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Abstract

Radiotracer input function study is a common method to study the physiological
and biochemical processes in early drug development as well as for therapeutic
purpose and it is usually clinically performed on small animals to reduce blood
withdrawal that can cause blood depletion. The common measurement principle
is also applied in quality control tests of radiotracer production to ensure accurate
amount of dose being produced. It is desirable of such testing devices to handle
low volumes of radioactive fluid. The first part of the thesis introduces a novel type
of scintillator detector based on microfluidic technology. The proposed detector
can measure radiotracer activity in fluid in a microfluidic channel that is used to
determine the input function in real time. At initial stage, simulation work using
GEANT4 was done to validate the most suitable fluidic channel designs by opti-
mising the dimensions of the channels to get higher count rate. The microfluidic
detector prototype was fabricated using Polydimethylsiloxane(PDMS) and coupled
to Silicon photomultipliers(SiPM). Experiments were carried out to evaluate the
performance of the prototype in terms of the material effects on residual activity,
detection efficiency, minimum detectable activity, linearity and sensitivity of the
microfluidic prototype. PDMS has almost 10 times higher residual activity com-
pare to glass. Absolute efficiency for 18F ranges between 2.5-7.6% and for 68Ga
between 6.6-33.9%. 18F is linear up to 11000 cps while 68Ga up to 8000 cps. Sen-
sitivity of the detector for 18F is 0.8% and 2.9% for 68Ga. The second part of the
thesis describes a detector based on scintillating fiber technology. Due to the size,
flexibility and cost of manufacturing of such fiber, it is a best possible option for
activity counting in narrow diameter environment such as blood vessels. However,
due to the sub-mm diameter of fiber, the number of counts detected is small. Pre-
liminary investigation of scintillating fiber shows less than 1±0.1% difference from
the actual half-life of 18F. Initial feasibility studies of the prototype show excellent
agreement of the measured decay time with theoretical decay time. The probe the
absolute sensitivity is 289 cps/MBq/ml.
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Chapter 1

Introduction

This chapter gives a brief account of the uses of PET for small animal study.

The blood input function measurement methods are then described in section 1.2.

The need for a miniaturised beta detectors in quality control aspects of radiotracer

production are explained in section 1.3. An overview of research motivation and

thesis objectives are then given. Lastly, the structure of the thesis is outlined.

17



Nuclear Medicine is a branch of medical diagnostic imaging that has been

widely used in oncology, cardiology and neurology. The science of nuclear medicine

involves administration of labelled-radionuclides to obtain diagnostic images. These

radionuclides are also used for therapeutic purposes with similar science. Positron

Emission Tomography (PET) and Single Photon Emission Computed Tomogra-

phy(SPECT) are two nuclear medicine imaging modalities that are used to ra-

diodetect specific disease or condition by injecting a radiotracer into the patient.

The positron emitting radiotracer will accumulate in diseased organs and decay,

producing annihilation photons. These photons will reach detector rings and even-

tually produce an image of the patient. The difference of these modalities to

other imaging devices is that they provide physiological information such as tissue

perfusion[12], metabolism process[13] and receptor function[14].

PET and SPECT has also demonstrated their use in in-vivo imaging technique

for small animal imaging. This field of study is called molecular imaging, that

is the study of biochemical processes such as pathological investigation[15] and

molecular level pharmacology[16]. Compared to a human PET scanner, small

animal scanners are much smaller in size. Due to the small size of the subject,

small animal scanners ideally require a high spatial resolution. The most important

advantage of a small animal scanners is that they can provide information on the

biological process, not just their effect at the end of the process. In turn, this

permits evaluation of disease and provides information of biochemical, physiologic,

and molecular effects of pharmaceutical drugs.

1.1 PET for Small Animal Study

There is a large database of PET animal studies that provide the bridge between

preclinical discoveries and implementation in the clinical field. In new drug de-

velopment, for example, the pharmacodynamic and pharmacokinetic properties of

new proposed drugs are studied extensively to obtain preclinical data. The anal-
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ysed trial data must go through a regulatory body before clinical trials on humans

can be performed. Conventionally, animal studies were done invasively by dissect-

ing and sacrificing a large number of animals. Nowadays, PET animal studies have

effectively reduced the amount of animal testing and the cost of experiments[17].

PET with 18F is widely use to study the kinetic model of metabolic processes.

The dynamic data can be acquired by analysis of the input function of 18F in blood

plasma at a specific region of interest. Input function describes concentration of

tracer in fluid as a function of time. By comparing the input function of the organ

of interest to the theoretical models, it is possible to measure the metabolic process

of the drug.

The main method to acquire accurate blood input function requires numerous

blood samplings from the subject over the course of the evaluation. This is chal-

lenging, in particular to small animals, due to the limited amount of blood and

small blood vessels. There are other less invasive options to estimate the input

function such as a beta-probe measurements and arterial shunts or a non-invasive

methods, such as the Image-derived Input Function (IDIF)[18] and Factor Analysis

(FA)[19].

1.2 Blood Input Function Measurement Meth-

ods

Blood input function used to study blood metabolic processes can be acquired in

several ways. The radioactivity concentration in arterial plasma represents the

input function, and is commonly acquired from measurement of the radioactiv-

ity level in arterial blood. Figure 1.1 showing example of input function from a

real-time microfluidic chip detector. The blood radioactivity counts peak at the

time of radiotracer administration and rapidly drop throughout the first 50 s of

measurement because most of the radioactive fluid has passed through the micro
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channel. There are several methods to acquire blood input function. The current

methods can be categorised into two, (a) the Image-based Method and (b) the

Blood activity method. These methods will be discussed further in the following

sections.

Figure 1.1: Input function measured in a microfluidic detector. At the instance
of radiotracer administration in a flow through measurement, the radioactivity
increases and reduces when radioactive fluid exit the micro channel.

1.2.1 Image-based Method

Image-derived Input function

Image-derived Input Function (IDIF) is the method of obtaining input function

from direct measurement of dynamic PET images. Input function obtained by

drawing a Region of Interest (ROI) over a blood pool organ such as heart, aorta

or femoral arteries and then corrected with recovery coefficient which is calculated

by Full width half maximum (FWHM) of the ROI of the centre of PET image and

it is commonly utilised in human studies [20]. This method simplified scanning

procedures, thus eliminates the need for blood handling and reduces the radiation

exposure to research personnel in comparison to blood sampling method. How-
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ever, the accuracy of the measurements is affected by the partial volume effect

and spillover. Partial volume effect happens when small structure appear to loss

of activity concentration, while region close to high activity may appear high in

activity than actual is known as spillover. It has been successfully validated for

large blood pool organs especially in humans, however, overestimation or underes-

timation of the input function can occur in small animals because of the relatively

small size of their organs compare to the spatial resolution of the scanners. A

typical spatial resolution of a small animal PET is in the range of 1-2 mm in full

width half maximum [21]. Moreover, it has limitation for organs outside of the

blood pool such as the brain.

Factor Analysis

Factor Analysis (FA) is used to eliminate the need for ROI drawing and spillover

correction [22]. FA is a mathematical technique based on principle component

analysis, used to resolve the input function of individual homogeneous regions of

tissues and blood from the overall tissue component. It is based on the assumption

that the total voxel intensity in the PET image is the summation of all counts

by individual components, which are distributed linearly. While reports[22][19]

showed successful implementation of this method for human analysis, validation

for small animals is difficult due to the small size of the cardiac chamber. Despite

that, there was a report showing good estimation using FA in rodents[1].

An example of dynamic images is shown in figure 1.2(A) and (C) taken from

a rat heart for 60 min for 18F study and 20 min for 11C study. Figure 1.2(B)

and 1.2(D) shows the extracted FA images of a rat Right ventricle(RV), Left ven-

tricle(LV) and Myocardium done with 18F and 11C ,respectively. The image was

obtained by adding the voxel intensity of the ROI over the course of measurement.
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Figure 1.2: Example of Factor analysis images (B and D) obtained after factor
analysis extraction for 18F and 11C studies on rat heart(respectively). Adapted
from [1].

1.2.2 Blood Activity Methods

Although image-based methods have shown successful applications for blood ki-

netic analysis, the major drawbacks are spillover and partial volume effect on the

ROI. Moreover, the methods can only be used for several PET radiopharmaceuti-

cals and they are not entirely non-invasive because blood samples are still needed

for reference, as it is the most accurate input function measurements method.

Direct blood activity measurement has been the gold standard to determine

input function in small animals. The conventional way to quantify tracer activity

in blood plasma in small animals is by drawing relatively large amount of blood

and subsequently, analysis is done using a well counter which is labor intensive

and may increase blood loss. Well counter was used because it has good geometric

efficiency in order get most accurate photon measurements. There were numerous

studies been done proposing methods to minimise the size of blood samples as

well as reducing exposure to personnel such as automated micro blood sampling,
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beta-probe and arterial shunt. The following section will discuss these methods.

The Arteriovenous Shunt

The Arteriovenous shunt technique requires a shunt to be placed between the

artery and a vein while a detector measuring blood radioactivity is connected

to the shunt by a tube. The method allows for online activity monitoring that

will potentially increase the statistical quality of the input function and enable

high temporal resolution. Furthermore, blood loss through manual sampling can

be eliminated. On the other hand, the long tube connecting the shunt to the

probe may cause dispersion effect. Dispersion of the fluid sample causes mixing

and dilution of the sample resulting in distortion of the sample concentration.

Dispersion in tube depends on the flow rate, temperature, length of tube and

tube composition. This technique was proposed by a few groups[23][24] and had

showed promising findings. A high degree of matching between a-v shunt probe

with manual sampling, the goal standard, compared to the image-derived method

as reported by Warnock et al. However, the method is very demanding in terms

of animal preparation and close monitoring of the animals physiological states.

Beta Microprobe

The idea of the in vivo beta probe is to directly measure beta activity in the

blood or fluid in an artery. It is also otherwise known as a fiber probe because of

its geometry, the length is much larger than the thickness. The positrons have a

relatively short range in matter, therefore such detector dimension is suitable for

most positron emitting PET radiotracers. The ability to directly detect a positron

in arteries, gives the detector better sensitivity and a better temporal resolution

than manual sampling method and claimed to be less sensitive to gamma[25]. The

whole detector and its electronics can be made quite compact and cheap. For

the past decades, research [26][27][28] had been proposing potentially better beta
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probe performance using fiber probes compared to manual sampling method for

quantification of input function with PET radiotacer. The proposed beta probe

constructions are composed of a thin scintillator, LSO [28] or thin plastic scintillat-

ing fiber glued to the tip of optical fiber and optically coupled to a photomultiplier

tube(PMT). Coupling of the scintillators to the optical fiber can be a challeng-

ing task as they are tiny and need to be accurately coupled to reduce light loss.

All of these previous studies have used a small scintillator (sensitive volume) on

the tip of the detector with optical fiber to reduce gamma detection by the beta

probe. A recent study[29] used a full length plastic scintillating fiber and showed

no significant gamma signal from 99Tc (140 keV) detected.

However, beta probes have some drawbacks as a minor procedure on the test

subject is necessary to facilitate probe insertion. The probe needs to be light tight

to prevent light from the surroundings to flood the photodetector. On the other

hand, the thickness of the light seal has to be thin enough so it will not cause

positron energy degradation. In addition to that, the total thickness of the probe

must not be so large that it can cause interference to the blood flow and affecting

the probe reading.

Arterial Blood Sampling

The blood sampling method is commonly regarded as the standard method for

measurement of blood input function. In some studies, supplementary data from

blood sampling techniques are needed for calibration purposes. Blood activity is

measured directly by taking a small sample of blood (10-100 µL) for a certain time

duration. The activity of the PET radiotracer can be measured by measuring beta

particle decay or the annihilation photons. Nowadays, this is done by an automatic

system to ensure reproducibility of the setup[30][31]. With the aim of reducing

blood loss, studies have successfully measured blood sample activity from samples

as low as 1 µL[32][33].
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The conventional method of blood sampling is to repetitively withdrawing

blood manually followed by blood separation and then measurement of radiation

in a well counter. This is labor intensive and time consuming, and furthermore,

increases radiation exposure to technicians. Moreover, when it comes to a small

animal, blood volume is limited and constant blood withdrawal may interfere with

the physiological condition of the animals. Automated sampling was introduced

by Hutchins et. al. 1986[34] which has reduced measurement time and labor but

correction such as dispersion and time shifts between time of blood withdrawal

and time of measurement taken have to be account for. A computer operated high

speed blood sampler was designed by Graham et. al. in 1993 but total blood

volume was still large (2.6 mL)[35].

While most of the drawbacks of blood sampling has been overcome, problems

arise from adsorption of tracer and metabolites on tubing and the sensitivity of

the positron detector to annihilation gammas. These will alter the results of the

input function obtained. Furthermore, photodetectors such as PMT are sensi-

tive to magnetic fields, therefore restricting the application of such devices within

Magnetic Resonance Imaging (MRI) scanners.

1.3 Quality Control of PET Radiotracer

Prior to radiotracer injection in humans, mandatory quality control(QC) tests are

required by a regulatory body to ensure the safety of the produced radiotracer

for clinical use. A toxicity tests are done to ensure the radiotracer is free from

chemical contaminants. Likewise, radioactivity tests are done to ensure accurate

patient dose and good quality images. Since PET radiotracers have short half

lives (2 min to 109 min), QC tests must be done within a short period of time.

Moreover, the tests must be done in a dedicated lab, fully equipped with analytical

equipment. Caution has to be taken during handling due to the high radioactivity

exposure.
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For the past decade, PET radiotracer production processes have been minia-

turised [36][37] successfully due to the reasons such as demand for a more per-

sonalised (dose-on-demand) radiotracer, use of less precursor, reliability and eco-

nomical factors. Micro-reactor is a miniature size reactor for production of PET

radiotracer. It consists of a series of microchannels that function as a “microfac-

tory” to produce labelled radiotracer. All synthesising processes are done in the

microreactor.

The downside of the dose-on-demand concept is that the radiotracer produced

is sufficient only for single patient dose. With the limited volume of radiotracer

being produced, performing quality control tests on the radiotracer on each pro-

duction is difficult. Several studies[38][39][40] have reported successful method

utilising microfluidic technology to reduce the scale of resources use in quality

control aspect of PET radiotracer production. In quality control assessments, the

proposed microfluidic detector can be use as a device to measure radioactivity of

radiotacer to identify the type of radioisotope produced as well as to verify the

dose activity for each patient. This detector works well along the microreactor as

it do not utilize large sample volume.

1.4 Overview of Research Motivation

As discussed in the previous sections, microfluidic technology has found an appli-

cation in the medical field. Attempts to improve its applicability in input function

analysis has long been discussed, it was only just recently realised the use of mi-

crofluidic technologies in QC of PET radiotracer. Taggart et. al. has suggested the

feasibility of microfluidic and SiPM for QC testing[40] and Tarn et. al. reported a

promising finding of microfluidic for time-activity analysis[38]. These have moti-

vated this research to investigate the possibilities of microfluidic chip application

as an integrated particle detection system that can be use for both purposes. The

proposed microfluidic detector presents a low cost and easy fabrication method
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for a miniaturised positron detector system that can be used for input function

analysis and to serve as a detector in a radiotracer microreactor system. Figure

1.3 is illustrating the principle setup and possible application of the microfluidic

detector. The detector can be integrated to other system to run further radiotracer

quality control assessments.
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Figure 1.3: Principle setup of the microfluidic detector, showing the possibility of
the system being implemented for some applications.

Likewise, the beta probe detector as a tool to obtain input function analysis

has also been extensively researched. The proposed beta probe has increased

the sensitive volume and eliminates the need for optical fiber as a light guide.

Nevertheless, using scintillating fiber as the detector and as the light guide, may

increases the detector gamma sensitivity. However, Knowland et. al. reported no

count from gamma measured by scintillating fiber[29]. The proposed beta probe

can also be used along side the microfluidic detector, especially when rapid activity

measurement is needed i.e immediately after the injection of the radiotracer.

Different methods obtaining input function have their own benefits and limi-

tations. Image based methods are limited by the spatial and temporal limitation of

the imaging device. Blood sampling technique is considered as the reference stan-
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dard as it produce accurate modelling. However, frequent blood sampling may

result in blood depletion and has temporal limitation. The beta probe technique

has excellent temporal resolution. The combination of both proposed detectors are

able to reduce the volume of blood sample by using microfluidic technology that

help to prevent blood depletion while maintaining excellent temporal resolution.

The two main goals of this thesis can be summarised as:

• fabrication and study of a microfluidic detector prototype to validate the per-

formance of the detector in detecting fluid activity in a microvolume sample.

It is a miniature detector fabricated using microfluidic technology and SiPM

at a lower cost and it is reusable.

• fabrication and studies of plastic scintillating fiber as a beta probe for mea-

surement of fluid activity for measurement within small constricted tube.

1.4.1 Thesis Objectives

The objectives of this thesis are to:

• fabricate microfluidic chips using a combination of PDMS-PDMS and PDMS-

Glass by the replica molding technique

• investigate the effect of microfluidic material on residual activity in the fluidic

channel

• calculate the detection efficiency, minimum detectable activity, linearity and

sensitivity of the microfluidic detector prototype for measurement of 18F and

68Ga

• evaluate the effect of fiber bundles on photon yields at different distances.

• evaluate different photodetectors based on signal-to-noise ratio analysis
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• fabricate a beta probe prototype coupled to SiPM

• investigate the beta probe light output for different sources i.e 137Cs and 90Sr

• calculate the beta probe 18F decay time and sensitivity.

1.5 Thesis Structure

Chapter 2 presents an outline of the beta mechanism in matter and also the

physics of the different scintillator types that are relevant to the study. It also

describes a general introduction to scintillator detectors and microfluidic technol-

ogy. GEANT4 simulation for evaluation of different microfluidic geometries, and

light output and propagation in beta probe are detailed in chapter 3. Fabrication

and characterisation of the microfluidic detector are explained in chapter 4. Chap-

ter 5 presents the performance of plastic scintillating fibers and the fabrication of

the proposed beta probe. General conclusion for both detectors and suggestion for

future work are stated in chapter 6.
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Chapter 2

Overview of Scintillation

Detectors System

This chapter will discuss the theory underlying the operation of scintillation as well

as light sensing technology. Section 2.1 will discuss passage of particles through

matter while the properties and physics of scintillation is discussed in section 2.2.

Section 2.3 will describe the scintillation light sensing technologies. Scintillation

detector technologies are being discussed in section 2.4 focusing particularly on dif-

ferent types of scintillating fibers. Lastly, an introduction to microfluidic technology

is given in section 2.5.
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Since particle radiation is not visible by human sense, their detection principle

utilises a medium that can absorb their energy and then convert it into a form such

as electrical charge or scintillation photons. The fundamental science of particle

detection is based on the knowledge of the particle interaction in matter. This

interaction depends on the characteristics of the particle and detector material.

Particles deposit their energy to surrounding molecules as they traverse matter.

Some molecules convert this energy to light, which is known as scintillation light.

2.1 Passage of Particle Through Matter

A particle moving in matter interacts with surrounding atoms in the material.

A particle loses energy as it passes through matter because of elastic collisions

with nuclei and inelastic collisions with orbital electrons. The inelastic collisions

may have two consequences. They can either cause excitation only or result in

ionisation of the atom by knocking out an orbital electron[41]. This free orbital

electron can lead to further secondary ionisation. Since excitation and ionisation

of the atoms are a statistical process, there is no accurate deterministic event-by-

event value of the energy loss. However, the mean rate of energy loss (stopping

power) can be calculated using the Bethe-Bloch equation2.1,

− dE

dx
= Kz2

Z

A
%

1

β2

[
1

2
ln

2mec
2β2γ2Tmax
I2

− β2 − δ

2

]
(2.1)

where

• K = 4πNAr
2
emec

2 = 0.307MeVmol−1cm2

• z = charge of incident particle

• Z = atomic number of absorber

• A = atomic mass
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• β = v/c is the velocity of particle

• me is the electron mass at rest

• c is the velocity of light

• γ = 1√
1−β2

is the Lorentz factor

• δ(βγ) is the density effect correction to ionisation energy loss

The Bethe-Bloch equation describes the mean energy loss per distance trav-

elled of a heavy particle such as proton, alpha and ions but not electrons.

2.1.1 β Interaction Mechanism

Beta decay is the process of radioactive decay by the ejection of positive (β+) or

negative electron (β−) from nucleus. The basic transformation is written as,

1
0n → 1

1p + 0
−1β + ν̄ (β−decay)

1
1p → 1

0n + 0
+1β + ν (β+decay)

where 1
0n,

1
1p, ν̄ and ν stand for neutron, proton, antineutrino and neutrino respec-

tively. Radionuclides lie above the region of stability have high neutron to proton

(n/p) ratio. These nuclei achieve stability by reducing the n/p ratio through emis-

sion of negative electron. This is called β− decay. Radionuclides with a deficit

number of neutron and lower n/p ratio will emit positive electron or positron, in

order to achieve stability. This is called β+ decay.

In both mode of β decay, the disintegration energy is shared between the

emitted particles. Since there is more than one particle emitted, the observed

spectrum in the β decay is continuous. The β particles energies range from zero

up to maximum energy. Figure 2.1 shows a typical beta particle energy spectrum.
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The electrons can carry energy from almost zero up to the endpoint energy. The

endpoint energy is the Q-value or the fixed decay energy.

Figure 2.1: Beta energy spectra from typical Radiotracer, 18F (Blue) and 68Ga
(Red).

The beta interaction mechanism in matter can be described by inelastic and

elastic collisions. The beta particles loose energy via interaction with an orbital

electron, which can then lead to excitation or ionisation of the atom. The maxi-

mum energy transfer during the collision can be expressed as,

Qmax =
4mME

(m+M)2
(2.2)

where E is the kinetic energy of beta, m is the mass of beta and M is the mass

of orbital electron. Since m = M , the Qmax is equal to E. Since the beta collides

with electron of equal mass, this results in a large scattering angle.

The incoming beta can also interact with atomic nuclei and experience de-

celeration. This will emit electromagnetic radiation called bremsstrahlung. The

bremsstrahlung photons have a continuous energy distribution. The larger the

deceleration, the higher the photon energy being produced and it can reach a
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maximum energy equal to the beta kinetic energy. The behaviour of electron pass-

ing through matter is largely influenced by the electron energy. Typical positron

emitting nuclides for PET purposes ranges from 600 keV to 1900 keV. As shown

in Figure 2.2, the dominant mode of β interaction in plastic scintillators at this

energy range is collision of the beta with orbital electrons.

Figure 2.2: Collision (black dotted line) and radiative (red line) stopping powers
in plastic scintillator that determine energy losses of electrons. At low energies
(<2 MeV) ionization losses are maximum.

2.1.2 Electron-positron Annihilation

Positron is a positive charge particle that has similar mass as electron. During

positron interaction in matter, it losses energy through Coulomb force interaction

similar to electron, regardless of its charge. Regardless of repulsive or attractive

interaction, energy transfer is similar. Thus the track, stopping power and range

are analogous to the electron.

At the end of positron range, when it comes close to an electron, they will

annihilate and as a result produce two identical photons. These photons each carry

511 keV of energy and travel in opposite direction. Annihilation photons are used
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in PET imaging to produce images.

2.2 Scintillation Materials

As discussed in section 2.1, when a particle transfers its energy to a material,

it will produce excited electron or photons. In a scintillation material, part of

this energy is converted to optical photons. This process is called scintillation.

Scintillation material can be classified into two categories, organic and inorganic.

They are different in chemical properties as well as light production mechanism.

In the context of this thesis, organic scintillator ie. plastic scintillator has been

chosen as the scintillator for both prototypes.

2.2.1 Inorganic Scintillator

Inorganic scintillators are solid crystalline that scintillate due to their characteristic

crystal structure. They can only scintillate light in their crystalline form. However,

the inorganic scintillators can scintillate in their pure form such as NaI crystal at

liquid Nitrogen temperature. Most of the crystals require impurities to change its

crystalline structure that is responsible for the scintillation effect. For instance,

NaI crystal can only scintillate light efficiently at room temperature when a small

amount of Thallium impurities is added.

Most inorganic scintillators are dense (ρ ∼ 4 - 8 g/cm−3) and have high atomic

number. They are commonly used for particle or photons of high penetrating

power. Inorganic scintillators have higher light output (∼40 per keV) compare

to other scintillators hence giving better energy resolution. Nevertheless, some

inorganic scintillators are hygroscopic and fragile. Exposure to moisture or external

stress may impair the light transmission.

The principle of scintillation light production in an inorganic scintillator is
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graphically illustrated in figure 2.3. The empty conduction band and electron-rich

valence band is fully separated by an energy gap. When ionising radiation passes

through an inorganic scintillator, the energy absorbed produces an electron-hole

pair and elevates the electron across the gap to the conduction band, leaving a

positive charge hole in the valence band. Eventually, the electron will fall back to

valence band and recombine with the hole. This will emit photons. In the case of

a pure crystal, photons emitted will have high energy with respect to the visible

light range. Impurities help to enhance the visible light emission by introducing

an intermediate energy state within the energy gap. Upon recombination, the

electron will transition to this intermediate level and then fall back to the valence

band. Since the intermediate energy level is lower than the full energy gap, the

photon emitted is within the visible light range.
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Figure 2.3: Scintillation mechanism in inorganic scintillator. The electron is ex-
cited to conduction band and moves freely. Upon recombination with a hole, the
electron transit at the intermediate level. A photon emitted is in the visible light
range.

Inorganic scintillators such as BGO, GSO and CWO are commonly used in

spectroscopic application. LSO, LYSO and LFS are amongst the popular choice

of scintillator for PET imaging when high position resolution, high efficiency and
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high depth of interaction resolution are required [42][43][44]. Inorganic scintillators

also exist in the form of noble gases and glasses. Scintillator gasses suffer from

low light yield, despite that, it is still being used for heavy ion spectroscopy [45].

Cerium activated lithium or boron silicate are scintillating glass that are widely

used in neutron detection because of high cross section of Li and B, but these

scintillators only emit 3-4 photon per keV.

2.2.2 Organic Scintillators

Unlike inorganic scintillators, the fluorescence process in organic scintillators is an

inherent molecular property. This means the scintillator can fluoresce, independent

of its physical states. Organic scintillators can exist in the form of organic crystal

e.g naphthalene, stilbene and anthracene or plastics and liquid. Plastic and liquid

scintillator are the most commonly used organic scintillator because they are easily

available in any shape and sizes while organic crystal is not a popular choice

because of difficulty in manufacturing.

The scintillation mechanism in organic scintillators is basically excitation of an

atom in the scintillator molecule. While de-excitation happens, it emits scintilation

photons. The complete explanation of the mechanism is illustrated in figure 2.4.

Incident radiation transfers energy to the molecules, where it excites an electron

causing electron transitions from S0 ground level to higher vibrational level in

singlet states S1, S2, ... or triplet states T0, T1, T3, ... . This induces instability

in the system, thus rapidly causes the electron transition to S1 ground state or

in the case of electron in triplet states, it will decay to T0 ground state through

radiationless transition. After that, the electrons will decay to S0 ground state,

releasing excess energy in the form of scintillation photons.

There is also possibility of molecules of T0 state interacts with other molecules

of same state, leaving one molecule in S1 excited state. That molecule will then

undergo fluorescence transition and emits UV photons. Since triplet state is more
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Figure 2.4: Scintillation mechanism occur in organic scintillator. Fluorescence
generated through S1 → S0. The same S1 → S0 transition happen for delayed
fluorescence but prior to that T0 → T0 interaction between molecules of similar
states. Phosphorescence is the slowest interaction where electron fall from T0 →
S0.

stable than singlet state, it takes more time for electron transit between these

states (∼100 ms). This is called delayed fluorescence. Another possibility is the

electron from T0 states falls directly to S0 states producing UV photon of shorter

wavelength. However, the probability of this process to occur is low. This is the

phosphorescence component in scintillator.

However, the scintillation photons have a rather short attenuation length be-

cause their energies correspond to the definite energy states. To overcome this,

fluor need to be added to the scintillator to help absorb the emitted UV photons

and re-emit at longer wavelength. Another fluor is added to the scintillator called

wavelength shifter. The function of the fluor is to absorb the UV photons and

emit light photons.
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2.2.3 Plastic Scintillators

Common plastic scintillators are fabricated using base material such as polystyrene,

polyvinyltoluene and polymethylmethacrylate. It is made by dissolving one or

more fluor to the base material. Plastic scintillators are inexpensive and come in

different shapes of rods, sheets and fibers. Plastic scintillator has been used in a

variety of detector applications. However, plastic scintillator is not the scintilla-

tion of choice when it comes to gamma spectroscopy. Probability of photoelectric

effect is low in plastic scintillator due to its low atomic number. Therefore, only

Compton edge can be seen when using plastic scintillator. Plastic scintillator is

extensively used in particle detection [46][47]. Recently, studies has been done

using plastic scintiillator for low energy X-ray in diagnostic radiology [48][49]

Scintillating fiber is a unique type of plastic scintillator that has scintillating

fiber core cover with cladding. It has properties as optical fiber with added ability

to scintillate light when radiation passes through the core. Depending on the size

of fiber chosen, scintillating fiber has good spatial resolution that makes it good

for particle tracking as well as for calorimetry application. Further discussion on

scintillating fiber are discussed in section 2.4.1.

2.2.4 Light Yield

Light yield is perhaps the most important characteristic of scintillators. In any

scintillator detector, it is the ultimate goal to collect as much as possible light

emitted in the material. Low light output can cause degradation of signal-to-

noise ratio. This is especially important for spectroscopic analysis. Light yield is

measured by the number of photons per unit energy of incident radiation. Common

scintillators yield between 20000-30000 light photons per MeV.

Plastic scintillator response to electrons is linear for energies above 125 keV.

Figure 2.5 shows light output of common plastic scintillator material as a func-
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tion of particle energy. Response to proton is less and nonlinear for much higher

energies.

Figure 2.5: Relative light output by common plastic scintillator (NE-102) at dif-
ferent particle energies [2].

2.3 Photodetector

Scintillating light needs to be converted to an electrical signal for it to be useful

for analysis. A photodetectors function is as a device to convert light to electrical

signal. There are a few main technologies used for light detection and conversion.

These technologies have their own pros and cons which, will be discussed in the

following sections.
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2.3.1 Photomultiplier Tubes

Photomultiplier tubes (PMT) are devices that can convert light to a large number

of electrons. In general, a PMT consists of photocathode, series of dynodes and

anode or readout electronics concealed in a vacuum tube. The components are

illustrated in figure 2.6. Photons enter the PMT via a transparent window and

hit the photocathode at the inner layer of the window. The photons get converted

to an electron through the photoelectric effect. The electrons are accelerated

towards the dynode placed behind the photocathode by the potential difference

between dynodes. Each dynode is more positive than the previous one. Dynodes

are metallic structure made of nickel or steel. More electrons are emitted at the

dynode, and are again accelerated toward another dynode where more electrons

emitted. This process is continuous until the electrons reach the anode. The

anode will convert electrons into output current, which is measured by readout

electronics.

Figure 2.6: Longitudinal cut of a photomultiplier tube showing the basic working
principle of the tube [3].

Among major advantages of PMTs are that they are extremely sensitive to

light (UV, visible light and infrared), have fast time response and result in good

signal-to-noise (SNR) ratio. As for the disadvantages, PMTs have low quantum
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efficiency, are bulky size, operate at high voltage and are sensitive to magnetic field.

Size is the one of the main factor when choosing photodetector for the proposed

detectors system especially when the dimension of scintillators used are relatively

small. Furthermore, it is preferable to have photodetectors that are not sensitive to

magnetic field so the detector system can be use for PET-MRI devices. Recently,

a µPMT, the smallest version of PMT, has been developed by Hamamatsu that

can be operated with low voltage supply.

2.3.2 Photodiodes

PMTs are not the only means of detecting light photons. Photodiodes are a

semiconductor photodetector. This detector has higher quantum efficiency and it

operates based on a p-n junction in reverse bias.

	

Depletion	
Region	

p-doped	 n-doped

hole	 electron	
diffusion	

Figure 2.7: Schematic illustration of a pn-junction showing p-doped and n-doped
semiconductor. When these semiconductor are in contact, electrons and holes
recombine until it reach equilibrium.

Figure 2.7 shows the schematic diagram of the working principle of photo-
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diode. The pn-junction is created by bringing two layers of semiconductor in

contact to each other, one has p- and one has a n-dopant. This causes charge

imbalance across the junction, and charges will flow automatically to compensate

this imbalance. Diffusion of charges across this region is continuous until it reaches

equilibrium. When it is at equilibrium, the region is called depletion region. When

reverse bias is applied, the depletion is broadened. This is the active area where

electron-hole pairs are produced by light photons via photoelectric effect. The

electron and hole will drift to electrodes and produces current.

The pn-junction has a thickness in between 1-10 µm. Therefore, the junction

cannot effectively be used since it is too thin. Furthermore, potential difference

across the pn-juntion is very small. To increase the thickness of the active area, an

undoped layer is added between the doped sides, this is called a PIN photodiode.

Hence, signals produced are proportional to the light photon current. Although,

amplification of the signal is not possible, therefore detection of single photon is

difficult.

Avalanche photodiodes (APD) were introduced to deal with this particular

problem. APD is a semiconductor photodiodes that converts light photons to elec-

tricity through photoelectric effect. The primary electrons produced by incident

photons obtain high velocity due to the high external voltage applied. The elec-

trons can produce more secondary electrons by impact ionisation process. The

secondary electrons, being in the influence of the electric field produce tertiary

electron and so on, and that process creates avalanche. Only one charge type

is amplified in the APD for linear amplification and optimised noise. For sili-

cone based APD, ionisation probability for electrons is higher than holes therefore

only electrons produce the avalanche not the holes. Signals are amplified by the

avalanche therefore increases signal-to-noise ratio, making it possible to detect low

signal.
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2.3.3 Silicon Photomultipliers

To be able to detect a single photon, higher gain is needed, APDs can achieve

higher gain if operated at Geiger mode. APDs operating in this mode is called

Geiger-mode avalanche photodiodes (GAPDs). In Geiger mode both electrons and

holes produce avalanches while propagating to electrodes. It is possible only when

bias is applied above the breakdown voltage. The avalanches can reach infinity,

therefore, quenching resistors are required to stop the avalanche, so the system is

ready for new electron-hole pairs. GAPDs are capable of detecting single photons.

Figure 2.8: Cross section of SiPM microcell. The silicon resistor prove electrical
coupling between pixels. Al strip connecting all microcells in order to sum up all
readout signals[4].

Silicon Photomultipliers (SiPM) are photodetectors that consist of GAPD

cells densely arranged and connected parallel to each other as illustrated in figure

2.8. These photodetectors have high gains and sensitivity. When a number of

photon reach the device, these cause APD cells to saturate resulting in signals

produced that are proportional to the number of photons. After it saturates, the

APD becomes insensitive to new photons. The system require quenching resistor

to reset the APDs to correct bias setting.

An important parameter for SiPM is the photon detection efficiency (PDE).

The PDE is defined as the probability of converting light photons to electrical
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signal. It is given as [4]

ε = QE.εG.Apixels/Atotal (2.3)

where QE is the quantum efficiency of the GAPD, εG is the probability of

carrier created at the active pixel area to initiate Geiger mode avalanche and

Apixels/Atotal is the filling factor of SiPM, indicating which fraction of the device

is sensitive to photons. The overall photon detection efficiency of SiPM is around

20-30%.

SiPM has several advantages over PMT such as it is a more stable device,

have low bias voltage, is insensitive to magnetic field, compact in size and is

cost effective. Studies [50][51][52] have successfully show the potential of SiPM

replacing PMT.

2.4 Scintillation Detectors

A scintillation detector essential elements are the scintillation material and photo-

sensor optically coupled together. When radiation reaches a scintillator, it deposit

energy and the material scintillates. The light will propagate through the scintil-

lator until it reaches photosensor. The photosensor will convert lights to electric

signals. Configuration of scintillator detectors depends on its application. How-

ever, there are general detector requirement that needs to be preserved such as

sensitivity, linear response and fast response time.

The following section will discuss the scintillation detectors in relation to the

work presented in the following chapters.
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2.4.1 Scintillator Fiber

A scintillator fiber consists of a scintillating core which scintillate when radiation

pass through it. It has cladding of a non scintillating material that has lower

refractive index than the core. The fiber does not just act as the scintillator but it

also helps to guide scintillating light in the fiber to the photodetector. The fiber

standard diameter sizes are between 0.2 mm to 5 mm and are available in square

and round shape. The thickness of cladding is in a few microns, usually 3% of the

thickness of the core.

	
Clad	

Core	

Incident	
radiation	

	

Lost	photon	

Total	internal	
reflection	68.6°	

21.4°	

Figure 2.9: Longitudinal cut of fiber(Saint-Gobain BCF-10) showing total internal
reflection angle.

Lights travelled in the fiber core are trapped by the total internal reflection

of light at the core-cladding surfaces. Total internal reflection can only happen

if the incident angle of incoming light is more than the critical angle. Figure 2.9

illustrates light propagation in a fiber scintillator. This can be explained by Snell’s

law as,

Sinθa
Sinθb

=
nb
na

(2.4)

The angle of refraction depends on the angle of incident light and the refractive

indices of interface media. To achieve this, the refractive index of cladding material
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has to be lower than the core. If the incident angle is less than the critical angle,

light photon will travel out of the fiber core.

Plastic Scintillating Fiber

Plastic scintillating fiber typically has polystyrene based, acrylic based or polyvinyl-

toluene(PVT) based core. Although PVT is a cheaper option and acrylic has better

durability, plastic scintillating fibers are easily manufactured. With index of re-

fraction of 1.59 and surrounded by acrylic cladding with refractive index of 1.49

single cladding plastic scintillating fiber has trapping efficiency within 3%. More

recently, additional outer cladding with lower refractive index n = 1.42) was in-

troduced to increase the critical angle, therefore increasing the trapping efficiency.

Trapping efficiency of multicladding plastic scintillating fibers can reach up to

∼6%[53].

About 80-90% of primary scintillating lights are lost rather rapidly. For thin-

ner fiber, this may produce crosstalk between adjacent fibers. White or black

coating, an extra-mural absorber, can be applied on the outer surface of scintillat-

ing fibers to prevent crosstalk. However, this layer would not change the trapping

efficiency.

Scintillation efficiency of the fiber is 2.4%. This gives the photon yield ap-

proximately 8000 photons per MeV. The attenuation of light varies from 2.2 m

to 4.0 m depending on type of scintillating fiber. The attenuation length is the

length over which the light intensity fall by a factor of 1/e.

Plastic scintillator has been the popular choice for detector application be-

cause of its flexibility, fast fluorescence time, better photon yield and longer atten-

uation length. However, among the disadvantages of plastic scintillating fiber are

the problems of crosstalk between adjacent fiber due to poor trapping efficiency,

that in turn reduce the efficiency of the fiber.
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Glass Scintillating Fiber

Glass scintillating fiber has been favoured in particle tracking research. The glass

fiber is doped with activator such as Ce+ or Tb+ for scintillating light. The

core refractive index is 1.59 and surrounded by clear fused-silica glass followed

by fluorinated polymer cladding with refractive index of about 1.51. The fiber

dimension can easily be drawn to as small as 10µm due to the material strength.

The trapping efficiency in glass scintillating fiber is about 3%.

Quantum efficiency of Ce-doped glass is rather low, 5000 photons per MeV,

meanwhile for Te-doped quantum efficiency is approximately 8000 photons per

MeV. Although Tb-doped glass has higher photon yield, long decay time (msec)

has limit its application to low flux beam. Glass scintillating fiber has poor atten-

uation length (2.2-2.5 cm) compare to plastic scintillating fiber.

In glass fiber, the light emission is produced in close proximity to the original

energy deposition that will give better tracking accuracy. Therefore, it will not

suffer from signal crosstalk. Another advantage of glass scintillator is that it has

a fast fluorescence time and compare to plastic scintillating fiber, it can withstand

radiation up to 106 rad.

Liquid Core Scintillating Fiber

The liquid core scintillating fiber is known to function the same way as plastic and

glass fiber. The fibers have diameter ranging from 15-200 µm and are formed from

thin glass wall filled with liquid scintillator. With an appropriate choice of liquid

scintillator, the performance characteristic of liquid fiber is comparable to plastic

and glass fiber. The liquid fiber can possibly obtain high photon yield (10000 per

MeV), fast response time, large attenuation length (∼3 m), and higher trapping

efficiency (7.5%).

The liquid core scintillator fibers are usually in the form of capillaries of 20-
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25 µm diameter. They are bundled together in a glass tube. Example of liquid

scintillating fiber is shown in figure 2.10.

Figure 2.10: Diagram showing bundle of capillaries containing liquid scintillator
arranged in hexagonal glass tube. Adapted from [5].

Table 2.1 summarizes the properties of the plastic scintillating fiber, glass

scintillating fiber and liquid core scintillating fiber.

Table 2.1: Properties of different types of scintillating fiber.

Properties Plastic Glass liquid core

Photon yield, per MeV 8000 5000-8000 10000

Refractive index 1.59 1.59 1.52-1.62

Attenuation length, cm 220-400 2.2-2.5 300

Trapping efficiency, % 3 3 7.5

2.5 Microfluidic

Microfluidic technology is an analytical technology that utilises small amount of

fluid in channels of micrometer in dimensions. It has been extensively used in

chemistry[54] and biotechnology[55][56] laboratories. The microfluidic concept has

been manipulated in laboratories to allow usage of minimal amount of chemical

reagents and samples and reducing cost. This technology has also shortened anal-
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ysis time as well as has a small footprint. The key concept of microfluidic is

integrating network of channels operations in a microsize system.

Microfluidic chip is the tool used for microfluidic analysis. Material of mi-

crofluidic has gain large interest. It is because in microscale, the surface proper-

ties of channel are greatly influenced by the device material and that is largely

affecting the performance of the device. Therefore, choosing suitable material is

the first crucial part in microfluidic fabrication. Various materials have been in-

troduced in microfluidics but among the most used are glass and elastomer. Glass

is transparent, insulating and resistance to inorganic solvent. However, the cost of

fabricating glass microfluidic is high and dangerous as it involves dangerous chem-

icals (e.g HF)[57]. This has motivated the used of easily fabricated material such

as elastomer. Elastomer is inexpensive and flexible to fabricate complex channel

network. The drawback of using elastomer is that it is permeable to gas. Although

gas permeability is favourable in some application, it also can lead to absorption

of fluid molecules in the channel walls.

Due to its small size, microfluidic fabrication technique has been adapted from

the fabrication of semiconductor industries. Microfabrication techniques such as

micromachining, replica moulding, embossing and photolithography are commonly

used to fabricate microfluidic chip. Micromachining is a more costly technique.

It requires a clean room and involves techniques i.e wet and dry etching and

photolithography. Material suitable for micromachining is glass and silica. Figure

2.11a is illustrating fabrication of glass microfluidic chip. A more economical

technique is adapted for elastomer. Replica molding is a simple technique done by

pouring elastomer mixture directly onto the silicon master and cured in 60◦-70◦

for two hours (figure 2.11b). It is also a fairly fast process. Without the need for

clean room, this technique can easily implemented in any laboratories.
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(a) (b)

Figure 2.11: (a)Schematic diagram showing photolithography and wet-etching
technique involve in fabrication of glass microfluidic chip. Adapted from [6],
(b)Schematic diagram showing photolithography and wet-etching technique in-
volve in fabrication of PDMS microfluidic chip. Adapted from [7].

(a) (b)

Figure 2.12: (a)Schematic diagram showing chain of microfluidic channel inter-
connected forming a miniature laboratory. Adapted from [8], (b)photo showing
micofluidic chip network constructed in multiple layers. Inset on the top right are
showing fluidic channel of first layer and bottom right is showing second layer.
Adapted from [9].

The fluidic channel designs are an important aspect in microfluidic function.

The earlier design of channel was a single line channel only limited for certain anal-

ysis. With the wide benefits of microfluidics in various fields, the design of fluidic
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channel has become more complex. It can consists of multiple layers of channels

or chains of channels interconnected to each other[9]. Integrating a network of

channels to a wide range of microfluidic component such as pumps, valves, mixer

and flow sensor, offers versatility to the microfluidic system. Figure 2.12a and

2.12b showing examples of fluidic channel network in microfluidic system. This

system of microinstrument that can carry out biological and chemical processes is

called Lab-on-chip (LOC). The addition of the proposed microfluidic detector to

the LOC network system will compliment the existing system in quality control

and radioactivity assessment for PET radiotracer production.
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Chapter 3

Geant4 Simulation of Prototype

Design Foundation

This chapter presents the simulation done to evaluate the design of the microfluidic

detector and beta probe detector. In section 3.2, simulation of microfluidic detector

module design are discussed by investigating the positron penetration depth in plas-

tic scintillation material and the effect of channel dimension on counts detected.

While in section 3.5, the scintillation fiber module design are reported by analysing

spatial distribution of scintillating fibers.
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3.1 Introduction

In most experiments, research and development can be conducted using simulation

without the need to have the real prototype. Simulations are helpful in predicting

results of an experiment that is impractical to perform.

Prior to fabricating the microfluidic chip and β-probe prototypes, simulation

work was done to evaluate the expected performance of the proposed detector

system. This is an effective method to optimise the development of miniature

detectors that produce low photon statistics. The simulation deals with optical

propagation and distribution within the devices.

GEANT4[58][59] toolkit is a Monte-carlo simulation that is used for simulat-

ing particle transportation in matter. The software offers flexible detector and

physics modelling. It allows users to modify geometry description, physics pro-

cesses, managing hit events and detector response.

In this research, GEANT4 was used to assess the key characteristics of the

microfluidic scintillation detectors and fiber scintillating probe in particular opti-

mising photon collection and determining the feasibility of the detectors as a β

radiation counting system.

3.2 Microfluidic Chip Cetector Module

The Microfluidic chip was developed based on the need for low detection volume for

a miniaturised detector system. A cross sectional view of the planned prototype is

shown in Figure 3.1. Essentially, the fluidic channel is milled on the top layer of a

material. The channel will then be sealed on top of the plastic scintillator. Finally,

SiPM is attached to the bottom of the plastic scintillator for photon detection. For

the purpose of simulation, the geometry of the channel is kept as a simple hollow

cuboid tube with 6 mm and 12 mm length but varying width and thickness to
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keep the volume constant.

Figure 3.1: Illustration of a simple microfluidic detector setup featuring the fluidic
channel volume on top of a plastic scintillator.

In scintillation detector, it is crucially important to maximise the number

of photon detected in the photodetector. Thus, this simulation study examines

the relationship between photon count and scintillator thickness for two different

channel lengths. The aim is to optimise the channel design to maximise the number

of photons detected.

3.2.1 General Simulation Parameters

All simulations were performed using GEANT4 Ver. 10.1.03. It was modified from

an existing example in GEANT4 toolkit. OpNovice is a documented example that

demonstrates optical photon generator and transportation in matter.

Geometry

The detector construction class is responsible for modelling the detector geometry,

assigning the bulk material and optical properties. The simulated Microfluidic

chip detector is shown in Figure 3.2. A 0.5 × 0.5 × 1 mm3 and 0.5 × 0.5 × 2

mm3 plastic scintillator was simulated with polished surfaces, and a 0.025 mm

glass window was placed behind the plastic scintillator. It acts as the readout
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(a)

(b) (c)

Figure 3.2: Drawing showing the simulated microfluidic detector. The dark blue
line represents the photodetector volume, the green line represents the plastic
scintillator volume and the pink line represents the fluidic channel volume.

plane or as the sensitive detector. The physical volume of the actual microfluidic

was attempted but it has given errors, therefore the volume of micro channel was

constructed as a simple hollow cuboid volume. This may not affect the simulation

data significantly as PDMS has a low autofluorescence[60]. On the front of the

plastic scintillator surface, a cuboid channel was placed. The channel dimensions

are modified according to the requirement of analysis, and will be mentioned in

a later section. The whole detector is covered by a layer of Teflon, acting as a

white diffusive reflector. The main characteristics of the detector materials are

summarized in Table 3.1. The glass window, which acts as the photocathode, is

assigned as sensitive detector in the simulation.

Table 3.1: Properties of materials as defined in the simulation.

Material Base Scintillation yield, (/MeV) Refractive index density, (g/cm3)

Scintillator Polyvinyltoluene 10000 1.58 1.023

PTFE[61] Teflon - 1.36 2.20
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To emulate photon reflectance on surfaces, the GLISUR model was used to

simulate photon propagation between “dielectric-metal” surfaces by assigning a

polish coefficient while the UNIFIED model was used for “dielectric-dielectric”

surfaces. The UNIFIED model has various surface type, “ground-back-painted”

is used between scintillator-teflon surfaces to model the diffusive reflector. The

surface roughness for this model assumed to consist of micro-facet, which assumed

to consist of microscopic small surfaces. The degree of roughness is defined by the

standard deviation of microfacet distribution around the surface normal(σα). σα

for polished surface is equal to 0. The type, finish and value of σα of each of the

optical interfaces in Figure 3.2 are given in Table 3.2.

Table 3.2: Type and surface finish of each of the optical interfaces defined in the
simulations.

Optical interface Type Finish σα Reflectivity

scint-photodetector dielectric-metal polished 0 1

scint-Teflon(PTFE) dielectric-dielectric groundbackpainted 0.1 0.97

Physics Processes and Detector Hits

The Physicslist class lists all the processes involved in the interaction. For this

simulation study, the relevant processes are the electromagnetic process, optical

processes and radiation decay. A Hit is created when a particle or photon deposit

energy in a sensitive detector and stored in hit collections. The simulation stores

all the tracking information of the hit. This study was primarily looking at the

amount of photons arrive at the glass window and number of particle hitting the

scintillator. Additional tracking information was also used to support the output

of the simulation such as the path length and energy deposited by the particles

and photons.

Therefore, there are two hit classes for this simulation work. The Scinthit

class stores hits when a beta particle hits the scintillator. Hit information includes
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particle type, energy deposited, position and scintillator id. The glasshit or in this

case called as SiPMhit, stores number of scintillation photons, position, energy

and SiPM id. However, realistically not all photons reaching the glass window are

detected. It depends on the photon detection efficiency (PDE) of scintillator.

Primary Particle Generator

G4VUserPrimaryGeneratorAction is the class to control the generation of pri-

maries. GEANT4 provides G4GeneralParticleSource (GPS) as a concrete class of

this base class. GPS is capable of randomizing kinetic energy, position and/or

direction following a user-specified distribution. GEANT4 also offers a radioactive

decay module, which generates all the decay components radiated from a specified

source. In this study, the GPS and decay module are used to simulate 18F and

68Ga isotropically which are randomly distributed in the micro channel.

3.3 Positron Range Calculation

Prior to the fabrication of the microfluidic detector, a number of studies were

done to guide the choice of the thickness of scintillator and dimensions of the

fluidic channel. The aim is to optimise the amount of photon collection while still

utilises micro volume radioactive solution.

In the scintillator, the photon yield is affected by the amount of energy ab-

sorbed. Thus, it is the main objective to increase energy deposition by particles in

the detector active volume. This is proved difficult when developing a miniature

detector.

Positron interaction in matter is assumed to be similar to electrons as both

have the same mass and only differ in the charge. The range of particle in matter

can be calculated using an empirical equation 3.1 in g/cm2,
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R = 0.412E1.27−0.0954lnE (3.1)

where E is particle energy in MeV. This investigate the penetrability of positron

for 18F and 68Ga at their average energies, 249.3 keV and 829.5 keV respectively.

Using equation 3.1, the calculated positron ranges are 0.0571 cm and 0.3048 cm for

18F and 68Ga in plastic scintillator(PVT based) with the density of 1.032 g/cm3.

In a web database Estar, the continuous-slowing-down approximation (CSDA)

range was obtained by integrating the reciprocal of the total stopping power with

respect to particle energy. CSDA range data for PVT based plastic scintillator

obtained from Estar are plotted in figure 3.3. CSDA range of 18F positron is

approximately 0.0641 g/cm2 at 250 keV and 68Ga positron of 830 keV is 0.3504

g/cm2. If we are to consider the maximum beta energies for both radioisotope,

the CSDA ranges are 0.2459 g/cm2 for 18F at 633 keV and 0.9411 g/cm2 for 68Ga

at 1899 keV.

Figure 3.3: Range of positron/electron in PVT based Plastic scintillators obtained
from EStar database[10].
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3.3.1 GEANT4 Positron Depth Simulation

A simulation analysis was done to simulate the range of positron particle emitted

by radioactive in the micro channel. 30000 events were emitted towards the plastic

scintillator.

Figure 3.4: 18F positron particles counts detected in a plastic scintillator as a
function of depth.

Figure 3.5: 68Ga positron particles counts detected in a plastic scintillator as a
function of depth.

The result of the simulation are shown in Figure 3.4 and 3.5. The histograms
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are showing positron counts as a function of depth in plastic scintillator. The

maximum depth of the positron particle is approximately at 2.4 cm for 18F and

approximately 5.0 cm for 68Ga for the proposed microfluidic detector configuration.

The maximum range for 18F from the simulation agrees with the CSDA range from

EStar. The 50 mm plastic scintillator is enough to stop all positrons from 18F.

However, 50 mm is not enough to stop higher energy 68Ga positrons therefore the

range obtained from GEANT4 does not represent the maximum positron range of

68Ga.

3.4 Effect of Channel Dimensions

The microfluidic channel was constructed to allow more beta particles to interact

with the scintillator material. The way to achieve this, is by increasing the volume

of radioisotope solution. Since reducing the detection volume is the main aim of

the thesis, increasing the detection volume is not favourable for this prototype

detector, therefore a different approach was proposed by manipulating the fluidic

channel dimension.

(a) (b)

Figure 3.6: Drawing of the simulated channel in pink (a)6×0.5×0.5 mm3 (b)12×
0.35× 0.36 mm3 micro channel configuration.

In this simulation test, the channel volume was kept constant at 1.5 µL. The
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changes were made on the length and thickness of the fluidic channel. The channel

dimension simulated was 6× 0.5× 0.5 mm3 and 12× 0.35× 0.36 mm3. Drawings

and photons distribution of the effect of channel dimension for 18F is shown in

Figure 3.6 and 3.7, for the two channels respectively.

(a)

(b)

Figure 3.7: Spatial distribution of photon hits deposited on glass window from the
(a)6× 0.5× 0.5 mm3 (b)12× 0.35× 0.36 mm3 micro channel configuration.
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Figure 3.8 shows the simulated energy spectrum of 18F from the short and

long micro channels. The spectrum show continuous distribution of beta spectrum

where 5928 positrons were detected on the short channel and 7144 on the long

channel.

(a) (b)

Figure 3.8: Energy spectra of 18F obtained from GEANT4 simulation from (a)6×
0.5× 0.5 mm3 (b) 12× 0.35× 0.36 mm3 micro channel configuration.

More photons were detected with the longer channel, more photons were de-

tected with more counts were detected on the lateral edges of the channel compare

to the short channel. Total photon detected in the short micro channel was 4250295

while long channel total photon counts was 4672214, that gives an increase of 9.0%

photon detected on the glass window. The longer and thin channel is more efficient

as it has slightly increase the detection efficiency as evidence in figure 3.7 and 3.8.

The loss of detection efficiency for low energy particle is much less significant with

the longer channel.

	

Dead	zone	

Dead	zone	

Direction	of	water	flow	

Figure 3.9: Illustration of dead zone area that can cause fluid trap in micro channel.

63



These GEANT4 findings are important for the fabrication of the microfluidic

detector. From this simulation, it was found that the length and depth of channel

influence the detection. The findings suggest that the photon detection rate will be

maximised by having the microfluidic detector with a longer and thinner channel.

To have a thin channel, the width of the channel must be widen, in order to

maintain the volume of the channel. In addition, wider channel will increase the

area of detection, however, realistically this is not possible. The width of the

channel must be identical to the diameters of the inlet and outlet tubes to ensure

fluid in the channel can easily be flushed out after measurement. Wider channel

will create dead zone or trap fluid, as visualise in figure 3.9.

3.5 Scintillating Fiber Module

The simulated fiber detector is simply a fiber positioned on a photo sensor without

wrapping as illustrated in figure 3.10. The fiber cladding function is to trap photon

in the fiber core and let it propagate towards the photodetector. The main question

when developing this β-probe is how any photons are produced in the fiber core

as a result of the geometry of the fiber being small in size. In addition to that, the

fibers small trapping efficiency only permits the propagation of less than 4% of the

scintillation photon produced in the fiber core which will degrades the detection.

	

C-series	SIPM	

Scintillating	fiber	

Figure 3.10: Illustration of a simple beta probe detector setup showing the
fiber(blue) on a photodetector(black).
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3.5.1 General Simulation Setup for Beta Probe

In general, simulation parameter setup for the fiber is similar to microfluidic chip

as discussed in section 3.2.1. The fiber probe simulation code is a modification

code from OpNovice example in GEANT4 document.

Fiber Geometry

(a)

(b) (c)

Figure 3.11: Drawing of the simulated fiber detector showing five fibers(dark blue)
covered by reflective paint geometry. The photodetector(green) is placed at the
fiber end.

The fiber detector was designed by placing a fiber of 250 µm diameter on

a 1 × 1 mm2 glass window. The glass window is a physicalvolume assigned as

the readout plane. Initially, no reflective paint volume was introduced around the

fiber detector assembly, since the cladding is there to trap photon in the fiber core.

Photons reflecting at the surface between fiber core and the cladding should follow

Snell’s law. Detail properties of the materials and surface type are summarised in
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Table 3.3 and 3.4 and simulation drawing of the geometry for 5 fibers is shown in

Figure 3.11.

Table 3.3: Properties of materials assigned in the fiber simulation.

Material Base Scintillation yield, (photon/MeV) Refractive index

bcf12 core[53] Polystyrene ∼8000 1.60

bcf12 clad[53] Acrylic / 1.49

Reflective paint[62] Titanium Dioxide / 1.61[61]

Table 3.4: Type and surface finish of each of the optical interfaces defined in the
fiber simulations.

Optical interface Type Finish σα Reflectivity

core-sipm dielectric-metal polished 0 0

clad-paint dielectric-dielectric groundbackpainted 0.1 0.955[61]

core-clad dielectric-dielectric polished 0.3 1

A surface boundary was introduced on the fiber to glass window surface. Here,

the GLISUR model in GEANT4 was used between “dielectric-metal” surface and

the surface finish was set to polished. In GEANT4, reflectivity can be set between

0 to 1, 0 means 100% absorbing and 1 means 100% reflecting. In this simulation

reflectivity fiber to glass window was set to 0. Therefore, any photon hitting the

glass window surface will be absorbed and counted as hit depending on the photon

detection efficiency of photodetector. This is set only for the purpose of single fiber

analysis to simulate the intrinsic properties of the scintillating fibers. As the study

is only concerned with the number of photons hitting photodetector, no further

photons simulation is needed beyond the glass surface.
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3.5.2 Single Fiber Analysis

Reflector

A simulation of the fiber response has been performed without and with reflective

paint. In both cases, the fiber was simulated in the vacuum environment with 5000

events of positron of monoenergetic 633 keV energy to mimic the maximum energy

of 18F placed on the center of the long edge of the fiber firing towards negative -Y

axis direction.

(a)

(b)

Figure 3.12: 2D photons distributions of single fiber at the fiber end (a)without
reflective paint and (b)with reflective paint.

Figure 3.12a and 3.12b showed the XY spatial distribution of the simulated
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photon reaching the fiber end, for simulation without and with reflective paint

respectively. About 179203 of photons were detected on the photodetector from

fiber simulation without reflective paint while 1022173 photons were detected from

fiber simulation with 0.11 mm thick of reflective paint. It is evidenced that Snell’s

law is obeyed in these simulations. As can be seen in figure 3.12a, more photons we

being trapped when simulation was performed without reflective paint. This is due

to a much lower refractive index of air as compared to the reflective index of paint

(1.0027 and 1.6100 respectively) and this will lead to more photons undergoing

total internal reflection on clad-to-air surface. Meaning that more photons will

escape the fiber at clad-to-paint surface because the critical angle is much smaller

than the critical angle at clad-to-air surface. High counts on the borders of the

fiber are due to the skew rays and high count on the axis of the fiber is caused

by meridional rays. In theory, skew rays have higher trapping fraction compare to

meridional rays[41][63]. For this reason, distribution in 3.12b shows only counts

detected due to skew rays as most of the meridional rays might have escape the

fiber.

Since the majority of the photon produced travel along the fiber border for

both cases the photodetector should therefore be at least as large as the fiber cross

section. While the result without paint is better, this setup is rather impossible

to achieve because without wrapping, external photon might interfere with the

measurement value.

Fiber Properties

The fiber thickness is negligible compared to its length, therefore, the photons

produced in the fiber depend on the amount of energy deposited in the fiber and

where the particle crosses the fiber. Positron crossing at the center of the XY

plane of fiber will deposit more energy when compared to a positron crossing off

center. This can be explained simply by the difference in the path length taken by

positron in the fiber core. Due to this phenomenon, the following work is being

68



done to simulate the optical properties of the fiber in order to obtain the correct

trapping efficiency and also to collect the correct amount of light on the photon

detector surface.

The dependence of the number of photons generated from the energy deposited

in the fiber end is shown in Figure 3.13. The mean energy deposited in the fiber

is 46.6 keV. From figure 3.13, 46.6 keV deposited energy corresponds to about 6

detected photons. Given that the trapping efficiency provided by manufacturer is

3.44 %, the fiber would have produce 407 photons in the fiber at 46.6 keV. This will

give an average of 8 photons per keV of positron particle, which agrees to the fiber

photon yield provided by manufacturer. This shows that the fiber optical surface

properties are able to collect correct amount of photon and matches standard

scintillating fiber trapping efficiency.

Figure 3.13: The number of photons generated which reach the end of the fiber as
a function of the deposited energy.
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3.5.3 Fiber Probe Analysis

With the understanding of the single fiber properties, different configuration of

the fiber has been tested. The configuration was set parallel to the initial idea,

that is to optimise the number of fibers for maximum energy deposition, while

at the same time minimising the fiber diameter, which is a requirement of this

application. Therefore, the simulation was done for five fibers that make the total

diameter of the detector to be effectively about 0.88 mm which is a reasonable size

for such intravenous beta probe. 10000 events of monoenergetic positron of 633

keV energy to mimic the maximum energy of 18F placed on the center of the long

edge of the fiber firing towards -Y axis direction.

Figure 3.14: Photons output distribution when positron of energy 633 keV crossed
the fibers at y-direction.
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Figure 3.15: Energy spectrum of positron particle of energy 633 keV in fiber probe.

Figure 3.14 shows the photon output at the fiber end when 10000 events

crossing the fibers from y-axis direction and figure 3.15 shows the energy spectrum

obtained. A more dense distribution was observed on the fibers along the particle

path, hence the three peaks observed in figure 3.15. Due to the fiber trapping

efficiency being low, most of the photons will escape the fibers and cause crosstalk

to adjacent fibers. Furthermore, by increasing the number of fibers, the fiber cross

section is increased allowing positron to deposit energy on adjacent fibers. The

fibers are thin (250 µm) therefore positrons are likely to penetrate more than one

fiber as they cross the fibers.

3.6 Summary

The simulation studies have help to evaluate the performance of the proposed

system as well as to optimise the system. The simulation work on microfluidic

detector system was to investigate the suitable plastic scintillator thickness and the

effect of channel dimensions on the photon collections. The maximum depth of the
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positron particle in the plastic scintillator is approximately at 2.4 mm for 18F and

approximately 5.0 mm for 68Ga. Reducing the thickness of plastic scintillator to 2

mm may reduce photon collection by approximately 10% for 18F and approximately

40-50% for 68Ga. By changing the micro channel length from short to longer

(constant volume), there is an increase of 9% photon detection.

Simulation work of the fiber detector was done to investigate the effect of

reflector on the photons propagation in the fiber as well as number of photon

generated in the fiber and number of photon detector at the fiber end. The sim-

ulation result shows that by adding reflector, the number of photons reaching the

end of the fiber is reduced compare to the fiber without reflector. A study was also

done to simulate the optical properties of the fiber to obtain the correct trapping

efficiency provided by manufacturer. With the accurate optical properties config-

uration, the fiber was simulated to a bundle of 5 fibers. It was found that, due to

the poor trapping efficiency of the fiber, photons may escape to adjacent fibers.

72



Chapter 4

Scintillation Particle Detection

Based on Microfluidic Chip

This chapter reports the work process on designing, fabrication and preliminary

test done on the microfluidic detector prototype. In section 4.1.1, microfluidic

design criteria and scintillator dimension choices are discussed. The microfluidic

detector prototype fabrication methods are discussed in section 4.2. In section 4.3

and section 4.4, methodology used to characterise the prototype and result obtained

are presented.
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4.1 Introduction

A particle detector based on microfluidic technology was developed. This develop-

ment combines ideas between knowledge in development of particle detector with

microfluidic fabrication techniques. Such device is capable to detect low beta par-

ticle activity in microliter volume within high gamma background using plastic

scintillator. The device was coupled to silicon photomultiplier that can detect low

intensity light photons. It is a simple to manufacture and low cost device that can

be use for diagnostic of metabolic processes and can be added to instrumentation

for radioisotope production quality control assessment.

This chapter presents the design, fabrications and characterisation studies on

the microfluidic detector in terms of efficiency, minimum detectable activity, sen-

sitivity and linearity. Residual activity study was performed to observe molecules

absorption on fluidic channel material.

4.1.1 Microfluidic Detector Design

Based on the findings in the previous chapter, the prototype were designed to

have single straight channel with cross section dimension on the order of 500 µm.

Fabrication of a thinner micro channel is difficult because the PDMS layers tend

to bond in to the channel wall, that will caused blocking of the fluid flow in the

channel. Although based on earlier attempt, the serpentine curve (S-shaped curve)

channel would be a better choice, it was evident that fluid will likely to be trapped

in the ’dead zone’- where fluid velocity is small or none and usually happen in

channel corners - in the fluidic channel. The channel is then sealed with a thin

layer of monomer that also separates the channel from the plastic scintillator by

approximately 10 µm.

There are a few essential criterion that are being considered in designing

the detector. To get sufficient amount of light, the radioactive fluid should be
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present in the scintillator window for a sufficient amount of time. Therefore,

the channel should be long enough to allow more particles to interact with the

scintillator. In addition, the channel must be tightly sealed to ensure no radioactive

contamination within the detector, which can affect subsequent measurements.

Ideally, radioactive fluid should be in direct contact with scintillator, this is to

eliminate particles interaction within the barrier. Finally, the surface on the PDMS

layer between the scintillator and photo sensor has to be a perfectly smooth to

guide light towards the photo sensors.

Several microfluidic fabrication utilising different materials such as Polydimethyl-

siloxane (PDMS), perspex and glass were attempted in this research. Finally,

PDMS and glass have been chosen for the microfluidic fabrication. PDMS is a

silicone-based organic polymer which is optically clear and non reactive to aque-

ous solvent. Fabrication of microfluidic in PDMS and glass using photolithography

method provides faster, more accessible fabrication method and less expensive.

Compromise has to be made on the barrier between channel and scintillator by

adding a thin layer of PDMS to aid containing fluid in micro channel. Without

the thin layer, the channel tends to leak fluid to surroundings. Material such as

perspex was undesirable as it is difficult to seal the channel to prevent leakage

and microscopic cracks are visible on the channel walls due to the milling process

perspex.

In the end, three designs of the microfluidics were proposed for this study

using different type of plastic scintillators, with various thicknesses and various

micro channel cross section dimensions.

4.2 Fabrication of Microfluidic Detector

The proposed basic microfluidic design is illustrated by the schematic diagram in

Figure 4.1. A number of microfluidic chips of different designs were fabricated
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in this study. Due to various technical failures such as fluid leaking from fluidic

channel, channel blockage and PDMS sealing difficulties, only three microfluidic

designs were successfully fabricated for further tests.

	

	

	

	

	 	

Inlet	&	outlet	

SiPM Plastic	
scintillator	

Microfluidic	
channel	 Cured	PDMS	

Figure 4.1: Schematic diagram of the cross section of a typical micro fluidic chip
and the SiPM detector. In the center of the chip is a microfluidic channel where
radioisotope solutions can be loaded.

The first design of microfluidic chip (MC1) consists of 2 pieces of PDMS. A

channel of 0.5× 0.5 mm2 cross-section with 10 mm length (2.5 µL) was fabricated

on one piece of PDMS using replica-molding technique using a master mould which

was milled to the fluidic channel dimensions on top of an Aluminium sheet (Figure

4.2a and 4.2b). The PDMS prepolymer mixture was poured onto the mould. After

thermal curing at 60◦ for 6 hours, the PDMS replica mold was peeled off the master

mould. Holes were punched perpendicularly at each end of the channel for the inlet

and outlet tube.

Meanwhile, a 6 × 6 × 2 mm3 plastic scintillator (EJ-212, Eljen Technology)

was submerged in PDMS prepolymer mixture and cured in oven for 6 hours at 60◦

(Figure 4.2c). Alternatively, the PDMS mixture can be cured overnight at room

temperature. The PDMS left approximately 10-30 µm of PDMS layer on top of

the scintillator interface, and a thicker PDMS on the bottom part. The thin layer
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(a)

(b) (c)

Figure 4.2: (a)Aluminium master mould milled to the dimensions of fluidic chan-
nel (b)Impression of fluidic channel on a cured PDMS (c) Plastic scintillator sub-
merged in cured PDMS.

is essential to seal the channel. Using plastic scintillator alone will not help to seal

the channel because PDMS-Plastic bond is not strong and can easily detached

from the plastic scintillator. After that, these two PDMS pieces were then treated

with oxygen plasma to initiate bonding. The treated surfaces were placed onto

one another to bond the PDMS pieces together which is essential to sealing the

fluidic channel. The PDMS-PDMS assembly facilitates permanent bonding and

confines radioisotope in the channel. Photos of this design is shown in Figure 4.3a

and 4.3b.

The second microfluidic detector (MC2) design was similar to the first design

in terms of material preparations and fabrication process. However, in this design,
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the dimensions of fluidic channel and placement of the fluidic channel in the plastic

scintillator were different in comparison to MC1. The channel dimension was

25× 0.5× 0.5 mm3 and it was placed diagonally on top of the PDMS-scintillator

assembly as shown in Figure 4.3c.

(a) (b)

(c) (d)

Figure 4.3: Picture of the microfluidic detector (a-b) top and bottom view of MC1
(c) MC2 (d) MC3.

The third design (MC3) was a larger channel with volume capacity of 6.25 µ

compared to the previous 2 designs. For this prototype, the channel was milled on

top of a glass slide. The channel length is 25 mm with 0.5×0.5 mm2 cross-section.

Glass was chosen because it can permanently bond to PDMS and moreover, there

was a report on reaction of F-18 with PDMS that produces volatile compound[64].
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This will be discussed further in section 4.4.1. The similar method of fabrication

was implemented for the plastic scintillator-PDMS piece. However, the plastic

scintillator dimensions used for this microfluidic chip is a 15 × 15 × 1 mm3 (BC-

404, Saint-Gobain).

Finally, inlet and outlet PEEK tubes of 360 µm were attached to the microflu-

idic chips holes and sealed with PDMS. The tubes must be able to withstand high

pressure cause by high velocity fluid flow. Figure 4.3 is showing the finished mi-

crofluidic chip for all the different designs.

4.2.1 Photodetectors and Electronics

Nowadays, PMTs are being replaced with silicone photodiode in scintillator detec-

tor technology. This photodiode has the advantage that they can be made very

small and few millimeter thick. Silicone Photomultiplier (SiPM) is a readout device

consisting of multiple micro counters, typically 20-30 µm, in a silicone substrate.

It is a very fast response device. Furthermore, it has high gain, which eliminates

the need for preamplifier. It operates in a low voltage and low electronics noise.

The overall photon detection efficiency of SiPM at around 20-30%. It is ideal to

be integrated to microfluidic chip because of its relatively small compare to other

similar device with similar function.
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Figure 4.4: Microfluidic detector is wrapped with several layers of PTFE to ensure
light photons do not escape out from detector.

A single C-Series MicroFC-SMA-60035 SiPM (SensL, Cork, Ireland) was cou-

pled to the first microfluidic. This SiPM model contains 18980 microcells per 6×6

mm2. The microfluidic-SiPM assembly were wrapped with layers of PTFE tape

(Figure 4.4) and Aluminium sheet to prevent light loss as well as to shield it from

surrounding light. The SiPM were connected to the MCA527Micro (GBS elec-

tronic GmbH). The µMCA was powered over by micro USB connector at 28.5 V

bias voltage and 0.01 mA current. It is able to perform digital signal processing

and operated in two modes; a) Pulse height analysis and b) Multi-channel Scaling

(MCS) mode. The MCS Module is capable of converting the output signal from

the SiPM to number of particle detected as a function of time.

4.3 Experimental Setup

Before injection with radioactive fluid, the detector prototype were placed in a

light-tight black-box. A pair of tygon tubes was connected to the inlet and outlet

tubing from outside of the box. The length of the tubes was kept as short as

possible to minimize the dispersion within the tube. The filling in of the radioactive
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fluid in the fluidic channel was executed with a syringe controlled manually by

hand. The chips were filled with 18F solutions. Later on, the same procedures were

repeated for 68Ga solutions but were not done on the same day. This was to allow

any residual isotope to fully decay. After every activity measurement was done, the

fluidic channel was flushed with water to wash-out all the radiaoactive fluid as much

as possible. Residual counts were recorded each time. The experimental setup of

the detector prototype is illustrated in Figure 4.5. Prior to each experiment, the

prototype was injected with water several times to observe any leaking within the

microfluidic chip.

	

Waste	

Syringe		

Microfluidic	
detector	in	
black	box	

MCA	527	

Direction	of	fluid	flow	

Figure 4.5: Experimental setup of the micfluidic detector. MCA 527 is powered
over by micro USB connector and has an integrated power supply for SiPM and
for internal preamp.

4.4 Results

The detector characteristics were studied. Firstly, study on the effect of microflu-

idic material on residual activity after each injection. Subsequently, detector char-

acteristic such as efficiency, sensitivity and linearity were investigated.
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4.4.1 Residual Activity Due to Molecules Absorption

Choosing the suitable material to fabricate the microfluidic chip is an important

aspect to consider. Various material has been used to cater for the vast application

of microfluidic[57]. This study requires material that is optically clear, therefore

glass and PDMS are the best choices. Glass is most inert material to solvent or

chemical, however, the hardness of glass limits its application for a complicated

design. On the other hand, PDMS is easy to fabricate with various integrated

components but PDMS tend to absorb small hydrophobic molecules which will

limit their application for organic solvent.

(a)

(b)

Figure 4.6: Count measured overtime of 18F in microfluidic detector (black) and
residual activity after flushing with 100 µL water (red) (a) PDMS-PDMS microflu-
idic chip (b) Glass-PDMS microfluidic chip.
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A test was done to observe the effect of molecules absorption by PDMS. This

was done by investigating the residual activity in fluidic channel after flushing with

water. MC2 and MC3 are both injected with 50 µL of 5 kBq/µL and 10 kBq/µL

of 18F (respectively) to fill the fluidic channel and count were taken for 120 s. To

flush out all the 18F fluid from the channel, 100 µL of water slowly injected into the

channel and measurements were taken for 120 s. Figure 4.6 is showing the number

of counts recorded for 10 kBq/µL of 18F and residual activity left in channel after

flushed by water. Ratio of counts before and after flushing were calculated and

compared. PDMS has almost 10 times higher residual activity compare to glass

with 9.6±0.1%. This shows that there was 18F reaction to the PDMS substrate.

Elizarov et al. [65], in their study have reported that 18F molecules are reactive

to PDMS. There are ways to tackle PDMS permeability such as applying coating

on the channel surface or chemically treat the channel surface.

4.4.2 Detection Efficiency

Detection efficiency is defined as the ratio of counting rate recorded over the actual

activity in the micro channel[66], assuming there is no counting loss due to dead

time. Efficiency varies with energy of incident radiation but independent of the

intensity. The efficiency of each radioisotope is different as it depends on the

energy loss of the isotope in plastic scintillator. Therefore, the efficiency for every

radioisotope needs to be measured.

These measurements were performed for both 18F and 68Ga. Each microfluidic

detector were filled with approximately 10 kBq/µL of radioactive solutions. The

energy spectrum and counting rate were recorded for 180 s but only counts within

120 s were taken for efficiency measurement because some of the measurements

were done for 120 s. The pulse height spectrum and counting rate were recorded

for efficiency measurement as illustrated in figure 4.7. Thresholds were set to be

just above the electronic noise and were fixed for the same microfluidic detector.
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Above the threshold, background noise was within 3 Hz.

(a) (b)

Figure 4.7: 18F solution filled in the micro channel and counted for 180 s (a) pulse
height spectrum of 18F (b) counts recorded as a function of time.

Detection efficiency of the detectors was calculated using this expression4.1,

η(%) =
m

CV
(4.1)

where m is the average measured count rate, corrected for decay, C is the solution

concentration and V is the device detection volume. Data were gathered in his-

tograms, in order to obtain the count integral of the detector output signal. For

all three detectors, the detection volumes were taken as the volume at the fluidic

channel of the SiPM which are 2.5 µL for MC1 and 6.25 µL for both MC2 and

MC3. It was assumed that only the positrons energy was deposited in the plastic

scintillator, which determined the efficiency.

Table 4.1: Absolute efficiency of MC1, MC2, and MC3 for 18F and 68Ga.

Detector Absolute efficiency,(%) for 18F Absolute efficiency,(%) for 68Ga

MC1 unavailable 18.3

MC2 7.6 33.9

MC3 2.5 6.6

The absolute efficiencies for different isotope and microfluidic chip were calcu-

lated using Equation 4.1 and are summarised in Table 4.1. The efficiency of MC2
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is higher compare to MC3 for 18F and 68Ga. This was expected as the thickness

of both plastic scintillators are different, hence lesser positrons stopped in 1mm

BC404 plastic scintillator. Unfortunately, absolute efficiency of MC1 for 18F was

unavailable due to the channel leakage on the start of the 18F experiment.

4.4.3 Minimum Detectable Activity

The sensitivity of the microfluidic chip simply refers to the lowest and the highest

detectable limit that can be measured reliably by the system. The minimum sensi-

tivity is the function of the background count. This was introduced by Currie[41]

by this function known as Currie equation,

ND = 4.653σNB
+ 2.706 (4.2)

where NB is the number of count detected and σNB
is the background standard

deviation. To be able to determine the minimum and maximum detectable activity,

absolute efficiency η must be taken into account. Therefore, the above Equation

4.2 can be expanded into two equations 4.3 and 4.4 [31] as follows,

Amin =
2.706 + 4.653×

√
b

η × V
(4.3)

Amax =
Nmax

η × V
(4.4)

where b is the background count rate obtained without radioactivity and Nmax

is the maximum counting rate allowed by the Mini MCA 527 which is 14bits.

In this experiment, performances of the microfluidic chip at the minimum de-

tectability were assessed. Approximately 10 kBq/µL of isotope was injected in the
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Table 4.2: Minimum detectable activity for 18F.

Detector Min activity(Amin),Bq/µL

MC1 NA

MC2 13.2

MC3 40.4

Table 4.3: Minimum detectable activity for 68Ga.

Detector Min activity(Amin),Bq/µL

MC1 19.7

MC2 40.4

MC3 13.0

channel and measurements were taken for 120 s. The counts of each measurements

were used to calculate the minimum detectable activity using Equation 4.3. The

Amin values for 18F and 68Ga were reported in Table 4.2 and 4.3.

4.4.4 Detector Linearity and Sensitivity

Linearity response study is an important characteristic because it helps to define

the range of detector measurement, which gives out accurate results. The microflu-

idic detector response linearity in relation to the variation of the sources activities

was the decay method, which consists of measuring the activity of a radiotracer

along time, allowing for the plotting of the total count versus time curve and the

comparison of the experimental activity values with the expected theoretical values

for the source at the different measurement times. Assessments on the linearity

of the microfluidic detector are presented in this section. Due to leakage of fluidic

channel of MC1 and MC2, the tests were done only for MC3. The linearity test

was done by measuring the decay of 18F and 68Ga in MC3 fluidic channel over the

course of several hours. About 20 kBq/µL of 18F was filled in the detector channel

and decay measurement was taken for 170 minutes. Similarly, detector channel
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was filled with 10 kBq/µL 68Ga and left for 279 minutes to decay. This was done

on a different day from 18F to ensure no 18F residual activity affecting the 68Ga

measurement. Figure 4.8 and 4.9 shows the 18F decayed signal over time.

Figure 4.8: Measured net counts per second after background subtraction plotted
as a function of time. The theoretical decay of 18F is shown as a red line and
measured counts are in black.

The background corrected signal data were fitted to mono-exponential to ob-

tain the decay constant, λ and the measured half-life, T1/2 was calculated. The

half-life for the 18F signal was 109.0±0.1 min. which is consistent with the ex-

pected value for 18F, 109.8 min. However, for 68Ga , the calculated half life was

76.0±0.1 min which is 8.3 min more than expected. As can be seen in Figure

4.9, at higher activity, the detector system detect less count than expected. At

this point, the dead time is too high therefore the detector was unable to process

all counts. This might be contributed by the fact that the size of the SiPM is

considerably small, therefore affecting the dynamic range.

From the same data, sensitivity of the microfluidic detector can be calculated

for 18F and 68Ga. Sensitivity was derived by calculating the ratio of the measured

count rate to the activity of 18F and 68Ga in the channel. Figure 4.10 and 4.11

show the measured data against the actual activity for 18F and 68Ga, respectively.
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Figure 4.9: Measured net counts per second after background subtraction plotted
as a function of time. The theoretical decay of 68Ga is shown as a red line and
measured counts are in blue.

These data were fitted using a linear least square for the count rate between 9000

to 14000 cps for 18F and 2000 to 8000 cps for 68Ga. Sensitivity of the detector for

18F is 0.8% and 2.9% for 68Ga. Sensitivity of 18F is smaller than 68Ga this is due

to 18F positron energy (Eavg=249.8 keV) being lower than 68Ga(Eavg=836 keV).

It is because a larger fraction of the particles do not reach the detector or produce

a signal below the noise threshold. The fit was extended to the maximum count

rate to determine the linearity of the detector response. 18F is linear up to 11000

cps while the linearity of 68Ga is only up to 8000 cps. Figure 4.10 appear skewed

due to high which we suspect caused by applied setting.
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Figure 4.10: Measured of net counts rate versus activity of 18F is shown as black
and linear fit for data between 9000 to 19000 in red.

Figure 4.11: Measured of net counts rate versus activity of 68Ga is shown as black
and linear fit for data between 2000 to 10000 in red.

4.5 Summary

The experiments has successfully demonstrated the working principle of the mi-

crofluidic detector. Standard microfluidic fabrication processes have enable inte-

gration of plastic scintillator with microfluidic chip technology. The fluidic chan-
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nels with a capacity of 6.5 µL and 2.5 µL were fabricated using the combination

of PDMS-PDMS and glass-PDMS. The residual activity left in the channel was

highly affected by the type of material used. About 10% higher activity observed

in the PDMS-PDMS fluidic channel. The detection efficiency of the microfluidic

detectors ranges from 6.6-33.9% for 68Ga and 2.5-7.6% for 18F. The minimum de-

tectable activity varies between 13.0 Bq/µL and 40.4 Bq/µL for 18F and for 68Ga

respectively. Overall, the microfluidic detectors are linear up to 10000 cps.

The results obtained show promising future for the development of the mi-

crofluidic detector. However, this study is at a very early stage of the development,

therefore it requires further assessments using different material and channel con-

figuration and measurement delay correction or dispersion correction, and eventu-

ally progressing from a prototype to an actual detector.
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Chapter 5

Scintillating Fiber beta Detectors

This chapter presents the design, fabrication and characterisation of the beta probe

prototype. The plastic scintillating fiber performance evaluation is discussed in

section 5.2.1. In section 5.2.5, assessments of suitable photodetector for plastic

scintillator is being discussed. The experiments performed with the beta probe

prototype are reported in section 5.3.
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5.1 Introduction

The design of the fiber beta probe was based on the need of high sensitivity to

positron and decrease sensitivity to background photons. The design also requires

the probe to be small and compact to allow it to be inserted to blood vessel. The

probe configuration basically consists of scintillating fibres coupled to a SiPM. This

reduced volume, low Z and low density scintillator provides a solution to decrease

the gamma sensitivity. Furthermore, the beta probe produces low dark count rate

due to the fast response of plastic fiber scintillator and the fast response of the

SiPM. The basic properties of the plastic scintillator fibers were investigated in

the laboratory. Selections of state of the art photodetectors coupled to the plastic

scintillating fibers were studied to investigate the signal-noise ratio. Based on the

result obtained, has led to the fabrication of the beta probe prototype. Further

tests were done to characterise the detector concept such as the light output, decay

time measurement linearity and sensitivity.

5.2 Plastic Scintillating Fiber

The plastic scintillating fiber used in this study is a single cladding BCF-10

polystyrene based (Saint Gobain)[53] with 250 µm diameter. The thickness of

the cladding is at about 3% of the core thickness. The fiber attenuation length is

2.2 m and it produces ∼8000 photon/MeV.

5.2.1 Preliminary Studies

The initial investigations have been carried out in the laboratory to evaluate the

properties of the scintillating fibers. For this investigation, the fiber was used to

study the light production and its propagation in the fiber. Different photodetec-

tors were also tested with the scintillating fibers to assist on determining the best
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photodetector for the prototype.

5.2.2 Fiber Preparations

Five bundles of fiber, each containing 1, 5, 10, 20, 40 and 80 fibers were assembled

to obtain outer diameter ranging from 0.5 mm to 2.3 mm. Both ends of the

fibers were cut off flat to a near-polished condition. Each bundle was hold tightly

together using 3-4 layers of PTFE tape. To ensure no background light being

detected by the fiber front end, the front end surface was wrapped with PTFE

tape while the opposite end surface was left exposed to the background lights.

The fiber component is illustrated as in Figure 5.1.

	

Fiber	
bundle	

PTFE	
tape	

3	x	3	mm2	
MPPC		

Holder	
made	of	

PTFE	block	

Figure 5.1: Schematic diagram showing the scintillating fiber of 20 mm length in
bundles (1, 5, 10, 20, 40 and 80) inserted in PTFE holder coupled to 3 × 3 mm2

MPPC S13360-3025PE by Hammamatsu.

The fiber bundles were tested with the same photodetector, namely the 3× 3

mm2 MPPC S13360-3025PE by Hamamatsu. Anode voltage pulses were amplified

using a NIM Ortec 527 shaping amplifier prior to pulse height analysis by Multi

Channel Analyzer(kromek) Model K102.
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Bias	supply	

ORTEC	
Model	570	
Amplifier	

Kromek	
MCA	K102	

137Cs 

Figure 5.2: Experimental setup for the fiber bundle coupled to Hamamatsu 3× 3
mm2 MPPC S13360-3025PE (∼68 V). 137Cs was placed head-on to the fiber front
end. Signal obtained were processed by ORTEC 570 shaping amplifier and Kromek
K102 MCA.

Figure 5.3: The detector system setup for the preliminary studies done in Univer-
sity of York Nuclear Application laboratory. The detector assembly was wrapped
tightly to ensure light tightness of the system.

5.2.3 Photon Yield

Since the scintillation photons carry the count rate information, it is crucial for

scintillation detector to maximise the photon throughput to the photodetector.

One identified challenge was the low number of photons produced when beta par-
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ticle transverse a rather thin scintillating fiber. From the simulation result in

chapter 3, it is expected at 40 keV, only about 8 photons reach at one end of

the fiber. This can be a challenging configuration, especially when fiber coupled

to SiPM whose single count rate can reach hundred thousand per second. This

particular study was performed to investigate the measured photon yield at fiber

end.

Experimental Setup

Since there was no known β source available, a 137Cs point source was placed

at a distance from the fiber (Figure 5.2 and 5.3) and the pulse height spectrum

were collected using multichannel analyser(MCA). Figure 5.4 presents pulse height

comparison for different fiber configurations at different distance from source 137Cs.

Photon yield as a function of number of fiber was studied for 3 different source-to-

fiber distances. The bundle fiber used were 1, 5, 10, 20 and 40 and measurements

were taken for 20 minutes. Threshold was set at 85 mV to reduced dark count

rate to 6.5 Hz. The photon counts at 1 cm is shown in Figure 5.5.

Results

Figure 5.5 shows the total count of gamma events detected at the fiber end. As can

be seen clearly in this figure, the number of count increase linearly as the number

of fiber increases. After 20 minutes measurements, about 600 counts were detected

by 1 fiber at 1 cm distance. Photon yield from 5 fibers does show notable amount

of detection despite the reduced sensitive area. Although the photon yield for 10,

20 and 40 fiber bundle were better, however, due to the outer diameter that they

yield, they are not suitable to be employed as the beta probe prototype. One of

the main characteristics to consider during the development of the beta probe is

its size. The diameter is the main concern due to the fact that it needs to be small

enough to allow it to be inserted in intravenously. Typical diameter of femoral
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(a)

(b)

(c)

Figure 5.4: Comparison of the lights detected in for 1(violet), 5(blue), 10(green),
20(red) and 40(black) fiber bundle configuration and dark count rate(orange) at
(a)1 cm, (b)2 cm and (c)3 cm distance from a 137Cs source.
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arteries in small animals is between 0.6 mm to 0.8 mm.

Figure 5.5: Total counts of gamma events as a function of total number of fibers in
a bundle at 1 cm(blue), 2 cm(red) and 3 cm(pink) 137Cs source to fiber distance.

5.2.4 Optical Fiber as Light Guide

The use of optical fibers in radiation measurements has gain popularity. The opti-

cal fibers are widely used as wavelength shifting fibers to help collect and guide the

lights from scintillators to the photodetector. The benefits are a reduced sensitive

area of the detector system and reduced external electromagnetic interference[41].

However, the challenge of developing this setup is to transport maximum amount

of light produced in the scintillator to the photodetector. This involves optimising

the coupling technique and surface treatment of all components. In this section,

the study investigates light detection capabilities of the scintillating fibers and

SiPM detector system with and without optical fibers
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Experimental Setup

To determine whether optical fiber can be used in the setup, measurements were

carried out by coupling the 80 scintillating fiber bundle only to 1 inch long optical

fiber. The diameter of optical fiber is 1 mm, therefore, 4 optical fibers needed to

match the 2 mm diameter of the fiber bundle. The measurement was also repeated

for 2 × 2 × 16 mm3 LSO crystal. LSO is an organic scintillator which has high

scintillation yield and fast decay time therefore it will produced better statistics

compare to the fiber. Better statistic is needed in order to verify the effect of

optical fiber as light guide, since plastic scintillator is less sensitive to gamma.

Result

Figure 5.6: Comparison of counts between 80 fiber bundle with and without 1”
optical fiber as a light guide. LSO crystal was also tested to verify the setup result
as it has higher light yield compare to scintillating fiber.

Interestingly, figure 5.6 clearly shows count difference between fiber scintillator

and LSO with and without optical fiber. The result indicates between 20-40 %

reduction of light detection when coupled to optical fiber. This experiment shows
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that coupling optical fiber to the beta probe prototype reduces light collection.

The flaws of the coupling method between scintillator and optical fiber may

have cause the degradation of light detection. Although the overall size matches

for both fiber bundle and LSO with optical fiber bundle, light loss can occur at the

gaps between adjacent optical fibers. Therefore, the diameter of must accurately

match individual scintillating fiber in order to obtained accurate measurement.

This can be challenging job especially when dealing with scintillating fiber of sub-

millimeter diameter.

5.2.5 Photodetectors

The key aspect of the beta probe is to detect as much light produced by the fiber

scintillator as possible. The photodetector has an important role in the detection

system in converting the light produced to “readable” electronics signal. Due to

the thin geometry, plastic scintillating fiber yield low intensity light. Therefore,

it essential to choose a photodetector that able to detect low intensity light and

convert it to signal. Among other characteristics of a photodetector that should

be considered are the photo detection efficiency (PDE), operational voltage, gain

and dark count rates.

Experimental setup

Table 5.1 shows the type of photodetectors coupled to the scintillating fibers to

assess their performance with scintillating fiber. An interesting feature by the

MPPC TE-Cooled module is that it has a built in temperature control function

that able to thermoelectrically cool to -20◦. Dark count rate can be minimised by

cooling the photodetector to subzero temperature.
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Table 5.1: Types of photodetector used to compare the amount of light detected
from fibers for the same experimental setup.

Photodetector Active area, mm2 Operational
voltage, V

PDE % Dark count rate,
kHz

Gain

C-Series SensL
SiPM

1× 1 28.5 41 30 3× 106

MPPC
S13360-3025PE

3× 3 69.5 40 400 7× 105

MPPC
TE-Cooled

1.3× 1.3 5 40 2.5 -

µPMT 3× 1 4.5 to 5.5 25 0.3 nA 2× 106

The same experimental setup was prepared for all 4 photodetectors. The front

end was exposed to 137Cs source while the opposite end was attached to different

photodetectors (Figure 5.2 and 5.3). Similarly, the fiber front end was placed 10,

20 and 30 mm from 137Cs source and the acquisition time was set to 20 minutes

for each measurement. Being aware that the proposed probe has to be small and

compact, the 80 fiber bundle was not included in the test. Threshold was set just

above the electronic noise of each photodetector.

Results

Examples of the comparison of signal pulse height and the noise pulse height for

each photodetectors are shown in figure 5.7. Counts recorded for all photodetectors

for every fiber bundle are plotted in 5.8

The plot in Figure 5.8 reveals that all the photodetectors performed com-

paratively equal. Strangely, the MPPC and MPPC TE cooled have similar total

count. It would be expected for the MPPC TE cooled to have the highest count

as it offers a built in temperature control function, that reduce noise. There is a

possibility of lower count caused by the gap between photodetector to the MPPC

module window. µPMT came as the best photodetectors from all of them. Despite

that, for smaller fiber bundle (1 & 5 fibers), the µPMT and SensL do not show
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(a) 1× 3 mm2 µPMT. (b) 1× 1 mm2 SensL SiPM.

(c) Hamamatsu 1.3 × 1.3 mm2 TE-cooled
MPPC module.

(d) Hamamatsu 3× 3mm2 MPPC S13360-
3025PE.

Figure 5.7: Signal pulse height and noise pulse height for each photodetector.

massive differences in total count.

Figure 5.8: Count detected by 1 × 1 mm2 SensL SiPM (blue), Hamamatsu 3 ×
3mm2 MPPC S13360-3025PE(red), Hamamatsu 1.3× 1.3 mm2 TE-cooled MPPC
module(pink) and 1× 3 mm2 µPMT(green) for 1, 5, 10, 20 and 40 fiber bundle at
1 cm distance from 137Cs source.
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The noise produced in solid state photodetector is caused by the thermal

excitation and this can be a limiting factor in detecting low intensity light. Pulse

height signal produced by low intensity photon may fall in the noise level. In order

to be able to produce readable signal in photodetectors, the signal pulse height

should be high enough compared to the noise signal. A signal-to-noise ratio (SNR)

analysis was done to investigate signal pulse height generated from photodetector.

By observing figure 5.9 SNR analysis, µPMT gives the highest SNR. It has the

highest gain and lowest dark count compare to the others. In contrast, the MPPC

TE-cooled has the lowest SNR value. This could again be caused by the air gap

between MPPC and glass window that might cause light reflection or absorption

to happen multiple times before the light reach the photodetector surface. There

is no significant difference of SNR value for MPPC 3 × 3 mm2 and 1 × 1 mm2

SensL SiPM for less than 20 fibers.

Figure 5.9: Signal-to-noise value for different fiber bundle and by 1×1 mm2 SensL
SiPM (blue), Hamamatsu 3 × 3mm2 MPPC S13360-3025PE (red), Hamamatsu
1.3× 1.3 mm2 TE-cooled MPPC module (pink) and 1× 3 mm2 µPMT (green) at
1cm distance from 137Cs source.

Taken together, the findings from the photon yield and photodetector have

helped on finalising the beta probe prototype. By observing the physical geometry

of the fiber bundle, 1 fiber and 5 fibers are seen fitting the criteria for intravenous
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insertion. Photon yield of 1 fiber has seemingly showing good SNR, however,

5 fibers has higher SNR which gives better count statistics. There is no need

for optical light guide for this proposed prototype as can be seen from results

obtained, coupling to optical fiber of different diameter causes light loss. Likewise,

C-series SensL SiPM was chosen for this prototype as it has lower dark count rate

and high gain and it is very small and offers compactness compared to the other

photodetectors (e.g. MPPC 3 × 3 mm2, 1.3 × 1.3 mm2 TE-cooled MPPC and

µPMT). Based on the results, the 5 fiber bundle and 1× 1 mm2 SensL SiPM were

singled out as the baseline for the beta probe due to the higher statistics they

provide which is important for accurate characterisation of the prototype.

5.3 Beta Probe Prototype

Based on the previous results and analysis, the beta probe prototype components

and configuration was determined. The performance of the prototype was inves-

tigated via irradiation with radiotracer solution. Various characteristics such as

decay time measurement, sensitivity and linearity have been quantified in PET re-

search center, University of Hull. Accompanying measurement was taken in York

laboratory, with standard calibration source.

5.3.1 Fabrication of Beta Probe Prototype

For the prototype, the fibers length in the fiber bundle is 6 cm and are thinly

painted with white reflective paint (Figure 5.10b), leaving only the bottom end

surface attached to SensL SiPM unpainted. Prior to this, both ends of the fibers

were cut off flat to near-polished condition. To prevent surrounding ambient light

from entering the sensitive photodetector, a layer of black paint was painted on

the fiber component. On completion, the outer diameter measures approximately

1.03 mm.
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(a)

(b) (c)

Figure 5.10: (a) Bottom end of the fibers are wrapped with PTFE and left exposed
to be coupled to SiPM, (b) the length of the fiber is 60 mm, the bottom end was
wrapped with PTFE tape. Next to the fiber is the 1 × 1 mm2 SensL SiPM on
PCB(c) Complete assembly of the fiber-SiPM encased in custom Aluminium case.

The bottom end was wrapped with several layers of PTFE tape until the fiber

component perfectly fit inside a 2 mm diameter hole in a custom-made PTFE

holder. Caution must be taken during wrapping to prevent from covering the fiber

end surface (Figure 5.10a). Silicone optical gel used to facilitate light transport

between fiber to SiPM coupling. The fiber-PTFE holder assembly was placed on

top of the 1× 1 mm2 SiPM and being hold together using PTFE and black tape.

Finally, the assembly was inserted in an aluminium casing, only the fibers protrude

out from the casing as illustrated in Figure 5.11 and 5.10c.
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Fiber	

PTFE	holder	

SiPM	Printed	ciruit	
board	(PCB)	

Aluminium	
casing	

PTFE	
tape	Bias	adapter	

Signal	
adapter	

Figure 5.11: Diagram showing the beta probe design. The probe was coated by
three layers of white reflective paint and a black paint coating on the outer. The
fiber and SiPM is encased in an Aluminium case.

5.3.2 Light Output Measurement

Experimental Setup

The setup for measuring the light output is shown in Figure 5.12. The measure-

ments were taken for electron from 90Sr source and γ from 137Cs source. The

sources were placed close to the lateral surface of the probe. The SiPM was oper-

ated at +28.5 V. The output signal was connected to a CAEN DT5730 digitizer.

All signals were then processed using CAEN CoMPASS DAQ software to get the

energy spectrum. An important functionality of the CAEN CoMPASS DAQ is

that it controls the firmware on the FPGA such that it can deliver energy, timing,

and PSD spectra at the same time. It features a user-friendly interface and allows

possibility to save the output in ROOT TTree format.
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Power	supply	
β-probe	

Radiation	
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Figure 5.12: Diagram showing the light output experimental setup. Signals were
collected and processed using the Caen DT5730 digitizer.

Figure 5.13: Light output experimental setup performed in Nuclear application
laboratory to examine the beta probe response to gamma and beta radiation.

Results

Almost exclusively, the interaction of a high energy γ-ray in the plastic scintillator

are by Compton scattering due to plastic low density and low atomic number.

Evidently, in Figure 5.14, no photopeak can be observed in the 137Cs spectrum.

Compton scattering is predominant over the energy range of interest so that it is
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difficult to find a photopeak in a spectrum. As can be seen in the 90Sr spectrum,

more light output were detected compared to light output from 137Cs. The ratio

between beta and gamma counts was calculated as 3.22. This value can easily

increase by increasing the threshold value to reduce the dark count rate. 90Sr has

a continuous spectrum with mean beta energy of 196 keV and maximum energy

of 546 keV. The diameter thickness of the beta probe is not enough to completely

stop the high energy beta particles, but only fraction of the energy deposited in

the fibers.

Figure 5.14: Gamma (red) and beta (green) energy spectra from 137Cs and 90Sr,
respectively. Background data(blue) was taken with no source.

5.3.3 Decay Time Measurement and Sensitivity

Experimental Setup

The beta probe was tested at PET research centre in the University of Hull. The

centre has kindly provided the laboratory space and 18F aqueous solution. To test

the decay time and sensitivity, the beta probe was partially submerged in a vial

containing 1 ml 18F solution with activity concentration approximately 1 MBq/ml

as shown in Figure 5.15. The half-life of 18F is 109 minutes. Therefore, the decay
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rate of 18F data were measured for 240 minutes (∼ 2 half lives) while the 18F decay

from 1 MBq/mL to 0.21 MBq/mL by counting event as a function of time. Ideally,

it will be best to leave the solution to decay up to when the pulse heights fall in

the noise. However due to restriction of time and laboratory in the University of

Hull, the study time was shorten. Nevertheless, the data acquired were sufficient

to test the working condition of the prototype.

Figure 5.15: Setup of beta probe in PET Research Center at University of Hull.
Fiber was submerged in 1 MBq/mL 18F aqueous solution and left to count the
decay for 240 minutes.

Results

2D distribution of counts as a function of time and pulse height are shown in

figure 5.16 and the pulse height spectrum is shown in figure 5.17. A peak in the

spectrum shown in figure 5.16 corresponds to a certain number of photoelectrons.

The number of counts reduced following the decay of 18F overtime. One can see

single photoelectron distribution peaks in green (Figure 5.16). The dark count

rate showing count decays, indicating a large amount of low energy photon being

detected fall in the noise level. Hence for this reason, improvement can be made

by operating at lower temperature.
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Figure 5.16: 2D Plot of 18F decay over 14400s. The single photon spectra can be
clearly seen in the plot. As the 18F decays, count intensity was reduced.

Figure 5.17: Energy spectrum of 18F taken using the beta probe prototype over
14400s. One can see single photon charge spectrum. A peak in the spectrum
corresponds to a certain number of photoelectrons.
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Figure 5.18: Measured net counts plotted as a function of time. The theoretical
decay of 18F is shown as a red line above the data points.

Figure 5.18 shows events recorded as a function of time. Decay constant,λ

obtained from the exponential fit of the measurement is 1.066 x 10−4/s. As a

result, this gives the value of the measured half-life to be approximately 108±1 min,

showing less than 1±0.1% difference from the actual half-life of 18F which is 109

minutes. Thus, demonstrating the ability of the probe to count 18F beta emission.

The 1 min different was suspected to be caused by the limited measurement time,

hence, with this method of determining half-life, full time range is preferable[67].

Using the same set of data, absolute sensitivity of the beta probe was obtained

from Figure 5.19 and is approximately 289 cps/MBq/ml (0.29 cps/kBq/mL). Thus,

this results in only ∼3 cps at 10 kBq/mL. Activity concentration in clinical appli-

cation ranges from 0 to 500 kBq/mL. Therefore, further improvement is needed to

adequately measure lower activity.

A typical detector count rate linearity response measurement is shown in

Figure 5.20. The acquired data was fitted to first order polynomial, y = ax + b.

Linearity response of the probe was calculated by comparing the measured to

theoretical data as the 18F decay from 1 MBq/mL to 0.21 MBq/ml. The curve
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Figure 5.19: Ratio of measured count rate to actual activity of 18F gives the
sensitivity of the beta probe.

Figure 5.20: Plot of the decay of 18F detected by the beta probe. Linearity of the
device is evident from the high agreement of the measured data (black dots) with
the theoretical decay (red line).

shows a good agreement between the measured and the actual 18F activity in the

vial.
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5.4 Summary

This study was motivated by the development of fiber detector with small size pho-

todetector that is intended to be use for intravenous time-activity measurements.

Investigations were done on plastic scintillating fiber and designing a portable

beta probe detector prototype to optimise the number of light output. A series

of studies were done on a fiber bundle to validate the amount of fiber and pho-

todetector suitable for the prototype and application. The beta probe prototype

fabricated with the fiber design configuration has shown promising results. The

measured decay time of 18F was 108 minutes. The sensitivity of the prototype is

289 cps/MBq/ml. Over the measured activity, the prototype linearity is in good

agreement to the actual activity.

The initial feasibility studies have shown the potential of the beta prototype

to be blood radiotracer detector. Further improvement and assessments are needed

in order to progress from a prototype to an actual detector.
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Chapter 6

Conclusion

Two types of beta particle detector based on plastic scintillator were developed

and studied. The first detector developed, aimed to operate at low detection

volume based on the well established microfluidic technology. The second detector

is a beta probe based on the plastic scintillator fiber technology and SiPM that

capable of detecting low light intensity.

Prior to fabrication, GEANT4 simulation was done to evaluate the charac-

teristic of the proposed detector systems. The maximum depth of the positron

particle in the plastic scintillator is approximately at 2.4 mm for 18F and approx-

imately 5.0 mm for 68Ga. Reducing the thickness of plastic scintillator to 2 mm

may reduce photon collection by approximately 10% for for 18F and approximately

40-50% for 68Ga. The comparison between short and longer channel with same

radioactive fluid volume indicated longer channel detected more counts. Measure-

ments shows an increase of 9% photon detected on the fiber end.

Meanwhile, GEANT4 simulation for single fiber is showing more lights pho-

tons were trapped in fiber of no reflector compare to with reflective white paint.

It was evident that majority of the photons were travelling along the fiber border.

Therefore, photodetector used must be larger than the fiber cross section. On aver-

113



age positron deposit 46.6 keV, which allows only 6 photons reach the fiber end and

that gives an average of 8 photons per keV reaching the fiber end. Thus show the

simulation has successfully replicates the manufacturer trapping efficiency. Fur-

ther investigations with 5 fiber bundle shows photon crosstalk between adjacent

fibers resulting from the poor trapping efficiency.

Based on the simulation findings, three microfluidic detectors labelled as MC1,

MC2 and MC3 were successfully made with the combination of material; PDMS

and glass. However, the thickness of scintillator used were 2 mm and 1 mm which

are only suitable for 18F. Higher 18F residual activity was observed in PDMS-PDMS

chip because of adsorption in PDMS fluidic channel surface. The detectors were

tested to measure the detection efficiency, minimum detectable activity, linearity

and sensitivity. Results shows the detection efficiencies of 7-34% for 68Ga and

3-8% for 18F. The MC3 detector is showing good linearity for 18F, however, for

68Ga, the detection was only linear up to 3 kBq/µL. This is due to saturation on

the SiPM caused by the higher energy 68Ga deposited compare to 18F energy.

Preliminary investigation on the behaviour of plastic scintillating fiber and

different photodetectors has help on the design and performance optimisation of

the beta probe. The beta probe was able to measure 18F activity. The decay time

measurement and linearity shows good agreement with the actual decay time of

18F. The sensitivity of the beta probe to 18F is 289 cps/MBq/mL. This can be

improved by reducing reflective paint layers on the fiber bundle.

This study presented the first PDMS microfluidic chip integrated to SiPM and

the first beta probe utilising full length plastic scintillating fiber detector. This

thesis described the proof of principle of these detectors that potentially be use

for application in nuclear medicine area and could have been developed further

with additional time and resources. In particular, further testing on different

material choice that can reduce molecule absorption such as SU-8[68] and the

design of fluidic channel that can further increase photon detection. Furthermore,

saturation of signal can be improved by selecting SiPM arrays with larger dynamic
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Figure 6.1: Cutaneous beta detector made that can be fixed over the wrist to
measure activity input function.[11]

range. Meanwhile, the beta probe can further be improved by reducing reflective

material thickness.

These detectors have shown the feasibility of plastic scintillator detector as

particle detector for medical application. Thus, it is interesting to observe the

performance of the detectors in clinical studies. With the advantage of the small

size, the detectors can also be developed as a portable wireless monitor system that

could measure radiation from the skin of patient. This has been proven possible

by a group of researcher [11] (Figure 6.1).
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Appendix A

(a) (b)

(c)

Figure A.1: Comparison of 1 × 1 mm2 Sensl SiPM (blue), hammamatsu 3 ×
3mm2 MPPC S13360-3025PE(red), hammamatsu 1.3×1.3 mm2 TE-cooled MPPC
module(pink) and 1× 3 mm2 µPMT(green) for 1, 5, 10, 20 and 40 fiber bundle at
(a)1 cm, (b)2 cm and (c)3 cm distance from 137Cs source.
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