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H-mode tokamak plasmas are characterised by quasi-periodic instabilities, called

edge localised modes (ELMs), driven by unstable peeling-ballooning modes inside

the pedestal region. For large scale tokamaks, like ITER, the resulting particle

and heat fluxes are predicted to be unacceptable and ELM control methods are

required. One promising method relies on the application of 3D resonant magnetic

perturbations (MPs), where typically BN/B0 ∼ 10−3, and ELM mitigation or even

complete suppression is observed. A computational framework is presented that

aims to understand the effect of MPs on both plasma equilibria and stability. The

ELITE stability code is used to find the linearised plasma response, i.e. the 3D part

of the equilibrium, and compute the axisymmetric peeling-ballooning eigenmodes.

This information is used to calculate the 3D stability under a perturbative and a

variational formulation of the MHD energy principle. In practice, the axisymmetric

peeling-ballooning modes are used as trial functions for the minimisation of the 3D

energy functional. The symmetry breaking of the toroidal geometry leads to the

coupling of toroidal modes which has a direct impact on the linear growth rates

of unstable peeling-ballooning modes. This mechanism results in the modification

of the plasma stability above a critical value of the applied MP field and field-line

localisation of the peeling-ballooning eigenmode. It is observed that intermediate to

high n ballooning modes are in general destabilised by the applied MP field, while

external peeling-ballooning modes reorganise to an internal ballooning structure. In

addition, extrema in the growth rate spectrum, due to low n kink modes, are observed

to be strongly destabilised as predicted by perturbation theory. This work provides

proof of principle examination of the 3D peeling-ballooning instability as well as a

framework for the optimisation of MP coil configuration.

http://www.york.ac.uk/
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Chapter 1

Introduction

1.1 Fusion Energy

There is worldwide demand for a modern lifestyle, specifically from people

in developing countries, as well as a rapid population growth that means

increased energy consumption. Therefore, it is imperative that energy

production methods continuously improve their efficiency. According to Fig.1.1

the vast majority of energy from 1971 to 2015 was supplied by fossil fuels (coal,

FIGURE 1.1: World total primary energy by fuel from 1971 and 2015 measured
in million tonnes of oil equivalent (Mtoe). [1]

1



1. Introduction 2

gas and oil). However, fossil fuels are responsible for serious environmental

pollution and greenhouse effects [2]. There is growing awareness among the

general public of climate change and the importance of finding new low carbon

energy sources. In addition, studies on the amount of available resources

suggest that fossil fuels will be depleted in the end of the century [3]. Currently,

alternative sources of energy (nuclear and renewable sources) have a minor

contribution to the global energy production process. Renewable sources of

energy are somewhat unreliable, i.e. wind does not blow or sun does not shine,

unless significant technological progress is made with respect to power storage.

In addition, due to geographical limitations certain sources are not available

and their efficiency still depends on uncontrollable phenomena. As a result,

other sources of energy have to be addressed to resolve an upcoming energy

crisis.

Nuclear power is a candidate for the solution of the problem. Over the

last 70 years, nuclear reactors have operated using the decay of enriched

uranium to lighter and more stable elements. This process is called fission,

it is an exothermic process and involves the splitting of a heavy nucleus

into two lighter elements of higher binding energy. Unfortunately, fission

power plants hide many hazards as the fuel is intrinsically radioactive. Errors

in the operation can potentially result in radiation leakage that has severe

consequences for the environment and the nearby population. In addition, the

FIGURE 1.2: Binding energy per nucleon B/A MeV as a function of total
nucleon number A. [4]



1. Introduction 3

reactor produces long-lived nuclear wastes (O(104) years) that have to be stored

and disposed off in some way.

An alternative nuclear process is fusion. For similar reasons to fission, fusion is

an exothermic process as well, but involves the combination of two light nuclei

into a single heavier nucleus of higher binding energy. The dependence of the

binding energy on the total number of nucleons is illustrated in Fig.1.2. Iron,
56Fe, has the maximum binding energy, so moving uphill from the left or the

right results in energy release. If two light nuclei come close enough, such that

nuclear forces become dominant, fusion will occur. Although, it cannot happen

spontaneously like fission, due to the Coulomb repulsion of the nucleons. A

way to overcome this Coulomb barrier is to heat the fuel to the point where the

thermal speed of some of the particles can overcome the barrier.

The candidate reactions involve hydrogen isotopes. The most promising in

terms of required temperature and energy release is the D-T reaction between

deuterium 2D and tritium 3T at temperature T ∼ 100 keV as can be seen from

Fig.1.3. Deuterium is abundant in nature as it consists 0.0153% of seawater. On

the other hand, very little tritium exists because it has a half life of 12.5 years and

it is not naturally produced in bulk quantities. It can be bred from lithium via

neutron capture and again lithium is very abundant in soil and oceans (natural

lithium consists of 7.5% 6Li and 92.5% 7Li).

2D +3 T → 4He+ n+ 17.6 MeV (1.1)

FIGURE 1.3: Reaction rate for the different isotope reactions of hydrogen. [5]
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FIGURE 1.4: Schematic of (A) a particle moving in a uniform magnetic field
and (B) electromagnetic fields produced in a toroidal magnetic chamber.

6Li+ n→3 T +4 He+ 4.8 MeV (1.2a)

7Li+ n→3 T +4 He+ n− 2.5 MeV (1.2b)

Temperature of T ∼ 30 keV is sufficient to produce a significant fusion rate in

a macroscopic scale due to quantum tunnelling effects. At such temperatures

matter is fully ionised in a plasma state and is susceptible to electromagnetic

fields.

1.2 Magnetic Confined Fusion

The dominant mechanism proposed for the realisation of fusion is magnetic

confinement of the plasma using helical magnetic fields. Magnetic confinement

of charged particles stems from the intrinsic property of the magnetic field

to restrict particle motion perpendicular to its field line as illustrated in

Fig.1.4a. The toroidal magnetic field Bt is beneficial since the periodic

geometry prohibits particle end losses. However, the existence of magnetic

inhomogeneity ∇B and curvature Rc due to the toroidal geometry, leads

to charge separation and creation of an electric field E that drifts particles

outwards from the torus, as depicted in Fig.1.4b. In particular, any force F

leads to drift motion perpendicular to the magnetic field B, such that vd =

(F ×B)/(eB2). Since F∇B = ∇BK⊥/B and FRc = 2∇BK||/B are independent

of charge, where K⊥ = mv2⊥/2 and K|| = mv2||/2, positive and negative charges
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FIGURE 1.5: Schematic of (A) tokamak configuration and (B) stellarator
configuration.

drift in opposite directions and as a result an electric fieldE is established. This

electric field leads to an additional force FE = eE that depends on charge and

so the E × B drift motion is in the same radially outward direction for both

positive and negative charges. Those drifts can be fully compensated by the

introduction of a poloidal magnetic field Bp that on average cancels the charge

separation. In such a way particles are restricted to move along nested toroidal

flux surfaces that prohibit cross-field transport.

A tokamak is a reactor that provides such a magnetic configuration as

illustrated by Fig.1.5a. The toroidal field is produced via poloidal current

carrying coils and the plasma current is inductively driven by an increasing

voltage in a primary transformer, where the plasma serves as the secondary

transformer. As the voltage cannot increase indefinitely the tokamak operates

in a pulsed mode. Although, non-inductive current drive is possible either

due to the establishment of a steep pressure gradient or using for example

neutral beams or radio-frequency waves, allowing steady state operation. An

alternative to the tokamak is called the stellarator, where the helical magnetic

field is provided by carefully shaped current coils removing the limitation of

pulsed operation as depicted in Fig.1.5b. However, the tokamak is the most

developed concept.

In a tokamak, the temperature inside the plasma is raised initially by ohmic

heating from the plasma current induced by the primary winding up to T ∼ 1

KeV. Additional heating by particle-beams or electromagnetic waves can raise
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FIGURE 1.6: Fusion triple product nτET as a function of temperature T from
different tokamaks for the period 1985-1997 for D-D (black dots) and D-T

(white dots) experiments. [8]

the plasma temperature to sufficiently high levels. In addition, the DT fusion

process itself contributes to plasma heating. The α-particle He4 is released with

an energy Eα ≈ 3.5 MeV. This energy is transferred to the plasma as α-particle

heating via collisions and could even sustain the DT reaction. Taking into

account the power balance of the system, a burning or self-sustaining plasma

is such that the α-particle heating power Pα balances the power losses PL due

to radiation and transport. The Lawson criterion [6] defines a relation between

the energy confinement time τE = W/PL in steady state, where W is the stored

thermal energy, the plasma density n and temperature T required to achieve

burning plasma conditions and Fig.1.6 illustrates the historical development of

tokamak performance. In the 1980s two large tokamaks TFTR and JET reached

T ∼ 30 keV for a plasma current I = 3 MA and confinement time of about a

second [5]. The highest efficiency of Q = Pα/Pin = 0.62 for D-T reactions was

obtained at JET in 1999 [7].

Clearly for power plant scales, tokamaks have to improve energy confinement

time. The next step is the International Experimental Thermonuclear Reactor

(ITER) that is under construction in France. ITER will be 2 times larger in

linear dimensions than JET and aims for larger power output and confinement

time reaching a quality factor of Q ∼ 10. However, magnetic confinement

requires a delicate plasma operation. Fluctuations in the plasma parameters

that will occur on the process can lead to turbulent and fluid instabilities. Those

instabilities can pose serious limiting factors in the maximum pressure achieved
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and could severely damage the plasma facing components (PFCs) of a concept

reactor. A better understanding for the cause and control of such instabilities is

necessary to reach higher temperature, density and energy confinement time in

the future.

1.3 H-mode & Edge Localised Modes

1.3.1 H-mode

Below a certain input power threshold, the plasma pressure is characterised

by a mild gradient at the plasma edge, called the low confinement mode

(L-mode), due to the existence of high levels of turbulence facilitating heat

and particle transport from the hot core to the cold edge. A major step in the

realisation of commercial fusion power was the discovery of high confinement

mode (H-mode) in ASDEX [9], that lead to improved energy confinement time

τE and an increase of plasma pressure by a factor of 2. This was achieved

by the introduction of a divertor magnetic configuration instead of a limiter

one. The limiter is a physical object that protrudes from the wall holding

the plasma edge away from the wall. However, the interaction between the

hot plasma and the limiter results in a turbulent state and the production of

impurities that radiate heat and degrade the energy confinement time. The

divertor configuration separates the equilibrium magnetic field into regions of

closed and open field lines. The divertor geometry is made by placing a current

carrying coil to produce a magnetic X-point. The open field lines serve as a

guide leading the plasma to the divertor plates. As such, control of impurities is

achievable leading to increased plasma performance and above an input power

threshold H-mode operation is achieved. A schematic of those two magnetic

configurations as well as typical pressure radial profiles in L/H mode can be

seen in Fig.1.7.

The main observation is the identification of edge radial electric field Er

and sheared flows associated with E × B drifts, which nonlinearly interact

with the increased edge turbulence [10],[11] in a narrow region typically a

few centimetres inside the last closed flux surface (LCFS). Fluctuations in the

perpendicular flow arising from turbulence lead to non-vanishing Reynolds
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FIGURE 1.7: Schematic of (A) limiter configuration, (B) divertor configuration
and L/H pressure profiles.

stress and together with the anisotropy that the magnetic field introduces, zonal

flows lead eventually to the suppression of edge turbulence [12]. The formation

of an edge transport barrier (ETB) leads to the development of a pedestal where

the core plasma pressure increases significantly. This pedestal region is further

supported from the∇p×B flow driven from the establishment of steep pressure

gradient [13] at the plasma edge. An additional advantage of the creation

of steep pressure gradients is the significant increase of the bootstrap current

(neoclassical and pressure gradient driven current) that naturally facilitates the

creation of poloidal magnetic field at the plasma edge, necessary for efficient

confinement of charged particles in a toroidal geometry. Due to its improved

confinement, H-mode is planned to be the baseline operational mode for

ITER [14].
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1.3.2 ELM Phenomenology

The existence of steep pressure gradient and large current density at the plasma

edge during H-mode operation, leads to excess free energy that can eventually

destabilise macroscopic magnetohydrodynamic (MHD) instabilities that are

manifested in the nonlinear phase as quasi-periodic bursts of edge localised

modes (ELMs). During an ELM the pedestal profiles collapse to shallower

gradients, for the external heating to rebuild the pedestal, leading to a cyclic

behaviour. On average around ∼ 10 − 20% of the energy stored in the

pedestal is expelled within a timescale of the order of hundreds of microseconds

leading to large transient heat and particle loads to PFCs. However, a

benefit of those transients is the expulsion of impurities maintaining a clean

plasma. Experimentally, ELMs are observed from the Dα line emission of

Deuterium recombination and excitation on the divertor tiles of the tokamak,

from current-voltage measurements from probes at the divertor or from

direct imaging techniques that allowed the identification of their field-aligned

filamentary structure. Fig.1.8 illustrates the Dα emission from an ELM burst in

JET and a visible camera snapshot of ELM filaments as observed in the MAST

spherical tokamak.

(A)

        

(B)

FIGURE 1.8: (A) Type I ELM as observed through the visible fast camera system
in MAST [15] and (B) the Dα emission as observed in the divertor [16] in JET.

The onset of ELMs is experimentally observed to be close to global MHD

stability limits and the growth rate of the event is of the order of hundred Alfven
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times∼ O(100) τA suggesting that MHD events could explain the phenomenon.

ELMs are classified in different types depending on plasma parameters and

an overview of ELM phenomenology can be found in [17],[18],[19]. The main

classification is based on the dependence of ELM frequency fELM to input

power, the existence of a magnetic precursor and MHD stability considerations.

• Type-I ELMs: Also referred to as large or giant, type-I ELMs are observed

in H-mode high input power plasmas. They are typically observed

as distinct bursts in the Dα emission with an occurrence frequency of

∼ O(10 − 100) Hz and their frequency increases with input heating

power. Through magnetic measurements a n . 10 magnetic precursor

is observed below a collisionality ν∗e threshold [20], where n is the toroidal

mode number. They result in the largest energy loss ∆WELM reaching

up to ∼ 20% of the pedestal energy [21]. For large scale fusion burning

plasmas those transients are extrapolated to produce heat loads above the

melting point of the divertor and PFCs [22],[23] so their active control

becomes imperative.

• Type-II ELMs: Type-II ELMs are observed in a narrow window at

high density and highly shaped plasmas, in terms of elongation and

triangularity. In comparison to type-I ELMs, type-II ELMs have a higher

frequency resulting in lower energy loss ∆WELM such that confinement is

not dramatically affected. In addition, through magnetic measurements

magnetic turbulence is observed in the inter-ELM phase [24]. Type-II

ELMs offer good confinement maintaining a clean plasma and facilitating

steady-state operation. However, they often coexist with type-I ELMs.

• Type-III ELMs: Also referred to as small, type-III ELMs are

usually observed at the early stage of the H-mode when edge

resistivity/temperature is high/low. The ELM frequency fELM decreases

with input power and is found to be much higher than that of other types

of ELMs leading to significantly lower energy loss per ELM. However,

the operational regime in which they occur is restricted to low edge

temperatures and density leading overall to low energy confinement time.

Alternative regimes that maintain good confinement, where ELMs are absent,

have been experimentally identified. The QH-mode (quiescent H-mode)
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[25],[26],[27] is one example, although the exact physics mechanism is poorly

understood. One explanation is attributed to the existence of strong rotational

shear at the edge of plasma which allows the saturation of edge MHD modes

that lead to enhanced particle transport and allow an ELM-free operation [28].

One other example is the EDA (enhanced Dα emission) H-mode [29] observed

for moderate shaping and low plasma current where edge fluctuations allow a

continuous energy transport and good impurity recycling. Finally, the I-mode

[30] obtained for a wide range of parameters shows the characteristic of a

temperature transport barrier but no existence of a density transport barrier

is observed allowing for an ELM-free regime.

1.3.3 Theoretical Understanding of type-I ELMs

The onset of large type-I ELMs is believed to be linked with unstable

ideal MHD modes formed close to the ETB. The ideal MHD nature of the

event is attributed to the Alfvenic timescale of the instability. The Alfvenic

timescale is the characteristic time of ions oscillating in response to restoring

magnetic field-line tension [31]. Over the last two decades analytical and

computational work has identified two types of ideal MHD instabilities as the

main mechanism for driving such edge modes. Those instabilities are driven

by the pressure gradient and magnetic curvature, i.e. ballooning modes, and

from the parallel current density, i.e. kink/peeling modes. H-mode operation

naturally leads to the coupling of those two instabilities, to the so called

peeling-ballooning modes [32],[33], due to the fact that steep pressure gradients

are naturally accompanied by large edge bootstrap current density. However,

these edge modes are quite complex phenomena as the bootstrap current,

pressure gradient as well as magnetic shear play dual roles of stabilising and

destabilising the plasma equilibrium.



1. Introduction 12

1.4 ELM Control

1.4.1 ELM Control Methods

In ITER the main operational mode is expected to have type-I ELMs, unless

controlled. As discussed in previous sections, the corresponding particle and

heat losses of ELMs are extrapolated to surpass the melting point of PFCs and

ELM control methods have to be applied to ensure safe operation together with

high performance. Although plasma shaping can provide a way to enhance

the MHD stability of the plasma, in large devices type-I ELMs are almost

always present in high βN operation. As such, active ELM control methods

are required and three main strategies are experimentally examined. The first

aims at the dispersion of the ELM front by radiation before it reaches the PFCs.

The second focuses on further destabilisation of ELMs leading to increase in

ELM frequency fELM and therefore decrease of the instantaneous ELM energy

loss ∆WELM leading to mitigation. The third and final approach aims to achieve

complete suppression of ELMs by accurate control and maintenance of pedestal

characteristics below the peeling-ballooning stability boundary.

Radiating dispersion through impurity gas seeding either in the SOL or the

divertor region is considered as the primary technique to minimise heat

loads in PFCs during the inter-ELM cycle [34]. However, the reduction of

transient heat loads is observed to be below the desirable level and further

increase of the impurity seeding rate causes degradation of the pedestal leading

to type-III ELMs [35],[36] and strong reduction in confinement time. As

such additional mitigation/suppression techniques have to be applied. One

ELM mitigation technique uses vertical kicks [37],[38] to trigger ELMs at a

frequency which is locked with the kick. In practise the motion of the plasma

induces currents at the plasma surface that are postulated to drive peeling

modes leading to an ELM crash. However, experimental comparison between

devices revealed controversial results [39] that question this assumption and

the triggering mechanism is still not understood. Another mitigation technique

is based on pellet pace-making of ELMs [40],[41],[42]. Experimentally this

technique has been applied in a number of devices and ELMs were successfully

triggered to frequencies even above the pellet injection rate. However, for

ITER relevant scenarios much higher repetition rate needs to be achieved
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for efficient mitigation of heat loads without over fuelling the plasma and

decreasing confinement. Finally, one promising method to actively control

ELMs uses external non-axisymmetric resonant magnetic perturbations (MPs).

This method has been successfully applied in various devices and active

ELM control was obtained allowing mitigation [43],[44],[45],[46], complete

suppression [47],[48],[49],[50] and even triggering of ELMs [51]. However, the

exact mechanisms that allow the existence of the distinct operational states with

MPs are not fully understood. Resonant MPs are planned to be the main active

ELM control method in ITER and therefore understanding the plasma response

to external non-axisymmetric fields becomes crucial.

1.4.2 Resonant Magnetic Perturbations

External non-axisymmetric MPs are produced by in-vessel magnetic coils or

external error field correction coils (EFCC). The main feature of those fields

δBMP is their relative size to the axisymmetric background equilibrium field

B0, typically δBMP/B0 ∼ 10−4 − 10−3. Although, two distinct operational

plasma states occur where either ELM mitigation or complete ELM suppression

is observed. A typical coil configuration of in-vessel coils is given in Fig.1.9.

The coils can produce a magnetic perturbation of a primary toroidal harmonic

N and by changing the relative current phase ∆φ between the upper and lower

row of coils, a range of resonant and non-resonant magnetic perturbations can

be applied.

(A) (B)

FIGURE 1.9: A) The resonant MP coil configuration in DIII-D comprises six
segments above the equatorial plane and six segments below [52]. B) The
resonant MP coil configuration of MAST comprises of 6 segments above the

equatorial plane and 12 segments below.
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The first demonstration of ELM suppression was performed in DIII-D

experiments using an N = 3 resonant MP field in a narrow window of q95
as illustrated in Fig.1.10a from the Dα emission. For ITER similar shape

(ISS) plasmas, in high collisionality ELMs were replaced by sporadic events

[52], while in low collisionality no activity is observed [47]. Recent similarity

experiments from AUG also demonstrated complete ELM suppression [50]

with an example of such a shot depicted in Fig.1.10b from probe measurements.

However, the conditions necessary to reach suppression exhibit differences.

A plasma density limit is observed in AUG below which suppression is

established and a much larger q95 window is observed. In addition, although

plasma flow seems to have an impact on DIII-D [53], this is not the case on

AUG. In high density/collisionality ISS plasmas, ELM suppression has been

achieved in a number of devices including EAST [48] and KSTAR [49] for a

variety of applied toroidal mode numbers and coil phase.

(A) (B)

FIGURE 1.10: A) Experimental measurements from DIII-D showing the Dα

emission form the lower divertor, the safety factor, collisionality and H-factor
for a high triangularity ISS and low triangularity plasma [47]. B) Experimental
data from AUG depicting the H-factor, average line density, thermoelectric

current and tungsten accumulation [50].

Although, complete ELM suppression occurs in a narrow window of the

parameter space, ELM mitigation is routinely achieved by the application of

MPs and Fig.1.11 mitigated cases from JET and MAST. In JET [45], efficient

ELM mitigation using N = 1 and N = 2 field applied from the EFCC resulted
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in a significant increase of the ELM frequency fELM reducing the energy loss

∆WELM below the noise level of the diagnostic. Similar observations are found

in MAST [44] using a variety of applied toroidal modes and DIII-D [43] plasmas

at cases where a resonant condition is not met or the applied field is below

the suppression threshold. A common feature of all efficient ELM mitigated

discharges is the strong increase of density pump-out (loss of plasma density).

However, measurements of the electron temperature show a slow increase

that under certain conditions can compensate for the loss in the pressure.

Finally, RMPs have also been used to trigger ELMs in MAST [54] and NSTX

[51] experiments and this could provide a mechanism for density control and

avoidance of impurity accumulation.

(A) (B)

FIGURE 1.11: Efficient ELM mitigated H-mode plasmas as observed in (A) JET
[45] using the EFCC system and (B) in MAST [44] with increasing current in

the In-Vessel Coil system.

Apart from the benefits that the MPs offer as a flexible method to actively

control ELMs, their application hides operational hazards. One of the most

important drawbacks of the application of MPs is a potential rotational

braking [55],[56],[57]. In general, plasma rotation allows stabilisation of MHD

instabilities, like Resistive-Wall modes [58] and Neoclassical Tearing modes

[59], that pose serious limitation in plasma performance. Moreover, density

pump-out can pose a limitation and degradation of achievable performance.

Although, gas puffing can be used to compensate for the lost density, stored

magnetic energy is not guaranteed to be restored while the risk of entering

to a small ELM regime exists. Finally, it is still unclear whether MP coils are
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compatible with a DEMO reactor due to neutron activation and damage of the

coil components.

1.4.3 Current Understanding & Open Questions

ELM suppression using resonant MPs is achieved for low collisionality, low

density plasmas and similarity experiments are successfully being performed

between DIII-D and AUG. The main outcome of those campaigns is the

observation of increased particle transport [60],[61],[62], i.e. density pump

out, and broadband turbulence [63],[64]. A suppressed state seems to require

low plasma density [50] but from existing experimental data it is not clear

whether the density or pressure is important, or what is the role of edge

collisionality. The use of resonant MPs can lead to formation of magnetic

islands [65] that increased transport at the top of the pedestal allowing the

relaxation of the pedestal below MHD stability limits. However, no reduction

in the electron temperature is usually observed experimentally questioning the

existence of island structures [43]. Plasma flow and MP induced shielding

currents, which exist in the pedestal region, can prevent magnetic reconnection

and the formation of magnetic islands [66].

Recent analytical investigation based on nonlinear two-fluid theory identified

three regimes of magnetic reconnection [67],[68], where shielding depends on

an offset velocity from the E × B drift rather than the perpendicular electron

velocity v⊥e that linear two-fluid theory suggests. An important implication

of this theory is the coexistence of static or suppressed island regimes where

bifurcation strongly depends on plasma flow and could provide insight into

experimental observations. Recent results from DIII-D and AUG suggest that

the perpendicular electron velocity in general does not vanish close to rational

surfaces at the top of the pedestal. The E×B drifts are observed to vanish close

to the top of the pedestal [50], [53] due to the electric field established from the

ETB. Although, since no conclusive outcome can be drawn, the validity of the

island transport model is questionable and remains an active area of research.

Furthermore, the establishment of a 3D equilibrium state can have a direct

impact on MHD plasma stability. Local 3D MHD stability analysis reveals the

significant impact of 3D geometry on local MHD instabilities. In particular,

infinite n or local ballooning theory suggests that specific field-lines are further
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destabilised due to the 3D field [69],[70],[71], where n is the toroidal mode

number of the unstable mode. This feature of ballooning stability could provide

an explanation for the observed increase in particle transport. However,

intermediate n modes are responsible for the occurrence of ELMs and a

global 3D analysis is needed, but has not yet been applied to an MP ELM

control scenario. Such an investigation has been performed computationally

by nonlinear visco-resistive MHD codes [72],[73],[74],[75], but conclusions

regarding the linear stability of an ideal MHD plasma are not straightforwardly

inferred due to transport processes. Moreover, analytic investigation using

perturbation theory to examine the impact of shielding current sheets driven

by MPs on axisymmetric unstable MHD modes, revealed that MPs can have a

significant impact on global stability [76]. The main outcome of such studies is

the observation of strong coupling of toroidal modes with increasing applied

MP field that affects the linear growth rate of unstable peeling-ballooning

modes as well as their nonlinear dynamics.

In conclusion, the equilibrium geometry itself is observed to play a crucial

role in achieving suppression suggesting the importance of MHD stability. In

similarity experiments between DIII-D and AUG, ELM suppression occurred

at higher triangularity, suggesting increased stability for peeling-ballooning

modes. A recent investigation of experimental data indicates the change of

peeling-ballooning stability due to density pump-out and surface corrugation

[77], where the occurrence of mitigation or suppression is attributed to the

competence of degraded stability due to 3D effects and stabilisation due

to reduced density/pressure. Last but not least, ELM suppression has not

been achieved in connected double null (CDN) configuration or in spherical

tokamaks like MAST. Especially for spherical tokamaks, due to their unique

plasma parameters and shape, it is still an open question whether different

conditions need to be met in order to achieve an ELM-free operation using MPs.

1.5 Thesis Goal & Outline

As discussed in the above section, the physics mechanism that leads to reliable

ELM suppression using MPs is not yet well understood. Better understanding

is required in the MP field penetration process and island formation under
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plasma flows, the correct 3D equilibrium that is established as well as its impact

to stability and transport. This thesis discusses the impact of MPs on ideal

MHD modes and in particular the peeling-ballooning stability of the tokamak

plasma. Little literature exists regarding the 3D peeling-ballooning stability

of the plasma since existing 3D stability codes (TERPSICHORE [78], CAS3D

[79], CASTOR3D [80], PB3D [81], etc) are not typically used for intermediate

to high n modes, where n is the toroidal harmonic of the perturbation. In

this thesis, the 3D stability of the plasma is examined using axisymmetric

stability codes, which are routinely used for the stability of intermediate to

high n modes. Through analytical theory, the plasma response, i.e. the

3D part of the equilibrium, and axisymmetric normal modes can be used

to approximate the stability of the 3D system. In particular, axisymmetric

stability codes provide the axisymmetric peeling-ballooning eigenfunctions

(mode structure), which are used as basis-functions within a perturbative and

variational representation of the extended energy principle, and the linearised

plasma response in marginal stability. As such a computational framework can

be developed based on some axisymmetric stability code suitable for all ranges

of toroidal modes. In this work the code under consideration was the low n

ELITE eigenvalue linear stability code [82], [83].

The thesis is separated in the next four chapters. Chapter2 introduces the

mathematical means used to examine the plasma, introducing the ideal MHD

model and the extended energy principle used to study plasma stability. In

addition it introduces and discusses the main MHD instabilities that lead

to the ELM onset, i.e. ballooning and external kink/peeling modes. In

Chapter3 the procedure under which ELITE is used to produce a linearised

3D equilibrium is explained. Furthermore, the perturbative and variational

formulation of the energy principle is described in detail and the computation

of the additional 3D energy terms that emerge are presented. In Chapter4,

results are presented regarding the linear plasma response as produced by

ELITE and benchmarks are presented using the BOUT++ fluid code [84] and the

MARS-F eigenvalue code [85]. Moreover, results are presented regarding the

linear 3D MHD stability using large aspect ratio circular and D-shaped H-mode

plasmas. Finally, Chapter5 discusses the results using the above techniques in

comparison to current theoretical and experimental understanding, as well as

summarises the thesis.



Chapter 2

Plasma Description

2.1 Ideal MHD Model

A tokamak reactor is a device that uses magnetic coils to produce a toroidal

magnetic field and the poloidal magnetic field is produced by driving a toroidal

current into the plasma. The motion of charged particles inside such a field is

described by the Lorentz force. In principle the plasma can be described in the

most fundamental level by evolving the canonical positions and momenta of all

particles. However, this particle description is impractical due to the immense

number of particles. The first simplification arises from the consideration

of a generalised statistical distribution fs for the species s, that describes

the amount of particles occupying a volume in the phase space (generalised

position-momentum space) at all times. The evolution of such a statistical

distribution is given by the Boltzmann transport equation [86],

dtfs = {∂t + vs · ∇x + as · ∇v}fs ≡
∑
s′

Css′ + Ss (2.1)

where vs is the species velocity, as is the species acceleration, Css′ represents

usually species collisions and Ss represents species sources and sinks. The

acceleration is obtained from the Lorentz force such that as = eZs

ms
(E + vs ×B),

where E and B are the electric and magnetic field respectively, e the electric

charge, Zs the species atomic number and ms the species mass.

The Boltzmann transport equation represents a partial differential equation in a

6-dimensional phase space. Even with today’s most powerful supercomputers

19
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the numerical investigation of such systems is impractical if not impossible. For

that reason further analytical reduction is needed to solve practical problems.

Most plasma phenomena can still be studied in a macroscopic level considering

the fluid properties of the plasma. For a fluid description to be valid, particles

must collide frequently. Although the parallel collisional mean-free path λ||

is large in hot magnetised plasmas, the magnetic field creates a much shorter

effective mean free path in the perpendicular direction due to the very small

gyro-radius. As such, in general the fluid condition λ⊥∇f � f is met for

perpendicular dynamics [87] which are usually under consideration.

The fluid description is mathematically equivalent to the velocity moments

of the distribution function at each point in space. These moments are given

by [88],

∂tρs +∇ · (ρsvs) = 0 (2.2a)

∂t(ρsvs) +∇ · (ρsvsvs) = −∇ps −∇ · πs +
eZsρs
ms

(E + vs ×B) +Rss′ (2.2b)

∂t(ρses) +∇ · (ρsesvs) = −ps∇ · vs −∇ · qs + πs : ∇vs +Qss′ (2.2c)

where ρs is the density, vs the fluid velocity, es the energy density and ps the

pressure of an ideal gas. Additional transport quantities that arise refer to π the

viscous stress, qs the heat flux, Rss′ the collisional force and Qss′ the collisional

heat transfer. The system described by Eqn.2.2 is closed by relating the pressure

to the energy density ps = (Γs−1)ρses, where Γs is the adiabatic index, and using

Maxwell’s equations Eqn.2.3 that relate the electromagnetic field to the density

and flow. A simplification on the electromagnetic-matter coupling is possible

considering the speed of light c → ∞ to be infinite. This condition assumes

displacement currents are neglected and the system is limited to low frequency

phenomena. This results in a reduced system given by,

∇ ·E =
∑

eZsns =
ρc
ε0

(2.3a)

∇×B = µ0

∑
eZsnsvs = µ0J (2.3b)

∇ ·B = 0 (2.3c)
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∂tB = −∇×E (2.3d)

where ε0 and µ0 are the permittivity and permeability of free space respectively.

As a result of Eqn.2.3 a certain charge density ρc remains unchanged ∂tρc →
0, guaranteeing the quasi-neutrality condition of the plasma ρc = 0 at all

times. However, we will restrict consideration to plasma phenomena which

are restrained to frequencies much smaller than the electron plasma frequency

ω << ωpe = (e/me)
√
ρe/ε0 and length scales much larger than the Debye length

L� λD = vTe/ωpe, where vT =
√
kBT/m the thermal speed.

The complete multi-fluid visco-resistive plasma described above is still

complicated and computationally expensive. Nevertheless, further

simplification is possible by considering a two-fluid electron-ion plasma

which is in thermal equilibrium between the two species, such that Ti = Te.

First of all, the quasi-neutrality of the plasma relates the electron and ion

density such that ne = Zni. In addition, the plasma current is related to the

relative motion of electrons and ions, such that J = ene(vi − ve). Moreover, the

plasma phenomena studied in this thesis are Alfvenic and their dynamics are

much faster than any resistive or dissipative mechanism within the plasma.

Therefore, for the examination of linearised Alfvenic dynamics, visco-resistive

terms are considered negligible. Electron inertia is also considered negligible

since me � mi. Those assumptions lead to a significant simplification of our

mathematical model, leading to a conservative system called the ideal MHD

model,

∂tρ+∇ · (ρv) = 0 (2.4a)

∂t(ρv) +∇ · (ρvv) = −∇p+ J ×B (2.4b)

1

Γ− 1
[∂tp+∇ · (pv)] = −p∇ · v (2.4c)

∂tB = ∇× (v ×B) (2.4d)

In this model, the plasma is treated as an ideal conductor. It can be proven that

the magnetic field is locked with the fluid motion and changes in the magnetic

topology are forbidden within this model.
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2.2 MHD Equilibrium

2.2.1 Equilibrium Configuration

The ideal MHD system described above in Eqn.2.4 can be naturally used

to derive equilibrium conditions for the plasma dynamics. Typically the

coordinate system under consideration will be such that the plasma is static,

i.e. v = 0. An equilibrium state is such that quantities are not evolving in

time, i.e. time derivatives are neglected ∂/∂t → 0. This leads to a force balance

between the Lorentz force and the fluid pressure as given by:

J ×B = ∇p (2.5)

Important properties arise from Eqn.2.5 that are widely used in the

determination of a field aligned coordinate system as well as the plasma

stability and dynamics. In an equilibrium configuration no magnetic field exists

parallel to pressure gradient, since B · ∇p = B · (J ×B) = 0. In addition, no

current density can exist parallel to the pressure gradient for similar reasons,

J · ∇p = J · (J × B) = 0. As such the magnetic field and current density lie

on surfaces of constant pressure. This implies that those surfaces are surfaces of

constant poloidal magnetic flux and are typically used as the normal coordinate

of the system. In a tokamak configuration those pressure contours define nested

toroidal surfaces and are characterised by the twist of the magnetic field, called

the safety factor q. This quantity is topologically a flux quantity that measures

the ratio of toroidal ∆Φ to poloidal ∆Ψ flux variation. Geometrically, it is a

measure of the poloidal winding of the magnetic field lines over a toroidal

revolution. Special surfaces exist for safety factors that are rational, which are

called rational or resonant surfaces. On those surfaces magnetic field lines are

close back to themselves after a complete toroidal revolution. Those surfaces

resonate with harmonic waves of distinct poloidal m and toroidal n mode

numbers exhibiting interesting stability properties. For non-rational surfaces,

field lines cover those surfaces ergodically.

Reformulation of Eqn.2.5 reveals the significance of balancing magnetic

curvature with the total pressure gradient, i.e. magnetic and fluid pressure
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FIGURE 2.1: Schematic of the force resulted from fluid pressure −∇⊥p,
magnetic pressure −∇⊥B2/(2µ0) and magnetic field line tension (B2/µ0)κ.

gradient. An alternative representation of the perpendicular force balance can

be derived with respect to the magnetic curvature κ = b · ∇bwith b = B/|B|,

B2

µ0

κ = ∇⊥(p+
B2

2µ0

) (2.6)

The magnetic field provides additional pressure B2/2µ0 and together with

the fluid pressure p are balanced by field line tension or the curvature of the

magnetic field. Therefore, on a flux surface magnetic field lines try to acquire

minimum length. A schematic of the different forces is illustrated in Fig2.1.

At the outboard side of the torus the magnetic curvature balances the total

(fluid + magnetic) pressure, while in the inboard side the magnetic pressure

balances the fluid pressure and curvature. The balance between total pressure

and magnetic curvature plays a crucial role in the stability of tokamak plasmas.
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2.2.2 Orthogonal & Straight Field Line Toroidal Coordinates

In this thesis the coordinate system used is based on orthogonal axisymmetric

toroidal coordinates. As discussed in the above section, the toroidal and

poloidal magnetic flux creates toroidal nested surfaces, which can be used to

represent the normal vector n with respect to the axisymmetric magnetic field

B0. Typically in tokamak plasmas the gradient of the poloidal magnetic flux

∇ψ is used to represent the normal vector n. The poloidal-like angle coordinate

∇θ is chosen to be parallel to the tangent vector of the flux surface, while the

toroidal angle coordinate ∇φ follows the axis of symmetry. The coordinate

system {ψ, θ, φ} is illustrated in Fig.2.2

The contravariant metrics {gψψ, gθθ, gφφ} and jacobian J of the coordinate

system can be obtained from the poloidal magnetic flux ψ and the toroidal

coordinate ∇φ. The poloidal magnetic flux defines the stream function of the

magnetic field through a poloidal cross-section of the torus. Considering the

solenoid nature of the magnetic field ∇ ·B0 = 0, the poloidal magnetic flux is

related to BR and BZ ,

RBR = −∂Zψ ; RBZ = ∂Rψ (2.7)
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FIGURE 2.2: Schematic of the orthogonal coordinate system of a tokamak
plasma.
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Considering the magnitude of the gradient of the poloidal flux |∇ψ| = RBp,

where Bp =
√
B2
R +B2

Z , the metric of the normal coordinate gψψ = |∇ψ|2 is

obtained. Moreover, the metric of the toroidal angle is gφφ = |∇φ|2 = R−2, since

the radius of curvature of a circle is its distance from its axis. The metric of the

poloidal like angle can be obtained using the local pitch angle of the magnetic

field ν = (B0 · ∇φ)/(B0 · ∇θ). A quick algebraic manipulation results in gθθ =

|∇θ|2 = (Bt/νBp)
2R−2, where Bt is the toroidal magnetic field. Furthermore,

the jacobian needs to be evaluated to complete the knowledge of the metric

system under consideration. This can be done by considering its relation to

the contravariant metrics J = [∇ψ · (∇θ × ∇φ)]−1 = νR2/Bφ, where Bφ =

RBt. Eqn.2.8 summarises the representation of quantities for the axisymmetric

orthogonal coordinate system and equilibrium magnetic field:


gψψ 0 0

0 gθθ 0

0 0 gφφ

 =


g−1ψψ 0 0

0 g−1θθ 0

0 0 g−1φφ

 =


(RBp)

2 0 0

0 (JBp)
−2 0

0 0 R−2

 (2.8a)

J =
1

∇ψ · (∇θ ×∇φ)
=
νR2

Bφ

(2.8b)

B0 = ∇ψ × (ν∇θ −∇φ) =
1

J
(gθθ∇θ + νgφφ∇φ) (2.8c)

Finally, the poloidal-like angle θ can be mapped in the straight field line angle

θ∗, where the magnetic field lines appear as “straight” on the {θ∗, φ} plane with

a fixed slope equal to the safety factor q. This allows the efficient decomposition

of quantities in Fourier harmonics with distinct mode number. In a straight

field line system the magnetic pitch becomes constant and equivalent to the

safety factor q. This implies that dθ∗ = H(ψ, θ)dθ, where H(ψ, θ) = ν/q.

In this coordinate system, the coordinates defining the poloidal plane are not

orthogonal anymore and the metric system needs alternation. Considering

the normal gradient of the straight field line angle θ∗ the nonorthogonal

contravariant metric,

gψθ
∗

= gθ
∗ψ = (RBp)

2

∫ θ

0

∂ψH dθ (2.9)
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Since the poloidal plane coordinates are still orthogonal to the toroidal

coordinate the gψφ = gθ
∗φ = 0. The jacobian of this coordinate system can

be obtained in a similar way to the orthogonal system considering that q =

(B0 · ∇φ)/(B0 · ∇θ∗). Eqn.2.10 summarises the representation of quantities

for the axisymmetric straight field line coordinate system and equilibrium

magnetic field.


gψψ gψθ

∗
0

gθ
∗ψ gθ

∗θ∗ 0

0 0 gφφ

 =


(RBp)

2 I(RBp)
2 0

I(RBp)
2 (IRBp)

2 + (JBp)
−2 0

0 0 R−2

 (2.10a)


gψψ gψθ∗ 0

gθ∗ψ gθ∗θ∗ 0

0 0 gφφ

 = H2


(IJBp)

2 + (1/RBp)
2 −I(JBp)

2 0

−I(JBp)
2 (JBp)

2 0

0 0 R2

 (2.10b)

J =
1

∇ψ · (∇θ∗ ×∇φ)
=
qR2

Bφ

(2.10c)

B0 = ∇ψ × (q∇θ∗ −∇φ) =
1

J
(gθθ∇θ∗ + qgφφ∇φ) (2.10d)

2.3 MHD Stability & Energy Principle

2.3.1 Linear Exponential Stability

Plasma stability is a crucial topic since instabilities lead to enhanced transport

and disruptions, that degrade confinement and can damage PFCs. When

an equilibrium is established the main question that arises is whether this

equilibrium configuration leads to a stable or unstable system, when subject to

small perturbations. In practise this means that if the equilibrium is displaced

will this result in forces that enhance or counter the change and Fig.2.3

illustrates some examples of stable and unstable systems. Non-linear stability

theory treats the behaviour of finite perturbations and can provide metastable
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Linearly Unstable Linearly Stable

Non-linearly Unstable Non-linearly Stable

FIGURE 2.3: Schematic of different states where a system can be linear stable
or unstable and nonlinearly stably or unstable.

or saturated solutions for a system. However, such analysis is usually

complex and impractical, usually requiring expensive numerical calculations.

A simpler but robust method is linear stability theory that treats the behaviour

of infinitesimal perturbations around an equilibrium point. Linear theory often

allows analytical treatment leading to the calculation of approximate stability

limits that provide information on the drive of instabilities that need to be

avoided.

Therefore, the first step is the linearisation of the MHD equation. A certain

quantity F̃ can be expressed as a superposition of an equilibrium component

F and a first order perturbation δF , such that F̃ = F + δF . Since those

perturbations are infinitesimal they are much smaller δF � F than any

equilibrium quantity. As such second order perturbed quantities are negligible

and omitted from the analysis. Assuming no initial flow, i.e. v = 0, the

linearisation to first order of Eqn.2.4 results in,

∂tδρ = ∇ · (ρδv) (2.11a)

ρ∂tδv = −∇δp+ δJ ×B + J × δB (2.11b)

∂tδp = −δv · ∇p− Γp∇ · δv (2.11c)

∂tδB = ∇× (δv ×B) (2.11d)
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Considering that the unperturbed system is axisymmetric and displaced

by δξ, from Eqn.2.11 a similar linearised non-axisymmetric equilibrium

component arises by balancing the perturbed linear forces. Noting that

acceleration is zero in equilibrium ∂tδv = 0, ∇δp = δJ × B + J ×
δB. Once again the perturbed pressure gradient ∇δp is balanced by the

perturbed magnetic pressure and curvature provided from the magnetic field

δB and current density δJ perturbations. This linearised equilibrium can

provide a non-axisymmetric equilibrium component as a perturbation on the

axisymmetric equilibrium. This approach allows axisymmetric stability codes

to provide the 3D equilibrium part at marginal stability, i.e. ∂t → 0, if an

appropriate boundary condition is applied to the plasma-vacuum interface.

The stability of Eqn.2.11 can be studied by numerically evolving the system

for certain displaced equilibrium conditions and observing a convergence

or divergence from the original equilibrium configuration. However, this

method can be computationally expensive for multi-dimensional systems or

for instabilities close to marginal stability. An alternative and powerful method

to study the linear stability of an equilibrium state is its exponential stability,

where the convergence or divergence is determined by the eigenvalues of the

linear system. This method guarantees that if a system is displaced from its

equilibrium configurations will converge/diverge at least/most at a certain

defined rate. In the case where a certain equilibrium is stable, exponential

stability is also equivalent to asymptotic stability, where the displaced system

always returns to its original equilibrium configuration.

These features indicate a certain functional form for the time dependence

of a perturbed quantity, such that δf(x, t) ≡ δf(x)eiωt. Inserting this form

into Eqn.2.11 and taking into account δv = iωδξ, where δξ is the plasma

displacement, and ∂t = iω results in a time-invariant system,

− ω2ρδξ = F (δξ) = −∇δp+ δJ ×B + J × δB (2.12a)

δρ = ∇ · (ρδξ) (2.12b)

δp = −δξ · ∇p− Γp∇ · δξ (2.12c)

δB = ∇× (δξ ×B) (2.12d)
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The stability of Eqn.2.12 depends on the eigenvalues −ω2. An important

detail of exponential stability is the existence of a discrete set of eigenvalues.

Although this is not in general true, ideal MHD unstable modes always form

a discrete spectrum [89] allowing the use of exponential stability theory for the

unstable part of the spectrum. An additional feature of the force operatorF (δξ)

is the hermitian nature of it. This forces the eigenvalues to be purely real and the

eigenvectors to be orthogonal. As such, positive eigenvalues indicate instability,

or alternatively the growth rate is γ = Im{ω}, where the faster growing mode

will dominate the solution.

2.3.2 Extended MHD Energy Principle

The linear stability of ideal MHD is intrinsically linked with the eigenvalues

and eigenvectors of the hermitian force operator F (δξ) taking into account

appropriate boundary conditions that δξ needs to satisfy. In particular Eqn.2.12

is equivalent to a normal mode equation due to the hermitian nature of the

system. A normal mode represents an eigensolution of a system in terms

of linearly independent solutions. Those eigensolutions are orthogonal to

each other such that excitation of one mode cannot lead to excitation of other

modes and therefore can be studied independently. In addition, normal modes

require the minimum amount of energy for their excitation and this leads to a

variational formulation that recasts Eqn.2.12 from a differential to an integral

problem.

The variational formulation of ideal MHD makes use of energy minimisation

to obtain the eigenvalues and eigenvectors of the system. To begin with,

the momentum conservation equation Eqn.2.12a is converted into an energy

equation, where the change in kinetic ω2δK and potential δW energy need to

be represented. This is equivalent to the inner product of Eqn.2.12a with the

displacement under consideration, such that

δW (δξ†, δξ) = ω2δK(δξ†, δξ) (2.13a)

δK(δξ†, δξ) =
1

2

∫
ρ|δξ|2 dV (2.13b)
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δW (δξ†, δξ) = −1

2

∫
δξ† · F (δξ) dV (2.13c)

The trial function δξ that leads to an extremum in ω2 is a true eigensolution

of the system and automatically satisfies the momentum equation Eqn.2.12a,

since itself is a result of the minimisation of the mechanical action of a

system. According to the energy principle if a displacement δξ exists such that

δW (δξ†, δξ) < 0 the equilibrium is considered unstable. This is equivalent to

a growth rate γ = Im{ω}, being consistent with exponential stability analysis.

Therefore, in order to understand the stability of a system, the knowledge of the

lower bound of δW is sufficient for the determination of its stability properties

without explicit quantification of the growth rate γ.

In fact, the ideal MHD δW can be written as a combination of stabilising and

destabilising terms allowing a physical understanding of the behaviour of the

system. By considering the original expression F (δξ) and after some algebraic

manipulation δW can be written in terms of a plasma volume term, a plasma

surface term and a vacuum term, δW = δWp + δWs + δWv [90], where

δWp(δξ
†, δξ) =

1

2µ0

∫
[|δB⊥|2 +B2|∇ · δξ⊥ + 2κ · δξ⊥|2 + µ0Γp|∇ · δξ|2

− µ0
J ·B
B2

(δξ†⊥ ×B) · δB⊥

− 2µ0(δξ⊥ · ∇p)(δξ†⊥ · κ)] dV

(2.14a)

δWs(δξ
†, δξ) =

1

2µ0

∫
|δξ⊥ · n|2([[B2κ]]) · n dS (2.14b)

δWv(δξ
†, δξ) =

1

2µ0

∫
|δB|2 dV (2.14c)

As can be observed from Eqn.2.14b and Eqn.2.14c, the contribution of the

vacuum potential perturbation is always stabilising since magnetic energy is

added to the system, while the surface potential perturbation can be either

stabilising or destabilising, since a definite non-negative lower bound depends

on the jump of the curvature. The plasma potential perturbation is separated
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into stabilising and potentially destabilising contributions and a summary of

each term is given below.

• |δB⊥|2/µ0: The shear Alfven wave (SAW) is always stabilising

representing energy spent to bend the field lines.

• (B2/µ0)|∇ · δξ⊥ + 2κ · δξ⊥|2: The compressional Alfven wave (CAW) is

always stabilising representing energy spent to compress the magnetic

field.

• Γp|∇ · δξ|2: The fluid pressure compressional wave (CPW) is always

stabilising representing energy spent to compress the fluid.

• −(J ·B/B2)(δξ†⊥ × B) · δB⊥: Potentially destabilising contribution

representing instabilities driven by the existence of a parallel current

density (kink/peeling instability).

• −2(δξ⊥ · ∇p)(δξ†⊥ · κ): Potentially destabilising contribution representing

instabilities driven by the synergistic work of fluid pressure gradient and

magnetic curvature (interchange and ballooning instability).

It becomes apparent from the plasma potential perturbations that the

equilibrium system will be most unstable or least stable to perturbations

that minimise stabilising contributions. Considering that displacing the

plasma from its original equilibrium usually leads to field line bending,

the minimisation of CAW and CPW typically leads to the most unstable

modes. The minimisation of CPW minimises the potential energy with

respect to the parallel displacement. Therefore, for a certain perpendicular

displacement, the parallel displacement is chosen such that ∇ · δξ = 0.

Moreover, the minimisation of the CAW provides a relationship between the

normal and binormal component of the plasma displacement. This leads to

further simplification of the plasma potential perturbation and in fact to the

minimisation of surface potential energy perturbation.

After the minimisation of CPW in ideal MHD, the parallel displacement

becomes redundant in the minimisation of δW . Although, its existence can

still affect the linear growth rate of instabilities due to its contribution in

δK, where in general leads to a reduction of the growth rate. The effect of
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parallel displacement and compressibility on the ideal MHD stability can still

be approximated by scaling the growth rate by a factor of 1/
√

1 + 2q2 [91]. For

this reason, the exclusion of the parallel displacement from the kinetic energy

provides an upper bound for the growth rate of the unstable mode without

affecting the marginal stability of the system. In this thesis, the incompressible

and perpendicular ideal MHD stability is considered.

At this stage the perpendicular displacement δξ⊥ can be projected onto a

coordinate system with respect to the normal n = ∇ψ/|∇ψ| and binormal

t = (B ×∇ψ)/(B|∇ψ|) vectors with respect to the magnetic fieldB, such that

δξ⊥ =
X

|∇ψ|
n+ U

|∇ψ|
B

t (2.15)

Substituting δξ⊥ into δWp and δK while minimising the CAW and CPW leads

to

δWp =
1

2µ0

∫
{ B2

|∇ψ|2
|(b · ∇)X|2 + |∇ψ|2|(b · ∇)U |2

− 2(τ · n)[
SB2

|∇ψ2|
|X|2 − 2Re{(B · ∇)UX†}]

− 2(κ · n)µ0
∂ψp

|∇ψ|
|X|2} J dψdθdφ

(2.16a)

δK =
1

2

∫
ρ[

1

|∇ψ|2
|X|2 +

|∇ψ|2

B2
|U |2] J dψdθdφ (2.16b)

[
Bφ

B2
(B · ∇)− ∂φ]U = [∂ψ +G]X (2.16c)

where G = [∂ψ ln (JB2) +
2µ0∂ψp

B2
], S = t · ∇ × t is the local shear, κ = b · ∇b =

κnn + κst is the magnetic curvature and τ = −b · ∇t = τnn + τst is the local

torsion. The normal component of the local torsion is related to the local shear

and parallel current density by (S − µ0J||/B) = −2τn, where J|| = J · b.
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2.4 Ballooning Instability

The drive mechanism of these instabilities stems from the relation between the

pressure gradient and the magnetic curvature. In the inner or high field side

(HFS) of the torus the curvature is antiparallel to the pressure gradient leading

to stabilisation of perturbations. However, in the outer or low field side (LFS) of

the torus the curvature is parallel to the pressure gradient so perturbations are

not stabilised. The growth of such modes will then depend on the competition

of the pressure drive and the stabilising field line bending that arises from the

perturbation. For that reason ballooning modes are localised at the LFS of

the torus attaining a field-aligned structure that minimises magnetic field line

bending.

As such ballooning modes are structures of a long wavelength along a field line

while the wavelength perpendicular to the field line is small. Considering the

minimisation of CAW, it can be concluded that the perpendicular divergence of

the displacement is the dominant term since k⊥ � k|| and k⊥ � |κ|. Therefore,

the displacement is normal to the perpendicular number k⊥ · δξ⊥ ∼ 0 leading

to a relation between normal and binormal displacement,

U ∼ −kn
ks
X (2.17)

where k⊥ = kn|∇ψ|n + ksB/|∇ψ|t. In fact, for such perturbations to leading

order current driven instabilities lead to no contribution and can be dropped

from the analysis. Considering the localised nature of the ballooning structure

typically those instabilities are internal, where the displacement tends to zero

as the plasma boundary is approached. Therefore, considering the plasma

potential perturbation δWp and performing some algebraic manipulation

Eqn.2.16 becomes,

δWp =
1

2µ0

∫
{k2⊥|(b · ∇)Y |2 − 2µ0∂ψp(

κn
|∇ψ|

k2s −
κs|∇ψ|
B

knks)|Y |2

− [2τn
SB2

|∇ψ|2
k2s + (B · ∇)Sknks]|Y |2} J dψdθdφ

(2.18a)
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δK =
1

2

∫
(
ρk2⊥
B2

)|Y |2 J dψdθdφ (2.18b)

where Y = X/ks represents the total perpendicular displacement and B ·
∇(J||/B) = 2∂ψpκ · t|∇ψ|/B is used. The first and second terms in Eqn.2.18

are of order O(1), while the last term is of order O(ε) and is dropped from

the analysis. The function Y that minimises Eqn.2.18 can be obtained through

Euler-Lagrange minimisation with respect to (Y, ∂lY ) leading to the local

ballooning equation,

∂l(k
2
⊥∂lY )− 2µ0∂ψp(

κn
|∇ψ|

k2s −
κs|∇ψ|
B

knks)Y = −ω2(
µ0ρ

B2
k⊥

2)Y (2.19)

where b · ∇ = ∂l and k2⊥ = k2n|∇ψ|2 + k2s(B/|∇ψ|)2 is considered. In the

limit where equilibrium quantities acquire a single helicity of N > 1, i.e.

are described by a single toroidal mode number, and the non-axisymmetric

parameter ∆ of the equilibrium is small compared to the axisymmetric

length-scale R, a simplified equation arises that provides physical insight,

called the s− α model, and according to Hegna et al. [92]

∂

∂η
(1 + Λ2)

∂

∂η
ξ⊥ + α[cos(η) + Λ sin(η)]ξ⊥ = −Ω2(1 + Λ2)ξ⊥ (2.20a)

Λ(η, χ) =

∫ η

ηk

[s− α cos(η) + τ cos(2η) + δ cos(kη + kχ)] dη (2.20b)

where |k⊥|2 ∝ (1 + Λ2), Λ contains the magnetic shear, α =

−∂ψp(2ρV∆/R)[N2/(N − 1/q)2] is the normalised pressure gradient, s =

∂ψq[Rρ
2/V (N − 1/q)] is the normalised global shear, Ω2 = ω2µ0ρV

2/(N − 1/q)2

is the normalised eigenvalue of the system, k = N/(N − 1/q), τ = (N∆/R)2,

δ = 4∆R[N/(N − 1/q)] and the angles (η, χ) = (Nφ − θ, θ − φ/q). In the case

where δ = τ = 0 the original toroidal s − α model of Connor et al. [93] is

obtained.

In an axisymmetric system, the s− α model provides a simplified but physical

understanding of ballooning mode stability and the identification of the s −
α boundary of stability, an example of which is illustrated in Fig.2.4a. A
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counterintuitive feature of ballooning stability is the existence of a second

region of stability at low global shear and high pressure gradient. At high

global shear, shear stabilisation from the Λ2 term, in the field line bending

part of Eqn.2.20, stabilises the ballooning mode at low pressure gradient. As

the pressure gradient is increased the effect from the unfavourable curvature

overcomes field line bending and the instability occurs. On the other hand at

low global shear, a second region of stability emerges due to the contribution of

the pressure gradient to field line bending through modification of the current

density. Effectively, field line bending stabilisation is amplified at the LFS of

the torus due to increase of the local shear, stabilising the ballooning mode at

high pressure gradient region. For an H-mode plasma this behaviour can be

beneficial as the pedestal is a region of steep pressure gradient and high current

density (low magnetic shear) facilitating access to second stability. However, at

high current density and high β = 2µ0p/B
2, current driven and external current

and pressure driven instabilities can lead to unstable peeling-ballooning modes

that halt the performance of a fusion plasma due to the destabilisation of ELMs.

(A) (B)

FIGURE 2.4: (A) Schematic of the s − α model for a circular large-aspect
ratio toroidal plasma illustrating the two regions of ballooning stability
[94]. (B) Schematic of the s − α model for a quasi-axisymmetric toroidal
plasma indicating the degradation of ballooning stability, where the solid line
represents the axisymmetric case and the dotted lines the non-axisymmetric

case [92].

In a 3D geometry a more complicated behaviour arises. Fig.2.4b illustrates
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the s − α diagram of a quasi-axisymmetric system and the main feature that

emerges is the degradation of both regions of stability. At high magnetic shear,

the contribution of the local helical shear is small and no main difference from

the axisymmetric case is observed. However at low shear, the mode is pushed

toward regions of unfavourable curvature. The helicity of the local shear

and unfavourable curvature allows localised regions where small local shear

coexists with the regions of unfavourable curvature leading to destabilisation of

specific field lines. This effect degrades the first region of stability and access to

second stability. However, for highly localised modes a global analysis might be

required to determine actual operational stability boundaries, but this analysis

becomes complicated. Asymptotic WKB theory has been applied to determine

the global structure of ballooning modes, but the resulting eigenmodes are

found to be singular [95]. For that reason, local infinite-n ballooning analysis

might be misleading or insufficient to determine the global stability of a 3D

plasma.

2.5 High-β Kink/Peeling Instability

The kink instability is driven by the parallel current density and is associated

with a “kink” of the magnetic flux surfaces. Depending on the poloidal

spectrum of the perturbation, the instability is associated with the internal

modes when the safety factor at the core is q ∼ 1. The internal kink

instability poses a limiting performance factor due to its connection with

the sawtooth instability and increased temperature transport as well as a

plasma disruption. However, considering a ballooning ordering, internal kink

modes are found to be marginally stable for highly localised modes. As the

lower order perturbation minimises magnetic compression the displacement

is expressed as δξ⊥ ∼ δξ⊥(b × k⊥) and the normal magnetic field becomes

δB⊥ ∼ [b · ∇(δξ⊥B)](b × k⊥). As a result the kink drive is proportional to

(δξ⊥ × b) · δB⊥ ∼ 0. On the other hand, considering modes where ks � kn,

such that the localised condition is relaxed, kink instabilities can occur even for

q > 1 [96]. Considering this difference a local kink equation can be derived such

that,
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∂llY − 2(µ0∂ψp
κn
|∇ψ|

+ τn
SB2

|∇ψ|2
)Y = −ω2(

µ0ρ

B2
)Y (2.21)

Apart from the internal kink mode, instabilities can also arise when coupling

with the vacuum field is considered, leading to the external kink instability. In

particular Eqn.2.14b is related to the existence of a finite pressure and a parallel

current discontinuity at the plasma-vacuum interface that stems from the jump

in the normal gradient of the equilibrium magnetic field, when coupling with

the vacuum field is considered,

δWs =
1

2

∫
|X|2[( κ̃n + κn

2
)p+ (

B̃2 +B2

2µ0

)(κ̃n − κn)] dS (2.22)

where the total pressure continuity 2µ0p + B2 = B̃2 is used. The connection

of the parallel current density to the normal curvature is complicated for a

non-axisymmetric geometry. Although, a simple expression can be derived

considering the incompressibility of the the current density and its relation to

pressure gradient and curvature,

κn =
b · ∇(J||/B)

2|∇ψ|2κs
− ∂ψ lnB

|∇ψ|2
(2.23)

In addition, it is worth mentioning that Eqn.2.22 contains a pressure dependent

term, which is always destabilising at the outboard side of the torus since

normal curvature is negative, limiting the maximum achievable pressure. Both

contributions can lead to an external kink or peeling instability and coupling

with ballooning modes, even though core kink modes are marginally stable,

provided that the surface contribution exceeds the volume field line bending.

2.6 Coupled Peeling-Ballooning Model

In axisymmetric tokamaks plasmas, the onset of large type-I ELMs is attributed

to ideal MHD instabilities. Experimental observations indicate that the plasma

can sit on the ballooning stability boundary for several Alfvenic times and even

exceeded it without the observation of an ELM crash [97], [98]. In addition,

ballooning modes are radially highly localised structures at the plasma edge
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(A)

                                                                                                                                                                                                           

(B)

FIGURE 2.5: (A) An illustration of the peeling-ballooning stability boundary
and ELM cycle in a tokamak plasma and (B) an example of how plasma
shaping can increase stability of ideal MHD modes, as a function of the average

pedestal parallel current density J|| and pressure gradient p′. [33]

and since those modes pass through marginal stability their initial growth is

small rather than explosive. For that reason, coupling to kink modes was

suggested as a way to increase the radial extent of the perturbation, leading

to more particles and heat being expelled.

The coupling between kink/peeling-ballooning modes occurs in high-β

plasmas as internal kink modes are usually found to be marginally stable and

external kink/peeling modes are driven by the finite edge parallel current

density and pressure. The coupling of the two instabilities leads to the so called

J|| − p′ diagram, which is illustrated in Fig.2.5a, and represents an extension of

the s−αmodel introduced earlier. Type-I ELMs are experimentally found in the

nose of the stability diagram, where both pressure gradient and parallel current

density is large [99]. In addition, a reduction or even loss of second ballooning

stability access is observed. Careful plasma shaping allows an increase in

the achievable parallel current and pressure gradient, as depicted in Fig.2.5b.

In particular, the introduction of triangularity stabilises external kink modes

especially in the case where a divertor configuration is introduced. The elliptic

shape of the plasma boundary is shown analytically and computationally to

lead to the stabilisation of external kink modes that allows increased plasma

stability. An example is a D-shape tokamak plasma given in Fig.2.6, where

the growth rate and mode structure of peeling-ballooning modes is illustrated.

For such plasmas, the existence of a finite current density at the plasma edge

leads to kink-like modes for low toroidal mode numbers n, that transition to
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(A)

(B) (C)

FIGURE 2.6: (A) A typical growth rate γ/ωA spectrum as a function of toroidal
mode number n of the peeling-ballooning instability [100]. (B) The mode
structure of a low n external kink/peeling mode. (C) The mode structure of
a high n ballooning mode. The ideal MHD stability code ELITE was used for

the calculation of the growth rate and mode structure.

ballooning-like modes for higher n. In the growth rate spectrum, kink modes

represent the peak centred around n ∼ 10 and ballooning modes for n > 30.

The success of the coupled peeling-ballooning model to explain the onset

of type-I ELMs in tokamak plasmas led to the formulation of EPED model

[101], [102]. This model introduced additional stability considerations from

kinetic ballooning modes (KBMs) and diamagnetic stabilisation. KBMs are

fluid-like ballooning modes, where kinetic diamagnetic stabilisation is included

along with additional destabilisation kinetic effects. These are proposed to be

responsible for halting the pedestal pressure gradient as the pedestal pressure

is increased. A good approximation for KBMs is given by local ideal MHD

ballooning analysis, which is often used because of computational efficiency.
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(A) (B)

FIGURE 2.7: (A) A comparison of the pedestal pressure and width at the point
of the ELM as predicted by EPED and measured in the DIII-D tokamak. (B) A
comparison of the predicted pedestal pressure at the point of the ELM between

EPED predictions and measured data in a number of tokamaks. [101]

According to this model the ELM crash occurs when the pedestal pressure

height and width is such that unstable finite n PB modes become unstable,

predicting a relation between the achievable pedestal pressure and width ∆

that scales as
√
βp ∝ ∆, where βp = 2µ0p/B

2
p . Fig.2.7 shows a comparison of the

EPED model with experimental data from various tokamaks.

In a non-axisymmetric tokamak, i.e. a case where an MP field is applied, the

behaviour of the plasma becomes more complex. As discussed in the previous

section, infinite n or local ballooning analysis indicates that due to changes

in local shear and curvature, particular field lines are further destabilised

leading to poloidal localised ballooning modes [70], [71]. However, external

kink/peeling modes can be either destabilised or stabilised depending on the

spectrum of the applied field and the resulting jump in the non-axisymmetric

normal curvature. Especially for the case where kink stabilisation occurs, a

similar scenario is observed with the stabilisation of external kink modes due

to the presence of an ideal wall surrounding the plasma. The existence of an

ideal wall drives a current sheet at the wall surface creating a magnetic field

that opposes the perturbed magnetic field and constraining the plasma motion.

Recent investigation from AUG suggest that density pump-out is required [50]

for density control and reduction of pressure gradients below global MHD

stability limits. Although, mitigated and suppressed states occur at similar

regions of the 2D J − p′ diagram [77], they required different plasma shape and

in particular triangularity. Triangularity increases the stability of kink modes,

such that the postulated degradation of the MHD stability boundary from the



2. Plasma Description 41

3D effects and corrugation of the flux surfaces keeps the plasma in a stable

operational regime.

Very little literature exists with respect to the stability of medium to high n

peeling-ballooning modes when MPs are applied. In recent years, progress has

been achieved in the development of a 3D high n peeling-ballooning theory

[103] leading to the development of the PB3D code [81], as an extension of

the original 2D high n peeling-ballooning theory that the ELITE code is based

on. However, the developed tools have not yet been applied to study the

plasma stability under the application of MPs. Moreover, existing global 3D

stability codes [78], [79], [80] are typically used for the examination of low n

modes, which are not relevant to ELM related instabilities. In this work, an

alternative route is followed for the examination of the 3D plasma stability.

Using analytical tools of perturbation and variational theory, the ELITE code

is used within a numerical framework that calculates the ideal linear plasma

response, assuming knowledge of the plasma surface normal displacement, and

using the axisymmetric peeling-ballooning normal modes as basis functions to

study the 3D system.

2.7 ELITE

ELITE [82] is a spectral eigenvalue linear stability code for axisymmetric ideal

MHD systems, and in this work the low n version of ELITE is used [83]. The

coordinate system under consideration is the poloidal straight field line system

{ψ, θ∗, φ} that allows an efficient Fourier decomposition in the poloidal and

toroidal direction, such that for a certain toroidal mode n

Xn(ψ, θ∗, φ) =
∑
m

Xnm(ψ)e−i(mθ
∗−nφ) (2.24)

The high n version of ELITE uses the extended ballooning ordering, accurate to

second order in powers of n−1 as introduced by [93], retaining both ballooning

and kink terms in the plasma potential energy change. The expansion in

powers of n−1 allows an algebraic relation between the normal and binormal

displacement significantly reducing the complexity of the system. Considering

that the CAW needs to minimised, to zeroth order the divergence of the
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perpendicular displacement needs to vanish, as described previously for an

edge localised ballooning type of mode, leading to the relation,

U (0)
n ∼

i

n
∂ψX

(0)
n (2.25)

where B · ∇ � ∂φ, G� ∂ψ and ∂φ = in is considered. In order to retain higher

order terms, the zeroth order relation Eqn.2.25 can be substituted in Eqn.2.16c

as an approximation for (B · ∇)U , giving the final relation between the normal

and binormal component to second order in n−1, that is:

U ' i

n
(∂ψX +GX) +

1

n2
[
Bφ

B2
(B · ∇)∂ψX] (2.26)

Although such a formalism is sufficient for the stability of typical ballooning

unstable plasmas, it is not necessarily sufficient for low n high-β kink unstable

plasmas or for the calculation of the low n plasma response to external 3D fields.

In order to be able to simulate such phenomena, the low n version of ELITE

assumes no expansion in n and directly solves Eqn.2.16c. In practice this leads

to a matrix problem due to the knowledge of the differential operators in the

{θ∗, φ} direction. Considering that ∂φ = in and ∂θ∗ = −im, the matrix problem

becomes,

Um = A−1mm′ [dψ +Gmm′ ]Xm′ (2.27)

where Gmm′ = F{∂ψ ln (JB2) +
2µ0∂ψp

B2
}m and Amm′ = −i[(m′ −

nq)F{Bφ/JB2}m + n]. Substituting Eqn.2.27 into Eqn.2.16 allows the system

to be minimised with respect to a single variable, Xn. Some algebraic

manipulation that involves integration by parts between conjugate and

non-conjugate terms, results in a quadratic form for the energy equation such

that,

WVmm′ = [WV 2
mm′dψψ +WV 1

mm′dψ +WV 0
mm′ ]

+ [WS1
mm′dψ +WS0

mm′ + V S0
mm′ ]δ(ψ − ψa)

(2.28a)

KVmm′ = [KV 2
mm′dψψ +KV 1

mm′dψ +KV 0
mm′ ]

+ [KS1
mm′dψ +KS0

mm′ ]δ(ψ − ψa)
(2.28b)
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〈Xm|WVmm′|Xm′〉 = ω2
n〈Xm|KVmm′|Xm′〉 (2.28c)

where 〈Xm|Amm′ |Xm′〉 =
∑

m,m′

∫
X†mAmm′Xm′dψ, WV i and KV i are the matrix

elements from the contribution of the plasma potential and kinetic energy

respectively in the plasma volume; here WSi and KSi are the matrix elements

from the contribution of the plasma potential and kinetic energy respectively

in the plasma surface and V Si are the matrix elements from the contribution of

the vacuum potential energy in the plasma surface. Eqn.2.28 can be minimised

with respect to Xm leading to a system of second order differential equations,

[Amm′dψψ +Bmm′dψ + Cmm′ ]X
′
m = 0 (2.29)

ELITE solves a boundary condition at the plasma-vacuum interface to assure

that the solution satisfies total pressure continuity and minimises the surface

contribution, and iterates until a pure imaginary eigenvalue is found that

simultaneously satisfies a core boundary condition {Xm(ψ0)} = 0.

Finally, in order to increase time efficiency of the calculation ELITE uses

two grids. The time consuming calculation of the matrix coefficients Amm′ ,

Bmm′ , Cmm′ , that depend only on equilibrium quantities, uses a coarse grid as

radial variation of equilibrium quantities is slow with respect to the perturbed

displacement Xm. The perturbed displacement Xm is calculated via a shooting

method on a fine grid which is packed around rational surfaces, since for

intermediate to high n modes Xm is a highly localised function around the

corresponding rational surface q = m/n. Therefore, the matrix coefficients need

to be interpolated from the coarse to the fine grid during the calculation. As

they include radial derivatives up to second order, finite difference calculation

and interpolation of derivatives can introduce numerical errors. In order

to accurately calculate the radial derivatives, ELITE uses the Mercier-Luc

formalism [104] where the radial derivatives of equilibrium quantities are

analytically related to equilibrium quantities on the flux surface through the

Grand-Safranov equation. As a result, the exact calculation of radial derivatives

and their interpolation leads to a far more accurate numerical scheme assuring

convergence of the solution.



Chapter 3

Plasma Stability of

Non-Axisymmetric Systems

3.1 3D Ideal MHD Stability of Tokamak Plasmas

In order to examine the stability of tokamak plasmas under the application of

external non-axisymmetric magnetic perturbations of toroidal mode numberN ,

two methods are taken into consideration. The first method uses perturbation

theory on the stability of the axisymmetric system. The impact of the external

fields is treated as a perturbation on the original system due to the fact that

those applied fields are orders of magnitude smaller. Such an analysis results

in correction terms for the mode structure and growth rate of the perturbation,

approximating the true non-axisymmetric normal mode. The benefit of this

method is that it results in closest neighbour toroidal mode coupling leading

to triplet modes {n − N, n, n + N} significantly simplifying the complexity of

non-axisymmetric stability, in contrast to toroidal mode families [105] which

takes place in the full 3D stability calculation. In addition, all correction terms

are functions of equilibrium quantities and axisymmetric normal modes, which

can be computed efficiently with existing axisymmetric stability codes.

The second method is based on the variational formulation of the energy

principle. The stability problem results in a generalised eigenvalue problem of

the force operator and the stability of the system will depend on the eigenvalues

of this operator. Variational approaches allow the use of orthogonal basis

44
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functions for the representation of the plasma displacement and provide a

method that determines an appropriate superposition that minimises potential

energy, providing in such a way the most unstable mode that can be produced

from the particular basis set. Considering that the applied fields are much

smaller than equilibrium fields, the axisymmetric normal modes are postulated

to serve as appropriate trial functions for energy minimisation. Although this

is an approximate normal mode, the exact normal modes will only be more

unstable.

In this chapter, the theory and procedure under which non-axisymmetric

stability is studied is described, and the numerical framework based on the

axisymmetric stability code ELITE under which that calculation is performed is

presented.

3.1.1 Non-axisymmetric Stability using Perturbation Theory

The applied non-axisymmetric magnetic perturbations under consideration

are typically much smaller than axisymmetric equilibrium quantities, such

that it is a reasonable assumption that resulting forces produced from the

non-axisymmetric equilibrium are also small in comparison to axisymmetric

forces. As a result, perturbation theory can be used to provide an approximate

solution to Eqn.(2.12). Such a perturbative stability analysis has been performed

to first order in [106] to approximate changes in axisymmetric stability due to

the presence of narrow island structures. However, second order corrections,

as in [76], are required to capture perturbative non-axisymmetric effects. First,

consider the momentum equation normalised to the mass density ρ,

Fδξn =
∂2

∂t2
δξn ⇒ (F(0) + εF(1) + ε2F(2) + ...)δξn = −ω2

nδξn (3.1)

produced from a plasma displacement δξn, where F(0) is a force operator due

to the axisymmetric equilibrium, F(k) is a force operator due to axisymmetric

and non-axisymmetric equilibrium changes of order k and ε represents a small

parameter proportional to B(1)
N /B

(0)
0 � 1, typically B(1)

N /B
(0)
0 ∼ 10−3. Eqn.(3.1)

represents an eigenvalue equation, where the set of −ω2
n and δξn represent

the eigenvalues (frequency or growth rate) and eigenfunctions (perpendicular

displacement) respectively. Due to the perturbative nature of the higher order
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contributions, the eigenvalues and eigenvectors can be expanded in the small

parameter ε:

ω2
n = ω(0)2

n + εω(1)2
n + ε2ω(2)2

n + ... (3.2)

δξn = δξ (0)
n + εδξ (1)

n + ε2δξ (2)
n + ... (3.3)

Solving order by order, we derive to k ≤ 2,

0th Order: F(0)δξ (0)
n = −ω(0)2

n δξ (0)
n (3.4)

1st Order: F(1)δξ (0)
n + F(0)δξ (1)

n = −ω(1)2
n δξ (0)

n − ω(0)2
n δξ (1)

n (3.5)

2nd Order: F(2)δξ (0)
n +F(1)δξ (1)

n +F(0)δξ (2)
n = −ω(2)2

n δξ (0)
n −ω(1)2

n δξ (1)
n −ω(0)2

n δξ (2)
n

(3.6)

The unperturbed system

F(0)δξ (0)
n = −ω(0)2

n δξ (0)
n (3.7)

is considered to be unstable and non-degenerate, i.e. ω
(0)
n 6= ω

(0)
m for n 6= m.

Thus, the eigenvalues −ω(0)2
n and eigenfunctions δξ (0)

n are fully determined

for a range of n and can be used as basis functions for the solution of higher

order equations. These basis functions are orthogonal, and considered to be

normalised such that 〈δξ (0)
m |δξ (0)

n 〉 =
∫
δξ ∗(0)m · δξ (0)

n J d3x = δnm, where J is a

weight function representing the Jacobian of the coordinate system.

To obtain first order corrections for the eigenvalues and eigenfunctions, the

inner product of Eqn.(3.5) with δξ (0)
n is considered,

〈δξ (0)
n |F(0)|δξ (1)

n 〉+ 〈δξ (0)
n |F(1)|δξ (0)

n 〉 = −ω(0)2
n 〈δξ (0)

n |δξ (1)
n 〉 − ω(1)2

n 〈δξ (0)
n |δξ (0)

n 〉
(3.8)

The first terms on the left and right hand sides of Eqn.(3.8) cancel, due to the fact

that F(0) is Hermitian. This leads to a simple relation for the 1st order correction

of the eigenvalue,

ω(1)2
n = −〈δξ (0)

n |F(1)|δξ (0)
n 〉 (3.9)

Taking the inner product of Eqn.(3.5) with δξ (0)
m (m 6= n) leads to

(ω(0)2
m − ω(0)2

n )〈δξ (0)
m |δξ (1)

n 〉 = 〈δξ (0)
m |F(1)|δξ (0)

n 〉 (3.10)
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One can use the freedom in the solution to Eqn.(3.5) for δξ (1)
n to satisfy an

orthogonality relation 〈δξ (0)
n |δξ (1)

n 〉 = 0. This allows the representation of the

perturbed state as a superposition of the unperturbed states,

δξ (1)
n =

∑
m6=n

〈δξ (0)
m |δξ (1)

n 〉δξ (0)
m (3.11)

Substituting Eqn.(3.11) into Eqn.(3.10) provides the first order correction of the

eigenfunction that depends on known quantities,

δξ (1)
n =

∑
m 6=n

〈δξ (0)
m |F(1)|δξ (0)

n 〉
(ω

(0)2
m − ω(0)2

n )
δξ (0)

m (3.12)

At this stage it can be noted that if the first order correction of the force

operator F(1) is non-axisymmetric, then the correction to the eigenfunction is

non-zero δξ (1)
n 6= 0, but there is no change to the eigenvalue, i.e. ω

(1)2
n = 0.

On the other hand, if the first order correction of the force operator F(1) is

axisymmetric, the opposite is expected. In addition, for a non-axisymmetric

magnetic perturbation with a toroidal mode numberN , a triplet mode emerges:

{n−N, n, n+N}. This represents a truncation of the mode families that occurs

in 3D equilibrium geometry and n is not anymore a “good”quantum number.

This leads to a poloidal localisation of the 3D mode, provided the coupling is

strong enough.

In order to calculate corrections to either the mode structure or the growth rate

of peeling-ballooning modes due to the presence of 3D fields, second order

corrections need to be considered. Repeating the above procedure for Eqn.(3.6),

we derive:

ω(2)2
n = −〈δξ (0)

n |F(2)|δξ (0)
n 〉 − 〈δξ (0)

n |F(1)|δξ (1)
n 〉 (3.13)

The second order force operator F(2) can be dropped from the analysis as it

provides corrections due to axisymmetric changes, and substituting Eqn.(3.12)

into Eqn.(3.13), the second order correction of the eigenvalue is explicitly

expressed as,

ω(2)2
n = −

∑
m 6=n

〈δξ (0)
n |F(1)|δξ (0)

m 〉〈δξ (0)
m |F(1)|δξ (0)

n 〉
(ω

(0)2
m − ω(0)2

n )
= −

∑
m 6=n

||F(1)
nm||2

(ω
(0)2
m − ω(0)2

n )

(3.14)
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For a single toroidal mode number N , Eqn.(3.12) and Eqn.(3.14) result in solely

first neighbour coupling m = n±N , leading to the triplet mode {n−N, n, n +

N}. Note that since the numerator of Eqn.(3.14) is always positive, for ω(0)2
m >

ω
(0)2
n the contribution is stabilising, while for ω(0)2

m < ω
(0)2
n the contribution is

destabilising. Most importantly, if the spectrum contains extrema, the most

unstable mode will become more unstable and the most stable mode becomes

more stable.

3.1.2 Non-axisymmetric Stability using Variational Theory

The ideal MHD system defines a hermitian stability problem that can efficiently

be solved considering discrete normal modes, as explained in Chapter2. In the

case where non-degenerate eigenvalues are considered ω2
m 6= ω2

n for m 6= n, the

normal modes are orthogonal,

(ω2
m − ω2

n)〈δξm|δK|δξn〉 =
1

2
[〈δξm|δW |δξn〉 − 〈δξn|δW |δξm〉] = 0 (3.15)

and lead to 〈δξm|δK|δξn〉 =
∫
δξ∗m ·δξnρJ dψdθdφ = 0. The displacement under

consideration is linear with respect to the normal displacement functional Xn,

such that δξ(cnXn) = cnδξ(Xn). As a result, both the force and energy operators

are linear with respect to the displacement and therefore the functional Xn, i.e.

F (cnXn) = cnF (Xn) and δW (c∗mX
∗
m, cnXn) = c∗mcnδW (X∗m, Xn). In this way a

generalised eigenvalue problem is constructed cT (δW − ω2δK)c = 0.

In the case where the plasma equilibrium is axisymmetric, the energy functional

results in a toroidally decoupled system due to the orthogonality of the toroidal

basis functions, i.e. the toroidal Fourier harmonics.

∑
m

∑
n

ω2c∗mcn〈δξm|δK0|δξn〉 =
∑
m

∑
n

c∗mcn〈δξm|δW0|δξn〉∑
m

ω2
mδK0|cm|2 =

∑
m

δW0|cm|2
(3.16)

It becomes apparent from Eqn.(3.16) that no coupling of toroidal modes occurs

and each δξn corresponds to a normal mode of the axisymmetric system that

can be used as basis functions to study the stability of the 3D system. As
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such, a displacement can be expressed as a linear superposition of axisymmetric

normal modes,

δξ(ψ, θ, φ) =
∑
n

cnδξn(ψ, θ)einφ =
∑
n

cnδξn(ψ, θ)Φn(φ) (3.17)

If non-axisymmetric fields are present, toroidal mode coupling occurs and the

resulting system becomes,

∑
m,n

ω2c∗mcn〈Φm|δK0|Φn〉 =
∑
m,n

c∗mcn〈Φm|δW0 + δWN |Φn〉∑
m

ω2
mδK0|cm|2 =

∑
m

δW0|cm|2

+
∑
m,n

δWNc
∗
mcnδmn±N

(3.18)

If the δWN coefficients are small, weak coupling occurs and it is expected that

the variational method is equivalent to a perturbative method. An advantage

of the variational method is that it is not restricted to weak coupling as

larger values of δWN will result in strong or broadband coupling of toroidal

modes. However, in both approaches the poloidal dependence of the toroidal

normal mode remains fixed. As a result the applied magnetic field will not

affect the coupling of the individual poloidal harmonics within each toroidal

normal mode and the possible structure of the non-axisymmetric normal mode

is significantly constrained. In order to resolve this issue, the individual

poloidal Fourier harmonics of the axisymmetric normal modes can be taken

into consideration for a displacement of the form,

δξ(ψ, θ∗, φ) =
∑
n

∑
l

cn,lδξn,l(ψ)e−i(lθ
∗−nφ) =

∑
n

∑
l

cn,lδξn,l(ψ)Θl(θ
∗)Φn(φ)

(3.19)

For the axisymmetric system, such a representation results in a system of

normal modes, where each is a superposition of poloidal Fourier modes due

to poloidal inhomogeneity of the axisymmetric equilibrium,
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∑
m,n

∑
k,l

ω2c∗m,kcn,l〈ΘkΦm|δK0,s|ΘlΦn〉 =
∑
m,n

∑
k,l

c∗m,kcn,l〈ΘkΦm|δW0,s|ΘlΦn〉∑
m

∑
k,l

ω2
mδK0,sc

∗
m,kcm,lδkl±s =

∑
m

∑
k,l

δW0,sc
∗
m,kcm,lδkl±s

(3.20)

It is straight forward to derive an expression for the non-axisymmetric system,

which becomes

∑
m,n

∑
k,l

ω2c∗m,kcn,l〈ΘkΦm|δK0,s|ΘlΦn〉 =
∑
m,n

∑
k,l

c∗m,kcn,l〈ΘkΦm|δW0,s + δWN,s′|ΘlΦn〉∑
m

∑
k,l

ω2
mδKm,sc

∗
m,kcn,lδkl±s =

∑
m

∑
k,l

δW0,sc
∗
m,kcn,lδkl±s

+
∑
m,n

∑
k,l

δWN,s′c
∗
m,kcn,lδmn±Nδkl±s′

(3.21)

It can be observed from Eqn.(3.21) that the non-axisymmetric equilibrium will

lead to non-uniform poloidal mode coupling of each toroidal normal mode and

in the case where δWN,s is not much smaller than δW0,s or strong coupling

occurs, the structure of each toroidal normal mode can change significantly.

In principle, such a feature allows the decoupling of external kink/peeling

modes to core ballooning modes, as the corresponding poloidal harmonics

can change independently. In addition, in a tokamak plasma, elongation and

triangularity lead to coupling of {m,m±1,m±2} poloidal modes, whereas in a

non-axisymmetric plasma additional shaping effects can significantly increase

the number of coupled poloidal harmonics, indicating the importance of

allowing freedom in the poloidal mode coupling of each axisymmetric toroidal

normal modes.

3.2 Potential and Kinetic Energy Matrix Coefficients

The calculation of the potential and kinetic energy matrix coefficients requires

knowledge of the perturbed force produced from the non-axisymmetric

equilibrium. The matrix coefficients for the perturbative and variational
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approach come from the same set of equations and the only difference occurs in

the coupling of the individual basis. A straightforward relation exists between

the two methods if the relative poloidal coupling of the axisymmetric normal

modes remains unchanged, such that

F (1)
mn =

〈Φm|δWN |Φn〉√
〈Φm|δK0|Φm〉〈Φn|δK0|Φn〉

(3.22)

As a result, a single analysis for the potential and kinetic energy matrix

coefficients is required. Considering an ideal and incompressible plasma, a

displacement δξ of the plasma will result in a force,

F = J × δB + δJ ×B +∇(δξ · ∇P ) (3.23)

where (δξ, δB, δJ ) represent the mode displacement, magnetic field and

current density respectively. In order to express F in an ordered way, the

plasma equilibrium can be split into an axisymmetric and non-axisymmetric

part, i.e. B = B0 + BN . The perturbed quantities are linear with respect to

equilibrium quantities and similarly,

δB = δBn + δBn±N (3.24a)

δJ = δJn + δJn±N (3.24b)

δp = δpn + δpn±N (3.24c)

Substituting Eqn.(3.24) into the linearised force, naturally results in an ordered

axisymmetric and non-axisymmetric contribution,

Fn = J0 × δBn + δJn ×B0 +∇(δξn · ∇p0) (3.25)

Fn±N = J0×δBn±N +JN×δBn+δJn×BN +δJn±N×B0+∇(δξn ·∇pN) (3.26)

Fn±2N = JN × δBn±N + δJn±N ×BN (3.27)
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where δBn = ∇× (δξn ×B0) and δBn±N = ∇× (δξn ×BN). The zeroth order

force is due to the original axisymmetric equilibrium and the first order arises

due to the non-axisymmetric equilibrium that provides the coupling between

the toroidal axisymmetric modes. The second order force is dropped from the

calculation, as it is assumed that Fn±2N � Fn±N .

The matrix coefficients δK, δW can be calculated using the above 3D

equilibrium quantities (BN ,JN ,∇pN) and axisymmetric toroidal modes {δξn}
obtained using ELITE. Considering Eqn.(3.26) and taking the inner product

with δξn, after some algebraic manipulation the matrix coefficients δK, δW are

split into a volume and surface contribution, such as

δK0 volume =
1

2

∫
δξ∗m · ρ0δξn J dψdθ∗dφ (3.28)

δW0 volume =
1

2

∫
{|δBm⊥|2 −

J0 ·B0

B2
(δξ∗m⊥ ×B0) · δBm⊥

− 2(δξm⊥ · ∇p0)(δξ∗m⊥ · κ0)} J dψdθ∗dφ
(3.29)

δWN volume = −1

2

∫
{[δξ∗m · (JN × δBn + δJn ×BN)]

+ [∇× (δξ∗m × J0)] · (δξn ×BN)

− δJ∗m · (δξn ×BN)} J dψdθ∗dφ

(3.30)

δWN surface = −1

2

∫
{(δξ∗m · n)[(δξn ×BN) · J0 − δBn±N ·B0]

+ δB∗m · [BN(δξn · n)− δξn(BN · n)]

+ (δξ∗m · n)(δξn · ∇pN)} J dθ∗dφ

(3.31)

Moreover, shielding currents that arise due to electron flow at rational

surfaces block the corresponding resonant harmonics of the applied magnetic

perturbation, and in the absence of resistivity lead to δ-function current layers

[107], [108]. The calculation of those layers is subtle within a single fluid MHD

model due to large Pfirsch-Schlüter currents but can be approximated from the

jump of the normal derivative of the perturbed flux ∆Nl = [(l −Nq)/q][[∂ψXNl]]

according to,

µ0J||N screening = −
∑
l

l∆Nlδ(ψ − ψl)
n2

∮
B2/|∇ψ|2J dθ∗dφ

exp [−i(lθ∗ −Nφ)]B0 (3.32)



3. Plasma Stability of Non-Axisymmetric Systems 53

where ψl corresponds to the poloidal flux at a rational surface. The

corresponding coupling coefficients that arise from this contribution are given

by,

δWN screening = −
∫
δξ∗m · (J||N screening × δBn) J dψdθ∗dφ (3.33)

3.3 Linear Ideal MHD Plasma Response

The application of external non-axisymmetric fields results in a

non-axisymmetric plasma equilibrium configuration. In order to obtain such

a configuration various approaches can be followed. Equilibrium solutions

can be obtained by solving the ideal MHD set of equations numerically

using nonlinear MHD codes, e.g. VMEC [109], or by approximating the

solution by solving the linearised MHD set of equations using axisymmetric

eigenvalue stability codes in marginal stability, e.g. IPEC [110] or MARS-F

[85]. Due to the fact that MP fields are much smaller than axisymmetric

equilibrium fields, the solution of the linearised set of equations provides

realistic solutions in comparison to nonlinear solutions [111], [112], [113]. In

addition, the use of an eigenvalue code results in a much faster computation in

comparison to nonlinear MHD codes, allowing the integration of the plasma

response to a framework that uses axisymmetric stability codes to study the

non-axisymmetric equilibrium and stability. For example, as part of a design

loop for optimising the MP coil configuration.

In this work, the low n version of ELITE is used to calculate the plasma

response, where details in the differences between the high n and the low

n version of ELITE is given in Chapter2. As described in Chapter2, ELITE

evolves a second order differential equation for the functional of the normal

displacement that minimises energy, according to

[Amm′dψψ +Bmm′dψ + Cmm′ ]Xm′ = 0 (3.34)

where {Xm} define the Fourier coefficients of the normal displacement

functional,
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X(ψ, θ∗, φ) =
∑
m

Xm(ψ)e−i(mθ
∗−nφ) (3.35)

The evolution of Eqn.(3.34) requires the solution of the boundary condition

that evaluates the normal displacement and its gradient at the plasma-vacuum

interface,

Dmm′dψXm′ = Emm′Xm′ (3.36)

In order to represent some external non-axisymmetric field, the normal

perturbation {Xm} is fixed at the plasma-vacuum interface and the boundary

condition provides a solution for the gradient dψXm, such that Eqn.(3.34) can

be evolved in space. Therefore, the non-axisymmetric normal magnetic field,

which is continuous at the interface, can provide a way to compute the normal

plasma displacement using the linearised induction equation BN = ∇× (ξN ×
B0), such that

BN · n =
B · ∇
|∇ψ|

∑
l

Xl,N exp [−i(lθ∗ − iNφ)]

⇒Xl,N = F{i |∇ψ|J
ν

BN · n}l/(
l − nq
q

)

(3.37)

This approach assumes prior knowledge of the non-axisymmetric normal

magnetic field at the vacuum region and corresponds to a fixed boundary

plasma response. In the case where vacuum currents, i.e. coils, give rise

to the perturbation a free boundary response needs to be taken into account.

Nevertheless, for the stability examination of the tokamak plasma under the

application of some external magnetic perturbation, this approach is sufficient

to generate a consistent plasma response to be used.

In future work, it is visualised that the vacuum code provides the necessary

information for the calculation of a free boundary response. In principle,

the free boundary response can be computed considering the relation of the

vacuum magnetic field to the total magnetic field, i.e. including the plasma

response. It is proven that a linear transformation exists to map the normal

vacuum field to the normal total field [114], where the map is the product of the

vacuum magnetic inductance Λ [115] to the inverse of the plasma inductance
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L−1, such that Btot
ψ = ΛL−1Bvac

ψ . The vacuum inductance is an integral

function that depends on the geometry and current density of the coils and the

plasma inductance relates the added plasma potential energy to the induced

poloidal magnetic flux. The latter is a quantity that can be obtained from an

axisymmetric stability code at marginal stability. Finally, it should be noted

that within the context of linear plasma response, scaling the perturbed flux at

the plasma surface is equivalent to scaling the amplitude of the current on the

coil configuration. Therefore, in this thesis where a fixed plasma response is

considered, it can still be correlated to an increasing current in the MP coils,

as long as the linear response remains a reasonable approximation for the

amplitude of the applied field.

The low n ELITE code provides the radial dependence of the normal

displacement. The binormal displacement is related to the normal displacement

due to energy minimisation as discussed in Chapter2, and ELITE provides the

corresponding relation through matrices W 1 and W 2,

U =
i

n
[∂ψX + µ0

∂ψp

B2
+W ] (3.38)

Wm = [W 1
mm′dψ +W 2

mm′ ]Xm′ (3.39)

From the perpendicular displacement ξ⊥N , the full non-axisymmetric

equilibrium quantities BN ,JN ,∇pN can be obtained through the linearised

set of ideal MHD equations. To begin with, inserting ξ⊥N into the

magnetic induction equation and after some algebraic manipulation, the

non-axisymmetric magnetic field becomes,

BN = Bψ
∇ψ
|∇ψ|2

+Bs
B ×∇ψ
B2

+Bb
B

B2
(3.40)

Bψ =
B · ∇
|∇ψ|2

XN (3.41)

Bs =
B · ∇
|∇ψ|2

UN − S
B2

|∇ψ|2
XN (3.42)

Bb = −[(∇ · ξ⊥N + 2ξ⊥N · κ) + pN ] (3.43)
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where pN = −ξ⊥N · ∇p/B2 is the non-axisymmetric pressure. Once the

magnetic field is known, the calculation of the non-axisymmetric current

density becomes straight forward, as it represents the curl of the magnetic

field. In the orthogonal coordinate system under consideration the curl of a

vector field Ai∇xi is obtained through (∇ × A)i = εijk(gii/J )[∂jAk − ∂kAj]

and the metric coefficients can be found in Chapter2. The non-axisymmetric

pressure gradient can be obtained considering the linearised force balance

∇pN = JN ×B + J ×BN .

3.4 3D Stability Framework Using ELITE

ELMs are an intermediate to high n ideal MHD phenomenon and no global

ideal 3D MHD stability code has been used to resolve the effect of MPs on the

stability of these modes, since the resolution required in the normal direction

and the number of poloidal and toroidal harmonics required is significant. The

perturbative and variational approaches proposed, allow the examination of

individual triplet modes that simplify the numerical complexity of the problem.

The aim of this work is to be able to routinely produce stability diagrams

for shots with applied MPs as is done currently with ELITE for axisymmetric

discharges. This is the first stage of a project to develop a tool which can

optimise plasma response and ELM stability together. This will be required

for the design of a plasma scenario for future reactors if ELM control coils will

be needed. It may also help us understand the details of ELM mitigation and

suppression.

As a result, the non-axisymmetric stability of a tokamak plasma that is subject

to external small non-axisymmetric fields requires the knowledge of the plasma

response, i.e. the non-axisymmetric equilibrium component, and of the

axisymmetric normal modes as result from the stability of the axisymmetric

system. All required information can be obtained from axisymmetric stability

codes, which are routinely used to compute both the axisymmetric stability

as well as the linear plasma response. As such, a numerical framework

based on axisymmetric stability codes can be created to compute the stability

of the plasma under the application of external non-axisymmetric fields. In

this work, the low n version of ELITE is used as it can provide both the
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FIGURE 3.1: Schematic of the workflow of the 3D stability numerical
framework based on an axisymmetric stability code such as ELITE.

low n linear plasma response and the intermediate to high n axisymmetric

peeling-ballooning eigenfunctions. A schematic of the workflow can be seen

in Fig.3.1. The numerical framework is implemented in a Fortran90 code and

further information can be found in AppendixA.



Chapter 4

Application to External Magnetic

Perturbations

4.1 Implementation of Boundary Condition

The calculation of the linear plasma response with low n ELITE requires the

knowledge of the normal magnetic field at the plasma-vacuum interface. This

is calculated by a Fortran90 code developed for this purpose which computes

the vacuum magnetic field due to a set of current carrying coils; more details

can be found in AppendixB. Once the normal magnetic field is known at the

plasma boundary, Eqn.3.37 is used to provide the boundary condition inserted

in ELITE.

Benchmark Study

In order to test the accuracy of the calculation of the magnetic field two analytic

cases were investigated. The first case referred to an infinitely long current

carrying wire. The wire was placed perpendicular to the xy-plane and centred

at z = 0, such that current flows along the z-axis. Therefore the resulting

magnetic field at a radial distance r is given by B = µ0I/2πr. The second case

referred to the magnetic field produced by a closed current carrying loop placed

in the xy-plane and centred at z = 0. The magnetic field produced along the

58
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(A) (B)

FIGURE 4.1: Comparison of computational and analytical value of the
magnetic field as produced by (A) an infinite wire and (B) a closed loop.

z-axis is B = µ0R
2I/2(z2 + R2)3/2. Fig.[4.1a] and Fig.[4.1b] show the calculated

field as a function of the distance from the wire and loop respectively.

Further benchmarking was performed with results from ERGOS, a magnetic

vacuum code, for the vacuum field as produced by the in-vessel MP coil

system in MAST. In MAST each coil is composed of 4 thick wire turns each

carrying up to 1.4 kA. The coil locations are given by (r0, z0) = (1.44, 0.595)

and (r1, z1) = (1.322, 0.795), where (r0, z0) is one corner and (r1, z1) is the

opposite corner of the coil, and an N=3 odd current configuration is considered.

The radial component of the field is calculated in terms of the cylindrical

(r, z) cross-section. The location in the chamber under consideration was

(r, z) = (1.4,−0.5) for the odd current configuration. Very good agreement

was obtained between the two codes. Fig.[4.2] show the comparison between

ERGOS [116] and Fig.[4.3] shows the field on the whole surface.

FIGURE 4.2: Comparison of the magnetic field Br, Bz with ERGOS for an odd
n=3 configuration at (r, z) = (1.4,−0.5).
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FIGURE 4.3: MP field B as produced by a odd N=3 current configuration in
MAST.

4.2 Fixed Boundary Plasma Response with ELITE

4.2.1 Circular Large Aspect Ratio Plasma Equilibrium

The calculation of the non-axisymmetric part of the equilibrium begins with

an initial axisymmetric equilibrium that is stable to low n toroidal modes but

unstable to intermediate to high n ballooning modes, to which MP fields are

applied. We examine such an equilibrium for a large aspect ratio ε = 0.33

circular cross-section plasma of core pressure p0 = 22.8 [kPa], core magnetic

field B0 = 1.8 [T], core parallel current density J||0 = 0.7 [MAm−2] and edge

safety factor qa = 2.71. The axisymmetric equilibrium plasma profiles and PB

stability analysis are illustrated in Fig.4.4.

Two cases are examined, one for a resonant magnetic field and one for a

non-resonant magnetic field at the plasma-vacuum interface for a toroidal mode

number N = 3 MP field. The resonance condition is met by maximising
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(A) (B)

FIGURE 4.4: Normalised radial equilibrium plasma profiles for A) the pressure,
outer mid-plane current density and q-profile as a function of the normalised
poloidal flux as well as B) the normalised PB growth rate for the cbm18 dens6

equilibrium as a function of the toroidal mode number.
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(C)
(D)

FIGURE 4.5: Normal displacement ξN ·n [m] and poloidal mode structure in a
straight field-line angle coordinate system for the normal magnetic fieldBN ·n
[T] for the (A),(B) resonant and (C),(D) non-resonant N=3 MP configuration
at the plasma surface. The solid white line represents the resonant location

qaN = 8.13 of the plasma surface.
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(4,3) (5,3) (6,3) (7,3)(8,3)

(A)

(4,3) (5,3) (6,3) (7,3)(8,3)

(B)

(C) (D)

FIGURE 4.6: The radial dependence of the poloidal Fourier harmonics ξl for l =
[0, 70] of the normal displacement ξN ·n [m] as a function of ψ for (A) a resonant
and (B) a non-resonant N = 3 MP field. The harmonics that peak around
resonant surfaces are the corresponding resonant harmonics. In addition, the
reconstruction of the poloidal cross section of the mode (C) and (D) for the

resonant and non-resonant case respectively.

the vacuum poloidal harmonics l at radial location where q ∼ l/N . Fig.4.5

illustrates the normal displacement ξN · n that represents the boundary

condition, and the poloidal mode structure of the corresponding normal

magnetic field BN · n, where n = ∇ψ/|∇ψ| is the unit vector normal to the

magnetic flux surfaces of the axisymmetric reference equilibrium.

In the resonant case, the plasma response is characterised by a strong

peeling-like normal displacement, as the amplitude of the last resonant poloidal

harmonic is much larger than the rest of the poloidal harmonics. In the

non-resonant case, a kink-ballooning response is observed, as the amplitude of

the last resonant harmonic is comparable to the rest of the poloidal harmonics.

The normal displacement is strongly peaked around rational surfaces in both
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(A) (B)

(C) (D)

FIGURE 4.7: The (A),(C) normal component of magnetic field BN · n0 [T]
and (B),(D) its poloidal mode structure BNl [T] in a straight field-line angle
coordinate system as reconstructed from ELITE output data for (A),(B) a
resonant and (C),(D) a non-resonant N=3 MP configuration. The straight white

line indicates the position of the q-profile.

cases, due to resonance with the corresponding poloidal harmonics and finite

pressure gradient, leading to large local response and potential break down of

the linear response. Away from the rational surfaces (ξN ·n)/R ∼ (BN ·n)/B0,

such that a linear response is valid in the majority of the plasma volume and

in many cases is observed to match with a non-linear plasma response model

[117]. The mode structure and the poloidal cross-section reconstruction of the

normal displacement are depicted in Fig.4.6.

In this ideal MHD model, individual poloidal harmonics of the normal

magnetic field are screened at their corresponding rational surfaces so that

island formation is prohibited, since field line bending is minimised, i.e. (B0 ·
∇) ∝ (l − Nq) = 0. Nevertheless, this screening is imperfect due to poloidal

mode coupling in toroidal geometry, that allows field penetration. In the

non-resonant case, the screening effect is reduced since the poloidal harmonics
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(A) (B)

FIGURE 4.8: The parallel current density J||N [Am−2] as reconstructed from
ELITE output data for the (A) resonant and (B) non-resonant N = 3 MP

configuration.

(A) (B)

FIGURE 4.9: The plasma pressure pN [Pa] as reconstructed from ELITE output
data for the (A) resonant and (B) non-resonant N = 3 MP configuration.

of the vacuum MP field are already minimised at their rational surfaces, and

the vacuum field is not significantly altered. However, in the resonant case,

the poloidal harmonics of the vacuum MP field are maximised at their rational

surfaces and strong screening is observed, leading to significant modification

of the MP vacuum field and amplification of external poloidal harmonics in

the plasma. The normal field and its poloidal mode structure are illustrated in

Fig.4.7.

The calculation of the current density becomes straightforward once the

magnetic field and metrics of the coordinate system are known. Fig.4.8

illustrates the parallel current density J||N created around rational surfaces,

which has two contributions. One contribution corresponds to the existence
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(A) (B)

FIGURE 4.10: Normalised radial equilibrium plasma profiles for A) the
pressure, outer mid-plane current density and q-profile as a function of the
normalised poloidal flux as well as B) the normalised PB growth rate for the

dbm9 D-shaped equilibrium as a function of the toroidal mode number.

of Pfirsch-Schlüter current density due to quasi-neutrality and non-vanishing

pressure gradient. The second contribution arises due to screening currents

at rational surfaces. The ideal plasma response results in large Pfirsch-Schlüter

current density for both MP configurations, which is the dominant contribution

to the current density. The final perturbed quantity is the non-axisymmetric

pressure calculated using the linearised perturbation pN = −ξ⊥N · ∇p0. For the

toroidal mode coupling coefficients the pressure gradient ∇pN is needed and

obtained through the linearised force balance JN ×B0 + J0 ×BN = ∇pN . The

non-axisymmetric pressure profile is shown in Fig.4.9.

4.2.2 D-shaped Plasma Equilibrium

A D-shaped plasma equilibrium configuration is also investigated, which is

unstable to low n kink modes and unstable to intermediate to high n ballooning

modes. Fig.4.10 shows the axisymmetric plasma equilibrium profiles, for a core

pressure p0 = 81.88 [kPa], core magnetic fieldB0 = 3.05 [T], core parallel current

density J||0 = 1.69 [MAm−2] and edge safety factor qa = 2.65, as well as the

axisymmetric ideal MHD stability. It can be observed that a characteristic peak

exist at intermediate n ∼ 10 due to kink unstable modes, while the characteristic

ballooning spectrum is retrieved for high n > 30 (not shown).

The plasma surface normal displacement ξN · n is nearly resonant with the

plasma, leading to an external kink-ballooning response. Fig.4.11 illustrates the
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(A)

(4,3) (5,3) (6,3) (7,3)

(B)

(C)
(D)

FIGURE 4.11: (A),(C) The normal displacement ξN · n [m] and magnetic field
BN ·n [T] and (B),(D) the corresponding mode structure in a straight field line
poloidal angle. The straight white line indicates the position of the q-profile.

normal displacement ξN ·n and the normal magnetic fieldBN ·n as well as the

corresponding poloidal mode structures, and it can be observed that a strong

external kink response is formed from the first external poloidal harmonic of the

displacement, leading to excitation of external modes for the magnetic field.

4.3 Benchmark with BOUT++ and MARS-F

The nonlinear MHD BOUT++ fluid code and the linear MHD MARS-F

eigenvalue code have been compared with the computed non-axisymmetric

equilibrium from ELITE to verify the calculation.
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4.3.1 BOUT++ Benchmark

BOUT++ is used to model the linear plasma response imposing a fixed parallel

magnetic potential A||N at the outer boundary of the computational domain. At

first theA||N is computed using the original coordinate system [∇ψ,∇θ,∇φ] and

then transformed into a field aligned coordinate system [∇ψ,B0,∇(φ − qθ∗)]

that BOUT++ uses, employing the transformation A||N ≡ A||N exp [−i(qNθ∗)].
The physics model under consideration is based on a reduced ideal MHD

3-field model appropriate for flute-like k⊥ � k|| and incompressible ∇ · ξ = 0

perturbations,

(A) (B)

FIGURE 4.12: The (A) parallel current density J||N [Am−2] and (B) plasma
pressure pN [Pa] as calculated from BOUT++ for the resonant N = 3 MP field.

(A) (B)

FIGURE 4.13: Comparison of the plasma pressure poloidal mode structure
in the straight field line angle coordinate system between (A) ELITE and (B)

BOUT++ results.

∂w

∂t
= B2b · ∇(

J||
B

) + 2b0 × κ0 · ∇p (4.1)
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∂p

∂t
= − 1

B0

b0 ×∇φ · ∇p (4.2)

∂ψ

∂t
= − 1

B0

∇||φ (4.3)

with a closure that relates the electric potential to the vorticity and the parallel

current density to the poloidal flux,

w =
ρ0
B0

∇2
⊥φ (4.4)

J|| = J||0 −
1

µ0

B0∇2
⊥(ψ + ψMP ) (4.5)

As can be observed from Fig.4.12 and Fig.4.13, the non-axisymmetric

equilibrium pressure and parallel current density match well with ELITE.

Some discrepancy occurs close to rational surfaces, which is attributed to the

non-uniform grid spacing along the normal direction that allows very fine

resolution close to rational surfaces with ELITE, and as a result sharper features

can be resolved. In addition, for numerical stability a small value of numerical

dissipation is required in the BOUT++ simulations, and this also tends to round

off the sharp features.

4.3.2 MARS-F Benchmark

A further benchmark is performed for an experimental equilibrium

configuration with the MARS-F code. MARS-F is an eigenvalue code that solves

the linearised resistive MHD model and computes the free boundary linear

plasma response considering current coils in the vacuum region. The set of

MHD equations for a given equilibrium toroidal rotation v = ω∇φ is given by,

i(ωMP +Nω)δξ = δv + (δξ · ∇ω)∇φ (4.6)

i(ωMP +Nω)δv =−∇δp+ δJ ×B + +J × δB

− ρ[2ωẑ × δv + (δv · ∇ω)∇φ]

− ρκ|||k||vth,i|[δv + (δξ · ∇v)]

(4.7)

i(ωMP +Nω)δB = ∇× (δv ×B) + (δB · ∇ω)∇φ−∇× (ηδJ) (4.8)
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(A) (B)

FIGURE 4.14: A) Equilibrium profiles of the normalised plasma pressure P/P0,
the normalised parallel current density J||/J||0 at the outboard mid-plane and
the safety factor q. B) The plasma surface normal displacement ξN · n due to a

N=2 MP field. Those figures were provided by D. Ryan

i(ωMP +Nω)δp = −δv · ∇p− γp∇ · δv (4.9)

where N and ωMP is the toroidal mode number and rotational frequency of the

applied MP field respectively, vth,i is the ion thermal velocity, η is the plasma

resistivity and κ|| is a damping amplitude due to fluid compression. In order to

match the resistive MHD model to ELITE, the resistivity η, the damping κ|| and

the equilibrium rotational frequency ω are considered negligible leading to the

linearised ideal MHD model.

The plasma equilibrium under consideration is based on an AUG equilibrium,

which was provided by S. Saarelma, and the plasma surface perturbation is

known from the MARS-F solution, which was provided by D. Ryan. ELITE

is used as a fixed boundary response solver to compute the plasma response

within the plasma region, leading to a direct comparison of the two codes. The

equilibrium plasma profiles and surface normal displacement due to applied

MPs of the shot #30839 is illustrated in Fig.4.14, where p0 = 66.4 [kPa], J||0 = 1.8

[MAm−2] and qa = 6.66.

The benchmark case under consideration refers to an applied N = 2 MP field of

∆φ = 0 for the AUG MP coils and is a case that has been already benchmarked

with VMEC, as well as compared with experimental measurements. Fig.4.15

illustrates the normal plasma displacement ξN · n and the corresponding

straight field line poloidal mode structure derived from MARS-F.
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(A) (B)

FIGURE 4.15: A) The normal plasma displacement ξN ·n [mm] and B) the mode
structure ξN,l in the straight field line poloidal angle for the N = 2, ∆φ = 0 MP

coil configuration in AUG shot #30839 as produced from MARS-F.

(A)
(B)

FIGURE 4.16: A) The normal plasma displacement ξN ·n [m] and B) the mode
structure ξN,l in the straight field line poloidal angle for the N = 2, ∆φ = 0 MP

coil configuration in AUG shot #30839 as produced from ELITE.

As can be observed from Fig.4.16 the plasma response as produced from

ELITE is in good agreement with MARS-F (the reader should bear in mind

that the displacement from MARS is in [mm] while from ELITE is in [m]).

A difference occurs close to the X-point region, which is attributed to an

oscillatory behaviour of the poloidal magnetic field in the equilibrium input

file in the run with ELITE. In addition, from the mode structure it becomes

apparent that the displacement of each individual harmonic peaks very close
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(A)
(B)

FIGURE 4.17: (A) The normal magnetic field BN · n [T] and (B) the mode
structure BN,l in the straight filed line poloidal angle for the N = 2, ∆φ = 0

MP coil configuration in AUG shot #30839 as produced from ELITE.

to the rational surfaces, while in the MARS-F case it happens in between the

rational surfaces. Fig.4.17 illustrates the resulting normal component of the

magnetic field BN · n and its poloidal mode structure, where clear screening

of the magnetic field is observed around the q-profile.

4.4 Perturbative Stability Analysis

In order to test the perturbative method the cbm18 dens6 equilibrium is used.

The linear plasma response for a resonant and non-resonant MP is computed

and presented in the previous section. In addition, ELITE is used to calculate

the axisymmetric stability to obtain the axisymmetric toroidal normal modes

ξ0n and their growth rates ω0n. This information is used to compute the coupling

coefficients Eqn.3.14. Two plasma responses are taken into account, one for a

resonant perturbation and one for a non-resonant perturbation.

As stated in Chapter3, the perturbative analysis results is a truncation of 3D

toroidal mode families due to weak toroidal coupling and results in triplet

modes {n − N, n, n + N}. Considering the resonant case, Fig.4.18a illustrates

the growth rate of the triplet modes {n − N, n, n + N} as a function of toroidal

mode number for the primary mode n and applied field strength BN/B0. As

can be observed, a small increase in the growth rate occurs indicating further
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(A) (B)

FIGURE 4.18: (A) The growth rate of 3D peeling-ballooning triplets n−N,n, n+
N as a function of primary toroidal mode n and applied field strength BN/B0.
(B) The normalised coupling coefficients |Fnk|/BN as a function of primary

toroidal mode n. This case corresponds to the resonant N = 3 MP field.

(A) (B)

FIGURE 4.19: (A) The growth rate of 3D peeling-ballooning triplets n−N,n, n+
N as a function of primary toroidal mode n and applied field strength BN/B0.
(B) The normalised coupling coefficients |Fnk|/BN as a function of primary
toroidal mode n. This case corresponds to the non-resonant N = 3 MP field.

destabilisation of ballooning modes in the presence of the external perturbation.

Although for experimentally relevant MP field amplitude BN/B0 ∼ 2 · 10−3, the

increase in the growth rate is marginal, ∼ 5%. However, low n modes seem to

become more stable in the presence of the external field. Fig.4.18b shows the

dependence of the coupling coefficients Fnk on the primary toroidal mode n of

the triplet and as can be observed for all primary modes of n < 20 get more

stable since Fnn+N > Fnn−N , while primary modes of n > 20 get more unstable

since Fnn+N < Fnn−N .

Considering the non-resonant case, Fig.4.19a illustrates the growth rate of the
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(A) (B)

(C) (D)

FIGURE 4.20: (A),(B) The reconstruction of the 3D peeling-ballooning mode
structure of a n = 12 triplet mode for BN/B0 ∼ 1.5 · 10−3. (C),(D) The
poloidal angle dependence of the triplet mode (blue line) in comparison to the
non-axisymmetric surface displacement (green line) of the plasma response, at
the flux surface where the mode is maximised. The resonant case are (A),(C)

and the non-resonant case are (B),(C).

triplet mode {n − N, n, n + N} as a function of toroidal mode number of the

primary mode n and applied field strength BN/B0. As can be observed, a

decrease in the growth rate occurs indicating stabilisation of ballooning modes

in the presence of the external perturbation. Fig.4.19b shows the dependence of

the coupling coefficients Fnk on the primary toroidal mode n of the triplet and

as it can be observed for all primary modes the 3D peeling-ballooning modes

become less unstable since is always Fnn+N > Fnn−N . It is interesting to notice,

that although the plasma response in the non-resonant case is smaller than the

resonant case, stronger toroidal coupling is observed in the non-resonant case.

This indicates the importance of the resulting poloidal spectrum of the plasma

response, rather than its absolute magnitude, in order to have a significant

impact on plasma stability.

Furthermore, the existence of a triplet mode indicates that in the case of

sufficiently high coupling a beat structure should form. Such a feature can be

observed in Fig.4.20 where a 3D peeling-ballooning mode of primary toroidal
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(A) (B)

FIGURE 4.21: (A) The growth rate of 3D peeling-ballooning triplets n−N,n, n+
N as a function of primary toroidal mode n and applied field strength BN/B0.
(B) The normalised coupling coefficients Fnk/BN as a function of primary
toroidal mode n. This case corresponds to the resonant N = 3 MP field for

the dbm9 equilibrium.

(A) (B)

(C) (D)

FIGURE 4.22: The reconstruction of the 3D peeling-ballooning mode structure
of the (A) n = 9 and (B) the n = 18 triplet mode for BN/B0 ∼ 10−4. The
poloidal angle dependence of the (C) n = 9 and (D) n = 18 triplet mode (blue
line) in comparison to the non-axisymmetric surface displacement (green line)

of the plasma response, at the flux surface where the mode is maximised.

mode n = 12 is plotted considering BN/B0 ∼ 1.5 · 10−3 for the resonant and

non-resonant case. The peeling-ballooning mode preferentially sits close to

locations where the plasma response, i.e. the non-axisymmetric equilibrium
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displacement, crosses zero ξN · n ∼ 0. A similar feature has been observed

through infinite n ballooning stability calculations on experimental MP cases in

MAST and AUG [71], [118].

Moreover, the D-shaped equilibrium dbm9 is used in order to explore the

impact of external MPs to a growth rate spectrum where an extremum in

the growth rate spectrum occurs. In this case, strong destabilisation occurs

at triplets with primary mode number n ∼ 8. The strongest destabilisation

does not occur exactly at the triplet with the most unstable axisymmetric

mode, i.e. n ∼ 10. Since destabilisation depends on the difference of the

axisymmetric growth rates, n ∼ 8 couples to modes that do have smaller

growth rate but their difference is minimum, shifting the location of the peak to

lower n. Such a feature indicates the importance of the choice of the imposed

toroidal mode N from the MP in relation to growth rate spectrum of the

axisymmetric peeling-ballooning modes. In addition, strong destabilisation is

observed for high n modes, indicating once again that the external field can

further destabilise ballooning modes. Fig.4.21 illustrates the 3D growth rate as

a function of applied field strength BN/B0 and primary toroidal mode number

n, as well as the amplitude of the coupling coefficients |Fnk|. Fig.4.22 illustrates

the reconstructed mode structure of a n = 9 triplet close to the kink peak, and

n = 18 triplet away from the kink peak at BN/B0 ∼ 10−4; once again it can be

observed that the mode sits at locations where the plasma response vanishes

ξN · n ∼ 0.

(A) (B)

FIGURE 4.23: Comparison of (A) the normalised growth rate and (B) the
coupling coefficients Vnk between the perturbative method and the toroidal
variational method for a triplet mode of primary mode number n = 21 as a

function of applied field strength BN/B0.
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Finally, it should be noted that in the dbm9 equilibrium case the toroidal

coupling is strong even at BN/B0 ∼ 10−4, leading to potential break down of

the perturbative approach that requires weak coupling between the toroidal

normal modes. As a result, it is required to use a an approach that in principle

allows strong coupling between the modes of the basis under consideration.

Therefore, a variational method is more appropriate to examine the 3D stability

of the plasma especially for high βN plasmas which were shown to lead to much

stronger toroidal coupling.

4.5 Variational Stability Analysis

In the previous section we showed that for high βN plasmas, strong coupling

occurs between the axisymmetric normal modes, such that a variational method

is required. Using as basis functions the axisymmetric normal modes, two

approaches become available; one considers toroidal coupling of axisymmetric

normal modes, while the other uses the individual poloidal harmonics that

make up the axisymmetric normal modes as described in Chapter3. This means

that non-axisymmetric effects will change the coupling between the poloidal

modes.

4.5.1 Coupled Toroidal Normal Modes

In this section, we use the full axisymmetric normal modes as our basis

functions, to enable a straight comparison with the perturbative method.

Considering once again the cbm18 dens6 equilibrium, a similar analysis is

performed. Initially, only first neighbour coupling is taken into account

and for applied field strength BN/B0 < 10−3 where weak coupling occurs

the variational method should result the same outcome as the perturbative

method. Fig.4.23 illustrates a comparison for the growth rate and the coupling

coefficients between the two approaches considering a triplet mode with

primary toroidal mode number n = 21. As can be observed up toBN/B0 ∼ 10−3

the two approaches agree very well, but as the field strength is increased a

disagreement starts to build up and the two approaches diverge. The growth

rate of the triplet in the variational case is observed to increase slower with the
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applied field since the coupling to the destabilising lower n modes becomes

weaker in this case. In addition, in the perturbative analysis, the assumption of

weak toroidal coupling means that the coupling coefficient of the primary mode

n is unity, i.e. cn = 1. In the variational approach this assumption is relaxed and

cn 6= 1 such that the perturbative method results in unphysical behaviour as

BN/B0 increases.

Furthermore, the variational method allows the coupling of multiple toroidal

normal modes. Since perturbation theory deviates at BN/B0 ∼ 10−3, it is

expected that strong coupling occurs requiring more toroidal normal modes

to be retained. As can be observed from Fig.4.24, with increasing applied field

(A) (B)

(C)

FIGURE 4.24: The coupling coefficients of the multi-mode variational method,
(A) as a function coupling neighbour and (B) applied field strength BN/B0

considering coupling between 9 axisymmetric normal modes. (C) Illustrates
a comparison between the perturbative, toroidal variational and toroidal

multi-mode variational methods.
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Growth Rate Balloon Kink Bending
n=12
ELITE 0.1096 -2.858E-02 -3.838E-03 2.905E-02
Reconstruct 0.1134 -2.907E-02 -3.615E-03 2.974E-02
n=15
ELITE 0.1550 -4.325E-02 -4.648E-03 4.095E-02
Reconstruct 0.1582 -4.404E-02 -4.451E-03 4.204E-02
n=18
ELITE 0.1876 -7.308E-02 -6.514E-03 6.536E-02
Reconstruct 0.1869 -7.448E-02 -6.298E-03 6.731E-02

TABLE 4.1: Comparison of growth rates and energy contribution in terms
of destabilising ballooning and kink/peeling terms and stabilising field line
bending between the ELITE result and the reconstructed result for the

cbm18 dens6 equilibrium case.

Growth Rate Balloon Kink Bending
n=9
ELITE 0.3682 N.A. N.A. N.A.
Reconstruct 0.3312 -2.901E-02 -5.527E-002 6.112E-02
n=12
ELITE 0.3879 N.A. N.A. N.A.
Reconstruct 0.3685 -1.705E-02 -2.944E-002 3.339E-02
n=15
ELITE 0.3941 N.A. N.A. N.A.
Reconstruct 0.3897 -1.631E-02 -2.618E-02 3.033E-02

TABLE 4.2: Comparison of growth rates and energy contribution in terms
of destabilising ballooning and kink/peeling terms and stabilising field line
bending between the ELITE result and the reconstructed result for the dbm8

asymmetric equilibrium case.

multi-mode coupling takes place and in this case forBN/B0 ∼ 2.5 ·10−3 even 3rd

neighbouring coupling is required, and further destabilisation is observed due

to the inclusion of additional degrees of freedom. The 3D n = 12 mode couples

strongly to lower n neighbours as indicated from the perturbative method with

the 3rd neighbour contributing ∼ 10%. In addition, the stronger coupling to

lower n modes leads to further destabilisation, as can be observed from the

Fig.4.24. In addition, it can be observed that with increasing field strength

BN/B0 the perturbative assumption cn = 1 is violated and the approach

becomes inaccurate.
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4.5.2 Coupled Toroidal & Poloidal Normal Modes

Neither the perturbative method nor the toroidal variational method allows

changes in the coupling of poloidal modes in the individual axisymmetric

normal modes. Since the applied field is composed of a wide range of poloidal

harmonics, and strong coupling takes place at experimentally relevant applied

fields, it is expected that the poloidal coupling within each axisymmetric

normal mode will be affected as well. To test this hypothesis, we allow

the coupling between the poloidal harmonics to change. However, also in

this case the axisymmetric potential and kinetic energy matrices need to be

reconstructed. The reconstruction of those matrices is performed in two ways.

In the first way, those matrices are input variables and taken from ELITE,

provided the plasma is up-down symmetric or the low n version is not used.

In the second way, those matrices are calculated considering the axisymmetric

δW and δK for the displacement ELITE provides and so even non-symmetric

plasmas or low n modes can be considered.

To begin with, the cbm18 dens6 equilibrium is used in order to verify that the

calculation of the axisymmetric matrices is correct. As can be observed from

Table.4.1, where a comparison of the growth rate and destabilising/stabilising

energy contributions are listed, the reconstruction agrees with the ELITE result.

Additionally, a non-symmetric equilibrium dbm8 is examined and reproduces

well the ELITE growth rate as shown in Table.4.2.

At this stage, where the axisymmetric energies can be computed accurately, the

impact of the applied field on the poloidal mode coupling can be examined.

The cbm18 dens6 is considered initially for the resonant N = 3 MP perturbation

used previously. Fig.4.25 illustrates the growth rate of 3D peeling-ballooning

modes as a function of primary toroidal mode n and applied field strength

BN/B0. Initially, only first neighbour toroidal coupling is considered, i.e. triplet

modes {n − N, n, n + N}, retaining all the constituent poloidal harmonics and

allowing freedom in the poloidal coupling. From Fig.4.25a and Fig.4.25b it

becomes apparent that the freedom in the poloidal coupling results in strong

destabilisation of the ballooning mode, and for an applied field of BN/B0 ∼
2 · 10−3 the growth rate increased by ∼ 60% in comparison to the previous

methods where only a difference of ∼ 5% occurred. The applied field interacts

strongly with specific poloidal harmonics minimising in such a way field line
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(A) (B)

(C)

(D)

FIGURE 4.25: (A) The growth rate of the 3D triplet modes as a function of
primary toroidal mode n and applied field strength BN/B0 for a resonant
N=3 MP. (B) Comparison between the different perturbative and variational
methods for a n = 21 triplet mode as a function of BN/B0. (C) The
reconstruction of the mode structure of a n = 12 triplet and (D) the poloidal
variation of the n = 12 triplet (blue line) in comparison to the plasma response

(green line).

bending and maximising the driving terms. However, from Fig.4.25c and

Fig.4.25d it can be concluded that the resulting mode structure is in good

agreement with the perturbative method. Although, direct comparison of the

coupling coefficients is not possible, as the toroidal coefficients are replaced by

a set of toroidal/poloidal coefficients, the difference in poloidal spectrum of the

axisymmetric normal mode to the 3D mode can be studied. Fig.4.26 illustrates

the relative amplitude of the poloidal coupling for each axisymmetric normal

mode in relation to the poloidal coupling of the 3D mode. As can be observed,

the poloidal coupling is affected by the applied field and in this case pushes

the ballooning mode outwards, while excitation occurs for external poloidal

harmonics. In addition, the inclusion of poloidal coupling leads to a different
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relative coupling in comparison to the perturbative method since the higher

sideband n + N is observed to be the one with the higher amplitude. Within

the perturbative method stabilisation would be expected, but the observed

destabilisation is attributed to the different structure of the normal modes.

Furthermore, the impact of MPs is examined with respect to βN and ∆φ, where

∆φ is the parity of the current at the top and bottom row of coils with respect to

the mid-plane. The cbm18 dens6, cbm18 dens7 and cbm18 dens8 equilibria are

considered such that βN = [1.65, 1.99, 2.35] with qa = [2.97, 3.01, 3.04]. Fig.4.27a

illustrates the dependence on βN for a n = 15 triplet mode considering the

resonant N = 3 MP. As can be observed, further destabilisation due to the

applied MP is observed in all three cases. In addition, it can be observed that the

relation is linear for low BN/B0 and becomes nonlinear as BN/B0 ∼ 10−3. The

stronger destabilisation that occurs in the case where βN = 2.35 is not attributed

only to the larger response. For a fixed normal magnetic field at the plasma

boundary a larger plasma response, i.e. normal flux surface displacement, is

expected with increasing βN . However, since the relation is not linear it can

be concluded once again that the poloidal mode structure of the applied MP

FIGURE 4.26: A comparison between the axisymmetric modes and the 3D
triplet mode for the relative amplitude of the constituent poloidal harmonics
for each toroidal normal mode of the n = 12 triplet for N = 3 and BN/B0 ∼

1.5 · 10−3.
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(A) (B)

FIGURE 4.27: (A) The normalised growth rate of the n = 15 triplet as a function
of the applied field strength BN/B0 for different βN . (B) The dependence of
the n = 15 triplet on the phase ∆φ of the imposed MP for the βN = 2.35

equilibrium case.

itself is a crucial factor for the plasma stability. Moreover, Fig.4.27b illustrates

the dependence of the n = 15 triplet for the βN = 2.35 case on the applied

MP phase, where ∆φ = 0 is the resonant MP and ∆φ = π is the non-resonant

MP and BN/B0 = 5 · 10−4. It should be noted that this phase indicates the

transition between a resonant and a non-resonant applied MP, since if a free

boundary response was computed a different result would be expected to occur

with ∆φ. Nevertheless, it can provide an insight on the resonance that can

occur between the imposed field and the plasma surface. As can be observed,

the most unstable case occurs for the non-resonant case, although the plasma

response is smaller. This indicates once again the importance of the poloidal

spectrum of the MP.

The dbm9 equilibrium case has also been examined as it represents a more

experimentally relevant case, and again the N = 3 resonant MP field is

considered. Fig.4.28 illustrates the growth rate of the triplet modes as a function

of primary toroidal mode n and applied field strength BN/B0. The growth

rate of primary modes that exhibit the largest growth rate with respect to their

triplet are significantly destabilised by a factor of ∼ 2.8. The rest of the primary

modes are also observed to be further destabilised but at lower levels and

again this provides an indication that ballooning modes become more unstable

with the applied MP. This observation is similar to the perturbative method

where strong destabilisation occurred at modes around the peak of the growth

spectrum. However, the resulting change in the growth rate in the variational
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FIGURE 4.28: Growth rate of the 3D triplet modes as a function of the primary
toroidal mode number n and applied field strength BN/B0 for the dbm9

equilibrium case and a N = 3 resonant applied MP.

method is significantly lower than the perturbative method, indicating a break

down of the perturbative method when the coupling coefficients are not small.

An additional interesting feature that occurs, is the complete reorganisation of

modes away from the kink peak of the growth rate spectrum. Fig.4.29 and

Fig.4.30 illustrates the n = 9 triplet and n = 18 triplet for BN/B0 ∼ 10−4 and

BN/B0 ∼ 10−3. As can be observed, the n = 9 triplet has a different structure in

comparison to the perturbative method and the structure does not significantly

change with an increasing BN/B0. On the other hand, the n = 18 triplet for low

BN/B0 is similar to the perturbative method, but for higher BN/B0 the mode

is reorganised with the external kink poloidal harmonics being minimised and

the 3D mode is pushed radially inwards.

Finally, especially for the dbm9 equilibrium case where strong toroidal coupling

is observed even for small BN/B0, the impact of multi-mode coupling of the

toroidal normal modes is examined, including freedom in the relative poloidal

coupling. The n = 18 mode is considered as the primary harmonic of a triplet

{n−N, n, n+N}, a quintuplet {n−2N, n−N, n, n+N, n+ 2N} and a septuplet

{n−3N, n−2N, n−N, n, n+N, n+2N, n+3N} 3D mode forBN/B0 ∼ 10−3. As

can be observed from Fig.4.31a, strong coupling occurs between the individual

toroidal normal modes even considering a septuplet mode. The relative shape

of the poloidal spectrum of the individual normal modes is not significantly

altered by considering more normal modes in the coupling, but their relative
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(A) (B)

(C) (D)

(E) (F)

FIGURE 4.29: The reconstruction of the n = 9 triplet mode, a comparison
between the axisymmetric modes and the 3D triplet mode for the relative
amplitude of the constituent poloidal harmonics for each toroidal normal
mode and the poloidal dependence of triplet mode for N = 3 and for (A),

(C), (E) BN/B0 ∼ 10−4 and (B), (D), (F) BN/B0 ∼ 10−3 applied MP.

amplitude changes. This results in a significantly more poloidal localised 3D

mode minimising field line bending, such that the growth rate of the mode

increases further, from γ/ωA = 0.55 for the triplet to γ/ωA = 0.62 for the

quintuplet.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 4.30: The reconstruction of the n = 18 triplet mode, a comparison
between the axisymmetric modes and the 3D triplet mode for the relative
amplitude of the constituent poloidal harmonics for each toroidal normal
mode and the poloidal dependence of triplet mode for N = 3 and for (A),

(C), (E) BN/B0 ∼ 10−4 and (B), (D), (F) BN/B0 ∼ 10−3 applied MP.

4.6 Summary

The low n ELITE ideal linear MHD stability code was used within a numerical

framework to calculate both the ideal linear plasma response and the 3D ideal

linear MHD stability of tokamak plasmas, under the application of external

non-axisymmetric MP fields.
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(A)

(B)

FIGURE 4.31: (A) The relative amplitude of individual poloidal harmonics
of the toroidal normal modes as a function of their poloidal harmonic label,
considering a primary mode of n = 18 for BN/B0 = 10−3 and multi-mode
coupling. (B) Illustrates the poloidal dependence of the 3D mode with respect

to plasma response.

Benchmark studies were presented for the ideal linear plasma response

between ELITE and BOUT++, as well as MARS-F. Satisfactory agreement was

obtained considering the differences in the numerical methods, the reduced set

of MHD equations in BOUT++ and MARS-F, as well as the small differences in

the equilibrium input files that each code uses.

The 3D ideal MHD stability was studied using two methods. The first approach

used second order perturbation theory to treat the applied 3D fields as a
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perturbation of the original axisymmetric system. As such, basis functions

can be constructed from the toroidal normal modes of the axisymmetric

system, to calculate correction terms in the mode structure and growth rate

of the 3D mode. Such a procedure leads to triplet modes {n − N, n, n +

N} reducing significantly the numerical complexity of the 3D system. In

general, it was observed that ballooning modes become more unstable and

field-aligned localisation is observed. However, for experimentally relevant

high βN plasmas, the original assumptions that justify the use of a perturbative

method break down, leading to unrealistic results.

The second approach used variational theory and the toroidal normal modes of

the axisymmetric system as basis functions for the structure of the 3D modes, to

minimise the 3D energy functional that is a result of the total non-axisymmetric

plasma equilibrium. The variational approach allows the relaxation of the

assumptions that perturbation theory requires, i.e. weak toroidal coupling, and

allows the minimisation of the toroidal as well as the poloidal coupling of the

constituent basis functions. The stability of the system is observed to be in

general reduced from the 3D applied fields. Ballooning modes are observed

to be further destabilised and field-aligned localisation is observed in a similar

manner to the results obtained with perturbation theory. However, the system

was further destabilised due to the additional degrees of freedom. In addition,

for experimentally relevant plasmas that become kink unstable at high βN ,

extrema (maxima) in the growth rate spectrum can occur. The application

of 3D fields highly destabilises the most unstable kink modes, due to an

unstable synergistic toroidal coupling from the neighbouring toroidal modes.

This behaviour can be analytically understood using perturbative arguments.

Finally, the variational method allows for multi-toroidal mode coupling, which

is required in cases of strong toroidal coupling. Further destabilisation of the

3D system was observed due to the additional degrees of freedom.



Chapter 5

Conclusion

5.1 Discussion & Future Development

The linear stability of quasi-axisymmetric tokamak plasmas is examined within

a numerical framework based on the eigenvalue axisymmetric stability code

ELITE. The framework initially computes the linear plasma response, i.e.

the 3D equilibrium component, and the axisymmetric peeling-ballooning

eigenfunctions. Considering perturbative and variational methods all this

information is used to approximate the 3D stability of ideal MHD normal

modes.

To begin with, the linear plasma response is computed assuming a fixed

boundary condition at the plasma-vacuum interface. This assumes prior

knowledge of the total 3D magnetic field, as the plasma itself will alter

the vacuum field produced from the MP coil configuration. Although

this provides a simplified way to compute 3D equilibria, it is sufficient to

examine the impact of 3D fields on the stability of the tokamak plasma.

The fixed boundary response was benchmarked with BOUT++ and MARS-F.

With BOUT++ an idealised circular cross-section large aspect ratio plasma

was considered and agreement was obtained between BOUT++ and ELITE.

ELITE can accommodate significantly higher radial resolution, requires no

numerical dissipation and therefore was able to capture sharp features at the

rational surfaces. The benchmark with MARS-F was performed for an AUG

experimental equilibrium and the free boundary response was provided as a
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boundary condition in ELITE. The outcome was satisfactorily similar to the

MARS-F result. Nevertheless, some difference occurred close to the X-point

region, and this is attributed to an oscillatory behaviour of the equilibrium

input for ELITE. By means of artificial smoothing of this oscillatory behaviour,

a better match could be obtained. Finally, ELITE can be used to obtain the free

boundary plasma response provided the vacuum magnetic inductance and the

plasma inductance are known in the plasma-vacuum interface. The vacuum

inductance is a function of the coil configuration and the plasma surface

coordinates, while the plasma inductance relates a change in the potential

energy to the perturbed current density and flux poloidal magnetic flux. Such

a method has been successfully used with DCON [119] leading to the IPEC

framework. In a similar way, ELITE can provide the plasma inductance and the

vacuum inductance can be calculated by modification of the vacuum code used

currently within the framework. This will be part of future work.

The linear 3D stability is examined first using a perturbative method as

suggested by [76]. The perturbative approach assumes small disturbance of

the flux surfaces that in turn leads to a 3D force operator which is of order

ε � 1 with respect to the axisymmetric force operator. As a result, weak

coupling occurs leading to a triplet {n − N, n, n + N} that represents the 3D

mode for primary mode number n. The 3D equilibrium profiles and the

geometrically induced coupling of toroidal modes [105] had a significant impact

on MHD modes above a certain phenomenological threshold for the amplitude

of the applied field. For the cbm18 dens6 equilibrium case, the growth rate is

enhanced by the MP in the case of a resonant applied field, due to stronger

coupling with the lower n sideband. On the other hand, decrease of the linear

growth rate is observed due to stronger coupling with the higher n sideband

of the axisymmetric system in the non-resonant case. For the dbm9 equilibrium

case, where extrema exist in the growth rate spectrum, a strong destabilisation

is observed for modes close to the peak of the growth rate spectrum. In

both cases, the reconstruction of the 3D mode in the poloidal cross-section

resulted in poloidal localisation of the mode close to specific locations where

the displacement of the linear response crosses zero, i.e. ξN ∼ 0.

The coupling of toroidal harmonics by MPs can significantly influence the

ballooning instability even for a low MP field of BN/B0 ∼ 10−3. This then

raises questions about the validity of the perturbative approach, without taking
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into account the influence of the MP field on the axisymmetric poloidal mode

structure of the triplet. In order to resolve such an issue, a more general

variational approach original to this work is followed. This uses the individual

poloidal and toroidal Fourier modes from the axisymmetric normal modes as a

basis for trial functions, summing over them with coefficients to be determined

by minimisation of the energy functional. This provides significantly more

degrees of freedom, allowing the MP field to influence the ballooning structure

of each constituent axisymmetric mode.

The variational method revealed the impact of the MP field in the poloidal

coupling of the individual axisymmetric normal modes. The change in the

poloidal coupling of the basis functions resulted in further destabilisation

for ballooning modes. Especially, in cases where strong toroidal coupling is

observed, for example in the dbm9 equilibrium case, the peeling-ballooning

mode was completely reorganised and it was observed that the kink component

of the instability, i.e. poloidal harmonics that resonate at the vacuum region,

were suppressed for sufficiently high applied field BN/B0. However, for

toroidal modes close to the peak, the external kink-like structure was retained,

and those modes were highly destabilised. Such a feature could be relevant

for experimental high βN plasmas, where unstable internal or external kink

modes are expected for low n modes. The significant increase in the growth

rate of the most unstable kink mode potentially indicates a faster ELM crash

of similar mode number n, a feature which is observed experimentally in ELM

mitigation. In addition, since plasma shaping is important for the stabilisation

of low n kink modes, ELM suppression could be a manifestation of the absence

of a strong kink peak, that could result in faster growing high n ballooning

modes that result in softer transport, i.e. no ELM crash. In any case, plasma

stability seems to be degraded by the applied MP field and could provide an

insight in experimental observation that suggests unstable plasmas in regions

where the axisymmetric J|| − p′ diagram indicates stable operation.

Finally, due to strong coupling of toroidal modes, the notion of a triplet

mode might be misleading and more toroidal modes may be needed for an

accurate representation of the 3D mode. The variational approach allows

the inclusion of a whole set of toroidal normal modes. Such a case was

examined retaining only toroidal coupling for the cbm18 dens6 equilibrium case

and significant contribution from the ±2N and ±3N sidebands was observed
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leading to further destabilisation. A similar analysis was performed for the

dbm9 equilibrium case, but allowing freedom in the poloidal coupling of the

toroidal basis functions, and a similar outcome could be drawn. The inclusion

of more toroidal modes resulted in further destabilisation and stronger poloidal

localisation of the peeling-ballooning mode. The strong poloidal localisation in

3D geometry is a feature that is observed experimentally in AUG, [118], and

was successfully reproduced by theory considering a local ballooning analysis

[71]. In those cases the 3D ballooning mode was localised around specific

field lines, that coincided with locations where the plasma response crosses

zero, i.e. ξN ∼ 0. A numerical investigation in MAST using MPs, revealed

similar behaviour for the 3D local ballooning mode. It was shown that for

those field lines changes in local torsion lead to strong destabilisation. The

perturbative and variational method for low BN/B0 provided similar results

for the localisation of the mode for the cbm18 and dbm9 cases. However for

higher BN/B0, in the variational approach considering the dbm9 case, the 3D

mode seemed to be shifted towards regions where the flux surfaces are pushed

inwards. This could indicate further destabilisation from the sharper pressure

gradient in the 3D system, instead of the modification of the local torsion, and

the contribution of the kink instability in the mode structure. However, due to

the complex interplay of local shear/torsion, curvature and pressure gradient a

more rigorous examination is needed with respect to the individual stabilising

and destabilising energy terms in 3D geometry.

As a future work, the variational method should be benchmarked with a global

3D stability code to quantitatively verify the growth rate and mode structure

of instabilities as well as the region of validity of such an approach, as the

radial structure of the individual poloidal harmonics is considered fixed. This

assumption is appropriate for intermediate to high n ballooning-like modes but

for low n kink/peeling-like modes this assumption might be violated. The

VMEC/CASTOR3D framework could be used for low n modes, while the

newly developed VMEC/PB3D framework could be used for intermediate to

high n modes, in order to benchmark and compare this variational method that

minimises the 3D energy functional for a given set of unstable normal modes as

obtained form the axisymmetric system. Eventually, this framework could be

used as part of a design tool for MP coils that are optimised with respect to the

peeling-ballooning stability of the plasma, due to the simultaneous simulation

of 3D plasma response and stability, as well as its computational efficiency.
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5.2 Summary

H-mode tokamak plasmas are characterised by quasi-periodic instabilities

called edge localised modes (ELMs), which transfer particles and heat to

plasma facing components and the divertor of the tokamak device. Large

scale tokamaks, like ITER, will not be able to cope with the corresponding heat

fluxes and so active ELM control methods are required. One promising method

applies external non-axisymmetric resonant magnetic perturbations and it has

been experimentally demonstrated that ELM mitigation or even complete ELM

suppression is possible. This work has focused on understanding the impact of

the resulting 3D geometry on the ideal MHD stability of the tokamak plasma.

The geometry symmetry breaking leads to the coupling of axisymmetric

toroidal MHD modes that allows the exchange of energy between them even

in the linear phase, altering the growth rate of unstable peeling-ballooning

modes, which are believed to be the cause of ELMs. Qualitatively, depending

on the axisymmetric growth rate spectrum, a particular mode can be either

stabilised or destabilised. However, a definite trend exists near extrema in

the spectrum; minima are always stabilised, while maxima are observed to

be always destabilised. In order to examine the impact of mode coupling,

perturbation and variational theory are employed to calculate the 3D growth

rate and mode structure. The axisymmetric normal modes are postulated to be

appropriate trial functions, since the applied field is orders of magnitude lower

than the main axisymmetric confining equilibrium field. The perturbative

and variational methods require information from the full non-axisymmetric

plasma equilibrium and the axisymmetric toroidal modes. As such a numerical

framework is constructed based on the axisymmetric stability code ELITE, to

obtain the linear plasma response and the toroidal basis functions in order to

examine the change in the linear MHD stability for a given MP configuration.

The symmetry breaking results in modification of the plasma stability above

a critical value of the applied MP field and field-line localisation of the

peeling-ballooning eigenmode. It is observed that intermediate to high n

ballooning modes are in general destabilised by the applied MP field, while

intermediate kink modes can become stable at sufficiently high MP field.

Extrema in the growth rate spectrum due to low n kink modes are observed

to be strongly destabilised, as predicted by perturbation theory.
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We have demonstrated the key elements required for the proposed tool. Plasma

response and plasma stability can both be calculated using the ELITE code.

Further work will be required to build the code to produce the free boundary

plasma response. The final code should then be benchmarked against 3D

stability codes for low n modes where comparisons are possible. The testing of

the code against experimental results will provide key insights into the physics

of ELM mitigation and suppression with MPs.



Appendix A

Appendix: 3D Potential Energy

Terms

The calculation of the 3D stability requires the knowledge of the force operator

due to a displacement of the plasma equilibrium. The force operator acts

on a displacement functional and the eigenvalues and eigenvector define the

stability of the 3D system. In order to obtain eigenvalues and eigenvectors,

a quadratic integral form is used that relates the potential and kinetic energy

change of the system, such as

δK(δξ∗n, δξn) =
1

2

∫
δξ∗n · δξn J dψdθ∗dφ (A.1)

δW (δξ∗n, δξn) =
1

2

∫
{|δBn⊥|2 −

J0 ·B0

B2
(δξ∗n⊥ ×B0) · δBn⊥

− 2(δξn⊥ · ∇p0)(δξ∗n⊥ · κ0)} J dψdθ∗dφ
(A.2)

δY (δξ∗n, δξn′) = −1

2

∫
{[δξ∗n · (JN × δBn′ + δJn′ ×BN)]

+ [∇× (δξ∗n × J0)] · (δξn′ ×BN)

− δJ∗n · (δξn′ ×BN)} J dψdθ∗dφ

(A.3)

δS(δξ∗n, δξn′) = −1

2

∫
{(δξ∗n · n)[(δξn′ ×BN) · J0 − δBn′±N ·B0]

+ δB∗n · [BN(δξn′ · n)− δξn′(BN · n)]

+ (δξ∗n · n)(δξn′ · ∇pN)} J dθ∗dφ

(A.4)
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Considering a solution that is obtained through superposition of axisymmetric

solutions, i.e. the axisymmetric normal modes serve as trial functions,

minimisation of their coupling coefficients, i.e. c†m,k(δW − ω2δK)mn,klcn,l=0,

leads to a generalised eigenvalue problem to be numerically solved through

LAPACK routines.

In order to efficiently and accurately compute the integral matrix elements,

which involve terms based on integration and differentiation of highly

oscillatory functions of the normal displacement functional Xn,l, the calculation

is performed semi-analytically. Considering Fourier basis functions for the

poloidal and toroidal dependence differential operators can be replaced from

their eigenvalues and integral forms are simplified due to the orthogonality

of the basis as appropriate sums. More specifically, the integral forms as

written above can be generalised as an inner functional product, whereAmn,kl =∫
f †m,kgn,l dψδmn,kl. Although, numerical differential is used for the radial

coordinate ψ, based on polynomial differentiation. The choice of δW and δK

as given above minimises the order of differentiation that takes place in the

various terms. ELITE provides in terms of poloidal Fourier harmonics for each

toroidal mode number the Xn,l, and a set of Fourier modes both in toroidal or

poloidal direction occurs for each Xn,l, due to operations that take place within

each energy term. In such a way, for each cn,lXn,l a set of c†m,kAmn,klcn,l elements

can occur.

The quantities that need to be computed analytically, due to the fact that involve

differentiation, are δξ⊥n,l, δBn,l, δBn±N,l, δJn,l, and ∇ × (ξ⊥n,l × J0). The rest

of the operations involve dot and cross products that are themselves analytic

operations and can be exactly calculated by generalised routines considering a

curvilinear coordinate system (ψ, θ, φ). For all vector quantities a contravariant

representation, Ai∇xi is followed, since it simplifies operations.

• (δξ⊥n,l)ψ = gψψXn,l

• (δξ⊥n,l)θ = −ν g
ψψ

B2
Un,l

• (δξ⊥n,l)φ =
gψψ

B2
Un,l

• (δBn,l)ψ =
gψψ
J

[∂θ + ν∂φ]Xn,l
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• (δBn,l)θ = −gθθ
J

[∂ψXn,l + ∂φUn,l]

• (δBn,l)φ =
gφφ
J

[∂θUn,l − ν∂ψXn,l − ∂ψνXn,l]

• ∂θ(δBn,l)ψ = ∂θ(
gψψ
J

)[∂θ + ν∂φ]Xn,l +
gψψ
J

[∂θθ + ∂θν∂φ + ν∂φθ]Xn,l

• ∂ψ(δBn,l)θ = −∂ψ(
gθθ
J

)[∂ψXn,l + ∂φUn,l]−
gθθ
J

[∂ψψXn,l + ∂ψφUn,l]

• ∂ψ(δBn,l)φ = ∂ψ(
gφφ
J

)[∂θUn,l−∂ψνXn,l−ν∂ψXn,l]+
gφφ
J

[∂ψθUn,l−∂ψψνXn,l−
ν∂ψψXn,l − 2∂ψν∂ψXn,l]

• ∂θ(δBn,l)φ = ∂θ(
gφφ
J

)[∂θUn,l− ∂ψνXn,l− ν∂ψXn,l] +
gφφ
J

[∂θθUn,l− ∂θψνXn,l−
ν∂θψXn,l − ∂θν∂ψXn,l − ∂ψν∂θXn,l]

• [∇× (ξ⊥n,l × J0)]ψ = −gψψ
J

(∂ψBφ∂θXn,l + ν(
∂ψp

B2
t

Bφ + ∂ψBφ)∂φXn,l)

• [∇× (ξ⊥n,l × J0)]θ =
gθθ
J

[∂ψψBφXn,l + ∂ψBφ∂ψXn,l + (
∂ψp

B2
f + ∂ψBφ)∂φUn,l]

• [∇ × (ξ⊥n,l × J0)]φ =
gφφ
J
{∂ψ[ν(

∂ψp

B2
t

Bφ + ∂ψBφ)]Xn,l + ν(
∂ψp

B2
t

Bφ +

∂ψBφ)∂ψXn,l − ∂θ(
∂ψp

B2
Bφ + ∂ψBφ)Un,l + ν(

∂ψp

B2
Bφ + ∂ψBφ)∂θUn,l}

• ∂θ(ξn ×BN)ψ = −∂θ(
BNθ + νBNφ

JB2
)Un,l − (

BNθ + νBNφ

JB2
)∂θUn,l

• ∂φ(ξn ×BN)ψ = −∂φ[(BNθ + νBNφ)Un,l]

JB2

• ∂ψ(ξn×BN)θ = −∂ψ(
ν

Bφ

BNφ)Xn,l− (
ν

Bφ

BNφ)∂ψXn,l +∂ψ(
νgψψ2

BφB2
BNψ)Un,l +

(
νgψψ2

BφB2
BNψ)∂ψUn,l

• ∂φ(ξn ×BN)θ = −∂φ[(
ν

Bφ

BNφ)Xn,l − (
νgψψ2

BφB2
BNψ)Un,l]

• ∂ψ(ξn × BN)φ = ∂ψ[ν(
∂ψp

B2
t

Bφ + ∂ψBφ)]Xn,l + ν(
∂ψp

B2
t

Bφ + ∂ψBφ)∂ψXn,l +

∂ψ[(
∂ψp

B2
Bφ + ∂ψBφ)]Un,l + (

∂ψp

B2
Bφ + ∂ψBφ)∂ψUn,l

• ∂θ(ξn × BN)φ = Bφ∂θ(
gψψ
ν
BθN)Xn,l +

Bφgψψ
ν

BθN∂θXn,l +

Bφ∂θ(
gψψ

B2
BNψ)Un,l +

Bφg
ψψ

B2
BNψ∂θUn,l
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• ∇ · ξ⊥n,l = (∂ψlnJ + ∂ψ)Xn,l − (2
|∇ψ|
B

κs +
B2
t

νB2
∂θ −

B2
p

B2
∂φ)Un,l

The derivatives of the displacement functionals Xn,l and Un,l are the remaining

quantities to be computed analytically and are given in the list below.

• ∂ψXn,l = (dψ − il∂ψθ∗)Xn,l

• ∂θXn,l = −iν
q
lXn,l

• ∂ψψXn,l = [dψψ − il∂ψψθ∗ − (l∂ψθ
∗)2 − i2l∂ψθ∗]Xn,l

• ∂θψXn,l = −il[ν
q
∂ψ + ∂ψ(

ν

q
)]Xn,l

• ∂θθXn,l = −i l
q

(∂θν + ν∂θ)Xn,l

• ∂θθψXn,l = −il[∂θψ(
ν

q
) + ∂ψ(

ν

q
)∂θ + ∂θ(

ν

q
)∂ψ + (

ν

q
)∂θψ]Xn,l

• ∂θψψXn,l = −il[∂θψ(
ν

q
) + 2∂ψ(

ν

q
)∂ψ + (

ν

q
)∂ψψ]Xn,l

• Un,l =
i

n
(∂ψ +

∂ψp

B2
)Xn,l +Wn,l

• ∂ψUn,l =
i

n
[∂ψψ +

∂ψp

B2
∂ψ + ∂ψ(

∂ψp

B2
)]Xn,l +

i

n
∂ψWn,l

• ∂θUn,l =
i

n
[∂θψ +

∂ψp

B2
∂θ + ∂θ(

∂ψp

B2
)]Xn,l +

i

n
∂θWn,l

• ∂θψUn,l =
i

n
[∂θψψ + (

∂ψp

B2
)∂θψ + ∂θ(

∂ψp

B2
)∂ψ + ∂ψ(

∂ψp

B2
)∂θ + ∂θψ(

∂ψp

B2
)]Xn,l +

i

n
∂θψWn,l

• ∂θθUn,l =
i

n
[∂θθψ + (

∂ψp

B2
)∂θθ + 2∂θ(

∂ψp

B2
)∂θ + ∂θθ(

∂ψp

B2
)]Xn,l +

i

n
∂θθWn,l

Finally, the functional Wn,l has the same functional form as Xn,l, as such

differential operations on Wn,l result similar functionals as Xn,l. Due to the

choice of an axisymmetric coordinate system, the differential operator ∂φ = in

when acting on any perturbed quantity and ∂φ = 0 when acting on any

equilibrium quantity. The only difference occurs when terms include the

plasma response together with the perturbed quantity, where ∂φ = i(n ± N).
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Appendix: 3D Stability Framework

B.1 Code Structure

The numerical framework is implemented in a Fortran90 code and is split

in various modules, allowing a tractable structure and facilitating future

development. A summary of the various modules is is given below.

main.f90

In this module the main operations of the work flow are called, linking in such

a way the input parameters, the grid generation, the MP vacuum field, the

elite run for the plasma response, the reconstruction of the equilibrium, the

reconstruction of the axisymmetric eigenmodes and the 3D plasma stability,

either via the perturbative method or the variational method. All tasks can

run independently and according to flags that are specified in the initialisation

input file.

initiate.f90

This module reads the initialisation input file and defines global variables for

other modules to use. In the input file the user can specify various options,

which parts of the general code to be used and specifies information regarding

folder and file paths, the grid resolution, the MP coil configuration, symmetric

98
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or asymmetric plasma, regular or low n ELITE version, axisymmetric toroidal

modes to be used, variational or perturbative method, etc. The list of the

important variables defined is given below:

1. Grid:

• Radial Res: nr

• Poloidal Res: nt

• Increase Poloidal Res: mlt

2. Modes:

• Minimum poloidal mode for response: mmin

• Maximum poloidal mode for response: mmax

• Minimum toroidal mode for stability: ni

• Maximum poloidal mode for stability: nf

3. Functionality:

• Use Low n ELITE: lown

• Asymmetric Plasma: asym

• Spare Grid Initialisation: grd

• Fine Grid Initialisation: axis

• Boundary Condition: rmpbc

• Equilibrium Response: sol

• Stability: stab

• Axisymmetric Stability Response: resp

• Variational Poloidal Coupling: pl

• Axisymmetric Stability: pl axis

• Non-Axisymmetric Stability: pl na

4. Stability:

• Scale External Field: b fact

• Variational Multi-toroidal Coupling: cpl ord

• Use δW0, δK0 from ELITE: elite
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numerical.f90

This module contains various numerical routines that are used within the

code, regarding interpolation, integration, differentiation, matrix inversion,

eigenvalue solvers, Fourier transforms, etc.

grid.f90

This module is responsible for generating the computational grid and

equilibrium parameters as resulted from ELITE, and calculates other

equilibrium parameters that are needed further on.

create input nc.f90

This module interpolates the sparse grid of the equilibrium parameters into

a fine grid that the plasma response and stability are computed. In addition,

it gathers information from ELITE output data regarding the linear plasma

response and calculates information related to the plasma displacement.

equilibrium.f90

This module calculates the linear plasma response in terms of the plasma

displacement, magnetic field, current density and pressure, for a given normal

displacement that is provided from ELITE.

plasma response.f90

This module calculates the plasma displacement, magnetic field, current

density and pressure, for a given axisymmetric toroidal normal mode

considering the axisymmetric and non-axisymmetric plasma equilibrium. This

information is used in the 3D stability calculation.
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matrix elements.f90

This module calculates the axisymmetric stability, i.e. potential and kinetic

energy, and the non-axisymmetric matrix elements. It computes the 3D growth

rate and mode structure according to perturbation theory (also valid for a

variational approach when no poloidal coupling is retained).

matrix elements poloidal.f90

This module calculates the axisymmetric potential and kinetic energy matrices

and the non-axisymmetric matrices used in the variational approach. It

computes the 3D growth rate and mode structure according to variational

theory retaining the poloidal coupling.

B.2 Vacuum Field Code

The calculation of the magnetic field produced from a certain configuration of

MP coils is numerically computed in this Fortran90 code. The code is divided

in several modules that independently create the various required information.

The main modules are:

1. Prameter initialisation

2. Grid points in (x, y, z) or (r, z, φ)

3. Coil configuration in (x, y, z)

4. Calculation of BMP (x, y, z)

5. Coordinate Transform:

• Cylindrical Geometry (r, z, φ)

• Orthogonal Toroidal Geometry (ψ, θ, φ)

• Straight-Field Line Toroidal Geometry (ψ, θ∗, φ)

All data are saved in NetCDF format that ensures computational efficiency

when a large number of 3D data is produced. The outputs are saved in different
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files and contain the grid geometry, the coil geometry, the coil current, the

magnetic field in cartesian (x, y, z), cylindrical (R,Z, φ) and toroidal (ψ, θ, φ)

coordinates. The visualisation of the various information is performed using

VisIt. In order for this program to read and create the required geometry, a

different file format is needed. Python routines have been developed that read

the NetCDF output and transform it to VTK format.

Code Structure

elite rmp drive.f90

The code is separated in different modules to facilitate the conceptual

understanding of the inner working as well as the easier modification of the

various parts. This part of the program is responsible for the connection of the

various modules. Initially, the module reads the required input parameters.

Then, the computational grid over which the magnetic field is map is created

and the MP coil configuration. Finally, the magnetic field or magnetic potential

is calculated and mapped to a straight field line poloidal angle and outputs the

required boundary condition.

initiate.f90

This module is responsible for the definition of all the information used by the

various modules. The variables are defined as global parameters such that all

other modules can intrinsically get access to those values. Although, this means

that every time the parameters have to change the code has to be recompiled.

The list of the variables defined is given below:

• Grid resolution: (nr, nphi, ntheta)

• Lower wire: r0, z0

• Upper wire: r1, z1

• Coil set points: res

• Wire resolution: nc
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• Number of coils: num

• Coil set parity: parity

• RMP toroidal mode: n

• Coil current amplitude: I

• Elongation: κ (optional)

• Triangularity: δ (optional)

• Major radius of tokamak plasma: R0 (optional)

• Minor radius of tokamak plasma: a0 (optional)

grid.f90

This module creates the computational mesh used for the calculation of the

resultant MP field. It is optional to input a grid file containing the (r, z)

cross-section or to create toroidal axisymmetric configurations. The module

creates two coordinate systems, one cartesian (x, y, z) and one cylindrical

(r, z, φ) and the calculation of the mesh positions are based on a toroidal

coordinate system (r, θ, φ) assuming a major R and minor α radius of the

tokamak. In addition, it accounts for plasma shaping effects in terms of

elongation κ and triangularity angle θδ = θ + sin−1(δ) sin(θ), where δ is the

triangularity. The parametric equations linking (x, y, z) or (r, z, φ) to (r, θ, φ) are

displayed in Eqn.(B.1) and Eqn.(B.2). An illustration of MAST and ITER like

meshes are depicted in Fig.B.1 and Fig.B.2 respectively.

Cartesian Grid:

x = [R + α cos(θδ)] cos(φ) (B.1a)

y = [R + α cos(θδ)] sin(φ) (B.1b)

z = κα sin(θ) (B.1c)

Cylindrical Grid:

r = R + α cos(θδ) (B.2a)

z = κα sin(θ) (B.2b)

φ = φ (B.2c)



Appendix B. 3D Stability Framework 104

FIGURE B.1: MAST like geometry for a major radius R = 0.85m, minor radius
α = 0.45m, elongation κ = 2.45 and triangularity δ = 0.5.

FIGURE B.2: ITER like geometry for a major radius R = 6.2m, minor radius
α = 2.0m, elongation κ = 1.85 and triangularity δ = 0.49.
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rmp coils.f90

In this module the MP coil configuration is created in cartesian coordinates. The

MP coils are usually rectangular boxes that are placed up and down the plasma

mid-plane and Fig.[B.3] illustrates the coil configuration. The module requires

as inputs the location of the corners (r0, z0) and (r1, z1) of the a single coil as

depicted in Fig.[B.3].

FIGURE B.3: Schematic of (r0, z0) and (r1, z1) input coil locations.

The creation of the whole set of MPs comes in two main parts. First, a single

coil is centred at φ = 0 and by knowing the total number of coils, the angular

distance of the next coil is evaluated such that by a rotational transform,

Rz =


cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

 (B.3)

around the z-axis can place the next coil according to the original one. In the end

the module returns the position of the coils and the current vector depending

on the input parameters as defined in initiate.f90.

An additional detail of this module is the variation of the distance between

individual coils which is set by an angular distance dφ. The calculation of the

current vector I is based on a unit vector which is calculated from the location

of the coil corners and its amplitude is defined by a constant factor. An example

of MAST for an even n = 3 coil configuration is illustrated in Fig.[B.4].
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FIGURE B.4: MAST MP coils for an even n = 3 configuration.

magnetic field.f90

The calculation of the magnetic field is based on the Biot-Savart Law,

BMP (r) =
µ0I

4π

∫
c

dl× r
r3

(B.4)

The magnetic field depends on the distance vector r between the current-coil

increment dl at rcoil and the grid location rgrid, since r = rgrid − rcoil. All

the variables are provided to this module from the previous modules. The

calculation of the integral is performed by summing over the contribution of

each coil elements.

BMP (rj) ≈
µ0I

4π

∑
i

dli × (rj − ri)
(rj − ri)3

(B.5)

elite bc.f90

This module is responsible for performing the Fourier analysis of the MP field

in straight field line poloidal harmonics at the plasma surface, leading to the

fixed boundary condition inserted in ELITE. The mapping of the straight field
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angle to the poloidal angle is given by,

dθ∗ =
fhθ
qR2Bp

dθ (B.6)

where hθ =
√

(∂θR)2 + (∂θZ)2. The information regarding the equilibrium

quantities can be obtained from an input grid file that is read in grid.f90.
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