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Abstract

Performance of complex propulsion and power systems are affected by a vast
number of varying factors such as gradual system degradation, engine build dif-
ferences and changing operating conditions. Owing to these variations, prior char-
acterisation of the system performance metrics such as fuel efficiency function and
constraints is infeasible. Existing model-based control approaches are therefore in-
herently conservative at the expense of the system performance as they are unable
to fully characterise the system variations. The system performance characteristics
affected by these variations are typically used for health monitoring and mainte-
nance management, but the opportunities to complement the control design have
received little attention. It is therefore increasingly important to use the infor-
mation about the system performance characteristics in the control system design
whilst considering the reliability of its implementation.

This thesis therefore considers the design of direct adaptive frameworks that
exploit emerging diagnostic technologies and enable the direct use of complex per-
formance metrics to deliver self-optimising control systems in the face of distur-
bances and system variations. These frameworks are termed condition-based con-
trol techniques and this thesis extends reinforcement learning (RL) theory which
has achieved significant successes in the area of computing and artificial intelli-
gence to the new frameworks and applications.

Consequently, an online RL framework was developed for the class of com-
plex propulsion and power systems that make use of the performance metrics to
directly learn and adapt the system control. The RL adaptations were further in-
tegrated into existing baseline controller structures whilst maintaining the safety
and reliability of the underlying system. Furthermore, two online optimal RL
tracking control frameworks were developed for time-varying dynamical systems
that use a new augmented formulation with integral control. The proposed online
RL frameworks advance the state-of-the-art for use in tracking control applications
by not making restrictive assumptions on reference model dynamics or use of dis-
counted tracking costs, and guaranteeing zero steady-state tracking error.

Finally, an online power management optimisation scheme for hybrid systems
that uses a condition-based RL adaptation was developed. The proposed power
management optimisation scheme is able to learn and compensate for the gradual
system variations and learn online the optimal power management strategy be-
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tween the hybrid power source given future load predictions. This way, improved
system performance is delivered and providing a through-life adaptation strategy.
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Chapter 1

Introduction

The use of optimisation theory has become widespread in control owing to in-
creasing needs to efficiently operate systems from economic, performance and
safety perspectives. Particular performance considerations could be measures of
utility such as the system operational costs, energy usage, fuel efficiency, sys-
tem durability and life. It is often desirable to use suitable control techniques
to optimise these complex performance metrics based on the system condition,
whilst satisfying control specifications and system operational limits. In this thesis,
such techniques are termed condition-based control techniques and encompass tech-
niques which exploit emerging diagnostic technologies to deliver self-optimising
control systems in the face of disturbances and system variations [3].

Well known control techniques such as the linear quadratic regulator (LQR)
and standard model predictive control (MPC) are designed towards achieving set-
point tracking and regulation of system disturbances, whose variations are either
explicitly characterised or assumed to be within certain bounds [4], [5]. However,
for some classes of systems, prior characterisation or determination of the system
variations is infeasible. The inability to properly characterise these variations has
led to the development of various alternate techniques over the years belonging to
the class of adaptive control techniques and intelligent systems design [3], [6], [7],
[8].

However, the conventional adaptive control techniques to mitigate against sys-
tem variations are not usually designed to be optimal, in the sense of explicitly
minimising a desired performance metric and are said to be indirect adaptive
schemes [9]. Indirect adaptive schemes design an optimal controller against an
identified system model that is assumed to characterise the desired performance

4
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metrics for all the possible system variations. In contrast, direct adaptive schemes
explicitly adjust control actions to optimise a desired performance cost without
the need to learn the system model or assume characterisation of the performance
metrics. This thesis therefore considers the design of a class of direct adaptive
controllers for time-varying dynamical systems, that is able to learn online, the op-
timal controller solutions to some desirable performance costs without the need to
learn the system model and using only the measured system data. Furthermore,
this thesis seeks extension of the class of direct optimal and adaptive controllers
to complex propulsion and power systems such as the gas turbine engines, whose
performances are affected by a vast number of varying factors [10]. These factors
could include engine build differences, gradual engine degradation and chang-
ing operating conditions [11]. Optimising the system performance as a result of
the varying factors pose a major challenge to the control of the complex systems,
necessitating research into techniques that will achieve superior performance lev-
els to conventional techniques. For the class of complex propulsion and power
systems in consideration, the following characteristics are noted:

• Increase in the system controllability. Envisaged increase in the number of con-
trol variables for modern propulsion and power systems lead to increased
prospect in achieving desired system optimality [3], [11]. However, this
comes at an increased risk and cost in the design of the optimal controllers
and modelling the interaction between the control variables, performance
characteristics and the effects of system variations.

• Performance variations arising from degradation and engine build differences. The
system behaviour, specifically the efficiency functions and constraints vary
between different systems, and with different operating conditions. This
means that the optimum values for the controllers cannot be designed in ad-
vance suggesting the need for techniques which enable controller adaptation
that extract improved performance for the individual systems.

• Mathematical models to characterise the system variations are difficult or infeasible
to derive. Lack of accurate analytical models to approximate all possible
system variations means that techniques to directly compensate for their
effects on performance cost such as minimum fuel consumption or minimum
energy are unavailable.

• Stringent performance and safety requirements. Techniques by which to optimise
the system performance must also ensure the integrity of the overall system
throughout the operating envelope. The techniques must therefore provide
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practical strategies in implementation to guarantee the safety requirements
for the systems.

1.1 Aims and objectives

The aim of this thesis is to develop (i.e. design, analyse and mature) condition-
based control frameworks that optimise desired system performance by taking
into account the effects of the system degradation and other system variations,
whilst maintaining the system safety/reliability. Current candidate solutions for
the condition-based control relies on the ability to accurately estimate the varying
system states that affect the system performance, and therefore cannot fully com-
pensate for all the possible system variations such as the gradual engine degrada-
tion and engine build differences. Objectives of this thesis are therefore to:

• Develop direct optimal and adaptive control algorithms for time-varying dy-
namical systems that do not require explicit mathematical models to charac-
terise the varying system states due to degradation and other disturbances
affecting the system performance.

• Develop direct optimal and adaptive control algorithms for time-varying dy-
namical systems that learn and optimise the desired system performance
characteristics online such as fuel consumption, efficiency and life, using
only the measured system data.

• Develop condition-based control frameworks that integrate the direct opti-
mal and adaptive control algorithms into existing controller structures to
learn and optimise the desired system performance characteristics whilst
enabling the satisfaction of stringent safety requirements.

• Extend and show applications of the developed condition-based control frame-
works to the class of propulsion and hybrid power systems.

1.2 Contributions

This thesis has explored the development of condition-based control algorithms
and frameworks that enable the direct optimisation of desired performance charac-
teristics for complex time-varying dynamical systems such as the class of propul-
sion and power systems that are subject to unknown variations and degradation.
The main contributions of this thesis are listed as follows:



Chapter 1. Introduction 7

• The design of control architectures and algorithms that incorporate rein-
forcement learning approaches into existing controller structures for com-
plex propulsion and power systems. The innovative architectures advance
the state-of-the-art to allow direct optimisation of desired system perfor-
mance measures whilst satisfying the system safety and stability constraints.

• The development of two new online optimal reinforcement learning track-
ing control frameworks for time-varying dynamical systems that guarantee
zero steady-state tracking error and which unlike prior art do not make any
restrictive assumptions on reference model dynamics or use of discounted
tracking costs - the first framework uses state and input measurements, while
the second uses only the input/output data for systems where full state mea-
surements may be unavailable.

• The development of a new online power management optimisation scheme
for hybrid systems that uses dynamic programming and an iterative Q-
learning adaptation of the system performance function in a receding hori-
zon manner to compensate for gradual system variations or uncontrolled
system disturbances. The proposed power management optimisation scheme
advances the state-of-the-art by compensating for gradual system variations,
extracting improved system performance and iteratively learning online,
the optimal power management strategy between the hybrid power sources
given the future load predictions.

1.3 Publications

The proposed techniques in this thesis are based on the following author’s publi-
cations:

• I. Sanusi, A. Mills, P. Trodden, V. Kadirkamanathan, and T. Dodd. Reinforce-
ment learning for condition-based control of gas turbine engines. In 2019
18th European Control Conference (ECC) pages 3928-3933. IEEE, 2019.

• I. Sanusi, A. Mills, T. Dodd, and G. Konstantopoulos. Online optimal and
adaptive integral tracking control for varying discrete-time systems using
reinforcement learning. International Journal of Adaptive Control and Signal
Processing, 2020.

• I. Sanusi, A. Mills, and G. Konstantopoulos. Output-feedback tracking with
integral control using reinforcement learning. 2020 (unpublished).
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• I. Sanusi, A. Mills, G. Konstantopoulos, and T. Dodd. Power management
optimisation for hybrid electric systems using reinforcement learning and
adaptive dynamic programming. In 2019 American Control Conference (ACC),
pages 2608-2613. IEEE, 2019.

1.4 Thesis Outline

In Chapter 2, a literature review for the various state-of-the-art optimal and adap-
tive control strategies that are used for system performance optimisation un-
der uncertainties is provided and discusses the challenges and subsequent re-
search efforts towards model-free adaptive approaches. The chapter then identi-
fies reinforcement learning and approximate dynamic programming as a candi-
date model-free adaptive strategy that provides attractive features of iteratively
learning optimising solutions to desired performance cost and the chapter con-
cludes with a discussion on open research areas that are addressed in the rest of
the thesis.

Chapter 3 provides the development of online reinforcement learning frame-
works that are designed to be both adaptive and optimal for the control of time-
varying dynamical systems. The reinforcement learning frameworks are first il-
lustrated with a worked example for the linear quadratic regulation problem of
discrete-time systems that converge to the optimum solutions subject to partially
or completely unknown system dynamics. Subsequently, a condition-based frame-
work for the reinforcement learning techniques is introduced here allowing three
possible problem types to be solved - open-loop, closed-loop and supervisory con-
trol. This framework is compatible with legacy control architectures, aiding safety
requirements to be met and was demonstrated on representative engine data sets.

Chapter 4 provides the development of online reinforcement learning frame-
works for the optimal tracking control problem. The conventional model-based
and reinforcement learning solutions to the online tracking problem for discrete-
time systems are first provided. Limitations and restrictions of these existing so-
lutions are thereafter highlighted and discussed. Consequently, an augmented
formulation with integral control for the online tracking problem is proposed and
extended to reinforcement learning frameworks that solve the limitations of the
existing methods. The chapter concludes with a simulation of the proposed tech-
niques on two representative case studies.



Chapter 1. Introduction 9

Chapter 5 extends the augmented formulation with integral control proposed
in Chapter 4 and provides the development of online output-feedback reinforce-
ment learning frameworks for the optimal tracking control problem. The output-
feedback formulation uses only the measured input/output data for the optimal
tracking control in systems where full state measurements are unavailable or the
design of state estimators is difficult. A simulation example at the end of the
chapter demonstrates the effectiveness of proposed online output-feedback opti-
mal tracking control framework.

Chapter 6 provides the development of an online power management scheme
for hybrid systems that compensates for gradual system variations or uncontrolled
system disturbances given future load predictions. An overview of the current
power management optimisation strategies are first discussed and a conventional
dynamic programming solution to the power management problem is provided.
Limitations of the conventional dynamic programming solution is discussed and
consequently, a reinforcement learning and approximate dynamic programming
strategy is proposed that overcomes the limitations of the existing strategies. The
chapter concludes with a simulation case study of the proposed power manage-
ment strategy on a representative autonomous hybrid system and shows improved
system system as compared with the conventional dynamic programming solu-
tion.

Lastly, Chapter 7 provides concluding remarks on the proposed strategies and
provides recommendations for future research directions. Figure 1.1 shows the
outline of the thesis.
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Figure 1.1: Outline of the thesis.



Chapter 2

Background and literature review

This chapter provides a literature review for the various state-of-the-art optimal
and adaptive control strategies that are used for system performance optimisation
under uncertainties. The majority of these techniques are model-based, requir-
ing considerable effort in the generation of high fidelity models that capture the
varying systems and operating conditions. For complex systems, the model-based
approaches become increasingly limited in their ability to compensate for system
variations. An overview of the advantages and disadvantages of these techniques
along with the subsequent research efforts towards data-based adaptive strategies
and reinforcement learning (RL) are presented. This is followed by a study of the
central topics and technical prerequisites of RL discussed throughout this thesis.
A section is devoted to the review of current research trends and application of RL
from historically significant works and the chapter concludes with a discussion on
open research issues that are addressed in this thesis.

2.1 Optimal and adaptive control strategies

The design of optimal controllers is made possible by using complete system in-
formation and assuming bounds on possible disturbances. An example is the well
known linear quadratic regulator (LQR) which is designed offline by solving the
Hamilton-Jabobi Bellman (HJB) equations using full knowledge of the system dy-
namics [4]. Adaptive controllers on the other hand, are designed to use system
measurements to learn and modify the behaviour of the controller in response to
changes in the system dynamics and operating conditions. The ways and man-
ners in which the controller learns from measurements and modifies its behaviour
define different adaptive algorithms some of which are discussed in this chapter.

11



12 2.1. Optimal and adaptive control strategies

Despite the obvious benefits of using adaptive algorithms to compensate for
unmodelled system dynamics and disturbances, their widespread applications
have been limited in practice. For example, it was reported in [12] and [13] that
conventional adaptive schemes such as the MIT rule are affected by inherent sta-
bility issues resulting from phenomenon such as bursting and non-separation of
underlying adaptation time scales, leading to poor performance in applications.
As researchers began to understand these problems better, newer adaptive algo-
rithms have focused on ensuring persistence of excitation and separation of time
scales associated with adaptation and dynamics of the systems. Evidence of appli-
cations of these newer adaptive schemes have since been reported in the literature
[14], [15], [16], [17], [18] motivated by the need to operate systems at some varying
optimum set-points that yield desired performance improvements.

This thesis focuses on adaptive algorithms that enable the possibility of realis-
ing minimising solutions to user prescribed performance characteristics (i.e. both
adaptive and optimal) whilst ensuring stability and convergence of the underlying
adaptation scheme for practical implementations. An overview of these adaptive
strategies of interest is now presented and broadly classified into model-based and
model-free strategies.

2.1.1 Model-based strategies

Model-based adaptive control techniques are conventionally classified as either
indirect or direct adaptive schemes [8]. Indirect schemes make use of the system
measurements to learn new system models via system identification techniques in
closed loop [19]. The identified models are then used to adapt the system control
law or modify its sensitivity. In contrast, direct model-based adaptive schemes
make no efforts to identify new system models but instead use the system mea-
surements to directly adapt parameterised system of controllers in the feedfor-
ward or feedback path [20]. A popular direct adaptive technique is the model
reference adaptive control (MRAC) that makes use of a reference model with de-
sired performance characteristics running in tandem with the actual system. An
adjustment mechanism compares the output of the reference model with that of
the actual system and uses the generated error statistics to adapt the system con-
troller.

Figure 2.1 shows the schematics of the two model-based adaptive control schemes.
Depending on the use of model, the model-based adaptive schemes can be further
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Figure 2.1: Schematic of model-based direct and indirect adaptive control
schemes. Indirect adaptive control schemes adapt a model of the system or de-
sired characteristics by using the error statistics generated from the actual system
output and the model. In contrast, direct adaptive schemes use the error statistics
to directly adapt a parameterised system of controllers.

classified into those that either use offline (fully model-based) or online models
[16]. Classical examples of those that use offline models include the gain schedul-
ing, multiple model adaptive and self-optimising control schemes [7], [21], [22].
Other variants of the model-based adaptive schemes involve the use of online
models - of note are the performance seeking control (PSC) and real time optimi-
sation (RTO) control schemes that have been widely reported respectively in the
aerospace and process industries [23], [24], [25], [26]. In all of these schemes, a
considerable effort is needed to build a high fidelity model to be used in the adap-
tations.

For example, the PSC schemes in aerospace applications make use of high
fidelity on-board models which typically consist of a linear steady-state pertur-
bation model of the engine and empirically derived steady-state trim tables with
follow-on nonlinear engine calculations. By using flight measurements from the
actual system and a Kalman filter (KF) framework, the on-board models are adapted
and matched to the actual system conditions as shown in Figure 2.2 and are able
to compensate for engine build differences, deterioration and changing operating
conditions [23], [24], [27], [28]. But the significant benefits of the PSC schemes
come at a cost, as reported by Gilyard and Orme [23] that the technology was only
made possible by using models from 15+ years of experience with the F100 class
of engines and accurate nonlinear simulation of the engines. Similarly, a recent
work by General Electric (GE) aviation [28] which makes use of a tracking filter to
estimate engine deviation parameters (EDPs) to account for engine deterioration
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and variations has also relied on the use of expensive high fidelity engine models.

Figure 2.2: Schematic of the performance seeking control scheme. The scheme
uses a high fidelity on-board model which is matched to actual engine condition
using a Kalman filter framework.

Whilst the model-based adaptive schemes are considered matured judging by
their long history of applications, their performance is limited to the known dy-
namics of the specific models used. This can be restrictive as the mathematical
models to fully approximate all the possible variations affecting the system per-
formance is infeasible. Perhaps, alternatives to these schemes are those that do
not rely on explicit mathematical models of the system, but systematically adapt
and control the system using obtained measurements. These alternative schemes
fall under the model-free strategies and are discussed next.

2.1.2 Model-free strategies

Model-free adaptive schemes do not rely on any explicit mathematical model or
knowledge of the system. In principle, they are flexible in dealing with any un-
certainties or variations by using the system measurements to directly synthesize
or adapt the controllers. Also known as data-driven or data-based control, these
schemes are typically not affected by many of the limitations of their model-based
counterparts such as:

• the need for an expensive model or knowledge of the system.

• system identification problems in simultaneously achieving steady-state con-
trol and identifying the dynamics of the system.
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• complicated manual tuning and stability issues associated with fixed model-
based controller designs [13], [16].

Furthermore, the model-free strategies provide the possibility of developing
truly optimal controllers that are equally adaptive by optimising to desired per-
formance cost [9], [29]. Popular model-free strategies of interest include the unfal-
sified control (UC), simultaneous perturbation stochastic approximation (SPSA),
iterative feedback tuning (IFT), virtual reference feedback tuning (VRFT), iterative
learning control (ILC), extremum seeking control (ESC) and the class of RL and
approximate dynamic programming (ADP) [18].

In UC control, sets of candidate controllers are iteratively falsified (discounted)
against desired performance objectives using input/output data, and then select-
ing the controller with the best inferred performance [30]. Performance of the ap-
proach is however limited to the set of initial candidate controllers, thus providing
little flexibility in accounting for unmodelled variations and achieving the desired
optimality. SPSA control on the other hand uses a tunable function approximator
with a fixed structure as its controller, whose parameters are adapted by min-
imising the desired performance objectives using the input/output data [31]. Two
simultaneous recursions are performed for the parameter tuning to estimate both
the cost gradient information and the subsequent controller parameters. For any
theoretical guarantees on the approach, specific gradient forms are assumed for
the choice of the fixed controller structures, equally limiting the flexibility of the
approach to unmodelled system variations.

Other model-free approaches like the IFT iteratively adapt the parameters of
their controller by using gradient information obtained from offline closed-loop
experiments. Under mild assumptions, the IFT approach has been shown to
converge to a local minimum of the objective function and has been success-
fully applied in many industrial applications [32]. The use of offline gradient
information however limits the possibility of adapting the system controllers to
match the actual system conditions and compensate for system variations. Conse-
quently, achieving desired performance characteristics in a noisy setting has been
proposed using the VRFT method through the use of a desired reference model.
Given output data from the desired reference model, VRFT introduces a virtual
reference signal to generate error statistics and transforms the control design into
a controller parameter identification problem using the input/output measure-
ments [33]. Similar performance limitations of its equivalent model-based MRAC
is also present as a considerable effort is required in obtaining the desired refer-
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ence model and variation characteristics.

A popular model-free adaptive scheme that circumvents the need for either a
fixed controller structure or the use of reference models is the class of ESC schemes
[34], [35]. These schemes do not use any identification mechanism or closed form
knowledge of the system or reference dynamics but proceed by optimising a de-
sired cost function from the system measurements and gradually adapting the
control variables to optimal operating points. This is however achieved at the
expense of perturbing the system by adding excitation signals to obtain informa-
tion about the system and driving the search through gradient descent techniques.
Furthermore, the basic model-free ESC scheme assumes the use of a smooth cost
function with a unique optimum thereby limiting its possible extension to com-
plex systems involving non-smooth cost function with input and state constraints
[16].

ILC introduces a different approach to the adaptive control problem by provid-
ing an adaptation mechanism that achieves better performance for systems with
repetitive tasks in finite time using input/output data with a memory. Based on
contraction mapping theory, ILC scheme converges as the number of iterations
approach infinity by using a simple fixed controller structure to minimise a learn-
ing error between a target trajectory and the actual system output [14]. The target
trajectory is however assumed known and identical for all the iterations limiting
its extensions to other non-repetitive adaptive control tasks. A similar approach
that is based on contraction mapping but not limited to repetitive tasks is the class
of RL and ADP. RL is classed as a model-free adaptive scheme that is also op-
timal by directly optimising user-prescribed performance characteristics and has
achieved significant successes in the area of computing and artificial intelligence
in solving complex optimisation problems [36]. With roots in psychology and re-
cently in machine learning, RL incrementally improves desired control behaviour
by simply interacting with the system and learning how to map states to actions
using reward signals (positive or negative reinforcements) from the system [37].

RL schemes provide attractive features of learning ’optimality over time’ using
only the observed system measurements and are able to overcome the limitations
of the other adaptive schemes. For example, the assumption that a model of the
desired performance characteristics is known (either offline or online) in the pop-
ular adaptive schemes such as the MRAC, IFT, VRFT and ILC, limits the flexibility
of the approaches in achieving optimality as they are constrained to the modelled
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desired characteristics. RL introduces a new design approach that is purely based
on interaction with the actual system subject to the unknown system dynamics
or variations. This extra flexibility in the design approach makes RL an attractive
candidate for optimal and adaptive control and has been exploited in many com-
plex applications spanning different fields [29], [37], [38].

RL however has its weakness as it fundamentally simplifies the control of com-
plex systems by assuming a Markovian model i.e. the current state(s) is/are de-
pendent only on the previous state(s) (more on this in the next section). Without a
known model of the system, a direct consequence of the Markovian model is the
dependence on a lot of data gathering to learn the optimising control policy. Con-
sequently, this may lead to the use of complex approximation techniques whose
robustness and stability guarantees may be intractable or hard to prove. This the-
sis focuses on extending the RL theory to new frameworks that provide a tractable
design and control for complex dynamical systems such as in varying propulsion
and power systems. The rest of this chapter discusses the key elements and central
theories of RL that are used throughout the thesis.

2.2 Reinforcement learning and adaptive dynamic program-
ming

General learning systems can be categorised based on the available learning feed-
back as supervised, unsupervised and reinforcement learning schemes. Supervised
learning describes a framework that learns the mapping between available input
and output data, while unsupervised learning learns hidden patterns in the output
data without any input information. RL on the other hand describes a framework
in which training information is initially unavailable but learns by interacting with
the system and using the received data or measurements to enhance future control
of the system [39]. This represents a common scenario in practical systems mak-
ing RL an active area of research with applications from different fields including
computer science and artificial intelligence, operations research, robotics and con-
trol.

In control, mathematical implementations of RL have been enabled through ap-
proximate/adaptive dynamic programming (ADP) which provides a framework
to optimise desired performance cost and to learn optimal control policies using
only measured data along the system trajectory [9]. RL and ADP are deeply rooted
and based on the principles of dynamic programming. The next section provides
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the relationship of dynamic programming to optimal control which is fundamen-
tally a backward-in-time problem, and later extended to RL-ADP adaptive control
frameworks.

2.2.1 Dynamic Programming Optimisation

Introduced by Bellman [40], dynamic programming (DP) provides a systematic
way of solving sequential decision problems (SDPs) in an optimum manner. By
SDP, we refer to problems that involve a sequence of decision makings and obser-
vations, and occur in several fields including operations research and in control
engineering. DP method is mainly recursive and has been applied to a variety of
problems involving both continuous or discrete states and actions [41]. The prob-
lem addressed by DP is mostly studied under the Markov decision process (MDP)
framework which is a tuple consisting of:

MDP := (X, U,PSA, γ,R) (2.1)

where X is the set of states, U is the policy or the set of actions, PSA is the state
transition probability (for stochastic system) or state dynamics (for deterministic
systems), γ ∈ [0, 1] is a discount factor, and R : x × u → R is a reward function
for taking action u ∈ U in state x ∈ X. The MDP sequence proceeds as follows:

x0 →︸︷︷︸
u0

x1 ∈ Px1|x0,u0
→︸︷︷︸
u1

x2 ∈ Px2|x1,u1
→︸︷︷︸
u2

· · · →︸︷︷︸
uN−1

xN ∈ PxN |xN−1,uN−1
(2.2)

The goal in DP is then to optimise some desired cost function that is additive over
time as a result of visiting states x0 to xN and taking actions u0 to uN−1 given as:

J(xk) = R(xN) +
N−1

∑
n=k

γn−kR(xn, un) (2.3)

where the optimisation is over the control actions u0 to uN−1 and R(xN) is the
terminal cost. DP provides a solution to this optimisation problem by making
use of the principle of optimality which states that "an optimal policy has the
property that no matter what the previous decisions or actions have been, the
remaining decisions must constitute an optimal policy with respect to the state
resulting from those previous decisions" [40]. The principle of optimality therefore
suggests that the optimal control sequence can be broken down into sub-stages,
by first determining the optimal control decision for the last stage called the tail-
subproblem, and then proceeding to the other sub-stages till the whole problem is
solved [42]. Using the Bellman principle of optimality, a recursive formulation for
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the optimum value of the cost defined in (2.3) is given by the Bellman optimality
equation as:

V∗(xk) = min
uk

{ N

∑
n=k

γn−kR(xn, un)
}

= min
uk

{
R(xk, uk) + γ

N

∑
n=k+1

γn−(k+1)R(xn, un)
}

= min
uk

{
R(xk, uk) + γV∗(xk+1)

}
(2.4)

DP therefore recursively determines the optimal cost for the problem starting from
a terminal cost V(xN) = R(xN ) from which the optimal control sequence can be
determined as follows:

Solve backwards from N − 1 : −1 : k

V∗(xk)← min
uk

{
R(xk, uk) + γV∗(xk+1)

}
(2.5)

Some key properties of the dynamic programming approach that will be fur-
ther exploited in the later chapters are presented next.

Properties of dynamic programming: The introduced DP algorithm can be rep-
resented in a shorthand form introduced by Bertsekas [43] if the DP mapping for
any cost function J(·) ∈ R is considered as:

V(xk) = (TJ)(xk) = min
uk

{
R(xk, uk) + γV(xk+1)

}
(2.6)

where (TJ)(·) ∈ R is the DP cost function for the one-stage problem with instan-
taneous cost R(·) and terminal cost γV(·). Similarly, a second DP mapping for
any cost function J(·) ∈ R and any stationary policy µ(·) ∈ U is given as:

Vµ(xk) = (Tµ J)(xk) = min
uk

{
R(xk, uk) + γVµ(xk+1)

}
(2.7)

where (Tµ J)(·) ∈ R is the DP cost function given µ(·) for the one-stage problem
with instantaneous cost R(·) and terminal cost γVµ(·). For the N stage optimisa-
tion problem, the mappings (2.6) and (2.7) become:

(TN J)(xk) =
(
T(TN−1 J)

)
(xk) (2.8)

(TN
µ J)(xk) =

(
Tµ(TN−1

µ J)
)
(xk) (2.9)
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Using the shorthand form, the following are the properties of the DP approach
with their respective proofs shown in [43]:

1 Monotonicity property:

(TJ)(xk) ≤ (TJ
′
)(xk) ∀ x ∈ X, k = 1, 2, · · · , (2.10)

(Tµ J)(xk) ≤ (Tµ J
′
)(xk) ∀ x ∈ X, k = 1, 2, · · · , (2.11)

for any J(·) and J
′
(·) such that J(xk) ≤ J

′
(xk).

2 Constant shift property:

(
T(J + re)

)
(xk) = (TJ)(xk) + γr ∀ x ∈ X, k = 1, 2, · · · , (2.12)(

Tµ(J + re)
)
(xk) = (Tµ J)(xk) + γr ∀ x ∈ X, k = 1, 2, · · · , (2.13)

for any scalar r and where [e(x) ≡ 1] is a unit function.

3 Contraction mapping property: For the case where J(·) and J
′
(·) are bounded

functions, then for any stationary policy µ(·), we have:

max
x
|(TJ)(xk)− (TJ

′
)(xk)| ≤ γ max

x
|J(xk)− J

′
(xk)| ∀ x ∈ X, k = 1, 2, · · · ,

(2.14)

max
x
|(Tµ J)(xk)− (Tµ J

′
)(xk)| ≤ γ max

x
|J(xk)− J

′
(xk)| ∀ x ∈ X, k = 1, 2, · · · ,

(2.15)

Given the properties of the DP approach, the policy µ(·) is therefore said to
be optimal if and only if the minimum is achieved using the Bellman optimality
equation for each x ∈ X such that:

(TJ∗)(xk) = (Tµ J∗)(xk) k = 1, 2, · · · , (2.16)

It should be noted that DP is an offline method for determining optimal control
sequence backwards-in-time, and serves to limit the optimisation search to only
the optimal trajectories. Two representative optimisation problems are presented
to further illustrate the DP optimisation approach.

2.2.1.1 Shortest path problem

To illustrate the DP concept, consider the problem of finding the shortest path
when travelling from node ’a’ to node ’i’ as shown in Figure 2.3. The states are
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given as the nodes X = {a, b, c, d, e, f , g, h, i} while the control inputs are given
as U = {up(+1), down(−1)}. The instantaneous rewards incurred from taking
action u ∈ U in state x ∈ X are given as the numbers on the arrow head links
joining each node as shown in the diagram.

Figure 2.3: Schematic of a shortest path problem in traveling from node ’a’ to ’i’
given costs associated with each arrow head links joining the nodes.

For the undiscounted case (i.e γ = 1), a naive approach of solving the optimi-
sation problem using an exhaustive search will easily lead to lots of evaluations
and paths to optimise. In the given example with 9 states (nodes) and 4 stages of
optimisation will result in 94−1 = 729 possible paths and a further 729× 2 = 1458
evaluations for the 2 possible control actions. Using the backwards-in-time recur-
sion of (2.5), DP solves the problem by starting from the terminal state (node ’i’)
and proceeding backwards as follows:

Assume terminal cost V(i)∗ = 0
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Stage 3:

V∗( f ) = min
u

{
4 + V∗(i)

}
= min

u

{
4 + 0

}
= 4

V∗(h) = min
u

{
2 + V∗(i)

}
= min

u

{
2 + 0

}
= 2

Stage 2:

V∗(c) = min
u

{
3 + V∗( f )

}
= min

u

{
3 + 4

}
= 7

V∗(e) = min
u

{
3 + V∗( f ), 2 + V∗(h)

}
= min

u

{
3 + 4, 2 + 2

}
= 4

V∗(g) = min
u

{
4 + V∗(h)

}
= min

u

{
4 + 2

}
= 6

Stage 1:

V∗(b) = min
u

{
2 + V∗(c), 1 + V∗(e)

}
= min

u

{
2 + 7, 1 + 4

}
= 5

V∗(d) = min
u

{
3 + V∗(e), 2 + V∗(g)

}
= min

u

{
3 + 4, 2 + 6

}
= 7

Stage 0:

V∗(a) = min
u

{
3 + V∗(b), 1 + V∗(d)

}
= min

u

{
3 + 5, 1 + 7

}
= 8

(2.17)

DP thus limits the optimisation search to only the optimal trajectories and gives
the optimal cost i.e the minimum cost of traveling from node ’a’ to ’i’ as V∗(a) = 8
and achieved in only 8 evaluations. The optimal paths and values identified from
the DP recursion for starting at any node are shown in Figure 2.4.

2.2.1.2 Optimal control regulation problem

The DP solution to the example above provides a simple optimisation routine over
the control inputs as both the cost and the state dynamics are given as discrete
sequences. In general, the control optimisation approach is dependent on the
nature of both the cost defined in (2.3) and the state dynamics function. For the
optimal control problem, consider an affine-in-input discrete state dynamics given
as:

xk+1 = Pxk+1|xk ,uk
= f (xk) + g(xk)uk (2.18)

where f (x) ∈ Rn and g(x) ∈ Rn×m are respectively the drift and input system dy-
namics, x ⊂ X ∈ Rn are the system states and u = µ(x) ⊂ U ∈ Rm is the control
input according to some policy µ(·) : X → U. The optimal control problem is to
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Figure 2.4: Schematic of the optimal paths and costs identified from the dynamic
programming recursion for the shortest path problem.

find u∗k , ∀k ∈ [n, N] that stabilises the closed loop system asymptotically in some
set Ω ⊂ X such that the cost (2.3) is minimised.

A baseline solution to the control optimisation problem is first provided using
calculus of variation by defining a Hamiltonian function as:

H(xk, uk, λk+1) = R(xk, uk) + λ>k+1xk+1 (2.19)

where λk+1 ∈ Rn is a yet to be determined Lagrange multiplier. The Hamiltonian
(2.19) forms a composite cost which includes the state dynamics. Corresponding
necessary conditions for optimality (NCO) are given as:

1 State equation:

xk+1 =
∂H(xk, uk, λk+1)

∂λk+1
= f (xk) + g(xk)uk (2.20)

2 Co-state equation:

λk =
∂H(xk, uk, λk+1)

∂xk
=

∂R(xk, uk)

∂xk
+
(∂xk+1

∂xk

)>
λk+1 (2.21)
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3 Stationary condition:

0 =
∂H(xk, uk, λk+1)

∂uk
=

∂R(xk, uk)

∂uk
+
(∂xk+1

∂uk

)>
λk+1

=
∂R(xk, uk)

∂uk
+
(

g(xk)
)>

λk+1 (2.22)

4 Boundary conditions i < k < N:

(
∂R(xi, ui)

∂xi
+
(∂xi+1

∂xi

)>
λi+1

)>
dxi = 0;

λN =
∂R(xN)

∂xN
(2.23)

In the following, consider the special case where (2.18) is modelled by the
linear time invariant (LTI) system given as:

xk+1 = Axk + Buk (2.24)

The pair (A, B) is assumed controllable and the reward is given as the standard
quadratic energy function:

R(xk, uk) = x>k Qxk + u>k Ruk (2.25)

with R(xN) = x>NExN and where Q ∈ Rn×n, E ∈ Rn×n and R ∈ Rm×m are sym-
metric positive semidefinite matrices. The NCO given by (2.20 to 2.23) becomes:

xk+1 = Axk + Buk (2.26)

λk = Qxk + A>λk+1 (2.27)

0 = Ruk + B>λk+1 (2.28)

x0; λN = ExN (2.29)

From (2.28), the optimal control input is computed as:

u∗k = −R−1B>λk+1 (2.30)

Substituting for (2.30) in (2.26) and coupling the state and the costate equations
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yields the discrete Hamiltonian system given as:[
xk+1

λk

]
=

[
A −BR−1B>

Q A>

] [
xk

λk+1

]
(2.31)

The Hamiltonian system (2.31) satisfies JHJ = H> with H ∈ R2n×2n and J =[
0 −In

In 0

]
. Using the boundary condition (2.29) on the co-state, the following

linear relation can be assumed:

λk = Pkxk ∀k ≤ N (2.32)

for some intermediate kernel matrix P ∈ Rn×n [4]. Substituting for (2.32) in (2.30)
gives:

u∗k = −R−1B>Pk+1xk+1

= −R−1B>Pk+1(Axk + Buk) (2.33)

Pre-multiply both sides of (2.33) by R and simplify to yield the optimal control
input in terms of the matrix P as:

u∗k = −(R + B>Pk+1B)−1B>Pk+1Axk (2.34)

To obtain consistent equations for the kernel matrix P, substitute (2.32) in the top
part of the Hamiltonian system (2.31) to give:

xk+1 = Axk − BR−1B>Pk+1xk+1

= (I + BR−1B>Pk+1)
−1Axk (2.35)

Substituting (2.32) and (2.35) in the bottom part of the Hamiltonian system (2.31)
gives:

Pkxk = Qxk + A>Pk+1xk+1

= Qxk + A>Pk+1(I + BR−1B>Pk+1)
−1Axk (2.36)

Eliminating xk from both sides of (2.36) and using the matrix inversion lemma:

(Am + BmDmCm)
−1 = A−1

m − A−1
m Bm(D−1

m + Cm A−1
m Bm)

−1Cm A−1
m (2.37)
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with Am = I, Bm = B, Cm = B>Pk+1 and Dm = R−1 gives:

Pk = Q+ A>Pk+1
(

I − B(R + B>Pk+1B)−1B>Pk+1
)

A

= Q+ A>Pk+1A− A>Pk+1B(R + B>Pk+1B)−1B>Pk+1A (2.38)

with boundary condition PN = E. Sufficient condition for a solution is that the
pair (A, B) is stabilisable on the set Ω [4]. Equation (2.38) is called the Riccati
equation which in the case of the infinite horizon cost case i.e R(xN) → 0 as
N → ∞, becomes the discrete-time (DT) algebraic Riccati equation (ARE) given as:

P = Q+ ATPA− A>PB(R + B>PB)−1B>PA (2.39)

DP can however be shown to provide the same results for the LTI system (2.24)
with a quadratic cost (2.25) by using the Bellman principle of optimality. From the
recursive form of (2.3), the value for the optimal control problem is computed as:

V(xk) = R(xk, uk) + γ
N−1

∑
n=k+1

γn−(k+1)R(xn, un) +R(xN)

= x>k Qxk + u>k Ruk + γ
N−1

∑
n=k+1

γn−(k+1)
(

x>nQxn + u>n Run

)
+ x>NExN

= x>k Qxk + u>k Ruk + γV(xk+1) (2.40)

given V(0) = 0. Equation (2.40) is the value function to the optimal control prob-
lem and it is assumed quadratic in the states in terms of a kernel matrix P ∈ Rn×n

given as:

V(xk) = x>k Pkxk (2.41)

with PN = E. Substituting (2.41) in (2.40) with γ = 1 gives:

x>k Pkxk = x>k Qxk + u>k Ruk + x>k+1Pk+1xk+1 (2.42)

A corresponding Hamiltonian function is defined as:

H
(

xk, uk, V(xk)
)
= x>k Qxk + u>k Ruk + V(xk+1)−V(xk)

= x>k Qxk + u>k Ruk + x>k+1Pk+1xk+1 − x>k Pkxk

= x>k Qxk + u>k Ruk + (Axk + Buk)
>Pk+1(Axk + Buk)− x>k Pkxk

(2.43)

Equation (2.43) is called the discrete-time Hamilton-Jacobi-Bellman (DT HJB) equa-
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tion from which the optimal control input is obtained by differentiating with re-
spect to uk and equating to 0 as:

∂H
(
xk, uk, V(xk)

)
∂uk

= 2Ruk + 2B>Pk+1Axk + 2B>Pk+1Buk = 0

∴ u∗k = −(R + B>Pk+1B)−1B>Pk+1Axk (2.44)

Substituting (2.44) in (2.42) and simplifying gives the same Riccati equation (2.38)
as before, but using the DP approach. Therefore, for the LTI system (2.24) with
quadratic cost (2.25), the optimal control policy µ(·) is given by a linear feedback
of the states as:

u∗k = −(R + B>Pk+1B)−1B>Pk+1Axk = −Kxk (2.45)

where K ∈ R1×n. For the general case where the system is modelled by nonlin-
ear dynamics with non-quadratic cost, the control optimisation problem results in
the nonlinear HJB equation which is known to be difficult or often impossible to
solve analytically [9]. DP however provides a solution to these classes of problems
through its systematic and recursive approach.

There are however challenges and limitations to the DP optimisation strategy
one of which is widely known as the ’curse of dimensionality’ of dynamic pro-
gramming [41]. This stems from the discrete nature of the DP solution where
each discrete state at each stage of the optimisation problem is associated with
a discrete cost. In practical setting involving continuous states and actions, it is
easy to see that the DP problem becomes non-trivial due to the infinite number
of the possible states and actions. The curse of dimensionality therefore results
from an explosion of either the state space X = {x1, x2, · · · , xNx} which can take
on Dx discrete values and thus DNx

x possible state outcomes; or the action space
U = {u1, u2, · · · , uNu} which can take on Du discrete values and thus DNu

u feasible
control outcomes. Moreover, there is an additional increase in memory usage as-
sociated with the increased state and action spaces and from storing the optimal
values for each state at the different stages of the optimisation.

Furthermore, the DP approach is generally an offline method due to its backwards-
in-time recursion and assumes that the system dynamics are well known. For
stochastic systems, this involves evaluating the expectation over all the possible
outcomes from the source of randomness. DP is therefore unable to cope with
systems with unknown or varying dynamics commonly encountered in practice.
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Approaches such as adaptive or approximate DP and RL are thus developed to
cope with these challenges and limitations of the DP optimisation strategy.

2.2.2 Reinforcement learning frameworks

RL and ADP frameworks are widely employed to overcome the curse of dimen-
sionality limitation of their DP counterpart. Formerly called adaptive critic de-
signs (ACDs) by Werbos et al. [44], the approaches learn a network called the
’critic’ that approximates the cost-to-go in the DP solution and have been known
by different other labels including neuro-dynamic programming and critic global
controller [45], [46], [47]. In contrast to the backwards-in-time iterative solution
of the DP approach, ADP frameworks are enabled by iterative forward-in-time
methods that utilise the Bellman optimality equation to develop value and policy
update equations which are solved at each step of the iteration. Two of the popular
iterative forward-in-time methods are the value iteration (VI) and policy iteration
(PI) methods.

Value iteration methods: VI methods use the recursive Bellman optimality equa-
tion (2.4) as a value update equation that must be satisfied at each time step k from
which a resulting control input can be computed forward-in-time as follows:

Vk+1(xk) = R(xk, uk) + γVk(xk+1) (2.46)

uk+1 = arg min
uk

(
R(xk, uk) + γVk+1(xk+1)

)
(2.47)

The VI method involves both a value update (2.46) and policy update (2.47) steps
and are known to correspond to the contraction map (2.14) and (2.15) associated
with the DP [9]. These iterative equations successively lead to improved policies
and can be implemented online to determine the optimal control policies forward-
in-time.

For convergence of the VI method, it is required that cost (2.3) is bounded
and that the updates (2.46) and (2.47) are performed infinitely often for each state.
Algorithm 2.1 gives the basic template for the VI method.

Policy iteration methods: In contrast to their VI counterpart, PI methods re-
quire an initially admissible policy (i.e. stabilising and with a finite cost V(·))
and successively alternates between a policy evaluation and policy update steps
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Algorithm 2.1 Value Iteration (VI) template
Initialise. For any initial policy µ0(x), do till convergence:

Value update step. Update the value using (2.46) as:

Vk+1(xk) = R(xk, µk(xk)) + γVk(xk+1)

Policy update step. Compute an improved policy using (2.47) as:

µk+1(xk) = arg min
µ(·)

(
R(xk, µk(xk)) + γVk+1(xk+1)

)

as follows:

Vk+1(xk) = R(xk, uk) + γVk+1(xk+1) (2.48)

uk+1 = arg min
uk

(
R(xk, uk) + γVk+1(xk+1)

)
(2.49)

Equations (2.48) and (2.49) serve as consistency equations from using the Bellman
optimality equation and are solved at each time step k. Given a policy µk(·), the
value of the policy is evaluated by solving (2.48) till convergence and constitutes
the policy evaluation step. For a system with finite state space, the policy evalua-
tion step is equivalent to solving a linear system of equations. An improved policy
is then computed using (2.49) and constitutes the policy update step.

The PI method is justified in [43] by showing that the improved policy µk+1

ensures that Vk+1(xk) ≤ Vk(xk) and is associated with the monotonicity property
(2.10) and (2.11) of the DP. This way the algorithm computes a strictly improved
policy and convergence to the optimal policy and value under the assumption that
the system is controllable has been shown in [43], [48]. Algorithm 2.2 gives the
basic template for the PI method. In general, the VI methods are less computa-
tionally demanding than the PI methods as they require only a one step recursion
in the value update step as opposed to solving the system of equations in the
policy evaluation step. However, the PI methods are known to converge in fewer
iterations [42], [49].

The iterative VI and PI methods are therefore online strategies as a result of
their forward-in-time DP recursion using knowledge of the system dynamics and
cost to obtain the optimum values. To enable model-free and forward-in-time on-
line strategies, ADP uses function approximations to approximate the costs and
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Algorithm 2.2 Policy Iteration (PI) template
Initialise. For any initial admissible policy µ0(x), do till convergence:

Policy evaluation step. Evaluate the value of the current policy using (2.48) as:

Vk+1(xk) = R(xk, µk(xk)) + γVk+1(xk+1)

Policy update step. Compute an improved policy using (2.49) as:

µk+1(xk) = arg min
µ(·)

(
R(xk, µk(xk)) + γVk+1(xk+1)

)

solutions of the VI and PI methods. Based on the function that is been approxi-
mated, the ADP are broadly classified by Werbos [50] into heuristic dynamic pro-
gramming (HDP), dual heuristic dynamic programming (DHP), action-dependent
heuristic dynamic programming (AD-HDP) and action-dependent dual heuris-
tic dynamic programming (AD-DHP). The HDP methods approximate the value
function (i.e. V(x)) while their dual counterparts approximate both the cost and
its gradient (i.e. ∂V(x)

∂x ). The action dependent variants further approximate the
dependence of the control decisions on the value functions.

A variety of methods exist to solve the approximated costs such as the Monte
Carlo (MC) and temporal difference (TD) methods [37]. MC methods are mainly
implemented in simulation and learning occurs in an episodic manner i.e the
approximated costs are updated using measurements obtained after a specified
training period marked by system initialisation to some terminal conditions. In
contrast, TD methods learn in an incremental fashion and can be implemented
online using measurements obtained along the system trajectory. An hybrid ap-
proach called the TD(λ) allows for the combination of the incremental TD and
the episodic MC methods [37]. This thesis considers the classification of the RL
methods based on the control architecture using either the MC or TD approach
and are presented next.

2.2.2.1 Actor only frameworks

Actor only frameworks are obtained by parameterising the control policy which is
updated via some gradient descent tuning law in the direction of the cost function.
These frameworks are closely related to the extremum seeking approach given in
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[34], [35] and they proceed by approximating the control policy as:

uk = µ(xk) ≈ θ>a,kΦa(xk) (2.50)

where θa ∈ Rpa are the actor parameters and Φa(xk) is the basis function with pa

features. The actor update problem is to find the best parameters that minimise
the desired cost function. It is assumed that the cost function (2.3) is differentiable
with respect to the policy and also that the parameterised policy (2.50) is differen-
tiable with respect to the parameters θa. A gradient descent tuning update law for
the parameters can therefore be computed as:

θa,k+1 = θa,k − la∇θa J (2.51)

where la > 0 ∈ R is the learning rate or a tuning step size and ∇θa J = ∂J
∂µ(xk)

∂µ(xk)
∂θa,k

.
∇θa J is directly estimated from the system or in simulation via a number of meth-
ods including finite differencing, likelihood ratio methods, REINFORCE method
by Williams [51] and natural policy gradients [52], [53].

Convergence of the framework is inherited from the gradient descent tuning
update law given unbiased gradient estimates and with the learning rate satisfying
the following conditions [54]:

∞

∑
k=0

la,k = ∞;
∞

∑
k=0

l2
a,k < ∞ (2.52)

A major drawback however is the problem of the large variance associated with
the gradient estimates for the cost which may affect convergence of the approach.

2.2.2.2 Critic only frameworks

Critic only methods explicitly approximate the dependence of the control actions
on the states and belong to the class of AD-HDP and AD-DHP algorithms. The
approximated function is generally referred to as the state-action value function or
Q-function and is given as:

Qµ(xk, uk) ≈ β>k Ψ(xk, uk) =
N

∑
n=k

γn−kR(xn, un) (2.53)

where β ∈ Rpq are the Q-function parameters and Ψ(xk, uk) is the basis function
with pq features. Equation (2.53) gives the Q-function approximation (QFA) which
approximates the sum of the discounted reward signalsR(x, u) starting from state
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xk and taking action uk, then following policy µ(x) thereon. Using the Bellman
optimality principle, the Q-function satisfies:

Q∗(xk, uk) = R(xk, uk) + γ min
uk

Q∗(xk+1, uk+1) (2.54)

The state value function V(·) is related to the Q-function as follows:

V∗(xk) = min
uk

Q∗(xk, uk) (2.55)

with the optimal control computed as:

u∗k = arg min
uk

Q∗(xk, uk) (2.56)

The critic network update problem is therefore to learn an approximate solution
to the Bellman equation by minimising the Bellman error given in terms of the
Q-function as:

eq,k = R(xk, uk) + γQµ(xk+1, uk+1)−Qµ(xk, uk) (2.57)

For the QFA approximation of (2.53), the Bellman error (2.57) is obtained based on
either a VI or PI recursion as follows:

For VI recursion:

eq,k = R(xk, uk) + γβ>k Ψ(xk+1, uk+1)− β>k+1Ψ(xk, uk) (2.58)

For PI recursion:

eq,k = R(xk, uk)− β>k+1
(
Ψ(xk, uk)− γΨ(xk+1, uk+1)

)
(2.59)

A suitable parameter estimation approach such as the batch least squares (BLS),
recursive least squares (RLS), Kalman filter (KF) or gradient descent tuning can
then be used to update the Q-function parameters till convergence. Following
this, an optimal policy is computed by performing a greedy optimisation as:

u∗k = arg min
u

(
β>k+1Ψ(xk, uk)

)
(2.60)

Critic only methods are therefore classed as ’indirect’ as they do not optimise di-
rectly over the policy space in comparison to their actor only counterpart. The
methods generally provide good approximation to the value or Q-function, but
may lack reliable guarantees in terms of near-optimality of the resulting policy
[55], [56]. The described Q-learning approach is mainly implemented as an off-
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policy method, i.e. an independent exploratory or behavioural policy is used
in the Q-function estimation during simulation [57]. A variant of the critic only
method called state-action-reward-state-action (SARSA) is implemented as an on-
policy TD method and uses the current policy with the state-action pair for its
value estimation [37].

Convergence of the critic only method is guaranteed under the assumption that
all the state-action pairs are visited infinitely often during learning, and that the
monotonicity property associated with the Bellman optimality equation holds for
(2.54) [43]. Consequently, the critic only approaches require more information for
its approximations and convergence results in the literature are limited to simple
systems with few states and actions [55].

2.2.2.3 Actor-critic frameworks

Actor-critic frameworks combine the strengths of both the actor and critic only
frameworks by directly optimising over the policy space from the actor network,
and combining with the low variance approximations of the value function from
the critic network. The actor-critic frameworks are related to the class of HDP
and DHP algorithms. Two networks are used for its approximations, the critic
and actor networks, and respectively approximate the value function and control
policy as follows:

Vµ(xk) ≈ θ>c,kΦc(xk) =
N

∑
n=k

γn−kR(xn, un) (2.61)

where θc ∈ Rpc are the critic parameters and Φc(xk) is the basis function with
pc features. Equation 2.61 gives the value function approximation for the critic
network which approximates the sum of the discounted reward signals R(x, u)
starting from state xk under some fixed policy µ(x). Similar to the actor only
framework, a second network approximates the control policy as:

uk = µ(xk) ≈ θ>a,kΦa(xk) (2.62)
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with θa and Φa defined as before. The critic network aims to minimise the Bellman
error which is given based on either a VI or PI recursion as:

VI recursion:

ec,k = R(xk, uk) + γθ>c,kΦ(xk+1)− θ>c,k+1Φ(xk) (2.63)

PI recursion:

ec,k = R(xk, uk)− θ>c,k+1
(
Φ(xk)− γΦ(xk+1)

)
(2.64)

Following the update of the critic network, the actor network updates the control
policy by minimising the critic estimates using gradient descent tuning as follows:

θa,k+1 = θa,k − la∇θa V(xk)

= θa,k − la∇θa θ>c,k+1Φ(xk) (2.65)

with la defined as before and with ∇θa θ>c,k+1Φ(xk) =
∂θ>c,k+1Φ(xk)

∂µ(xk)
∂µ(xk)

∂θa
. Evaluation

of the critic gradient estimates is important to the actor-critic framework as it links
the updates of the two initially separate networks together. The critic gradient
estimates may be estimated during simulation or approximated using policy gra-
dient theorem [56], [58]. In principle, the actor-critic update sequences lead to less
oscillatory behaviour aiding its convergence as a change in the critic network is
matched by a small variation in the policy determined by the learning rate la [59].
The actor-critic framework therefore represents one of the most commonly used
RL methods and a schematic of the framework is shown in Figure 2.5.

Some applications of the RL ADP frameworks in the control literature include
the control of discrete and continuous time dynamical systems, flight control sys-
tems, control of electrical power systems, dynamic energy management systems
and the control of unmanned aerial vehicles to name a few. A review of the recent
applications of RL in control which is the focus of this thesis warrants a further
discussion and is presented in the next section.

2.3 Review of reinforcement learning in control applica-
tions

This section provides a review of recent advances of RL control applications to
varying dynamical and complex systems of interest to this thesis. Control ap-
plication of RL began with its investigation into the optimal control regulation
problem of discrete-time systems [60], [61], [62]. These sets of results extended the
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Figure 2.5: Schematic of the actor-critic reinforcement learning framework. The
critic network learns and updates the value of the control action using rewards
from the system while the actor network implements a learned optimal control
action.

RL framework to the popular class of infinite horizon linear quadratic regulation
(LQR) problem in which the dynamics are unknown or uncertain. Bradtke et al.
[60] proposed a Q-learning framework using PI for the LQR problem and pro-
vided the persistence of excitation (PE) condition necessary for its convergence. A
comparison of the RL framework with the conventional control theoretic solution
to the LQR problem was carried out in [62] in the context of industrial manufac-
turing processes. Here, it was concluded that the performance of both approaches
were very close, albeit the Q-learning RL approach required more probing noise
for its approximations. Subsequent research works have therefore focused on more
efficient realisations and extension of the RL frameworks to more practical control
applications.

Extension of the other classes of the adaptive critic algorithms proposed by
Werbos [50] (HDP, DHP, AD-HDP and AD-DHP frameworks) to the LQR control
problem was given in [63] along with their convergence proofs. Landelius [63]
concluded that the algorithms led to the convergence of the LQR control parame-
ters to their optimal values using only the system measurements. Given terminal
state penalties, a finite horizon control equivalent for the DT linear systems using
the RL frameworks was shown in [64]. Applications in the continuous-time (CT)
domain for the optimal state feedback control problem of linear systems using the
adaptive critic designs have also been proposed in [65] and [66]. While Vrabie
et al. [65] used a PI based framework that requires an initially stabilising policy,
Bian and Jiang [66] proposed a VI based method that is not restricted to initially



36 2.3. Review of reinforcement learning in control applications

stabilising policies with both methods shown to converge to the optimal solutions.

For the DT nonlinear systems, Dierks and Jagannathan [67] proposed a time-
based policy update RL framework using two neural networks (NN), the critic NN
and the action NN to solve the infinite horizon control regulation problem. The
approach assumes an initially stabilising policy, and tunes the two NN at regular
predetermined intervals using a time history of performance measurements of the
nonlinear system. Under the assumptions that the NN weight estimation errors
are uniformly ultimately bounded (UUB) and that the NN approximation errors
are negligible, it was shown that the estimated control policy asymptotically ap-
proaches the optimal values.

Similarly, for the regulation of CT nonlinear systems, Bhasin [49] proposed an
actor-critic RL framework that uses system identification techniques to identify a
model of the system dynamics online. A PE condition is given to ensure conver-
gence of the framework and guarantee UUB stability of the closed-loop system.
Likewise, Lv et al. [68] proposed an identifier-critic based RL framework for the
optimal control of CT nonlinear systems that uses dual NN structure. The identi-
fier NN learns a model of the system dynamics while the critic network learns an
approximate solution to the nonlinear CT HJB equations from which the system
policy can be derived.

Methods known as integral reinforcement learning (IRL) described in Vrabie
et al. [65], [69] enables the development of RL frameworks for both optimal control
of CT linear and nonlinear systems without the need for a model of the system
dynamics required by other CT RL applications. The value function in the CT ap-
plications is expressed as an integral of the reward measurements, in contrast to
the discrete summation in DT systems. Equivalent HJB equation in the CT domain
therefore results in an expression that includes the full system dynamics making
the CT RL applications more difficult to solve. Samples from the system measure-
ments are collected at fixed time intervals to compute the integral reinforcement
signals followed by a two-time scale asynchronous update process to sequentially
update the weights of both the critic and actor networks.

A synchronous IRL equivalent that simultaneously updates both the critic and
actor NN was shown in [70] along with a PE condition for its convergence. Exten-
sions of the RL frameworks to include input-constrained CT nonlinear system ap-
plications have been proposed in [71], [72], [73] while Modares et al. [74] included
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the use of experience replay to relax the PE conditions needed for convergence.
Other approximate approaches for CT domain applications have considered the
Euler discretisation of the CT Bellman equations for which all the existing DT RL
methods are subsequently applicable [9].

Other RL applications have considered the tracking control problem aimed at
making the system outputs to follow desired reference trajectories. In [38], an
infinite horizon LQT control for DT systems that makes use of an augmented
RL state and reference dynamics formulation has been proposed. Application to
practical systems is however limited as the approach assumes the use of refer-
ence dynamics that tend towards zero. An improved framework that relaxes the
previous assumptions to the use of a discounted tracking cost for the DT linear
system tracking application using RL was shown in [75] while an output-feedback
(OPFB) equivalent was given in [76]. However, the use of a discounted track-
ing cost means that zero steady-state error cannot be guaranteed by the existing
RL tracking frameworks. Further extensions of the tracking control problem to
DT nonlinear systems to include the use of actor-critic RL structure with neural
networks have been proposed in [77], [78], [80], [81], [83], [85], to multiple-input-
multiple-output (MIMO) systems in [82], [84] and for a finite horizon case in [79].

Tracking control for the class of CT linear systems has been shown in [86] while
Modares and Lewis [87] proposed an IRL framework for the tracking control in
the CT systems using discounted cost, with an equivalent robust H∞ approach
shown in [88]. A model-free adaptive tracking algorithm using RL techniques has
been proposed in [103] for the class of CT nonlinear systems while extensions to
include input constraints have been shown in [89]. It is evident from the preceding
paragraphs that there have been significant efforts in the development of novel RL
algorithms for the control of both discrete and continuous-time systems. However,
in all of the aforementioned algorithms, applications have been limited to simple
systems for demonstration and tailored to the specific classes of systems in con-
sideration. Other applications have considered extension of the RL algorithms to
develop novel frameworks in complex flight control, power and energy manage-
ment systems.

Ferrari and Stengel [46] proposed an adaptive control framework for the con-
trol of a six degree-of-freedom (DOF) simulated aircraft. The proposed frame-
work employed a two-phase learning scheme, where the first phase initialises and
matches parameters of a DHP network to chosen operating points using well es-
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tablished linear control theory, and the second phase adapts the DHP parameters
to improve desired control response. This framework showed great potential in
combining the advancements of the RL algorithms to real-life applications and
foster the design of intelligent systems. Similar frameworks targeted at adaptive
flight control applications using RL have been demonstrated by Ng et al. [90], [91]
where a helicopter model was trained online to perform low speed manoeuvres,
and by Abbeel et al. [92] for the aerobatic control of a real RC helicopter using
differential dynamic programming.

In the power and energy management systems, notable advances using RL
have been reported in [98], [99], [102] for applications in hybrid electric vehicles
(HEVs). Motivated by the desire to achieve better fuel economy through efficient
EMSs, Qi et al. [98] reported a 12% fuel saving by proposing a Q-learning RL
method that takes into account the HEV’s varying operating conditions to ob-
tain optimal power-split control in real-time, in place of their traditional static
rule-based strategy. Likewise, Zou et al. [99] integrated a RL framework with a
power-request transition and control strategy for a hybrid tracked vehicle (HTV).
The RL framework uses a model of the system running in tandem with a recur-
sively updated power-request transition probability matrix to determine the best
control strategy in real-time and was shown to achieve significant improvement in
fuel efficiency. Xiong et al. [102] reported extensions of the RL strategy in [99] to
take into account the health of the energy storage system (ESS) and different op-
erating conditions, and achieved a 16.8% performance improvement as compared
to a rule-based approach.

Further applications to the residential EMS has been reported in [93] where
a novel RL algorithm was developed for the demand response (DR) control to
optimise costs and risk of outages at peak periods by controlling the respective
electrical load demands. The problem is formulated as a MDP and the approach
uses a Q-learning framework which adapts to statistical changes in the residen-
tial energy systems to minimise the infinite horizon average financial cost and
dis-utility to the consumer. Similar strategies using a NN based actor-critic frame-
work to optimise the electricity cost for residential energy system consisting of
combined power from the grid and ESS have been proposed in [95], [96], [97],
[100] and extensions to multi-agent systems for smart microgrid solutions in [94],
[101].

Table 2.1 provides a chronological chart of the discussed RL applications and
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advances. As we expect the continued relevance of RL in controls, there are how-
ever a number of open research issues in the aforementioned approaches and
applications, and are discussed next.

2.4 Discussion

Application of RL has been shown in several applications where the full knowl-
edge of the system dynamics is unavailable, and thus able to cope with varying or
uncertain systems and achieve optimality. Whilst this motivates the RL approach,
the problem characteristics of the different applications lead to different classes of
RL frameworks. In addition, there are a number of open research problems that
influence the type of RL framework for use in control applications, some of which
are addressed in this thesis as follows:

1 Use of direct measures of system performance metrics as reward signals:
RL is a goal-directed optimal control strategy that relies on the use of re-
ward signals (positive or negative reinforcements) for its learning. Reward
signals are therefore used to reflect desired performance objectives and to
drive the RL search towards optimality. Typical reward signals used in RL
control applications are analytically derived functions such as the quadratic
state regulation function for the optimal control regulation and tracking [9],
[72], [75]; the quadratic energy function for power and energy management
systems to ensure regulation of the energy states to their desired reference
values [95], [96], [98]; and the quadratic cost function on the spatial repre-
sentation of states for flight control systems to train helicopter models to
perform low speed manoeuvres [90], [91]. The performance of the resulting
controllers is therefore dependent on its reward signals and defines different
RL frameworks in the different application domains.

There are however a number of applications such as in degrading or varying
systems where the conventional analytical reward functions prove inade-
quate. Designing an analytical reward function for such systems may be im-
possible to account for all the different variations and unknown degradation
patterns. However, the use of direct measures of system performance such
as fuel consumption, efficiency or life that reflect changes or variations in
the systems as reward signals means that new ways are required for the con-
trol of the complex dynamical systems and to guarantee the system safety.
Consequently, the design of a RL framework that makes use of the systems
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direct measurements as reward signals whilst providing a through-life opti-
mal control and adaptive strategy remains an open research problem.

2 Constraint handling in a RL framework: The use of RL in constrained con-
trol applications remains an open research problem mainly because RL is
based on dynamic programming which solves an unconstrained optimi-
sation problem. Few applications in the literature have proposed input-
constrained RL frameworks where bounded cost functions are used to limit
the control signals to the constrained limits [72], [89], [104]. An example
of such a bounded function that is typically used is the hyperbolic tangent
function φ(·) = tanh(·) that satisfies |φ(·)| ≤ 1. These methods are however
limited to input constraints only. Further RL extensions to safety critical
systems with constraints on both the states and inputs to ensure the safe-
ty/reliability of the systems are yet to be considered.

3 Online optimal tracking control using reinforcement learning: Existing RL
techniques in the literature for the optimal tracking control problem either
assume the use of a predetermined feedforward input for the tracking con-
trol, make restrictive assumptions on the reference model dynamics or use
discounted tracking costs [38], [75], [77], [78], [79], [81], [87], [89]. By using
discounted tracking costs, zero steady-state error cannot be guaranteed by
the existing RL methods. The restrictive assumptions on the reference dy-
namics and discounted tracking costs makes the existing RL tracking meth-
ods less desirable for use in complex dynamical systems that may require
precision tracking.

4 Reinforcement learning controller integration: Another important consid-
eration in the development of RL frameworks in control applications is the
overall system integration to enable the efficient and safe online learning and
adaptation. Typical RL frameworks such as those discussed in the review
have considered the RL controller as a standalone framework which com-
pletely neglects known information about the controlled system and learns
the system control from scratch. For complex dynamical systems, these ap-
proaches may take a long time to learn and may require running the system
to failure to learn the system’s bounds and constraints. Whilst this is accept-
able on some applications in robotics for exploration [105], other applications
may require guarantees on the system performance both during learning and
after adaptation. Techniques in the RL literature that ensure safe operation of
the systems being controlled by reducing the risk and respecting the safety
constraints are termed safe reinforcement learning frameworks [106], [107],
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[108].

In [106], a safe RL approach that uses a gaussian process (GP) model to it-
eratively approximate a safe region of operation while learning the system’s
unknown dynamics has been proposed and demonstrated on a constrained
cart-pole and quadrotor flight systems. In order to reduce the interference of
the computed policy with the learning process, the approach further incor-
porates a safety factor in the RL performance metric. Likewise, Berkenkamp
et al. [107] proposed a GP-based safe RL that starts from a pre-stabilised
policy and proceeds by systematically using the system measurements to
improve the policy alongside a GP model of the system used for safe ex-
ploration. However, the approaches are based on set-theoretic frameworks
that assume that an estimated disturbance set used in the RL frameworks
are known or can be computed. Consequently, Garcıa and Fernández [108]
categorised the safe RL frameworks into - those that modify the optimality
criterion through the use of safety factors, and those that modify the RL ex-
ploration either through the incorporation of external knowledge or through
the use of a risk metric.

In this thesis, a potential strategy that considers the integration of the RL
adaptations with a baseline controller structure suitable for practical imple-
mentation for the class of complex propulsion and power systems is ex-
plored. The frameworks proposed in this thesis therefore take into account
these open research considerations and enable the efficient integration of the
RL adaptations in practical systems, as well as considerations for the method
of learning employed, choice of algorithm and the required PE condition
needed for convergence of the overall scheme.
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Chapter 3

Reinforcement learning control
frameworks for time-varying
dynamical systems

This chapter presents the development of online reinforcement learning (RL) frame-
works that are designed to be both adaptive and optimal for the control of time-
varying dynamical systems. In contrast to the conventional adaptive controllers
that are not designed to guarantee optimality by minimising desired performance
objectives e.g. conventional adaptive schemes use system measurements to adapt
models of the system or parameterised controllers and then use certainty of equiv-
alence principle to synthesise new controls; the RL frameworks directly learn op-
timal control from minimising the desired performance objectives without prior
knowledge of the system dynamics or the system variations.

The RL adaptation techniques are first shown for the linear quadratic regula-
tion problem of discrete-time (DT) systems that converge to the optimum solutions
subject to partially or completely unknown system dynamics. This is followed by
the development of a candidate RL framework that advance the state-of-the-art to
allow for the RL adaptations in existing baseline controller structures. An exten-
sion of the developed RL framework to the condition-based control of complex
propulsion and power systems is then provided, where some of the open research
problems highlighted in Section 2.4 are addressed. The strategies and results dis-
cussed in this chapter are based on the author’s work in Sanusi et al. [109]. A
summary of the main contributions presented in this chapter are as follows:

• A constraint handling scheme on both the system’s inputs and outputs that
solves a constrained optimisation problem in a RL framework is proposed.

44



Chapter 3. Reinforcement learning control frameworks for time-varying
dynamical systems 45

This ensures the satisfaction of the system safety/reliability constraints whilst
adapting the control inputs to optimal values.

• A dual-control loop structure in the implementation of the scheme that al-
lows for the integration of the RL adaptations into an existing baseline con-
troller and guarantees the system stability is developed. The overall frame-
work maintains guarantees on the main system response whilst extracting
improved performance by tuning extra degree-of-freedom (DOF) variables
in a RL ADP control loop.

In the following, Section 3.1 develops the general RL frameworks applied to
the optimal control regulation problem and presents a candidate RL framework
that integrates the RL adaptations into existing controller structures. Section 3.2
presents the gas turbine condition-based control problem and the existing state-
of-the-art baseline control architecture. This is followed by the extension of the
proposed RL framework to the condition-based control problem in Section 3.3
along with the simulation results on representative engine test data.

3.1 Optimal control regulation of discrete-time systems us-
ing reinforcement learning

The general RL problem is concerned with determining policies that lead to im-
provement in a desired goal for systems with unknown or varying dynamics. RL
uses the concept of reward (positive or negative reinforcements) observed from
measurements to evaluate the performance of the current policy, and incremen-
tally adapts the policy towards improving the desired goal [37]. For the optimal
control regulation problem discussed in Section 2.2.1.2 for which baseline control
solutions using both the calculus of variation and DP have been provided, we now
wish to develop an online RL solution. Restated here, consider the optimal con-
trol regulation problem for the system described by the following discrete-time
dynamics:

xk+1 = f (xk) + g(xk)uk (3.1)

with state x ∈ Rn and control input u = µ(x) ∈ Rm. The control input is governed
by a deterministic feedback policy µ(·) : Rn → Rm that maps the state space to
the control space. A goal-directed optimal behaviour for the feedback policy may



46
3.1. Optimal control regulation of discrete-time systems using reinforcement

learning

be given by the finite-horizon performance cost:

J(xk) = R(xN) +
N−1

∑
n=k

γn−kR(xn, un) (3.2)

or in the infinite-horizon case where R(xN)→ 0 as N → ∞ as:

J(xk) =
∞

∑
n=k

γn−kR(xn, un) (3.3)

where γ ∈ [0, 1] is a discount factor and R(x, u) is a scalar reward signal to mea-
sure the one-step cost of control under the feedback policy. R(x, u) is evaluated
using the standard quadratic energy function:

R(xk, uk) = x>k Qxk + u>k Ruk (3.4)

with Q ∈ Rn×n and R ∈ Rm×m as positive definite weighting matrices. It is as-
sumed that the system is both controllable and observable [4]. In addition to min-
imising and returning a finite cost, the optimal control regulation problem must
also ensure that the feedback policy stabilises the closed loop system asymptot-
ically on some set Ω ∈ Rn. Such a policy is said to belong to an admissible
control set. As discussed in Section 2.2.2, RL frameworks make use of function
approximations and iterative update equations of the forward-in-time methods
(value iteration (VI) or policy iteration (PI)) to solve the optimal control problem
online and without requiring models of the system. Based on the function that is
being approximated and the iterative forward-in-time method employed, two RL
frameworks are further developed in this chapter.

3.1.1 A value function approximation

A value function approximation (VFA) framework approximates the cost of Equa-
tion (3.3) for the infinite-horizon case as:

V(xk) ≈ θ>c Φc(xk) (3.5)

where θc ∈ Rpc are the VFA parameters with basis function Φc(x). Update of
the value parameters can be carried out using the temporal difference (TD) error
generated by the Bellman recursion of the VI or PI methods. For the VI method,
the TD error for the parameter updates is obtained at every time step k using
measurements of the instantaneous reward signal R(xk, uk), the state xk and the
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next state xk+1 as:

ec,k = R(xk, uk) + γθ>c,kΦc(xk+1)− θc,k+1Φc(xk) (3.6)

with Φc(xk) as the regressor vector. Conversely, the TD error for the parameter
updates using the PI method is obtained as:

ec,k = R(xk, uk)− θ>c,k+1
(
Φc(xk)− γΦc(xk+1)

)
(3.7)

with
(
Φc(xk)− γΦc(xk+1)

)
as the regressor vector. Data from multiple time steps

can be obtained for either iterative approach to determine the least squares solu-
tion for the VFA parameters and constitutes a batch least squares (BLS) procedure.
Alternatively, standard recursive parameter estimation techniques such as the re-
cursive least squares (RLS), Kalman filter (KF) or gradient descent tuning can be
run till convergence to determine the best fit for the parameters that minimise the
generated TD error.

Following the update of the VFA parameters, the policy for the control inputs
is updated by equating to zero the derivative of the value function with respect to
the control input and using the Bellman equation as follows:

∂V(xk)

∂uk
≈

∂θ>c,k+1Φc(xk)

∂uk
= 0

=
∂
(
R(xk, uk) + γθ>c,k+1Φc(xk+1)

)
∂uk

= 0

=
∂
(
x>k Qxk + u>k Ruk + γθ>c,k+1Φc(xk+1)

)
∂uk

= 0

= 2Ruk + γ
∂θ>c,k+1Φc(xk+1)

∂xk+1
· ∂xk+1

∂uk
= 0

∴ u∗k = −γ

2
R−1g(xk)

>∇θ>c,k+1Φc(xk+1) (3.8)

where ∇θ>c,k+1Φc(xk+1) =
∂θ>c,k+1Φc(xk+1)

∂xk+1
. The update procedures therefore consti-

tute both the value and policy update steps associated with the iterative forward-
in-time methods and are repeated till convergence to the optimal control solutions.

An alternative approach for the policy update step is to introduce a second
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network to approximate the control inputs as:

u∗k = µ∗(xk) ≈ θ>a Φa(xk) (3.9)

where θa ∈ Rpa are the policy parameters with basis function Φa(x). A gradient
tuning method can be used for the policy parameter updates with tuning index i
as follows:

θi+1
a = θi

a − la
∂V(xi)

∂θa

= θi
a − la

∂V(xi)

∂ui
× ∂ui

∂θa

= θi
a − laΦa(xi)

(
2Rθi>

a Φa(xi) + γ
∂θ>c,k+1Φc(xi+1)

∂xi+1
· ∂xi+1

∂ui

)
= θi

a − laΦa(xi)
(
2Rθi>

a Φa(xi) + γg(xi)
>∇θ>c,k+1Φc(xi+1)

)
(3.10)

where la > 0 is the tuning step size. Approximation of both the value and policy
function with the use of two separate networks i.e. the critic and actor results in
the general actor-critic RL framework. As discussed in Section 2.2.2.3, the actor-
critic frameworks are preferred as they combine the strengths of both the actor
and critic only frameworks. Algorithm 3.1 gives the template for the VFA based
RL framework.

Remarks on Algorithm 3.1

• The gradient tuning update steps i can be chosen as the number of iteration
steps j for the value function update.

• Knowledge of the input function g(x) is required in the policy update step,
thus, the VFA based RL algorithm is not completely model-free.

• To ensure convergence of the VFA parameter estimates, a persistence of ex-
citation (PE) condition requires that the regressor vector satisfies [19]:

αI ≤
k+M

∑
i=k

ΓiΓ>i ≤ bI ∀i (3.11)

where Γ is the regressor vector for the respective VI or PI method and with
M > 0, a > 0, b > 0. This can be achieved in the implementation of the
scheme by adding an exploration signal ε to the control inputs.
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Algorithm 3.1 VFA based RL algorithm using PI

Initialise V(x) ≈ θ>c,kΦc(x) at k = 0 for some stabilising policy µ(x) =

θ>a,kΦa(x), and do till convergence:
Value function update step

1: for j = 0 till parameter convergence do
2: At xj, compute the control input uj with exploration signal ε as uj =

µ(xj) + ε.
3: Compute the least squares solution for θc,j+1 using measurementsR(xj, uj),

xj and xj+1 as:

θ>c,j+1
(
Φc(xj)− γΦc(xj+1)

)
= x>j Qxj + u>j Ruj

4: j = j + 1.
5: end for

Policy update step
Require: Set θc,k+1 = θc,j+1

6: Update the policy parameters using the gradient descent tuning as:

θi+1
a,k = θi

a,k − laΦa(xi)

(
2Rθi>

a,kΦa(xi) + γg(xi)
>∇θ>c,k+1Φc(xi+1)

)

7: At the end of the gradient tuning, set θa,k+1 = θi+1
a,k and update the policy as:

µ(x) = θ>a,k+1Φa(x)

8: Increment time step k = k + 1.

3.1.2 A Q-function approximation

A Q-function approximation (QFA) framework explicitly approximates the de-
pendence of the control inputs on the performance cost using a state-action value
function or Q-function as:

Q(xk, uk) ≈ β>Ψ(xk, uk) (3.12)

where β ∈ Rpq are the Q-function parameters with basis function Ψ(x, u). Similar
to the VFA framework, the Q-function parameters are updated using TD errors
generated from the iterative VI or PI methods with measurements of the instanta-
neous reward signal R(xk, uk), the control input uk, the state xk and the next state
xk+1. This is defined for the VI method as:

eq,k = R(xk, uk) + γβ>k Ψ(xk+1, uk+1)− β>k+1Ψ(xk, uk) (3.13)
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with Ψ(xk, uk) as the regressor vector or with the PI method as:

eq,k = R(xk, uk)− β>k+1
(
Ψ(xk, uk)− γΨ(xk+1, uk+1)

)
(3.14)

with
(
Ψ(xk, uk)− γΨ(xk+1, uk+1)

)
as the regressor vector. Standard parameter es-

timation techniques such as the BLS, RLS, KF or gradient descent tuning can be
equally used to determine the best fit for the QFA parameters that minimise the
generated TD error.

In contrast to the VFA framework that requires knowledge of the input func-
tion in its policy update step, the QFA framework computes this without knowl-
edge of the system dynamics as the updated Q-function contains the control inputs
as arguments. A greedy optimisation is thus performed in the QFA policy update
step as:

uk+1 = arg min
u

(
β>k+1Ψ(xk, uk)

)
(3.15)

Both the Q-function parameter and policy update steps are repeated till conver-
gence to the optimal control solutions and Algorithm 3.2 gives the template for
the QFA based RL framework. The use of a single network for the QFA results in
the general critic only RL framework.

Remarks on Algorithm 3.2

• For convergence, a PE condition requires that the regressor vector for the
QFA satisfies Equation 3.11. This can be achieved by adding an exploration
signal ε similar to the VFA method.

• Algorithm 3.2 assumes an on-policy implementation i.e. the policy that is
being updated is also the same used during training or for exploration. The
policy is kept fixed while generating samples, and only updated after con-
vergence of the Q-function parameters.

Control regulation example using both the VFA and QFA based RL al-
gorithms

To demonstrate both the VFA and QFA based RL frameworks, consider the infinite-
horizon control regulation problem of a 2 state linear system with initially unstable
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Algorithm 3.2 QFA based RL algorithm using PI

Initialise Q(x, u) ≈ β>k Ψ(x, u) at k = 0 for some stabilising policy µ(x) =
arg minu

(
β>k Ψ(x, u)

)
, and do till convergence:

Q-function update step
1: for j = 0 till parameter convergence do
2: At xj, compute the control input uj with exploration signal ε as uj =

µ(xj) + ε.
3: Compute the least squares solution for β j+1 using measurements R(xj, uj),

uj, xj and xj+1 as:

β>j+1
(
Ψ(xj, uj)− γΨ(xj+1, uj+1)

)
= x>j Qxj + u>j Ruj

where uj+1 = µ(xj+1)
4: j = j + 1.
5: end for

Policy update step
Require: Set βk+1 = β j+1

6: Update the policy parameters using a greedy optimisation as:

µ(x) = arg min
u

(
β>k+1Ψ(x, u)

)
7: Increment time step k = k + 1.

dynamics given as:

ẋ(t) =

[
−1.0 2.0
2.2 1.7

]
x(t) +

[
2.0
1.5

]
u(t) (3.16)

Using Euler’s discretisation with a sampling time ts = 0.03s, the corresponding
DT system dynamics becomes:

xk+1 =

[
0.9724 0.0607
0.0668 1.0544

]
︸ ︷︷ ︸

A

xk +

[
0.0605
0.0482

]
︸ ︷︷ ︸

B

uk (3.17)

The control regulation problem aims to regulate the states for system (3.16) to zero
from any finite initial condition x0. The regulation cost parameters are given as

γ = 1, Q =

[
0.05 0

0 0.05

]
and R = 0.03. Approaches such as the calculus of vari-

ation or DP discussed earlier can be used to compute the optimal state feedback
gain and the corresponding Riccati matrix using full knowledge of the system dy-
namics (A,B). Optimal control solutions for the regulation problem can however
be obtained using Algorithm 3.1 and 3.2 without knowledge of the system dy-
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namics and using only measurements of the states and reward signals.

For the VFA framework, the critic network is approximated with a quadratic
basis function since the value function for the general LQR problem is known to
be quadratic as:

V(x) ≈ θ>c Φc(x) = θ>c

 x2
1

x1x2

x2
2

 (3.18)

with θc ∈ R3 while a linear basis function approximates the feedback control
policy in the actor network as:

µ(x) ≈ θ>a Φa(x) = θ>a

[
x1 x2

]
(3.19)

with θa ∈ R2. The critic and actor network parameters respectively correspond to
the Riccati matrix P and feedback gain K of the LQR from Section 2.2.1.2 as:[

P11 P12

P21 P22

]
=

[
θ
(1)
c 0.5θ

(2)
c

0.5θ
(2)
c θ

(3)
c

]
[
K1 K2

]
=
[
θ
(1)
a θ

(2)
a

]
(3.20)

Figure 3.1 shows the online convergence of both the critic parameters θ∗c = P∗ =[
0.5109 0.3677
0.3677 1.3994

]
and the corresponding actor parameters θ∗a = K∗ =

[
1.4299 2.6169

]
to the baseline optimal control solutions.

Similarly for the QFA framework, the Q-function is approximated with a quadratic
basis function as:

Q(x, u) ≈ β>Ψ(x, u) = β>



x2
1

x1x2

x1u
x2

2

x2u
u2


(3.21)

with β ∈ R6. This gives the critic network approximation and the parameters
correspond to the Q-function of the LQR in terms of the Riccati matrix P and
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reward signal R(x, u) = x>Qx + u>Rx as:

[
Q+ A>PA A>PB

B>PA R + B>PB

]
=

 β(1) 0.5β(2) 0.5β(3)

0.5β(2) β(4) 0.5β(5)

0.5β(3) 0.5β(5) β(6)

 (3.22)

Figure 3.2 shows the online convergence of the critic parameters to the baseline
optimal control solutions.

Figure 3.1: Convergence of the critic and actor network parameters using the value
function approximation with policy iteration algorithm for the optimal control
regulation problem.

Having shown the basic development and application of the two RL frame-
works to the optimal control regulation problem, we now wish to provide an
adaptation control architecture under which the frameworks can be extended to
practical applications. Specifically, we consider integration with existing controller
structures and using RL to continually adapt the system control subject to gradual
variations in the system dynamics or performance. The overall frameworks move
from a simple control of a system towards a through-life performance optimisation
and adaptation strategy.
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Figure 3.2: Convergence of the critic network parameters using the Q-function
approximation with policy iteration algorithm for the optimal control regulation
problem.

3.1.3 Control architecture for the reinforcement learning adaptations

RL provides techniques by which to learn optimal controllers over time by simply
interacting with the system and without any guidance to the nature of the dy-
namics of the underlying system. Whilst this has been shown to work on simple
systems, direct extension for use in dynamic and complex propulsion and power
systems such as aircraft and space systems may be impractical for safety reasons.
For these systems, the knowledge of the system dynamics and physics are fairly
known - the baseline control system is therefore considered matured. To neglect
all the information and treat the complex systems as a completely black-box model
will be counter-intuitive. Furthermore, the class of complex systems in consider-
ation are considered safety critical by requiring guarantees on the overall system
performance, both during transient and at steady-state.

However, variations in the system due to degradation, engine build differences
and changing operating conditions are not well understood and may be difficult
to account for using mathematical models. As discussed in the previous chap-
ters, RL provides techniques by which to compensate for the unknown variations
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and achieve desired optimality. Consequently, this thesis proposes a framework
that integrates the RL adaptations into existing baseline controller structures to
compensate for the system variations and maintain the desired level of system
performance. These RL integrations may assume different topologies depending
on either an open-loop or closed-loop integration, and are namely - feedforward
and feedback RL adaptations.

Measurements of the desired performance quantities (reward signals) are used
in the RL framework to continually tune or trim the baseline open-loop or closed-
loop gains; with both RL adaptations using the additional reward signals in an
implicit feedback loop. The proposed framework therefore assumes a hierarchical
structure with the baseline controllers ensuring stability and inner loop regulation,
while the RL adaptation loop continually adapts the controller gains to desired op-
timum values as the system varies. To allow for safe learning, the RL adaptations
of the system controller gains are performed only at convergence of the RL algo-
rithms - this way, the transient learning instability is minimised. Figure 3.3 shows a
candidate framework that integrates both the feedforward and feedback RL adap-
tations into existing controller structures for use in complex propulsion and power
systems. The next section introduces the first extension of the RL frameworks to
the condition-based control of gas turbine engines.

Figure 3.3: Block diagram of the candidate framework that integrates both the
feedforward and feedback reinforcement learning adaptations into existing con-
troller structures.
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3.2 Reinforcement learning control framework for complex
propulsion and power systems

Most engineering systems are subject to degradation, yet their control systems are
not designed to explicitly account for it. While the dynamics that govern the op-
eration of the systems are usually modelled or identified for the control design,
the degradation dynamics are not; typically, these evolve over long timescales and
in non-deterministic ways. This affects the states of the component health of the
systems resulting in reduced performance and increased fuel consumption over
time [3]. Opportunities to mitigate the effects of degradation therefore cannot be
over emphasised as in the case of the civil gas turbine engine (GTE) where the cost
of fuel accounts for about 15% to 25% of the total aircraft operating cost [11]. In
addition to the gradual degradation, performance of gas turbine engines (GTEs) is
also affected by fleet variations from engine build differences and changing oper-
ating conditions. Optimising the system performance as a result of these varying
factors pose a major challenge to the GTE control.

The unknown degradation dynamics and variations affecting the GTE states
are reflected as changes in the measured/estimated system performance character-
istics such as the system efficiency index and life [11]. Whilst monitoring of these
performance characteristics can help to reduce the cost of operation from eco-
nomic and performance perspectives, the opportunities to complement the GTE
control design have received little attention e.g. monitoring of the fuel consump-
tion and component temperatures have been used to predict the system life neces-
sary for maintenance scheduling but not for feedback control [110]. It is therefore
increasingly important to use the information about the system performance char-
acteristics in optimising the GTE control whilst considering the reliability of its
implementation.

Techniques that enable such capabilities are generally termed condition-based
and are aimed at maintaining the system’s safety and reliability whilst optimising
the system performance. Condition-based control (CBC) techniques can therefore
be classed as types of adaptive control frameworks that focus on optimising to
slow and varying changes in the system performance. This, combined with an
appropriate adaptation strategy and architecture increases the feasibility of the
framework to a fully intelligent control and health management technology for in-
dustrial applications. The GTE provides a good illustrative example to show case
the condition-based control problem when considered as a power delivery system,
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but the techniques presented in this thesis are widely applicable.

3.2.1 Gas turbine engine system

Gas turbine engines (GTE) consist of a fan and compressor system to draw in and
compress air; a combustor to mix and burn fuel with the compressed air; and a
turbine to extract power or thrust from the generated hot stream of air or through
a bypass system [2]. The system control is responsible for regulating thrust by
setting measurable proxy parameters such as fan or shaft speeds, engine pressure
ratio (EPR), pressure or temperature, and also providing engine limit protection.
Limit protection in GTE includes compressor surge or stall and burner blowout
protection [1]. Regulation of the thrust proxy parameters is then achieved via the
control of fuel flow in closed-loop, with modern engines having other variable
geometry components (VGCs) such as the variable stator vanes (VSVs), variable
bleed valves (VBVs), variable inlet guide vanes (VIGVs) and the exhaust nozzle
area in open-loop for compressor performance improvement [1], [11], [111].

Furthermore, the engine control is divided into both transient and steady-state
control. Transient control enables system acceleration or deceleration with prede-
termined fuel flow schedules that provide limit protection while the steady-state
control maintains engine operation along desired steady-state operating lines. The
steady-state control is implemented in a feedback loop where the thrust parameter
error between the desired reference and sensed values is fed into the controller to
drive a fuel metering valve. This represents the main control loop and is the only
closed-loop control in commercial GTE [1]. A schematic of the control elements in
the main control loop is given in Figure 3.4.

Other VGCs are controlled in open-loop via fixed gain schedules designed for
optimum operation at design points, which are usually acceleration, deceleration
and cruise. These schedules are made dependent on engine shaft speeds, or some
other measurable quantities that reflect engine operating conditions. Examples are
the variable inlet guide vanes (VIGVs) and VSVs that operate between fixed low
speed (closed) and high speed (open) positions to maintain the optimum angle of
attack on the compressor blades, and maintain system stability. Figure 3.5 shows
a simplified schematic of a typical fixed gain schedule for the VSVs.

The VGCs are however known to have a large effect on the GTE performance
such as on fuel consumption [10], [112] and provide extra degrees of freedom
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Figure 3.4: Block diagram of a typical main control loop of gas turbine engines
showing fuel flow control at steady-state with acceleration and deceleration sched-
ules that provide limit protection. (adapted from [1]).

Figure 3.5: Simplified schedule for variable stator vanes dependent on shaft speed
(N2), at steady-state and acceleration operating conditions (adapted from [2]).

(DOF) to the GTE control. As a consequence of these fixed controller schedules,
natural engine degradation, coupled with engine-to-engine variations cause shifts
in optimal operating points resulting in reduced performance and increased fuel
consumption. Degradation induced shifts also affect the pilot throttle-to-thrust pa-
rameter relationship leading to further loss in performance and increased overall
system life cycle costs [113], [114]. An opportunity for performance improvement
which involves a variety of measures including the periodic adjustment of the
fixed gain schedules to system condition have been reported in Kurz and Brun
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[10] and Bringhenti and Barbosa [112].

A CBC framework can therefore be developed for the GTE that continually
optimises the desired system performance by taking into account the effects of
system degradation, changing operating conditions and other system variations
whilst maintaining the system safety and stability. A mitigating strategy is first
considered in this chapter for the open-loop part of the system that tunes the VGC
controller set-points in order to recover performance while the closed-loop part is
considered in the subsequent chapters.

3.2.2 Condition-based control problem formulation

A conceptual mathematical model for the GTE system described in the previous
section can be given as [109]:

xk+1 = F(xk, uk, dk) (3.23)

where F(·) represents the system dynamics and with x ∈ Rn as the system thrust
proxy states such as the shaft speeds (NH), EPR, pressure and temperature. The

control inputs u =

[
umain

uaux

]
∈ Rm consist of the main fuel flow input denoted by

umain ∈ Rm1 ⊂ Rm and the additional DOF control parameters such as the VGCs
employed in many GTE designs denoted by uaux ∈ Rm2 ⊂ Rm. The component
health states d ∈ Rd denote the system performance characteristics such as the
compressor and turbine efficiencies that change slowly over time due to degrada-
tion [3]. Typically, d is difficult to estimate as it is governed by non-deterministic
processes which vary across fleets and from engine to engine. Conventional thrust
regulation is thus achieved by designing the control system at some identified
nominal models of the system (i.e. at predetermined worst-case configuration of
d) [3], [2], [1].

Assumption 1. The main control loop is assumed to be pre-stabilised by a base-
line controller of the form umain = h(y). The controller regulates the thrust proxy
state measurements y = c(x) to their desired reference values i.e y → yre f such
that the thrust response is guaranteed. This represents the conventional main con-
trol loop with y as the primary system measurements. The regulated states are
kept within their prescribed limits using limit management controllers such as the
min-max limiter logic [115].
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The VGCs (uaux) on the other hand are typically set via fixed (open-loop) gain
schedules against the system outputs or flight parameters σ (such as altitude, mach
number (Mn) and temperature) [2] and designed for the worst case degradation
condition.

Assumption 2. Secondary system measurements denoted as yp, that reflect changes
in the system performance characteristics mainly due to degradation are assumed
to be available. These measurements are normally used for engine health moni-
toring to schedule maintenance actions and are hitherto not used for control [3].
Additional measurements that provide limitations for the GTE safety and stability
denoted as gp, are equally assumed to be available. These limits are calculated
through a standard design practice to ’stack’ uncertainties (actuation and sensing
errors, operational uncertainties e.t.c.) into safety margins for the main control
loop [116].

The CBC challenge within the current GTE control architecture is to use the
secondary system measurements yp in addition to the primary system measure-
ments y for control decisions such that:

• The system maintains the desired thrust response control i.e. yk → yre f as
k→ ∞.

• The system performance measurements are optimised subject to the gradual
engine degradation i.e. min ∑∞

n=k yp
n.

• The system safety/stability is guaranteed i.e. the measurements gp
k ≤ Glimits ∀k

where Glimits are specified design limits.

A candidate solution approach to the CBC problem is therefore to devise a
feedback tuning strategy for the uaux in place of their conventional fixed gain
scheduling by solving a performance optimisation problem as:

u∗aux
k = arg min

uaux

∞

∑
n=k

yp
n

subject to: xk+1 = F(xk, uk, dk)

yk = c(xk)

umain
k = h(yk)

gp
k ≤ Glimits (3.24)

Solving (3.24) is difficult due to the unknown system degradation dynamics in
F(·) from (3.23). Standard model-based control approaches may thus be imprac-
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tical as discussed in Section 2.1.2. Furthermore, a standard system identification
approach for the optimal control of the system will result in the nonlinear HJB
equations which are often impossible to solve analytically [4]. RL solves the prob-
lem by not requiring models of the system but incrementally improves the desired
control performance using the system measurements. The proposed solution ap-
proach is given in the next section.

3.3 Reinforcement learning for the condition-based control
of gas turbine engines

RL problem is concerned with optimising the expected value of desired cost
through a sequence of observations, actions and rewards over time [37]. Prac-
tical methods for solving the RL problems have been based on ADP and function
approximations as discussed in Section 2.2.2. In comparison with the given op-
timal control regulation problem, the CBC poses a number of open RL research
problems in practical applications as highlighted in Section 2.4 in the following
ways:

• The optimal control regulation problem uses the conventional quadratic re-
ward function R(x, u) = x>Qx + u>Ru. However, the strength of RL lies in
its flexibility to use other ’crafted’ or direct reward measurements towards
achieving the desired goal. The CBC problem proposes to use the system’s
direct performance measurements that reflect changes due to gradual degra-
dation as reward signals, and remains unexplored in RL control applications.

• RL frameworks for use in the CBC problem must consider the satisfaction of
safety/reliability constraints whilst optimising the control inputs.

• The GTE is a complex system with numerous constraints for each compo-
nent, resulting in a series of single-input-single-output controllers with fixed
gain schedules. Careful considerations for the integration of the RL frame-
work within the GTE architecture is therefore essential in providing a certi-
fiable and working adaptation strategy.
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3.3.1 RL-ADP condition-based control solution

Let the desired cost for the GTE CBC problem to optimise the VGC control pa-
rameters at discrete time steps k be given as:

Q(xk, uaux(xk)) =
N

∑
n=k

γn−kR(xn, un) (3.25)

where N is the discrete time interval considered for the optimisation, 0 ≤ γ ≤ 1
is the discount factor and R(x, u) is the observed scalar reward measurement or
signal. Since RL is a goal-directed optimal strategy, the scalar reward signals are
assumed to be the system performance measurements yp to be optimised and are
dependent on the system states x and VGC parameters uaux. Function approxima-
tion for the cost is then given as:

Q(xk, uaux(xk)) = β>Ψ(xk, uaux(xk)) ≈
N

∑
n=k

γn−kyp
n (3.26)

where β ∈ Rpq are the approximated cost parameters with basis function Ψ(x, uaux(x)).
Learning is achieved by minimising the TD error and using the recursive Bellman
equation as:

ek =
N

∑
n=k

γn−kyp
n − β>k Ψ(xk, uaux(xk))

= yp
k + γβ>k+1Ψ(xk+1, uaux(xk+1))− β>k Ψ(xk, uaux(xk)) (3.27)

A BLS or RLS solution is determined for the approximated cost parameters β at
each time step using the TD error. This can also be cast in a KF problem with the
additional advantage of optimally estimating the time varying parameters under
assumed zero-mean parameter variations. Online approximation of the cost pa-
rameters using the system performance measurements corresponds to determin-
ing the desired operating points for the GTE subject to the gradual engine degra-
dation and variations. As the RL cost explicitly approximates the dependence of
the control inputs, the RL ADP strategy therefore belongs to the developed QFA
RL method in Section 3.1.2 where the Q-function parameters are adapted to recur-
sively solve the Bellman equation and thereafter used to prescribe a near-optimal
policy.

On convergence of the Q-function parameters, an optimisation sub-problem is
solved for the VGC parameters and constitutes a policy (set-points) update step. In
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contrast to the conventional Q-learning policy update, a constrained optimisation
problem that guarantees the GTE safety/stability limitations is solved as:

u∗aux(xk) = arg min
uaux

Q(xk, uaux(xk); β)

subject to: gp
k ≤ Glimits (3.28)

In order for the RL ADP update framework to fit into the overall GTE control
architecture presented in Section 3.2.1, a dual-loop control structure is proposed,
where the conventional main loop regulates the fuel flow while a RL ADP loop
continually updates the VGC set-points in a policy (set-point) optimisation sub-
problem. Figure 3.6 shows the block diagram of the proposed dual-loop RL frame-
work which is essential to providing a potential route to certification of the overall
condition-based control strategy. Transient interaction between the two control
loops is minimised by triggering the RL ADP adaptation only at steady-state op-
erating conditions where the most benefits in fuel savings is achievable [11]. Al-
gorithm 3.3 gives the modified QFA template for the RL-ADP CBC framework.

Figure 3.6: Block diagram of the reinforcement learning and approximate dynamic
programming (RL-ADP) dual control loop for the gas turbine engine condition-
based control. The existing main control loop (in red) guarantees the thrust re-
sponse control while the RL-ADP control loop (in green) continually adapts the
variable geometry components’ set-points.
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Algorithm 3.3 QFA based RL-ADP framework for the GTE condition-based con-
trol

1: Initialise the Q-function model parameters Q(x, uaux(x); βk) at k = 0 for stabil-
ising VGC gains uaux(x)

Main control loop: at discrete time steps k during flight:
2: Existing controller computes umain

k = h(yk) while the VGC set-points i.e.
uaux(xk) are kept fixed till the next update.

RL-ADP loop: triggered at steady-state intervals
Q-function update step for j = k till parameter convergence:

3: Compute the VGC control inputs with exploration signal ε as uaux(xj) + ε and
obtain measurements for yp

j , gp
j , xj and xj+1.

4: Solve the least squares solution for β j+1 using the TD error:

ej =
N

∑
n=j

γn−jyp
n −Q(xj, uaux(xj); β j+1)

= yp
j + γQ(xj+1, uaux(xj+1); β j+1)−Q(xj, uaux(xj); β j+1)

VGC policy (set-points) update
5: Solve a constrained optimisation sub-problem using the updated steady-state

Q-functions as:

u∗aux(x) = arg min
uaux

Q(x, uaux(x); β j+1)

subject to: gp ≤ Glimits

6: Repeat steps 2 to 5 till end of flight.
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3.3.2 Simulation of the RL-ADP condition-based control framework

3.3.2.1 Simulation setup

The proposed QFA based RL ADP framework for the CBC problem is demon-
strated on representative GTE data sets in MATLAB/SIMULINK environment.
The data sets are cruise data from a Roll-Royce engine simulation model for dif-
ferent synthesised degradation conditions between cycle 0 as nominal and cycle
3000 as fully degraded. Inputs to the system are given as the fuel flow, represented
by water fuel emulsion (WFE) as the main control variable umain and two sets of
VIGV as the auxiliary control parameters uaux: the high pressure (HP VIGV) and
intermediate pressure (IP VIGV). The fuel flow (WFE) is allowed to vary between
±2.5% of its nominal value at cruise in steps of 0.5% increments/decrements while
the IP and HP VIGV vary in steps between high speed stop of −6.67 and −7.5 to
low speed stop of 14 to 25 respectively.

System performance measurements yp that reflect changes in the system health
due to degradation are given as the thrust specific fuel consumption (TSFC) mea-
surements. Finally, engine limitations gp at cruise for safety and component life
are also provided and include surge margin (SM) and various air pressure ratio
(APR) limit functions.

Based on Assumption 1, the main control loop computes the required WFE set-
tings umain = h(y) and guarantees the thrust response control (i.e. pre-stabilised
with min-max limit logic). Similarly, fixed gain schedules for the VIGVs are
designed for the worst-case degradation condition. Figure 3.7 shows the offline
static variations of the system performance measurements (yp and the limits gp)
with the control inputs (WFE, IP and HP VIGV) for the different degradation
cycles. The worst-case condition from the static variations is at cycle 3000, and
the fixed VIGV set-points are scheduled against the steady-state WFE settings
(WFEmin ≤ WFE ≤ WFEmax) at this condition, representative of the conventional
design approach. These are designed to satisfy the system constraints with the
scheduled gains as shown in Figure 3.8.

Clearly, fixing the VIGV angles for the worst degradation condition will lead
to increased fuel consumption at the other conditions. The formulated QFA based
RL-ADP scheme is then applied to the system as the engine degrades, using the
system performance measurements as reward signals to continually adapt and
optimise the VIGV gains at the steady-state WFE settings.
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(a) WFEmin and degradation cycle 0. (b) WFEmin and degradation cycle 3000.

(c) WFEmax and degradation cycle 0. (d) WFEmax and degradation cycle 3000.

Figure 3.7: Contour plots showing the variation of thrust specific fuel consump-
tion (TSFC) with intermediate pressure (IP) and high pressure (HP) variable inlet
guide vanes (VIGVs) at two sample steady-state water fuel emulsion (WFE) set-
tings (WFEmin and WFEmax) at degradation cycles 0 and 3000. The shaded regions
indicate infeasible regions of operation due to the safety/reliability limitations.

3.3.2.2 QFA based RL-ADP algorithm implementation

In order to initialise the Q-function model parameters for the system performance
measurements, second-order quadratic polynomials were fitted to the offline test
data as follows:

Q(x, uaux(x)) ≈ β>Ψ(z) (3.29)

where β ∈ R7 and with

Ψ(z) = [WFE2 IP2 HP2 WFE HP IP 1]

The polynomial fit was found to give a cross-validated R2 test statistic of 0.94,
negating the need to investigate more complex basis functions. The least squares
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(a) IP VIGV schedules. (b) HP VIGV schedules.

Figure 3.8: Fixed schedules for the intermediate pressure (IP) and high pressure
(HP) variable inlet guide vane (VIGV) angles designed for the worst-case system
condition that satisfy system constraints and representative of the conventional
design approach.

estimation for the Q-function parameter update in Algorithm 3.3 is cast as a KF
parameter estimation problem with the parameters modelled as a random-walk
signal given as:

βk+1 = βk + ωk

ωk ∼ N (0, Qω) (3.30)

The TD error from (3.27) therefore becomes:

ek = yp
k + β>k+1

(
γΨ(zk+1)−Ψ(zk)

)
ek ∼ N (0, Rω) (3.31)

Qω and Rω are respectively the process and the measurement noise co-variance
matrices. Estimation of the parameters using the KF framework operates in a
predict-correct cycle as follows:
Predict:

β−k+1 = βk+1

P−k+1 = Pk + Qω (3.32)
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Correct:

Kgain = P−k+1Ψ(zk)
>
(

Ψ(zk)P−k+1Ψ(zk)
> + Rω

)−1

βk+1 = β−k+1 +Kgainek

Pk+1 =
(

I −KgainΨ(zk)
)
P−k+1 (3.33)

where β−k+1 and P−k+1 are respectively the predicted parameter and error co-variance
estimates, Kgain is the Kalman Filter gain, while βk+1 and Pk+1 are respectively the
parameter and error co-variance updates. The matrix Qω was selected as 8e−8 in
the simulation for the slowly varying efficiency measurements due to degradation
while Rω was selected as 4e5 for the noisy measurements. The KF parameter es-
timation is run till convergence of the Q-function parameters and constitutes the
Q-function update step in Algorithm 3.3. Figure 3.9 shows the Q-function adap-
tation for both the cost (TSFC) and constraint functions using the Kalman filter
framework.

A nonlinear constrained optimisation sub-problem is then solved for the VGC
set-points update step described in the algorithm. Due to the computational com-
plexity of gradient based optimisation methods, an adapted direct search method
from Venkataraman [117] called ’constrained scan and zoom’ was used. This is
a derivative free method which executes disciplined search for optimal points
around the current iterate using the adapted Q-functions, and systematically pro-
ceeds to solutions where the objective function value is reduced and satisfies con-
straints. The set-points for the VGCs are then updated to the identified optimal
points and the process is continued till the end of flight.

Snapshots of the adapted online Q-functions and the identified optimal set-
points during engine operation are shown in Figure 3.10, representative of the
actual (but assumed unknown) TSFC and constraint variations at steady-state con-
ditions. Figure 3.11a and Figure 3.11b show the adapted VIGV angles using the
proposed algorithm as the engine undergoes step changes in degradation from
cycle 0 to cycle 3000. Figure 3.12 shows the achieved fuel consumption using the
adapted gains as compared with their conventional fixed gains from Figure 3.8.
This resulted in fuel savings of about 0.6% at the early degradation stages.

As 1% of cruise TSFC can be worth about $150, 000 per year on a four-engined
civil aircraft [11], the proposed RL-ADP framework therefore leads to a simple,
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Figure 3.9: Q-function adaptation for both the cost (thrust specific fuel consump-
tion (TSFC)) and constraints (IP and HP surge margin (SM), and air pressure ratio
(APR) using the Kalman filter framework.

yet effective and practical means of improving the performance of GTEs across
fleets subject to unknown degradation patterns and using only measurements of
the desired reward signals.

Summary

Conventional control approaches within the GTE are unable to fully compensate
for the gradual engine degradation affecting the system performance. Conse-
quently, the proposed approach as demonstrated in this chapter has shown the
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(a) WFEmin and degradation cycle 0. (b) WFEmin and degradation cycle 3000.

(c) WFEmax and degradation cycle 0. (d) WFEmax and degradation cycle 3000.

Figure 3.10: Adapted online Q-function of the system performance measurements
showing the variations with intermediate pressure (IP) and high pressure (HP)
variable inlet guide vanes (VIGVs) at two sample steady-state water fuel emul-
sion (WFE) settings (WFEmin and WFEmax) at degradation cycles 0 and 3000. The
shaded regions indicate infeasible regions of operation due to the safety/reliability
limitations, while the red dots represent sample identified optimal points using the
proposed Q-function approximation based condition-based control framework.

suitability of a RL framework for the condition-based control problem of GTEs
in extracting improved performance as the engines degrade over time. A pro-
posed dual-loop control architecture which is essential to providing a potential
route to certification for the overall framework integrates the RL adaptations into
the existing controller structure. Simulation results on representative engine data
sets delivered improved fuel consumption to the GTE as compared to the conven-
tional fixed gain scheduling by adapting the controller set-points to through-life
degradation and variations.
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(a) IP VIGV schedules.

(b) HP VIGV schedules.

Figure 3.11: Adapted schedules for intermediate pressure (IP) and high pressure
(HP) variable inlet guide vane (VIGV) angles through degradation cycles 0 to
3000 using the proposed Q-function approximation based condition-based control
framework.



72
3.3. Reinforcement learning for the condition-based control of gas turbine

engines

Figure 3.12: Achieved thrust specific fuel consumption (TSFC) using the adapted
variable inlet guide vanes’ angles from the proposed Q-function approximation
based condition-based control framework as compared with their conventional
fixed gain scheduling.



Chapter 4

Reinforcement learning for
optimal tracking control - novel
condition-based approach

The conventional closed-form solution to the optimal control problem using op-
timal control theory is only available under the assumption that there are known
system dynamics/models described as differential equations. Without such mod-
els, RL as a candidate technique has been successfully applied to iteratively solve
the optimal control problem for unknown or time-varying systems. The previous
chapter has considered the development of RL control frameworks for varying
dynamical systems and presented novel approaches for the condition-based con-
trol (CBC) of gas turbine engines (GTEs). The developed frameworks provide
techniques by which to continually adapt the open-loop part of the GTE control
architecture to optimal values subject to gradual system degradation. This chap-
ter extends the RL control frameworks to the closed-loop control part of the GTE
control architecture which is responsible for providing desired reference tracking,
and hence to the general class of tracking controller applications.

For the optimal tracking control problem, existing RL techniques in the litera-
ture either assume the use of a predetermined feedforward input for the tracking
control, or use restrictive assumptions on the reference model dynamics and dis-
counted tracking costs. Furthermore, by using a discounted tracking cost, zero
steady-state error can no longer be guaranteed by the existing RL methods. This
chapter therefore presents an online optimal RL tracking control framework for
discrete-time (DT) systems that does not impose any restrictive assumptions on
the existing methods and equally guarantees zero steady-state tracking error. This

73
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is achieved by forming an augmented system consisting of the original system dy-
namics and the integral of the error between the reference inputs and the tracked
outputs for use in the online RL framework. It is further shown that the result-
ing value function for the DT linear quadratic tracker (LQT) using the augmented
formulation with integral control is also quadratic. This enables the development
of Bellman equations which use only the system measurements to solve the cor-
responding DT algebraic Riccati equation (ARE) and obtain the optimal tracking
control inputs online. The strategies and results discussed in this chapter are based
on the author’s work in Sanusi et al. [118]. A summary of the main contributions
presented in this chapter are as follows:

• An online optimal RL tracking control framework that uses an augmented
formulation with integral control is proposed. The proposal does not have
the limitations of existing tracking RL methods in the literature that assume
either the use of a predetermined feedforward control input or impose re-
strictions on the reference dynamics and the use of discounted cost. Further-
more, by using a discounted cost, zero steady-state error can no longer be
guaranteed by the existing RL methods, but this is overcome by the proposed
method.

• Two condition-based RL frameworks that use the augmented formulation
with integral control are developed for the tracking control of time-varying
dynamical systems along with bounds on excitation needed for the conver-
gence of the RL parameter estimates. These approaches integrate the RL
adaptations into the existing controller structure and provide a through-life
adaptation strategy.

In the following, Section 4.1 introduces the general online optimal tracking
control problem for DT systems and provides the conventional model-based and
model-free solution approaches. An augmented formulation with integral control
for the online optimal tracking problem is introduced in Section 4.2 along with the
model-based and model-free RL solution approaches. Lastly, Section 4.3 provides
the simulation of the proposed techniques on two representative case studies.

4.1 Optimal tracking control for discrete-time systems

The tracking design problem aims to steer the system output to follow a desired
reference trajectory. This has many practical applications such as in aircraft con-
trol systems that are designed to follow desired command inputs from the pilot
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(e.g. throttle position demand, speed reference etc.). For the development of the
tracking control problem, consider the control affine-in-input DT system with the
following dynamics:

xk+1 = f (xk) + g(xk)uk

yk = h(xk) (4.1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp are respectively the system states, inputs and
outputs. Similar to the regulation problem, it is assumed that the system is both
controllable and observable [4]. An associated finite-horizon performance cost for
the tracking control over the time interval [0, N] is given as:

J(xk) = φN +
N−1

∑
n=k

γn−kL(xn, un) (4.2)

where the reward signal is given as the quadratic energy function L(xk, uk) =

(yk − rk)
>QT(yk − rk) + u>k Ruk with φN = (yN − rN)

>QN(yN − rN), r is the de-
sired reference trajectory and 0 < γ ≤ 1 is the discount factor. For the infinite-
horizon case, φN → 0 as N → ∞. The aim of the optimal tracking control problem
is to determine the control policy u = π(x) that minimises the tracking cost (4.2)
and guarantees the system stability such that the system output tracks the desired
reference i.e. y → r. Hence, the control policy for the LQR problem discussed in
Section 2.2.1.2 is no longer valid due to the dependence on the external reference
trajectory and warrants new solution strategies.

4.1.1 Model-based linear quadratic tracker

In the linear case, consider the system of (4.1) modelled by the LTI system given
as:

xk+1 = Axk + Buk

yk = Cxk (4.3)

A conventional solution to the LQT problem using the calculus of variations is
first considered. For this, a corresponding Hamiltonian is defined as:

H(xk, uk, λk+1) = L(xk, uk) + λ>k+1xk+1 (4.4)

where λ is the Lagrange multiplier which is used to adjoin the state equation to
the performance cost. The first order necessary conditions of optimality (NCO)
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to compute a minimum for the Hamiltonian for the un-discounted case i.e. with
γ = 1 are:

xk+1 =
∂H(xk, uk, λk+1)

∂λk+1
= Axk + Buk (4.5a)

λk =
∂H(xk, uk, λk+1)

∂xk
= A>λk+1 + C>QTCxk − C>QTrk (4.5b)

0 =
∂H(xk, uk, λk+1)

∂uk
= B>λk+1 + Ruk (4.5c)

with boundary conditions:

x0 (4.5d)

λN = C>QNCxN − C>QNrN (4.5e)

From (4.5c) the optimal tracking control input is derived as:

u∗k = −R−1B>λk+1 (4.6)

Substituting (4.6) in (4.5a) yields the non-homogeneous Hamiltonian system driven
by a forcing external input −C>Qrk as:[

xk+1

λk

]
=

[
A −BR−1B>

C>QTC A>

] [
xk

λk+1

]
+

[
0

−C>QT

]
rk (4.7)

The top and bottom parts of (4.7) give the state and co-state equations respectively.
From the boundary conditions, the following linear relationship is assumed:

λk = Skxk − vk ∀k ≤ N (4.8)

where Sk ∈ Rn×n and vk ∈ Rn are respectively some yet to be determined inter-
mediate matrix and vector sequences.

Substituting for (4.8) in the state equation of the non-homogeneous Hamilto-
nian system gives:

xk+1 = Axk − BR−1B>Sk+1xk+1 + BR−1B>vk+1

= (I + BR−1B>Sk+1)
−1(Axk + BR−1B>vk+1) (4.9)

To compute the intermediate matrix and vector sequences, substitute for both (4.8)
and (4.9) in the co-state equation of the non-homogeneous Hamiltonian system to
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give:

Skxk − vk = C>QTCxk + A>Sk+1(I + BR−1B>Sk+1)
−1(Axk + BR−1B>vk+1)− · · ·

· · · A>vk+1 − C>QTrk (4.10)

Simplifying (4.10) gives:

[Sk + A>Sk+1(I + BR−1B>Sk+1)
−1A + C>QTC]xk + · · ·

· · · [vk + A>Sk+1(I + BR−1B>Sk+1)
−1BR−1B>vk+1 − A>vk+1 − C>QTrk] = 0

(4.11)

Equating the bracketed terms in (4.11) to zero and using the matrix inversion
lemma given in (2.37) with Am = I, Bm = B, Cm = B>Sk+1 and Dm = R−1 gives
the Riccati recursion for Sk and vk as:

Sk = A>[Sk+1 − Sk+1B(B>Sk+1B + R)−1B>Sk+1]A + C>QTC (4.12)

vk = [A> − A>Sk+1B(B>Sk+1B + R)−1B>]vk+1 + C>QTrk (4.13)

with boundary conditions SN = C>QNC and vN = C>QNrN .

Therefore, the optimal tracking control input (4.6) becomes:

u∗k = −R−1B>λk+1

= −R−1B>Sk+1(Axk + Bu∗k ) + R−1B>vk+1 (4.14)

Pre-multiplying both sides by R and solving for u∗k gives:

u∗k = (B>Sk+1B + R)−1B>(−Sk+1Axk + vk+1)

= −Kx
k xk + Kv

k vk+1 (4.15)

where Kx
k = (B>Sk+1B + R)−1B>Sk+1A and Kv

k = (B>Sk+1B + R)−1B>. For the
infinite horizon case i.e. as N → ∞, the Riccati recursion (4.12) becomes the DT
ARE given as:

S = A>SA− A>SB(B>SB + R)−1B>SA + C>QTC

= A>S(A− BKx) + C>QTC (4.16)

where Kx = (B>SB + R)−1B>SA and with S = S> > 0. The optimal control input
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(4.15) becomes:

u∗k = −Kxxk + Kvvk+1 (4.17)

where Kv = (B>SB+R)−1B> and with vk = (A− BKx)>vk+1 +C>QTrk. Sufficient
conditions for a solution are that the pair (A, B) and (A,

√
QTC) are respectively

stabilisable and observable. It is noted that the given conventional model-based
solution to the LQT optimal control problem consists of both a feedback term Kx

that stabilises the system and a feedforward term Kv for the reference tracking.
Moreover, the given solution is non-causal [75] as it is dependent on a backwards-
in-time recursion of the vector sequence vk. A direct implication of this is that the
conventional model-based solution to the tracking problem can only be obtained
offline and with full knowledge of the system dynamics. A simulation example is
presented to illustrate the conventional tracking solution.

Optimal tracking control example using the conventional model-based approach

To demonstrate the conventional model-based approach, consider the tracking
control problem for the 2-state linear system of Equation (3.16) with sampling
time ts = 0.03s and output dynamics:

yk =
[
1 1

]
︸ ︷︷ ︸

C

xk (4.18)

The tracking control problem is to track a step reference signal from any finite
initial condition x0. The tracking cost parameters are given as γ = 1, QT =

QN = 2 and R = 1. Figure 4.1 shows the DT evolution and convergence of

the Riccati matrix S∗ =

[
S11 S12

S21 S22

]
=

[
17.4793 23.3872
23.3872 34.5027

]
using the sys-

tem dynamics, and the corresponding convergence of both the feedforward gain
Kv =

[
0.0473 0.0376

]
and feedback gain Kx =

[
1.8195 2.6378

]
of the opti-

mal tracking input (4.17). Figure 4.2 shows the performance of the tracking con-
troller after convergence of the controller parameters to the optimal values using
the offline backwards-in-time recursion.

Extension of the conventional model-based solution to a model-free approach
to enable online adaptations is impossible as a result of its non-causal strategy.
Furthermore, the approach does not guarantee zero steady-state tracking error.
Causal solution strategies that enable model-free approaches have however been
proposed in the literature and will now be discussed.
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Figure 4.1: Backwards-in-time evolution and convergence of the Riccati matrix S
and the corresponding feedforward gain Kv and feedback gain Kx of the track-
ing control input to the optimal values (in black dashed lines) using the baseline
model-based approach.

4.1.2 Model-free linear quadratic tracker

Existing causal solution strategies to the online tracking control problem that en-
able model-free approaches can be categorised into two as follows:

4.1.2.1 Strategies using dynamics inversion

These methods [77], [78], [79], enable the simultaneous online computation of both
the feedforward and feedback terms of the tracking control input. This approach
assumes that the desired reference dynamics is governed by:

rk+1 = f (rk) + g(rk)ud,k (4.19)
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Figure 4.2: Performance of the tracking control input to a step input using the
offline computed gains from the baseline model-based approach.

where ud,k = g(rk)
−1(rk+1 − f (rk)

)
is the feedforward tracking control input. The

dynamics of the tracking error ek = xk − rk is given as:

ek+1 = xk+1 − rk+1

= f (ek + rk) + g(ek + rk)uk − rk+1 (4.20)

where uk = ue,k + ud,k. Substituting for ud,k and simplifying yields:

ek+1 = f (ek + rk) + g(ek + rk)g(rk)
−1(rk+1 − f (rk)

)
− rk+1 + g(ek + rk)ue,k

= fe,k + ge,kue,k (4.21)

where fe,k = f (ek + rk) + g(ek + rk)g(rk)
−1(rk+1 − f (rk)

)
− rk+1 and ge,k = g(ek +

rk). A tracking cost function can then be defined using the quadratic energy
function:

J(ek) =
∞

∑
n=k

γn−k(e>n Qeen + u>e,nReue,n
)

(4.22)
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with Qe ≥ 0 and Re > 0. Equating the derivative of the cost function with respect
to the control input to zero and using the Bellman optimality principle yields the
optimal tracking control input as:

∂J∗(ek)

∂ue,k
=

∂
(
e>k Qeek + u>e,kReue,k

)
∂ue,k

+ γ
∂J∗(ek+1)

∂ue,k
= 0

= 2Reue,k + γ
∂J∗(ek+1)

∂ek+1
· ∂ek+1

∂ue,k
= 0

= 2Reue,k + γg>e,k
∂J∗(ek+1)

∂ek+1
= 0

∴ u∗e,k = −
γ

2
R−1

e g>e,k
∂J∗(ek+1)

∂ek+1
(4.23)

The overall control input thus consists of both the feedforward and feedback terms
given as:

u∗k = ud,k + u∗e,k (4.24)

Being causal, the strategy can be implemented online to compute ue,k as it elim-
inates the need to use backwards-in-time recursion associated with the conven-
tional model-based approach. Standard RL approximation methods introduced in
Sections 3.1.1 and 3.1.2 can then be used to develop model-free online strategies
to cope with varying or unknown system dynamics.

Remarks

• Complete knowledge of the system dynamics is needed to compute the feed-
forward term of the tracking control input ud,k, with a further assumption
that the input function g(r) is invertible.

• Online implementation of this approach therefore assumes ud is known a
priori, and only the feedback term ue is computed online. As a result, prac-
tical online adaptation strategies to cope with varying systems are limited
using this strategy.

• Similar to the conventional model-based approach, this strategy does not
guarantee zero steady-state tracking error.
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4.1.2.2 Strategies using augmented formulation

In contrast to the dynamics inversion methods, these methods [38], [75], [81], [87],
[89], enable the simultaneous online computation of both the feedforward and
feedback terms of the tracking control input. For this, the reference dynamics is
assumed to be governed by:

rk+1 = ψ(rk) (4.25)

where ψ(rk) is some reference generator model with ψ(0) = 0. Similar to (4.20),
the error dynamics is defined as:

ek+1 = xk+1 − rk+1

= f (ek + rk) + g(ek + rk)uk − ψ(rk) (4.26)

An augmented system is then formulated using both the error and the reference
dynamics as follows:

Xr
k+1 =

[
f (ek + rk)− ψ(rk)

ψ(rk)

]
+

[
g(ek + rk)

0

]
uk

= Fr(Xr
k) + Gr(Xr

k)uk (4.27)

where Xr
k =

[
ek

rk

]
. Following this, a tracking cost is defined as:

J(Xr
k) =

∞

∑
n=k

γn−k(Xr>
n QrXr

n + u>n Run
)

(4.28)

where Qr =

[
Q 0
0 0

]
. Similar to (4.23), the optimal tracking control input is

obtained by equating the derivative of the cost function with respect to the control
input to zero, which gives:

u∗k = −γ

2
R−1Gr>(Xr

k)
∂J∗(Xr

k+1)

∂Xr
k+1

(4.29)

This way, the tracking problem is recast as a regulation problem, the solution
of which gives both the feedforward and feedback terms of the control input.
Ditto, standard RL approximation methods introduced in Sections 3.1.1 and 3.1.2
can then be used to develop model-free online strategies to cope with varying or
unknown system dynamics.
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Remarks

• It is assumed that ψ(rk) → 0 as k → ∞; where this is not the case, a dis-
counted cost function with 0 < γ < 1 must be used to ensure the value of
the cost function remains finite [75]. This assumption poses a restriction on
the class of reference generator that can be used with the approach.

• By using a discount factor in the cost function, this approach cannot guar-
antee zero steady-state tracking error as discussed in [75]. This restrictive
assumption on the reference dynamics and discounted cost makes the ap-
proach less desirable for use in practical tracking applications.

Consequently, existing RL techniques for the online optimal tracking control
problem either assume the use of a predetermined feedforward input for the track-
ing control, or use restrictive assumptions on the reference model dynamics and
discounted tracking costs. In the next section, a new augmented formulation
for the online optimal tracking control problem that guarantees zero steady-state
tracking error without imposing any restrictive assumptions on the reference dy-
namics or discounted cost function is proposed to overcome the limitations of the
existing strategies.

4.2 Augmented formulation for the optimal tracking prob-
lem with integral control

In the following, a new augmented formulation for the online optimal tracking
problem with integral control is developed. Consider a new state ż for the system
described in (4.1), defined as the integral of the difference between the desired
reference and the system output as:

ż(t) =
∫ (

r(t)− y(t)
)
dt (4.30)

where z ∈ Rp. Using Euler’s approximation, an equivalent discrete-time state
with sampling time ts is given as:

zk+1 = zk + ts
(
rk − h(xk)

)
(4.31)
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An augmented system can then be formulated using the new integral state as
follows: [

xk+1

zk+1

]
=

[
f (xk)

zk − tsh(xk)

]
+

[
g(xk)

0

]
uk +

[
0

ts I

]
rk (4.32)

At steady-state, the augmented system (4.32) becomes:[
x∞

z∞

]
=

[
f (x∞)

z∞ − tsh(x∞)

]
+

[
g(x∞)

0

]
u∞ +

[
0

ts I

]
r∞ (4.33)

For a constant reference signal i.e. r∞ = rk, subtracting (4.33) from (4.32) gives:[
xk+1 − x∞

zk+1 − z∞

]
=

[
f (xk)− f (x∞)

zk − z∞ − ts
(
h(xk)− h(x∞)

)]+ [g(xk)uk − g(x∞)u∞

0

]
(4.34)

Further simplification of (4.34) becomes:

Xk+1 = F(Xk) + G(Xk)ũk (4.35)

with Xk =

[
xk − x∞

zk − z∞

]
∈ Rn+p, ũk = (uk − u∞) ∈ Rm and where F(Xk) =[

f (xk)− f (x∞) + g(xk)u∞ − g(x∞)u∞

zk − z∞ − ts
(
h(xx)− h(x∞)

) ]
and G(Xk) =

[
g(xk)

0

]
.

The tracking cost is then redefined as:

J(Xk, ũk) =
∞

∑
n=k

γn−k(X>n Q1Xn + ũ>n Rũn
)

(4.36)

where Q1 ∈ R(n+p)×(n+p). This way, the tracking problem is converted to that
of regulation such that the control input for a minimum of (4.36) eliminates the
steady-steady error by ensuring that xk → x∞ and zk → z∞ as Xk → 0. Further-
more, as the new augmented system states are not dependent on the reference
dynamics, this approach removes the restrictive assumptions of the existing meth-
ods.

An equivalent difference equation to (4.36) for a given fixed policy is given by
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the value function defined as:

V(Xk) =
∞

∑
n=k

γn−k(X>n Q1Xn + ũ>n Rũn
)

= R1(Xk, ũk) + γ
∞

∑
n=k+1

γn−(k+1)R1(Xn, ũn)

∴ V(Xk) = R1(Xk, ũk) + γV(Xk+1) (4.37)

where R1(X, ũ) = X>Q1X + ũ>Rũ and V(0) = 0. Using the Bellman principle of
optimality, the optimum value becomes:

V∗(Xk) = min
ũ

(
R1(Xk, ũk) + γV∗(Xk+1)

)
(4.38)

Equation (4.38) gives the DT HJB equation for the augmented tracking formulation
with integral control from which the optimal tracking control input is obtained as:

ũ∗k = arg min
ũ

(
R1(Xk, ũk) + γV∗(Xk+1)

)
(4.39)

4.2.1 Model-based solution to the augmented tracking formulation with
integral control

A model-based control solution to the optimal tracking problem using the aug-
mented formulation with integral control for DT linear systems is first presented
to be used in comparison with the model-free RL approaches introduced in later
sections. Using the linear DT system dynamics in (4.3), the augmented system of
(4.35) becomes:

Xk+1 =

[
xk+1 − x∞

zk+1 − z∞

]
=

[
A 0
−tsC I

] [
xk − x∞

zk − z∞

]
+

[
B
0

]
(uk − u∞)

= A1Xk + B1ũk (4.40)

Lemma 1. (Quadratic Value Function for LQT using augmented formulation with inte-
gral control). Given the LQT cost function (4.36) and dynamics (4.40), for any stabilising
control law:

ũk = −
[
Kx −KI

] [xk − x∞

zk − z∞

]
= −K1Xk (4.41)

where K1 ∈ Rm×(n+p), Kx ∈ Rm×n and KI ∈ Rm×p; the value function for the aug-
mented formulation with integral control is quadratic for some matrix P1 = P>1 > 0 ∈
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R(n+p)×(n+p) and given as:

V(Xk) = X>k P1Xk (4.42)

For simplicity of notation in subsequent analysis, x∞ and z∞ are dropped in
the augmented states.

Proof. Change the lower limit for the summation in (4.37) and substituting for ũk

gives:

V(Xk) =
∞

∑
n=0

γn[X>n+kQ1Xn+k + X>n+kK>1 RK1Xn+k
]

(4.43)

Noting that:

Xn+k = (A1 − B1K1)
nXk

=

([
A 0
−tsC I

]
−
[

BKx −BKI

0 0

])n [
xk

zk

]

= M

[
xk

zk

]
(4.44)

where M =

[
A− BKx BKI

−tsC I

]n

=

[
M11 ∈ Rn×n M12 ∈ Rn×p

M21 ∈ Rp×n M22 ∈ Rp×p

]
and

Q1 =

[
Q11 ∈ Rn×n Q12 ∈ Rn×p

Q21 ∈ Rp×n Q22 ∈ Rp×p

]

Equation (4.43) becomes:

V(Xk) =
∞

∑
n=0

γn

[ [
M11xk + M12zk

M21xk + M22zk

]> [
Q11 Q12

Q21 Q22

] [
M11xk + M12zk

M21xk + M22zk

]

+

[
M11xk + M12zk

M21xk + M22zk

]> [
K>x RKx −K>x RKI

−K>I RKx K>I RKI

] [
M11xk + M12zk

M21xk + M22zk

] ]
(4.45)

Therefore,

V(Xk) = x>k P(11)
1 xk + x>k P(12)

1 zk + z>k P(21)
1 xk + z>k P(22)

1 zk

= X>k P1Xk (4.46)

where P1 =

[
P(11)

1 P(12)
1

P(21)
1 P(22)

1

]
and
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P(11)
1 = ∑∞

n=0 γn[M>11Q11M11 + M>12Q12M11 + M>11Q12M21 + M>12Q22M21 + M>11K>x RKx M11−
M>21K>I RKx M11 −M>11K>x RKI M12 + M>21K>I RKI M12]

P(12)
1 = ∑∞

n=0 γn[M>11Q11M12 + M>12Q21M12 + M>11Q12M22 + M>12Q22M22 + M>11K>x RKx M12−
M>21K>I RKx M12 −M>11K>x RKI M22 + M>21K>I RKI M22]

P(21)
1 = ∑∞

n=0 γn[M>12Q11M11 + M>22Q21M11 + M>12Q12M21 + M>22Q22M21 + M>12K>x RKx M11−
M>22K>I RKx M11 −M>12K>x RKI M12 + M>22K>I RKI M12]

P(22)
1 = ∑∞

n=0 γn[M>12Q11M12 + M>22Q21M12 + M>12Q12M22 + M>22Q22M22 + M>12K>x RKx M12−
M>22K>I RKx M12 −M>12K>x RKI M22 + M>22K>I RKI M22]

From (4.38), the Bellman equation for the optimal value function is thus given
as:

V∗(Xk) = X>k P∗1 Xk = X>k Q1Xk + ũ>k Rũk + γX>k+1P∗1 Xk+1 (4.47)

and the optimal control input of (4.39) with γ = 1 becomes:

ũk = arg min
ũ

(
X>k Q1Xk + ũ>k Rũk + X>k+1P1Xk+1

)
= −(R + B>1 P1B1)

−1B>1 P1A1Xk

= −K1Xk (4.48)

where K1 =
(
(R + B>1 P1B1)

−1B>1 P1A1
)
=
[
Kx −KI

]

Equation (4.48) gives the optimal model-based control solution to the aug-
mented formulation for the DT LQT problem consisting of both the integral feed-
forward KI and feedback Kx gains. Substituting for ũk in (4.47) and simplifying
gives the corresponding ARE for the system as:

P1 = Q1 + A>1 P1A1 − A>1 P1B1(R + B>1 P1B1)
−1B>1 P1A1 (4.49)

Lyapunov stability can be shown for the LQT system by using the Lyapunov func-
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tion:

∆V(Xk) = V(Xk+1)−V(Xk) = X>k P1Xk+1 − X>k P1Xk < 0

= (A1Xk + B1ũk)
>P1(A1Xk + B1ũk)− X>k P1Xk < 0

= X>k A>1 P1A1Xk + X>k A>1 P1B1ũk + ũ>k B>1 P1A1Xk + ũ>k B>1 P1B1ũk − X>k P1Xk < 0
(4.50)

Substitute for control input (4.48) as:

∆V(Xk) = X>k A>1 P1A1Xk − X>k A>1 P1B1K1Xk − X>k K>1 B>1 P1A1Xk

+X>k K>1 B>1 P1B1K1Xk − X>k P1Xk < 0

= X>k
[
A>1 P1A1 − A>1 P1B1K1 − K>1 B>1 P1A1 + K>1 B>1 P1B1K1 − P1

]
Xk < 0 (4.51)

Add and subtract K>1 RK1, then simplify further to give:

∆V(Xk) = X>k
[
A>1 P1A1 − A>1 P1B1K1 − K>1 B>1 P1A1 + K>1 B>1 P1B1K1

−P1 + K>1 RK1 − K>1 RK1
]
Xk < 0

= X>k
[
A>1 P1A1 − A>1 P1B1K1 − K>1 B>1 P1A1 + K>1 (R + B>1 P1B1)K1

−K>1 RK1 − P1
]
Xk < 0 (4.52)

Finally, substitute for K1 = (R + B>1 P1B1)
−1B>1 P1A1 in (4.52):

∆V(Xk) = X>k
[
A>1 P1A1 − A>1 P1B1(R + B>1 P1B1)

−1B>1 P1A1

−K>1 RK1 − P1
]
Xk < 0 (4.53)

But the ARE for the LQT system is given in terms of P1 in (4.49), therefore, Lya-
punov stability is guaranteed for the following condition:

∆V(Xk) = Xk
[
−Q1 − K>1 RK1

]
Xk < 0 (4.54)

if and only if Q1 and R are positive semi-definite.

Figure 4.3 shows the block diagram of the augmented tracking control frame-
work with integral control consisting of both a feedforward integral gain KI and
feedback gain Kx. The given baseline integral-proportional (I-P) control structure
is widely used in practice where the tracking error is fed into the feedforward
integral term while the proportional term is implemented in feedback [119], [120].

Therefore, using knowledge of the system dynamics, the above tracking frame-
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Figure 4.3: Block diagram of an augmented tracking control framework with in-
tegral control consisting of both a feedforward integral gain KI and feedback gain
Kx.

work with integral control can be used to achieve optimal tracking control online
and does not impose restrictions on the reference model dynamics or use of dis-
counted tracking costs. For systems with unknown or varying dynamics, an ap-
proximate online solution to the optimal tracking control framework with integral
control is developed in the next section using reinforcement learning. This offers
the advantage of not requiring the full knowledge of the system dynamics whilst
converging to the optimum values.

4.2.2 Reinforcement learning framework for the optimal tracking con-
trol using the augmented formulation with integral control

As discussed in Section 4.1.2, existing approaches for the optimal tracking con-
trol problem using RL either assume that the feedforward part of the control is
known a priori or make restrictive assumptions on the reference model dynamics
and use of discounted tracking costs. These restrictive assumptions are eliminated
by using the augmented formulation with integral control as proposed in Sec-
tion 4.2. Consequently, a novel optimal RL framework is proposed for the LQT
problem that converges to the optimum solution for systems with varying or un-
known system dynamics using the augmented formulation with integral control.
Furthermore, unlike the previously proposed RL tracking approaches [38], [75],
[77], [78], [79], [81], [87], [89], the proposed formulation is able to guarantee zero
steady-state tracking error and provides adaptation for both the feedforward and
feedback controller gains. The framework continually adapts the controller gains
to optimum values and provides a through-life adaptation strategy.
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Consistent with the techniques discussed in Section 3.2, these approaches are
termed condition-based by using the system measurements to optimise to slow
and varying changes in the system performance. Using the RL approximation
techniques developed in Sections 3.1.1 and 3.1.2, the condition-based tracking con-
trol frameworks are enabled by approximating the associated value functions as
follows. For the VFA method, the state value function is approximated as:

Vπ(Xk) ≈ θ>c Φc(Xk) =
∞

∑
n=k

γn−kR1(Xn, ũn) (4.55)

where Φc(X) is a set of basis function with weights θc. Equation (4.55) gives the
approximated sum of the discounted reward signal R1(Xk, ũk) starting from Xk

under some policy π(X). Similarly, for the QFA method, the state-action value
function is approximated as:

Qπ(Xk, ũk) ≈ β>Ψ(Xk, ũk) =
∞

∑
n=k

γn−kR1(Xn, ũn) (4.56)

where Ψ(X, ũ) is a set of basis function with weights β. Equation (4.56) gives
the approximated sum of discounted reward signal R1(Xk, ũk) starting from state
Xk and taking action ũk, then following policy π(X) thereon. Depending on the
function that is being approximated, two RL strategies are therefore proposed for
the condition-based optimal tracking control.

4.2.2.1 VFA based optimal tracking control

In the VFA RL approximation method, the Bellman equation for the state value
function (4.55) becomes:

θ>c Φc(Xk) = X>k Q1Xk + ũ>k Rũk + γθ>c Φc(Xk+1) (4.57)

This represents the critic network, and the parameters are updated using the
TD error from either a VI or PI recursion as given in Section 3.1.1. A second
function approximation which serves as the actor network is used to adapt the
controller gains and is given as:

ũk = π(Xk) = θ>a Xk = −K̂1Xk (4.58)

The RL adaptations consist of both a value and policy update steps. For the
value update step, the policy is kept fixed while the value function parameters
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Algorithm 4.1 VFA based RL tracking algorithm using PI

Initialise V(X) ≈ θ>c,kΦc(X) at k = 0 for some stabilising policy π(X) = θ>a,kX,
and do till convergence:

Value function update step
1: for j = 0 : N do
2: At X j, compute the control input ũj with exploration signal ε as ũj =

π(X j) + ε.
3: Compute the least squares solution for θc,j+1 using measurements
R1(X j, ũj), X j and X j+1 as:

θ>c,j+1
(
Φc(X j)− γΦc(X j+1)

)
= X>j Q1X j + ũ>j Rũj

4: j = j + 1.
5: end for

Policy update step
Require: Set θc,k+1 = θc,j+1 |j=N

6: Update the policy parameters using the gradient descent tuning as:

θi+1
a,k = θi

a,k − laX i

(
2Rθi>

a,kX i + γB>1
∂θ>c,k+1Φc(X i+1)

∂X i+1

)

7: At the end of the gradient tuning, set θa,k+1 = θi+1
a,k and update the policy as:

π(X) = θ>a,k+1X = −K1X

8: Increment time step k = k + 1.

are updated using the system measurements at N episodic intervals (i.e. from
some initial state X0 to a terminal state XN). After each episode, the controller pa-
rameters are adapted from (4.39) using a gradient tuning update as described in
Section 3.1.1. This is repeated till convergence of both the critic and actor network
parameters. This way, the VFA based RL method solves the online LQT problem of
Section 4.1 using the proposed augmented formulation with integral control and
without requiring knowledge of the system dynamics. Algorithm 4.1 describes
the VFA based RL adaptations for the controller gains using a PI recursion.

The VFA based RL algorithm is not completely model-free as knowledge of
the input matrix B1 is needed in computing the actor network parameter update.
Consequently, the approach is limited to systems with variations occurring only
in the drift or dynamics matrix A1.
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4.2.2.2 QFA based optimal tracking control

In the QFA RL approximation method, the Bellman equation for the state-action
value function (4.56) becomes:

β>Ψ(Xk, ũk) = X>k Q1Xk + ũ>k Rũk + γβ>Ψ(Xk+1, ũk+1) (4.59)

The RL adaptations equally consist of both a Q-function and policy update
steps. In contrast to the VFA RL method, the Q-function explicitly approximates
the control inputs for each state from which the optimal control input can be ob-
tained via a greedy optimisation. This makes the QFA RL method completely
model-free by using only the measurements observed along the system trajecto-
ries for the controller updates and is further described in Algorithm 4.2.

The Q-function parameters are updated in each episode whilst keeping the
policy fixed and constitutes the Q-function update step. For the policy update, a
greedy optimisation is performed after each episode using the adapted Q-function
parameters as described in Section 3.1.2 as:

ũk = arg min
ũ

(
β>Ψ(Xk, ũk)

)
= K̂1Xk (4.60)

Remarks for Algorithms 3.1 and 3.2 also apply to Algorithms 4.1 and 4.2 re-
spectively.

The RL control strategies described above solve the online LQT problem with-
out knowledge of the system dynamics or variations. Furthermore, by using the
proposed augmented formulation with integral control, the RL frameworks do
not require any predetermined feedforward tracking control input or restrictive
assumptions on the reference generator dynamics and use of discounted tracking
costs. In the development of the condition-based RL tracking control framework,
the following considerations as highlighted in Section 2.4 are noted:

• The reward signal for the tracking problem is selected as the quadratic en-
ergy function R1(X, ũ) = X>Q1X + ũ>Rũ. However, to be condition-based,
variations or decline in system performance can be detected by measuring
standard step response parameters like the percentage overshoot (P.O.), rise
time, etc. This can then be used as an enable signal to initiate the RL frame-
work to learn new optimal tracking parameters.

• The condition-based RL tracking control assumes an unconstrained formula-
tion for adaptations of its controller gains. For the GTE control architecture,
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Algorithm 4.2 QFA based RL tracking algorithm using PI

Initialise Q(X, ũ) ≈ β>k Ψ(X, ũ) at k = 0 for some stabilising policy π(X) =
arg minũ

(
β>k Ψ(X, ũ)

)
, and do till convergence:

Q-function update step
1: for j = 0 : N do
2: At X j, compute the control input ũj with exploration signal ε as ũj =

π(X j) + ε.
3: Compute the least squares solution for β j+1 using measurements
R1(X j, ũj), ũj, X j and X j+1 as:

β>j+1
(
Ψ(X j, ũj)− γΨ(X j+1, ũj+1)

)
= X>j Q1X j + ũ>j Rũj

where ũj+1 = π(X j+1)
4: j = j + 1.
5: end for

Policy update step
Require: Set βk+1 = β j+1 |j=N

6: Update the policy parameters using a greedy optimisation as:

π(X) = arg min
ũ

(
β>k+1Ψ(X, ũ)

)
= −K1X

7: Increment time step k = k + 1.

the RL adaptations can occur prior to the limiter logic used to maintain
operational safety/reliability and thus consistent with other gain modifier
techniques reported in [113].

• A baseline integral-proportional (I-P) control architecture of Figure 4.3 where
the tracking error is fed into a feedforward integral term while the propor-
tional term is implemented in feedback is assumed. The condition-based
framework therefore aims to provide adaptations for the controller gains us-
ing RL to optimum values subject to the gradual system variations.

The control strategy described above is represented schematically in Figure 4.4
where the RL block represents either the VFA or QFA algorithm that continually
uses the observed system measurements to adapt the tracking controller gains to
optimum values subject to varying or unknown system dynamics.
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Figure 4.4: Schematic of a condition-based reinforcement learning (RL) framework
for the optimal tracking control using the augmented formulation with integral
control. The RL block represents either the value function approximation (VFA)
or Q-function approximation (QFA) algorithm that continually uses the observed
system measurements to adapt the tracking controller gains to optimum values
subject to varying or unknown system dynamics.

4.3 Simulation case studies for the condition-based RL track-
ing control framework

The condition-based RL tracking framework is demonstrated on two representa-
tive case studies. The first is a system with an initially unstable and unknown
dynamics that shows convergence of the proposed RL tracking methods to the
optimal tracking controller gains. The second case study addresses the optimal
tracking control problem in a buck power converter system which is subject to
uncertain or varying component tolerances under different operating conditions.

4.3.1 Case study 1

The first case study uses the system described in Equation (3.17) with:

A(1) =

[
0.9724 0.0607
0.0668 1.0544

]
; B =

[
0.0605
0.0482

]
yk =

[
1 1

]
︸ ︷︷ ︸

C

xk (4.61)

for which a baseline model-based optimal tracking control solution has been
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derived in Section 4.1.1. The tracking control problem is to track a time-varying
step reference input from any finite initial condition x0 representative of pilot
reference commands in a GTE or precision tracking applications. Tracking cost
parameters in (4.36) for the augmented formulation are considered as Q1 = 2×
I(3), R = 0.05 and γ = 1.

4.3.1.1 Existing online solution approach with the use of discounted cost

The existing online solution to the optimal tracking control problem as discussed
in Section 4.1.2 requires knowledge of the reference dynamics and the use of dis-
counted tracking cost. For the given tracking problem, consider the reference
dynamics of (4.25) to be given by the linear difference equation:

rk+1 = Frk (4.62)

where F = 1. An augmented system with the reference dynamics can then be
formulated according to (4.27). Furthermore, as a result of using a reference dy-
namics that does not tend to zero, a discounted cost must be used. Comparison of
the performance of this approach using different discount factors to the proposed
augmented formulation with integral control is shown in Figure 4.5.

As could be observed in the simulation result, a discount factor of γ = 0.8
had a slower response but a reduced steady-state error while a discount factor of
γ = 0.7 had a faster response but larger steady-state error. Existing online tracking
approaches with the use of a discount factor are therefore not only restrictive
to the type of reference dynamics that can be used, but also cannot guarantee
zero steady-state tracking error. In the following, the proposed online solution
approaches that do not require knowledge of the reference dynamics or the use of
discounted cost will now be presented.

4.3.1.2 Model-based solutions using the proposed augmented formulation with
integral control

Baseline solution for the augmented formulation with integral control using the
system models is first presented. An augmented system with integral control is
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formed according to (4.40) as:

Xk+1 =

0.9724 0.0607 0
0.0668 1.0544 0
−0.03 −0.03 1


︸ ︷︷ ︸

A1(1)

Xk +

0.0605
0.0482

0


︸ ︷︷ ︸

B1

ũk (4.63)

Using the given system models (A1(1), B1), the optimal solution to the correspond-
ing ARE (4.49) is given as:

P∗1(1) =

 10.1584 −6.9476 −8.8170
−6.9476 18.5835 4.5047
−8.8170 4.5047 68.4224

 (4.64)

with the optimal tracking controller gains as:

K∗1(1) =
(
(R + B>1 P1B1)

−1B>1 P1A1(1)
)
=
[
Kx −KI

]
=
[
3.6277 5.7644 −4.6873

]
(4.65)

Figure 4.5: Comparison of the existing online tracking methods with the use of
discount factors with the proposed integral augmentation approach.
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However, in practice the system dynamics may be unknown or time varying
therefore motivating the use of the proposed model-free online RL tracking meth-
ods.

4.3.1.3 Model-free RL tracking solutions

The proposed model-free RL tracking approaches can be used to obtain the op-
timal tracking controller gains online subject to the unknown or varying system
dynamics.

4.3.1.3.1 VFA based RL adaptation From Lemma 1, the value function for the
augmented formulation with integral control is quadratic, thus the critic network
in the VFA method for the given 2-state system in Algorithm 4.1 is approximated
by the quadratic function:

V(X) ≈ θ>c Φ(X) = θ>c



x2
1

x1x2

x1z
x2

2

x2z
z2


(4.66)

where θc ∈ R6. A linear function approximates the controller gains in the actor
network as:

π(X) ≈ θ>a X = θ>a

[
x1 x2 z

]
(4.67)

with θa ∈ R3. From Algorithm 4.1, an initially sup-optimal but stabilising policy
is arbitrarily selected as:

π(X) =
[
0.4112 −2.0412 2.5011

]
︸ ︷︷ ︸

−K̂1(0)

(4.68)

The rest of Algorithm 4.1 is then run online till convergence of the tracking
controller parameters using only the observed system measurements. The VFA
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parameters converged to the following optimal values:

θ∗c(1) =



9.9155
−14.9830
−16.7696
18.0048
10.1510
68.8826



>

(4.69)

with: P11
1 P12

1 P13
1

P21
1 P22

1 P23
1

P31
1 P32

1 P33
1

 =


θ
(1)
c 0.5θ

(2)
c 0.5θ

(3)
c

0.5θ
(2)
c θ

(4)
c 0.5θ

(5)
c

0.5θ
(3)
c 0.5θ

(5)
c θ

(6)
c

 (4.70)

and θ∗a(1) = [−3.4202;−5.5650; 4.6468] = −K̂∗1(1).

To demonstrate the continual adaptation of the tracking controller gains to op-
timal values using the proposed condition-based RL tracking control framework,
the system drift matrix A is changed instantaneously during simulation to:

A(2) =

[
0.8706 0.1672
−0.0395 1.1654

]
(4.71)

with a new baseline model-based solution from using the system A(2) matrix given
as:

P∗1(2) =

 23.3462 −27.4260 −34.6172
−27.4260 49.7383 38.9057
−34.6172 38.9057 127.0261


K∗1(2) =

[
1.2757 8.8839 −4.6907

]
(4.72)

Following this system variation, the tracking controller gains are no longer op-
timal resulting in a decline in the system performance. This can be detected in
practice by using a threshold on standard step response parameters like percent-
age overshoot (P.O.), rise time, etc. and used as an enable signal to re-initiate the
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RL learning process. The VFA parameters after the system variation converged to:

θ∗c(2) =



23.3958
−56.2854
−69.6663
49.9611
78.9013
127.1470



>

(4.73)

and θ∗a(2) = [−0.9668;−8.7688;−4.6794] = −K̂∗1(2). Figure 4.6 shows the parameter
convergence using the VFA based RL adaptation to the optimal but assumed un-
known values before and after the system variation.

Figure 4.6: Online adaptation and convergence of both the value function and con-
troller parameters to the optimal values (in black dashed lines) using Algorithm
4.1. θa,c(0) are the initial sub-optimal controller parameters while θa,c(1) and θa,c(2)
are respectively the identified optimal controller parameters before and after the
system variation.

Figure 4.7 shows the overall system response to time-varying step reference in-
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puts at the various stages of the RL adaptation. The region with θa,c(0) in the figure
corresponds to the system response using the initial sub-optimal controller gains,
while the region with θa,c(1) shows the system response after convergence to the
optimal controller values from the RL adaptation. After the system variation and
keeping the controller values fixed, the region with θa,c(1) with variation shows the
decline in system performance following which the RL adaptation is re-enabled.
The new system performance after convergence to the new optimal control gains
is then shown in the region with θa,c(2).

Figure 4.7: System response showing the system states and tracked output at
the various stages of the reinforcement learning adaptations. Region with θa,c(0)
shows the response using the initial sub-optimal controller gains, while region
with θa,c(1) shows the response from the adapted controller gains to the optimal
values using the proposed Algorithms. Region with θa,c(1) with variation shows the
decline in the system performance following variations in the system dynamics
whilst keeping the controller values fixed, while region with θa,c(2) onwards shows
the response after adaptation to the new optimal control gains.

4.3.1.3.2 QFA based RL adaptation The QFA provides a completely model free
approach to the LQT problem and similar to the VFA, the Q-functions from Al-
gorithm 4.2 are approximated for the 2-state system using a quadratic basis set
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as:

Q(X, ũ) ≈ β>Ψ(X, ũ) = β>



x2
1

x1x2

x1z
x1ũ
x2

2

x2z
x2ũ
z2

zũ
ũ2



(4.74)

with β ∈ R10. Using Algorithm 4.2, the Q-function parameters converged to:

β∗(1) =



11.3564
−10.0880
−20.7299

0.6605
21.6084
4.0903
1.0495
70.4224
−0.8534
0.0910



>

(4.75)

with:

Q∗ =

[
Q1 + λA>1 P∗1 A1 λA>1 P∗1 B1

λB>1 P∗1 A1 R + λB>1 P∗1 B1

]
=


β(1) 0.5β(2) 0.5β(3) 0.5β(4)

0.5β(2) β(5) 0.5β(6) 0.5β(7)

0.5β(3) 0.5β(6) β(8) 0.5β(9)

0.5β(4) 0.5β(7) 0.5β(9) β(10)


(4.76)

Corresponding controller gains are then derived according to (4.60) as:

π(X) = arg min
ũ

(
β>Ψ(X, ũ)

)
= −0.5 ∗ β(10)−1(

β(4)x1 + β(7)x2 + β(9)z
)
= θ>a X (4.77)
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Therefore, the optimal controller gains with β∗1 are computed as:

θ∗a(1) = [−3.6277;−5.7644; 4.6873] = −K̂∗1(1) (4.78)

After variation of the system drift matrix to A(2) during simulation, the pa-
rameters re-converged to new optimal values as:

β∗(2) =



23.4941
−52.7916
−70.3222

0.2319
56.9123
70.2357
1.6150

129.0261
−0.8527
0.0909



>

(4.79)

and

θ∗a(2) = [−1.2757;−8.8839; 4.6907] = −K̂∗1(2) (4.80)

Figure 4.8 shows the online adaptation and convergence of the Q-function pa-
rameters before and after the system variation respectively. After convergence to
the optimal values, the system response using the QFA based RL adaptations are
as shown in Figure 4.7. The QFA RL approach therefore provides a completely
model-free online tracking control solutions.

4.3.2 Case study 2

This case study addresses the optimal tracking control problem in a buck power
converter system which is subject to uncertain or varying component tolerances
under different operating conditions. Consider a buck power converter with a
switching element and consisting of an inductor Lp with a small series resistance
r, a capacitor Cp and a diode. The voltage drop in the diode can be neglected as the
value is typically small [121]. For a continuous conduction mode operation (CCM),
the control input is defined as the duty-ratio u ∈ [0, 1] and the buck converter
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Figure 4.8: Online adaptation and convergence of the Q-function parameters to the
optimal values (in black dashed lines) using Algorithm 4.2. β(0) are the initial sub-
optimal controller parameters while β(1) and β(2) are respectively the identified
optimal controller parameters before and after the system variation.
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dynamics are given as [121]:

Lp
di(t)

dt
= −ri(t)− v(t) + Eu(t) (4.81)

Cp
dv(t)

dt
= i(t)− iL (4.82)

where E is the dc input voltage, i is the inductor current, v is the output voltage,
iL = v

RL
is the load current and RL is the load resistor. The aim of the controller

is to regulate the output voltage to a given vre f . With the states chosen as the
inductor current i and output voltage v, a corresponding state-space dynamics is
formulated as:

ẋ(t) =

[
i̇(t)
v̇(t)

]
=

[−r
Lp

1
Lp

1
Cp

−1
CpRL

] [
i(t)
v(t)

]
+

[
E
Lp

0

]
u(t)

= Ax(t) + Bu(t) (4.83)

y(t) =
[
0 1

] [ i(t)
v(t)

]
y(t) = Cx(t) (4.84)

The system component parameters are given as r = 0.5Ω, Lp = 1mH, Cp = 50µF
and E = 48V. Variations can occur due to modelling uncertainties and component
tolerances under different operating conditions. For this example, the load resistor
is changed instantaneously from RL = 200Ω to 100Ω and is assumed unknown. To
demonstrate the proposed online tracking RL framework, the augmented system
(4.40) is formed with sampling time ts = 100µs while the tracking cost parameters
in (4.36) are given as Q1 = I(3), R = 0.5 and γ = 1.

Using Algorithm 4.2, an initially sub-optimal I-P tracking controller is selected
as K1(0) = [0.3086 0.1856 − 0.0810] while the corresponding Q-functions are ap-
proximated as in (4.74). Algorithm 4.2 is thereafter run till convergence as this
does not require any knowledge of the system dynamics. With the initially un-
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known RL = 200Ω, the Q-function parameters converged to:

β∗(1) =



8.9375
5.3019
−6.7680
50.0148
2.1108
−3.5540
14.5264

10003.7412
−18.3036
84.5461



>

(4.85)

while the adapted optimal control gains are computed from (4.77) as:

θa(1) = [−0.2958;−0.0859; 0.1082] = −K̂∗1(1) (4.86)

Figure 4.9 shows the convergence of the online adaptation of the Q-function pa-
rameters as compared with the optimal but assumed unknown values.

With a variation in the load resistor to RL = 100Ω, the Q-function parameters
re-converged to:

β∗(2) =



8.8961
5.2366
−6.7850
49.8444
2.0918
−3.5425
14.3679

10004.1098
−18.3944
84.3797



>

(4.87)

as shown in Figure 4.10 and to optimal control gains:

θa(2) = [−0.2954;−0.0851; 0.1090] = −K̂∗1(2) (4.88)

Figure 4.11 shows the overall buck power converter system response at the
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Figure 4.9: Online adaptation and convergence of the Q-function parameters of
the buck power converter to the optimal values (in black dashed lines) using Al-
gorithm 4.2.
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Figure 4.10: Online adaptation and convergence of the Q-function parameters
of the buck power converter to the optimal values (in black dashed lines) after
variation in the load resistor RL using Algorithm 4.2.
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Figure 4.11: Buck power converter response showing the system states and control
input at the various stages of the reinforcement learning adaptations. Region with
β(0) shows the response using the initial sub-optimal controller gains, while region
with β(1) shows the response from the adapted controller gains to the optimal
values using the proposed Algorithms. Following variations in the load resistor
RL, region with β(2) onwards shows the response after adaptation to the new
optimal control gains.
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various stages of the online RL adaptation. The region with β(0) in the figure cor-
responds to the system response using the initially sub-optimal tracking controller
gains, while the region with β(1) shows the system response after convergence to
the optimal controller values from the RL adaptation. Following variation in the
load resistor RL, the system performance after convergence to the new optimal
control gains is then shown in the region with β(2). This way, the proposed online
optimal and adaptive tracking RL framework is able to maintain the desired level
of system performance subject to gradual variations in the system parameters.

Summary

This chapter has proposed and demonstrated a condition-based optimal/adap-
tive online RL tracking controller using an augmented formulation with integral
control for varying DT systems. Existing online RL methods either assume a
pre-determined feedforward input for the tracking control, or use restrictive as-
sumptions on the reference model dynamics and discounted tracking costs. More-
over, the existing methods are unable to guarantee zero steady-state tracking error.
In contrast, the proposed frameworks transform the DT optimal tracking control
problem to one of regulation and solves the resulting DT AREs without knowl-
edge of the system dynamics or any restrictive assumptions of the existing online
RL methods. Implementation of the framework is shown on representative case
studies using the developed VFA and QFA RL approximation techniques to pro-
vide a through-life adaptation strategy for the controller gains and guarantee zero
steady-state tracking error.



Chapter 5

Output-feedback control for
time-varying dynamical systems
using reinforcement learning

Previous chapters have developed online RL frameworks for the control of time-
varying dynamical systems. Consequently, applications to the class of propulsion
and power systems that integrate both the feedforward and feedback RL adapta-
tions into existing controller structures have been shown. However, the developed
frameworks have all assumed full measurements of the complete state vectors for
use in the control of the dynamical systems. In practice, measurements of the com-
plete state vectors may be unavailable - as a result, existing RL techniques cannot
be implemented in their current form. In addition, the usual design of state es-
timators requires a known model or structure of the system dynamics which is
difficult for systems with unknown dynamics and variations.

Information about the unknown system states and variation dynamics can
however be obtained in the systems’ input/output data. Control techniques that
are enabled using the input/output data without any state estimators are called
output-feedback (OPFB) methods and belong to the general class of data-based
control techniques. This chapter therefore presents the development of output-
feedback RL techniques that do not require full measurements of the complete
state vector, but make use of only the input/output data for the control of the
dynamical systems.

The development of the OPFB RL methods are first shown for the linear quadratic
regulation (LQR) problem of discrete-time (DT) systems that produces a polyno-

110
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mial auto-regressive moving-average (ARMA) controller with comparable perfor-
mance to the state-feedback equivalent. In the absence of state estimators or com-
plete state measurements, extension of the OPFB method is thereafter provided for
the condition-based RL framework for the online optimal tracking problem pre-
sented in Chapter 4. The strategies and results discussed in this chapter are based
on the author’s work in [122]. A summary of the main contributions presented in
this chapter are as follows:

• An OPFB online RL solution to the discrete-time infinite-horizon linear quadratic
tracking (LQT) problem using an augmented formulation with integral con-
trol is proposed. The proposed approach does not impose restrictive as-
sumptions on the reference model dynamics and is able to eliminate the
steady-state tracking error similar to the state-feedback equivalent, but us-
ing only the input/output data.

• A condition-based online OPFB RL framework using the augmented for-
mulation with integral control is developed for systems with unknown or
time-varying dynamics. The framework integrates the RL adaptations into
an ARMA controller structure and provides a through-life adaptation strat-
egy for use in practical systems.

In the following, Section 5.1 develops the conventional output-feedback formu-
lation for the linear quadratic regulation problem and presents the RL solutions.
Section 5.2 provides extension to the linear quadratic tracking problem using the
augmented formulation with integral control while Section 5.3 provides simula-
tion examples using the proposed OPFB online RL tracking techniques.

5.1 Optimal and adaptive control using output-feedback re-
inforcement learning methods

For the development of the OPFB control methods, we consider the optimal reg-
ulation problem discussed in Sections 2.2.1.2 and 3.1 for which baseline control
solutions using the calculus of variation, dynamic programming and reinforce-
ment learning methods have been provided. The regulation problem is described
for the linear quadratic case with dynamics given as:

xk+1 = Axk + Buk

yk = Cxk (5.1)



112
5.1. Optimal and adaptive control using output-feedback reinforcement

learning methods

where x ∈ Rn, u = µ(x) ∈ Rm and y ∈ Rp are respectively the system states,
control inputs under policy µ(·) and system outputs. It is assumed that the pairs
(A, B) and (A, C) are respectively controllable and observable for any finite initial
condition. An associated infinite-horizon performance cost of (3.3) for the regula-
tory control is expressed as:

J(xk) =
∞

∑
n=k

γn−k(x>nQxn + u>n Run
)

=
∞

∑
n=k

γn−k(x>n C>QyCxn + u>n Run
)

=
∞

∑
n=k

γn−k(y>nQyyn + u>n Run
)

(5.2)

where Qy = Q>y ≥ 0 and Q = C>QyC. Equation (5.2) gives the LQR cost in terms
of the input/output dynamics. The LQR control therefore aims to regulate the
system outputs to zero whilst stabilising the closed-loop system asymptotically
on some set Ω ∈ Rn. As discussed in Section 2.2.1, the optimal cost or value of
the control using the Bellman optimality equation is given as:

V∗(xk) = min
u

{ ∞

∑
n=k

γn−k(y>nQyyn + u>n Run
)}

= min
u

(
y>k Qyyk + u>k Ruk + γV∗(xk+1)

)
(5.3)

The optimal control input can then be obtained as:

µ∗(xk) = arg min
u

(
y>k Qyyk + u>k Ruk + γV∗(xk+1)

)
(5.4)

For the LQR problem, the value is known to be quadratic in terms of some sym-
metric positive semi-definite matrix P = P> ∈ Rn×n given as:

V(xk) = x>k Pxk (5.5)

Substituting for (5.5) in (5.4) and setting the derivative with respect to the
control input to zero yields the optimal control input in terms of P as:

u∗k = −
(R

γ
+ B>PB

)−1
B>PAxk (5.6)
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with Ricatti equation:

P = C>QyC + γA>PA− γA>PB(
R
γ
+ B>PB)−1B>PA (5.7)

This gives the model-based solution to the LQR problem as discussed in Sec-
tion 2.2.1.2. To enable OPFB approaches, both the state dynamics and value func-
tion are first expressed in terms of the available input/output data.

5.1.1 State dynamics in terms of measured input/output data

Given the current time step k and a time horizon N, the state dynamics for system
(5.1) can be written over the horizon [k− N, k] through successive recursions as:

xk = ANxk−N + UN ūk−1,k−N (5.8)

where UN =
[

B AB A2B · · · AN−1B
]
∈ Rn×mN is the controllabil-

ity matrix and ūk−1,k−N =


uk−1

uk−2
...

uk−N

 ∈ RmN is the measured input data over the

interval [k− N, k− 1]. Using the recursive relationship, the output dynamics for
system (5.1) becomes:

yk = Cxk = CANxk−N + CUN ūk−1,k−N (5.9)

Similar recursion for the output dynamics over the time interval [k− N, k− 1] can
then be written as:

ȳk−1,k−N = VNxk−N + TN ūk−1,k−N (5.10)

where VN =


CAN−1

...
CA
C

 ∈ RpN×n is the observability matrix,

TN =



0 CB CAB · · · CAN−2B
0 0 CB · · · CAN−3B
...

...
. . . . . .

...
0 · · · · · · 0 CB
0 0 0 0 0


∈ RpN×mN is the Toeplitz matrix of
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Markov parameters and ȳk−1,k−N =


yk−1

yk−2
...

yk−N

 ∈ RpN is the measured output data.

Since the pair (A, C) is observable, it was shown in Lewis and Vamvoudakis
[123] that there exists an observability index K such that the controllability ma-
trix VN has a full column rank rank(VN) = n |N≥K with left inverse V+

N =

(V>N VN)
−1V>N . The following relationship therefore holds:

AN =MVN

∴M = ANV+
N +Z(I −VNV+

N ) =M0 +M1 (5.11)

for matrixM ∈ Rn×pN and any arbitrary vector Z . Let N ≥ K, then VN has a full
column rank, in which case (I−VNV+

N ) is a zero matrix, andM1 = 0. Substituting
for (5.11) and for the output dynamics (5.10) in (5.8), the state dynamics becomes:

xk =M0VNxk−N + UN ūk−1,k−N

=M0(ȳk−1,k−N − TN ūk−1,k−N) + UN ūk−1,k−N

=M0ȳk−1,k−N + (UN −M0TN)ūk−1,k−N (5.12)

∴ xk =
[
Mu My

] [ūk−1,k−N

ȳk−1,k−N

]
(5.13)

where Mu = (UN −M0TN) and My = M0. Equation (5.13) gives the state
dynamics in terms of the measured input/output data. By defining the vector

z̄k−1,k−N =

[
ūk−1,k−N

ȳk−1,k−N

]
, the value function (5.5) can then be expressed in terms of

the past inputs and outputs as:

V(xk) = x>k Pxk

= z̄>k−1,k−N

[
M>

u PMu M>
u PMy

M>
y PMu M>

y PMy

]
z̄k−1,k−N

= z̄>k−1,k−N P̄z̄k−1,k−N (5.14)

where P̄ ∈ R(m+p)N×(m+p)N . It is noted that the given expressions for the state dy-
namics and value function in terms of the input/output data still require knowl-
edge of the dynamics i.e. (A, B, C) to compute Mu and My and are classed as
model-based output-feedback solutions. The next section presents the Bellman op-
timality equations for the output-feedback control that enables the development
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of model-free RL approaches.

5.1.2 Bellman optimality equations for the output-feedback optimal reg-
ulation problem

Using the Bellman principle of optimality, the optimum value for (5.14) is ex-
pressed as:

V∗(xk) = min
u

(
y>k Qyyk + u>k Ruk + γV∗(xk+1)

)
= min

u

(
y>k Qyyk + u>k Ruk + γz̄>k,k−N+1P̄∗z̄k,k−N+1

)
(5.15)

Equation (5.15) gives the discrete-time (DT) Hamilton-Jacobi-Bellman (HJB) equa-
tion for the output-feedback (OF) optimal regulation problem using only the sys-
tem’s input/output data and without any state estimations. The optimal regula-
tory control input can then be obtained as:

µ∗(xk) = u∗k = arg min
u

(
y>k Qyyk + u>k Ruk + γz̄>k,k−N+1P̄∗z̄k,k−N+1

)
(5.16)

Let z>k,k−N+1P̄∗z̄k,k−N+1 be partitioned as:

 uk

ūk−1,k−N+1

ȳk,k−N+1


>  p0 pu py

p>u p22 p23

p>y p32 p33


 uk

ūk−1,k−N+1

ȳk,k−N+1

 (5.17)

where p0 ∈ Rm×m, pu ∈ Rm×(m(N−1)) and py ∈ Rm×pN . Equating the derivative of
(5.16) to zero and simplifying gives:

u∗k = −(R + p∗0)
−1(p∗uūk−1,k−N+1 + p∗yȳk,k−N+1) (5.18)

Equation (5.18) gives the optimal control input for the optimal regulation prob-
lem in form of a dynamic polynomial autoregressive moving average (ARMA)
controller that generates current control input using past input/output data [123].
For systems with unknown dynamics or variations, reinforcement learning ap-
proaches to the OPFB LQR problem can then be developed using function ap-
proximations and the iterative forward-in-time methods (VI or PI) to solve the
corresponding Bellman optimality equations using only the input/output data.
Consequently, extension of the OPFB control of dynamical systems is provided
in the next section for the tracking control problem introduced in Chapter 4 for
systems where measurements of the complete state vectors may be unavailable or
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the design of state estimators is difficult.

5.2 Output-feedback tracking with integral control using
reinforcement learning

An output-feedback (OPFB) RL solution to the discrete-time (DT) infinite-horizon
linear quadratic tracking (LQT) problem is presented for systems with unknown
dynamics or variations. The tracking problem is transformed to one of regula-
tion by forming an augmented system consisting of the original system dynamics
and the integral of the error between the reference input and the tracked output.
Similar to the regulation control problem, the augmented system states and the
corresponding value function are expressed in terms of the available input/out-
put data, eliminating the need to have state estimators which may be difficult to
design for systems with the unknown dynamics or variations. In contrast to exist-
ing OPFB RL techniques for the tracking control that make restrictive assumptions
on the reference model dynamics or discounted performance cost, the proposed
approach makes no such assumptions and guarantees zero steady-state tracking
error. The next section presents the LQT problem for which output-feedback RL
solutions are later developed for.

5.2.1 The LQT problem

For the development of the LQT problem, consider the general DT system with
the following dynamics:

xk+1 = Axk + Buk; yk = Cxk (5.19)

where xk ∈ Rn, uk ∈ Rm and yk ∈ Rp are respectively the system states, inputs and
outputs. It is assumed that the pairs (A, B) and (A, C) are respectively control-
lable and observable for any finite initial condition. An associated infinite-horizon
performance cost for the tracking control for a given reference trajectory rk is:

J(xk) =
∞

∑
n=k
L(xn, un) (5.20)

where the reward signal is given as the quadratic energy function L(xk, uk) =

(yk − rk)
>QT(yk − rk) + u>k Ruk, QT ≥ 0 and R > 0. The aim of the optimal

tracking control problem is therefore to determine the control policy u = π(x) that
minimises the tracking cost (5.20) and guarantees the system stability such that the
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system output tracks the desired reference. Using the calculus of variations, it can
be shown that the standard solution to the LQT problem is given as:

uk = −Kxxk + Kvvk+1 (5.21)

where:

Kx = (B>PB + R)−1B>PA; Kv = (B>PB + R)−1B>

vk = (A− BKx)>vk+1 + C>QTrk (5.22)

and P = P> > 0 is the solution to the algebraic Riccati equation [4]. It is however
noted that the given standard solution is non-causal [75] as it is dependent on a
backwards-in-time recursion of the vector sequence vk. A direct implication of this
is that the standard solution to the tracking problem can only be computed offline
and with full knowledge of the system dynamics. Causal solution strategies have
thus been proposed to enable online computation of the tracking control input.
These strategies make use of state augmentation thereby transforming the tracking
problem into one of regulation and are presented next.

5.2.1.1 State augmentation with reference dynamics

This approach assumes that the reference dynamics is governed by rk+1 = Frk,
where F is Hurwitz [38]. An augmented system is then formed by using the
system dynamics (5.19) and that of the reference as follows:

Xr
k+1 =

[
xk+1

rk+1

]
=

[
A 0
0 F

] [
xk

rk

]
+

[
B
0

]
uk (5.23)

Following this, the tracking cost of (5.20) becomes:

J(Xr
k) =

∞

∑
n=k

[
(Cxn − rn)

>QT(Cxn − rn) + u>n Run
]

=
∞

∑
n=k

[
Xr

nQrXr
n + u>n Run

]
(5.24)

where Qr =

[
C>QTC −C>QT

−C>QT QT

]
. This way, the tracking problem is converted

into a regulation problem without the need of any backwards-in-time variable
recursion.

Remarks
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• By assuming that F is Hurwitz, then rk → 0 as k → ∞; this is a restrictive
assumption that limits extension of the approach to any practical reference
tracking problem.

• The Hurwitz assumption on F can be relaxed by using a discount factor
in the tracking cost (5.24) to ensure that the value remains finite if rk 9 0
as proposed in [76] and [75]. However, by introducing a discount factor,
the approaches cannot guarantee zero steady-state tracking error and are
restrictive to the class of reference generators that can be used.

• Measurements or knowledge of the entire state vector is needed.

5.2.1.2 State augmentation with integral control

In the following, an augmented formulation for the optimal tracking problem
with integral control is developed. Consider a new state ż defined as the integral
of the difference between the desired reference and the tracked output as ż(t) =∫ (

r(t)− y(t)dt
)
, where z ∈ Rp. Using Euler’s approximation, an equivalent DT

state with sampling time ts is given as:

zk+1 = zk + ts
(
rk − Cxk

)
(5.25)

An augmented system can then be formulated using the new integral state as
follows: [

xk+1

zk+1

]
=

[
A 0
−tsC I

] [
xk

zk

]
+

[
B
0

]
uk +

[
0

ts I

]
rk (5.26)

At steady-state, the augmented system (5.26) becomes:[
x∞

z∞

]
=

[
A 0
−tsC I

] [
x∞

z∞

]
+

[
B
0

]
u∞ +

[
0
−ts I

]
r∞ (5.27)

For a constant reference signal i.e. r∞ = rk, subtracting (5.27) from (5.26) gives:

Xk+1 =

[
A 0
−tsC I

] [
xk − x∞

zk − z∞

]
+

[
B
0

]
(uk − u∞)

= A1Xk + B1ũk (5.28)
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where Xk =

[
xk − x∞

zk − z∞

]
and ũk = (uk − u∞) with cost:

J(Xk) =
∞

∑
n=k

(
X>n QxXn + ũ>n Rũn

)
(5.29)

where Qx ∈ R(n+p)×(n+p). The tracking problem is thus converted to one of regula-
tion such that the control input for a minimum of (5.29) eliminates the steady-state
error by ensuring that xk → x∞ and zk → z∞ as Xk → 0.

Remark

• A RL framework using the integral state augmentation that does not im-
pose any restrictive assumptions on the reference dynamics or the use of
discounted tracking cost has been proposed in [118]. However, similar to the
existing RL strategies, measurements or knowledge of the entire state vector
is needed.

Using the frameworks developed in [118] and [123], an OPFB RL solution to
the LQT problem that guarantees zero steady-state tracking error and does not
require measurements of the entire state vector is presented next.

5.2.2 OPFB solution to the LQT problem

Using the state augmentation framework with integral control presented in Chap-
ter 4.2, an OPFB solution using only the measured input/output data is developed
as follows. The output dynamics of system (5.28) is assumed to be given as:

Yk =
[
C I

]
Xk = C1Xk (5.30)

The tracking cost (5.29) is therefore redefined in terms of the input/output dy-
namics as:

J(Xk) =
∞

∑
n=k

(
X>n QxXn + ũ>n Rũn

)
=

∞

∑
n=k

(
X>n C>1 QC1Xn + ũ>n Rũn

)
=

∞

∑
n=k

(
Y>n QYn + ũ>n Rũn

)
(5.31)

where Qx = C>1 QC1 and Q = Q> ≥ 0. It was shown in [118] that the value
function for the tracking cost with the integral state augmentation is quadratic for
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some matrix P1 = P>1 > 0 given as:

V(Xk) = X>k P1Xk (5.32)

where (5.32) is expressed in terms of the augmented state dynamics. Given that
real systems often lack full state observability, the following derives the state dy-
namics and the quadratic value function in terms of only the measured input/out-
put data.

5.2.2.1 Augmented state dynamics using measured input/output data

Consider the time horizon between time steps k and N as [k − N, k]. The aug-
mented state dynamics of system (5.28) can be expressed recursively over the
horizon as:

Xk = AN
1 Xk−N + UN1

¯̃uk−1,k−N (5.33)

where UN1 =
[

B1 A1B1 · · · AN−1
1 B1

]
∈ R(n+p)×mN is the controllability

matrix and ¯̃uk−1,k−N =
[
ũk−1 ũk−2 · · · ũk−N

]>
∈ RmN is the measured

input data over the interval [k − N, k − 1]. Using the recursive relationship, the
augmented output dynamics (5.30) become:

Yk = C1Xk = C1AN
1 Xk−N + C1UN1

¯̃uk−1,k−N (5.34)

which can be similarly expressed in terms of the measured output data over the
interval [k− N, k− 1] as:

Ȳk−1,k−N = VN1 Xk−N + TN1
¯̃uk−1,k−N (5.35)

where Ȳk−1,k−N =
[
Yk−1 Yk−2 · · · Yk−N

]>
∈ RpN is the measured out-

put data, VN1 =
[
C1AN−1

1 · · · C1A1 C1

]>
∈ RpN×(n+p) is the observ-

ability matrix and TN1 =


0 C1B1 · · · C1AN−2

1 B1

0 0 · · · C1AN−3
1 B1

...
...

. . .
...

0 0 0 0

 ∈ R(n+p)N×mN is the

Toeplitz matrix of Markov parameters. Since the pair (A, C) of the original system
is observable and of full rank n; it follows that if and only if all the elements of
matrix C1 are non-zero, then the pair (A1, C1) is also observable and of full rank
n + p. Therefore, there exists an observability index OI such that VN1 has a full
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column rank rank(VN1) = n + p |N≥OI with left inverse V+
N1

= (V>N1
VN1)

−1V>N1
.

Consequently, let N ≥ OI , there exists a matrix M ∈ R(n+p)×pN such that:

AN
1 = MVN1 ; M = AN

1 V+
N1

(5.36)

Substituting for (5.35) and (5.36) in (5.33), the augmented state dynamics becomes:

Xk = MVN1 Xk−N + UN1
¯̃uk−1,k−N

= M(Ȳk−1,k−N − TN1
¯̃uk−1,k−N) + UN1

¯̃uk−1,k−N

= MȲk−1,k−N + (UN1 −MTN1) ¯̃uk−1,k−N (5.37)

∴ Xk =
[

Mu My

] [ ¯̃uk−1,k−N

Ȳk−1,k−N

]
(5.38)

where Mu = (UN1 − MTN1) and My = M. Equation (5.38) expresses the aug-
mented system dynamics in terms of the measured input/output data, albeit
knowledge of the system dynamics (A1, B1, C1) is needed to compute Mu and
My. The next section develops the Bellman optimality equations to solve the aug-
mented integral tracking control problem.

5.2.2.2 Bellman optimality equations using measured input/output data

By defining the vector Z̄k−1,k−N =

[
¯̃uk−1,k−N

Ȳk−1,k−N

]
∈ R(m+p)N and substituting for Xk,

the value function (5.32) can be expressed as:

V(Xk) = X>k P1Xk

= Z̄>k−1,k−N

[
M>u P1Mu M>u P1My

M>y P1Mu M>y P1My

]
Z̄k−1,k−N (5.39)

∴ V(Xk) ≡ Z̄>k−1,k−N P̄1Z̄k−1,k−N (5.40)

where P̄1 ∈ R(m+p)N×(m+p)N . Using the Bellman principle of optimality, the opti-
mum value becomes:

V∗(Xk) = min
ũk

(
Y>k QYk + ũ>k Rũk + V∗(Xk+1)

)
= min

ũk

(
Y>k QYk + ũ>k Rũk + Z̄>k,k−N+1P̄∗1 Z̄k,k−N+1

)
(5.41)

Equation (5.41) gives the DT HJB equation for the integral state augmentation for
the tracking control problem using input/output data from which the optimal
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tracking control input can be obtained as:

π∗(Xk) = ũ∗k = arg min
ũk

(
Y>k QYk + ũ>k Rũk + Z̄>k,k−N+1P̄∗1 Z̄k,k−N+1

)
(5.42)

Let Z̄>k,k−N+1P̄1Z̄k,k−N+1 be partitioned as:

 ũk
¯̃uk−1,k−N+1

Ȳk,k−N+1


>  P0 Pu Py

P>u P(1)
xx P(2)

xx

P>y P(3)
xx P(4)

xx


 ũk

¯̃uk−1,k−N+1

Ȳk,k−N+1

 (5.43)

where P0 ∈ Rm×m, Pu ∈ Rm×(m(N−1)), Py ∈ Rm×pN , P(1)
xx ∈ R(m(N−1))×(m(N−1)),

P(2)
xx ∈ R(m(N−1))×pN , P(3)

xx ∈ RpN×(m(N−1)) and P(4)
xx ∈ RpN×pN . Equating the

derivative of (5.42) with respect to ũk to zero and simplifying gives:

ũ∗k = −(R + P∗0 )
−1(P∗u ¯̃uk−1,k−N+1 + P∗y Ȳk,k−N+1)

= −K∗ ×
[
( ¯̃uk−1,k−N+1)

> (Ȳk,k−N+1)
>
]

(5.44)

where K∗ ∈ Rm+pN . Equation (5.44) gives the optimal tracking control input
that generates current input based on past input/output data and known as a
dynamic polynomial autoregressive moving average (ARMA) controller [124]. The
next section presents RL frameworks that make use of function approximations to
iteratively solve the OPFB optimal tracking problem without knowledge of the
system dynamics.

5.2.3 RL framework for the OPFB tracking problem

Model-free RL approaches are enabled by iterative methods that utilize the Bell-
man optimality equations to develop value and policy update equations which
are solved at each time step. One of such iterative methods is policy iteration (PI)
which requires an initially admissible policy (i.e. stabilising policy and with a
finite cost V(·)) and successively alternates between the following equations:

Vk+1(Xk) = Y>k QYk + ũ>k Rũk + Vk+1(Xk+1) (5.45)

ũk+1 = arg min
ũ

(
Y>k QYk + ũ>k Rũk + Vk+1(Xk+1)

)
(5.46)

Given an admissible policy π(X), the value is evaluated by solving (5.45) till con-
vergence while an improved policy is computed using (5.46) and both respec-
tively constitute the policy evaluation and policy update steps of the PI. The
PI method is justified in [43] by showing that the improved policy ensures that
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Vk+1(Xk) ≤ Vk(Xk) associated with the monotonicity property of the fixed-point
equations. This way, the PI recursion computes a strictly improved policy and con-
vergence to the optimal policy and value under the controllability/observability
conditions has been shown in [125]. For practical implementation of the algorithm,
the value function (5.40) is approximated as:

V(Xk) ≈ Θ>Φ(Z̄k−1,k−N) (5.47)

where Θ ∈ Rpc are the value function parameters with basis function Φ(·). Equa-
tion (5.45) becomes:

Θ>Φ(Z̄k−1,k−N) = Y>k QYk + ũ>k Rũk + Θ>Φ(Z̄k,k−N+1) (5.48)

The value function parameters are updated in the policy evaluation step by gen-
erating a temporal difference (TD) error as:

ek = Y>k QYk + ũ>k Rũk −Θ>k+1
(
Φ(Z̄k−1,k−N)

−Φ(Z̄k,k−N+1)
)

(5.49)

with
(
Φ(Z̄k−1,k−N) − Φ(Z̄k,k−N+1)

)
as the regressor vector. Data from multiple

time steps can then be obtained to determine the least squares solution for the
value function parameters in a batch least squares procedure. Alternatively, stan-
dard recursive parameter estimation techniques such as the recursive least squares
(RLS) can be run till convergence to determine the best fit for the parameters that
minimise the generated TD error.

For convergence of the parameter estimates, it is required that the regressor
vector be linearly independent over time and satisfies a persistence of excitation
(PE) condition given as αI ≤ ∑k+M

i=k ΓiΓ>i ≤ bI ∀i where Γ is the regressor vector
and with M > 0, a > 0, b > 0 [19]. In the RL framework, this is achieved by adding
an exploration signal ε to the control inputs as ũk = π(Xk) + ε. Following the up-
date of the value function parameters, the policy for the control input is updated
using (5.46) in the policy improvement step. The described OPFB tracking control
strategy is represented schematically in Figure 5.1 where the RL framework con-
tinually adapts the control parameters of an ARMA controller to optimal values,
subject to the unknown or varying system dynamics. Algorithm 5.1 describes the
OPFB RL tracking with integral control using PI.



124
5.3. Simulation of the condition-based output feedback RL tracking control

framework

Figure 5.1: Block diagram of the output-feedback tracking with integral control
using reinforcement learning that continually updates the parameters of an auto-
regressive moving-average (ARMA) controller.

Remarks

• Since the OPFB method uses only the input/output data without any state
measurements, the introduction of ε to satisfy the PE condition introduces
bias in the parameter estimates. It was argued in [123] that using a dis-
count factor in the cost decays the bias and the effects of improper initial
conditions.

• Zero steady-state tracking error is however guaranteed with or without the
use of the discount factor through the regulation of the augmented integral
states to zero.

5.3 Simulation of the condition-based output feedback RL
tracking control framework

The proposed OPFB tracking with integral control is demonstrated on the 2-state
system of Equation (3.16) with an initially unstable dynamics for which both a
baseline model-based and the proposed online RL tracking using augmented for-
mulation with integral control solutions have been provided respectively in Sec-
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Algorithm 5.1 OPFB RL tracking with integral control

Initialise V(X) ≈ Θ>k Φ(·) at k = 0 for some stabilising initial control policy
π0(X) and do till convergence: Value function update step

1: for j = 0 till parameter convergence do
2: At X j, compute the control input ũj with exploration signal ε as ũj =

π(X j) + ε.
3: Compute the least squares solution for Θj+1 using input/output measure-

ments ¯̃uj,j−N and Ȳ j,j−N as:

Θ>c,j+1
(
Φ(Z̄ j−1,j−N)−Φ(Z̄ j,j−N+1)

)
= Y>j QY j + ũ>j Rũj

j = j + 1.
4: end for

Policy update step
Require: Set Θk+1 = Θj+1

5: Update the control policy using partitioning (5.43) as:

πk+1(X) = arg min
ũ

(
Y>k QYk + ũ>k Rũk + Θ>k+1Φ(Z̄k,k−N+1)

)
6: Increment time step k = k + 1.

tions 4.1.1 and 4.3.1. Using Euler’s discretisation with a sampling time of ts = 0.5s,
the discrete-time dynamics become:

xk+1 =

[
1.21 1.53
1.68 3.27

]
xk +

[
1.46
2.09

]
uk

yk =
[
1 1

]
xk (5.50)

It is assumed that measurements of the state variables x are unavailable and only
measurements of the input/output data are obtained at the discrete time steps k.
The tracking control problem is then to track a time-varying step reference input
from any finite initial condition y0 using only the input/output measurements.
Using the proposed augmented formulation with integral control, an augmented
system using (5.28) and (5.30) is thus formed as:

Xk+1 =

1.21 1.53 0
1.68 3.27 0
−.5 −.5 1


︸ ︷︷ ︸

A1

Xk +

1.46
2.09

0


︸ ︷︷ ︸

B1

ũk

Yk =
[
1 1 1

]
︸ ︷︷ ︸

C1

Xk (5.51)
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Parameters for the tracking cost (5.29) are considered as Qx = C>1 C1 and R = 1.
With n = 2 states and p = 1 output, the observability index of the augmented
system is computed as OI = n + p = 3. In order to make the observability matrix
VN1 to be full rank, N is selected as the observability index N = OI = 3.

5.3.1 Model-based OPFB solution using the augmented formulation with
integral control

As benchmark solutions, knowledge of the system dynamics were initially as-
sumed to be known and allowing the OPFB solution in Section 5.2.2 to be used to
compute the optimal value of the cost. P1 is computed from (4.49) as:

P1 =

 3.24 3.61 −2.05
3.61 4.36 −1.92
−2.05 −1.92 6.84

 (5.52)

The controllability, observability and Toeplitz matrices are computed from Section
5.2.2.1 as:

UN1 =

1.46 4.96 20.20
2.09 9.29 38.74
0.00 −1.78 −8.90



VN1 =

9.62 17.22 1.00
2.39 4.30 1.00
1.00 1.00 1.00



TN1 =

0.00 3.55 12.48
0.00 0.00 3.55
0.00 0.00 0.00

 (5.53)

Therefore,

My = M = AN
1 V+

N1
=

 2.44 −3.36 0.92
4.65 −6.19 1.54
−1.60 3.64 −1.04



Mu = (UN1 −MTN1) =

1.46 −3.72 1.63
2.09 −7.20 2.75
0.00 3.91 −1.86

 (5.54)
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The optimal value in terms of matrix P̄∗1 is thus computed using (5.40) as:

P̄∗1 = 102 ×



.48 −1.77 .73 1.08 −1.56 .41
−1.77 7.36 −3.08 −4.33 6.54 −1.73

.73 −3.08 1.29 1.80 −2.74 .73
1.08 −4.33 1.80 2.58 −3.84 1.01
−1.56 6.54 −2.74 −3.84 5.81 −1.54

.41 −1.73 .73 1.01 −1.54 .41


(5.55)

with ARMA gain K∗ = [3.61, −1.48, −2.21, 3.18, −0.83].

5.3.2 Model-free RL OPFB solution using the augmented formulation
with integral control

However, in practice the system dynamics maybe unknown or time varying. The
proposed RL framework for the OPFB tracking control is then used to compute the
optimal value and controller gains online. The value function is approximated ac-
cording to (5.47) with Θ> = stk(P̄) ∈ R21 and Φ(Z̄k−1,k−N) = Z̄k−1,k−N ⊗ Z̄k−1,k−N

where stk(·) is the column stacking operator and ⊗ is the Kronecker product with
the redundant quadratic terms combined. Using Algorithm 5.1, the value function
parameters converged to:

ˆ̄P1 = 102 ×



.46 −1.77 .71 1.05 −1.56 .40
−1.77 7.45 −3.02 −4.33 6.57 −1.70

.71 −3.02 1.23 1.75 −2.67 .71
1.05 −4.33 1.75 2.53 −3.81 .99
−1.56 6.57 −2.67 −3.81 5.80 −1.51

.40 −1.70 .71 .99 −1.51 .39


(5.56)

with ARMA gain K∗RL = [3.78, −1.52, −2.25, 3.32, −0.86].

Figure 5.2 shows the performance of the ARMA controller given step reference
inputs after k training steps while Figure 5.3 shows norm of the difference between
the model-based optimal OPFB controller parameters and the computed RL OPFB
parameters.

Since the general OPFB RL methods use only the input/output data without
any state measurements, the use of ε to satisfy the PE condition introduces bias
in the parameter estimates as noted in [123]. However, through the regulation
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Figure 5.2: Performance of the reinforcement learning output-feedback auto-
regressive moving-average tracking controller after k training steps given step ref-
erence inputs.

of the augmented integral states, the proposed approach eliminates zero steady-
state tracking error and does not impose any restrictions on the reference model
dynamics. Figure 5.4 compares the tracking performance and error from using the
converged online OPFB RL gains with that of the model-based optimal gains.

Summary

This chapter has proposed and demonstrated an OPFB tracking with integral con-
trol using RL for systems with unknown or varying dynamics. In contrast to
existing OPFB tracking methods, this framework does not impose any restrictive
assumptions on the reference model dynamics or discounted costs, and guarantees
zero steady-state tracking error. Simulation results showed that the resulting auto-
regressive moving-average (ARMA) tracking controller achieve zero steady-state
tracking error on convergence of the RL adaptations.
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Figure 5.3: Norm of the difference between the model-based optimal output-
feedback tracking controller parameters and the computed reinforcement learning
output-feedback tracking parameters using Algorithm 5.1.
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5.3. Simulation of the condition-based output feedback RL tracking control

framework

Figure 5.4: Comparison of the optimal model-based auto-regressive moving-
average (ARMA) controller and the computed reinforcement learning ARMA
gains.



Chapter 6

Power management optimisation
for hybrid systems using
condition-based reinforcement
learning

Previous chapters have shown the development of reinforcement learning (RL)
frameworks for the control of time-varying dynamical systems that can effectively
accommodate the system variations which are difficult to model and deal with
via conventional model-based methods. Hybrid systems are shown in this chap-
ter to benefit from the developed reinforcement learning frameworks which are
extended to the power management optimisation problem. Current methods for
the power management optimisation problem are conservative and unable to fully
account for the variations in the hybrid systems due to changes in the health and
operational conditions. These conservative schemes result in less efficient use of
the available hybrid power sources, increasing the overall system costs and height-
ening the risk of failure due to the variations.

Consequently, this chapter presents the development of online condition-based
RL frameworks for the power management of hybrid propulsion and electrical
power generation systems to compensate for the gradual system variations and
learn online the optimal power management strategy between the hybrid power
sources. The proposed condition-based power management RL scheme is able to
compensate for modelling uncertainties and the gradual system variations result-
ing from degradation by adapting a model of the performance function online
using the observed system measurements as reinforcement signals, and given the

131
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future load predictions. The strategies and results discussed in this chapter are
based on the author’s work in [126]. A summary of the main contributions pre-
sented in this chapter are as follows:

• Current state-of-the-art power management optimisation strategies are ei-
ther based on pre-defined rule based power schedules, exhaustive model-
based optimisation or dynamic programming approach [127], [128], [129].
These strategies assume accurate system models for the power management
optimisation and are therefore limited in their ability to account for sys-
tem variations. In contrast to these approaches, this chapter proposes and
demonstrates a new online learning scheme based on RL and adaptive dy-
namic programming (ADP) that is able to compensate for the gradual system
variations due to changes in the system health or operating conditions.

• A condition-based online RL framework is proposed, which is composed of
a planning/scheduling phase to determine the power management control
sequence using dynamic programming (DP) and an iterative adaptation of
the system performance functions using Q-learning in a receding horizon
manner.

In the following, Section 6.1 introduces the hybrid electric systems and for-
mulates the power management optimisation problem. An overview of the cur-
rent power management optimisation strategies is given in Section 6.2 along with
the proposed RL ADP strategy that overcomes the limitations of the existing
strategies by compensating for modelling uncertainties and gradual system vari-
ations. Lastly, Section 6.3 provides a representative simulation case study using
the proposed power management strategy for the condition-based control of an
autonomous hybrid system which shows improved system performance as com-
pared with a conventional dynamic programming power management approach.

6.1 Power management of hybrid electric systems

Hybrid electric systems such as those deployed on unmanned aerial vehicle (UAV)
often have architectures which support two or more power sources [130]. The
power sources typically consist of joint propulsion and electrical generation sys-
tems such as the gas turbine engines (GTEs), and one or more energy storage
devices e.g fuel cells, supercapacitors and batteries [129]. With limited energy
resources on-board the hybrid systems, power management strategies have been
identified as key enabling technologies to support enhanced capabilities of the
systems such as longer operational times and increased endurance [130], [131].
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The enhanced capabilities are envisaged to be associated with increased power
requirements, mission risks and overall system costs. It is therefore the aim of the
power management strategies to reduce the risks and overall system costs whilst
providing an effective way to support the system power requirements.

The operation of an autonomous vehicle can be divided into phases, for ex-
ample a car or aircraft may have pre-planned routes or missions (e.g hill climbing
or aircraft radar sweeps) associated with varying power demands [130]. There
is an energy interdependency between the operation phases as the power drawn
from a source for a duration of a phase may become unavailable for the remaining
phases. This is the case for the energy storage devices where the available power
for a phase is dependent on previous charge/discharge energy cycles at the other
phases. Current industry-standard approaches for the power management are
therefore based on pre-defined rule based power schedules between the multiple
power sources [132]. These approaches follow a series of if-then rules designed for
the worst-case peak power requirements. As such, they are usually conservative
and unable to adapt to dynamic changes in the systems. Over the years, research
trends have favoured optimisation based power management approaches to opti-
mise the desired power requirements and constraints of the hybrid systems [127],
[128].

In [133], the hybrid system power management was formulated as a mixed-
integer nonlinear multi-objective optimisation problem and solved using a dif-
ferential evolutionary fuzzy scheme. The proposed solution is however non-
deterministic and does not provide any solution guarantees to be suited for real-
time implementation. Consequently, an intelligent power management system
(PMS) that guarantees at least a feasible solution was proposed in [131] using a
three level optimisation strategy. Both approaches are, however, unable to account
for unmodelled variations in the system resulting from degradation or changes
in the system operating conditions. Furthermore, the energy interdependency be-
tween the sources is considered in a heuristic rule based manner that is suboptimal
in both schemes.

Other approaches have considered the DP technique which is well suited to
handle the energy interdependency by solving the optimisation problem as a se-
quence of operations [41]. The DP technique uses the Bellman’s optimality prin-
ciple to limit the optimisation search to the potentially optimal trajectories as dis-
cussed in Section 2.2.1 and on which RL and ADP strategies are based on. In [134],
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DP was used to develop a hydroelectric scheduling technique between thermal
and hydro power sources to minimise the system generation cost while satisfy-
ing the system load requirements. Likewise, [135] proposed an optimal dispatch
of direct load control using DP to minimise the system production cost. Related
works on power management optimisation using DP include [136], [137] for opti-
mal charge/discharge of energy storage devices; [127], [129] and [138] for optimal
energy management for hybrid electric vehicles. All of these works depend on
accurate system models and are therefore limited in their ability to account for
system variations and modelling uncertainties.

Extension of the DP techniques to provide adaptation and self-learning capa-
bilities are enabled using frameworks based on RL and ADP [37], [41], [47], [50].
Using ADP, an adaptive power management scheme was developed for residen-
tial load management in both [95] and [96]. Both of these approaches applied
a heuristic approach in the online management scheme by limiting the control
inputs to one of three choices as charge, discharge and idle, greatly reducing the
optimality of the solutions. In [97], a dual Q-learning scheme was proposed as an
extension to the residential load management optimisation and considers the op-
timisation horizon over future load predictions. This scheme is however restricted
to problems involving repeated known cycles over the predicted load horizon and
system costs as obtaining a function approximation over arbitrary load horizons
is infeasible.

In contrast to the above approaches, this chapter proposes and demonstrates
a new learning scheme based on reinforcement learning and adaptive dynamic
programming (RL-ADP) that computes optimal power control sequences online
given future load predictions, does not assume repeated known load cycles, and
is able to compensate for both modelling uncertainties and gradual variability
due to changes in the system health or operating conditions. The system learns
by using reinforcement signals in the form of the system measurements to adapt
the system performance function, which is then used to determine the best power
control strategy online in a receding horizon manner. The next section introduces
the hybrid propulsion and electrical generation system under consideration.

6.1.1 Hybrid propulsion and electrical power generation systems

An autonomous hybrid electric system consisting of a GTE propulsion system
and an energy storage device in form of a battery is considered. The propulsion
system provides the necessary thrust (FN) needed by the system whilst also pro-
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viding electrical power to the on-board system loads. Electrical power is generated
from the propulsion system through two sets of generators coupled to the rotating
engine core and propeller shafts respectively as Pcore and Pprop as shown in Fig-
ure 6.1. This additional load on the propulsion system results in higher fuel burn
at peak load requirements. A hybrid battery integration therefore promotes fea-
sibility of power scheduling for efficient system operation and increased system
capability.

Figure 6.1: Block diagram of a hybrid electric system consisting of a gas turbine
engine (GTE) with battery integration. The GTE produces thrust (FN) for a given
amount of fuel flow (wfe) whilst also providing electric power via two sets of
generators coupled to both the propeller and core shafts.

This chapter focuses on computing the best power delivery strategy by the
power manager that optimises some desired performance/efficiency cost and makes
the following assumptions:

Assumptions

1. It is assumed that the GTE is pre-stabilised in a thrust control loop with an
existing tracking controller that computes the required amount of fuel flow
(w f e) needed to generate the needed thrust (FN) and engine power given a
thrust reference demand (FNre f ).

2. Given gradual variations in the GTE dynamics due to degradation or chang-
ing operating conditions, the tracking controller parameters can be com-
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pensated for using the proposed condition-based online RL tracking control
frameworks of Chapters 4 and 5.

A formulation for the power management optimisation problem is thus given in
the next section.

6.1.2 Problem formulation for the power management optimisation

The governing power equation for the power management system is considered
as:

Peng = PFN + Pprop + Pcore (6.1)

where Peng is the total engine power from the GTE, PFN is the propulsive power
needed for thrust generation while Pprop and Pcore are respectively the electrical
power from the propeller and core shafts. For the load demand side, the power
balance equation is given by:

Pprop + Pcore = Pload − Pbat (6.2)

where Pload is the required load power and Pbat is the battery power output. Pbat >

0 indicates that the battery is discharging, and charging when Pbat < 0. Based on
Assumption 1, the thrust and load power requirements are always satisfied by the
thrust control loop. Thus combining (6.1) and (6.2) gives:

′Peng = Pload − Pbat (6.3)

where ′Peng = Peng − PFN . Figure 6.2 shows a sample power demand profile for a
hybrid electric system and the discrete time steps k considered for the optimisa-
tion. The change in energy between the time steps k is defined as:

∆Ek+1 := ′Peng,k∆t = (Pload,k − Pbat,k)∆t (6.4)

The dynamics for the battery state of charge (SOC) consistent with [95] and [97] is
given as:

SOCk+1 = SOCk − sign(Pbat,k) · η(Pbat,k)∆t (6.5)

where sign(Pbat) indicates discharging (+) or charging (-) of the battery while
η(Pbat) gives the battery efficiency. The power management optimisation prob-
lem therefore aims to find the control strategy for Pbat that will optimise a desired
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performance cost for a given load profile Pload. The state equations are thus de-
fined as follows:

xk+1 = F(xk, uk) =

[
(Pload,k − uk)∆t

x2,k − sign(uk) · η(uk)∆t

]
subject to: x ∈ X, u ∈ U (6.6)

where xk =
[
∆Ek SOCk

]>
, uk = Pbat,k and X, U are sets of constraints on the

Figure 6.2: Sample operational phases and power requirements for the au-
tonomous hybrid electric system in time steps k, k + 1, · · · , k + N.

state and input respectively. The desired cost to be optimised at the discrete time
steps k is given as:

Q(xk, uk) =
N

∑
n=k

γn−kR(xn, un) (6.7)

where R(xk, uk) = ηGTE = TSFC(x1,k)
2
+u2

k is the system efficiency function which
is assumed to be directly measurable with TSFC(x1,k) as the normalised GTE fuel
consumption and uk as the normalised battery power control input; N is the length
of the load demand profile and γ ∈ [0, 1] is a forgetting factor. Analytical solu-
tion to the formulated optimisation problem will require knowledge of the sys-
tem dynamics and reward functions as discussed in Section 2.2.1.2 using calculus
of variations. Furthermore, the given nonlinear state and efficiency functions of
(6.6) and (6.7) will result in the nonlinear Hamilton-Jacobi Bellman (HJB) equa-
tions which are known to be difficult and often impossible to solve analytically
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[9]. Candidate state-of-the-art approaches to the formulated power management
optimisation problem are provided in the next section.

6.2 Candidate power management optimisation strategies

Industry standard approaches for solving the power management optimisation
problem are typically based on rule-based power schedules, optimised for the
worst-case peak power requirements [132] or on exhaustive optimisation-based
methods [131]. Consequently, the power management optimisation controllers
can be classified according to Salmasi [139] and Wirasingha and Emadi [140] as
follows:

1. Rule-based controllers: make use of pre-defined sets of rules and logics
based on the system power requirements and efficiency charts [140]. These
can be further classified into deterministic rule-based methods that make
use of state-machine models and transition logics [141], [142]; and fuzzy
rule-based methods that provide improved fuel economy over the simple
rule-based methods for time-varying nonlinear systems [143]. Limitations of
the rule-based methods include:

– Dependence on known system dynamics and deterministic modes of
operations limits the rule-based approaches in compensating for un-
modelled variations in the system dynamics and power requirements.

– Considerations for performance optimisation to include more design
parameters such as emissions and life lead to increasingly complex set
of rules which may become intractable.

Consequently, researchers have considered other power management strate-
gies based on mathematical optimisation methods that are able to optimise
over large design parameter space [127].

2. Optimisation-based controllers: make use of mathematical optimisation al-
gorithms such as genetic algorithms (GA) or exhaustive search methods to
compute the best power management strategy for a given operational cycle
using models/functions of the system efficiencies [139]. These can be fur-
ther classified into global or acausal optimisation methods that make use
of historical data or offline system models/functions for the optimisation
[133], [138], [144], [145], [146]; and real-time or causal optimisation methods
that are able to adapt to the systems variations using real-time data [147].
The optimisation-based approaches, however, may become difficult to solve
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analytically for cases involving nonlinear and non-convex optimisation prob-
lems. As discussed in Section 2.2.1, dynamic programming provides a sys-
tematic approach for solving complex optimisation problems and has been
identified as a powerful tool for providing globally optimal solutions to the
power management optimisation problem whilst able to handle constraints
and nonlinearities [138], [139], [146], [147].

6.2.1 Power management optimisation using dynamic programming

DP provides a systematic approach for solving complex optimisation problem and
is well suited to handle the energy interdependency of the power management
optimisation problem by solving as a sequence of operations [140], [139]. DP
considers the recursive form for the cost function of (6.7) as:

Q(xk, uk) = R(xk, uk) + γQ(xk+1, uk+1) (6.8)

Equation (6.8) is solved at every time step k using the Bellman’s principle of opti-
mality as discussed in Section 2.2.1 on dynamic programming. DP assumes that
the system model and efficiency functions are known, and discretises the system
states into levels with associated cost Q. DP therefore uses the Bellman’s principle
of optimality to limit the optimisation search to only the optimal trajectories, and
starting from a terminal cost Q(xN , uN), the optimal power control sequence can
be determined as follows:

Solve backwards from n = N − 1 : −1 : k

Q∗(xk, uk)← min
uk

{
R(xk, uk) + γQ∗(xk+1, uk+1)

}
subject to: xk+1 = F(xk, uk) =

[
(Pload,k − uk)∆t

x2,k − sign(uk) · η(uk)∆t

]
x ∈ X, u ∈ U (6.9)

A schematic representation of the DP power management optimisation routine is
shown in Figure 6.3.

Remarks

• The problem space for DP is known to increase with increased number of
states and actions. This is known as the DP curse of dimensionality as dis-
cussed in Section 2.2.1. Although, known to limit its practicality, DP has been
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Figure 6.3: Schematic representation of the dynamic programming power man-
agement routine showing sample discrete energy levels with associated cost Q
from which the optimal control sequence can be determined

shown to scale well with problems involving hundreds of states and actions
[41] and suited for the power management optimisation problem [140], [139].

• A major drawback of DP however is its dependence on known analytical
state and efficiency models (i.e. F(x, u) and R(x, u)). For the formulated
power management optimisation problem, the state equations, i.e. F(x, u),
are given by the system energy requirements and are known from equa-
tion (6.6). However, analytical models to accurately describe the changes in
the system health or operational conditions are typically unknown. These
changes are assumed to reflect in the measured reward signals, i.e. gradual
changes in the measured GTE and battery efficiencies. Consequently, the
standard DP framework assumes a fixed analytical model for R(x, u) and is
unable to cope with variations in the system conditions.

Given the limitations of the standard DP approach to the power management op-
timisation problem, an online framework based on RL and ADP is therefore pro-
posed to compensate for both modelling uncertainties and gradual variations in
the system by recursively solving the sequence of power delivery control decisions
using dynamic programming and an iterative adaptation of the system efficiency
functions.
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6.2.2 Power management optimisation using reinforcement learning and
adaptive dynamic programming

Motivated by the Bellman optimality equations, RL-ADP algorithms make use of
iterative equations that are known to successively lead to improved policies [42].
The iterative equations involve both value and policy update steps as discussed in
Section 2.2.2 and are respectively given as:

Qk+1(xk, uk) = R(xk, uk) + γQk(xk+1, uk+1) (6.10)

uk+1 = arg min
uk

(
R(xk, uk) + γQk+1(xk+1, uk+1)

)
(6.11)

These are implemented forward-in-time without requiring models of the system.
Convergence of the iterative updates has been proven by showing that interleav-
ing (6.10) and (6.11) leads to the contraction map (2.14) and (2.15) associated with
the DP [9].

Given a load profile Pload,k|k = 0, 1, · · · , N, we wish to solve online the best
power delivery strategy (i.e. control sequence UN = [u0, u1, · · · , uN ]) that min-
imises the desired cost (6.7). Mathematically, this can be formulated as:

UN = min
u

Q∗(xk, uk)

= min
uk

{
R(xk, uk) + γ min

uk+1

{
R(xk+1, uk+1) + · · ·

+γ min
uk+j−1

{
R(xk+j−1, uk+j−1) + γ min

uk+j
Q∗(xk+j, uk+j)

}}}
(6.12)

for j = 1, 2, · · · , N

Conventional RL-ADP algorithms however require that the optimal Q-function
strictly follows the one-step Bellman optimality equation that explicitly approxi-
mates the cost dependence on future load predictions as:

Q∗(xN−1, uN−1) = R(xN−1, uN−1) + γ min
uN

Q∗(xN , uN) (6.13)

Clearly, the power management optimisation problem (6.12) involves varying
Q-functions due to the dependence of the state variables x on the varying load
requirements, Pload and does not conform with (6.13). Furthermore, to be able
to compensate for unmodelled dynamics and gradual system variations, a novel
condition-based approach is therefore to consider the online power management
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optimisation problem as being composed of:

• A planning/scheduling phase to determine the control sequence UN using
algorithms such as DP which takes into account the future load predictions.

• Iterative learning/adaptation of the system efficiency functions using the
system reward measurements to compensate for modelling uncertainties and
system variations. This can be achieved by making use of Q-function approx-
imations and temporal difference (TD) error as discussed in Section 3.1.2 as
follows:

Q̄(x, u) ≈ β>Ψ(x, u) (6.14)

∴ ek = R(xk, uk) + γβ>k Ψ(xk+1, uk+1)− β>k Ψ(xk, uk) (6.15)

where Q̄(x, u) is the approximated system efficiency function, Ψ(x, u) is a set
of basis function and β are the function weights. Equation (6.15) is solved
for ek = 0 at each time step to yield the least squares approximation to the
TD error equation. This way, only the measured data (i.e R(xk, uk), xk+1 and
uk) are used to compute the optimal control inputs without knowledge of
the system models or variations.

Adaptation of the system efficiency function is achieved by defining a cost Ek

based on the TD error (6.15) as follows:

Ek =
1
2

e2
k (6.16)

Therefore:

βk+1 = βk − lc
∂Ek

∂βk

= βk − lc

[
∂Ek

∂Q̄(xk, uk)

∂Q̄(xk, uk)

∂βk

]
(6.17)

where lc > 0 is the learning rate. The adapted system efficiency function is
then used to generate reward signals and used in an online planning/scheduling
scheme to determine the optimal control sequence UN . Following the computed
control sequence, only the first control input is applied to the system online in
a receding horizon manner, and the process is repeated. Algorithm 6.1 gives the
template for the proposed procedure.
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Algorithm 6.1 Online RL-ADP framework for power management optimisation

1: Initialise Q̄(x, u) ≈ β>0 Ψ(x, u) and obtain the control sequence UN =
[u0, u1, · · · , uN ] from dynamic programming routine of (6.9) with R(xn, un) =
β>0 Φ(xn, un) |n=N:−1:k

Online computation: for k = 0 : N
2: Apply the first control input uk.
3: Q-function update step
4: Obtain real-time measurements for the reward signal R(xk, uk), the states xk+1

and the control input uk.
5: Compute the TD error from (6.15), and adapt the system efficiency function

using (6.16) and (6.17).
6: Online planning/scheduling step
7: Perform online dynamic programming using the updated efficiency function

with R(xn, un) = β>k+1Ψ(xn, un) |n=N:−1:k+1 and determine the optimal control
sequence Uk→N = [uk+1, uk+2, · · · , uN ].

8: Repeat steps 2 to 5 till k = N.

Remarks

• Obtaining a Q-function approximation that spans the entire state space in
(6.12) may be infeasible with increased number of future load predictions
and discrete stages for optimisation. This negates the use of traditional Q-
learning algorithms but favours the iterative adaptation of the varying sys-
tem efficiency function (Q̄(x, u)) at each optimisation stage (n = k) using the
received reward signals as:

∴ Q̄(xk, uk) ≈ β>k Ψ(xk, uk) =
k

∑
n=k

γn−kR(xn, un)

= R(xk, uk) (6.18)

• Consequently, the adapted system efficiency function (Q̄(x, u)) gives the in-
stantaneous reward signals from (6.18) in place of a conventional fixed ana-
lytical model for R(x, u) and is used in a standard online DP routine of (6.9)
which then converges to the optimal Q-function (Q∗(x, u)).

6.3 Simulation studies

The proposed RL-ADP framework for power management optimisation is demon-
strated on a representative autonomous hybrid electric system model to compen-
sate for both modelling uncertainties and variations in the system efficiency. The
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electrical power from the GTE and battery are constrained between 30KW ≤
′Peng ≤ 150KW and −60KW ≤ Pbat ≤ 60KW respectively i.e. representing the
constraint sets X, U, while the battery SOC is expressed as a percentage between
0− 100%. The reward signal is assumed given by the GTE efficiency, ηGTE which is
the measured pounds of fuel flow per hour per unit thrust. The intervals between
the discrete time steps k, i.e ∆t for the optimisation are considered to be fixed and
determined by changes in the load demand as shown in Figure 6.2.

Given a load profile Pload,k, the aim of the power management optimisation
framework is then to determine the best power control strategy that optimises the
cost function of (6.7) subject to variations in the systems.

6.3.1 Algorithm implementation

A preliminary test was first carried out to determine suitable basis function that
can model the search space complexities of the system efficiency function for the
power management optimisation problem involving the different load demands
and the system energy constraints. The test data consist of randomly sampled
′Peng, Pbat and SOC levels with the reward signals as the measured ηGTE from
the system, penalised with large values for violations of the system energy con-
straints. Approximation of the system efficiency function using the test data with
some choice of basis function is then carried out and the results shown below:

Table 6.1: Cross-validated mean-squared error (MSE)

Model Polynomial 2-layer neural network
Complexity 2nd order 5 hidden 20 hidden 50 hidden

MSE 206.46 0.44 0.26 0.18

Results from Table 6.1 indicate that the approximation function is more com-
plex than a second order and use of higher order polynomials may lead to over-
fitting. Neural networks however offer better approximation to cope with the non-
linearities with considerations for the trade-off between model complexity and the
cross-validated MSE. Consequently, a 2-layer neural network for the system effi-
ciency function is trained as follows:

Q̄(x, u) ≈ β(2)>Ψ(x, u) (6.19)
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where

Ψ(x, u) = Ψ(x) =
[

1 eβ(1)
>

x−e−β(1)
>

x

eβ(1)
>

x+e−β(1)
>

x

]
=
[
1 ez−e−z

ez+e−z

]
=
[
1 a

]
(6.20)

x =
[
1 x1 x2 u

]>
∈ R1×4, z = β(1)>x ∈ Rnh×1, a = tanh(z) = ez−e−z

ez+e−z ∈
Rnh×1, nh is the number of hidden nodes, and β(1) ∈ R4×nh , β(2) ∈ Rnh+1×1 are re-
spectively the inner and outer layer weights. The update sequence for the function
weights follows from (6.16) and (6.17):

Outer layer

β
(2)
k+1 = β

(2)
k − lc

[
∂Ek

∂Q̄(xk, uk)

∂Q̄(xk, uk)

∂β
(2)
k

]
(6.21)

where ∂Ek
∂Q̄(xk ,uk)

= γek and ∂Q̄(xk ,uk)

∂β
(2)
k

= Ψ(xk, uk)

Inner layer

β
(1)
k+1 = β

(1)
k − lc

[
∂Ek

∂Q̄(xk, uk)

∂Q̄(xk, uk)

∂a
∂a
∂z

∂z

∂β
(1)
k

]
(6.22)

where ∂Q̄(xk ,uk)
∂a = ∑nh+1

i=2 β
(2)
(i) , ∂a

∂z = 1− tanh(z)2 and ∂z
∂β

(1)
k

= x. The parameters for

the neural network implementation are selected as follows: γ = 1, nh = 20 and
lc = 0.3e−4. There are no stability guarantees for this choice of weight update, but
strategies to limit divergence such as the use of target networks discussed in [36]
proved successful in the provided simulations. Two scenarios are considered to
demonstrate the effectiveness of the proposed approach:

6.3.2 Performance of offline power schedule vs proposed RL-ADP algo-
rithm

As discussed in Section 6.2.1, algorithms such as DP can be used to construct of-
fline power schedules for the power management optimisation problem. Typically,
these are designed for fixed nominal system models for the worst-case peak power
requirements and are usually suboptimal by being unable to adapt to the actual



146 6.3. Simulation studies

system conditions. A DP algorithm as described in (6.9) was used to compute
feasible offline power schedules for the hybrid system and serves as the baseline.

Given the system mismatch and other uncertainties at design time between the
nominal and actual (but unknown) GTE efficiency, the computed offline power
schedules will be suboptimal and result in reduced system performance. Figure
6.4 and 6.5 show the given load profile and the results from using Algorithm 6.1
compared with the baseline DP power management strategy. Whilst both power
management strategies were able to satisfy the system load requirements, Algo-
rithm 6.1 was able to compensate for the system mismatch by using the actual
system measurements as reward signals to adapt the system efficiency functions
and deliver improved performance as shown by the reduced average fuel con-
sumed during the simulation.

Figure 6.4: TOP: Offline dynamic programming (DP) power scheduling (red) and
Algorithm 6.1 (blue) vs the load demand profile (green). The load demand profile
is overlaid as both algorithms satisfied the requirements. BOTTOM: Fuel con-
sumption using offline DP power scheduling with average fuel: 498.04 lb/hr (red)
vs Algorithm 6.1 with average fuel: 488.54 lb/hr (blue).
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Figure 6.5: TOP: Control law from applying offline dynamic programming (DP)
power scheduling (red) vs Algorithm 6.1 (blue). BOTTOM: Gas turbine en-
gine power output and battery state-of-charge, SOC from implementation of both
power management strategies.

6.3.3 Variation in system objectives and load requirements

The use of the offline (pre-defined) power schedules heightens the risk of failure
due to system variations. Variations can occur from changes in system operation
objectives which may result in a change in the future load demand profile [131].
Consider a load demand change at time steps k = 19 to k = 20 in Figure 6.6.
The offline power schedule becomes infeasible as it is unable to adapt the battery
power to the event change and compensate for the engine running at maximum
power, thus failing to satisfy the load requirements at all times. Algorithm 6.1 is
however able to satisfy the load requirements by fully delivering the required load
power, given the information about the future load demand online. The RL-ADP
scheme is therefore able to determine the best power strategy by computing the
best charging/discharging cycles for the battery SOC in anticipation of the load
change as shown in Figures 6.6 and 6.7.
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Summary

This chapter has proposed and demonstrated an online power management opti-
misation scheme based on reinforcement learning and adaptive dynamic program-
ming. Current power management strategies are heuristic and thus suboptimal,
and are unable to compensate for modelling uncertainties and variations in sys-
tem conditions. The proposed scheme computes online the optimal control strate-
gies by using system measurements as reinforcement signals to adapt the system
efficiency functions and deliver improved system performance. Simulation re-
sults using representative data sets showed that improved fuel consumption was
achieved using the proposed online power management strategy compared to the
conventional strategies, whilst satisfying the changing future load requirements.

Figure 6.6: TOP: Offline dynamic programming (DP) power scheduling (red) and
Algorithm 6.1 (blue) vs the load demand profile (green). The load demand profile
is overlaid by the output of Algorithm 6.1 indicating that the requirements are
fully satisfied but not with the Offline DP. BOTTOM: Fuel consumption using
offline DP power scheduling with average fuel: 498.04 lb/hr (red) vs Algorithm
6.1 with average fuel: 493.47 lb/hr (blue).
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Figure 6.7: TOP: Control law from applying offline dynamic programming (DP)
power scheduling (red) vs Algorithm 6.1 (blue). BOTTOM: Gas turbine en-
gine power output and battery state-of-charge, SOC from implementation of both
power management strategies.



Chapter 7

Conclusions and
recommendations

7.1 Conclusions

Adaptive controllers are designed to use the system measurements to learn and
modify the behaviour of the controller in response to changes in the system dy-
namics and operating conditions. However, the conventional adaptive control
techniques design a controller against an identified system model that is assumed
to characterise the desired performance metrics for all the possible system vari-
ations and are said to be indirect. In contrast, direct adaptive schemes explicitly
adjust control actions to optimise a desired performance cost such as minimum
fuel consumption, system durability and life without the need to learn the system
model or assume characterisation of the performance metrics. Techniques that
exploit emerging diagnostic technologies and enable the direct use of complex
performance metrics to deliver self-optimising control systems in the face of dis-
turbances and system variations are termed in this thesis as condition-based. This
thesis has thus shown the development of direct optimal and adaptive condition-
based control (CBC) frameworks using reinforcement learning for time-varying
dynamical systems that do not require explicit mathematical models to charac-
terise the varying system states due to degradation but systematically optimise
the desired system performance.

In Chapter 3, the development of online reinforcement learning (RL) frame-
works that are designed to be both adaptive and optimal for the control of time-
varying dynamical systems was presented. In contrast to existing reinforcement
learning techniques in the literature for the control of time-varying dynamical sys-
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tems that use analytical energy functions as reward signals, the developed frame-
works enable the direct use of complex measures of system performance such as
fuel consumption, efficiency or life as reward signals. This is because the ana-
lytical models or expressions for these reward signals are difficult to derive due
to system variations resulting from degradation or engine-to-engine differences.
In introducing such complex performance metrics as reward signals for the con-
trol of time-varying dynamical systems, new ways to guarantee the system safety
and reliability are required. This was achieved by proposing a CBC framework
that integrates the RL adaptations into existing (pre-stabilised/certified) controller
structures, thereby maintaining the system safety and reliability. Consequently,
application of the proposed RL framework was shown for the CBC of gas turbine
engines (GTEs) that makes use of the complex performance metrics to directly
learn and adapt the system control. Simulation results on representative engine
data sets showed improved fuel consumption in the GTEs as compared to their
conventional control scheme, and provide potential for a significant reduction in
operating costs across fleet-wide engines.

In Chapter 4, the development of an online optimal reinforcement learning
tracking control framework for time-varying dynamical systems that uses an aug-
mented formulation with integral control was presented. Existing tracking rein-
forcement learning techniques in the literature either assume the use of a prede-
termined feedforward control input, use restrictive assumptions on the reference
model dynamics or use discounted tracking costs. By using a discounted tracking
cost, the existing reinforcement learning tracking techniques are unable to guar-
antee zero steady-state error. In contrast, the proposed augmented formulation
with integral control enables the development of reinforcement learning frame-
works that do not make any restrictive assumptions of the existing techniques
on the reference model dynamics and guarantees zero steady-state tracking er-
ror. Simulation results of the proposed online optimal tracking control framework
on representative case studies showed the use of RL in computing the optimal
tracking controller gains for the unknown or varying systems, and achieving zero
steady-state tracking error. Furthermore, the proposed online RL tracking control
is able to continually adapt the controller gains to optimal values, thus providing
a through-life adaptation strategy.

In Chapter 5, the development of an online output-feedback reinforcement
learning framework for time-varying dynamical systems that uses an augmented
formulation with integral control was presented. In contrast to the proposed tech-
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nique in Chapter 4 that requires full state measurements, the proposed output-
feedback approach make use of only input/output data for systems in which
full state measurements may be unavailable or the design of state-estimators is
difficult. Furthermore, the proposed output-feedback approach does not make
any restrictive assumptions of the existing reinforcement learning techniques on
the reference model dynamics and equally guarantees zero steady-state tracking
error whilst integrating the adaptations into existing controller structures for a
through-life adaptation strategy. Simulation results showed that the resulting
auto-regressive moving-average (ARMA) tracking controller achieve zero steady-
state tracking error on convergence of the RL adaptations.

Finally in Chapter 6, the development of an online power management op-
timisation scheme for hybrid systems that uses dynamic programming and an
iterative Q-learning adaptation of the system performance function in a receding
horizon manner to compensate for gradual system variations or uncontrolled sys-
tem disturbances was presented. Current state-of-the-art power management op-
timisation schemes are either based on pre-defined rule based power schedules or
exhaustive model-based optimisation that assume known system models and effi-
ciency functions. Consequently, the existing approaches are unable to account for
unmodelled system variations and disturbances in the hybrid systems resulting in
less efficient use of the available power sources. In contrast, the proposed power
management optimisation scheme is able to learn and compensate for the grad-
ual system variations and learn online the optimal power management strategy
between the hybrid power sources given future load predictions. This way, im-
proved system performance is delivered and providing a through-life adaptation
strategy. Simulation results using representative data sets showed that improved
fuel consumption was achieved using the proposed online power management
strategy compared to the conventional strategies, whilst satisfying the changing
future load requirements.

Overall, this thesis has proposed the design of a class of direct adaptive con-
trollers for time-varying dynamical systems that is able to learn online, the optimal
controller solutions to some desirable performance costs without the need to learn
the system model and using only the measured system data. Furthermore, exten-
sion of this class of direct adaptive controllers to complex propulsion and power
systems such as the gas turbine engines whose performances are affected by a vast
nuber of varying factors has been proposed. To conclude, the contributions of this
thesis are now summarised:
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• The design of control architectures and algorithms that incorporate rein-
forcement learning approaches into existing controller structures for com-
plex propulsion and power systems has been proposed. The innovative ar-
chitectures advance the state-of-the-art to allow for direct optimisation of
desired system performance measures whilst satisfying the system safety
and stability constraints.

• The design of two new online optimal reinforcement learning tracking con-
trol frameworks for time-varying dynamical systems that guarantee zero
steady-state tracking error and which unlike prior art do not make any
restrictive assumptions on reference model dynamics or use of discounted
tracking costs has been proposed. The first proposed online optimal RL
tracking framework uses state and input measurements, while the second
uses only the input/output data for systems where full state measurements
may be unavailable.

• The design of a new online power management optimisation scheme for
hybrid systems that uses dynamic programming and an iterative Q-learning
adaptation of the system performance function in a receding horizon manner
has been proposed. The proposed power management scheme advances the
state-of-the-art by compensating for gradual system variations, extracting
improved system performance and iteratively learning online, the optimal
power management strategy between the hybrid power sources given the
future load predictions.

7.2 Recommendations for future work

The proposed techniques and methods in this thesis can be extended in the fol-
lowing directions for future work:

• The proposed reinforcement learning framework in Chapter 3 can be ex-
tended in gas turbine engines to provide lifing performance optimisation
using reward measurements that are only available at the end of each flight
cycle. This extended framework would further exploit the delayed reward
concept in reinforcement learning which takes into account future control
actions that will improve the system life far into the future. Envisaged com-
plexities would be in training large function networks that would be flexible
and sensitive to the limited/sparse lifing reward signals, whilst guaranteeing
the convergence of the network parameters.
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• The proposed online optimal reinforcement learning tracking control frame-
works in Chapters 4 and 5 have only been shown on discrete-time linear
time-varying systems. Recommendations for future work is to provide ex-
tension of the frameworks to discrete-time nonlinear time-varying systems
and also to continuous-time domains. Envisaged complexities would be in
providing rigorous stability proofs for the nonlinear system adaptations and
convergence of the overall scheme.

• Lastly, the proposed online power management optimisation scheme for hy-
brid systems as introduced an iterative and receding horizon dynamic pro-
gramming routine whilst adapting the system efficiency functions to com-
pensate for system variations. Dynamic programming was introduced to
avoid learning the entire energy state space with function approximations
given large horizon future load predictions. However, due to inherent curse-
of-dimensionality limitations of the dynamic programming routine, possible
recommendations for future work would be to consider a Q-function ap-
proximation over finite/limited future load prediction horizon. Envisaged
complexities would be in training the Q-function approximation networks
for varying future load demands over the finite/limited prediction horizon.
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