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Abstract

Feature reuse from earlier layers in neural network hierarchies has been shown to

improve the quality of features at a later stage - a concept known as residual learn-

ing. In this thesis, we learn effective residual learning methodologies infused with

attention mechanisms to observe their effect on different tasks. To this end, we pro-

pose 3 architectures across medical image segmentation and 3D point cloud analysis.

In FocusNet, we propose an attention based dual branch encoder decoder structure

that learns an extremely efficient attention mechanism which achieves state of the

art results on the ISIC 2017 skin cancer segmentation dataset. We propose a novel

loss enhancement that improves the convergence of FocusNet, performing better

than state-of-the-art loss functions such as tversky and focal loss. Evaluations of

the architecture proposes two drawbacks which we fix in FocusNetAlpha. Our novel

residual group attention block based network forms the backbone of this architec-

ture, learning distinct features with sparse correlations, which is the key reason for

its effectiveness. At the time of writing this thesis, FocusNetAlpha outperforms all

state-of-the-art convolutional autoencoders with the least parameters and FLOPs

compared to them, based on our experiments on the ISIC 2018, DRIVE retinal

vessel segmentation and the cell nuclei segmentation dataset. We then shift our

attention to 3D point cloud processing where we propose SAWNet, which combines

global and local point embeddings infused with attention, to create a spatially aware

embedding that outperforms both. We propose a novel method to learn a global

feature aggregation for point clouds via a fully differential block that does not need

a lot of trainable parameters and gives obvious performance boosts. SAWNet beats

state-of-the-art results on ModelNet40 and ShapeNet part segmentation datasets.
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Chapter 1

Introduction

1.1 Machine learning in computer vision

The task of image acquisition, processing and inference comes naturally to humans.

In the field of computer vision, we try and replicate the human brain’s ability to

sense and perceive the environment around it, into machines. Over the past years,

the number of sensors that capture both 2D and 3D modalities of images has in-

creased drastically. Due to their increased production, it is now cheaper than ever

to obtain such devices. This has led to an increase in the amount of available data

for vision applications. But there are inherent problems with visual data, mainly

the fundamental fact that it is difficult to analyse it. In-fact, the amount of visual

data on the internet is increasing at such a rate that it is not possible for humans

to efficiently process it. To put things into perspective, about 300 hours of video

content is uploaded on YouTube every minute, making it impossible for humans

to sit and tag each upload to provide better recommendation to the users. The

need for understanding visual data at a rate faster than humans, calls for machine

learning algorithms that can learn from some supervised or semi supervised training

methodologies to solve the task faster than humans. But historically, these tasks

have not been simple for machines either. For instance, finding general objects

in generic snapshots of the 3D world on datasets such as the PASCAL VOC [27],

had a detection score of 33.6% mAP [71]. This was an approach using deformable

parts models and was generally slow. Even simple tasks such as image classification
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1.2 Motivation

were considered to be challenging for machine learning algorithms at one time. One

of the reasons for this was the fact that the algorithms could only be as good as

the features that they learnt from. As classical machine learning approaches took

hand crafted features as their input, they were highly reliant on specialists with the

relevant domain knowledge to compute the best possible features from the image

data. As classical machine learning approaches take hand crafted features as input,

researchers needed to be careful about constructing these features to be invariant

to general problems such as occlusions, transformations, deformations, changes in

illumination to name a few. This made the process of hand crafting features for

such tasks tedious and one that required a lot of care.

1.2 Motivation

Efficient feature extraction is hard, mainly due to the expert domain knowledge

needed to know the right features that should be extracted for a task. Learning

the best features for a particular task, simultaneously along with the task itself

eliminates this need for expert knowledge to an extent. This is the premise of deep

learning. Deep learning is a subset of machine learning that performs feature ex-

traction implicitly given a task. The emergence of deep learning has led to a shift

towards computational models that can learn to optimize parameters over features

and tasks without any intermediate human intervention. The effectiveness of deep

learning can be associated with the hierarchical manner the features are extracted

for their applications, which leads to better feature representations for the given

task at hand. An artificial neural network learns the complex data representations

via backpropagation, where the trainable parameters of the neural network are it-

erative refined based on the errors the predictions generate. The representations

deep learning creates are so powerful that object detection on the PASCAL VOC

datset is now considered a relatively easy task, with deep approaches giving scores

of almost 90.0% mAP [27]. This is mainly possible due to the end-to-end training

paradigm that deep learning employs, where the feature extraction, and the detec-

tion task, are both solved together by the same network, and the performance of
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every component in the network effects every other component.

Different types of networks cater to different machine learning tasks. RNNs

and their variants (LSTMs, GRUs) are extensively used in tasks involving natural

language [10], such as machine translation [59], dialog systems [9] and language

modelling [42]. They’re also used for analysis of financial markets [76], and other

sequence modelling tasks. The networks that this thesis deals with are convolutional

neural networks and their variants. Convolutional neural networks extract features

from image data using convolutions and solve the task at hand with the extracted

features. The feature extraction and solving the task is generally done in an end

to end fashion. This means that the weights of the feature extractor and the task

together form one non convex optimization problem, and the computed error be-

tween the output of the network and the ground truth label, backpropagates to the

feature extractor, which updates the weights of the convolution kernels and the task.

The success of deep learning is not entirely based on its power to learn better

representations for the data. Advancements in technology such as the availability

of better computational devices (GPUs, TPUs) as well as the availability of larger

datasets, and smart data augmentation play a major role in the success of deep

networks. Many open source libraries such as Tensorflow [1], Theano [85], Keras [11],

PyTorch [65] etc have the capabilities of performing automatic differentiation, which

allows for faster experimentation.

1.3 Context of the thesis

This thesis broadly deals with creating efficient feature representations for given data

using convolutional neural networks. The applications of the methods developed in

this thesis concern efficient and accurate analysis of medical images, particularly, the

segmentation of regions of interest from a particular image and processing 3D point

cloud data. We concentrate on creating deep learning architectures that provide a

higher accuracy than the currently existing techniques.
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The acceptance of deep learning by the medical community has been a rela-

tively slow process. Even though the computer vision community has accepted deep

learning and shifted towards end-to-end training of models, the healthcare sector

still completely has not. A large reason for this is the lack of availability of large

datasets, which is a major factor that deep learning thrives on. Medical imaging

datasets usually contain just a few hundred images making deep learning a lot harder

for these tasks. Another reason is the lack of resources and manpower to annotate

such large datasets for medical applications, as they require specific expertise and

are generally cross checked by more than one medical practitioner. Deep learning on

medical images is harder, mainly because of the type of data that the task proposes.

Regions of interest in such data are usually very small and fine grained feature pro-

cessing is crucial to get any meaningful results. Due to this reason, most existing

deep learning approaches specially pertaining to medical image segmentation have

large pipelines of pre and post processing along with the neural network models as

their backbones. There is hence a very important need for better algorithms that

cater to the fine grained nature of the lesions present in medical images and is some-

thing that this thesis looks into in great detail.

Neural networks that process raw 3D point cloud data did not exist at the start

of this PhD. In the last 3 years, numerous architectures have been proposed that are

better than classical machine learning techniques at handling the challenges that 3D

point clouds present. Point cloud processing finds applications in a lot of domains,

the most famous being incorporation into autonomous vehicles. In order to achieve

such a feat, processing data in its raw form (such as point clouds) is highly benefi-

cial as it provides additional geometric information about the world that 2D image

cannot grasp, and it also eliminates extra computation required to convert the data

into a form that existing deep learning architectures can consume.

Visual attention is another topic that this thesis looks into. Human brains

subconsciously throw away any excess visual stimuli and automatically concentrate
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on the object that they are looking at. This task is not so effortless for machines as

it requires extra computation, as well as mechanisms for their correct incorporation

into computational models. This thesis enhances convolutional neural networks

using attention mechanisms for 2D image data as well as 3D point cloud data.

Of particular interest are attention mechanisms that learn to focus inside feature

volumes, and combining them with global attention mechanisms to enhance the

accuracy of deep models.

1.4 Research aims of this thesis

In this thesis, we try to encapsulate a number of contributions that aid in better

feature extraction using convolutional neural networks, enabling these networks to

be successfully be applied to biomedical imaging data, as well as raw 3D sensor data.

The main aims of this thesis are summarized below,

• To enable a deeper understanding of residual learning and attention mecha-

nisms in convolutional neural networks with applications to different modali-

ties of visual data.

• To create general convolutional neural network architectures that can find

applications in domains of AI beyond computer vision.

• To better analyse convolutional neural networks through a series of ablation

studies to aid better understanding of these models, which are otherwise con-

sidered as black boxes.

• To create models that can provide a reasonable trade-off between model com-

plexity and performance.

1.5 Thesis Contributions

We present three novel deep learning architectures, and one novel enhancement to

loss functions for medical image segmentation, in this thesis. Two features unify

these architectures, namely, residual learning and attention mechanisms. Our thesis
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shows how residual learning can be combined with smart attention mechanisms to

learn better feature representations of data, leading to better performance on the

benchmark tasks. The contributions of this thesis are as follows:

• We present a novel and extremely efficient attention scheme, combined with

residual connections to segment medical images.

• We present FocusNet, that uses this attention scheme to achieve state of the

art results on the ISIC 2017 skin cancer segmentation dataset.

• We propose a novel group attention mechanism that uses residual learning.

This mechanism forms the building block of FocusNetAlpha, which is our

extremely efficient and accurate segmentation architecture that achieves state

of the art results on 3 benchmark medical imaging datasets with the least

number of parameters compared to the state of the art models. Our proposed

attention block also achieves superior results compared to resnet and all it’s

variants.

• We introduce a novel loss enhancement to medical image segmentation tasks

that speeds up convergences and increases accuracy.

• We finally present SAWNet, a novel attention based methodology to combine

global and local information inside 3D point clouds, to aid the learning of a

more robust per point embedding via backpropagation. SAWNet achieves state

of the art results on benchmark point cloud classification and segmentation

tasks.

• We are the first to propose a novel attention scheme for aggregating feature

information from point cloud embeddings into a global aggregated vector.

1.6 Chapter Overview

The rest of the thesis is organized as follows:

• Chapter 2 provides the background literature that sets the theme of this

thesis. Deep learning in the context of 2D and 3D data is discussed along
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with loss functions and optimization algorithms that have been used. We

also provide a detailed analysis of convolutional neural networks in context to

medical image segmentations.

• Chapter 3 presents Focusnet, our attention based fully convolutional net-

work, with skip connections, for medical image segmentation. We provide an

extensive evaluation of our network via a series of ablation tests. We also com-

pare the architecture with other state of the art architectures in the field of

medical image segmentation. To improve network performance, we present the

adaptive logarithmic loss which further improves performance of the network.

• Chapter 4 presents FocusnetAlpha, our architecture that beats the state

of the art results on benchmark medical image segmentation datasets with

lesser parameters than them. We incorporate a hybrid loss function inside our

adaptive loss strategy to train a network to give a well rounded performance

across all evaluation metrics.

• Chapter 5 presents SAWNet, our deep residual attention based convolutional

neural network architecture to process 3D point clouds. Our architecture is

an incremental improvement to locality based deep architectures that learn

point representations based on the neighbourhood of the points. We create an

attention based spatially aware architecture to solve various 3D point cloud

processing tasks and compare our architecture with the various state of the

art.

• Chapter 6 gives a brief summary, the general conclusions for the thesis and

future directions this research can take.
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Chapter 2

Literature survey

2.1 Neural Networks and Deep Learning

Artificial neural networks are essentially function approximators, that calculate the

conditional probability of an outcome, given some training data. What makes them

better than generic linear classifiers, is the fact that they can approximate a more

complex family of functions due to the added non linearity they induce to the tasks

at hand. The simplest form of this family of functions is the perceptron. A per-

ceptron predicts a linear function, y = Wx+ b, for some given data x, that is then

passed through some non linear activation, generally a sigmoid function, σ = 1
1+e−x .

Perceptrons find a linear decision boundary between different classes of data, hence

learning somewhat linear relationships. This makes them almost useless in real

world scenarios, where the data exists in multiple dimensions and is generally lin-

early inseparable.

Stacking multiple perceptron units together in a fully connected manner results

in a multi layer perceptron (MLP). The architecture of a MLP is shown in Figure 2.1.

This type of network is also known as a feedforward neural network as the nodes in

a particular layer connect to all nodes in the layer after it, with no connection going

backwards. Each layer in a MLP contains a set of nodes that learn a set of weights

that approximate linear functions. Every node also contains a non linear activation

function that helps learn more complex functions, making it a lot more useful for

real world applications. Stacking more hidden layers in this setting facilitates the
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2.1 Neural Networks and Deep Learning

Figure 2.1: A multilayer perceptron with one hidden layer [33].

learning of hierarchical features that may be present in the data. A forward pass of

input data through such a network computes the output given the current state of

the trainable weights, while a backward pass adjusts the weights to account for any

error in the computed output. Neural networks are generally trained in a supervised

fashion, i.e., they require a corresponding ground truth given a training input. The

output of the network is compared with its corresponding ground truth. MLPs are

universal approximators, which means, that given an input, and atleast one hidden

layer, they can approximate any continuous function arbitrarily well. Their main

drawback is that they only take vectorized inputs, not taking into account spatial

relations between the input.

2.1.1 Backpropagation

Neural Networks learn to adjust their weights via the backpropagation of their error.

Backpropagation is a method of computing gradients using the chain rule. The

computation is divided into a forward pass and a backward pass. The data is input

into the network in the forward pass and flows to the output layer. An output is

calculated based on the values of the weights and it is then compared to the target

value for the input in the training set. The error is calculated and backpropagated

through the network to adjust the weights helping the neural networks learn a

representation for the data. A loss (also known as error or cost) function is used
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2.1 Neural Networks and Deep Learning

to compute the empirical difference between the output computed by the network,

and the actual output. The network’s attempt to minimize this loss value is known

as ’learning’.

2.1.2 Loss functions

Based on their parameters, neural networks develop complex, non linear relation-

ships between the data and ground truth. These complex relations result in a multi

dimensional landscape with dimensions equal to the number of parameters of the

neural network. Loss functions compare the output of the neural networks with the

ground truth images and quantify the difference between them, encapsulating them

into a numerical value called the loss (or error or cost). This loss value is by how

much the predicted output differs from the ground truth corresponding to the input.

For instance, in terms of image segmentation, the prediction and the ground truth

are both binary images with a particular height and width, that are first flattened

into a 1D vector to compute the loss. A common loss function for regression tasks

is the mean squared error loss. It is given by the formula,

L(n) =
1

N

N∑
i=1

(pi(n)− p̂i(n))2

Where each individual pi and p̂i are the ground truth and predicted values respec-

tively.

The most basic loss function used for classification tasks is the binary cross

entropy function. In this case, the output can only take two possible values - 0 or

1. The output of a neural network is passed through a sigmoid function to predict

each pixel as a 0 or a 1. The comparison with the ground truth is done as follows,

L(n) = −[p(n) log(p̂(n)) + (1− p(n)) log(1− p̂(n)))]

Where, p(n) is the probability of the ground truth label being 0 and p̂(n) is the

probabilistic output from a logistic sigmoid function predicted as 0. Similarly, (1−

p(n)) denotes the ground truth label of 1 and (1− p̂(n)) denotes the predicted label
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2.1 Neural Networks and Deep Learning

as 1 from the sigmoid output. When the classification task involves more than two

category labels, this loss can be generalized to

L(n) = −
C∑
c=1

p(n)c log(p̂(n)c)

where C is the number of categories. These entropy based losses generally works

well for classification and segmentation as long as the labels for all classes are bal-

anced. If one class dominates over the other, the imbalance results in the network

predicting all outputs to be the dominant class due to convergence to a non optimal

local minimum. Some recently proposed loss functions such as the dice loss and the

focal loss [24] tackle this problem by weighting some outputs more than others.

General evaluations of these losses is done by calculating the overall overlap

between the ground truth and the prediction. These values are computed over

the soft segmentation outputs (probabilities). This intersection over union metric

(Jaccard Index) is given by,

JI =
|G ∩ P |

|G|+ |P | − |G ∩ P |

where G is the ground truth mask and P is the predicted mask. In contrast, the

Dice Index assigns a higher weight to the true positives, and is given by the formula:

DI =
2|G ∩ P |
|G|+ |P |

.

Due to its high weight on the true positives, DI is also widely used as a loss function.

The Tversky Index [75] is another function proposed that adds further weight to

the false positives and false negatives to get better predictions.

TL =
|G ∩ P |

|G ∩ P |+ α|P\G|+ β|G\P |

Generally, α = 0.3, β = 0.7 works as the most optimal setting. These similarity

metrics are generally converted to loss functions by optimizing over a sum of their

class-wise difference from the optimal value. Their general form is L =
∑

c(1−M)

where the metric, M , can be Jaccard, Dice or Tversky Index. The subscript indicates

that the summation is over the number of classes, c. Many loss functions have also

32



2.1 Neural Networks and Deep Learning

Figure 2.2: Optimization problem in neural networks.

been proposed [20] [25] [23] as weighted combinations of these losses. Some other

evaluation metrics widely used are sensitivity (recall) which is the true positive rate,

specificity which is the true negative rate, precision which is the positive predicted

value, and accuracy which is the rate of labels (across all classes) classified correctly.

2.1.3 Optimization

How a neural network traverses a loss landscape is based on some defined optimizer.

Figure 2.2 visualises this landscape. The optimization probelm is generally a non

convex one with multiple sub optimal local minimum solutions. The optimizers are

some variants of Stochastic Gradient Descent (SGD). SGD computes the gradient

of the network parameters with respect to the loss function and then takes a step

in the direction of steepest descent on the loss function, given the current location

(gradient). Instead of looking at all the data at once, the algorithm looks at a

smaller sample from the data instead - a mini batch. The weights of a network are

updated via the following rule using SGD,

θi+1 = θi − β L(X,y)

where θi is the learning rate at the particular iteration, β is the learning rate that

scales the loss.

33



2.2 Convolutional Neural Networks

2.2 Convolutional Neural Networks

Pre 2012, in order to process image data, features were hand crafted from the input

and fed into machine learning systems. Since the emergence of AlexNet [53], the

era of deep learning took the computer vision community by storm as end-to-end

learning of features has proven to be better than hand crafting features across all

domains of computer vision. Deep learning - specifically convolutional neural net-

works (CNNs), have revolutionized computer vision.

As impactful as CNNs have been to this field, their building blocks are quite

simple. CNNs combine feature extractions via convolutions with a machine learning

task, learning to do both together, via backpropagation. The main components of

CNNs are -

• Convolutions - The convolution operation in CNNs is basically a correlation

between the input image and a randomly initialized convolutional filter. For an

input I, filter F, and output C, the convolution can be described as, F∗ I = C

for F ∈ RW×H , I ∈ Rk×k,C ∈ RW ′×H′ . k×k represents the kernel (or receptive

field) of the convolutional filter.

• Pooling - Images are downsampled to a lower scale to be further processed

by some convolution operations via some form of pooling operation. Most

commonly used poolings are max pooling, where the maximum value in a

kernel is used to represent the kernel, and average pooling, where the average

value of the kernel represents the kernel.

• Activations - Convolutions are generally followed by non linearities, also

known as activation functions. The most commonly used activation is the

Rectified Linear Unit (ReLU), given by ReLU(x) = max(0, x), where the

response of a network is killed for negative values of the features learnt.
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2.2.1 Notable advances in Convolutional Neural Networks

Convolutional Neural Networks date back to before the inception of backpropagation

[29]. Though, due to lack of sufficiently large datasets and compute power, they

weren’t considered a feasible tool in the machine learning arsenal. The pioneering

piece of research that started all research in this field is the AlexNet architecture

that won the ILSVRC 2012, initiating the era of deep learning in computer vision.

Alexnet, inspired by the works of Fukushima [29], and LeCunn [54], showed how end

to end training on GPUs can beat the performance of general then state-of-the-art

machine learning systems such as SVMs that worked with hand crafted features.

AlexNet treated the task of feature extraction via convolutions, and classification

across the 1000 imagenet classes, as a single task, learning specialized features for

this task together with learning to do the task. They introduced the ReLU non

linearity that helped alleviate the vanishing gradient problem caused by the sigmoid

funtion. The next notable work that pushed forward research in this field was the

paper that proposed the VGGNet [81] architecture. VGGNet was an engineering

masterpiece, which showed how the use of smaller kernels learnt better features

and used fewer parameters in the process. They also showed that training deeper

networks leads to better performance which they demonstrated with their impressive

performance on the ILSVRC 2014. The following year saw some of the first work

in dividing convolutions into smaller groups and concatenating the results of these

groups inside a single layer. This concept was introduced in GoogLeNet [83].

2.2.2 Group convolutions

Grouped convolutions have been around since the inception of ILSVRC 2012 where

the Alexnet architecture divided their computations across two GPUs and noticed

that the same convolution divided into two different groups, learns two distinct

representations of the data in the same layer. This effectively leads to a network

learning a more robust feature representation that has a block diagonal sparsity

between the different groups of the learnt filters in the same layer. Figure 2.3 shows

the different filters learnt in the first convolution layer of the AlexNet architecture.
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2.2 Convolutional Neural Networks

Figure 2.3: Visualization of filters learnt in the first layer of AlexNet [53].

The top 48 filters are learnt on one GPU, and the bottom 48 on another. It can be

seen that grouping filters in these two groups learns distinct representations of the

data.

To the best of our knowledge, one of the first works to explicitly show that group-

ing filter groups leads to learning better representations is deep roots [39]. They use

a sparse connecting structure that resembles a tree root to reduce the number of

parameters without any significant affect on the network accuracy. The impact of

group convolutions was made apparent with resneXt [92] employing it at the heart

of its methodology and doing impressively at the ILSVRC 2016 tasks. Depthwise

separable convolutions [12] are another form of grouped convolutions that process

channels in a feature volume individually before combining it together via a 1D

convolution.

Due to the nature of grouped convolutions, the filter groups only look at a par-

ticular part of the input at a time. Seeing this as an apparent drawback, techniques

such as ShuffleNet [98], FLGC [86] and IGCNets [97] have been proposed to aid

interaction between filter groups and different parts of the feature inputs. To the

best of our knowledge, all (except one) existing techniques learn fixed permutations

of the features to aid interaction with filter groups. ShuffleNet looks at only one

permutation of the features for interaction with the filters, IGCNets fix a permuta-

tion matrix to perform permutations following their single primary and secondary
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Figure 2.4: The basic residual learning building block proposed in [34].

group convolution blocks.

2.2.3 Residual Learning

ResNets introduced the concept of feature reuse in later convolution layers. The

initial residual architecture [34] won the ILSVRC 2015 classification task and was

also the first network to beat human level performance on it. Since their inception,

resnets have been constantly optimized and refined to produce better results. The

most basic form of the residual block can be visualised in Figure 2.4. This block can

be formally defined as

y = F{x,Wi}+ x

where F{x,Wi} is the residual mapping that is learnt by the network and x are the

features that are propagated forward by the skip connection. Residual learning al-

lows feature reuse from previous layers that helps fight overfitting in deep networks.

This technique results in the ability to train extremely deep neural networks with

over 1000 layers. The residual block was optimized to produce better results in [35].

They showed how using a bn-relu-conv style residual block performed much better

than the conv-bn-relu block via a series of ablation studies.

One of the first works combining group convolutions with residual learning was

the resneXt [92] architecture The authors defined a new form of aggregated residual
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2.2 Convolutional Neural Networks

Figure 2.5: The optimized identity mapping block proposed in [35]

transformation,

F (x) =
C∑
i=1

Ti{x}

where Ti{x} can be any function approximation, and is generally a set of neurons.

Ti transforms the input x by projecting it into a low dimensional embedding. C

is the cardinality, which is the total number of transformations that the network

learns for a network layer. This aggregated transformation serves as the residual

connection learnt in this architecture. The output y in this case is given by,

y = x+
C∑
i=1

Ti{x}

where x is the the value that the aggregated transformation works on. Another

spin on the residual block shows that stacking deeper networks with more layers is

equivalent to combining multiple convolution operations inside the same layer. As

the convolutions in each layers have larger filter sizes, these networks are called wide

residual networks [95]. Wide Resnet50, which is a 50 layer resnet architecture using
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Figure 2.6: The resneXt block proposed in is the first work to combine group con-

volutions with residual learning.

this methodology, gets performance equivalent to a 101 layer resnet that is trained

with smaller filter sizes.

The resneXt paper proposes three equivalent versions of the group residual block.

The version used for the imagenet experiments is depicted in Figure 2.6. An extreme

case of residual learning is connecting each output in a layer, to each output directly

to every layer following it inside a block. This form of residual blocks was proposed

in DenseNet [37]. A dense block can be visualized in Figure 2.7. There are 5 blocks

in this structure where the first block propagates features to the 4 blocks following

it, the second block propagates features to the 3 blocks following it and so on.

2.3 Attention Models

Attention based approaches enhance feature extraction in neural networks. Atten-

tion has been widely used in natural language processing, but combining it with

convolutional neural networks is a recent advancement, with one of the first promi-

nent works only dating back to 2015 [91]. In the context of this thesis, we define

attention mechanisms into two broad categories - 1) pixelwise attention, and 2)

global attention. Pixelwise attention techniques learn to localise the important

components of an intermediate feature volume in a convolutional neural network,
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Figure 2.7: The dense block proposed in [37]

while global attention techniques process entire filter maps to learn the most im-

portant ones that contribute to the output. Attention infusion inside networks can

also be categorised into two types. The output of the attention mechanism can be

added to the features, and it can be multiplied to the features as well. Attention

addition adds a constant value to each feature map, while the multiplication has

the affect of scaling the maps. Attention weights are generally computed via first

extracting attention features through convolution operations, and then processing

these features by a gating mechanism. The gating is done using a sigmoid function

that gives a probability between [0,1] for every input. The output of the gating

operation is either added or multiplied to the volume that is input to the attention

block. As these blocks contain convolutions and gating functions, they are fully

differential and can be placed anywhere in a neural network.

The simplest form of attention networks are the spatial transformer networks [40]

that learn the regions of interest from images with random clutter or noise. One of

the first major visual attention approaches was a two level approach proposed in [91]

where the images were first passed through an RCNN and selective search algorithms

to generate proposals. A gating operation using softmax over the imagenet classes

was used to get rid of low probability proposals. The remaining patches were then

passed through a classifier which in their case was an SVM. The approach worked
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well on a subset of the imagenet dataset, but requires a large amount of compu-

tation as well as hyperparameter tuning. A diversified visual attention mechanism

(DVAN) was proposed in [100] where an attention mechanism extracted patches

from an image. The patches could be at different scales. A VGGNet was then

used to extract features from these patches which were then combined together

with a DVAN LSTM. [78] proposed a combination of CNNs and RNNs to accu-

mulate high multi-resolution glimpses of an image to make a final prediction. A

large amount of techniques combine either reinforcement learning [28] or recurrent

neural networks [58] along with multistage pipelines to create or process attention

information making these techniques slow.

Self attention mechanisms aim to learn context beyond a networks receptive

field. The first successful work in incorporating such a mechanism in CNNs was

squeeze and excitation networks [36]. They proposed to global average pool feature

map information into a single vector creating a global representation, that was then

autoencoded and passed through sigmoid gating to generate attention weights for

each feature map in an activation output. The maps were then scaled via multipli-

cation with these attention weights. SE Blocks have been extensively used in object

detection [8], image segmentation [74] and scene classification [44] to name a few

applications. We extensively use variations of SE Blocks in this thesis to construct

our FocusNet style attention mechanism as well as the attention mechanisms for our

spatially aware layers and global aggregation units in SAWNet.

2.4 U-Net

Initial deep learning applications mainly included learning the task of feature ex-

traction and image classification in an end-to-end setting. The first applications

of deep learning for image segmentation were introduced in the paper by Long et.

al [79] where they introduced a fully convolutional network for the task of semantic

scene segmentation. The main contribution of the paper was removing the fully con-

nected layers from a classification neural network architecture and replace it with
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Figure 2.8: The fully convolutional network form image segmentation proposed

by [79].

a convolutional layer. Due to this reason, the network came to be termed as the

’Fully Convolutional Network’, as it did not contain any fully connected layers. The

FCN architecture is shown in Figure 2.8.

Arguably the most influential architecture in image segmentation is the U-

Net [73], originally proposed for medical image segmentation. The U-Net employs

an encoder decoder structure to map an input image to it’s corresponding binary

segmentation mask. The architecture for the U-Net is shown in Figure 2.9.

The input image is encoded by the encoder by extracting hierarchical features.

This encoder can be any generic convolutional neural network architecture (AlexNet,

VGGnet, Inception, ResNet etc). How this architecture differs from its predecessors

is that instead of predicting per pixel predictions as a flattened patch output (as

done in [14]), or as upsampling to a mask from one intermediate layer (as done

in [79]), it hierarchically upsamples to a binary mask while combining information

from intermediate encoder layers. The features from the encoder are concatenated

with the decoder features to aid better decoding. The features are downsampled

using maxpooling and upsampled using upconv/convolution transpose. ReLU ac-

tivations are used throughout. No batch normalization or dropout are used in the
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Figure 2.9: The U-Net architecture.

original architecture.

2.5 Effective modifications to U-Net

A machine learning system can only work as well as the features it extracts. To

aid effective feature extraction, many different modifications have been proposed

to the U-Net. In this section, we discuss the most widely applicable U-Net style

architectures which we compare against in this thesis.

• Wide U-Net [101] is a U-Net style architecture, with the only difference being

an increased number of convolution filters inside the convolutional layers. The

architecture does not use residual connections but stacks wider (in terms of

number of filters) blocks of sequential convolution operations in the encoder

and decoder layers.
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• UNet++ [101] proposes redesigning skip connections in U-Net style architec-

tures via adding fine grained information between the encoder and decoder,

rather than a simple skip connection. They propose a dense convolution block

(which is not the same as the dense block in DenseNet) that uses a pyramid

style scheme to combine features from different encoder layers to pass relevant

information from the encoder to the decoder.

• R2U-net [3] is an architecture with the same structure as the U-Net, but

the convolution blocks are replaced by residual recurrent conv-relu blocks.

The operations of the recurrent convolutions are performed with respect to

discrete time steps that are expressed according to the fundamental layers of

the RCNN.

• Attention U-Net [101] is a U-Net architecture with an attention mechanism

that decides what information to propagate in the skip connection from the

encoder to the decoder. They use a grid based gating approach to allow the

attention to be more local, which increases performances compared to using a

global information vector.

• BCDU-Net [6] is yet another spin on designing efficient skip connections

that learn to propagate the most effective features from the encoder to the

decoder. This effect is achieved via the use of a densely connected convolution

block (from DenseNet) inside the layers learning the latent representation.

The information is propagated between the encoder and the decoder via the

use of a bidirectional convolutional LSTM.

In general, the trend towards most novel enhancements to U-Net currently in-

volves redesigning better skip connections to pass relevant features from the encoder

to the decoder. This works effectively in most cases, but there are two main draw-

backs to this approach. First, as the network concentrates on passing information

from the encoder to the decoder, if the features extracted by the encoder are not ro-

bust and descriptive enough, this hinders learning useful information in the network.

Second, as the encoder just uses generic convolutions in its encoder and decoder lay-
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ers, the network usually may fail to detect smaller lesions that may be present in

the images which can be disastrous in the context of disease diagnosis.

2.6 Advances in medical image segmentation

In this section, we discuss the various techniques for segmenting medical images

that have been proposed in the recent past. Pre deep learning, the tasks related to

high level image understanding were considered to be hard. Deep learning has rev-

olutionised the field of artificial intelligence, but no other field has been impacted

as much as computer vision. The state of the art, as well as benchmarks for al-

most all computer vision tasks are some variants of deep (and mostly) convolutional

neural networks. Due to this reason, we focus this review on the impact of deep

neural networks for this task of medical image segmentation. We specifically focus

on advancements with respect to the datasets that we have used to benchmark our

algorithms.

Historically, the DRIVE retinal blood vessel segmentation dataset has been ex-

tensively used for benchmarking medical image segmentation tasks. It is a small

dataset of 40 images, but the large image size and fine grain feature processing

required facilitates patchwise training on this dataset making training and valida-

tions splits quite large. The initial work using deep learning on this dataset [64]

treated segmentation as a pixel labelling problem. They constructed a classification

style architecture to process 400000 patches sampled from DRIVE to classify the

pixels in the patch as foreground or background. Their architecture flattened out

the output of convolutions and passed it to fully connected layers for processing.

They achieve impressive results mainly to their extensive amount of preprocessing.

They use global contrast normalization, zero-phase whitening, augmentations using

geometric transformations and gamma corrections. [62] used a similar pixel labelling

technique using a deeper network but without anmy data augmentation. Techniques

such as DUNet [41] propose a deformable U-Net structure which is a U-Net with the

convolution blocks replaced by deformable convolution blocks. Deformable convolu-
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tions and deformable ROI pooling are used for convolution kernels to predict offsets

from the original kernel, hence learning deformable receptive fields. This method

considerably improves performance compared to the U-Net architecture. [64] used a

FCN instead of a U-Net in their pipeline for segmenting the vessels.

The ISIC skin cancer dataset [22] is one of the standard datasets when it comes

to evaluating the performance of deep neural networks for segmentation, mainly

due to its large size and difficulty in terms of pixel imbalance. The state of the art

on ISIC 2017 melanoma segmentation [57] applies a patch based training approach

on three different scales with heavy data augmentation and preprocessing. Their

hybrid model at 3 different scales achieves a validation jaccard index of 0.753, while

their single best model achieves a jaccard index of 0.71. [84] use a simple U-Net

without any dropout or batch normalization on the ISIC 2017 dataset and achieve

a jaccard index of 0.5 which highlights the importance of batch normalization in

the U-Net architecture. [4] use an encoder decoder structure with recurrent layers

in the decoder to aid segmentation of the cancer regions. [89] create an inception

block [83] based encoder decoder architecture to segment the cancer legions.

2.7 Deep learning on 3D point clouds

3D point cloud processing is a subset of an emerging area of deep learning, known

as geometric deep learning. Such an orderless arrangement of data points is ob-

tained from sensors which sample points from a 3D surface, resulting in a 3D point

cloud. Formally, a point cloud P = {v1, v2, v3, ..., vn} ∈ R3,∀ vi = {xi, yi, zi}. These

point clouds are the closest representation to raw sensor data that is available and

processing them directly in this form has greatly interested researchers, giving the

created algorithms a more ”end-to-end” feel, which is one of the great successes of

deep neural networks.

Most preliminary work in 3D shape analysis approached the problem by first

extracting hand-crafted features from 3D objects, and then selecting a machine
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Figure 2.10: Pointnet [68] takes every point in a point cloud and embeds every x,y,z

coordinate into a k - dimensional space.

learning algorithm. Usually, some local 3D shape descriptor such as 3D SIFT [77],

or spin image [43], was used to extract features, and then they were classified using

techniques such as Support Vector Machines (SVMs). Curvature-based methods [52]

have also proven successful for the task of 3D shape analysis where principal cur-

vatures are extracted from the shape. These values can be used to calculate shape

based metrics such as shape index and curvedness which encodes local shape infor-

mation, giving local geometric properties of the shape.

For 3D points, there is no grid-like structure to apply the convolution operation

on. So several earlier techniques took the 3D points and projected them on a 2D grid

like structure, following which, 2D CNNs were used on the projections. Networks

such as MVCNN [82] sample 80 views from the point clouds and project them to

2D, which are then processed by a CNN. This is followed by a view-pooling opera-

tion, the output of which was fed into another CNN which is used for classification.

Another grid-like representation is the voxel based one. VoxNet [61] sample 3D

points into a 32× 32× 32 3D occupancy grid which is processed by a 3D CNN. The

networks that require projections have some notable drawbacks, the most important

of which is the computational expense. Storage and processing of multiple views

or voxel based data is computationally expensive and projection of the data on to

a view point or a small 3D occupancy grid leads to the loss of important information.
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The first works in processing the point clouds directly were based on the obser-

vation that the network layers need to learn an order-invariant representation of the

input points. Two approaches were introduced in this regard, namely permutation

invariance and permutation equivariance. The permutation invariance approach was

introduced in the PointNet [68] paper. Pointnet identified the problem with process-

ing points as one that required to consider all permutations of the data presented in

the data structure, as they effectively represent the same point cloud. Hence, given

a N × 3 point cloud, the deep network would need to take into account all N com-

binations of these points. They hypothesized a weight shared MLP that processes

these points, creates a mapping into a k - dimensional space, where the embedding

created is based on all combinations of these points (see Figure 2.10). This weight

shared MLP creates a symmetric function that embeds all points. As a symmetric

function creates order invariant representation of the data, the representation takes

into account all possible combinations of the points. They then takes these embed-

dings to create a global feature using another symmetric function. They observe

max pooling works best as a global symmetric aggregation function. This embed-

ding is then passed through a MLP for classification or segmentation tasks. The

major drawback of this approach was that the network only looked at the global

point coordinates so this representation was not as robust. Locality information was

introduced by the authors in PointNet++ [70] where they used farthest point sam-

pling to uniformly sample points to build a local region, and grouped them based on

a radius-based ball query to define a local region. The PointNet architecture was the

applied to this local space. These networks have found applications in exploring spa-

tial context for scene segmentation [19], 3D object detection from RGB-D data [67],

and even normal and curvature estimation [32] from noisy point clouds. Networks

such as SO-Net [55] perform hierarchical feature extraction using Self-Organising

Maps (SOMs). The networks discussed so far capture local geometric information

using local points. Dynamic Graph Convolutional Neural Networks (DGCNNs) [88]

compute edge features based on these points to learn a relationship between the

points and its features. These networks recompute the graph based on the nearest

neighbours at every layer, and hence they are termed as dynamic. Networks such
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as SpiderCNN [93] (SpiderConv) and PointCNN [56] (X-Conv) define convolution

operations on point clouds based on local geometric information, rather than using

a symmetric function to process them.

Another set of closely related CNN architectures assume point clouds to be

graphs, and define convolutions on these graphs by converting the points to a dif-

ferent domain. Keeping with the theme of global and local point processing, graph

convolutions, generally, first transform the points using a fourier transform, and then

learn the parameters of the convolution filters in the transformed space. This oper-

ation can be done patch wise [7], or in a global sense [50]. The transformation bases

are estimated in these networks via an eigen decomposition of the graph laplacian

matrix, which is a computationally expensive process. Further, computing convo-

lution filters in the transformed space also has added computational complexity,

though techniques such as [18] localise convolution filters faster.

2.8 Summary

In this chapter, we reviewed the current literature in the field of residual learning

related to medical image segmentation and 3D point cloud processing. We started

with an initial discussion of deep neural networks building up to convolutional neural

networks, and all the way to the application of encoder decoder structures to medical

image segmentation. From our review of medical image segmentation, the following

points are fairly prominent -

• The encoder decoder structures employed for these segmentation tasks opti-

mize feature extraction over generic convolution operations, almost always,

not reusing any features learnt in the previous layers to propagate down the

network encoder, or up the network decoder. Even architectures that do use

residual learning do not hand craft feature extraction blocks to suit the task,

but use a general Resnet-50 pretrained on imagenet to fine tune. This is an ob-

vious flaw as networks pretrained on imagenet almost always show no improved

performance compared to networks trained from scratch on medical imaging.
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Infact, they sometimes lead to degraded performance. Further, the amount

of data available for training an architecture like Resnet-50 from scratch is

definitely not sufficient in most medical imaging tasks, due to which the archi-

tectures constructed require more though that using a pre-defined/pre-trained

encoder to obtain the latent space encoding.

• Attention mechanisms are not yet widely applied to medical imaging tasks in

general. Given their capacity of pixel weighting and highlighting prominent

regions inside images, they can surely be useful to segment small regions inside

images that non attention based networks miss. It is useful to note that

architectures such as Attention U-Net do have an attention mechanism that

feeds the important features from the encoder to the decoder to the decoder,

but these features are extracted from generic convolution blocks. Hence, if the

features extracted (for say a task that requires fine grained feature information)

are not good enough (which is a prominent drawback of generic convolution

blocks), the network does not learn a lot of useful information.

• Class imbalance is not looked at in terms of the number of foreground and

background pixels in these tasks. This problem has been identified as relevant

in the medical imaging community only recently with the proposal of the

dice loss [99]. Only a handful of useful techniques exist to handle pixel class

imbalance and even fewer research acknowledged this as a problem at the time

of starting this research.

• As an enhancement to residual learning, having multiscale image information

inside the same residual block has not yet been investigated.

In terms of processing 3D point clouds, we make the following observations -

• The use of residual learning, to the best of our knowledge, has not been looked

at in the context of point cloud analysis. DGCNN does have skip connections

in its architecture, but the concept of feature reuse between consecutive layers

has not been looked at in their research. All skip connections instead feed into

a single layer.

50



2.8 Summary

• No research exists to see the influence of combining global and local embed-

dings of the point clouds. Such an idea has not yet been experimented with

yet.

• Attention mechanisms had not been used at the time of starting this research

for the analysis of 3D point clouds in their raw form. No investigation has been

done to date, to the best of our knowledge to see the effects of having an at-

tention mechanism over the embeddings that point cloud processing networks

create.

• Pointnet identifies the global feature aggregation as a very important step in

combining all information. This makes sense as the information here is what

feeds into the classification or segmentation system to process the point cloud.

Max pooling seems to be accepted as the norm to date to create this global

aggregation and is used by all architectures to date. The use of techniques

better than just using a max pooling operation has not yet been experimented

with for this feature aggregation step.

This thesis is an attempt to fill the gaps in the current literature mentioned

above.
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Chapter 3

FocusNet

3.1 Introduction

The task of medical image segmentation is generally harder than segmentation of

generic scenes. This is mainly due to the fact that there are very small lesions of

interest that can go undetected, which can usually be disastrous in the context of

disease diagnosis. Due to this reason, architectures such as the Fully Convolutional

Network (FCN) [79] do not perform well on medical imaging tasks. The FCN uses

an encoder that is generally pretrained on ImageNet to create a latent representation

of the image. This pretrained encoder can be the AlexNet [53], VGGNet [81], or the

ResNet [34] image classification architectures, which are fine tuned for the task of

medical image segmentation. The output from one of the intermediate layers is then

upsampled to produce a segmentation mask. The upsampling process is done with

no intermediate feature information. Architectures that use hierarchical fine-grained

information from intermediate features generally perform better at the task of med-

ical image segmentation. One such architecture is the U-Net [73], that combines

features at every intermediate layer instance to create better segmentation masks

compared to the FCN. This chapter proposes a novel deep learning architecture,

inspired by the encoder-decoder structure of the U-Net. Vanilla U-Nets comprise of

a series of convolutions that encode an image into a latent representation, and then

decode this representation using a series of upsampling layers, combining interme-

diate information as they go along. Surprisingly, not a lot of changes have been
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proposed to this architecture setting in existing research, to improve its accuracy,

as compared to other advancements in the field.

FocusNet, is an incremental improvement to U-Net that uses residual learning,

as well as a series of attention mechanisms to propagate the most important infor-

mation forward in the network, keeping robust feature encoding as it’s objective.

The architecture incorporates attention within convolutional neural networks us-

ing feature maps generated by another convolutional autoencoder that is trained

end-to-end with the task at hand. The attention architecture is well-suited for in-

corporation with other deep convolutional networks.

This chapter is structured as follows.We discuss our attention methodology in

Section 3.2. Section 3.3 introduces FocusNet - the attention-based fully convolu-

tional network. Section 3.5 contains the series of experiments including the ablation

tests done to arrive at the optimal architecture. Section 3.6 presents our results on

various open source datasets. We discuss the problem of class imbalance in pixels

in Section 3.4 and discuss the limitations of FocusNet in Section 3.7. Section 3.8

summarizes this chapter.

3.2 FocusNet Style Attention Mechanism

In this section, we discuss our base attention methodology (shown in Figure 3.1),

which is extensively used throughout this thesis. The idea is to first learn trainable

weights which predict the probability of a pixel’s importance in the context of the

output, and then recalibrate the global feature maps to learn the most important

ones in an activation volume. Let us assume F to be the overall input to this block.

Let F1 be an intermediate feature map volume outputted from the interaction of

some intermediate input volume I1 with a set of trainable weightsWi of a convolution

filter. This F1 is passed through a series of conv-ReLU operations, followed by a

final 1x1 conv operation with a sigmoid operation, that gives per pixel probabilities
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Figure 3.1: The FocusNet style of attention mechanism. Pixelwise probabilities learn

to highlight malignant regions inside images containing melanoma (in this context).

Feature map recalibration via squeeze and excitation then weights every map to

assign higher global weights to the important maps. The dotted boxes correspond

to the component blocks in the main architecture diagram shown in Figure 3.2.

for the volume. The learned output F can be denoted as,

F1 = σ(δ(I1 ∗W1), W2)

where ∗ denotes a convolution between the filters and the learnt weights and δ

denotes the (ReLU) non linearity. W1 denotes the weights for the convolutions

corresponding to feature extraction, while W2 are the weights corresponding to the

1x1 convolution. In parallel, the input is also processed by a series of different

conv-ReLU operations. The output of this block of operations has its feature maps

recalibrated via the self attention mechanism. This is done by first squeezing the

information into a 1D vector to get a global characteristic of each channel and then

autoencoding this vector to get a per-channel probability. Let I2 be the intermediate

feature volume to this operation and F2 be the overall final output of this operation.

The squeezing of information is achieved via a global average pooling operation,

given by,

g =
1

H ×W

H∑
i=1

W∑
j=1

I2c(i, j)

for a volume I2 with dimensions H × W and channels c. g is the channel-wise

statistic. This output is then autoencoded by compressing the channels c to a latent
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representation given by c
r

and attempting to reconstructing the input 1D vector.

This is given by,

fx = σ(δ(g,Wk),Wr)

. Here Wk are the weights learnt before compression and Wr are the weights learnt

to map the input to a compressed latent space. The output from the autoencoder

is passed through a sigmoid gating to get a channel-wise probability, which is used

to scale each channel. This scaling is given by,

s = (fx · I2)

where (·) denotes each weight value being multiplied with the entire slice of the

feature map. This output is then multiplied by the per pixel probabilities obtained

earlier that re-weights every pixel inside the volume based on how much it con-

tributes to the output, i.e,

P = F1 � s

where � is the hadamard product (where each Fi is multiplied with each si, like

pointwise multiplication in convolutions). The output is then recalibrated via the

self-attention mechanism (denoted as SA).

F2 = SA(P )

following which we add the residual feature map volume from before these series of

operations as,

Fout = F + F2

The attention block is end-to-end trainable and can be incorporated inside any deep

learning system. All the weights described here are learnt via back propagation.

If the learnt weights have a positive influence on the output, the resultant error is

lower and vice versa.

3.3 Network Architecture

A conventional autoencoder first creates a low dimensional representation of the

input and then upsamples from that representation to recreate the input. The low
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Figure 3.2: The network architecture uses attention to give better per pixel predic-

tions, leading to better segmentation. The two branches are comprised of encoder-

decoder structures where the per-layer decoded output is passed through a sigmoid

gating function and multiplied with the output of the first SE block. The direction

of the arrows show the direction of information flow in the network.

dimensional representation created by the encoder is known as a latent representa-

tion, or a bottleneck representation. We exploit such an encoder-decoder architec-

ture structure to hierarchically extract latent attention maps with the aim of creating

a superior encoding of the data. The FocusNet architecture (see Figure 3.2), em-

ploys two parallel branches of information flow with one branch solely devoted to

calculating the attention maps. The attention branch employs an encoder-decoder

structure with skip connections from the encoder to the decoder to facilitate better

gradient flow. The architecture provides a strong bias for the two networks to spe-

cialise and learn different representations.

Focusnet is a fully convolutional end-to-end trained deep neural network that

performs the task of learning attention maps, as well as segmentation. We employ

two attention mechanisms in this architecture to propagate the most important in-

formation forward. Keeping Figure 3.2 as reference, first, we use the top autoencoder
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branch to calculate pixel-wise probabilities for each input pixel’s contribution to the

output segmentation. This is done by taking the output of the decoder with the

same filter maps as the encoder layer, and passing it through a sigmoid function.

Following this gating operation, the resultant here is a probability distribution over

the pixels in the bottom encoder’s intermediate layer. This output is then multiplied

with the activation map output in the intermediate layers to suppress the pixels that

don’t contribute to the final output. A self-attention mechanism is also used along

with this. Once the pixel-wise probabilities are multiplied by the intermediate out-

put, we also calculate channel-wise probabilities to learn which channels across the

depth of the intermediate outputs contribute most to the output. The attention

mechanism at each step first learns the most important pixels in each intermediate

volume, followed by learning the most important filter maps across the depth of an

intermediate activation. This leads to a better latent space which is then decoded

by the decoder.

Given an image, xi ∈ X where X is the mini batch, each layer of an encoder

learns a mapping G, given by,

El = Gl(x,Wl) (3.1)

The decoder corresponding to this layer, decodes this representation in the following

form:

Dl = [Gl(x,Wl) ; Hl(Hl−1(x,Wl−1))] (3.2)

where [ ; ] denotes addition via skip connection and Hl−1 is the output from the

previous decoder layer.

In the encoder in the second branch, the output can be represented as:

Al = Fl(x,Wl) · σ(Dl) (3.3)

where Al is the output of the lth layer of the second encoder after gating-and-

multiplication.

The superior performance of the network is due to a number of changes from the

conventional autoencoder style architectures. Instead of using generic vanilla con-
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volutions to learn our features, we use a no bottleneck full pre-activation residual

block [35] (see Figure 3.2) to learn our feature representations. Downsampling in

the network is done using strided convolutions rather than max pooling. A constant

stride of 2 is used whenever downsampling is used. Two attention mechanisms are

employed to learn a better encoding of the data. Architectures generally use skip

connections from the encoder to the decoder, and concatenate the representations.

We observed that adding the representations rather than concatenating them leads

to better performance in our network architecture. This also means that the fil-

ter maps following the addition operation are halved in every layer, compared to

concatenating. The output of this network is obtained via a 1x1 convolution with

a sigmoid activation that outputs per-pixel predictions of the segmentation map.

The rest of the convolutions have a 3x3 receptive field. Where stride is used, a 1x1

convolution is employed to keep the dimensions of the activation maps similar. The

filter bank volumes used are 32 −→ 64 −→ 128 −→ 256 −→ 512 −→ 256 −→ 128 −→ 64.

Skip connections throughout the architecture facilitate better gradient flow, lead-

ing to easier training of a deeper network. Batch Normalization is also used inside

the residual block. Dropout is used with a fixed rate of 0.5 in the penultimate en-

coder layer, as well as the bottleneck. This means that at every pass of the data,

50% of the learnable parameters in those layers are randomly omitted from the net-

work. We observed this regularization technique to be quite useful in dealing with

overfitting. The network was trained from a He-normal initialization of the weights

throughout.

3.4 FocusNet and imbalanced segmentation

We now shift our focus to using FocusNet for segmentation tasks with a large im-

balance between background and foreground pixels. Real word data hardly has any

balance between the pixel classes and methods need to be introduced to deal with

such segmentation tasks. We create a methodology in terms of a novel loss func-

tion enhancement that deals with imbalance and convergence close to the minimum

58



3.4 FocusNet and imbalanced segmentation

of the solution of the optimization problem that the network architecture weights

pose. We feel such a technique is relevant as little attention has been given to en-

hancing loss functions to better traverse the loss landscape. Hence, we attempt to

simultaneously and significantly mitigate two prominent problems in medical image

segmentation namely: i) class imbalance between foreground and background pixels

and ii) poor loss function convergence. To this end, we propose an adaptive loga-

rithmic loss function which is described henceforth. We use this loss to enhance the

properties of the dice loss using our methodology. We conduct an extensive hyper-

parameter search for our function and empirically show that our technique leads to

better convergence of the dice loss under even less optimal settings of our function.

We compare with state-of-the-art for the same problems, and show performance

gains over them. We primarily use the U-Net and FocusNet architectures to com-

pare results. Our enhancement experiments with the dice loss due to its popularity

in medical image segmentation tasks, but in theory, any loss function could be used

here.

3.4.1 Adaptive logarithmic loss

We motivate the need for our loss based on the properties of a good loss function.

Once a loss function computes the error between the label and the ground truth

values, the error is backpropagated though a network in order to make it learn.

This fundamental task is generally conducted well by all loss functions, though

some tend to converge faster than the others. Empirically, tversky loss converges in

lesser epochs compared to the earlier proposed losses such as CE or the Jaccard loss.

A good loss function should not take too long to converge. It is an added bonus if

it speeds up convergence. Secondly, a loss function should be able to adapt to the

loss landscape closer to convergence. Keeping these points in mind, we construct a

loss function that can both, converge at a faster rate, as well as adaptively refine its

landscape when closer to convergence. The formula for this adaptive loss is given

by,

ALL(x) =

 ω ln(1 + |DL|
ε

) |DL| < γ

|DL| − C otherwise
(3.4)
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3.4 FocusNet and imbalanced segmentation

Figure 3.3: The plot shows the value of the derivative of our loss against the value

of the dice loss that it optimizes. It can be seen that for smaller values of the

loss metric, a larger loss is backpropagated. γ is fixed empirically based on initial

experiments to any value on the x-axis.

where C = γ − ω ln(1 + (γ
ε
) is used to make the loss function differentiable and

smooth at |DL| = γ and DL is the computed dice loss. γ, ω and ε are hypermaram-

eters of this loss function. Further, as the dice loss lies between [0, 1], we experiment

with values of γ that are [0, 1] to find the optimal threshold to shift to a smoother

log based loss for convergence close to the minima. As log is a monotonic function,

it smoothens the convergence. The derivative of this loss can be computed via the

chain rule. It is visually shown in Figure 3.3. Differentiating a function of a function

results in the product of two derivatives. So, [ALL(DL(·))]′ = ALL′(DL) × DL′(·),

where the plot of ALL′(DL) is shown in Figure 3.3. Hence, given any loss as input

to our adaptive function, it’s derivative will be multiplied by a smooth differentiable

function that would in turn remove any discontinuities. The loss resembles the form

of functions proposed in [26] [87] but to the best of our knowledge, this is the first
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3.5 Experiments

time it has been adapted for any image segmentation task.

After experimentation, we found the optimal values for the hyperparameters to

be, γ = 0.1, ω = 10.0 and ε = 0.5.

3.5 Experiments

In order to create the optimal network architecture, we constructed a series of abla-

tion tests to observe the effect of the different network components on our architec-

ture. Once the optimal setting for the architecture was found, we tested the results

of the final architecture with the state of the art.

All experiments presented here were done on one Nvidia GTX 1080Ti with a

batch size of 8. The Keras [11] deep learning library with a tensorflow backend was

used for the experiments. The networks were trained using the dice coefficient loss.

We subtracted the value of the loss from 1 to get a value between [0, 1] for mathe-

matical convenience, such that the loss could converge reducing from 1 towards zero.

These hyperparameters are constant for all ablation test experiments unless stated

otherwise. Additional hyperparameters if relevant, are stated in their respective

subsections. For all experiments in the ablation study, we report the Sensitivity,

Specificity, Accuracy and Dice Loss.

3.5.1 Ablation Tests

The ablation studies (see Figure 3.4) were done keeping in mind two goals - To

observe the effects of adding and removing certain blocks from the network archi-

tecture and the best way to incorporate attention into the network architecture. We

use the ISIC 2017 [15] melanoma skin cancer segmentation dataset for these experi-

ments. The dataset contains 2000 RGB images in its training set, 150 images in its

validation set and 600 test images. The images are high resolution and of varying

sizes. The masks are 8-bit grayscale images with intensity value zero representing
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3.5 Experiments

Figure 3.4: The following figure provides a brief summary of the different ablation

studies conducted to empirically find the optimal structure for FocusNet.

the background, and intensity value 255 representing the cancer region. In terms of

preprocessing, we first resized the images to a constant 256x256 size, after which,

we scaled the value of each pixel in the input image to a value between [0, 1]. We

did not subtract the mean RGB colour from the images as it seemed to give inferior

performance. The masks were first thresholded to an intensity of 0 and 255 and

then each pixel was divided by 255 to get a binary mask. No other preprocessing

was applied for these experiments. No data augmentation was used for these exper-

iments.

The first experiment was designed to see the effectiveness of residual learning

over sequential feature extraction using generic convolutions. To this end, we trained

three networks. The first network (Net-1) had the same dual branch encoder de-

coder structure as FocusNet, but the residual blocks were replaced with convolution

operations, leaving the rest of the architecture the same, as described in Section 3.3.

The second network (Net-1-BN) was same as the first network, but we added batch

normalization before the activation functions to overcome the vanishing gradient

problem. The third network was FocusNet. The results are summarised in Table

3.1. We observed that batch normalization considerably improves the performance

of the architectures giving almost a 6% increase in the dice index.
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Method Sensitivity Specificity Accuracy Dice

Net-1 0.6738 0.9076 0.8694 0.7167

Net-1-BN 0.7189 0.9432 0.8868 0.7714

FocusNet 0.7673 0.9896 0.9214 0.8315

Table 3.1: Results for Residual Learning v/s Sequential Feature Learning. The

results are on the test set of the ISIC 2017 dataset.

3.5.1.1 Pixel-Wise Attention

The next experiment deals with the optimal combination of the pixel-wise probabil-

ity maps with the overall network architecture. Keeping the underlying FocusNet

architecture as in Section 3.3, we tried three different techniques to this end. In

the first instance, the output of the feature maps, was not passed through the sig-

moid gating function, to get a pixel-wise probability, but was directly concatenated

with the layer output (Net-Concat). In the second instance, the feature maps were

added to the intermediate layer output (Net-Add), and the final instance was the

original FocusNet gating-and-multiplication operation. The results are summarized

in Table 3.2. Adding or concatenating features directly across the two autoencoders

was not the optimal technique to pass information through the network. SE after

the residual block recalibrates the weights of the summation of the identity with the

residual, which is not optimal. Optimizing over the learnt residual gives the best

results because that is the trainable portion of the residual block.

3.5.1.2 Self-Attention Incorporation

An ablation study was also performed to test the optimal placement of the Self-

Attention module, to note the best method for feature map recalibration. This

attention module is used only in the main branch of the architecture and not in the

attention branch as the computational overhead required to recalibrate the feature

maps in the attention layer does not lead to any meaningful improvements in the
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Method Sensitivity Specificity Accuracy Dice

Net-Concat 0.7297 0.9486 0.9012 0.8031

Net-Add 0.7381 0.9637 0.9125 0.8164

FocusNet 0.7673 0.9896 0.9214 0.8315

Table 3.2: Results for different methods of pixel-wise attention incorporation. The

results are on the test set of the ISIC 2017 dataset.

overall results. The different ablation settings are shown in Figure 3.5. Initial ex-

periments worked with feature extraction followed by the attention module before

the residual block (Attend-Before-res) which performed better than recalibrating

feature maps after residual addition (Attend-After-res). The best results were ob-

tained with feature map recalibration within the residual block, both before and

after the feature extraction (FocusNet). The results for each setting are shown in

Table 3.3.

Method Sensitivity Specificity Accuracy Dice

Attend-Before-res 0.7544 0.9760 0.9184 0.8217

Attend-After-res 0.7396 0.9683 0.9145 0.8096

FocusNet 0.7673 0.9896 0.9214 0.8315

Table 3.3: Results for different self attention incorporation methods. The results

are on the test set of the ISIC 2017 dataset.

3.6 Results

We compare the results obtained using FocusNet on benchmark datasets with the

state of the art results. We show the results for our architecture here on two different

datasets - the skin cancer segmentation dataset used for the ablation studies [15],

and the lung segmentation dataset [60].
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3.6 Results

(a) SE after feature extraction.
(b) SE after residual block.

(c) SE before and after feature extraction. Most optimal setting.

Figure 3.5: Different ablation settings for SE block placement.
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3.6.1 Melanoma Segmentation

The data used here is the same as described in Section 3.5.1. The exact same train-

val-test split with the same data preparation strategy is used. We randomly zoomed

into images slightly (0% - 10%) and flipped them horizontally and vertically to in-

crease the dataset size to 6000 images.

Figure 3.6: Experimental segmentation results on the melanoma dataset. Column 1

is the input image, column 2 is the ground truth, and column 3 is the segmentation.

Table 3.4 presents our results on this dataset. We mainly compare with the

multiscale training approach presented by the [57]. In general, our results are com-

parable with the recent results on this dataset without applying any extensive pre

or post processing. Our network performs at par with the multiscaled approach
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Method SE SP AC JI DI

FCN-8s [57] 0.806 0.954 0.933 0.696 0.783

U-Net [73] 0.853 0.957 0.920 0.651 0.768

II-FCN [89] 0.841 0.984 0.929 0.699 0.794

Auto-ED [4] 0.836 0.966 0.936 0.738 0.824

Thao et al. [84] 0.6513 0.9421 0.8772 0.5065 0.6317

LIN [57] 0.855 0.974 0.934 0.753 0.839

FocusNet (ours) 0.7673 0.9896 0.9214 0.7562 0.8315

Table 3.4: Segmentation results on the test set for skin cancer detection. We extend

the table presented by [57] with a few more results [4], [84], including ours. The

results on the FCN and U-Net are reported from [57] and have been trained on data

pre-processed using their strategy but keeping the same split.

of [57]. We believe a reason for that to be the strong bias a dual branch encoding

emphasises via our architecture setting. It forces the second encoder to learn a more

robust and distinct representation of the data - one that is different from the one

learnt by the first encoder, leading to a superior latent representation. The results

obtained by our approach are visualized in Figure 3.6.

3.6.2 Whole Lung Segmentation

The lung segmentation dataset contains 2D images in .tif format with provided

ground truth segmentation maps. The images are single channel with the size of

512x512 pixels. The dataset is fairly small, containing a total of 267 images. We

applied the same augmentation strategy as we did in Section 3.6.1 to increase the

dataset size to 1700 images.

Table 3.5 shows our results on the kaggle lung segmentation dataset. We keep

these results in the evaluation to show that though this dataset is saturated by

current state of the art architecture results, we still get a better performance than

the benchmark U-Net architecture in every respect. The qualitative results for this
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3.6 Results

Figure 3.7: ROC AUC for the lung segmentation dataset.

Method SE SP AC JI

U-Net [3] 0.9696 0.9872 0.9828 0.9858

Res-U-Net [3] 0.9555 0.9945 0.9849 0.9850

RU-Net [3] 0.9734 0.9866 0.9836 0.9836

R2U-Net [3] 0.9826 0.9918 0.9897 0.9897

R2U-Net [3] 0.9832 0.9944 0.9918 0.9918

FocusNet (ours) 0.9757 0.9981 0.9932 0.9965

Table 3.5: Segmentation results on the validation set for lung segmentation dataset.

We extend the table presented by [3] with our results on the dataset.

dataset are visualized in Figure 3.8. The ROC curve can be seen in Figure 3.7.

3.6.3 Evaluating the adaptive logarithmic loss

The experiments for our loss methodology are conducted with two architectures.

We use the benchmark U-Net [73] and the attention based FocusNet. A generic

U-Net is enhanced with batch normalization, dropout and strided downsampling to

improve on it’s performance. The FocusNet architecture used is exactly the same

as in Section 3.3. We use 3 datasets that exhibit varying class imbalance for our

experiments, to study the effect of our loss on them. The ISIC 2018 skin cancer seg-

mentation dataset [22], the data science bowl 2018 cell nuclei segmentation dataset,
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3.6 Results

Figure 3.8: Results from lung segmentation. Column 1 is the input image, column

2 is the ground truth, and column 3 is the segmentation.

and the DRIVE retinal vessel segmentation dataset [21] are used. We don’t ap-

ply any preprocessing excepting resizing the images to a constant size and scaling

the pixel values between [0,1]. For the DRIVE dataset, we extract 200,000 small

patches from the images (mostly within the field of view, along with some edge

cases) to construct our dataset. The images for the ISIC 2018 dataset were resized

to 192x256, keeping with the aspect ratio of the training set. The images for the cell

nuclei segmentation task were resized to 128x128. The patches extracted from the

DRIVE dataset were of the size 48x48. The data for all experiments is divided into

a 80:20 split. To keep the evaluation fair, we do not use any augmentation strategies
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3.6 Results

ε

ω
6 8 10 12 14 16

0.3 81.43 81.48 81.51 81.59 81.90 81.67

0.5 81.97 81.57 82.43 82.24 81.58 81.07

1.0 81.78 82.11 81.84 81.73 82.21 81.96

2.0 81.75 81.99 82.18 81.58 81.71 81.63

Table 3.6: Optimizing the values of ω and ε over the corresponding Jaccard Index

(%). Values are average of 3 runs. Experiments conducted with constant γ = 0.1.

JI with baseline dice loss = 71.36. Results obtained using FocusNet.

γ 0.08 0.10 0.12 0.15 0.20 0.30

JI 81.60 82.43 81.54 81.51 80.85 80.97

Table 3.7: Optimizing the values of γ over the Jaccard Index (%). Values are average

of 3 runs. Experiments conducted with constant values of ω = 10, ε = 0.5. JI with

baseline dice loss = 71.36. Results obtained using FocusNet.

as different augmentations can effect performances differently.

We apply a grid search style strategy to find the optimal hyperparameters of our

loss, where we first run some initial tests to see the behaviour of the loss given some

hyperparameters, and then tune them. Initially, we set γ = 0.1 and tuned the values

of ω and ε to their optimal settings. Then we use the empirically estimated ω and ε

to find the optimal value for γ. The values obtained are shown in Table 3.6 and 3.7.

From the tables we can see that the loss isn’t affected adversely by changes in ω or ε,

but even small changes in γ can cause significant changes in the loss value. This

is graphically verified via the derivative of the loss in Figure 3.3 where we can see

that for small values of γ, the penalty for getting a prediction wrong is a lot larger

as the derivative of the logarithmic function shows a highly non linear response for

small γ values.
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Figure 3.9: The ROC curves for the ISIC 2018 skin cancer segmentation dataset.

Our loss has a better Area Under the ROC curve than the baseline. The curves are

plotted for the best performing models for our experiments on this task.

All experiments were run using Keras with a tensorflow backend. Adam with a

learning rate of 1e-4 was used. A constant batch size of 16 was used throughout. The

experiments were run for a maximum of 50 epochs. To evaluate the performance of

our loss, we compute the intersection over union (IoU) overlap, recall, specificity, F-

measure and the area under the receiver operator characteristics curve (AUC-ROC)

of the corresponding network predictions trained on various loss function.

3.6.4 Improving FocusNet with the adaptive logarithmic

loss

We compare the performance of our loss (Table 3.8) with the jaccard loss (JL), dice

loss (DL), tversky loss (TL) [75], focal loss (FL) [24] and the combo loss (CL) [23].

The ISIC 2018 dataset shows the least imbalance and hence the results are fairly

71



3.6 Results

Figure 3.10: The ROC curves for the Data Science Bowl 2018 cell nuclei segmen-

tation dataset. It can be seen that when the imbalance is high, our loss provides

a much more robust and significant Area Under the ROC curve than the baseline,

demonstrating a superior convergence. The curves are plotted for the best perform-

ing models from our experiments on this task.

even for this dataset, though our loss does manage to get the best in class IoU.

This is also exhibited in Figure 3.9 where we plot the ROC curves. Focusnet with

the ALL gets the best area under the curve. Overall, Focusnet even with the dice

loss, gets a fairly competitive AUC score compared to the U-Net with the ALL loss.

We also compared Focusnet trained with the ALL against the recently proposed

focal tversky loss [2] for the ISIC 2018 dataset. We used the same train-test split

as their implementation based on their open sourced github code and averaged our

results over 3 runs to report our results. Our loss outperforms their architecture

trained on their loss by 1.53 % on the dice index. We also report a better precision

and recall than their methodology. The results for this experiment are shown in

Table 3.9. The nuclei segmentation dataset exhibits more class imbalance, and it
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is in such cases where our loss shows significantly superior performance compared

to all the other losses. We get significant gains over the baseline AUC as shown

in Figure 3.10 and FocusNet with the ALL loss has a 8.1% more AUC coverage

than the U-Net with the same loss. FocusNet with just the dice loss suffers from

poor convergence and does not get competitive results. We do not compare the

DRIVE dataset by the AUC or accuracy as these metrics are fairly saturated for

this dataset and don’t offer any statistically significant insights. It is interesting to

note that we do get an improved F-measure score and the best in class IoU, which

given the large number of patches extracted, is statistically significant. Overall, our

loss shows significantly better performance than the baseline dice loss for all three

datasets, which means that it manages to optimize the loss to a significantly better

minimum on the loss landscape leading to a more optimal solution. In all cases,

the trend shown by our loss is to converge to within delta of the optimal solution

and then refine the convergences using the adaptive strategy. Without the adaptive

strategy, our loss often gets stuck in local minimum, which reiterates the importance

of having such a piecewise continuous loss. The other loss functions (especially dice

loss) exhibit slightly unstable convergence and also take longer to reach within delta

of the optimal solution. We observed that our loss always converged faster than JL,

DL, TL and CL. FL convergence is at par with our loss, while TL converges more

smoothly. We verify this visually by plotting the behaviour of the losses against the

number of epochs (see Figure 3.11).
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3.7 Limitations of FocusNet

Method Dice Precision Recall

U-Net (FTL) [2] 82.92 79.74 92.61

Att-U-Net+M+D (FTL) [2] 85.61 85.82 89.71

FocusNet (ALL) 87.14 88.11 90.47

Table 3.9: Experiments run for the ISIC 2018 dataset training-validation-test split

in [2]. Our reported values (in %) are averaged over 3 runs. ’M’ denotes Multi Scale

Input. ’D’ denotes deep supervision.

Figure 3.11: Comparing the influence of different loss functions on FocusNet. The

plot shows the validation Jaccard Index on the ISIC 2018 dataset vs the number of

epochs.

3.7 Limitations of FocusNet

FocusNet’s strength mainly lies in it’s robust attention mechanism and superior

data encoding. And though it performs well and gets accurate results across various

datasets, it does have some inherent drawbacks. Evaluating FocusNet on the ISIC

2017 dataset, we noted two main drawbacks about the architecture. First, in order

to obtain attention maps, however accurate they are, FocusNet employs an entire

convolutional autoencoder to this task. This does lead to performance gains, but
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Figure 3.12: The following figure shows the output of the activation maps after the

first FocusNet style attention block from Figure 3.2 and the corresponding decoded

output.

it also leads to an increased number of parameters in the network. The architec-

ture is robust enough as a little over half the parameters are actually contributing

to the segmentation task, and yet it achieves competitive results, but we need to

think of a new method to use our attention mechanism with fewer parameters. The

visualization of the activation maps following the self attention mechanism after the

first residual block in the architecture are shown along with some decoded outputs

in Figure 3.12. It can be seen that the attention mechanism works well even with

extreme changes in illumination and localizes the cancerous region well. The decod-

ing on the other hand lets the architecture performance down. Hence, we believe a

future step for this research is, keeping the same attention mechanism, we need to

construct a better decoding scheme to handle such edge cases. Further, we would
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like to embody the same attention scheme with fewer parameters.

3.8 Summary

In this chapter, we proposed an attention based fully convolutional network, Focus-

Net that uses a dual branch encoder-decoder structure to create effective encodings

of images into latent representations using a fairly robust attention mechanism. We

showed a series of ablation studies demonstrating that the architecture setting and

attention mechanism are in-fact placed in a way to exploit maximum performance

from this architecture. FocusNet outperforms other methods on the tasks of skin

cancer regimentation and whole lung segmentation, but like any other architecture

calls for the need of a better loss to handle class imbalance between segmented

pixels. To tackle this problem, we propose an adaptive logarithmic loss. We show

that the derivative of this loss shows a highly non linear response for small values

of the loss, which means it penalizes the loss more for getting a pixel wrong from

an undersampled class. FocusNet with the adaptive logarithmic loss show state of

the art results across the ISIC 2018, nuclei segmentation and the DRIVE retinal

blood vessel segmentation datasets, as well as show better results than the Atten-

tion U-Net trained with the focal tversky loss. We then address the shortcomings

of our architecture and highlight that though our attention mechanism works well

under varying illumination conditions, our constructed decoder needs improvement.

Along with this, we pose the question, whether a smarter methodology for atten-

tion incorporation is possible keeping the same focusNet style attention mechanism,

which we know works well, preferably one that does not use too many parameters.
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Chapter 4

FocusNetAlpha

4.1 Introduction

Given that convolutional neural networks extract features via learning convolution

kernels, it makes sense to design better kernels which can in turn lead to better

feature extraction. Learning better feature extractors is the most important task a

network can do, especially for attention based architectures, as the attention mech-

anisms are learnt over features extracted via convolutions. Hence, the better the

feature, the better the output. Recent research has placed a lot of emphasis on

optimizing convolutions, and in-turn learning better feature extractors, but until

very recently, a very important technique went unnoticed. The Alexnet [53] archi-

tecture, due to memory constraints, divided their convolution kernels in each layers

on two different GPUs. This resulted in an interesting effect where each kernel on a

particular GPU learnt an explicit feature type. For the first convolutional layer, the

kernels on one GPU learnt grayscale edge features, while the kernels on the second

GPU learnt only colour specific information. This led to the initial empirical re-

sults showing the affect of grouping convolutions in convolutional neural networks.

Filter groups learn a sparsely correlated set of features in each group, where each

group learns a specific distinct feature of the input volume [96]. Even though filter

grouping has shown promising improvements in the accuracy obtained by CNNs

for various tasks, their use in state-of-the-art approaches is at a very early stage.

There are a lot of unanswered questions in research involving filter grouping. We
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4.1 Introduction

focus on the two which we consider are the most important - 1) No research to date

incorporates attention mechanisms inside filter groups, and 2) Existing research has

no grounding work that shows the best way to combine information learnt in each

group. This is an important step as filter groups in their most basic form do not

interact with each other. In architectures that propose to have certain cross talk

between these groups, they define a fixed permutation of the groups rather than

learning the best way to combine the information together.

To this end, we propose FocusNetAlpha, a deep learning architecture for medical

image segmentation, that harnesses the power of grouped convolutions and combines

it with a FocusNet style attention mechanism to get a better performance than Fo-

cusNet, with less than half the number of parameters. We enhance the decoding

using fine grained information from each decoder scale which helps improve the net-

work’s decoding ability. We show that instead of using a single permutation to aid

filter group interaction, such as proposed in techniques like ShuffleNet [98] and IGC-

Net [97], creating an embedding using a shared weighted function learns to embed

the features into a space invariant to all possible permutations of the feature maps.

We compare with state of the art architectures, namely, Wide UNet, UNet++, R2U-

Net, Attention U-Net, BCDU-Net and FocusNet architectures and outperform them

all.

The rest of the chapter is organized as follows. Section 4.2 proposes the overview

of our architecture. Section 4.2.1 describes our novel residual group attention block

and its working. We the define a hybrid loss for our problem in Section 4.3. Section

4.4 summarizes our experiments which contain the ablation studies (Section 4.4.2)

conducted for our architecture. We present our results on three benchmark datasets

in Section 4.5. We provide a critique of our architecture in terms of model perfor-

mance and complexity in Section 4.6. We finally conclude the chapter in Section

4.7.
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4.2 Network Architecture

Figure 4.1: The figure shows the architecture diagram for FocusNetAlpha. The

input image is processed by a series of residual group attention-max pooling blocks

into a bottleneck and then decoded into a segmentation masks.

4.2 Network Architecture

The encoder decoder structure of FocusNetAlpha works like any convolutional au-

toencoder should. The input is processed by an encoder into a bottleneck, which is

then decoded into an output segmentation mask by the decoder. The main building

block of our architecture is the residual group attention block (see Section 4.2.1)

that employs our novel attention methodology inside group convolutions for effec-

tive feature extraction. We address the problem of the relatively inferior decoding

ability of FocusNet in FocusNetAlpha. We do this by creating a scheme that com-

bines the output from each decoder scale to the final output which leads to superior

performance. The output from each scale passes through a conv-bn-LeakyReLU-

conv-sigmoid operation to give intermediate outputs which are upsampled if needed

to the output size, and then concatenated together. The concatenated volume is

then passed through a conv-bn-LeakyReLU-conv-sigmoid block to get the final out-

put segmentation map. Downsampling in our architecture is done using the max

pooling operation. We add skip connections from the encoder to the decoder rather

than concatenating them. We upsample via repeating values in a kernel from a lower
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4.2 Network Architecture

Figure 4.2: Our novel residual block that first employs pixelwise attention inside

filter groups, followed by combining the groups via a permutation invariant embed-

ding. The squeeze and excitation block then recalibrates the feature maps which is

followed by the residual mapping.

scale into a upsampled scale and letting convolutions learn their correct values. We

use dropout in the bottleneck layer with a rate of 0.5. The receptive field of the first

convolution kernel is 5x5. Following that, all convolutions kernels have a receptive

field of 3x3 when they’re used for feature extraction, and 1x1 when they are used

to learn attention weights (preceding the sigmoid gating). The architecture can be

visualized in Figure 4.1.

4.2.1 Residual group attention block

The residual group attention block is shown in Figure 4.2. The input to the block

is a feature volume that is processed by a 1× 1 convolution operation. The general
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4.2 Network Architecture

form of the identity mapping is

M = {ri=1Pi(x)

where M is the output of the residual block, { denotes concatenation, and Pi(x) is

some transformation learnt by r separate stackings of trainable neurons transforming

some input x. Here, r = 4, as we divide this input features into groups of 4,

to be processed by 4 separate convolution groups. Each group, alternatively, is

responsible for learning the attention weights for the group to it’s right, and the

next group learns the features that need to be extracted. The attention weights for

each attention group are obtained via two bn-LeakyReLU-conv operations followed

by a conv-sigmoid operation to get the per pixel probabilities. Each attention group

transforms its input in the form

Ar = σ(Wa, δ(xr,Wk))

Here Wk and Wa are the convolution weights and the attention weights respectively.

xr is the rth group that is input into this block, and δ denotes the leakyReLU

activation. The structure of this block is shown in Figure 4.3b. The residual block

contains two bn-LeakyReLU-conv operations followed by a skip connection which

adds the features from the previous step to the residual block features. If the residual

mapping is given by

Or = xr + F (xr)

then the network learns this F (xr) using some weights Wk as F (xr) = δ(xr,Wk).

The block is shown in Figure 4.3a. The output from the residual block is multiplied

pointwise with the output from the attention block as A = Ar

⊙
Or, weighting

the pixels with a higher importance more prominently. the
⊙

here denotes the

hadamard product. The attention infused output for each group propagates further

in the block and is convolved with a convolution block with a 1×1 receptive field and

twice the number of filters. These intermediate filter maps are then concatenated

together and passed through a final 1 × 1 convolution. The feature maps are then

recalibrated using a squeeze and excitation operation which is followed by a residual

connection.
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4.3 Hybrid adaptive logarithmic loss

(a) Residual block (b) Attention block

Figure 4.3: Different components of our group attention block.

4.3 Hybrid adaptive logarithmic loss

Accuracy alone is not a good measure of a network’s performance. Hence, we try

to create a loss in such a way, that we can optimise various metrics at the same

time. Importantly, we want a network that can predict true positive as efficiently as

possible, and reduce their mis-classifications. This effectively translates to having

a high recall. In order to optimize our architecture to have better recall, we adapt

the balanced cross entropy loss with the tversky loss in a novel way to create our

hybrid loss function. The loss is defined as, HL = (k)BaCE + (1− k)TL, where,

BaCE = Ωp log(p̂) + (1− Ω)(1− p) log(1− p̂)

TL =
∑

c(1 − TI) where the subscript indicates a summation over the number of

classes c and,

TI =
|G ∩ P |

|G ∩ P |+ α|P\G|+ β|G\P |
To create a higher emphasis on the true positives, we select Ω = 0.7. Generally,

α = 0.3, β = 0.7 works as the most optimal setting in TL, adding higher weights

to optimize over false positives and false negatives, so we stick with those hyperpa-

rameter values. We weight the influence of both losses equally by setting k=0.5. In
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order to optimize over a loss, we use a function whose derivative gives a non linear

response closer to the global minimum. Hence, to mitigate the problem of pixel class

imbalance and poor convergence to the minimum, we use the adaptive logarithmic

loss for our problem. The loss is defined as,

ALL−HL(x) =

 ω ln(1 + |HL|
ε

) |HL| < γ

|HL| − C otherwise
(4.1)

where C = γ − ω ln(1 + (γ
ε
). We observe that the default hyperparameters of this

loss work as the optimal ones for our experiments. Hence, we set γ = 0.1, ω =

10.0 and ε = 0.5.

4.4 Experiments

In this section, we conduct a series of ablation tests to test the effect of each com-

ponent on our architecture. We also compare against the various resnet variants to

show that our residual block results in superior feature extraction compared to the

different residual blocks that have been previously proposed.

4.4.1 Hybrid adaptive logarithmic loss vs hybrid loss

We compare the Adaptive logarithmic loss with our hybrid function formulation

(ALL-HL), with the vanilla hybrid loss (HL). We run two experiments to this end

the results for which are shown in Table 4.1. The ISIC 2017 dataset is used for this

experiment which is described in Section 4.4.2. In the result, particular interest to

us is the value of the recall that we are effectively optimizing over by weighting our

true positives higher. Our loss improves the recall by 1.85% which in turn gives a

higher dice index. We use the ALL-HL for all our experiments henceforth.

4.4.2 Ablation study

Our ablation studies test the influence of the different components of the blocks

in our architecture. We remove certain components without replacement and check

how it affects network performance. The component is then added back, and another
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Method Precision Recall Accuracy DI JI F1

FocusNetAlpha (HL) 0.7921 0.8037 0.0.9276 0.8214 0.7631 0.8262

FocusNetAlpha (ALL-HL) 0.8002 0.8222 0.9349 0.8404 0.7817 0.8336

Table 4.1: ALL-HL gives better results compared to HL. Dataset used is ISIC 2017.

is removed to see the contribution of the other block on the network performance.

All experiments in our ablation experiments are conducted on the ISIC 2017 skin

cancer segmentation dataset. We use the same preprocessing, train-val-test split

and augmentation strategy as FocusNet in order to have a valid comparison with

the architecture.

We start with comparing the performance of our decoder with a standard de-

coder, that just upsamples the bottleneck without any multiscale refinement (Fo-

cusNetAlpha - multiscale decoder), in the style of the U-Net decoder, but with

our group attention block. The rest of the blocks in the architecture remain the

same. We then dive deeper into our group attention block where we replace all filter

groups with a residual attention block, computing features, and attention weights

inside the same block (FocusNetAlpha + ResAttention). The structure of this block

is the same as Figure 4.3a. The difference is that the feature extraction is followed

by a conv-sigmoid block and multiplied with the skip connection. The same skip

connection is also added to the attention scaled value in parallel. Our final study

deals with concatenating the features of a group depthwise with the features of

the group to its left (FocusNetAlpha + ConcatHorizontal). This means using only

residual blocks inside groups which are concatenated with the groups to the right,

instead of multiplying as in our proposed block.

Our experiments show that the multiscale decoding helps improve performance

of the architecture. Combining feature extraction with attention in a single block

has a degrading effect on the performance which we believe happens due to the

lack of features extracted in the blocks. Horizontal concatenation gives comparable
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performance with our methodology, though it does not improve the recall sufficiently

to be looked into further.

Method Recall DI JI

FocusNetAlpha - multiscale decoder 0.8111 0.8357 0.7712

FocusNetAlpha + ResAttention 0.7936 0.8167 0.7591

FocusNetAlpha + ConcatHorizontal 0.8118 0.8352 0.7741

FocusnetAlpha 0.8222 0.8404 0.7817

Table 4.2: Ablation studies on FocusNetAlpha using the ISIC 2017 dataset.

4.4.3 Permutation invariance vs channel shuffle

Combining information from the different filter groups into one feature is an active

area of research and many techniques have been proposed in the past that fix permu-

tation matrices to aid channel interaction. The most prominent of these techniques

is ShuffleNet that proposes a fixed permutation across the different channels so that

a different combinations of channels learnt in different filter groups is propagated

forward. We compare our methodology with ShuffleNet as it is the current state of

the art in combining filter group information. A 1D convolution operation shares

weights across it’s kernels, hence mapping the different filter groups on to a sym-

metric function. This embedding created is invariant to all permutation of the filter

groups. Hence, we hypothesise that a permutation invariant embedding such as that

created by a 1D convolution, will always outperform hand crafting permutations via

a channel shuffle. This concept has found great success in creating permutation

invariant representations of 3D data in the recent past [68] and is the technique

incorporated in resneXt combine filter groups. We run two different networks to

this end, where one is FocusNetAlpha, and the other is the same architecture, but

with the 1 × 1 convolution before the SE block changed to the shuffle block from

ShuffleNet (FocusNetAlpha + channel shuffle (CS)). The results are shown in Ta-

ble 4.3. It can be seen that defining fixed permutations considerably decreases the
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performance of the network versus learning a permutation invariant mapping. The

jaccard and dice index degrade considerably, and the recall is also affected.

Method Precision Recall Accuracy DI JI F1

FocusNetAlpha + CS 0.7844 0.7991 0.9214 0.8169 0.7612 0.8184

FocusNetAlpha 0.8002 0.8222 0.9349 0.8404 0.7817 0.8336

Table 4.3: Permutation invariance vs channel shhuffle in FocusNetAlpha on the ISIC

2017 dataset.

4.4.4 Comparison with resnet variants

Our next series of experiments observe the influence of residual blocks on our net-

work architecture. We train 5 different architectures to this end. The first is the

generic identity mapping [34] proposed in the initial resnet paper. This is followed by

the no bottleneck full preactivation mapping [35] . We then train two architectures

using the ResNext group convolution blocks and ResneXt + Squeeze and excitation

group convolution blocks. All residual blocks listed are placed in the FocusNetAlpha

architecture and the results are observed. The results are summarized in Table 4.4.

We observe that for such shallow encoding decoding schemes with just a few layers,

there is only a marginal increase in performance from the basic residual block to the

identity mapping block. ResneXt group convolution block has a marginally better

recall than when combined with squeeze and excitation. We believe it to be due

to the global attention mechanism squeeze and excitation incorporates, suppressing

entire channels of information that. Pointwise attention combined with squeeze and

excitation gives a superior recall and fixes this problem, which is what FocusNetAl-

pha does. FocusNetAlpha achieves a significantly better dice score as well as F1

score compared to other blocks which leads us to believe that it handles the true

positives and false negatives better than the other techniques.
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Method Recall Accuracy DI JI F1

Basic residual block 0.7519 0.9176 0.8023 0.7261 0.8009

Identiy mapping block 0.7576 0.9186 0.8034 0.7281 0.8012

ResneXt group convolution block 0.8145 0.9276 0.8214 0.7689 0.8196

ResneXt + SE 0.8123 0.9311 0.8206 0.7761 0.8229

FocusnetAlpha 0.8222 0.9349 0.8404 0.7817 0.8336

Focusnet 0.7673 0.9214 0.8315 0.7562 0.8191

Table 4.4: Comparing with different residual blocks on ISIC 2017 dataset.

4.5 Results

To show the superior performance of FocusNetAlpha, we compare how it fairs on 3

different benchmark datasets against state of the art network architectures. For all

the listed experiments, the train-val-test split is constant and no data augmentation

is used. As a preprocessing step, we scale all pixel values to fall between [0,1]. Our

initial experiments suggest that mean pixel subtraction worsens the performance of

the networks, so we choose not to use it as a preprocessing step. We convert the

segmentation mask to binary by setting every pixel above the threshold of 0.5 to 1.

Training

All our experiments are trained with the adaptive logarithmic loss using our hybrid

loss (ALL-HL) strategy. The experiments are conducted in keras using a tensorflow

backend. The batch size for all experiments is kept constant at 8. 1 Nvidia GTX

1080Ti is used to train the FCN, U-Net, Wide U-Net, Attention U-Net, UNet++,

R2U-Net and FocusNetAlpha architectures. BCDU-Net and FocusNet are trained

on 2 Nvidia GTX 1080Tis.

We have optimized every architecture trained for these experiments by first run-

ning them with different learning rates to see their behaviour, and then creating a

customized learning rate schedule for each experiment, for each architecture. All
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architectures were trained for a maximum of 50 epochs and the best model weights

were saved by monitoring the validation loss. No early stopping was used.

4.5.1 ISIC 2018 segmentation

The ISIC 2018 skin cancer segmentation has become a major benchmark dataset for

the evaluation of medical imaging algorithms. We use the 2594 images with corre-

sponding ground truths localizing lesions on skin images containing melanoma. We

divide these images into a training set of 1815 images, a validation set of 259 images,

and the rest of the 520 images. The images are preprocessed as described earlier.

The images in the dataset are 700× 900 in dimension. We resize every images to a

smaller 256 × 256 size, via an antialising downsampling technique, to be processed

by the networks.

Table 4.5 summarizes our results for the experiments. FocusNetAlpha outper-

forms every architecture across all metrics significantly for the dataset with con-

siderably fewer parameters and FLOPs (see Section 4.6). The ROC curves for the

architectures are shown in Figure 4.4. We defined an accuracy threshold and sam-

pled images higher and lower than the threshold to visualize our predictions and

qualitatively evaluate the performance of our network. Figure 4.6 shows the results

which FocusNetAlpha found easy to segment. Figure 4.7 shows the more challenging

results. Even on the more challenging set of images, it can be seen that FocusNetAl-

pha (column 5) performs significantly better than Attention U-Net (column 3) and

FocusNet (column 4). It is useful to note that one of the problems with FocusNet

was its decoding ability which FocusNetAlpha aims to fix. It can be seen that, our

improvement performs better than FocusNet to this end. The validation dice index,

validation jaccard index and validation loss plots are shown in Figure 4.5.

4.5.2 Cell nuclei segmentation

We now shift our focus to segmentation of smaller regions inside images. For this,

we use the cell nuclei segmentation dataset which was a part of the Data Science
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(a) The ROC curves for different archi-

tectures on ISIC 2018 dataset.

(b) The same ROC curves zoomed in top

left for better viewing.

Figure 4.4: Receiver operator characteristics (ROC) curves for the ISIC 2018 dataset.

Bowl 2018. It contains 670 images which we divided into a training set of 540

and a validation set of 130. We resize all images to 256 × 256 using the same anti

aliasing technique as we used for the ISIC 2018 dataset. For this task, we test the

performance of our architecture by reducing the number of parameters (by reducing

the number of filters per layer) for it in a way that it has less than 1 million FLOPs.

We call this lightweight architecture FocusNet-α-Lite. We also reduced the number

of parameters for the other architectures to account for the smaller size of this dataset

so that we don’t overfit on it. Our results are summarized in Table 4.6. We get results

competitive with BCDU-Net even though we use lesser parameters and FLOPs than

the architecture. It should be noted that without the constraint we set on our

model to be under 1 million FLOPs, we outperform all existing architectures with a

slightly ’bigger’ version of FocusNet-α-Lite which contains 2.32 million parameters

and 1.2 million FLOPs. Figures 4.11 and 4.10 show the qualitative results, validating

FocusNetAlpha’s competitive performance compared to BCDU-Net and FocusNet,

and superior performance compared to Attention U-Net. The validation dice index,

validation jaccard index and validation loss plots are shown in Figure 4.9.

4.5.3 Retinal blood vessel segmentation

For the third task, we see the effect of our architecture on fine grained pixel seg-

mentation. We use the DRIVE retinal vessel segmentation dataset for this task.
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(a) Validation Dice Index vs Epochs on

ISIC 2018.

(b) Validation Jaccard Index vs Epochs

on ISIC 2018.

(c) Validation Loss (ALL-HL) vs Epochs on ISIC 2018.

Figure 4.5: Visualizing the different validation curves on ISIC 2018.

The dataset is small and contains 40 high resolution images. But given the fine

grained analysis needed for it, we can sample smaller patches from the images to be

processed by the networks. We sample 200000 patches around the field of view of

the fundus images, from which we use 170000 for training and 30000 for validation.

The extracted patches are of size 64 × 64. Mean colour subtraction is applied to

the images as initial experiments showed that it boosts performance for this task.

Table 4.7 summarizes our results. The DRIVE dataset is fairly saturated in terms

of accuracy and ROC-AUC as it’s metrics. Hence, we compare the results based

on the recall, F1 score and the jaccard index. FocusNetAlpha outperforms every
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Method Precision Recall Accuracy DI JI F1

FCN [79] 0.7176 0.8966 0.9011 0.7861 0.7013 0.7832

U-Net [73] 0.7398 0.9043 0.9187 0.8167 0.7268 0.8004

Wide UNet [101] 0.7439 0.9167 0.9234 0.8224 0.7334 0.8039

R2U-Net [3] 0.7381 0.9122 0.9172 0.8271 0.7511 0.8097

BCU-Net [6] 0.7576 0.9272 0.9337 0.8637 0.7665 0.8138

UNet++ [101] 0.7516 0.8889 0.9249 0.8437 0.7435 0.8145

Attention U-Net [63] 0.7526 0.9286 0.9330 0.8741 0.7813 0.8214

FocusNet 0.7805 0.9328 0.9395 0.8676 0.7751 0.8499

FocusNetAlpha 0.8322 0.9471 0.9447 0.9014 0.8271 0.8717

Table 4.5: Segmentation results on ISIC 2018 dataset. The results in bold are the

best results obtained on the dataset. FocusNetALpha outperforms every architec-

ture with fewer parameters and FLOPs.

architecture across all three metrics significantly. The results are on a dataset of size

30000, which shows that our architecture is significantly better across segmenting

true positives and true negatives correctly than the rest of the architectures.

4.6 Model efficiency

We compare the trade off between performance and efficiency for our model in this

section. We focus on the ISIC 2018 dataset for FocusNetAlpha (see Table 4.8), and

on the nuclei segmentation dataset for FocusNet-α-Lite (see Table 4.9). It can be

seen that FocusNetAlpha outperforms every architecture in terms of having the low-

est number of parameters and floating point operations (multiplications, additions,

subtractions etc). In terms of benchmark evaluation metrics, we observe a consider-

able increase in performance compared to the state of the art. FocusNet-α-Lite gets

extremely competitive results with an architecture that has almost 2.5 times more

parameters than it’s nearest competitor (BCDU-Net), which it achieves with over

10 times less FLOPs. The only real concern is the amount of time our architecture
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Figure 4.6: ISIC 2018 good segmentation results. From left, column 1 is the input

image, column 2 is the ground truth and columns 3, 4 and 5 are the outputs of

Attention U-Net, FocusNet and FocusNetAlpha respectively.

takes for a forward pass during inference. It is the slowest compared to the other

architectures. But this is effectively just a technology bottleneck. Convolution op-

erations on GPUs run on a CUDNN backbone which work on a principle of model

and data parallelism. Current technology implements data parallelism efficiently

into GPUs due to which deep learning is now a reality. But to date, open source

CUDA C/C++ kernels do not exist that can speed up group convolutions across

any existing deep learning framework as group convolutions are till a very young

and active area of research. Frameworks such as PyTorch have tried speeding up the

inference time of group convolutions, so we can expect faster inference times in that
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Figure 4.7: ISIC 2018 bad segmentation results. From left, column 1 is the input

image, column 2 is the ground truth and columns 3, 4 and 5 are the outputs of At-

tention U-Net, FocusNet and FocusNetAlpha respectively. FocusNetAlpha provides

better segmentation results even under challenging scenarios.

framework, but it still remains slow compared to generic convolutions which have

highly efficient CUDNN backends. Due to this reason, our forward pass inference is

slow. But as the technology catches up with the research, we expect the inference

time for our model to be lower too.
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(a) Cell nuclei segmentation ROC

curves.

(b) Same ROC curves zoomed in top

left.

Figure 4.8: Receiver operator characteristics (ROC) curves for the cell nuclei seg-

mentation dataset.

(a) Validation Dice Index vs Epochs on

the cell nuclei segmentation dataset.

(b) Validation Jaccard Index vs Epochs

on the cell nuclei segmentation dataset.

(c) Validation Loss (ALL-HL) vs Epochs on the cell nuclei segmentation

dataset.

Figure 4.9: Visualizing the different validation curves on the cell nuclei segmentation

dataset.
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Method Precision Recall Accuracy F1 DI JI

U-Net [73] 0.8976 0.9052 0.9604 0.8994 0.9075 0.8310

BCU-Net [6] 0.9024 0.9078 0.9728 0.9101 0.9129 0.8410

Attention U-Net [63] 0.8782 0.9019 0.9672 0.8899 0.8876 0.7984

FocusNet 0.9016 0.8981 0.9697 0.8998 0.8961 0.8176

FocusNet-α-Lite 0.9173 0.9139 0.9768 0.9106 0.9077 0.8386

Table 4.6: Segmentation results on the data science bowl 2018 dataset. The results

in bold are the best results obtained on the dataset.

Method Recall F1 JI

U-Net [73] 0.7614 0.7898 0.7219

BCDU-Net [6] 0.7991 0.8165 0.7503

Attention U-Net [63] 0.7861 0.8033 0.7517

FocusNet 0.7892 0.8097 0.7498

FocusNetAlpha 0.8288 0.8306 0.7854

Table 4.7: Segmentation results on the DRIVE retinal blood vessel segmentation

dataset.
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Figure 4.10: Cell nuclei segmentation good segmentation results. From left, column

1 is the input image, column 2 is the ground truth and columns 3, 4, 5 and 6 are the

outputs of BCDU-Net, Attention U-Net, FocusNet and FocusNetAlpha respectively.
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Figure 4.11: Cell nuclei segmentation bad segmentation results. From left, column

1 is the input image, column 2 is the ground truth and columns 3, 4, 5 and 6 are the

outputs of BCDU-Net, Attention U-Net, FocusNet and FocusNetAlpha respectively.
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4.7 Summary

4.7 Summary

In this chapter we presented FocusNetAlpha which builds on the pros of Focus-

Net and successfully eliminates it’s cons. We highlighted the main drawbacks of

FocusNet to be it’s large number of parameters, and inadequate decoding. To elim-

inate these faults, we combined the FocusNet style attention mechanism with group

convolutions which gets rid of the entire autoencoder branch in FocusNet that was

required to extract pixelwise attention maps. We proposed a novel residual group

attention block that forms the main building block of FocusNetAlpha and showed

that 1x1 convolutions in these blocks are actually functions learning a permutation

invariant mapping of the groups in a feature space that is of dimensions equal to

the number of filters of the 1x1 convolution kernel. We compared the results of our

methodology with state of the art deep learning architectures proposed for medi-

cal image segmentation and comprehensively beat the state of the art across every

benchmark metric. We then shifted our attention towards lightweight segmentation,

for which we proposed FocusNet-α-Lite, which gets competitive performance with

the state of the art with 2.5 times less parameters and 10 times less FLOPs. We

show that our residual group attention block performs better than the benchmark as

well as the latest major enhancements to residual learning that have been proposed

to date and can be easily used in existing deep learning architectures to boost their

performance.
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Chapter 5

SAWNet

5.1 Introduction

Even though deep neural networks have established themselves as the state of the

art methodology in almost all computer vision tasks to date, their application to

processing data lying on non-euclidean domains is still a very active area of research.

One such area is the analysis of 3D point cloud data. This task poses a special chal-

lenge for neural networks due to the lack of any specific order in which point clouds

can be arranged in. Many recent techniques have been proposed, spearheaded by

the PointNet [68] architecture as a potential solution to the problem of point cloud

analysis. PointNet maps the 3D points on to a symmetric function, thus creating an

order invariant representation of the points in the feature space. To date, proposed

techniques use either global or local information from the point clouds to extract a

latent representation for the points, which is then used for the task at hand (clas-

sification/segmentation). In this chapter, we propose a series of improvements to

the task of point cloud analysis using deep learning. We start by introducing a

novel neural network layer that combines both global and local features for every

point to in turn, produce better embeddings of these points. We observe that resid-

ual feature reuse in this setting propagates information more effectively between

the layers, and also makes the network easier to train. We employ an attention

mechanism to propagate the most important features in every embedding forward

which in turn learns the best features from both representations. We then shift our
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5.2 Motivation

attention to encoding global features for this task. To date, a simple max pooling

operation has been used to achieve this global feature vector. We propose a novel

fully differentiable attention block to create a superior global feature aggregation

that outperforms max pooling. We combine our contributions into one architecture

- SAWNet, our spatially aware deep neural network, that achieves state-of-the-art

results on the tasks of point cloud classification (ModelNet40 dataset), as well as

point cloud segmentation (ShapeNet part dataset).

The rest of this chapter is organized as follows. In Section 5.2, we establish

some background that motivates or methodology. Section 5.3 briefly describes the

SAWNet architecture, the components of which are then explained in detail in Sec-

tions 5.3.1, 5.3.2 and 5.3.3. We follow that by an extensive evaluation of SAWNet

and its components in Section 5.4 where we discuss the architectures performance

on point cloud classification (Section 5.4.1), and segmentation tasks (Section 5.4.5),

while also performing further experiments as well as ablation studies (Section 5.4.4).

We finally present our conclusions in Section 5.5.

5.2 Motivation

Given a set of points in 3D space, each point has a value, which is an x, y, z coordi-

nate value encoded as a distance from some set origin. A PointNet style approach,

encodes the x, y, z coordinates of these points into a high dimensional feature space

using a 1D convolution operation. A shared weight approach of this kind is the

equivalent of creating a symmetric function that learns all possible permutations of

the data structure, creating a permutation invariant embedding of the data. This

approach is robust to random point arrangement, and outperforms dynamic embed-

ding approaches inspired by variants of LSTM based architectures. It also works

better than sorting the points before inputting them to a fully connected layer.

Sorting is not an efficient way to create the data representation, as sorting higher

order encodings increases the computation time exponentially. PointNet introduced

a field of architecture learning where unordered data could be parsed efficiently, but
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5.2 Motivation

Figure 5.1: Point encoding via edgeconv in Dynamic Graph CNNs [88]. Given a

set number of nearest neighbours, the dependency of each point on its neighbour is

encoded by the edgeconv operation.

their approach to this technique has an inherent drawback. PointNet encodes the

global location of points based on an absolute coordinate system. This means that

every point encoding is created without any local shape information, but only using

the location of the point with respect to a set origin. Such an approach means that

PointNet fails to parse scenes and objects which are even slightly occluded as the

global encodings are extremely susceptible to such conditions.

In order to overcome the drawbacks of PointNet, many architectures have been

proposed using the principle of learning a symmetric point set encoding [93] [70], but

with a well defined neighbourhood. Such an approach encodes a point in terms of its

local coordinate system, making it a more robust encoding of order invariant data.

One such technique computes nearest neighbours of a particular and learns how the

neighbours influence the point’s position with respect to them. This approach is

presented in dynamic graph CNNs [88]. Dynamic graph CNNs use edgeconv oper-

ations (Figure 5.1) to learn how a point’s neighbours influence it. The approach

computes 20 nearest neighbours of the points based on distance, and uses a 1D con-

volution operation to learn an encoding of the point of interest with respect to these

points. The effectiveness of this technique is based on backpropagation learning this

encoding to be robust enough, encapsulating local geometric information regarding

to the data.

Thus, given a global point encoding, and a local point encoding, our central
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5.3 Network Architecture

Figure 5.2: Architecture for the classification and segmentation tasks. Our networks

contain a spatially-aware input transformer that uses SAW-layers without the fea-

ture attention module to regress a 3x3 transformation matrix to align the point

clouds. Residual connections are used throughout to learn the point embeddings.

A final global information aggregation is calculated via our novel Global Feature

Aggregation Unit. The feature is then fed into a 3 layer MLP for classification. For

segmentation, a N×r matrix is predicted, which is a point-wise prediction. The flow

of information is from left-to-right. The navy blue arrows denote residual connec-

tions. The maroon and orange arrows denote concatenation. Black arrows denote

sequential information flow. The weight shared MLPs are used with the residual

connections to match the embedding dimensions for adding the identity mapping.

principle is to investigate whether backpropagation can learn an encoding that is

superior to the two individual encodings. As the encodings at each step, have a

global and local information, we refer to it as being spatially aware of its global

information (via the global embedding), as well as local information (via the local

embedding). Once we verify the effectiveness of such an embedding, we enhance it

using an attention mechanism.
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5.3 Network Architecture

In this section, we discuss SAWNet (Figure 5.2), our architecture that introduces the

concept of spatial awareness in deep neural network based point cloud processing.

The architecture takes a N × 3 point cloud as input and outputs a class label or

a per point semantic segmentation label for it. The input is fed into a transformer

net (Section 5.3.1) that uses SAW-Layers (without attention) to regress a 3 × 3

transformation matrix for point cloud alignment. The transformation matrix is

multiplied by the points to align them. This step is crucial as real world data is

hardly ever in a normalized pose and usually requires some initial alignment. Due

to this reason, we use the unaligned version of ModelNet40 to test the classification

ability of our model rather than the aligned version. The aligned points are then

fed into a series of SAW-Layers (5.3.2) to create a permutation invariant embedding

of the points. We use residual connections to transfer information between layers.

This allows us to train deeper and more stable network architectures. For layers

where the embedding size increases, the residual mappings account for that with

a weight shared MLP (analogous to a 1D convolution) before the addition of the

previous embedding with the next. We concatenate the output of every previous

SAW-Layer before passing it into the final 1024-D SAW-Layer to get a better global

contextual symmetry aggregation. The output of the final 1024-D embedding is

then aggregated using our novel SAWNet global aggregation unit (5.7), to get a

single 1024 dimensional vector, which contains the global contextual information for

the point clouds. This information is used to classify or segment the points using a

generic multi layer perceptron. For the segmentation tasks, the output of the MLP

is reshaped to get a per point semantic segmentation.

5.3.1 Spatially Aware Transformer Net

The spatially aware transformer network contains 3 SAW-Layers (without attention)

which embed the point cloud into a 64, 128 and a 1024 dimensional space respec-

tively. The output embedding from the final layer is aggregated into a global context

(pooled) feature vector that is fed into a multi-layer perceptron with two hidden lay-
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5.3 Network Architecture

ers of size 512 and 256. The output is a final dense layer of size 9 that is reshaped

into a 3 × 3 transformation matrix, the elements of which are the learnt cropping,

rotation, scaling and skew transformation values for the point cloud. The matrix

is initialized as a 3 × 3 identity matrix so as to reproduce the input points at the

output when not trained. The parameters are then refined via end to end training

to learn the relevant transformations. For a given point cloud, the transformation

is denoted as

I t = Mθ × I =


θ1 θ2 θ3

θ4 θ5 θ6

θ7 θ8 θ9

×

X

Y

Z


Here, Mθ is the transformation matrix with parameters θi. A simple matrix multi-

plication of this matrix with the input point cloud, aligns the points in 3D space.

The architecture can be seen as a mini version of the SAW-Net architecture. We

tried different experiments to see the effectiveness of our transformer on our network

output (see Section 5.4.4). SAWNet without any alignment of input point clouds

on the ModelNet40 dataset performs inferior to even the most basic transformation

matrix that 1D convolutions can learn.

5.3.2 Spatially AWare-Layers

The building blocks of a single SAW-Layer can be seen in Figure 5.3. The figure

also shows how the information in the layer propagates to the next layer via skip

connections. Each SAW-Layer has separate global and local embeddings calculated

which are refined using our feature attention mechanism. We concatenate the fea-

tures together and pass them to the next layer. Residual connections are also used

to facilitate information flow between consecutive layers. Consider the input to the

layer to be the feature embedding from an intermediate layer. This input is then

examined globally via a point embedding mechanism, and also by computing a dy-

namic graph, based on 20 nearest neighbors, and then learning the dependency of

the neighbours on the point via the edge embedding. The point embedding opera-

tion corresponds to a PointNet style feature extraction using a weight shared MLP

(conv1D), while the edge embedding corresponds to learning the edge weights via a
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5.3 Network Architecture

Figure 5.3: Spatially AWare layer structure that is used in SAWNet.

conv1D. We use a feature attention block which is depicted in Figure 5.4 to calculate

attention weights for each individual feature embedding which are multiplied by the

embeddings to weight them. In the feature embedding block, we learn the attention

weights for each global and local feature using a weight shared autoencoder with

two dense layers. The input embeddings are first maxpooled to get a single vector

following which they are fed into the autoencoder. The first dense layer takes an

input the size of the maxpooled output. The second dense layer is the bottleneck

layer that compresses this input via some compression ratio (the ratio here is 8).

The bottleneck representation is then upsampled back to the original dimension and

passed through a sigmoid gating to get attention weights which are multipled by

the individual global and local features to weight their effect on the output. The

weighted output from the edge embedding layer is then maxpooled across the neigh-

bors, concatenated with the output from the point embedding MLP, and fed into

the next layer. Each point embedding computes an embedding using conv1D, batch

normalization (BN) and LeakyReLU as a part of its output estimation. The out-

put from the second point embedding in the SAW-Layer propagates via a residual

connection to the output of the first point embedding of the next layer. The edge

embedding has a similar structure of conv1D - BN - LeakyReLU, which are used to
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5.3 Network Architecture

Figure 5.4: Visualizing the inner workings of the feature attention block present in

every SAW-Layer.

learn edge weights.

Consider a set of points X = x1, ...xn, where xn ∈ RD. Here each point is a D di-

mensional embedding of some point cloud. These points are processed by the SAW-

Layer in the following way. The input is passed into two blocks in parallel to get the

point embedding and the edge embedding. The point embedding first applies a trans-

formation on the points, f(t) = f(x1, ...xn) = {h1(x1), ..., h1(xn)}, h : RD → RM

where M is the length of the embedding. h1 here is the shared weighted MLP.

The output of the first shared MLP layer is S1 = δ(B1(f(t))). δ is the activa-

tion function LeakyReLU and Bi is the batch normalization for the ith instance.

This output is then fed into another shared MLP - BN combination. The out-

put can be represented as, S2 = B2(h2(S1)). S2, is the global feature compu-

tation which is obtained after processing the input using the two point embed-

dings. Similarly, if e denotes the edge embedding, which computes the dependence

of a point on its k - nearest neighbours, and f(k) denotes the input in terms of

its k nearest neighbours, called the edge feature, then one pass of the input X

through conv1D-BN-LeakyReLU would give E1 = δ(Br(e1(f(k)))). Applying an-

other conv1D-BN would give E2 = Bs(e2(E1)). For a weight shared autoencoder

with weights W1 and W2, the the attention weights are computed in the following

way, Ew = sigmoid(W2, δ(W1, E2)), and Sw = sigmoid(W2, δ(W1, S2)). These are

then multiplied by the embeddings as E2 = E2 · Ew, S2 = S2 · Sw. The weighted
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5.3 Network Architecture

Figure 5.5: Average pooling and max pooling operations are passed through a weight

shared autoencoder (compression ratio = 16) followed by a sigmoid gating to give

attention weights for both poolings. The scaled outputs are added together to give

the SAWNet Global Feature Aggregation Unit.

output of the edge embedding is then maxpooled over its nearest neighbours to

match its dimensions with the point embedded output. These values are now the

same in dimension, and can be concatenated together, to form the output of the

SAW-Layer, S = [E2 : S2], where [ : ] denotes concatenation. This point embedding

is fed into the subsequent SAW-Layers.

5.3.3 Global Feature Aggregation

Existing point cloud processing architecture embed the points into a higher dimen-

sional feature space and follow up with a max pooling based global feature aggre-

gation. Given that all the information present in the embeddings is combined into

this global aggregation, it certainly demands further study to see if better encodings

can be created of the information extracted via the conv1D operations. To the best

of our knowledge, no prior work has been done to study, or modify this global fea-

ture aggregation since the inception of PointNet itself. One of the contributions of

PointNet was showing that max pooling aggregation works superior to the average
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pooling global feature aggregation. But that by no means suggests that none of the

average pooled global aggregated features are inferior and cannot contribute to the

overall network output. To this end, we propose to take the average pooled and max

pooled features and learn the attention weights to scale their individual influences

on the output. We take the final feature embedding from the 1024-D SAW-Layer

and simultaneously max pool and average pool them to obtain two vectored repre-

sentations. These representations are both fed into a shared weighted autoencoder

similar to the one in Figure 5.4 with a compression ratio 16, the output of which is

passed through a sigmoid gating to get probabilities for both aggregations. These

probabilities are then multiplied with their respective pooling operations and the

scaled outputs are added together. Over the epochs, the network learns to suppress

the features in the embeddings that do not contribute to the output leaving the

most influential features from both global feature aggregation techniques combining

to give better results. The block is illustrated in Figure 5.5.

5.4 Evaluation

We test the performance of our network on the benchmark point cloud classification

and point cloud segmentation tasks to show its effectiveness. For each task, we

compare our results with the state of the art architectures.

5.4.1 Classification

We use the ModelNet40 dataset [90] which contains 12,311 CAD models for 40 ob-

jects in 3D. The models are man made for the 40 object categories and the dataset

is divided into a training and test split of 9,843 and 2,468 respectively. We use the

same data split for our experiments and report the results on the test set.

To demonstrate that our method improves performance over PointNet and DGCNN,

we use the same pre-processing as in their experiments. Hence, for each of the 3D

models, we sample 1024 points uniformly from the mesh faces and normalise these

points to a unit sphere. The dataset contains points as well as surface normals. We
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only consider the point cloud coordinates and discard the remaining information for

our experiments. During training, we use data augmentation to add variations in

our dataset. Random rotations and scaling are added along with per point jitter to

perturb the location of the points. This is the same strategy as was used for data

augmentation in PointNet++ [70] training.

Training

We use Tensorflow [1] for all our implementations, unless explicitly stated otherwise.

For the classification task, we use the same training setting as in PointNet [68]. Our

classification network was trained using a batch size of 8, on one Nvidia GTX 1080

Ti and categorical cross entropy loss. We use Adam [49] with a learning rate of

0.001, which is reduced using a decay parameter of 0.7. The decay rate for batch

normalization is 0.9. We train our model for 250 epochs.

Results

Our results are summarised in Table 5.1. The table shows the results for all archi-

tectures with their classification results using the (x,y,z) coordinates. All networks

shown in the table are trained on 1024 points except SO-Net, which takes twice the

number of points as its input. Our network achieves state of the art results in terms

of both class as well as instance accuracy. As our architecture is effectively built over

PointNet and DGCNN as backbone architectures, it is useful to see if our methodol-

ogy provides any incremental improvement over the two. To this end we implement

SAWNet vanilla, which does not use any attention mechanisms in the SAW-Layers,

and also aggregates global features using max pooling just like the other two. It is

an extension of PointNet and DGCNN that combines their embeddings to produce

spatially aware embeddings with no other extensions. SAWNet vanilla outperforms

PointNet’s class and instance accuracy by 3.0% and 2.6% respectively, which can

be seen as a considerable performance gain. Re-running DGCNN from the author’s

official github repository gave a class and instance accuracy of 89.2% and 91.6%

respectively. As we used that implementation as our backbone, we compare with
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Method Class Accuracy (%) Instance Accuracy

(%)

3D ShapeNets [90] 77.3 84.7

VoxNet [61] 83.0 85.9

Subvolume [69] 86.0 89.2

ECC [80] 83.2 87.4

PointNet [68] 86.0 89.2

PointNet++ [70] - 90.7

KD-Net (Depth 10) [51] 86.3 90.6

KD-Net (Depth 15) [51] 88.5 91.8

DGCNN [88] 90.2 92.2

SO-Net [55] (2048× 3) 87.3 90.9

SpiderCNN [93] - 90.5

PCNN [5] - 92.3

PointCNN [56] 88.1 92.2

SAWNet Vanilla (Ours) 90.0 91.8

SAWNet (Ours) 90.6 93.2

Table 5.1: Classification results on the ModelNet40 dataset.
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the results we obtained during our runs. We observe a 0.8% and 0.2% performance

gain over the two accuracy metrics by just combining the two embeddings which

we believe empirically justifies the need for such spatially aware point embeddings.

SAWNet itself on the other hand, outperforms every architecture that processes

points in their raw form considerably, on ModelNet40. We outperform DGCNN,

the previous state of the art, by 0.4% in terms of class accuracy and by 1% in terms

of instance accuracy. The best in class instance accuracy was previously obtained by

PCNN [5]. Our architecture outperforms their results by 0.9% with approximately

63% less number of trainable parameters.

5.4.2 Model Performance

Method Parameters

(million)

Model Size

(MB)

Inference

time (ms)

Accuracy

(%)

PointNet [68] 3.5 40 16.6 89.2

PointNet++ [70] 1.5 12 163.2 90.7

DGCNN [88] 1.9 21 27.2 92.2

PCNN [5] 8.2 94 117.0 92.3

SAWNet 2.7 41 52.3 93.2

Table 5.2: Model complexity vs performance for different architectures. Our model

provides a good trade-off between model complexity and accuracy (as reported on

the ModelNet40 dataset). Our forward pass for inference is considerably faster than

PointNet++ and PCNN approaches along with a manageable model size.

Table 5.2 shows the overall model performance of SAWNet with respect to its

model complexity. We only compare our model with officially reported values of

the architectures. SAWNet contains 2.7 million parameters which means its fairly

lightweight. It has less parameters than PointNet even though it combines embed-

dings from PointNet and DGCNN. This is due to the fact that PointNet contains an

intermediate feature transformer that computes a transformation matrix for deeper

feature embeddings in the network to account for its lack of geometric invariance

114



5.4 Evaluation

in feature space which is a drawback of global feature embeddings. As our archi-

tecture looks at local geometry, it is invariant to these transformations, and doesn’t

require an intermediate feature transformer. Our inference time is understandably

slightly slower than that of pointnet and DGCNN. But it is over 3 times faster than

pointnet++ and over 2 times faster PCNN while also being more accurate than the

two. Overall, we conclude that our model achieves a fairly good trade-off between

model complexity and performance. It is also useful to know that the inference

times depend on the type of GPUs used. We used Nivida GTX 1080Tis for all our

experiments which have lesser number of cores, compared to the Nvidia Titan X

which was used by the respective authors to run DGCNN, PointNet, PointNet++

and PCNN.

5.4.3 Further Experiments on ModelNet40

We used the ModelNet40 dataset for a series of tests to finalise our network archi-

tecture. We now discusses these experiments in detail.

Experiments with PointNet

Method Accuracy (%)

PointNet 88.8

Grouped Embeddings 89.3

Depthwise Embeddings 89.4

Residual Embeddings 90.0

Table 5.3: Experimentation with learning different embeddings for the PointNet

architecture. Results are based on our re-implementation of the architecture with

the Keras API on the ModelNet40 dataset.

We re-implemented the PointNet architecture with the aim of testing the ef-

fectiveness of the shared MLP against other methods for embedding learning. All

networks for these experiments were implemented in Keras [11].
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(a)

(b)

(c)

Figure 5.6: Different ablation setups experimented with for spatial awareness.

For the first experiment, we replaced the shared MLP layer with a grouped [38]

MLP layer, where we split the MLP into different groups within the same layer,

which forces each group to learn to give outputs independent of the other groups.

This can be seen as learning multiple shared MLPs within a single layer. Weights

are shared within the groups. In the next experiment, the shared MLP layer was

replaced by a depthwise [13] shared MLP layer. Here, we learn individual functions

for each point in the point cloud, and then use a weight-shared MLP to learn a

symmetric function over those functions. Our final experiment consisted of using

a residual mapping with the conventional shared MLP. This method gave the best

performance increase with PointNet and so we embedded this methodology into our
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final architecture. It is useful to note that the grouped MLP and the depthwise

shared MLP did offer performance increases over the current shared MLP layer as

well, but this increase in accuracy came with its own addition to computational

complexity. The residual mapping is chosen mainly due to its greater performance

increase, as well as its ease of integration into existing architectures. Table 5.3 sum-

marises our results. The reported value is the instance accuracy (Original PointNet

instance accuracy - 89.2%). The training and loss curves for these experiments can

be visualised in Figure 5.7.

Effect of nearest neighbours

Nearest Neighbours Instance Accuracy

DGCNN (%)

Instance Accuracy

SAWNet (%)

5 90.5 91.6

10 91.4 92.4

20 92.2 93.2

40 91.7 93.3

Table 5.4: Increasing the number of nearest neighbours used to compute edge fea-

tures.

We experimented with the effect of varying the number of nearest neighbours

to compute edge embeddings for our SAW-Layers with DGCNN. The accuracy of

DGCNN saturates and starts degrading after 20 nearest neighbours, but the accu-

racy of our architecture increases with the increases in the number of neighbours.

Even though there is a slight performance increase, we still restrict the number of

neighbours to 20 to keep model complexity under check. Our results are summarized

in Table 5.4.

Experimenting with spatial awareness

Certain combinations of local and global geometric properties work better than oth-

ers in terms of performance. We combined the global and local vectors at different
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Method Accuracy (%)

Combine at end 88.9

Combine per layer 89.6

Residual + Combine per layer 90.0

Residual + Combine per layer - 1 FC 63.6

Table 5.5: Search for the best method to incorporate spatial awareness in SAWNet.

Results are the values for the class accuracy on the ModelNet40 dataset.

stages in the network to test our hypotheses. As we are seeing the effect of spa-

tial awareness in these experiments, we do not use any attention mechanisms here.

Our first experiment comprised of running two parallel blocks of embeddings, each

looking at global (PointNet), and local (DGCNN) geometric properties respectively.

Global feature aggregation over the outputs of these embeddings was concatenated

to give a vector that comprised of information from both networks. This was then

fed into a 3 layer MLP for classification. We also computed, and then combined, the

global and local feature vectors per layer, and computed further embeddings based

on this combination.

The combination per layer results in a better accuracy than combining the fea-

tures at the end. This adds spatial awareness to the network, which it further uses

to compute a better embedding of the points.

We then added residual connections to this setting which further improved the

performance of the networks by 0.4% and we used this as our final architecture.

Further experiments were conducted, such as removing the fully connected layers,

but they all resulted in a drastic drop in the accuracy of the network. This leads us to

believe that the fully connected layers are an important part of the architecture. We

did try to increase the number of SAW-Layers to create a much deeper network which

does not require fully connected layers and observed that the model’s ability to learn

these point cloud processing tasks does improve with deeper layers. Unfortunately,
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this also considerably increases the training time, due to which reason we did not

proceed further with these experiments. Our results are summarized in Table 5.5.

The block diagrams to visualize these ablations are shown in Figure 5.6.

Robustness to missing points

To test how our network would do with sparse input points, we observed the degra-

dation of our network’s accuracy with respect to a small number of input points.

To drop the points we adopted the same strategy as pointnet and it’s variants. All

points with indices greater than a threshold index were dropped from the point

cloud. We ran the network for 75 epochs with the same hyperparameters as dis-

cussed in Section 5.4.1, and recorded the best test set accuracy. Surprisingly, the

accuracy of SAWNet does not degrade to a large extent, even when the number of

points input to the network drops down to 128, showing how robust our network is

to random point dropout. Figure 5.8 shows the comparison of our observation with

DGCNN. The graph on the left is the performance of our architecture, and the graph

on the right has been reproduced from the DGCNN paper [88]. The performance

of DGCNN reduces considerably when the number of points drop below 384, while

our network manages to maintain a 86.1% accuracy, even with 128 points.

5.4.4 Ablation Studies

We now shift our attention to show that the final architecture created, is in-fact the

most optimal setting of the building blocks that it comprises of. To this end, we

take each component which we believe is a contributing factor to the architecture’s

performance and remove it from the architecture to see its affect on the model’s

instance accuracy. If removing these components degrades the performance of the

architecture, it signifies that it’s presence is a contributing to its superior perfor-

mance.

We single out 4 reasons due to which we believe our architecture outperforms

state of the art. These factors are the feature attention block in the SAW-Layer, skip

connections between the layers and our global feature aggregation unit. We have al-
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Transformation Accuracy (%)

SAWNet - Feature Attention in SAW-Layer 93.0

SAWNet - Global Feature Aggregation Unit 92.8

Table 5.6: Summarising the two ablation settings experimented with.

ready shown the superiority of having spatially aware layers in Table 5.1 so we omit

it for this experiment. Further, in Section 5.4.3, we have already shown how skip

connections learn better feature representations. So we experiment with removing

the feature attention block while keeping the rest of the network as proposed, and

then changing the global feature aggregation unit with max pooling based global

aggregation, keeping the rest of the network as proposed, and report our results. In

both cases, we observe a decrease in the performance of the architecture, showing

that they are important components of our proposed architecture. The proposed

global feature aggregation unit seems play a larger effect in our networks perfor-

mance as it is responsible for almost a 0.4% increase in performance of our final

architecture. Table 5.6 summarises these results.

We also experimented with different types of aggregation functions in our Global

feature aggregation block. Our options were concatenating, max pooling, and adding

the attention scaled pooling values. Concatenating these values after attention scal-

ing performed the worst. Max pooling provided good results, but addition gave the

best results due to which we used it in our architecture. Table 5.7 summarises our

results. The accuracy and loss curves can be visualised in Figure 5.9.

We finally compared the results of our Spatially Aware transformer network to

the transformer network presented in PointNet. We observe a 0.6% performance gain

over processing point clouds unaligned, and a 0.3% performance gain over using the

PointNet transformation network using our approach. Our results are summarized

in Table 5.8.
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Method Instance Accuracy (%)

PointNet + Max Pool Aggregation 88.8

PointNet + Concatenated Aggregation 89.1

PointNet + Max Pool Attention Aggregation 89.2

PointNet + SAWNet Global Feature Aggregation Block 89.4

SAWNet + SAWNet Global Feature Aggregation Block 93.2

Table 5.7: Global feature aggregation ablations. PointNet results are based on our

Keras re-implementation that achieves 88.8% instance accuracy (Original instance

accuracy - 89.2%)

Transformation Accuracy (%)

SAWNet + Unaligned ModelNet40 (No Transformer) 92.6

SAWNet + T-Net (PointNet Input Transformer) 92.9

SAWNet + Spatially Aware T-Net (Our Contribution) 93.2

Table 5.8: Effect of input transformer on the SAWNet output.

5.4.5 Segmentation

We now compare the performance of our network with respect to the state of the art

in 3D point cloud segmentation. For this section, the architecture is the same as the

segmentation architecture shown in the bottom branch of Figure 5.2. We embed the

transformer aligned 3D points into a higher dimensional space using SAW-Layers,

and finally use our SAWNet global aggregation unit to get a point cloud statistic.

Residual connections feed information to a final layer before the global aggregation

unit were it is concatenated and processed by a single SAW-Layer. We use our

global aggregation statistic as the input into a 3 layer MLP which is then reshaped

to give the point wise segmentation result. We ran this network with a batch size

of 8 on 2 Nvidia GTX1080 Tis. We used 2048 points as input to the architecture.
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3D Part Segmentation

For this section, we use the shapenet part dataset introduced in [94]. Given a 3D

point cloud, the task at hand is to segment semantic parts of the point cloud. (Eg,

for an aeroplane, the wings, the body etc.). The dataset contains 16,881 3D models

of 16 object categories with 50 part segmentation ground truths. Table 5.9 shows

our results on the dataset. The evaluation metric for this task is the mean intersec-

tion over union (mIoU) for all the shapes in a particular category. It is computed by

averaging out the IoUs of all the different shapes belonging to each object category.

We use the official train/val/test split for consistency with other results.
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(a) PointNet + grouped point embed-

ding (accuracy vs epochs)

(b) PointNet + grouped point embed-

ding (loss vs epochs)

(c) PointNet + residual point embedding

(accuracy vs epochs)

(d) PointNet + residual point embed-

ding (loss vs epochs)

(e) PointNet (accuracy vs epochs) (f) PointNet (loss vs epochs)

(g) PointNet + grouped residual point

embedding (accuracy vs epochs)

(h) PointNet + grouped residual point

embedding (loss vs epochs)

Figure 5.7: Ablation studies with different point embeddings
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Figure 5.8: Comparing the robustness to sparse point inputs of our network with

DGCNN.

(a) PointNet + global aggregation unit

with max pooling (accuracy vs epoch)

(b) PointNet + global aggregation unit

with max pooling (loss vs epoch)

(c) PointNet + proposed global aggre-

gation unit with addition (accuracy vs

epoch)

(d) PointNet + proposed global aggrega-

tion unit with addition (loss vs epoch)

Figure 5.9: Ablation studies with different global aggregations.
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Figure 5.10: Comparing the robustness of DGCNN with SAWNet for part segmen-

tation.

We obtain two results for this task. The first result is obtained using SAWNet

without the global aggregation unit (GAU) and the other, with the full architecture

as shown in Figure 5.2. Point cloud segmentation has been shown in PointNet to

be sensitive to combining the right type of global and local features to obtain the

best results. Hence, it is no surprise that our architecture outperforms all existing

architectures in terms of the overall benchmark metric on the test set. We get an

overall mIOU of 85.5%, which is 0.4% higher than that obtained by PointNet++

and DGCNN, and 1.8% higher than PointNet. Out of the 16 categories in the

shapenet dataset, SAWNet gets the best results in 6 categories which is the joint

highest with DGCNN. Even on the objects that the architecture does not get the

best in class results, it mostly gets a IoU value close to the best for that object.

Some visualizations of the part segmentation output are shown in Figure 5.11.

Robustness to random point dropout

We observe the test time performance of our segmentation architecture by dropping

out points randomly and seeing it’s effect on the network performance. We directly

compare with the results presented in DGCNN. Our architecture is robust and

accurate, providing a mIOU of almost 80% even when almost half the points are

dropped from the point cloud. The performance of our architecture is far beter in

general, compared to that of DGCNN in terms of robustness to lesser point inputs.

The mIoU of DGCNN drops down steeply with a decrease in the number of points,
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Figure 5.11: Segmentation results on the Stanford semantic scene parsing dataset.

The left column shows the predicted segmentation, while the right column shows

the corresponding ground truths.

while our architecture still gives a robust performance. We believe it is due to the

spatial awareness that SAW-Layers incorporate into the network. The graph showing

the quantitative differences between the performance of DGCNN and SAWNet for

this task can be visualized in Figure 5.10.

5.5 Summary

In this chapter, we proposed SAWNet, our architecture for 3D point cloud pro-

cessing that employs residual learning, along with attention mechanisms to achieve
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state of the art results on benchmark point cloud analysis tasks. Perhaps the most

impressive quality of our architecture is its robustness to random point dropout as

it manages to achieve a high accuracy (for classification) and mIoU (for segmenta-

tion) for the given tasks where its counterpart architectures perform quite poorly.

We hypothesised at the start of the chapter that point cloud processing networks

generally learn efficient representations for the points via backpropagation and pro-

posed that spatially aware layers can further increase performance by incorporating

additional context in the architectures. Our idea was validated through a series of

ablation tests, and by performance of SAWNet on benchmark tasks, keeping the

SAW-Layer as it’s backbone. The architecture we proposed provides a decent trade-

off between model complexity and performance. Our spatially aware layer is a simple

novel enhancement that can be easily incorporated into any existing 3D point cloud

processing pipeline to get a performance boost.
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Chapter 6

Conclusion

We conclude the thesis in this chapter by providing the summary of what we achieved

in Section 6.1. We provide the general conclusions for our research in Section 6.2

and present future directions of research that this research can take in Section 6.3.

6.1 Thesis summary

In the introduction of this thesis, we set the scene for the need for residual learning

and attention mechanisms in the field of medical image segmentation and 3D point

cloud processing, starting from the performance of conventional machine learning

algorithms for generic computer vision tasks. We provide the context in which this

research is useful, which is largely, superior feature extraction to get better results

as well as understanding the role of attention mechanisms and residual learning in

the discussed domains.

The literature review started with an initial background of neural networks build-

ing up to deep learning and convolutional neural networks. We discussed the liter-

ature on residual learning, U-Net and it’s variants and point cloud in detail. The

literature review focused on the architectures that this thesis compares against. We

highlighted a few drawbacks in current literature - 1) Specialized residual archi-

tectures hardly exist in current literature for medical image segmentation. Most

architectures use a backbone pretrained on imagenet and refine the weights using
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the training set. 2) Visual attention mechanisms are not widely incorporated into

medical image segmentation pipelines. 3) Residual learning has not been looked

at in the context of 3D point cloud analysis. 4) The influence of attention mech-

anisms on point cloud embeddings had not been investigated. Neither were ways

to aggregate point features better into aggregated global embeddings. Our thesis

contributions address these gaps in the current literature.

6.1.1 FocusNet

FocusNet proposed a novel attention mechanism that combined spatial attention

with self attention in terms of feature map recalibration, in an attempt to propagate

the most relevant information forward in a network. We investigated the influence

of this dual branch encoder decoder scheme on ISIC 2017 and lung segmentation

datasets which showed results superior to existing techniques. We proposed a loss

function enhancement whose derivative has a non linear response close to the min-

imum on the loss landscape, to converge to better a solution. We showed such a

loss outperforms existing loss functions and boosts performance in U-Net and Fo-

cusNet. We highlighted the drawbacks in FocusNet, hence setting the scene for a

more improved architecture.

6.1.2 FocusNetAlpha

We propose an extremely efficient and accurate medical image segmentation based

on our novel residual group attention block which outperforms state of the art

architectures. We also propose an extremely lightweight variant of this architecture

that performs at par with architectures almost 2.5 times its size. We adapt the

tversky loss and balanced cross entropy loss in the adaptive logarithmic loss setting

to boost performance over true positives and true negatives to get more well rounded

segmentations. This can be validated by adequately high dice index, recall and F1

scores that the architectures get compared to just using the hybrid loss. We show

the trade-off between model complexity and performance for various architecture,

where our architecture consumes the least parameters and FLOPs while giving the
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best results.

6.1.3 SAWNet

We discussed how learning point cloud representations is effectively based on the

ability of backpropagation to converge to a better solution, having set some ini-

tial state (point embeddings, edge embeddings). We propose to combine local and

global information from different embeddings to produce a superior spatially aware

embedding. This embedding infused with attention, a spatial transformer network

and a novel global aggregation unit, form the building blocks of SAWNet which

beats state of the art results on point cloud classification and segmentation tasks.

The model also achieves a reasonable tradeoff between complexity and accuracy.

6.2 Conclusions

We provide a general critique based on our investigations in this thesis.

• The networks presented in this thesis are different from the general trend that

exists in deep learning. Architectures generally tend to go deeper to get better

results. Our proposed architectures on the other hand have a more horizontally

branched out structure with multiple branches processing the inputs concur-

rently. We have noticed this trend to work better than stacking deeper layers

in convolutional neural networks.

• As these architectures get ’wider’ and more branched, we observed dropout to

stop being an effective regularizer and actually in certain cases, degrade the

performance of the networks. This was especially true in FocusNetAlpha where

we only implement dropout in the final bottleneck layer which has a filter size

of 512. As the usefulness of dropout decreases, we observe batch normalization

to play a really important role in training networks with a branched out struc-

ture. In FocusNetAlpha, adding a bn-LeakyReLU block after the permutation

invariance 1× 1 convolution itself increases performance by almost 0.5%. We

noticed a similar trend in SAWNet, where batch normalization gives SAWNet
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Figure 6.1: Three views of a misclassificed point cloud projected on a 2D grid for

visualization. The predicted and ground truth labels are listed in the text.

a bigger boost in performance, that it does for PointNet or DGCNN.

• We tried to visualize the samples SAWNet misclassified on the ModelNet40

dataset. We noticed that the samples that SAWNet misclassifies do potentially

resemble the features of the object corresponding to the misclassified label. We

visualize some examples to better understand this. Figure 6.1 shows the point

clouds projected on to a 2D surface. From left, they are, a dresser predicted

as a night stand, a wardrobe predicted as a box, a bench predicted as a sofa,

a flower pot predicted as a vase, a table predicted as a bench, a vase predicted

as a cup, flower a pot predicted as a plant and a stool predicted as a chair.

• Our architectures and loss functions are already open sourced on github. They

are also constantly updated over time with additional experiments and results.
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6.3 Future work

There are quite a few directions this research can be extended in. Here, we list the

most interesting ones.

• Even though we managed to considerably improve the decoding scheme in

FocusNet style architectures, we do believe there are ways to further boot

performance. Investigating better ways to combine features at different scales

is of particular interest, but is something we did not have time to look into in

this thesis.

• Present experiments with the adaptive loss relies on grid search to look for the

best hyperparameters of the function. An interesting future approach would be

to make these hyperparameters trainable, and use techniques such as genetic

algorithms or end to end training along with the network weights to find their

optimal setting.

• We ran some initial experiments that suggest that whenever there exists a 1D

convolution in a skip connection to match filter map sizes for residual addition,

the performance of the networks decreases slightly. We implemented a residual

concatenation rather than a residual addition to eliminate the need for 1d

convolutions and noticed a 1.5% increase in performance on the validation

set of CIFAR-10. This is due to the fact that these 1D convolutions inhibit

propagation of the gradient back to the initial layers showing that there is still

room to improve gradient backpropagation in residual networks. We believe

this work could be taken forward and better residual networks can be designed

that that this feature into account.

• Open source implementations of group convolutions with CUDA C/C++ would

accelerate research into networks that use them as a backbone. The increases

in performance based on unleashing the full power of grouped convolutions is

a direction, we expect future research to take in the coming years.
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Appendix A

Optic disc segmentation using a

deep fully convolutional neural

network

We describe a set of preliminary experiments on optic disc segmentation that led

to the initial works of this thesis towards FocusNet. The chapter is written in

the form of a research papers and is, to an extent, self contained. Our described

methodology placed 3rd in the IDRID optic disc segmentation challenge at ISBI 2018

(https://idrid.grand-challenge.org/Leaderboard/).

A.1 Introduction

Optic disc (OD) segmentation is a fundamental task when it comes to processing eye

images. Many diseases can cause the optic nerve irreversible damage and can lead

to blindness. Therefore, segmenting the optic disc is an important step in creating

a frame of reference for diagnosing optic nerve head pathologies. This, in turn, calls

for a reliable OD segmentation technique for automatic screening of optic nerve head

abnormalities.

Recent years have witnessed the emergence of deep learning. Methods based on

convolution neural networks are quickly becoming the baseline for most computer
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Figure A.1: The following are images obtained from a fundus camera. The bright

round patches in the images are called the optic discs.

vision tasks. The work of [34] has suggested that a deeper network, doesn’t necessar-

ily mean a better network. They introduced identity mappings to facilitate better

learning and to allow the networks to go deeper and also use fewer parameters. [79]

Introduced the fully convolutional networks for image segmentation, which used

skip connections to combing predictions from the previous layers. The stride was

adjusted as a hyperparameter to get finer predictions. [73] Introduced an encoder

decoder structure called the U-Net which has found great success in biomedical

imaging tasks. We blend the power of residual connections into the structure of the

U-Net to facilitate segmentation of the optic disc from fundus images.

The structure of this chapter is as follows. In the next section, we introduce the

residual U-Net architecture, which is followed by the the experiments conducted.

We end with our results on the dataset, and conclusions.

A.2 Methodology

A.2.1 Architecture

A.2.1.1 Unet

The U-Net [73] gets its name from its ’U’ shape. To the left is an encoder style

structure, and to the right is a decoder style structure. The architecture employs

low level information from images to do pixel level classification. The encoder learns

a hierarchical representation of the image and the decoder upsamples the image back

to its original size giving pixel level predictions. The output of a particular block

in the encoder is concatenated with the output of the corresponding decoder layer
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to facilitate better information flow through the network (see Figure A.3). This is

termed as a contracting path by the authors and helps capture context and precise

segment localization. The task at hand (OD segmentation) has very few training

images to work with. As the U-Net architecture was built with this very problem

in mind, it is hence the architecture of choice for this problem.

A.2.1.2 Residual Mappings

A simple residual connection [34] is the concatenation of the input to the output of

a weight layer. It is given by the equation,

yi = h(xi) + F (xi, wi),

xi+1 = f(yi)

Such residual blocks can be stacked one after another between pooling layers to

get a resnet style architecture. However, there are more complex identity mappings

which help build deeper and better networks. The advantage of using residual

connections is that they help in better gradient flow between layers due to their

identity mappings which helps to alleviate the vanishing gradient problem to a huge

extent. As the gradient can be propagated better through the layers using these

mappings, networks can now be constructed which are deeper and have improved

performance. [35] Presents a detailed analysis of different residual mappings. Our

residual block can be seen in Figure A.2 (a). It contains batch normalization after

the input layer. ReLU activations are used and there are two convolution operations,

with a 3×3 receptive field. Instead of an identity mapping, we concatenate the input

to the output following a 1 × 1 convolution which helps in reducing the number of

parameters in the network.

A.2.1.3 Residual U-Net

The residual U-Net is the U-Net architecture where the convolutions are replaced

by the residual blocks. The combination of residual connections with the U-Net

helps propagate information even better through the network than a vanilla U-Net
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(a) Residual block in the proposed architecture

(b) Unet Conventional data flow (c) Simple identity mapping

Figure A.2: Different Mappings from information propagation in the unet architec-

ture

(which can be seen through the results). The architecture can be seen in Figure A.3.

The input is a 256 × 256 × 3 image, passed into a convolution layer. This is

followed by a residual block and a max pooling layer. There are 9 residual blocks in

the encoder side and 9 in the decoder side. Downsampling is done using the pooling

operation in the encoder. The decoder uses the upsampling operation as a means

of ’unpooling’ to increase the size of the feature maps spatially. ReLU activations

are used throughout. After the last residual block, a 1x1 convolution is followed by

a sigmoid activation to project the feature map into the desired segmentation. Our

network is ’deeper’ than the vanilla U-Net with 33 convolution layers, compared to
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Figure A.3: Proposed Residual U-Net Architecture. The convolution layers use

ReLU activation except the last one which uses sigmoid.The output of the residual

layers and the first dropout layer is concatenated with the upsampled output in each

decoder block.

the 23 of the vanilla U-Net.

A.2.2 Loss Function

We train the network on a loss function which is the negative of the global dice

index. This is given by,

Negative Dice Loss = −2 ∗ |X ∩ Y |
|X|+ |Y |

It is global in the sense that it is trained over the values in a batch rather than each

image separately. It is also easier to optimize as a cost function, as it gets rid of
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any discontinuities that arise in the cost function due to trying to map a continuous

probability to a discrete 0 or 1 value.

A.2.3 Evaluation Metrics

The evaluation metrics used are the dice index, the jaccard index, sensitivity and

specificity. The dice index is discussed in Section 2.2. The jaccard index is an

intersection over union metric, like the dice index. Sensitivity is defined as the

true positives divided by the total positive samples and specificity is true negatives

divided by the total negative samples.

A.3 Experiments

A.3.1 Dataset and Augmentation

The dataset contains 54 very high resolution (4288x2848) fundus images with the

optic disc segmented in the ground truths. This amount of data is obviously not

enough for a deep learning task, so data augmentation was applied. We applied

random zooms, rotations and channel shifts to create a dataset of roughly 1400

images and a validation set of 270 images. The exact same random transformations

applied to the images, were also applied to the ground truth masks. As a few optic

discs were close to the edge of the images, care was taken to not crop them out

during the augmentation process. We initially tried running the architecture with

128x128x1 grayscale images but settled on 256x256x3 preprocessed RGB images as

it gave better results.

A.3.2 Implementation Details

Before the augmentation, data preprocessing was applied. The fundus images are

affected by camera illumination problems, and they also have a thick black border

which affects the quality of the segmentation. So the image was first scaled to

an arbitrary size which reduced the black border, and then mean local colour was

subtracted from the image in an attempt to get rid of illumination variations. The
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images were then re-sized to 256x256x3 which formed the input to the network.

Inputting this data into the network saw us run into the exploding gradient problem.

This was rectified by standardizing the data. The model was implemented using the

keras [11] library with a tensorflow backend. It was run on a Nvidia GTX 1080 with a

batch size of 16. The Adam optimizer was used with a learning rate schedule which

was determined experimentally. Dropout was used to improve the generalization

capacity of the network, with a rate of 0.2, which means that 20% of the nodes were

randomly dropped at one iteration. The network converges in about 50 epochs.

A.3.3 Results and comparisons with the vanilla U-Net

The results are summarized in Tables A.1 and A.2. The values of all the evaluation

metrics are calculated by comparing the original sized ground truth masks and the

predicted masks for the 54 fundus images. It can be seen that the residual U-Net

performs considerably better than the vanilla U-Net. Some results of images after

the optic disc segmented are also shown in Figure A.4.

Table A.1: Unet Results [73]

Dice Index Jaccard Index Sensitivity Specificity

0.9693 0.9404 0.9987 0.9999

Table A.2: Residual Unet Results

Dice Index Jaccard Index Sensitivity Specificity

0.9805 0.9618 0.9999 0.9999

A.4 Conclusion

In this chapter, we presented out residual U-Net architecture for the segmentation

of optic discs from fundus images. The combination of residual connections with the

architecture of the U-Net provided promising results on the dataset. The residual
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(a) (b)

(c) (d)

Figure A.4: Fundus images with the optic disc segmented out

connections facilitate better gradient flow due to which the accuracy of the residual

U-Net is better compared to its conventional counterpart.
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Appendix B

3D face landmarking using

attention-based deep convolutional

neural networks

We describe a set of preliminary experiments on 3D face landmarking that led to

the initial works of this thesis towards SAWNet. The chapter is written in the form

of a research papers and is, to an extent, self contained.

B.1 Introduction

Landmarking images is a key first step in many applications in computer vision and

graphics. In terms of face processing, these sets of anatomical points can play a

key role in various tasks such as estimating pose, alignment, model construction,

recognition and classifying emotions. In terms of a 3D face dataset, landmarks pro-

vide an initial set of sparse correspondences between all the scans, after which dense

correspondences can be obtained. An important application that requires landmark

estimation is the building of 3D Morphable Models (3DMMs) of the face. The qual-

ity and ability of a model to be useful is mainly governed by the quality and diversity

of images provided in its training set, and the quality of the dense correspondences

between the 3D scans. Accurate landmarking is a key first step. Detecting these

landmarks often refers to finding well-defined regions of high curvature on the 3D
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face, such as the eye corners and lip corners. It also refers to landmarks that are

less well-defined such a the nose tip and chin. It is much harder to establish a clear

manually-labelled ground-truth location for such landmarks.

Most of the work in learning landmark locations on 3D faces has been domi-

nated by statistical machine learning techniques. Since the surge of deep learning,

2D face landmarking has received a lot of interest from the research community, but

significantly less effort has been made to extend this work to 3D face images. This

may be due to lack of the amount of data that is required to create accurate models

using deep neural networks.

In this chapter, we present an approach to learn landmark positions on faces

using attention-based convolutional neural networks. Our architecture is trained on

a combination of synthetic and real-world 3D face images. The synthetic faces are

generated using the Basel Face Model (BFM) [30], a 3D morphable model of face

shape variation. We generate 40,000 images using the model in different poses and

expressions to generate a diverse dataset which alleviates the problem of scarcity of

training data. We follow the theme of convolutional neural networks (CNNs) using

residual mappings to train deeper networks, as they have been shown to provide

better results than stacking convolution layers in a VGG-style network. We train a

U-Net style architecture to learn to segment candidate landmark regions from depth

maps. Following this, we combine the intermediate outputs from the upsampling

layers of this network, with the intermediate layer outputs from our regressor net-

work to give better landmark estimation. For the combined output volume in every

layer, we learn a weighting of the activation maps, such that ones contributing more

to the output have a higher weight.

The main contributions and highlights are as follows:

• We present a novel pipeline to combine feature maps of one network, with

feature maps of another, as an attention mechanism.

• To the best of our knowledge, this is the first work to analyze the use of such
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deep networks for the task of 3D face landmarking.

• We provide an extensive analysis of our mechanism and empirically show that

our technique of concatenate-and-weight the activation maps is the reason for

the improved performance of the landmark regressor.

The rest of the chapter is organized as follows. We discuss related literature

in Section B.2. B.3 describes the overview of our approach. Section B.4 briefly

describes the construction of our dataset. Section B.5 focuses on our attention-

based pipeline, where we explain our mechanism in detail. We give our analysis in

Section B.6, results in B.7, and finally present conclusions.

B.2 Related Work

We first present related literature on 3D face landmarking and then on CNNs.

B.2.1 3D Face Landmarking

Many earlier approaches do not use CNNs but instead use hand-crafted features.

Usually some local 3D descriptor, such as 3D SIFT [77], or the spin image [43] have

been used to localize and predict landmark locations. Conde et al. [16] used both

curvature and spin images to extract geometric features from images and used SVMs

for their classification. Perakis et al. [66] proposed a facial landmark model based on

spin images and the shape index to generate templates for each landmark on the 3D

face, creating a method that worked well on faces with large pose variations. Creusot

et al. [17] first computed feature vectors containing different local descriptors that

were then normalized with respect to the distribution of the landmarks. This is fol-

lowed by extracting an optimal function of this vector that separates the landmarks

from the rest of the facial region. Romero et al. [72] use a point-pair descriptor

approach by encoding 3D shape between a pair of 3D points. The descriptors used

in this approach were spin images and cylindrical sampled Radial Basis Functions

(RBFs). Gilani et al. [31] used a deep learning approach to landmark 3D faces. They

first rendered an RGB image using depth, azimuth and elevation images and cre-
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ated dilated ground truth maps by projecting the landmarks to a 2D grid and then

convolving it with a 10x10 disk structuring element. They trained their Deep Land-

mark Identification Network (DLIN) using these images and ground truth, treating

the problem as an image segmentation task. The output maps for the FRGC and

Bhosphorus datasets were then used to find the points back in 3D, which obtained

impressive localization results on these datasets.

B.2.2 Convolutional Neural Networks

Since Alexnet [53], CNNs have achieved state-of-the-art performance in many areas

of computer vision. Architectures have evolved through recent years, with the re-

search community providing insights into how the accuracy of these networks can

be increased even further, and in some cases, even surpass human accuracy [34].

VGGnet [81] was the first ‘deep’ network that increased depth in an architecture,

which used very small receptive fields (3x3) throughout the network. More recently,

architectures based on learning the residual have shown impressive results on various

2D image datasets. ResNets [34] hypothesized that it is easier for a CNN to learn

the residual mapping than a sequential mapping of convolution layers in a neural

network, such as the VGGnet [81]. They facilitate the building of deeper networks

whose accuracy doesn’t degrade with the addition of more layers. Since the initial

ResNet paper, many studies have been conducted to improve these residual blocks

further. The introduction of batch normalization and a non-linear activation in-

side the vanilla residual block improved the accuracy even further by propagating

information better and deeper through the network. CNNs have also been applied

extensively to tasks of image segmentation and object detection. In terms of seg-

mentation, fully convolutional networks for semantic segmentation [79] fine-tuned

conventional architectures via transfer learning and by using skip connections to

combine semantic information from the deeper layers of the network for upsampling.

The U-Net [73] is another segmentation architecture in the form of a convolutional

autoencoder. It hierarchically upsamples the output of the encoder and combines

intermediate encoder outputs with the decoder’s upsampled outputs via skip con-

nections. Attention is a concept that involves focusing the network’s observation
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towards the parts of the image that contribute the most to the neural network’s de-

cision. It is used extensively in sequence modelling [59] [10], and localizing parts in

an image [91] [10]. Xiao et al. [91] proposed a two-stage visual attention mechanism

for fine-grained image classification where an object-level attention mechanism se-

lects relevant object candidates and then localizes its discriminative parts. They use

their attention mechanism to train domain-specific networks. Spatial Transformer

Networks [40] (STNs) are a self-contained, fully-differentiable attention module for

neural networks, which learn invariance to translation, scale and rotation. They

have been shown to work well with classification of images containing noise. The

’Squeeze-and-Excitation’ (SE) block [36] is another lightweight module that can be

seen as a self-attention mechanism as it learns a recalibration of weights correspond-

ing to the output feature maps of an intermediate convolution layer. The SE block

has been shown to learn these feature-wise weights across the depth of an output

feature map volume, independent of the classes at the lower layers, and in a highly

class-specific manner in the deeper layers. We use the SE block as our lightweight

gating mechanism to learn which parts of the concatenated volume of the attention

and feature maps contribute more to the final output.

B.3 Overview

Given a set of n facial depth maps, F = {f1, f2 . . . , fn}, where fi ∈ RM×N , our goal

is to train an end-to-end face landmarking system that predicts the landmarks on the

representation of a 3D face image in a robust and accurate manner. To this end, we

train two convolutional neural networks (CNNs) - one for the task of coarse landmark

localization, and the other to refine this localization to predict the fine position of the

landmark with minimal possible error. We use depth maps projected along the z-axis

of the 3D faces, as our representation. Given these depth maps as inputs, a CNN

finds a non-linear mapping from the inputs to the outputs of the form D(F ) → L,

where L = {l1, l2 . . . ln} is the set of predicted landmark locations for the n faces.

For each face there are p landmarks, so that li = {x1, y1, x2, y2 . . . xp, yp} ∈ R2p. are

the coordinate landmark locations on the depth map. Given these points, we can

146



B.3 Overview

Figure B.1: The full pipeline of our face landmarker. R denotes a residual block and

C denotes a convolution block which is followed by a batch norm and ReLU activa-

tion. The numbers are the filters used in the layers. The arrows from the encoder

to the decoder of the convolutional autoencoder denote the skip connections. The

arrows from the autoencoder to the regressor denote attention map concatenation.

use 2D-3D coordinate mapping of the datasets to project the points to 3D.

We have employed residual networks throughout for building our architectures,

due to their desirable quality of providing an increase in accuracy with increased

network depth. This gives us the ability to build deeper networks that don’t saturate.

The landmark localization is achieved by creating a dilated mask for every depth

map, which contains the coarse location of the landmarks. We train a (U-Net

style) convolutional autoencoder to learn the location of these regions, in turn,

learning the coarse locations of the landmarks on the face. We then use the output

from the upsampled layers of our decoder to guide the landmark refinement task of

our regressor. This provides us with the locations of the landmarks with a higher

accuracy. Since we use the intermediate outputs from the pre-trained autoencoder

to guide our regressor to achieve a coarse-to-fine landmark prediction, we call this

our attention mechanism.
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Figure B.2: Sample depth maps generated using the 2017 Basel Face Model. The

images rendered are rich in expression variation.

B.4 Dataset

A large amount of data is required to train a CNN to produce meaningful results.

Unfortunately such a large corpus of 3D images doesn’t exist, as 3D image acquisition

is a relatively hard task compared to its 2D counterpart. Hence, we use a 3D

morphable model of face shape, texture and expression variation to generate data for

our training and validation sets. We use the 2017 Basel Face Model [30] learnt from

200 3D faces with neutral expressions and 160 with expression deformations. It is a

robust model of 3D faces built with improved diversity in terms of age and expression

in its training data. The model obtains correspondences using a Gaussian Process

based registration algorithm which incorporates face-specific domain knowledge into

the model. We sample across the model to generate faces using the 199 principal

components that characterize the shape and texture of the model, and the 100

principal components that characterize the expressions. We generate depth maps

for each face in five different poses - neutral, ±10◦ pitch, and ±10◦ roll. The depth

maps generated are of size 192x192. Example images are shown in Figure B.2.

We further use images from the FRGCv2 database with the motive of adding

some real world image data to our training set. We use the spring2004 images in
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the dataset to render depth maps in the same poses as the depth maps generated

for the morphable model.

We generate ground truth masks for training our attention network in the man-

ner where we project the 3D landmarks on to a 2D grid, the same size as the

corresponding depth map, and dilate it using a 4x4 structuring element.

B.5 Incorporating Attention in CNNs

Our attention-based CNN architecture is based on learning the weighting of the

concatenated volume of attention and regressor feature maps, based on which maps

in the volume contribute most to the output. We treat the task of landmark lo-

calization as a regression task and use a deep residual network as our backbone

architecture to regress to their locations. The diagram of the proposed architecture

can be seen in Figure B.1.

B.5.1 Attention Network

Our attention architecture is derived from Ronneberger et al. [73]. We created a

convolutional autoencoder by first downsampling the input image through a series

of convolutions, and then upsample from the bottleneck layer while adding skip con-

nections from the encoder to the decoder for every intermediate upsampling. We

use the full-preactivation, no bottleneck residual block instead of standard convolu-

tions. The input to the residual block follows two paths to the output, where the

intermediate output values of the two paths are added to produce the output of the

block. The first path is an identity mapping, while the data in the second path

flows through a batch normalization layer, followed by an activation layer, followed

by a convolution layer, twice in the same manner. Considering the fact that 3D

faces have smooth transitions across their surface, a smaller number of convolution

operations are required to capture the nuances across it. Keeping this in mind, the

encoder is composed of 4 layers. The first layer contains an initial convolution block

with conv-batchnorm-activation, followed by a residual block and a max pooling

operation. Each of the remaining three layers contain two residual blocks followed
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by max pooling to downsample the input volume to the layer. The bottleneck layer

contains two residual blocks encoding the representation of the data. This repre-

sentation is upsampled hierarchically and corresponding feature maps of the same

shape as the upsampled volume are concatenated with it. The concatenation is done

using skip connections from the encoder to the decoder. These connections facilitate

better gradient and information flow through the network and also help alleviate the

problem of vanishing gradients in a network as deep as this. Refer to Figure B.1 for

more details. Each upsampling operation is followed by two residual blocks. The

final output of the network is a 1x1 convolution with sigmoid activation. This is

because we treat the landmark localization problem as a two class segmentation

problem and are interested in localizing the location of the landmarks at this step,

and not predicting it exactly. Dropout is used in the fourth layer of the encoder

and in the bottleneck layer as a means to avoid overfitting on the data. The pool

size for the max pooling operation is 2x2. A LeakyReLU activation function is used

throughout.

B.5.2 Attention Implementation

We implement the attention network using the Keras deep learning library with a

tensorflow backend. The network is trained on 2 Nvidia GTX 1080Tis with a batch

size of 32. We use Stochastic Gradient Descent with nesterov momentum as the

optimizer, with an initial learning rate of 0.03, and the default momentum value.

The learning rate is reduced on a plateau to half its original value if the change in

the validation loss is less than 0.001 over 5 epochs. Early stopping is used to stop

the network if there is no change in the validation loss over 10 epochs. We train

the network using both binary cross entropy and the negative of the dice coefficient,

given by,

Negative Dice Loss = −2 ∗ |X ∩ Y |
|X|+ |Y |

(B.5.1)

as the loss function and monitor the change in the dice coefficient and jaccard index

values as our evaluation metrics. We observe that using 1 - dice coefficient leads to a

slightly more stable convergence towards the optimal value, so we choose to employ

this in the final network. The network converges in approximately 90 epochs.
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B.5.3 Landmark Regressor

We rely on our attention mechanism to guide the training of our regressor, through

a combination of our guided attention mechanism, coupled with the self attention

of the SE block. Our final end-to-end architecture contains a frozen attention net-

work providing the attention maps to the trainable regressor, which then uses the

information to learn the coordinates of the landmarks. The regressor is based on the

ResNet-18 architecture with feature map weighting. The input is passed through

a conv-batchnorm-activation block. Following this, information is propagated

further by first passing it through a full preactivation, no bottleneck residual block,

followed by which, attention maps are concatenated with the feature maps. This

resultant volume undergoes a feature map weighting via the SE block. This is then

passed through two layers of conv-batchnorm-activation. Finally, a last residual

block is used with strided convolutions to process and downsample the input. Four

such blocks are stacked one after the other to process the input following which, an

average pooling layer is used. We do not use any fully connected layers. The output

is taken from a dense layer with a linear activation. No max pooling is used as the

feature maps are downsampled using strided convolutions. ReLU activations are

used throughout. Further information about convolution kernel size, filters used,

and a detailed look at the architecture of the regressor can be obtained from Table

I.

B.5.4 Feature Map Weighting

Instead of incorporating attention by simply concatenating the attention maps into

our network, we train our network to identify which maps are important and should

be propagated further through the network, by learning a weighting for each indi-

vidual feature map in the concatenated volume. Given H×W×C1 and H×W×C2,

as the two volumes,

c = H ×W × C, where, C = C1 + C2 (B.5.2)

denotes the channel wise concatenation of the feature maps of the two architectures.

This weighting can be seen as a self-attention mechanism used by the network. We
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learn this weighting using the ’squeeze-and-excite’ block [36]. The squeeze block

squeezes the global spatial information into a channel descriptor. To achieve this,

global average pooling is is used.

sc =
1

H ×W

H∑
i=1

W∑
j=1

cc(i, j) (B.5.3)

Where sc is the channel-wise statistic for the concatenated feature volume. The

squeeze block tackles the issue of convolution filters not being able to exploit in-

formation beyond their receptive fields. The excite block captures channel wise

dependencies.

e = σ(g(s,W)) (B.5.4)

Where e is the channel-wise weights and σ is the gating function. W is the combina-

tion of the weights of the dense layers of the block. This is followed by channel-wise

re calibration of the volume.

xc = ec · cc (B.5.5)

B.5.5 Wing Loss

We experimented with the Huber loss and the wing loss [26] as the loss functions

to train our network. The wing loss converged to a smaller error in the evaluation

metric and was hence used as the loss function of choice. Wing loss is given by the

formula,

wing(x) =

 w ln(1 + |x|/ε) |x| < w

|x| − C otherwise
(B.5.6)

where C = w − w ln(1 + w/ε). The function behaves as the Huber loss function for

large errors and penalizes the smaller losses as a log loss. By penalizing the smaller

losses via the log loss, the influence of small errors is increased and it empirically

leads to convergence to a smaller evaluation metric value. w and ε are the hyper

parameters in the loss function. We use the default values presented in [] and set

w = 10 and ε = 2. We believe that the wing loss outperforms the Huber loss in our

problem due to its ability to handle smaller errors better.
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B.5.6 Attention Landmarker Implementation

To train our system end-to-end, we first initialize the weights of the attention ar-

chitecture with weights from pre-training the network. We then freeze all the layers

of this network (including the batch normalization layers throughout the attention

network) so that we can not alter the output of this network in any way. We train

the network on 4 Nvidia GTX 1080Tis with a batch size of 32. We use wing loss

as the loss function and monitor the mean absolute error between the landmark

coordinates as our evaluation metric. We train this network with Stochastic Gra-

dient Descent with Nesterov momentum as the optimizer with an initial learning

rate of 0.03, and the default momentum value. Just like the attention network, we

reduce the learning rate on a plateau, monitoring the change in validation loss over

5 epochs. Early stopping is also used. The network converges in about 50 epochs.

B.6 Experiments

We conducted a series of experiments to modify the architecture of the ResNet-18 to

find the best way to incorporate attention into the architecture. The following sec-

tion summarizes the experiments. We empirically show that our method is the best

attention mechanism over those tested. The following experiments are conducted

on a subset of the training data. Here, we used 12000 images for the training set

and 3000 for the validation set. We judge the performance of the network based on

the the smallest value of validation loss, corresponding to which we report the value

of the evaluation metric (mean absolute error/validation dice coefficient).

B.6.1 Convolution Attention vs Residual Attention

We compare the performance of a simple convolution based autoencoder, with our

residual convolutional autoencoder architecture for generating attention maps. Both

architectures are built and trained in the same style as the attention architecture

described in Section IV.A. The only difference is that the residual blocks are re-

placed by conv-ReLU blocks throughout the architecture. The residual attention
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architecture outperforms its counterpart considerably as seen in Table B.1.

Just Conv Attention Residual Attention

0.8004 0.8946

Table B.1: Dice loss for the two attention networks. Residual blocks considerably

improve the accuracy of the network

B.6.2 Attention vs No attention

We train the ResNet-18 [34] architecture on our data for regressing the landmark

coordinates. The entire network is the same as the original ResNet-18, except the

output of the solitary dense layer uses a linear activation. The attention architec-

ture we compare it with is our final architecture with the SE block followed by a

bottleneck layer. The results can be seen in Table B.2.

B.6.3 Different ways to attend

We tried different styles of blocks to create our regressor network. The blocks used

can be seen in Figure B.3.

B.6.3.1 Concat vs Concat with SE

Experiments were conducted to see whether just concatenating the attention maps

gave good results compared to concatenating the maps and following them with a

SE block. The concatenate-with-SE approach proved superior, suggesting that the

SE block plays an influential role when it comes to improving the accuracy of the

network. This experiment showed that weighting of the feature volume leads to

improved results.

B.6.3.2 Different attention blocks

We experimented with bottleneck blocks and sequential information flow through

the network. We added these blocks to improve the generalization ability of the
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network of the network. A bottleneck block contains a 3x3 convolution sandwiched

between two 1x1 convolutions and have a computation complexity similar to two

3x3 convolutions. We started our search for the ideal attention block by using

1x1 convolutions after the SE block, all the way to having a bottleneck separable

convolution block. The different blocks tested are shown in Figure B.3. The results

of the experiments are shown in Table B.2. We observed that the bottleneck block

along with the sequential 3x3 convolution block provide comparable results. We use

the bottleneck block in our final architecture as it provides comparable results with

lesser parameters.

Method Error

Resnet18(No Attention) 0.8673

Just Concat 0.8112

Concat with SE 0.7712

SE with 2 1x1 Conv 0.6094

SE with 2 1x1 Seprable Conv 0.5793

SE with 2 3x3 Conv 0.5445

SE with 2 3x3 Seprable Conv 0.5689

SE with bottleneck 0.6154

SE with Separable bottleneck 0.5897

Resnet50 0.5904

Table B.2: Mean Absolute Error loss for the different regressor networks

B.6.3.3 Our method vs Gating and multiply

Our final experiment included comparing our final architecture with a gate-and-

multiply mechanism. For this, we pass the intermediate outputs of the autoencoder

layers through a gating function (sigmoid) to obtain a mask. We pass the output

of the first residual block through a SE block, following which, we multiply it with

the output from the gating function. the rest of the architecture (SE followed by

bottleneck) remains the same. This method gives better results as our method but
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(a) Two 1x1 conv (b) Two 3x3 conv

(c) Two 1x1 sep conv (d) Two 3x3 sep conv

(e) Conv bottleneck (f) Sep conv bottleneck

Figure B.3: Different blocks tested as possible candidates for the final architecture.

takes longer to converge due to the stronger inductive bias applied via the gating

function.

B.6.4 Our Attention Mechanism vs ResNet-50

To see how our attention mechanism fairs against deeper residual nets, we trained

a 50 layer resnet with full pre-activation no bottleneck residual blocks, passing the
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output of the dense layer through a linear activation function. Our attention mech-

anism outperforms the resnet50 by 7%.

B.7 Results

We compare the performance of our network with the landmark localization accuracy

of the DLIN and the FCN and report results on the FRGCv2 dataset. It can be seen

that our network outperforms the DLIN in terms of overall mean error by about 13%

and the FCN by about 16%. It is also useful to note that the DLIN was run for 200

epochs over 3 days, while our network gives optimal performance in a shorter time.

Table B.3 shows the landmark localization error in millimetres for the 9 landmarks

along with the overall mean error.

B.8 Conclusions

In this chapter, we demonstrated the use of attention for landmarking 3D faces.

We integrated feature maps from one network into another using a concatenation

operation and then used a ’Squeeze-and-Excite’ block to learn a weighting of the

volume. We provided an analysis of our technique showing how we finalized our

architecture choice and compared the performance of our network with the DLIN,

in terms of performance on the FRGCv2 dataset. Our network outperforms DLIN

and ResNet-50, a network over twice the depth. The residual connections facilitate

better gradient flow through the network, allowing us to train deeper networks giving

better accuracy on the dataset.
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