕̂
i • UC (L, Ai). However,

the definitions of lifted operators respecting that condition would be
excessively complicated and intractable to analyse.
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Condition 5.13. Lifted operators are monotonic with respect to v:

UC (L, Ai) v UC (L, A′i) for each i

implies
( ⊕̂

i • UC (L, Ai)
)
v
( ⊕̂

i • UC (L, A′i)
)

This condition is essential to support piecewise refinement of lifted
specifications. It enables us to refine a lifted action B in isolation, with
the assurance that any context in which B appears is also refined.

Theorem 5.14. Each lifted operator defined in this section satisfies Con-
ditions 5.11, 5.12 and 5.13.

5.3.1 Sequential Composition

Closed forms of some lifted operators can be derived by unfolding the
lifts of the respective Circus operators. For instance, Lemma 5.15 presents
the outcome of unfolding the sequence operator.

Lemma 5.15 (Unfolded sequence).

UC (L, A1 ; A2) v ∃ x0, x̃0 •
(

UC (L, A1) [x0, x̃0/x′, x̃′]
∧ UC (L, A2) [x0, x̃0/x, x̃]

)

We obtain a definition of lifted sequential composition by generalising
Lemma 5.15: we replace U (A1) and U (A2) with arbitrary points in the
lifted space B1 and B2.

Definition 5.16 (Lifted sequential composition).

B1 ;̂ B2 , ∃ x0, x̃0 • B1[x0, x̃0/x′, x̃′] ∧ B2[x0, x̃0/x, x̃]

Since the ;̂ operator is just relational composition over the x′, x̃′ and
x, x̃ variables, it respects the three conditions. Moreover, Law 5.17 shows
that the laws of sequential composition (such as associativity) also apply
to the lifted sequential composition operator.

Law 5.17 (U and ;̂ ). U (A1 ; A2) = U (A1) ;̂ U (A2)
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Whenever a UC-lifted construct comprises an action in sequence with a
coercion, assignment or Skip, it can be restructured as Lemma 5.18 shows.

Lemma 5.18. Provided that either A1 or A2 terminate instantaneously,
leaving the trace unchanged:

UC (L, A1 ; A2) = UC (L, A1) ;̂ UC (L, A2)

5.3.2 Internal Choice

A closed form for lifted internal choice is easily derived by unfolding.

Lemma 5.19 (Unfolded internal choice).

UC (L, A1 u A2) v UC (L, A1) ∨ UC (L, A2)

Here, the refinement step cuts down the fog behaviours associated
with A1 and A2 individually, but all behaviours of A1 and A2 are re-
tained. Again, we generalise Lemma 5.19 to define a lifted internal choice
operator which, in this case, is identical to the Circus internal choice.

Definition 5.20 (Lifted internal choice).

B1 ûB2 , B1 ∨ B2

5.3.3 Prefixing

A prefixed action c → A is identical to (c → Skip) ; A. This leads to
a straightforward definition of the lifted forms of prefixing and input
prefixing, based on the lifted sequence operator.

Definition 5.21 (Lifted prefixing).

c.e →̂B , UC (L, c.e→ Skip) ;̂ B

c?e →̂B , UC (L, c?e→ Skip) ;̂ B
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The lifted reactive design form of lifted prefixing — presented in
Lemma 5.22 — is derived by instantiating Theorem 5.7.

Lemma 5.22 (Unfolded prefixing).

UC (L, c.e→ Skip) =

R̂

true ` U (v′ = v) ∧

 U (tr′ = tr ∧ c.e /∈ ref ′)
C wait′ B

U (tr′ = tra 〈(c, e)〉)


 ∧ I(L)

Lemma 5.22 indicates that, if Low could observe c.e→ Skip in isolation,
then Low could infer whether the event c.e has taken place — from wait
and wait′ — even if that event is absent from Low’s window.

If Low can observe the event c.e, then the lifted form of c.e → A can
be decomposed by separating the event instance from the action, as
Lemma 5.23 shows.

Lemma 5.23 (Decomposing prefixing). Provided (c, e) ∈ L:

UC (L, c.e→ A) = UC (L, c.e→ Skip) ;̂ UC (L, A)

5.3.4 Guarded Actions

Lemma 5.24 reformulates lifted guarded actions as lifted reactive designs.

Lemma 5.24 (Unfolded guard).

UC (L, g & A) v

R̂

((
U (g)⇒ ¬ U (A)

ff
ff

)
`
(

U (g) ∧ U (A)tt
ff

∨ U (¬ g ∧ tr′ = tr ∧ wait′)

))
∧ I(L)

Here, the postcondition of UC (L, g & A) is strengthened by refinement,
to impose the constraint U (g) ∨ U (¬ g) upon the fog space. This refine-
ment is necessary to obtain a closed form purely in terms of U (A).
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Definition 5.25 (Lifted guarded action).

g &̂ B , R̂

((
U (g)⇒ ¬ Bff

ff

)
`
(

U (g) ∧ Btt
ff

∨ U (¬ g ∧ tr′ = tr ∧ wait′)

))

Under this definition, we are effectively modelling Low as being able
to determine whether g is true or false. Depending on the process in
which the guarded action is embedded, this may over-approximate Low’s
inferences about the process state.

5.3.5 External Choice

Lemma 5.26 shows how lifted external choice can be refined to derive an
expression in terms of the lifted actions U (A1) and U (A2).

Lemma 5.26 (Unfolded external choice).

UC (L, A1 2 A2) v

R̂


¬ U

(
A1

f
f

)
∧ ¬ U

(
A2

f
f

)
`

 U (tr′ = tr ∧ wait′) ∧ U (A1)
tt
ff ∧ U (A2)

tt
ff

∨ U (¬ (tr′ = tr ∧ wait′)) ∧
(

U (A1)
tt
ff ∨ U (A2)

tt
ff

) 


∧ I(L)

In summary, the consequences of the refinement in Lemma 5.26 are:

• Weakening the precondition means that both A1 and Ã1 (or A2 and
Ã2) must diverge for the lifted external choice to diverge. This con-
trasts with UC (L, A1 2 A2), where divergence in either the observ-
able space or the fog space suffices to make the entire lifted action
divergent. Since divergence is to be avoided (Subsection 5.2.3), this
point is unlikely to have importance in practice.

• Strengthening the postcondition models Low as being able to de-
termine whether the external choice has resolved. Since Low can
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perceive deadlock (by definition of I(L)), this means that Low
can detect whether any events have been performed, even if those
events are outside its window. This over-approximation of Low’s
inferences, while perhaps counter-intuitive, has little impact on the
application of lifted constructs.

Lemma 5.26 motivates the following definition for the lifted external
choice operator.

Definition 5.27 (Lifted external choice).

B1 2̂B2 , R̂


¬B1

ff
ff ∧ ¬B2

ff
ff

`

 U (tr′ = tr ∧ wait′) ∧ B1
tt
ff ∧ B2

tt
ff

∨ U (¬ (tr′ = tr ∧ wait′)) ∧
(

B1
tt
ff ∨ B2

tt
ff

) 


5.3.6 Parallel Composition

In CSP and Circus, a parallel composition A1 |[ cs ]|A2 diverges whenever
A1 or A2 diverge, provided those actions agree on their previous syn-
chronsiations. Lemma 5.28 lifts Oliveira’s definition of the precondition
of a parallel composition.

Lemma 5.28 (Unfolded parallel precondition).

PREPAR(U (A1) , U (A2)) v U
(
¬ (A1 |[ cs ]|A2)

f
f

)
where PREPAR(U (A1) , U (A2)) abbreviates:

¬ ∃ 1.tr, 2.tr, 1̃.tr, 2̃.tr •


U (A1)

ff
ff ;̂ U (1.tr′ = tr)

∧ U (A2)ff ;̂ U (2.tr′ = tr)
∧ U (1.tr′ � cs = 2.tr′ � cs)


∧ ¬ ∃ 1.tr, 2.tr, 1̃.tr, 2̃.tr •


U (A1)ff ;̂ U (1.tr′ = tr)

∧ U (A2)
ff
ff ;̂ U (2.tr′ = tr)

∧ U (1.tr′ � cs = 2.tr′ � cs)
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As with lifted external choice, weakening the precondition is neces-
sary to derive an expression in terms of U (A1) and U (A2). Here, this
weakening ensures the lifted parallel composition diverges only if both
the observable trace and the fog trace of either lifted action leads to
divergence, and the other lifted action is prepared to synchronise on the
projections of those traces. Again, this point is of no importance if the
lifted actions are divergence-free.

Lemma 5.28 is a stepping stone for the following derivation of a lifted
reactive design modelling the parallel composition of two lifted actions:

UC (L, A1 |[ns1 | cs | ns2 ]|A2)

v R̂

PREPAR(U (A1) , U (A2))

` U

((
A1

t
f ; U1(outαA1)

∧ A2
t
f ; U2(outαA2)

)
; M‖(cs)

) ∧ I(L)
[Theorem 5.7; Lemma 5.28 (weaken precondition)]

= R̂

PREPAR(U (A1) , U (A2))

`
(

U (A1)
tt
ff ;̂ U (U1(outαA1))

∧ U (A2)
tt
ff ;̂ U (U2(outαA2))

)
;̂ U
(
M‖(cs)

)
 ∧ I(L)

[Law 4.7; Law 5.17]

We interpret the relabelled variables i.x, ĩ.x as members of x, x̃ respect-
ively, so U extends over them. By this interpretation, lifting the relabelling
functions U1 and U2 is straightforward:

U (Ui(outαA)) = x.i = x′ ∧ x̃.i = x̃′

Expanding the lifted form of the merge function M‖(cs) is not illuminat-
ing, so we refrain from doing so.

Finally, Definition 5.29 presents a parallel operator for lifted actions.
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Definition 5.29 (Lifted parallel composition).

B1
̂|[ns1 | cs | ns2]|B2 ,

R̂

(
PREPAR(B1, B2) `

(
B1

tt
ff ;̂ U1(outαB1)

∧ B2
tt
ff ;̂ U2(outαB2)

)
;̂ U
(
M‖(cs)

))

5.3.7 Hiding

Hiding is the final operator we consider. Again, we derive a lifted form
by unfolding UC (L, A \ cs).

Lemma 5.30 (Unfolded hiding).

UC (L, A \ cs) = (HID(U (A)) ∧ I(L)) ;̂ UC (L, Skip)

where HID(B) denotes:

R̂

(
∃ s, s̃ •

(
B[s, s̃, (cs∪ ref ′), (cs∪ r̃ef ′)/tr′, t̃r′, ref ′, r̃ef ′]

∧ U ((tr′ − tr) = (s− tr) � (EVENT− cs))

))

As usual, we adapt Lemma 5.30 to yield Definition 5.31.

Definition 5.31 (Lifted hiding).

B \̂ cs , (HID(B) ∧ I(L)) ;̂ UC (L, Skip)

Lifted hiding distributes through lifted operators in the same manner
that Circus hiding distributes through Circus operators.

5.4 Lifting Circus Processes

This section addresses two issues. First, we identify a method for specify-
ing the windows of users in a Circus specification. Second, we extend the
Circus syntax to enable the specification of lifted processes.
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5.4.1 Encoding Windows

It is natural to model Low’s window as a subset of the channels of the
process. Within a Circus specification, we can use the Circus keyword
channelset to assign a label to that window.

Following Oliveira et al. (2009), a channel set specification can be
readily translated to the corresponding set of all events visible to Low.
Let δ(c) denote the type of channel c; if c does not communicate typed
values, then we take δ(c) = {Sync}. We then have:

L = {(c, e) | c ∈ L ∧ e ∈ δ(c)}

Example 5.32. To specify that Low can observe events on the on and off
channels of a process, we write:

channel on, off
channelset Low , {| on, off |}

This channel set corresponds to the window {(on, Sync), (off , Sync)}. ♦

5.4.2 Lifting and Closure

In the UTP, it is desirable for program operators defined in some theory
to be closed with respect to the theory: for instance, if P1 and P2 are
objects of the theory, then so should be P1 ⊕ P2. However, by applying
the lifted Circus operators defined in Section 5.3 to UC-lifted actions, we
can formulate lifted constructs that are not closed with respect to UC.

Example 5.33. The construct UC (L, h := 0) ûUC (L, h := 1) cannot be
derived by applying UC to any single Circus action. As Figure 5.1
shows, it is stronger than UC (L, h := 0 u h := 1), but weaker than each
of UC (L, h := 0) and UC (L, h := 1). ♦

Constructs such as UC (L, h := 0) ûUC (L, h := 1) are not part of the
UC-image of the space of Circus actions. Instead, they inhabit a larger
space of predicates with the joint alphabet of observable and fog variables.

100



5.4 Lifting Circus Processes

A1 A2

A1 u A2

UC (L, A1) UC (L, A2)

UC (L, A1) û UC (L, A2)

UC (L, A1 u A2)

Figure 5.1: A comparison of the Circus refinement lattice (left side) with
the refinement lattice of the lifted space (right side).

A1

A2

B1

B2

B3

UC

UC

Figure 5.2: An illustration of the relationship between the Circus space
(left side) and the lifted space (right side).

Figure 5.2 visualises the relationship between the Circus space, the UC

space and this lifted space.

Example 5.34. In Figure 5.2, B1 and B2 are the UC-projections of A1 and
A2. However, B3 (which could denote B1 ⊕̂B2) lies outside the UC-image
of the space of Circus actions. ♦

Results which apply to the lifted UC space may fail to hold over the
larger lifted space, in general. However, we shall restrict our attention to
constructs that can be formed by combining UC-lifted actions with the
lifted operators. This restriction guarantees the three principal conditions
of the lifted operators are maintained for the constructs that we work with.
It also ensures these constructs are expressible in the form R̂ (Pre ` Post)
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via the definitions of the lifted operators. A new UTP theory would
be needed to define this restricted space of acceptable lifted constructs
formally, but this topic is left for future work.

For our purposes, the restriction on the form of lifted constructs is
sufficient to avoid practical difficulties stemming from the lack of UC-
closure. In particular, the techniques presented in Chapter 6 can be
applied to lifted constructs both inside and outside the UC space.

An important consequence of moving outside the UC space is that a
compound Circus construct — such as A1 u A2 — can be translated to
the lifted space in multiple ways. For instance:

• UC (L, A1 u A2) gives an exact representation of Low’s inferences
about A1 u A2; while

• UC (L, A1) ûUC (L, A2) models Low’s inferences about A1 and A2

separately. Segmenting lifted actions in this way makes it easier to
analyse Low’s inferences, albeit at the cost of over-approximation.

The difference between these forms has important consequences for
verification and refinement, which are described in detail in Chapter 6.
Hence, when we interpret a Circus specification in the lifted space, we
need to pay special attention to distinguishing between these forms.

5.4.3 Blocks

We now present the block, which is a syntactic construct for specifying
how Circus actions should be translated to the lifted space. Blocks are
little more than concrete syntax for UC; we apply them to Circus actions
to encode the granularity of lifted actions within the body of a process.
By delineating the boundaries between lifted actions explicitly, blocks
describe the translation of Circus processes into the lifted space.

Definition 5.35 (Block).

〈 L : A 〉 , (UC (L, A) C ` = L B A)
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where L denotes the window declared by the channel set L.

Each block is labelled with the name of a channel set, denoting a
user’s window. The metavariable ` can be instantiated with a window
label, to focus attention on a specific user. This means that blocks can be
used to encode the inferences of multiple users within a single process
specification.

We say that blocks that are labelled with the same channel set are
members of the same family. In the presentation that follows, we typically
consider only a single Low user and omit an explicit window declaration
from blocks. As a shorthand, we define:

〈A 〉 , 〈 ` : A 〉

Taking Low’s window L to be implicit, Definition 5.35 gives us:

〈A 〉 = UC (L, A)

The block construct sets the language apart from standard Circus. To
maintain a level of compatibility with Circus specifications, we adhere to
a list of syntactic conventions:

1. Each action of a process must be nested within a block.

2. Blocks of the same family cannot be nested within each other.

3. Outside of blocks, we use the syntax of Circus operators to denote
the lifted forms of those operators.

Example 5.36. Recalling Example 5.33, we have:

〈A1 u A2 〉 = UC (L, A1 u A2)

〈A1 〉 u 〈A2 〉 = UC (L, A1) ûUC (L, A2)

Henceforth, we tend to use the block notation in preference to UC, to aid
readability. ♦
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When dealing with processes that interact with multiple users, it may
be convenient to model the inferences of different users at different levels
of granularity. The atomicity of lifted constructs — from the perspective
of different users — may be specified compactly by nesting blocks of
different families.

Example 5.37. Let Alice label Alice’s window, and Bob label Bob’s window,
within the following specification:

〈Alice : 〈Bob : A1 〉 u 〈Bob : A2 〉 〉

If we are reasoning about Alice’s inferences (i.e. ` = Alice), we read this
specification as 〈Alice : A1 u A2 〉. Whereas if we are reasoning about
Bob, we read it as 〈Bob : A1 〉 u 〈Bob : A2 〉. ♦

5.4.4 On Equivalence Laws

As a consequence of the order embedding between Circus actions and
lifted actions (Lemma 5.3), all equivalence laws over Circus actions apply
also to actions nested within blocks. However, Condition 5.12 implies
that standard equivalence laws between Circus actions do not necessarily
apply across blocks. For instance, while sequence distributes through
internal choice within a Circus action:

〈 (A1 u A2) ; A3 〉 = 〈 (A1 ; A3) u (A2 ; A3) 〉

it does not distribute across blocks, in general:

〈A1 u A2 〉 ; 〈A3 〉 6= 〈A1 ; A3 〉 u 〈A2 ; A3 〉

Nevertheless, many algebraic properties of the Circus operators also apply
to the lifted operators; for instance:

(〈A1 〉 u 〈A2 〉) ; 〈A3 〉 = (〈A1 〉 ; 〈A3 〉) u (〈A2 〉 ; 〈A3 〉)
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The task of identifying a general collection of equivalence laws is left
as future work.

5.5 Confidentiality Annotations

This section introduces confidentiality annotations — or CAs for short —
which are algebraic constructs for incorporating obligations within lifted
processes. A CA may be embedded at any point in the body of a lifted
process, alongside lifted actions, to express a confidentiality property over
the process state when the CA is invoked. By specifying confidentiality
properties in this way, they become amenable to compositional reasoning:
we can consider the effect of CAs on a process in terms of their effect on
the behaviour of individual Circus actions.

5.5.1 Defining Confidentiality Annotations

The fog variables of a UC-lifted action track the information that Low can
infer about the action’s behaviour. The relation between the observable
variables and fog variables can be employed for a secondary purpose: to
capture the meaning of CAs within the lifted semantics directly.

Definition 5.38 formalises CAs with respect to the lifted semantics.

Definition 5.38 (Confidentiality annotation).

〈 L : θ 〉 , UC (L, Skip) ∧ (` = L⇒ Conf (θ))

where Conf (θ) , (ok ∧ ¬ wait⇒ θ).

As with blocks, we abbreviate 〈 ` : θ 〉 to 〈 θ 〉 if we wish to consider
only a single Low user:

〈 θ 〉 = UC (L, Skip) ∧ Conf (θ)

With respect to the observable behaviour of processes, a CA behaves
as the lifted Skip: it terminates instantaneously, leaving the process trace
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and state unchanged.

Example 5.39. When invoked, the CA 〈 h = 0 ⇒ h̃ > 0 〉 specifies that
the process must not reveal to Low that the state satisfies the condition
h = 0, with states where h > 0 serving as cover stories. ♦

We can combine CAs with lifted Circus constructs using the lifted
operators defined in Section 5.3. Hence, we can use CAs to impose
confidentiality properties over the process state at intermediate points
of the process’s execution. Even though CAs are localised to a specific
region of the process body, their effects diffuse throughout the process.

Typically, we place CAs in sequence with blocks, to impose confiden-
tiality properties on the process state at specific points of its execution.
For instance, to specify the obligation θ applies to the process state when
the action A terminates, we would write:

. . . ; 〈A 〉 ; 〈 θ 〉 ; . . .

CAs may be used in other ways. For instance, a process may be offered
a choice between performing the action A or satisfying a CA:

. . . ; (〈A 〉 u 〈 θ 〉) ; . . .

5.5.2 Properties of Confidentiality Annotations

CAs inherit many of the properties of obligations. This is because the
semantics of CAs induces an order isomorphism between the v-ordering
over obligations and the v-ordering over CAs.

Theorem 5.40 (CAs and v). Provided θ1, θ2 reference only state variables:

θ1 v θ2 if and only if 〈 θ1 〉 v 〈 θ2 〉

Hence, in the lifted semantics, the refinement ordering represents better
confidentiality as well as better functionality.
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From Definition 4.28, it follows that the sequential composition of CAs
can be simplified to a CA embedding the least upper bound of their
respective obligations.

Law 5.41 (CA least upper bound).

〈 θ1 〉 ; . . . ; 〈 θn 〉 = 〈
⊔
{θ1, . . . , θn} 〉

Law 5.41 implies that CAs in sequence are commutative.

Law 5.42 (CA commutativity). 〈 θ1 〉 ; 〈 θ2 〉 = 〈 θ2 〉 ; 〈 θ1 〉

Following Definition 4.29, a choice between multiple CAs is equivalent
to the greatest lower bound of their respective obligations.

Law 5.43 (CA greatest lower bound).

〈 θ1 〉 u · · · u 〈 θn 〉 = 〈
l
{θ1, . . . , θn} 〉

The semantics of CAs is closely connected with the semantics of lifted
Circus coercions. Indeed, the CA is a generalisation of the lifted coercion,
as Law 5.44 shows.

Law 5.44 (CA and coercion). 〈 [C ] 〉 = 〈U (C) 〉

Applying D to a CA yields a Circus coercion, as Law 5.45 shows.

Law 5.45 (CA and D). D (〈 θ 〉) = [D (θ) ]

There is a kind of duality between CAs and Circus coercions. A lifted
coercion 〈 [C ] 〉 demands that both the process state and the fog state
satisfy C, thus placing a lower bound on Low’s inferences about the state.
In contrast, CAs place an upper bound on Low’s inferences.

It is often convenient to rewrite the sequential composition of a CA
and a Circus action as a single compound action. Law 5.46 and Law 5.47

are concerned with folding a CA with a block that immediately precedes
or succeeds it.
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Law 5.46 (CA left sequence). 〈 θ 〉 ; 〈A 〉 = 〈A 〉 ∧ Conf (θ)

Law 5.47 (CA right sequence). 〈A 〉 ; 〈 θ 〉 = 〈A 〉 ∧ Conf′ (θ)

where Conf′ (θ) , (ok′ ∧ ¬ wait′ ⇒ θ′)

5.5.3 Passive Confidentiality Annotations

A CA 〈 θ 〉 is passive in a state ψ if [ψ⇒ θ ] holds; that is, θ does not
constrain the fog space associated with ψ in any way. When passive, a
CA’s behaviour is just 〈 Skip 〉.

If a CA within a process body is passive in every state in which it can
be invoked by the process, then we call that CA innocuous in the context
of that process. CAs can also be innocuous if they are never invoked: for
instance, 〈 Stop 〉 and 〈Chaos 〉 are left zeros (with respect to sequential
composition) for CAs, just as they are for lifted Circus actions.

An innocuous CA has no effect whatsoever upon lifted actions. Hence,
innocuous CAs can be freely inserted or removed within a process,
without changing its meaning.

Example 5.48. Suppose the CA from Example 5.39 follows the lifted
command 〈 h := 1 〉. Let:

B1 , 〈 h := 1 〉 ; 〈 h = 0⇒ h̃ > 0 〉

The CA is innocuous in this context, as calculation shows:

〈 h := 1 〉 ; 〈 h = 0⇒ h̃ > 0 〉

= 〈 h := 1 〉 ; 〈 [ h = 1 ] 〉 ; 〈 h = 0⇒ h̃ > 0 〉 [coercion introduction]

= 〈 h := 1 〉 ; 〈 h = 1 ∧ h̃ = 1 〉 ; 〈 h = 0⇒ h̃ > 0 〉 [Law 5.44]

= 〈 h := 1 〉 ; 〈 h = 1 ∧ h̃ = 1 ∧ (h = 0⇒ h̃ > 0) 〉 [lub (Law 5.41)]

= 〈 h := 1 〉 ; 〈 [ h = 1 ] 〉 [Law 5.44]

= 〈 h := 1 〉 [coercion removal]

♦
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5.5.4 Active Confidentiality Annotations

A CA 〈 θ 〉 is active in a state ψ if θ constrains the fog space associated with
ψ. Operationally, the Conf (θ) predicate prunes the fog of ψ, leaving only
those fog states prescribed as cover stories by θ for ψ. This pruning com-
mits the process design to supporting at least one (Low-indistinguishable)
fog behaviour that passes through the CA in a cover story state.

The commitment made by a CA is broken if none of the cover story
states prescribed by θ are present in the fog when the CA is invoked.
Breaking the commitment symbolises a conflict between the functionality of the
process and its confidentiality properties. This conflict becomes manifest in
the following example.

Example 5.49. Suppose B0 names the CA from Example 5.39 following
the command h := 0:

B0 , 〈 h := 0 〉 ; 〈 h = 0⇒ h̃ > 0 〉

Intuitively, the demands of functionality (h̃ = 0) and confidentiality (h̃ >

0) that B0 places on the fog space are irreconcilable. The consequences of
this conflict are brought into stark relief by calculation:

〈 h := 0 〉 ; 〈 h = 0⇒ h̃ > 0 〉

= 〈 h := 0 〉 ; 〈 h = 0 ∧ h̃ = 0 ∧ (h = 0⇒ h̃ > 0) 〉 [as Example 5.48]

= 〈 h := 0 〉 ; 〈 false 〉 [contradiction]

This CA prunes every fog state. ♦

In a very real sense, the CA 〈 false 〉 specifies the impossible. By
Law 5.44 and the definition of coercions, we have:

〈 false 〉 = 〈 [ false ] 〉 = 〈R(¬ ok) 〉

Recall from Section 2.6 that R(¬ ok) = R (true ` false) is the react-
ive design miracle. As in Section 4.4, miracles give meaning to pro-
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cess specifications where confidentiality properties are inconsistent with
functionality properties. By behaving miraculously, a CA disables insecure
functionality.

Example 5.50. The specification 〈 h := 0 〉 ; 〈 false 〉 from Example 5.49

can be simplified as follows:

〈 h := 0 〉 ; 〈 false 〉

= 〈 h := 0 〉 ; 〈 [ false ] 〉 [as above (Law 5.44)]

= 〈 h := 0 ; [ false ] 〉 [Lemma 5.18]

= 〈 [ false ] 〉 [property of coercions]

which, of course, is unimplementable. ♦

The commitment made by a CA can also be broken later in a process’s
execution, again inducing miraculous behaviour, as Example 5.51 shows.

Example 5.51. Suppose that Low can observe values transmitted on the
out channel. Consider the process fragment:

〈 h = 0⇒ h̃ > 0 〉 ; 〈 out!h→ Skip 〉

Were Low to observe out!0, Low could infer h = 0 with certainty. Hence,
this specification behaves miraculously if h = 0. ♦

5.5.5 Discussion

Example 5.48 and Example 5.49 represent the extreme ends of a scale of
the effects of CAs. The interplay between Circus actions and active CAs is
often more subtle.

Example 5.52. Suppose a process is offered the choice between the (in-
feasible) B0 and (feasible) B1. Its behaviour is given by calculation:

B0 u B1

= UC (L, R(¬ ok)) u UC (L, h := 1) [Example 5.48, Example 5.49]
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= UC (L, h := 1) [lattice top]

= B1

The miraculous B0 is bypassed by the internal choice, because B1 is
strictly weaker than B0. ♦

As Example 5.52 shows, the presence of miracles within a process
body does not necessarily render the whole process miraculous. While
a miracle may disable part of a process body, the process may remain
feasible, so long as the process can “backtrack” from the miracle by
resolving non-determinism. For instance, the Circus action c→ [ false ]
cannot refuse to engage in an event c. Yet it can never actually accept c,
because it would need to satisfy the reactive design miracle [ false ] were
it to do so (Woodcock, 2010).

As Woodcock (2010) and Wei et al. (2010) point out, c → [ false ] is
a Circus action that lies outside the space of CSP processes, because
it violates the axioms of the failures-divergences model of CSP. The
same effect in the lifted space may be induced by CAs. For instance,
〈 c→ Skip 〉 ; 〈 false 〉 is equivalent to 〈 c→ [ false ] 〉, so c is prevented
from occurring.

We may interpret the meaning of miracles within process designs —
whether induced by CAs or otherwise — in two ways:

1. A miraculous process specification cannot be implemented as a
program; therefore, it should be deemed invalid. This interpretation
reflects the philosophy of the conformance condition defined in
Chapter 4: a process that fails to conform to the confidentiality
properties in its specification does not satisfy its specification.

2. Alternatively, we may embrace specifications with miraculous ele-
ments, since they provide the designers of a process with greater
flexibility in making implementation choices. Provided these mi-
raculous elements can be avoided by the process, or are finessed
away by refinement, their presence can be tolerated.
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We adopt the second interpretation, because it is more conducive to the
spirit of the UTP (Hoare, 1984a) and refinement calculi (Morgan, 1994).
Furthermore, if we were to reject miraculous specifications as invalid,
then we could only treat CAs as a form of documentation.

Remark 5.53. An interesting application of miraculous CAs is to direct
the process’s behaviour according to Low’s inferences about its state. Let
Normal stand for an arbitrary action in the specification:

〈C⇒ ¬ C̃ 〉 ; 〈Normal 〉 2 〈C & alarm→ Skip 〉

If Low can establish the state satisfies C, then the CA 〈C ⇒ ¬ C̃ 〉 is
violated and this specification reduces to:

〈 false 〉 2 〈 alarm→ Skip 〉

which forces the alarm to be raised urgently, because the miraculous
〈 false 〉 forces the external choice to be resolved instantly. (This effect is
a consequence of the semantics of external choice; it is explained in more
detail by Woodcock (2010).) Alternatively, if the state satisfies ¬ C, then
the process behaves as 〈Normal 〉. However, this specification does not
prevent “false alarms”: the environment may choose to raise the alarm
in a state satisfying C, even if the CA is satisfied.

5.6 Event-Based Confidentiality Annotations

Up to now, we have studied how CAs can specify confidentiality proper-
ties over the state of a process. However, it is often the interactions that
a process performs with its environment (or its other users) which are
confidential. This section presents techniques for using CAs in order to
express confidentiality properties over those interactions.
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5.6.1 Inputs and Outputs

Be they inputs or outputs, the data values that a process communicates
with its environment may be secret. It is straightforward to specify
confidentiality properties over those values using CAs.

The semantics of an input prefixing c?i → A declares i? as a local
variable in the context of A. This variable can be incorporated into a CA
within the scope of the input prefixing.

Example 5.54. The following process fragment specifies that Low cannot
deduce if a value transmitted on the c channel is a member of the set S:

〈 c?i→ h := i? 〉 ; 〈 h ∈ S⇒ h̃ /∈ S 〉

This CA permits Low to infer the occurrence of the event. ♦

With an output event c!E, the variables within the expression E can just
be referenced by a CA directly.

5.6.2 Occurrence of Events

Other kinds of confidentiality properties — such as the noninterference
properties discussed in Section 4.6 — are concerned with restricting Low’s
inferences about whether a process has (or has not) engaged in particular
events. In the literature, these properties are typically formulated over
the traces over a process. Since the process trace is a product of the whole
process, we cannot encode trace-based properties using CAs directly.

Fortunately, the symbiosis between the state and behaviour of Circus

processes allows information about the control flow of the process to be
recorded with state variables. In essence, we can use a local variable to
record whether a particular interaction is performed by the process. This
variable can then be referenced by a CA to indirectly encode what Low
is entitled to infer about those interactions. This scheme is illustrated
briefly by Example 5.55.
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Example 5.55. Recall the specification OO given in Example 5.10, joined
with the CA from Example 5.39:

〈 on→ h := 0 2 off → h := 1 〉 ; 〈 h = 0⇒ h̃ > 0 〉

This specification stipulates that Low cannot be sure that on has occurred:
it demands that, if on does occur, then Low must be unable to rule out
the occurrence of off instead. ♦

A process need not record its control flow in terms of its state variables,
but by introducing local variables, it can always be transformed into
an equivalent process that does. In this way, we can formulate various
confidentiality properties over the interactions a process performs.

Example 5.56. Consider the following choice construct:

〈 sec→ A1 2 cov→ A2 〉

Suppose that sec is a high-level event whose occurrence is deemed
to be secret. If we regard the occurrence of cov (implying the non-
occurrence of sec) as a suitable cover story, then we can formulate a
confidentiality property by extending the choice construct with a local
variable as follows:

var h •

 〈 sec→ h := 0 2 cov→ h := 1 〉 ;
〈 h = 0⇒ h̃ > 0 〉 ;
〈 h = 0 & A1 2 h = 1 & A2 〉


It is important to invoke the CA immediately after sec takes place, for
otherwise it would not take effect if A1 deadlocks. ♦

With this scheme, it is necessary to extend the process with a separate
CA wherever a confidential interaction may take place. Moreover, in
a realistic Circus process, the secret and cover story events need not be
located within the same choice construct, so determining how the process
should be extended with a CA may require some creativity.
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We now propose a compositional method for structuring the specifica-
tion of confidentiality properties over the events of a process.

5.6.3 Superposition

CAs over the events of a process can be packaged together in a confid-
entiality specification. The purpose of a confidentiality specification is to
monitor the activity of a process and to invoke CAs whenever the process
engages in a confidential interaction.

We formalise a confidentiality specification as a recursive construct that
is always ready to engage in a set of high-level events. Here, we focus
our attention on confidentiality specifications expressible in the form:

µ X • var h : E • 〈2 e : E • c.e→ h := e 〉 ; 〈 θ 〉 ; X

where E denotes the type of channel c; h is a variable of type E; and θ is
an obligation over h and h̃.

Remark 5.57. More sophisticated kinds of confidentiality specifications
could be defined with a local state, to record the activity of the process in
detail and to impose CAs when particular patterns arise.

Suppose we place the confidentiality specification above in parallel
composition (synchronising on channel c) with a lifted process. Then,
whenever the process accepts an event c.e, the same event invokes the
CA in the confidentiality specification with h set to e. In this way, the
confidentiality property defined by the CA is imposed upon the process.

We call this method superposition, as it is closely related to the super-
position method for program structuring proposed by Chandy and Misra
(1988), Back and Sere (1996) and others. Superposition promotes separa-
tion of concerns: it enables us to specify the confidentiality requirements
of a system without regard to its functionality, and vice versa.

The following two examples show how the confidentiality properties
described in Example 5.54 and Example 5.56 can be reformulated as
confidentiality specifications.
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Example 5.58. Continuing from Example 5.54, a confidentiality specifica-
tion over the values communicated over channel c is as follows:

µ X • var h • 〈 c?i→ h := i? 〉 ; 〈 h ∈ S⇒ h̃ /∈ S 〉 ; X

Again, this specification does not prohibit Low from inferring that events
on c have taken place. ♦

Example 5.59. The confidentiality specification for the choice construct
described in Example 5.56 is:

CS = µ X • var h •
〈

sec→ h := sec
2 cov→ h := cov

〉
; 〈 h = sec⇒ h̃ = cov 〉 ; X

The superposed specification is:

〈 sec→ A1 2 cov→ A2 〉 |[ {| sec, cov |} ]| CS

This superposed specification is not identical to the specification given
in Example 5.56. If A1 or A2 engage in sec events, then the confidentiality
specification will apply to those events as well. ♦

We can apply superposition to express noninterference-like confidenti-
ality properties (Subsection 4.6.1), where the occurrence of a high-level
event is secret, and the non-occurrence of that event is the cover story. Ex-
ample 5.60 illustrates this technique, in a manner reminiscent of Roscoe’s
lazy abstraction (Subsection 3.5.3).

Example 5.60. Let Q denote a lifted process which communicates sec
events. The process:

QQ = Q ||| 〈 µ X • cov→ X 〉

behaves as Q, but in addition may perform a cov event at any time. Taking
the confidentiality specification from Example 5.59, the superposition:

(QQ |[ {| sec, cov |} ]| CS) \ {| cov |}
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specifies that Low cannot infer that QQ — and therefore Q — has per-
formed a sec event. In this way, we impose the noninference property
(described in Subsection 4.6.1) on sec events of Q. ♦

5.6.4 Discussion

Superposing a confidentiality specification to a process achieves the same
effect as modifying the process by attaching a separate CA to each high-
level event. Hence, a superposition of a confidentiality specification
over a lifted process can be re-expressed as a single integrated process
specification, by applying the step laws of parallel composition.

It would be worthwhile to create a library of reusable confidential-
ity specifications, to encapsulate common “design patterns” for encod-
ing confidentiality requirements. Without needing to understand their
technical detail, software engineers could compose these confidentiality
specifications with Circus processes, to realise secure process designs.

5.7 Declassification

Up to now, we have treated the confidentiality of information as a static
property. However, the secrecy of information may change over time.
Information ceases to be secret when it is declassified.

Declassification may ease the implementation of the system. For in-
stance, if information is deemed to be valueless to an adversary — such
as old passwords or expired cryptographic keys — then it may be accept-
able to reveal that information to the adversary. In other cases, the ability
to declassify data is often essential to avoid conflicts with a system’s
functionality. For instance, the questions of an examination paper should
be declassified to candidates at the moment when the exam starts, while
sample answers may be declassified after the exam ends.

Declassification is not an issue for the confidentiality framework presen-
ted in Chapter 4. In that framework, if an obligation does not constrain
the fog space associated with a particular behaviour of a system, then
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that behaviour is implicitly unclassified. However, once a CA is invoked,
the confidentiality property it imposes remains in force in perpetuity.

In this section, we discuss a simple approach for declassifying con-
fidentiality properties within lifted processes. This approach relies on
expressing CAs in a way such that they can be disabled by other con-
structs within a process specification. However, we have not solved the
problem of defining a semantics for these constructs that is consistent
with the reactive design model of Circus, which is a significant shortcom-
ing of the approach.

5.7.1 Relaxing Confidentiality Annotations

Recall from Subsection 4.2.1 the dual purposes of the fog space: to model
Low’s inferences; and to capture confidentiality properties. As we have
modelled them, these concerns are not separable from each other, which
impedes the declassification of confidentiality properties.

When a CA is invoked, it cuts away fog behaviours that do not rep-
resent acceptable cover stories. By cutting down the fog space, the CA
destroys information about Low’s inferences encoded in the semantics of
lifted constructs. Once lost, this information cannot be put back into the
lifted space at any later point in the process’s execution. For this reason,
the semantics of CAs rules out a general scheme for declassifying them
once they have taken effect.

It is possible to prevent CAs from taking effect when they are invoked.
Consider a CA of the form 〈 c⇒ θ 〉 where c denotes a Boolean variable.
This CA is innocuous if c is false, but is equivalent to 〈 θ 〉 if c is true.
Hence, the CA is contingent on c, because c controls whether the CA
imposes θ upon the process state.

Making a CA contingent on c does not solve the problem of relaxing
that CA after its invocation. If c is an ordinary state variable, then setting
its value after the CA is invoked does not affect the CA. However, if c
is not a state variable, but a variable whose value is determined by the
control flow of the process, then it could be used to declassify the CA
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once the process has reached a particular point in its execution.

5.7.2 A Declassification Construct

We postulate a special specification construct, dec c, which can coerce the
value of c according to whether the construct is invoked by the process.

Definition 5.61 (dec statement).

dec c , Skip ∧ c⇔ wait′

The statement dec c specifies that the truth of c is contingent on whether
the statement is invoked by the process. Here, c is not an ordinary state
variable: c is false if the process invokes dec c during its execution; and c
is true if the process halts without executing dec c. Hence, the invocation
of dec c retroactively declassifies any CA contingent on c.

Example 5.62. Here is a fragment of a specification for a (very simple)
examination management system:

var dq, ds •



set paper?q.s→
〈 Student : dq⇒ θQuestions(q?) 〉 ;
〈 Student : ds⇒ θSolutions(s?) 〉 ;

. . .
〈 dec dq ; start exam!q→ Skip 〉 ;
〈Run Exam 〉 ;
〈 dec ds ; end exam!s→ Skip 〉


Here, a confidentiality property is applied to the question paper (q) and
solution sheet (s) upon creation. The question paper is declassified imme-
diately before start exam, while the solution is declassified on end exam.
Without declassification, the CAs would prevent start exam and end exam
from taking place. ♦

Unfortunately, the dec construct is not a reactive design, because it is
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not R3-healthy:

R3(dec c) = (II rea C wait B dec c) 6= dec c

Furthermore, the sequential composition of dec c and a reactive design A
is not a reactive design, because the constructs:

A ; dec c = A ∧ c = wait′

dec c ; A = A ∧ c = wait

are again not R3-healthy.

Since dec breaks the reactive design model of Circus, we lose the
assurance that the laws of Circus actions continue to hold in the presence
of dec constructs. In order to deploy dec-like constructs in a rigorous
manner, it would be necessary to redefine the semantic model of Circus

and to re-prove existing results. Hence, we must abandon dec, because
to do otherwise would force us to sacrifice the semantic basis of the
language. We leave the task of defining a workable semantics for a
declassification construct to future work.

An alternative strategy for accommodating declassification would be
to extend the lifted semantics with another alphabet of fog variables, for
the sole purpose of tracking Low’s inferences about a process. Then,
to declassify a preceding CA, the fog variables can be overwritten with
these backup variables, to nullify the effect of the CA. However, this
approach also has its drawbacks; most notably, the extended alphabet
would necessitate redefining the lifting functions, as well as the semantics
of lifted operators and CAs. In turn, tracking the extra variables would
complicate analysis of specifications at the semantic level.

5.8 Related Work

The lifted semantics for Circus presented in this chapter has much in
common with Morgan’s shadow semantics (Morgan, 2009, 2012), which
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extends the refinement calculus for sequential programs (Morgan, 1994).
The shadow semantics has been applied by McIver (2009) and McIver
and Morgan (2010) to derive secure implementations of security-critical
algorithms and communication protocols by stepwise refinement.

In the shadow semantics, the program state is divided into a secret
variable h and a non-secret variable v. It is assumed that Low can monitor
the value of v (but not h) at each point in the program’s execution. In
addition, a special “shadow set” state variable H is defined to contain all
values of h that are consistent with Low’s observation of the program’s
execution. The semantics of each program construct is defined to update
v, h and H as appropriate.

In some respects, the lifted semantics of Circus actions is a generalisa-
tion of the shadow semantics. An analogue of the shadow set is achieved
(over all the observational variables) by incorporating the I(L) relation
within the lifting function for Circus actions. While Morgan (2009) defines
a shadow semantics for sequential programs, our approach is applicable
to the wider domain of Circus actions. This makes our approach extens-
ible to other languages in the Circus family, or indeed to any language
with a UTP semantics.

We make an important deviation from the philosophy of the shadow
semantics by not differentiating between secret and non-secret variables
at the semantic level. On the contrary, confidentiality annotations allow
software engineers to specify exactly which properties of the state —
and by extension, the behaviour — of processes are secret. This is
arguably a more flexible (albeit more involved) approach for integrating
confidentiality properties within formal methods.

McIver (2009) has formulated a relative of CAs for the shadow se-
mantics. A visibility annotation cuts down the shadow associated with a
to only the actual value of a, thereby modelling that value as revealed to
Low. Visibility annotations can be formulated in terms of CAs:

reveal a , 〈 a = ã 〉
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We hypothesise that specialised annotation constructs may be useful
for specifying other kinds of security properties besides confidentiality.
Indeed, a family of annotation-like operators to specify a class of availab-
ility properties over CSP and timed Circus processes has been proposed
by Woodcock (2010) and Wei et al. (2010). However, such prospects are
beyond the scope of this thesis, and we do not pursue them further.

5.9 Conclusion

This chapter has presented an extension of the Circus language which
integrates confidentiality properties with Circus processes. This extended
language inherits the semantic basis of the confidentiality framework of
Chapter 4. In particular, we have retained the notion of using miracles to
denote inconsistencies between functionality and confidentiality. Hence,
processes in the extended language are incapable of engaging in func-
tionality that would (directly or indirectly) reveal information classed as
secret to low-level users.

The confidentiality annotation is a versatile and elegant construct for
specifying confidentiality properties over both the state and behaviour of
Circus processes. This construct sets the language apart from the frame-
work of Chapter 4 by the compositional manner in which confidentiality
properties are joined with the functional specification facilities of Circus.
In turn, the specification of confidentiality properties can be localised to
security-critical regions of the process body. In this way, the language
overcomes two of the problems described in Section 4.8.

While we have taken Circus as the formal foundation of our language,
we are confident that its underlying principles could be translated to other
formalisms. Nevertheless, the generality of Circus makes our language (in
its current form) suitable for embedding confidentiality within sequential
programs and concurrent processes alike.

There remains the problem, described in Section 4.8, of verifying that
the functionality of a process in the extended language is consistent with
its embedded CAs. We address this final problem in the next chapter.
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6.1 Introduction

Chapter 5 focused on extending Circus with a syntax and semantics
for specifying confidentiality properties. In this chapter, we turn our
attention towards an engineering method to guide and support the de-
velopment of process designs expressed in this extended language. This
method builds upon the Circus refinement strategy, but with additions to
maintain faithfulness with the lifted semantics.

Recall from Section 4.5 that, in lifted UTP theories, refinement preserves
confidentiality properties encoded as obligations, because unfulfilled ob-
ligations induce miraculous behaviour. Section 6.2 explores this issue in
the context of lifted Circus processes. It argues that confidentiality annota-
tions deserve special attention during the development of a process, to
avoid jeopardising the implementability of the process.

Before embarking upon the development of a process in our extended
language, it is expedient to verify that its functionality is consistent with
its embedded CAs. Section 6.3 presents a procedure for calculating Low’s
inferences about the state of the process at each point of its execution. In
Section 6.4, this procedure is distilled into laws defined over lifted Circus

actions. In Section 6.5, we describe how this procedure can be used to
verify that a Circus process satisfies its CAs.

In Section 6.6, we tailor the Circus refinement strategy to accommodate
verified processes in the lifted language. This secure refinement strategy
enables software engineers to apply the laws of the Circus refinement
calculus to lifted processes, safe in the knowledge that refinement steps
maintain the consistency of the process.
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The final development step is to translate a concrete-level process
design into executable code. However, there are important caveats which
mean that assurances about the security of the process design may not
be applicable to the code. We discuss these issues in Section 6.7.

In this chapter, the development strategy is primarily concerned with
safeguarding confidential information from a single adversarial user. The
techniques presented here are readily extendible to cover multiple low-
level users, who may be encoded within a process specification using
blocks of different families (Subsection 5.4.3). Indeed, the case study of
Chapter 7 involves a development where the confidentiality properties
apply to multiple users’ inferences.

6.2 Confidentiality-Preserving Refinement

Recall from Section 5.5 that a CA makes miraculous those behaviours of
a process that would disclose secret information to Low. Since a process
is compelled not to behave miraculously, the process is forced to satisfy
the confidentiality property embodied by the CA.

Suppose a lifted process Q is refined in a way that removes all cover
story behaviours prescribed by a CA embedded in Q. The refined process
Q′ violates the CA and, by definition, the CA becomes miraculous. In
turn, by behaving miraculously, the CA disables all behaviours of Q′

that would leak secret information. The refinement of Q to Q′ is still
legitimate, because miracles occupy the top of the lattice of (lifted) re-
active designs. However, such refinements cannot make a process insecure,
because processes cannot behave miraculously. For the reasons described
in Section 4.5, it follows that refinement is confidentiality-preserving in the
lifted semantics.

6.2.1 Refinement and Feasibility

While refinement is confidentiality-preserving, it must be used with care.
In the worst case, a refinement step may come at the price of sacrificing
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the feasibility of the process, making it impossible to implement (and
therefore useless). This phenomenon is made clear by Example 6.1.

Example 6.1. Recall from Example 5.48 and Example 5.49 that:

B0 , 〈 h := 0 〉 ; 〈 h = 0⇒ h̃ > 0 〉 = 〈R(¬ ok) 〉
B1 , 〈 h := 1 〉 ; 〈 h = 0⇒ h̃ > 0 〉 = 〈 h := 1 〉

Now consider the specification:

B01 , 〈 h := 0 u h := 1 〉 ; 〈 h = 0⇒ h̃ > 0 〉

B01 is feasible in isolation: Low cannot distinguish between h := 0 and
h := 1 by observing the behaviour of B01 alone. Both B0 and B1 are
refinements of B01, but only B1 is a feasible refinement of B01. ♦

Refinement is not guaranteed to maintain the feasibility of processes
containing CAs. This is because removing cover stories may induce
conflicts between CAs and their surrounding contexts, making those
contexts miraculous. On the other hand, refinement may also induce
miracles into any process with partial specification constructs such as
specification statements and coercions (Nelson, 1989; Morgan, 1994). The
next example replicates the phenomenon shown in Example 6.1, but
using Circus coercions in place of CAs.

Example 6.2 (adapted from Zeyda et al. (2003)). Working in the Circus

semantics, the action h := 1 can be rewritten using a coercion:

(h := 0 u h := 1) ; [ h = 1 ]

= (h := 0 ; [ h = 1 ]) u (h := 1 ; [ h = 1 ]) [distributivity]

= R(¬ ok) u h := 1 [Example 2.4]

= h := 1 [lattice top]

While refining the h := 0 u h := 1 action to h := 0 is feasible in isolation,
the resulting specification — h := 0 ; [ h = 1 ] — is miraculous, as we saw
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in Example 2.4. ♦

To support confidentiality-preserving refinement with a practical devel-
opment method, we need to employ special measures to verify whether a
refinement step, applied to one part of a process, maintains the feasibility
of the process as a whole. These measures — which are the main topic of
this chapter — depend on analysing the information that Low can infer
about the process state at each point during the process’s execution.

6.2.2 Atomic and Composite Non-Determinism

Information flow to Low can be modelled at different levels of granularity.
We introduce these levels of granularity by drawing an analogy with
Morgan’s shadow semantics, which was discussed in Section 5.8.

The shadow semantics grants Low the ability to monitor the control
flow of a program. Non-deterministic specification constructs in the
shadow semantics are either atomic or composite:

Atomic constructs are considered to execute instantaneously, so Low
cannot observe how non-determinism is resolved during their exe-
cution. These constructs are needed for specifying security-critical
elements of a program, such as conditional branches that depend
on the values of secret variables.

Composite constructs enable Low to monitor how they resolve non-
determinism. Hence, refining away non-determinism within a
composite construct does not reveal more information about the
construct’s behaviour to Low.

We can express atomic and composite non-deterministic constructs in
the lifted semantics. The atomic construct denoting non-deterministic
choice between A1 and A2 is represented by:

〈A1 u A2 〉
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while the corresponding composite construct is represented by:

〈A1 〉 u 〈A2 〉

Morgan (2009) defines ignorance-preserving refinement over the shadow
semantics, which mandates the shadow set H can never be decreased
by refining any component of a program. In other words, a refinement
is ignorance-preserving if it reveals no more information to Low about
the secret variable h. Under ignorance-preserving refinement, composite
constructs can be refined into atomic constructs, because doing so can
only increase Low’s ignorance about a program’s behaviour. However,
Morgan forbids the refinement of atomic constructs in any way.

Owing to ignorance-preserving refinement, a program design in the
shadow semantics implicitly specifies the maximal information about h
that is permitted to flow to Low. On the contrary, CAs provide an explicit
specification of the maximal information flow to Low. Therefore, we do
not insist that refinement is ignorance-preserving, because CAs disable
insecure functionality of a process. It follows that atomic choice can be
refined to composite choice in our semantics:

〈A1 u A2 〉 v 〈A1 〉 u 〈A2 〉

which is a consequence of Condition 5.12.

By making this refinement, we sever the indistinguishability relation
between the observable behaviours of A1 and the fog behaviours of A2

(and vice versa). Intuitively, the specification 〈A1 〉 u 〈A2 〉 discloses to
Low how the process resolves the choice between A1 and A2. (It is as
though Low can observe the “program counter” to determine which of
A1 and A2 is executed.)

A consequence of this refinement is that 〈A1 〉 u 〈A2 〉 reveals at least
as much information to Low as does 〈A1 u A2 〉. For this reason, this
refinement may violate a CA elsewhere within a process, so it is not
guaranteed to preserve the feasibility of the process.
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6.2.3 Equivalence

There are some lifted constructs whose atomic and composite forms are
equivalent, as Example 6.3 shows.

Example 6.3. Recall from Example 5.10 that a lifted action can be unfol-
ded according to the I(L) relation. By extension, given that L includes
the on or off channels, we have:

〈 L : on→ h := 0 u off → h := 1 〉 =

(
〈 L : on→ h := 0 〉

u 〈 L : off → h := 1 〉

)

Since Low can distinguish an on event from an off event (by observing
termination), it follows that Low can always determine how the choice is
resolved within this specification. ♦

Example 6.3 motivates the following law.

Law 6.4 (Split choice). Provided L includes the channels c1 and c2:

〈 L : c1 → A1 u c2 → A2 〉 = 〈 L : c1 → A1 〉 u 〈 L : c2 → A2 〉

Where possible, it is advantageous to refine an atomic construct into
a composite construct, because we can analyse the components of the
composite construct in isolation from each other. Moreover, in cases
where atomic and composite constructs are semantically equivalent,
substituting one for the other cannot change the feasibility of the process.

6.3 Backwards Propagation

As we observed in Chapter 4, confidentiality properties are not closed
under composition. Thus, it can be tricky to determine if a CA is viol-
ated within a process body, because the CA imposes a confidentiality
constraint that extends over the whole of a process.

This section describes a technique for compacting our model of Low’s
inferences about the behaviour of lifted Circus actions into indistinguishab-
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ility relations over the process state. These indistinguishability relations
have the same form as obligations, so they can be combined with a CA
to identify which cover stories prescribed by the CA are not discarded by
the action’s behaviour. In turn, we can propagate this information through
a process, to calculate the confidentiality constraints that apply over the
process state at each point in the process’s execution.

Section 6.5 explains how propagation can help to warn software en-
gineers if the functionality and confidentiality attributes of a process
specification are mutually inconsistent.

6.3.1 Weakest Reactive Preconditions

In predicate transformer semantics (Dijkstra, 1976), wp (P, Post) denotes
the weakest precondition which guarantees that program P terminates in a
state satisfying Post. Following Hoare and He (1998), wp can be defined
in the UTP theory of relations as follows:

wp (P, Post) , ∀ x′ • P⇒ Post

The following predicate transformer describes all initial states of a
Circus action A such that every normal execution of A started in any such
state — regardless of whether A diverges, deadlocks or terminates — is
guaranteed to reach an observable state satisfying the postcondition Post:

wrp (A, Post) , wp (A, (ok ∧ ¬ wait⇒ Post))

= ∀ x′ • (ok ∧ ¬ wait ∧ A)⇒ Post

wrp (A, Post) is called the weakest reactive precondition (for normal beha-
viour) by Cavalcanti and Woodcock (2003); we adopt that name here.

6.3.2 Masking States

Propagation involves the translation of Low-indistinguishable process
behaviours into a notion of Low-indistinguishable process states. We
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say that a fog state ψ̃ masks a state ψ through A if and only if, for each
behaviour of A started in ψ, there is a counterpart Low-indistinguishable
fog behaviour of Ã started in ψ̃.

Definition 6.5 (Masking). ψ̃ masks ψ through A (with respect to L) if:[
A ∧ ψ⇒ ∃ x̃, x̃′ • UC (L, A) ∧ ψ̃

]
Given that ψ̃ masks ψ, if Low’s interaction is consistent with A starting

in ψ, then Low cannot rule out the possibility that A started in ψ̃ instead.

Example 6.6. Given that Low can observe on and off events, consider:

〈 g & (on→ Skip u off → Skip) 2 ¬ g & on→ Skip 〉

Here, each state satisfying the condition g masks each state satisfying
¬ g, because on may be performed in either case. Notice that symmetry
does not apply here, because the occurrence of off would reveal to Low
that g holds. ♦

We can adapt wrp to encode Low’s inferences about the behaviour of a
Circus action in terms of its initial state. The predicate:

wrp
(

A, ∃ x̃′ • UC (L, A)
)

describes the weakest masking relation over the initial states of action A: it
maps ψ to ψ̃ if and only if ψ̃ masks ψ.

We now define a specialised form of the weakest masking relation over
lifted constructs. In order to simplify the presentation of the results to
follow, it hides the ok, õk, wait, w̃ait variables.

Definition 6.7 (wmr predicate transformer).

wmr (B) ,
(
∀ x′ • D (B!)⇒ ∃ x̃′ • B!

)
where B! denotes B[true, true, false, false/ok, õk, wait, w̃ait].
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wmr (B) encodes the maximum information that Low can deduce about
the initial state of B, regardless of the interaction that Low makes with B.
Hence, wmr (B) may potentially over-approximate Low’s inferences: not
every behaviour of B may reveal all the information to Low modelled by
wmr (B). Example 6.8 clarifies the nature of this over-approximation.

Example 6.8. Consider the block ST = 〈 s!a→ Skip u t!b→ Skip 〉. Given
that Low’s window includes the s and t channels, we have:

wmr (ST) = a = ã ∧ b = b̃

Intuitively, Low may learn by observing ST either the value of a (on
channel s) or the value of b (on channel t), depending on how the non-
determinism in ST is resolved. However, before ST starts, there is no
way of knowing how that non-determinism is resolved. Hence, wmr

over-approximates Low’s inferences about the initial state of ST.

Now consider the block TT = 〈 t!a→ Skip u t!b→ Skip 〉. We have:

wmr (TT) = a = ã ∨ b = b̃

By observing a value transmitted on channel t, Low learns only that
either a or b have that value, in the absence of other information. ♦

Since wmr (〈A 〉) expresses an upper bound on Low’s inferences about
A’s initial state, it is not monotonic with respect to the v ordering. This
non-monotonicity of wmr is demonstrated by the next example.

Example 6.9. The ST block (Example 6.8) is refined by 〈 s!a→ Skip 〉. This
block reveals the value of a to Low, but tells Low nothing about b:

wmr (〈 s!a→ Skip 〉) = a = ã

We have ST v 〈 s!a→ Skip 〉, but wmr (ST) 6v wmr (〈 s!a→ Skip 〉), so wmr

is not monotonic. ♦
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6.3.3 Propagating Obligations

We now turn our attention to propagating obligations backwards through
blocks. Consider a block placed in sequence with a CA:

B ; 〈 θ 〉

Should B terminate, then 〈 θ 〉 takes effect and constrains the fog space
associated with the final state of B according to the obligation θ.

We extend the wmr predicate transformer to propagate θ backwards
through B. Let bwQ (B, θ) denote the masking relation over the initial
states of B, but strengthened with an obligation parameter.

Definition 6.10 (bwQ predicate transformer).

bwQ (B, θ) , ∀ x′ •
(

D (B!)⇒ ∃ x̃′ • B! ∧ Conf′ (θ)
)

If a Circus action A starts in a state ψ and terminates in a state ψ′ satisfy-
ing the postcondition D (θ′), then bwQ (〈A 〉 , θ) relates ψ to only those ini-
tial fog states that mask ψ through 〈A 〉 and lead to Low-indistinguishable
behaviours terminating in fog states marked as cover stories for ψ′ by θ′.
In fact, bwQ is more general: it can be applied to arbitrary lifted constructs
to identify an indistinguishability relation between initial states.

The masking relation bwQ (B, θ) is itself an obligation, which fuses
Low’s inferences about the behaviour of B with the confidentiality prop-
erty imposed upon those inferences by 〈 θ 〉 whenever B terminates.

Example 6.11. Suppose ST is named in sequence with a CA:

〈 s!a→ Skip u t!b→ Skip 〉 ; 〈 a = 0⇒ ã > 0 〉

Intuitively, the CA prevents the s!a event from taking place if a = 0. This
intuition is justified by calculation:

bwQ ((s!a→ Skip u t!b→ Skip), (a = 0⇒ ã > 0))

= a = ã ∧ b = b̃ ∧ (a = 0⇒ ã > 0) [by Example 6.8]
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= a = ã ∧ b = b̃ ∧ a 6= 0 [prop calc]

No cover stories are prescribed by this back-propagated obligation when
a = 0. ♦

Theorem 6.12 shows the result of applying bwQ to a lifted reactive
design.

Theorem 6.12 (Unfolding bwQ).

bwQ (UC (L, R (Pre ` Post)) , θ) =

∀ x′ •
(

Pre! ∧ ok′ ∧ Post! ∧ tr ≤ tr′

⇒ ∃ x̃′ • (P̃re!⇒ P̃ost!) ∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

)
∧ P̃re!⇒ Pre

If B always exhibits miraculous behaviour in some initial states, then
Low can rule out the possibility that B starts in those states. The initial
states where execution of B is feasible are given by bwR (B).

Definition 6.13 (bwR predicate transformer).

bwR (B) , ∃ x′, x̃′ • B!

Whenever B is a non-miraculous construct, we have bwR (B) = true.
Theorem 6.14 shows the result of applying bwR to a lifted reactive design.

Theorem 6.14 (Unfolding bwR).

bwR (UC (L, R (Pre ` Post))) =

∃ x′, x̃′ • U
(
tr ≤ tr′

)
∧ ((Pre! ∨ P̃re!)⇒ ok′ ∧ U (Pre!⇒ Post!)) ∧ I(L)!

We define a predicate transformer bw, which conjoins bwQ with bwR

to exclude initial states which lead to miraculous behaviour from back-
propagated obligations.
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Definition 6.15 (bw predicate transformer).

bw (B, θ) , bwR (B) ∧ bwQ (B, θ)

Informally, the obligation bw (B, θ) encodes the maximum information
that Low can infer about the initial state of B via its interaction with B.
Moreover, if B terminates, then bw (B, θ) incorporates Low’s inferences
about the final state reached by B derived from the subsequent behaviour
of the process, as encoded by θ.

bw is monotonic in its second argument with respect to the v ordering.

Lemma 6.16 (Monotonicity of bw). θ1 v θ2 implies bw (B, θ1) v bw (B, θ2)

However, bw is not necessarily monotonic in its first argument with re-
spect to v, because wmr is not monotonic with respect to v (Example 6.9).

6.3.4 Forwards Propagation

An alternative to backwards propagation would be to propagate CAs
and Low’s inferences forwards through blocks. Forwards propagation is
analogous to calculating the strongest postcondition that a program satisfies
if started in any initial state satisfying a specified precondition.

Example 6.17. The counterpart to wmr for forwards propagation is:

∀ x • D (B!) ∧ ¬ wait′ ⇒ ∃ x̃ • B!

Applying this predicate transformer to ST (Example 6.8) yields:

ok′ ∧ ¬ wait′ ⇒ õk′ ∧ ¬ w̃ait′

∧
(

last (tr′) = (s, a) ∧ last(t̃r′) = (s, ã) ∧ a = ã
∨ last (tr′) = (t, b) ∧ last(t̃r′) = (t, b̃) ∧ b = b̃

) 
Unlike wmr (ST), this relation distinguishes the cases where Low learns
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a or b, since the tr′ variable retains information about how the non-
determinism is resolved. ♦

As Example 6.17 shows, forwards propagation retains more detailed
information about Low’s inferences than does backwards propagation.
However, forwards propagations are far more laborious to calculate.
This result correlates with Dijkstra and Scholten’s observation that weak-
est preconditions are simpler to calculate than strongest postconditions
(Dijkstra and Scholten, 1990, §12).

It is pragmatic to adopt backwards propagation as the basis of the
verification method presented in subsequent sections. However, there is
no fundamental reason why this verification method could not instead
be defined in the style of forwards propagation.

6.4 Laws of Backwards Propagation

We can apply bw to any lifted construct, be it a lifted Circus action, a CA,
or a composite construction of lifted actions, lifted operators and CAs.

As should be expected, back-propagating an obligation θ1 through a
CA embedding θ2 yields the least upper bound of θ1 and θ2.

Law 6.18 (bw CA). bw (〈 θ1 〉, θ2) = θ1 ∧ θ2

Calculating the backwards propagation of obligations through lifted
actions can be difficult, especially with actions with a complex semantics.
In this section, we propose tactics for dividing this calculation into
manageable parts. We also identify laws for back-propagating obligations
through the basic Circus constructs.

6.4.1 Heuristics

Calculating bw (B, θ) from first principles can be tedious. Lemma 6.19

shows this calculation can be simplified by breaking B into parts and
applying bw to each part.
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Lemma 6.19 (Over-approximating bw).

bw (B, θ) v bw (B ∧ C, θ) ∧ bw (B ∧ ¬ C, θ)

Lemma 6.19 may over-approximate bw (B, θ), but it is often desirable
to calculate bw (B, θ) exactly. An exact calculation can be obtained by
partitioning B according to Low’s abilities to distinguish between the
behaviours of B. Theorem 6.20 specifies the scheme of these calculations.

Theorem 6.20 (Splitting bw).

bw (B, θ) = bw (B ∧ C, θ) ∧ bw (B ∧ ¬ C, θ)

provided the following conditions hold:

bwR (B ∧ C) = true (SC1)

bwR (B ∧ ¬ C) = true (SC2)

B = B ∧ I(L) (SC3)

C ∧ I(L) = U (C) ∧ I(L) (SC4)

Side-conditions 1 and 2 of Theorem 6.20 require that at least one
behaviour of B satisfies C and at least one behaviour of B does not satisfy
C. Side-condition 3 stipulates that B is constructed from UC-lifted actions;
this condition is trivially satisfied if B is a block or composed from blocks
using the lifted Circus operators. Side-condition 4 demands C holds
for each behaviour φ if and only if C holds for all behaviours that are
Low-indistinguishable from φ.

We specialise Theorem 6.20 in three ways by instantiating C.

Traces If the projections of the traces of two behaviours through Low’s
window L are different, then Low can distinguish between those beha-
viours. This insight motivates the following lemma.

Lemma 6.21 (bw traces). LetW ⊆ L and HT = (tr′ − tr) �W ∈ S, where
S denotes a set of traces drawn from events in W . Then, provided
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side-conditions 1, 2 and 3 of Theorem 6.20 are upheld:

bw (B, θ) = bw (B ∧ HT, θ) ∧ bw (B ∧ ¬ HT, θ)

Refusals If the process deadlocks, it may refuse any of the events in
Low’s window. If Low attempts to engage in those events and the process
refuses them, then Low will perceive that refusal. By observing these
refusals, Low may be able to infer some information about the state of
the process at deadlock and, consequently, its state prior to deadlocking.

Lemma 6.22 (bw refusals). Let W ⊆ L and HR = W ⊆ ref ′. Then,
provided side-conditions 1,2 and 3 of Theorem 6.20 are upheld:

bw (B, θ) = bw (B ∧ HR, θ) ∧ bw (B ∧ ¬ HR), θ)

Moreover, if B is a lifted Circus action, we also have (by CSP4-healthiness):

bw (B, θ) = bw
(
B ∧ (wait′ ⇒ HR), θ

)
∧ bw

(
B ∧ (wait′ ⇒ ¬ HR), θ

)

Termination Since I(L) models Low as being able to distinguish termin-
ating from non-terminating behaviours, we also have Lemma 6.23. Again,
Low may exploit knowledge of (non-)termination to infer information
about the initial state of a block.

Lemma 6.23 (bw termination). Provided side-conditions 1,2 and 3 of
Theorem 6.20 are upheld:

bw (B, θ) = bw
(
B ∧ wait′, θ

)
∧ bw

(
B ∧ ¬ wait′, θ

)
Naturally, these lemmas can be used together, to partition lifted con-

structs more finely than on traces, refusals or termination alone.
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6.4.2 Propagating through Circus Constructs

bw inherits many of the properties of the wp predicate transformer.
Following the style of the weakest precondition calculus, we now define
laws for back-propagating obligations through lifted Circus constructs.

Since these laws are defined over individual lifted actions, they cannot
be applied to more complex blocks. Nevertheless, by Condition 5.12, such
a block can be broken apart (by refinement) into a composite construct,
featuring simpler blocks that are amenable to these laws.

Primitives As should be expected, the lifted Skip is an identity for back-
wards propagation.

Law 6.24 (bw Skip). bw (〈 Skip 〉 , θ) = θ

Likewise, the lifted Stop and the lifted Chaos are zeros for backwards
propagation.

Law 6.25 (bw Stop). bw (〈 Stop 〉 , θ) = true

Law 6.26 (bw Chaos). bw (〈Chaos 〉 , θ) = true

Scoping Backwards propagation distributes through a declaration of
variable a simply by hiding a and ã.

Law 6.27 (bw scope).

bw (var a : T • B, θ) = ∀ a : T • ∃ ã : T • bw (B, ∀ a : T • ∃ ã : T • θ)

Commands Law 6.28 provides a general account of back-propagating
obligations through specification statements.

Law 6.28 (bw specification statement).

bwR (〈w : [Pre, Post] 〉) = U
(
Pre⇒ ∃ v′ • Post ∧ u′ = u

)
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bwQ (〈w : [Pre, Post] 〉 , θ) =

 ∀ v′ • (Pre ∧ Post ∧ u′ = u)⇒
∃ ṽ′ • (P̃re⇒ P̃ost ∧ ũ′ = ũ) ∧ θ′

∧ P̃re⇒ Pre



where u denotes all state variables not listed in w.

Law 6.29 follows by specialising Law 6.28.

Law 6.29 (bw assumption).

bw (〈 {C } 〉 , θ) = (C⇒ ∃ ṽ′ • (C̃⇒ ṽ′ = ṽ) ∧ θ′[v/v′]) ∧ (C̃⇒ C)

As CAs are a generalisation of coercions, Law 6.30 is a direct con-
sequence of Law 5.44 and Law 6.18.

Law 6.30 (bw coercion). bw (〈 [C ] 〉 , θ) = θ ∧ U (C)

The law for assignment is typical for a weakest precondition calculus.

Law 6.31 (bw assignment). bw (〈 a := E 〉 , θ) = θ[E, Ẽ/a, ã]

Sequence As lifted sequential composition is just relational composition,
back-propagating an obligation through a sequence of blocks can be
performed block by block.

Law 6.32 (bw sequence).

bwR
(

B1 ;̂ B2

)
= bwR

(
B1 ∧ Conf′

(
bwR (B2) [x′, x̃′/x, x̃]

))
bwQ

(
B1 ;̂ B2, θ

)
= bwQ (B1, bwQ (B2, θ))

Guard Recall from Definition 5.25 that the lifted guard g & B reveals the
truth of the condition g to Low. If g is false, this construct deadlocks and
reveals no extra information to Low. If g is true, this construct behaves
as B and reveals whatever information to Low that B reveals.

Law 6.33 (bw guard). bw (g & B, θ) = (bw (B, θ) ∧ U (g)) ∨ U (¬ g)
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Prefixing A prefixing c!E→ Skip which outputs the value of an expres-
sion E to the environment on channel c may reveal to Low information
about the process state in terms of E, provided Low can observe c.

Law 6.34 (bw output prefix).

bw (〈 L : c!E→ Skip 〉 , θ) =

θ ∧ E = Ẽ if c ∈ L

θ otherwise

A prefixing c.e→ Skip which communicates a constant e to the envir-
onment does not change the state or reveal state information to Low. It
is therefore an identity for backwards propagation, as Law 6.35 shows.
This law can be derived from Law 6.34 by taking E = e.

Law 6.35 (bw prefix). bw (〈 c.e→ Skip 〉 , θ) = θ

A prefixing which accepts an input value e? from the environment on
channel c reveals the exact value of e? to Low, provided Low can observe
c. Conversely, if Low cannot observe c, Low can still infer that e? has the
type δ(c) and that P(e?) holds.

Law 6.36 (bw input prefix).

bw (〈 L : c?e : P→ e := e? 〉 , θ)

=

∀ e : δ(c) • P(e)⇒ θ[e/ẽ] if c ∈ L

∀ e : δ(c) • P(e)⇒ ∃ ẽ : δ(c) • P(̃e) ∧ θ otherwise

Choice To back-propagate θ through a composite internal choice, it
is sufficient to back-propagate θ through each construct of the choice
separately and take the least upper bound.

Law 6.37 (bw internal choice).

bw (B1 u B2, θ) v bw (B1, θ) ∧ bw (B2, θ)
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It is harder to derive a general law for back-propagating θ through
a composite external choice. Should B1 and B2 both deadlock without
performing any event (or diverging), then B1 2 B2 behaves as B1

tt
ff ∧ B2

tt
ff .

This term may be miraculous if B1
tt
ff and B2

tt
ff restrict the state space in

different ways — for instance, if they contain CAs — even if B1
tt
ff and B2

tt
ff

are individually feasible. It follows that:

bw (B1 2 B2, θ) v bw (B1, θ) ∧ bw (B2, θ)

is not guaranteed in all cases. We side-step this problem by defining
a backwards propagation law for a more specialised form of external
choice. In this form, the choice is resolved by the environment before any
state change can take place.

Law 6.38 (bw guarded prefixed external choice). Provided at least one of
the guards g1, g2, . . . , gn is satisfied by each state:

bw (2 i • gi & ci → Bi, θ) v
∧

i • (U (gi) ∧ bw (Bi, θ)) ∨ U (¬ gi)

Law 6.39 follows from Law 6.38 by taking true for each guard.

Law 6.39 (bw prefixed external choice).

bw (2 i • ci → Bi, θ) v
∧

i • bw (Bi, θ)

6.5 Verifying Consistency

Owing to the non-compositional nature of confidentiality properties, a
CA in a process specification may make other components of the process
unimplementable, if the functionality of those components is inconsistent
with the CA. Hence, it is expedient to ascertain that a process is feasible
before proceeding with its development, to avoid unpleasant surprises if
the process is indeed unimplementable.

This section describes a procedure for dividing the task of verifying
that a process satisfies a CA into multiple cases, and then to conquer
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each case individually. This procedure is based on propagating the CA
through the blocks of the process.

Propagation makes infeasible blocks readily identifiable, so this proced-
ure enables the implementability (and therefore the security) of processes
to be verified in a piecewise manner. Should the process be found to
be unimplementable, then the requirements will need to be revised to
resolve the conflict between functionality and confidentiality.

6.5.1 Propagated Confidentiality Annotations

Recall from Subsection 6.3.3 that backwards propagation can be applied
to specification constructs of the form 〈A 〉 ; 〈 θ 〉 to translate θ into an
obligation over the initial state of 〈A 〉. This back-propagated obligation
can itself be embedded within a CA preceding 〈A 〉:

〈 bw (〈A 〉 , θ) 〉 ; 〈A 〉 ; 〈 θ 〉

Inserting this CA into the specification refines the specification:

〈A 〉 ; 〈 θ 〉

= 〈 true 〉 ; 〈A 〉 ; 〈 θ 〉 [property of CA]

v 〈 bw (〈A 〉 , θ) 〉 ; 〈A 〉 ; 〈 θ 〉 [Theorem 5.40]

Example 6.40 shows this refinement is non-trivial if 〈A 〉 may deadlock
or diverge.

Example 6.40. By Lemma 6.23, back-propagating θ through 〈 Skip u Stop 〉
just yields θ. Therefore:

〈 Skip u Stop 〉 ; 〈 θ 〉 v 〈 θ 〉 ; 〈 Skip u Stop 〉 ; 〈 θ 〉

Provided θ is not vacuously true, the specification is strictly refined
because 〈 θ 〉 is enforced even if the non-deterministic choice resolves to
〈 Stop 〉. ♦
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Suppose that, when 〈A 〉 is started in a lifted state ψ, it terminates in a
final state that violates θ. Then 〈 bw (〈A 〉 , θ) 〉 is miraculous in ψ.

Example 6.41. Recall the specification from Example 6.11:

〈 s!a→ Skip u t!b→ Skip 〉 ; 〈 a = 0⇒ ã > 0 〉

We insert a CA encapsulating the back-propagation of a = 0 ⇒ ã > 0
through the block (see Example 6.11) into the specification, to obtain:

〈 a = ã ∧ b = b̃ ∧ a 6= 0 〉 ; 〈 s!a→ Skip u t!b→ Skip 〉 ; 〈 a = 0⇒ ã > 0 〉

Now, the feasibility of the specification is made explicit: if it starts in a
state where a = 0, then miraculous behaviour is assured. ♦

6.5.2 Left Justification

We now describe a procedure for transforming a lifted process design
into a form where inconsistencies between the functionality and con-
fidentiality attributes of a process can be detected by studying the CAs
within the process alone. The procedure is based on inserting propagated
CAs between every lifted specification construct within the process body.
These CAs are inserted to record Low’s inferences about the process state
at each point in the process’s execution, based on Low’s observations of
the subsequent behaviour of the process.

To formalise this procedure, we define a special format for lifted
constructs, where each construct is surrounded by a pair of CAs.

Definition 6.42 (Left justification). A lifted construct is left-justified if and
only if it has the form:

〈 θα 〉 ; B ; 〈 θω 〉

such that bw (B, θω) v θα.

Of course, we could left-justify any construct by setting θα = false.
That would not be helpful for our broader goal of verifying the process
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is consistent with its CAs. Rather, we are interested in identifying the
weakest obligation θα that left-justifies the construct.

Every CA is left-justified in its own right:

〈 θ 〉 = 〈 true 〉 ; 〈 θ 〉 ; 〈 true 〉 = 〈 θ 〉 ; 〈 true 〉 ; 〈 true 〉

It is straightforward to left-justify primitive constructs — such as
specification statements and guards — with the laws of bw (Section 6.4).

To back-propagate a CA through a composite lifted construct, we left-
justify each of its components individually, in order to derive a CA to
left-justify the composite construct as a whole. We now consider the
details of this procedure for specific composite constructs.

Sequence We propagate a CA through a sequence of blocks in a pattern
reminiscent of the right fold operator in functional programming (Hutton,
1999). For instance, given:

〈A1 〉 ; . . . ; 〈An 〉 ; 〈 θn 〉

we left-justify each lifted action as follows:

〈 θ0 〉 ; 〈A1 〉 ; 〈 θ1 〉 ; . . . ; 〈 θn−1 〉 ; 〈An 〉 ; 〈 θn 〉

where, for each 0 ≤ i < n, bw (〈Ai+1 〉 , θi+1) v θi holds.

Remark 6.43. It is most efficient to left-justify sequences of blocks from
right to left. Consider:

〈A1 〉 ; 〈 θ1 〉 ; 〈A2 〉 ; 〈 θ2 〉

If bw (〈A2 〉 , θ2) 6v θ1, then it is efficient to left-justify 〈A2 〉 first, so that
〈A1 〉 can be left-justified with respect to θ1 ∧ bw (〈A2 〉 , θ2).
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Choice When propagation reaches a composite choice construct, we
distribute the CA through the choice as follows:

(B1 u B2) ; 〈 θ 〉 = B1 ; 〈 θ 〉 u B2 ; 〈 θ 〉

(B1 2 B2) ; 〈 θ 〉 = B1 ; 〈 θ 〉 2 B2 ; 〈 θ 〉

We left-justify B1 and B2 (with respect to θ) separately. Following Law 6.37

and Law 6.38, we then left-justify the choice construct as a whole with a
CA containing the least upper bound of the obligations from each branch:

(B1 u B2) ; 〈 θ 〉 v 〈 bw (B1, θ) ∧ bw (B2, θ) 〉 ; (B1 u B2) ; 〈 θ 〉

(B1 2 B2) ; 〈 θ 〉 v 〈 bw (B1, θ) ∧ bw (B2, θ) 〉 ; (B1 2 B2) ; 〈 θ 〉

Parallel Parallel-by-merge is defined so that, upon termination, the final
values of the state variables are selected from the final states reached
by the concurrent actions (Hoare and He, 1998; Oliveira et al., 2009).
Therefore, a CA which succeeds a parallel construct can be split into
parts, depending on the merge specified by the parallel operator.

Let ns1 and ns2 denote disjoint subsets (but not necessarily a parti-
tion) of the state variables of a process. Then, let θ0, θ1 and θ2 denote
obligations that satisfy the conditions:

αθ0 ∩ (ns1 ∪ ñs1 ∪ ns2 ∪ ñs2) = ∅

αθ1 ⊆ ns1 ∪ ñs1

αθ2 ⊆ ns2 ∪ ñs2

These conditions demand the alphabets of θ0, θ1 and θ2 are disjoint. From
this point onwards, we consider parallel constructs of the form:

(B1 |[ns1 | cs | ns2 ]| B2) ; 〈 θ0 ∧ θ1 ∧ θ2 〉

Remark 6.44. Some obligations cannot be structured in this form. An
example obligation would be g̃ 6= h̃, where ns1 = {g} and ns2 = {h}.
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However, this obligation can be refined to g̃ ≥ 0 ∧ h̃ < 0 to achieve an
obligation structured in our required form.

Since a parallel composition terminates only if both its components
terminate, we can distribute θ1 and θ2 according to the rule:

(B1 |[ns1 | cs | ns2 ]| B2) ; 〈 θ0 ∧ θ1 ∧ θ2 〉
v

(B1 ; 〈 θ1 〉 |[ns1 | cs | ns2 ]| B2 ; 〈 θ2 〉) ; 〈 θ0 ∧ θ1 ∧ θ2 〉

Since B1 and B2 must synchronise on events in cs, each of these com-
ponents may constrain the other’s space of behaviours. In some cases,
the synchronisation may prevent B1 or B2 from engaging in cover story
behaviours mandated by their respective CAs.

Example 6.45. Consider the specification, where c1, c2 /∈ L: 〈 c1 → h := 0 2 c2 → h := 1 〉
|[{h} | {| c1, c2 |} | ∅ ]|
〈 c1 → Skip 〉

 ; 〈 h = 0⇒ h̃ > 0 〉

Since the parallel branches can only synchronise on c1, this specification
can be rewritten as:

〈 c1 → h := 0 〉 ; 〈 h = 0⇒ h̃ > 0 〉 [semantics of parallel]

= 〈 c1 → Skip 〉 ; 〈 h := 0 〉 ; 〈 h = 0⇒ h̃ > 0 〉 [Lemma 5.18]

= 〈 c1 → Skip 〉 ; 〈 h := 0 〉 ; 〈 false 〉 [by Example 5.49]

We would fail to detect this insecurity in the original specification if we
were to analyse the two parallel branches without accounting for the
synchronisation between them. ♦

We can sidestep the problem highlighted by Example 6.45 by enlarging
Low’s window on B1 and B2 to include all channels listed by cs. In effect,
we assume pessimistically that Low can observe all synchronisation events
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performed by B1 and B2 individually, even if they are hidden from the
environment.

Example 6.46. Continuing from Example 6.45, interpreting the left branch
of the parallel construct under the assumption that Low can observe
synchronisation events over c1 and c2 gives:

〈 c1 → h := 0 2 c2 → h := 1 〉 ; 〈 h = 0⇒ h̃ > 0 〉

v (〈 c1 → h := 0 〉 2 〈 c2 → h := 1 〉) ; 〈 h = 0⇒ h̃ > 0 〉

[Condition 5.12]

=

(
〈 c1 → h := 0 〉 ; 〈 h = 0⇒ h̃ > 0 〉

2 〈 c2 → h := 1 〉 ; 〈 h = 0⇒ h̃ > 0 〉

)
[distributivity]

= 〈 c1 → h := 0 〉 ; 〈 false 〉 2 〈 c2 → h := 1 〉 ; 〈 true 〉

[as Example 5.48, Example 5.49]

Now, the inconsistency hidden in the original specification is exposed. ♦

Remark 6.47. Assuming that Low can observe synchronisations between
parallel processes is incompatible with the superposition technique de-
scribed in Subsection 5.6.3. As superposition is used to impose confidenti-
ality properties over the synchronisation events, it would be self-defeating
to assume Low can observe those events. This problem could be solved
by reforming a superposed process into a single process (with CAs
embedded alongside blocks) before applying back-propagation.

We then left-justify B1 ; 〈 θ1 〉 and B2 ; 〈 θ2 〉 separately:

B1 ; 〈 θ1 〉 v 〈 bw
(
B+

1 , θ1
)
〉 ; B1 ; 〈 θ1 〉

B2 ; 〈 θ2 〉 v 〈 bw
(
B+

2 , θ2
)
〉 ; B2 ; 〈 θ2 〉

where B+
1 and B+

2 denote B1 and B2 respectively, but with the events in cs
modelled as visible to Low.

Finally, the parallel composition construct can be left-justified by taking
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the least upper bound of the left-justified CAs:

〈 θ0 ∧ bw
(
B+

1 , θ1
)
∧ bw

(
B+

2 , θ2
)
〉 ;

(〈 bw
(
B+

1 , θ1
)
〉 ; B1 ; 〈 θ1 〉 |[ns1 | cs | ns2 ]| 〈 bw

(
B+

2 , θ2
)
〉 ; B2 ; 〈 θ2 〉) ;

〈 θ0 ∧ θ1 ∧ θ2 〉

Since θ0 references state variables that are left unchanged by the parallel
construct, it is important that θ0 is included within the left-justifying CA.

Recursion In Circus, a recursive construct can take the form µ X • F(X),
or other forms that can be transformed to this form (Oliveira et al., 2009).
In order to left-justify the lifted loop body 〈 F(Skip) 〉 with respect to θ,
our strategy is to identify an invariant obligation θI (where θ v θI) that is
maintained by 〈 F(Skip) 〉.

Definition 6.48 (Invariant obligation). The obligation θI is an invariant
obligation for 〈 F(Skip) 〉 if back-propagating θI through 〈 F(Skip) 〉 yields
an obligation no stronger than θI; that is:

bw (〈 F(Skip) 〉 , θI) v θI

We can take the obligation θ0 from the CA following the recursive
construct and calculate:

θi+1 = θi ∧ bw (〈 F(Skip) 〉 , θi)

until we identify an θn such that θn = θn+1, whereupon (by Definition 6.48)
we know that θn is an invariant for the loop body.

Since bw is not monotonic in its first argument, the conjunction of θi

in θi+1 ensures that θi+1 is no weaker than θi. However, this method is
not guaranteed to identify a finite n such that θn = θn+1 in the general
case. In such cases, we may resort to intuition in order to identify an
invariant obligation, by looking for patterns in the sequence of obligations
θ0, θ1, θ2, . . .. Nor is θn necessarily the weakest (and hence most desirable)
invariant obligation for the loop body. We leave the problem of devising
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more sophisticated techniques for identifying invariant obligations for
future work.

6.5.3 Full Justification

We say that a process is fully justified if every lifted construct in its body
is left-justified. Full justification entails that each component within a
composition is left-justified and, moreover, that each composite construct
is also left-justified in its own right.

The purpose of fully justifying a process specification is to reveal mira-
culous behaviour stemming from inconsistencies between functionality
and confidentiality. These inconsistencies are indicated by the presence
of the miraculous CA 〈 false 〉 within a fully justified process. This CA is
generated by backwards propagation if execution of the constructs that
follow it could leak information to Low in violation of a subsequent CA.

Example 6.49. Assuming Low can observe events on channel s, left-
justifying the specification fragment:

ST1 = 〈 s!a→ Skip u t!b→ Skip 〉 ; 〈 a 6= ã 〉

yields the infeasible specification 〈 false 〉 ; ST1. ♦

Fully justifying a process is a sound method for verifying its feasibility,
because left-justification is a sound method for verifying the feasibility
of individual constructs. Hence, the absence of the CA 〈 false 〉 in a fully
justified process body implies the process is feasible. However, full justi-
fication is only complete as a verification method if no approximations
are made: if Low’s inferences are over-approximated too conservatively,
then fully justifying a process could generate spurious inconsistencies.

6.5.4 Resolving Inconsistency

Each back-propagated CA reflects Low’s inferences about the behaviour
of the constructs executed after that CA is invoked. Therefore, whenever
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backwards propagation generates the CA 〈 false 〉, we should focus our
attention on the constructs following that CA, in order to understand the
conflict between functionality and confidentiality.

The presence of miraculous CAs within a process does not necessarily
imply the process development is doomed. For instance, if a miraculous
CA is local to a non-deterministic construct, then it can be eliminated by
refinement, as Example 6.50 shows.

Example 6.50. A specification fragment which refines ST1 is:

ST2 = (〈 s!a→ Skip 〉 u 〈 t!b→ Skip 〉) ; 〈 a 6= ã 〉

Left-justifying each block of ST2 separately gives:

〈 false 〉 ; 〈 s!a→ Skip 〉 ; 〈 a 6= ã 〉
u

〈 a 6= ã ∧ b = b̃ 〉 ; 〈 t!b→ Skip 〉 ; 〈 a 6= ã 〉

Since 〈 false 〉 is the lattice top, this specification is equivalent to:

〈 a 6= ã ∧ b = b̃ 〉 ; 〈 t!b→ Skip 〉 ; 〈 a 6= ã 〉

which is itself a fully-justified specification. ♦

In practice, it is expedient to verify the feasibility of back-propagated
CAs when calculating them. If a miraculous CA is detected, then further
backwards propagation is futile if the inconsistency it reveals cannot be
resolved by refining away insecure components of the process.

6.5.5 Discussion

Our propagation procedure is related to the unwinding technique first
proposed by Goguen and Meseguer (1984), which aims to simplify the
task of verifying that a system satisfies noninterference. Modern formula-
tions of unwinding transform a global confidentiality property (expressed

150



6.6 A Secure Refinement Strategy

in terms of trace sets) over a system into a set of conditions over its indi-
vidual state transitions (Ryan and Schneider, 1999; Mantel, 2000a). These
conditions can then be discharged using standard proof methods.

Propagation, in a sense, is a dual of unwinding. Propagation trans-
forms a CA — a confidentiality property located in one part of a process
but applying to the whole process — into a collection of CAs distributed
throughout the process. The procedure for distributing these CAs entails
a proof of the process’s feasibility, or a result that suggests (but does not
necessarily imply) the process is inconsistent.

It is useful for propagated CAs to be retained in a process design, to
save the effort of re-calculating them after performing each refinement
step. As we show in the next section, they provide useful guidance for
ensuring that refinement steps do not violate CAs.

6.6 A Secure Refinement Strategy

For stepwise refinement to be useful, it must lead to process designs that
are implementable. Therefore, once a process has been verified to be
consistent with its CAs, it is highly desirable that each refinement step
maintains the consistency of the process. However, we established in
Section 6.2 that applying the Circus refinement laws to lifted processes
containing CAs is not guaranteed to preserve their feasibility.

This section extends the Circus refinement strategy proposed by Caval-
canti et al. (2003) to accommodate process designs featuring CAs. Given
a consistent process design, we justify each refinement of the process
design with respect to the CAs embedded within the process, in order to
maintain the process’s consistency.

The secure refinement strategy set out in this section addresses action
refinement, data refinement and process refinement. It is closely related
to the Circus refinement strategy, but it describes additional checks that
need to be made to ensure the consistency of processes is preserved by
refinement steps.

The application of full justification to a process design greatly reduces
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the effort needed to justify that refinement steps maintain the consistency
of the process. Using the propagated CAs within a process, we can verify
the consistency of the refined process without needing to re-verify the
entire process at each refinement step.

6.6.1 Action Refinement

Given a fully justified process Q, we are free to refine lifted Circus actions
nested within blocks. Consider the following left-justified fragment of Q:

〈 bw (〈A1 〉 , θ) 〉 ; 〈A1 〉 ; 〈 θ 〉

Let A1 v A2. If bw (〈A2 〉 , θ) 6v bw (〈A1 〉 , θ), then replacing 〈A1 〉 with
〈A2 〉 means the specification fragment is no longer left-justified. Hence,
the resulting process is not fully justified.

To verify the refinement is feasibility-preserving, we return the refined
process to its fully justified form, so that insecurities can be identified.
First, we re-apply left-justification to the block to obtain:

〈 bw (〈A2 〉 , θ) 〉 ; 〈A2 〉 ; 〈 θ 〉

Then, we back-propagate 〈 bw (〈A2 〉 , θ) 〉 to the preceding blocks and
apply left-justification until a fully justified process is reached.

As before, if propagation yields the CA 〈 false 〉, then it indicates the
refinement step is not feasibility-preserving. In that case, it is necessary
either to rectify that infeasibility by refining the process further, or to
discard the refined process and try a different development step instead.

In other cases, where bw (〈A2 〉 , θ) v bw (〈A1 〉 , θ), replacing 〈A1 〉
with 〈A2 〉 will maintain a fully justified process. There is no need
to back-propagate bw (〈A2 〉 , θ), because bw is monotonic in its second
argument (Lemma 6.16). Therefore, no additional verification is necessary.
This observation facilitates a useful shortcut, as Example 6.51 shows.

Example 6.51. The left-justified form of the specification fragment from
Example 6.41 can be refined by resolving the non-deterministic choice
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between the s and t actions:

〈 a = ã ∧ b = b̃ ∧ a 6= 0 〉 ; 〈 s!a→ Skip 〉 ; 〈 a = 0⇒ ã > 0 〉

This block remains left-justified, because:

bw (s!a→ Skip, a = 0⇒ ã > 0) v a = ã ∧ b = b̃ ∧ a 6= 0

and so no further backwards propagation is necessary. ♦

6.6.2 Data Refinement

Data refinement is conventionally conducted by identifying a retrieve
relation linking a concrete state space to an abstract state space (He
et al., 1986). To ensure that a concrete process simulates the abstract
process correctly, this relation must satisfy particular soundness condi-
tions. Cavalcanti et al. (2003) and Oliveira (2005) define the soundness
conditions that a retrieve relation must satisfy to be a forwards simulation
over Circus actions.

Definition 6.52 (Forwards simulation (Oliveira, 2005)). A forwards sim-
ulation between actions A1 and A2 of processes P1 and P2, with state
spaces v1 and v2 respectively and local state L, is a relation R between v1,
v2 and L satisfying:

1. (Feasibility) ∀ v2, L • (∃ v1 • R)

2. (Correctness) ∀ v1, v2, v′2, L • R ∧ A2 ⇒ (∃ v′1, L • A1 ∧ R′)

A lifted forwards simulation between lifted actions has essentially the
same structure as a forward simulation between Circus actions.

Definition 6.53 (Lifted forwards simulation). A lifted forwards simula-
tion between lifted constructs B1 and B2 of processes P1 and P2, with
state spaces v1, ṽ1 and v2, ṽ2 respectively and local state L, L̃, is a relation
R between v1, ṽ1, v2, ṽ2 and L, L̃ satisfying:
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1. (Feasibility) ∀ v2, ṽ2, L, L̃ • (∃ v1, ṽ1 • R)

2. (Correctness)
∀ v1, ṽ1, v2, ṽ2, v′2, ṽ′2, L, L̃ •

R ∧ B2 ⇒ (∃ v′1, ṽ′1, L, L̃ • B1 ∧ R′)

Corollary 6.54 is a consequence of the order-embedding between the
space of Circus actions and the space of lifted actions (Lemma 5.3).

Corollary 6.54. The relation U (R) is a lifted forwards simulation between
〈A1 〉 and 〈A2 〉 exactly if R is a forwards simulation between A1 and A2.

With Corollary 6.54, we can apply the existing simulation laws given
by Oliveira et al. (2009) for data-refining lifted Circus actions. Of course,
if these data refinements entail the reduction of non-determinism, they
need not yield a fully justified process.

When data refinement is applied to a abstract process featuring CAs,
those CAs need to be translated into CAs over the concrete state space.
Given an abstract obligation θ1, we derive a concrete obligation θ2 by
projecting θ1 through the simulation relation R:

θ2 = ∀ v1, ṽ1 • U (R)⇒ θ1

θ2 is the weakest obligation such that, for each state ψ2 and fog state ψ̃2

that satisfy θ2, all projections of ψ2 ∧ ψ̃2 through U (R) satisfy θ1.

Example 6.55. Recall the process fragment B01 from Example 6.1:

B01 , 〈 h := 0 u h := 1 〉 ; 〈 h = 0⇒ h̃ > 0 〉

If we data-refine each component of this fragment, with the simulation
(g = 0 C h > 0 B g = 1), then we obtain the concrete process fragment:

〈 g := 0 u g := 1 〉 ; 〈 g = 0⇒ g̃ = 1 〉

which is feasible. ♦

Inconsistencies may arise if data refinement is applied to CAs in isola-
tion from the functionality surrounding them, as Example 6.56 shows.
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Example 6.56. Taking B01 as before, let R = (g = 0 C h < 10 B g = 1).
Projecting the CA of B01 through R yields:

∀ h, h̃ • U (g = 0 C h < 10 B g = 1)⇒ (h = 0⇒ h̃ > 0)

= ∀ h, h̃ • (U (g = 0 C h < 10 B g = 1) ∧ h = 0)⇒ h̃ > 0

= ∀ h̃ • (g = 0 ∧ (g̃ = 0 C h̃ < 10 B g̃ = 1))⇒ h̃ > 0

= g = 0⇒ g̃ = 1

R is a forwards simulation between h := 0 u h := 1 and the concrete
action g := 0. This means the data refinement of B01 with respect to R is:

〈 g := 0 〉 ; 〈 g = 0⇒ g̃ = 1 〉 = 〈 g := 0 〉 ; 〈 false 〉

This refinement is clearly too strong. One solution is to restructure the
CA before applying data refinement:

B01 = 〈 h := 0 u h := 1 〉 ; 〈 h = 0⇒ h̃ = 1 〉

Data-refining this restructured specification with respect to R yields:

〈 g := 0 〉 ; 〈 g = 0⇒ (g̃ = 0 ∨ g̃ = 1) 〉 = 〈 g := 0 〉

Now, the CA is innocuous: the data refinement has resolved the non-
deterministic choice in a secure way, so the CA plays no further part. ♦

As Example 6.55 demonstrates, applying data refinement to processes
featuring CAs has the potential to create inconsistencies between func-
tionality and confidentiality. These inconsistencies can be detected by
restoring a data-refined process to a fully justified form, just as with
action refinement.

155



6 Secure Software Development

6.6.3 Process Refinement

In Circus, process refinement is defined as action refinement over the
main actions of processes, with their state variables hidden:

P1 vP P2 , (∃ v, v′ • P1.Act) v (∃ v, v′ • P2.Act)

where P1.Act and P2.Act denote the main actions of P1 and P2 respectively.
This definition can easily be extended to the lifted space, by hiding the
fog state variables as well.

The Circus refinement strategy defines splitting laws for achieving pro-
cess refinement (Cavalcanti et al., 2003). These laws enable a process P
to be decomposed into multiple processes. These sub-processes can be
joined together (using parallel composition, or another operator) to form
a process that refines P. Hence, a monolithic process specification can be
implemented by a coalition of communicating processes.

The splitting laws for Circus processes are equally applicable to lifted
processes. Since these laws are defined in terms of action refinement,
we can apply the Circus refinement calculus (extended with the laws
of Section 6.4) to split a lifted process into multiple lifted processes.
However, lifted processes need special attention for a couple of reasons:

• If processes are joined together in parallel composition on channel
set cs, then synchronisations between the processes may constrain
their behaviours. As described in Subsection 6.5.2, this effect can
lead to inconsistencies in the parallel process which are not de-
tectable by analysing its constituent processes individually. This
problem can be avoided by enlarging Low’s window on each pro-
cess to include all channels in cs.

• An impediment to process refinement may arise if CAs reference
state variables spanning across a partition of the process state.
In such cases, it may be necessary to strengthen a CA with an
equivalent (or stronger) CA before decomposing the process.
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Example 6.57. Suppose a process incorporates a CA that references state
variables a and b, such as 〈 ã 6= a ∨ b̃ 6= b 〉. This CA could be refined
to either 〈 ã 6= a 〉 or 〈 b̃ 6= b 〉, in order to partition the process into two
components with states a and b respectively. ♦

We do not consider the Circus process indexing mechanism, or the
associated promotion techniques described by Cavalcanti et al. (2003).

6.7 Implementation

A program specification is ready to be implemented only if it exclusively
consists of executable constructs (Morgan, 1994). Since CAs are partial
constructs — i.e. they may exhibit miraculous behaviour — they are not
executable and should therefore be eliminated from a process design to
ensure the process is implementable.

6.7.1 Translating to Circus

The order embedding linking Circus constructs and lifted constructs can
be applied to translate lifted processes to Circus processes. The purpose of
making this translation is to enable existing techniques for implementing
Circus to be applied.

Theorem 6.58. Provided Q is a fully justified lifted process with no
miraculous CAs, D (Q) can be expressed as a pure Circus process.

The justification of Theorem 6.58 is instructive. Given a fully justi-
fied process Q such that no CA in Q is 〈 false 〉, then because Q is fully
justified, the CAs in Q cannot induce miraculous behaviour. By Condi-
tion 5.11, the application of D to Q distributes through each the lifted
operators of Q. Hence, by distributing D throughout the body of Q, D (Q)

can be expressed as a process consisting of constructs of the form:

D (〈A 〉) and D (〈 θ 〉)
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composed with the (unlifted) Circus operators. By Law 5.4 and Law 5.45,
each of these constructs is itself a Circus action. It is important to stress this
translation does not constitute a refinement of a lifted process, because
the fog variables are absent from the alphabet of Circus processes.

A Circus process translated by applying D to a fully justified lifted
process by this procedure does not leak secret information to Low. How-
ever, the Circus semantics does not guarantee that refinements of this
Circus process are themselves secure. To guard against the danger of
making the process insecure, the translation to Circus should be made
only after all development work on the process design is finished. In par-
ticular, if the process is fully deterministic, then no refinement can reduce
non-determinism further, thereby disposing of the danger described in
Section 4.5).

6.7.2 Compilation to Code

Oliveira (2005) has described a scheme for translating Circus processes into
Java code. Since the processes derived by applying D to lifted processes
are just Circus processes, this scheme could be applied to implement
them. However, the security of an implementation generated using this
scheme is open to question, because it could leak secrets to the adversary
in unexpected ways:

• At the software level, Oliveira’s translation scheme implements the
resolution of non-determinism according to the output of a software
random number generator (RNG). It is well known that the output
stream of a software RNG is not truly random, but exhibits patterns
(Anderson, 2001). If an adversary can detect those patterns, it
may exploit them to predict how non-determinism is resolved by
the process implementation, with catastrophic consequences for
confidentiality.

• A confederation of processes may be distributed across a network
of nodes. Encrypting the information transmitted between nodes
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would be necessary, but may not suffice to safeguard the confiden-
tiality of that information. For instance, the encryption algorithm
may be breakable with sufficient computational resources. Altern-
atively, the protocols used for authentication or key exchange may
harbour subtle flaws in their design or implementation (Burrows
et al., 1989; Carlsen, 1994), which an adversary may exploit to cause
the protocol to deviate from the execution its designers intended.

• At the hardware level, power is consumed and electromagnetic
radiation is generated in proportion to the computation being per-
formed. Fluctuations in these side channels signal information about
the computation in progress. If an adversary is able to monitor
(or even tamper with) system hardware during operation, then it
may exploit these side channels to extract information about the
system’s state or behaviour. These attacks are not merely hypothet-
ical: Kocher et al. (1999) applied a form of power analysis to read
cryptographic keys from smart cards, based on knowledge of the
cryptographic algorithm being executed.

These characteristics of physical systems are not modelled in the se-
mantics of Circus processes. In the words of Ryan and Schneider (1998):

“[A] formal model is necessarily an abstraction of the real system.
As such it is always possible that some significant aspect of the real
system is missed.”

Since we have not formalised these characteristics, we can only justify
a physical computing artefact that implements a process design as being
secure if we assume the adversary cannot exploit these characteristics.
In principle, these characteristics could be modelled by extending Circus

(and its semantics), but that endeavour is beyond the scope of this thesis.
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6.8 Conclusion

This chapter has detailed a confidentiality-sensitive extension of the Circus

refinement strategy for developing abstract process designs into concrete
processes. Since refinement in the lifted semantics is confidentiality-
preserving but not feasibility-preserving, this strategy emphasises provid-
ing guidance to software engineers to maintain the feasibility of each
process design in the refinement chain.

Backwards propagation is an effective device for executing the strategy,
as it provides a platform for verifying the feasibility of a process and
conducting refinement steps that preserve feasibility. Fully justifying a
process is sufficient for verifying that the process is feasible. However, the
rules given in Subsection 6.5.2 for propagating CAs through lifted con-
structs are not guaranteed to be complete, because they over-approximate
Low’s inferences in some circumstances. Therefore, in those cases where
full justification fails to prove that a process is feasible, software engineers
may be obliged to resort to first principles in order to establish the process
is indeed feasible, or to adjust the process design in order to make full
justification successful.

Strictly speaking, verification can be carried out at any stage during a
process’s development. It is arguably best left to software engineers to
choose the stage of development where verification is most appropriate.
However, delaying verification may be disadvantageous, because without
the guidance of propagated CAs, a process design may be reached
containing infeasible elements that cannot be refined away. It would then
be necessary either:

• to backtrack to an earlier design in the development and proceed
along a different refinement path;

• to break the refinement chain, by weakening the functionality or
confidentiality attributes of the design.

• to weaken the notion of refinement; for instance, to co-operating or
independent refinement (Subsection 3.6.2).
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The first two options are not ideal: the first incurs wasted effort, the
second may sacrifice the design’s correctness. The third option has
promise if the observational abilities of all users of the process — and
the relationships between those users — are known. However, Circus

does not provide facilities to specify this information, so extensions to
the language would needed to support this option.

An important topic for future work would be to automate the propaga-
tion procedure. The connection between backwards propagation and the
weakest precondition semantics suggests that verifying a process satisfies
its CAs may be machine-checkable. Alternatively, it may be more efficient
to automate propagation in the forwards direction.

The next chapter provides a case study, as empirical evidence to valid-
ate the comprehensiveness of the refinement strategy.

161





7 Case Study

7.1 Introduction

The previous chapters have expounded a formal platform for developing
secure software which builds on the Circus formal method. This chapter
exemplifies how the platform can be applied in practice, by executing
a case study development. It explores the general issues that emerge
when functionality and confidentiality concerns are united in a system
development. It also aims to reinforce the reader’s understanding of the
techniques presented in the previous chapters.

Even though it is small in scope, this case study aims to validate the
platform with respect to its facilities for incorporating confidentiality
properties into system developments. Moreover, this case study clarifies
the capabilities (and weaknesses) of the platform, enabling us to identify
potential avenues for enhancing its scope.

Starting from a Circus specification of a system’s functionality in Sec-
tion 7.2, we apply backwards propagation to calculate the inferences of
its users in Section 7.3. Thereafter, in Section 7.4, we consider a series
of custom confidentiality properties which the system is required to up-
hold. For each property, we show how the specification can be adjusted
to incorporate the property. We also apply backwards propagation to
determine whether the resulting specifications are feasible. We aim to
demonstrate that backwards propagation is a practicable technique for
verifying confidentiality.

Having constructed a consistent process specification incorporating
both functionality and confidentiality attributes, we consider a selection
of possible design decisions that could be applied to that process in Sec-
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tion 7.5. Again, we verify the correctness of these design decisions with
respect to confidentiality by applying backwards propagation. Finally,
Section 7.6 summarises some lessons learnt from this case study.

7.2 A Sealed-Bid Auction

We study a sealed-bid auction contested by Alice and Bob. In a sealed-bid
auction, each contestant independently submits a single bid (for our
purposes, a positive integer) to the auctioneer. On receiving both bids,
the auctioneer declares the winner of the auction as the contestant who
bid the larger amount. Should the bids be equal, the auctioneer is free to
choose the winner.

A (fictional) auction house commissions a Circus specification of the
auctioneer, which is presented in Figure 7.1. This process first initialises
its state, then accepts bids from Alice and Bob in an unspecified order,
before it announces the winner of the auction and halts. For the purposes
of this study, the process is able to choose which bid to accept first.

Notice that this process deadlocks if either contestant fails to submit
their bid. A more realistic model would represent the contestants opting
either to submit a bid or declining to bid (before a deadline expires), but
this detail is irrelevant to our study.

The contestants and the auction house may expect a sealed-bid auction
to uphold various kinds of confidentiality requirements. However, the
Auction process specification tells us nothing about those requirements.
These requirements need to be identified and formalised, in order to
incorporate them within the process development.

7.3 Modelling Contestants’ Inferences

In this section, we consider how backwards propagation can be applied
to capture each user’s maximal knowledge about the process state, based
on its subsequent observation of the process’s behaviour. To avoid com-
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BDR ::= Alice | Bob
channel bidAlice, bidBob : N1
channel winner : BDR
process Auction , begin

state ASt , [a, b : N]

Init , [ASt′ |a′ = 0 ∧ b′ = 0 ]
BidA , bidAlice?n→ a := n?
BidB , bidBob?n→ b := n?
Submit , (BidA ; BidB) u (BidB ; BidA)

Declare ,

 a > b & winner!Alice→ Stop
2 a < b & winner!Bob→ Stop
2 a = b & u c : BDR • winner!c→ Stop


• Init ; Submit ; Declare

end

Figure 7.1: First model of auctioneer, capturing functionality alone.

plicating matters at this stage, we defer the introduction of confidentiality
properties into the development until the next section.

We expect that Alice can observe her own bid (on the bidAlice channel),
Bob can observe his own bid (on bidBob), and both contestants can observe
the winner channel. In a sealed-bid auction, the contestants submit their
bids in private, so we assume that Alice cannot observe bidBob and Bob
cannot observe bidAlice. We specify Alice and Bob’s windows as channel
sets, as detailed in Subsection 5.4.1:

channelset A , {| bidAlice, winner |}
channelset B , {| bidBob, winner |}

Our next task is to lift the Auction process. We shall focus on the
initialisation, submission and declaration phases of the auction. Hence,
we elevate the actions Init, Submit and Declare to the status of blocks. Let:

Init0 , 〈 Init 〉 Submit0 , 〈 Submit 〉 Declare0 , 〈Declare 〉
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To model Alice and Bob’s inferences about the behaviour of Auction, we
apply full propagation to the lifted process. Since Auction is structured
sequentially, it is expedient to propagate backwards from Declare, as
explained in Remark 6.43.

7.3.1 Declaration

The backwards propagation laws given in Subsection 6.4.2 do not extend
to blocks with the structure of Declare0. Rather than refining Declare0

into multiple blocks — which would over-approximate Alice and Bob’s
inferences about the winner of the auction (Subsection 6.2.2) — we instead
apply the heuristics described in Subsection 6.4.1 to calculate the state
information revealed to Alice and Bob by the behaviour of Declare0.

Since both Alice and Bob can observe winner events, their interactions
with Declare0 are identical. We break Declare0 apart as follows:

bw (Declare0, θ)

=

 bw (Declare0 ∧ tr′ − tr = 〈〉, θ)

∧ bw (Declare0 ∧ tr′ − tr = 〈WA〉, θ)

∧ bw (Declare0 ∧ tr′ − tr = 〈WB〉, θ)

 [Lemma 6.21]

=


bw (Declare0 ∧ tr′ − tr = 〈〉 ∧ WA ∈ ref ′, θ)

∧ bw (Declare0 ∧ tr′ − tr = 〈〉 ∧ WB ∈ ref ′, θ)

∧ bw (Declare0 ∧ tr′ − tr = 〈WA〉, θ)

∧ bw (Declare0 ∧ tr′ − tr = 〈WB〉, θ)


[Lemma 6.22]

where WA denotes (winner, Alice) and WB denotes (winner, Bob).
Since Declare0 does not terminate successfully, the choice of θ is irrel-

evant, because bw only imposes θ on terminal states. We consider each
part in isolation:

bw
(
Declare0 ∧ tr′ − tr = 〈〉 ∧ WA ∈ ref ′, θ

)
= a ≤ b⇒ ã ≤ b̃

bw
(
Declare0 ∧ tr′ − tr = 〈〉 ∧ WB ∈ ref ′, θ

)
= a ≥ b⇒ ã ≥ b̃
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bw
(
Declare0 ∧ tr′ − tr = 〈WA〉, θ

)
= a ≥ b⇒ ã ≥ b̃

bw
(
Declare0 ∧ tr′ − tr = 〈WB〉, θ

)
= a ≤ b⇒ ã ≤ b̃

Hence, the weakest obligation which left-justifies Declare0 is:

bw0 = (a ≥ b⇒ ã ≥ b̃) ∧ (a ≤ b⇒ ã ≤ b̃)

If a = b, the non-deterministic choice in Declare0 reveals to the con-
testants either a ≤ b or a ≥ b. Since we cannot control demonic non-
determinism, we must be prepared to accept either case. (The same
problem manifests in Example 6.8.) By way of compensation, bw0 over-
approximates the contestants’ inferences about the process state if a = b:

a = b⇒ bw0

= a = b⇒ ã ≥ b̃ ∧ ã ≤ b̃ [prop calc]

= a = b⇒ ã = b̃ [property of ≤]

and so Alice and Bob are modelled as being able to deduce if their
bids are equal, even though a single run of Declare0 does not reveal that
information to them.

7.3.2 Submission

To back-propagate an obligation through Submit0, we can treat Submit0 as
a composite choice (in the sense of Subsection 6.2.2) between BidA ; BidB
and BidB ; BidA. This approach is justified by instantiating Law 6.37:

bw (Submit0, θ) v
(

bw (〈BidA ; BidB 〉 , θ)

∧ bw (〈BidB ; BidA 〉 , θ)

)

We consider Alice and Bob’s inferences about this block separately.
With Alice’s window, assuming the scope of n? extends beyond the

167



7 Case Study

prefixing, the block 〈A : BidA ; BidB 〉 can be broken down as follows:

〈A : bidAlice?n→ a := n? ; bidBob?n→ b := n? 〉

=
〈A : bidAlice?n→ Skip 〉 ;
〈A : a := n? ; bidBob?n→ b := n? 〉

[Lemma 5.23]

=
〈A : bidAlice?n→ Skip 〉 ; 〈A : a := n? 〉 ;
〈A : bidBob?n→ Skip 〉 ; 〈A : b := n? 〉

[Lemma 5.18, twice]

Hence, an obligation θ can be back-propagated through this specific-
ation fragment by appealing to the laws in Section 6.4. With Alice’s
window, the back-propagation of θ through BidA is:

bw (〈A : bidAlice?n→ Skip 〉 ; 〈A : a := n? 〉 , θ)

= bw (〈A : bidAlice?n→ Skip 〉 , bw (〈A : a := n? 〉 , θ)) [Law 6.32]

= bw
(
〈A : bidAlice?n→ Skip 〉 , θ[n?, ñ?/a, ã]

)
[Law 6.31]

= ∀ n? : N1 • θ[n?, ñ?/a, ã][n?/ñ?] [Law 6.36]

= ∀ a : N1 • θ[a/ã] [renaming]

Here, the renaming of ã to a is justified because a = ã; that is, Alice knows
the exact value of her own bid.

With Alice’s window, the back-propagation of θ through BidB is:

bw (〈A : bidBob?n→ Skip 〉 ; 〈A : b := n? 〉 , θ)

= bw
(
〈A : bidBob?n→ Skip 〉 , θ[n?, ñ?/b, b̃]

)
[as before]

= ∀ n? : N1 • ∃ ñ? : N1 • θ[n?, ñ?/b, b̃] [Law 6.36]

= ∀ b : N1 • ∃ b̃ : N1 • θ [renaming]

In line with our intuition, this calculation indicates nothing is revealed to
Alice about Bob’s bid b, except that b ∈N1. Therefore, we have:

bw (〈A : BidA ; BidB 〉 , θ) = ∀ a, b : N1 • ∃ b̃ : N1 • θ[a/ã]
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bw (〈A : BidB ; BidA 〉 , θ) = ∀ a, b : N1 • ∃ b̃ : N1 • θ[a/ã]

With Bob’s window, the back-propagations of θ through BidA and BidB
are symmetric:

bw (〈B : BidA ; BidB 〉 , θ) = ∀ a, b : N1 • ∃ ã : N1 • θ[b/b̃]

bw (〈B : BidB ; BidA 〉 , θ) = ∀ a, b : N1 • ∃ ã : N1 • θ[b/b̃]

Back-propagating bw0 through 〈A : BidA ; BidB 〉 yields:

bw (〈A : BidA ; BidB 〉 , bw0)

= ∀ a, b : N1 • ∃ b̃ : N1 • bw0[a/ã] [as above]

= ∀ a, b : N1 • ∃ b̃ : N1 • (a ≥ b⇒ a ≥ b̃) ∧ (a ≤ b⇒ a ≤ b̃)

= true [pred calc]

It should be no surprise that bw (〈B : BidA ; BidB 〉 , bw0) is also true.

By substituting these results into our split form of Submit0:

bw (Submit0, θ) v
(

bw (〈BidA ; BidB 〉 , θ)

∧ bw (〈BidB ; BidA 〉 , θ)

)

we find that bw (Submit0, bw0) v true, so bw (Submit0, bw0) = true.

7.3.3 Initialisation

The backwards propagation of bw (Submit0, bw0) through Init0 is trivial:

bw (Init0, true) = true

Figure 7.2 presents a fully-justified lifted process form of Auction —
complete with CAs modelling Alice and Bob’s inferences about the
process state — based on the calculations we have performed.
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BDR ::= Alice | Bob
channel bidAlice, bidBob : N1
channel winner : BDR
channelset A , {| bidAlice, winner |}
channelset B , {| bidBob, winner |}
process AuctionL , begin

state ASt , [a, b : N]

Init0 , 〈 [ASt′ |a′ = 0 ∧ b′ = 0 ] 〉
BidA , bidAlice?n→ a := n?
BidB , bidBob?n→ b := n?
Submit0 , 〈 (BidA ; BidB) u (BidB ; BidA) 〉

Declare0 ,

〈 a > b & winner!Alice→ Stop
2 a < b & winner!Bob→ Stop
2 a = b & u c : BDR • winner!c→ Stop

〉
bw0 , (a ≥ b⇒ ã ≥ b̃) ∧ (a ≤ b⇒ ã ≤ b̃)
• 〈 true 〉 ; Init0 ; 〈 true 〉 ; Submit0 ; 〈 bw0 〉 ; Declare0 ; 〈 true 〉

end

Figure 7.2: Lifted and fully-justified model of auctioneer.
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7.4 Specifying Confidentiality Properties

We now investigate how some example confidentiality properties can
be expressed over Auction0, and verify whether they are consistent with
the pre-existing functionality of the process by applying backwards
propagation.

In practice, it would be expected that backwards propagation should be
performed after a specification covering functionality and confidentiality
properties has been produced, to verify these properties are compat-
ible before proceeding with the development. When we are reasonably
confident that these properties are compatible, this approach would be
most expedient. However, we take the opposite approach in this section
for pedagogic reasons. Our goals here are to focus on how individual
confidentiality requirements can be encoded; and to investigate how they
may affect the feasibility of a process. These goals are best served by
considering each requirement in isolation, as we proceed to do.

7.4.1 Comparing Bids

The auction house’s first confidentiality requirement is:

CP1 The contestants cannot establish if Alice’s bid is larger than Bob’s.

We capture CP1 by inserting a CA into the body of the process, between
Submit0 and Declare0:

Init0 ; Submit0 ; 〈 a > b⇒ ã ≤ b̃ 〉 ; Declare0

To determine whether this CA is consistent with the process, we compose
it with the back-propagation bw0 of Declare0:

〈 a > b⇒ ã ≤ b̃ 〉 ; 〈 (a ≥ b⇒ ã ≥ b̃) ∧ (a ≤ b⇒ ã ≤ b̃) 〉

= 〈 a > b⇒ ã ≤ b̃ ∧ (a ≥ b⇒ ã ≥ b̃) ∧ (a ≤ b⇒ ã ≤ b̃) 〉[Law 5.41]

= 〈 (a ≥ b⇒ ã = b̃) ∧ (a < b⇒ ã ≤ b̃) 〉 [prop calc]
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The obligation tells us that Declare0 does not leak information that
violates CP1. Since this obligation is stronger than bw0, we still need to
propagate it backwards through Submit0, to ensure Submit0 is left-justified.
As in Subsection 7.3.2, we calculate:

bw
(

Submit0, (a ≥ b⇒ ã = b̃) ∧ (a < b⇒ ã ≤ b̃)
)

= ∀ a, b : N1 • ∃ b̃ : N1 • ((a ≥ b⇒ ã = b̃) ∧ (a < b⇒ ã ≤ b̃))[a/ã]

= true [renaming, pred calc]

This calculation indicates that CP1 is upheld, because Alice cannot rule
out the possibility that her own bid is equal to Bob’s. Again, the calcula-
tion with Bob’s window is symmetric.

Since this obligation matches the back-propagation of bw0 through
Submit0, we need not back-propagate it further. Hence, we can ascertain
the process embedding the CA corresponding to CP1 is self-consistent.

7.4.2 Value of Bids

The second confidentiality requirement we consider is:

CP2 Neither contestant can deduce if the other’s bid exceeds £100.

We capture CP2 by inserting two separate CAs over Alice and Bob’s
inferences about each other’s bids. Let CP2A specify that Bob cannot
deduce that Alice’s bid exceeds £100:

CP2A , 〈B : a > 100⇒ ã ≤ 100 〉

Likewise, let CP2B specify the complementary condition for Alice:

CP2B , 〈A : b > 100⇒ b̃ ≤ 100 〉

We cannot insert CP2A and CP2B into BidA and BidB without split-
ting Submit0 into multiple blocks. Instead, we insert CP2A and CP2B
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immediately following Submit0 in the process body:

Init0 ; Submit0 ; CP2A ; CP2B ; 〈 bw0 〉 ; Declare0

To left-justify Submit0 with respect to CP2A and CP2B, we back-propagate
each CA through Submit0 separately. Here, we focus on CP2B:

bw (Submit0, bw0 ∧ CP2B)

∀ a, b : N1 • ∃ b̃ : N1 • (bw0 ∧ (b > 100⇒ b̃ ≤ 100))[a/ã] [as above]

∀ a, b : N1 • ∃ b̃ : N1 •

 bw0[a/ã] ∧ b̃ ≤ 100
C a > 100 ∧ a < b B

bw0[a/ã] ∧ (b > 100⇒ b̃ ≤ 100)


[renaming; case split]

The case split is helpful for evaluating the truth of this predicate.
Focusing on the case where Alice’s bid exceeds £100 but is smaller than
Bob’s bid, we have:

a > 100 ∧ a < b⇒ (a ≥ b⇒ a ≥ b̃) ∧ (a ≤ b⇒ a ≤ b̃) ∧ b̃ ≤ 100

= a > 100 ∧ a < b⇒ a ≤ b̃ ∧ b̃ ≤ 100 [pred calc]

= a > 100 ∧ a < b⇒ a ≤ b̃ ∧ b̃ ≤ 100 ∧ a ≤ 100 [property of ≤]

= a > 100 ∧ a < b⇒ false [contradiction]

Because Bob is declared the winner in this case, Alice can infer that Bob’s
bid is over £100. Hence, bw (Submit0 ; CP2B, bw0) reduces to:

∀ a, b : N1 • ∃ b̃ : N1 •
¬ (a > 100 ∧ a < b) ∧ bw0[a/ã] ∧ (b > 100⇒ b̃ ≤ 100)

[as above]

= false [pred calc]

This calculation tells us the specification fragment:

Submit0 ; CP2B ; Declare0
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may exhibit miraculous behaviour: should Alice’s bid exceed £100 but be
smaller than Bob’s bid, the process would fail to announce the winner of
the auction, to prevent Alice’s inferences from violating CP2. Hence, the
CP2 property is inconsistent with the functionality of the process.

In this case study, we proceed with the process development in the
absence of CP2. In practice, if the auction house’s requirements for the
system included CP2, then it would be the responsibility of the system
developers to seek clarification from the auction house to resolve the
inconsistency.

7.4.3 Order of Bids

The third confidentiality requirement we consider is:

CP3 Neither contestant can learn who placed the first bid.

We formalise CP3 by refining Submit0. Applying a tactic described in
Subsection 5.6.2, we introduce a local variable f into Submit0 to record
which contestant bids first. Then, CP3 can be expressed with a CA
referencing f , as follows:

SubmitAux , 〈 f = Alice & BidA ; BidB 2 f = Bob & BidB ; BidA 〉
CP3 , 〈 f̃ = opp(f ) 〉
Submit1 , var f • 〈 f := Alice u f := Bob 〉 ; CP3 ; SubmitAux

where opp is a function that maps each contestant to its opponent:

opp : BDR→ BDR

opp(Alice) = Bob
opp(Bob) = Alice

Here, the CA CP3 specifies that Bob bidding first serves as a cover
story for Alice bidding first (f = Alice⇒ f̃ = Bob) and vice versa. At first
glance, we may be tempted to say this CA is upheld by the process, but
we still need to apply back-propagation to be sure.
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To back-propagate an obligation θ through SubmitAux, we again resort
to heuristics. Reasoning from Alice’s perspective, we have:

bw (SubmitAux, θ)

= [Lemma 6.23; Lemma 6.21; Lemma 6.22 ]
bw (SubmitAux ∧ wait′ ∧ ¬ TA ∧ RA, θ)

∧ bw (SubmitAux ∧ wait′ ∧ ¬ TA ∧ ¬ RA, θ)

∧ bw (SubmitAux ∧ wait′ ∧ TA, θ)

∧ bw (SubmitAux ∧ ¬ wait′, θ)


where A denotes the set of events in window A in the following:

TA = ∃ n : N1 • (tr′ − tr) �A = 〈(bidAlice, n)〉

RA = ∃ n : N1 • (bidAlice, n) ∈ ref ′ ∩A

The first bw conjunct describes Alice’s inferences when she attempts
to submit her bid, but finds the process refuses to accept it. The only ex-
planation for this circumstance is that the process is deadlocked, waiting
for Bob to submit his bid. Hence:

bw
(
SubmitAux ∧ wait′ ∧ ¬ TA ∧ RA, θ

)
= (f = Bob⇒ f̃ = Bob)

(Obligation θ is irrelevant here, because we are considering only those
behaviours where SubmitAux does not terminate.)

The second bw construct describes Alice’s inferences when the process
does not refuse her bid. It reveals no information to Alice about f :

bw
(
SubmitAux ∧ wait′ ∧ ¬ TA ∧ RA, θ

)
= true

The third bw conjunct describes Alice’s inferences when the process
is deadlocked, but she has submitted her bid. Again, this circumstance
can only be explained by the process waiting for Bob to submit his bid.
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Hence:

bw
(
SubmitAux ∧ wait′ ∧ TA, θ

)
= (f = Alice⇒ f̃ = Alice)

The fourth bw conjunct just back-propagates θ through SubmitAux:

bw
(
SubmitAux ∧ ¬ wait′, θ

)
= ∀ a, b : N1 • ∃ b̃ : N1 • θ[a/ã]

Assembling these four conjuncts yields:

bw (SubmitAux, bw0) = (f ∈ BDR⇒ f = f̃ )

We now back-propagate this obligation through CP3:

bw
(
〈 f̃ = opp(f ) 〉, (f ∈ BDR⇒ f = f̃ )

)
= f̃ = opp(f ) ∧ (f ∈ BDR⇒ f = f̃ ) [Law 6.18]

and then back-propagate through the remaining block of Submit1:

bw
(
〈 f := Alice u f := Bob 〉 , f̃ = opp(f ) ∧ (f ∈ BDR⇒ f = f̃ )

)
= ∃ f , f̃ • f ∈ BDR ∧ f̃ ∈ BDR ∧ f̃ = opp(f ) ∧ (f ∈ BDR⇒ f = f̃ )

= ∃ f , f̃ • f ∈ BDR ∧ f̃ ∈ BDR ∧ f̃ = opp(f ) ∧ f = f̃ [prop calc]

= ∃ f , f̃ • f ∈ BDR ∧ f̃ ∈ BDR ∧ f̃ 6= f ∧ f = f̃ [property of opp]

= false [pred calc]

This result informs us that our definition of Submit1 is inconsistent
with respect to its embedded CA. Intuitively, CP3 is violated (by the
unlifted Auction process) because if either contestant fails to submit a bid,
then the other contestant can deduce the bidding order by observing:

• either the process’s refusal to accept their own bid;

• or the process’s refusal to supply the winner of the auction, after
the contestant has submitted their own bid.
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Were it the case that our model of Alice’s and Bob’s observations (as
given by Definition 5.1) did not include a projection of the refusals of a
process, then CP3 would not induce an inconsistency with Submit1.

If the auction house is prepared to relax the CP3 requirement to:

CP4 Under the circumstances that both bids are submitted, neither contestant
can learn who placed the first bid.

we can redefine Submit1 as:

Submit2 , var f • 〈 f := Alice u f := Bob 〉 ; SubmitAux ; CP3

Here, the CA CP3 is invoked only after Alice and Bob have submit-
ted their bids. Even though Submit2 uses the same CA as before, this
specification is weaker than Submit2.

Now, we have:

bw
(

SubmitAux ∧ ¬ wait′, f̃ = opp(f ) ∧ bw0
)

= f̃ = opp(f )

and back-propagating through the remaining block of Submit2 gives:

bw
(
〈 f := Alice u f := Bob 〉 , f̃ = opp(f )

)
= true

By the same argument as that given by Subsection 7.4.1, we can con-
clude the AuctionLC process (Figure 7.3) — featuring an explicit specific-
ation of CP1 and CP4 — is consistent with respect to our model of Alice
and Bob’s observational abilities.

7.5 Potential Refinement Steps

Following Section 6.6, we now consider briefly some refinement steps
that could be applied to the consistent AuctionLC process.
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BDR ::= Alice | Bob
channel bidAlice, bidBob : N1
channel winner : BDR
channelset A , {| bidAlice, winner |}
channelset B , {| bidBob, winner |}
process AuctionLC , begin

state ASt , [a, b : N]

CP1 , 〈 a > b⇒ ã ≤ b̃ 〉
CP4 , 〈 f̃ = opp(f ) 〉
Init0 , 〈 [ASt′ |a′ = 0 ∧ b′ = 0 ] 〉
BidA , bidAlice?n→ a := n?
BidB , bidBob?n→ b := n?
SubmitAux , 〈 f = Alice & BidA ; BidB 2 f = Bob & BidB ; BidA 〉
Submit2 , var f • 〈 f := Alice u f := Bob 〉 ; SubmitAux ; CP4

Declare0 ,

〈 a > b & winner!Alice→ Stop
2 a < b & winner!Bob→ Stop
2 a = b & u c : BDR • winner!c→ Stop

〉
• Init0 ; Submit2 ; CP1 ; Declare0

end

Figure 7.3: Lifted model of auctioneer, capturing CP1 and CP4.
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7.5.1 Bidding Order

We could refine Submit2 so that Alice always bids first:

Submit3 , var f • 〈 f := Alice 〉 ; 〈BidA ; BidB 〉 ; CP4

This refinement is naïve: by fixing the order of bidding, it is clear that
CP4 is violated. Formally, this inconsistency would be detected by back-
propagating CP4 through the preceding blocks.

An alternative refinement of Submit2 would offer the choice between
Alice and Bob’s bids to the environment:

Submit4 , var f •
〈

BidAlice ; BidBob ; f := Alice
2 BidBob ; BidAlice ; f := Bob

〉
; CP4

Back-propagating CP4 through Submit4 yields true, as did Submit2. Hence,
we conclude that Submit4 is a feasibility-preserving refinement of Submit2.

7.5.2 Deterministic Declaration

Suppose the auctioneer is instructed to declare Bob as the winner only
if his bid is strictly greater than Alice’s. This instruction clarifies the
behaviour of Declare0 by refinement:

Declare1 , a ≥ b & winner!Alice→ Stop 2 a < b & winner!Bob→ Stop

By observing a winner event, the contestants can infer whether a ≥ b or
a < b, as is reflected by:

bw (Declare1, true) = (a ≥ b⇒ ã ≥ b̃) ∧ (a < b⇒ ã < b̃)

This obligation is neither weaker nor stronger than bw0. Back-propagating
it through the CA CP1 in AuctionLC gives the obligation:

(a > b⇒ ã = b̃) ∧ (a = b⇒ ã ≥ b̃) ∧ (a < b⇒ ã < b̃)
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Now, back-propagating this obligation through Submit2 yields true: the
extra information that Declare1 reveals does not violate CP1 or CP4.
Hence, the refinement of Declare0 into Declare1 is feasibility-preserving.

7.5.3 Data Refinement

One possible data refinement on AuctionLC would be to replace the state
ASt with three new variables, linked by the simulation relation:

R =

(
c = max(a, b) ∧ (e = 1 C a = b B e = 0)

∧ (a > b⇒ w = Alice) ∧ (a < b⇒ w = Bob)

)

Here, c stores the value of the larger bid, while w records the identity of
the contestant who made that bid. The binary-valued variable e records
whether the bids are equal. It serves no purpose with respect to the
functionality of the specification.

By applying this data refinement to AuctionLC, we can derive the
process presented in Figure 7.4. Notice how this data refinement entails
the restructuring of CP1, by projecting its embedded obligation through
the simulation:

∀ a, b, ã, b̃ • U (R)⇒ (a > b⇒ ã ≤ b̃)

= e = 0 ∧ w = Alice⇒ ẽ = 1 ∨ w̃ = Bob [pred calc]

Here, the purpose of e becomes apparent. It is needed to capture the exact
concrete fog states that R maps to ã ≤ b̃ in the abstract space, without
strengthening the CA.

An implicit design decision captured by the BidAD and BidBD actions
(see Figure 7.4) is that, if Alice and Bob’s bids are equal, then the winner
is the contestant who bid first. However, this decision harbours yet
another subtle security flaw, with respect to CP4. Suppose that Alice bids
the minimum amount £1 but is then declared the winner. Alice can infer
that Bob’s bid must also be £1 and, by extension, that she must have bid
first, in violation of CP4D.
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BDR ::= Alice | Bob
channel bidAlice, bidBob : N1
channel winner : BDR
channelset A , {| bidAlice, winner |}
channelset B , {| bidBob, winner |}
process AuctionLCD , begin

state CSt , [c : N, e : {0, 1} , w : BDR]
CP1D , 〈 e = 0 ∧ w = Alice⇒ ẽ = 1 ∨ w̃ = Bob 〉
CP4D , 〈 f̃ = opp(f ) 〉
InitD , 〈 [CSt′ |c′ = 0 ∧ e′ = 1 ∧ w′ = Alice ] 〉

BidAD , bidAlice?n→

 ∆CSt
n? : N1

∣∣∣∣∣∣
c′ = max(c, n?)
e′ = 1 C c = n? B e′ = 0
w′ = Alice C c > n? B w′ = w


BidBD , bidBob?n→

 ∆CSt
n? : N1

∣∣∣∣∣∣
c′ = max(c, n?)
e′ = 1 C c = n? B e′ = 0
w′ = Bob C c > n? B w′ = w


SubmitAuxD , 〈 f = Alice & BidAD ; BidBD 2 f = Bob & BidBD ; BidAD 〉
SubmitD , var f • 〈 f := Alice u f := Bob 〉 ; SubmitAuxD ; CP4D

DeclareD , 〈winner!w→ Stop 〉
• InitD ; SubmitD ; CP1D ; DeclareD

end

Figure 7.4: Lifted and data-refined model of auctioneer.
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7 Case Study

Ignoring CP1D for simplicity, we can confirm the presence of this
security flaw in the usual fashion. Back-propagating the obligation:

bw (CP4D, bw (DeclareD, true)) = w = w̃ ∧ f̃ = opp(f )

through 〈A : SubmitD 〉 and simplifying yields the following:

∀ a, b : N1 • ∃ b̃ : N1 • (a ≥ b ∧ a > b̃) ∨ (a > b ∧ a ≥ b̃)

When a = 1 and b = 1, no values of b̃ : N1 can satisfy this condition.
Hence, we have a contradiction and can therefore establish the process is
insecure with respect to CP4.

7.6 Discussion

This case study has demonstrated that software development is made
more complicated by the presence of confidentiality properties. Even a
superficially simple process can harbour surprisingly deep subtleties that
must be probed to acquire robust assurances of security.

We have used back-propagation as a tool to detect inconsistencies
between the functionality and confidentiality requirements placed on
the auctioneer. This analysis has revealed subtle security issues: in
particular, the conflict between CP3 and the Auction process (described
in Subsection 7.4.3) may not be immediately obvious.

The verification procedure is tractable for a small case study, but the
lack of tool support would obstruct its deployment in a larger case study.
As we have seen, calculating back-propagations through SubmitAux
and Declare0 by hand is tricky and requires extra creativity in places.
Moreover, the potential for introducing errors can only be magnified for
more complex blocks.
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8 Conclusions

8.1 Summary of the Thesis

This thesis presents a formal platform for specifying, verifying and
developing software systems with respect to both functionality and con-
fidentiality properties. This platform leads towards a methodology for
constructing software that is “secure by design”.

The platform’s backbone is the Unifying Theories of Programming. We
have created a generic approach for extending UTP theories to model
users’ observational abilities and, by extension, their inferences about a
system’s behaviour. This approach enables confidentiality properties to
be specified alongside a functional model of a system. In this way, we
reconcile the opposing concerns of functionality and confidentiality in a
clean and appealing fashion.

We focus on making the approach practical by specialising it to Circus.
We extend the Circus notation with facilities to embed confidentiality
properties within a functional process specification. This work engenders
a language that makes the specification of confidentiality properties
accessible to formal methods practitioners who are non-specialists in the
field of information security. These specifications can be subjected to
rigorous consistency checks, to detect potential sources of insecurity.

Much of the work presented in this thesis draws inspiration from
existing ideas on information flow security in the academic literature.
The originality of the thesis lies in how we have distilled these ideas to
their essence by characterising them in the UTP, enabling us to synthesise
new connections between these ideas and the field of formal methods.

The work reported in this thesis could be ported to other formal
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methods with a UTP semantics, or other languages in the Circus family.
However, it is unclear how our encoding of confidentiality properties
could be replicated for languages without a UTP-like semantics.

We now review the main contributions of the thesis, discuss their
significance and highlight areas for improvement.

8.1.1 Modelling User Interactions

Chapter 3 proposes a framework for exploring specifications of systems
from the perspective of their users. The key component of this framework
is the view, which formalises a user’s interface to a system. Views can
be applied to translate a model of system behaviours into a model of
user interactions, which can reveal defects in a system’s functionality.
Conversely, views can be used to calculate a user’s inferences about a
system’s behaviour.

This framework is generic in the UTP theory framing a system model.
We have applied the framework to the UTP theories of designs and
reactive processes; and, in the latter case, we have demonstrated that the
framework generalises Roscoe’s notion of lazy abstraction.

8.1.2 Encoding Confidentiality

Chapter 4 extends the framework of Chapter 3 to formalise information
flow from systems to adversarial users. Parameterised by an indistin-
guishability relation between system behaviours — constructed from a
view — this encoding of information flow is generic across UTP theories.

We harness the lifted space of indistinguishable behaviours to capture
notions of confidentiality. Obligations are closure conditions over the
lifted space, which specify an upper bound on an adversary’s inferences
about a system’s behaviour. We realise a specification of a secure system
by conjoining obligations with a lifted model of the system’s functionality,
to eliminate any system behaviours that violate an obligation.

The fusion of functionality and confidentiality presented in this chapter
is novel. The application of miracles to denote conflicting specifications
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of functionality and confidentiality is especially appealing, yet is only
possible because miracles are valid specification artefacts in the UTP.
Moreover, miracles solve the long-standing “refinement paradox” in a
clean fashion: refinement can make system designs miraculous, but it
cannot make them insecure.

Obligations capture a more liberal notion of confidentiality than non-
interference. They are based on the premise that software engineers
would find it advantageous to tailor the specification of confidentiality
properties to the system domain, as opposed to aiming to satisfy rigid
noninterference properties. Even though noninterference is arguably too
strict for many classes of systems, our premise can only be vindicated
with empirical evidence.

8.1.3 Integrating Confidentiality with Circus

Chapter 5 specialises the confidentiality encoding from Chapter 4 to
cover Circus processes. Targeting Circus is a pragmatic choice, owing to
its UTP semantics, its unified treatment of state and behavioural aspects
of systems, and its comprehensive refinement strategy.

At the semantic level, the integration is accomplished by lifting Circus

constructs to represent information flow to the adversary, using the tech-
niques presented in Chapter 4. This approach complicates the semantics
of these constructs, but in return, it affords reasoning about information
flow in a compositional fashion.

Confidentiality annotations generalise Circus coercions to encode con-
fidentiality properties over processes in terms of their intermediate state.
The semantics of confidentiality annotations makes the insecure beha-
viours of a process miraculous, thereby preventing the process from
leaking secret information to an adversary. A process specification can
only be strengthened by inserting confidentiality annotations, so they can
be introduced at any stage of a process’s development.

Much of the expressive power of confidentiality annotations is exposed
by composing them with lifted Circus constructs, to specify confidenti-
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ality properties over the events a process performs. Taking this idea to
an extreme, confidentiality annotations can be formulated as separate
processes, which can be superposed with a functional process to create a
secure specification of a system.

8.1.4 Verifying Security

Chapter 6 focuses on the development of processes with confidentiality
annotations by stepwise refinement, from abstract specifications all the
way to the implementation level.

While confidentiality annotations ensure confidentiality is preserved by
refinement, ill-judged specifications or imprudent refinement steps can
make a process infeasible. This effect motivates us to extend the Circus

refinement strategy with special measures to ensure that each process
design in the refinement chain is implementable.

This chapter presents backwards propagation, a technique for system-
atically and tractably over-approximating an adversary’s inferences about
the process state at each step of the process’s execution. These derived
inferences can be checked against the confidentiality annotations within
the process body, to verify those annotations are respected throughout
the process’s execution.

Backwards propagation also enables software engineers to verify that
refinement steps are feasibility-preserving. Rather than verifying each
process design in isolation, we can record the adversary’s inferences
by inserting confidentiality annotations at each point of the process.
Then, these annotations can be used to verify a localised refinement step,
without incurring the expense of re-verifying the whole process.

8.2 Directions for Future Research

There is still much work to be done in scaling up the capabilities of the
formal development platform beyond a proof of concept. We now review
a selection of topics that merit further research.
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8.2 Directions for Future Research

8.2.1 Tool Support

Effective machine assistance is often cited as important for encouraging
the industrial adoption of formal methods (Saiedian, 1996; Woodcock
et al., 2009). The lack of any dedicated tool support for our platform is
arguably the main impediment to its deployment.

Some possible goals of tool support for the platform would include the
ability to (semi)-automatically verify that a specification of functionality
and confidentiality properties is consistent; and to determine whether
this consistency is maintained by refinement steps.

The design of the tools may be based on techniques in this thesis (such
as backwards propagation) or may involve other techniques devised
expressly with automation in mind. Work by Černý (2009) indicates
that verifying a restricted space of terminating programs against a class
of confidentiality properties (much like our own) can be reduced to a
decision problem that can be tackled using a SMT solver. As with all
automated verification techniques, restrictions on the program space are
necessary to avoid the halting problem.

One pathway towards implementing effective tool support would be
to adapt existing Circus tools, such as CRefine (Oliveira et al., 2008).
Extensions to these tools would include facilities to specify confidentiality
annotations; adaptations of the refinement rules to discriminate between
unlifted and lifted constructs; and potentially an implementation of the
backwards propagation calculus. Alternatively, if the platform is ported
to a formalism such as CSP‖B (Schneider and Treharne, 2005) or Event-B
(Abrial, 2010), tool support for verifying confidentiality could potentially
be implemented in the form of plug-ins for their respective toolsets.

8.2.2 Mechanising the Theory

All theorems, lemmas and laws presented in this thesis have been justified
by hand proof. Nevertheless, it would be expedient to verify their cor-
rectness by encoding their proofs in a theorem prover. The Saoithín proof
checker for UTP (Butterfield, 2010), or the Isabelle/Circus environment
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(Feliachi et al., 2011), could be applied to this task.

8.2.3 Case Studies

The purpose of carrying out case studies is to evaluate the platform’s suit-
ability for the development of secure software. Owing to time constraints
and the lack of tool support, the case study and examples presented in
this thesis are small in scope. Larger case studies are needed to evaluate
the platform comprehensively.

Two pertinent topics for larger case study developments with the
platform are outlined thus:

Validating access controls A specification of an access control mechanism
could be augmented with confidentiality annotations, in order
to specify explicitly the confidentiality policy that (it is claimed)
is modelled by that mechanism. By combining this augmented
specification with a system design, a specification could be derived
that cannot leak information in contravention of the confidentiality
policy, regardless of whether the mechanism captures the policy
correctly. An insecure implementation along the lines of McLean’s
“System Z” (see Section 4.1) would then be unattainable.

Security protocol development A security protocol could be formalised
in lifted Circus, alongside a Dolev-Yao model of an adversary’s
abilities to tamper with the protocol (Dolev and Yao, 1983). The
secrecy properties of the protocol would be specified by inserting
confidentiality annotations into the protocol design. Once these
secrecy properties are verified to hold, it would then be appropriate
to verify that tactics for refining the protocol design — for instance,
by fixing the order of tokens within messages — do not introduce
insecurities into the concrete protocol design.

A complete delivery of these case studies would provide convincing
evidence that, with suitable tool assistance, the platform could potentially
be scaled up to accommodate real-world software engineering projects.
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8.2.4 A Confidentiality Policy Language

Our encoding of confidentiality properties — as relations between two
observational spaces of a system — is very general, but it is perhaps not
readily comprehensible by software engineers. Moreover, interweaving
confidentiality annotations with lifted Circus actions (as described in
Section 5.6) is a somewhat esoteric means for indirectly expressing con-
fidentiality properties over events. These tricks may confuse readers of a
specification, especially if the meaning of the confidentiality annotations
is not documented.

It would be worthwhile to define a dedicated language for expressing
confidentiality policies in practice. Shaped by the experience grown
through case studies, this language would feature idioms for expressing
common confidentiality properties over the state and behaviour of pro-
cesses in a clear and intuitive fashion. The language could be designed
with automated analysis in mind: restricting the expressiveness of the
idioms would simplify the task of building effective tool support to check
those idioms.

Some degree of translation would be needed to integrate this policy
specification language into our development platform (in its current
form). This translation could be implemented as a tool, taking a confid-
entiality policy and a Circus process as input, and generating a process
with embedded confidentiality annotations capturing the policy. The
annotated process could then be developed using the platform.

8.2.5 Probabilistic Information Flow

The model of information flow considered in this thesis is possibilistic,
rather than probabilistic: it deals only with what an adversary can infer
with certainty about a system. The inherent limitations of possibilistic
information flow models are discussed in Section 4.7.

Bresciani and Butterfield (2011) have developed a probabilistic vari-
ant of the UTP. If their work is extended to give Circus a probabilistic
semantics, our platform could potentially be adapted to regulate in-
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formation flow in a probabilistic setting. An analogue of confidentiality
annotations would be embedded in specifications to prevent an adversary
from deducing facts about the process state with high probability.

A further extension of this work would involve quantifying the flow of
information from systems to users, in terms of Shannon’s information
theory. In this setting, confidentiality properties would then be defined
as an upper bound on the mutual information between secret data and
outputs to the adversary. There is potential for automatically testing
(with statistical significance) whether a program satisfies these properties
are satisfied: recent work by Chothia and Guha (2011) has shown how
mutual information can be calculated from trial runs of a program alone.

8.2.6 Other Notions of Security

This thesis has focused on a narrow interpretation of security: specifically,
limiting the flow of (qualitative) information to a specified adversary.
However, information security also encompasses the authenticity, the
integrity and the availability of information, as well as its confidentiality.

Integrity properties are concerned with guarding against unauthorised
modification of data. Jacob (1987) interprets integrity properties as
a dual of confidentiality properties, in the sense that they prevent
information from low-level users from flowing to (and corrupting)
high-level users. Such properties can be formulated within our
platform, simply by inverting the low-level and high-level users.

Availability properties require that information is available to authorised
users when it is needed. Techniques for ensuring availability in-
clude clustering (to provide fault tolerance), bandwidth manage-
ment (to mitigate denial-of-service attacks) and failure recovery.

Confidentiality properties have received far more attention in the liter-
ature than integrity or availability (Foley, 2005). Indeed, in many classes
of systems, safeguarding the integrity and availability of information has
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a higher priority than maintaining the confidentiality of that information
(Clark and Wilson, 1987).

It is interesting to speculate about the potential for integrating specific-
ations of desired security properties other than confidentiality into the
software development process. Nevertheless, it may not be appropriate
to characterise these properties in terms of information flow, so a new
semantic foundation for them may be needed instead.

8.3 Coda

In their book, Hoare and He (1998) set out an agenda to unite the study of
different programming paradigms, across multiple levels of abstraction.
The work presented in this thesis hints at the potential of extending the
UTP agenda to encompass topics in Computing Science that lie outside
the standard models of software correctness. In so doing, it underscores
the significance of the UTP project for building a firm foundation to
address the contemporary challenges in software engineering.
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Proof of Lemma 3.4

VH1 (V) = V

= [VH1 (V)⇒ V ] ∧ [V ⇒ VH1 (V) ] [equivalence]

=
[
((∃ xV, x′V • V)⇒ V)⇒ V

]
∧
[

V ⇒ ((∃ xV, x′V • V)⇒ V)
]
[def VH1]

=
[
((∃ xV, x′V • V) ∧ ¬ V) ∨ V

]
∧
[
(V ∧ ∃ xV, x′V • V)⇒ V

]
[prop calc]

=
[
((∃ xV, x′V • V) ∧ ¬ V) ∨ V

]
[tautology]

=
[
((∃ xV, x′V • V) ∨ V) ∧ (V ∨ ¬ V)

]
[distributivity]

=
[
(∃ xV, x′V • V) ∨ V

]
[excluded middle]

=
[
∃ xV, x′V • V

]
[lower bound]

Proof of Law 3.8

VH1 ◦ VH1(V)

= (∃ xV, x′V • (∃ xV, x′V • V)⇒ V)⇒ ((∃ xV, x′V • V)⇒ V) [def VH1]

= true⇒ ((∃ xV, x′V • V)⇒ V) [pred calc]

= (∃ xV, x′V • V)⇒ V [prop calc]

= VH1(V) [def VH1]

Proof of Law 3.10

VH1 ◦ VH2(V)

= (∃ xV, x′V • (∃ x′, x′V • V))⇒ (∃ x′, x′V • V) [def VH1, VH2]
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= (∃ x′, x′V • (∃ xV, x′V • V))⇒ (∃ x′, x′V • V) [pred calc]

= (∀ x′, x′V • ¬ (∃ xV, x′V • V)) ∨ (∃ x′, x′V • V) [pred calc]

⇒ (∃ x′, x′V • ¬ (∃ xV, x′V • V)) ∨ (∃ x′, x′V • V) [pred calc]

= ∃ x′, x′V • ¬ (∃ xV, x′V • V) ∨ V [pred calc]

= VH2 ◦ VH1(V) [def VH1, VH2]

Proof of Lemma 3.13

Assume that V1 = VH(V1) and V2 = VH(V2). To prove V1 ∧ V2 is VH-
healthy, we prove that V1 ∧ V2 is VH1-healthy and VH2-healthy separately.

V1 ∧ V2

= VH1(V1) ∧ VH1(V2) [assumption]

= (∃ x1, x′1 • V1)⇒ V1) ∧ (∃ x2, x′2 • V2)⇒ V2) [def VH1]

⇒ ((∃ x1, x′1 • V1) ∧ (∃ x2, x′2 • V2))⇒ V1 ∧ V2 [prop calc]

= (∃ x1, x′1, x2, x′2 • V1 ∧ V2)⇒ V1 ∧ V2 [V1, V2 disjoint]

= VH1(V1 ∧ V2) [def VH1]

V1 ∧ V2

= VH2(V1) ∧ VH2(V2) [assumption]

= (∃ x′, x′1 • V1) ∧ (∃ x′, x′2 • V2) [def VH2]

= ∃ x′, x′1, x′2 • (∃ x′, x′1 • V1) ∧ (∃ x′, x′2 • V2) [V1, V2 disjoint]

= VH2(VH2(V1) ∧ VH2(V2)) [def VH2]

= VH2(V1 ∧ V2) [assumption]

Proof of Law 3.19

L (V, P1 ∨ P2)
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= ∃ x, x′ • ∆V ∧ (P1 ∨ P2) [def L]

= (∃ x, x′ • ∆V ∧ P1) ∨ (∃ x, x′ • ∆V ∧ P2) [pred calc]

= L (V, P1) ∨ L (V, P2) [def L]

Proof of Law 3.20

P1 v P2

⇒ (∆V ∧ P1) v (∆V ∧ P2) [∧-monotonicity]

⇒ (∃ x, x′ • ∆V ∧ P1) v (∃ x, x′ • ∆V ∧ P2) [∃-monotonicity]

= L (V, P1) v L (V, P2) [def L]

Proof of Law 3.21

L ((
∧

i : 1..n • Vi) , P)

= ∃ x, x′ • ∆(
∧

i : 1..n • Vi) ∧ P [def L]

⇒ ∧
i : 1..n • ∃ x, x′ • ∆Vi ∧ P [pred calc]

=
∧

i : 1..n • L (Vi, P) [def L]

Proof of Lemma 3.24

G (V, U)

= ∀ xV, x′V • ∆V ⇒ U [def G]

= ¬ ∃ xV, x′V • ¬ (∆V ⇒ U) [duality]

= ¬ ∃ xV, x′V • ∆V ∧ ¬ U [prop calc]

= ∃ xV, x′V • ∆V ∧ U [V functional (∗)]

= ¬ ∀ xV, x′V • ∆V ⇒ ¬ U [duality]

= ¬ G (V,¬ U) [def G]
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The step marked (∗) is justified as follows. Since V is a total function
from behaviours to interactions (i.e. VH3-healthy), each behaviour that
V maps to a U interaction is not a behaviour that V maps to a ¬ U
interaction, and vice versa.

Proof of Theorem 3.25

U v L (V, P)

= [ (∃ x, x′ • ∆V ∧ P)⇒ U ] [def v, L]

= [ (∀ x, x′ • ¬ ∆V ∨ ¬ P) ∨ U ] [prop calc]

= [¬ ∆V ∨ ¬ P ∨ U ] [x, x′ not in αU]

=
[
¬ P ∨ (∀ xV, x′V • ¬ ∆V ∨ U)

]
[xV, x′V not in αP]

=
[

P⇒ (∀ xV, x′V • ∆V ⇒ U)
]

[prop calc]

= G (V, U) v P [def v, G]

Proof of Lemma 3.35

L (V, Pre ` Post)

= ∃ x, x′ • ∆V ∧ (ok ∧ Pre⇒ ok′ ∧ Post) [def L, `]

= ∃ x, x′ • ∆V ∧ (¬ ok ∨ ¬ Pre ∨ (ok′ ∧ Post)) [prop calc]

= (∃ x, x′ • ∆V ∧ (¬ ok ∨ ¬ Pre)) ∨ (∃ x, x′ • ∆V ∧ ok′ ∧ Post)

[distributivity]

= (¬ okV ∨ ∃ x, x′ • ∆V ∧ ¬ Pre) ∨ (ok′V ∧ ∃ x, x′ • ∆V ∧ Post)

[V is VHD]

= (¬ okV ∨ L (V,¬ Pre)) ∨ (ok′V ∧ L (V, Post)) [def L]

= ¬ (okV ∧ ¬ L (V,¬ Pre)) ∨ (ok′V ∧ L (V, Post)) [de Morgan]

= (okV ∧ ¬ L (V,¬ Pre))⇒ (ok′V ∧ L (V, Post)) [prop calc]

= ¬ L (V,¬ Pre) `V L (V, Post) [def `V]
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Assuming that Pre is a condition over the x variables alone:

= (¬ ∃ x, x′ • ∆V ∧ ¬ Pre) `V L (V, Post) [def L]

= (∀ x, x′ • ∆V ⇒ Pre) `V L (V, Post) [pred calc]

= (∀ x • V ⇒ Pre) `V L (V, Post) [assumption]

Proof of Lemma 3.47

LR (W , P)

= ∃ x, x′ • R (W) ∧ P [def LR]

= ∃ x, x′ • R (W) ∧ R
(
¬ Pf

f ` Pt
f

)
[Theorem 2.2]

= RV

(
∃ x, x′ • R (W) ∧

(
¬ Pf

f ` Pt
f

))
[Definition 3.46]

= RV

(
(∀ x, x′ • R (W)⇒ ¬ Pf

f ) `V (∃ x, x′ • R (W) ∧ Pt
f )
)

[Lemma 3.35]

= RV

(
(∀ x, x′ • R (W)⇒ ¬ Pf

f ) `V LR
(
W , Pt

f

))
[def LR]

Proof of Theorem 3.51

For a divergence-free CSP process P, Roscoe (1997) defines the failure set
of Lazy (W , P) in the form:

{(s �W , r) | (s, r∩W) ∈ failures(P)}

The failure set of a reactive design PR (capturing the semantics of P) is
defined by Cavalcanti and Woodcock (2006) as:

failures(PR) =
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{(tr′ − tr, ref ′) | ok ∧ ¬ wait ∧ PR ∧ ok′}
∪ {((tr′ − tr)a 〈X〉, ref ′) | ok ∧ ¬ wait ∧ PR ∧ ok′ ∧ ¬ wait′}
∪ {((tr′ − tr)a 〈X〉, ref ′ ∪ {X}) | ok ∧ ¬ wait ∧ PR ∧ ok′ ∧ ¬ wait′}

Since our reactive interface allows a user to monitor termination (as
signalled by wait′V), we need to extendW to include the X event. Let:

WX =W ∪ {X}

We now study theWX-projection of the first set of failures(PR):{
(tr′V − trV, ref ′V) | LR

(
WX, ok ∧ ¬ wait ∧ PR ∧ ok′

)}
=

{
(tr′V − trV, ref ′V) | ∃ x, x′ • R

(
WX

)
∧ ok ∧ ¬ wait ∧ PR ∧ ok′

}
=

{
((tr′ − tr) �W , ref ′ ∩W) | R

(
WX

)
∧ ok ∧ ¬ wait ∧ PR ∧ ok′

}
The last proof step is justified because R

(
WX

)
implies:

tr′V − trV = (tr′ − tr) �WX and ref ′V ∩WX ⊆ ref ′

and refusal sets are downwards-closed.

The projections of the other two sets of failures(PR) are similar. Hence,
the sets failures(LR (W , PR)) and failures(Lazy (W , P)) are equivalent. We
conclude that Lazy (W , P) yields a process isomorphic to LR (W , PR).

Proof of Theorem 4.4

P1 v P2

= (P1 v P2) ∧ (P̃1 v P̃2) [property of v]

=
[
(P2 ⇒ P1) ∧ (P̃2 ⇒ P̃1)

]
[def v]

=
[
(P2 ∧ P̃2)⇒ (P1 ∧ P̃1)

]
[disjoint alphabets]

= (P1 ∧ P̃1) v (P2 ∧ P̃2) [def v]

= U (P1) v U (P2) [def U]
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Proof of Lemma 4.6

D (U (P))

= ∃ x̃, x̃′ • P ∧ P̃ [def U, D]

= P ∧ ∃ x̃, x̃′ • P̃ [x̃, x̃′ free in P]

= P ∧ true [pred calc]

= P [unit of conjunction]

Proof of Law 4.9

U (P1 ∨ P2)

= (P1 ∨ P2) ∧ (P̃1 ∨ P̃2) [def U]

⇐ (P1 ∧ P̃1) ∨ (P2 ∧ P̃2) [prop calc]

= U (P1) ∨ U (P2) [def U]

Proof of Law 4.10

D (Q1) ∧ D (Q2)

= (∃ x̃, x̃′ • Q1) ∧ (∃ x̃, x̃′ • Q2) [def D]

⇐ ∃ x̃, x̃′ • Q1 ∧ Q2 [prop calc]

= D (Q1 ∧ Q2) [def D]

Proof of Law 4.13

¬ U (P)

= ¬ (P ∧ P̃) [def U]

= ¬ P ∨ ¬ P̃ [de Morgan]

⇐ ¬ P ∧ ¬ P̃ [prop calc]

= U (¬ P) [def U]
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Proof of Law 4.14

D (¬ Q)

= ∃ x̃, x̃′ • ¬ Q [def D]

⇐ ∀ x̃, x̃′ • ¬ Q [pred calc]

= ¬ ∃ x̃, x̃′ • Q [pred calc]

= ¬ D (Q) [def D]

Proof of Lemma 4.26

θ1 v θ2 ∧ P ∝L θ2

= θ1 v θ2 ∧
[

P⇒ ∃ x̃, x̃′ • UI (L, P) ∧ θ2

]
[def ∝L]

⇒ θ1 v θ2 ∧
[

P⇒ ∃ x̃, x̃′ • UI (L, P) ∧ θ1

]
[θ1 v θ2]

= θ1 v θ2 ∧ P ∝L θ1 [def ∝L]

Proof of Lemma 4.40

Q1 v Q2

⇒ D (Q1) v D (Q2) [Law 4.12]

= D̃ (Q1) v D̃ (Q2) [renaming]

⇒ Q1 ∧ D̃ (Q1) v Q1 ∧ D̃ (Q2) [monotonicity of conjunction]

⇒ Q1 ∧ D̃ (Q1) v Q2 ∧ D̃ (Q2) [because Q1 v Q2]

= C (Q1) v C (Q2) [def C]
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Proof of Lemma 4.43

CC (CC (Q))

= µ X • C ((µ X • C (Q ∧ X)) ∧ X) [def CC]

= µ X • C (Q ∧ X) [property of µ X]

= CC (Q) [def CC]

Proof of Theorem 4.44

Let Q = UI (L, P) ∧ θ in:

D (CC (Q)) ∝L θ

= [D (CC (Q)) ⇒ D (UI (L, D (CC (Q))) ∧ θ) ] [def ∝L]

= [D (CC (Q)) ⇒ D (UI (L, D (CC (Q)))) ] [θ v CC (Q)]

= [D (CC (Q)) ⇒ D (CC (Q)) ] [Lemma 4.6]

= true [tautology]

Proof of Lemma 5.3

This proof relies on two special properties of I(L). First, I(L) is tauto-
logous if the fog space is unconstrained:

∃ x̃, x̃′ • I(L) = true

Second, renaming the observable variables of I(L) to the fog variables
results in a tautology:

Ĩ(L) = õk = õk ∧ õk′ = õk′ ∧ . . . = true

P1 v P2

= P1 ∧ I(L) v P2 ∧ I(L) [property of I(L)]

= U (P1 ∧ I(L)) v U (P2 ∧ I(L)) [Theorem 4.4]
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= P1 ∧ I(L) ∧ P̃1 ∧ Ĩ(L) v P2 ∧ I(L) ∧ P̃2 ∧ Ĩ(L) [def U]

= P1 ∧ I(L) ∧ P̃1 v P2 ∧ I(L) ∧ P̃2 [property of I(L)]

= UC (L, P1) v UC (L, P2) [def UC]

Proof of Law 5.4

A special property of I(L) is that it maps each behaviour φ to its fog
counterpart φ[x̃, x̃′/x, x′]. Hence:

D (UC (L, A))

= ∃ x̃, x̃′ • A ∧ Ã ∧ I(L) [def D, UC]

= A ∧ ∃ x̃, x̃′ • Ã ∧ I(L) [x̃, x̃′ free in A]

= A ∧ ∃ x̃, x̃′ • Ã [property of I(L)]

= A [Lemma 4.6]

Proof of Lemma 5.6

UC (L, A)

= A ∧ Ã ∧ I(L) [def UC]

= R1 ◦ R2 ◦ R3(A) ∧ R̃1 ◦ R̃2 ◦ R̃3(Ã) ∧ I(L) [property of A]

= R1 ◦ R̃1 ◦ R2 ◦ R̃2 ◦ R̂3(A ∧ Ã) ∧ I(L) [disjoint alphabets; def R̂3]

= R̂(U (A)) ∧ I(L) [def R̂, U]

Proof of Theorem 5.7

R̂ (U (A)) ∧ I(L)

= R̂
(

A ∧ Ã
)
∧ I(L) [definition of U]

= R̂
(

R
(
¬ Af

f ` At
f

)
∧
(

R
(
¬ Af

f ` At
f

))
[x̃, x̃′/x, x′]

)
∧ I(L)[Theorem 2.2]
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= R̂
((
¬ Af

f ` At
f

)
∧
(
¬ Af

f ` At
f

)
[x̃, x̃′/x, x′]

)
∧ I(L) [idempotence of R̂]

= R̂
((

ok ∧ ¬ Af
f ⇒ ok′ ∧ At

f

)
∧
(

ok ∧ ¬ Ãf
f ⇒ ok′ ∧ Ãt

f

))
∧ I(L)

[I(L) implies ok = õk ∧ ok′ = õk′]

= R̂
(

ok ∧ ¬
(

Af
f ∧ Ãf

f

)
⇒ ok′ ∧

(
¬ Af

f ⇒ At
f

)
∧
(
¬ Ãf

f ⇒ Ãt
f

))
∧ I(L)

[prop calc]

= R̂
(

ok ∧ ¬
(

Af
f ∧ Ãf

f

)
⇒ ok′ ∧ At

f ∧ Ãt
f

)
∧ I(L) [property of At

f ]

= R̂
(

ok ∧ ¬ U
(

Af
f

)
⇒ ok′ ∧ U

(
At

f

))
∧ I(L) [def U]

= R̂
(
¬ U

(
Af

f

)
` U

(
At

f

))
∧ I(L) [def R̂]

Proof of Lemma 5.8

UC (L, R (Pre ` Post))

= R̂
(
¬ U (R (Pre ` Post))ff

ff ` U (R (Pre ` Post))tt
ff

)
∧ I(L) [Theorem 5.7]

= R̂
(
¬ U

(
R (Pre ` Post)f

f

)
` U

(
R (Pre ` Post)t

f

))
∧ I(L) [substitution]

= R̂
(
¬ U

(
¬ Pref

f

)
` U

(
Pret

f ⇒ Postt
f

))
∧ I(L)

[property of reactive designs]

= R̂ (¬ U (¬ Pre) ` U (Pre⇒ Post)) ∧ I(L) [def `, R3; assumption]

= R̂
(

Pre ∨ P̃re ` U (Pre⇒ Post)
)
∧ I(L) [def U; prop calc]

Proof of Lemma 5.9

UC (L, w : [Pre, Post])

= UC (L, R (Pre ` Post ∧ ¬ wait′ ∧ tr′ = tr ∧ u′ = u)) [def spec stmt]

= R̂
(

Pre ∨ P̃re ` U (Pre⇒ (Post ∧ ¬ wait′ ∧ tr′ = tr ∧ u′ = u))
)
∧ I(L)

[Lemma 5.8]
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Proof of Theorem 5.14

This justification applies to the lifted operators defined in Section 5.3.

Condition 5.11

Condition 5.11 holds for sequential composition:

D
(

UC (L, A1) ;̂ UC (L, A2)

)
= ∃ x̃, x̃′ • ∃ x0, x̃0 •

(
(A1 ∧ Ã1 ∧ I(L))[x0, x̃0/x′, x̃′]

∧ (A2 ∧ Ã2 ∧ I(L))[x0, x̃0/x, x̃]

)
[def D, UC]

= ∃ x0 •

 A1[x0/x′] ∧ A2[x0/x]

∧ ∃ x̃, x̃0, x̃′ •
(

(Ã1 ∧ I(L))[x0, x̃0/x′, x̃′]
∧ (Ã2 ∧ I(L))[x0, x̃0/x, x̃]

) 
[x̃, x̃0, x̃′ free in A1, A2]

= ∃ x0 • A1[x0/x′] ∧ A2[x0/x] [property of I(L)]

A1 ; A2 [def ; ]

Condition 5.11 holds for internal choice:

D
(

UC (L, A1) ûUC (L, A2)

)
= D (UC (L, A1)) u D (UC (L, A2)) [Law 4.8]

= A1 u A2 [Law 5.4]

We appeal to Lemma 5.22 to treat the lifted prefixing operator in terms
of lifted sequential composition:

D
(

c.e →̂UC (L, A)

)
= D (UC (L, c.e→ Skip) ; UC (L, A)) [Lemma 5.22]
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= c.e→ Skip ; A [as above]

= c.e→ A

so Condition 5.11 holds for prefixing.

For each lifted operator defined as a lifted reactive design, we have:

D
(
R̂ (Pre ` Post)

)
= R (¬ D (¬ Pre) ` D (Post))

By distributing D through the (lifted) Pre and Post terms, we derive the
corresponding reactive design structure of the counterpart Circus operator,
with each operand wrapped by D.

Taking the lifted guard as an example, we have:

D
(

g &̂ UC (L, A)

)

= R


¬ D

(
¬ (U (g)⇒ ¬ UC (L, A)

ff
ff )
)

` D

(
U (g) ∧ UC (L, A)tt

ff

∨ U (¬ g ∧ tr′ = tr ∧ wait′)

) [property above]

= R

(
¬ D

(
U (g) ∧ UC (L, A)

ff
ff

)
`
(

D
(

U (g) ∧ UC (L, A)tt
ff

)
∨ D (U (¬ g ∧ tr′ = tr ∧ wait′))

))
[prop calc; Law 4.8]

= R

(
¬
(

g ∧ D
(

UC (L, A)
ff
ff

))
`
(

g ∧ D
(

UC (L, A)tt
ff

)
∨ ¬ g ∧ tr′ = tr ∧ wait′

))
[x̃, x̃′ free]

= R
((

g⇒ ¬ Af
f

)
`
(
(g ∧ At

f ) ∨ (¬ g ∧ tr′ = tr ∧ wait′)
))

[Law 5.4]

= g & A [def & ]
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Condition 5.12

For each lifted operator ⊕̂, we provide a lemma to show that:

UC
(
L,
⊕

i • Ai

)
v

⊕̂
i • UC (L, Ai)

or define ⊕̂ in terms of other lifted operators where that lemma holds.
Hence, Condition 5.12 is satisfied by each lifted operator.

Condition 5.13

It is given that:

• conjunction and disjunction are monotonic;

• negation is antimonotonic;

• implication is antimonotonic in the antecedent and monotonic in
the consequent.

Moreover, for each lifted operator ⊕̂, it is the case that:

• each operand of ⊕̂ within its precondition is negated; and

• each operand of ⊕̂ within its postcondition is not negated.

It follows from the structure of each lifted operator that refining each
operand of a lifted construct yields a refinement of the whole construct.
Hence, Condition 5.13 is satisfied by each lifted operator.

Proof of Lemma 5.15

UC (L, A1 ; A2)

=

(
∃ x0 • A1[x0/x′] ∧ A2[x0/x]

∧ (∃ x0 • A1[x0/x′] ∧ A2[x0/x]) [x̃, x̃′/x, x′]

)
∧ I(L) [def UC, ; ]

=

(
∃ x0 • A1[x0/x′] ∧ A2[x0/x]

∧ ∃ x̃0 • A1[x̃, x̃0/x, x′] ∧ A2[x̃0, x̃′/x, x′]

)
∧ I(L) [pred calc]
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= ∃ x0, x̃0 •
(

A1[x0/x′] ∧ A1[x̃, x̃0/x, x′]
∧ A2[x0/x] ∧ A2[x̃0, x̃′/x, x′]

)
∧ I(L) [pred calc]

⇐ ∃ x0, x̃0 •
(

A1[x0/x′] ∧ A1[x̃, x̃0/x, x′] ∧ I(L)[x0, x̃0/x′, x̃′]
∧ A2[x0/x] ∧ A2[x̃0, x̃′/x, x′] ∧ I(L)[x0, x̃0/x, x̃]

)
[property of I(L)]

= ∃ x0, x̃0 • UC (L, A1) [x0, x̃0/x′, x̃′] ∧ UC (L, A2) [x0, x̃0/x, x̃] [def UC]

Proof of Law 5.17

U (A1 ; A2)

=

(
∃ x0 • A1[x0/x′] ∧ A2[x0/x]

∧ (∃ x0 • A1[x0/x′] ∧ A2[x0/x])[x̃, x̃′/x, x′]

)
[def U, ; ]

=

(
∃ x0 • A1[x0/x′] ∧ A2[x0/x]

∧ ∃ x̃0 • Ã1[x̃0/x̃′] ∧ Ã2[x̃0/x̃]

)
[renaming]

= ∃ x0, x̃0 •
(

(A1 ∧ Ã1)[x0, x̃0/x′, x̃′]
∧ (A2 ∧ Ã2)[x0, x̃0/x, x̃]

)
[disjoint alphabets]

= U (A1) ;̂ U (A2) [def U, ;̂ ]

Proof of Lemma 5.18

Let A be a Circus action that terminates without changing the trace:

A = A ∧ (ok ∧ ¬ wait⇒ ok′ ∧ ¬ wait′ ∧ tr′ = tr)

Assuming this property holds, we have:

U (A ∧ ok ∧ ¬ wait)

= U (A) ∧ U (ok ∧ ¬ wait ∧ ok′ ∧ ¬ wait′ ∧ tr′ = tr) [assumption]

= U (A) ∧ ok ∧ ¬ wait ∧ ok′ ∧ ¬ wait′ ∧ tr′ = tr ∧ I(L) [def I(L)]

= UC (L, A) ∧ ok ∧ ¬ wait ∧ ok′ ∧ ¬ wait′ ∧ tr′ = tr [def UC]
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= UC (L, A) ∧ ok ∧ ¬ wait [assumption]

Now, consider the case where A1 terminates immediately leaving the
trace unchanged:

UC (L, A1 ; A2)

= U (A1 ; A2) ∧ I(L) [def UC]

=

(
U (A1) ;̂ U (A2)

)
∧ I(L) [Law 5.17]

=

(
UC (L, A1) ;̂ U (A2)

)
∧ I(L) [A1 terminates immediately]

= ∃ x0, x̃0 • UC (L, A1) [x0, x̃0/x′, x̃′] ∧ U (A2) [x0, x̃0/x, x̃] ∧ I(L) [def ;̂ ]

= ∃ x0, x̃0 •

 UC (L, A1) [x0, x̃0/x′, x̃′]
∧ U (A2) [x0, x̃0/x, x̃]
∧ I(L)[x0, x̃0/x, x̃]

[A1 terminates immediately (∗)]

= UC (L, A1) ;̂ (U (A2) ∧ I(L)) [def ;̂ ]

= UC (L, A1) ;̂ UC (L, A2) [def UC]

The step marked (∗) is justified because, since A1 terminates immediately,
it ensures ok′ = ok′, wait′ = wait and tr′ = tr, and the value of ref ′ is
irrelevant upon termination of a Circus action.

The proof for the case where A2 terminates immediately is similar.

Proof of Lemma 5.19

UC (L, A1 u A2)

= (A1 ∨ A2) ∧ (Ã1 ∨ Ã2) ∧ I(L) [def UC]

⇐ (A1 ∧ Ã1 ∧ I(L)) ∨ (A2 ∧ Ã2 ∧ I(L)) [prop calc]

= UC (L, A1) ∨ UC (L, A2) [def UC]
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Proof of Lemma 5.22

UC (L, c.e→ Skip)

= R̂
(

U (c.e→ Skip)ff
ff ` U (c.e→ Skip)tt

ff

)
∧ I(L) [Theorem 5.7]

= R̂

true ` U

v′ = v ∧

 tr′ = tr ∧ c.e /∈ ref ′

C wait′ B
tr′ = tra 〈(c, e)〉



 ∧ I(L) [def→]

= R̂

true ` U (v′ = v) ∧

 U (tr′ = tr ∧ c.e /∈ ref ′)
C wait′ B

U (tr′ = tra 〈(c, e)〉)


 ∧ I(L)

[Law 4.7; I(L) implies wait = w̃ait]

Proof of Lemma 5.24

UC (L, g & A)

= R̂
(
¬ U (g & A)

ff
ff ` U (g & A)tt

ff

)
∧ I(L) [Theorem 5.7]

= R̂
(
¬ U

(
¬ (g⇒ ¬ Af

f )
)
` U

(
At

f C gB tr′ = tr ∧ wait′
))
∧ I(L)

[def & ]

= R̂
((

U (g)⇒ ¬ U (A)
ff
ff

)
` U

(
At

f C gB tr′ = tr ∧ wait′
))
∧ I(L)

[def U; prop calc]

⇐ R̂

((
U (g)⇒ ¬ U (A)

ff
ff

)
`
(

U (g) ∧ U (A)tt
ff

∨ U (¬ g ∧ tr′ = tr ∧ wait′)

))
∧ I(L)

[strengthen postcondition (Law 4.11)]

Proof of Lemma 5.26

UC (L, A1 2 A2)

= R̂
(
¬ U (A1 2 A2)

ff
ff ` U (A1 2 A2)

tt
ff

)
∧ I(L) [Theorem 5.7]
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= R̂

¬ U
(

A1
f
f ∨ A2

f
f

)
` U

 A1
t
f ∧ A2

t
f

C tr′ = tr ∧ wait′ B
A1

t
f ∨ A2

t
f


 ∧ I(L) [def 2]

⇐ R̂

¬ U
(

A1
f
f

)
∧ ¬ U

(
A2

f
f

)
` U

 A1
t
f ∧ A2

t
f

C tr′ = tr ∧ wait′ B
A1

t
f ∨ A2

t
f


 ∧ I(L)

[weaken precondition (contrapositive of Law 4.9)]

⇐ R̂


¬ U

(
A1

f
f

)
∧ ¬ U

(
A2

f
f

)
`

 U (tr′ = tr ∧ wait′) ∧ U (A1)
tt
ff ∧ U (A2)

tt
ff

∨ U (¬ (tr′ = tr ∧ wait′)) ∧
(

U (A1)
tt
ff ∨ U (A2)

tt
ff

) 


∧ I(L) [strengthen postcondition (Law 4.11; Law 4.9)]

Proof of Lemma 5.28

Let EQ denote 1.tr′ � cs = 2.tr′ � cs in:

U
(
¬ (A1 |[ cs ]|A2)

f
f

)
= U

 ¬ ∃ 1.tr, 2.tr • (A1
f
f ; 1.tr′ = tr) ∧ (A2f ; 2.tr′ = tr) ∧ EQ

∧ ¬ ∃ 1.tr, 2.tr • (A1f ; 1.tr′ = tr) ∧ (A2
f
f ; 2.tr′ = tr) ∧ EQ


[def ‖]

⇒

 ¬ ∃ 1.tr, 2.tr • U
(
(A1

f
f ; 1.tr′ = tr) ∧ (A2f ; 2.tr′ = tr) ∧ EQ

)
∧ ¬ ∃ 1.tr, 2.tr • U

(
(A1f ; 1.tr′ = tr) ∧ (A2

f
f ; 2.tr′ = tr) ∧ EQ

) 
[Law 4.7, Law 4.13]

=


¬ ∃ 1.tr, 2.tr •

(
U (A1)

ff
ff ; U (1.tr′ = tr)

∧ U (A2)ff ; U (2.tr′ = tr)

)
∧ U (EQ)

∧ ¬ ∃ 1.tr, 2.tr •
(

U (A1)ff ; U (1.tr′ = tr)

∧ U (A2)
ff
ff ; U (2.tr′ = tr)

)
∧ U (EQ)


[Law 4.7, Law 5.17]
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Proof of Lemma 5.30

Let HS denote

(
A[s, (cs∪ ref ′)/tr′, ref ′]

∧ (tr′ − tr) = (s− tr) � (EVENT− cs)

)
in:

UC (L, A \ cs)

= UC (R (∃ s • HS) ; Skip) [def \]

= UC (R (∃ s • HS)) ; UC (L, Skip) [Lemma 5.18]

=
(
R̂ (U (∃ s • HS)) ∧ I(L)

)
; UC (L, Skip) [Lemma 5.6]

=
(
R̂ (∃ s, s̃ • U (HS)) ∧ I(L)

)
; UC (L, Skip) [property of U]

Proof of Theorem 5.40

θ1 v θ2

= (ok ∧ ¬ wait⇒ θ1) v (ok ∧ ¬ wait⇒ θ2) [pred calc (∗)]

= Conf (θ1) v Conf (θ2) [def Conf]

= UC (L, Skip) ∧ Conf (θ1) v UC (L, Skip) ∧ Conf (θ2) [pred calc (∗)]

= 〈 θ1 〉 v 〈 θ2 〉 [def CA]

It is assumed that obligations reference only the unprimed state vari-
ables v, ṽ. The steps marked (∗) are equivalences (rather than refinements),
because they place no constraints on the unprimed state variables.

Proof of Law 5.41

We prove the result for two CAs. Since relational composition is associat-
ive, this result generalises to arbitrary sequences of CAs.

〈 θ1 〉 ; 〈 θ2 〉

= (UC (L, Skip) ∧ Conf (θ1)) ;̂ (UC (L, Skip) ∧ Conf (θ2)) [def CA]

= ∃ x0, x̃0 •
(

(UC (L, Skip) ∧ Conf (θ1))[x0, x̃0/x′, x̃′]
∧ (UC (L, Skip) ∧ Conf (θ2))[x0, x̃0/x, x̃]

)
[def ;̂ ]
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= Conf (θ1) ∧ ∃ x0, x̃0 •
(

UC (L, Skip) [x0, x̃0/x′, x̃′]
∧ (UC (L, Skip) ∧ Conf (θ2))[x0, x̃0/x, x̃]

)
[x′, x̃′ free in Conf (θ1)]

= Conf (θ1) ∧
(

UC (L, Skip) ;̂ (UC (L, Skip) ∧ Conf (θ2))

)
[def ;̂ ]

= Conf (θ1) ∧ UC (L, Skip) ∧ Conf (θ2) [Skip left unit]

= UC (L, Skip) ∧ Conf (θ1 ∧ θ2) [def Conf]

= 〈⊔ {θ1, θ2} 〉 [def CA]

Proof of Law 5.43

〈 θ1 〉 u · · · u 〈 θn 〉

= (UC (L, Skip) ∧ Conf (θ1)) ∨ · · · ∨ (UC (L, Skip) ∧ Conf (θn))[def CA, u]

= UC (L, Skip) ∧ (Conf (θ1) ∨ · · · ∨ Conf (θn)) [prop calc]

= UC (L, Skip) ∧ Conf (θ1 ∨ · · · ∨ θn) [def Conf]

= 〈
d
{θ1, . . . , θn} 〉 [def CA]

Proof of Law 5.44

UC (L, [C ])

= R̂ (true ` U (C ∧ ¬ wait′ ∧ tr′ = tr ∧ v′ = v)) ∧ I(L) [Lemma 5.9]

= R̂ (true ` U (¬ wait′ ∧ tr′ = tr ∧ v′ = v)) ∧ I(L) ∧ Conf (U (C))

[prop calc; def Conf]

= UC (L, Skip) ∧ Conf (U (C)) [def Skip]

= 〈U (C) 〉 [def CA]

Proof of Law 5.45

D (〈 θ 〉)
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= D (UC (L, Skip) ∧ (ok ∧ ¬ wait⇒ θ)) [Law 5.44]

= D
(
R̂ (true ` θ ∧ U (¬ wait′ ∧ tr′ = tr ∧ v′ = v)) ∧ I(L)

)
[Lemma 5.8, def Skip]

= R (true ` D (θ) ∧ ¬ wait′ ∧ tr′ = tr ∧ v′ = v) [property of D]

= [D (θ) ] [def coercion]

Proof of Law 5.46

〈 θ 〉 ; 〈A 〉

= ∃ x0, x̃0 •
(

(UC (L, Skip) ∧ (ok ∧ ¬ wait⇒ θ))[x0, x̃0/x′, x̃′]
∧ UC (L, A) [x0, x̃0/x, x̃]

)
[def ;̂ , CA]

= ∃ x0, x̃0 •
(

(UC (L, Skip) ∧ (ok′ ∧ ¬ wait′ ⇒ θ′))[x0, x̃0/x′, x̃′]
∧ UC (L, A) [x0, x̃0/x, x̃]

)
[property of Skip]

= ∃ x0, x̃0 •
(

UC (L, Skip) [x0, x̃0/x′, x̃′]
∧ (UC (L, A) ∧ (ok ∧ ¬ wait⇒ θ))[x0, x̃0/x, x̃]

)
[renaming]

= UC (L, Skip) ;̂ (UC (L, A) ∧ (ok ∧ ¬ wait⇒ θ)) [def ;̂ ]

= (UC (L, A) ∧ (ok ∧ ¬ wait⇒ θ)) [Skip left unit]

= 〈A 〉 ∧ Conf (θ) [def Conf]

Proof of Law 5.47

〈A 〉 ; 〈 θ 〉

= ∃ x0, x̃0 •
(

UC (L, A) [x0, x̃0/x′, x̃′]
∧ (UC (L, Skip) ∧ (ok ∧ ¬ wait⇒ θ))[x0, x̃0/x, x̃]

)
[def ;̂ , CA]
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Proofs

= ∃ x0, x̃0 •
(

(UC (L, A) ∧ (ok′ ∧ ¬ wait′ ⇒ θ′))[x0, x̃0/x′, x̃′]
∧ UC (L, Skip) [x0, x̃0/x, x̃]

)
[renaming]

= (UC (L, A) ∧ (ok′ ∧ ¬ wait′ ⇒ θ′)) ;̂ UC (L, Skip) [def ;̂ ]

= UC (L, A) ∧ (ok′ ∧ ¬ wait′ ⇒ θ′) [Skip right unit]

= 〈A 〉 ∧ Conf′ (θ) [def Conf′]

Proof of Law 6.4

Let C1 = c1 → A1 and C2 = c2 → A2 in:

〈 L : C1 u C2 〉

= UC (L, C1 ∨ C2) [def 〈 · 〉, u]

= (C1 ∨ C2) ∧ (C̃1 ∧ C̃2) ∧ I(L) [def UC]

= ((C1 ∧ C̃1) ∨ (C2 ∧ C̃2)) ∧ I(L) [property of I(L)]

= UC (L, C1) ∨ UC (L, C2) [def UC]

= 〈 L : C1 〉 u 〈 L : C2 〉 [def 〈 · 〉, u]

Proof of Theorem 6.12

bwQ (UC (L, R (Pre ` Post)) , θ)

= ∀ x′ •
(

D (UC (L, R (Pre ` Post)))!⇒
∃ x̃′ • UC (L, R (Pre ` Post))! ∧ Conf′ (θ)

)

= ∀ x′ •
(

R (Pre ` Post)!⇒
∃ x̃′ • UC (L, R (Pre ` Post))! ∧ Conf′ (θ)

)
[Law 5.4]

= ∀ x′ •


R (Pre ` Post)!⇒

∃ x̃′ •
(

R̂
(

Pre ∨ P̃ost ` U (Pre⇒ Post)
)

!

∧ I(L)! ∧ Conf′ (θ)

) 
[Lemma 5.8]
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= ∀ x′ •

 (Pre!⇒ ok′ ∧ Post!) ∧ tr ≤ tr′ ⇒

∃ x̃′ •
(

((Pre! ∨ P̃re!)⇒ ok′ ∧ U (Pre!⇒ Post!))
∧ tr ≤ tr′ ∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

) 
[!-apply]

=

∀ x′ • Pre!⇒

 ok′ ∧ Post! ∧ tr ≤ tr′ ⇒

∃ x̃′ •
(

P̃re!⇒ P̃ost!
∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

) 
∧ ∀ x′ • ¬ Pre!⇒(

tr ≤ tr′ ⇒ ∃ x̃′ •
(

P̃re!⇒ ok′ ∧ P̃ost!
∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

))
[case split]

=

∀ x′ •
(

Pre! ∧ ok′ ∧ Post! ∧ tr ≤ tr′ ⇒
∃ x̃′ • (P̃re!⇒ P̃ost!) ∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

)

∧ ∀ x′ •

 ¬ Pre! ∧ tr ≤ tr′ ⇒

∃ x̃′ •
(

P̃re!⇒ ok′ ∧ P̃ost!
∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

) 
[prop calc]

=

∀ x′ •
(

Pre! ∧ ok′ ∧ Post! ∧ tr ≤ tr′ ⇒
∃ x̃′ • (P̃re!⇒ P̃ost!) ∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

)

∧ ∀ x′ •
(
¬ Pre! ∧ tr ≤ tr′ ⇒
∃ x̃′ • ¬ P̃re! ∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

)
[ok′ free in antecedent]

=
∀ x′ •

(
Pre! ∧ ok′ ∧ Post! ∧ tr ≤ tr′ ⇒
∃ x̃′ • (P̃re!⇒ P̃ost!) ∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

)
∧ ∀ x′ •

(
¬ Pre!⇒ ∃ x̃′ • ¬ P̃re! ∧ θ′

)
[x′ free in Pre!; ok′, wait′ free in antecendent]

The second conjunct is simplified by the proviso ∀ x • ∃ x̃ • θ, which is
equivalent to ∀ x′ • ∃ x̃′ • θ′:

∀ x′ •
(
¬ Pre!⇒ ∃ x̃′ • ¬ P̃re! ∧ θ′

)
= ∀ x′ •

(
¬ Pre!⇒ ∃ x̃′ • ¬ P̃re!

)
[proviso]
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Proofs

= ¬ Pre!⇒ ¬ P̃re! [Pre a condition]

= P̃re!⇒ Pre! [contrapositive]

Proof of Theorem 6.14

bwR (UC (L, R (Pre ` Post)))

= ∃ x′, x̃′ • UC (L, R (Pre ` Post))! [def bwR]

= ∃ x′, x̃′ • R̂
(

Pre ∨ P̃re ` U (Pre⇒ Post)
)

! ∧ I(L)! [Lemma 5.8]

= ∃ x′, x̃′ • U (tr ≤ tr′) ∧ ((Pre! ∨ P̃re!)⇒ ok′ ∧ U (Pre!⇒ Post!)) ∧ I(L)!

[!-apply]

Proof of Lemma 6.16

To prove bw (B, θ) is monotonic in θ, it suffices to prove that bwQ (B, θ) is
monotonic in θ. Let θ1 v θ2. Then:

bwQ (B, θ2)

= ∀ x′ • D (B!)⇒ ∃ x̃′ • B! ∧ (ok′ ∧ ¬ wait′ ⇒ θ′2) [def bwQ]

⇒ ∀ x′ • D (B!)⇒ ∃ x̃′ • B! ∧ (ok′ ∧ ¬ wait′ ⇒ θ′1) [θ1 v θ2]

= bwQ (B, θ1) [def bwQ]

Proof of Law 6.18

First, we calculate bwR (〈 θ1 〉):

bwR (〈 θ1 〉)

= ∃ x′, x̃′ •
(
UC (L, Skip) ∧ (ok′ ∧ ¬ wait′ ⇒ θ′1)

)
! [def bwR, def CA]

= ∃ x′, x̃′ • UC (L, Skip)! ∧ θ′1 [def !]

= θ1 [def Skip]
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Second, we calculate bwQ (〈 θ1 〉, θ2):

bwQ (〈 θ1 〉, θ2)

= ∀ x′ • D (〈 θ1 〉!)⇒ ∃ x̃′ • 〈 θ1 〉! ∧ (ok′ ∧ ¬ wait′ ⇒ θ′2) [def bw]

= ∀ x′ • D (〈 θ1 〉!)⇒ ∃ x̃′ • 〈 θ1 〉! ∧ θ2 [property of Skip]

= ∀ x′ • D (θ1)⇒ ∃ x̃′ • θ1 ∧ θ2 [as above]

= D (θ1)⇒ θ1 ∧ θ2 [x′, x̃′ free in θ1, θ2]

The result follows by conjoining the bwR and bwQ terms:

bwR (〈 θ1 〉) ∧ bwQ (〈 θ1 〉, θ2)

= θ1 ∧ (D (θ1)⇒ θ1 ∧ θ2) [as above]

= θ1 ∧ θ2 [D (θ1) v θ1]

Proof of Lemma 6.19

By the definition of bwR, we have:

bwR (B)

= ∃ x′, x̃′ • B! [def bwR]

= ∃ x′, x̃′ • (B ∧ (C ∨ ¬ C))! [excluded middle]

= ∃ x′, x̃′ • (B ∧ C)! ∨ ∃ x′, x̃′ • (B ∧ ¬ C)! [prop calc]

= bwR (B ∧ C) ∨ bwR (B ∧ ¬ C) [def bwR]

⇐ bwR (B ∧ C) ∧ bwR (B ∧ ¬ C) [prop calc]

The proof for bwQ has a similar structure:

bwQ (B, θ)

= ∀ x′ •
(

D (B!)⇒ ∃ x̃′ • B! ∧ Conf′ (θ)
)

[def bwQ]

=

(
∀ x′ • D ((B ∧ (C ∨ ¬ C))!)⇒
∃ x̃′ • (B ∧ (C ∨ ¬ C))! ∧ Conf′ (θ)

)
[excluded middle]

217



Proofs

⇐

 ∀ x′ •
(

D ((B ∧ C)!)⇒ ∃ x̃′ • (B ∧ C)! ∧ Conf′ (θ)
)

∧ ∀ x′ •
(

D ((B ∧ ¬ C)!)⇒ ∃ x̃′ • (B ∧ ¬ C)! ∧ Conf′ (θ)
) 

[pred calc]

= bwQ (B ∧ C, θ) ∧ bwQ (B ∧ ¬ C, θ) [def bwQ]

The result follows by conjoining the bwR and bwQ terms together.

Proof of Theorem 6.20

The proof for bwQ depends on side-conditions 3 and 4:

bwQ (B, θ)

= ∀ x′ •
(

D (B!)⇒ ∃ x̃′ • B! ∧ Conf′ (θ)
)

[def bwQ]

=

(
∀ x′ • D (B!) ∧ C⇒ ∃ x̃′ • B! ∧ Conf′ (θ)

∧ ∀ x′ • D (B!) ∧ ¬ C⇒ ∃ x̃′ • B! ∧ Conf′ (θ)

)
[case split]

=

(
∀ x′ • D (B!) ∧ C⇒ ∃ x̃′ • B! ∧ U (C) ∧ Conf′ (θ)

∧ ∀ x′ • D (B!) ∧ ¬ C⇒ ∃ x̃′ • B! ∧ U (¬ C) ∧ Conf′ (θ)

)
[SC 4]

=

(
∀ x′ • D ((B ∧ U (C))!)⇒ ∃ x̃′ • (B ∧ U (C))! ∧ Conf′ (θ)

∧ ∀ x′ • D ((B ∧ U (¬ C))!)⇒ ∃ x̃′ • (B ∧ U (¬ C))! ∧ Conf′ (θ)

)
[SC 4]

= bwQ (B ∧ U (C) , θ) ∧ bwQ (B ∧ U (¬ C) , θ) [def bwQ]

= bwQ (B ∧ C, θ) ∧ bwQ (B ∧ ¬ C, θ) [SC 4]

Hence:

bw (B, θ)

= bwR (B) ∧ bwQ (B, θ) [def bw]

= bwR (B ∧ C) ∧ bwR (B ∧ ¬ C) ∧ bwQ (B, θ) [property of bwR (∗)]

= bwR (B ∧ C) ∧ bwR (B ∧ ¬ C) ∧ bwQ (B ∧ C, θ) ∧ bwQ (B ∧ ¬ C, θ)

[as above]

= bw (B ∧ C, θ) ∧ bw (B ∧ ¬ C, θ) [def bw]
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The property of bwR in question is that side-conditions 1 and 2 each
imply bwR (B) = true.

Proof of Lemma 6.21

It suffices to establish HT respects side-condition 4 of Theorem 6.20:

HT ∧ I(L)

= (tr′ − tr) �W ∈ S ∧ (tr′ − tr) �L = (t̃r′ − t̃r) �L ∧ I(L)

[def HT, def I(L)]

= (tr′ − tr) �W ∈ S ∧ (tr′ − tr) �W = (t̃r′ − t̃r) �W ∧ I(L) [W ⊆ L]

= (tr′ − tr) �W ∈ S ∧ (t̃r′ − t̃r) �W ∈ S ∧ I(L) [substitution]

= U (HT) ∧ I(L) [def HT, def U]

Proofs for Lemma 6.22 and Lemma 6.23 are similar.

Proof of Law 6.24

Skip is not miraculous, so bw (〈 Skip 〉 , θ) = bwQ (〈 Skip 〉 , θ).

bwQ (〈 Skip 〉 , θ)

= bwQ (UC (L, R (true ` tr′ = tr ∧ ¬ wait′ ∧ v′ = v)) , θ) [def Skip]

= ∀ x′ •
(

ok′ ∧ tr′ = tr ∧ ¬ wait′ ∧ v′ = v
⇒ ∃ x̃′ • t̃r′ = t̃r ∧ ¬ w̃ait′ ∧ ṽ′ = ṽ ∧ I(L)! ∧ Conf′ (θ)

)
[Theorem 6.12]

= ∀ v′ • (v′ = v⇒ ∃ ṽ′ • ṽ′ = ṽ ∧ θ′) [pred calc]

= θ′[v, ṽ/v′, ṽ′] [one point rule]

= θ [renaming]
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Proof of Law 6.25

Stop is not miraculous, so bw (〈 Stop 〉 , θ) = bwQ (〈 Stop 〉 , θ).

bwQ (〈 Stop 〉 , θ)

= bwQ (UC (L, R (true ` tr′ = tr ∧ wait′)) , θ) [def Stop]

= ∀ x′ •
(

ok′ ∧ tr′ = tr ∧ wait′

⇒ ∃ x̃′ • t̃r′ = t̃r ∧ w̃ait′ ∧ I(L)! ∧ Conf′ (θ)

)
[Theorem 6.12]

= ∀ x′ •
(

ok′ ∧ tr′ = tr ∧ wait′

⇒ ∃ x̃′ • t̃r′ = t̃r ∧ w̃ait′ ∧ I(L)!

)
[def Conf′]

= true [pred calc]

Proof of Law 6.26

Chaos is not miraculous, so bw (〈Chaos 〉 , θ) = bwQ (〈Chaos 〉 , θ).

bwQ (〈Chaos 〉 , θ)

= bwQ (UC (L, R (false ` true)) , θ) [def Chaos]

= ∀ x′ • (false! ∧ ok′ ∧ true! ∧ tr ≤ tr′ ⇒ . . . ) ∧ f̃alse!⇒ false!

[Theorem 6.12]

= true [pred calc]

Proof of Law 6.27

The scope constructs are not miraculous, so we have bw (〈 var a : T 〉 , θ) =

bwQ (〈 var a : T 〉 , θ) and bw (〈 end a : T 〉 , θ) = bwQ (〈 end a : T 〉 , θ).

bw (〈 var a : T 〉 , θ)

= bwQ (〈 var a : T 〉 , θ) [var non-miraculous]

= ∀ x′ • D (UC (L, var a : T))!⇒ ∃ x̃′ • UC (L, var a : T)! ∧ Conf′ (θ)
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[def bwQ]

= ∀ x′ • (∃ a : T • II )!⇒ ∃ x̃′ • UC (L, ∃ a : T • II )! ∧ (ok′ ∧ ¬ wait′ ⇒ θ′)

[def var, Conf′]

= ∀ x′ • (∃ a : T • II )!⇒ ∃ x̃′ • UC (L, ∃ a : T • II )! ∧ θ′ [property of II ]

= ∀ v′ • (∃ a : T • II !)⇒ ∃ ṽ′ • (∃ ã : T • ĨI !) ∧ θ′ [w′, w̃′ free in θ′]

= ∀ v′ • (∃ a : T • II !) ∧ a′ ∈ T ⇒ ∃ ṽ′ • (∃ ã : T • ĨI !) ∧ ã′ ∈ T ∧ θ′

[property of II ]

= ∀ v′ • (∃ a : T • II !) ∧ a′ ∈ T ⇒ (∃ ã′ : T • θ′)[x̃/x̃′] [one point rule]

= (∀ a′ : T • (∃ ã′ : T • θ′)[x̃/x̃′])[x/x′] [one point rule]

= ∀ a : T • ∃ ã : T • θ [renaming]

The proof that bw (〈 end a : T 〉 , θ) = ∀ a • ∃ ã : T • θ is similar. Hence:

bw (var a : T • B, θ)

= bw (〈 var a : T 〉 ; B ; 〈 end a : T 〉 , θ) [def var]

= bw (〈 var a : T 〉 , bw (B, bw (〈 end a : T 〉 , θ))) [Law 6.32, twice]

= ∀ a : T • ∃ ã : T • bw (B, ∀ a : T • ∃ ã : T • θ)

Proof of Law 6.28

Let X abbreviate ¬ wait′ ∧ tr′ = tr ∧ u′ = u in the following:

bwR (UC (L, w : [Pre, Post]))

= bwR (UC (L, R (Pre ` Post ∧ X))) [def bwR, spec stmt]

= ∃ x′, x̃′ •
(

U (tr ≤ tr′)
∧ ((Pre! ∨ P̃re!)⇒ ok′ ∧ U (Pre!⇒ Post! ∧ X)) ∧ I(L)!

)
[Theorem 6.14]

= ∃ v′, ṽ′ • (Pre ∨ P̃re)⇒ U (Pre⇒ Post ∧ u′ = u) [Pre, Post over v, v′]

= ∃ v′, ṽ′ • U (Pre⇒ Post ∧ u′ = u) [prop calc]

= U (Pre⇒ ∃ v′ • Post ∧ u′ = u) [Pre a condition]
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Proofs

bwQ (UC (L, w : [Pre, Post]) , θ)

= bwQ (UC (L, R (Pre ` Post ∧ X)) , θ) [def bwQ, spec stmt]

=
∀ x′ •

 Pre! ∧ ok′ ∧ Post! ∧ X

⇒ ∃ x̃′ •
(

P̃re!⇒ (P̃ost! ∧ X̃)

∧ t̃r ≤ t̃r′ ∧ I(L)! ∧ Conf′ (θ)

) 
∧ P̃re!⇒ Pre!

[Theorem 6.12]

= ∀ v′ •
(

(Pre ∧ Post ∧ u′ = u)⇒
∃ ṽ′ • (P̃re⇒ P̃ost ∧ ũ′ = ũ) ∧ θ′

)
∧ (P̃re⇒ Pre)

[Pre, Post, θ over state variables]

Proof of Law 6.29

Assumptions are not miraculous, so bw (〈 {C } 〉 , θ) = bwQ (〈 {C } 〉 , θ).

bwQ (UC (L, {C }) , θ)

= bwQ (UC (L, : [C, true]) , θ) [def assumption]

= ∀ v′ •
(
(C ∧ v′ = v)⇒ ∃ ṽ′ • (C̃⇒ ṽ′ = ṽ) ∧ θ′

)
∧ (C̃⇒ C) [Law 6.28]

= (C⇒ ∃ ṽ′ • (C̃⇒ ṽ′ = ṽ) ∧ θ′[v/v′]) ∧ (C̃⇒ C) [one point rule]

Proof of Law 6.31

Assignment is not miraculous, so bw (〈 a := E 〉 , θ) = bwQ (〈 a := E 〉 , θ).

bwQ (UC (L, {C }) , θ)

= bwQ (UC (L, a : [true, a′ = E]) , θ) [def assignment]

= ∀ v′ •
(
(a′ = E ∧ u′ = u)⇒ ∃ ṽ′ • (ã′ = Ẽ ∧ ũ′ = ũ) ∧ θ′

)
[Law 6.28]

= θ′[E, Ẽ/a′, ã′][u/u′] [one point rule]
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= θ[E, Ẽ/a, ã] [renaming]

Proof of Law 6.32

bwR
(

B1 ;̂ B2

)
= ∃ x′, x̃′ •

(
B1 ;̂ B2

)
! [def bwR]

= ∃ x′, x̃′ • B1! ;̂ Conf (B2!) [property of sequential composition]

= ∃ x′, x̃′ • ∃ x0, x̃0 • B1![x0, x̃0/x′, x̃′] ∧ Conf (B2!) [x0, x̃0/x, x̃] [def ;̂ ]

= ∃ x0, x̃0 • B1![x0, x̃0/x′, x̃′] ∧ Conf
(
∃ x′, x̃′ • B2!

)
[x0, x̃0/x, x̃]

[x′, x̃′ free in B1[x0, x̃0/x′, x̃′]]

= ∃ x′, x̃′ • B1! ∧ Conf
(
∃ x′, x̃′ • B2!

)
[x′, x̃′/x, x̃] [renaming]

= bwR
(

B1 ∧ Conf (bwR (B2)) [x′, x̃′/x, x̃]
)

[def bwR]

= bwR
(

B1 ∧ Conf′
(

bwR
(

B2[x′, x̃′/x, x̃]
)))

[renaming]

bwQ
(

B1 ;̂ B2, θ

)
= ∀ x′ •

(
D
(

B1 ;̂ B2

)
!⇒ ∃ x̃′ • (B1 ;̂ B2)! ∧ Conf′ (θ)

)
[def bwQ]

= ∀ x′ •
(
(D (B1) ; D (B2))!⇒ ∃ x̃′ • (B1 ;̂ B2)! ∧ Conf′ (θ)

)
[Condition 5.11]

= ∀ x′ •

 (∃ x0 • (D (B1) [x0/x′] ∧ D (B2) [x0/x])!)⇒

∃ x̃′ •
(
∃ x0, x̃0 •

(
B1[x0, x̃0/x′, x̃′]

∧ B2[x0, x̃0/x, x̃]

)
! ∧ Conf′ (θ)

) 
[def ; , ;̂ ]

= ∀ x′ •

 (∃ x0 • D (B1)![x0/x′] ∧ Conf (D (B2)) [x0/x])⇒

∃ x̃′ •
(
∃ x0, x̃0 •

(
B1![x0, x̃0/x′, x̃′]

∧ Conf (B2) [x0, x̃0/x, x̃]

)
∧ Conf′ (θ)

) 
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[property of sequential composition]

= ∀ x′, x0 •


D (B1)![x0/x′]⇒ Conf (D (B2)) [x0/x]⇒(

∃ x̃0 • B1![x0, x̃0/x′, x̃′]⇒
∃ x̃′ • Conf (B2) [x0, x̃0/x, x̃] ∧ Conf′ (θ)

) 


[pred calc]

= ∀ x0 •


D (B1)![x0/x′]⇒ ∃ x̃0 • B1![x0, x̃0/x′, x̃′]

∧ ∀ x′ •
(

Conf (D (B2)) [x0/x]⇒
∃ x̃′ • Conf (B2) [x0, x̃0/x, x̃] ∧ Conf′ (θ)

) 


[pred calc]

= ∀ x0 •
(

D (B1)![x0/x′]⇒
∃ x̃0 • B1![x0, x̃0/x′, x̃′] ∧ Conf (bwQ (B2, θ)) [x0, x̃0/x, x̃]

)
[def bwQ]

= ∀ x′ •
(

D (B1)!⇒ ∃ x̃′ • B1! ∧ Conf′ (bwQ (B2, θ))
)

[renaming]

= bwQ (B1, bwQ (B2, θ)) [def bwQ]

Proof of Law 6.33

bwR
(

g &̂ B
)

=


U (g) ∧ bwR

(
g &̂ B

)
∨ U (¬ g) ∧ bwR

(
g &̂ B

)
∨ (g 6= g̃) ∧ bwR

(
g &̂ B

)
 [case split]

=

 U (g) ∧ bwR (B)
∨ U (¬ g) ∧ bwR

(
R̂ (true ` U (tr′ = tr ∧ wait′))

)
∨ (g 6= g̃) ∧ bwR

(
R̂ (true ` false)

)
 [def &̂ ]

=

 U (g) ∧ bwR (B)
∨ U (¬ g) ∧ true
∨ (g 6= g̃) ∧ false

 [def bwR]

= (U (g) ∧ bwR (B)) ∨ U (¬ g)
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This result simplifies the calculation of bwQ:

bw
(

g &̂ B, θ

)
= ((U (g) ∧ bwR (B)) ∨ U (¬ g)) ∧ bwQ

(
g &̂ B, θ

)
[def bw]

=

 U (g) ∧ bwR (B) ∧ bwQ
(

g &̂ B, θ
)

∨ U (¬ g) ∧ bwQ
(

g &̂ B, θ
)  [distributivity]

=

(
U (g) ∧ bwR (B) ∧ bwQ (B, θ)

∨ U (¬ g) ∧ bwQ
(
R̂ (true ` U (tr′ = tr ∧ wait′)) , θ

) ) [def &̂ ]

=

(
U (g) ∧ bwR (B) ∧ bwQ (B, θ)

∨ U (¬ g) ∧ true

)
[property of bwQ]

= (U (g) ∧ bw (B, θ)) ∨ U (¬ g) [def bw]

Proof of Law 6.34

The prefixing operator is not miraculous, so bw (〈 c.E→ Skip 〉 , θ) =

bwQ (〈 c.E→ Skip 〉 , θ). Let X abbreviate:

(
tr′ = tr ∧ (c, E) /∈ ref ′ C wait′ B tr′ = tra 〈(c, E)〉

)
∧ v′ = v

in the following:

bwQ (UC (L, c.E→ Skip) , θ)

= bwQ (UC (L, R (true ` X)) , θ) [def prefix]

= ∀ x′ •
(

ok′ ∧ X!⇒ ∃ x̃′ • X̃! ∧ I(L)! ∧ Conf′ (θ)
)

[Theorem 6.12]

=

∀ x′ •
(

ok′ ∧ wait′ ∧ X!⇒ ∃ x̃′ • X̃! ∧ I(L)!
)

∧ c ∈ L ⇒ ∀ x′ •
(

ok′ ∧ ¬ wait′ ∧ X!⇒ ∃ x̃′ • X̃! ∧ I(L)! ∧ θ′
)

∧ c /∈ L ⇒ ∀ x′ •
(

ok′ ∧ ¬ wait′ ∧ X!⇒ ∃ x̃′ • X̃! ∧ I(L)! ∧ θ′
)

[case split]
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Proofs

=
c ∈ L ⇒ ∀ x′ •


tr′ = tra 〈(c, E)〉 ∧ v′ = v⇒

∃ x̃′ •

 t̃r′ = t̃ra 〈(c, Ẽ)〉
∧ 〈(c, E)〉 = 〈(c, Ẽ)〉
∧ ṽ′ = ṽ ∧ θ′




∧ c /∈ L ⇒ ∀ x′ •
(

v′ = v⇒ ∃ x̃′ • ṽ′ = ṽ ∧ θ′
)

[simplify]

=
(

c ∈ L ⇒ θ′[v, ṽ/v′, ṽ′] ∧ E = Ẽ
)
∧
(

c /∈ L ⇒ θ′[v, ṽ/v′, ṽ′]
)

[one point rule]

=
(

c ∈ L ⇒ θ ∧ E = Ẽ
)
∧ (c /∈ L ⇒ θ) [renaming]

Proof of Law 6.37

bwR
(

B1 ûB2

)
= ∃ x′, x̃′ • B1! ∨ B2! [def bwR]

⇐ ∃ x′, x̃′ • B1! ∧ ∃ x′, x̃′ • B2! [pred calc]

= bwR (B1) ∧ bwR (B2) [def bwR]

bwQ
(

B1 ûB2, θ

)
= ∀ x′ •

(
D ((B1 ∨ B2)!)⇒ ∃ x̃′ • (B1 ∨ B2)! ∧ Conf′ (θ)

)
[def bwQ]

= ∀ x′ •
(

D (B1)! ∨ D (B2)!⇒ ∃ x̃′ • (B1! ∨ B2!) ∧ Conf′ (θ)
)

[Law 4.8]

⇐

 ∀ x′ •
(

D (B1)!⇒ ∃ x̃′ • B1! ∧ Conf′ (θ)
)

∧ ∀ x′ •
(

D (B2)!⇒ ∃ x̃′ • B2! ∧ Conf′ (θ)
)  [pred calc]

= bwQ (B1, θ) ∧ bwQ (B2, θ) [def bwQ]

A final refinement step glues the pieces together.
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Proof of Law 6.38

We prove the result for an external choice between two alternatives.
It is straightforward to generalise this proof to arbitary numbers of
alternatives.

First, we apply the approach described in Subsection 6.4.1 to derive:

bw
(

B1 2̂B2, θ

)
⇐

(
bw ((B1 2̂B2) ∧ U (tr′ = tr ∧ wait′) , θ)

∧ bw ((B1 2̂B2) ∧ ¬ U (tr′ = tr ∧ wait′) , θ)

)
[Lemma 6.19]

⇐
(

bw ((B1 2̂B2) ∧ U (tr′ = tr ∧ wait′) , θ)

∧ bw ((B1 2̂B2) ∧ U (¬ (tr′ = tr ∧ wait′)) , θ)

)
[Law 4.13]

=

(
bw ((B1 2̂B2) ∧ U (tr′ = tr ∧ wait′) , θ)

∧ bw
((

B1 ûB2
)
∧ U (¬ (tr′ = tr ∧ wait′)) , θ

) )
[property of 2̂]

The last step is a consequence of Definition 5.27: when ¬ (tr′ = tr ∧ wait′)
holds, (lifted) external choice is equivalent to the (lifted) reactive design
form of (lifted) internal choice.

Assuming at least one of the guards holds in each state, we sketch how
this result can be specialised to an external choice of guarded prefixes:

bw
(

g1 &̂ c1 →̂B1 2̂ g2 &̂ c2 →̂B2, θ

)

⇐


bw

((
g1 &̂ c1 →̂B1 2̂ g2 &̂ c2 →̂B2

∧ U (tr′ = tr ∧ wait′)

)
, θ

)

∧ bw

((
g1 &̂ c1 →̂B1 û g2 &̂ c2 →̂B2

∧ U (¬ (tr′ = tr ∧ wait′))

)
, θ

)


[as above]

=

 bw
((

g1 &̂ Stop 2̂ g2 &̂ Stop
)
∧ U (tr′ = tr ∧ wait′) , θ

)
∧ bw

((
g1 &̂ B1 û g2 &̂ B2

)
∧ U (¬ (tr′ = tr ∧ wait′)) , θ

) 
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Proofs

[property of bw]

=

 bw
(

g1 &̂ Stop û g2 &̂ Stop, θ
)

∧ bw
(

g1 &̂ B1 û g2 &̂ B2, θ
)  [assumption]

⇐

 bw
(

g1 &̂ Stop, θ
)
∧ bw

(
g2 &̂ Stop, θ

)
∧ bw

(
g1 &̂ B1, θ

)
∧ bw

(
g2 &̂ B2, θ

)  [Law 6.37]

=


(U (g1) ∧ true ∨ U (¬ g1))

∧ (U (g2) ∧ true ∨ U (¬ g2))

∧ (U (g1) ∧ bw (B1, θ) ∨ U (¬ g1))

∧ (U (g2) ∧ bw (B2, θ) ∨ U (¬ g2))

 [Law 6.25, Law 6.33]

=

(
(U (g1) ∧ bw (B1, θ) ∨ U (¬ g1))

∧ (U (g2) ∧ bw (B2, θ) ∨ U (¬ g2))

)
[prop calc]
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