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Abstract 

 

The ryanodine receptor is a key intracellular calcium ion channel in nerve and muscle 

cells. A number of links have been made between the ryanodine receptor and age-

related muscular and neurodegeneration. Variants of the RYR1 gene are associated 

with malignant hyperthermia, which is a hypermetabolic reaction to inhalational 

anaesthetics. I used eight genome-edited Caenorhabditis elegans strains expressing 

ryanodine receptors with modifications equivalent to known RYR1 disease variants to 

characterise the consequences of these variants on neuromuscular function in vivo. 

Animals expressing variant ryanodine receptors exhibited increased sensitivity to 

halothane when both homozygous and heterozygous for the variants. This mirrors the 

situation in humans where malignant hyperthermia is inherited in an autosomal 

dominant pattern. Novel, subtle, locomotion defects were found in animals expressing 

variant ryanodine receptors even in the absence of halothane. In-depth analysis of 

crawling suggested that these variant channels release excessive calcium, resulting in 

increased muscle contraction. Exaggerated age-related degeneration of locomotion 

was observed in variant strains, which may be a result of excessive calcium release via 

variant ryanodine receptors throughout the lifespan resulting in cellular damage. 

Cholinergic pharmacological agents were used to characterise if the consequences of 

the variants were pre and/ or post-synaptic. A range of complex phenotypes were 

found, reflecting the complexity of regulatory inputs to the ryanodine receptor. The 

altered properties of variant ryanodine receptors and effects of long-term calcium 

mishandling found here are anticipated to have consequences for human carriers, 

which may be in the nerve cells. Assessment of these phenotypes in a whole organism 

was important to fully appreciate the significant effects of variant ryanodine receptors. 
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General introduction 1 

Chapter 1 

General introduction 

1.1. The ryanodine receptor 

Despite its name, the ryanodine receptor (RyR) is not a receptor but a large 

intracellular calcium release channel in both excitable and non-excitable cells. They are 

so named due to their ryanodine binding ability; ryanodine is a plant alkaloid, which 

these channels bind with high affinity (Callaway et al., 1994). RyRs are found in the 

sarco- and endoplasmic reticulum (SR/ ER) membrane and play a vital role in the 

calcium signalling required for many cellular processes (Lanner et al., 2010). Together 

with the dihydropyridine receptor (DHPR), RyRs are most well-known for their role in 

excitation-contraction (E-C) coupling, which facilitates muscle contraction through 

calcium release from the SR upon electrical excitation of the plasma membrane (Marks 

et al., 1989; Mickelson and Louis, 1996; Avila et al., 2001; Mouton et al., 2001; Cheng 

et al., 2005). RyRs are mushroom shaped homotetramers, with a transmembrane 

domain forming the stalk-like pore of the protein, which allows calcium release from 

the SR/ ER upon RyR activation (Van Petegem, 2012) (Figure 1.1). 

 

Figure 1.1: The ryanodine receptor. 

Two opposing RyR protomers, viewed from within the plane of the SR/ ER membrane. 

The bulk of the RyR protein sits in the cell cytoplasm. Colours relate to different 

domains. Generated using PyMOL, based on the closed conformation of rabbit RYR1, 

as predicted from Yan et al. (2015) (Protein Data Bank (PDB) code 3J8H). 
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1.1.1. Ryanodine receptor isoforms and evolution 

There are three RyR isoforms in mammals, encoded by three different genes, RYR1, 

RYR2 and RYR3. RyR1 is widely expressed in mammalian skeletal muscle and was the 

first RyR isoform to be cloned, from rabbit skeletal muscle sarcoplasmic reticulum 

(Takeshima et al., 1989). RyR2 is predominantly in smooth muscle and the heart while 

RyR3 is generally known as the brain isoform (Lanner et al., 2010).  

 

Despite each isoform being associated with these discrete locations, their expression is 

much broader. For example, RyR1 is also expressed at low levels in cardiac and smooth 

muscle, as well as in organs such as the stomach, kidney, adrenal glands, ovaries and 

testis, and in the brain, in the hippocampus, cerebellum and Purkinje cells (Furuichi et 

al., 1994; Giannini et al., 1995; Neylon et al., 1995; Hertle and Yeckel, 2007; Abu-Omar 

et al., 2018). Both RyR2 and RyR3 have broad expression too. RyR2 is also expressed in 

the cerebellum and cerebral cortex of the brain at high levels (Nakai et al., 1990; 

Furuichi et al., 1994). Lower levels of RyR2 expression have been found in the stomach, 

kidney, adrenal glands, ovaries, thymus, lungs and smooth muscle (Giannini et al., 

1995; Neylon et al., 1995; Hertle and Yeckel, 2007). The highest levels of RyR3 

expression in the brain are in the cerebellum, hippocampus, caudate nucleus and 

amygdala (Hakamata et al., 1992; Giannini et al., 1995), but RyR3 also has expression 

in skeletal muscle, with high expression levels in the diaphragm (Rossi et al., 2007). 

Furthermore, RyR3 expression has been found in a number of organs in mice and 

rabbits, including lungs, kidneys, stomach and aorta (Giannini et al., 1995; Ottini et al., 

1996). 

 

RyRs show high levels of conservation of key domains with the transmembrane inositol 

triphosphate receptor (IP3R) (Figure 1.2A). IP3Rs, like RyRs, are channels that mediate 

calcium release from intracellular stores (Taylor and Tovey, 2010). The highest 

sequence homology for these two calcium ion channels is within the N-terminal and 

transmembrane regions, with approximately 30% identity across these regions and 

higher homology, up to 60% identity, within specific domains. The inositol 1,4,5-

triphosphate/ ryanodine receptor domain (Figure 1.2A, orange ‘Ins145_P3_rec’ 

domain) corresponds to the inositol triphosphate (IP3) ligand binding region on IP3Rs 

and the N-terminal domain of RyRs, although RyRs lack the ability to bind IP3 (Bosanac 
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et al., 2005). The N-terminal domains of both IP3Rs and RyRs also possess a quartet of 

protein mannosyltransferase IP3R and RyR domains (Figure 1.2A, dark blue ‘MIR’ 

domain); the MIR domains may have a ligand transferase function (Ponting, 2000). 

There are two RyR and IP3R Homology (RIH) domains (Figure 1.2A, yellow ‘RYDR_ITPR’ 

domains) and an RyR and IP3R homology associated domain (Figure 1.2A, green 

‘RIH_assoc’ domain) in RyRs and IP3Rs, which are significantly similar. The ion transport 

transmembrane domains of RyRs and IP3Rs share the greatest sequence similarity, 

likely due to their conduction of calcium ions (Bosanac et al., 2005; Taylor and Tovey, 

2010). The IP3R gene superfamily divided into two subfamilies in the Opisthokonta, 

IP3R-A and IP3R-B/ RyR, and the latter subfamily further divided into two distinct 

families, IP3R-B and RyR in the Filozoa (Figure 1.2B). Later two rounds of whole 

genome duplication resulted in three isoforms of IP3R-A (ITPR1, ITPR2 and ITPR3) in 

vertebrates; IP3R-B was lost in vertebrates (Alzayady et al., 2015). IP3Rs underwent 

many independent losses and expansions in the eukaryotic lineage. In Caenorhabditis 

elegans there is one IP3R and one RyR gene; the IP3R gene groups within the 

vertebrate IP3R-A clade, suggesting loss of IP3R-B in C. elegans. This is independent to 

the loss of IP3R-B in vertebrates as there is wide-spread occurrence of IP3R-B amongst 

other metazoans, such as the acorn worm (Alzayady et al., 2015).  

 

The three different RyR genes in mammals (RYR1, RYR2 and RYR3) are thought to have 

arisen from sub-functionalisation following the two rounds of genome duplication, 

which occurred in early vertebrate expansion, with subsequent loss of one copy 

(Sorrentino et al., 2000). The first genome duplication event gave rise to the RyR2 and 

RyR3 ancestral forms, and the subsequent event gave rise to RyR1 from the RyR3 

ancestral form (Figure 1.2C). In non-mammalian vertebrates, such as the frog, there 

are only two isoforms of RyR, which have been shown to be homologous to 

mammalian RyR1 and RyR3 through sequencing of bullfrog and chicken skeletal 

muscles (Oyamada et al., 1994; Ottini et al., 1996; Ogawa et al., 2002); this suggests 

secondary loss of RyR2. In teleost fish there are two distinct isoforms of RyR1; RyR1a in 

slow twitch muscle and RyR1b in fast twitch muscle, presumed to be the result of sub-

functionalisation following a further gene duplication event in this lineage (Morrissette 

et al., 2000) (Figure 1.2C). In many invertebrates there is only one RyR gene. In 

Drosophila melanogaster this single RyR gene is expressed in muscles and neuronal 
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tissues (Hasan and Rosbash, 1992). In C. elegans there is also a single RyR gene (Figure 

1.2C), with expression in the body wall, vulval, anal and pharyngeal muscles, as well as 

in neurons (Maryon et al., 1998). Conservation of the RyR from C. elegans through to 

mammals demonstrates the vital role that this protein plays in calcium signalling in 

muscle and neural tissues, as well as other organs in higher organisms.  

 

 

 

 

 

 

A 

B 

C 
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Figure 1.2: Evolution of the ryanodine receptor. 

Evolution of IP3R and RyR in Eukaryotes. (A) The consensus domains of IP3Rs and RyRs 

showing conservation of domains, represented by their Pfam ID (El-Gebali et al., 

2018); the Ins145_P3_rec domain in orange (PF08709), MIR domain in dark blue 

(PF02815), two RYDR_ITPR domains in yellow (PF01365), the RIH_assoc domain in 

green (PF08454) and ion transport domain in black (PF00520). (B) Eukaryotic tree 

showing IP3R and RyR diversification. Colours represent the origin and presence of 

particular genes and their diversification into paralogue families. Red crosses indicate 

secondary losses. Red stars indicate the division of the IP3R superfamily into IP3R-A 

and IP3R-B/ RyR in the Opisthokonta and the division of IP3R-B and RyR into distinct 

families in the Filozoa. 1Lost in vertebrates. 2Lost in most fungi, except two species. 

Adapted from Alzayady et al. (2015), within the eukaryotic tree consensus from 

(Derelle and Lang, 2011; He et al., 2014). (C) Phylogenetic tree showing evolution of 

the RyR in vertebrates. Generated from Multiple alignment of full-length published 

RyR amino acid sequences for human, mouse, frog and zebrafish. The C. elegans RyR 

sequence was used a designated outgroup. Phylogenetic tree adapted from Darbandi 

(2010). 

 

1.1.2. Structure of the ryanodine receptor 

The large cap-like region of the mushroom-shaped RyR protein is located in the cell 

cytoplasm while the ‘stalk’ crosses the membrane into the lumen of the SR or ER (Van 

Petegem, 2012) (Figure 1.3). RyRs are homotetrameric proteins made up of four 

identical subunits each approximately 5000 amino acids long. The structure of RyR1 

has now been resolved in detail (Efremov et al., 2015; Yan et al., 2015; Zalk et al., 

2015). 

 

Of the cytoplasmic portion of RyR, each protomer is made up of nine domains; the N-

terminal domain (NTD), three SPRY (SplA/ RyR) domains, P1 and P2 (pore helix 1 and 2) 

domains, the handle, helical domain and central domain (Efremov et al., 2015; Yan et 

al., 2015) (Figure 1.3). The central domain and NTD form a central tower, which is the 

core of the RyR, and the helical and handle domains form a corona around this central 

tower (Yan et al., 2015). The central tower interacts with both the pore-forming 

transmembrane portion of the channel and other channel modulators to control RyR 
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activation (Yan et al., 2015; Samsó, 2017). The transmembrane portion of the protein 

is made up by the C-terminal domain (CTD) and transmembrane domain (TMD) (Yan et 

al., 2015). 

 

       

 

 

 

Figure 1.3: Structure of the ryanodine receptor. 

(A) The tetrameric RyR protein, viewed from the cytosol. (B) Two opposing 

protomers, viewed from within the plane of the membrane. (C) The linear sequence 

of RyR1 domains. N-terminal domain (NTD) in yellow, SPRY1, 2 and 3 in orange, P1 

and P2 in brown, handle in cyan, helical domain (HD) in green, central domain in 

purple, transmembrane domain (TMD) in blue and C-terminal domain (CTD) in red. 

Generated using PyMOL, based on the closed conformation of rabbit RYR1, as 

predicted from Yan et al. (2015) (PDB code 3J8H). 

 

Structural changes to the handle domain result in corresponding changes in the NTD, 

due to the intradomain interaction RyR (Yan et al., 2015; Wei et al., 2016; Samsó, 

2017). Upon RyR activation the NTD moves both upwards and outwards, affecting 

interactions between three NTD subdomains as well as interactions between NTDs of 

the neighbouring subunits (Wei et al., 2016). Both of these interactions are thought to 

be important for calcium-induced channel gating. 

 

A B 

C 
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The SPRY domains (SPRY1-3) are protein-protein interaction modules; RyR forms a 

macromolecular complex with a number of other proteins that control activation and 

calcium release. SPRY1 protrudes on the edge of the cytoplasmic portion of RyR and is 

predicted to be part of the binding site for a peptidyl-prolyl cis-trans isomerase 

(FKBP12) (Samsó, 2017). The interaction site of one subunit of the dihydropyridine 

receptor (DHPR) lies within the SPRY2 domain in RyR1 (Leong and MacLennan, 1998). 

This domain of RyR2 was not found to bind the DHPR, suggesting a role of this domain 

specifically in skeletal muscle. The interaction of the RyR’s SPRY3 domain with other 

proteins has not been extensively studied. However, the location of SPRY3 on the 

surface of RyR1, facing the muscle cell’s transverse-tubule, suggests a potential role in 

the RyR1-DHPR interaction, similar to that seen for SPRY2 (Samsó, 2017). 

 

The handle domain, forming part of the corona around the channel’s central tower, 

contains a number of protein binding sites. The FKBP12 binding site, which the SPRY1 

domain forms part of, is also partly formed by the handle domain (Yan et al., 2015). As 

well as FKBP12, apocalmodulin (calcium-free calmodulin, ApoCaM) and Calcium-bound 

calmodulin (Ca2+-CaM) both bind to the handle domain of RyR (Samsó, 2017; Brohus et 

al., 2019). 

 

The helical domain is the other corona-forming domain (Yan et al., 2015). When RyR is 

activated, the helical domain moves outwards; one subpart moves upwards with the 

NTD, while the other subpart moves downwards (Wei et al., 2016) (Figure 1.4). The 

two parts of the helical domain are separated by the P2 domain (Yan et al., 2015). This 

outward and upward or downward movement of the helical domain subparts 

increases the height and width of the cytoplasmic region substantially, and this change 

in conformation from closed to open state has been compared to a breathing motion 

(Wei et al., 2016). 

 

The central domain, forming the other portion of RyR’s central tower, interacts with 

the transmembrane domain (Yan et al., 2015; Samsó, 2017). EF hands are involved in 

intracellular calcium binding. There are two EF hands in the RyR, formed by the central 

domain (Xiong et al., 1998). EF hands are a motif found in a large family of calcium-

binding proteins and EF hand 1 is likely to be responsible for calcium activation of RyR1 
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(Wei et al., 2016). Upon activation of the RyR, the EF hands move outward, taking the 

central domain upwards and outwards. A U-motif of the central domain clamps the C-

terminal Domain (CTD), which forms part of the transmembrane stalk of RyR, and the 

structural change to the central domain is propagated to the CTD, which moves 

outward (Wei et al., 2016; Samsó, 2017) (Figure 1.4).  

 

The four CTDs of neighbouring RyR subunits touch each other in the closed state of 

RyR (Samsó, 2017). The CTD is tightly connected to the transmembrane domain (TMD) 

(Yan et al., 2015). The movement of the CTD, mediated by the movement of the 

central domain, is propagated to the TMD and results in the channel opening (Wei et 

al., 2016). 

 

      

 

Figure 1.4: Open and closed ryanodine receptor conformation. 

Conformation changes between open and closed states for the tetrameric RyR 

protein, viewed from the cytosol (A) and from within the plane of the membrane (B). 

The closed state is shown in yellow, and the open state in cyan. The cyan arrows 

indicated the overall shifts of the cytoplasmic domains from the closed to open state. 

Adapted from Peng et al. (2016) (PDB code 3J8H). 

 

The TMD is made up of six segments (S1-6) (Yan et al., 2015; Zalk et al., 2015). The 

TMD forms the actual pore of the channel, specifically the S6 segments, which have a 

hydrophobic constriction site at residue Ile4937, in rabbit RyR1 (Yan et al., 2015). This 

gate-residue creates a bottleneck when the protein is in the closed state with a pore 

radius <1 Å, which is too small for calcium ions to pass through; the radius of a 

A B 
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hydrated Ca2+ ion is 4.1 Å (Volkov et al., 1997). Upon activation of the RyR the 

movement of the CTD is propagated to the TMD and moves the S6 segment outwards, 

opening the channel wide enough for calcium ions to move from the SR or ER lumen to 

the cytosol (Efremov et al., 2015; Yan et al., 2015; Wei et al., 2016).  

 

1.1.3. Control of ryanodine receptor activation 

The RyR interacts with a number of proteins to form a macromolecular complex, to 

regulate calcium release from the SR/ ER. Most of the modulators of the RyR interact 

with the large cytoplasmic region of the protein (Lanner et al., 2010; Yan et al., 2015). 

The macromolecular complex that tightly controls calcium release via the RyR reflects 

the importance of calcium homeostasis in a number of different cell types.  

 

Calmodulin is a calcium binding protein, which regulates all three RyR isoforms by 

directly binding to the RyR (Chen and MacLennan, 1994; Guerrini et al., 1995). 

Calmodulin has been shown to bind to the RyR when bound to calcium (Ca2+-CaM) and 

when calcium free (apoCaM) (Lanner et al., 2010). At micromolar to millimolar calcium 

concentrations calmodulin inhibits RyR1, while it activates skeletal muscle calcium 

release at sub-micromolar calcium concentrations (Tripathy et al., 1995). RyR2, 

however, does not show activation by apoCaM (Fruen et al., 2000), but does show 

inhibition by Ca2+-CaM (Meissner and Henderson, 1987).  

 

The DHPR is a voltage dependant calcium channel, which is a key regulator of RyR1 and 

RyR2 activation in skeletal and cardiac muscle; the DHPR is a key player in E-C coupling. 

In skeletal muscle the DHPR physically interacts with RyR1 to communicate membrane 

depolarisation and activate RyR channel opening directly, through allosteric 

interactions (Ríos et al., 1991; Lee, 2010) (Figure 1.5). In cardiac muscle the DHPR 

activates RyR2 by calcium induced calcium release (CICR), where calcium influx via the 

DHPR activates the RyR channel opening (Laver, 2018) (Fabiato, 1983). Calcium ions 

bind directly to the RyR to activate opening; coupled gating between RyRs can activate 

neighbouring RyRs (Bers, 2002). 

 

Triadin and junctin are two SR transmembrane proteins that tether calsequestrin 

(CASQ), a calcium-binding SR luminal protein, close to the release pore of RyR1 and 
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RyR2 (Györke et al., 2004; Beard et al., 2005). The interaction between CASQ and 

triadin and junctin regulates RyR1 and RyR2 opening in a calcium dependant manner. 

The SR luminal calcium concentration is sensed by CASQ, which inhibits the RyR when 

the calcium concentration is low; triadin/ junctin may be required to mediate this 

interaction (Györke et al., 2004). 

 

Binding of the protein FKBP12 to RyR decreases the open probability of RyR (Brini, 

2004). Four molecules of FKBP12 in skeletal muscle and of FKBP12.6 in cardiac muscle 

bind to RyR, one per RyR protomer.  

 

Cytosolic calcium can directly activate RyR2, as in CICR described above. Furthermore, 

cytosolic calcium has been shown to directly activate RyR1 in low, micromolar, calcium 

ion concentrations by binding to a high-affinity calcium site (Meissner et al., 1986; des 

Georges et al., 2016). High, millimolar, cytosolic calcium ion concentrations inhibit 

RyR1 by binding to low-affinity calcium sites. Luminal calcium can also bind to, and 

regulate, the RyR in a process known as store-overload-induced calcium release 

(SOICR) (Jones et al., 2017). Calcium ions activate RyR2 by binding to a luminal facing 

calcium site (Sitsapesan and Williams, 1997), and the negative charge at, or near, 

residue E4872 in mouse RyR2 was shown to be essential for luminal calcium activation 

(Chen et al., 2014). The malignant hyperthermia disease-associated RyR1 R615C 

variant, in pigs, has been shown to increase luminal calcium activation of RyR1, with 

reduced luminal calcium load required to trigger SOICR (Nelson et al., 1991; Jiang et 

al., 2008).  

 

Furthermore, RyR channels interact with each other in inter-RyR interactions (Samsó, 

2017). In skeletal muscle RyRs self-associate in checkerboard arrays, where each of the 

four corners of an RyR1 channel interacts with a corner of another RyR1 channel (Yin 

et al., 2008). The function of this checkerboard pattern is uncertain; every other RyR1 

is associated with a DHPR channel, but it does not appear that CICR from these DHPR-

associated RyR1s activates non DHPR-associated RyR1s (Ríos et al., 2019). Presumably, 

the non-DHPR-associated RyR1 channels do not open upon skeletal muscle activation, 

or they open through an allosteric interaction with the DHPR-associated RyR1s. In 

cardiac muscle RyR2 homotetramers are organised into clusters, where the number of 
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channels and distance between adjacent channels effects SR calcium release rate as 

well as termination of CICR (Cannell et al., 2013).  

 

RyR activity has a central role in skeletal muscle E-C coupling, the canonical process by 

which an electrical impulse triggers muscle contraction (Figure 1.5A) (Ríos et al., 1991; 

Calderón et al., 2014). Upon electrical impulse, the sarcolemma is depolarised. 

Depolarisation is propagated along the sarcolemma and down t-tubules (Calderón et 

al., 2014). Voltage-sensing DHPRs in the sarcolemma of t-tubules sense the 

depolarisation, and undergo a conformational change (Ríos et al., 1991). The 

conformational change to the DHPR results in opening of RyR1 and calcium ion release 

from the SR. The increase in cytoplasmic calcium ion concentration allows calcium ion 

binding to troponin C, inducing a conformational change in the troponin-tropomyosin 

complex and removing tropomyosin from the myosin-binding site on actin, resulting in 

the myofilaments sliding past each other, achieving muscle contraction (Szent-Györgyi, 

1975). Cytoplasmic calcium ions are pumped back into the SR by sarcoplasmic 

reticulum Ca2+ATPase (SERCA), which allows muscle relaxation. Cardiac muscle 

contraction is achieved in a similar way, except that RyR2 is activated by CICR upon 

DHPR activation leading to calcium release from the SR (Periasamy and 

Kalyanasundaram, 2007).  

 

RyRs also control calcium release from intracellular stores in neural cells, which 

modulates many important neural processes (McPhersonx et al., 1991). Neural RyRs 

are located on the ER close to the presynaptic membrane and the active zone 

(Bouchard et al., 2003). Upon excitation of the nerve cell, the intracellular calcium 

concentration rises due to calcium influx through voltage-gated calcium channels 

(VGCCs). Calcium-induced calcium release (CICR) from the ER via RyR further raises 

intracellular calcium levels, increasing the signal and increasing the release of 

neurotransmitters (Narita et al., 2000; Südhof, 2012) (Figure 1.5B). 
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Figure 1.5: Neural and muscular RyRs are activated in different ways.  

(A) In skeletal muscle cells RyRs are activated by physical interaction with the 

dihydropyridine receptor (DHPR), which communicates across the cytosol upon 

depolarisation of the t-tubule. Calcium ions (yellow spheres) are released from the 

sarcoplasmic reticulum (SR) and facilitate muscle contraction. (B) Neural RyRs are 

stimulated to open through calcium induced calcium release (CICR) more like as in 

cardiac muscle cells. Calcium ion influx via voltage gated calcium channels (VGCCs), 

upon an action potential reaching the nerve terminal, increases calcium ion 

concentration of the axoplasm, which activates RyRs to open and release calcium ions 

from the endoplasmic reticulum (ER). Increased calcium ion concentration of the 

axoplasm stimulates the release of neurotransmitters (pink spheres). Calcium ions 

are pumped back into the ER and SR by SERCA (Sarco-/ endoplasmic reticulum Ca2+ 

ATPase pump). Yellow arrows show movement of calcium ions through protein 

channels. Images were created with BioRender (https://biorender.com/) based on 

information from Bouchard et al. (2003) and Lanner et al. (2010). 

 

1.1.4. Ryanodine receptor related diseases 

The vital role that RyR plays in intracellular calcium homeostasis is highlighted by the 

number and range of disorders that RyR dysfunction is associated with. The range of 

A B 
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human disorders that RyR plays a role in were described and discussed in a review by 

Kushnir et al. (2018) (Figure 1.6).  

 

 

Figure 1.6: Pathologies and tissues affected by RyR dysfunction.  

Organ systems with pathologies that are associated with dysfunction of RyRs. 

Coloured boxes indicate the RyR isoform associated with the pathology and tissue. 

Note that RyR3 is also found in skeletal muscle at lower levels than RyR1. The ECG 

(top left) is from a patient with catecholaminergic polymorphic ventricular 

tachycardia (CPVT). Histology images (bottom left) are from patients with RYR1-

related central core disease (CCD) and multi-minicore disease (MmD). Adapted from 

Kushnir et al. (2018).  

 

Mutations in RYR1 cause a number of myopathies, including malignant hyperthermia 

(MH) and the congenital myopathies central core disease (CCD) and multi-minicore 

disease (MmD) (MacLennan, 2000; Robinson et al., 2006; MacLennan and Zvaritch, 

2011; Rosenberg et al., 2015; Miller et al., 2018). RYR1-related disorders are the most 

frequent of the congenital myopathies, which present as muscle weakness at birth or 

during the neonatal period (Todd et al., 2018). The prevalence of congenital 
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myopathies due to a mutation in RYR1 is estimated at 1:90,000 in the United States 

(Amburgey et al., 2011). Patients diagnosed with the RYR1-related congenital 

myopathies CCD or MmD may also be ‘MH-susceptible’. MH manifests as a 

hypermetabolic crisis upon exposure to inhalational anaesthetics (Rosenberg et al., 

2015; Litman et al., 2018). The prevalence of MH is estimated to range from 1:2-3,000 

(Monnier et al., 2002) to 1:100,000 (Brady et al., 2009). MH is more prevalent in males 

than females (Strazis and Fox, 1993; Islander et al., 2007), and most common in young 

adults, the mean age of an MH episode is 18.3 years old (Strazis and Fox, 1993; 

Rosenberg et al., 2007). It was thought that the majority of MH and CCD causing RYR1 

mutations were clustered into three ‘hot spot’ regions of RYR1, the NTD, central 

domain and CTD (Sei et al., 2004), however many disease causing RYR1 mutations exist 

outside of these ‘hot spots’ (Laforgia et al., 2018). Whole exome sequencing now 

allows fast and cost-efficient sequencing of all protein coding regions and 

identification of novel mutations outside of the ‘hot spot’ regions (Riazi et al., 2014). 

MH is inherited in an autosomal dominant pattern, RyR1 variants associated with MH 

susceptibility are most often heterozygous missense changes (Halsall and Hopkins, 

2003; Loy et al., 2011; Miller et al., 2018); however, homozygous RyR1 amino acid 

substitutions have been reported in cases of MH, as well congenital myopathies 

(Carpenter et al., 2009a; Riazi et al., 2018). MH has been associated with over two 

hundred heterozygous single amino acid missense mutations in RYR1 with 50 being 

functionally characterised and a list of 48 being considered diagnostic by the European 

Malignant Hyperthermia Group (The European Malignant Hyperthermia Group, n.d.). 

While MH is often referred to as asymptomatic without a triggering agent, RYR1-

related myopathies, such as CCD and MmD, are associated with cores in muscle 

biopsies and muscle weakness (MacLennan, 2000; Robinson et al., 2006; Illingworth et 

al., 2014; Laforgia et al., 2018). RyR1 mutations have also been associated with age-

related muscle weakness and blocking leaky RyR1 channels increased muscle strength 

in mouse models (Andersson et al., 2011; Løseth et al., 2013). Age-related muscle 

degeneration is known as sarcopenia.  

 

The predominant cardiac and smooth muscle RyR isoform, RyR2, has been associated 

with heart failure and arrhythmias (Dobrev and Wehrens, 2014). Catecholaminergic 

polymorphic ventricular tachycardia (CPVT) is characterised by an abnormal heart 



General introduction 15 

rhythm, an estimated 60% of CPVT cases have been attributed to single amino acid 

missense mutations in RYR2 (Priori et al., 2001; Ackerman et al., 2011). Changes in the 

structure and function of the RyR2 channel in the heart are thought to result in an 

increase in calcium ion leakage from the sarcoplasmic reticulum via RyR2, which has 

been linked to atrial fibrillation (Shan et al., 2012). Arrhythmogenic right ventricular 

cardiomyopathy is another cardiac pathology reportedly caused by mutations in RYR2, 

as well as a number of other genes (Ohno, 2016). Arrhythmogenic right ventricular 

cardiomyopathy is a cause of sudden cardiac death in young people. Furthermore, 

altered calcium signalling in the heart of type 1 diabetic animals has been associated 

with RYR2 (Yaras et al., 2005). Patients with diabetes have a two-fold increased risk of 

sudden cardiac death, with over 50% of patients suffering from cardiovascular 

complications (Hamilton and Terentyev, 2018). In diabetic rat models SR calcium 

content was reduced, as were the number of ryanodine binding sites, suggesting that 

the capacity of the SR to store and release calcium was reduced (Yu et al., 1994). 

 

All three isoforms of RyR have been found in the brain (Furuichi et al., 1994; Giannini 

et al., 1995; Hertle and Yeckel, 2007; Galeotti et al., 2008; Liu et al., 2012; Abu-Omar et 

al., 2018). Intracellular calcium leak has been associated with cognitive dysfunction 

after brain trauma (Deshpande et al., 2008). RyR2 in mouse models of post-traumatic 

stress disorder had elevated ER calcium leak, suggesting a role of RyR2 in cognitive 

dysfunction (Liu et al., 2012). Further evidence of RyR dysfunction effecting cognitive 

function is the link made between RyRs and Alzheimer’s disease (AD). AD is 

characterised by extracellular beta-amyloid plaques in the brain, which has been 

associated with calcium dysregulation (LaFerla, 2002; Itkin et al., 2011). Links have 

been suggested between the accumulation of beta-amyloid plaques and RyR activity 

(Stutzmann et al., 2006; Demuro et al., 2010). Blocking RyRs has been shown to reduce 

beta-amyloid plaques as well as slowing down memory and learning deficits in AD 

mouse models (Oulès et al., 2012). 

 

1.1.5. Malignant hyperthermia and its triggering agents 

Malignant hyperthermia (MH) is a potentially fatal disorder, whereby pharmacological 

agents interfere with calcium ion regulation. When a genetically susceptible patient 
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undergoing surgery receives an inhalational anaesthetic, a hypermetabolic crisis is 

triggered (Robinson et al., 2006; Hopkins, 2011; Litman et al., 2018).  

 

Single amino acid missense mutations in RYR1 do account for the majority of MH 

cases; screening MH susceptible (MHS) families for genetic variants found that 76% of 

a European Caucasian MHS population carried a variant in RYR1 (Miller et al., 2018). 

However, pathogenic MH variants have also been identified in CACNA1S, which 

encodes the alpha 1 subunit of the DHPR; there are two CACNA1S mutations accepted 

as diagnostic MH variants by the EMHG (Weiss et al., 2004; Eltit et al., 2012). A 

homozygous mutation in STAC3 has also been linked to MH susceptibility in one Native 

American family (Horstick et al., 2013) and has also been found in a patient from the 

Middle East (Miller et al., 2018). STAC3 encodes a protein that is involved in trafficking 

of the DHPR to the correct position in the t-tubules (Polster et al., 2015). The RyR, 

DHPR and STAC3 proteins all have a role in skeletal muscle E-C coupling (Bannister, 

2016). Not all cases of MH are explained by genetic variants in these three genes, and 

an estimate of 14%-23% of MHS families do not have a mutation in RYR1, CACNA1S or 

STAC3 (Miller et al., 2018).  

 

During an MH crisis, triggering agents induce prolonged opening of RyRs, allowing the 

myoplasmic calcium ion concentrations to increase outside normal bounds in all 

skeletal muscle cells, resulting in sustained muscle contraction. There is an increased 

demand for ATP production, to keep up with energy requirements of sustained muscle 

contraction (Hopkins, 2000); mitochondria are the main site for ATP synthesis. Higher 

mitochondrial content, but impaired mitochondrial function, has been found in 

skeletal muscle of MHS patients, and exposure to halothane increased mitochondrial 

respiratory states in MHS skeletal muscle samples (Chang et al., 2019). Beyond 

sustained muscle contraction, oxygen consumption is enhanced while excessive heat 

and carbon dioxide are produced, correlating with increased mitochondrial activity. 

Eventually, ATP production fails to keep up with the energy demands of the sustained 

muscle contraction (Hopkins, 2000; Chang et al., 2019). The final stage of an MH crisis 

is muscle rigidity, hypoxemia, acidosis and rhabdomyolysis (Monnier et al., 1997; 

Hopkins, 2000). Without rapid treatment, an MH episode can result in death of the 

patient. However, treatment is available. Dantrolene blocks the ryanodine receptor, 
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countering the effects of halothane and allowing the muscle to relax (Paul-Pletzer et 

al., 2002 ; Riazi et al., 2014). 

 

Volatile anaesthetics, including halothane, isoflurane, sevoflurane and desflurane, are 

known MH triggering agents (Hopkins, 2011). Also implicated as a triggering agent is 

succinylcholine, a muscle relaxant, although this remains controversial (Kunst et al., 

1999; Hopkins, 2011). Exertional heat illness (EHI) has been linked to MH, where 

exposure to heat or vigorous exercise stress triggers a response similar to that seen by 

inhalational anaesthetics in MH (Hopkins et al., 2016; Gardner et al., 2020), indeed a 

high proportion of EHI patients tested positive in the diagnostic In Vitro Contracture 

Test (IVCT) used to detect MH susceptibility (Hopkins et al., 2015; Gardner et al., 

2020). 

 

In cases where patients are known or suspected to be MHS, non-volatile inhalational 

anaesthetics or intravenous anaesthetics are used for patients requiring surgery 

(Halsall and Hopkins, 2003). Diagnosing MH is important to ensure that patients 

receive appropriate care. Where there is a known MH-diagnostic variant present in the 

family, genetic diagnosis is possible. Where a variant is not known, but a relative is 

designated MHS, an IVCT can provide diagnosis of MH (Ellis et al., 1984; Riazi et al., 

2014; Hopkins et al., 2015).  

 

The IVCT discriminates MHS and non-susceptible (MHN) patients based on the 

sensitivity of a muscle biopsy to incrementally increasing concentrations of caffeine 

and halothane and measurement of the muscle contraction in response to the applied 

triggering agents (Carpenter et al., 2009b). A patient may be designated MHSc 

(caffeine) or MHSh (halothane), if they show hypersensitivity to only one of the 

stimulants (Gupta and Hopkins, 2017). Discordance between RYR1 genotype and IVCT 

phenotype has been reported; individuals may carry an RYR1 familial mutation but 

have an MHN IVCT phenotype or individuals may have an MHS IVCT phenotype but not 

carry the familial RYR1 mutation (Deufel et al., 1995; Adeokun et al., 1997; Robinson et 

al., 2003; Miller et al., 2018). This suggests there are additional loci, which modify the 

response to the IVCT. 
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Halothane is listed on the WHO Essential Medicines List for inhalational anaesthetics 

(World Health Organization, 2019) . Halothane, as with most general anaesthetics, acts 

by potentiating the inhibitory GABAA receptor (Scholfield, 1980), as well as 

desensitising the nicotinic acetylcholine receptor (nAChR) (Firestone et al., 1994), 

possibly through a conformational change to the nAChR upon application of clinical 

concentrations (Lin et al., 1995). Although not the only anaesthetic MH trigger as 

mentioned previously, halothane is the volatile anaesthetic most associated with MH. 

 

1.2. Caenorhabditis elegans as a model 

Caenorhabditis elegans is a model laboratory system in which MH could be studied. 

This species is a free-living nematode worm (Figure 1.7). First used as a model 

organism for genetic study of the neural system by Sydney Brenner in the early 1960s 

(Brenner, 1973; Brenner, 1974), C. elegans has proven be a useful model for neural 

development, as well as many other research areas. 

 

Figure 1.7: C. elegans anatomy. 

(A) Differential interference contrast (DIC) image of an adult hermaphrodite 

C. elegans. Scale bar is 0.1 mm. (B) Schematic of anatomical structures. Figure 

adapted from Altun and Hall (2009a). 

 

The main benefits of ‘the worm’ for use as a model organism are its small size of 

approximately 1 mm as an adult, transparent body and short life span. Its small size 
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allows culture of large numbers of animals easily within a laboratory environment 

(Stiernagle, 2006). The transparency of the worm has allowed its cell lineage to be 

mapped from zygote to adult (Sulston and Horvitz, 1977; Sulston et al., 1983), and the 

discovery of genes that control apoptosis in C. elegans, which led to the award of the 

2002 Nobel Prize in Medicine (Brenner, 2003; Horvitz, 2003; Sulston, 2003). The short 

lifespan of the worm also makes it a convenient animal for studying development and 

ageing. 

 

A further benefit of C. elegans is its hermaphroditic lifestyle. Individuals are able to 

self-fertilise. This is especially beneficial in genetic studies; a single homozygote 

hermaphrodite can generate an entire population of genetically identical offspring. 

Males are generated at a low frequency, allowing for crosses between different 

strains. The worm was the first multicellular organism to have its whole genome 

sequenced (The C. elegans Sequencing Consortium, 1998). It also has its neuronal 

wiring diagram fully mapped (White et al., 1986). Although the worm has a much more 

compact genome than humans, it contains a similar number of genes, furthermore 

83% of the C. elegans proteome has human homologous genes (Lai et al., 2000). 

Genetic studies in the worm have been extremely useful for modelling human diseases 

with approximately 42% of human disease genes having an orthologue in C. elegans 

(Markaki and Tavernarakis, 2010).  

 

By studying genetic mutant phenotypes in C. elegans the functions of genes can be 

discerned (Fire et al., 1998). Many methods of genetic manipulation have been applied 

to C. elegans, including both forward and reverse mutagenesis. Initially, Sydney 

Brenner used a chemical mutagen to induce mutations in the germline and studied the 

behaviour of C. elegans resulting from these mutations (Brenner, 1974). Brenner 

named mutants and genes based on the phenotype produced. For example, 

uncoordinated, or unc mutants, were any mutants with detectable defects in the 

smooth sinusoidal wave movement exhibited by wild type C. elegans. unc genes are 

usually associated with muscle or neural function. Such screens have been vital in 

understanding many biological processes in C. elegans which are also relevant in 

humans. The million mutation project is a collaborative effort studying 2007 C. elegans 

strains mutagenized by chemical mutagens (Thompson et al., 2013). By sequencing 
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these strains, with multiple mutations in each strain, it was possible to identify 

multiple mutations in almost every gene. Projects such as this demonstrate the ease of 

genetic manipulation in C. elegans.  

 

Specifically targeting mutagenesis at a single gene, and observing the resulting 

phenotype, identifies the specific contributions of that gene to biological processes 

and disorders. Gene function can be studied by knockdown of target genes through 

RNA interference (RNAi); feeding, injecting or soaking C. elegans with double stranded 

RNA results in targeted degradation of its cognate mRNA (Fire et al., 1998; Tabara et 

al., 1998; Timmons and Fire, 1998). Generating transgenic C. elegans that express 

foreign DNA allows expression of altered genes, as well as gene fusions to reporters, 

such as fluorescent protein genes (Rieckher et al., 2009). Microinjection of foreign DNA 

into the worm’s gonad or microparticle bombardment whereby gold microparticles are 

coated with DNA and then fired at high speeds at worms are two methods for 

introducing foreign DNA into the worm (Praitis et al., 2001; Rieckher et al., 2009). DNA 

that reaches the germline can be replicated and inherited through subsequent 

generations. Transgenic animals generated in these ways usually carry the transgenes 

in heritable extrachromosomal DNA arrays. However, these large extrachromosomal 

arrays have some drawbacks including incomplete inheritance, gene overexpression 

and gene silencing (Nance and Frøkjær-Jensen, 2019). Microparticle bombardment 

provides a higher rate of integration of the transgene into the chromosomes, but with 

risks of simultaneous chromosomal rearrangements. More recently, precise, heritable 

genome editing of endogenous gene loci has been developed (Jinek et al., 2012). 

CRISPR-Cas9 genome editing can be used to precisely edit the C. elegans genome with 

relative ease.  

 

CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) DNA repeats and 

associated Cas proteins have been identified in bacteria and archaea, providing the 

organisms with an adaptive antiviral defence system (Barrangou, 2015). In 2005 it was 

found that spacer sequences, non-repetitive elements, within the CRISPR loci of 

bacteria were often identical to sequences from bacteriophages (Bolotin et al., 2005; 

Pourcel et al., 2005; Mojica et al., 2005 ). It is now appreciated that the integration of 

bacteriophage DNA into the CRISPR loci of bacteria provides adaptive immunity, 
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similar to the RNA interference mechanism utilised by eukaryotes (Sorek et al., 2013). 

The CRISPR-Cas system provides adaptive immunity through a three-step process; 

adaptation, expression and interference. The repeat spacer is transcribed and 

processed as interfering CRISPR RNAs (crRNAs). The crRNAs guide the Cas proteins to 

the complementary sequence for sequence-specific targeting, cleavage and 

degradation of the foreign DNA (Barrangou, 2015).  

 

In 2012 it was proposed by Jennifer Doudna and Emmanuelle Charpentier that the 

CRISPR-Cas9 system could be used to precisely edit genomes (Jinek et al., 2012). This is 

arguably one of the most significant and exciting discoveries in modern biology. In 

C. elegans a number of strategies have been proposed allowing researchers to make, 

essentially, any desired change to the genome (Dickinson and Goldstein, 2016). Briefly, 

a single guide RNA (sgRNA) with a specific sequence upstream allows the Cas9 protein 

to cleave DNA, while a 20-bp downstream guide sequence directs the Cas9 to the 

sequence of choice within the genome (Figure 1.8). In human cells, double stranded 

breaks are repaired by non-homologous end joining (NHEJ), however this repair 

mechanism is error-prone and induces insertions and deletions (indels), which disrupt 

gene function. Homology directed repair (HDR) allows incorporation of precise 

modifications where, along with the sgRNA and Cas9, an exogenous DNA molecule is 

introduced to serve as a repair template (Zhang et al., 2014). The donor DNA has arms 

homologous to the endogenous DNA, with the desired edit in between. Introduction of 

these components into the germline allows precise modification of the genome in a 

heritable fashion. In C. elegans CRISPR-Cas9 can be employed to generate specific 

mutations. 
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Figure 1.8: CRISPR-Cas9 genome editing.  

A guide RNA with a specific upstream sequence forms a complex with the Cas9 

protein. A 20-bp sequence that is complementary to the target genomic sequence 

guides the Cas9 protein to create a double stranded break in the desired region of 

the genome. Double stranded breaks repaired by non-homologous end joining (NHEJ) 

produce small insertions and deletions, which can disrupt the gene. Providing a 

template for homology-directed DNA repair (HDR) allows insertion of a specific 

desired sequence. The image was created with BioRender (https://biorender.com/), 

and based on information from Dickinson and Goldstein (2016) 

 

Over the past years efforts have been made to innovate the CRISPR-Cas9 system with 

advancements in ease, accuracy and efficiency. While HDR allows for precise DNA 

changes, after inducing double stranded breaks, it may result in indels from end-

joining repair of the double stranded breaks and is not very efficient. A system called 

‘base editing’ results in C to T or G to A substitution without needing to generate a 

double-strand break (Komor et al., 2016). Fusions of a catalytically impaired Cas9 

nickase and a base modification enzyme were engineered to be programmed by a 

guide RNA and operate on single stranded DNA. A DNA nickase can generate a single-

stranded cut, ‘nicking’ rather than cutting the DNA (Gasiunas et al., 2012). Base pairing 

between the guide RNA and target DNA displaces a small segment of single stranded 

https://biorender.com/
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DNA, which allows modification of DNA bases within this segment by the base 

modification deaminase enzyme (Rees and Liu, 2018). The catalytically disabled Cas9 

generates a nick in the non-edited DNA strand to induce repair of the non-edited 

strand, using the edited strand as a template. However, base editing cannot perform 

all twelve transversion mutations but the development of prime editing allows this 

(Anzalone et al., 2019). Prime editing allows for targeted insertions, deletions and all 

base-to-base transversions without requiring double stranded breaks or donor 

homology templates. Instead prime editing uses a reverse transcriptase fused to a 

nickase, and a prime editing guide RNA to copy genetic information directly from an 

extension on the prime editing guide RNA into the genomic locus (Anzalone et al., 

2019).  

 

1.2.1. C. elegans as a model for malignant hyperthermia 

C. elegans can be a useful model for studying human diseases, ranging from 

neurodegenerative diseases (Alexander et al., 2014), to cancers (Kirienko et al., 2010), 

as well as metabolic diseases (Hashmi et al., 2013). Studying human diseases in 

C. elegans may allow better understanding of the cause of particular pathologies as 

well as the identification of potential therapies (Markaki and Tavernarakis, 2010).  

 

C. elegans has been used previously to study specific RyR disease variants (Fischer et 

al., 2017; Nicoll Baines et al., 2017). The worm has only one RyR gene, unc-68, that 

produces at least four isoforms confirmed by cDNA, but up to 15 potential isoforms 

(Wormbase.org, 2016). The longest confirmed UNC-68 isoform is 5201 amino acids in 

length and shares approximately 40% identity and 60% similarity with all three human 

RyR isoforms (see Appendix A for BLAST results). The UNC-68 protein is found in body 

wall muscle, which is striated and could be considered the functional equivalent of 

human skeletal muscle (Gieseler et al., 2005), the pharynx, which has been compared 

to the mammalian heart (Mango, 2007), and in neurons (Chen et al., 2017a).  

 

Specific mutations associated with CPVT and RyR2, and MH and RyR1 have been 

introduced into C. elegans as extrachromosomal arrays and the consequences studied 

(Fischer et al., 2017; Nicoll Baines et al., 2017). At the time of publication, fosmid 

recombineering was a powerful genetic tool, allowing for introduction of precise point 
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mutations in large genomic DNA clones (Hirani et al., 2013). For CPVT and RyR2, two 

RyR2 human disease mutations, R2474S and R4497C, were inserted into UNC-68 

through fosmid recombineering; the fosmid used contains a slightly truncated 

promoter, but expression of this promoter fragment was confirmed in pharyngeal 

muscles. Transgenic animals were generated by microinjection with the engineered 

fosmid, and a co-injection mCherry marker, in the deletion mutant TR2171 (unc-

68(r1162)), which is considered a molecular null (Fischer et al., 2017). Expression of 

the mutant UNC-68 proteins resulted in complete rescue of the reduced pumping rate 

observed in the TR2171 (unc-68(r1162)) mutant strain. To mirror a rhythmically 

beating heart, the pharynx was optically paced by expressing channelrhodopsin-2 in 

the pharyngeal muscle cells (Schüler et al., 2015). One of the extrachromosomal array 

variant strains, that for the human R4497C RyR2 variant, demonstrated a ‘worm 

arrhythmic’ phenotype of decreased ability to follow high rates of paced pumping 

(Fischer et al., 2017). However, the extra chromosomal array strain for the R2474S 

human RyR2 variant had no effect on paced pumping ability but did show altered 

swimming locomotion. The effect on locomotion is likely due to the role of UNC-68 in 

body wall muscle. 

 

To study specific RyR1 mutations thought to cause MH, fifteen C. elegans strains 

carrying modifications in the unc-68 gene equivalent to eight RyR1 associated human 

variants were generated after fosmid recombineering (Nicoll Baines et al., 2017). The 

eight human RyR1 variants chosen were R163C, G341R, R2163H, R2454H, R2458H, 

K3452Q, A4940T and R4861H, all of which have conservation of the non-variant 

residue with unc-68 in C. elegans. One clone of the C. elegans Vancouver fosmid library 

(Perkins et al., 2005), WRM069cA02, contained the entirety of the unc-68 gene, 

making it the ideal subject for such recombineering. Successful generation of eight 

different variant fosmids led to microinjection of these engineered fosmids, with and 

without the wild type fosmid, into the unc-68 null strain, CB540 (unc-68(e540)) (Nicoll 

Baines et al., 2017). The CB540 (unc-68(e540)) strain carries a point mutation toward 

the centre of the gene and behaves genetically as a null (Maryon et al., 1996). Rescue 

of the uncoordinated null phenotype was used to indicate successful introduction of 

the fosmid as an extrachromosomal array, which was subsequently confirmed by DNA 

sequencing (Nicoll Baines et al., 2017). All fifteen of these extrachromosomal array 
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strains demonstrated an MH-related phenotype of hypersensitivity to halothane, an 

MH trigger and agent used in the IVCT. Sensitivity of these strains to caffeine, another 

IVCT agent, was found for several strains and demonstrated to depend on neural 

function. The strains also conferred a subtly but significantly reduced lifespan, as well 

as an accelerated decline in muscle integrity with age. 

 

The ‘worm arrhythmic’ and MH-related phenotypes conferred by C. elegans when 

modelling CPVT and MH disease variants in unc-68 demonstrate that this is a good 

system for studying RyR-related diseases. However, the use of extrachromosomal 

array strains has its drawbacks. Firstly, not being at the native locus may affect 

expression patterns and expression levels (Evans, 2006; Nance and Frøkjær-Jensen, 

2019). Previous work found 80 to 300 copies of the transgenic DNA per haploid 

genome, and this was considered to be an underestimate (Stinchcomb et al., 1985). 

While a wild type fosmid was injected to generate a control strain in each study 

(Fischer et al., 2017; Nicoll Baines et al., 2017), each array strain will have different 

transgene copy numbers. Additionally, strains modelling heterozygosity were 

generated by injection with a mix of wild type and variant fosmids (Nicoll Baines et al., 

2017), but the copy number of the variant and wild type transgene will not be 

precisely equal. An additional disadvantage of extrachromosomal array strains is the 

incomplete heredity; not all the progeny of a transgenic animal will inherit the array. 

This may result in unc-68 null animals, lacking the transgene, being included in 

phenotyping assays.  

 

The recent developments in genome editing have led to the opportunity for precise 

manipulation of unc-68 at the endogenous locus, via CRISPR-Cas9. Employing this 

technique allowed for introduction of modifications equivalent to eight human RYR1 

variants associated with MH into the C. elegans genome. Seven of the eight RyR1 

variants are the same as those introduced into C. elegans as extrachromosomal arrays 

(Nicoll Baines et al., 2017). The variants chosen are all located in RyR residues where 

the wild type sequence is conserved from humans to C. elegans. Such genome-edited 

strains would express the modified RyR at wild type levels and locations, allowing 

better assessment of their consequence in vivo. 
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1.3. Focus of this research 

1.3.1. Modelling RyR1-related disease in C. elegans 

RyR1-related myopathies, and predominantly MH, are the most studied of the RyR-

related diseases. The Genome Aggregation Database (gnomAD) lists over 2500 

missense RyR1 variants (Karczewski et al., 2019), while the European Malignant 

Hyperthermia Group (EMHG) recognise 48 RyR1 variants as diagnostic of MH (The 

European Malignant Hyperthermia Group, n.d.). Although this means under 2% of the 

listed variants on gnomAD have been demonstrated to be causative of MH (Urwyler et 

al., 2001), other RyR1 variants not on the EMHG diagnostic list have been found in 

MHS families (Tammaro et al., 2011; Miller et al., 2018) although these have not been 

functionally characterised. Furthermore, additional RyR1 missense variants have been 

associated with other RyR1-related myopathies such as CCD (Lynch et al., 1999; 

MacLennan, 2000; Chen et al., 2014). Understanding the consequences of RyR1 

variants is important due to the number of RyR1 variants found within the human 

population and because calcium mishandling has many consequences.  

 

While MH is typically considered asymptomatic in the absence of a triggering agent, 

some of the other RyR1-related myopathies do have overt phenotypes, such as muscle 

weakness (MacLennan, 2000; Robinson et al., 2006; Illingworth et al., 2014; Laforgia et 

al., 2018). Consequences of RyR1 variants in the absence of an MH-triggering agent 

requires further research and understanding. 

 

This research aims to understand subtle consequences of RyR1 variants introduced 

into C. elegans unc-68, at the endogenous locus. The use of CRISPR-Cas9 genome 

editing to express RyR1 variants differs from previous work with extrachromosomal 

arrays where overexpression may have exacerbated or masked consequences (Nicoll 

Baines et al., 2017). 

 

1.3.2. Pre- and postsynaptic effects of RYR1 gene variants 

Studying RyR variants in C. elegans has uncovered a role of these variants 

presynpatically (Nicoll Baines et al., 2017; Ferreira and Kalogeropoulou, 2019). The 

hypersensitivity to caffeine observed for several RyR variant extrachromosomal array 
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strains was eliminated or reduced in the presence of RNAi targeting genes for 

chemosensory nerve function (Nicoll Baines et al., 2017). UNC-68 has been found in 

neurons (Chen et al., 2017a), and as the only RyR in C. elegans is required to fulfil all 

RyR function. However, the presence of RyR1 in mammalian brain increases the 

significance of the effects of these unc-68 mutations equivalent to known RYR1 gene 

variants in C. elegans nerve cells. Therefore, this research also aims to further 

understand and discern the pre- and postsynaptic consequences of such RyR variants. 

 

1.4. Thesis outline 

To investigate the subtle consequences of RyR1 variants as well as discern their pre- 

and postsynaptic effects in C. elegans, I conducted a number of phenotypic assays on 

strains genetically engineered to express RyRs equivalent to known human myopathic 

RyR1 variants, at the endogenous level. To validate the use of these strains as a model 

for MH, I assayed responses to the MH triggering agent halothane. As some RyR1 

variants cause age-related disorders, I examined the response of both young adult and 

old adult C. elegans to the triggering agent. Subtle locomotion defects were detected 

in liquid in the absence of the triggering agent and had not been seen before for C. 

elegans strains carrying RyR variants equivalent to RyR1 disease variants. To further 

explore these defects, the locomotion of these strains was further investigated in a 

thorough analysis of C. elegans crawling. The effects of RyR variants on locomotion in 

aged animals are also described. To assess the pre- versus postsynaptic contributions 

of these RyR1 variants to altered phenotype in C. elegans, two cholinergic 

pharmacology assays, aldicarb and levamisole, were pursued. The phenotypic effects 

of these variants when present in the heterozygous state was also characterised. 

Finally, the potential implications of my findings with C. elegans for human biology and 

disease are considered. 
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Chapter 2 

General Methods 

2.1. C. elegans maintenance and strains  

2.1.1. C. elegans maintenance  

Animals were maintained at 20C, on 50 mm plates of nematode growth medium 

(NGM) (3 g NaCl, 17 g Agar, 2.5 g Peptone in 975 ml water, autoclaved and cooled to 

55C before addition of 1 ml 1 M CaCl2, 1 ml 1 M MgSO4, 1 ml cholesterol (5 mg/ml in 

ethanol) and 25 ml 1 M KPO4 (pH 6), and pouring) (Stiernagle, 2006). Plates were 

seeded with 150 l of an OP50 Escherichia coli overnight culture, grown in LB broth. 

When ageing C. elegans, animals were maintained on 90 mm plates of NGM plates 

containing 50 M FUdR, seeded with 450 l of OP50 (see section 2.3.2). 

 

2.1.2. C. elegans strains  

The RyR null strain CB540 (unc-68(e540)) was obtained from the MRC-LMB, Cambridge 

(Table 2.1). The RyR variant strains were generated at the University of Leeds and by 

NemaMetrix by microinjection of the N2 Bristol strain, described below. Heterozygous 

unc-68 variant / wild type and control individuals were generated by mating. N2 wild 

type males, from stocks maintained at Leeds, were mated with hermaphrodites of the 

unc-119 fluorescent reporter strain OH441 (otls45[unc-119::gfp]), provided by the 

Caenorhabditis Genetics Center, in a 3:2 male to hermaphrodite ratio on 50 mm plates 

seeded with 150 l of OP50 to generate large numbers of otls45[unc-119::gfp] / wild 

type heterozygous cross progeny. Males from this cross were then mated with unc-68 

variant homozygous hermaphrodites or CB540 (unc-68(e540)) or N2 wild type 

hermaphrodites in a 4:2 male to hermaphrodite ratio on 50 mm plates seeded with 

150 l of OP50. Hermaphrodites carrying the GFP marker as a result of this second 

cross were assayed.  

 

The different N2 wild type backgrounds used to generate the RyR variant strains were 

assessed for differences prior to comparison of the RyR variant strains (Chapter 3). 
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Strain (Allele) unc-68 Variant Obtained from/ Generated by 

CB540 (unc-68(e540)) Null MRC-LMB (Cambridge) 

OH441 (otls45[unc-119::gfp]) WT Caenorhabditis Genetics Center 

UL4239 (le4239) hR163C Generated at the University of Leeds 

UL4285 (le4285) hN2342S Generated at the University of Leeds 

COP1879 (knu765) hG341R Generated by NemaMetrix 

COP1883 (knu769) hR2163H Generated by NemaMetrix 

COP1947 (knu825) hR2454H Generated by NemaMetrix 

COP1944 (knu822) hR2458H Generated by NemaMetrix 

COP1932 (knu810) hK3452Q Generated by NemaMetrix 

COP1950 (knu828) hR4861H Generated by NemaMetrix 

N2 “NemaMetrix” WT Obtained from NemaMetrix 

N2 “Leeds” WT MRC-LMB (Cambridge) 

 

2.2. Generating strains through CRISPR-Cas9 genome editing 

Specific modifications were made to the C. elegans genome, corresponding to known 

RYR1 human disease variants, by CRISPR-Cas9 genome editing (Table 2.2). UL4239 

(hR163C) (le4239) and UL4285 (hN2342S) (le4285) were generated at the University of 

Leeds by David Pertab and Alex Jubb from an N2 Bristol strain obtained from the MRC-

LMB, Cambridge. Strains COP1879 (hG341R) (knu765), COP1883 (hR2163H) (knu769), 

COP1947 (hR2454H) (knu825), COP1944 (hR24548H) (knu822), COP1932 (hK3452Q) 

(knu810), and COP1950 (hR4861H) (knu828) were designed by me and generated by 

NemaMetrix, through injection of an N2 Bristol strain maintained by NemaMetrix. 

 

Table 2.1. C. elegans strains used in this research. 
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Strain 

(variant) 

Alignment 

UL4239 

(hR163C) 

WT GCATCCAAACAAAGATCAGAAGGAGAAAAGGTGCGCGTCGGTGATGACGTCATTTTGGTCTCA 

VAR GCATCCAAACAAAGATCAGAAGGAGAAAAAGTCTGTGTCGGTGATGACGTCATTTTGGTCTCA 

WT  A  S  K  Q  R  S  E  G  E  K  V  R  V  G  D  D  V  I  L  V  S 

VAR  A  S  K  Q  R  S  E  G  E  K  V  C  V  G  D  D  V  I  L  V  S 

COP1879 

(hG341R) 

WT AAATGCTACAATCAGATATGGAGAGACAAATGCTTTTATTCAACACGTGAAAACTCAGCTCTGG 

VAR CAACGCCACCATTAGATATAGAGAGACAAATGCTTTTATTCAACACGTGAAAACTCAGCTCTGG 

WT  N  A  T  I  R  Y  G  E  T  N  A  F  I  Q  H  V  K  T  Q  L  W 

VAR  N  A  T  I  R  Y  R  E  T  N  A  F  I  Q  H  V  K  T  Q  L  W 

COP1883 

(hR2163H) 

WT TTCCTGGTGTACCTCATACAAATCCGCGAGCTTCTTACCGTACAATTTGAGCATACTGAAGAG 

VAR TTCCTGGTGTACCTCATCCAGATTCACGAGCTTCTTACCGTACAATTTGAGCATACTGAAGAG  

WT  F  L  V  Y  L  I  Q  I  R  E  L  L  T  V  Q  F  E  H  T  E  E 

VAR  F  L  V  Y  L  I  Q  I  H  E  L  L  T  V  Q  F  E  H  T  E  E 

UL4285 

(hN2342S) 

WT GATTTCCTGAGATTCTGTGTCTGGATCAATGGGGAAAACGTGGAAGAAAATGCAAATCTTGTC 

VAR GATTTCCTGAGATTCTGTGTCTGGATATCTGGGGAAAACGTGGAAGAAAATGCAAATCTTGTC 

WT  D  F  L  R  F  C  V  W  I  N  G  E  N  V  E  E  N  A  N  L  V 

VAR  D  F  L  R  F  C  V  W  I  S  G  E  N  V  E  E  N  A  N  L  V 

COP1947 

(hR2454H) 

WT CCAATGGCTATACAG INTRON GCCGGAAAAGGAGATTCTCTTCGCGCTCGTGCTATTCTCAGATCTCTTATTTCACTCGACGATCTTGGTCAGATCTTGGCTCTAAGATTTACAATCCCC 

VAR CCTATGGCCATCCAA        GCTGGTAAGGGTGACTCCCTCCGTGCCCACGCCATCCTCCGTTCCCTCATCTCCCTTGATGACCTCGGACAAATCCTCGCCCTCCGTTTCACCATTCCA 

WT  P  M  A  I  Q          A  G  K  G  D  S  L  R  A  R  A  I  L  R  S  L  I  S  L  D  D  L  G  Q  I  L  A  L  R  F  T  I  P 

VAR  P  M  A  I  Q          A  G  K  G  D  S  L  R  A  H  A  I  L  R  S  L  I  S  L  D  D  L  G  Q  I  L  A  L  R  F  T  I  P 

COP1944 

(hR2458H) 

WT CCAATGGCTATACAG INTRON GCCGGAAAAGGAGATTCTCTTCGCGCTCGTGCTATTCTCAGATCTCTTATTTCACTCGACGATCTTGGTCAGATCTTGGCTCTAAGATTTACAATCCCC 

VAR CCTATGGCCATCCAA        GCTGGTAAGGGTGACTCCCTCCGTGCCCACGCCATCCTCCGTTCCCTCATCTCCCTTGATGACCTCGGACAAATCCTCGCCCTCCGTTTCACCATTCCA 

WT  P  M  A  I  Q          A  G  K  G  D  S  L  R  A  R  A  I  L  R  S  L  I  S  L  D  D  L  G  Q  I  L  A  L  R  F  T  I  P 

VAR  P  M  A  I  Q          A  G  K  G  D  S  L  R  A  R  A  I  L  H  S  L  I  S  L  D  D  L  G  Q  I  L  A  L  R  F  T  I  P 

COP1932 

(hK3452Q) 

WT ACGGACGGAGTATATGAAAATGTAGCTGTCATCTTCCGTATTTGGAGTCAAAGTCAACATTTCAAACGTGAAGAGCTGAACTATGTGGCTCAATTTGAA 

VAR ACCGACGGCGTCTACGAGAACGTCGCCGTCATTTTCAGAATCTGGTCCCAATCCCAACACTTCCAACGCGAGGAGCTCAACTACGTCGCCCAATTCGAA 

WT  T  D  G  V  Y  E  N  V  A  V  I  F  R  I  W  S  Q  S  Q  H  F  K  R  E  E  L  N  Y  V  A  Q  F  E 

VAR  T  D  G  V  Y  E  N  V  A  V  I  F  R  I  W  S  Q  S  Q  H  F  Q  R  E  E  L  N  Y  V  A  Q  F  E 

COP1950 

(hR4861H) 

WT ACACTTGTAGTCGTGTATCTCTACACTGTCATCGCGTTCAATTTCTTCCGTAAATTCTATGTTCAAGAGGGTGAAGAGGGCGAAGAG 

VAR ACCCTCGTCGTAGTCTACCTCTATACCGTCATTGCCTTCAACTTTTTCCACAAGTTCTACGTCCAAGAAGGAGAAGAGGGCGAAGAG 

WT  T  L  V  V  V  Y  L  Y  T  V  I  A  F  N  F  F  R  K  F  Y  V  Q  E  G  E  E  G  E  E 

VAR  T  L  V  V  V  Y  L  Y  T  V  I  A  F  N  F  F  H  K  F  Y  V  Q  E  G  E  E  G  E  E 

Bold underlined bases and amino acids correspond to the point mutations that change the amino acid sequence. Red underlined residues correspond to all mutations in the variant genomic sequence, including 

silent mutations introduced to prevent re-editing of the genome during strain generation. The intron (grey) in the wild type has been deleted in the COP1947 (hR2454H) and COP1944 (hR2458H) mutant strains. 

 

Table 2.2. Aligned unc-68 nucleic acid sequence and encoded amino acid sequence for wild type and the variant strains after genome editing. 
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Different approaches were used to introduce single amino acid changes to UNC-68 by 

the University of Leeds and NemaMetrix. The six RyR variant strains generated at 

NemaMetrix were injected with two single guide RNAs (sgRNAs), Cas9 protein and a 

single stranded DNA (ssDNA) donor homology oligonucleotide into the distal gonads of 

N2 Bristol strain animals. The two 20 nucleotide (nt) sgRNAs guide cutting of the 

genome, in the location of intended modification, by the Cas9 protein (Figure 2.1). The 

3’ end of the binding site for each sgRNA target sequence must have a proto-spacer 

adjacent motif (PAM) sequence (NGG); the 20 nt sgRNA sequence is complementary to 

the 20 nts upstream of the PAM sequence in the genome. The Cas9 protein cleaves the 

DNA approximately three nucleotides upstream of the PAM sequence, generating two 

double-stranded breaks in the DNA, either side of the desired edit.  

 

The ssDNA oligonucleotide guides repair of the cut genome to include specific 

missense mutations corresponding to known RyR1 disease variants, as well as silent 

mutations to prevent re-cutting of the genome by Cas9. The ssDNA oligonucleotide 

also has 35 nts of unmodified sequence either side, known as the left and right 

homology arms, which guide homology direct repair (HDR). Silent mutations, or 

‘recoding’ are changes made to the nucleotide sequence that do not alter the amino 

acid sequence. Up to every 6th nucleotide between the left and right homology arms 

was changed to induce a silent mutation in the protein sequence. The homology arms 

complement the sequence either side of the Cas9 cut sites, starting 3 nucleotides 

upstream of the PAM sequence. 

 

The COP1947 (hR2454H) and COP1944 (hR2458H) mutant strains were designed using 

the same sgRNAs, due to the proximity of the mutations to each other within the same 

exon (exon 19 of unc-68 isoform a). The PAM sequence for the first sgRNA was located 

in the exon upstream of the two mutations (exon 18 of unc-68 isoform a). Limitations 

on the size of the ssDNA oligonucleotide used for short-range HDR require the ssDNA 

template to be no longer than 200 nt in length (Dickinson and Goldstein, 2016). To 

limit the size of the ssDNA oligonucleotide required to bridge between the two cut 

sites, the intron in the wild type was deleted in these two mutant strains (COP1947 

(hR2454H) and COP1944 (hR2458H)) (Table 2.2). The deletion of this intron is not 

thought to affect isoform diversity.  
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Figure 2.1: Generating a single amino acid change, corresponding to the R2163H RYR1 

human disease variant, in unc-68. 

The two sgRNAs (shown in yellow) guide the Cas9 protein to cut 3 nts upstream of 

the PAM sequences (shown in green), cut sites are shown by dashed red lines. The 

desired edit, hR2163H, is shown in blue. Changing the codon from CGC to CAC in the 

ssDNA oligonucleotide alters the amino acid sequence. Silent mutations were 

introduced within the pink ‘Recode’ sequence of the ssDNA oligonucleotide, to 

prevent re-cutting. The 35 nt left homology arm (LHA) and right homology arm (RHA) 

are shown in orange and are unmodified in the ssDNA oligonucleotide. Image taken 

from the design file in Benchling [Biology Software] (2020), retrieved from 

https://benchling.com. 

 

The design of the two RyR variant strains generated at the University of Leeds 

employed the co-CRISPR approach (Arribere et al., 2014; Kim et al., 2014). Co-CRISPR 

uses a visible phenotype at one locus to help identify edits at a second locus (Dickinson 

and Goldstein, 2016). The gain of function dpy-10 (cn64) mutation was used as a co-

CIRSPR marker, this mutation confers a different phenotype when homozygous (dpy-

10 (cn65) / dpy-10 (cn65) (dumpy)), heteroallelic (dpy-10 (cn65) / dpy-10(o) (dumpy 

roller)) and heterozygous (dpy-10 (cn65) / + (roller)) (Arribere et al., 2014).  

 

N2 Bristol strain animals were injected with the pDD162 plasmid (Peft-3::Cas9 + Empty 

sgRNA) to express Cas9 in the germline (Dickinson et al., 2013), the pJA58 plasmid to 

guide cleavage by Cas9 at the dpy-10 (cn64) locus (Arribere et al., 2014), an sgRNA 

specific to the hR163C or hN2342S modification in unc-68 to guide cleavage by Cas9 

and two ssDNA donor homology oligonucleotides to guide repair of the double 

stranded breaks in dpy-10 and unc-68 with the inclusion of the desired edits at each 

locus. As before, the 3’ end of the binding site for the sgRNA target sequence had a 

PAM sequence and the 20 nt sgRNA sequence was complementary to the 20 nts 

https://benchling.com/
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upstream of the PAM sequence in the genome. The pJA58 plasmid contains a 19 nt 

guide RNA (gRNA) sequence, which is complimentary to the wild type genomic 

sequence in the region of the desired dpy-10 edit with a PAM sequence at the 3’ end. 

The ssDNA donor homology oligonucleotides contained silent mutations to prevent re-

cutting of the genome by Cas9, however these two strains had only one or two 

nucleotides changed to induce a silent mutation.  

 

Injected animals were picked to fresh plates each day after injection to allow for 

observation of F1s. F1s heterozygous for the dpy-10 (cn64) mutation, showing the 

dominant roller phenotype, revealed animals that were derived from oocytes that 

received active Cas9 and were therefore most likely to carry the desired modification 

in unc-68. These animals were picked out and allowed to propagate before screening 

by PCR for the desired unc-68 edit. Of the animals found to carry the desired edit, the 

non-roller and non-dumpy F2 progeny, indicating they were wild type at the dpy-10 

(cn65) locus, were allowed to propagate before PCR screening to identify animals 

homozygous for desired unc-68 edit. 

 

2.2.1. Genotyping ryanodine receptor variant strains 

All modifications to unc-68 were confirmed by PCR and sequencing. DNA for PCR was 

prepared from individual animals. 

 

Single adult animals were picked directly into 10 l of worm lysis buffer in a PCR tube 

(5 l 1 mg/ml proteinase K, 20 l 5x Phusion buffer (BiolLabs B0518S) and 75 l 

nuclease free water). Animals were picked using a platinum wire from outside the 

OP50 lawn to avoid inclusion of bacteria. Tubes containing worms in buffer were 

frozen at -80C for at least 1 hour; the freeze/ thaw is thought to help lysis. Worms 

were lysed using a thermocycler by heating to 60C for one hour, then 95C for 15 

minutes to inactivate the proteinase K, and then held at 4°C. After lysis, the digested 

heat inactivated prep was used as a template for PCR. 50 l PCR reactions were 

prepared and run in a thermocycler following the standard MyTaq (BioLine BIO-21105) 

protocol. DNA was prepared for sequencing by gel electrophoresis and gel extraction 

of the appropriate size band. A 1% agarose gel was prepared and loaded with 25 l of 
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the PCR products into every other well of the gel to allow for easier extraction. The gel 

was run and DNA bands of the appropriate size were excised using a 302 nm 

wavelength transilluminator and razor blade. DNA fragments were extracted from the 

gel using a DNA gel extraction kit (Monarch® NEB #T1020) following the standard 

protocol. 5 l of the purified DNA was sent to GeneWiz (https://www.genewiz.com/), 

with 5 l of 5 M primer for sequencing. Returned sequences were viewed with 

Benchling [Biology Software] (2020), retrieved from https://benchling.com. Example 

alignments of returned sequencing results to the desired variant sequence are 

included in Appendix C. 

 

2.3. Synchronisation and ageing 

Three different ages of hermaphrodite C. elegans were used to assess the varying 

effects of RyR variants in vivo; young adult, day 10 adult and larval stage one. Larval 

stage C. elegans were only used in thrashing assays (Chapter 3). Young and old adult 

C. elegans were used for assessing the effects of RyR variants on thrashing rate, 

halothane sensitivity and crawling (Chapters 3 and 4). Young adults were also used in 

cholinergic pharmaceutical assays and halothane assays on heterozygous RyR variant 

strains (Chapters 5 and 6). 

 

2.3.1. Generating an age-synchronised population of C. elegans 

A synchronised population of young adult animals was obtained by bleaching mixed 

stage populations containing gravid adults. Mixed stage plates were washed twice with 

750 l of M9 buffer to a 1.5 ml microcentrifuge tube, and the worms, in M9 buffer, 

were mixed with 0.3 volumes of a dilute hypochlorite solution, as in household bleach, 

and 0.2 volumes of 4 M NaOH, until only eggs remained, approximately 5 minutes. 

Bleaching kills all post-embryonic stages, while embryos are protected by the egg-shell. 

After 5 minutes in the bleaching solution, tubes were spun in a table-top centrifuge at 

12,000 g for 30 seconds to pellet the eggs. The supernatant was removed by gentle 

pipetting and the pellet of eggs resuspended in 1 ml of M9 buffer, this was repeated 

twice to remove bleach residue. Prepared eggs, resuspended in 50 l of M9 buffer, 

were transferred to seeded plates and allowed to develop. All animals hatch within 14 

hours of each other. 3.5 days after bleaching, with the presence of a few eggs on the 

https://www.genewiz.com/
https://benchling.com/
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plate, animals were considered young adults. The unc-68 null mutant, CB540 (unc-

68(e540)), and the hR4861H RyR variant strain both took an extra day to reach the 

young adult stage, as indicated by the onset of egg laying. 

 

2.3.2. Ageing C. elegans 

Age synchronised populations of 10-day old adults were obtained by first bleaching in 

the same way as for young adults. Two days after synchronisation, at the L4 stage, 

animals were washed from 50 mm NGM plates with M9 buffer to 90 mm NGM plates 

containing 50 M FUdR (5-fluoro-2’-deoxyuridine) (Sigma-Aldrich) and seeded with 

450 l OP50 E. coli overnight culture. Fertilised eggs are prevented from developing 

and hatching in the presence of FUdR as it inhibits DNA synthesis, while still allowing 

adults to lay eggs. Adult C. elegans have no somatic cell division and should not be 

affected by FUdR in the same way as larval C. elegans. Assay animals were only 

transferred to plates containing FUdR just before maturation to avoid developmental 

abnormalities associated with FUdR treatment. The unc-68 null mutant and hR4861H 

RyR variant strain were transferred to FUdR plates one day later than wild type and 

other RyR variant strains to match the developmental delay in these two strains. 

Lifespan extension and stress resistance have been associated with FUdR treatment 

(Anderson et al., 2016). Neither lifespan or stress resistance are assessed in this 

research, and so it was deemed appropriate to use FUdR to limit progeny hatching. 

 

2.3.3. Statistical and graphical analysis 

Statistical parameters are reported in figures and corresponding figure legends. None 

of the data were removed from statistical analysis as outliers. All statistical analysis 

was performed in GraphPad Prism (version 8.0), GraphPad Software, La Jolla California 

USA, www.graphpad.com.  

 

Colour coding for the RyR variant strains, CB540 (unc-68(e540)) null mutant and wild 

type is applied consistently and, for the RyR variants, corresponds to variant residue 

location in the protein. Yellow/ orange variants, hR163C and hG341R, are located 

within the N-terminal domain (NTD), green coloured variants are within the helical 

domain (HD), hR2163H, hN2342S, hR2454H, hR2458H and hK3452Q, and the blue 

http://www.graphpad.com/
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variant, hR4861H, is located in the transmembrane domain (TMD) (Figure 2.2). Grey 

represents wild type and lilac the unc-68 null mutant. 

 

A       B 

 

Figure 2.2: Location of RyR1 variants in the ryanodine receptor. 

(A) Two opposing RyR protomers, viewed from within the plane of the membrane. 

(B) One RyR protomer viewed from within the pore. N-terminal domain (NTD) in 

yellow, SPRY1, 2 and 3 in orange, P1 and P2 in brown, handle in cyan, helical domain 

(HD) in green, central domain in purple, transmembrane domain (TMD) in blue and 

C-terminal domain (CTD) in red. RyR variants are shown as spheres in red with labels 

coloured corresponding to the colour coding applied in this research. Generated 

using PyMOL, based on the closed conformation of rabbit RYR1, as predicted from 

Yan et al. (2015) (PDB code 3J8H). 

 

Comparisons of thrashing rate and halothane sensitivity between genotypes in each 

condition assayed are expressed as 10-90 percentile box and whisker plots. Differences 

between genotypes and differences between conditions fo reach genotpye were 

identified as ns, not significant, or significant to *P<0.05 or **P<0.005 using one-way 

ANOVA with Tukey’s or Sidak’s test for multiple comparisons respectively.  

 

Crawling amplitude, wavelength and frequency are represented as scatterplots, for 

two of the three crawling parameters, with both vertical and horizontal error bars 

(standard error) for young adult and old adult. Error bars that are smaller than the 

height of the data point are not shown. Worm lengths and degree of curvature are 

expressed as 10-90 percentile box and whisker plots. Comparisons of degree of 
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curvature between genotypes were identified as ns, not significant, or significant to 

*P<0.05 or **P<0.005 using one-way ANOVA with Tukey’s multiple comparisons. 

Worm length and crawling amplitude, wavelength, frequency and speed were 

extracted from 1 minute long videos, recorded at 25 frames per second (fps), using 

Tierpsy Tracker 1.4.0 (Javer et al., 2018) and MATLAB. Video recordings were made 

using a multi-worm tracker system set up by, and used with permission of, the Cohen 

lab at the University of Leeds. 20-30 animals were transferred to 90 mm NGM plates, 

without food, and recorded crawling freely for 1 minute. Worm length was hand 

measured using ImageJ (Schneider et al., 2012) in 5 individual frames for 5 individuals 

of each strain and compared to extracted worm length data. Degree of curvature was 

measured in individual frames using GeoGebra version 6.0562.0, www.geogebra.org 

(Hohenwarter, 2002). Kymograms for single individuals were generated using the 

Tierpsy Tracker 1.4.0 software and MATLAB. Methods of extracting crawling 

parameters are described in section 4.2.  

 

Survival fractions in aldicarb are expressed as a Kaplan-Meier survival curve produced 

in GraphPad Prism. The survival curve for each individual strain was compared to wild 

type (or the unc-68 null mutant for the hR4861H variant strain) using a Gehan-

Breslow-Wilcoxon test.  

 

Comparisons between heterozygous and homozygous strains for the RyR variants, unc-

68 null mutant or wild type are expressed as 10-90 percentile box and whisker plots. 

Differences between the variant heterozygotes and homozygotes were identified as 

ns, not significant, or significant to *P<0.05 or **P<0.005 using one-way ANOVA with 

Sidak’s multiple comparison test. 

 

  

http://www.geogebra.org/
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Chapter 3 

Confirming a malignant hyperthermia related phenotype in genome-

edited RYR1 variant C. elegans: modelling malignant hyperthermia in the 

worm 

3.1. Introduction 

3.1.1. Aim of this chapter 

The aim of the research described in this chapter was to determine whether CRISPR-

Cas9 genome-edited strains, designed to express ryanodine receptors (RyRs) 

equivalent to human RyR1 malignant hyperthermia (MH) disease variants, exhibit an 

MH-related phenotype. Further phenotypic assessment and the consequences of the 

presence of these variants in C. elegans, pursued subsequently, are only of relevance 

to human disease if it is known that these variant strains are sensitive to MH triggering 

agents like susceptible humans and other animal models of MH. 

 

3.1.2. A malignant hyperthermia related phenotype in C. elegans 

Previous work, using extrachromosomal array strains carrying modifications equivalent 

to RyR1 associated human variants in unc-68, demonstrated the viability of C. elegans 

as a model for RyR1-related myopathies, predominantly MH (Nicoll Baines et al., 

2017). Halothane and caffeine are two test agents used in an In Vitro Contracture Test 

(IVCT) for MH (Ellis et al., 1984; Hopkins et al., 2015). The response of the 

extrachromosomal array strains to these test agents demonstrated measurable 

differences between wild type controls and RyR variant carrying strains (Nicoll Baines 

et al., 2017). The extrachromosomal array strains all showed hypersensitivity to 

halothane with complete paralysis in 2.5 mM halothane while wild type retained 

motility.  

 

Hypersensitivity to the MH triggering agent halothane is considered an MH-related 

phenotype in strains carrying modifications in unc-68 that are equivalent to RyR1 

associated human disease variants. The response of the extrachromosomal array 

strains to halothane was seen as a demonstration of the conservation of function of 

RyR from C. elegans to humans (Nicoll Baines et al., 2017). In order to verify that 
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CRISPR-Cas9 genome-edited RyR variant strains are valid models for MH, and 

demonstrate a similar MH-related phenotype, strains were subjected to a similar 

halothane test. 

 

3.2. Methods 

3.2.1. Halothane and thrashing assays 

Halothane assays were conducted on individuals of particular ages. Well-fed 

individuals were selected from NGM plates and transferred to 1 ml of S medium, or S 

medium containing 1 mM, 2.5 mM or 5 mM halothane. S medium contains 1 litre S 

Basal (5.85 g NaCl, 1 g K2HPO4, 6 g KH2PO4, 1 ml cholesterol (5 mg/ml in ethanol), H2O 

to 1 litre and autoclaved), 10 ml 1 M potassium citrate pH 6, 10 ml trace metals 

solution (1 Litre stock: 1.86 g Na2 EDTA, 0.69 g FeSO4•7H2O, 0.2 g MnCl2•4H2O, 0.29 g 

ZnSO4•7H2O, 0.025 g CuSO4•5H2O, H2O to 1 litre, autoclaved and stored in the dark), 3 

ml 1 M CaCl2, 3 ml 1 M MgSO4 (Stiernagle, 2006). Body bends were counted after 1 

minute of exposure. 25 worms were assayed for each strain at each concentration, 

across several days to confirm reproducibility.  

 

Halothane was prepared as a 125 mM stock in dimethyl sulfoxide (DMSO). Just prior to 

assaying, 500 L of S medium was added to a well of a 24-well plate, followed by 500 

L of S medium with or without halothane. An individual was immediately transferred 

into the S medium using a sterile worm pick. This method was used to avoid the 

halothane/ DMSO mixture damaging the plastic of the plate when at higher 

concentrations. Assays were carried out immediately due to the volatility of halothane.  

 

3.2.2. L1 thrashing assay 

L1 animals were prepared by washing a mixed stage population of C. elegans to a 

microcentrifuge tube with 1 ml of S medium. Worms were allowed to settle for 1 

minute allowing larger, older animals settle and form a loose pellet at the bottom of 

the tube while younger animals remain in the supernatant. 10 l of the S medium/ 

worm supernatant was pipetted into each well of an 8-well microscope slide. 

C. elegans transferred to the slide were allowed 1 minute to acclimate. One L1 animal 
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was identified per well of the 8-well slide and body bends were counted for that 

individual. 32 animals were assayed per strain, across two different days. 

 

3.3. Results 

3.3.1. Identification of pathogenic RYR1 gene variants in residues conserved in 

C. elegans 

In addition to the 48 MH diagnostic variants, a number of other RYR1 variants are 

linked with MH and other myopathic conditions. To broaden the scope of this 

research, beyond MH, several of these other variants were studied. It should be 

acknowledged, however, that the relationship between RYR1 variants and different 

disease conditions is complex, with lots of cross over (Guis et al., 2004; Litman et al., 

2018). 

 

Six of eight variants used here are currently on the MH diagnostic list; R163C, G341R, 

R2163H, R2454H, R2458H and R4861H (Table 3.1). Of these MH diagnostic variants, 

several are also associated with other myopathies. R2163H has been associated with 

both MH and Central Core Disease (CCD), as has R163C (Yan et al., 2015). The R163C 

variant, however, has also been reported in a case of Exertional Heat Illness (EHI) 

(Tobin et al., 2001). The two additional variants used, which are not on the MH 

diagnostic list but are suspected RYR1 myopathic variants are N2342S and K3452Q. 

The N2342S variant has also been associated with MH after a patient had an MH 

response to anaesthetic and a subsequent positive IVCT (Marchant et al., 2004), but 

this variant is not considered diagnostic and has not been functionally characterised. 

The K3452Q variant has been linked with Late-Onset Axial Myopathy (LOAM) (Løseth 

et al., 2013). LOAM typically presents between the third and eighth decade of life, 

hence ‘late-onset’, while most other RYR1 variant myopathies, such as CCD, present in 

infancy or childhood (Jungbluth et al., 2009; Løseth et al., 2013). Patients with LOAM 

have pronounced lumbar hyperlordosis, muscle pain and weakness. 

 

In order to model the human condition, RYR1 variants were chosen based on 

conservation with unc-68 in C. elegans, where the non-variant residue in human RYR1 

was the same as the wild type residue in unc-68. The mammalian RYR1 gene is 
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approximately 160 kb, with 106 exons of which 2 are alternatively spliced. Despite the 

much more compact genome of C. elegans the only ryanodine receptor gene, unc-68, 

is still large at approximately 30 kb with 49 exons. Both genes encode proteins 

comprising just over 5000 amino acids. As described the human and C. elegans RyR 

proteins share 40% identity and 60% similarity, along their entire length. 

 

Human RyR 

variant (C. elegans 

variant) 

Alignment 
C. elegans 

strain 

MH 

diagnostic 

Associated 

disease 

R163C 

(R169C) 

RYR1 ASKQRSEGEKVRVGDDIILVS 

UL4239 Y 
MH / CCD/ 

EHI UNC-68 ASKQRSEGEKVRVGDDVILVS 

G341R 

(G350R) 

RYR1 PPEIKYGESLCFVQHVASGLW 
COP1879 Y MH 

UNC-68 NATIRYGETNAFIQHVKTQLW 

R2163H 

(R2246H) 

RYR1 LLECLGQIRSLLIVQMGPQEE 
COP1883 Y MH / CCD 

UNC-68 FLVYLIQIRELLTVQFEHTEE 

N2342S 

(N2441S) 

RYR1 DFLRFAVFVNGESVEENANVV 
UL4285 N MH 

UNC-68 DFLRFCVWINGENVEENANLV 

R2454H 

(R2560H) 

RYR1 AGKGEALRIRAILRSLVPLED 
COP1947 Y MH 

UNC-68 AGKGDSLRARAILRSLISLDD 

R2458H 

(R2564H) 

RYR1 AGKGEALRIRAILRSLVPLED 
COP1944 Y MH 

UNC-68 AGKGDSLRARAILRSLISLDD 

K3452Q 

(K3675Q) 

RYR1 IYWSKSHNFKREEQNFVVQNE 

COP1932 N LOAM 
UNC-68 RIWSQSQHFKREELNYVAQFE 

R4861H 

(R5021H) 

RYR1 VVVYLYTVVAFNFFRKFY-NK 
COP1950 Y MH 

UNC-68 VVVYLYTVIAFNFFRKFYVQE 

Box shading is consistent with the colour coding used throughout this thesis. The residue changed in the variants is 

underlined. RyR variant strains are listed according to the human variant they correspond to. Variants that are on 

the EMHG diagnostic list (The European Malignant Hyperthermia Group, n.d.) are shown as Y (Yes) and those not 

included are shown as N (No). Diseases associated with each variant are shown malignant hyperthermia (MH), central 

core disease (CCD), exertional heat illness (EHI) and late-onset axial myopathy (LOAM). 

 

3.3.2. Confirmation of hypersensitivity to halothane for variant strains and discovery of 

novel locomotion defects in the absence of halothane 

To confirm the previous findings of increased sensitivity to halothane due to the 

missense changes in unc-68, as assayed in the extrachromosomal array variant strains 

Table 3.1: Amino acid alignments of human RYR1 and C. elegans UNC-68 in the regions of the 

studied variants, and the C. elegans strains that were generated expressing the variant UNC-

68.  
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(Nicoll Baines et al., 2017), the CRISPR-Cas9 generated RyR variant strains were 

subjected to a halothane test. 

 

Young adults, 3.5 days after synchronisation were assayed. For each halothane assay 

fresh stocks of S medium buffer, with and without halothane, were prepared. Fresh 

solutions were prepared to avoid problems arising due to the volatility of halothane, to 

increase reproducibility. The volatility of halothane made accurate delivery of a small 

volume difficult. DMSO was used to dissolve halothane to provide a reliable stock 

solution that was diluted into the assay medium. 

 

Individual animals were picked from a well-fed plate, at the young adult stage into one 

of four concentrations of halothane, ranging from 0 to 5 mM, dissolved in S medium. 

Each individual was allowed one-minute acclimation time after which body bends were 

counted. A body bend was recorded as the movement from the midline either dorsally 

or ventrally and back to the midline (Figure 3.1). 

 

Figure 3.1: Halothane assay set up and counting of body bends.  

Young adult worms were picked from well fed plates, placed into a solution of 

halothane, given 1 minute to acclimate and then body bends were counted. One body 

bend corresponds to the head thrashing from the centre line and back. 

 

Due to different sources of background strain used to generate the RyR variant strains, 

the Leeds N2 strain and NemaMetrix N2 strain were assessed for differences in 

thrashing rate and halothane sensitivity. No differences were found between the two 

N2 strains (see Appendix D). All references to wild type in this research refer to the N2 
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wild type strain provided by NemaMetrix due to six of eight RyR variant strains 

originating from this background. 

 

In the absence of halothane, consequences of the RyR residue changes for these 

animals for locomotion in liquid were noted (Figure 3.2A). Previously, no differences 

between RyR variants and wild type extrachromosomal array strains were observed in 

the absence of halothane (Nicoll Baines et al., 2017). This was consistent with MH 

being considered asymptomatic without exposure to a triggering agent (Robinson et 

al., 2006). Contrastingly, it was found here that four of the eight genome-edited RyR 

variant strains showed reduced thrashing rate when swimming in S medium. 

 

The wild type completed 199 (±14) body bends per minute (Figure 3.2A). Strains for 

variants hR163C, hG341R, hR2458H and hR4861H all demonstrated a reduced 

thrashing compared to this. 

 

Strains for variants hR163C, hG341R and hR2458H demonstrated subtle, but 

statistically significant, locomotion defects when compared to wild type with body 

bends per minute of 182 (±16) for hR163C (P<0.005), 185 (±18) for hG341R 

(P<0.05)and 176 (±15) for hR2458H (P<0.005, One-way ANOVA with Tukey’s multiple 

comparisons test).  

 

The hR4861H variant strain had a more exaggerated locomotion defect and only 

completed 56 (±19) body bends in 1 minute. Interestingly, the CB540 (unc-68(e540)) 

strain, which carries a point mutation and behaves genetically like a null (Maryon et 

al., 1996), completed only 58 (±11) body bends per minute. The thrashing rates for 

the two strains, the hR4861H RyR variant strain and the unc-68 null strain, were 

indistinguishable from each other (P>0.99, One-way ANOVA with Tukey’s multiple 

comparisons test). The reduced thrashing rate seen for the null mutant is consistent 

with the uncoordinated phenotype associated with its naming. The similarity between 

the hR4861H variant strain and the unc-68 null mutant suggests that the presence of 

this change in the UNC-68 protein eliminated the function of the ryanodine receptor, 

however it will later be shown that the hR4861H variant strain is non-null.  
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The strains for variants hR2163H, hN2342S, hN2454H and hK3452Q all completed a 

similar number of body bends per minute to wild type, 191 (±21), 201 (±18), 195 

(±16) and 195 (±14) respectively (Figure 3.2A). These strains were considered to have 

a fully functional ryanodine receptor, in the absence of a triggering agent, in 

agreement with previous work.  

 

The discrepancy between the extrachromosomal array RyR variant strains and the 

genome-edited RyR variant strains for thrashing rate in the absence of halothane was 

thought to be caused by high transgene copy numbers in extrachromosomal array 

strains. The additional transgene copy numbers may result in additional variant 

channels. Additional channels functioning sub-optimally may result in a wild type-like 

thrashing rate. 

 

Previously, the halothane response of the extrachromosomal array variant strains was 

assessed across 0.5 mM increments with several strains showing increased sensitivity 

to halothane at 1 mM and all showing almost complete paralysis at 2.5 mM halothane 

(Nicoll Baines et al., 2017). Therefore, initially, 1 mM and 2.5 mM halothane were 

chosen to assess the sensitivity of the genome-edited RyR variant strains. It was 

expected that at 2.5 mM halothane the genome-edited variant strains would also 

show almost complete paralysis. 
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Mean and standard deviation of thrashing rates in the 

absence of halothane and 1 mM, 2.5 mM and 5 mM 

concentrations of halothane for wild type, the CB540 (unc-

68(e540)) null mutant and RyR variant C. elegans strains. 

 
Absence of 
halothane 

1 mM 
halothane 

2.5 mM 
halothane 

5 mM 
halothane 

Mean SD Mean SD Mean SD. Mean SD 

Wild type 199 14 164 19 129 22 66 30 

hR163C 182 16 144 16 108 17 36 20 

hG341R 185 18 152 19 102 25 30 13 

hR2163H 191 21 149 30 102 34 35 16 

hN2342S 201 18 166 21 115 27 23 20 

hR2454H 195 16 164 19 117 22 30 24 

hR2458H 176 15 122 22 104 17 30 15 

hK3452Q 195 14 160 22 111 25 35 16 

hR4861H 56 19 54 14 36 12 19 11 

unc-68 null 58 11 54 18 43 16 22 10 

Box shading is consistent with the colour coding used throughout this thesis. 
RyR variant strains are listed according to the human variant they 
correspond to. 

A B 

C D 
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Figure 3.2: RyR variants confer an MH-related phenotype of hypersensitivity to 

halothane. 

Thrashing rate in S medium, in body bends per minute, for RyR variant strains, 

labelled by the human variant they correspond to, in the absence of (A) and presence 

of 1 mM (B), 2.5 mM (C) and 5 mM (D) halothane, and the mean and standard 

deviation (SD) of thrashing rates, in body bends per minute,  in each condition (E). 25 

individuals were examined per strain. Boxes indicate the median and interquartile 

range, with whiskers to the 10-90 percentile, outliers as dots, and + to indicate the 

mean. Significance is between variant strains and the wild type, apart from where 

indicated to the CB540 (unc-68(e540)) null mutant. * P<0.05, ** P<0.005, n.s = not 

significant (one-way ANOVA, with Tukey’s multiple comparison test) (A-D). Colouring 

corresponds to variant location in the protein as explained in section 2.4 (Figure 2.2). 

Yellow/ orange variants are located within the N-terminal domain (NTD), green in the 

helical domain (HD) and blue in the transmembrane domain (TMD). Grey represents 

wild type and lilac the null mutant.  

 

At 1 mM halothane all strains, including wild type, showed reduced thrashing and this 

was not determined as hypersensitivity to halothane in the majority of the RyR variant 

strains (Figure 3.2B). Some reduction in locomotion is expected due to the anaesthetic 

properties of halothane. The strains for variants hR163C and hR2458H did appear to 

show a significantly reduced thrashing rate in 1 mM halothane compared to wild type 

(P<0.05 and P<0.005 respectively, One-way ANOVA with Tukey’s test for multiple 

comparisons). However, both of these variants also exhibited statistically significantly 

reduced thrashing in the absence of halothane. With different starting thrashing rates 

in the absence of halothane it is difficult to determine whether the significance in 

thrashing rate of the hR2458H and hR163C variant strains compared to wild type was 

due to increased sensitivity to 1 mM halothane or the locomotion defect. To address 

this issue, the mean percentage locomotion decrease in thrashing rate upon exposure 

to difference concentrations of halothane was determined for all strains, using the 

absence of halothane as the baseline (Table 3.2). 
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From the percentage decrease between mean thrashing rates in no halothane and the 

1 mM halothane, the smallest decrease was seen for the unc-68 null strain and the 

hR4861H RyR variant strain that behaved like the null, with only a 7% and 4% decrease 

for each. The small reduction seen for these two strains may suggest that the mode of 

action of the anaesthetic requires functional RyRs for full effect. However, the 

uncoordinated locomotion could minimise the extent to which the eeffect can be 

observed. 

Strain (variant) Absence to 1 mM Absence to 2.5 mM Absence to 5 mM 

Wild type -18% -35% -66% 

hR163C -21% -41% -80% 

hG341R -18% -45% -81% 

hR2163H -22% -48% -82% 

hN2342S -17% -43% -89% 

hR2454H -17% -40% -78% 

hR2458H -31% -41% -83% 

hK3452Q -18% -43% -82% 

hR4861H -4% -35% -66% 

unc-68 null -7% -26% -63% 
Box shading is consistent with the colour coding used throughout this thesis. RyR variant strains are listed 
according to the human variant they correspond to. Percent change is calculated as ((C1-C2)/C1)*100 where C1 is 
the absence of halothane and C2 is the different concentrations of halothane. All strains showed a decrease from 
C1 to C2, indicated by a minus sign (-).  

 

Most strains, including the wild type, exhibited a 17-22% decrease in body bends per 

minute when exposed to 1 mM halothane compared to the absence of halothane 

(Table 3.2). The hR163C variant strain sits within this group with a 21% decrease in 

thrashing, suggesting the statistically significant difference between this variant and 

wild type is not due to increased sensitivity to 1 mM halothane, but rather due to the 

subtle locomotion defect seen even in the absence of halothane. 

 

The strain for variant hR2458H, however, showed a 31% difference between the mean 

thrashing rate in the absence of halothane and 1 mM halothane, which is much higher 

than all other variant strains and wild type (Table 3.2). This strain is considered to 

show increased sensitivity to halothane at this concentration. Interestingly, while the 

Table 3.2: Percentage change of mean thrashing rates from the absence of halothane to 1 mM, 

2.5 mM and 5 mM concentrations of halothane for wild type, the CB540 (unc-68(e540)) null 

mutant and RyR variant C. elegans strains. 
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presence of this variant as an extrachromosomal array strain resulted in 

hypersensitivity to 1 mM halothane, five other variant array strains also showed such 

sensitivity (Nicoll Baines et al., 2017). Again, the discrepancy between the previous 

study and this work is attributed to the high transgene copy number in the 

extrachromosomal array strains. If low concentrations of halothane result in an 

increased open probability of RyR channels, additional variant channels could result in 

increased sensitivity to the trigger. It could be argued that the hR2458H variant is the 

only variant in the previous study to confer real hypersensitivity to 1 mM halothane 

under natural conditions. 

 

It was expected that 2.5 mM halothane would reveal hypersensitivity for all of the RyR 

variant strains generated through CRISPR-Cas9 genome editing, as it did for all variant 

array strains generated as extrachromosomal arrays (Nicoll Baines et al., 2017). This 

was not the case (Figure 3.2C). While six of eight of the variant strains demonstrated a 

statistically reduced thrashing rate compared to wild type, the reduction was not to 

the same extent as seen previously. Thrashing rates were still over 100 body bends per 

minute in 2.5 mM halothane for all strains, apart from the unc-68 null and the 

hR4861H variant strain. This reduced sensitivity in the genome-edited variant strains 

compared to the extrachromosomal array variant strains is accredited to the 

endogenous expression level of UNC-68 in the former compared to over expression in 

the latter. 

 

All of the RyR variant strains, except that for hR4861H, exhibited a 40-48% decline in 

thrashing from the baseline, in S medium in the absence of halothane, to 2.5 mM 

halothane (Table 3.2). Wild type only showed a 35% decrease, completing 129 (±22) 

body bends per minute (Figure 3.2C). There appears to be some increased sensitivity in 

the RyR variant strains when exposed to 2.5 mM halothane, however it is limited. The 

two variant strains that were determined as not significantly different to wild type, 

hN2342S (P=0.42) and hR2454H (P=0.33), also showed a 43% and 40% decrease in 

thrashing rate completing 115 (±27) and 117 (±22) body bends per minute each. 

However, other variant strains, which were determined as significantly different to 

wild type, showed reductions of a similar magnitude, making interpretation of these 

results difficult. 
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It could be argued that all genome-edited RyR variant strains show slightly increased 

sensitivity to 2.5 mM halothane, and for the variants hN2342S and hR2454H further 

repeats would be required to see this reflected in the statistical analysis. 

 

As 2.5 mM halothane was not sufficient to induce a clear MH-related phenotype of 

halothane hypersensitivity in the RyR variant strains, a higher concentration of 5 mM 

halothane was applied (Figure 3.2D). At this higher dose of halothane, hypersensitivity 

was seen for all RyR variant strains as shown by the larger percentage decrease in 

thrashing rate in 5 mM halothane observed for these strains compared to wild type 

(Table 3.2). A one-way ANOVA identified all RyR variant strains to have significantly 

reduced thrashing compared to wild type at 5 mM halothane (P<0.005, Tukey’s 

multiple comparisons). While the wild type was able to complete an average of 66 

(±33) body bends per minute in 5 mM halothane, none of the RyR variant strains 

completed more than 36 (±20) as seen for the hR163C variant strain (Figure 3.2D). The 

unc-68 null and the hR4861H variant both achieved even fewer; 22(±10) and 19 (±10) 

body bends per minute.  

 

The use of DMSO to dissolve halothane for the stock solution meant that the apparent 

differences in sensitivity to 5 mM halothane could actually reflect differences in 

response to DMSO. DMSO is a popular solvent for compounds that will not dissolve in 

water, and thus has been used in many C elegans drug discovery assays, including 

lifespan experiments (Frankowski et al., 2013; Xiong et al., 2017). DMSO can extend 

lifespan and high concentrations are toxic to C. elegans (Wang et al., 2010). While 

DMSO was considered an innocuous organic solvent and was diluted 25-fold in the 

assay, the effect of DMSO at this concentration on locomotion needed to be 

evaluated. Individuals were exposed to the 4% DMSO in S medium, as in the 5 mM 

halothane treatment, allowed to acclimate for 1 minute and body bends counted 

(Figure 3.3).  

 

Wild type and all of the RyR variant strains, except for the hR4861H variant, did have a 

significant reduction in thrashing rate in the presence of DMSO, compared to S 

medium alone (Figure 3.3). Thrashing rate for the null mutant and the hR4861H 
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variant, however, did not appear to be affected by the DMSO. This is likely due to the 

effect being small and therefore not detectable when the baseline rate was already 

very low. It could also suggest some involvement of a functional ryanodine receptor in 

the effect of DMSO.  

 

Despite the effect of DMSO on C. elegans thrashing rate, comparison between 

thrashing rate in S medium with DMSO and in S medium with DMSO and halothane, 

reveals that the RyR variants enhance the decrease in thrashing rate due to halothane 

compared to wild type (Figure 3.3, Appendix E). This effect is seen for all of the RyR 

variant strains in comparison to the wild type, once again, with the exception of 

hR4861H. Both the hR4861H variant strain and the unc-68 null mutant showed no 

difference between S medium and DMSO and S medium with DMSO and halothane. 

Again, the explanation for this most likely lies within the relatively few body bends 

completed per minute, in these strains. A significant reduction is seen between S 

medium and S medium with DMSO and 5 mM halothane for these two strains.  

 

Aside from the unc-68 null mutant and the similarly behaving hR4861H variant strain 

that showed no significant effect of DMSO on thrashing rate, the RyR variant strains 

appeared to be affected to the same degree by DMSO in the S medium as wild type 

(Appendix E). No statistically significant differences in thrashing rates were seen 

between these two treatments, apart from for the hR2458H variant strain. The 

hR2458H variant strain completed significantly fewer body bends per minute than wild 

type when exposed to 4% DMSO in S medium, 75 (±14) compared to 115 (±25) 

(P<0.005 One-way ANOVA with Tukey’s test) (Figure 3.2, Appendix E). However, this 

can be attributed to the reduced locomotion seen in S medium for this strain, even in 

the absence of DMSO, rather than an effect of DMSO. The subtle locomotion defects 

noted for the hR163C and hG341R variant strains in S medium alone were no longer 

detectable in the presence of DMSO and these strains had similar thrashing rates to 

wild type (P=0.59 and P>0.99 respectively, One-way ANOVA with Tukey’s test).  
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A 

 

B 

Mean and standard deviation of thrashing rates in S medium alone, with the addition of 

DMSO, and with DMSO and 5 mM halothane for wild type, the CB540 (unc-68(e540)) null 

mutant and RyR variant C. elegans strains. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: High concentration of DMSO has some effect on C. elegans locomotion, but 

halothane further decreases thrashing rate. 

Thrashing rate in S medium (S med), S medium + DMSO (DMSO) and S medium + 

DMSO + 5 mM halothane (5 mM) for RyR variants, labelled by the human variant they 

correspond to, along with the wild type and the CB540 (unc-68(e540)) null mutant. 

25 individuals were examined per strain. (A) Boxes indicate the median and 

interquartile range, with whiskers to the 10-90 percentile, outliers as dots, and + to 

indicate the mean. Significance is between S medium and S medium + DMSO or S 

medium + DMSO and S medium + DMSO + 5 mM halothane, for each strain. ** 

P<0.005, n.s = not significant (one-way ANOVA, with Sidak’s multiple comparison 

test). (B) Mean and standard deviation (SD) of thrashing rate, in body bends per 

minute, in each condition.  
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S medium S medium + DMSO 

S medium + DMSO + 5 
mM halothane 

Mean SD Mean SD Mean SD 

Wild type 197 11 115 25 66 30 

hR163C 178 16 100 12 36 20 

hG341R 169 13 110 18 30 13 

hR2163H 193 12 97 27 35 16 

hN2342S 193 11 108 9 23 20 

hR2454H 185 13 94 29 30 24 

hR2458H 169 19 75 14 30 15 

hK3452Q 180 10 103 20 35 16 

hR4861H 42 13 35 13 19 11 

unc-68 null 59 17 42 13 22 10 

Box shading is consistent with the colour coding used throughout this thesis. RyR variant 
strains are listed according to the human variant they correspond to. 
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In S medium containing DMSO and halothane the single amino acid changes clearly 

decrease locomotion of all of the variant strains in comparison to wild type, the same 

is not seen in S medium with just DMSO. If anything, the presence of DMSO reduces 

the subtle locomotion differences between RyR variant strains and wild type. In the 

context of the MH background of the selected variants, and this project, it appears 

that the reduction in thrashing rate in the presence of DMSO and halothane is 

attributable to the RyR variants response to halothane. 

 

3.3.3. Ageing effects of ryanodine receptor variants on halothane sensitivity 

Many links have been made between ageing and the function of the ryanodine 

receptor. Specifically for RyR1 variants, in the previous work with C. elegans modelling 

RyR1 variants in unc-68 expressed as extrachromosomal arrays, the hK3452Q variant, 

associated with late-onset axial myopathy (LOAM), had an age-related caffeine 

response phenotype. Furthermore, the median lifespan of all the extrachromosomal 

array strains was found to be slightly reduced compared to the wild type controls 

(Nicoll Baines et al., 2017). Additionally, the presence of the unc-68 variant fosmids in 

C. elegans induced faster muscle ageing, as measured by myofilament disorganisation. 

A key theory in age-related muscle weakness is a possible reduction in the calcium ion 

supply available for triggering muscle contraction (Boncompagni et al., 2006). It is 

specifically thought to be the effect of uncoupling between the dihydropyridine 

receptor (DHPR) and the RyR, which reduces the amount of calcium available and 

consequently impairs the function of aged muscle (Delbono et al., 1995; Renganathan 

et al., 1997). A brief reminder that it is the DHPR, sitting in the t-tubule sarcolemma, 

which physically interacts with the RyR to signal depolarisation of the vertebrate 

muscle cell membrane, from neural input at neuromuscular junctions (NMJs). Upon 

this interaction, the RyR opens, allowing calcium ions to flow into the myoplasm where 

they activate the contractile machinery. RyRs from aged rat skeletal muscle are shown 

to have reduced responsiveness that is thought to contribute to depressed calcium ion 

release in aged skeletal muscle and may result in reduced strength of muscle 

contraction (Gaboardi et al., 2018). Links have also been made between the RyR and 

ageing in cardiac muscle and neuronal ageing (Clodfelter et al., 2002; Zhu et al., 2005). 
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With the incidence of age-related diseases increasing with the increasing average 

human lifespan, it is important to determine 1) if the ryanodine receptor does play a 

role and, 2) what that role is. As already outlined, the number of RyR1 variants present 

in the human population is larger than just those associated with MH. Subtle effects of 

any of these variants across the entire lifespan may result in much larger effects for 

the carriers, with age. For this reason, the aspect of age was considered for the both 

thrashing rate and halothane sensitivity of C. elegans carrying unc-68 mutations 

equivalent to known human RyR1 variants.  

 

The average lifespan of a wild type C. elegans is approximately 15 days, although this 

varies greatly, due to stochastic environmental and genetic variation (Gems and 

Riddle, 2000). The average lifespan of the extrachromosomal array RyR variant strains 

was previously measured as 14-17 days, which was strikingly shorter than the 22-24 

days for the direct control wild type extrachromosomal array strains (Nicoll Baines et 

al., 2017). As the number of live animals rapidly reduces, the remaining animals in an 

ageing population become more difficult to work with as they are extremely fragile 

and do not move well. These factors made assays challenging past day ten of 

adulthood. Therefore, day ten of adulthood was decided as being sufficiently late in 

life for ageing effects to have accumulated, but not so old that statistically significant 

assays would be unrealistic and effects would still reflect a large proportion of the 

population. Any effects found in the few exceptionally long-lived individuals may not 

be relevant to the majority of the population.  

 

Age-synchronised C. elegans were grown until young adulthood and then aged as 

described in section 2.3.2. On day ten of adulthood the procedure used to test 

halothane sensitivity in young adults was followed. 

 

In S medium alone, it was evident that ageing reduces the locomotion rate of all 

strains (Figure 3.4A and E). The thrashing rate for the wild type old adult, with a mean 

of 104 (±26) body bends per minute, was approximately half that of the wild type 

young adult. The old adults of strains for RyR variants hN2342S, hR2454H, hR2458H 

and hK3452Q were statistically indistinguishable from the wildtype with 89 (±20), 106 

(±21), 104 (±21) and 93 (±19) body bends per minute (Figure 3.4A). Interestingly the 



Modelling MH in the worm  

 

54 

variant hR2458H was the most different to wild type at young adult, excluding the unc-

68 null and the hR4861H variant.  

 

The thrashing rate of old adults of four of the RyR variant strains were statistically less 

than for the wild type (Figure 3.4A). The hR4861H variant strain was, again, the least 

active and statistically significantly different from wild type while being 

indistinguishable from the unc-68 null mutant (P<0.005 and P>0.99 respectively, One-

way ANOVA with Tukey’s test).  

 

The three other RyR variant strains that exhibited statistically slower thrashing rates 

compared to wild type showed more subtle reductions than the hR4861H variant 

strain, comparable to the locomotion defects seen for young adults earlier. The strains 

for variants hR163C and hG341R both exhibited subtly reduced thrashing rates at both 

ages, while the hR2163H variant strain exhibited reduced locomotion only as an old 

adult. The mean thrashing rates for these strains at day 10 were found to be 82 (±27), 

84 (±24) and 81 (±34) body bends a minute (figure 3.4A). The hN2342S variant strain 

also had a very low thrashing rate at 89 (±20) body bends per minute, but the variance 

in the data eliminated any statistically significant difference compared to wild type. For 

most strains the variance in the data was larger in old adults compared to young adults 

(Figure 3.4E). The larger variance coupled with the reduced thrashing rate explains 

why subtle differences are not as readily detectable in old adults. The sampling rate 

used for young adults was powerful enough to find these subtle effects, but the same 

sampling rate for old adults was, potentially, not powerful enough. 
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G 

Mean and standard deviation of thrashing rates of old adults in the absence of halothane 

and 1 mM, 2.5 mM and 5 mM concentrations of halothane for wild type, the CB540 (unc-

68(e540)) null mutant and RyR variant C. elegans strains. 

  

S medium 1 mM halothane 2.5 mM halothane 5 mM halothane 

Mean SD Mean SD Mean SD Mean SD 

Wild type 104 26 84 19 63 24 44 21 

hR163C 82 27 73 29 54 22 23 15 

hG341R 84 24 74 12 56 20 21 10 

hR2163H 81 34 69 23 41 18 20 15 

hN2342S 89 20 73 19 46 24 25 15 

hR2454H 106 21 79 26 67 15 40 19 

hR2458H 104 21 81 22 63 24 24 12 

hK3452Q 93 19 69 24 51 18 24 12 

hR4861H 23 12 17 11 14 10 7 5 

unc-68 null 20 7 20 6 15 7 9 4 

Box shading is consistent with the colour coding used throughout this thesis. RyR variant strains are 
listed according to the human variant they correspond to. 

 

Figure 3.4: Aged RyR variant individuals are less sensitive to halothane. 

Thrashing rate in S medium, in body bends per minute, for RyR variant strains, 

labelled by the human variant they correspond to, for ten day old adults in the 

absence of (A) and presence of 1 mM (B), 2.5 mM (C) and 5 mM (D) halothane and 

comparison between young and old adult in the absence of halothane (E) and in 5 

mM halothane (F). 25 individuals were examined per strain. Boxes indicate the 

median and interquartile range, with whiskers to the 10-90 percentile, outliers as 

dots, and + to indicate the mean. Significance is between variant strains and the wild 

type, apart from where indicated to the CB540 (unc-68(e540)) null mutant (A-D) and 

between ages of each variant strain (E and F). * P<0.05, ** P<0.005, n.s = not 

significant (one-way ANOVA, with Tukey’s multiple comparison test (A-D) and Sidak’s 

multiple comparison test for preselected pairs (E and F)). (G) Mean and standard 

deviation (SD) of thrashing rate, measure in body bends per minute, of old adults in 

the absence of and increasing concentrations of halothane. 

 

The application of 1 mM halothane removed the statistical differences between the 

thrashing rates for the wild type and the three RyR variant strains with subtle 

locomotion defects in the absence of halothane (Figure 3.4B). The three strains for 

variants hR163C, hG341R and hR2163H do appear to have slightly reduced locomotion 

in 1 mM halothane, 73 (±29), 74 (±12) and 69 (±23) compared to 84 (±19) for the 
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wild type, although not statistically significant. Again, the large inter-individual 

variance of strains at old age and the reduced thrashing rate may make subtle 

difference between variant strains and wild type harder to detect. The hN2342S, which 

was identified as possibly having a similar subtle locomotion defect in S medium, and 

the hK3452Q variant may also have similarly reduced thrashing rates at this halothane 

concentration compared to wild type with 73 (±19) and 68 (±24) body bends per 

minute each. This low concentration of halothane may affect thrashing rate of aged 

C. elegans, but further replicates would be needed to confirm that these differences 

are statistically significant. 

 

In 2.5 mM halothane, it is these same five RyR variant strains that have the lowest 

thrashing rates, excluding the hR4861H variant strain, adding further support for this 

distinction being real (Figure 3.4C). At this halothane concentration, the hR2163H and 

hN2342S variant strains were statistically different to wild type (P<0.005 and P<0.05 

respectively, One-way ANOVA with Tukey’s test) with 41 (±18) and 46 (±24) body 

bends per minute, versus to 63 (±24) for wild type. While not significant, the hR163C, 

hG341R and hK3452Q variant strains thrashing rate was, again, lower than wild type at 

54 (±22), 56 (±20) and 51 (±18)) body bends per minute. Thrashing rates of hR2454H 

and hR2458H variant strains, at 63 (±24) and 67 (±15) body bends per minute, were 

close to that for the wild type. 

 

Once again, it was the 5 mM concentration of halothane that revealed the most 

significant differences in sensitivity to halothane between wild type and RyR variant 

strains (Figure 3.4D). All the RyR variant strains except that for hR2454H showed 

statistically significant hypersensitivity compared to the wild type at 5 mM halothane. 

The hR2454H variant strain performed an average of 40 (±19) body bends per minute, 

compared to 44 (±21) for wild type (P>0.99, One-way ANOVA with Tukey’s test). This 

result led to the question of whether this variant strain became less sensitive to 

halothane with age. 

 

To decipher the relative loss in sensitivity of the hR2454H RyR variant strain to 

halothane when compared to wild type, the thrashing rate of all RyR variant strains, 

wild type and the unc-68 null were compared as both young and old adults in S 
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medium and 5 mM halothane (Figure 3.4E and F). All strains showed a significant 

reduction between young and old adult thrashing rate in the absence of halothane 

(P<0.005, One-way ANOVA with Sidak’s comparison test for predefined pairs) (Figure 

3.4E). A significant reduction in thrashing rate was even seen for the hR4861H variant 

strain and the unc-68 null mutant, despite the already low thrashing rate as young 

adults. 

 

To compare the extent of the effect of age on thrashing rate the thrashing rate in old 

adults can be determined as a percentage of the thrashing rate in young adults, in the 

absence of halothane (Table 3.3).  

Strain (variant) 
YA to OA 

absence of halothane  

Wild type 48% 

hR163C 55% 

hG341R 54% 

hR2163H 55% 

hN2342S 56% 

hR2454H 46% 

hR2458H 41% 

hK3452Q 52% 

hR4861H 58% 

unc-68 null 65% 
Box shading is consistent with the colour coding used throughout 
this thesis. RyR variant strains are listed according to the human 
variant they correspond to. RyR variants are listed in Percent 
change is calculated as ((C1-C2)/C1)*100 where C1 is young adult 
and C2 is old adult. 

 

The wild type and the RyR variant strains thrashing rates decreased by 41-58% 

between young adult and old adult stages (Table 3.3). The thrashing rate decreased by 

48% in wild type from the young to old adult stage. While wild type did group within 

the RyR variant strains, six of the eight showed a bigger decrease in thrashing rate 

between the two ages than wild type. The strains for variants hR2454H and hR2458H 

had smaller decreases in thrashing rate between young and old adult stages, 46% and 

41% respectively. The other RyR variant strains had decreases of over 52% between 

the two ages. The thrashing rate of old adults of the hR4861H variant strain and the 

Table 3.3: Percentage change of mean thrashing rates in S medium from young to old adult 

stages for wild type, the CB540 (unc-68(e540)) null mutant and RyR variant C. elegans strains. 
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unc-68 null mutant showed larger decreases, 58% and 65% respectively. This may 

suggest that for the RyR variant strains, except those for hR2454H and hR2458H, age-

related decrease in locomotion is slightly exaggerated compared to wild type. 

 

Thrashing rates in 5 mM halothane in the old adults must be considered with respect 

to the decrease in thrashing rate with age in the absence of halothane. It appears the 

majority of the RyR variant strains are not as affected by the age-related reduction in 

thrashing rate seen in the absence of halothane when in 5 mM halothane (Figure 3.4E 

and F). The only strains that showed a significant reduction in thrashing rate in 5 mM 

halothane between young and old adult were wild type, the unc-68 null mutant and 

the strains for variants hR4861H and hK3452Q. The further reduction in thrashing rate 

in 5 mM halothane, with age, seen for wild type and not for the hR2458H variant strain 

explains the apparent loss in statistical significance between these two strains 

thrashing rates (Figure 3.4D).  

 

Wild type thrashing rate reduced from 66 (±30) to 44 (±20) body bends per minute 

from young to old adult in 5 mM halothane (P<0.005, One-way ANOVA with Sidak’s 

test for predefined pairs) (Figure 3.4F). The unc-68 null mutant thrashing rate in 5 mM 

halothane reduced from 22 (±10) to 9 (±4) body bends per minute between the two 

ages (P<0.005, One-way ANOVA with Sidak’s test for predefined pairs). A similar 

response was seen for the hR4861H variant strain, thrashing rate reduced from 19 

(±11) to 9 (±4) body bends per minute (P<0.05, One-way ANOVA with Sidak’s test for 

predefined pairs), as expected due to its apparent null phenotype. 

 

The hK3452Q variant strain also showed significantly reduced thrashing in 5 mM 

halothane at old adult compared to young adult (Figure 3.4F). The hK3452Q variant 

performed 35 (±16) body bends per minute at young adult in 5 mM halothane and 

only 24 (±12) as an old adult (P<0.05, One-way ANOVA with Sidak’s test). This was the 

one variant that was also found to have an age-related increased sensitivity to caffeine 

previously (Nicoll Baines et al., 2017). The implication of this variant in the age-related 

RyR1 disease, LOAM, is noteworthy. As mentioned previously, it is usually between the 

third and eighth decade of life that LOAM is diagnosed. Coupled with the previous 

caffeine response data with the extrachromosomal array strains, this halothane 
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response data with the genome-edited strain supports that in C. elegans the hK3452Q 

variant has consequences in later life not conferred by the other RyR1 variants 

assessed. 

 

As described, there was no further decrease in thrashing rate in the old adults for most 

RyR variant strains in 5 mM halothane, compared to young adults in 5 mM halothane 

(Figure 3.4F), however, most RyR variant strains still showed hypersensitivity to 5 mM 

halothane compared to wild type (Figure 3.4D). This may suggest that the thrashing 

rate of these strains at young adult is as affected as it can be by 5 mM halothane and, 

therefore, no further effect of age can be seen. RyRs in these strains are fully 

compromised by 5 mM halothane. 

 

The wild type ,unc-68 null mutant and the hR4861H and hK3452Q variant strains, 

showed an age-related decrease in thrashing in 5 mM halothane; this suggests that the 

RyRs in these strains are not completely compromised by 5 mM halothane in the 

young adults. Therefore, ageing effects on thrashing rate can be seen. The loss of 

statistical significance between wild type and the hR2458H variant strain in 5 mM 

halothane in the old adults is due to a further decrease in thrashing rate in wild type at 

this concentration, which is not seen for the hR2458H variant strain, not a decrease in 

halothane sensitivity of this RyR variant strain. 

 

3.3.4. Ryanodine receptor variants reduce thrashing rate in larval stage C. elegans 

Given the change in effects of halothane on aged adults compared to young adults, the 

effects of RyR variants on larval C. elegans were assessed. During post-embryonic 

development in the worm, the muscular and nervous system is further developed. 

Larval stage 1 (L1) is the first of four larval stages, hatching from the egg and are freely 

moving. The effects of the RyR variants on the earliest freely moving life stage of the 

worm may reveal an important part of ryanodine receptor function in the worm and, 

indeed, humans. 

 

At the L1 stage all of the RyR variant strains had much lower thrashing rate compared 

to wild type, in the absence of halothane (P<0.005, One-way ANOVA with Tukey’s test) 

(Figure 3.5). The L1 wild type did perform fewer body bends per minute than the 
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young adults. Both the unc-68 null mutant and the hR4861H variant strain are the only 

two strains to not show a difference in locomotion between L1 and young adult. 

Perhaps the effect that the total loss of unc-68 function, as in the CB540 (unc-68 

(e540)) mutant strain, has at L1 is not improved with further neuromuscular 

development. More subtle RyR modifications, such as the missense single amino acid 

changes, may allow for improvement in thrashing rate with neuromuscular 

development. 

 

If the variants are affecting calcium homeostasis in the neuro-muscular system, the 

less developed animals may well be more sensitive to the RyR variants than the wild 

type. Alternatively, animals with a defective ryanodine receptor may be able to 

gradually compensate for the channel’s dysfunction with age. There is a tight control 

system in place around the calcium channel, which may respond by adjusting amounts 

or activities of other neuromuscular components involved in controlling calcium ion 

levels in different compartments. 
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A 

 

B 

Mean and standard deviation of L1 thrashing rate in S medium for wild type, the CB540 

(unc-68(e540)) null mutant and RyR variant C. elegans strains. 

 

 

 

 

 

 

 

 

 

Figure 3.5: Thrashing rate in S medium is reduced in all RyR variant strains at the L1 

stage. 

Thrashing rate in S medium, in body bends per minute, for RyR variant strains, 

labelled by the human variant they correspond to, along with the wild type and the 

CB540 (unc-68(e540)) null mutant. Comparisons are between strains as L1s in the 

absence of halothane. 25 individuals were examined per strain. (A) Boxes indicate the 

median and interquartile range, with whiskers to the 10-90 percentile, outliers as 

dots, and + to indicate the mean. ** P<0.005, n.s = not significant (one-way ANOVA, 

with Tukey’s multiple comparison test). (B) Mean and standard deviation (SD) of 

thrashing rates, measured in body bends per minute, of L1 C. elegans in S medium. 
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Box shading is consistent with the colour coding used 
throughout this thesis. RyR variant strains are listed 
according to the human variant they correspond to. 
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3.4. Discussion 

The aim of this research was to confirm hypersensitivity of the RyR variant strains 

when the variant is expressed at the native genomic locus. A higher halothane 

concentration than expected was required to see clear hypersensitivity, 5 mM instead 

of 2.5 mM halothane, based on prior observation with expression of the variants from 

an extrachromosomal array. Aged RyR variant strains were found to be similarly 

sensitive to halothane as their young adult counterparts, still showing hypersensitivity 

compared to wildtype. The hypersensitivity of these RyR variant strains to halothane 

supports the use of these worms as a model for the effects these RyR1 variants may 

have on the human population. Following on from this, the presence of a subtle 

locomotion at a range of ages, from L1 to old adults, is a novel result and may be of 

significance to human carriers of RyR1 variants and requires further, in depth, 

assessment. 

 

3.4.1. RYR1 gene variants expressed at the endogenous level in C. elegans show 

hypersensitivity to halothane 

Previously, consequences were found for mutations equivalent to known RyR1 disease 

variants in unc-68 expressed in C. elegans as extrachromosomal arrays (Nicoll Baines et 

al., 2017). These consequences have now been observed again but with the mutations 

being expressed from the natural genomic location, rather than from 

extrachromosomal arrays. 

 

Previously, generation of an extrachromosomal array strain carrying the hR4861H 

modification did not rescue the unc-68 null mutant phenotype (Nicoll Baines et al., 

2017). Here, this same modification in the genome-edited strains resulted in an 

apparently null phenotype, suggesting that the presence of this change in the UNC-68 

protein eliminated the function of the ryanodine receptor. Indeed, not one example of 

an hR4861H RYR1 allele was identified amongst the 125,748 exome sequences or the 

71,702 genome sequences on gnomAD (Karczewski et al., 2019), let alone an example 

of a homozygote. Therefore, the human R4861H RyR1 may also be non-functional, 

even though the heterozygous state is viable (see section 6.3.1). Similarly, in 
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C. elegans, the unc-68 null phenotype was rescued in the extrachromosomal array 

model of the heterozygous hR4861H state (Nicoll Baines et al., 2017). 

 

Transgene overexpression has been found to result in a more severe phenotype than 

when the same mutation is introduced via targeted knock-in (Prior et al., 2017). It is 

likely that the RyR variants present in high copy number as an extrachromosomal array 

resulted in additional variant channels existing in the animal. This may explain why, 

upon exposure to 2.5 mM halothane a greater sensitivity was seen in the 

extrachromosomal array strains than the genome-edited strains. With additional 

defective channels present in the transgenic strains, the consequences were more 

severe, and a higher dose of halothane would be required to see a similar effect in 

animals where the variant channels are only expressed at the endogenous level. 

 

While hypersensitivity was observed in all of the RyR variant strains in the highest 

concentration of halothane, varying levels of sensitivity were seen by different strains 

in lower concentrations. In humans, different MH associated RYR1 genotypes respond 

differently to halothane, caffeine and ryanodine (Carpenter et al., 2009b). Carpenter et 

al. (2009b) assessed muscle samples from patients with known RYR1 variants for their 

responses to known triggers of the calcium channel and compared them to the 

response for the most common RyR1 variant, G2434R. Of the 22 RyR1 variants 

assessed, five also feature in this work. When muscle biopsies were exposed to static 

caffeine the samples from carriers of these five variants showed severe contraction 

reactions, compared to the most common variant. The same comparison was made for 

response to static halothane, and only two of these five, R163C and R2454H, were 

more sensitive and experienced more tension than the G2434R control variant. Upon 

application of dynamic halothane, the R2454H variant no longer showed increased 

sensitivity, while the R2163H variant still did. Many other variants were also assessed, 

with different responses in some conditions and not others, suggesting that the 

variants respond differently to each trigger (Carpenter et al., 2009b). Here, only one 

type of analysis was conducted, sensitivity to one concentration of halothane at a 

time. Both the human biopsy study and the work conducted here show that different 

RyR variants result in varying severities of responses when exposed to triggering 

agents. 
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3.4.2. Endogenous expression of ryanodine receptor variants reveal subtle locomotion 

defects 

No locomotion defect was found for the RyR variant extrachromosomal array strains 

(Nicoll Baines et al., 2017) and it is often said that MH is asymptomatic, apart from the 

response to anaesthetics (Robinson et al., 2006). However, in this work a novel 

phenotype in the absence of halothane was found in several RyR variant strains. The 

extremely subtle phenotype was not initially detected until cumulation of the data and 

comparison to the wild type was done. The apparent locomotion defect was then 

questioned for accuracy. The S medium buffer and its components were remade and 

the assay of the wild type was repeated directly alongside strains that showed an 

apparently subtle locomotion phenotype. The result was always reproducible. 

 

It is possible that while the presence of additional defective RyR channels in the 

extrachromosomal array strains made them more sensitive to a lower dose of 

halothane, their presence also masked the subtle locomotion phenotype in the 

absence of halothane. If the variant RyR channels operate only sub-optimally, 

additional channels may enable the muscle cell to regulate calcium more effectively, 

thus disguising the slightly reduced thrashing rate. 

 

Although MH patients are referred to as asymptomatic in the absence of a trigger, 

other RyR1-related diseases do show inherent consequences for neuromuscular 

function (MacLennan, 2000; Robinson et al., 2006; Illingworth et al., 2014; Laforgia et 

al., 2018). Individuals with Central Core Disease (CCD) associated RYR1 variants range 

from asymptomatic to having severe disability as a result of muscle weakness 

(MacLennan, 2000; Robinson et al., 2006). The variants R163C and R2163H are both 

associated with CCD (Robinson et al., 2006). The hR163C variant strain exhibited 

reduced thrashing speed in S medium alone as both young and old adults, as well as 

demonstrating the reduced thrashing seen by all strains as L1s. The hR2163H variant 

strain showed the subtle locomotion defect as old adults, suggesting some age-related 

effect for this phenotype. RYR1-related congenital myopathies are the most common 

congenital myopathies; >90% of CCD patients have been identified as carrying an RYR1 

variant (Todd et al., 2018). The presence of measurable muscle weakness resulting in 
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disability in CCD gives support to the subtle locomotion defects found here, in the 

absence of an MH triggering agent. While CCD is only associated with two variants 

assessed in this work, subtle locomotion defects are seen in additional variant strains, 

not just those associated with CCD. Such subtle defects, as seen here, for RyR1 variants 

in humans would likely go undetected due to the large amount of variation inherent in 

the human population. These locomotion defects are explored further in chapter 4. 

 

3.4.3. Ryanodine receptor variants have age-related consequences for locomotion in 

C. elegans 

The very subtle locomotion defect seen for the hR2163H variant in the absence of 

halothane in the old adults, described above, was also detected in other variant 

strains. Although statistical significance for this locomotion defect was only seen 

between wild type and four variant strains, the hN2342S variant may also exhibit an 

age-related locomotion defect. Further to this, reduced thrashing was seen for old 

adults in the intermediate concentrations of halothane by five of the variant strains. 

 

The lack of statistical significance for the reduced thrashing rate of old adults was 

attributed to the increased variance in the data seen with age. The increase in variance 

of genetically identical individuals within a strain, with age, is of interest. It has been 

suggested previously that at least one factor controlling age-related decline in 

locomotion is stochastic (Herndon et al., 2002). A same-age, isogenic C. elegans 

population was assessed for deteriorating locomotion phenotypes across their 

lifespan, and it was found that individuals’ time to onset and rate of locomotion 

decline varied greatly, and better predicted lifespan than chronological age. This may 

suggest that the strains for variants with more reduced locomotion in the old adults 

would have a shorter lifespan than those with less affected thrashing rates. It may also 

suggest that, in strains with more variance at old age, the RyR variant is having a 

greater effect on the stochastic factor(s) that affect age-related decline in locomotion. 

While lifespan was not assessed here, it has been assessed previously for RyR variants 

expressed as extrachromosomal arrays in C. elegans and found to be reduced in the 

variant strains (Nicoll Baines et al., 2017). 



Modelling MH in the worm  

 

67 

While there was limited statistical power due to the numbers of individuals examined, 

further investigation could reveal that more RyR variant strains demonstrate 

differences to the wild type, with age. Assessing this number of strains at old age is 

relatively intensive work, even for C. elegans, but these preliminary results offer an 

important starting point for further investigation. This result suggests that RYR1 

variants may have subtle age-related effects on carriers. Indeed many links have been 

made between ageing and the ryanodine receptor (Delbono et al., 1995; Renganathan 

et al., 1997; Clodfelter et al., 2002; Zhu et al., 2005; Jungbluth et al., 2009; Løseth et 

al., 2013; Gaboardi et al., 2018). If indeed the RyR is contributing to age-related 

decline in muscle function, a variant with a subtle effect on channel function could well 

have further consequences. The effects of old age on locomotion are explored further 

in chapter 4. 

 

Interestingly, old age was not the only life stage to show an age-specific effect on 

locomotion. RyR variant strains in their first larval stage exhibited a strongly reduced 

rate of thrashing in liquid when compared to the wild type. In comparison only some 

of these unc-68 mutations showed a significant reduction at the young and old adult 

stages. In C. elegans the nervous and muscular system undergo postembryonic 

development from the L1 to the young adult stage (Sulston and Horvitz, 1977). Five of 

the eight motor neuron classes are generated at the end of L1, as well as 14 of the 95 

body wall muscles present in the adult are generated at the end of L1. Furthermore, 

during the L1 stage one class of ventral cord motor neuron undergoes complete 

synaptic reorganisation for synaptic connections to the dorsal and ventral body wall 

muscle. With so much development of the neuromuscular system during and after the 

L1 stage, it is possible that mutations affecting the calcium levels in the neuromuscular 

system have larger effects on these cells at this age. It is also possible that the simpler 

neuromuscular system of this life stage makes L1 stage C. elegans more sensitive to 

perturbation in RyR function.  

 

It is speculated that the physiology of the worm could adapt gradually across the 

lifespan specifically to subtle defects in RyR function and calcium ion regulation, due to 

the presence of RyR variants. Such adaptation would allow locomotion to progressively 

improve with age. The ryanodine receptor is tightly controlled through interactions 
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with a number of other proteins, forming a macromolecular complex. It is possible that 

this large regulatory complex could allow for such an adaptation to occur. Other 

proteins are also involved in calcium ion distribution across the sarco- and 

endoplasmic reticulum membrane and could contribute to such compensation. A 

compensatory mechanism has been suggested previously in mouse models of RyR1 

variants, which is discussed in detail in section 4.4.2 (Andronache et al., 2009). Further 

analysis on thrashing rate in S medium could be conducted at all larval stages and at 

several intermediate adult stages to find evidence of such adaptation.  

 

3.4.4. Sensitivity to halothane is not affected by age in most ryanodine receptor variant 

strains 

The effect of age on halothane sensitivity for human carriers of RyR1 variants is not 

readily available. Here, aged C. elegans were exposed to the same halothane 

concentrations as the young adult animals. The lack of increased reaction to halothane 

in aged animals, compared to their young adult counterparts, suggests that variant 

RyRs are fully compromised by 5 mM halothane as young adults. With such dramatic 

reductions in thrashing in S medium at old age compared to young adult, it would be 

expected that a similar reduction would be seen in 5 mM halothane. Part of this 

reduction in thrashing speed would be due to halothane sensitivity and part to ageing 

effects. However, locomotion of young and old adult RyR variant strains in 5 mM 

halothane were not distinguished, except in two cases, suggesting that the halothane 

effect in young adults is to such an extent that no age-related effects can be seen in 

old adults. 

 

The exception to the lack of age-related decrease in thrashing rate in halothane in RyR 

variant strains with age, are the strains for variants hK3452Q and hR4861H. Both show 

an age-related decrease in thrashing rate in 5 mM halothane. The hK3452Q variant is 

linked to an age-specific RyR1-related myopathy and so this result is not surprising 

(Jungbluth et al., 2009; Løseth et al., 2013). Previously this variant was found to have 

an age-related caffeine response (Nicoll Baines et al., 2017). The increase in halothane 

response for hR4861H mirrors what was seen for the unc-68 null mutant, once again 

suggesting this variant disrupts RyR function entirely. 
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Chapter 4 

Investigating the subtle locomotion phenotype found in the absence of a 

malignant hyperthermia trigger in C. elegans ryanodine receptor variant 

strains: Quantifying crawling 

4.1. Introduction  

4.1.1. Aim of this chapter 

The aim of the research described in this chapter was to quantify the locomotion 

defects described in chapter 3. Subtle differences in thrashing rate between several 

RyR variant strains and wild type were observed. However, the cause of these 

differences could only be speculated upon. By exploring how locomotion differs 

between wild type and these RyR variant strains, the mechanism underlying the 

change can begin to be unravelled. Since a locomotion defect was observed in both 

young and old adult RyR variant strains in liquid both of these life stages were 

investigated. 

 

4.1.2. C. elegans locomotion 

For the first time, locomotion defects were observed in strains carrying mutations in 

unc-68 equivalent to known human RyR1 variants in the absence of an MH triggering 

agent. These defects were identified in liquid thrashing assays and C. elegans is 

routinely maintained on an agar surface, where it crawls. Crawling is restricted to the 

flat surface of the agar plate with the animal lying on its left or right side; animals 

propel themselves forward in the form of a wave by alternatively contracting dorsal 

and ventral muscles (Seddon, 2016; Shaw et al., 2018) (Figure 4.1). Crawling on an agar 

surface and thrashing in liquid are two forms of locomotion in C. elegans, however, it is 

debated whether these are two distinct gaits or two ends of a continuum (Pierce-

Shimomura et al., 2008; Vidal-Gadea et al., 2011; Boyle et al., 2012). The worm’s 

crawling locomotion is well understood (Berri et al., 2009; Zhen and Samuel, 2015). 

Therefore, this was considered the best focus for quantification of the subtle 

locomotion differences that were observed for several of the RyR variant strains, 

compared to wild type, at young and old adult stages in liquid (chapter 3).  
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Figure 4.1: Arrangement of adult hermaphrodite body wall muscle. 

Body wall muscles are arranged in four sets of longitudinal bundles, each containing 

24 interleaved muscle cells, except for the ventral left quadrant (VL) that has 23 as 

shown in a filleted adult hermaphrodite (A). (B) A cross-section through an adult 

hermaphrodite shows arrangement of muscle quadrants. Dorsal Left (DL), Ventral 

Left (VL), Ventral Right (VR) and Dorsal Right (DR) body wall muscle quadrants are 

indicated; ventral nerve cord (VNC) and dorsal neve cord (DNC) are shown. The body 

A B 

C D 
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wall is separated from the digestive and reproductive systems by the pseudocoelom. 

Excitation of the VB motor neurons activates the ventral muscle cells (Ventral BWM) 

and excitation of the DD motor neurons inhibits contraction of dorsal muscle cells 

(Dorsal BWM) (C). This pattern of excitation results in the body bending away from 

the dorsal side (D). Created with BioRender (https://biorender.com/) based on 

information from Sulston and Horvitz (1977) (A), Altun and Hall (2009b) (B) and White 

et al. (1986) (C). 

 

Crawling is a slower motion than the thrashing motion discussed previously and 

measuring parameters of crawling is easier than for thrashing. The slower and more 

restricted locomotion on an agar plate, compared to in liquid, may put greater or 

lesser demands upon an RyR variant challenged neuromuscular system due to the 

increased resistance and/ or slower speed of locomotion. In ‘the wild’ the worm would 

move in a three-dimensional environment, which has been observed and measured in 

a laboratory setting but is much harder to parameterise (Holbrook, 2016; Shaw et al., 

2018). Therefore, only the restricted, two-dimensional, crawling locomotion will be 

described here. 

 

The wave generated by the alternative contraction of ventral and dorsal body wall 

muscles travels posteriorly along the body length (Seddon, 2016). The body wall 

muscles of the worm are organised into four longitudinal bundles, dorsal left (DR), 

dorsal right (DR), ventral left (VL) and ventral right (VR) (Figure 4.1A and B). Each 

longitudinal bundle is made up of 23 or 24 paired muscle cells in an interwoven 

pattern (Sulston and Horvitz, 1977).  

 

For sinusoidal forward locomotion, the body wall muscles are innervated by four 

classes of ventral nerve cord (VNC) motor neurons, VB, VD, DB and DD (White et al., 

1986) distributed along the length of the worm (Figure 4.1C). The B-type motor 

neurons, VB and DB, are stimulatory cholinergic neurons (Duerr et al., 2008), while the 

D-type, VD and DD, are GABAergic and inhibitory (McIntire et al., 1993). The D-type 

inhibitory motor neurons are post synaptic to the A and B-type excitatory motor 

neurons, which allows the B-type motor neurons to excite the muscle cell, as well as 

the D-type motor neurons on the opposite side of the body inhibiting the opposite 

https://biorender.com/
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muscle cell (Pereira et al., 2015; Zhen and Samuel, 2015). For a body bend away from 

the dorsal side, the ventral body wall muscles would be excited to contract, via the VB 

motor neurons, while contraction of the dorsal body wall muscles would be inhibited 

by activation of the inhibitory DD motor neurons (Riddle et al., 1997). This would lead 

to the ventral side body contracting while the dorsal side body relaxed, resulting in a 

bend away from the dorsal side of the animal (Figure 4.1D). While the neural network 

controlling excitations of the VB, VD, DB and DD motor neurons and sinusoidal 

locomotion is more complex than this, this basic explanation of sinusoidal wave 

propagation is sufficient for purposes here. 

 

Propagation of the sinusoidal wave down the body requires coordination of the 

neuromuscular system (Riddle et al., 1997). Motor neurons are connected to muscle 

cells via neuromuscular junctions (NMJs). In most organisms, neurons send processes 

to their target muscle cells to make synapses; in C. elegans it is the muscle cells that 

have processes, muscle arms, which extend toward the motor neurons (Dixon and Roy, 

2005). Nevertheless, the principles of synaptic transmission at NMJs remain the same. 

As described previously, calcium plays an important role in neurotransmission, 

increasing calcium ion concentration in presynaptic terminals upon receipt of an action 

potential triggers neurotransmitter release (Südhof, 2012). Upon excitatory 

neurotransmission at NMJs, the sarcolemma of C. elegans muscle cell is depolarised. 

Calcium signalling also plays an important role in E-C coupling required for muscle 

contraction (Ríos et al., 1991). Calcium mishandling in the neural and/ or muscular 

system may have large consequences for the sinusoidal wave of C. elegans crawling.  

 

RyR1, the human protein in which the variants studied here are found, is often 

considered the skeletal muscle isoform of this calcium ion channel (Marks et al., 1989; 

Takeshima et al., 1989). However, RyR1 is also present in other excitable cells, such as 

nerve cells in the brain, as described previously (Zissimopoulos et al., 2006; Abu-Omar 

et al., 2018). The only C. elegans ryanodine receptor, UNC-68, is found in both muscle 

and neural tissues (Maryon et al., 1996). Quantifying parameters of the crawling 

sinusoidal waveform and how they change in the RyR variant strains compared to wild 

type may be used to infer how RyR function is perturbed by the presence of each 

variant. The RyR variants could have different consequences for calcium release in 
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different cell types in the worm, meaning how they alter calcium release in neural cells 

may not be the same in muscle cells.  

 

The body shape generated by alternatively contracting body wall muscles in C. elegans 

during forward crawling locomotion results in a movement that resembles a 

transverse wave. Therefore, the locomotion of C. elegans can be quantified by 

studying wave parameters such as amplitude, wavelength and frequency (Figure 4.2A).  

 

A        B 

  

Figure 4.2: Quantifying C. elegans locomotion using parameters that describe a wave. 

(A) Amplitude, wavelength and frequency are parameters used to describe a wave. 

Amplitude is the distance from equilibrium to the peak (or trough), shown in blue. 

The wavelength is the distance between two successive amplitudes, shown in red. 

The frequency is the number of oscillations (one oscillation is shown in green) per 

second, measured in Hertz (Hz). (B) A single C. elegans is shown crawling across an 

agar plate, the path of the worm is traced in white; although the worm is moving in 

time the wave path it is tracing out is not. Image captured in ImageJ (Schneider et al., 

2012), and the path traced by hand and overlaid. The parameters in A can be used to 

describe the wave form of the worm crawling in B. 

 

The amplitude of the wave is defined as the distance that the wave moves on either 

side of the equilibrium position (Figure 4.2A in blue). The distance between two 

successive amplitudes of the wave, and therefore the distance the wave travels for 

one oscillation, is defined as the wavelength (Figure 4.2A in red). The frequency is the 

number of oscillations per second (Hz). While the body of the worm forms the shape 

of a wave, the wave shape never moves in time, but the animal’s body forms a new, 
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static, wave shape (Figure 4.2B). Due to the crawling locomotion only resembling a 

transverse wave, the speed of crawling was assessed and refers to the speed at which 

the worm moves, not the speed of the wave. The degree of curvature of body bends 

was also analysed to understand how the RyR variants affect muscle contraction 

during crawling. Together, these parameters were used here to investigate the 

consequences that RyR variants in C. elegans have on crawling locomotion. 

 

4.2. Methods 

4.2.1. Locomotion analysis via multi-worm tracking 

Animals were grown to the appropriate age as described (see section 2.3) factoring in 

the developmental delay seen for the unc-68 null mutant and hR4861H variant strain 

(see section 2.3.1). One unseeded 90 mm 25 ml NGM plate at 20C was prepared per 

strain at each life stage. Prior to recording, a 1 mm scale was placed face down on the 

NGM surface and a picture captured, the scale was then carefully removed. 20-30 

individuals per strain at each life stage were transferred to the plate, avoiding transfer 

of food. The animals were recorded crawling freely for 1 minute. 

 

Videos were recorded using a multi-worm tracker system set up by, and used with 

permission of, the Cohen group at the University of Leeds (Figure 4.3). The system uses 

a Navitar telemetric lens and a Ximea xiQ USB camera to capture video of worms 

crawling on an NGM plate, with dark field illumination by a PolyTech LED red light ring. 

Videos were recorded at 25 fps using StreamPix 7 (version 7.2.1). Scales were 

calculated for each video using ImageJ software (Schneider et al., 2012). 

 

4.2.2. Video analysis 

Videos were analysed, post-recording, using TierpsyTracker 1.4.0 software (Javer et al., 

2018). Prior to analysis parameters were set for each video. Each video had its own 

precise scale set, as measured previously in ImageJ (Schneider et al., 2012). Frame rate 

was always 25 fps and the automatic ‘Light Background’ option was unchecked. Due to 

the red-light ring animals appeared white on a dark background. The minimum area 

that could be determined as a worm was set between 50 and 100 pixels to reduce 
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noise from debris on the plate being mistakenly tracked. Recordings of the unc-68 null 

mutant and the hR4861H variant strain had smaller minimum areas than wild type and 

the other RyR variant strains, due to their reduced size. 

 

   A          B 

        

Figure 4.3: Multi-worm tracker system set up. 

The multi-worm tracker system was used with permission of the Cohen group. A 90 

mm agar plate (C) was placed on a transparent block (A) and lit by a red-light ring (B). 

The use of a red-light ring is to illuminate the animals and increase the contrast 

between the transparent animals and the background, allowing easier detection in 

post-video analysis. A telemetric lens (D) was attached to a Ximea USB camera (E). 

 

Analysis examples, available online (https://github.com/aexbrown/tierpsy_tools) were 

used to work with the timeseries data directly by reading the ‘features’ files from 

TierpsyTracker 1.4.0 in MATLAB. Some code was adapted by Omer Yuval from the 

Cohen group at the University of Leeds and used with permission. Raw length, 

maximum amplitude, primary wavelength, midbody crawling frequency and midbody 

crawling speed values were extracted for each strain. To extract data, features files 

from TierpsyTracker 1.4.0 were converted and opened in MATLAB. Data was available 

per frame, per individual, for each parameter, for each strain.  

 

https://github.com/aexbrown/tierpsy_tools
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Worm lengths were manually measured for comparison to extracted worm length data 

to ensure accuracy of the software (Figure 4.6). The length of 5 individuals per strain 

were measured in 5 random frames using ImageJ (Schneider et al., 2012), for a total of 

25 measurements per strain. 

 

4.2.3. Worm Length, crawling speed and waveform parameters 

Worm length, crawling speed, maximum amplitude, primary wavelength and midbody 

frequency of each worm in each frame of each video was measured by TierpsyTracker 

1.4.0 (Javer et al., 2018).  

 

Worm length was measured as the length of the skeleton, in micrometres (m). The 

skeleton is calculated as the midline of the animal from head to tail. This value was 

calculated for each of 20-30 individuals in each frame of the 1 minute video for each 

strain. 

 

The maximum amplitude is measured as the maximum distance between the midline 

and peak or trough of the worm’s sinusoidal wave, in micrometres (m) (Figure 4.2A). 

This value was calculated for each of 20-30 individuals in each frame of the 1 minute 

video for each strain. These values were then divided by the length of the strain to 

account for differences in worm length. The amplitude:length ratios were then 

compared between strains. 

 

The same approach was used for primary wavelength. The primary wavelength is a 

measure of the largest wave in each frame for each individual, in micrometres (m) 

(Figure 4.2A). Again, the values for wavelength were calculated as a fraction of the 

length. 

 

The frequencies presented here were calculated for the midbody. Frequency is a 

measure of the number of oscillations completed per second, in Hertz (Hz). Worm 

crawling speed was also determined for the midbody and is a measure of micrometres 

moved per second (m/s). Frequency and speed values were converted to positive as 

directional distinctions were not considered significant for this research. 
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The data points recorded for each of the 20-30 animals per strain were merged into 

one data set for each strain. To confirm the compiled data set extracted for each strain 

was an accurate reflection of individual variation, the crawling parameters of individual 

animals for wild type were also extracted and compared (Appendix F). 

 

4.2.4. Degree of curvature  

In order to quantify the effects of RyR variants on degree of muscle contraction the 

degree of curvature was measured (Kalogeropoulou, 2018) (Figure 4.4). The sharpness 

or flatness of a curve is defined by the degree of curvature; a flatter curve has a 

smaller degree of curvature and vice versa. Degree of curvature was measured for 26 

individuals in random frames from the recorded videos, for each strain, using 

GeoGebra version 6.0562.0, www.geogebra.org (Hohenwarter, 2002).  

 

       

    

Figure 4.4: Measuring the degree of curvature for RyR variant strains. 

Elements of a curve (A), adapted from http://www.tpub.com/inteng/11a.htm 

(Integrated publishing Inc.), used to measure degree of curvature of an individual (B). 

A circle was drawn fitting to the curve of the outside body wall of the worm. Backward 

and forward tangents, D and E, were drawn passing through the start and end of the 

curve, points A and B.  is the degree of curvature measure at C. Degree of curvature 

was only measured on animals showing regular undulatory forward crawling.  

 

A B 

http://www.geogebra.org/
http://www.tpub.com/inteng/11a.htm
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4.2.5. Kymograms 

Kymograms provide a visual representation of worm crawling. The spatial position of 

points along the body across time and the frequency with which the wave is 

propagated down the body axis can be seen; kymograms are used to show curvature 

along the body (Denham et al., 2018). Colours represent bend angles, with dark blue 

and dark red representing deep dorsal or ventral bends (Figure 4.5). Inclination and 

overlap between stripes reflect the frequency and wavelength of the crawling wave 

form. 

 

Figure 4.5: Kymograms show curvature down the body axis. 

The colour in the kymograms indicates degree of dorsal/ ventral curvature, yellow/ 

blue high curvature, green no curvature, at different positions along the major body 

axis for each frame of the video recording. In this research red and blue were used to 

show dorsal and ventral curvature to increase the scale (Figure 8). 

 

Kymograms were extracted for all individuals per strain; one representative figure for 

one individual at young and old adult, per strain, is presented here (Figure 4.10 and 

G.3).  

 

4.3. Results 

4.3.1. Ryanodine receptor variants affect young adult worm length 

The amplitude and wavelength of the sinusoidal wave of C. elegans rely, in part, on the 

absolute size and length of the animal. To remove worm length as a factor impacting 

these measures, the mean length for each strain was first assessed.  
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Young adults were recorded moving freely for 1 minute. The absolute length of the 

animals was measured in TierpsyTracker 1.4.0 (Javer et al., 2018) and verified by hand 

measuring several individuals using ImageJ (Schneider et al., 2012) (Figure 4.6). This 

was to validate the worm tracking software and ensure that it was able to extract 

measurement data in a reliable and accurate manner.  

 

Young adult wild type C. elegans are referred to as ‘approximately 1 mm long’ (Corsi et 

al., 2015). Here, wildtype average worm length was 1155 m (±79 m) (Figure 4.6A). 

The unc-68 null mutant strain had the shortest average worm length at young adult, 

892 m (±169 m), in agreement with this strain being described as smaller than wild 

type (Maryon et al., 1998). The automatically extracted wild type and null mutant 

worm lengths were consistent with the hand measurements (Figure 4.6B). 

 

Once again, the hR4861H variant strain appeared similar to the unc-68 null mutant 

with a young adult mean length of 968 m (±125 m), again alluding to this variant 

severely affecting UNC-68 function. That both of these strains are shorter than wild 

type as young adults is, perhaps, not surprising given the developmental delay 

observed for these strains. Interestingly, the other RyR variant strains had a range of 

median lengths, suggesting that the presence of these variants may also affect 

development.  

 

Strains other than the null mutant and hR4861H variant strain were anecdotally noted 

as developing a little slower, sometimes not having as many eggs present as other 

strains when they were all synchronised at the same time 

 

Strains for variants hR163C, hG341R and hR2458H were found to be shorter than wild 

type, measured as 1001 m (±90 m), 1089 m (±59 m), and 998m (±47 m) long 

respectively (Figure 4.6A). It was these three variant strains that were initially found to 

have reduced thrashing rates in S medium as young adults (Chapter 3), the results that 

led to this in-depth analysis of crawling. That these three variant strains were shorter 

than wild type and showed differences from wild type when swimming in liquid seems 

likely to be causally related. 
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Strain (variant) Image used for hand measuring Hand measured length Tracker average length 

 

 

1.15 mm 1.16 mm Wild type 

 

 

 

1.21 mm 1.28 mm hR2163H 

 

 

 

1.00 mm 1.00 mm hR2458H 

 

 

 

0.85 mm 0.87 mm unc-68 null 

 

Mean and standard deviation of young adult 
worm length for wild type, the CB540 (unc-
68(e540)) null mutant and RyR variant 
C. elegans strains. 

  

Worm length (m) 

Mean SD 

Wild type 1155 79 

hR163C 1001 90 

hG341R 1089 59 

hR2163H 1278 88 

hN2342S 1202 121 

hR2454H 1119 75 

hR2458H 998 47 

hK3452Q 1042 61 

hR4861H 986 125 

unc-68 null 892 169 

Box shading is consistent with the colour coding used 
throughout this thesis. RyR variant strains are listed 
according to the human variant they correspond to. 

A B 

C 
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Figure 4.6: The presence of RyR variants affect the length of young adults.  

(A) Worm length, extracted from 1 minute long, 25 frames per second, video 

recordings of 20-30 individual young adults, for RyR variant strains, labelled by the 

human variant they correspond to, along with the wild type and the CB540 (unc-

68(e540)) null mutant, were compared. Boxes indicate the median and interquartile 

range, with whiskers to the 10-90 percentile and + to indicate the mean. Strains 

shorter than wild type are indicated with a red diamond. (B) Mean and standard 

deviation (SD) of young adult worm lengths, in micrometres, extracted from video 

recordings. (C) Hand measurements of length for one individual of wild type, the unc-

68 null mutant and the largest and smallest RyR variant strains, hR2163H and 

hR2458H, were found to be in agreement with the average length measurements 

from the extracted compiled data set produced by TierpsyTracker 1.4.0. Both the 

hand measurement and mean measurement from the data analysis are shown to two 

decimal places in mm. Picture box outline and strain name colour corresponds to the 

strain’s colour in the box plot above. 

 

The hK3452Q variant strain was also found to be slightly shorter than wild type, with a 

mean length of 1042 m (±61 m) (Figure 4.6A). The strain for variant hR2454H had a 

very similar length to wild type, measured at 1119 m (±75 m). Only two variant 

strains were found to be longer than wild type, strains for variants hR2163H and 

hN2342S were found to be 1278 m (±88 m) and 1202 m (±121 m) long, 

respectively 

 

UNC-68 is present in the pharynx and contributes to pharyngeal pumping; the unc-68 

null mutant has a reduced pumping rate (Maryon et al., 1998). Bacteria is the food 

source of C. elegans in laboratory conditions and is consumed by C. elegans by 

pharyngeal pumping. Either neural and/ or muscle function required for pharyngeal 

pumping may be affected by the presence of these variants in unc-68, resulting in 

reduced feeding rate and consequently slower growth rate and shorter size at the 

onset of egg laying. 
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4.3.2. The sinusoidal wave of crawling in young adult C. elegans is affected by the 

presence of ryanodine receptor variants 

The different average lengths of different worm strains has a consequence for any 

crawling parameters that are a measure of distance. As amplitude is a measure of the 

distance between the equilibrium and peak or trough of the wave, and wavelength a 

measure of the distance the wave travels in one oscillation, these measurements were 

assessed with respect to worm length (Figure 4.2A). 

 

The crawling amplitudes of RyR variants, including the hR4861H variant strain, when 

expressed as a ratio of amplitude to length, were statistically significantly smaller than 

wild type (Table 4.1, Figure 4.7A). The average amplitude:length ratio for wild type was 

indistinct from the unc-68 null mutant (P=0.99, One-way ANOVA with Tukey’s multiple 

comparisons). 

Strain 
(variant) 

Amplitude:Length Wavelength:Length Frequency (Hz) 

Mean SD Mean SD Mean SD 

Wild type 0.184 0.061 0.63 0.16 0.35 0.10 

hR163C 0.183 0.060 0.58 0.09 0.48 0.13 

hG341R 0.170 0.051 0.58 0.08 0.46 0.08 

hR2163H 0.177 0.056 0.61 0.09 0.40 0.11 

hN2342S 0.163 0.051 0.61 0.13 0.49 0.13 

hR2454H 0.177 0.061 0.59 0.12 0.44 0.15 

hR2458H 0.165 0.043 0.55 0.08 0.43 0.10 

hK3452Q 0.174 0.051 0.59 0.09 0.43 0.11 

hR4861H 0.164 0.064 0.69 0.26 0.29 0.27 

unc-68 null 0.185 0.082 0.70 0.25 0.22 0.22 
Box shading is consistent with the colour coding used throughout this thesis. RyR variant strains are listed 
according to the human variant they correspond to. Amplitude and wavelength are corrected for length. 
Amplitude is shown to three decimal places, and wavelength and frequency to two. 

 

All RyR variant strains, except the hR4861H variant strain, had a statistically 

significantly smaller wavelength:length ratio than wild type (P<0.005, One-way ANOVA 

with Tukey’s multiple comparisons) (Table 4.1, Figure 4.7A). The unc-68 null mutant 

and the hR4861H variant strain had statistically significantly larger wavelength:length 

ratios than wild type (P<0.005, One-way ANOVA with Tukey’s multiple comparisons). 

Table 4.1: Mean and standard deviation (SD) of crawling parameters amplitude, wavelength 

and frequency for the RyR variant strains, wild type and the CB540 (unc-68(e540)) null mutant.  
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When the values obtained after amplitude and wavelength are expressed as a ratio to 

length were plotted together the RyR variant strains sat apart from wild type (Figure 

4.7A). For the most part the RyR variant strains grouped together, and separately from 

wild type and the null mutant. All RyR variant strains had a shorter amplitude:length 

ratio than wild type and all but the hR4861H variant strain had a shorter 

wavelength:length ratio. There is a slight positive correlation between 

amplitude:length and wavelength:length ratios; a larger amplitude:length ratio goes 

with a larger wavelength:length ratio, and vice versa, but this relationship was not 

statistically significant (r=0.18, P=0.63).  

 

For the first time the hR4861H variant strain was distinct from the unc-68 null mutant, 

for amplitude:length ratio. Previously this variant strain had been indistinguishable 

from the null mutant in thrashing and halothane assays (Chapter 3). This demonstrates 

that this variant is in fact non-null. 

 

Changes to amplitude or wavelength effect the degree of curvature of the sinusoidal 

waveform (Figure 4.7D and E). If absolute wavelength remained the same and absolute 

amplitude decreased the wave would be flatter and the degree of curvature would be 

smaller. If absolute amplitude remained the same while absolute wavelength 

decreased the wave would be sharper and the degree of curvature would be larger. 

Here both absolute wavelength and absolute amplitude decreased in the RyR variant 

strains, compared to wild type. If they did so by the same amount, then the degree of 

curvature would remain constant. Comparison of mean percentage change of each 

crawling parameter between wild type and each of the RyR variant strains, and the 

unc-68 null mutant, revealed that only the hN2342S variant strain had an equal change 

in wavelength and amplitude (Table 4.2), resulting in no statistically significant 

difference between wild type and the hN2342S variant strain for degree of curvature 

(Figure 4.7D).  

 

The unc-68 null mutant had a larger wavelength than wild type, by 11%, but the same 

amplitude, resulting in a smaller degree of curvature, although this was not statistically 

significant (P=0.90, One-way ANOVA with Tukey’s test) (Figure 4.7A, D and E, Table 
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4.2). The smaller amplitude of the hR4861H variant strain than both wild type and the 

unc-68 null mutant, but similar wavelength to the latter, resulted in the smallest 

degree of curvature of all strains assessed, which was statistically significantly smaller 

than wild type (P<0.005, One-way ANOVA with Tukey’s test) (Figure 4.7A and D, Table 

4.2). For the other RyR variant strains, except that for hN2342S, both wavelength and 

amplitude were smaller than wild type, but the decrease was larger for wavelength, 

resulting in a larger degree of curvature and sharper wave than wild type (P<0.005, 

One-way ANOVA with Tukey’s test for multiple comparisons) (Figure 4.7D, Table 4.2). 

 

When maximum amplitude was plotted against frequency (Figure 4.7B) the resulting 

graph was almost a mirror image of maximum amplitude versus wavelength (Figure 

4.7A). Again, the RyR variant strains grouped closely together, this time with a slight 

negative correlation between amplitude:length and frequency; a larger 

amplitude:length ratio goes with a lower frequency, and vice versa, but again this 

relationship was not statistically significant (r=-0.31, P=0.38). All RyR variant strains, 

except that for hR4861H, had a higher frequency than wild type (Table 4.1, Figure 

4.7B). The unc-68 null mutant had the lowest frequency and the hR4861H RyR variant 

has the second lowest frequency. These two strains had the largest wavelength:length 

ratios. The strain for variant hN2342S, which had no change in the degree of curvature 

compared to wild type, had the highest frequency of all strains (Table 4.1). 
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variant C. elegans strains. 

  

Degree of curvature (C°) 

Mean SD 

Wild type 65.54 8.60 

hR163C 99.44 7.11 

hG341R 89.73 10.85 

hR2163H 89.05 10.82 
hN2342S 66.33 9.36 

hR2454H 87.12 10.20 

hR2458H 90.57 10.96 

hK3452Q 94.95 10.15 

hR4861H 53.14 11.03 

unc-68 null 61.46 10.11 

Box shading is consistent with the colour coding used 
throughout this thesis. RyR variant strains are listed according to 
the human variant they correspond to. 

A

  

B C 

D E 
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Figure 4.7: The RyR variant strains have decreased amplitude and wavelength of the 

crawling waveform compared to wild type, but increased frequency.  

The mean maximum amplitude versus wavelength (A), maximum amplitude versus 

frequency (B), wavelength versus frequency (C), and degrees of curvature (D) for RyR 

variant strains, labelled by the human variant they correspond to, along with the wild 

type and the CB540 (unc-68(e540)) null mutant. Maximum amplitude and 

wavelength were normalized for worm length. Mean and SEM are indicated, 

although SEM is very small for frequency and for normalized maximum amplitude 

and wavelength (A, B and C). Correlation coefficients, where r is the strength of 

relationship and P the significance level and negative correlation is shown with a 

minus sign (-): A = r=0.18, P=0.63, B = r=-0.31, P=0.38, C = r=-0.89, P<0.005. Boxes 

indicate the median and interquartile range, with whiskers to the 10-90 percentile, 

and + to indicate the mean (D). Degree of curvature was measured for 26 individuals 

per strain. Significance is between variant strains and the wild type, apart from where 

indicated to the unc-68 null mutant, ** P<0.005, n.s = not significant (one-way 

ANOVA, with Tukey’s multiple comparison test). (E) The larger wavelength:length of 

the unc-68 null mutant compared to wild type results in a smaller degree of 

curvature; the hR2163H and hR2458H variant strains both have larger degrees of 

curvature as a result of shorter wavelengths. (F) Mean and standard deviation (SD) 

of degree of curvature, mean and standard deviation for the other crawling 

parameters shown in this figure are shown in Table 4.1. Individual box plots of 

amplitude, wavelength and frequency are available in Appendix G. 
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Strain (variant) Wavelength Amplitude Frequency 
Degree of 
curvature 

hR163C -7% -1% +38% -52% 

hG341R -7% -8% +32% -37% 

hR2163H -3% -4% +17% -36% 

hN2342S -3% -12% +42% -1% 

hR2454H -6% -4% +29% -33% 

hR2458H -12% -10% +26% -38% 

hK3452Q -6% -6% +23% -45% 

hR4861H +10% -11% -17% +19% 

unc-68 null +11% 0% -37% +6% 

Box shading is consistent with the colour coding used throughout this thesis. RyR variant strains are listed according 
to the human variant they correspond to. Percent change is calculated as ((S1-S2)/S1)*100 where S1 is the mean 
measurement for wild type and S2 is the mean measurement of the different RyR variant strains for each parameter. 
Where the strain in question showed increased compared to wild type the percentage change is indicated with a 
plus sign (+), and where it showed a decrease compared to wild type the percentage change is indicated with a 
minus sign (-). Wavelength and amplitude measures were corrected for worm length.  

 

For light, frequency and wavelength are inversely related, as all light waves travel 

through a vacuum at the same speed. If a wave is moving at a constant speed, then it 

will move a certain distance in a certain time. Wavelength (𝜆) and frequency (∱ ) can 

be used to calculate wave speed,  

𝜈 = 𝜆∱  

However, animals can move at different speeds, so the frequency wavelength 

relationship need not hold for C. elegans crawling. Despite the body of the worm 

resembling a travelling wave, the wave shape never moves through time and the 

sinusoidal wave of C. elegans body shape resembles a static wave (Figure 4.2B) 

(Seddon, 2016). Nevertheless, when crawling wavelength and frequency for different 

strains were plotted together (Figure 4.7C) a statistically significant negative 

correlation was apparent (r=-0.89, P<0.005). Higher wavelength:length ratios are 

associated with lower frequencies, and vice versa, but the speed at which animals are 

moving also had an effect on frequency. For example, the hN2342S variant had the 

highest average frequency, 0.49 Hz (±0.13 Hz), but not the shortest average 

wavelength. The hR2458H variant strain had the shortest average wavelength:length, 

0.55 (±0.08) times the length of the worm, but four RyR variant strains had a higher 

frequency.  

Table 4.2: Mean percentage change from the wild type to RyR variant strains or the CB540 

(unc-68(e540)) null mutant in wavelength, amplitude, frequency and degree of curvature 

(curve). 
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4.3.3. Crawling speed is increased in young adult ryanodine receptor variant strains 

Due to the discrepancies between frequency and wavelength for C. elegans crawling 

the midbody crawling speed of these RyR variant strains was extracted from the video 

analysis (Table 4.3). 

 

The hN2342S variant strain had the fastest crawling speed (Table 4.3), accounting for 

this strain having the highest frequency but not shortest wavelength. Despite the 

hR2458H variant strain having the shortest average wavelength:length ratio of all 

strains it had the slowest crawling speed of the RyR variants and this, therefore 

reduced the crawling frequency. As young adults, all RyR variant strains, except that 

for hR4861H, moved faster than wild type (Table 4.3). Both the hR4861H variant strain 

and the unc-68 null mutant had much slower crawling speeds than wild type and the 

other RyR variant strains, as described for the unc-68 null mutant (Maryon et al., 

1996).  

 

Wild type C. elegans was reported to have a crawling frequency of approximately 0.3 

Hz (Gjorgjieva et al., 2014), matching what was found here, with wild type having an 

average frequency of 0.35 Hz (±0.1) (Table 4.1, Figure 4.7B and C). All RyR variant 

strains, except that for hR4861H, had a higher average frequency shorter wavelength 

and amplitude and faster crawling speed than wild type (Figure 4.7, Table 4.1, 4.2 and 

4.3). It is not surprising that the RyR variant strains had a higher crawling frequency, as 

each wave is smaller than for wild type, and the RyR variant strains move more quickly, 

therefore they completed more waves in the same amount of time. While the 

hR4861H variant strain did have a similar frequency, wavelength and crawling speed to 

the unc-68 null mutant, as for thrashing rate in liquid, the amplitude of this strain was 

very different and more akin to that of the other RyR variant strains. However, the 

combination of these parameters resulted in the smallest degree of curvature of all 

strains (Figure 4.7D). This suggests that the hR4861H variant UNC-68 protein is not 

actually completely inactive as it is different to the null mutant here.  
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Strain (variant) 
Midbody crawling speed (m/S) 

Mean SD  

Wild type 198.2 94.9 

hR163C 270.9 92.4 

hG341R 263.6 57.7 

hR2163H 281.7 97.8 

hN2342S 319 104.7 

hR2454H 251.2 116.1 

hR2458H 225.3 65.4 

hK3452Q 237.1 81.9 

hR4861H 98.4 59.7 

unc-68 null 81.4 59.3 

Box shading is consistent with the colour coding used throughout this thesis. RyR variant 

strains are listed according to the human variant they correspond to. Crawling speed is 

shown to one decimal place. 

 

These data show that RyR variants do subtly affect amplitude and wavelength, and 

therefore degree of curvature, as well as frequency and speed of young adult 

C. elegans crawling. While the effects are small, with sufficient data, the consequences 

for the animal’s locomotion are measurable. 

 

4.3.4. Ryanodine receptor variant strains have altered adult growth rates 

As the ryanodine receptor has been implicated in age-related diseases and disorders 

(Clodfelter et al., 2002; Zhu et al., 2005; Gaboardi et al., 2018) crawling was also 

examined in aged C. elegans. The same procedure as used for ageing C. elegans for the 

thrashing assays was used here to produce old aged hermaphrodites, see section 2.3.2. 

Once aged, the same video and analysis pipeline was followed to generate crawling 

data for old adult animals.  

  

Table 4.3: Mean and standard deviation (SD) of midbody crawling speed for RyR variant 

strains, wild type, and the CB540 (unc-68(e540)) null mutant.  
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Figure 4.8: RyR variants affect growth rates of adult C. elegans.  

(4) Worm lengths were extracted from 1 minute long, 25 frames per second, video 

recordings of 20-30 individual young adults (YA) and 10-day old adults (OA), 

labelled by the human variant they correspond to, along with the wild type and 

the CB540 (unc-68(e540)) null mutant Boxes indicate the median and 

interquartile range, with whiskers to the 10-90 percentile, and + to indicate the 

mean. Growth rate young to old adult varied for RyR variant strains. (B) Mean and 

standard deviation (SD) of old adult worm length, measure in micrometres, young 

adult worm lengths are shown in Figure 4.6. Worm lengths of the old adults are 

presented alone in Appendix G. 
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Worm length (m) 

Mean SD 

Wild type 1401 79 

hR163C 1363 90 

hG341R 1516 59 

hR2163H 1339 88 

hN2342S 1394 121 

hR2454H 1475 75 

hR2458H 1392 47 

hK3452Q 1397 61 

hR4861H 1007 125 

unc-68 null 961 169 

Box shading is consistent with the colour coding used 
throughout this thesis. RyR variant strains are listed 
according to the human variant they correspond to. 
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As before, worm length was considered important for analysis of any length data, i.e. 

amplitude and wavelength. Adult C. elegans do continue to grow. The volume of 

ageing wild type C. elegans shows a steep increase in from hatching to young adult, 

then a small increase in the first 3 days of adult life, and finally a steeper increase in 

volume up to 6 days of adulthood, where volume plateaus (Bolanowski et al., 1981). 

 

Here, adult animals were found to have grown between the young adult and old adult 

age, 10 days later, however growth rates varied between the strains (Figure 4.8, Table 

4.4). The unc-68 null mutant and hR4861H variant strain, which were the shortest as 

young adults, grew by 8% and 2%, respectively (Table 4.4). Wild type grew by 21%. The 

two variant strains that were larger than wild type as young adults, hR2163H and 

hN2342S, grew less than wild type, by 5% and 16% respectively. The other variant 

strains that were smaller than or similar to wild type grew by 32-39%.  

 

4.3.5. Ryanodine receptor variants exacerbate age-related changes to crawling in 

C. elegans 

At the young adult stage, the RyR variant strains were more similar to each other than 

wild type or the unc-68 null mutant across the crawling parameters. For old adults, this 

is no longer true. Ageing increased wavelength and amplitude for all strains, resulting 

in a decrease in frequency as animals have to move further to complete each wave. 

Degree of curvature decreased for all strains, except that for the hR4861H variant, and 

crawling speed decreased for all strains, with age. These changes did not happen to 

the same extent in all strains (Table 4.4), and the RyR variant strains no longer formed 

a distinct group (Figure 4.9). Variation between individuals of each strain increased in 

old age. This was also seen for thrashing with age (chapter 3). 
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Strain 
(variant) 

Length 
Wavelength:

length 
Amplitude 

:length 
Frequency 

Crawling 
speed 

Degree of 
curvature 

Wild type +21% +2% +9% -33% -26% -9% 

hR163C +36% +9% +21% -49% -34% -25% 

hG341R +39% +22% +21% -56% -65% -31% 

hR2163H +5% +9% +10% -51% -64% -42% 

hN2342S +16% +14% +32% -42% -40% -11% 

hR2454H +32% +18% +25% -48% -49% -33% 

hR2458H +39% +33% +18% -62% -76% -46% 

hK3452Q +34% +23% +17% -43% -42% -44% 

hR4861H +2% +12% +21% -38% -67% +5% 

unc-68 null +8% +18% +3% -1% -57% -21% 
Box shading is consistent with the colour coding used throughout this thesis. RyR variant strains are listed according 
to the human variant they correspond to. Percent change is calculated as ((T1-T2)/T1)*100 where T1 is the mean 
measurement for young adults and T2 is the mean measurement for old adults of the different RyR variant strains 
for each parameter. Parameters that increased with age are indicated with a plus sign (+), and parameters that 
decreased from young to old adults are indicated with a minus sign (-). Wavelength and amplitude were corrected 
for worm length. RyR variants are listed according to the human variant they correspond to. 

 

 

A negative correlation was seen between amplitude and wavelength in old adults; 

higher amplitude:length ratios go with lower wavelength:length ratios, however, this 

was not statistically significant (r=-0.57, P=0.87) (Figure 4.9A). However, a statistically 

significant positive correlation was seen for amplitude and frequency, with higher 

amplitude:length ratios being seen with higher frequencies, and vice versa (r=0.64, 

P<0.05) (Figure 4.9B). Previously wavelength:length and frequency had a strong 

inversely proportional relationship, with larger wavelength:length ratios being seen in 

strains with lower frequencies, and vice versa; these crawling parameters only have a 

weak negative correlation as old adults, which was not statistically significant (r=-0.4, 

P=0.26) (Figure 4.9C). 

 

The mean percentage change in each parameter between the young and old adult 

stages (Table 4.4), and the length of the line showing how amplitude and wavelength 

with respect to length and frequency change from young to old adult (Figure 4.9D and 

E), showed how the age-related changes in crawling were different for each strain. 

 

Table 4.4: Mean percentage change from young adult to old adult in length, wavelength, 

amplitude, frequency, crawling speed and degree of curvature (curve).  
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The wild type had the smallest age-related change for wavelength:length and crawling 

speed, and no statistically significant change in degree of curvature, with age (Table 

4.4, Figure 4.9D and F); the unc-68 null mutant had the smallest change in 

amplitude:length and frequency (Table 4.4, Figure 4.9E). Effects of ageing appeared 

more exaggerated in the RyR variant strains; this is demonstrated most clearly by the 

change in crawling speed and degree of curvature, with age (Table 4.4, Figure 4.9F). 

Where all RyR variant strains, expect those for hR4861H and hN2342S, had a 

statistically significantly larger degree of curvature as young adults (Figure 4.7D), only 

the hR163C variant strain still had a statistically significantly larger degree of curvature 

in the old adults (Figure G.2E). The other old adult RyR variant strains either had 

similar degrees of curvature as old adult wild type or statistically significantly smaller 

degree of curvature. The hR2163H and hR4861H variant strains experienced the 

smallest degrees of change of the RyR variant strains with age, but both still showed 

more exaggerated age-related changes than wild type for most parameters. The 

hR2458H variant showed the most dramatic age-related changes of all strains. 
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Mean and standard deviation of old adult amplitude, wavelength, frequency and degree of 

curvature for wild type, the CB540 (unc-68(e540)) null mutant and RyR variant C. elegans 

strains. 

 
Amplitude: length 

Wavelength: 
length 

Frequency (Hz) 
Degree of 

curvature (C°) 

Mean SD Mean SD Mean SD Mean SD 

Wild type 0.20 0.07 0.64 0.12 0.23 0.12 59.43 6.81 

hR163C 0.22 0.07 0.63 0.10 0.24 0.11 74.95 10.78 

hG341R 0.21 0.08 0.71 0.18 0.20 0.15 62.16 7.89 
hR2163H 0.19 0.07 0.66 0.13 0.20 0.20 51.32 6.67 

hN2342S 0.21 0.07 0.69 0.14 0.28 0.14 58.83 6.40 

hR2454H 0.22 0.08 0.69 0.15 0.23 0.20 58.56 10.01 

hR2458H 0.19 0.08 0.74 0.18 0.17 0.18 49.02 6.39 

hK3452Q 0.20 0.06 0.72 0.17 0.24 0.13 53.59 7.86 

hR4861H 0.20 0.08 0.77 0.26 0.18 0.32 55.85 8.27 

unc-68 null 0.19 0.09 0.82 0.26 0.22 0.30 48.30 6.98 

Box shading is consistent with the colour coding used throughout this thesis. RyR variant strains are 
listed according to the human variant they correspond to. Wavelength and amplitude were corrected 
for worm length. 

 

Figure 4.9: Effect of RyR variants on crawling changes with age. 

Crawling amplitudes, wavelengths and frequencies were extracted from 1 minute 

long, 25 frames per second, video recordings of 20-30 individual young and 10-day 

old adults, degree of curvature was hand measured for random 26 individuals from 

individual frames from the video recordings. Maximum amplitude versus wavelength 

(A – old adult and D – young and old adult), maximum amplitude versus frequency (B 

– old adult and E – young and old adult), wavelength versus frequency for old adults 

(C), and degree of curvature for young (YA) and old adults (OA) (F) for RyR variant 

strains labelled by the human variant they correspond to, along with the wild type 

and the CB540 (unc-68(e540)) null mutant. Maximum amplitude and wavelength 

were normalized for worm length. Mean and SEM are indicated, although SEM is very 

small for frequency and for normalized maximum amplitude and wavelength (A-E). 

Correlation coefficients for A-C, where r is the strength of relationship and P the 

significance level and negative correlation is shown with a minus sign (-): A = r=-0.57, 

P=0.87, B = r=0.64, P<0.05, C = r=-0.4, P=0.26. The change in maximum amplitude and 

wavelength (D) and maximum amplitude and frequency (E) from young adult (hollow 

symbols) to old adult (solid symbols), is indicated by a straight line. Boxes indicate 

the median and interquartile range, with whiskers to the 10-90 percentile, outliers as 

dots, and + to indicate the mean. Significance is between young and old adult for 

G 
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each genotype, * P<0.05, ** P<0.005, n.s = not significant (one-way ANOVA, with 

Sidak’s test for pre-selected pairs) (F). (G) Mean and standard deviation (SD) are 

shown for each parameter for old adults. Mean and standard deviation of crawling 

parameters for young adult animals are shown in Table 4.1 and Figure 4.7. Individual 

box plots of amplitude, wavelength, frequency and degree of curvature for aged 

animals alone are available in Appendix G. 

 

A visual representation of crawling is provided by a kymogram. Kymograms show the 

bend angle along the body axis across time. Representative kymograms for strains as 

young and old adults demonstrate clearly the more dramatic ageing effects seen in the 

RyR variant strains than in wild type (Figure 4.10). In the kymograms red and blue 

stripes show extreme dorsal and ventral bending passing down the body. The 

inclination of the stripes and horizontal distance between the stripes shows the speed 

with which the wave is propagated down the body and the vertical distance between 

stripes indicates the wavelength. 

 

At the young adult stage, the wild type kymogram shows the representative individual 

completing 11-12 waves in 40 seconds, i.e. ~0.35 Hz as reported earlier (Table 4.1, 

Figure 4.10A). The low inclination, and consequent large overlap between stripes, 

reflects the lower frequency and the long wavelength that was recorded for this strain. 

The two representative RyR variant strains, when young adults, complete more waves 

with less overlap between them than wild type, fitting with their higher frequencies 

and shorter wavelength. The wild type kymogram has wider dorsal and ventral stripes, 

with little green colour. The wider stripes demonstrate that this animal has a longer 

period between each undulation, with wide bend angles, and small degree of 

curvature, suggesting a more rapid transition between dorsal and ventral body bends 

(Figure 4.10C). 
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Figure 4.10: RyR variants intensify age-related reduction in crawling coordination. 

Representative kymograms are presented for the wild type and for the hR2163H and 

hR2458H RyR variant strains for young adults (YA) (A) and old adults (OA) (B). Colour 

in the kymograms indicates degree of dorsal/ ventral curvature (C) (red/ blue high 

curvature, green no curvature) at different positions along the major body axis (0 

anterior to 50 posterior) for each frame of the video recording. It should be noted 

that red and blue, respectively, do not indicate dorsal and ventral curvature but is 

arbitrarily assigned for each recording; the dorsal and ventral body could not be 

distinguished by the software. Individual frames where parameters could not be 

extracted are black. One young and one old adult representative kymogram for each 

strain is presented in Appendix G (Figure G.3). 

 

The representative kymograms for the old adults show how crawling frequency 

decreased with age for all three strains (Figure 4.10B). Also evident is that the highly 

uniform, regular and organised crawling seen at young adult is no longer present in 

A B 

C 
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aged animals. The decreased degree of curvature seen with age in all strains 

(Figure4.9F), can be seen in the reduction of dark red and blue colours and more 

yellow and cyan in the old adult kymograms (Figure 4.10B). Wild type, although less 

coordinated at old adult than young adult, appears more coordinated than the two 

RyR variant strains at old age. Despite the hR2163H variant strain having relatively 

little change in amplitude and wavelength from young to old adult (Figure 4.9D), the 

kymogram reveals that its locomotion is still greatly affected by ageing, as 

demonstrated by its severe reduction in frequency and degree of curvature (Table 4.4, 

Figure 4.9E). The hR2458H variant strain has the most severe change from young to 

old adult in the kymograms. As an old adult, the hR2458H variant strain had a small 

degree of curvature, as shown by the amount of yellow and cyan in the kymogram, in 

line with this variant having a lower amplitude but higher wavelength, with respect to 

length than wild type. The hR2458H variant strain showed the greatest change in 

almost all crawling parameters between the two ages (Table 4.4, Figure 4.9D and E, 

and Figure 4.10). 

 

4.4. Discussion  

The aim of the research presented in this chapter was to quantify crawling parameters 

for strains carrying RyR variants and compare them to wild type to determine how 

locomotion changes in the presence of variant RyRs. Furthermore, the consequences 

of these RyR variants with age on locomotion were also examined to better 

understand the effects of variant RyRs in age-related disorders.  

 

Prior to the analysis of crawling, these variant strains were found to have, previously 

undocumented, effects for development and growth that affected lengths of animals 

at the young and old adult stage.  

 

For the most part, the young adult RyR variant strains had smaller crawling amplitudes 

and wavelengths than wild type, resulting in a larger degree of curvature. The 

frequency was higher and crawling speed faster for the majority of young adult RyR 

variant strains. Despite these differences being small, the presence of variant RyRs 

significantly altered crawling locomotion in C. elegans.  
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While ageing affected crawling coordination of all strains, it appeared more dramatic 

in the RyR variant strains. As old adults more than half of the RyR variant strains had a 

lower frequency than wild type. Only one strain had a larger degree of curvature than 

wild type in the old adults and most had a similar or smaller degree of curvature, 

showing large age-related changes in these strains. The kymograms revealed that 

crawling in the old adults is less regular than in the young adults, and that this was 

markedly more severe in the majority of RyR variant strains than in the wild type. 

 

The hR4861H variant strain now showed differences to the unc-68 null for the first 

time, as a young adult with a much smaller amplitude. This variant strain had a much 

larger reduction in frequency and increase in amplitude than the unc-68 null mutant 

with age. This hR4861H variant strain is clearly not a null mutant and has 

consequences on locomotion not see for the null mutant. 

 

4.4.1. Growth rate is reduced in ryanodine receptor variant strains 

The initial observation of different lengths of animals at the young adult stage 

suggested an effect of RyR variants on development. Such an effect of RyR variants in 

C. elegans is novel as growth rates and worm length were not measured previously for 

the extrachromosomal array strains (Nicoll Baines et al., 2017). 

The unc-68 null mutant had the most severe consequences on young adult size. This 

effect of this mutation was reported previously and attributed to loss of UNC-68 

function in the isthmus and terminal bulb of the pharynx resulting in reduced feeding 

(Maryon et al., 1998). The pharynx is often likened to the mammalian heart, due to 

developmental, morphological and functional features (Mango, 2007; Fischer et al., 

2017). As UNC-68 is the only ryanodine receptor in C. elegans, it is involved in calcium 

release in the pharyngeal muscle required for the regular pumping motion (Maryon et 

al., 1998), as well as being present in the pharyngeal neurons that initiate muscle 

contraction (Liu et al., 2005). In mammals, RyR2 is responsible for calcium release from 

the sarcoplasmic reticulum in the heart (Ledbetter et al., 1994; Lanner et al., 2010).  

 

The regular contraction of the pharyngeal muscle crushes bacteria and pumps the 

crushed bacteria into the gut of the worm, this is how the animal feeds (Avery and 
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Thomas, 1997). Mutants with abnormal pharyngeal anatomies or with inefficient 

pumping rate were found previously to have a shorter body size (Mörck and Pilon, 

2006). The loss of an important neuromuscular calcium channel, in the unc-68 null 

mutant, affects feeding rate (Maryon et al., 1998); a reduced feeding rate is expected 

to have knock-on consequence for development and growth.  

 

Here, the presence of variant RyRs also affected development and growth, the 

majority of RyR variant strains were smaller than wild type as young adults. It is 

possible that the presence of variant RyRs in the pharynx reduced food uptake, either 

by slowed pumping rate or reduced pumping force, affecting the growth rate of these 

RyR variant strains. Pharyngeal pumping rates in strains expressing RyRs carrying point 

mutations equivalent to known RyR2 disease causing variants have been studied 

(Fischer et al., 2017). One of two C. elegans strains with optogenetically paced 

pharyngeal pumping, modelling RyR2 Catecholaminergic Polymorphic Ventricular 

Tachycardia (CPVT) disease variants, had a reduced pumping rate compared to wild 

type. The size and growth of animals in this study was not assessed so no link can be 

made between the reduced pumping rate of this RyR variant strain and worm length. 

 

In contrast to five RyR variant strains that were smaller than wild type, the strains for 

variants hR2163H and hN2342S were larger than wild type as young adults. This 

suggests faster development and more growth in the same amount of time. Pumping 

rate or pumping force may be increased in these strains, allowing the animals to take 

up more food over time. However, there appears to be no published examples of such 

an effect. 

 

There are, however, a number of different mechanisms known to increase the length 

of C elegans. For example, the daf-2 mutant shows increased body length with 

reduced activity of the insulin/ IGF-I-like signalling (IIS) pathway (McCulloch and Gems, 

2003). Dietary restriction is one way to reduce activity of the IIS pathway, but dietary 

restriction has been found to reduce body size, not increase it (Iser and Wolkow, 

2007). As UNC-68 is not part of the IIS pathway it seems unlikely that two RyR variants 

would affect activity of the pathway; however, it is possible that the presence of RyR 

variants may trigger a stress response that feeds into the IIS pathway in a way the 
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UNC-68 does not. Nevertheless, increased food uptake seems the most likely 

explanation for the increased size seen for two RyR variant strains. 

 

As old adults, there were still differences in the average size of the strains. These 

differences, however, did not correspond to those in young adults. Variants that were 

previously larger than wild type were found to be smaller and vice versa. Not only is 

development and growth up to the young adult stage effected by the presence of RyR 

variants but adult growth rate also. Differences in adult growth rate have also been 

attributed to feeding rate (Avery and You, 2012).  

 

It is curious that the two strains that were longest as young adults had little growth 

between young and old adult stages. The limitation to adult growth is not that these 

strains have reached the maximum size possible for adult C. elegans, as a number of 

other variant strains were longer than them as old adults. High pumping rates in young 

adult animals can result in bacterial infection of the pharynx, likely through damage to 

the pharynx cuticle, which allows invasion through cuticle perforations (Zhao et al., 

2017). Wild type pumping rate has been demonstrated to be sufficient to result in 

pharyngeal infection. If the pumping rate is in fact higher in the two variant strains that 

were found to be largest as young adults, then this would likely result in more severe 

pharyngeal damage. Increased damage may be a result of either mechanical damage 

to the pharynx or increased bacterial infection. The adult growth of these animals may, 

therefore, be limited due to the inability to pump enough food after damage has 

accumulated due to faster pumping rate or force in early life.  

 

Strains that were very small as young adults but grew by the largest amount, such as 

for the hG341R variant strain, may reflect the opposite scenario. Slower or reduced 

force of pumping early on may limit the amount of damage and allow for a longer 

period of food consumption and more growth as an adult. However, the unc-68 null 

mutant and hR4861H variant strain were shortest at young adult and grew the least, so 

this is not the case for these strains. It may be that these strains have such limited 

pumping efficiency, that in spite of limited damage accumulation, they are still unable 

to ingest adequate food.  
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An interesting correlation was found for young adult worm length and thrashing rate 

in S medium. The three variant strains, those for hR163C, hG341R and hR2458H, were 

the shortest as young adults also found to have defective swimming locomotion in S 

medium (chapter 3). The shorter length of these strains at young adult may explain the 

reduced thrashing previously in young adults. However, this is not the case for old 

adults. The longest and the shortest variants of the old adults, those for hG341R and 

hR2163H respectively, both had a similar thrashing rate as old adults in S medium. 

 

No effect of these RyR variants was specifically looked for in the pharynx. However, 

RyR2 variants in unc-68, expressed as extrachromosomal arrays, has been shown to 

reduce pumping rate, although this was not assessed with respect to worm length 

(Fischer et al., 2017). A pharyngeal pumping assay would be required to identify if food 

ingestion is altered in the RyR variant strains, throughout the lifespan, and correlate it 

to the reduced growth rate seen for these strains. 

 

4.4.2. Ryanodine receptor variants have subtle consequences for crawling in the young 

adults 

The subtle differences in amplitude, wavelength, frequency, speed and degree of 

curvature demonstrate that crawling in these strains can be quantified and differences 

between the RyR variant strains and wild type revealed.  

 

For most of the RyR variant strains, the shorter wavelength, in spite of the shorter 

amplitude, resulted in a larger degree of curvature. Only for the hN2342S variant strain 

was this not the case, with the reduction in both wavelength and amplitude, resulting 

in a similar degree of curvature to wild type. However, the presence of the hN2342S 

amino acid change did affect RyR function even in the absence of an MH triggering 

agent and this variant strain had the highest crawling frequency and fastest crawling 

speed of all strains.  

 

The larger degree of curvature compared to wild type, and therefore increased 

sharpness of the wave, observed for most RyR variant strains would result from muscle 

hypercontraction. Despite a similar degree of curvature to wild type, the reduced 
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amplitude and wavelength of the hN2342S variant strain is also suggested to be due to 

an increase in muscle contraction. Increased muscle contraction could be due to more 

or longer release of calcium into the myoplasm, presumably due to these variants 

directly affecting the amount of calcium the ryanodine receptor is releasing. This may 

be through the channel opening more readily, closing more slowly or an increased 

passive calcium leak, as has been associated with CCD-causing mutations in RyR1 (Tong 

et al., 1999). Witherspoon and Meiller (2016) outlines different aspects of RyR1 

regulation, including complex protein-protein and protein-ligand interactions, as well 

as post-translational modifications, and the disease causing mutations that affect 

them. The mutations explored in this thesis may interfere with one or more of these 

aspects of RyR regulation thus affecting channel function and calcium release, and in 

this case resulting in an increase in calcium release and larger degree of curvature for 

crawling. 

 

In support of this notion, the R163C mutation elevated cytosolic calcium concentration 

compared to wild type in muscle fibres isolated from knock-in mice (Giulivi et al., 

2011). This specific variant affects how RyR and the dihydropyridine receptor (DHPR) 

interact; the presence of the R163C mutation alters the conformation of the channel, 

which in turn alters retrograde signalling from the RyR to the DHPR, ultimately 

delaying inactivation of the DHPR signal and enhancing sarcolemma calcium entry 

(Esteve et al., 2010). In the worm, the hR163C variant strain had a larger degree of 

curvature than wild type, suggesting an increased myoplasmic calcium concentration 

compared to wild type. 

 

While the effects of the R163C mutation in mice was demonstrated in the muscle, the 

consequences of these RyR variants in C. elegans could be in either, or both, the body 

wall muscle cells and motor neurons. UNC-68 is found in both body wall muscle and 

neurons in C. elegans (Maryon et al., 1996; Chen et al., 2017a). Therefore, variant RyRs 

could increase calcium release from the endoplasmic reticulum (ER) in the excitatory 

B-type motor neurons, which stimulate muscle contraction, resulting in increased 

neurotransmitter release and therefore increased muscle contraction (Figure 4.1, 

Figure 4.11). In C. elegans neurotransmitter release at NMJs is graded (Liu et al., 2009). 

In graded transmission, the size and duration of depolarisation is proportional to the 
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size and duration of the excitatory/ inhibitory input. The postsynaptic muscle response 

is scaled with the strength of stimulus to the motor neurons. Therefore, increased 

neurotransmitter release at NMJs would result in increased muscle contraction. 

 

Alternatively, variant RyRs in the sarcoplasmic reticulum (SR) release more calcium in 

the myoplasm upon activation by the DHPR. The calcium ions released via the RyR on 

the SR facilitate muscle contraction (Figure 4.11) (Ríos et al., 1991; Calderón et al., 

2014). Increased muscle contraction could even be due to the compounding effects of 

variant RyRs in the ER of motor neurons and SR of body wall muscles, whereby 

activation of the body wall muscles in increased due to neuronal variant RyRs, and the 

resulting calcium release into the myoplasm is further increased due to muscular RyRs.  

 

The effects of variant RyRs in neural and muscle cells in C. elegans is explored further 

in chapter 5. Regardless of whether these variant RyRs are effecting calcium release in 

the motor neurons or body wall muscles, the overall effect of excessive calcium 

release via variant RyRs would be to increase the concentration of calcium ions in the 

myoplasm, which facilitate muscle contraction. 
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Figure 4.11: Increased muscle contraction due to increased calcium release via variant 

RyRs. 

Increased calcium ion (yellow spheres) concentration in the cytoplasm of motor 

neurons results in neurotransmitter release, such as acetylcholine (ACh) (pink 

spheres), from motor neurons at NMJS, leading to muscle contraction as a result of 

E-C coupling. RyRs (pink channel) on the endoplasmic reticulum (ER) are thought to 

increase calcium concentration in neurons by calcium induced calcium release (CICR). 

Neurotransmitters bind to receptors on the sarcolemma (2), which leads to 

depolarisation of the muscle cell membrane (3). The voltage gated dihydropyridine 

receptor (DHPR) in the t-tubule sarcolemma senses the depolarisation and activates 

the ryanodine receptor (RyR) in the membrane of the sarcoplasmic reticulum (SR) (4). 

The RyR opens and calcium ions released, which bind to troponin C, inducing a 

conformational change in the troponin-tropomyosin complex allowing myosin to 

bind to actin and the myofilaments to slide past each other (5). The sarcoplasmic 

reticulum Ca2+ATPase (SERCA) pumps cytoplasmic calcium back into the SR allowing 

muscle relaxation (6). In C. elegans the structure of NMJs is slightly different due to 

muscle arms extending toward the motor neurons, however the principles remain 

the same. Created with BioRender (https://biorender.com/), based on information 

from Jurkat-Rott and Lehmann-Horn (2005). 

 

A subtly smaller degree of curvature was found for the unc-68 null mutant compared 

to wild type, with a longer wavelength but same amplitude. The small reduction in 

degree of curvature is attributed to less available calcium in the myoplasm for muscle 

contraction due to the deletion of the RyR. 

 

Interestingly the hR4861H variant, which had appeared to inactivate the RyR (Chapter 

3) does not show the same effect for amplitude and degree of curvature as the unc-68 

null mutant. While the wavelength of the hR4861H variant strain is longer than wild 

type, the amplitude is smaller. The additive effect of these changes resulted in an even 

smaller degree of curvature than seen for the unc-68 null mutant. It is speculated that 

the presence of the hR4861H amino acid change is having a negative effect on calcium 

release, possibly by impacting other proteins which control calcium release, to reduce 

calcium levels further than seen in the null mutant. As the degree of curvature is 

https://biorender.com/


Quantifying crawling  

 

106 

further reduced in the hR4861H variant strain than in the null mutant it suggests that 

there is even less calcium in the cytoplasm than in the null. An alternative explanation 

could be reduced RyR protein levels in the hR4861H variant strain, however as the 

degree of curvature is reduced compared to the null mutant, this does not seem a 

likely explanation as protein levels could not be reduced more than in the null mutant. 

Reduced calcium release was seen in muscle fibres isolated from RyR1 Y522S variant 

knock-in mice (Andronache et al., 2009). This variant also effects RyR retrograde 

signalling to DHPR, as the R163C variant is thought to (Giulivi et al., 2011). However, in 

this case, the DHPR inactivation window is smaller, not larger, thus limiting calcium 

release. This mechanism was suggested to be compensatory to counteract the 

augmented calcium leak caused by this variant. The hR4861H variant in C. elegans may 

have a similar impact on RyR function. However, this variant may also be limiting 

calcium release from the SR via other channels.  

 

4.4.3. Ryanodine receptor variants exacerbate age-related changes in crawling 

parameters 

With the exception of the hR4861H strain, the crawling profiles of the variant strains 

suggest an excess of calcium in the cytosol. Calcium leakage through RyRs, across the 

life span, has been linked to defective calcium signalling and cellular damage (Bellinger 

et al., 2008; Andersson et al., 2011; Liu et al., 2012; Momma et al., 2017). Although 

subtle, the increased cytosolic calcium thought to arise from the RyR variants 

examined here could have more severe consequences with age. This has been 

suggested in. All RyR variant strains age more dramatically than the wild type and the 

unc-68 null mutant, with larger percentage changes seen for crawling parameters with 

age. The kymograms demonstrate this effect, with the RyR variant strains changing 

from fast and organised, to very slow and disorganised, locomotion. Meanwhile, wild 

type shows some age-related reduction in speed and organisation of crawling, but not 

to the same extent. 

 

Excessive calcium ions are thought to lead to an increase in production of reactive 

oxygen species (ROS). At normal levels, ROS are important signalling molecules that 

oxidise proteins, lipids and polynucleotides, and are produced by a number of sources, 



Quantifying crawling  

 

107 

many of which are modulated by calcium (Sauer et al., 2001). Of particular note is the 

generation of ROS as a by-product of mitochondrial respiratory chain activity (Ermak 

and Davies, 2002). The free radical theory of ageing was first described in the 1950s 

(Harman, 1956). The theory proposes that ROS leads to oxidative damage resulting in 

the functional decline of organs, and death (Schriner et al., 2005). Despite controversy 

over whether this is the ultimate cause of ageing (Wickens, 2001; Gladyshev, 2014), 

there is evidence that oxidative stress and damage, by free radicals, underlies many 

age-related diseases (Liguori et al., 2018). 

 

In the R163C knock-in mice, discussed above, the calcium concentration of the 

cytoplasm as well as the mitochondrial matrix are elevated, as is production of ROS in 

skeletal muscle (Giulivi et al., 2011). Furthermore, impaired mitochondrial function has 

been found in muscle biopsies from MHS patients, as diagnosed by an IVCT (Chang et 

al., 2019). Impaired mitochondrial function was thought to be a result of chronically 

elevated cytoplasmic calcium ion concentration, increasing mitochondrial activity and 

ROS production and subsequently causing organelle damage.  

 

Of direct importance is that ROS is thought to oxidise RyRs and further exacerbate 

calcium leaks from internal stores (Andersson et al., 2011; Umanskaya et al., 2014). 

With increased leakage from internal stores, less calcium is released upon activation of 

RyRs and therefore muscle function is reduced. As demonstrated in RyR1 S2844D 

mutant mice, blocking of leaky RyRs reduces ROS production and increases skeletal 

muscle function of aged animals (Andersson et al., 2011). Aged RyR variant strains had 

largely reduced frequency and scale of muscle contraction, suggesting reduced calcium 

release upon activation of RyR. Mitochondrial ROS production has been suggested to 

have a causative role in oxidation of RyR1 and the age-related decline in skeletal 

muscle function in mice (Umanskaya et al., 2014). Transgenic mice with targeted 

overexpression of the human catalase gene to mitochondria had increased skeletal 

muscle force, reduced RyR1 oxidation and reduced calcium leakage from the SR. 

 

ROS and calcium signalling interact in a bidirectional manner. ROS regulates calcium 

signalling and ROS is produced by calcium signalling (Gordeeva et al., 2003). Oxidative 

damage by ROS aggravates RyR calcium leak resulting in a self-reinforcing cycle; 
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calcium leakage from the SR results in increased calcium uptake by mitochondria, 

increasing production of ROS, which oxidises RyRs and results in increased calcium 

leakage Andersson et al., 2011; Umanskaya et al., 2014). Treatment of RyR1 Y522S 

knock-in mice with antioxidant supplements prevented the age-related reduction in 

maximal tension (Durham et al., 2008). 

 

There is some calcium leakage through wild type RyR, as seen with the oxidation of 

RyR1 in aged wild type mice (Andersson et al., 2011). It is speculated that there is 

increased calcium leakage in the RyR variant strains in C. elegans, as indicated by the 

crawling profiles. This suggests that RyR variants lead to more damage with age for 

human carriers, likely through cellular damage due to chronically increased 

cytoplasmic calcium levels. This could be in the case in all RyR1 variants, not just those 

associated with MH.
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Chapter 5 

Exploring effects of ryanodine receptor variants on cholinergic 

pharmacology: Pre- and postsynaptic ryanodine receptor effects 

5.1. Introduction 

5.1.1. Aim of this chapter  

So far in this research, exact specification of whether the effects of these RyR variants 

on locomotion have been due to perturbation of ryanodine receptors in muscle or 

nerve cells has been avoided, although briefly discussed in chapter 4. It is commonly 

thought that the effects of RyR1 variants in mice and humans are due to RyRs located 

on the sarcoplasmic reticulum of skeletal muscle cells. However, RyR1 is not only 

found in skeletal muscle and RyRs are important calcium channels in all excitable cells. 

Therefore, it is possible that the effects of these variants are, at least in part, due to 

the perturbation of RyRs in cells that are presynaptic to neuromuscular junctions. 

While muscle cells are relatively robust, small changes to calcium homeostasis in the 

smaller nerve cells may have larger consequences. 

 

In this chapter, the response of the RyR variant strains to two cholinergic 

pharmaceutical agents was investigated. By impairing different aspects of 

neurotransmitter signalling at neuromuscular junctions, through application of aldicarb 

and levamisole, the contributions of pre- (neural) and postsynaptic (muscle) RyRs can 

be examined. The aim of the research reported in this chapter was to determine 

whether nerve and/ or muscle cell function is perturbed by the presence of variant 

RyRs.  

 

5.1.2. The role of ryanodine receptors in neurons 

RyRs are present in all excitable cells, as well as non-excitable cells (Zissimopoulos et 

al., 2006). Despite being described most often as being found in specific, discrete, 

locations, this is not exclusively the case, as shown by expression of RyR1 in Purkinje 

cells (Furuichi et al., 1994).  
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As well as the many skeletal and cardiac myopathies that variant RyRs have been 

associated with (Boncompagni et al., 2006; Robinson et al., 2006; Andersson et al., 

2011; Salvage et al., 2019), RyRs have also been implicated with neuropathologies, 

such as Alzheimer’s disease (LaFerla, 2002; Del Prete et al., 2014; Liang et al., 2015; 

Liang and Wei, 2015; Abu-Omar et al., 2018). RyRs are not only present in nerve cells 

but are important for proper signal transmission in nerve cells. In mice, blocking RyRs 

altered the intracellular calcium concentration of the axoplasm and affected secretion 

of acetylcholine (ACh) neurotransmitters from the motor neurons (Khuzakhmetova et 

al., 2014). 

 

Specifically in C. elegans, strains carrying RyR variants, expressed as extrachromosomal 

arrays, demonstrated altered responses to caffeine, which were attributed to neural 

function (Nicoll Baines et al., 2017). Furthermore, presynaptic RyRs have been 

suggested to be important for quantal size (Liu et al., 2005). Mutations in, or blocking 

of, the RyR eliminated large-amplitude miniature postsynaptic currents (mPSCs). 

mPSCs occur at a high frequency in wild type C. elegans and result from the 

spontaneous or sporadic release of single vesicles from the presynaptic membrane 

(Wang, 2010). ‘Quanta’ is the name given to the amount of neurotransmitters within a 

single vesicle and determine the minimum size of an mPSC (Katz, 1971). It was 

hypothesized that calcium release via the RyR regulates quantal size in neurons (Liu et 

al., 2005). In the absence of RyRs calcium levels in the presynaptic terminal are 

reduced, this may alter quantal size. Promoting vesicle loading with neurotransmitters, 

stimulating intervesicular fusion and increasing size/ duration of the fusion pore during 

kiss-and-run synaptic release are all discussed as possible mechanisms for how 

reduced calcium levels may alter quantal size (Liu et al., 2005). When RyRs were 

blocked in C. elegans quantal size was reduced such that large-amplitude mPSCs were 

no longer generated. 

 

RyRs function in neurons to increase the cytoplasmic calcium concentration upon 

nerve cell excitation, predominantly through calcium induced calcium release (CICR) 

(Mouton et al., 2001) (Figure 1.5 and Figure 4.11). The arrival of an action potential 

opens voltage-gated calcium channels (VGCCs), calcium enters and binds directly to 

the RyRs, promoting channel opening. Increased intracellular calcium concentration 
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triggers synaptic vesicle exocytosis and the release of neurotransmitters (Südhof, 

2012). As described previously (chapter 4), neurotransmitter release at NMJs in 

C. elegans is by graded synaptic transmission (Liu et al., 2009). However, recent 

evidence has shown action potentials in chemosensory nerve cells (Liu et al., 2018).  

 

5.1.3. Acetylcholine signal transduction pathway 

Acetylcholine (ACh) was the first neurotransmitter identified, through work in three 

parasitic nematode species in the 1950s (Mellanby, 1955). ACh is an important 

neurotransmitter, functioning in the central nervous system (CNS), at neuromuscular 

junctions (NMJs), and in the peripheral nervous system (PNS).  

 

ACh is synthesised and then stored in vesicles until it needs to be released (Purves et 

al., 2001) (Figure 5.1A). Upon release, ACh diffuses across the synaptic cleft and binds 

to ACh receptors (AChRs) on the post-synaptic membrane. The enzyme 

acetylcholinesterase (AChE) hydrolyses ACh into acetate and choline, and the latter is 

taken up by the presynaptic terminal for further ACh synthesis. AChE is found in the 

synaptic cleft in high concentrations, ensuring the rapid breakdown of ACh upon 

release from the presynaptic membrane, terminating signal transduction  (Rand, 

2007).  

 

There are two types of AChRs. Receptors that bind nicotine are named the nicotinic 

acetylcholine receptors (nAChRs), and those that bind muscarine, the muscarinic 

acetylcholine receptors (mAChRs) (Purves, 1976).  

 

In C. elegans, ACh is the main excitatory neurotransmitter at NMJs (Rand, 2007). 

C. elegans has the largest family of nAChR alpha subunit genes in a single species; 

alpha subunits are required for ACh receptor function (Jones and Sattelle, 2004). The 

body wall muscles of C. elegans express two types of nAChRs; those that respond to 

levamisole (L-type) and those that respond to nicotine (N-type) (Richmond and 

Jorgensen, 1999). C. elegans have two other types of ACh receptors; the muscarinic G-

protein coupled receptors (Culotti and Klein, 1983), and ligand-gated chloride 

channels, which have no orthologs in vertebrates (Putrenko et al., 2005). The main 

focus of this research was on nAChRs due to their presence at NMJs. 
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5.1.4. Cholinergic pharmacological agents 

The pre- or post-synaptic contributions of the RyR variant effects can be discerned by 

disturbing the acetylcholine signal transduction pathway in C. elegans, which can be 

achieved using aldicarb and levamisole (Rand, 2007).  

 

Aldicarb disturbs cholinergic signal transmission by binding to AChE and inhibiting the 

hydrolysis of ACh (Risher et al., 1987) (Figure 5.1B). As a result of inhibiting the 

breakdown of ACh, the neurotransmitter accumulates in the synapse. In C. elegans, 

treatment with aldicarb results in hypercontraction and paralysis due to ACh build up 

at NMJs (Rand, 2007). Levamisole also disturbs cholinergic signal transmission. 

However, it does so by binding directly to and activating L-type nAChRs on nematode 

muscle cells (Robertson et al., 2010) (Figure 5.1C). The binding of this agent to the 

nAChRs also results in hypercontracted paralysis, which is usually followed by 

relaxation and death, due to depolarisation of the muscle cell and subsequent increase 

in myoplasmic calcium (Rand, 2007; Martin et al., 2012).  

 

No effect of aldicarb suggests no presynaptic effect of the mutation. Mutations that do 

affect sensitivity to aldicarb are likely to fall into one of two classes: 1) mutations 

upstream of neurotransmitter release from the presynaptic membrane, affecting the 

amount of ACh secreted, 2) mutations downstream of neurotransmitter reception, 

affecting the muscle cell’s response to ACh binding to the sarcolemma (Mahoney et al., 

2006; Rand, 2007). Mutations falling into the first class have presynaptic function and 

could affect ACh release by disrupting ACh synthesis, neurotransmitter loading into 

vesicles or vesicle release. Higher or lower amounts of ACh release would result in 

increased sensitivity or resistance to aldicarb, respectively (Rand, 2007). The former 

means that ACh levels build up faster than in wild type, upon aldicarb inhibition of 

AChE, resulting in faster paralysis and increased sensitivity (Figure 5.1B). The latter 

means that ACh levels build up more slowly than in wild type, upon aldicarb inhibition 

of AChE, resulting in paralysis taking longer and increased resistance. Mutations in the 

second class, affecting a post synaptic function, could affect binding of ACh to the 

receptors, or excitability of the muscle cell (Mahoney et al., 2006). The muscle cell is 

more sensitive or less sensitive, to a common rate of build-up of ACh due to aldicarb 

inhibition of AChE, as compared to wild type. The former means that paralysis occurs 
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sooner, when the same level of ACh build up as wild type results in greater sensitivity. 

The latter means that paralysis occurs more slowly, not until a higher level of ACh has 

built up is the paralysis seen, demonstrating increased resistance.  

 

To address the site of action of aldicarb-induced paralysis, levamisole is commonly 

used. Response to levamisole does not depend on ACh release as it is a cholinergic 

agonist, binding directly to L-type nAChRs (Figure 5.1C). Mutations effecting ACh (or 

levamisole) binding to the post synaptic membrane or any downstream signalling that 

affects the excitability of the muscle cell would result in a change in the paralysis 

response to levamisole (Rand, 2007). Mutations upstream of neurotransmitter release 

should not affect the response to levamisole and the time to levamisole induced 

paralysis. 

 

Together, aldicarb and levamisole responses can indicate whether mutations affect 

functions pre- or postsynaptic to NMJs. A differential response to aldicarb but not 

levamisole suggests the mutation is presynaptic, while a changed response to both 

suggests that there is an effect of the mutation postsynaptically (Rand, 2007). 

However, it should be noted that a changed response to both cholinergic 

pharmaceutical agents would not exclude the possibility of an effect of the variant 

RyRs in the neurons. As RyRs are located in both nerve and muscle tissues, the variants 

may affect calcium control in both tissues, resulting in an altered response to both 

aldicarb and levamisole. 
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Figure 5.1: Aldicarb and levamisole disrupt cholinergic signal transmission. 

(A) Acetylcholine (ACh) (Pink and purple spheres) is synthesised from choline (pink sphere) and Acetyl Coenzyme A (Acetyl CoA). ACh is packaged into 

vesicles until it is released. Upon release ACh binds to nicotinic acetylcholine receptors (nAChRs). The ACh signal is degraded by hydrolysis of ACh into 

choline and acetate (purple crescent) by acetyl cholinesterase (AChE). (B) Aldicarb (green inhibitor) binds to AChE and prevents hydrolysis of ACh resulting 

in a build-up of neurotransmitters in the synapse. This leads to constant activation of nAChRs. (C) Levamisole (Lime green stars) is an nAChR agonist and 

directly activates nAChRs. The figure is based on Mahoney et al. (2006); Rand (2007) and was created with BioRender (https://biorender.com/).

A B C 

https://biorender.com/
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5.2. Methods 

5.2.1. Aldicarb assays 

Aldicarb sensitivity assays were conducted as previously described (Oh and Kim, 2017). 

50 mm NGM plates containing 1 mM aldicarb, from a 100 mM aldicarb stock dissolved 

in 70% ethanol, were allowed to dry for at least one day. Plates were stored at 4 °C 

and used within 2 weeks of pouring. Plates were allowed to warm to room 

temperature overnight before use. Using forceps, a 16 mm diameter copper ring was 

dipped into 70% ethanol and passed through a flame for ~10 seconds. The ring was 

then placed immediately onto one side of an aldicarb-containing plate and held still 

with forceps until it had cooled, becoming slightly embedded into the agar plate. A 

second copper ring was added to the other side of the plate in the same way, allowing 

two assays to be conducted at once. Once the agar had cooled, 10 L of an OP50 E. coli 

overnight culture was pipetted to the centre of each ring and allowed to dry for 30 

minutes. The combination of food and the copper ring is to corral worms and limit 

individuals crawling off plates in response to the aldicarb during the assay. 20-30 

individuals were picked to the centre of the ring and time to paralysis recorded. 80-100 

individuals per strain were used, across a minimum of three repeats. Despite the used 

of the copper rings and food, some individuals crawled under the rings or burrowed 

into the crevice between the agar and the ring, these animals were excluded from the 

assay. Time to paralysis was measured by checking animals every 10 minutes for two 

hours and every 30 minutes thereafter up to four hours, when the assay was 

terminated. Any animals remaining unparalysed at the end of 240 minutes were 

recorded as such. Animals were determined as paralysed when they did not move of 

their own accord, or when prodded with a platinum wire. Once paralysed, individuals 

were removed. Hypersensitivity or increased resistance to aldicarb was determined 

with respect to wild type.  

 

A preliminary assay tested the response times of wild type and the strain for the 

hR2163H variant at a range of aldicarb concentrations (Appendix H). This preliminary 

assay suggested that lower concentrations did not substantially increase the difference 

in time to paralysis between these two strains. 1 mM aldicarb was determined as a 

sufficiently low enough dose to see differences between different strains, while being 
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high enough that animals were paralysed within a reasonable time, this is supported 

by the findings of Oh and Kim (2017). Half the animals stopped moving within the first 

two hours, and so the animals were checked every 10 minutes up to 120 minutes but 

could be checked every 30 minutes thereafter. 

 

5.2.2. Levamisole assays 

For the levamisole assays, a 2 M stock of levamisole dissolved in M9 buffer was used to 

prepare seven solutions in M9 buffer; starting from 1 M, concentrations increased 

10-fold successively to 1 M. 10-15 individuals were picked into 1 ml of M9, with or 

without levamisole, in each well of a 24 well plate. Individuals were observed either at 

the end of 1 hour, or every 10 minutes for two hours and scored for response to 

levamisole. Initially, only time to paralysis was recorded in a preliminary quantitative 

assay. Following observations of distinct altered behaviours in the presence of 

levamisole, a qualitative assay was conducted where all locomotion behaviours were 

documented and were later categorised and coded for ease of representation. 

 

5.3. Results 

5.3.1. Sensitivity to aldicarb is differential among the ryanodine receptor variants 

strains 

Aldicarb assays were conducted on young adult individuals. Sensitivity or resistance to 

aldicarb was determined with respect to wild type. In 1 mM aldicarb, the median time 

to paralysis of wild type was found to be 80 minutes (Figure 5.2). This corresponds 

with previous reports (Oh and Kim, 2017).  

 

The unc-68 null mutant was found to be resistant to aldicarb, taking 210 minutes for 

half of these individuals to become paralysed. Paralysis of all individuals was not 

achieved within the four-hour assay time. Once again, the hR4861H variant strain 

behaved like the null mutant, also taking 210 minutes for 50% of the individuals to 

become paralysed (Figure 5.2A). 
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Median time, in minutes, to paralysis in 1 mM aldicarb for wild type, the CB540 (unc-

68(e540)) null mutant and RyR variant C. elegans strains. 

 Median time to 
paralysis (Minutes) 

Wild type 80 

hR163C 100 

hG341R 100 

hR2163H 90 

hN2342S 100 

hR2454H 80 

hR2458H 100 

hK3452Q 80 

hR4861H 210 

unc-68 null 210 

Box shading is consistent with the colour coding 
used throughout this thesis. RyR variant strains 
are listed according to the human variant they 
correspond to. 
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Figure 5.2: RyR variants alter time to paralysis in 1 mM aldicarb.  

Kaplan-Meier survival curves representing the percentage of individuals moving with 

time on plates containing 1 mM aldicarb. Data for the RyR variant strains, labelled by 

the human variant they correspond to, along with the wild type and the CB540 (unc-

68(e540)) null mutant are distributed across two graphs for clarity (A and B). 

Comparison to the wild type, and of the hR4861H variant strain to the unc-68 null 

mutant (square bracket), to assess if curves were significantly different, employed 

the Gehan-Breslow-Wilcoxon test; * = P<0.05, ** = P<0.005, n.s = not significant. 

Error bars are standard error calculated in GraphPad using the Greenwood method. 

(C) Median time to paralysis, in minutes, for wild type, the unc-68 null mutant and 

RyR variant strains.  

 

Five other RyR variants also showed increased resistance to aldicarb but not to the 

same extent as the unc-68 null mutant and hR4861H variant strain. The strain for 

variant hR2163H had a median time to paralysis of 90 minutes and was significantly 

more resistant to aldicarb than wild type (P<0.05, Gehan-Breslow-Wilcoxon test) 

(Figure 5.2B). The strains for variants hR163C, hG341R, hN2342S and hR2458H were 

also more resistant to aldicarb, compared to wild type, all having an even longer 

median time to paralysis of 100 minutes (P<0.005, Gehan-Breslow-Wilcoxon test) 

(Figure 5.2A and B). 

 

Two of the eight RyR variant strains assayed appeared more sensitive than wild type to 

1 mM aldicarb, those for RyR variants hR2454H and hK3452Q. However, only for the 

hK3452Q variant was the increased sensitivity statistically significant (P<0.05, Gehan-

Breslow-Wilcoxon test) (Figure 5.2A). While the apparent increased sensitivity of the 

hR2454H variant strain was not statistically significant (P=0.058, Gehan-Breslow-

Wilcoxon test), the line for this strain does sit slightly below that for the wild type on 

the Kaplan-Meier curve and more repeats may have revealed significance (Figure 

5.2B). All three of these strains, wild type and the variant strains hR2454H and 

hK3453Q, had a median time to paralysis of 80 minutes, possibly reflecting a lack of 

resolution in sampling intervals and suggesting more frequent sampling may have 

been beneficial. 
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5.3.2. Ryanodine receptor variant strains show novel responses to levamisole 

As explained above, a response to aldicarb distinct from that in the wild type may 

indicate RyR variants affecting calcium release in the nerve cells, presynaptic to NMJs. 

However, it is possible that postsynaptic RyR variants are amplifying the effects of 

aldicarb, with no consequence of the variants presynpatically. Therefore, the response 

of these variant strains to levamisole was assessed. Should the variant strains show no 

differential effect in the presence of levamisole then it could be concluded that the 

effects seen with aldicarb were as a result of presynaptic RyR variants. A simple 

levamisole dose-response curve was set up, based on Qian et al. (2008) with the 

expectation that the RyR variant strains would not show any difference from the wild 

type, based on unpublished data for RyR variants expressed from extrachromosomal 

arrays in C. elegans (Ferreira and Kalogeropoulou, 2019). 

 

Initial observations of the variant strains in 1 mM levamisole revealed a novel kinking 

phenotype where animals exhibited sharp bending in both directions at kinks between 

straight and rigid sections of the body. The kinking response was seen for the variant 

strains hR163C, hR2454H, hR2458H and hK3452Q. The wild type, unc-68 null mutant 

and four other RyR variant strains did not exhibit this phenotype. The dose-response 

assay was inadequate for assessing the response of the RyR variant strains to 

levamisole due to this novel kinking response coupled with instances where strains 

showed recovery from paralysis.  

 

To determine if kinking could be induced in the wild type or the four ‘non-kinking’ RyR 

variant strains, a qualitative assessment of response to levamisole was conducted. 

Careful observation of these strains, across four concentrations, every 10 minutes for 

two hours was conducted, and all responses recorded. These responses were 

categorised into ten summary responses (Table 5.1).  

 

The phenotypes were categorised as follows: 0. No movement was total paralysis of all 

individuals across all repeats. 0/#. No movement with attenuated movement describes 

cases where approximately half of the individuals observed were not moving, while 

the other half were showing a movement response. 1. Swimming was only ever seen 

very early in the assays at low concentrations and describes a coordinated, smooth 
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thrashing motion. 2. Uncoordinated swimming refers to movement that was irregular 

or slower than normal. 3. Folding describes animals that were folding in half, and then 

unfolding repeatedly, near the vulva. 4. Curling describes animals that were ‘C’ shaped 

with either the head or tail leading movement, curling up into a coil and uncurling. 5. 

Body twitching describes large, jerky, sporadic movements along the length of the 

body. 6. Head/ tail twitching was the same jerky uncoordinated movements but 

restricted to the head and tail only. 7. Head waving was a fast, smooth, side to side 

motion from the neck. 8. Shivering was a subtle but full body trembling movement. 8. 

Kinking animals exhibited sharp bending in both directions at kinks between straight 

and rigid sections of the body, in varying positions down the length of the body.  

 

An example video of the hR163C variant strain demonstrating the kinking phenotype in 

1 mM levamisole after 1 hour is available online at https://ianhope.leeds.ac.uk/c-

elegans-kinking-behaviour/. Frames from this example video are available in Appendix 

I showing the kinks along the body. 

 

Almost all individuals, for each strain, in each concentration and at a particular time 

point predominantly showed the same response. However, in some cases different 

responses were seen by a substantial number of individuals and therefore two (or 

three) scores were given for a strain at a single time point. For example, wild type 

exposed to 1 M levamisole at 0 minutes (Table 5.1, wild type, first row). Green 

shading is used to indicate paralysis in approximately half of the animals that is scored 

as 0/#. For example wild type exposed to 1 M levamisole after 40 minutes (Table 5.1, 

wild type, first row). 

 

Wild type showed at least partial paralysis in all four concentrations of levamisole. 

Partial paralysis in 100 M and full paralysis in 1 mM after one hour was seen here and 

reported previously (Qian et al., 2008) (Table 5.1, wild type, first and second rows). 

Remarkably, recovery from paralysis was seen in the higher levamisole concentrations 

(Table 5.1, wild type, third and fourth rows). In 10 mM levamisole all animals were 

paralysed at 20 minutes but partially recovered by 60 minutes, showing a mixture of 

head/ tail and body twitching. In 100 mM levamisole the worms also recovered from 

https://ianhope.leeds.ac.uk/c-elegans-kinking-behaviour/
https://ianhope.leeds.ac.uk/c-elegans-kinking-behaviour/
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paralysis with twitching as well as head waving and shivering, before complete 

paralysis was seen again at 90 minutes.  

 

The unc-68 null mutant had a very similar response as wild type, showing paralysis in 

all concentrations of levamisole and recovery from paralysis in the highest two 

(Table 5.1, unc-68 null mutant, third and fourth rows). However, the movement 

responses upon recovery from paralysis were different, with folding and curling for an 

extended period of time. Furthermore, onset of paralysis in 100 M levamisole was 

delayed in the null mutant compared to wild type, 80 minutes and 40 minutes 

respectively (Table 5.1, unc-68 null mutant and wild type, first rows). Partial resistance 

to levamisole has been reported previously for the unc-68 null mutant (Lewis et al., 

1980). 

 

The RyR variant strains could be separated into two distinct groups; kinking (Table 5.1, 

in purple) and non-kinking. The non-kinking variant strains were those for hG341R, 

hR2163H, hN2342S and hR4861H. The hR4861H variant strain has frequently behaved 

like the unc-68 null mutant, and here neither strains showed the kinking response. 

However, the hR4861H variant strain appeared more resistant to paralysis by 

levamisole than the null mutant. This variant strain did not show any paralysis in 

100 M levamisole, recovered from 1 mM levamisole and recovered faster in the 

10 mM levamisole than the null mutant (Table 5.1, hR4861H). 
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Key: No movement  0 , No movement with attenuated movement  0/ , Swimming  1 , 

Uncoordinated swimming  2 , Folding  3 , Curling  4 , Body Twitching  5 , Head/ Tail twitching  6 , 

Head waving  7 , Shivering  8 , Kinking  9 . 

 

Time (minutes) 

0 10 20 30 40 50 60 70 80 90 100 110 120 
 100 µM 1/2 1/2 1/2 2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 

Wild type 
1 mM 2 5 0 0 0 0 0 0 0 0 0 0 0 

10 mM 3/4/5 0/5 0 0 0 0 6 6 5 5 6 6 5 
 100 mM 0 0/6 0/7 5 7/8 7/8 5 5 5 0 0 0 0 
 100 µM 1/2 2/3 7 3/7 6/9 9 9 9 7/9 7/9 5/7 5/7 5/9 

hR163C 
1 mM 2/4 3/9 9 9 9 9 9 8/9 8 7/8 5/7 5/7 5 

10 mM 2/4/5 9 9 9 5/9 5/9 5/7/8 5/7/8 3/5/7 5 5/8 5/8 5/8 
 100 mM 3 9 8/9 7 7/8 5 0 0 0 0 0 0 0 
 100 µM 1 1 1/2 1/2 1/2 1/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 

hG341R 
1 mM 1/2 2/3 0 0 0 0 0 0 0 0 0 0 0 

10 mM 1/3 0 0 0 0 0 0/6 0/5 0/5 0/7 0/7 0/7 0/7 
 100 mM 0 0 0 7 4/7 3/6 3 3 5 6 6 0 0 
 100 µM 1/2 2/3 0 0 0 0 0 0 0 0 0 0 0 

hR2163H 
1 mM 2/4 0 0 0 0 0 0 0 0 0 0 0 0 

10 mM 3/4 0 0 0 0 0 0/3 0 0 3 3/7 5 5 
 100 mM 0 0 0 0 0/5 0/5 0 0 0 0 0 0 0 
 100 µM 1 1 1 1 1 0/1/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 

hN2342S 
1 mM 1/2 3 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0 0 

10 mM 4 0 0 0 0 0/5 5 5 0 0 0 0 3 
 100 mM 3/4 5 7/8 6/7 7/8 7 7/8 6 0 0 0 0 0 
 100 µM 1/2 0 0 0 6 6 6 3 5 5 6 6 5/9 

hR2454H 
1 mM 2 6 5 5/7 6/9 6/9 6/9 5 3/5 7 0/3 0/3 0/5 

10 mM 2/3 9 9 7/9 5 5 6/8 6 8/9 3/8 3/8 3/8 3/8 
 100 mM 0 3/5 6 8 6 6 6 0 0 0 0 0 0 
 100 µM 1 1/2 1/2 1/2 1/2 1/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 

hR2458H 
1 mM 1/2 5 7 9 9 9 9 9 9 9 9 9 9 

10 mM 3 9 9 9 9 8/9 3/8 8 3 3 3 3 3 
 100 mM 0/4 9 9 8 8 3/8 0/5 0 0 0 0 0 0 
 100 µM 1 1 1/2 1/2 1/2 1/2 2 0/2 0/2 0/2 0/2 0/2 0/2 

hK3452Q 
1 mM 1/2 3 6 9 9 9 9 9 9 9 8/9 8/9 8/9 

10 mM 3/4 9 9 9 8/9 5/8 8 8 8 8 3/8 4/8 4/7 
 100 mM 0 9 9 7/8 7 6/7 0/8 0/8 0 0 0 0 0 
 100 µM 2/4 4 2/5 2 2 2 2 2 2 3/4 3/4 4 4 

hR4861H 
1 mM 2/4 5 6 6 0 0 0/5 0/5 0/5 0/5 3/5 3/5 0/4 

10 mM 4 0 0 5 3 3 3/4  3/4 4 4/7 4/7 4 4 
 100 mM 4 3/5 3/6 4 4 6 6 0 0 0 0 0 0 
 100 µM 2/4 2/4 2/4 4 4 4 4 4 0/4 0 0 0 0 

CB540 (unc-
68(e540)) 

1 mM 2/4 2/4 0 0 0 0 0 0 0 0 0 0 0 

10 mM 3 0 0 0 0 3 3 3 3 5 5 5 6 
 100 mM 2/3 0 0 0 0 4 4 4 3/4 0 0 0 0 

Box shading is consistent with the colour coding used throughout this thesis. RyR variants are identified by the 
human variant they correspond to, Double lines separate different strains.  

 

The hN2342S RyR variant strain also showed some resistance to paralysis, with delayed 

full paralysis in 1 mM levamisole delayed compared to wild type (Table 5.1, hN2342S, 

second row). The hG341R variant strain behaved almost exactly the same as wild type 

in terms of its response to levamisole across all concentrations. Conversely, the 

hR2163H variant strain showed increased sensitivity to levamisole; earlier onset to 

paralysis was seen in all concentrations with very little recovery from paralysis. Full 

Table 5.1: Response of RyR variant strains, wild type and the CB540 (unc-68(e540)) null 

mutant, to levamisole in M9 buffer over 2 hours.  
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paralysis was seen in 100 M levamisole by 20 minutes for the hR2163H variant strain 

(Table 5.1, hR2163H, first row). Full paralysis was not seen in the wild type strain at all 

in the 100 M levamisole concentration. 

 

The four RyR variant strains that did show kinking were hR163C, hR2454H, hR2458H 

and hK3452Q. The hR163C variant strain had the earliest onset of kinking, showing the 

behaviour from 40 minutes in 100 M levamisole (Table 5.1, hR163C, first row). The 

two variant strains for hR2458H and hK3452Q both had similar kinking responses, but 

onset was not as rapid as was seen for the hR163C variant strain and not in the lowest 

levamisole concentration. The hR2454H variant strain exhibited the weakest kinking 

response with only a small temporal window, in the 1 mM and 10 mM levamisole 

concentrations (Table 5.1, hR2454H, second and third rows) and a slight kinking 

response in the lowest concentration at 120 minutes (Table 5.1, hR2454H, first row). 

The kinking response in these strains appears to correlate with when paralysis 

occurred in the wild type and non-kinking RyR variant strains (Table 5.1, yellow and 

purple). Full paralysis was only seen in the highest levamisole concentration for the 

four kinking strains.  

 

5.4. Discussion 

The aim of this research was to reveal the mechanisms perturbed by the missense 

amino acid changes using cholinergic pharmaceutical agents. 

 

The RyR variants altered the response to the AChE inhibitor, aldicarb. Two RyR variant 

strains had subtly increased sensitivity, while the rest of the RyR variant strains were 

more resistant, taking longer to become paralysed, compared to the wild type. The 

unc-68 null mutant and the hR4861H variant took the longest to become paralysed 

showing substantial resistance to aldicarb.  

 

The response of these variant strains to the nAChR agonist levamisole was more 

complex. A simple dose-response assay was insufficient to illustrate the range of 

phenotypes. A thorough analysis of the RyR variant strains’ responses to a range of 

levamisole concentrations allowed categorisation into two distinct groups, kinking and 
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non-kinking strains. Of the non-kinking strains, one variant strain was hypersensitive to 

levamisole, one indistinct from wild type and two showed some resistance to paralysis 

by levamisole, compared to wild type. The RyR variant strains that showed the novel 

kinking response also showed a range of sensitivities and appeared to show the kinking 

response in place of paralysis.  

 

5.4.1. Ryanodine receptor variants may have presynaptic effects as indicated by an 

altered response to aldicarb 

The increased aldicarb resistance of six of the RyR variant strains could be due to these 

single amino acid changes reducing the amount of neurotransmitter released, resulting 

in delayed paralysis (Figure 5.1B). Conversely, the increased sensitivity to aldicarb for 

two RyR variant strains, could be due to an increase in the amount of neurotransmitter 

released, accelerating paralysis.  

 

The implication of a role for calcium release from the RyR in quantal loading of vesicles 

in C. elegans (Liu et al., 2005), offers a plausible explanation for how these variants 

may affect time to paralysis in the presence of aldicarb. Furthermore, blocking calcium 

release from presynaptic RyRs has also been shown to decrease quantal secretion in 

mice neuromuscular junctions, as a direct consequence of reduced calcium 

concentration in the axoplasm (Khuzakhmetova et al., 2014).  

 

If the altered response to aldicarb is due to altered RyR functionality presynaptic to 

NMJs, then RyR variants hR163C, hG341R, hR2163H, hN2342S, hR2458H and hR4861H 

result in reduced calcium release from the ER via RyR, while the variants hR2454H and 

hK3452Q increase RyR mediated calcium release from the ER, in C. elegans. These 

changes to axoplasmic calcium concentration may be affecting quantal loading and/ or 

secretion, and therefore neurotransmitter build up in synapse in the presence of 

aldicarb. Reduced calcium release in to axoplasm would result in slower 

neurotransmitter build up in the synapse and increased resistance to aldicarb.  

 

However, it is also possible that altered sensitivity to aldicarb is due to the RyR variants 

functionality postsynaptically to NMJs, which is thought to be the case in the unc-68 



Pre- and postsynaptic RyRs effects 

 

125 

null mutant. The strong resistance of the null mutant to aldicarb is expected, 

regardless of any presynaptic effects of the RyR, as the UNC-68 receptor does function 

in muscle cells. The complete loss of RyR from the muscle cells would result in delayed 

paralysis due to loss of calcium release from the sarcoplasmic reticulum. Despite 

aldicarb resulting in a build-up of ACh at the NMJ, the down-stream target of E-C 

coupling, the RyR, cannot be activated to release calcium from the sarcoplasmic 

reticulum, and so the calcium signal in the muscle cell is not amplified. Therefore, 

muscle hypercontraction, and paralysis, is delayed as it takes longer for paralysis-

inducing calcium concentrations to accumulate in the myoplasm.  

 

Variant RyRs may also be affecting calcium release from the SR in muscle cells, 

resulting in altered aldicarb response. If this were the case, then calcium release from 

the SR via variant RyRs would be reduced in the hR163C, hG341R, hR2163H, hN2342S, 

hR2458H and hR4861H variant strains but increased in the hR2454H and hK3452Q 

strains, as described for calcium release from the ER in nerve cells. However, the direct 

consequence of these changes is calcium availability in the myoplasm for muscle 

contraction. 

 

Regardless of whether these variant RyRs are affecting calcium release pre or post-

synaptically, it is interesting that six RyR variant strains response to aldicarb in a way 

that suggests reduced calcium release via variant RyRs in the presence of aldicarb. 

Previously the degree of curvature of five of these strains suggested excessive calcium 

release via variant RyRs resulting in increased muscle contraction (chapter 4). Only for 

the hR4861H variant do these results seem consistent.  

 

To assess if whether presynaptic variant RyRs altered the response to aldicarb, the 

response to levamisole of these strains was analysed. As explained previously, should 

there be no differential response of the RyR variant strains in response to levamisole, 

compared to wild type, then the altered response seen in aldicarb for these strains can 

be attributed to altered function of RyR variants presynaptic to NMJs (Rand, 2007). 

Unfortunately, this analysis was not conclusive. 
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5.4.2. The responses to levamisole suggest postsynaptic effects of ryanodine receptor 

variants 

Several strains did show changes in sensitivity to levamisole, therefore suggesting that 

these mutations in RyRs have direct consequences within muscle cells (Rand, 2007). 

Increased sensitivity to levamisole, as seen for the hR2163H variant strain, suggests 

increased calcium release from the SR via variant RyRs, resulting in faster paralysis. 

This is in direct contrast to the result in aldicarb for this strain, where increased 

resistance was seen. Both the hN2342S and hR4861H variant strains appeared slightly 

more resistant to levamisole, possibly indicating slightly reduced calcium release from 

the SR. Resistance of these variant strains to aldicarb was also seen. One variant strain, 

that for hG341R, had a similar response to levamisole like the wild type did, suggesting 

no effect of this variant in the muscle cells. 

 

Recovery from levamisole paralysis was observed for all RyR variant strains, as well as 

the wild type and the unc-68 null mutant. Levamisole recovery was reported 

previously, but only when animals were removed from levamisole and placed an agar 

plate (Lewis et al., 1980). Interestingly, it was noted that animals that were removed 

from levamisole while undergoing contraction usually recovered while those that had 

fully relaxed did not. The initial phase of paralysis seen here for wild type may not have 

reached as far as the relaxation, allowing recovery. The later phase of paralysis may 

have as recovery was not seen, although this could be due to termination of the assay 

at 240 minutes. 

 

Recovery responses during exposure to other drugs has been investigated and 

described in C. elegans (Spensley et al., 2018). Nicotine and levamisole both activate 

nAChRs, but with one crucial difference; nicotine only binds to N-type nAChRs while 

levamisole only binds to L-type nAChRs (Richmond and Jorgensen, 1999). Both types of 

nAChRs are present at NMJs in C. elegans (Williamson et al., 2009). Applying mAChR 

blockers, in conjunction with nicotine, revealed that mAChR signalling drives recovery 

from paralysis caused by sustained N-type nAChR signalling (Spensley et al., 2018). 

Perhaps mAChR activity allows recovery from levamisole paralysis too. Such a 

mechanism would require confirmation with similar experiments but using levamisole 
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in place of nicotine, as well as further investigation into the mechanism by which the 

mAChRs are able to drive recovery. Questions would remain as to how the RyR 

missense amino acid changes could modify the recovery compared to wild type. 

 

The most striking finding in the levamisole response assay was the kinking phenotype 

observed for four of the RyR variant strains, hR163C, hR2454H, hR2458H and 

hK3452Q. Such a response of C. elegans to levamisole has not been previously 

reported as far as could be found, which may suggest that this is a unique response of 

strains carrying variant RyRs. The kinking response shows neither sensitivity nor 

resistance to levamisole but is a novel response to the nAChR agonist. A kinking 

phenotype has been used to describe the crawling locomotion of various mutations in 

certain C. elegans genes of the uncoordinated class (unc). The unc-68 gene is a 

member of this gene class. The unc genes can be involved in either nerve cell or 

muscle cell function (Herndon and Hall, 2013), but the unc genes that confer a kinking 

phenotype on agar are usually associated with neural function (Brenner, 1974). As 

previously described, unc-68 is associated most strongly with muscle function (Maryon 

et al., 1998), but there is evidence of unc-68 in nerve cells (Liu et al., 2005; Chen et al., 

2017a). The unc-68 null mutant did not exhibit the kinking phenotype in levamisole 

described here. However, four of the strains carrying variants in unc-68 did 

demonstrate this phenotype.  

 

None of the strains assessed here demonstrated a crawling kinking phenotype, in the 

absence of levamisole, so it is presumed that the crawling kinking phenotype seen for 

mutations in genes in the unc class is different to the kinking phenotype described 

here in the presence of levamisole. Crawling in the presence of levamisole was not 

assessed, however, it has been shown that these RyR variants, when expressed as 

extrachromosomal arrays, do not confer a kinking phenotype when exposed to 

100 M levamisole on an agar plate (Ferreira and Kalogeropoulou, 2019). This may be 

due to a number of reasons; 1) over expression of the transgene in the 

extrachromosomal array strains masking the response, 2) that swimming is required to 

reveal this response, or 3) that 100 M levamisole is too low a concentration. Only one 

genome-edited RyR variant strain demonstrated a clear kinking response when 

swimming in 100 M levamisole. 
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An altered response to the levamisole assay was thought to indicate effects of RyR 

variants in muscle cells, however, the kinking response seen here for four RyR variant 

strains could be due to the variant RyRs disturbing calcium control in the nervous 

system. Upon exposure to levamisole neural calcium mishandling by variant RyRs may 

result in random excitation of inhibitory motor neurons. As described, ACh is an 

important neurotransmitter in the C. elegans nervous system. The circuitry associated 

with the motor neurons of the ventral nerve cord (VNC) are mainly cholinergic, with 

the exception of the inhibitory, GABAergic, DD and VD motor neurons (Pereira et al., 

2015). The D-type motor neurons are postsynaptic to stimulatory cholinergic A and B-

type motor neurons of the VNC (Zhen and Samuel, 2015)(Figure 4.1). Calcium 

mishandling by variant RyRs in the nervous system may result in random excitation of 

inhibitory motor neurons, which would lead to temporary relaxation of some body 

wall muscle cells, due to release of GABA, which would otherwise be hypercontracted, 

due to levamisole. 

 

It is postulated that Kinking is paralysis in most muscle cells due to levamisole binding 

to nAChRs on the sarcolemma with relaxation in random muscle cells due to RyR 

variants in GABAergic neurons stimulating GABA release. That kinking was only seen in 

half of RyR variants may suggest those that show kinking have more extreme effects 

on RyR function presynpatically. Of the four RyR variant strains that conferred the 

kinking response, three had the largest increase in degree of curvature, thought to be 

as a result of excessive calcium release, and the largest decrease in body length 

compared to wild type as young adults, thought to be a consequence of impaired 

pharyngeal pumping (chapter 4). The last variant strain that exhibited the kinking 

response did have an increased degree of curvature and reduced length as a young 

adult, but not to the same extent as the other kinking variant strains. Interestingly, this 

variant strain had the weakest kinking response. 

 

5.4.3. Effects of ryanodine receptor variants in neural and muscle cells 

Previously, a presynaptic effect of these RyR variants, expressed from 

extrachromosomal arrays, was found for response to caffeine (Nicoll Baines et al., 

2017). These array strains have failed to show an altered response to lower 
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concentrations of levamisole when crawling on an agar surface, but have shown 

altered responses to aldicarb (Ferreira and Kalogeropoulou, 2019). This, again, 

suggests effects of the RyR variants, expressed as extrachromosomal arrays, in neural 

cells. However, the previous work also showed effects of these altered RyRs in muscle 

cells, with increased myofilament disorganisation at younger ages in the RyR variant 

strains compared to wild type controls (Nicoll Baines et al., 2017). 

 

As an altered response was seen for the RyR variants to both aldicarb and levamisole 

in this research, it can only be commented that RyR variants affect calcium release 

from the SR in muscle cells. This does not rule out an effect of presynaptic RyRs but 

does show that there is at least some consequence of postsynaptic RyR variants on 

locomotion. 

 

Only one variant strain, hG341R, responded differently to aldicarb, with increased 

resistance, but had a wild type response to levamisole. This suggests that, at least for 

this strain, the variant RyR had an effect on presynaptic cells. Unfortunately, the same 

could not be definitively stated for the other variant strains. However, the hR2163H 

variant strain had conflicting responses to aldicarb and levamisole, with the resistance 

to aldicarb suggesting reduced calcium release via the RyR and increased sensitivity to 

levamisole suggesting increased calcium release via the RyR. It is possible that variant 

RyRs could have different effects in different tissues due to the macromolecular 

complex regulating its activation and this is what is being seen here, possibly 

suggesting a role of this variant in neural tissue. Furthermore, the complex kinking 

phenotype in levamisole is not easily explained simply by postsynaptic RyRs and could, 

instead, be due to inhibitory action on muscle cells, via GABA signalling, as discussed 

above.  

 

The complexity of calcium signalling via RyR in many different cellular processes is 

shown here. While aldicarb and levamisole assays have been useful to discern pre and 

postsynaptic mutations previously (Rand, 2007), this was not possible with the RyR 

variant strains. RyR mediated calcium signalling in pre- and postsynaptic cells appears 

too complex for this type of assay. 
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A more robust method of demonstrating tissue-specific effects would be to drive 

expression of these variants using tissue-specific promoters. This is possible in 

C. elegans. Neural specific expression of unc-68 can be driven by the rab-3 promoter, 

while muscle specific expression can be driven by the myo-3 promoter, as has been 

done previously (Liu et al., 2005). This approach has been called SKI LODGE (Single-

copy Knock-in Loci for Defined Gene Expression) and could be useful to demonstrate 

the function, and dysfunction, of RyR variants in difference tissues (Silva-García et al., 

2019).  

 

Results suggest variant RyRs may affect calcium release in presynaptic cells, effecting 

neurotransmission, however, it also seems likely that there are consequences of these 

RyR variants in muscle cells. Further work, possibly using the SKI LODGE approach, is 

required to demonstrate clearly that RyR variants, expressed at endogenous levels, 

effect calcium homeostasis in presynaptic cells. 
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Chapter 6 

Confirming a malignant hyperthermia related phenotype in 

heterozygous ryanodine receptor variant C. elegans: genetic dominance 

in ryanodine receptor related pathologies 

6.1. Introduction  

6.1.1. Aim of this chapter 

The aim of the research reported in this chapter was to determine whether variant 

RyRs show genetic dominance over wild type RyRs, in C. elegans. Many RyR-related 

myopathies, including MH, show genetic dominance. As shown in chapter 3, C. elegans 

designed to express RyRs equivalent to human RyR1 MH disease variants express an 

MH-related phenotype of hypersensitivity to halothane, however, this was only shown 

in homozygotes. Finding sensitivity to halothane in heterozygote RyR variant C. elegans 

would further demonstrate the value of these strains in modelling MH and other RyR-

related diseases, due to their similarity to the human condition.  

 

6.1.2. Genetic dominance in malignant hyperthermia  

Many disease causing RyR1 variants, such as those that cause MH, are inherited in an 

autosomal dominant pattern (Halsall and Hopkins, 2003; Loy et al., 2011; Miller et al., 

2018). Only one copy of the variant allele is required for the phenotype associated 

with that allele to be seen. Both MH and CCD are associated with genetic dominance 

(Robinson et al., 2006); most of the RyR variants studied here have been associated 

with MH, plus several also being associated with CCD. LOAM, represented by the 

K3452Q variant in this research, has shown genetic dominance through RYR1 

sequencing of patients presenting with neuromuscular symptoms later in life 

(Jungbluth et al., 2009).  

 

The research presented so far focuses only on homozygous RyR variants expressed in 

genome-edited C elegans. However, the previous work with RyR variant 

extrachromosomal array strains did find genetic dominance in strains that expressed 

both variant and wild type RyRs (Nicoll Baines et al., 2017). It is important to verify 

whether the genome-edited RyR variant strains show genetic dominance to further 
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support the similarity between them and the situation in humans. This finding would 

not only validate these strains as good models of MH but add further weight to the 

novel findings for neuromuscular defects in the absence of a triggering agent (chapters 

3 and 4), and the suggestion of these defects being due to variant RyRs in the neurons 

(chapter 5). 

 

Generating heterozygote C. elegans through mating is relatively straight forward. By 

crossing unc-68 variant hermaphrodites with males that are wild type for unc-68, all 

resulting cross-progeny hermaphrodites would be heterozygous at the unc-68 locus. 

Presumably, RyRs encoded by heterozygote RyR variant/ wild type animals would be 

made up of a mixture of variant and wild type subunits (Figure 6.1). 

 

          

           

Figure 6.1: Quaternary structure of the RyR in wild type / variant unc-68 animals. 

Combination of RyR subunits is expected in the ratio of 1:4:6:4:1 in heterozygote 

animals. Of the channels made up of two wild type and two variant subunits they 

could assemble so that identical channels are opposite or next to each other as shown 

on top row far right and bottom row far left. The homotetramers are viewed from 

cytoplasm. Arbitrarily, blue indicates wild type subunits and red the variant subunits. 

Generated using PyMOL, based on the closed conformation of rabbit RYR1, as 

predicted from Yan et al. (2015) (PDB code 3J8H). 

 



Genetic dominance  

 

133 

The quaternary structure of the RyR channel in heterozygotes with both wild type and 

variant unc-68 has five possible conformations (Figure 6.1). As the RyR channel is a 

homotetramer, it is predicted that the subunits would combine in a ratio of 1:4:6:4:1; 

1 – (wild type)4, 4 – (wild type)3, (variant)1, 6 – (wild type)2, (variant)2, 4 – (wild type)1, 

(variant)3 , 1 – (variant)4. Although, this may not be the case if there was differential 

affinity between the different subunits. The channels made up of two wild type and 

two variant subunits could combine so that variant subunits are opposite or next to 

each other. Furthermore, RyR channels adjacent to each other communicate; an 

aberrant conformational change in a variant tetramer could have direct consequences 

upon adjacent, fully functioning, tetramers. 

 

6.2. Methods 

6.2.1. Generating heterozygous ryanodine receptor variant individuals in C. elegans 

Generating unc-68 variant / wild type heterozygous strains was achieved by mating. A 

GFP marker was used to distinguish cross- and self-progeny. N2 wild type males from 

stocks maintained in Leeds were crossed with OH441 hermaphrodites (from the 

Caenorhabditis Genetics Center) to generate heterozygous otls45[unc-119::gfp] / wild 

type progeny, half of which were male (Figure 6.2). The male progeny from this cross 

were then crossed with hermaphrodites of the RyR variant strains. All cross-progeny 

from this mating were heterozygous at the unc-68 locus and half of the cross-progeny 

carried the unc-119::gfp marker. Of the individuals carrying the GFP marker, only 

hermaphrodites were used in phenotyping assays. N2 wild type and CB540 (unc-

68(e540)) null mutant heterozygote individuals were generated in parallel for direct 

comparison. 

 

The first cross (N2 wild type males x OH441 hermaphrodites) was set up in a 3:2 male 

to hermaphrodite ratio. The second cross between the otls45[unc-119::gfp] / wild type 

males and unc-68 variant hermaphrodites was set up four days prior to assaying for 

halothane sensitivity. Two L4 unc-68 variant homozygous hermaphrodites were picked 

to a fresh NGM plate along with four or five otls45[unc-119::gfp] / wild type 

heterozygous males. This was done in triplicate. L4 hermaphrodites were used to 
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ensure they had not begun producing self-progeny. More males than hermaphrodites 

were used to increase the chances that hermaphrodites were mated. 

 

 

Figure 6.2: Heterozygous wild type / variant unc-68 animals were generated by mating. 

N2 wild type males (♂︎) were mated with OH441 hermaphrodites (  ) (1). Male 

progeny from this cross were all heterozygous and were mated with unc-68 variant 

hermaphrodites (2). The dotted arrow shows males resulting from cross 1 being used 

in cross 2. As a result of cross 2, hermaphrodite and male progeny heterozygous at 

the unc-68 locus would be generated, half of these would also be heterozygous for 

the otls45 allele and express GFP (3). The GFP expressing hermaphrodites were used 

in phenotyping assays, shown by the red box (4). Self-progeny of the RyR variant 

hermaphrodites (shown by a grey arrow) were excluded as they did not carry the GFP 

marker. This was also done in parallel for N2 wild type and the CB540 (unc-68(e540)) 

null mutant for direct comparison. The UNC-119 GFP marker was integrated by 

gamma radiation and is in chromosome V, the same chromosome as unc-68, 

therefore the otls45 allele and unc-68 are shown on the same line. 

 

6.2.2. Halothane and thrashing assays for the heterozygote variant animals 

Halothane and swimming assays were conducted for young adult heterozygous 

animals as previously described (section 3.2.1). However, only the highest 
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concentration of halothane (5 mM) was used to confirm an MH-related phenotype of 

hypersensitivity to halothane. Thrashing rate in S medium was also determined for 

heterozygotes.  

 

To obtain young adult heterozygous animals, three days after cross 2 was set up, which 

was one day prior to the assay, the cross progeny were screened for the GFP marker. 

L4 hermaphrodites expressing the marker were picked to a fresh NGM plate seeded 

with OP50 E. coli. The next day, four days after the cross was set up, the heterozygous 

hermaphrodites were screened for halothane sensitivity. 

 

6.3. Results 

6.3.1. Halothane hypersensitivity and locomotion defects are present in all ryanodine 

receptor variant heterozygote animals  

To confirm genetic dominance in the heterozygous RyR variant animals, sensitivity to 

halothane was tested. Individual young adult hermaphrodites were picked into 

S medium or S medium with 5 mM halothane and body bends counted.  

 

To confirm that there was no effect of the different genetic background, except for the 

unc-68 variant locus, the wild type control was subjected to the same cross and only 

the hermaphrodites carrying the GFP marker were assayed. The resulting progeny are 

fully wild type for unc-68 and therefore referred to as “heterozygous” to emphasize 

the direct comparison to the RyR variant / wild type heterozygote animals. The 

“heterozygote” wild type animals completed 193 (±16) body bends per minute in 

S medium alone, which was similar to the starting homozygous wildtype animals in S 

medium, 199 (±14) body bends per minute (P=0.66, One-way ANOVA with Tukey’s 

multiple comparison test) (see below, Figure 6.4A).  

 

The unc-68 null phenotype is recessive to wildtype (Maryon et al., 1996). Here, when a 

heterozygous unc-68 null mutant was generated by mating, the thrashing rate, 199 

(±10) body bends per minute, was indistinguishable from the “heterozygote” wild 

type control, (P=0.99, One-way ANOVA with Tukey’s test) (Figure 6.3A). This shows 

that the unc-68 null phenotype is recessive to wild type, in agreement with the 
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previously published data. Surprisingly, the same was not seen for the hR4861H 

variant, which had behaved similarly to the null mutant in most assays to this point. 

       

 

 

Mean and standard deviation of thrashing rates in the absence of halothane and in 

5 mM halothane for wild type and the CB540 (unc-68(e540)) null mutant and RyR 

variant C. elegans strains when heterozygous for wild type unc-68. 

 

 

 

 

 

 

 

 

 

Figure 6.3: Locomotion effects and halothane hypersensitivity in heterozygous RyR 

variant individuals. 

Thrashing rate in S medium, in body bends per minute, for heterozygous RyR variant 

animals with the modified unc-68 over a wild type unc-68 introduced by mating, 

labelled by the human variant they correspond to, in the absence of (A) and presence 

of (B) 5 mM halothane. (C) Mean and standard deviation (SD) of thrashing rate, in 

body bends per minute, for wild type, the null mutant and RyR variants when 
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expressed over wild type unc-68. Corresponding wild type and CB540 (unc-68(e540)) 

null mutant individuals were generated and assayed in the same way for direct 

comparison. Wild type shows the data for the crossed “heterozygote” animals. 25 

individuals were examined per strain. Boxes indicate the median and interquartile 

range, with whiskers to the 10-90 percentile, outliers as dots, and + to indicate the 

mean. Significance is between variant strains or the unc-68 null mutant and the wild 

type. ** P<0.005, n.s = not significant (one-way ANOVA, with Tukey’s multiple 

comparison test).  

 

Heterozygous hR4861H individuals had a mean thrashing rate of 156 (±25) body bends 

per minute in S medium alone (Figure 6.3A). This was significantly lower than for the 

“heterozygote” wild type control (P<0.005, One-way ANOVA with Tukey’s test). This 

demonstrates that the hR4861H allele is not a null, despite showing some similarity to 

the null mutant when homozygous. The hR4861H UNC-68 is expressed and interferes 

with the wild type protein’s function in heterozygous C. elegans. This is also the case in 

the human condition, where this missense RyR1 variant causes MH and CCD when 

present in the heterozygote state (Monnier et al., 2001).  

 

As a heterozygote, the hR4861H variant individuals were found to have a similar 

thrashing rate to all other RyR variant heterozygotes. The heterozygotes for all RyR 

variants had reduced thrashing in the absence of halothane compared to the wild type 

control (P<0.005, One-way ANOVA with Tukey’s test) (Figure 6.3A). A single copy of 

any RyR variant studied here is sufficient to confer an effect on neuromuscular 

function, even in normal conditions, in the absence of any external triggering agent.  

 

When exposed to 5 mM halothane, the heterozygote unc-68 null mutant was 

indistinguishable from the “heterozygote” wild type control, completing 81 (±26) and 

71 (±17) body bends per minute respectively (P=0.39, One-way ANOVA with Tukey’s 

test) (Figure 6.3B). Once again, this shows the null phenotype is recessive to wild type. 

 

Conversely, all RyR variant heterozygotes had a reduced thrashing rate compared to 

the wild type “heterozygote” control when exposed to 5 mM halothane, indicating 

hypersensitivity to the MH triggering agent (Figure 6.3B, Table 6.1). The RyR variant 
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heterozygotes completed between 21 (±11) and 33 (±7) body bends per minute, 

which is less than half of the “heterozygote” wild type thrashing rate (P<0.005, One-

way ANOVA with Tukey’s test). The heterozygous RyR variant animals also had larger 

percentage decreases in thrashing rate from S medium to 5 mM halothane, greater 

than 80%, except for the hN2342S variant heterozygous animals, which showed a 79% 

decrease, compared to 63% for wild type and 59% for the heterozygous unc-68 null 

mutant (Table 6.1). Therefore, the reduced thrashing rate seen in 5 mM halothane for 

the heterozygous RyR variant animals compared to wild type is not just a result of the 

reduced thrashing rate seen in the absence of halothane for these animals, but 

increased sensitivity to halothane. These results demonstrate genetic dominance of 

variant RyRs over wild type, in agreement with previous research in C. elegans (Nicoll 

Baines et al., 2017), and the inheritance pattern of MH and other RyR-related 

myopathies (Halsall and Hopkins, 2003; Loy et al., 2011; Miller et al., 2018).  

 

Strain (Variant) Absence to 5 mM halothane 

Wild type -63% 

hR163C / + -86% 

hG341R / + -86% 

hR2163H / + -85% 

hN2342S / + -79% 

hR2454H / + -83% 

hR2458H / + -86% 

hK3452Q / + -86% 

hR4861H / + -83% 

unc-68 null / + -59% 

Box shading is consistent with the colour coding used throughout this thesis. RyR 

variant strains are listed according to the human variant they correspond to. Percent 

change is calculated as ((C1-C2)/C1)*100 where C1 is the absence of halothane and 

C2 is 5 mM halothane. All strains showed a decrease from C1 to C2, indicated by a 

minus sign (-). 

 

Table 6.1: Percentage change of mean thrashing rates from the absence of, to presence of 5 

mM halothane for RyR variant heterozygote animals, and wild type and CB540 (unc-68(e540)) 

null mutant controls. 
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6.3.2. Ryanodine receptor variants in the heterozygote animals disrupt locomotion 

more than in the homozygotes 

RyR variant heterozygotes and homozygotes were compared (Figure 6.4). In the 

absence of halothane, the presence of a wild type copy of unc-68 significantly 

increases thrashing rate in S medium for hR4861H variant animals (from 56 (±19) to 

156 (±25) body bends per minutes (P<0.005, One-way ANOVA with Sidak’s test for 

multiple comparisons) (Figure 6.4A). However, this is the only case of locomotion 

improving in the heterozygous RyR variant animals compared to the homozygous 

animals and reflects the lack of channel function for the hR4861H UNC-68 

homotetramer.  

 

With the exception of hR4861H, the RyR variant heterozygotes had a stronger 

locomotion defect than the corresponding homozygotes. The RyR variants that had 

conferred a locomotion defect when present in the homozygous young adults, 

hR163C, hG341R and hR2458H, all conferred a worse locomotion defect in the 

heterozygote young adults (P<0.005, P<0.05 and P<0.005 respectively, One-way 

ANOVA with Sidak’s test). The remaining four variants, hR2163H, hN2342S, hR2454H 

and hK3452Q, which had permitted apparently wild type-like locomotion in the 

homozygotes, conferred a locomotion defect when present in heterozygotes (P<0.005, 

One-way ANOVA with Sidak’s test). This shows that the presence of a variant UNC-68 is 

not only sufficient to confer an effect on neuromuscular function, but that the 

presence of a variant UNC-68 with wild type UNC-68 actually enhances the 

consequences of the variant RyR, in the absence of a triggering agent. 
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Mean and standard deviation of thrashing rates in the absence of halothane and in 

5 mM halothane for heterozygous and homozygous RyR variant C. elegans strains and 

the corresponding wild type and CB540 (unc-68(e540)) controls. 

  
S medium 5 mM halothane 

Mean SD Mean SD 

Wild type "HOM" 199 14 66 30 

Wild type "HET" 193 16 71 17 

hR163C HOM 182 16 36 20 

hR163C HET 154 19 22 7 

hG341R HOM 185 18 30 13 

hG341R HET 170 18 23 10 

hR2163H HOM 191 21 35 16 

hR2163H HET 167 22 25 9 

hN2342S HOM 201 18 23 20 

hN2342S HET 157 17 33 7 

hR2454H HOM 195 16 30 24 

hR2454H HET 159 20 28 13 

hR2458H HOM 176 15 30 15 

hR2458H HET 156 20 21 11 

hK3452Q  HOM 195 14 35 16 

hK3452Q  HET 167 16 23 8 

hR4861H  HOM 56 19 19 11 

hR4861H  HET 156 25 26 11 

unc-68 null HOM 58 11 22 10 

unc-68 null 199 10 81 26 

Box shading is consistent with the colour coding used throughout this thesis. RyR 
variant strains are listed according to the human variant they correspond to. 

Figure 6.4: Comparison of heterozygous and homozygous RyR variants on locomotion 

and halothane sensitivity. 

Thrashing rate in S medium, in body bends per minute, for 25 individuals, in the 

absence of (A) and presence of (B) 5 mM halothane. RyR variants are identified by 

the human variant they correspond to, and were either heterozygous (HET), with the 

modified unc-68 over a wild type unc-68 introduced by mating, or homozygous 

(HOM) for the modified unc-68. Corresponding wild type and CB540 (unc-68(e540)) 

null mutant individuals were generated and assayed in the same way, although the 

wild type “heterozygotes” (“HET”) and “homozygotes” (“HOM”) are fully wild type 

for unc-68. Boxes indicate the median and interquartile range, with whiskers to the 

10-90 percentile, outliers as dots, and + to indicate the mean. Significance is between 

heterozygotes and homozygotes. * P<0.05, ** P<0.005, n.s = not significant (one-way 

ANOVA, with Sidak’s multiple comparison test). (C) Mean and standard deviation (SD) 

of thrashing rate, in body bends per minute, in the absence and presence of 5 mM 

halothane for heterozygous and homozygous RyR variant strains and corresponding 

wildtype and CB540 (unc-68(e540)) controls. 

C 
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When exposed to 5 mM halothane the rate of thrashing in the RyR variant 

heterozygotes was indistinguishable from the homozygotes (Figure 6.4B). The only 

unc-68 allele to show a difference between the heterozygote and homozygote in 5 mM 

halothane was the null, consistent with the recessive nature of the unc-68 null 

phenotype. Once again, this shows the genetic dominance of the RyR missense 

variants.  

 

6.4. Discussion 

The aim of the research described in this chapter was to confirm genetic dominance of 

RyR variants in C. elegans. This was achieved as it was shown that heterozygote RyR 

variant animals are hypersensitive to halothane.  

 

Of further interest is the thrashing defects that were apparent in all RyR variant 

heterozygotes, even if not in the corresponding homozygote. Despite a wild type copy 

of RyR rescuing the null locomotion phenotype and partially recovering thrashing in 

the hR4861H variant heterozygotes, the heterozygote RyR variant animals had reduced 

thrashing rates in S medium, compared to the “heterozygous” wild type control and 

their homozygous counterparts.  

 

6.4.1. Thrashing defects are intensified in ryanodine receptor variant heterozygote 

animals 

The data presented suggest functional alterations in heterozygous individuals in the 

absence of an MH trigger. Previously, no effect of RyR variants on locomotion when 

expressed in C. elegans from extrachromosomal arrays, in representations of the 

homozygous or heterozygous conditions, was seen in the absence of a triggering agent 

(Nicoll Baines et al., 2017). The previous explanation for the inconsistency between 

array strains and CRISPR-Cas9 genome-edited strains still stands - expression levels of 

UNC-68 are likely to be critical for this altered phenotype. Higher levels of expression 

from the extrachromosomal arrays may mask altered phenotypes. 
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Particularly striking, is that the thrashing defect in the genome-edited strains as 

heterozygotes is worse than in the corresponding homozygotes, with the exception of 

the hR4861H variant. A mixture of normal and variant subunits appears to disrupt 

channel function more than when all four subunits are distorted in the same way in 

variant homozygotes.  

 

As described previously, Witherspoon and Meilleur (2016) divide the complex 

interactions and modifications that regulate RyR into six groups. These groups include 

interdomain interactions, post translational modifications, and retrograde and 

orthograde signalling. Mutations in RyR1 that interrupt these regulatory groups are 

associated with a number of pathologies and MH is linked to at least four of the six 

regulatory groups. A possible explanation for the further compromised functionality of 

variant / wild type RyRs could involve the amino acid changes impacting upon multiple 

aspects of RyR function.  

 

It is possible that a single mutation in RyR is able to disrupt multiple components of 

the regulatory groups described by Witherspoon and Meilleur (2016). For example, 

several CCD causing mutations introduced into rabbit RYR1 disrupt the interaction 

between RyR1 and triadin as well as influencing voltage-gated calcium release from 

the SR in mice myotubes (Goonasekera et al., 2007). As described previously, binding 

of triadin to RyR modulates RyR activity dependent on the calcium concentration of 

the SR (Györke et al., 2004). If the triadin-RyR interaction were affected by one of the 

mutations here, RyR activity could be reduced and calcium release from the SR 

decreased in the variant homozygote. Simultaneously, the mutation could also 

increase voltage-gated calcium release from the SR/ ER. The presence of wild type 

subunits in the variant heterozygote could rescue one of the effects of the variant RyR, 

such as the interaction with triadin. This would result in normal RyR triadin control, 

without affecting the change to voltage-gated calcium release. This could result in 

increased calcium release in the variant heterozygote compared to the variant 

homozygote and wild type.  

 

As described previously, while MH is described as asymptomatic in the absence of a 

trigger, several RyR1-related diseases show inherent consequences for neuromuscular 
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function (MacLennan, 2000; Robinson et al., 2006; Illingworth et al., 2014; Laforgia et 

al., 2018). With MH causing RYR1 variants in the human population being present 

heterozygously (Gardner et al., 2020), and functional alterations being found in all 

heterozygote animals here, subtle consequences for neuromuscular function may be 

present but undetected in the human population for carriers of RYR1 variants. 

 

In the presence of halothane, the RyR heterozygote animals show hypersensitivity, 

demonstrating genetic dominance of RyR variants. This finding is in agreement with 

previous work where these variants were expressed as extrachromosomal arrays in 

C. elegans (Nicoll Baines et al., 2017), as well as work in mice and humans (Robinson et 

al., 2006; Carpenter et al., 2009a). However, the threshold of calcium response of 

myotubes from homozygous R163C knock-in mice to the IVCT agent caffeine has been 

shown to be further decreased than for heterozygous R163C knock-in mice (Yang et 

al., 2006). This suggests that myotubes from homozygous RyR variant mice are more 

sensitive than corresponding heterozygous mice. Another study has found 

homozygous and heterozygous MH RyR1 mutations distinguishable based on 

responses to caffeine but could not differentiate between them for response to 

halothane (Lynch et al., 1997). As only response to halothane was assessed here this 

may explain the similarity between homozygote and heterozygote RyR variants for the 

MH-related phenotype. 

 

Nevertheless, both homozygous and heterozygous RyR variant strains demonstrated 

increased sensitivity to halothane compared to wild type here and the genetic 

dominance seen for these strains adds further support for the use of these strains as 

models for MH and other RyR-related pathologies. 
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Chapter 7 

General Discussion 

 

In this research I used C. elegans to explore effects of RyR variants in vivo. I have 

demonstrated that these RyR variant strains do confer an MH-related phenotype of 

increased halothane sensitivity, which is also present in RyR variant heterozygote 

animals, demonstrating genetic dominance, as in the human situation. 

 

More strikingly, I have demonstrated that both RyR variant homozygotes and 

heterozygotes confer locomotion defects in the absence of an MH triggering agent, 

when in liquid. Investigation into these locomotion defects in RyR variant homozygote 

animals revealed different effects on crawling for different RyR variants, and suggested 

consequences of these variants in age-related locomotion degeneration.  

 

I also focussed on the potential focus of these RyR variants being in neural and/ or 

muscle cells. Differential responses of these RyR variant strains to the cholinergic 

pharmaceutical agents suggested these variants may affect RyR functionality in both 

neural and muscle cells, although this was not shown conclusively. 

 

7.1. Ryanodine receptor variants increase C. elegans sensitivity to 

halothane independently of age and zygosity 

This research provides evidence for C. elegans as a valid model of MH, and other RyR-

related diseases. A measurable MH-related phenotype, hypersensitivity to halothane, 

was found for both RyR variant homozygote and heterozygote animals, carrying 

mutations in the endogenous chromosomal location. This reflects the human situation 

where MH is inherited in an autosomal dominant fashion (Halsall and Hopkins, 2003; 

Loy et al., 2011; Miller et al., 2018). Such consequences of RyR variants in C. elegans 

had been recorded previously (Nicoll Baines et al., 2017). However, the mutations 

were expressed then from an extrachromosomal array. The use of genome editing, as 

opposed to a transgene, means that the expression levels and distribution of the 
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modified RyR reflects that of the wild type, and is therefore more likely to reflect the 

natural situation in C. elegans and the natural human situation.  

 

Halothane sensitivity was found to be similar between RyR variant homozygote and 

heterozygote animals, as well as between young and old adult homozygote animals. 

Two RyR variant strains did show a significant increase in sensitivity to halothane 

between young and old adult in the homozygotes. The variant strain that was 

frequently similar to the unc-68 null mutant and the hK3452Q variant strain. The latter 

is the only RyR variant studied here to also be implicated in an age-related disorder, 

Late-onset axial myopathy (LOAM) (Løseth et al., 2013), but that could be a 

coincidence. The onset of axial myopathy is thought to be a specific late manifestation 

of RYR1 mutations associated with MHS, but with much lower prevalence than MHS, 

suggesting the presence of additional modifiers. The cause of LOAM is suggested to be 

a particular vulnerability of the axial musculature to a combination of RyR1 dysfunction 

and normal ageing. Leaky RyR1 channels have been shown to have a detrimental effect 

on muscle structure and function with age (Andersson et al., 2011), however 

environmental and other genetic modifiers may play a role in the development of 

LOAM (Løseth et al., 2013). The specific involvement of some RyR1 variants rather 

than others in LOAM is not understood. An N-terminal domain (NTD) mutation G40V, 

thought to interrupt the interaction with the DHPR, was identified in a 77-year-old 

patient presenting with late-onset neuromuscular symptoms (Jungbluth et al., 2009). It 

was thought that the locations of this mutation, in the NTD of RYR1, resulted in a 

different phenotype to CCD-causing mutations typically thought to be located in the 

CTD ‘hot spot’ (Sei et al., 2004; Jungbluth et al., 2009). However, the idea of RYR1 ‘hot 

spots’ is not as popular anymore with many mutations existing outside of these 

regions; next generation sequencing (NGS) has made sequencing of full cDNA of RYR1 

feasible (Laforgia et al., 2018). Furthermore the LOAM RYR1 variant studied here is not 

in the NTD, but the helical domain (Løseth et al., 2013). The increase in 

hypersensitivity seen for the LOAM-associated RyR variant strain, with age, may 

suggest that this variant channel was not fully compromised by halothane in the young 

adults, but with age the channel became more sensitive to perturbation. This is in line 

with the notion that LOAM is associated with particular vulnerability to a combination 

of RyR1 dysfunction and ageing. 
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The increased sensitivity in the hR4861H variant strain with age in the homozygous 

RyR variant animals was attributed to this variant severely affecting protein function 

when present homozygously, and therefore being comparable to the null mutant. 

 

Hypersensitivity to halothane was unaffected by zygosity in all of the RyR variant 

strains. However, more severe responses to caffeine have been found for homozygous 

R163C knock-in mice compared to heterozygous mice, as described in chapter 6 (Yang 

et al., 2006). Homozygous and heterozygous MH RyR1 mutations are indistinguishable 

in response to halothane, despite the former being more sensitive to caffeine (Lynch et 

al., 1997). Perhaps assessment of response to caffeine of the homozygous and 

heterozygous RyR variant animals would also reveal differences in sensitivity based on 

zygosity. Nonetheless, genetic dominance was seen in these animals with only one 

copy of an RyR variant being required for hypersensitivity to the MH-trigger halothane, 

as is reported in humans. 

 

Hypersensitivity to halothane was unaffected by age and zygosity in the majority of the 

RyR variant strains studied, suggesting that in young adult RyR variant homozygotes, 

and indeed heterozygotes, the variant RyR is already fully compromised for halothane 

exposure in C. elegans.  

 

7.2. Ryanodine receptor variants have inherent consequences for 

locomotion in C. elegans 

The expression of modified RyRs at the endogenous level, and distribution, revealed 

significant consequences for locomotion, in the absence of a triggering agent, which 

had not been reported for expression of the same variants from an extrachromosomal 

array (Nicoll Baines et al., 2017). These subtle consequences for locomotion had 

different strengths for different RyR variant strains; this is similar to the human 

condition, where muscle biopsies for different RyR1 variants presented different MH 

phenotype severities (Carpenter et al., 2009b). While RyR1 variants are sometimes 

associated with muscle weakness (MacLennan, 2000; Robinson et al., 2006; Illingworth 

et al., 2014; Laforgia et al., 2018), there is no real evidence for locomotion phenotypes 
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in patients with RyR1 variants. However due to the relatively low prevalence of 

MHS/ RyR1 mutations, such a phenotype would need to be particularly marked in an 

individual for it to be detected. There is a lack of data and statistical power for large-

scale analyses on human populations and such subtle phenotypes would be missed.  

 

At the first larval stage, all of the RyR variant strains exhibited strong locomotion 

defects with reduced thrashing rate in liquid, compared to wild type. In young adult 

RyR variant heterozygote and homozygote animals, and old adult RyR variant 

homozygote animals the reductions in thrashing rates were more subtle than in L1s.  

 

The further development of the nervous and muscular systems from L1 to young adult 

(Sulston and Horvitz, 1977) may offer an explanation for the more marked thrashing 

defects in the early larval stage C. elegans, compared to later life stages. The mutations 

in unc-68 may have more of an impact at the L1 stage. Alternatively, the simpler 

neuromuscular system in L1s may mean the neuromuscular system is less robust to 

perturbation, due to less overlap or redundancy in functionality. A further 

consideration is that there could be gradual adaptation through the worm’s lifespan to 

specifically reduce the consequences of the subtle defects in RyR function due to the 

mutations in unc-68; locomotion would progressively improve with age. If calcium ion 

levels are subtly perturbed, perhaps there is a homeostatic response to correct the 

problem, however this has to be gradual to avoid catastrophic consequence, and 

therefore subtle locomotion defects are still seen in the young adults. Changes in 

expression of calcium homeostasis machinery has been observed in response to heart 

disease and neurodegeneration (Chakroborty et al., 2009; Dally et al., 2009; Naranjo 

and Mellström, 2012). Therefore, it is possible that components in the macromolecular 

complex that regulate RyR function, unc-68 itself, and/ or other channels which 

regulate calcium ion release/ uptake from the SR/ ER, may experience changes in gene 

expression upon calcium ion mishandling. There is evidence of a compensatory 

mechanism in Y522S RYR1 variant knock-in mice, described previously (Andronache et 

al., 2009). The voltage-dependence of the DHPR inactivation was shifted to more 

negative potentials due to retrograde signalling from RyR1, resulting in less calcium ion 

release, which was thought to counteract the calcium leakage seen by this variant RyR 

channel. Between the L1 and young adult stage a compensatory mechanism may be 
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employed to mitigate the effects of the RyR variants on calcium homeostasis. 

Nevertheless, while all RyR variant strains show reduced thrashing compared to wild 

type at the L1 stage, only some of these variant strains show statistically significant 

reduced thrashing at later life stages, suggesting some RyR variants perturb the 

function of the RyR more than others, or that compensatory mechanisms are only 

employed/ successful in some instances. 

 

7.2.1. Worm length may affect thrashing rate in young adults 

Shorter worm lengths in young adults for six of the eight RyR variant strains was 

attributed to decreased pharyngeal pumping and feeding rate. As the only RyR in 

C. elegans, unc-68 functions in pharyngeal muscle as well as in the body wall muscles 

and neurons, which were discussed extensively here (Maryon et al., 1996; Chen et al., 

2017a). The effect of reduced food uptake was thought to delay development in these 

strains, resulting in shorter lengths at the young adult stage. The four shortest RyR 

variant strains at young adult were also the only RyR variant strains to have statistically 

significantly reduced thrashing rates in liquid compared to wild type as young adults. 

Thrashing rate may be effected by worm length. 

 

Crawling analysis was not carried out for L1s, and therefore L1 worm lengths were not 

quantified for the different RyR variant strains. However, considering the correlation 

between reduced thrashing rate and shorter worm lengths in the young adults, the 

reduced thrashing rate of all RyR variant strains as L1s may be a reflection of shorter 

worm lengths at hatching. Such a result would indicate an embryonic developmental 

delay as a result of RyR variants in unc-68; problems with neuromuscular function 

could affect elongation of the embryo, resulting in shorter, but fatter, animals at 

hatching. Shorter length at hatching could not be attributed to reduced food intake as 

there is no feeding prior to hatching. However, reduced feeding of the mother may 

result in smaller eggs or less yolk provision, affecting worm length of the L1s. In order 

to understand the contributions of worm length on thrashing rate in the L1s, the 

length of the L1 animals would need to be quantified. 

 

In the old adults, four of the eight RyR variant strains had a reduced thrashing rate 

compared to wild type; three of these are the same as those with reduced thrashing 
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rate in young adults. Of the four RyR variant strains with reduced thrashing rate in the 

old adults, three were also the shortest of the RyR variant strains at old adult, and 

shorter than wild type, again suggesting an effect of worm length on thrashing rate. 

However, the fourth RyR variant strain to have reduced thrashing rate in the old adults 

was the largest of all the strains, including the wild type. Therefore, while reduced 

worm length may play a role in reduced thrashing rate in liquid for old adults, other 

factors also contribute to this locomotion defect. 

 

7.2.2. Muscle contraction is increased in young adult ryanodine receptor variant strains 

While measurement of thrashing rate in liquid did reveal differences between some 

RyR variant strains and wild type in the absence of a triggering agent, in-depth analysis 

of worm crawling revealed that all RyR variant strains are phenotypically distinct from 

both wild type and the unc-68 null mutant. Furthermore, the RyR variant strains were 

distinct from each other with varied consequences for crawling parameters. As 

mentioned above, RyR1 variants do cause different phenotypes in humans, with some 

variants being associated with more severe IVCT phenotypes and others weaker 

phenotypes (Carpenter et al., 2009b). Some variants show different strengths of 

response to different agents within the IVCT, such as showing a strong response to 

caffeine but weaker response to halothane. Having different severities of response to 

different triggering agents suggests that variants affect different mechanisms of RyR 

function. Furthermore, while some RyR1 variants are only associated with MH, others 

are associated with other myopathies such as CCD with more severe overt phenotypes 

(MacLennan, 2000; Robinson et al., 2006). 

 

Differences were found for the RyR variant strains for crawling amplitude and 

wavelength, for both young and old adults, compared to wild type. These subtle 

differences affected the degree of curvature of the crawling waveform, which 

presumably reflects differences in RyR channel properties. A larger degree of curvature 

would result from a sharper wave, suggesting an increase in strength and/ or duration 

of muscle contraction. Such an effect was seen for six of the eight RyR variant strains 

as young adults suggesting an increase in calcium release into the myoplasm due to 

the single amino acid change in UNC-68. RyR1 variants are frequently referred to as 

‘leaky’, releasing excessive calcium into the cytoplasm (Andronache et al., 2009; 
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Andersson et al., 2011; Liu et al., 2012; Lamboley et al., 2016; Chen et al., 2017b). It 

has been demonstrated that the presence of the R163C RYR1 variant in mice does 

increase calcium concentration of the cytoplasm, likely through increase calcium 

release via variant RyRs. Here this variant, and others, are suggested to increase 

calcium release via variant RyRs as degree of curvature was increased suggesting 

muscle hypercontraction.  

 

The two RyR variants that did not have a greater degree of curvature in the crawling 

analysis did have changes in amplitude and wavelength. While the hN2342S variant did 

reduce the amplitude and wavelength, the degree of curvature remained similar to 

wild type. This strain had the greatest increase in crawling frequency due to the 

smaller wave as a result of the reduced amplitude and wavelength. While degree of 

curvature can be used to compare the extent of muscle contraction, it does not 

necessarily reflect the extent of muscle contraction in this case. The smaller wave seen 

for this strain compared to wild type does suggest increased muscle contraction as 

would be required to manipulate the body into a shorter and narrower wave shape. 

Presumably even subtly increased muscle contraction is due to increased calcium ion 

release via the variant RyRs. While this variant strain did show altered phenotypes in 

all assays, it was never identified as having a dramatic or severe response. The 

hN2342S variant may produce a more subtle effect on RyR function. It is important to 

use a variety of parameters to assess worm crawling to get an accurate representation 

of how it changes between strains.  

 

The other variant that did not have a larger degree of curvature than wild type, that 

for hR4861H, actually had a smaller degree of curvature. This may suggest that muscle 

contraction is reduced compared to wild type. The hR4861H variant strain frequently 

behaved like the null mutant suggesting dramatically reduced calcium release via the 

RYR. This variant may change the structure of the RyR in a way that calcium ion flow is 

impeded, and muscles cannot contract normally. Such an effect of RYR1 variants has 

been linked to muscle weakness in CCD (Lyfenko et al., 2007). In this case a deletion 

mutation in RYR1 reduced calcium ion release by disrupting RyR1 gating and 

eliminating calcium ion permeation through the open channel. Point mutations in 

RyR1, associated with CCD, have also been shown to reduce the maximal levels of 
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calcium being released (Lynch et al., 1999). However, in this case, despite calcium 

release being reduced, the cytoplasmic calcium concentration was increased. This 

suggests increased calcium leakage but decreased calcium flow upon activation, 

possibly due to depletion of calcium in the SR. This was predicted to manifest as 

muscle weakness. Such a scenario is possible here, where calcium leakage is increased, 

reducing the calcium concentration of the lumen of the SR, and therefore limiting 

calcium ion release upon activation of the RyR. This would result in reduced muscle 

contraction. 

 

While the effects of the variant RyRs are discussed here in terms of the muscle cells, 

these variant RyRs could be altering calcium homeostasis in the nerve cells as 

discussed previously in section 4.4.2. Altering calcium release in the nerve cells in the 

ways described above would affect muscle contraction in the same manner, but by 

altering excitation of the muscle cells. Again, the effects seen here could be the 

cumulative effects of variant RyRs in nerve and muscle cells. 

 

7.2.3. Ryanodine receptor variants increase crawling speed of young adult C. elegans 

As well as the increased frequency described for all RyR variant strains, except that for 

hR4861H, crawling speed was elevated. It is notable that thrashing rate in liquid was 

decreased in four of eight RyR variant strains as young adults, but crawling speed was 

increased in all but one of the RyR variant strains. In fact, of the four RyR variant 

strains that showed a decrease in thrashing rate in liquid as young adults, two had 

some of the largest increases in crawling speed compared to wild type at the same 

age. This may reflect the different energy demands for different locomotor patterns; 

swimming in M9 has been determined to be more energetically demanding than 

crawling on an agar surface by measuring the difference between active and standard 

metabolic rates in each environment (Laranjeiro et al., 2017). It could also reflect the 

different mechanical demands for different locomotor patterns, with swimming 

requiring the muscle to contract and relax more quickly than crawling as demonstrated 

by studying patterns of muscle activation in swimming and crawling locomotion in 

C. elegans (Pierce-Shimomura et al., 2008). Swimming and crawling locomotion are 

produced by distinct patterns of contractions of the body wall muscles. If calcium ion 

concentration in the myoplasm is elevated due to calcium leakage through variant 
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RyRs then relaxation of the muscles may be slower than needed for swimming. As 

crawling is a slower movement, such an effect of variant RyRs may increase speed of 

muscle contraction, due to increased myoplasmic calcium. 

 

The crawling speed of the RyR variants is at the limit for which C. elegans are reported 

to move (80-300 m/s) (Rabets et al., 2014). C. elegans move forward for longer and 

rest less in the absence of food (Shingai, 2000). Therefore, it would be expected that 

the speeds recorded here would be faster than average, as speeds were recorded in 

the absence of food. However, the RyR variant strains conferred a marked increase in 

speed compared to wild type, in the same conditions. An increase in crawling speed is 

a reflection on activity of the animal, suggesting activity may be increased in most of 

the RyR variant strains.  

 

The B-type motor neurons modulate speed and amplitude of local segment waves 

(Bryden and Cohen, 2008). Elevated excitability of neurons has been attributed to 

enhanced spontaneous activity of mutant C. elegans previously (Lüersen et al., 2016). 

The twk-7 null mutant had increased crawling speed, with lower amplitude but similar 

wavelength to wild type. The two-pore domain K2P potassium channels, encoded by 

twk-7 in C. elegans, has essential roles in neural function whereby a background 

potassium leak via K2P channels lowers excitability of neural cells (Thomas and 

Goldstein, 2009). Through a similar mechanism, RyR variants may increase excitability 

of neural cells via increased calcium concentration in neurons, due to increased 

calcium release from the ER through the RyR. This suggests the primary effects of 

these variant RyRs, on crawling speed, could be in the neural cells. 

 

An increase in crawling speed, as seen for all but one of the RyR variant strains, may 

also be due to different locomotion efficiencies compared to wild type. Increased 

crawling speed has been associated with decreased locomotion efficiency (Lüersen et 

al., 2016), suggesting that the presence of RyR variants decreased the crawling 

efficiency of C. elegans.  

 

As discussed above, the increased energy demand of thrashing in liquid may be 

responsible for the lower thrashing rate of several RyR variant strains, while the 
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increased crawling speed may be at the expense of crawling efficiency. With the larger 

degree of curvature and increased crawling speed seen for most RyR variant strains, it 

could be concluded that crawling is less efficient in these strains. Animals are 

exhibiting more muscle contraction and moving faster than wild type in the same 

environment. If these strains also conferred less efficient thrashing in liquid, this may 

explain their reduced thrashing rate compared to wild type. As thrashing is more 

energy demanding (Laranjeiro et al., 2017), the less efficient locomotion may have 

reduced energy stores more quickly in several of these RyR variant strains resulting in 

repeated pausing, and therefore reducing the thrashing rate. Determining crawling 

efficiency by quantifying percentage slip, which is how much the wave propagates 

backwards down the worm (Gray and Lissmann, 1964), would reveal if crawling is less 

efficient in the RyR variant strains. Percentage slip has been used previously to 

specifically determine the efficiency of different strains crawling on an agar surface 

(Lüersen et al., 2016; Keaveny and Brown, 2017). 

 

7.3. Ryanodine receptor variants exacerbate the effects of ageing in 

C. elegans 

The ryanodine receptor has been implicated in neural and muscular age-related 

diseases and disorders (Clodfelter et al., 2002; Zhu et al., 2005; Del Prete et al., 2014; 

Gaboardi et al., 2018; Santulli et al., 2018). Here RyR variants exacerbated effects of 

ageing on locomotion.  

 

7.3.1. Thrashing rate in liquid decreased more in ryanodine receptor variant strains, 

with age 

In the absence of halothane, thrashing rate reduced for all strains between young and 

old adult. However, most of the RyR variants strains had a subtly larger decrease than 

wild type. Only two RyR variant strains had a smaller decrease in thrashing rate from 

young to old adult than wild type. Interestingly, the hR2458H variant strain had the 

least dramatic decrease in thrashing rate in the absence of a trigger from young to old 

adult, but had the most marked degeneration in crawling, between the same ages, of 

all strains. The effect of this variant on the RyR was thought to exacerbate the age-
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related degeneration of locomotion, when crawling, however this is not seen for 

thrashing rate in liquid. These contrasting results may, once again, highlight the 

different energy, or mechanical, demands of the two locomotor patterns and the 

efficiency with which these strains are moving. As only thrashing rate is determined for 

locomotion in liquid, the results may reflect energy efficiency only. The hR2458H 

variant strain may have very inefficient locomotion as a young adult, reflected in its 

slower thrashing rate, but be comparatively as efficient as wild type as wild type as an 

old adult. As a number of parameters were determined for crawling, this may be a 

better reflection of the effects these RyR variants have on ageing, where the hR2458H 

variant strain shows more dramatic changes. These complex, and different, responses 

of the RyR variant strains in different assays demonstrate the need to assess multiple 

phenotypes to understand effects of these RyR variants. 

 

7.3.2. Crawling parameters show exaggerated changes with age in ryanodine receptor 

variant strains 

By assessing numerous parameters for crawling locomotion in both young and old 

adults, it was determined that the RyR variants exacerbate the effects of ageing seen 

in wild type. For the majority of parameters, wild type saw the smallest change with 

age, and had the most regular and organised kymogram as an old adult. The marked 

increase in age-related effects for locomotion in the RyR variant strains was attributed 

to excessive calcium leakage in the RyR variant strains, as suggested by increased 

muscle contraction in the young adults, which could contribute to oxidative damage in 

a self-reinforcing cycle (Gordeeva et al., 2003; Durham et al., 2008).  

 

Calcium leakage, via RyRs, has been suggested to lead to defective calcium signalling in 

later-life, along with cellular damage (Bellinger et al., 2008; Andersson et al., 2011; Liu 

et al., 2012; Momma et al., 2017). As discussed previously, increased ROS production 

leads to oxidative damage, which underlies many age-related disorders (Schriner et al., 

2005; Liguori et al., 2018). Increased ROS production in RYR1 variant knock-in mice has 

been demonstrated (Giulivi et al., 2011), as well as impaired mitochondrial function in 

MHS patients, thought to result from the chronic elevation of cytoplasmic calcium 

concentration (Chang et al., 2019). Oxidative damage, as a consequence of increased 
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ROS production, is thought to exacerbate calcium leakage via RyRs (Andersson et al., 

2011; Umanskaya et al., 2014). 

 

For crawling, as for thrashing in liquid, the LOAM-associated RyR variant strain did not 

show the most marked age-related changes, which was not expected. The hK3452Q 

variant strain had the second largest decrease in degree of curvature, with age, but for 

other crawling parameters other RyR variant strains had more exaggerated age-related 

changes. The hR2458H variant strain demonstrated the most marked age-related 

changes in the crawling analysis, however there is no specific mention of this variant in 

age-related disorders. This may suggest that this RyR variant should be assessed, with 

respect to age, in mammalian models to discern whether the RyR1 R2458H variant 

does confer exaggerated age-related changes, as suggested here. 

 

Nevertheless, all of the RyR variants demonstrated effects on age-related 

degeneration of locomotion in C. elegans, which is thought to be through excessive 

calcium release leading to cell damage. This supports the implication of the RyR in age-

related diseases (Clodfelter et al., 2002; Zhu et al., 2005; Del Prete et al., 2014; 

Gaboardi et al., 2018; Santulli et al., 2018). RyR variants not yet associated with human 

pathology, which are more frequent in the human population than myopathic variants, 

may have similar consequences and exacerbate ageing. This identifies the RyR as a 

potential therapeutic target for age-related neuromuscular diseases. 

 

7.4. Patterns throughout this thesis  

Different RYR1 variants appear to have different strengths of MH IVCT phenotypes and 

variations in phenotype strengths was repeatedly shown here (Carpenter et al., 

2009b). RyR variant strains showed different phenotypes, to each other and to wild 

type, throughout this research. An attempt was made to find common patterns or 

trends with respect to protein domains, associated diseases and/ or phenotypes across 

the variants, both in this research and two previous studies assessing genotype-

phenotype correlations of some RyR1 variants in MHS patient muscle biopsies and 

HEK293 cell lines (Carpenter et al., 2009b; Murayama et al., 2016). 
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The hR4861H variant strain behaved similarly to the unc-68 null mutant in many 

assays. This was attributed to this variant eliminating RyR calcium channel function 

when present in the homozygous state. Behaviour was most similar to the unc-68 null 

mutant for thrashing rate in S medium, halothane response in young and old adults, 

and for crawling speed, and neither the unc-68 null mutant nor the hR4861H variant 

strain conferred the kinking phenotype in levamisole. The hR4861H variant 

homozygotes showed aldicarb resistance and an even smaller crawling amplitude than 

the unc-68 null mutant. However, in the heterozygote assays, the hR4861H variant 

behaved like the other RyR variant strains revealing that this variant protein must be 

expressed and stable, at least in the presence of wild type RyR. The R4861H variant is 

located in the transmembrane domain of RYR1 and so could fundamentally and 

directly disrupt or reduce the size of the pore through which calcium ions pass such 

that the homotetrameric hR4861H form cannot function as a calcium channel. The 

small proportion of the tetramers composed purely of wild type subunits, although 

less than would be present for a wild type / null heterozygote, is sufficient in the 

hR4861H variant heterozygote for the level of calcium channel needed for good 

locomotion. Alternatively, the pore opening of RyRs formed with inclusion of wild type 

subunits within a mixed tetramer with the hR4861H variant may still allow calcium ions 

through. The latter seems the more likely scenario, such that the functional pore in the 

mixed tetramer could then be opened by halothane because of the presence of the 

variant subunit in the protein.  

 

The hG341R and hR2163H variant strains showed some similarity to each other in their 

responses in the assays. While the hG341R variant strain did have statistically 

significantly reduced thrashing as a young adult compared to wild type in the absence 

of a trigger and the hR2163H variant strain did not, these RyR variant strains had 

similar thrashing rates to each other. Furthermore, as old adults, in the absence of 

halothane, both of these variant strains conferred a reduced thrashing rate compared 

to wild type. The degree of curvature, as a result of smaller amplitudes and 

wavelengths, was also similarly increased for these two strains compared to wild type. 

The age-related reductions in degree of curvature and crawling speed were also 

comparable between these two strains. These results for locomotion suggest that 

calcium release is increased via variant RyRs encoded by unc-68 carrying mutations 
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equivalent to the hG341R and hR2163H RYR1 variants. However, both of these variant 

strains exhibited resistance to aldicarb and neither conferred the kinking response in 

levamisole, which may suggest reduced calcium flow/ leakage via these variant 

channels. As discussed previously, variant RyR channels may have different effects in 

different tissues, which could explain these conflicting results. The hG341R variant 

strain had a very similar response to wild type to levamisole, suggesting this variant 

may function in nerve cells, while the hR2163H variant strain may have shown some 

sensitivity to levamisole compared to wild type, suggesting some function of this 

variant in muscle cells. Both the G341R and the R2163H variants are associated with 

MH, although the R2163H variant has also been associated with CCD (Carpenter et al., 

2009b; Yan et al., 2015). The R2163 residue is located in the helical domain of the RyR, 

while the G341 residue is located in the N-terminal domain. Previously, the R2163H 

variant was associated with more severe forms of four of five IVCT phenotypes with 

strong contractures and short response times (Carpenter et al., 2009b). The G341R 

variant only showed statistically more severe responses for two phenotypes. HEK293 

cells expressing R2163H RyR1 channels were found to have increased resting calcium 

levels of the cytoplasm and decreased resting calcium concentration of the ER, 

consistent with increased calcium release via the RyR (Murayama et al., 2016). 

Unfortunately, the consequence of the G341R mutation on resting calcium levels in ER 

and cytoplasm were not assessed. 

 

The hR2454H and hK3452Q variant strains also showed some similarity to each other 

in their responses throughout this research. Neither showed thrashing defects in the 

absence of halothane at either age, although the hK3452Q variant strain did have 

subtly increased sensitivity to halothane in the old adults. Both variant strains had 

similar crawling speeds as young adults and similar age-related changes in crawling 

speed and degree of curvature, although the hK3452Q variant strain had a larger 

degree of bending as young adults. These were the only two strains to show some 

sensitivity to aldicarb. Both of these RyR variant strains also conferred kinking in 

levamisole. Altogether, the consequences of these two variants for the phenotypes 

assessed here suggest increase calcium release via the variant RyRs. Both residues are 

located in the helical domain and so could be perturbing the RyR function similarly. 

However, the R2454H RYR1 variant is associated with MH and CCD (Yan et al., 2015), 
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while the K3452Q variant is associated with LOAM (Løseth et al., 2013). The R2454H 

variant has been found to have a severe response for two of five IVCT phenotypes 

(Carpenter et al., 2009b) and the resting calcium concentration of the ER was reduced 

compared to wild type in HEK239 cells, but not to the same extent as other RyR1 

variants (Murayama et al., 2016). The K3452Q mutation was not assessed in either the 

muscle biopsy or HEK329 cell genotype-phenotype study. However, due to the 

similarity between the hR2454H and hK3452Q variant strains in this research, it could 

be concluded that both of these variants increase calcium leakage/ release via the 

RyRs but to less of an extent than other RyR1 variants. 

 

The increased sensitivity to aldicarb compared to wild type and kinking phenotype in 

levamisole of the hR2454H and hK3452Q variant strains may suggest increased RyR 

calcium flow/ leakage. In contrast, the resistance to aldicarb compared to wild type 

and failure to show the levamisole induced kinking response of the hG341R and 

hR2163H variant strains would suggest reduced RyR calcium flow/ leakage. Increased 

sensitivity to aldicarb compared to wild type suggests more neurotransmitter release 

into the synaptic cleft and/ or increase calcium release from the SR to facilitate more 

rapid paralysis. The kinking response in levamisole was attributed to misfiring of 

inhibitory GABAergic neurons, and for this to happen excessive calcium would be 

released into the axoplasm of such neurons. 

 

The hR163C, hN2342S and hR2458H variant strains did not match to either of these 

patterns and are distinct from each other. 

 

The hR163C variant strain did confer a thrashing defect in the young adults in the 

absence of halothane, similar to the hG341R and hR2163H variant strains. However, 

the hR163C variant strain had a more exaggerated increase in degree of curvature and 

showed little change in crawling speed with age, unlike the hG341R and hR2163H 

variant strains. While this variant strain did confer resistance to aldicarb, compared to 

wild type, as the hG341R and hR2163H variant strains did, it also showed the kinking 

phenotype in levamisole. The R163C RYR1 variant has been associated with both MH 

and CCD, like the R2163H RYR1 variant and the R163 residue is located in the N-

terminal domain, like the G341 residue (Robinson et al., 2006; Yan et al., 2015). The 
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R163C variant has been studied extensively, compared to other RyR1 variants, and has 

been found to increase calcium release from the SR resulting in an increase in 

cytoplasmic calcium ion concentration, as well as alter retrograde signalling to the 

DHPR (Yang et al., 2006; Esteve et al., 2010; Giulivi et al., 2011; Murayama et al., 

2016). This variant is associated with more severe IVCT reactions similar to the R2163H 

variant (Carpenter et al., 2009b). 

 

The hR2458H variant strain exhibited aldicarb resistance, compared to wild type, and 

the kinking response in levamisole, as well as a thrashing defect in the absence of 

halothane as young adults. These responses are similar to the hR163C variant strain. 

However, this variant strain differed to the hR163C variant strain for change in 

thrashing rate, as well as crawling parameters, with age. Ageing in the hR2458H 

variant strain, for the crawling parameters, was more dramatic than in the hR163C 

variant strain. The R2458H variant has been associated with MH and the R2458 residue 

is located in the helical domain of the RyR, like the R2454 and K3452 residues (Yan et 

al., 2015). Similarly to the R2454H variant in HEK239 cells, the R2458H variant reduced 

resting calcium concentration of the ER compared to wild type but not to the same 

extent as other RyR1 variants, including R163C and R2163H (Murayama et al., 2016). 

The R2458H variant did not elicit any severe IVCT phenotypes when MHS patient 

muscle biopsies were assessed (Carpenter et al., 2009b). It is interesting that this 

variant has the most dramatic consequences for ageing response here, and yet 

appears to have relatively mild phenotypes in humans. Again, this strengthens the 

need for this variant to be assessed with age in mammalian models.  

 

As discussed previously, the hN2342S variant appears to have weaker phenotypes than 

the other assessed in this research. The hN2342S variant was identified through 

genetic analysis of a patient who had an MH response to general anaesthetic and 

subsequent positive IVCT result (Marchant et al., 2004), but has not been functionally 

characterised and is not considered a diagnostic MH variant. In liquid, this variant 

appeared to have no obvious locomotion defects at either age. Although amplitude 

and wavelength of the crawling waveform did change in this variant strain, compared 

to wild type, the bend angle remained similar, possibly suggesting only a subtle 

increase in calcium release via this variant channel. The age-related changes in 
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crawling parameters were subtle, and this variant strain did not confer the kinking 

response to levamisole. However, the hN2342S variant strain did show greater aldicarb 

resistance than wild type and had the most marked increase in speed compared to 

wild type in the young adults. The N2342 residue is located in the RyR helical domain. 

This variant has not been extensively studied, but results here suggest that although 

subtle, the N2342S variant does change calcium handling via the RyR, possibly subtly 

increasing calcium release/ leakage, which may have subtle consequences for human 

carriers. 

 

The different consequences for the various RyR variants may arise from the distinct 

ways in which they affect calcium release from the ER/ SR. Nevertheless, the variation 

in responses here echoes the variation in responses in the human conditions 

associated with RYR1 missense variants (Carpenter et al., 2009b; Murayama et al., 

2016). Attempting to determine the way in which these RyR variants each alter the 

function of RyR is difficult in light of the inconsistency of responses between different 

types of assays. That two strains, those for hR163C and hR2458H, conferred both 

aldicarb resistance, compared to wild type, and the kinking response in levamisole is 

difficult to reconcile. Perhaps the aldicarb resistance is due to reduced calcium release 

in muscle cells due to these RyR variants, while the kinking response is due to 

increased calcium release in neural cells. It is possible these variants could affect 

calcium release in different tissues in different ways, as the RyR forms a 

macromolecular complex with other proteins in order to control calcium release from 

the ER and SR, and the mechanisms of calcium release differ in different cell types 

(Lanner et al., 2010; Santulli et al., 2018). Therefore, the same variant could affect RyR 

function differently dependant on tissue type. This was also thought to be the case for 

the hG341R and hR2163H variants that seemingly increased calcium release in the 

crawling analysis but impeded calcium release in the pharmacological assays. 

 

Despite the differing severities of phenotypes, all RyR variants modelled in C. elegans 

conferred a hypersensitive response to halothane and showed genetic dominance, 

consistent with an MH-related phenotype. Furthermore, all of the RyR variants 

conferred locomotion defects in the absence of triggering agents, and exacerbated 

ageing compared to wild type, as demonstrated by the in-depth crawling analysis. 
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Most of the known pathogenic missense variants in the three RYR genes in the human 

genome are at low frequency in the human population. For instance, of 48 MH RYR1 

variants considered to be diagnostic (The European Malignant Hyperthermia Group, 

n.d.), only 20 were identified in 141,456 individuals, and of these, the highest allele 

count was 32 (Lek et al., 2016). However, over 3000 RYR1 variants and around 2000 

RYR2 and RYR3 variants were identified respectively. Many of these missense 

mutations are in residues that are conserved between the three RyR genes. The 

conservation of these residues suggests they are likely to be of functional value, and 

missense variants would interfere with this function. While RyRs can clearly tolerate 

some missense mutations without serious consequences for normal channel function, 

these amino acid changes may have more subtle effects. The human population has a 

large amount of individual variation, making these comparatively small differences in 

RyR function more difficult to detect. Therefore, assessment of such RyR variants in 

vivo is important in order to understand the effects of subtle consequences.  

 

7.5. Future work 

There are a number of directions for future work arising from this research. Firstly, the 

contributions of these RyR variants to neural and muscle cell function should be 

assessed. Using the SKI LODGE approach, discussed in chapter 5, these variants could 

be expressed using tissue specific promoters rab-3 for neural tissue and myo-3 for 

muscle tissue, as has been done previously (Liu et al., 2005; Sun et al., 2014; Silva-

García et al., 2019). It has been shown that the uncoordinated locomotion associated 

with the unc-68 null mutant is greatly improved with, rab-3 driven, expression of wild 

type unc-68 in neural tissue, while mutants expressing wild type unc-68 only in muscle 

tissues were less rescued, as shown by locomotion velocity (Liu et al., 2005). Further to 

this, rab-3 driven expression of wild type unc-68 in nerve cells alone also rescues the 

regenerative outgrowth defect seen in unc--68 null mutants after axotomy (Sun et al., 

2014). Using the same approach and determining the effects of these RyR variants on 

C. elegans locomotion would allow for direct assessment of effects of RyR variants in 

neural and muscle cells.  
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If the effects of these RyR variants in muscle and neural cells is discerned, direct 

imaging of ER and/ or SR calcium ion levels could be conducted to understand how RyR 

variants affect calcium ion release from these internal stores. There are a number of 

strategies that can measure the flow of free calcium over the ER membrane, including 

genetically encoded calcium indicators (Tian et al., 2009; Samtleben et al., 2013). 

GCaMP is a genetically encoded calcium indicator, created from a fusion of GFP, 

calmodulin and M13. GCaMP3 is a low affinity variant of GCaMP, which can be 

targeted to the ER lumen by fusing of calreticulin to the amino terminus, and retained 

in the ER by fusing an ER retention signal, from the binding immunoglobulin protein 

(BiP), to the carboxy terminus; this subcellular targeted version of the calcium 

indicator has been termed GCaMPer (Henderson et al., 2015). Calreticulin and BiP are 

ER calcium-binding chaperones and changes in GCaMPer fluorescence report ER 

calcium levels. Activating the RyR with 4-chloro-m-cresol reduced GCaMPer 

fluorescence in neuroblastoma cells, which are often use as in vitro models of neuronal 

function, thus demonstrating that calcium release from the ER, via RyR, does reduce 

fluorescence. GCaMPer fluorescence was also measured in rat primary cortical 

neurons and shown to decrease when calcium was released from the ER due to IP3R is 

activation (Henderson et al., 2015). GCaMP has been used to visualise calcium 

dynamics in C. elegans neurons (Tian et al., 2009) and could be targeted to the 

C. elegans ER to measure the effects of RyR variants on ER calcium levels. If RyR 

variants were to increase calcium release/ leakage from the ER, a decrease in the 

GCaMPer fluorescence may be seen. However, nerve cells in C. elegans may be too 

small to provide the resolution needed and so a similar approach could be applied for 

measuring the effects of RyR variants on the calcium ion concentration of the 

sarcoplasmic reticulum, as muscle cells may be an easier target. 

 

The novel kinking phenotype seen in response to treatment with levamisole is also of 

interest for future research. While it was postulated that the phenotype was due to 

RyR variants in GABAergic neurons affecting GABA signal transmission, this was not 

demonstrated. By generating double GABA null and RyR variant mutants, for the four 

RyR variant strains that did confer the kinking phenotype, it could be demonstrated 

whether kinking was seen as a consequence of misfiring of GABAergic neurons. unc-25 

encodes glutamic acid decarboxylase, which catalyses the formation of GABA from 
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glutamic acid (Jin et al., 1999). The unc-25 null mutant, in C. elegans, shows complete 

loss of anti-GABA staining (Gendrel et al., 2016). If the kinking phenotype in response 

to levamisole was lost in unc-25;unc-68variant mutants then this response could be 

attributed to GABA and muscle cell relaxation in response to spontaneous inhibitory 

neuron excitation. This would also demonstrate that the RyR variants in C. elegans are 

affecting calcium release in neurons.  

 

RyRs have been implicated in neurodegenerative diseases, such as Alzheimer’s disease 

(AD), although, this is controversial (LaFerla, 2002; Del Prete et al., 2014; Liang et al., 

2015; Liang and Wei, 2015; Abu-Omar et al., 2018). Worm models of amyloid-beta 

peptide-induced neurodegeneration are available (McColl et al., 2012; Alexander et al., 

2014; Griffin et al., 2017). Therefore, it is possible to study the effects of these RyR 

variants on amyloid-beta aggregation. Assessing how amyloid-beta aggregation is 

affected in the presence of RyR variants may further support a role of RyR in 

neurodegeneration. If these variants do increase calcium leakage and result in 

oxidative damage to cells, as suggested in chapter 5, it would be expected that 

amyloid-beta aggregation would be increased in amyloid-beta / RyR variant double 

mutant strains.  

 

Dantrolene, an RyR antagonist used to treat patients during an MH episode, has been 

shown to be an effective therapeutic for various types of AD animal models 

(Chakroborty et al., 2012; Oulès et al., 2012; Peng et al., 2012; Liang and Wei, 2015). 

Memory deficits and amyloid plaque load were reduced in AD animal models treated 

with dantrolene; this was attributed to inhibition of aberrant calcium release from the 

ER. Treatment of the C. elegans RyR variant strains with dantrolene across their 

lifespan may reduce the exacerbation of age-related effects on locomotion seen here. 

Such a result would demonstrate that the exacerbation of age-related effects is indeed 

due to excessive calcium release/ leakage via variant RyRs. Should amyloid-beta 

aggregation be increased in the AD model/ RyR variant strains, discussed above, 

treatment of these strains with dantrolene and measuring the effects on amyloid load 

would support the use of dantrolene as a probe compound for treatments of AD. 

 



General discussion 

 

165 

Having identified subtle effects on locomotion in the absence of an MH trigger for all 

of the RyR variants in C. elegans, effects of RYR1 variants on neuromuscular function in 

humans in the absence of a trigger may be more widespread than currently thought. 

Assessment of muscle performance in mammalian models and human carriers of RYR1 

variants, which are not currently associated with such phenotypes in the absence of an 

MH trigger, is required. If consequences are noted, it may suggest that human carriers 

of RYR1 variants may experience more dramatic age-related degeneration in muscle 

performance.  
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Appendix A 

UNC-68 alignment to human RYR1, RYR2 and RYR3 

 

 
 
 

 
 
 

 
 

Figure A.1: BLASTP results for C. elegans UNC-68 when searched for in humans. 

BLASTP results of the C. elegans UNC-68 protein in humans. Alignments to RYR1, 

RYR2 and RYR3 were found. Identities and positives are highlighted with a red circle 

(41-43% identity, 61-62% positives, positives are considered as a conservative 

substitution). Alignment was completed using https://blast.ncbi.nlm.nih.gov/  

  

https://blast.ncbi.nlm.nih.gov/
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Appendix B 

Design information for the CRISPR-Cas9 genome-edited strains 

  

Table B.1. Sequences used to guide cutting and repair of the genome in the CRISPR-Cas9 

genome-edited strain generated at NemaMetrix 
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Appendix C 

Example sequencing alignment 

 

 

 

 

 

 

Figure C.1: Example sequencing alignments for RyR variant strains to confirm correct 

genomic sequence. 

Single worm PCR, gel extraction and sequencing was performed to confirm the 

genotype of each of the RyR variant strains. Representative sequencing results for 

variant strains hR2163H, hN2342S and hR4861H is showb. Recoded regions are 

shown in brown and the red mis-matched nucleotides represent the silent mutations. 

The changed residue is highlighted, the mutated nucleotides are shown in pink. 

Alignment of the sequencing data to the template was performed in Benchling, 

https://benchling.com/. 

  

https://benchling.com/
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Appendix D 

Comparison of Leeds and NemaMetrix N2 background strains 

 

 

Figure D.1: Leeds N2 and NemaMetrix N2 strains show no differences in response to 

halothane. 

Thrashing rate in S medium, in body bends per minute, for Leeds and NemaMetrix 

N2 strains, used for injection to generate CRISPR-Cas9 genome-edited RyR variant 

strains, in the absence of and presence of 1 mM, 2.5 mM and 5 mM halothane. 25 

individuals were examined per strain. Boxes indicate the median and interquartile 

range, with whiskers to the 10-90 percentile, outliers as dots, and + to indicate the 

mean. Significance is between the two N2 strains in each concentration, n.s = not 

significant (one-way ANOVA, with Tukey’s multiple comparison test). Black 

represents Leeds N2 and grey represents NemaMetrix N2.  
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Appendix E 

Statistical comparison of thrashing rate of the ryanodine receptor 

variant strains, the wild type and CB540 null mutant when exposed 

to 4% DMSO 

 

 

Figure E.1: RyR variant strains are not more sensitive to DMSO than wild type. 

Thrashing rate in 4% DMSO dissolved in S medium, in body bends per minute, for RyR 

variants, labelled by the human variant they correspond to, along with the wild type 

and the CB540 (unc-68(e540)) null mutant. 25 individuals were examined per strain. 

Boxes indicate the median and interquartile range, with whiskers to the 10-90 

percentile, outliers as dots, and + to indicate the mean. Significance is between 

variant strains and the wild type, apart from where indicated to the unc-68 null 

mutant. ** P<0.005, n.s = not significant (one-way ANOVA, with Tukey’s multiple 

comparison test). 
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Appendix F 

Crawling parameters for individual wild type animals 
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D

 

Figure F.1: Crawling parameters for individual wild type animals. 

Worm length (A), amplitude:length ratio (B), wavelength:length ratio (C) and 

frequency (D) for 29 wild type young adult individuals extracted from 1 minute long, 

25 frames per second, video recordings of. Boxes indicate the median and 

interquartile range, with whiskers to the 10-90 percentile, outliers as dots, and + to 

indicate the mean. Black line shows the mean for the strain. The mean represents the 

data for the strain accurately.  
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Appendix G 

Young and old adult crawling parameters 

 

A      B 

  
 
C 

 
Figure G.1: Amplitude, wavelength and frequency of young adults. 

The mean maximum amplitude:length ratio (A), wavelength:length ratio (B) and 

frequency (C) for RyR variant strains, labelled by the human variant they correspond 

to, along with the wild type and the CB540 (unc-68(e540)) null mutant. Boxes indicate 

the median and interquartile range, with whiskers to the 10-90 percentile, and + to 

indicate the mean. 
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A      B 

   

C      D 

   

E  

 

Figure G.2: Length, amplitude, wavelength, frequency and degree curvature of old 

adults. 

Worm length (A) and crawling amplitude:length ratio (B), wavelength:length ratio (C) 

and frequency (D) extracted from 1 minute long, 25 frames per second, video 

recordings of 20-30 individual old adults, and degree of curvature (E), hand measured 

for random 26 individuals from individual frames from the video recordings, for RyR 

variant strains, labelled by the human variant they correspond to, along with the wild 

type and the CB540 (unc-68(e540)) null mutant, were compared. Boxes indicate the 

median and interquartile range, with whiskers to the 10-90 percentile, outliers as 

dots, and + to indicate the mean.  
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Strain (variant) 
Midbody crawling speed (m/ S) 

Mean SD 

Wild type 147.2 87.9 

hR163C 178.1 93.6 

hG341R 91.72 58.8 

hR2163H 101 65.3 

hN2342S 190.7 105.1 

hR2454H 127.1 87.6 

hR2458H 53.3 46.2 

hK3452Q 138 90.5 

hR4861H 32.82 28.5 

unc-68 null 34.93 44.7 

Box shading is consistent with the colour coding used throughout this thesis. Crawling speed is 

shown to one decimal place. RyR variant strains are listed according to the human variant they 

correspond to. 

 

  

Table G.1: Mean and standard deviation (SD) of old adult midbody crawling speed for wild 

type, RyR variant strains and the CB540 (unc-68(e540)) null mutant.  
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Strain (Variant) Young adult Old adult 

 

  

Wild type 

 

 

  

hR163C 

 

 

  

hG341R 

 

 

  

hR2163H 

 

 

  

hN2342S 

 

 

  

hR2454H 

 

 

  

hR2458H 

 

 

  

hK3452Q 

 

 

  

hR4861H 

 

 

  

unc-68 null 

 

 



Appendices 

 

177 

Figure G.3: Representative kymogram for one young and one old adult individual of 

each strain. 

Representative kymograms are presented for one young and one old adult individual 

of each strain. Colour in the kymograms indicates degree of dorsal/ ventral curvature 

(red/ blue high curvature, green no curvature) at different positions along the major 

body axis (0 anterior to 50 posterior) for each frame of the video recording. Box 

shading is consistent with the colour coding used throughout this thesis. It should be 

noted that red and blue, respectively, do not indicate dorsal and ventral curvature 

but is arbitrarily assigned for each recording; the dorsal and ventral body could not 

be distinguished by the software. Individual frames where the worm skeleton could 

not be calculated are dark blue. Recording of the unc-68 null mutant and the 

hR4861H variant was difficult due to their limited movement and smaller size and in 

many frames the skeleton was not calculated, especially in the old adults. In the 

recordings of the hN2342S young adult variant strain the skeleton could not be 

calculated continuously for each individual, although these animals were moving well 

and were not too small. The analysis was re-run for this variant strain but still the 

skeleton was not calculated in all frames. The effects of ageing appear more dramatic 

in the RyR variant strains than in wild type as shown by the disorganisation of the 

kymogram.  
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Appendix H 

Aldicarb concentration comparison 

 

Figure H.1: Aldicarb concentration comparison for wild type and the hR2163H variant 

strain. 

Kaplan-Meier survival curves representing the percentage of individuals moving with 

time on plates containing different concentrations of aldicarb. Data for the hR2163H 

RyR variant strain and wild type. 0.25 mM aldicarb is shown by a dotted line, 0.5 mM 

aldicarb is shown by a dashed line, 0.75 mM aldicarb is shown by a straight line and 

the 1 mM aldicarb concentration is shown by a dashed and dotted line. The difference 

between wild type and the RyR variant strain is not increased in lower concentrations 

of aldicarb. 
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Appendix I 

Images showing kinking upon exposure to 1 mM levamisole 

 

 

Figure I.1: Kinking response in 1 mM levamisole after 1 hour exposure. 

Frames from an example video showing the hR163C variant strain kinking in 1 mM 

levamisole dissolved in M9 after 1 hour exposure. Kinks can be seen along the body 

between straight rigid sections. Full video available at  

https://ianhope.leeds.ac.uk/c-elegans-kinking-behaviour/ 

  

https://ianhope.leeds.ac.uk/c-elegans-kinking-behaviour/
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