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Abstract

The capital structure and corporate payout decisions of firms have puzzled the minds

of academics for the best part of half a century. The recurring nature of such salient

decisions ensue that firms’ financial policies do not manifest themselves in arbitrary

or random patterns, but evolve following dynamic trends that are still far from being

fully understood. Accordingly, in this thesis we investigate the corporate dynamics

of firms’ capital structure and corporate payout policies with the purpose of provid-

ing new evidence on the existing disparities within the corporate finance literature.

Specifically, the content of this thesis contributes on a number fronts as it presents

one theoretical and two empirical essays on the dynamics of firms’ financial policies,

wherein we incorporate the uniqueness of India’s emerging market context to conduct

our empirical analysis.

In the first chapter of this thesis we use Monte Carlo experiments to furnish an exten-

sive appraisal of the dynamic panel estimators commonly employed in the corporate

finance literature, where a specific emphasis is placed on the impact of estimator

choice on the reported speed of financial policy adjustment. The results from the

chapter uncover that the least squares dummy variable corrected estimator of Kiviet

(1995) and the quasi-maximum likelihood fixed-effect estimator of Hsiao et al. (2002)

are the least biased and most statistically robust estimators across a range of exper-

iments. In contrast, our experiments expose that the popular generalised method

of moments estimators of Arellano and Bond (1991) and Blundell and Bond (1998)

are highly sensitive to the degree of dynamic persistence, the extent of unobserved

cross-sectional heterogeneity and the level of panel unbalancedness. In doing so, our

first chapter underscores the seriousness of estimator choice in the analysis of finan-

cial policy dynamics. Moreover, based on our findings, the chapter puts forward the

claim that the high proliferation of generalised method of moments estimators in

the corporate finance literature has been partly at fault for the disparate empirical

evidence concerning financial policy adjustment speeds.



In the second chapter of this thesis we analyse how Indian listed firms facing asym-

metric adjustment costs transition towards their capital structure target over the

course of the business cycle. Bringing together the cross-sectional and time-series

elements of autoregressive heterogeneity, the chapter finds the adjustment speeds of

Indian firms to be pro-cyclical, thus, supporting the notion that more prosperous

macroeconomic conditions help to alleviate the market frictions associated with cap-

ital adjustment costs. Complementary to these findings, the chapter uncovers that

firms with the highest earnings and greatest growth opportunities adjust significantly

quicker to their capital structure target over the business cycle, while, conversely,

firms with limited internal financial funds and limited growth opportunities adjust

significantly slower and are more servery impacted by the capital market shocks in-

duced by macroeconomic downturns. All things considered, the evidence presented

in this chapter provides the first empirical evidence of Indian listed firms’ adjustment

asymmetries over the course of the business cycle.

Finally, in the third chapter of this thesis we investigate if the dividend decisions

of Indian listed firms are influenced by the actions and characteristics of their in-

dustry peers. Drawing from the spatial econometric literature, the chapter presents

the first empirical evidence of proximity related peer effects as we discover that the

dividend decisions made by local industry peers bear the greatest economic influ-

ence on the dividend decisions made by Indian listed firms. The chapter finds that

the informational content embedded within peer dividend decisions is economically

more important for dividend increases and dividend decreases than any other firm or

industry related characteristics. Moreover, the empirical evidence suggests that the

tangible decisions of peers prove most economically meaningful in periods of heighten

macroeconomic uncertainty, when the opaqueness of firms own information is likely

to be most severe. Accordingly, the evidence of proximity related peer effects put

forward in our final chapters presents a clear criticism of the extant literature that

has predominately focused on the role of firm-specific factors on corporate payout

decisions.
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Chapter 1

Introduction

1.1 Motivation and Background

The capital structure and corporate payout policies of firms are the most debated financial

policies in the corporate finance literature. Managers must repeatedly make important decisions

regarding the composition of their firm’s capital structure, the amount of profit they should return

to investors, and the form in which such payment, if any, should be delivered. The dynamic and

reoccurring nature of such salient decisions mean that the financial policies of firms do not simply

manifest themselves in arbitrary or random fashions but evolve to follow consistent and distinct

dynamic patterns (Allen and Michaely 2003; Graham et al. 2015). Understanding why these

patterns occur and the factors that determine them is not only important in the traditional

sense, i.e. for value maximisation, but also, because both financial policies are related to, and

interact with, a number of equally salient corporate decisions, such as corporate investment.

In the pursuit of corporate expansion, managers must choose how best to finance their cur-

rent set of positive investment opportunities by weighing up the costs and benefits of internal

and external funds. Accordingly, managers must decide the proportion of internally generated

earnings that should be returned to shareholders and the remaining amount that should be rein-

vested back into the firm. Moreover, when the use of external funding is required, managers

must analyse the trade-offs between debt and equity as they consider the optimal composition of

their capital structure. Subsequently, the interdependent nature of firms’ financial policies and

their close proximity with long-term operations mean that the implications of such decisions not

only effect a firm’s future growth, but, at the aggregate level, have also consequential effects on

the prosperity of a country’s long-term economic performance. It is for these reasons why the

capital structure and corporate payout policies of firms have received substantial attention from

1



academics over the past 60 years as researchers have seeked to clarify the underlying mechanism

that govern corporate financial policy dynamics.

Since Modigliani and Miller (1958) and Modigliani and Miller (1963) irrelevance theorems,

an abundance of theoretical, anecdotal and empirical evidence has emerged in relation to both

financial policies. The theoretical literature has clearly delineated - under the assumption of

imperfect capital markets - that frictions such as taxation, agency costs and asymmetric infor-

mation all play important roles in determining a firm’s capital structure and corporate payout

policy. Moreover, theoretical studies have conjectured that such market imperfections are in-

deed the underlying mechanisms that govern financial policy dynamics and regulate the speed

in which firms adjust their capital structure and corporate payout policy (Kumar 1988; Fischer

et al. 1989).

Accordingly, researchers have sought to validate these claims which has resulted in an enor-

mous literature on the determinants of firms’ financial policies and a rich literature relating to

the speed and motives behind why firms adjust their capital structure and corporate payout

policies. As a result, scholars have uncovered and reached consensus on a number important fi-

nancial policy behaviours. For instance, it is almost unequivocally agreed that managers concern

themselves with the stability of their dividend payout with markets seemingly placing a premium

on stable payout policies. Subsequently, the persistence observed in firms’ dividend payout is the

by product of managers smoothing their dividends payments (Lintner 1956; Brav et al. 2005).

Moreover, the leading consensus on capital structure advances that firms hold capital structure

targets of which they adjust towards and re-balance over time (Graham and Harvey 2001; Leary

and Roberts 2005). Nonetheless, more than 60 years on from the original irrelevance theorems,

there are still a number of deeply contentious issues that the literature has yet to resolve.

Despite the importance of capital structure and corporate payout policy dynamics, there

is still little agreement regarding both the rate in which firms adjust their corporate financial

policies and which factors determine the propensity of such of transitions. More explicitly, many

studies have provided conflicting evidence over the speed in which firms adjust/smooth their

capital structure and dividend payout policies and there remains limited consensus on why some

firms adjust their financial policies quicker than others. In addition to both these contested

disputes, there exists little evidence on why many of the most salient capital structure and

corporate payout decisions made by firms often coincide with the decisions of their industry

counterparts. It is indeed these three ongoing and unresolved issues that this thesis has been

motivated to investigate. Accordingly, this thesis has endeavored to contribute towards the
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vast literature on capital structure and corporate payout dynamics by using the combination of

theoretical simulation-based analysis and an empirical analysis of Indian listed firms.

1.2 Importance and Institutional Context of India

In the pursuit to further the literature’s understanding of capital structure and corporate payout

policy, many studies in recent years have looked to analyse the corporate financial policies of firms

residing in emerging markets (e.g., Öztekin and Flannery 2012 and Öztekin 2015). Emerging

markets provide unique empirical environments to test the existing contests of finance theories.

Prior to the last decade, the vast majority of empirical studies focused on the financial policies

of firms residing in developed bank-based (e.g., Germany and Japan) and/or market-based (e.g.,

the UK and the US) economies. However, in such cases, the very market imperfections that

bring theoretical relevance to the capital structure and corporate payout policies of firms are

often trivial due to such economies having well developed capital markets, strong legal systems

and high levels of information dispersion.

In contrast, emerging markets, by their very definition, only offer a proportion of such full

functioning features. Emerging economies are often characterised by underdeveloped infrastruc-

ture, low levels of information dispersion, illiquid capital markets and/or weak legal systems

(Khanna and Palepu, 2010). Moreover, they are often highly exposed to global macroeconomic

shocks due to their strong reliance on external capital flows (Aguiar and Gopinath, 2007). Conse-

quently, the examination of firms residing in emerging markets is not only important for domestic

managers, investor and policy makers, but more broadly, for the finance literature as whole. The

analysis of firms of which are exposed to more pervasive market frictions are ultimately going

to provide new insights on the dynamic nature of firms and their financial decisions. These are

the main reasons why this thesis has focused the content of its empirical analysis on the capital

structure and corporate payout policies of Indian listed firms.

True to type, India as an emerging market has gone under drastic economic change over the

past three decades. Prior the early 1990’s, India’s economy was characterised by high levels of

corruption, low levels of information dispersion, strong trade protectionism and many sectors

where dominated by inefficient state-owned enterprises (Khanna and Palepu 1997; Khanna and

Palepu 2000). Moreover, strict reserve requirements on banks and high interest rates meant credit

dispersion was uncharacteristically low, while equity markets where largely illiquid due to a lack

of transparency and poor investor protection (Rodrik and Subramanian 2005; Mohan and Kapur
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2015). In the early 1990’s, India’s balance of payments crisis invoked vast sectoral privatisation

and numerous regulatory reforms as the government liberalised the economy in an attempted to

improve private sector efficiency and flexibility. As a result, over the last two decades, successful

reforms have meant India’s economy has sustained stable and consistent economic growth of

roughly 6-7% per annum and has risen from the tenth largest economy in terms of purchasing

power parity in 1990 to the third largest economy behind China and the US (World Bank, 2018).

One of the major contributing factors to India’s economic success over the last two decades

has been the liberalisation and development of its financial sector. The partial reduction of regu-

latory capital requirements has given India’s banks greater autonomy over their lending decisions

resulting in substantial credit growth to households and firms. Moreover, significant improve-

ments to the infrastructure of India’s capital markets alongside the removal of restrictive listing

regulations has led to the number of listed companies increasing drastically from roughly 2,500

in 1991 to more than 5,000 in 2019. Furthermore, the introduction and transition of legislative

authority to the Securities and Exchange Board of India (hereafter, SEBI) from 1988 to 1992,

has resulted in a number of precise and independently motivated regulatory reforms - e.g. Clause

49 - that have significantly improved the level of corporate governance in India (Dharmapala and

Khanna, 2012). In fact, the comparison of security market regulation provided by La Porta et al.

(2006) shows India is in the top three countries for corporate disclosure requirements marginally

behind the US and Singapore and fifth in the world for liability standards. Consequently, for

much of the last two decades, India’s minority shareholder protection has been comparable to

that of a developed bank-based or market-based economy and has been considered far ahead of

many of its emerging market counterparts (World Bank, 2018).

Accordingly, the significant structural changes and economic reforms that have led to India’s

advanced and well developed financial system not only makes the corporate financial decisions

of Indian listed firms of supreme empirical interest but also empirically auspicious. Indeed,

it is the contrast and juxtaposition of India’s developed financial sector yet residing issues of

corruption, regional inequality and limited information dispersion that makes India’s emerging

market context an ideal laboratory to analyse the market imperfections that influence and govern

the capital structure and corporate payout dynamics of firms.
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1.3 Research Questions and Contributions

The purpose of this thesis is to bring clarity to the ongoing disputes and unanswered issues

relating to the capital structure and corporate payout dynamics of firms. In particular, based on

the outlined motivations for this thesis, the content of this document has devoted its attention to

the following three important questions: i) Why do many researchers provide conflicting evidence

on the speeds in which firms adjust their financial policies?, ii) Which factors are dominant in

determining the rate in which firms adjust their financial policies? and iii) Why do some of

the most salient financial decisions made by firms often coincide with the decisions of their

industry counterparts? To address these questions, this thesis contributes on a number of fronts

by providing both theoretical and empirical evidence.

To investigate the first research question, chapter 2 uses Monte Carlo simulations as a means

to examine the economic importance of estimator choice in the context of the corporate finance

literature. In particular, by placing specific emphasis on the dynamic partial adjustment model

commonly used in the capital structure and corporate payout literature, chapter 2 investigates,

via a range of fixed-parameter experiments, how the type of econometric estimator employed by

researchers can impact the implied speed of financial policy adjustment.

To answer the second and third research questions, the thesis employs the uniqueness of

India’s emerging market context to provide new and robust empirical evidence on the capital

structure and corporate payout dynamics of firms. Chapter 3 directly addresses the second

research question as it examines the underlying mechanisms that determine a firm’s capital

structure adjustment process. Using the theoretical guidance from chapter 2, chapter 3 adopts the

most up-to-date and accurate econometric methods to investigate how firms facing asymmetric

adjustment costs transition towards their capital structure target over the course of the business

cycle.

Chapter 4 addresses the final research question of this thesis by analysing why the finan-

cial decisions made by firms often coincide with the decisions of their industry counterparts.

Specifically, chapter 4 investigates to what end are the dividend decisions of Indian listed firms

influenced by the dividend decisions of their industry peers. Motivated by the spatial economet-

ric literature, chapter 4 places specific focus on the importance of geographical proximity in the

manifestations of peer effects. To elaborate on the contributions made by each chapter in this

thesis, the summary and contributions of each essay are presented in the following sub-sections.
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1.3.1 Chapter 2: An Investigation of Dynamic Panel Data Models in
Empirical Corporate Finance

Chapter 2 investigates the estimation of dynamic panel data models in the empirical corporate

finance literature. Since the seminal work of Lintner (1956), researchers have utilised dynamic

partial adjustment models as means of evaluating the rate at which firms adjust/smooth their

capital structure or corporate payout policy. However, while the stylised approach has proved

immensely popular amongst academics, the resulting evidence has yielded vastly disparate eco-

nomic conclusions about the rate in which firms adjust their financial policies (e.g., Fama and

French 2002 and Flannery and Rangan 2006).

In the pursuit to clarify such contests, chapter 2 analyses, explicitly, the implications of

estimator choice on the speed of financial policy adjustment. In detail, chapter 2 uses Monte

Carlo simulations to furnish a systematic analysis of nine dynamic panel estimators commonly

employed in the empirical corporate finance literature. Using multiple evaluative metrics, chapter

2 contributes to the literature by providing an account of each estimator across a range of settings

experienced by researchers. In particular, the chapter examines how the degree of dynamic

persistence, the panel dimensions, the level of cross-sectional heterogeneity and the severity of

panel unbalancedness all impact the accuracy of dynamic panel estimators. Accordingly, chapter

2 presents a clear and comprehensive picture on how the choice of econometric method can

significantly effect the estimation of the autoregressive coefficient and, in turn, the implied speed

of financial policy adjustment.

The findings of chapter 2 expose a number of important results. The chapter uncovers

that the degree of dynamic persistence in the dependent variable is a key driver of estimator

performance, with highly persistence data inducing the most biased outcomes and the least

precise estimates of the autoregressive coefficient. In addition, the chapter illustrates that the

common varying characteristic’s of corporate finance data sets, such as: panel dimensions, cross-

sectional heterogeneity and panel unbalancedness, as well as the degree of censoring in the

dependent variable, all pose unique problems for researchers employing dynamic panel data

models.

Crucially, the study establishes that, on average, the least squares dummy variable correction

estimator of Kiviet (1995) and the quasi-maximum likelihood fixed-effect estimator of Hsiao

et al. (2002) most accurately and most consistently estimate the autoregressive coefficient in

dynamic panel data models. Moreover, in special cases, when the dependent variable of interest

is censored, the chapter finds the dynamic panel fractional estimator of Elsas and Florysiak
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(2015) to be most proficient. In contrast, the chapter reports that the popular generalised

method of moments estimators of Arellano and Bond (1991) and Blundell and Bond (1998) are

highly sensitive to changes in dynamic persistence, cross-sectional heterogeneity and the level

of panel unbalancedness. In each case, the generalised method of moments estimators prove to

be biased and inconsistent, thus, resulting in spurious estimates of the speed of financial policy

adjustment.

Accordingly, chapter 2 presents a systematic econometric review on how the choice of esti-

mator can impact the reported speed of financial policy adjustment. In doing so, the chapter

contributes to literature by showing why many studies have yielded conflicting conclusions on

the speed of capital structure adjustment and the rate of dividend payout smoothing. Moreover,

perhaps most importantly, the analysis conducted in chapter 2 provides guidance on the best

econometric practice for future research. Such recommendations bear importance not only for

the corporate finance literature, but also, for a range of disciplines concerned with the correct

estimation of dynamic panel data models.

1.3.2 Chapter 3: Leverage Dynamics over the Business Cycle: Evi-
dence from India

The first empirical investigation of this thesis evaluates how firms facing asymmetric adjustment

costs transition towards their capital structure target over the course of the business cycle.

Studies have shown that firm-specific and macroeconomic factors impact the rate in which firms’

adjust towards their optimal capital structure, however, evidence has rarely been provided on the

duality of such effects, especially in an emerging market context. Moreover, the recent theoretical

(Hackbarth et al. 2006 and Bhamra et al. 2010) and empirical (Strebulaev and Yang 2013 and

Halling et al. 2016) evidence on the leverage dynamics of firms over the course of the business

cycle have yielded vastly disparate conclusions with academics disagreeing on the cyclical nature

of corporate leverage. Accordingly, chapter 3 sets out to clarify such ambiguities by bringing

together both elements of the firm-specific and macroeconomic adjustment cost literature to

present a comprehensive analysis of how Indian listed firms manage their corporate leverage over

the course of the business cycle.

The chapter builds on the recent work of Halling et al. (2016) by proposing a single-step

model specification that allows for the simultaneous estimation of firm-specific adjustment costs

over high and low macroeconomic growth regimes. Furthermore, in accordance with guidance

presented in chapter 2, the chapter employs the dynamic panel fractional estimator of Elsas and
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Florysiak (2015) to account for the fractional nature of corporate leverage and to provide the

most precise estimates of the true speed of capital adjustment.

The chapter uncovers that macroeconomic performance plays a pivotal role in the capital

structure adjustment process with the adjustment speeds of Indian listed firms proving pro-cylcial

over the sample period. Accordingly, our findings support the notion that more prosperous

macroeconomics conditions help to alleviate the adjustment costs induced by capital market

frictions and imperfections making the adjustment costs faced by firms in high growth periods

significantly less. Furthermore, the chapter reveals that firms with the highest potential growth

opportunities and firms with the highest earnings adjust quicker towards their capital structure

target over the course of the business cycle, yet, most proactively manage their corporate leverage

in periods of economic prosperity due to lower implied adjustment costs.

All in all, chapter 3 contributes to the literature as it provides the first evidence of firm-

specific adjustment asymmetries for Indian listed firms over the business cycle. In doing so, the

chapter contributes to the recent debates on the cyclical nature of corporate leverage dynamics

by providing complementary evidence of pro-cyclical adjustment speeds from a new emerging

market context. Moreover, from a methodological perspective, the use of the most up-to-date

and accurate econometric method ensures that the results presented in the chapter provide the

most precise estimates of the autoregressive coefficient. Consequently, the documentation of

adjustment speed heterogeneity put forward in this chapter can be considered more precise than

many of the bias approaches previous employed by the literature, e.g., Fama and French (2002),

Flannery and Rangan (2006), and Kayhan and Titman (2007), to name but a few.

1.3.3 Chapter 4: Dividend Decisions, Peer Effects and Geographical
Proximity: Evidence from India

The corporate payout policy literature has long concerned itself with the dividend decisions made

by firms. However, since Fama and French (2001) illustrated the growing behavioural trends of

corporate payout policies, little insight has been provided into why the dividend payout decisions

of firms often coincide with the decisions of their peers. Motivated by such observations, chapter

4 addresses the final research question of this thesis by investigating if the dividend decisions of

Indian listed firms are influenced by the dividend decisions of their industry counterparts.

The econometric analysis presented in chapter 4 expands upon the contemporaneous studies

of Adhikari and Agrawal (2018) and Grennan (2019) who investigate the role of peer behaviour

on the corporate payout policies of US listed firms. Drawing from the the spatial econometrics

8



literature, chapter 4 proposes a new measure of peer influence based on the geographical distance

between firms’ headquarters. In doing so, the study makes a sizable contribution to the literature

by offering the first empirical evidence of proximity based peer effects. Supplementary to this, the

chapter also adds to the growing literature on peer influence in corporate finance by presenting

the first empirical analysis of corporate payout peer effects in an emerging market context.

Using an instrumental variable approach to overcome the inherent simultaneity issues of peer

effect analysis, the chapter reveals that the dividend decisions made by Indian listed firms are

significantly influenced by dividend decisions of their industry counterparts. More precisely, we

find local industry peers bear the greatest economic influence on the dividend decisions made

by Indian listed firms, an effect we attribute to imperfect information and local competition for

investors and market share. The chapter shows that the informational content embedded within

peer dividend decisions is economically more important for dividend increases and dividend de-

creases than any other firm or industry related characteristics. Moreover, the empirical evidence

suggests that the tangible decisions of peers prove most economically meaningful in periods of

heighten macroeconomic uncertainty, when the opaqueness of firms own information is likely to

be most severe.

In the conclusion of our final chapter, we provide a number of robustness tests to illustrate

the stoutness of our empirical contributions. In particular, we examine the validity of our results

to randomised peer definitions, various standard error structures, potential omitted factors and

extended radius measures. In doing so, we illustrate that our findings are not a product of latent

common factors attributable to the choice of reference group structure nor are they driven by

specific error structures, omitted variable bias or arbitrary distance measures.

1.4 Structure of the Thesis

The remainder of the thesis is organised as follows. Chapter 2 investigates the estimation of

dynamic panel data models in the empirical corporate finance literature. Chapter 3 presents an

analysis of the leverage dynamics of Indian listed firms over the course of the business cycle.

Chapter 4 examines if the dividend decisions of Indian listed firms are influenced by the actions

and/or characteristics of their industry counterparts. Finally, chapter 5 concludes the thesis,

offers some policy implications and identifies areas for on going and future research.
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Chapter 2

An Investigation of Dynamic Panel Data
Models in Empirical Corporate Finance

Abstract: Dynamic panel data models have become increasingly prominent in the empirical cor-

porate finance literature. However, estimation of the lagged dependent variable in combination

with the firm individual effect leads to a number of econometric issues. While several method-

ologies exist to overcome such complexities, there is little consensus on the appropriate method

of estimation for the corporate finance setting. In this chapter, we examine this issue by ana-

lyzing a range of dynamic panel estimators via Monte Carlo experiments. Our simulations find

the least squares dummy variable corrected estimator of Kiviet (1995) and the quasi-maximum

likelihood fixed-effect estimator of Hsiao et al. (2002) to be the most robust estimators across

a range of experiments. Comparatively, the popular generalized method of moments estimators

prove to be highly sensitive to changes in dynamic persistence, cross-sectional heterogeneity and

panel unbalancedness. Thus, leading us to question the reliability of previous empirical studies

that employ said methods.

2.1 Introduction

Dynamic panel data models play a natural role in the corporate finance literature as researchers

seek to understand the dynamic behavior of firms and their corporate policies. Numerous studies

on cash holdings (e.g., Ozkan and Ozkan 2004 and Bates et al. 2009), capital structure (e.g.,

Flannery and Rangan 2006 and Frank and Goyal 2009), corporate payout policy (e.g., Short

et al. 2002 and Leary and Michaely 2011) and investment decisions (e.g., Bond and Meghir 1994

and Guariglia and Yang 2016) have all employed some form of dynamic panel data model.
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However, the estimation of dynamic panel data models can be difficult for a number of reasons.

First, datasets in the corporate finance literature typically consist of a large number of firms (N),

over a small, and often infrequent, number of years (T ). Subsequently, the traditional pooled

ordinary least squares (hereafter, OLS) estimator is considered inadequate for such a setting, as

the OLS estimator fails to account for the time-invariant differences among firms ; resulting in

biased estimates of the autoregressive coefficient. Furthermore, it has long been known that due

to the correlation between the lagged dependent variable and the fixed-effect component, the

fixed-effect or within-transformation (hereafter, FE) estimator also produces biased estimates

of the autoregressive coefficient when the panel length, T , is short (Balestra and Nerlove 1966;

Nerlove 1967; Nerlove 1971; Nickell 1981).

The economic implications of cross-sectional heterogeneity and finite sample bias are of signif-

icant relevance in the capital structure and coporate payout policy literature, as often researchers

look to employ dynamic partial adjustment model specifications. Here, the autoregressive coef-

ficient is of central interest as researchers aim to evaluate the rate at which firms adjust towards

their optimal corporate financial target. For example, in the capital structure literature, the

seminal work of Fama and French (2002) employ the OLS estimator and report the speed of

adjustment (hereafter, SOA) for US firms to be 10% per annum. Conversely, Flannery and Ran-

gan (2006) via the FE estimator report the rate of adjustment for US firms to be considerably

higher, at roughly 34%. Consequently, failing to account for such econometric complexities can

often engender spurious economic conclusions.

In order to address the methodological issues associated with cross-sectional heterogeneity and

finite sample bias, researchers have turned to more advanced econometric techniques. Lemmon

et al. (2008) employ the system-generalized method moments (hereafter, SYS-GMM) estimator

of Blundell and Bond (1998) and report the SOA for US firms to be around 25% annually.

Huang and Ritter (2009) adapt the longest difference (hereafter, LD) estimator of Hahn et al.

(2007) and find the rate of adjustment to range between 12%-21%. While Öztekin and Flannery

(2012) use the least squares dummy variable corrected (hereafter, LSDVC) estimator of Kiviet

(1995) and report the SOA for US firms to be closer to 27%. However, despite the rich array of

econometric methods employed throughout the corporate finance literature, the complexities of

dynamic panel data models have lead to little consensus on the true SOA.

The purpose of this chapter is to understand the implications of estimator choice in the

context of the corporate finance literature. In particular, this chapter places a specific emphasis

on the dynamic partial adjustment model seen in the capital structure and corporate payout
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policy literature in order to stress the economic implications of estimator choice. To this end,

we examine the statistical properties for a range of dynamic panel estimators by conducting a

series of Monte Carlo experiments. In detail, we investigate the statistical properties of nine

different dynamic panel estimator, namely: the OLS estimator, the FE estimator, the first

difference-GMM (hereafter, FD-GMM) estimator of Arellano and Bond (1991), the non-linear

GMM estimator of Ahn and Schmidt (1995) (hereafter, AS-GMM), the SYS-GMM estimator of

Blundell and Bond (1998), the lag difference four (hereafter, LD4) estimator of Huang and Ritter

(2009), the LSDVC estimator of Kiviet (1995), the quasi-maximum likelihood (hereafter, QML)

fixed effect estimator of Hsiao et al. (2002) and lastly, in a unique cases, we examine the dynamic

panel fractional dependent variable (hereafter, DPF) estimator of Elsas and Florysiak (2011) and

Elsas and Florysiak (2015), which is explicitly designed for cases when the dependent variable

is censored between zero and one. In doing so, this chapter not only provides an account of the

problems associated with dynamic panel data models but more importantly, provides guidance

on the econometric best practice for the corporate finance literature.

Previous Monte Carlo simulations, such as Arellano and Bond (1991) and Kiviet (1995), have

mainly focused on small panel data designs resulting in experiments inconsistent with that of

the corporate finance setting. We address this issue by focusing our panel data design more

specifically on large N and short T panel dimensions. Indeed, we are not the first to venture

down this avenue, with a number of recent studies, namely: Flannery and Hankins (2013), Zhou

et al. (2014) and Dang et al. (2015), all examining the performance of dynamic panel estimators

in the context of corporate finance. Our study strengthens this growing body of literature by

making a number noteworthy contributions.

First, our study overcomes the limitations of Flannery and Hankins (2013) and Dang et al.

(2015) by systematically analyzing estimator performance across multiple evaluative metrics over

multiple levels of dynamic persistence. Therefore, our study provides a more thorough and com-

plete examination of dynamic panel estimators in the corporate finance setting. Our second

contribution is the coverage of two dynamic panel estimators, namely: the AS-GMM and QML

estimators, that, to the best of our knowledge, have been overlooked by the literature on corpo-

rate finance based simulations. We argue that failure to acknowledge such estimators could be

costly for the number reasons. First, Dang et al. (2015) reports that out of the GMM-estimators

the FD-GMM estimator often estimates the autoregressive coefficient with the least amount of

bias. However, the work of Ahn and Schmidt (1995) documents through asymptotic efficiency

experiments that the AS-GMM estimator outperforms the FD-GMM estimator. Parallel to this

12



argument, the work of Hsiao et al. (2002) and Phillips (2017) show the QML estimator to out-

perform the popular GMM-estimators, therefore, highlighting it’s importance in dynamic panel

analysis. Finally, we contribute to the literature by exploring multiple simulation experiments

relevant to the corporate finance setting. Not only does our study validate the experiments of pre-

vious simulations, we evaluate properties of estimators in untested environments. For example,

to date, only Flannery and Hankins (2013) have considered the impact of panel unbalancedness

in the corporate finance setting. We expand on their contribution by examining multiple levels

of unbalancedness, thus, providing a more complete and comprehensive analysis of said issue.

Our results indicate that the LSDVC and QML estimators are generally the most robust

and resilient methods of estimation for dynamic panel data models in the empirical corporate

finance setting. We find that these estimators estimate the autoregressive coefficient with the

least amount of bias across simulations, thus, most accurately estimating the SOA. Among the

two, the LSDVC estimator performs well in cases of heightened cross-sectional heterogeneity,

whereas the QML estimator outperforms the LSDVC estimator in cases of short and unbalanced

panels. Nonetheless, in special cases, where the dependent variable is censored between zero

and one, we find the DPF estimator to be the most appropriate estimator, with the degree of

estimator bias being associated with the proportion of censoring in the dependent variable.

Our simulation experiments also document that the FD-GMM and SYS-GMM estimators

are highly sensitive to a range of problems associated with the corporate finance literature, with

the autoregressive coefficient proving to be unreliable and unpredictable across simulations. Of

note, the FD-GMM estimator performs unfavourably in short and unbalanced panels, while

the performance of SYS-GMM estimator is largely hindered when the degree of cross-sectional

heterogeneity is high. Our findings are consistent with Flannery and Hankins (2013), Zhou et al.

(2014) and Dang et al. (2015) as we report the robustness of the LSDVC estimator. Furthermore,

our addition of the QML estimator proves to be crucial for discussion on dynamic panel estimators

as well as our understanding of the true SOA. Finally, the growing evidence on the frailties of

the GMM estimators leaves us with concern on the accuracy of forgone empirical studies that

employ said approaches. The remainder of this chapter is as follows. In Section 2.2 we provide

a review of the dynamic partial adjustment model as well as a brief summary of each dynamic

panel estimator. In Section 2.3 we discuss our data and experiment design and introduce the

data generating process used for our simulations as well as our six proposed experiments. In

Section 2.4 we report our findings from our experiments. In Section 2.5 we outline the empirical

implications of our results and in Section 2.6 we conclude the chapter.
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2.2 Dynamic Panel Data Models in Empirical Corporate
Finance

2.2.1 Model Specification

The corporate policies set by firms typically result in a decision based on an optimal corporate

target. These targets have frequently been examined by dynamic panel data models in the

empirical corporate finance literature with corporate financial policies regarding capital structure

and dividend payout typically employing some form of dynamic partial adjustment model (see,

for example, Fama and French 2002; Flannery and Rangan 2006; Lemmon et al. 2008; Antoniou

et al. 2008; Andres et al. 2009; Pindado et al. 2012; Faulkender et al. 2012). Motivated by

Lintner (1956), the dynamic partial adjustment model uses the lagged dependent variable to

approximate the firms movement from their current corporate position to their corporate target.

The traditional partial adjustment model is specified as follows:

yi,t − yi,t−1 = θ(y∗i,t − yi,t−1) + ηi + υi,t (2.1)

where yi,t and y∗i,t denote the actual (observed) and optimal (unobserved) corporate policies of

firm i at time t, ηi is the time-invariant individual (firm) effect and υi,t is the idiosyncratic error

term. In the dynamic model, (2.1), the optimal corporate policy can be considered a tightening

or a loosening of the previous corporate policy, therefore, the firm’s current position can be

considered either above or below the optimal target. Accordingly in (2.1), firms’ attempt to

adjust towards their optimal corporate policy due to the benefits associated with being located

at the target level. The SOA (θ) reflects the rate of adjustment (per time period) and is arguably

bound between 0 and 1. An estimate of θ = 0 reflects no SOA and thus no adjustment towards an

optimal corporate policy. Alternatively, an estimate of θ = 1 implies an immediate adjustment

from the firm’s current position to the optimal corporate policy.

The empirical obstacle of equation (2.1) is that the optimal corporate policy - for example,

the optimal amount of debt or dividend payout - is not directly observed. However, it can be

argued that the optimal corporate policy is deterministic on a set of firm-specific characteristics

(Xi,t). One can therefore define the relationship as follows:

y∗i,t = Ω′Xi,t (2.2)

given equation (2.2), a two-stage approach is arguably the most intuitive method for estimat-

ing the dynamic panel model in equation (2.1). However, such two-stage approaches are often
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susceptible to the generated regressor problem, resulting in invalid inference in the second-stage

(Pagan, 1984)1. As a result, a number of studies adopt a one-stage approach2, which involves

substituting equation (2.2) into equation (2.1) and thus takes the following form:

yi,t = (1− θ)yi,t−1 + θΩ′Xi,t + ηi + υi,t (2.3)

defining λ = 1− θ and β = θΩ, we obtain the following:

yi,t = λyi,t−1 + β′Xi,t + ηi + υi,t (2.4)

Finally, equation (2.4) can be considered the baseline specification used to investigate the

corporate policy decisions made by firms. The above dynamic partial adjustment model allows

for the joint single-stage estimation of the SOA: θ̂ = 1 − λ̂ and the long run parameter coef-

ficients for target policy determinants: Ω̂ = β̂/1 − λ̂. The majority of empirical studies focus

on estimating the SOA as researchers aim to investigate the frictions associated with the ad-

justment process. For example, in the capital structure literature, the recent work of Öztekin

and Flannery (2012) documents the importance of institutional factors in determining the SOA.

They find that firms with often high adjustment speeds are located in countries with low levels

of information asymmetry, with anglosphere countries generally adjusting the quickest. In addi-

tion, Cook and Tang (2010), Dang et al. (2014) and Drobetz et al. (2015) all report the positive

association between the rate of adjustment and the business cycle. With regards to the dividend

literature and firm-specific characteristics, Aivazian et al. (2006) show that firms with public

debt ratings smooth their dividends more and adjust their dividends more slowly to increased

earnings. Similarly, Leary and Michaely (2011) find that older, larger firms, and firms with less

volatile earnings report slower speeds of adjustment. Finally, Michaely and Roberts (2011) show

that public firms smooth dividends significantly more than their private listed counterparts.

However, despite such inferences, the type of econometric method used to estimate the partial

adjustment model can potentially result in biased and inconsistent estimates of autoregressive co-

efficient, λ, which in turn translates into spurious and misleading adjustment speeds. Therefore,

in order to ensure that the above inferences are valid, and not driven by the choice of estimator,

one must first be confident that the estimator of choice is able to adequately estimate the true

SOA. Thus, it is here where this chapter makes its most important contribution as we evaluate

the economic implications of estimator choice in the context of the corporate finance setting.

1In short, two-stage approaches fail to account for suitable standard error adjustment in the second-stage,
often resulting in invalid inference and over-rejection of the null hypothesis. For further reading see Kripfganz
and Schwarz (2019) on second-stage standard-error correction.

2See, for example, Flannery and Rangan (2006), Antoniou et al. (2008) and Dang et al. (2012).
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2.2.2 Dynamic Panel Estimators

2.2.2.1 Traditional Estimators

A number of econometric methods have been used by researchers to estimate the dynamic partial

adjustment model in equation (2.4). Two traditional approaches that have been implemented

in the corporate finance literature are the OLS and FE estimators. Nonetheless, it is well

recognized that both the OLS and FE estimators can yield biased and inconsistent estimates of

the autoregressive coefficient (Wooldridge, 2010) and as a consequence, can result in inaccurate

conclusions about the true SOA. Starting with former, the OLS estimator fails to account for the

time-invariant individual (firm) effect, ηi. Baltagi (2008) states that since yi,t is deterministic

on ηi in (2.4), it follows that yi,t−1 is also a function of ηi. Therefore, in the event that ηi is in

fact different from zero, the assumptions of the OLS estimator are violated as yi,t−1 is correlated

with ηi, i.e. E[yi,t−1ηi] 6= 0. This violation results in the OLS estimator producing upwardly

biased and therefore inconsistent estimates of λ, and thus, the underestimation of the SOA.

In an attempt to mitigate this issue, other empirical studies have turned to the FE estimator

which accounts for ηi by using the following data transformation:

yi,t − ȳi = λ(yi,t−1 − ȳi,−1) + β(Xi,t − X̄i) + (ηi − η̄i) + (υi,t − ῡi) (2.5)

which can be re-written as:

ỹi,t = λỹi,t−1 + βX̃i,t + υ̃i,t (2.6)

The demeaning process of equation (2.5) transforms the data allowing for the removal of ηi, as

seen in equation (2.6). However, despite the data transformation, the FE approach can still

yield biased estimates of the coefficient λ. Nickell (1981) illustrates that the data transformation

introduces a correlation between ỹi,t−1 and υ̃i, as by its very definition, ῡi contains elements of

υi,t−1 which is correlated to yi,t−1. In addition to this, υi,t is also correlated with ȳi,−1 as the

latter also contains elements of yi,t. Nickell (1981) documents that both sources of correlation

are bias of order 1/T . Therefore, when T is small and fixed and N is large the FE estimator

produces downwardly biased estimates of the coefficient λ, thus, the overestimation of the SOA.

Whereas, when T → ∞, the proportions of υi,t−1 and yi,t are small relative to their respective

averages and therefore the bias associated with the FE estimator is negligible.

Consequently, while the FE estimator may be suitable for fields with large T panel dimensions,

topics investigated in the empirical finance literature are typically hindered by short panels. For

example, in the context of the capital structure literature, Flannery and Hankins (2013) show
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that Compustat North America, arguably the richest dataset of its kind, has a median annual

panel length of 11 years (T = 11). However, Judson and Owen (1999) show that the FE estimator

can still be severely biased when T = 30. Furthermore, it is consistent to suggest, that databases

with coverage of emerging markets (in our case India) may have shorter and less rich samples.

In fact, in Chapter 3 and Chapter 4, our two samples of panel data consists of an average panel

length of 11 and 8 years, respectively. It is for these reasons that researchers within the empirical

corporate finance literature have considered more advanced methods of estimation in order to

obtain unbiased estimates of the true SOA.

2.2.2.2 Generalized Method of Moments Estimators

In order to ameliorate the finite-sample bias associated with the FE estimator, many authors

have adopted more advanced econometric methods such as GMM estimators, namely that of the

FD-GMM estimator of Arellano and Bond (1991) and the SYS-GMM estimator of Blundell and

Bond (1998). A good starting point for this discussion is the instrumental variable estimator of

Anderson and Hsiao (1981) which removes ηi by taking the first-difference of (2.4):

yi,t − yi,t−1 = λ(yi,t−1 − yi,t−2) + β(Xi,t −Xi,t−1) + (ηi − ηi) + (υi,t − υi,t−1) (2.7)

defining the difference operator as ∆ = (1 − L) where L is the lag operator, equation (2.7) can

be simply written as:

∆yi,t = ∆yi,t−1 + β∆Xi,t + ∆υi,t (2.8)

This first-difference transformation eliminates ηi similar to that of the FE estimator. However,

estimation of (2.8) can still yield biased and inconsistent estimates due to the correlation between

∆yi,t−1 and ∆υi,t, as yi,t−1 is clearly a function of υi,t−1. In order to remove this correlation,

Anderson and Hsiao (1981) propose an instrumental variable approach where they suggest two

possible instruments for ∆yi,t−1: the level instrument yi,t−2 or the lagged difference ∆yi,t−2,

where the former is considered superior as it induces smaller variance and requires one less ob-

servation (Arellano, 1989). However, despite the proposed solution, this just-identified equation

lacks efficiency due to its restrictive specification3.

To address this problem, the FD-GMM estimator exploits a larger number of instruments

available within the data. Arellano and Bond (1991) stipulate that additional instruments can

3Note: We do not examine the performance of the Anderson and Hsiao (1981) estimator in our experiments
as it can be considered a restricted instrument model. See Wintoki et al. (2012) for Monte Carlo experiments
regarding restricted instruments.
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be employed if one takes advantage of the moment conditions that exist between yi,t and υi,t.

To illustrate, we consider (2.8), where t = 3:

∆yi,3 = ∆yi,2 + β∆Xi3 + ∆υi3 (2.9)

from here the available valid instrument is yi,1 since it is correlated with ∆yi,2 and not correlated

with ∆υi3. Continuing in this fashion, when t = 4 we have:

∆yi,4 = ∆yi,3 + β∆Xi4 + ∆υi4 (2.10)

here, the available valid instruments consist of yi,2 and yi,1 for ∆yi,3 as both level instruments

are correlated with ∆yi,3 and remain uncorrelated with ∆υi4. Following this process it is clear

that when t = T the set of valid GMM instruments are (yi,1, yi,2, ..., yi,T−2) for ∆yi,t−1 and thus

by utilizing the moment conditions, E[yi,t−k∆υi,t] = 0, where t = 3, ..., T and k = 2, ..., t − 1,

the total number of instruments available can be defined as T (T − 1)/2, where the GMM-style

instrument matrix, Zi, is defined follows:

Zi =


yi,1 0 0 . . . 0 . . . 0
0 yi,1 yi,2 . . . 0 . . . 0
...

...
... . . .

...
. . .

...
0 0 0 . . . yi,1 . . . yi,T−2

 (2.11)

Arellano and Bond (1991) show that by incorporating a larger number of instruments the FD-

GMM estimator can produce unbias and consistent estimates of λ and more importantly, accurate

estimates of the true SOA. Note however that the FD-GMM estimator has been found to perform

poorly in finite samples when the level instruments are only weakly correlated with that of the

first differences. This is often the case when i) λ is highly persistent and/or ii) the variance

of ηi is large relative to the variance υi,t (Blundell and Bond, 1998). For example, when λ is

highly persistent, the differenced variables experience a sizable loss of variation which results

in the GMM-style instruments having limited explanatory power, often referred to as the weak

instrument problem.

To get around these issues two alternative GMM-estimators have been proposed, the AS-

GMM estimator of Ahn and Schmidt (1995) which uses additional non-linear moment conditions

and the more popular SYS-GMM estimator of Blundell and Bond (1998). Starting with the

former, Ahn and Schmidt (1995) suggest that there are T − 2 additional moment conditions

that are ignored by the FD-GMM estimator. Under the assumptions that υi,t is homoskedas-

tic and uncorrelated with ηi and yi,1 the additional moment conditions hold: E[υi,T∆υi,t] = 0
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where t = 3, ..., T − 1. These additional moment conditions can be combined with the moment

conditions of the FD-GMM estimator by adding further columns to the instrument matrix Zi,

with the total amount valid instruments now defined as T (T − 1)/2 + (T − 2). Ahn and Schmidt

(1995) asymptotic efficiency experiments confirm that the non-linear moment conditions increase

performance when λ is highly persistent and/or the variance of ηi is large relative to υi,t. De-

spite the merits of the FD-GMM and AS-GMM-estimators, the first-differencing approach is not

without its econometric shortcomings. As highlighted by Griliches and Hausman (1986), the dif-

ferencing approach may exacerbate the impact of measurement errors on the dependent variable.

Furthermore, given the model of interest is conceptually in levels, differencing may reduce the

variation of explanatory variables as well as the statistical power of tests (Levine et al., 2000).

To improve on the proprieties of the above GMM-estimators Blundell and Bond (1998) pro-

pose the SYS-GMM estimator that introduces another set of moment conditions, however,

this time by utilizing the moment conditions associated with the level equation (2.4). In-

stead of removing ηi by first differencing, they consider using instruments in first-differences

which are clearly orthogonal to ηi. Therefore, by considering the following moment conditions,

E[∆yi,t−kυi,t] = 0, where t = 3, ..., T and k = 1, ..., t − 2, the set of valid instruments for t=T

are (∆yi,2, ...,∆yi,t−1) for yi,t−1. Thus, by utilizing a system of first-differenced, (2.8), and level,

(2.4), equations Blundell and Bond (1998) report that the SYS-GMM estimator can largely im-

prove on the FD-GMM estimator when the λ is highly persistent and in asymptotic variance

comparisons they find that the SYS-GMM is considerably more efficient than the AS-GMM

estimator. Nonetheless, Bun and Windmeijer (2010) document that the SYS-GMM estimator

can still be affected by the weak instrument problem when autoregressive coefficient is highly

persistent. Furthermore, when the number of instruments exceeds the size of the sample, such

proliferation can result in reductions in consistency and efficiency (Roodman, 2009). It is be-

cause of such shortcomings that a small number recent empirical studies have employed a range

of alternative estimators in order to estimate the true SOA.

2.2.2.3 Alternative Estimators

A number of alternative estimators have been tested in the context of corporate finance via

Monte Carlo experiments and empirical applications. To accompany the previously discussed

estimators, in this chapter we test the performance of four additional estimators, namely: the

fourth-period difference estimator (LD4) of Huang and Ritter (2009) that was adapted from the

LD estimator of Hahn et al. (2007) for unbalanced panels. The LSDVC estimator of Kiviet
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(1995) which was similarly adapted for unbalanced panels by Bruno (2005), the QML estimator

of Hsiao et al. (2002) and finally in special cases, where the dependent variable is fractional, we

examine the DPF estimator of Elsas and Florysiak (2011) and Elsas and Florysiak (2015).

To illustrate the LD4 estimator we start with the LD estimator of Hahn et al. (2007). They

propose an IV-style approach that is argued to be favourable when λ is highly persistent and

also suitable for cases of second-order serial correlation. In the fashion of Anderson and Hsiao

(1981), the LD-estimator uses differencing to remove the time-invariant individual (firm) effect

ηi, however, unlike equation (2.8) which employs first differencing, Hahn et al. (2007) propose

using the longest possible difference available, therefore when t = 30 we have:

yi,30 − yi,2 = λ(yi,t−29 − yi,1) + β(Xi,30 −Xi,2) + (ηi − ηi) + (υi,30 − υi,2) (2.12)

from here it is evident that yi,1 is correlated with (yi,29−yi,1) however remains uncorrelated with

(υi,30 − υi,2). Furthermore, drawing from Ahn and Schmidt (1995), Hahn et al. (2007) propose

that the residuals from equation (2.12) can also be used as instruments. Based on two stage

least squares, the LD estimator first estimates equation (2.12) using only yi,1 as an instrument.

Thereafter, one predicts the residual and uses both yi,1 and the residual as instruments, this

process is then repeated where finally the estimates of the third iteration are reported. Whilst

the simulations of Hahn et al. (2007) show the LD estimator to be unbias when λ is highly

persistent, the long difference approach is not suitable for the short nature of unbalanced panels

commonly encountered in empirical corporate finance.

To address this obstacle, Huang and Ritter (2009) in the capital structure literature propose

adapting the LD estimator by using equal differencing intervals for all firms:

yi,t − yi,t−k = λ(yi,t−1 − yi,t−k−1) + β(Xi,t −Xi,t−k) + (ηi − ηi) + (υi,t − υi,t−k) (2.13)

they experiment with four different differencing intervals, K = 4, 8, 18 and 28, however their

study shows that the SOA varies considerably across estimates, from 11.5% to 21.1%. They

associate this sensitivity to the differencing length set and the panel length requirements this

imposes on the dataset. For example, their full sample consists of an unbalanced panel of 111,413

observations. However, for K = 4 the estimation procedures uses 61, 145 observations whereas

for K = 28 only 2, 099 observations are available. Therefore, due to this limitation we shall only

consider the LD4 estimator seen in similar Monte Carlo experiments of Flannery and Hankins

(2013), Dang et al. (2015) and Zhou et al. (2014), where K = 4.
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The estimators discussed thus far have primarily focused on using instruments in order to

alleviate the correlation between the transformed lagged dependent variable and the transformed

error term. However, the LSDVC estimator of Kiviet (1995) proposes a data-dependent correc-

tion of the fixed-effect bias. The LSDVC estimator has further been extended Bun and Kiviet

(2003) and Bruno (2005) in order to allow for heteroskedasticity and unbalanced panels. In

practice, the LDSVC estimator first estimates the biased coefficients of the least squares dummy

variable estimator and thereafter subtracts the approximated bias correction. In order to estimate

the degree of bias, information on the unknown population parameters λ and σ2
v from equation

(2.4) are required. Thus, to approximate the population parameters and make the correction

feasible, estimates from consistent estimators are proposed, with the FD- and SYS-GMM esti-

mators being natural choices (Bruno, 2005)4. Despite the previous simulations of Kiviet (1995),

Judson and Owen (1999), Bruno (2005), Flannery and Hankins (2013), Zhou et al. (2014) and

Dang et al. (2015) all documenting the favourable properties of the LSDVC estimator, to date,

only a few empirical studies have employed the methodology empirically, namely: Öztekin and

Flannery (2012), Wintoki et al. (2012) and Dang et al. (2015).

While the LSDVC estimator first estimates the biased parameters and thereafter provides an

approximated correction, the QML estimator of Hsiao et al. (2002) is designed to avoid such bias

in the first place. To recapitulate, the two main econometric issues in fixed-effects dynamic panel

data models - given the time-series panel dimension, T , is fixed - are i) the introduction of the

time-invariant individual (firm) effect which increases with the number of cross-sectional units

often referred to as the incidental parameter problem and ii) the initial value problem, whereby

the initial observation is correlated with the time-invariant (firm) individual effect, however, the

initial observation of each cross-section is rarely observed. As outlined by Anderson and Hsiao

(1981), both the incidental parameter problem and the initial value problem result in the violation

of the standard regularity conditions of the maximum likelihood estimator, thus resulting the

in inconsistent estimates. To circumvent this bias, Hsiao et al. (2002) propose a transformed

likelihood function which maximises a system of two equations based on one first differenced

equation and one projection equation used to obtain the initial values5. More specifically, starting

from first difference equation of (2.8), Hsiao et al. (2002) show that the correlation between the

initial first difference and the residual can be dealt with by estimating the joint distribution of

4Note: In our forthcoming simulations we use the SYS-GMM estimator for parameter identification.
5Note: In spirit, the QML estimator of Hsiao et al. (2002) can be considered as a form of limited-information

maximum likelihood estimator that is a special case of a full information maximum-likelihood approach with
many cross-equation restrictions.
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∆yi = (∆yi,1,∆yi,2, ...,∆yi,T ) conditional on the regressors, xit. Subsequently, in order to obtain

a representation of the initial observation, Hsiao et al. (2002) suggest the projection of ∆yi,1 by

using all leading differences of all xit’s as shown below:

∆yi,1 = α+

T∑
s=1

∆xi,sπs + ξ1 (2.14)

given the proposed transformed likelihood function, the system of equations formed by equa-

tion (2.8) for the time periods t ≥ 2 and equation (2.14) for t = 1 can be maximised. As

illustrated by Hsiao et al. (2002) in the comparison to the GMM style estimators, the QML

estimator does not struggle with the weak instrument problem often leading to biased estimates

in the GMM style estimators and also includes additional information in the form of equation

(2.14) leading to sizeable efficiency gains. Nevertheless, despite its suitability to the corporate

finance setting and the rapidly growing theoretical literature in this area in recent years - e.g.

Kruiniger (2013), Hayakawa and Pesaran (2015), Phillips (2015), Kripfganz (2016) and Phillips

(2017) - there has been relatively little empirical application in comparison to the GMM style

estimators (Hayakawa and Pesaran, 2015)

Our final estimator for discussion is the DPF estimator of Elsas and Florysiak (2011) and

Elsas and Florysiak (2015) which is designed specifically for dynamic panel data models with

a fractional dependent variable. In the corporate finance literature, the dependent variable of

interest is often fractional and therefore bound between [0, 1]. In such cases, the aforementioned

econometric estimators are often inappropriate due to the distributional assumptions imposed

the dependent variable. Thus, failing to account for the fractional nature of the dependent

variable may result in biased estimates of the autoregressive coefficient (Loudermilk, 2007). The

DPF estimator builds on the doubly-censored Tobit estimator of Loudermilk (2007), which not

only takes the fractional and lagged dependent variable into account but also the time-invariant

individual (firm) effect. Thus, in order to estimate equation (2.4), the DPF estimator defines

the dependent variable as latent (y#
i,t) with two possible corner solutions, as shown below:

yi,t =


0 if y#

i,t ≤ 0,

y#
i,t if 0 < y#

i,t < 1,

1 if y#
i,t ≥ 1.

(2.15)

Given the fractional nature of the dependent variable and the so called incidental parameters

problem, it is not possible to remove the time-invariant individual (firm) effect from the ex-

planatory variables coefficients (Baltagi, 2008). Thus, Elsas and Florysiak (2011) and Elsas and
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Florysiak (2015) propose modelling explicitly the conditional distribution for the time-invariant

individual (firm) effect, whereby ηi depends on the mean of the regressors and the initial obser-

vation of the dependent variable, as shown below:

ηi = ψ0 + ψ1yi0 + ψ2X̄i + εi (2.16)

where εi is the error term and yi0 is initial observation of the dependent variable used to deal

with the initial condition problem in nonlinear dynamic panel estimators (Wooldridge, 2005).

Furthermore, unlike the estimator of Loudermilk (2007), that includes all observations of Xit in

the fixed effect specification, the DPF estimator encompasses Mundlak (1978) style devices, X̄i,

which are simply defined as X̄i = 1
T

∑T
t=1Xit. This approach not only allows for correlation

between the regressors and the fixed-effects component but is also robust to unbalanced panels.

In sum, the DPF estimator can be considered the combination of a type one, doubly censored

Tobit model and the correlated random-effects estimator, with the inclusion of two additional

regressors, yi0 and X̄i. The simulations performed by Elsas and Florysiak (2011), Elsas and

Florysiak (2015) and Dang et al. (2015) all show the DPF estimator to be preferable when the

dependent variable of interest is fractional.

2.3 Data Generation and Experiment Design

2.3.1 Data Generating Process

In this section we introduce the parameter definitions and the data generating process (hereafter,

DGP) used for our Monte Carlo experiments. First let us consider the following dynamic data

panel model:

yi,t = λyi,t−1 + βxi,t + ηi + νi,t (2.17)

xi,t = ρxi,t−1 + ξi,t (2.18)

νi,t ∼ N(0, σ2
ν) (2.19)

ξi,t ∼ N(0, σ2
ξ ) (2.20)

Starting with main parameter of interest, λ, the degree of persistence in the dynamic parameter

has been found to differ across countries, stages of the business cycles, firms and the type cor-

porate policy. Furthermore, previous simulations by the likes of Arellano and Bond (1991) and

Kiviet (1995) have all reported varying levels of bias associated with different levels of persistence.

Subsequently, in our experiments we consider three different values of λ in order to encapsulate
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different degrees of dynamic persistence. Following Arellano and Bond (1991) we set λ = 0.2

(low persistence), λ = 0.5 (moderate persistence) and λ = 0.8 (high persistence). We set β=1-λ

which means that changes to λ only effect the relationship between x and y in the short run and

the long run relationship is kept at unity ( β
1−λ ). Kiviet (1995) and Bruno (2005) generate the

time-invariant component in equation (2.17) by assuming ηi ∼ N(0, σ2
η) and ση = µ(1 − λ)σν

and therefore E[xi,tηi] = 0. However, such a setting is unrealistic of firm corporate data as ηi

is likely to be correlated with explanatory variables. Therefore, we follow Dang et al. (2015)

and Elsas and Florysiak (2015) and set ηi to be correlated with the explanatory variable, xi,t,

as this is more fitting for data of interest and our empirical analysis in later chapters. We define

ηi = µ(1 − λ)σνzi, where zi = (x̄i − x̄) + 1 and x̄i and x̄ are the within and overall means,

respectively. Finally, we set σ2
ν = 1 and in equation (2.18) we set ρ = 0.5 across all simulations.

Regarding the DGP, the traditional approach implemented by the likes of Arellano and Bond

(1991) and more recently Flannery and Hankins (2013) and Zhou et al. (2014), utilize the autore-

gressive nature of equation (2.17) and equation (2.18), whereby one determines the panel time

dimension as T=T0+T1, where T0 is the desired panel length and T1 is the initial generating

process6. Given the initial process length, one assigns arbitrary values to both yi,0 and xi,0 (often

zero) and thereafter discards all T1 observations once the DGP is complete. However, this DGP

requires the waste of a large set of random numbers determined by the dimensions N and T1, as

well as being prone to the slow convergence problem (Kiviet, 1995).

For our DGP, we follow the more efficient procedure designed by McLeod and Hipel (1978)

for time series simulations and adopted by Kiviet (1995), Bun and Kiviet (2003), Bruno (2005)

and Dang et al. (2015) for the panel data setting. Formally following Kiviet (1995), we set L as

the lag operator for equation (2.17) and define:

yi,t = λLyi,t + βxi,t + ηi + νi,t (2.21)

factorizing and rearranging we have:

yi,t =
β

(1− λL)
xi,t +

ηi
(1− λL)

+
νi,t

(1− λL)
(2.22)

following the same process for xi,t we can define yi,t as the combination of an AR(2) and AR(1)

processes:

yi,t =
β

(1− λL)(1− ρL)
ξi,t +

ηi + νi,t
(1− λL)

= βϕi,t + ψi,t +
ηi

(1− λL)
(2.23)

6Where T1 is set T1 = 10 in Flannery and Hankins (2013) and Zhou et al. (2014).
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where ϕi,t = (ρ + λ)ϕi,t−1 − ρλϕi,t−2 + ξi,t and ψi,t = λψi,t−1 + νi,t. We can obtain the initial

start values for the AR(1) process by drawing from the randomly generated ξi,t and νi,t:

xi,0 = ξi,0(1− ρ2)−1/2 (2.24)

ψi,0 = νi,0(1− λ2)−1/2 (2.25)

and finally we obtain the initial values of the AR(2) process as:

ϕi,0 = ξi,0var(ϕi,t)
1/2 (2.26)

ϕi,1 = ϕi,0corr(ϕi,t, ϕi,t−1) + ξi,1var(ϕi,t)
1/2 + {1− corr[(ϕi,t, ϕi,t−1)

2
]}1/2 (2.27)

where the var(ϕi,t), corr(ϕi,t, ϕi,t−1) and corr(ϕi,t, ϕi,t−2) are defined as:

var(ϕi,t) = σ2
ξ [1− (λ+ ρ)corr(ϕi,t, ϕi,t−1) + λρcorr(ϕi,t, ϕi,t−2)]−1 (2.28)

corr(ϕi,t, ϕi,t−1) =
λ+ ρ

1 + λρ
(2.29)

corr(ϕi,t, ϕi,t−2) =
(λ+ ρ)2

1 + λρ
− λρ (2.30)

As we can see, this DGP avoids both the waste of random numbers and the slow convergence

problem as the initial values for the AR(1) and AR(2) processes are generated via a combination

of random numbers (ξi,0 and νi,0) and defined parameter values (namely, λ and ρ)7. To maintain

the rigor of Kiviet (1995), Bun and Kiviet (2003), Bruno (2005) and Dang et al. (2015), we control

for two specific elements, namely the factor loading of the time-invariant individual (firm) effect,

ηi, denoted as µ, and the signal-to-noise ratio, we denote as ζ.

The loading factor measure reflects the impact of ηi on the dependent variable, yi,t, with

respect to the error competent, νi,t. By rearranging the individual effect we can define µ =

((1 − λ)−1ση)/σν and therefore when the size of the individual effect, (1 − λ)−1ση, is equal to

that of the error, σν , the loading factor equals unity. However, when the size/impact of the

individual effect is bigger than that of the error, the loading factor increases and causes greater

bias in the estimator performance (Kiviet 1995 and Dang et al. 2015). The signal-to-noise ratio

measures the variance ratio of the explanatory regressors with respect to the error term. Defining

the latent variable, zi,t ≡ βϕi,t + ψi,t = yi,t + ηi/(1− λ) one can define the signal-to-noise ratio

as ζ = σ2
s/σ

2
v where σ2

s is variance of the signal si,t = zi,t − νi,t. From this, previous studies of

Kiviet (1995), Bruno (2005) and Dang et al. (2015) have found the level of the signal noise to

impact the level of parameter bias in the autoregressive coefficient, yet, the outcome of which is

often mixed.
7For further discussion see Kiviet (1995).
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2.3.2 Experiment Design

In order to investigate the performance of dynamic panel estimators we propose six different

simulation experiments. First, however, we simulate our benchmark simulation where the con-

trolling parameters are set to match that of a typical dataset found in the empirical corporate

finance literature. Therefore, we set the panel dimensions to N = 500 and T = 12 to represent

Compustat North America. Furthermore, we consider three values of λ: λ = 0.2, 0.5, 0.8 and set

β = 1− λ, ρ = 0.5, µ = 1 and ζ = 5 with a repetition rate of R = 5008.

For our first two experiments, we test i) the impact of changes in time series length (T )

and ii) the impact of changes in cross-section size (N), as the asymptotic bias of dynamic panel

estimators depends on the relative rates of both T and N dimensions (Alvarez and Arellano,

2003). Thus, for experiment one we test two different values of T : T = 6 and T = 18. For

experiment two we test two different values of N : N = 100 and N = 250. For our next set

of experiments we evaluate i) the impact the time-invariant individual (firm) effect and ii) the

impact of changes in the signal-to-noise ratio (ζ). With previous studies such as Kiviet (1995)

and Dang et al. (2015) finding that dynamic panel bias increases with increased values of µ and

mixed outcomes when values of ζ are high. Therefore in experiment three we test two variations

of ηi: i) when there is zero correlation between xi,t and ηi and ii) when µ = 3 to evaluate

the impact of increased cross-sectional heterogeneity. For experiment four we test two different

values of ζ: ζ = 2 and ζ = 8, similar to Kiviet (1995).

In our final two experiments, we test both i) the impact of panel unbalancedness and ii) the

impact of different levels of censored data. Elsas and Florysiak (2015) argue that estimating

dynamic panel data models within empirical corporate finance is challenging as i) corporate

panel data on companies is typically unbalanced and ii) many variables of interest are in fact

censored between [0,1]9. Thus, for experiment five we test three levels of panel unbalancedness

(ω): ω = 50% (high unbalancedness), ω = 70% (moderate unbalancedness) and ω = 90%

(low unbalancedness). Finally, for experiment six we test the degree of censoring, (C), in the

dependent variable, where we choose three levels of censoring: C ≈ 30%, C ≈ 20% and C ≈ 10%.

In order to assess the relative performance of each estimator Flannery and Hankins (2013)

propose the root mean squared error. However, as pointed out by Dang et al. (2015), focusing

8Other studies such as Dang et al. (2015) set R = 1000, however, due to the computational demands of the
LSDVC estimator we set the R = 500, consistent with that of Flannery and Hankins (2013) and Zhou et al.
(2014).

9For example, debt-to-capital, cash-to-asset and repurchase ratios are all prominent fractional dependent
variables.
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solely one evaluative method can result in narrow conclusions. The authors find the root mean

squared error is likely to favour the SYS-GMM estimator over FD-GMM estimator, despite on

average, the SYS-GMM estimator producing more biased estimates. For this reason we employ

a number of evaluative metrics, namely: coefficient bias (Bias)10, the standard deviation of bias

(SD)11, the root mean square error (RMSE) 12 and a wald test (Wald), which is the average

non-rejection frequency where the null hypothesis set to equality13.

Finally, to supplement our assessment, we draw from Zhou et al. (2014) who document the

trade-off between bias and variance. In fact, they claim that this relationship is analogous to that

the mean-variance (return-risk) trade-off of modern portfolio theory. Thus, in order visualize the

relationship between bias and variance we utilize non-parametric kernel (bias) density plots for

each estimator. Where the preferred estimator can be considered one with a narrow bandwidth

and a centering close to zero.

2.4 Monte Carlo Experiments

2.4.1 Benchmark Simulations

We begin our analysis with our benchmark simulations, Table 2.1 reports the simulation statistics

for λ, Table 2.2 reports the simulation statistics for β, Table 2.3 reports the inferred rate of

adjustment and finally Figure 2.1 illustrates the bias density plots for the parameter λ14.

Starting with Table 2.1, the performance of the traditional estimators are consistent with

the work of Kiviet (1995) and Judson and Owen (1999) as we find the OLS (FE) estimator

to consistently overestimate (underestimate) the autoregressive coefficient. Furthermore, we

document the level of bias for the OLS (FE) estimator decreases (increases) with the level of

persistence, with the highest level of bias reported being 0.194 (-0.112) when λ = 0.2 (0.8).

Regarding the other evaluative metrics, we find both estimators to have relatively low levels of

SD, however, both the OLS and FE estimators perform poorly in RMSE and Wald. Alarmingly,

the FE estimator reports the only non-zero Wald value of 2.6% when λ = 0.2. Thus, out of

the 500 repetitions, the FE estimator was only able to estimate the true value of λ (at the

10Bias= 1
R

∑R
i=1(λ̂i − λ), where λ̂i is the estimated autoregressive coefficient and λ is set in the DGP.

11SD=
√

1
R

∑R
i=1(λ̂i − λ̄)2 where λ̂i is the estimated autoregressive coefficient and λ̄ is the average bias.

12RMSE=
√

1
R

∑R
i=1(λ̂i − λ)2 where λ̂i is the estimated autoregressive coefficient and λ is set in the DGP.

13H0 : λ̂i = λ where λ̂i is the estimated autoregressive coefficient and λ is set in the DGP.
14For brevity, in later experiments we shall only report the simulation statistics and bias density plots for λ in

the main text. All other corresponding Table’s can be found in the appendix.
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5% significance level) 13 times. Finally, in terms of β (Table 2.2), the OLS estimator reports

moderate levels of bias while the FE estimator generally performs well.

Moving on to the GMM estimator, we find, unsurprisingly, that the FD-, AS- and SYS-GMM

estimators outperform the traditional estimators in terms of bias, for example when λ = 0.5 we

report bias of -0.010, -0.003 and 0.018, respectively. Consistent with Blundell and Bond (1998)

we document that all three estimators increase in bias as the level of persistence increases, with

negligible bias at low to moderate levels of λ. Yet, when λ is highly persistent the degree of

bias becomes moderate, especially in the FD- and SYS-GMM estimators, with reported bias of

-0.044 and 0.038, respectively. In general, all three estimators perform well across SD, RMSE

and Wald with the SYS-GMM estimator notably outperforming the FD-GMM estimator in

RMSE consistent with Dang et al. (2015). Furthermore, while in most cases all evaluative

metrics worsen as λ increases, the SD for SYS-GMM estimator remains relatively low. As a

result, the combination of increased bias and low SD when λ = 0.8 leads to the SYS-GMM

estimator performing poorly in the Wald test. Again, similar to the traditional estimators, our

baseline simulations prove consistent with the existing literature of Arellano and Bond (1991),

Flannery and Hankins (2013) and Dang et al. (2015) who all illustrate the positive relationship

between persistence and bias in the GMM estimators. Such reductions in performance across

metrics is largely attributable to the weak instrument problem which is caused by the reduction

in information as λ approaches unity (Bun and Windmeijer, 2010). Moreover, the number of

moment conditions increases at the order of T 2 which can in turn induce severe bias in finite

samples (Ziliak, 1997).

Looking at the alternative estimators, we find the performance of the LD4 estimator to be

inversely affected by the degree of dynamic persistence. So much so, at low to moderate levels

of persistence, the LD4 estimator performs worse than the traditional estimators across most

evaluative metrics. However, when λ = 0.8, the LD4 estimator outperforms both the FD- and

SYS-GMM estimators in terms of bias, consistent with the work Dang et al. (2015). Looking

at β, the same relationship follows with degree of persistence, however, even when λ = 0.8

the LD4 estimates β with sizable bias. Thus, when λ is highly persistence the LD4 estimator

might be advantageous in estimating the true autoregressive coefficient, but, at the cost of

inconsistent and biased values of β. Finally, we find the LSDVC and QML estimators to be

superior across all values of λ, with the performance of both estimators being weakened by the

degree of dynamic persistence. However, unlike the GMM-estimators, we see the LSDVC and

QML estimators still estimate λ with negligible bias when λ = 0.8. While the performance of the
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LSDVC estimator is unsurprising given the work of Flannery and Hankins (2013), Zhou et al.

(2014) and Dang et al. (2015) we are, to the best of our knowledge, the first to document the

estimator properties of the QML estimator in the corporate finance setting. As documented

in Section 2.2.2.3, the QML estimator boasts a number of auspicious qualities with respect to

the GMM estimators in that it has the advantage of having a fixed number of orthogonality

conditions independent of the sample size. Moreover, it also has the advantage of increased

information, making the full use of all available information in the sample, subsequently yielding

more effieinct estimates. Furthermore, our benchmark simulations indicate that the performance

of the QML estimator edges the LSDVC estimator. Overall our simulations results regarding

the QML estimator support the parallel studies of Kruiniger (2013), Hayakawa and Pesaran

(2015) and Phillips (2017) and compliment those in the corporate finance setting of Flannery

and Hankins (2013) and Dang et al. (2015).

To visualize the impact of dynamic persistence in Table 2.1, Figure 2.1 illustrates the role of

λ and its influence on bias and SD. It is clear that when the degree of persistence is low, the

GMM and alternative estimators (apart from the LD4 estimator) are centred close to zero, with

the LSDVC and QML estimators having the most narrow bandwidths. However, as the degree

of persistence increases to λ = 0.8, the density and bandwidths of the aforementioned estimators

worsens considerably (especially in the GMM-estimators) resulting in a wider bias curves and

less consistent estimates.

In sum, we find the degree of dynamic persistence to have a significant impact on the proper-

ties of estimators, where in most cases, higher levels of persistence result in increased estimator

bias. Our benchmark simulations indicate that the OLS and FE estimators are inadequate

methods of estimation as both estimators produce severely biased estimates of the autoregres-

sive coefficient, λ. The economic implications (Table 2.3) of the OLS and FE estimators reflect

their inability to estimate the true SOA. For example, where the SOA= 20% the OLS and FE

estimator, on average, determine the SOA to be 13.56% and 31.20%, respectively. We find the

GMM and alternative estimators to be more suitable for corporate finance setting, however, the

GMM and LD4 estimators prove highly sensitive to the degree of persistence. Overall, the LS-

DVC and QML estimators provide the most accurate estimates for the SOA, even when λ = 0.8,

the implied SOA is 21.00% and 20.98%, respectively. In what follows, we examine the role of

the dynamic panel estimators over a number of experiments as we look to analyze the impact of

various fixed parameters.
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Table 2.1: Benchmark Simulations (λ)

λ = 0.2 λ = 0.5 λ = 0.8

Estimator Bias SD RMSE Wald Bias SD RMSE Wald Bias SD RMSE Wald

OLS 0.194 0.008 0.194 0.000 0.144 0.006 0.144 0.000 0.064 0.004 0.065 0.000
FE -0.025 0.007 0.026 0.026 -0.045 0.007 0.045 0.000 -0.112 0.009 0.112 0.000

FD-GMM -0.001 0.016 0.016 0.914 -0.010 0.019 0.022 0.880 -0.044 0.037 0.057 0.648
AS-GMM 0.002 0.014 0.014 0.896 -0.003 0.015 0.016 0.908 -0.014 0.024 0.028 0.760

SYS-GMM 0.007 0.010 0.012 0.806 0.018 0.012 0.022 0.538 0.038 0.012 0.039 0.078
LD4 0.215 0.070 0.226 0.006 0.104 0.055 0.117 0.100 0.016 0.041 0.044 0.422

LSDVC -0.003 0.007 0.007 1.000 -0.006 0.007 0.010 1.000 -0.010 0.010 0.014 1.000
QML -0.001 0.007 0.007 0.964 -0.004 0.007 0.008 0.914 -0.010 0.010 0.014 0.822

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-difference

GMM estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and the system-GMM
estimator of Blundell and Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of
4 lags. LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally QML corresponds to the
quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference between the estimated and true parameter value. SD is the
standard deviation of the estimated parameter. RMSE is the root mean squared error and Wald is the non-rejection percentage at the 5% significance
level of a Wald test with the null hypothesis set to the equality. Fixed parameters are set to β = 1 − λ, ρ = 0.5, ζ = 5 and µ = 1 and all reported
simulations are configured for T = 12 and N = 500 with a repetition rate of R = 500.
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Table 2.2: Benchmark Simulations (β)

β = 0.8 β = 0.5 β = 0.2

Estimator Bias SD RMSE Wald Bias SD RMSE Wald Bias SD RMSE Wald

OLS 0.051 0.008 0.052 0.000 0.032 0.006 0.033 0.000 0.019 0.004 0.019 0.010
FE 0.008 0.007 0.010 0.782 0.008 0.006 0.009 0.710 0.003 0.005 0.005 0.896

FD-GMM -0.001 0.016 0.016 0.928 0.002 0.013 0.022 0.934 0.006 0.011 0.057 0.876
AS-GMM -0.003 0.015 0.014 0.912 -0.002 0.012 0.016 0.910 0.000 0.009 0.028 0.918

SYS-GMM -0.002 0.009 0.012 0.910 -0.002 0.007 0.022 0.908 -0.001 0.006 0.039 0.896
LD4 -0.629 0.058 0.226 0.000 -0.340 0.033 0.117 0.000 -0.116 0.011 0.044 0.000

LSDVC 0.001 0.007 0.007 1.000 0.001 0.006 0.010 1.000 0.001 0.005 0.014 1.000
QML 0.001 0.007 0.007 0.946 0.001 0.006 0.008 0.952 0.000 0.005 0.014 0.956

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-difference

GMM estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and the system-GMM
estimator of Blundell and Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of
4 lags. LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally QML corresponds to the
quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference between the estimated and true parameter value. SD is the
standard deviation of the estimated parameter. RMSE is the root mean squared error and Wald is the non-rejection percentage at the 5% significance
level of a Wald test with the null hypothesis set to the equality. Fixed parameters are set to λ = 1 − β, ρ = 0.5, ζ = 5 and µ = 1 and all reported
simulations are configured for T = 12 and N = 500 with a repetition rate of R = 500.

Table 2.3: Benchmark Simulations: Implied Speed of Adjustment

True SOA OLS FE FD-GMM AS-GMM SYS-GMM LD4 LSDVC QML

80.00% 60.60% 82.55% 80.15% 79.82% 79.28% 58.48% 80.33% 80.06%
50.00% 35.57% 54.46% 50.97% 50.27% 48.20% 39.61% 50.65% 50.41%
20.00% 13.56% 31.20% 24.41% 21.44% 16.24% 18.39% 21.00% 20.98%

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to

the first-difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn
and Schmidt (1995) and the system-GMM estimator of Blundell and Bond (1998). LD4 is long difference estimator with the
estimator set of Huang and Ritter (2009) with a distance of 4 lags. LSDVC is the least squares dummy variable correction
estimator of Kiviet (1995) and Bruno (2005) and finally QML corresponds to the quasi-maximum likelihood estimator of Hsiao
et al. (2002). The implied speed of adjustment (SOA) is calculated as of one minus the average estimated coefficient of the
dynamic parameter.
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Figure 2.1: Benchmark Simulations: Bias Density Plots

Source: Author’s own calculation.
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2.4.2 Experiment One: The Impact of Changes in Time Series Length

The results from experiment one can be found in Table 2.4. Holding N and all other parameters

fixed, we investigate the impact of panel length by setting T = 6 and T = 18. First, we find

both the OLS and FE estimators to be sensitive to panel length. While, both estimators report

performance improvements when T = 18, the OLS and FE estimator remain severely biased at

their unfavored degrees of persistence. These findings echo that of Judson and Owen (1999) who

observe when T = 30 the OLS and FE estimators can still be servery biased15. In economic

terms, when the SOA is equal to 50% and T = 6, the OLS (FE) estimator, on average, estimates

the SOA at 32.95% (61.40%), whereas when T = 18, the estimated SOA is 36.40% (53.72%).

Thus, reiterating the OLS and FE estimators inability to estimate the true SOA.

Regarding the GMM-estimators, we find that when the panel length reduces to T = 6, the

performance of the FD- and SYS-GMM estimators seriously deteriorates in terms of bias and

RMSE. Alternatively, the AS-GMM estimator performs relatively well in terms of bias across

all degrees of persistence, however, displays a sizable increase in SD relative to our benchmark

simulations. Furthermore, the LD4 estimator also performs poorly when T = 6, with ample in-

creases in bias, SD and RMSE. Note, that while the LD4 estimator performs uncharacteristically

well when λ = 0.5, this is distorted by extreme outliers, with an estimated range of [0.086, 1.742].

Further emphasising our use and contribution of multiple evaluative metrics.

Finally, the LSDVC and QML estimators perform relatively well at low and moderate levels

of persistence when T = 6, with reported bias of −0.004 and −0.010, respectively. However,

when λ = 0.8 we find that the bias for the LSDVC and QML estimators increases to moderate

levels of −0.032 and −0.029, respectively. Thus, on average, both estimators overestimate the

true SOA by roughly 3%.

Overall, our simulations clarify that T has considerable performance implications for dynamic

panel estimators. Moreover, short panel length hinders the performance estimators over all

evaluative metrics, especially bias and SD. The impact of T is most clearly summarized in

Figure 2.2 as we document a dramatic difference in bandwidth and centering for both levels of

T relative to our benchmark simulations. The implications of this experiment shows that use

a-priori sub-sampling over different time periods is likely exacerbate finite sample bias. Thus,

providing insightful guidance for our forthcoming empirical chapters.

15In additional (unreported) simulations we test T = 30 and find that the OLS and FE estimators are still
moderately biased. For example, for λ = 0.8 we find the FE estimator to produce bias of 0.035 whereas Judson
and Owen (1999) report 0.066.
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Table 2.4: Experiment One: The Impact of Changes in Time Series Length

T = 6 T = 18

Estimator Bias SD RMSE Wald Bias SD RMSE Wald

λ = 0.2 OLS 0.243 0.009 0.243 0.000 0.158 0.008 0.158 0.000
FE -0.062 0.011 0.063 0.000 -0.016 0.005 0.017 0.112

FD-GMM -0.005 0.041 0.041 0.946 0.001 0.010 0.010 0.864
AS-GMM 0.001 0.024 0.024 0.956 0.002 0.010 0.010 0.836
SYS-GMM 0.034 0.023 0.041 0.534 0.005 0.007 0.009 0.748

LD4 0.249 0.752 0.792 0.460 0.211 0.047 0.216 0.002
LSDVC -0.006 0.012 0.013 1.000 -0.002 0.005 0.006 1.000
QML -0.001 0.012 0.012 0.952 0.000 0.005 0.005 0.936

λ = 0.5 OLS 0.171 0.007 0.171 0.000 0.121 0.006 0.121 0.000
FE -0.114 0.013 0.115 0.000 -0.028 0.005 0.028 0.000

FD-GMM -0.051 0.081 0.095 0.882 -0.004 0.012 0.012 0.860
AS-GMM -0.003 0.050 0.051 0.890 -0.001 0.011 0.011 0.832
SYS-GMM 0.099 0.026 0.103 0.018 0.007 0.008 0.011 0.682

LD4 -0.003 0.319 0.318 0.292 0.094 0.033 0.100 0.018
LSDVC -0.004 0.014 0.015 1.000 -0.005 0.005 0.007 1.000
QML -0.010 0.014 0.017 0.896 -0.003 0.005 0.006 0.916

λ = 0.8 OLS 0.071 0.006 0.071 0.000 0.056 0.004 0.056 0.000
FE -0.274 0.017 0.274 0.000 -0.069 0.006 0.069 0.000

FD-GMM -0.232 0.198 0.305 0.696 -0.019 0.017 0.025 0.640
AS-GMM 0.002 0.084 0.084 0.758 -0.011 0.014 0.018 0.706
SYS-GMM 0.080 0.014 0.081 0.000 0.014 0.010 0.017 0.420

LD4 -0.055 0.193 0.201 0.222 0.012 0.020 0.023 0.482
LSDVC -0.032 0.017 0.036 1.000 -0.007 0.007 0.010 1.000
QML -0.029 0.025 0.038 0.790 -0.006 0.007 0.009 0.848

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM

correspond to the first-difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear
instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and Bond (1998).
LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags.
LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation of the estimated parameter. RMSE
is the root mean squared error and Wald is the non-rejection percentage at the 5% significance level of a Wald test
with the null hypothesis set to the equality. Fixed parameters are set to β = 1 − λ, ρ = 0.5, ζ = 5 and µ = 1 and
all reported simulations are configured for N = 500 with a repetition rate of R = 500.
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Figure 2.2: Experiment One: Bias Density Plots

Source: Author’s own calculation.

35



2.4.3 Experiment Two: The Impact of Changes in Cross-section Size

While the number of cross-section in the corporate finance literature is often large, it is common

practice in the literature to divide firms into sub-samples (often based on firm-specific character-

istics), in an attempt to evaluate the economic size or significance of the desired relationship16,

in our case, the SOA. In order to evaluate the econometric implications of such actions, we eval-

uate the impact of reduced cross-section size on estimator performance by setting N = 100 and

N = 250. The results from our simulations can be found in Table 2.5.

Starting with the traditional estimators, we find the OLS and FE estimators to display little

to no change in terms of bias and RMSE for reduced levels of N , yet, we document increased

levels of SD relative to our benchmark simulations. Comparatively, the results for the GMM-

estimators indicate that all evaluative metrics are affected by the number of cross-sections. We

find the FD- and AS-GMM estimators to increase in bias, SD and RMSE as N becomes small,

with the FD-GMM estimator reporting severe bias of −0.089 when λ = 0.8. Alternatively,

relative to our benchmark simulations, the SYS-GMM estimator reports lower levels of bias

when N = 100, however, at the cost of a significant increase in SD, with SD more than doubling

across all degrees of persistence. For the alternative estimators, we find LD4 estimator to exhibit

a reduction in performance across all evaluative metrics as N becomes small, with the LD4 now

estimating λ with moderate bias of 0.048 when N = 100 and λ = 0.8. Finally, the LSDVC and

QML estimators continue to be the most robust in terms of bias, however, as N becomes small

both estimator display moderate levels of SD and RMSE.

Overall, we find the cross-sectional size of the panel has notable implications for the SD

and RMSE of estimators with the GMM and LD4 estimators also displaying changes in bias.

Regarding the SOA, the increase in SD reduces the consistency and therefore the likelihood of

the estimator estimating the true SOA. For example when λ = 0.8 and N = 100 the LSDVC and

QML estimator have a SD of 0.022 and 0.024, whereas relative to our benchmark simulations,

where N = 500, the SD of both estimators is 0.010. The implications of which suggest that,

on average, given one standard deviation, the LSDVC and QML estimators will be roughly

estimate 2.2% and 2.4% either side of their estimated SOA of 20.85% and 20.93%, respectively.

In conclusion, given the type of estimator, authors should be cautious when using sub-samples or

small N datasets, with the instrument based estimators particularly displaying sensitive results

to the size of N .

16See Kisgen (2006), Elsas and Florysiak (2011), Dang et al. (2012) Elsas and Florysiak (2015), and Guariglia
and Yang (2016) for examples in the dynamic panel corporate finance literature.
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Table 2.5: Experiment Two: The Impact of Changes in Cross-sectional Size

N = 100 N = 250

Estimator Bias SD RMSE Wald Bias SD RMSE Wald

λ = 0.2 OLS 0.191 0.018 0.192 0.000 0.193 0.011 0.193 0.000
FE -0.025 0.015 0.029 0.584 -0.025 0.009 0.027 0.242

FD-GMM -0.005 0.032 0.032 0.732 -0.001 0.021 0.021 0.888
AS-GMM 0.005 0.033 0.033 0.590 0.004 0.018 0.019 0.884
SYS-GMM 0.012 0.024 0.027 0.572 0.010 0.014 0.017 0.758

LD4 0.239 0.176 0.297 0.290 0.223 0.098 0.244 0.088
LSDVC -0.002 0.016 0.016 1.000 -0.003 0.009 0.010 1.000
QML 0.000 0.016 0.016 0.940 0.000 0.009 0.009 0.958

λ = 0.5 OLS 0.143 0.013 0.143 0.000 0.143 0.008 0.144 0.000
FE -0.044 0.016 0.047 0.194 -0.044 0.010 0.046 0.006

FD-GMM -0.020 0.040 0.045 0.670 -0.012 0.028 0.030 0.826
AS-GMM 0.001 0.036 0.036 0.602 -0.001 0.022 0.022 0.846
SYS-GMM 0.018 0.028 0.033 0.504 0.020 0.017 0.026 0.546

LD4 0.126 0.149 0.195 0.354 0.108 0.079 0.134 0.244
LSDVC -0.004 0.017 0.018 1.000 -0.006 0.010 0.012 1.000
QML -0.004 0.017 0.017 0.936 -0.004 0.010 0.011 0.938

λ = 0.8 OLS 0.064 0.009 0.064 0.000 0.064 0.006 0.064 0.000
FE -0.112 0.021 0.114 0.000 -0.112 0.013 0.113 0.000

FD-GMM -0.089 0.074 0.115 0.408 -0.058 0.050 0.076 0.610
AS-GMM -0.023 0.053 0.058 0.466 -0.017 0.033 0.038 0.690
SYS-GMM 0.014 0.034 0.037 0.454 0.032 0.018 0.037 0.296

LD4 0.048 0.142 0.150 0.410 0.020 0.067 0.070 0.462
LSDVC -0.009 0.022 0.024 1.000 -0.010 0.013 0.017 1.000
QML -0.009 0.024 0.026 0.914 -0.010 0.015 0.018 0.898

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM

correspond to the first-difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear
instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and Bond (1998).
LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags.
LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation of Bias. RMSE is the root mean
squared error and Wald is the non-rejection percentage at the 5% significance level of a Wald test with the null
hypothesis set to the equality. Fixed parameters are set to β = 1 − λ, ρ = 0.5, ζ = 5 and µ = 1 and all reported
simulations are configured T = 12 with a repetition rate of 500.
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Figure 2.3: Experiment Two: Bias Density Plots

Source: Author’s own calculation.
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2.4.4 Experiment Three: The Impact of The Time-Invariant Individ-
ual Effect

In Table 2.6, we evaluate two distinct settings for the time-invariant individual (firm) effect. In

setting one, we analyze the impact of zero correlation between the regressor and the time-invariant

individual (firm) effect. We set ηi ∼ N(0, σ2
η) where ση = µ(1− λ)σν and we maintain µ = 1 to

allow for direct comparison with our benchmark simulations. For our second set of simulations,

we analyze the impact of increased cross-sectional heterogeneity on estimator performance. Here

we revert to our default definition of the fixed-effect component, whereby xi,t is correlated ηi,

and we set µ = 3. Thus, proportionately the variance of ηi is set three times larger than the

variance of νi,t.

Starting with the first set of simulations, we find the OLS estimator to reduce in bias and

RMSE across all degrees of persistence, while comparatively, the FE estimator remains unaffected

by the change in definition. Similar to Dang et al. (2015), we document that both the FD- and

SYS-GMM estimators display favourable properties when ηi is uncorrelated with xit, especially

when λ = 0.8, where the SYS-GMM estimator reports minimal bias of −0.005. In terms of the

alternative estimators, the LD4 estimator displays marginal gains across all evaluative metrics

whereas the LSDVC estimator reacts unfavourably, with deterioration in bias and RMSE, espe-

cially when the degree dynamic persistence is high. Finally, in comparison to the benchmark

simulations, the QML estimator is relatively unaffected across all metrics and therefore can be

considered robust to different types of time-invariant individual (firm) effects, both correlated

and uncorrelated.

Regarding the second set of simulations, we report, unsurprising, that the OLS estimator

performs poorly at high levels of cross-sectional heterogeneity, with extreme bias and RMSE of

0.497 when λ = 0.2. Furthermore, given the SYS-GMM estimator does not completely deal with

the ηi in the system-equation (Wintoki et al., 2012), we also report heightened levels of bias

of 0.093 when λ = 0.8. Comparatively, the FD-GMM estimator displays opposing behaviour in

terms of bias (consistent with Dang et al. 2015), however, at the cost of increased SD and RMSE,

relative to our benchmark simulations. Regarding the alternative estimator, while the LD4

estimator reports increases over all evaluative metrics, the LSDVC estimator performs favourable

to heightened levels of cross-sectional heterogeneity, with reductions in bias and RMSE. Finally,

the QML estimator remains unaffected to changes µ, and therefore continues to be robust across

simulation settings.
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Table 2.6: Experiment Three: Varying Factor Loading

µ = 1 µ = 3

Estimator Bias SD RMSE Wald Bias SD RMSE Wald

λ = 0.2 OLS 0.137 0.010 0.137 0.000 0.497 0.007 0.497 0.000
FE -0.026 0.007 0.027 0.038 -0.025 0.007 0.026 0.026

FD-GMM -0.002 0.013 0.013 0.912 -0.001 0.018 0.018 0.896
AS-GMM -0.001 0.013 0.013 0.902 0.007 0.017 0.018 0.844
SYS-GMM 0.001 0.009 0.009 0.902 0.012 0.013 0.018 0.732

LD4 0.215 0.065 0.225 0.010 0.306 0.300 0.428 0.004
LSDVC -0.001 0.007 0.007 1.000 -0.002 0.007 0.007 1.000
QML -0.001 0.007 0.007 0.932 -0.001 0.007 0.007 0.964

λ = 0.5 OLS 0.079 0.008 0.079 0.000 0.328 0.004 0.328 0.000
FE -0.045 0.007 0.046 0.000 -0.045 0.007 0.045 0.000

FD-GMM -0.010 0.015 0.018 0.836 -0.003 0.025 0.025 0.902
AS-GMM -0.007 0.014 0.016 0.854 0.013 0.020 0.024 0.742
SYS-GMM -0.002 0.010 0.010 0.898 0.045 0.019 0.049 0.132

LD4 0.094 0.048 0.106 0.108 0.259 0.213 0.335 0.068
LSDVC -0.005 0.008 0.009 1.000 -0.002 0.008 0.008 1.000
QML -0.005 0.007 0.009 0.892 -0.004 0.007 0.008 0.914

λ = 0.8 OLS 0.025 0.006 0.026 0.010 0.138 0.002 0.138 0.000
FE -0.113 0.009 0.113 0.000 -0.112 0.009 0.112 0.000

FD-GMM -0.026 0.020 0.033 0.652 -0.030 0.053 0.061 0.860
AS-GMM -0.020 0.018 0.027 0.684 0.050 0.058 0.076 0.496
SYS-GMM -0.005 0.012 0.013 0.864 0.093 0.010 0.093 0.000

LD4 0.006 0.028 0.029 0.524 0.071 0.214 0.225 0.092
LSDVC -0.016 0.010 0.018 1.000 0.000 0.009 0.009 1.000
QML -0.011 0.010 0.015 0.816 -0.010 0.010 0.014 0.822

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM

correspond to the first-difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear
instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and Bond (1998).
LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags.
LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation Bias. RMSE is the root mean
squared error and Wald is the non-rejection percentage at the 5% significance level of a Wald test with the null
hypothesis set to the equality. Fixed parameters are set to β = 1−λ, ρ = 0.5 and ζ = 5 and all reported simulations
are configured T = 12 and N = 500 with a repetition rate of R = 500.
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Figure 2.4: Experiment Three: Bias Density Plots

Source: Author’s own calculation.
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All in all, we report that the likely correlation present between xit and ηi in the corporate

finance setting will have a significant effect on estimator performance, with most estimators

performing preferably in cases of zero correlation. Furthermore, given the correlation between

xit and ηi, the degree of cross-sectional heterogeneity has a detrimental effect on estimator

performance, with all evaluative metrics proving sensitive µ. The implications on bias and SD

are visualized in Figure 2.4 with only the LSDVC and QML estimators showing any degree

of reliability when λ = 0.8 and µ = 3. Thus, the LSQVC and QML estimators remain most

favourable methods, regardless of ηi.

2.4.5 Experiment Four: The Impact of Changes in Signal Noise

In Table 2.7, we investigate estimator performance by varying the explanatory properties of the

single regressor, xi,t, relative to that of the residual. Therefore, following Kiviet (1995), we set

ζ = 2 and ζ = 8 to represent low and high levels of explanatory power.

We report the bias of the OLS and FE estimators to have opposing reactions to the level of ζ,

with the OLS (FE) estimator increasing (decreasing) in bias and RMSE when ζ increases. For the

GMM-estimators, we find variation in ζ has little impact at low to moderate levels of persistence,

however, when λ = 0.8, the performance of the GMM-estimators deteriorates considerably. Out

of the three estimators, the AS-GMM estimator is preferable, as we document low levels of

dynamic bias, while comparatively, the FD-GMM estimator performs least favourable with the

level of bias being three times larger when ζ = 8 (−0.048) relative to when ζ = 2 (−0.011),

consistent with Kiviet (1995). Finally, both the LSDVC and QML estimators display significant

increases in SD as ζ increases, however, similar to Bruno (2005) and Dang et al. (2015) we find

the LSDVC estimator to reduce in bias for high values of ζ, whereas, the QML estimator displays

a negligible increase in bias.

In sum, we find that higher levels of explanatory power in the regressor generally result in

increased bias, with only the FE and LSDVC estimators displaying the opposite effect. However,

the degree of induced parameter bias is negligible in comparison to our previous experiments, with

the LSDVC and QML estimators continuing to estimate the SOA with considerable accuracy.

Finally, in Figure 2.5 we document significant increases in density’s for the LSDVC and QML

estimators, as ζ increases, with the density in some cases more then doubling in height. Thus,

reiterating the performance superiority of the LSDVC and QML estimators.
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Table 2.7: Experiment Four: Varying Signal Noise

ζ = 2 ζ = 8

Estimator Bias SD RMSE Wald Bias SD RMSE Wald

λ = 0.2 OLS 0.159 0.009 0.160 0.000 0.205 0.008 0.205 0.000
FE -0.047 0.009 0.048 0.000 -0.018 0.005 0.018 0.124

FD-GMM -0.002 0.019 0.019 0.900 -0.001 0.013 0.013 0.920
AS-GMM 0.002 0.017 0.017 0.904 0.002 0.011 0.012 0.894
SYS-GMM 0.009 0.013 0.016 0.812 0.006 0.009 0.010 0.818

LD4 0.069 0.035 0.077 0.304 0.461 0.158 0.487 0.000
LSDVC -0.005 0.009 0.011 1.000 -0.002 0.006 0.006 1.000
QML 0.000 0.009 0.009 0.968 -0.001 0.005 0.006 0.960

λ = 0.5 OLS 0.113 0.008 0.113 0.000 0.153 0.005 0.154 0.000
FE -0.078 0.010 0.079 0.000 -0.032 0.006 0.033 0.000

FD-GMM -0.008 0.022 0.024 0.912 -0.010 0.017 0.020 0.860
AS-GMM -0.001 0.019 0.019 0.922 -0.004 0.013 0.013 0.888
SYS-GMM 0.017 0.014 0.022 0.658 0.016 0.011 0.019 0.520

LD4 0.035 0.029 0.046 0.428 0.170 0.080 0.188 0.044
LSDVC -0.008 0.010 0.013 1.000 -0.006 0.006 0.008 1.000
QML -0.003 0.010 0.011 0.962 -0.005 0.006 0.007 0.884

λ = 0.8 OLS 0.014 0.007 0.016 0.498 0.074 0.003 0.074 0.000
FE -0.186 0.012 0.187 0.000 -0.083 0.007 0.083 0.000

FD-GMM -0.011 0.026 0.028 0.880 -0.048 0.034 0.059 0.568
AS-GMM -0.004 0.022 0.022 0.888 -0.014 0.023 0.027 0.694
SYS-GMM 0.004 0.015 0.016 0.864 0.051 0.011 0.052 0.002

LD4 0.002 0.024 0.024 0.524 0.044 0.083 0.094 0.314
LSDVC -0.021 0.014 0.025 1.000 -0.007 0.008 0.011 1.000
QML 0.000 0.018 0.018 0.950 -0.012 0.008 0.014 0.676

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM

correspond to the first-difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear
instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and Bond (1998).
LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags.
LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation of Bias. RMSE is the root mean
squared error and Wald is the non-rejection percentage at the 5% significance level of a Wald test with the null
hypothesis set to the equality. Fixed parameters are set to β = 1 − λ, ρ = 0.5 & µ = 1 and all reported simulations
are configured T = 12 and N = 500 with a repetition rate of R = 500.
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Figure 2.5: Experiment Four: Bias Density Plots

Source: Author’s own calculation.
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2.4.6 Experiment Five: The Impact of Panel Unbalancedness

For our penultimate experiment, we examine the impact of panel unbalancedness on estimator

performance. To evaluate this domain, we test three levels of panel unbalancedness: high (50%),

moderate (70%) and low panel unbalancedness (90%). The panel data design for this experiment

can be found in Table 2.8.

Table 2.8: Unbalanced Panel Design

N T N · T i ≤ 200 200 < i ≤ 400 i > 400 N · Ti ω

500 12 6000 T=4 T=5 T=12 3000 50%
500 12 6000 T=6 T=9 T=12 4200 70%
500 12 6000 T=10 T=11 T=12 5400 90%

We start off by using our baseline DGP for each level of panel unbalancedness. Next, we split

the number of cross-sections (firms) into three levels and thereafter remove T number of periods.

Therefore, when ω = 70%, we remove the first 6 time periods for the first 200 cross-sections,

for the middle 200 cross-sections we remove the first 3 time periods and we leave the final 100

cross-sections untouched, i.e. T = 12. The results from our simulations can be found in Table

2.9. We document for the OLS and FE estimators that all evaluative metrics decrease with

respect to ω, with the FE estimator arguably being more severely affected by the degree of panel

unbalancedness.

In terms of the GMM-estimators, the relationship is less clear, while SD and RMSE declines

with ω, bias at low to moderate levels of dynamic persistence fluctuate at trivial levels. How-

ever, when λ = 0.8 the impact panel unbalancedness is more pronounced, we find the levels of

bias in the FD- and AS-GMM estimators to be positively correlated with the severity of panel

unbalancedness, with the FD- and AS-GMM estimators reporting moderate to high levels of bias

when ω = 50%. Inconsistent with latter, the SYS-GMM estimator perform favourably in terms

of bias and RMSE as ω depreciates, with the SYS-GMM estimator displaying negligible bias of

0.017 when λ = 0.8 and ω = 50%. These findings are not dissimilar with Flannery and Hankins

(2013), who report the RMSE of the SYS-GMM estimator to be lower than its balanced panel

equivalent. Looking at the alternative estimators, we find the bias of the LD4 estimator to be

relatively unaffected by the degree of unbalancedness, however, we document large changes in

SD and RMSE. In terms of the LSDVC, we document increases in bias, SD and RMSE as the

ω decreases consistent with the simulations of Bruno (2005). Finally, the QML estimator shows

similar qualities with notable increases across all evaluative metric.
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Table 2.9: Experiment Five: Varying Panel Balance

ω = 50% ω = 70% ω = 90%

Estimator Bias SD RMSE Wald Bias SD RMSE Wald Bias SD RMSE Wald

λ = 0.2 OLS 0.199 0.010 0.199 0.000 0.197 0.009 0.198 0.000 0.195 0.008 0.195 0.000
FE -0.048 0.010 0.049 0.000 -0.034 0.008 0.035 0.006 -0.026 0.007 0.027 0.032

FD-GMM -0.006 0.027 0.028 0.818 -0.003 0.021 0.021 0.896 -0.002 0.016 0.016 0.902
AS-GMM 0.000 0.023 0.023 0.810 0.001 0.018 0.018 0.884 0.002 0.014 0.014 0.890
SYS-GMM 0.004 0.018 0.018 0.754 0.002 0.014 0.0144 0.868 0.004 0.011 0.011 0.882

LD5 0.235 0.175 0.293 0.306 0.228 0.109 0.252 0.084 0.217 0.076 0.230 0.014
LSDVC -0.006 0.011 0.013 1.000 -0.006 0.008 0.010 1.000 -0.004 0.007 0.008 1.000
QML -0.001 0.011 0.011 0.970 -0.001 0.008 0.008 0.964 0.000 0.007 0.007 0.960

λ = 0.5 OLS 0.150 0.007 0.150 0.000 0.149 0.006 0.149 0.000 0.145 0.006 0.146 0.000
FE -0.080 0.011 0.081 0.000 -0.057 0.009 0.058 0.000 -0.045 0.007 0.046 0.000

FD-GMM -0.018 0.035 0.040 0.744 -0.010 0.027 0.029 0.854 -0.009 0.020 0.022 0.886
AS-GMM -0.006 0.028 0.029 0.776 -0.001 0.022 0.022 0.870 -0.001 0.016 0.016 0.924
SYS-GMM 0.009 0.022 0.024 0.718 0.008 0.017 0.018 0.818 0.012 0.012 0.017 0.730

LD 0.120 0.143 0.187 0.386 0.119 0.087 0.148 0.210 0.109 0.059 0.123 0.104
LSDVC -0.010 0.013 0.017 1.000 -0.009 0.010 0.013 1.000 -0.007 0.008 0.011 1.000
QML -0.008 0.012 0.015 0.908 -0.004 0.009 0.010 0.946 -0.001 0.008 0.008 0.970

λ = 0.8 OLS 0.069 0.005 0.069 0.000 0.068 0.004 0.068 0.000 0.065 0.004 0.065 0.000
FE -0.186 0.017 0.187 0.000 -0.143 0.012 0.144 0.000 -0.115 0.009 0.115 0.000

FD-GMM -0.074 0.064 0.098 0.504 -0.046 0.049 0.067 0.676 -0.042 0.039 0.057 0.670
AS-GMM -0.032 0.044 0.054 0.550 -0.016 0.035 0.039 0.756 -0.012 0.026 0.029 0.772
SYS-GMM 0.017 0.026 0.031 0.562 0.026 0.019 0.032 0.446 0.032 0.013 0.035 0.240

LD 0.040 0.135 0.141 0.452 0.051 0.098 0.110 0.356 0.032 0.051 0.060 0.328
LSDVC -0.025 0.020 0.032 1.000 -0.020 0.014 0.025 1.000 -0.013 0.011 0.017 1.000
QML -0.024 0.019 0.030 0.750 -0.011 0.015 0.018 0.892 -0.004 0.012 0.012 0.944

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-difference GMM estimators

of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and
Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags. LSDVC is the least squares dummy
variable correction estimator of Kiviet (1995) and Bruno (2005) and finally QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002).
Bias is the average difference between the estimated and true parameter value. SD is the standard deviation Bias. RMSE is the root mean squared error
and Wald is the non-rejection percentage at the 5% significance level of a Wald test with the null hypothesis set to the equality. Fixed parameters are set to
β = 1 − λ, ρ = 0.5, ζ = 5 and µ = 1 and all reported simulations are configured N = 500 with a repetition rate of R = 500.
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Figure 2.6: Experiment Five: Bias Density Plots

Source: Author’s own calculation.
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In terms of economic implications, we find the SYS-GMM, LSDVC and QML estimators to

estimate, on average, the rate of adjustment with the highest degree of accuracy. For example,

when ω = 50% and λ = 0.8 the SYS-GMM, LSDVC and QML estimators estimate the rate of

adjustment at 18.34%, 22.51% and 22.37%, respectively. Note, however, the SYS-GMM estimator

does produce notably higher levels of SD relative to its counterparts. This trade off is illustrated

in Figure 2.6 as we observe the bandwidths of all estimators to be servery impeded by the degree

of unbalancedness.

In sum, we find the degree of panel unbalancedness has an influential impact on the properties

of estimators, where in most cases, higher levels of unbalancedness result in increased estimator

bias, SD and RMSE. We find the LSDVC and QML estimators to continue to perform favourably

across all evaluative metrics and produce only moderate levels of bias when the degree of panel

unbalancedness is high. Given that panel unbalancedness is almost unavoidable in the empiri-

cal corporate finance setting, this experiment provides insightful guidance and postulates that

robustness tests of balanced sub-samples may prove to be informative in forthcoming chapters.

2.4.7 Experiment Six: Varying Percentage of Censored Observations

For our final experiment we investigate the impact of fractional data on estimator performance.

Many dependent variables in empirical corporate finance are fractional in nature, yet, the esti-

mators assessed so far were originally developed for continuous, unbounded dependent variables.

Thus, failing to account for the fractional nature of the dependent variable is likely to result in

biased estimates of the autoregessive coefficient (Loudermilk, 2007). In order to evaluate the

impact of fractional data we adopt the DGP process of Elsas and Florysiak (2011) and Elsas and

Florysiak (2015) outlined below:

y#
i,t+1 = λyi,t + βxi,t + ηi + υi,t+1 (2.31)

ηi = α0 + α1yi0 + α2x̄i + φi (2.32)

y#
i,0 = βxi,t + α0 + α2x̄i + φi + ui0 (2.33)

We follow the same experiment design by including three levels of λ: λ = 0.2, λ = 0.5 and

λ = 0.8 and we define β = 1 − λ. We set xi,t ∼ U(−0.5, 1) and we generate υi,t independently

and randomly by setting υi,t ∼ N(0, σ2). The time-invariant variable, ηi, in equation (2.32), is

dependently generated with α0 = 0.1, α1 = 0.1 and x̄i = 1
T

∑T
t=1 xi,t. Finally, the initial latent

variable, y#
i,0, is dependently generated where ui0 ∼ N(0, σ2

u) and σu = 0.01.
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In order to evaluate the degree of censoring in the dependent variable, we follow Dang et al.

(2015) by defining φi ∼ N(0, σ2
φ) where we adjust σφ in order to create three degrees of censoring

in the dependent variable: C ≈ 30%, C ≈ 20% and C ≈ 10%17. In effect, the adjustment of

σφ explicitly alters the magnitude of the fixed-effect component relative to that of the resid-

ual, thereby impacting the number of firm-year observations that fall outside the unit-interval,

resulting in a greater degree of censoring in the dependent variable.

The results for our final experiment can be seen in Table 2.10. Focusing on λ = 0.8, where we

are able to generate all levels of censoring, we see, as expected, that the majority of estimators

designed for continuous variables are adversely effected by the degree of censoring. For the

traditional estimators, both the OLS and FE estimator remain severely biased irrespective of

level of censoring. For the GMM estimators, we find the FD- and AS-GMM estimators to be

highly sensitive to the level censoring, with severe bias of −0.161 and −0.148 when C ≈ 30%

and negligible bias of −0.015 and −0.014 when C ≈ 10%. Comparatively, we find the SYS-

GMM estimator to be more robust to degree censoring, with the SYS-GMM estimator displaying

marginal differences in bias and SD with respect to changes in σφ.

For the alternative estimators, we observe polar responses from the LSDVC and QML esti-

mators. We find for the LSDVC (QML) estimator that the level of bias decreases (increases)

with the level of censoring, with the LSDVC (QML) estimator reporting negligible bias of 0.008

(−0.016) when C ≈ 30% (C ≈ 10%), however, severe levels of bias when C ≈ 10% (C ≈ 30%).

Alternatively, we document that the DPF estimator, unsurprisingly, performs favourably across

all degrees of censoring. Consistent with Elsas and Florysiak (2011), Elsas and Florysiak (2015)

and Dang et al. (2015), we find the DPF estimator estimates λ with minimal bias and also

performs well across other evaluative metrics.

In sum, we find the degree of censoring to have a significant impact on the properties of

estimators, where in most cases, higher levels of censoring results in increased estimator bias. In

terms of economic implications, we find the DPF estimator to most accurately estimate the SOA

across all levels of censoring, however, at low levels of censoring, i.e. C ≈ 10%, other estimators,

such as the FD-GMM, AS-GMM and QML estimators all estimate λ with moderate levels of

bias. Therefore, given the degree of censoring in the dependent variable one should be cautious

on the choice of estimator choice with the DPF proving most favourable out of the estimators

trailed in this chapter.

17Note: Given the DGP, the degree of censoring in y#i,t+1 is also effected by λ through xi,t, therefore for λ = 0.2

the minimal level of censoring is restricted to C ≈ 25% and λ = 0.2 to C ≈ 18%
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Table 2.10: Experiment Six: Varying Percentage of Censored Observations

C ≈ 30% C ≈ 20% C ≈ 10%

Estimator Bias SD RMSE Wald Bias SD RMSE Wald Bias SD RMSE Wald

λ = 0.2 OLS 0.220 0.016 0.079 0.000
FE -0.079 0.008 0.221 0.000

FD-GMM -0.049 0.012 0.080 0.016
AS-GMM -0.047 0.012 0.050 0.016

SYS-GMM -0.044 0.011 0.048 0.008
LD4 -0.033 0.038 0.045 0.876

LSDVC -0.034 0.009 0.050 1.000
QML -0.045 0.008 0.035 0.000
DPF 0.006 0.009 0.046 0.872

λ = 0.5 OLS 0.395 0.008 0.395 0.000 0.260 0.012 0.260 0.000
FE -0.126 0.011 0.126 0.000 -0.110 0.010 0.111 0.000

FD-GMM -0.078 0.020 0.081 0.010 -0.058 0.019 0.061 0.070
AS-GMM -0.072 0.018 0.074 0.008 -0.051 0.017 0.053 0.088

SYS-GMM 0.078 0.018 0.080 0.002 0.010 0.017 0.019 0.756
LD4 -0.023 0.035 0.042 0.874 -0.017 0.036 0.040 0.918

LSDVC 0.043 0.010 0.044 1.000 0.019 0.010 0.022 1.000
QML -0.062 0.011 0.063 0.000 -0.051 0.010 0.052 0.000
DPF 0.008 0.011 0.014 0.852 0.006 0.010 0.012 0.902

λ = 0.8 OLS 0.181 0.004 0.181 0.000 0.168 0.004 0.047 0.000 0.095 0.007 0.095 0.000
FE -0.155 0.010 0.155 0.000 -0.129 0.009 0.168 0.000 -0.098 0.008 0.099 0.000

FD-GMM -0.161 0.016 0.161 0.000 -0.096 0.013 0.129 0.000 -0.015 0.012 0.020 0.720
AS-GMM -0.148 0.015 0.149 0.000 -0.092 0.013 0.097 0.000 -0.014 0.012 0.018 0.728

SYS-GMM 0.039 0.012 0.041 0.016 0.044 0.010 0.092 0.008 0.040 0.009 0.041 0.002
LD4 0.093 0.032 0.098 0.090 0.111 0.031 0.045 0.026 0.138 0.029 0.141 0.000

LSDVC 0.008 0.008 0.011 1.000 0.032 0.007 0.116 1.000 0.062 0.007 0.062 1.000
QML -0.102 0.011 0.102 0.000 -0.068 0.010 0.033 0.000 -0.016 0.009 0.019 0.546
DPF 0.002 0.009 0.009 0.940 0.002 0.009 0.068 0.938 0.006 0.009 0.011 0.890

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-difference GMM estimators

of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and
Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags. LSDVC is the least squares dummy
variable correction estimator of Kiviet (1995) and Bruno (2005), QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002) and finally
the DPF estimator is the dynamic panel fractional variable estimator of Elsas and Florysiak (2011) and Elsas and Florysiak (2015). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation Bias. RMSE is the root mean squared error and Wald is the non-rejection
percentage at the 5% significance level of a Wald test with the null hypothesis set to the equality. Fixed parameters are set to β = 1 − λ, α0 = 0.1, α1 = 0.1
and σu = 0.01 and all reported simulations are configured T = 12 and N = 500 with a repetition rate of R = 500.
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Figure 2.7: Experiment Six: Bias Density Plots

Source: Author’s own calculation.
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2.5 Empirical Implications and Implementation

So far in this chapter we have evidenced the performance of a range of dynamic panel estimators

subject to various theoretical sample conditions. Prior to concluding, in this section we provide a

brief discussion on the empirical implications of our findings. Specifically, throughout the course

of this chapter we have documented the economic implications of our dynamic panel estimators

by reporting the associated SOA for each simulation. However, in this section, we stress further

the empirical implications of such results, and how, with regards to corporate financial policies,

the empirical implications for researchers are significant.

One of the main takeaways from our simulation study is that the degree of dynamic persistence

is a key driver in estimator performance, with all most all estimators reporting reductions in

consistency and efficiency as the autoregressive parameter approaches unity. Not only is this

of significant relevance, with most corporate financial policies being highly persistent - e.g.,

capital structure and corporate payout policy - but also, given the autoregressive coefficient’s

inverse relationship with the SOA, biased estimates of the autoregressive coefficient when λ

is highly persistence also yields the most spurious economic conclusions. To illustrate, let us

consider the bias arsing from our first experiment where the time-series length T is reduced to

T = 6. As shown in Appendix Table A.2.7, when λ = 0.8 the true SOA of adjustment is 20%,

thus, implying that firms, on average, take 5 years to adjust towards their optimal corporate

financial policy. From our simulations, the FD-GMM and SYS-GMM report an implied SOA of

43.22% and 12.05% indicating that firms adjust towards their optimal corporate financial policy

approximately every 2.3 years and 8.3 years, respectively. In contrast, the preferred LSDVC

and QML estimators report implied adjustment speeds of 23.15% and 22.87%, respectively, thus,

suggesting that firms adjust towards their optimal corporate policy in approximately 4.4, a

considerably more accurate representation of the true SOA.

Despite the superior statistical qualities of the LSDVC and QML estimators, their application

in the corporate finance literature is extremely scarce (Flannery and Hankins 2013, Dang et al.

2015 and Hayakawa and Pesaran 2015). Arguably, one of the biggest drawbacks of the LSDVC

estimator is a practical one. In order to compute the bias correction and the bootstrapped

variance covaraince matrix, the LSDVC estimator has an extremely high computational demand,

which when partnered with the size of corporate finance datasets - in some instances more

than 100,000 observations - the estimation of the LSDVC estimator on a standard desktop

computer becomes almost a perpetual issue. In contrast, the QML estimator does not require

52



such computing power, however, its lack of use may indeed stem from the prior restrictive

assumptions imposed by Hsiao et al. (2002) for example, the requirement for idiosyncratic errors

to be homoskedastic. Nevertheless, recent progress in the area of fixed-effect QML estimation

has seen a number extensions allowing for heteroskedastic errors (Hayakawa and Pesaran, 2015)

unbalanced panels (Kripfganz, 2016) and models beyond the AR(1) process (Binder et al., 2005).

Subsequently, given the favourable performance of the QML estimator evidenced in this chapter

over the GMM estimators and, in certain cases, the LSDVC estimator, we advance its employment

for the empirical corporate finance setting and in turn validating its need for inclusion in this

chapter and the wider literature.

2.6 Concluding Remarks

The primary aim of this chapter was to investigate the economic implications of estimator choice

in the context of the corporate finance literature. We find the autoregressive coefficient to

vary across estimator choice and panel data properties. More precisely, our analysis uncovers

that the degree of dynamic persistence in the dependent variable is a key driver of estimator

performance, with highly persistence data proving most problematic in the corporate finance

setting. Furthermore, our study verifies that common varying characteristic’s of corporate finance

datasets, such as: panel dimensions, cross-sectional heterogeneity and panel unbalancedness, all

pose unique problems for researchers employing dynamic panel data models.

Over the duration of this chapter, we find the LSDVC and QML estimators are generally the

most robust methods for estimating dynamic panel data models in the corporate finance setting.

These estimator, on average, estimate the autoregressive coefficient with the highest degree of

accuracy and in turn provide the most concise approximation of the true SOA. Moreover, both

estimators display rigor and robustness to changes in key fixed parameters, with the LSDVC

estimator performing favourably to high levels of cross-sectional heterogeneity and the QML

estimator proving advantageous in cases of small and unbalanced panels.

In contrast, we find at high levels of dynamic persistence the GMM estimators perform poorly

across experiments, with the FD- and SYS-GMM estimators proving highly sensitive to changes

in key fixed parameters. Thus, the growing evidence on the frailties of the GMM estimators

leaves us with concern on the accuracy of forgone empirical studies that employ such approaches,

especially when the degree of persistence is high. Finally, in specific cases, when the dependent

variable of interest is indeed fractional, our simulations uncover that the DPF estimator is most
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preferable, with the body of previous estimators being highly sensitive to the degree of censoring

in the dependent variable.

All in all, this chapter clearly illustrates how failing to adequately account for dynamic

panel data model complexities can give rise erroneous economics conclusions. Subsequently, this

chapter presents a comprehensive argument to why much of the capital structure and corporate

payout policy literature have yielded vastly disparate economic conclusions on the speed of

financial policy adjustment. Going forward, practitioners should strongly consider the LSDVC,

QML and DPF estimators as preferable alternatives to the traditional and GMM estimators due

to their superior statistical performance. Incorporation of such methods should hopefully bring

consensus to one of the oldest empirical debates with corporate finance.
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2.7 Appendix

Table A.2.1: Experiment One: The impact of changes in time-series length

T = 6 T = 18

Estimator Bias SD RMSE Wald Bias SD RMSE Wald

β = 0.8 OLS 0.116 0.012 0.117 0.000 0.030 0.006 0.031 0.000
FE 0.007 0.011 0.013 0.894 0.005 0.005 0.007 0.844

FD-GMM 0.003 0.032 0.041 0.948 -0.004 0.013 0.010 0.834
AS-GMM -0.001 0.022 0.024 0.954 -0.005 0.013 0.010 0.828

SYS-GMM 0.005 0.014 0.041 0.914 -0.004 0.007 0.009 0.808
LD4 -0.662 0.665 0.792 0.154 -0.625 0.040 0.216 0.000

LSDVC 0.002 0.011 0.013 1.000 0.000 0.005 0.006 1.000
QML 0.001 0.011 0.012 0.956 0.000 0.005 0.005 0.956

β = 0.5 OLS 0.074 0.009 0.074 0.000 0.018 0.004 0.019 0.010
FE 0.002 0.009 0.009 0.946 0.006 0.004 0.007 0.730

FD-GMM 0.017 0.036 0.095 0.916 -0.002 0.010 0.012 0.860
AS-GMM -0.002 0.024 0.051 0.930 -0.003 0.010 0.011 0.830

SYS-GMM 0.008 0.012 0.103 0.860 -0.003 0.006 0.011 0.810
LD4 -0.284 0.205 0.318 0.048 -0.333 0.022 0.100 0.000

LSDVC 0.004 0.009 0.015 1.000 0.000 0.004 0.007 1.000
QML 0.001 0.009 0.017 0.956 0.000 0.004 0.006 0.964

β = 0.2 OLS 0.038 0.007 0.038 0.000 0.012 0.003 0.013 0.036
FE -0.009 0.007 0.011 0.768 0.004 0.003 0.005 0.832

FD-GMM 0.034 0.034 0.305 0.796 0.001 0.007 0.025 0.886
AS-GMM -0.005 0.018 0.084 0.896 -0.001 0.007 0.018 0.856

SYS-GMM 0.004 0.010 0.081 0.926 -0.003 0.005 0.017 0.832
LD4 -0.111 0.056 0.201 0.004 -0.114 0.007 0.023 0.000

LSDVC 0.002 0.007 0.036 1.000 0.000 0.003 0.010 1.000
QML -0.001 0.007 0.038 0.954 0.000 0.003 0.009 0.958

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM

correspond to the first-difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear
instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and Bond (1998).
LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags.
LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation of the estimated parameter. RMSE
is the root mean squared error and Wald is the non-rejection percentage at the 5% significance level of a Wald test
with the null hypothesis set to the equality. Fixed parameters are set to λ = 1 − β, ρ = 0.5, ζ = 5 & µ = 1 and all
reported simulations are configured for N = 500 with a repetition rate of 500.
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Table A.2.2: Experiment Two: The impact of changes in cross-sectional size

N = 100 N = 250

Estimator Bias SD RMSE Wald Bias SD RMSE Wald

β = 0.8 OLS 0.051 0.018 0.054 0.148 0.051 0.011 0.052 0.000
FE 0.008 0.015 0.017 0.902 0.008 0.009 0.012 0.866

FD-GMM 0.000 0.034 0.032 0.742 -0.002 0.023 0.021 0.884
AS-GMM -0.002 0.037 0.033 0.626 -0.004 0.022 0.019 0.856

SYS-GMM -0.002 0.020 0.027 0.648 -0.004 0.013 0.017 0.840
LD4 -0.651 0.150 0.297 0.000 -0.636 0.082 0.244 0.000

LSDVC 0.001 0.015 0.016 1.000 0.001 0.009 0.010 1.000
QML 0.001 0.015 0.016 0.934 0.001 0.009 0.009 0.954

β = 0.5 OLS 0.032 0.014 0.035 0.286 0.032 0.008 0.033 0.018
FE 0.008 0.013 0.015 0.888 0.008 0.008 0.011 0.832

FD-GMM 0.005 0.028 0.045 0.756 0.002 0.020 0.030 0.874
AS-GMM -0.002 0.029 0.036 0.640 -0.003 0.018 0.022 0.856

SYS-GMM -0.001 0.017 0.033 0.638 -0.003 0.011 0.026 0.832
LD4 -0.354 0.094 0.195 0.000 -0.342 0.049 0.134 0.000

LSDVC 0.002 0.013 0.018 1.000 0.001 0.008 0.012 1.000
QML 0.001 0.013 0.017 0.936 0.001 0.008 0.011 0.958

β = 0.2 OLS 0.019 0.006 0.020 0.110 0.019 0.010 0.022 0.478
FE 0.003 0.006 0.007 0.922 0.003 0.010 0.011 0.906

FD-GMM 0.008 0.015 0.076 0.816 0.013 0.022 0.115 0.678
AS-GMM 0.000 0.014 0.038 0.852 0.002 0.021 0.058 0.604

SYS-GMM -0.002 0.009 0.037 0.854 0.000 0.014 0.037 0.634
LD4 -0.117 0.018 0.070 0.000 -0.123 0.036 0.150 0.000

LSDVC 0.001 0.006 0.017 1.000 0.002 0.010 0.024 1.000
QML 0.000 0.006 0.018 0.954 0.001 0.010 0.026 0.932

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM

correspond to the first-difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear
instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and Bond (1998).
LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags.
LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation of Bias. RMSE is the root mean
squared error and Wald is the non-rejection percentage at the 5% significance level of a Wald test with the null
hypothesis set to the equality. Fixed parameters are set to λ = 1 − β, ρ = 0.5, ζ = 5 and µ = 1 and all reported
simulations are configured T = 12 with a repetition rate of 500.
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Table A.2.3: Experiment Three: Varying factor loading

µ = 1 µ = 3

Estimator Bias SD RMSE Wald Bias SD RMSE Wald

β = 0.8 OLS -0.061 0.009 0.061 0.000 -0.014 0.010 0.018 0.694
FE 0.007 0.007 0.010 0.798 0.008 0.007 0.010 0.782

FD-GMM -0.001 0.015 0.013 0.922 -0.001 0.016 0.018 0.930
AS-GMM -0.002 0.015 0.013 0.914 -0.005 0.017 0.018 0.870

SYS-GMM -0.003 0.009 0.009 0.882 -0.003 0.009 0.018 0.908
LD4 -0.630 0.054 0.225 0.000 -0.708 0.262 0.428 0.006

LSDVC 0.000 0.007 0.007 1.000 0.000 0.007 0.007 1.000
QML 0.000 0.007 0.007 0.954 0.001 0.007 0.007 0.946

β = 0.5 OLS -0.027 0.006 0.028 0.004 0.007 0.007 0.010 0.810
FE 0.007 0.005 0.009 0.744 0.008 0.006 0.009 0.710

FD-GMM 0.001 0.013 0.018 0.916 -0.001 0.014 0.025 0.940
AS-GMM -0.001 0.013 0.016 0.910 -0.007 0.014 0.024 0.856

SYS-GMM -0.003 0.007 0.010 0.884 -0.002 0.008 0.049 0.902
LD4 -0.335 0.030 0.106 0.000 -0.434 0.129 0.335 0.000

LSDVC 0.000 0.006 0.009 1.000 0.002 0.006 0.008 1.000
QML 0.000 0.006 0.009 0.942 0.001 0.006 0.008 0.952

β = 0.2 OLS -0.005 0.004 0.007 0.758 0.017 0.005 0.018 0.028
FE 0.002 0.004 0.005 0.902 0.003 0.005 0.005 0.896

FD-GMM 0.003 0.009 0.033 0.910 0.004 0.012 0.061 0.914
AS-GMM 0.001 0.009 0.027 0.908 -0.010 0.013 0.076 0.682

SYS-GMM -0.002 0.006 0.013 0.898 0.000 0.007 0.093 0.900
LD4 -0.115 0.009 0.029 0.000 -0.128 0.049 0.225 0.000

LSDVC 0.000 0.004 0.018 1.000 0.004 0.005 0.009 1.000
QML 0.000 0.004 0.015 0.952 0.000 0.005 0.014 0.956

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM

correspond to the first-difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear
instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and Bond (1998).
LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags.
LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation of Bias. RMSE is the root mean
squared error and Wald is the non-rejection percentage at the 5% significance level of a Wald test with the null
hypothesis set to the equality. Fixed parameters are set to λ = 1−β, ρ = 0.5 and ζ = 5 and all reported simulations
are configured T = 12 and N = 500 with a repetition rate of R = 500.
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Table A.2.4: Experiment Four: Varying Signal Noise

ζ = 2 ζ = 8

Estimator Bias SD RMSE Wald Bias SD RMSE Wald

β = 0.8 OLS 0.075 0.011 0.076 0.000 0.044 0.006 0.044 0.000
FE 0.014 0.011 0.018 0.716 0.005 0.005 0.008 0.820

FD-GMM -0.001 0.024 0.019 0.920 0.000 0.013 0.013 0.936
AS-GMM -0.004 0.023 0.017 0.892 -0.002 0.012 0.012 0.918

SYS-GMM -0.004 0.014 0.016 0.906 -0.001 0.007 0.010 0.918
LD4 -0.501 0.031 0.077 0.000 -0.844 0.135 0.487 0.000

LSDVC 0.001 0.011 0.011 1.000 0.001 0.005 0.006 1.000
QML 0.001 0.011 0.009 0.950 0.001 0.005 0.006 0.944

β = 0.5 OLS 0.050 0.009 0.051 0.000 0.027 0.005 0.027 0.000
FE 0.013 0.009 0.016 0.668 0.005 0.004 0.007 0.746

FD-GMM 0.001 0.020 0.024 0.924 0.002 0.011 0.020 0.926
AS-GMM -0.003 0.020 0.019 0.890 -0.001 0.010 0.013 0.922

SYS-GMM -0.003 0.013 0.022 0.904 -0.001 0.006 0.019 0.910
LD4 -0.298 0.021 0.046 0.000 -0.380 0.049 0.188 0.000

LSDVC 0.001 0.009 0.013 1.000 0.001 0.004 0.008 1.000
QML 0.001 0.009 0.011 0.956 0.001 0.004 0.007 0.944

β = 0.2 OLS 0.040 0.015 0.043 0.256 0.015 0.003 0.016 0.006
FE 0.005 0.018 0.018 0.916 0.002 0.003 0.004 0.902

FD-GMM 0.005 0.033 0.028 0.916 0.006 0.008 0.059 0.848
AS-GMM 0.001 0.033 0.022 0.902 0.000 0.007 0.027 0.916

SYS-GMM 0.000 0.024 0.016 0.904 0.000 0.004 0.052 0.898
LD4 -0.113 0.021 0.024 0.000 -0.122 0.019 0.094 0.000

LSDVC 0.001 0.018 0.025 1.000 0.001 0.003 0.011 1.000
QML 0.001 0.017 0.018 0.958 0.000 0.003 0.014 0.956

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM

correspond to the first-difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear
instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and Bond (1998).
LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags.
LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation of Bias. RMSE is the root mean
squared error and Wald is the non-rejection percentage at the 5% significance level of a Wald test with the null
hypothesis set to the equality. Fixed parameters are set to λ = 1−β, ρ = 0.5 and µ = 1 and all reported simulations
are configured T = 12 and N = 500 with a repetition rate of R = 500.
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Table A.2.5: Experiment Five: Varying Panel Balance

ω = 50% ω = 70% ω = 90%

Estimator Bias SD RMSE Wald Bias SD RMSE Wald Bias SD RMSE Wald

β = 0.8 OLS 0.043 0.010 0.044 0.014 0.049 0.009 0.049 0.000 0.051 0.008 0.052 0.000
FE 0.009 0.010 0.013 0.860 0.008 0.008 0.012 0.796 0.008 0.007 0.010 0.798

FD-GMM 0.003 0.027 0.028 0.834 0.002 0.021 0.021 0.892 0.000 0.017 0.016 0.916
AS-GMM 0.000 0.024 0.023 0.852 -0.001 0.019 0.018 0.898 -0.003 0.016 0.014 0.916
SYS-GMM -0.003 0.015 0.018 0.830 -0.003 0.011 0.014 0.874 -0.002 0.009 0.011 0.898

LD -0.646 0.148 0.293 0.000 -0.639 0.091 0.252 0.000 -0.630 0.064 0.230 0.000
LSDVC 0.001 0.011 0.013 1.000 0.001 0.008 0.010 1.000 0.001 0.007 0.008 1.000
QML -0.002 0.011 0.011 0.944 -0.001 0.008 0.008 0.950 0.000 0.007 0.007 0.950

β = 0.5 OLS 0.026 0.008 0.028 0.082 0.030 0.007 0.031 0.006 0.032 0.006 0.032 0.000
FE 0.006 0.008 0.010 0.896 0.007 0.007 0.010 0.786 0.007 0.006 0.009 0.742

FD-GMM 0.007 0.023 0.040 0.786 0.004 0.018 0.029 0.868 0.002 0.014 0.022 0.912
AS-GMM 0.002 0.020 0.029 0.814 0.000 0.016 0.022 0.908 -0.002 0.013 0.016 0.922
SYS-GMM -0.003 0.012 0.024 0.820 -0.002 0.010 0.018 0.874 -0.001 0.008 0.017 0.890

LD -0.350 0.088 0.187 0.000 -0.347 0.052 0.148 0.000 -0.341 0.036 0.123 0.000
LSDVC 0.001 0.009 0.017 1.000 0.001 0.007 0.013 1.000 0.001 0.006 0.011 1.000
QML -0.005 0.009 0.015 0.914 -0.002 0.007 0.010 0.938 0.000 0.006 0.008 0.950

β = 0.2 OLS 0.017 0.006 0.018 0.174 0.018 0.005 0.019 0.032 0.019 0.004 0.019 0.010
FE -0.003 0.007 0.007 0.932 0.000 0.006 0.006 0.944 0.002 0.005 0.005 0.896

FD-GMM 0.014 0.018 0.098 0.702 0.009 0.014 0.067 0.804 0.007 0.011 0.057 0.856
AS-GMM 0.005 0.015 0.054 0.794 0.003 0.012 0.039 0.862 0.000 0.010 0.029 0.916
SYS-GMM 0.000 0.010 0.031 0.824 0.000 0.008 0.032 0.868 0.000 0.007 0.035 0.900

LD -0.121 0.033 0.141 0.000 -0.122 0.023 0.110 0.000 -0.117 0.013 0.060 0.000
LSDVC 0.001 0.008 0.032 1.000 0.001 0.006 0.025 1.000 0.001 0.005 0.017 1.000
QML -0.008 0.007 0.030 0.804 -0.005 0.006 0.018 0.872 0.000 0.005 0.012 0.954

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-difference GMM estimators

of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and
Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags. LSDVC is the least squares dummy
variable correction estimator of Kiviet (1995) and Bruno (2005) and finally QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002).
Bias is the average difference between the estimated and true parameter value. SD is the standard deviation Bias. RMSE is the root mean squared error
and Wald is the non-rejection percentage at the 5% significance level of a Wald test with the null hypothesis set to the equality. Fixed parameters are set to
λ = 1 − β, ρ = 0.5, ζ = 5 and µ = 1 and all reported simulations are configured N = 500 with a repetition rate of R = 500.
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Table A.2.6: Experiment Six: Varying Percentage of Censored Observations

C ≈ 25% C ≈ 10% C ≈ 5%

Estimator Bias SD RMSE Wald Bias SD RMSE Wald Bias SD RMSE Wald

β = 0.8 OLS -0.241 0.011 0.242 0.000
FE -0.233 0.010 0.233 0.000

FD-GMM -0.239 0.011 0.050 0.000
AS-GMM -0.238 0.011 0.048 0.000
SYS-GMM -0.239 0.011 0.045 0.000

LD4 -0.814 0.017 0.050 0.000
LSDVC -0.230 0.010 0.035 1.000
QML -0.231 0.010 0.046 0.000
DPF 0.002 0.007 0.011 0.944

β = 0.5 OLS -0.166 0.010 0.166 0.000 -0.106 0.008 0.107 0.000
FE -0.166 0.009 0.166 0.000 -0.101 0.007 0.102 0.000

FD-GMM -0.172 0.011 0.081 0.000 -0.102 0.009 0.061 0.000
AS-GMM -0.172 0.011 0.074 0.000 -0.102 0.009 0.053 0.000
SYS-GMM -0.143 0.012 0.080 0.000 -0.088 0.009 0.019 0.000

LD4 -0.582 0.019 0.042 0.000 -0.592 0.019 0.040 0.000
LSDVC -0.143 0.009 0.044 1.000 -0.084 0.007 0.022 1.000
QML -0.162 0.009 0.063 0.000 -0.097 0.007 0.052 0.000
DPF 0.001 0.007 0.014 0.938 0.002 0.006 0.012 0.946

β = 0.2 OLS -0.071 0.006 0.072 0.000 -0.051 0.006 0.052 0.000 -0.024 0.005 0.025 0.000
FE -0.070 0.005 0.070 0.000 -0.048 0.005 0.049 0.000 -0.015 0.005 0.015 0.363

FD-GMM -0.074 0.007 0.161 0.000 -0.050 0.007 0.097 0.000 -0.011 0.007 0.020 0.490
AS-GMM -0.073 0.007 0.149 0.000 -0.050 0.007 0.092 0.000 -0.012 0.007 0.018 0.496
SYS-GMM -0.044 0.007 0.041 0.000 -0.026 0.007 0.045 0.014 -0.005 0.006 0.041 0.393

LD4 -0.398 0.021 0.098 0.000 -0.403 0.022 0.116 0.000 -0.415 0.022 0.141 0.000
LSDVC -0.059 0.006 0.011 1.000 -0.036 0.005 0.033 1.000 -0.001 0.005 0.062 1.000
QML -0.068 0.005 0.102 0.000 -0.046 0.005 0.068 0.000 -0.010 0.005 0.019 0.500
DPF 0.002 0.006 0.009 0.934 0.003 0.006 0.009 0.902 0.004 0.005 0.011 0.300

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-difference GMM estimators

of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator of Blundell and
Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags. LSDVC is the least squares dummy
variable correction estimator of Kiviet (1995) and Bruno (2005), QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002) and finally
the DPF estimator is the dynamic panel fractional variable estimator of Elsas and Florysiak (2011) and Elsas and Florysiak (2015). Bias is the average difference
between the estimated and true parameter value. SD is the standard deviation Bias. RMSE is the root mean squared error and Wald is the non-rejection
percentage at the 5% significance level of a Wald test with the null hypothesis set to the equality. Fixed parameters are set to λ = 1 − β,, α0 = 0.1, α1 = 0.1
and σu = 0.01.and all reported simulations are configured T = 12 and N = 500 with a repetition rate of R = 500.
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Table A.2.7: Experiment One: Implied Speed of Adjustment

True SOA OLS FE FD-GMM AS-GMM SYS-GMM LD4 LSDVC QML

T = 6 80.00% 55.73% 86.21% 80.50% 79.87% 76.58% 55.05% 80.59% 80.13%
50.00% 32.95% 61.40% 55.07% 50.34% 40.06% 50.34% 50.37% 51.01%
20.00% 12.94% 47.37% 43.22% 19.84% 12.05% 25.47% 23.15% 22.87%

T = 18 80.00% 64.23% 81.62% 79.89% 79.76% 79.52% 58.88% 80.19% 80.05%
50.00% 36.40% 53.72% 50.65% 50.23% 48.68% 39.40% 50.57% 50.36%
20.00% 14.38% 26.88% 21.88% 21.11% 18.62% 18.82% 20.70% 20.62%

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-

difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995)
and the system-GMM estimator of Blundell and Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter
(2009) with a distance of 4 lags. LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and
finally QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). The implied speed of adjustment (SOA) is
calculated as of one minus the average estimated coefficient of the dynamic parameter.

Table A.2.8: Experiment Two: Implied Speed of Adjustment

True SOA OLS FE FD-GMM AS-GMM SYS-GMM LD4 LSDVC QML

N = 100 80.00% 60.85% 82.51% 80.53% 79.49% 78.84% 56.08% 80.18% 80.03%
50.00% 35.75% 54.42% 52.01% 49.88% 48.23% 37.43% 50.44% 50.38%
20.00% 13.65% 31.20% 28.85% 22.34% 18.58% 15.16% 20.85% 20.93%

N = 250 80.00% 60.72% 82.52% 80.14% 79.64% 78.95% 57.67% 80.27% 80.04%
50.00% 35.67% 54.45% 51.16% 50.13% 47.95% 39.21% 50.59% 50.41%
20.00% 13.62% 31.22% 25.76% 21.74% 16.76% 17.96% 21.00% 21.01%

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-

difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and
the system-GMM estimator of Blundell and Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009)
with a distance of 4 lags. LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). The implied speed of adjustment (SOA) is calculated
as of one minus the average estimated coefficient of the dynamic parameter.
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Table A.2.9: Experiment Three: Implied Speed of Adjustment

True SOA OLS FE FD-GMM AS-GMM SYS-GMM LD4 LSDVC QML

µ = 1 80.00% 66.33% 82.62% 80.20% 80.06% 79.91% 58.47% 80.13% 80.13%
50.00% 42.09% 54.53% 50.96% 50.72% 50.23% 40.61% 50.50% 50.49%
20.00% 17.47% 31.28% 22.57% 21.97% 20.52% 19.41% 21.56% 21.08%

µ = 3 80.00% 30.33% 82.55% 80.08% 79.33% 78.78% 49.39% 80.19% 80.06%
50.00% 17.25% 54.46% 50.27% 48.65% 45.45% 24.14% 50.15% 50.41%
20.00% 6.24% 31.20% 23.01% 15.05% 10.73% 12.91% 19.97% 20.98%

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-

difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995)
and the system-GMM estimator of Blundell and Bond (1998). LD4 is long difference estimator with the estimator set of Huang and
Ritter (2009) with a distance of 4 lags. LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno
(2005) and finally QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). The implied speed of adjustment
(SOA) is calculated as of one minus the average estimated coefficient of the dynamic parameter.

Table A.2.10: Experiment Four: Implied Speed of Adjustment

True SOA OLS FE FD-GMM AS-GMM SYS-GMM LD4 LSDVC QML

ζ = 2 80.00% 64.06% 84.72% 80.16% 79.80% 79.12% 73.10% 80.50% 80.03%
50.00% 38.68% 57.84% 50.75% 50.11% 48.31% 46.47% 50.76% 50.27%
20.00% 18.58% 38.65% 21.09% 20.38% 19.55% 19.79% 22.06% 20.05%

ζ = 8 80.00% 59.50% 81.76% 80.15% 79.85% 79.42% 33.88% 80.23% 80.07%
50.00% 34.66% 53.22% 51.03% 50.36% 48.38% 32.96% 50.57% 50.46%
20.00% 12.65% 28.25% 24.76% 21.43% 14.94% 15.65% 20.73% 21.17%

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-

difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995)
and the system-GMM estimator of Blundell and Bond (1998). LD4 is long difference estimator with the estimator set of Huang and
Ritter (2009) with a distance of 4 lags. LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno
(2005) and finally QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). The implied speed of adjustment
(SOA) is calculated as of one minus the average estimated coefficient of the dynamic parameter.
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Table A.2.11: Experiment Five: Implied Speed of Adjustment

True SOA OLS FE FD-GMM AS-GMM SYS-GMM LD4 LSDVC QML

ω = 50% 80.00% 60.10% 84.83% 80.59% 79.98% 79.63% 56.50% 80.63% 80.14%
50.00% 35.02% 58.01% 51.81% 50.57% 49.12% 37.97% 51.00% 50.76%
20.00% 13.13% 38.62% 27.37% 23.24% 18.34% 15.97% 22.51% 22.37%

ω = 70% 80.00% 60.25% 83.39% 80.32% 79.87% 79.81% 57.23% 80.56% 80.08%
50.00% 35.14% 55.70% 51.02% 50.12% 49.24% 38.09% 50.92% 50.36%
82.00% 13.22% 34.31% 24.62% 21.57% 17.37% 14.93% 22.05% 21.12%

ω = 90% 80.00% 60.51% 82.62% 80.15% 79.78% 79.61% 58.30% 80.42% 80.00%
50.00% 43.13% 68.62% 57.37% 53.24% 48.34% 45.97% 52.51% 52.37%
20.00% 13.47% 31.49% 24.22% 21.20% 16.75% 16.84% 21.29% 20.36%

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-

difference GMM estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and
the system-GMM estimator of Blundell and Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009)
with a distance of 4 lags. LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005) and finally
QML corresponds to the quasi-maximum likelihood estimator of Hsiao et al. (2002). The implied speed of adjustment (SOA) is calculated
as of one minus the average estimated coefficient of the dynamic parameter.

Table A.2.12: Experiment Six: Implied Speed of Adjustment

True SOA OLS FE FD-GMM AS-GMM SYS-GMM LD4 LSDVC QML DPF

C ≈ 30% 80% 57.98% 87.91% 84.86% 84.68% 84.36% 83.27% 83.41% 84.49% 79.38%
50% 10.48% 62.60% 57.81% 57.17% 42.19% 52.33% 45.74% 56.24% 49.16%
20% 1.87% 35.50% 36.06% 34.85% 16.07% 10.70% 19.22% 30.18% 19.82%

C ≈ 20% 50% 24.03% 61.05% 55.83% 55.07% 49.03% 51.72% 48.05% 55.11% 49.41%
20% 3.20% 32.85% 29.60% 29.15% 15.63% 8.85% 16.84% 26.78% 19.78%

C ≈ 10% 20% 10.51% 29.83% 21.54% 21.36% 16.02% 6.15% 13.83% 21.62% 19.35%

Source: Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-difference GMM

estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and the system-GMM estimator
of Blundell and Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a distance of 4 lags. LSDVC is
the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005), QML corresponds to the quasi-maximum likelihood estimator
of Hsiao et al. (2002) and finally the DPF estimator is the dynamic panel fractional variable estimator of Elsas and Florysiak (2011) and Elsas and
Florysiak (2015).The implied speed of adjustment (SOA) is calculated as of one minus the average estimated coefficient of the dynamic parameter.
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Chapter 3

Leverage Dynamics over the Business
Cycle: New Evidence from India

Abstract: In this chapter we investigate the leverage dynamics of Indian listed firms over the

business cycle. Using a unbalanced panel of 2,650 Indian listed firms over 1997-2017, we propose

a novel single-step model specification that allows for simultaneous estimation of firm-specific and

macroeconomic adjustment costs allowing for cross-sectional and time-variant adjustment speeds.

Our results show Indian listed firms adjust quicker in periods of high GDP growth (29.80%)

relative to low GDP growth (22.90%), of which, firms in the highest quartiles of the market-

to-book ratio and profitability adjust asymmetrically, adjusting upwards of 40% in high growth

regimes and downwards towards 30% in low growth regimes. Overall, our results provide new

evidence of both cross-sectional and time-varying asymmetries in capital structure adjustments

in a developing market context, which are consistent with the dynamic trade-off theory.

3.1 Introduction

Since Modigliani and Miller’s (1958) irrelevance theorem, the corporate finance literature has

debated the importance of capital structure decisions in the presence of capital market frictions

and imperfections (e.g., corporate and personal taxation, imperfect information and agency prob-

lems). Naturally, while opinions differ, the leading view of capital structure, the trade-off theory,

asserts that firms seek to maintain an optimal capital structure that balances the costs and ben-

efits associated with corporate leverage (Fischer et al. 1989; Flannery and Rangan 2006; Frank

and Goyal 2009; Huang and Ritter 2009; Faulkender et al. 2012). Moreover, in the event of

target deviation, the trade-off theory posits that value maximising firms seek to re-balance their

corporate leverage as they look to return to their optimal capital structure. Yet, if the costs of
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recapitalization exceed the benefits of readjustment, firms may look to prolong their excursion

rather than forcing an immediate return to their target leverage (Leary and Roberts 2005; Stre-

bulaev 2007). The empirical implications of such actions follow that in an dynamic framework,

corporate leverage should exhibit mean reversion as firms - of whom often face a gamut of dis-

tinct adjustment costs - aim to revert to their optimal capital structure target. Subsequently,

an enormous number of empirical studies have attempted to examine the speed in which firms

adjust their corporate leverage via dynamic partial adjustment models.

In an attempt to shed light on the divergence of firms’ capital structure adjustment speeds,

an abundance of empirical studies have approximated the asymmetric adjustment costs faced by

firms via a range of firm-specific characteristics, for example: firm size (Drobetz and Wanzenried,

2006), target deviation (Byoun, 2008), the market-to-book ratio (Elsas and Florysiak, 2011), ab-

solute financing deficit (Faulkender et al., 2012) profitability (Dang et al., 2012) and credit ratings

(Wojewodzki et al., 2018). While the literature associated with cross-sectional heterogeneity and

asymmetric adjustment costs is well established and indeed plentiful, surprisingly little is known

about the leverage dynamics of firms over the course of the business cycle (Korteweg and Strebu-

laev, 2013). Furthermore, the theoretical and empirical evidence in this area has yielded vastly

disparate economic conclusions, with theoretical and empirical ambiguities being largely model

dependent (Halling et al., 2016). On one hand, Korteweg and Strebulaev (2013) claim that the

leverage ratios of US firms evolve pro-cyclically with Cook and Tang (2010), Dang et al. (2014)

and Drobetz et al. (2015) all reporting faster adjustment speeds in periods of higher economic

growth. On the other hand, the more recent work of Halling et al. (2016) argues that once cycli-

cality is correctly parameterized, the target leverage ratios of US firms evolve counter-cyclically,

with only a small proportion of firms reporting pro-cyclical behaviour.

Given such disparities, the purpose of this chapter is to provide new empirical evidence on

the corporate leverage dynamics of firms over the course of the business cycle by investigating

the capital structure dynamics of Indian listed firms. Specifically, to contribute new insights to

the literature, this chapter brings together both the cross-sectional and time-series elements of

the heterogeneous adjustment speed literature to present a systematic investigation of how firms

facing opposing adjustment costs adjust their corporate leverage over the business cycle.

Understanding the factors that govern the adjustment of firms corporate leverage is not

only important at the firm level for managers and investors, but also, because the ineffective

management of corporate leverage can have significant repercussions for the wider economy. For

example, in periods of economic downturn, under-leveraged firms with limited internal funds may
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have to pass up on positive investment opportunities if they are unable to raise external capital

due to costly market frictions, thus, slowing the route of macroeconomic recovery. Alternatively,

over-leveraged firms that are unable to smoothly adjust their existing debt obligations may

expose themselves to heighten financial distress costs which could result in corporate bankruptcy

and consequently deeper macroeconomic decline.

Despite the saliency of firms capital structure adjustment process, almost exclusively the

majority of the aforementioned studies have focused on the adjustment processes of firms residing

developed bank-based and/or market-based economies, where capital market imperfections and

frictions are somewhat trivial1. In contrast, emerging economies, such as India, are characterised

by a more pervasive market failures that make the adjustments costs faced by firms considerably

more severe, thus, making the process of leverage adjustment significantly slower (Öztekin and

Flannery, 2012). Moreover, over the course of the business cycle, one can hypothesise that the

economic pass-through of exogenous macroeconomic shocks to firm-specific adjustment costs is

likely to be more pronounced in less developed institutional environments, where capital market

frictions, agency problems and information asymmetries are more prevalent and shock absorbing

government mechanism are limited. Accordingly, given such premises, this chapter aims to

provide new evidence from an emerging market context in an attempt to shed light on leverage

dynamics of firms.

Using an unbalanced panel of 2,650 Indian listed firms over the period of 1997-2017 we inves-

tigate how three firm-specific measures of adjustment heterogeneity, namely, absolute financing

deficit (e.g. Faulkender et al. 2012), the market-to-book ratio (e.g. Elsas and Florysiak 2011)

and profitability (e.g. Dang et al. 2012) impact the speed of adjustment over high and low pe-

riods of GDP growth, which we classify via OCED business cycle indicator’s. We focus of such

firm-specific measures for two important reasons. First, variances in said measures reflect some

of the most significant adjustment cost asymmetries faced by firms and are therefore three of the

most commonly analysed sources of cross-sectional adjustment speed heterogeneity. Second, and

more importantly, unlike other potential candidates that have proved prominent in the literature

- e.g., firm size, firm age and credit ratings - a firms absolute financing deficit, the market-to-book

ratio and level of profitability are largely time-variant, thus, changes in macroeconomic condi-

tions, market confidence and ultimately economic growth are all likely to have direct impacts on

1Note: Halling et al. (2016) as a form of robustness test illustrate their findings through an international
sample of 18 countries namely, Australia, Austria, Brazil, Canada, France, Germany, India, Italy, Japan, Korea,
Mexico, New Zealand, Spain, Sweden, Switzerland, Taiwan, the UK and the US. Therefore while implicitly they
assess capital structure dynamics over the business cycle in a developing context, the pooling of firms remains
that’s we are the first to explicitly assess simultaneous asymmetries.
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the levels of such variables and therefore the adjustment costs firms face over the course of the

business cycle.

Building on the recent studies of Drobetz et al. (2015) and Halling et al. (2016), this chapter

proposes a single-step model specification that allows for the simultaneous estimation of firm-

specific adjustment costs over the two proposed macroeconomic regimes, whilst also controlling

for heterogeneous leverage targeting and unobserved time-invariant factors. More explicitly, we

adapt the traditional dynamic partial adjustment model via a quartile dummy variable approach,

accounting for distinct firm-group adjustment costs, and thereafter we extend our specification

via a regime switching mechanism to account for both high and low periods of GDP growth.

Furthermore, based on the insights of Chapter 2, we estimate our single-step specification via

the DPF estimator of Elsas and Florysiak (2015), which not only takes into account the fractional

nature of our dependent variable, the market debt ratio, but also, most accurately estimates the

true SOA (Elsas and Florysiak 2015; Dang et al. 2015).

To set the scene, we first examine the traditional dynamic partial adjustment model specifica-

tion and establish the consistently of our three firm-specific measures of asymmetric adjustment

cost relative to the existing literature. We find the typical Indian firm adjusts unconditionally to-

wards their optimal target at 26.90% per annum, therefore, closing the gap between sub-optimal

and optimal target leverage by approximately one quarter each year. Moreover, consistent with

the literature, we find that firms with the highest market-to-book values and profitability levels

adjust both significantly and economically faster than their counterparts, closing the distance

towards target leverage by greater than one third each year. We document that firms with the

highest absolute financing deficit also adjust significantly faster than there better balanced coun-

terparts, however, the economic difference is economically smaller, with such firms only adjusting

3.70% faster.

With out our initial findings in place, we address our main research objective by examining

how firms adjust their leverage over the course of the business cycle and how the role of the

business cycle effects the adjustment speeds of firms facing opposing firm-specific adjustment

costs. We document that the average Indian listed firm to adjust quicker in periods of high

GDP growth (29.80%) relative to low GDP growth (22.90%) supporting the pro-cyclical view

that more prosperous macroeconomic conditions help to alleviate market frictions corresponding

with adjustment costs. In fact, the effect of macroeconomic performance is close to twice the

4% difference reported by Cook and Tang (2010) in the US, therefore, illustrating the greater

importance of macroeconomic performance in a developing market context. Next, by combining

67



firm-specific adjustment costs with the regime switching mechanism, we find that the measure

of absolute financing deficit displays little conditional sensitivity across macroeconomic regimes.

In contrast, our measures of the market-to-book ratio and profitability provide economically the

most distinctive results. We report that firms in the highest quartile of the market-to-book ratio

and profitability adjust at 43.60% and 41.40% in high growth periods relative to 32.40% and

27.20% in low periods, respectively. Accordingly, these findings suggest the adverse selection

costs for such firms, i.e. the cost of issuing (retiring) securities and the relative cost of internal

and external finance, decreases the most in periods of economic upturn. Overall, the results

presented in this chapter prove that, on average, both cross-sectional heterogeneity in firm-

specific characteristics and time-series variation in macroeconomic performance matters for the

capital structure adjustment process of Indian listed firms. More precisely, the impact of such

macroeconomic shocks are asymmetrically transmitted across firms with the SOA proving pro-

cyclical, thus, supporting the work of Cook and Tang (2010), Dang et al. (2014) and Drobetz

et al. (2015) and more generally the dynamic trade-off theory.

Based on the analysis undertaken in this chapter, we make two important contributions to the

literature. First, our study provides the first evidence of firm-specific adjustment asymmetries

for Indian listed firms over the business cycle2. At a broader level, the literature on hetero-

geneous adjustment speeds has predominantly focused on either firm-specific characteristics or

macroeconomic conditions, however, it has more widely neglected the role of both factors in

conjunction with one another. Therefore, this chapter contributes to the recent work of Dang

et al. (2014) and Halling et al. (2016) by assessing both sources of adjustment cost heterogeneity

simultaneously. Our second contribution is methodological and manifests itself in two distinct

ways. Unlike the proposed approach of Dang et al. (2014), our empirical approach allows for

single-step estimation of firm-specific adjustment costs over opposing macroeconomic regimes

and is therefore free of the generated regressors problem and associated complexities of accurate

second-stage inference. Furthermore, this chapter accounts for the recent econometric advance-

ments in dynamic panel data models by applying the DPF estimator of Elsas and Florysiak

(2015). In doing so, we account for the fractional nature of the dependent variable and mechan-

ical mean reversion. Our estimation approach therefore provides the least biased estimates of

the autoregressive coefficient and the most accurate estimates of the true SOA. Consequently,

our documentation of adjustment speed heterogeneity can be considered more precise than the

2Note: While the recent work of Bandyopadhyay and Barua (2016) examines the direct effect of the business
cycle on the level of corporate leverage, we are, to the best of our knowledge, the first to examine the adjustment
of Indian firms’ corporate leverage over the course of the business cycle.
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biased approaches previous employed by Fama and French (2002), Flannery and Rangan (2006),

Kayhan and Titman (2007), Dang et al. (2012), Dang et al. (2014), Halling et al. (2016) and

Baum et al. (2017).

The remainder of the chapter is structured as follows. Section 3.2 provides a brief review of

relevant literature. Section 3.3 details our extension of the dynamic partial adjustment model

and model predictions. Section 3.4 introduces our dataset and provides summary statistics.

Section 3.5 reports our empirical findings. Section 3.6 documents our robustness analysis and

Section 3.7 concludes.

3.2 Related Literature

The dynamics of corporate leverage have been a central issue in the corporate finance literature

for more than half a century. In the presence of capital market frictions and imperfections three

predominate theories have come to light, namely, the trade-off theory, the pecking order theory

and the market timing theory. The trade-off theory is premised on the notion of an optimal

capital structure, wherein managers look balance the costs and benefits of debt and equity. For

example, managers often look to balance the tax benefits of debt against the dead weight cost

of bankruptcy resulting in what is often refereed to as the tax-bankruptcy trade-off. In contrast,

neither the pecking order or the market timing theory advocate the notion of an optimal capital

structure. The former predicts a firms capital structure reflects asymmetric information between

firms and financial institutions (Jensen, 1986) where the latter suggests a firms corporate leverage

is nothing more than the historic sum of opportunistic managerial dealings in capital markets

(Baker and Wurgler, 2002)3.

In order to find a winner in this horse race, early empirical literature contested the existence

of an optimal capital structure. Bradley et al. (1984), Titman and Wessels (1988) and Rajan and

Zingales (1995), to name but a few, provided empirical evidence to suggest firms indeed pursue

an optimal capital structure and later survey evidence by Graham and Harvey (2001) in the US

helped to validate this claim, with more than 80% of firms in their sample agreeing that they

actively target an optimal leverage. Similar anecdotal evidence has also been documented in the

UK, the Netherlands, Germany, and France (e.g. Brounen et al. 2006).

Accepting the premise that firms hold optimal targets, a large body of literature has investi-

gated the dynamic trade-off theory by examining how quickly firms adjust towards their target

3See Frank and Goyal (2009) for an in-depth review of capital structure theory.
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leverage in the event of deviation. In the US, Fama and French (2002) found debt-ratios to

adjust slowly over time reporting a SOA of 10% per annum. In contrast, Flannery and Rangan

(2006) for a similar sample documented the SOA to be closer to 34% while the cross-country

comparison of Antoniou et al. (2008) report reasonably fast adjustment speeds in the US (32%),

the UK (32%), and France (39%) yet slower speeds in Germany (24%) and Japan (11%)4. De-

spite the collective contributions of the aforementioned studies, they largely failed to consider

two important empirical issues, that is, estimator choice and heterogeneity in adjustment costs.

Subsequently, the most recent research has divided into two strands in order to address these

two empirical affairs.

The first strand of literature has investigated the economic importance of estimator choice.

As explicitly examined in Chapter 2, incorrect estimation of dynamic panel data models can

give rise to inaccurate estimates of the autoregressive coefficient and therefore spurious rates of

adjustment. Accordingly, it is clear from the above studies - which all adopt similar US samples

- that the implied SOA is largely subject to the estimation procedure employed. Consequently,

the recent work of Flannery and Hankins (2013), Dang et al. (2015), Elsas and Florysiak (2015)

and Zhou et al. (2016) have all investigated how to most accurately estimate the true SOA in

short dynamic panels with unobserved time-invariant individual (firm) effects.

The second and more prominent strand of literature has examined conditional heterogeneity

in adjustment speeds by taking a more complementary perspective towards capital structure

theories (e.g., Fama and French 2005 and Barclay and Smith 2005). In accordance with the

dynamic trade-off theory, the SOA is economically meaningful reflecting the associated costs of

adjustment. However, the incorporation of the traditional dynamic partial adjustment approach

implies an unconditional and therefore homogeneous rate of adjustment for all firms in the

sample; yet, in many cases, firms face a gamut of distinct market frictions, imperfections and

constraints resulting in a unique mix of adjustment costs and consequently different pathways

towards target leverage (Fischer et al., 1989). Subsequently, the recent literature has investigated

the determinants of adjustment speeds by approximating adjustment costs by firm-specific and

macroeconomic characteristics in line with the pecking order and/or the market timing theory.

At the firm level, Byoun (2008) and Faulkender et al. (2012) illustrate how a companies

financial status has a first order effect on the SOA, with Faulkender et al. (2012) showing that

firms with the greatest financing imbalance, either deficit or surplus, adjust quickest due to

4See Appendix Table for a survey of adjustment speeds detailing sample information, the implied SOA and
estimation method(s).
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a greater desire and lower costs of readjustment. Moreover, Elsas and Florysiak (2015) and

Wojewodzki et al. (2018) document a non-monotonic relationship between credit ratings and the

SOA, with highly rated firms facing the lowest costs of adjustment while those with the lowest

ratings exerting the greatest financial distress costs. Larger firms generally adjust slower due to

lower costs of deviation, while firms with substantial investment opportunities often adjust their

capital structure mix to ensure the pursuit of profitable investments opportunities (Elsas and

Florysiak 2011; Dang et al. 2014). Furthermore, firms with higher profitability levels and greater

financial flexibility adjust their capital structure more frequently (Dang et al., 2012) whereas

firms with a history of debt-covenant violation often experience greater adjustment costs and in

turn, slower speeds of adjustment (Devos et al., 2017). Overall, it is said that well governed firms

adjust quicker than their poorly governed counterparts (Chang et al. 2014; Liao et al. 2015).

At the macroeconomic level, both time-invariant and time-variant factors have been to found

to have a pronounced effect on a firms leverage and re-balancing dynamics. Starting with the

former, Antoniou et al. (2008) suggests firms situated in market-based economies adjust quicker

than their bank-based counterparts due to better functioning capital markets and more stringent

debt repayments systems. Accordingly, the underlying institutional origins of countries and their

legal and financial traditions have a significant effect on how and also the speed in which firms re-

balance their capital structure (Öztekin and Flannery 2012; Öztekin 2015). With regards to time-

variant factors, Cook and Tang (2010) document the importance of time-series variation in GDP

growth, term spread, default spread and dividend yield; with more prosperous macroeconomic

conditions in the US resulting in a reduction in market frictions, lower adjustment costs and

as a result, faster speeds of adjustment. Analogously, Dang et al. (2014) and Ebrahim et al.

(2014) using sub-samples report faster speeds of adjustment in the USA and Malaysia pre-crisis

in comparison to crisis/post-crisis periods, respectively. However, in contrast, the recent work

of Halling et al. (2016) finds leverage targets to develop counter-cyclically, with only a small

proportion of firms reporting pro-cyclical behaviour.

All in all, it is clear from the above discussion, if one is able to accurately estimate the true

SOA, that both cross-sectional heterogeneity and time-series variation in macroeconomic perfor-

mance plays a pivotal role in the way firms re-balance their capital structure to return to their

optimal leverage. Nonetheless, the manner in which macroeconomic factors impact the speed of

adjustment is far from conclusive. In the next section we introduce how we adapt the traditional

dynamic partial adjustment model to account for both firm-specific and macroeconomic induced

adjustment costs.
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3.3 Research Design

In this section we present our empirical research design. In Section 3.3.1 we outline the model

specifications employed in this chapter. In Section 3.3.2 we discuss the predictions for our

dynamic partial adjustment model and finally in Section 3.3.3 we debate the merits and short

comings of estimation procedures and discuss potential endogeneity concerns.

3.3.1 Dynamic Partial Adjustment Model

The dynamic trade-off theory predicts that the existence of transaction costs, taxation and

information asymmetries results in firms being unable to adjustment immediately to their optimal

target leverage. In order to evaluate such phenomena we employ a dynamic partial adjustment

model. Following the likes of Flannery and Rangan (2006), Antoniou et al. (2008) and Huang

and Ritter (2009), the conventional dynamic panel partial adjustment model for a firms’ market

debt ratio (hereafter, MDR) can be specified as follows5:

`i,t − `i,t−1 = ψ(`∗it − `i,t−1) + υit (3.1)

where `i,t and `∗i,t denote the actual (observed) and target (unobserved) MDR of firm i at time t

and υi,t is a composite error component such that υi,t = ηi+ηt+εi,t, where ηi is the firm-specific

effect, ηt is the time-specific effect and εi,t is the idiosyncratic error term with zero mean and

constant variance. Accordingly in equation (3.1), firms attempt to adjust towards their optimal

preference due to the benefits associated with being located at the target level. The SOA ψ

approximates the adjustment rate from the current position to the optimal target. An estimate

of ψ̂ = 0 reflects zero SOA and thus no adjustment towards an optimal target. Alternatively,

an estimate of ψ̂ = 1 implies an immediate adjustment from the firms current MDR to their

optimal target.

The main challenge faced to the researcher is that the target MDR, `∗i,t, is not directly

observed. To overcome this issue the literature has advocated two approaches. First, target

MDR can be approximated by mean or moving average values. However, it is strenuous to claim

that the target MDR is either constant over time or a sole product of historic values (Shyam-

Sunder and Myers, 1999). The second, and more preferable approach, is that target leverage can

5Previous empirical research has considered both market and book equity ratios to examine the capital
structure adjustment process (e.g. Lemmon et al. 2008 and Brav 2009). However, estimates corresponding to the
associated ratios can differ widely (Frank and Goyal, 2009). Welch (2004) argued that the book value of equity is
largely a plug number used to balance the books. Furthermore, book values can be considered backwards looking
and equity values can even be negative for ill managed firms. As a result, Flannery and Rangan (2006) states
that on the whole, the finance literature tends to play down the relevance of book debt ratios. Accordingly, in
this chapter we focus on the MDR.
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be approximated by a unique mix of deterministic firm-specific characteristics (Xi,t) as shown

below:

`∗i,t = Ω′Xi,t (3.2)

where Xi,t represents a kx1 vector of explanatory factors determining target MDR and Ω

denotes the associated coefficients. Specifically, in this chapter we employ twelve firm-specific

controls. Drawing from Flannery and Rangan (2006), Huang and Ritter (2009) and Elsas and

Florysiak (2015) we include: profitability, the market-to-book ratio, non-debt tax shields, firm

size, asset tangibility, an R&D expenditure indicator and industry medium MDR. In addition,

we also control for the direct effect of our remaining measure of adjustment speed heterogeneity,

absolute financing deficit, as well as sales growth. Finally, we include a dividend payout indicator

to account for adjacent internal governance mechanisms and import and export intensity to

control for international exposure.

The pecking order theory advocates that highly profitable firms often exhaust internal funds

then the external finance channels of debt and lastly equity. Comparatively, the static trade-off

theory proposes a positive relationship due to the tax benefits of debt, however, the dynamic

trade-off theory suggests firms rarely accumulate continuous profits (Strebulaev, 2007). Taken

together, profitability often predicts a negative empirical relationship. Similarly, growth oppor-

tunities and non-debt tax shield also predict a negative relationship as firms with high growth

opportunities often want to protect against debt-agency conflicts and assure the security of fu-

ture investment opportunities; while non-debt related tax shields are a natural substitute to the

deductible expenses of debt (Flannery and Rangan, 2006).

Size and asset tangibility are often predicted to be positively associated with MDR as larger

more tangible firms are usually more transparent, face fewer adjustment costs and have larger

debt capacity. In comparison, firms with R&D expenditure are more likely to have greater

intangible assets and are more dependent on equity financing, predicting a negative relationship

(Öztekin, 2015). Frank and Goyal (2009) suggest industry medium MDR controls for several

factors, including uniqueness, regulations and stock variance. Thus, firms actively converge to

industry mean/medium leverage ratio and therefore the general consensus is industry medium

MDR is positively associated with a firms MDR.

The effect of absolute financing deficit on target leverage is inherently ambiguous as firms

in surplus (deficit) are less (more) likely to require external funds, thus predicting a negative

(positive) association with MDR. In contrast, the relationship between sales growth and dividend
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payout and MDR is somewhat more clear cut. Both variables are expected to be negatively corre-

lated with MDR with dividend payout’s naturally operating as an alternative internal governance

mechanism that alleviates free cash-flow concerns (Frank and Goyal, 2009). The prediction of

export intensity is mixed, on one hand, traditional theory posits that multinational firms are

large and diversified and should have higher debt capacity. However, debt capacity of such firms

can be expected to be lower because of the additional risks of foreign operations (Aggarwal and

Kyaw, 2010). Furthermore, large multinational have been found adopt lower levels of long-term

debt, yet, higher level of short-term debt (Doukas and Pantzalis, 2003), thus, the overall effect of

export intensity and MDR is ambiguous. Finally, as illustrated in the recent work of Xu (2012),

import intensity is often correlated with lower marginal costs and subsequently higher profit

levels. Thus, similar to profitability, higher import intensity corresponds to lower debt levels.

Given equation (3.2) and the aforementioned controls, a two-stage approach is arguably the

most intuitive method for estimating the dynamic partial adjustment model in (3.1). However,

this approach is widely restricted by second stage inference problems (Pagan, 1984). Furthermore,

strict estimation of (3.2) would result in time-invariant structural coefficients (Ω), thus, implying

the long-run relationship between target MDR and its determinants are homogeneous and time

insensitive to changes in macroeconomic performance. According to Halling et al. (2016), this is

one of the major empirical issues that have been overlooked the literature, e.g., Fama and French

(2002), Flannery and Rangan (2006), Kayhan and Titman (2007), Byoun (2008), Faulkender

et al. (2012) and Baum et al. (2017), to name but a few. In an attempt to combat these

concerns, we first adopt an alternative one-stage approach, which involves substituting (3.2) into

(3.1) as follows:

`i,t = λ`i,t−1 + β′Xit + υi,t (3.3)

where λ = 1−ψ and β = ψΩ. Equation (3.3) can be considered the unconditional baseline partial

adjustment model allowing for simultaneous single-stage estimation of the SOA: ψ̂ = 1− λ̂ and

the long run parameter coefficients for target leverage: Ω̂ = β̂

1−λ̂
. While (3.3) avoids concerns of

valid second-stage inference, the unconditional specification still implies a constant and therefore

homogeneous SOA for all firms. However, as postulated earlier, firms are subject to a constitution

of internal and external factors that in turn regulate the rate at which they can adjust. To embody

this thinking, we first extend the traditional specification to allow for heterogeneous rates of

adjustment between firm-groups which we approximate by our three measures of adjustment

heterogeneity, namely, absolute financing deficit, the market-to-book ratio and profitability. We
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adapt equation (3.3) using a quartile dummy variable approach, as shown below:

`i,t = (λ+

4∑
j=2

ϕjZj,t−1)`i,t−1 + β′Xi,t + υi,t (3.4)

where Zj,t is an exogenous discrete variable that categories firms based on our three measures

of adjustment cost heterogeneity and the subscript j denotes the quartile group allocated to

each firm each year6. This conditional additive based approach therefore allows for ease of

comparison between firm-groups that may exhibit heterogeneous rates of adjustment. Next, we

further extend (3.4) to account for changes in macroeconomic performance. While credit channel

theory predicts that the behaviour of leverage is pro-cyclical as firms look to borrow less during

economic downturns (Bernanke and Gertler, 1989) similar to Cook and Tang (2010) and Dang

et al. (2014), recent findings have found it to be counter-cyclical (Halling et al., 2016). Thus,

to evaluate this behavior we extend (3.4) using a regime-switching approach, consisting of two

alternative regimes:

`i,t = [(λ+

4∑
j=2

ϕjZj,t−1)`i,t−1 + β′Xi,t]·RH + [(λ+

4∑
j=2

ϕjZj,t−1)`i,t−1 + β′Xi,t]·RL + υi,t (3.5)

where RH and RL represent binary classifications of high and low periods of GDP growth, which

we approximate via OCED recession indicators. We adopt the OECD business cycle indicators

for three reasons. First, GDP growth can be considered the widest macroeconomic indicator

as it resembles all developments in the economy. Second, changes in the business cycle/GDP

growth are arguably the most commonly used indicators in the macroeconomic heterogeneous

adjustment literature and therefore allows for ease of comparison (e.g. Cook and Tang 2010).

Finally, the phase average trend procedure used by the OECD to identify business cycles has been

shown to more accurately identify periods of peaks and troughs when compared to other popular

trend methods such as Hodrick–Prescott and Band-pass filters (Zarnowitz and Ozyildirim, 2006).

Subsequently, to summarize, Equation (3.5) can be considered our final adaption of the

traditional partial adjustment model in equation (3.1), of which there are a number of clear

advantages. First, the quartile-dummy variable extension allows for statistical inspection of

conditional firm-specific factors effecting the speed of adjustment. Second, the parameterization

of such conditional factors over two opposing regimes allow for the simultaneous estimation

and cohabitation of both conditional adjustment speeds. Thus, equation (3.5) allows one to

draw both economic and statistical inferences about firm-group adjustment asymmetries over

6We discuss in detail our predictions for our three measures of firm-specific adjustment costs in Section 3.3.2.
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the two regimes, which in turn, may foster different economic and statistical conclusions about

the rate and significance of adjustment speeds. Finally, (3.5) allows the long run coefficients to

vary across high and low growth periods in line with Halling et al. (2016), thus, capturing the

potential contrasting effects of opposing external market conditions.

3.3.2 Predictions of Heterogeneous Adjustment Speeds

The objective of this chapter is to not only evaluate how firm-specific adjustment costs and

variances in macroeconomic performance directly effect the SOA, but also, how macroeconomic

performance spills into to other channels, resulting in asymmetric effects of firm-specific adjust-

ment costs over the business cycle. In this section we outline the model predictions for our

empirical framework detailed previously.

To recapitulate, the dynamic trade-off theory suggests when firms protrude from their target,

managers must consider two types of costs i) the explicit cost of issuing and/or retiring securities

(i.e. debt and equity) and ii) the cost of target deviation (i.e. the loss of not operating at their

optimal capital structure). In this study, we propose three measures of time-variant firm-specific

adjustment costs, namely, absolute financing deficit, the market-to-book ratio and profitability.

Starting with our first measure, Faulkender et al. (2012) suggests that a firms absolute financing

deficit (i.e. operating income after taxes, interest and expected investment) has a first order

effect on the SOA. Firms with greater absolute distance from required cash flow face lower costs

of adjustment due to the size of adjustment required and the greater benefits received from re-

optimization. Subsequently, firms in the upper-quartile of absolute financial deficit are predicted

to adjust quicker than their better balanced counterparts.

Our prediction for firms with high market-to-book ratios is also positive. While on one hand,

firms with low market-to-book ratios can be larger, more tangible with greater cash flow, this is

not systematically always the case. More generally, the literature (e.g., Elsas and Florysiak 2011;

Dang et al. 2012 and Dang et al. 2014) suggests firms with high market-to-book ratio’s rely more

heavily on external financing, either debt or equity, to pursue positive investment opportunities.

In addition, these firms often look to issue new equity when market-to-book values are considered

high to take advantage of the high firm valuation (Baker and Wurgler, 2002). Taken together,

the greater involvement of external finance means high growth firms adjust their leverage mix

more frequently allowing for quicker adjustment to their desired target (Drobetz and Wanzenried,

2006). Thus, we expect firms with in the highest quartile of the market-to-book ratio to adjust

the quickest.
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For our measure of profitability the pecking order theory would suggest that due to the

additional costs associated to external financing, more profitable, less constrained firms, will

naturally prefer the exhaust internal funds, then debt and finally equity (Myers and Majluf,

1984). Thus, the lack dependence on external financing would suggest that more profitable firms

adjust slower. In contrast, more profitable firms with an excess of retained earnings, are more

likely to manage their capital structure to balance the benefits of debt and equity. Equally, more

profitable firms also face greater incentives to increase debt due to cash flow agency problems

(Jensen, 1986) and are also less financial constrained meaning they are able to issue securities

at a lower cost. Subsequently, more profitable firms are able to reap the rewards of financial

flexibility and adjust their capital structure mix in order to maximize the benefits of optimal

target leverage. Thus, in line with the recent findings of Dang et al. (2012) we predict a positive

association between profitability and the SOA.

Finally, with regards to the business cycle, macroeconomic variation can effect the SOA

through a number of direct and indirect channels. According to Hackbarth et al. (2006), Chen

(2010) and Bhamra et al. (2010) firms restructuring thresholds are lower in more prosperous

macroeconomic conditions. Specifically, macroeconomic performance directly effects firms lever-

age ratios via supply side effects as transaction costs vary over the course of the business cycle

and also vary in magnitude for different types of external financing channels (i.e. debt and

equity). For example, the provisions of external debt is largely conditional on financial institu-

tions, thus, macroeconomics shocks associated to such institutions capitalisation is likely to have

a greater impact on the transaction costs of debt. In comparison, the liquidity of secondary mar-

kets has also been shown to vary over time (e.g Duffie et al. 2007), thus, macroeconomic shocks

effecting consumer confidence and firms market valuations is likely to result in more expensive

debt and equity costs. Taken together, contrary to the work of Halling et al. (2016), we predict

that macroeconomic performance directly effects the SOA, with more prosperous macroeconomic

conditions facilitating faster speeds of adjustment.

While time-series variation in macroeconomic performance may directly effects the SOA via

supply side channels, it may also manifests itself indirectly through our firm-specific measures.

Naturally, one can consider firms profit levels to be higher in more prosperous macroeconomic

conditions, thus, resulting in even greater financial flexibility and desire to operate at an optimal

capital structure. Furthermore, in line with market timing theory, firms look to exploit misvalu-

ations by timing their equity and debt issues, that is, issuing equity when stocks are overvalued

and debt when equity valuations and interest rates are low. Thus, if firms market deviations
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from fundamental values are pro-cyclical (i.e. higher market-to-book levels in growth periods)

then one would expect more opportunistic managerial behaviour in equity markets and greater

leverage adjustment. In light of the presented arguments, we predict high growth periods to

correlated with high adjustment speeds, and that indirectly, the extent of adjustment between

firm-group’s may also be greater in high growth periods.

3.3.3 Empirical Implementation and Endogeneity Concerns

The empirical implementation of dynamic partial adjustment models pose a number of practical

and econometric challenges. For instance, the estimation of dynamic partial adjustment mod-

els require the inclusion of the lagged dependent variable in order to allow for the analysis of

corporate financial policies over time. Furthermore, financial data on firms is regularly unbal-

anced, especially in emerging market contexts, and, more often then not, the corporate financial

policies of interest, in our case, the MDR, is fractional. To complicate the estimation proce-

dure further, it is possible that we also face a number of endogeneity concerns that may induce

bias in our forthcoming estimates and ultimately influence our interpretation of true the SOA.

Subsequently, prior to discussing the competing merits of opposing estimation procedures, we

first outline how we address such potential endogeneity concerns before detailing how alternative

estimators accommodate for the econometric challenges we face going forward.

It is to be expected that there are a number of possible observable and unobservable/hard

to measure factors that influence a firms capital structure mix which, if omitted, are likely

induce estimation bias. As outlined in the Section 3.3.1, to alleviate such concerns, we propose

a large set of conditional variables that are regarded to be the most significant and robust in

determining a firms capital structure (Frank and Goyal 2009 and Öztekin 2015). Moreover,

given the emerging market context of India, we also propose the use of an additional set of

observable explanatory variables in order to account for foreign market engagement (import and

export intensity) and demand side changes (sales growth). With regards to unobservable/hard

to measure factors, Lemmon et al. (2008) shows that a significant proportion of the variance in

firms’ capital structure (approximately 60%) is attributable to unobserved firm-specific factors.

Moreover, given India’s emerging market context, and the large number of capital market and

regulatory reforms over our sample period, it is possible that such reforms have had, at least in

principle, nuanced effects on firms’ information environment and transaction costs. Subsequently,

given such observations, in our model specification in Section 3.3.1 we propose the use of both

firm- and year-specific fixed-effects to help alleviate such omitted variable concerns. With regards
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to other endogeneity concerns, such as measurement error and reverse causality, it may indeed be

the case that measurement error could generate endogeneity bias in our estimates, with financial

reporting errors being common in such large datasets, especially in emerging market data, where

typically accounting practices are considered less rigorous. To address both these concerns we

adopt a strict set of data cleaning rules - outlined in the forthcoming section - and, as specified

in equation 3.3, the inclusion of the autorgressive parameter, at least in part, helps to mitigate

causality concerns (Leszczensky and Wolbring, 2018).

Given the above practical and econometric concerns, the corporate finance literature has

adopted a number of different econometric techniques to estimate the speed in which firms adjust

towards their optimal capital structure. For example, the OLS (Fama and French, 2002), the

FE (Flannery and Rangan, 2006), the SYS-FMM (Lemmon et al., 2008), the LD4 (Huang and

Ritter, 2009) and the LSDVC estimator (Öztekin and Flannery, 2012) have all been employed

by previous studies7. However, as evidence in Chapter 2, not all estimation procedures are able

to accommodate for the econometric issues outlined above, and thus, often fail to accurately

estimate the true SOA. For instance, it is well known that the OLS estimator fails to account

for the time-invariant differences between firms (firm-fixed effects), thus resulting in omitted

variable bias causing upward bias in the autoregressive coefficient and the underestimation of

the SOA. To ameliorate such effects, the corporate finance literature has adopted more advanced

estimation methods, of which, as evidenced in Chapter 2, the LSDVC and QML estimators prove

to be the most reliable when the dependent variable of interest is continuous. However, one

practical issue that complicates matters further, is that, with regards to firms’ capital structure,

the dependent variable of interest, the MDR, is fractional, thus, many of the estimators listed

above are inadequate as the do not correctly accommodate for the distribution of the dependent

variable (Dang et al. 2015 and Elsas and Florysiak 2015).

A natural candidate to address the fractional nature of the dependent variable is the pooled

Tobit estimator, however, similar the OLS estimator, such maximum likelihood procedure fails

to account for the time-invariant differences between firms and, due to the incidental parameter

problem, is not able to accommodate for such omitted factors without inducing significant bias

(Baltagi, 2008). Papke and Wooldridge (2008) develop a semi-parametric approach to circumvent

such constraints, thus allowing unobserved firm-specific heterogeneity, however, such estimation

procedure doesn’t consider specifications that include a lagged dependent variable. In contrast,

7Note: See Table A.3.2 for a more complete list of the estimation procedures used in the capital structure
literature.
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Loudermilk (2007) propose a doubly censored type one tobit model with a lagged dependent

variable which controls conditionally for unobserved heterogeneity. Yet, such conditional speci-

fication relies on all exogenous variables from all time periods to approximate the time-invariant

parameter, therefore, requiring balanced panel data and rendering it not suitable to the corpo-

rate finance setting, where entry and exit to the sample is frequent and often partially related

to firm’s capital structure. Consequently, the main estimator of choice that we embody in this

chapter is the DPF estimator chapter of Elsas and Florysiak (2011) and Elsas and Florysiak

(2015). The DPF estimator, similar to Loudermilk (2007), models conditionally for unobserved

heterogeneity, however, draws from the Mundlak (1978) thus allowing for the unbalanced panel

setting ever frequent in the corporate finance setting. Moreover, as evidence in Chapter 2 as

well as in Dang et al. (2015) and Elsas and Florysiak (2015), the DPF estimator, in comparison

to the aforementioned estimators, most accurately estimates the autoregressive coefficient thus

providing the most accurate estimate of the true speed of adjustment. Nevertheless, in what fol-

lows, we examine empirically the SOA via a range of dynamic panel estimators and diagnostics

tests in section 3.5.1 in order ensure the most accurate estimation of the true SOA. Thus, we

shall return to this conversion later.

3.4 Data and Summary Statistics

3.4.1 Data

The dataset used in this chapter is obtained from Prowess, a database maintained by the Centre

for Monitoring the Indian Economy (CMIE). Prowess reports firm-level financial, market and

governance variables for both listed and unlisted Indian companies in a standardized format,

allowing for equal comparison. Regarding the sample data employed in this study, we focus

specifically on listed firms with the fiscal year ending March 31st. We therefore excluded all

firms with alternative year end dates and removed all biannual reportings. In addition, following

the literature (e.g. Flannery and Rangan 2006; Antoniou et al. 2008; Dang et al. 2012) we applied

a number of standard data restrictions. First, we excluded all firms operating in financial (NIC64-

NIC66) and utility sectors (NIC35-NIC39) since these industries are largely subject to alternative

accounting standards. Second, given the dynamic panel data model proposed, we removed all

firms with less than three consecutive observations to ensure a panel data structure. Thereafter,

we removed all observations that have missing data and winsorized all continuous explanatory

variables at the 1st and 99th percentiles to mitigate the effect of outliers and eradicate errors in
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the data. We excluded the MDR in this final step due to the use of the DPF estimator in later

sections (Elsas and Florysiak 2011; Elsas and Florysiak 2015).

Our final sample coverage is from 1997-2017 and consists of 2,650 firms with a total of

30,313 firm-year observations, approximating an average panel length of 11.4 years per firm.

Further details regarding the structure of our unbalanced panel and the distribution of firm–year

observations can be found in appendix Table A.3.2 and Table A.3.3, respectively.

3.4.2 Summary Statistics and Univariate Tests

Table 3.1 reports summary statistics and contains mean, standard deviation, minimum, 25th

percentile, median, 75th percentile and maximum values of the variables used in the our estima-

tion procedure. We find the median leverage, 0.409, to be below the mean leverage, 0.423, and

a relatively large cross-sectional differences between the 25th percentile and the 75th percentile.

Furthermore, we note that MDR is fractional of which 1,939 observations are left censored (zero)

and only 9 observations are right censored (one). In terms of other summary statistics, generally

speaking the average firm-year reported an 8.8% profit and 8.7% sales growth. In terms of asset

structure, the average firm-year observation consists of roughly 32% tangible assets whereas only

17.7% of the overall sample observations engage in R&D activities. In contrast, we find 56% of

the firm-year observations in our sample pay dividends, while firms generally import roughly 12%

of raw materials used for production, with the percentage of revenues generated through exports

being slightly higher. Table 3.2 presents the correlation matrix of the variables used in the our

estimation procedure. In terms of MDR and its determinants, all variables bar non-debt tax

shields display correlations reflective of their predicted signs. Regarding the cross-comparison

of explanatory variables, only non-debt tax shields displays a potentially concerning correlation

with asset tangibility. However, unreported results show the value of the variance impact factor

for these two variables to be smaller than 2, thus, it is unlikely that we will find multicollinearity

problems between these variables8

Prior to our main analysis, we dig deeper into the distribution of our data and use univariate

mean tests to understand the capital structure behaviour of firms across our three measures

of firm-specific adjustment heterogeneity as well as over opposing macroeconomic regimes9. In

Table 3.3 we report the mean debt and equity behaviour of firms, conditional on the quartile

8Note: In addition to multicollinearity, we address potential nonstationarity concerns by running a series of
panel unit-root tests. In appendix Table A.3.5, we report the results from Fisher-type Augmented Dickey-Fuller
and Phillips-Perron tests for all continuous variables. We evidence that nonstationarity is not a concern in our
panel-data series with all but one test rejecting the null hypothesis at the 1% level.

9Note: Our general findings are robust to additional equality of median test

81



rankings of our three measures of firm-specific adjustment heterogeneity. At a broad level, we

find firms actively manage debt more than equity, with changes to debt occurring in more than

90% of observations across all groups. More precisely, we find firms with the highest financial

imbalance have lower net debt levels than their counterparts, this is largely down to similar

levels of debt increases and decreases. We find firms with the highest market-to-book ratios

display the lowest active debt behaviour across all sub-groups, with relatively low debt increases.

Comparatively, such firms display the highest proportion of active equity behaviour, of which,

roughly one third of the observations report equity issues and 2.3% report buy-backs. Note the

difference in means between firms with the lowest market-to-book ratio (Q1) and the highest (Q4)

is statistically significant at the 1% level, suggesting that the latter more frequently issue equity

to take advantage of high market values. Finally, we report firms with the highest profitability

levels have the lowest net debt issues across all groups. Nonetheless, they maintain similar active

debt policies as other firm-groups. Interestingly, we find highly profitable firms increase and

decrease debt in similar frequencies, 44.9% and 46.9%, respectively. This asymmetric behaviour

across firm groups alludes to our earlier prediction that firms with high financial flexibility benefit

from being able to adjust their leverage mix freely.

In Table 3.4 we report similar mean statistics over time from 1997-2017, here we also detail

domestic GDP growth and the OCED regime indicators of high and low macroeconomic growth10.

Generally speaking, we observe the level of debt increases to be counter-cyclical with close to

70% of firms increasing their debt around the 1997/1998 Asian crisis. In comparison, roughly

one third of firms issue equity in the build up to the 2008/2009 financial crisis. Overall, the mean

tests from the two opposing regimes indicate firms generally have lower MDR’s in high growth

periods, consistent with the recent findings of Bandyopadhyay and Barua (2016).

Finally, in Table 3.5 we report the mean statistics and univariate difference tests for group

affiliated and private listed firms and in Figure 3.1 we document the distribution of MDR across

both groups from 1997-2017 via box plots. In forthcoming sections we use the structural differ-

ences between group-affiliated and private listed firms as an extended form of empirical analysis.

Group affiliated firms operate as legal entities and hold similar characteristics as both conglom-

erates and LBO associations. While on one hand, group affiliated firms can mitigate issues of

market failure by utilizing internal group credit channels, on the other hand, group affiliated

firms are often owned by one dominant owner and are prevalent to agency issues (Khanna and

Palepu, 2000). Apart from sales growth, we find that both MDR and its determinants display a

10Note: Further information can be found in notes of Table 3.4.
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mean statistical difference across the two groups. Notably, group affiliated firms are statistically

larger and have higher leverage ratio’s than their private listed counterparts, yet, on average, also

have greater growth opportunities. Such summary’s are not to dissimilar to Khanna and Palepu

(2000), who found well diversified groups have on average higher growth opportunities. In Panel

B of Table 3.5 we find the difference in means between group-affiliated and private listed firms

to only persist up until 2005, this finding is in line with Bhaumik et al. (2012) who suggested

business groups helped alleviate credit constraints for their member firms, but the ability to do

so has declined over time.
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Table 3.1: Summary Statistics

Observations Mean S.D. Min Q1 Median Q3 Max

1. Market Debt Ratio (MDR) 30,313 0.423 0.308 0.000 0.128 0.409 0.693 1.000

2. Profitability 30,313 0.088 0.092 -0.349 0.041 0.085 0.132 0.496

3. Market-to-Book 30,313 1.086 1.131 0.082 0.529 0.734 1.156 12.942

4. Non-Debt Tax Shields 30,313 0.030 0.022 0.000 0.015 0.026 0.040 0.158

5. Size 30,313 7.543 1.750 3.431 6.322 7.462 8.677 13.154

6. Asset Tangibility 30,313 0.323 0.198 0.002 0.166 0.304 0.460 0.878

7. R&D Expenditure Indicator 30,313 0.175 0.380 0.000 0.000 0.000 0.000 1.000

8. Industry Medium MDR 30,313 0.411 0.188 0.005 0.301 0.411 0.538 0.850

9. Absolute Financing Deficit 30,313 0.076 0.075 0.001 0.026 0.056 0.100 0.541

10. Sales Growth 30,313 0.087 0.416 -2.172 -0.036 0.100 0.238 2.604

11. Dividend Payout Indicator 30,313 0.535 0.499 0.000 0.000 1.000 1.000 1.000

12. Export Intensity 30,313 0.187 0.277 0.000 0.000 0.042 0.265 1.000

13. Import Intensity 30,313 0.133 0.230 0.000 0.000 0.180 1.000 1.000

Source: Prowess - Author’s own calculation.
Notes: This table reports the summary statistics for all main text variables. MDR is the sum of short-term and long-term
borrowing over the market value of equity plus the sum of short-term and long-term borrowing. Profitability is the ratio
of earnings after taxation as ratio of total asset. The market-to-book ratio is the market value of equity plus the sum of
short-term and long term borrowing over the book value of total assets. Non-Debt Tax Shields is the ratio of depreciation to
total assets. Size is the natural logarithm of total assets. Asset Tangibility is the ratio of fixed assets to total assets. R&D
expenditure Indicator is a binary variable that takes the value 1 if the firm reports R&D expenditures or otherwise 0. Industry
Medium MDR is industry median MDR calculated based on NIC industry classification. Absolute Financing Deficit is the
sum of operating income before depreciation [OIBD] less income taxes, less interest expense, less mean industry investment
(CAPEX) based on NIC industry classifications as a proportion of total assets (Faulkender et al., 2012). Sales Growth is the
natural logarithm of current sales revenue as a portion of the previous periods sales revenue. Dividend Payout Indicator is
a binary variable that takes the value 1 if the firm pays dividends or otherwise 0. Export Intensity is the sum foregin sales
revenue over total sales. Import Intensity is the sum of imported raw materials over total raw material costs. All variable
names, definitions and sources can be found in appendix Table A.3.1.
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Table 3.2: Correlation Matrix

1 2 3 4 5 6 7 8 9 10 11 12 13

1. Market Debt Ratio (MDR) 1.000

2. Profitability -0.333 1.000

3. Market-to-Book -0.372 0.238 1.000

4. Non-Debt Tax Shields 0.112 -0.058 0.050 1.000

5. Size 0.066 0.113 0.124 -0.104 1.000

6. Asset Tangibility 0.290 -0.099 -0.058 0.567 -0.041 1.000

7. R&D Expenditure Indicator -0.120 0.176 0.140 0.028 0.271 0.008 1.000

8. Industry Medium MDR 0.379 0.052 -0.230 0.083 -0.003 0.251 0.151 1.000

9. Absolute Financing Deficit -0.106 0.072 0.143 0.006 -0.142 -0.106 -0.058 -0.105 1.000

10. Sales Growth -0.119 0.282 0.098 -0.027 0.009 0.001 0.032 -0.001 0.020 1.000

11. Dividend Payout Indicator -0.268 0.469 0.121 -0.039 0.307 -0.052 0.246 0.101 -0.064 0.145 1.000

12. Export Intensity -0.064 0.103 0.046 0.015 0.041 -0.052 0.039 -0.072 0.003 0.033 0.089 1.000

13. Import Intensity 0.139 0.056 -0.053 0.078 0.097 0.131 0.111 0.234 -0.068 0.004 0.079 -0.074 1.000

Source: Prowess - Author’s own calculation.
Notes: This table reports the correlation matrix for all main text variables. MDR is the sum of short-term and long-term borrowing over the market value of
equity plus the sum of short-term and long-term borrowing. Profitability is the ratio of earnings after taxation as ratio of total asset. The market-to-book ratio
is the market value of equity plus the sum of short-term and long term borrowing over the book value of total assets. Non-Debt Tax Shields is the ratio of
depreciation to total assets. Size is the natural logarithm of total assets. Asset Tangibility is the ratio of fixed assets to total assets. R&D expenditure Indicator
is a binary variable that takes the value 1 if the firm reports R&D expenditures or otherwise 0. Industry Medium MDR is industry median MDR calculated based
on NIC industry classification. Absolute Financing Deficit is the sum of operating income before depreciation (OIBD) less income taxes, less interest expense, less
mean industry investment (CAPEX) based on NIC industry classifications as a proportion of total assets (Faulkender et al., 2012). Sales Growth is the natural
logarithm of current sales revenue as a portion of the previous periods sales revenue. Dividend Payout Indicator is a binary variable that takes the value 1 if the
firm pays dividends or otherwise 0. Export Intensity is the sum foregin sales revenue over total sales. Import Intensity is the sum of imported raw materials over
total raw material costs. All variable names, definitions and sources can be found in appendix Table A.4.1.
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Table 3.3: Mean Analysis of Debt and Equity Behaviour by Quartile Rankings

Quantile MDR Net Debt Issue Net Equity Issue Active Debt Debt Increase Debt Decrease Active Equity Equity Increase Equity Decrease

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Absolute Financing Deficit

Q1 0.453 0.025 0.011 0.959 0.599 0.359 0.237 0.213 0.024

Q2 0.441 0.024 0.013 0.949 0.573 0.376 0.242 0.220 0.022

Q3 0.427 0.024 0.015 0.943 0.559 0.383 0.243 0.221 0.021

Q4 0.369 0.016 0.030 0.937 0.506 0.430 0.286 0.265 0.022

Panel B: Absolute Financing Deficit Difference in Mean Test

Q4 vs Q1 −0.084∗∗∗ −0.009∗∗∗ 0.019∗∗∗ −0.022∗∗∗ −0.093∗∗∗ 0.071∗∗∗ 0.050∗∗∗ 0.052∗∗∗ −0.002

Panel C: Market-to-book

Q1 0.458 0.001 0.010 0.930 0.480 0.450 0.170 0.151 0.019

Q2 0.549 0.027 0.010 0.974 0.603 0.371 0.225 0.202 0.022

Q3 0.462 0.037 0.017 0.970 0.623 0.347 0.284 0.260 0.024

Q4 0.221 0.026 0.031 0.913 0.531 0.382 0.330 0.306 0.023

Panel D: Market-to-book Difference in Mean Test

Q4 vs Q1 −0.237∗∗∗ 0.025∗∗∗ 0.020∗∗∗ −0.017∗∗∗ 0.051∗∗∗ −0.068∗∗∗ 0.160∗∗∗ 0.155∗∗∗ 0.004∗

Panel E: Profitability

Q1 0.514 0.028 0.020 0.928 0.572 0.356 0.211 0.196 0.014

Q2 0.498 0.033 0.017 0.970 0.615 0.355 0.259 0.235 0.024

Q3 0.439 0.031 0.016 0.971 0.602 0.369 0.279 0.255 0.023

Q4 0.239 -0.002 0.016 0.918 0.449 0.469 0.260 0.233 0.027

Panel F: Profitability Difference in Mean Test

Q4 vs Q1 −0.275∗∗∗ −0.029∗∗∗ −0.004∗∗ −0.010∗∗∗ −0.124∗∗∗ 0.113∗∗∗ 0.049∗∗∗ 0.036∗∗∗ 0.013∗∗∗

Source: Prowess - Author’s own calculation.
Notes: This table reports mean statistics for debt and equity behaviour by quartile rankings conditional on our measures of firm-specific adjustment costs. Panel A reports
the mean statistics across quartiles of absolute financing deficit. Panel B reports the difference in mean values between column Q4 and Q1, where the corresponding asterisk
represent the p-value associated with the t-test for differences in means. Panel C reports the mean statistics across quartiles of The market-to-book ratio. Panel D reports
the difference in mean values between column Q4 and Q1, where the corresponding asterisk represent the p-value associated with the t-test for differences in means. Panel
E reports the mean statistics across quartiles of profitability. Panel F reports the difference in mean values between column Q4 and Q1, where the corresponding asterisk
represent the p-value associated with the t-test for differences in means. Absolute Financing Deficit is the sum of operating income before depreciation (OIBD) less income
taxes, less interest expense, less mean industry investment (CAPEX) based on NIC industry classifications as a proportion of total assets (Faulkender et al., 2012). The
market-to-book ratio is the market value of equity plus the sum of short-term and long term borrowing over the book value of total assets. Profitability is the ratio of
earnings after taxation as ratio of total asset. Column (1) reports mean MDR which is the sum of short-term and long-term borrowing over the market value of equity
plus the sum of short-term and long-term borrowing. Column (2) and (3) report net debt and equity issues where net debt is the first difference of total borrowing over
total assets and net equity issue is calculated as cash proceeds from share issues less cash outflows from stock redemption’s over total assets (Strebulaev and Yang, 2013).
Column (6) and (9) report active debt and equity which is the proportion of non-zero values in the numerator, of which debt and equity increases (column (7) and (10)) and
decreases (column (8) and (11)) denote the proportion of positive and negative values in the numerator, respectively. * indicates significance at the 10% level, ** indicates
significance at the 5% level and *** indicates significance at the 1% level . All variable names, definitions and sources can be found in appendix Table A.4.1.
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Table 3.4: Distribution of Mean Debt and Equity Behaviour from 1997 to 2017

Year GDP Regime Market Debt Net Debt Net Equity Active Debt Debt Active Equity Equity

Growth Classification Ratio Issue Issue Debt Increase Decrease Equity Increase Decrease

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A: Mean Statistics by Year

1997 4.72 Low 0.530 0.045 0.016 0.990 0.676 0.314 0.320 0.314 0.006

1998 4.83 Low 0.596 0.050 0.015 0.988 0.687 0.301 0.298 0.294 0.004

1999 6.06 High 0.571 0.024 0.012 0.987 0.595 0.392 0.248 0.247 0.001

2000 7.58 High 0.516 0.017 0.024 0.971 0.571 0.400 0.283 0.279 0.004

2001 2.05 Low 0.538 0.019 0.029 0.960 0.560 0.400 0.307 0.304 0.004

2002 6.42 Low 0.545 0.004 0.010 0.943 0.472 0.471 0.225 0.221 0.003

2003 3.55 Low 0.560 0.009 0.008 0.955 0.486 0.469 0.214 0.212 0.002

2004 8.81 High 0.497 0.010 0.010 0.950 0.488 0.462 0.195 0.190 0.005

2005 8.46 High 0.372 0.021 0.012 0.954 0.544 0.410 0.206 0.189 0.017

2006 9.59 High 0.327 0.036 0.037 0.959 0.586 0.372 0.329 0.301 0.027

2007 9.24 High 0.349 0.051 0.036 0.951 0.640 0.310 0.333 0.303 0.030

2008 8.30 Low 0.352 0.045 0.036 0.949 0.639 0.309 0.341 0.311 0.030

2009 0.19 Low 0.491 0.031 0.015 0.949 0.597 0.352 0.259 0.213 0.046

2010 13.08 High 0.364 0.016 0.020 0.944 0.535 0.410 0.283 0.246 0.037

2011 9.51 High 0.383 0.032 0.023 0.946 0.627 0.319 0.293 0.261 0.032

2012 4.22 Low 0.422 0.029 0.013 0.940 0.606 0.334 0.232 0.203 0.030

2013 5.74 Low 0.453 0.020 0.010 0.939 0.568 0.371 0.220 0.194 0.026

2014 6.36 High 0.447 0.014 0.008 0.931 0.532 0.399 0.208 0.178 0.031

2015 7.37 High 0.382 0.006 0.010 0.926 0.487 0.439 0.206 0.187 0.019

2016 8.61 High 0.362 0.002 0.006 0.925 0.469 0.456 0.173 0.159 0.014

2017 5.82 Low 0.310 0.002 0.007 0.921 0.446 0.475 0.178 0.155 0.022

Panel B: Regime Difference in Mean Test

Full Sample 0.446 0.024 0.017 0.947 0.560 0.387 0.252 0.230 0.022

Low Regime 0.451 0.025 0.016 0.947 0.571 0.377 0.253 0.230 0.023

High Regime 0.402 0.021 0.018 0.946 0.551 0.395 0.251 0.229 0.022

High Regime vs Low Regime −0.049∗∗∗ −0.004∗∗∗ 0.002∗∗∗ -0.001 −0.020∗∗∗ 0.019∗∗∗ -0.002 -0.001 -0.001

Source: Prowess - Author’s own calculation.
Notes: This table reports the distribution of debt and equity behaviour from 1997 to 2017. Panel A reports the mean values to corresponding column
by year. Panel B reports the difference in mean values between column high and low growth regimes, where the corresponding asterisk represent the
p-value associated with the t-test for differences in means. Column (1) reports yearly GDP growth for the fiscal year ending the 31st March. Column
(2) reports our classification of high and low growth regimes. We define low growth regimes as fiscal years consisting with at least two consecutive
quarters of declining growth. We define high growth regimes as periods with less than two consecutive quarters of declining low growth. Column (1)
reports mean MDR which is the sum of short-term and long-term borrowing over the market value of equity plus the sum of short-term and long-term
borrowing. Column (2) and (3) report net debt and equity issues where net debt is the first difference of total borrowing over total assets and net
equity issue is calculated as cash proceeds from share issues less cash outflows from stock redemption’s over total assets (Strebulaev and Yang, 2013).
Column (6) and (9) report active debt and equity which is the proportion of non-zero values in the numerator, of which debt and equity increases
(column (7) and (10)) and decreases (column (8) and (11)) denote the proportion of positive and negative values in the numerator, respectively. *
indicates significance at the 10% level,** indicates significance at the 5% level and *** indicates significance at the 1% level. All variable names,
definitions and sources can be found in appendix Table A.3.1.
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Table 3.5: Univariate Tests by Firm-Group by Year

Panel A: Mean Statistics Comparison

Full Sample Group Private Difference Test

Sample Affiliated (2) vs (3)

(1) (2) (3) (4)

1. Market Debt Ratio (MDR) 0.423 0.440 0.408 0.032***

2. Profitability 0.088 0.094 0.084 0.010***

3. Market-to-Book 1.086 1.136 1.044 0.093***

4. Non-Debt Tax Shields 0.030 0.030 0.030 0.001***

5. Size 7.543 8.322 6.899 1.423***

6. Asset Tangibility 0.323 0.339 0.309 0.030***

7. R&D Expenditure Indicator 0.175 0.254 0.109 0.145***

8. Industry Medium MDR 0.411 0.435 0.391 0.044***

9. Absolute Financing Deficit 0.076 0.069 0.082 -0.014***

10. Sales Growth 0.087 0.083 0.089 -0.006

11. Dividend Payout Indicator 0.535 0.620 0.464 0.156***

12. Export Intensity 0.187 0.171 0.200 -0.030***

13. Import Intensity 0.476 0.519 0.440 0.079***

Panel B: Distribution of MDR from 1997-2017

Year GDP Performance Full Group Private Difference Test

Growth Regime Sample Affiliated (4) vs (5)

(1) (2) (3) (4) (5) (6)

1997 4.72 Low 0.530 0.540 0.516 0.024

1998 4.83 Low 0.596 0.611 0.574 0.037*

1999 6.06 High 0.571 0.603 0.533 0.070***

2000 7.58 High 0.516 0.566 0.466 0.100***

2001 2.05 Low 0.538 0.585 0.479 0.107***

2002 6.42 Low 0.545 0.596 0.480 0.116***

2003 3.55 Low 0.560 0.601 0.507 0.094***

2004 8.81 High 0.497 0.516 0.478 0.038**

2005 8.46 High 0.372 0.387 0.360 0.027*

2006 9.59 High 0.327 0.326 0.328 -0.003

2007 9.24 High 0.349 0.358 0.342 0.016

2008 8.30 Low 0.352 0.358 0.347 0.010

2009 0.19 Low 0.491 0.505 0.481 0.024

2010 13.08 High 0.364 0.366 0.363 0.003

2011 9.51 High 0.383 0.385 0.382 0.003

2012 4.22 Low 0.422 0.419 0.424 -0.006

2013 5.74 Low 0.453 0.448 0.457 -0.008

2014 6.36 High 0.447 0.433 0.457 -0.023

2015 7.37 High 0.382 0.370 0.390 -0.020

2016 8.61 High 0.362 0.360 0.364 -0.004

2017 5.82 Low 0.310 0.311 0.308 0.003

Source: Prowess - Author’s own calculation.
Notes: Panel A reports the mean statistics for all main text variables for our full sample (1)
and the sub-groups of group affiliated firms (2) and private listed firms (3). Column (4) reports
the difference in mean values between column (2) and (3), where the corresponding asterisk
represent the p-value associated with the t-test for differences in means. Panel B reports reports
yearly MDR statistics respective to our high and low growth regime classification. Column (1)
reports yearly GDP growth for the fiscal year ending the 31st March. Column (2) reports our
classification of high and low growth regimes. We define low growth regimes as fiscal years
consisting with at least two consecutive quarters of declining growth. We define high growth
regimes as periods with less than two consecutive quarters of declining low growth. Column (3),
(4) and (5) report the by yearly mean of MDR for our full sample, group affiliated and private
listed firms respectively. Column (6) reports the difference in mean values between column (4)
and (5), where the corresponding asterisk represent the p-value associated with the t-test for
differences in means. * indicates significance at the 10% level, ** indicates significance at the 5%
level and *** indicates significance at the 1% level. All variable names, definitions and sources
can be found in appendix Table A.3.1.
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Figure 3.1: Distribution of the Market Debt Ratio from 1997-2017
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3.5 Empirical Results

In this Section we discuss our main empirical findings. In Section 3.5.1 we estimate the traditional

dynamic partial adjustment model in order to illustrate the importance of estimator choice. In

Section 3.5.2 we extend our the baseline specification to account for firm-specific adjustment

costs and in Section 3.5.3 we document our main results of how firm-specific adjustment costs

vary over the macroeconomic cycle.

3.5.1 Baseline Specification and Estimator Choice

As illustrated in Chapter 2, incorrect estimation of dynamic panel data models can give rise to

inaccurate estimates of the autoregressive coefficient and thus, spurious conclusions about the

true SOA. Accordingly, prior to our main analysis, in this section we examine the economic

implications of estimator choice. In Table 3.6 we report the estimates of the traditional dynamic

partial adjustment model via the OLS, the FE and the DPF estimator. The first column of

each respective estimator includes the most robust determinants of the MDR (Frank and Goyal

2009; Öztekin 2015) while the final column includes our full set of controls. Starting with

column (1) and (3), as expected, the OLS and FE estimators provide contrasting estimates

of the autoregressive coefficient, and subsequently the implied SOA. In terms of model fit, we

find controlling for unobserved firm-specific factors to have little impact on the coefficient of

determination - largely due to the existence of the autoregressive parameter - nevertheless, we

find both the unobserved firm- and year-specific fixed-effects to be jointly significant at the 1%

significance level and their inclusions to be preferable with respect to the AIC and the BIC.

The empirical estimates in column (1) and (3) are widely consistent with the simulations

in Chapter 2 and while one can confidently suggest that such estimates of the autoregressive

coefficient’s are invalid, they are not completely redundant. Given the OLS (FE) estimator

consistently overestimates (underestimates) the autoregressive coefficient, one can conjecture

that the true unbiased SOA lies between 15.30% and 36.80%11. In column (5) we report the

autoregressive coefficient of the DPF estimator to lie between such goal posts, thus, based our

findings in Chapter 2 as well as the work of Dang et al. (2015) and Elsas and Florysiak (2015),

we conjecture the DPF estimator more accurately estimates the true SOA. Again, similar to FE

estimates, we find controlling for both firm- and year-fixed effects to be jointly significant at the

11In the parlance of econometric literature this would imply the unbiased estimate of the autoregressive coeffi-
cient is highly persistent. As illustrated in Chapter 2, the consistency of estimators are most hampered by highly
persistent data, thus, the choice of estimation procedure is of even greater importance
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1% level, we also further evidence - via a simple likelihood ratio test - the superiority of the

DPF estimator over a traditional pooled tobit estimator. Thus, in light of the aforementioned

arguments, column (9) can be considered our fully specified baseline estimate of the traditional

dynamic partial adjustment model. In turn, the unconditional SOA for the average Indian listed

firm to be 26.90% with a corresponding half-life of 2.21 years12 which is widely consistent with

the DPF estimates of other studies reported in Table A.3.1.

In terms of explanatory variables, all variables report predicted signs and consistent mag-

nitudes. Specifically, profitability is negative suggesting that firms with higher profit use less

leverage due to their preference towards internal funds, in line with the pecking order (Myers

and Majluf, 1984) and dynamic trade-off theory (Leary and Roberts, 2005). Equally, growth

opportunities display a negative sign suggesting high growth firms use less leverage to mitigate

agency problems Jensen (1986), while the substitution channel of non-debt tax shields is as ex-

pected, negative. Both firm size and asset tangibility also report a positive prediction of the

MDR, suggesting that larger, more tangible firms, have low bankruptcy, agency, and transaction

cost, hence a stronger incentive to utilize debt. We find our dividend payout indicator to be neg-

ative and statistically significant adhering to substitution effect of adjacent internal governance

mechanisms. Finally, only import intensity significantly determines firms target leverage with

exports showing limited statistical significance’s across all estimates.

In Table 3.7 we compare the performance of the DPF estimator to the alternative estimators

trialed in Chapter 2. We find the FD- and SYS-GMM estimators to fall within the desired range,

as both estimators pass the required validity diagnostic tests of 2nd-order autocorrelation and

the Hansen overidentification test. Comparatively speaking, the AS-GMM estimator performs

poorly in both tests and as a result provides an implausible SOA estimate of 11.80% exceeding

the thresholds set by the OLS and FE estimators. Naturally, one cannot expect to alleviate

the correlation between the lagged dependent variable and the residual with poorly identified

instruments. However, while the FD- and SYS-GMM estimators perform well in this regard,

their similarity in estimates to the FE estimator is concerning. We find the LD4 and QML

estimators to similarly provide unconvincing estimates of the autoregessive coefficient while the

LSDVC estimator most closely match’s the estimates of the DPF estimator in line with Elsas

and Florysiak (2015).

12An order one autoregessive model specification has an exponentially declining response function to shocks.
Therefore, half-life is the time the process needs to close the gap between the actual debt ratio and the target by
50% and is calculated as log(0.5)/log(1 − λ).
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Overall, it is clear that while the SOA remains consistent across an array of controls and mis-

specification tests, the choice of estimator can have economically sizeable effects on the implied

SOA, thus, reiterating the sentiment of Chapter 2 and the paramount importance of accurate es-

timation of the autoregessive coefficient. We conjecture that the DPF estimator most accurately

estimates the SOA for our sample of Indian listed firms and thus will be employed throughout

the remainder of the chapter.
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Table 3.6: Capital Structure Adjustment Misspecification Tests

OLS FE DPF

(1) (2) (3) (4) (5) (6)

MDRi,t−1 0.847*** 0.840*** 0.632*** 0.616*** 0.746*** 0.731***

(0.003) (0.003) (0.007) (0.007) (0.005) (0.005)

Profitabilityi,t -0.404*** -0.360*** -0.514*** -0.449*** -0.499*** -0.451***

(0.010) (0.012) (0.017) (0.017) (0.013) (0.017)

Market-to-Booki,t -0.011*** -0.011*** -0.016*** -0.016*** -0.017*** -0.016***

(0.001) (0.001) (0.002) (0.002) (0.001) (0.001)

Non-Debt Tax Shieldsi,t -0.243*** -0.245*** -0.194** -0.180** -0.279*** -0.259***

(0.046) (0.046) (0.090) (0.091) (0.080) (0.079)

Sizei,t 0.010*** 0.011*** 0.040*** 0.042*** 0.037*** 0.039***

(0.000) (0.001) (0.003) (0.003) (0.002) (0.002)

Asset Tangibilityi,t 0.019*** 0.020*** 0.037*** 0.035*** 0.032*** 0.031***

(0.005) (0.005) (0.011) (0.011) (0.008) (0.010)

R&D Expenditure Indicatori,t -0.017*** -0.016*** -0.010*** -0.008** -0.005* -0.004

(0.002) (0.002) (0.003) (0.003) (0.003) (0.003)

Industry Medium MDRi,t 0.056*** 0.058*** 0.169*** 0.167*** 0.182*** 0.176***

(0.006) (0.007) (0.018) (0.017) (0.012) (0.014)

Absolute Financing Deficiti,t -0.028* -0.037** -0.041***

(0.015) (0.016) (0.003)

Sales Growthi,t -0.012*** -0.014*** -0.013***

(0.002) (0.002) (0.016)

Dividend Payout Indicatori,t -0.016*** -0.036*** -0.024***

(0.002) (0.003) (0.002)

Export Intensityi,t 0.007** -0.009 -0.004

(0.003) (0.008) (0.006)

Import Intensityi,t 0.002 -0.009** -0.010***

(0.002) (0.004) (0.004)

MDRi,0 0.072*** 0.071***

(0.005) (0.004)

Firm Fixed-Effects No No Yes Yes Yes Yes

Year Fixed-Effects Yes Yes Yes Yes Yes Yes

SOA(1 − λ̂) 15.30% 16.00% 36.80% 38.40% 25.40% 26.90%

AIC -25,925.82 -26,189.40 -42,432.70 -42,913.83 30,569.54 -31,194.87

BIC -25,705.93 -25,937.30 -42,212.82 -42,661.46 -30,235.70 -30,828.93

Wald-1 268.90 279.80 151.00 159.86 3504.58 3667.56

Wald-2 - - - - 497.74 494.96

Wald-3 - - 2.782 2.755 - -

LR-test - - - - 737.65 738.76

Adjusted R2 0.848 0.852 0.870 0.873 - -

Firms 2,650 2,650 2,650 2,650 2,650 2,650

Observations 25,968 25,968 25,968 25,968 25,968 25,968

Source: Prowess - Author’s own calculation.
Notes: This table reports our estimates of the dynamic partial adjustment model in equation (3.3). OLS and FE refer to the
pooled OLS and within transformation estimators while the DPF estimator is the dynamic panel fractional variable estimator of
Elsas and Florysiak (2011) and Elsas and Florysiak (2015). Bootstrapped standard errors are reported in parentheses where we
set the repetition rate R=250. * indicates significance at the 10% level, ** indicates significance at the 5% level and *** indicates
significance at the 1% level. AIC and BIC report the Akaike information criterion and Bayesian information criterion, respectively.
Wald-1 reports the test statistic for a Wald test of the joint signicance of the year fixed-effects, asymptotically distributed as χ2 under
the null of no relation. Wald-2 reports the test statistic for a Wald test of the joint signicance of the all firm-averages, asymptotically
distributed as χ2 under the null of no relation. Wald-3 reports the test statistic for a Wald test of the joint signicance of the firm
fixed-effects, asymptotically distributed as χ2 under the null of no relation. LR-test reports the test statistic for a likelihood-ratio
test comparing a pooled-tobit model to the DPF estimator including correlated random effects. All variable names, definitions and
sources can be found in appendix Table A.3.1.
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Table 3.7: The Impact of Estimator Choice on Adjustment Speeds

Core Estimators Alternative Estimators

OLS FE DPF FD-GMM AS-GMM SYS-GMM LD4 LSDVC QML

(1) (2) (3) (4) (5) (6) (7) (8) (9)

MDRi,t−1 0.840*** 0.616*** 0.731*** 0.647*** 0.879*** 0.687*** 0.819*** 0.713*** 0.677***

(0.003) (0.007) (0.005) (0.037) (0.031) (0.023) (0.008) (0.008) (0.007)

Firm Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Firm Fixed-Effects No Yes Yes Yes Yes Yes Yes Yes Yes

Year Fixed-Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

SOA (1 − λ̂) 16.00% 38.40% 26.90% 35.30% 12.10% 31.30% 18.10% 28.70% 32.30%

m1 test (p-value) - - - 0.000 0.000 0.000 - - -

m2 test (p-value) - - - 0.100 0.016 0.173 - - -

Hansen J test (p-value) - - - 0.126 0.052 0.123 - - -

Firms 2,650 2,650 2,650 2,650 2,735 2,650 - 2,650 1,642

Observations 25,968 25,968 25,968 21,193 26,539 25,128 12,816 25,128 15,034

Source: Prowess - Author’s own calculation.
Notes: OLS and FE refer to the pooled OLS and within transformation estimators. FD, AS and SYS-GMM correspond to the first-difference
GMM estimators of Arellano and Bond (1991), the first-difference non-linear instrument estimator of Ahn and Schmidt (1995) and the system-
GMM estimator of Blundell and Bond (1998). LD4 is long difference estimator with the estimator set of Huang and Ritter (2009) with a
distance of 4 lags. LSDVC is the least squares dummy variable correction estimator of Kiviet (1995) and Bruno (2005), QML corresponds to
the quasi-maximum likelihood estimator of Hsiao et al. (2002) and finally the DPF estimator is the dynamic panel fractional variable estimator
of Elsas and Florysiak (2011) and Elsas and Florysiak (2015). All variable names, definitions and sources can be found in appendix Table
A.3.1. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.
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3.5.2 Capital Structure Adjustment and Firm-specific Adjustment Costs

In this section we introduce the first extension of the traditional dynamic partial adjustment

model. Specifically, we extend the traditional specification via a quartile dummy variable ap-

proach to embody our three measures of adjustment cost heterogeneity, namely, absolute financ-

ing imbalance, the market-to-book ratio and profitability. The importance of this section is

twofold. First, it allows us to examine the comparability of the three firm specific measures rel-

ative to the existing literature and second; this section establishes the effects of such adjustment

cost asymmetries under the assumption of homogeneous macroeconomic effects.

In Table 3.8 we report the results for absolute financing imbalance. Our results show how the

degree of financial imbalance impacts the speed at which firms can adjust towards their target

MDR. For our full sample estimates (column (1)), the reference category (Q1) reports a SOA of

25.70% (1 − 0.743) with a corresponding half life of 2.33 years. Comparatively, firms in fourth

quartile adjust both statistically and economically faster with a SOA of 29.10% (1 − (0.790 −

0.108)) and a half life of 2.01 years. Our findings are consistent with our earlier prediction and the

work of Faulkender et al. (2012), that suggests firms with high financial imbalance adjust quicker

due to the size of adjustment required and the greater benefits received from re-optimization.

To inspect the robustness of our findings, and, in part, extend our results further, we examine

the within heterogeneity of our sample by splitting it into two sub-samples, that is, one sample

of group-affiliated firms and one of private-listed firms13. In column (2) and (3), we find the

reference category for private listed firms adjust, on average, roughly six percentage points faster

than their group affiliated counterparts, however, the increments across firm groups remain

similar. Subsequently, the autonomous difference between the base categories suggests there

is structural difference between the two groups adjustment speeds with group affiliated firms’

facing fewer incentives to adjust towards target MDR. That is, given the very nature of business

groups and their ability to channel financial funds internally, on top of their wider reputational

advantages, one can infer that private firms face greater incentives to adjust towards their optimal

capital structure as failing to do so may prove costly in future market dealings, an incentive less

pertinent for group-affiliated firms. Indeed, such findings prove consistent with the recent work of

13Note: For the sake of simplicity, we opt for a sub-sample approach over a dummy variable interaction
approach. While a conditional specification would allow for the direct inspection of the statistical significance
between both groups, we advocate - given the already high level of parameterisation within the current and indeed
later model specifications - for a sub-sampling approach to avoid over-parameterisation and multicollinearity
concerns.
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Yamada (2019), who finds Japanese private listed firms, on average, adjust towards their capital

structure target significantly quicker than their group-affiliated (keiretsu) counterparts.

Table 3.9 reports the rate of adjustment conditional on the quartile rankings of the market-

to-book ratio. We document a positive linear relationship between the SOA and the market-

to-book ratio quartile groups, with firms in Q4 adjusting their capital structure significantly

and economically faster than their counterparts at 39.00%, consistent with Elsas and Florysiak

(2011) and Dang et al. (2012). Such adjustment asymmetries support our earlier prediction and

summary statistics in that, high growth firms adjust faster due to their frequent visits to capital

markets, which in turn provides them with more opportunities to find an appropriate mix of debt

and equity and at a lower cost. Furthermore, consistent with the market timing hypothesis, high

market-to-book value firms issue equity more frequently in order to take advantage of high share

prices and lower costs of equity. Sub-group analysis in column (2) and (3) shows our findings

are robust across both firm-groups, however, it seems that private listed firms more aggressively

adjust their capital structure with an implied SOA of 43.00% compared to their slower group

affiliated counterparts of 33.70%. Accordingly, one can posit that group-affiliated firms face

fewer incentives to adjust their capital structure and are possibly less willing to defuse ownership

through equity issues.

Table 3.10 reports the effect of our final measure of firm-specific adjustment costs; profitabil-

ity. We find firms with the highest profit and greatest financial flexibility adjust statistically and

economically faster than their more constrained counterparts, closing the gap between actual and

target leverage by 35.80% per annum. While the difference in adjustment speeds are similar to

that of firms with the highest market-to-book values, the costs and incentives of adjustment are

indeed different. Our results support the prediction that firms with higher profit levels benefit

more from financial flexibility and are therefore more able to increase and/or decrease debt at

lower costs. In reference to Table 3.3, while these firms still issue equity, the difference between

equity issues across firms groups is small. In comparison, most profitable firms buy-back the

most amount of equity and more frequently decrease debt levels relative to any other quartile

group. Our empirical findings remain affirmed and economically comparable across both sub-

samples suggesting group-affiliated and private listed firms face similar adjustment costs across

profitability levels.

All in all, we show, consistent with the existing literature, that differences in firm-specific

adjustment costs impact the SOA, with the cross-sectional heterogeneity in absolute financing

deficit, the market-to-book ratio and profitability all displaying a positive association with the
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SOA. Subsequently, our evidence in this case bares a clear criticism of the early homogeneous

partial adjustment models employed in the literature (e.g., Flannery and Rangan 2006, Antoniou

et al. 2008 and Huang and Ritter 2009). In the next section, we develop our analysis further by

examine the importance of opposing adjustment costs over the course of the business cycle.
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Table 3.8: Capital Structure Adjustment Conditional on Absolute Financing Imbalance

Full Sample Group Affiliated Private

(1) (2) (3)

MDRi,t−1 0.743*** 0.776*** 0.717***

(0.008) (0.009) (0.009)

MDRi,t−1*AFDQ2 -0.005 -0.003 -0.006

(0.004) (0.004) (0.005)

MDRi,t−1*AFDQ3 -0.008** -0.013** -0.002

(0.004) (0.006) (0.006)

MDRi,t−1*AFDQ4 -0.034*** -0.036*** -0.030***

(0.007) (0.009) (0.010)

Profitabilityi,t -0.450*** -0.441*** -0.457***

(0.013) (0.020) (0.019)

Market-to-Booki,t -0.016*** -0.012*** -0.020***

(0.001) (0.002) (0.002)

Non-Debt Tax Shieldsi,t -0.255*** -0.256** -0.286***

(0.096) (0.099) (0.099)

Sizei,t 0.038*** 0.040*** 0.038***

(0.002) (0.002) (0.003)

Asset Tangibilityi,t 0.032*** 0.009 0.054***

(0.012) (0.012) (0.011)

R&D Expenditure Indicatori,t -0.005 -0.001 -0.010**

(0.003) (0.003) (0.004)

Industry Medium MDRi,t 0.175*** 0.178*** 0.155***

(0.014) (0.019) (0.020)

Absolute Financing Deficiti,t 0.019 0.022 0.014

(0.023) (0.032) (0.030)

Sales Growthi,t -0.013*** -0.018*** -0.011***

(0.002) (0.004) (0.003)

Dividend Payout Indicatori,t -0.023*** -0.021*** -0.024***

(0.002) (0.004) (0.003)

Export Intensityi,t -0.004 0.000 -0.007

(0.007) (0.012) (0.008)

Import Intensityi,t -0.010*** -0.006 -0.015***

(0.004) (0.005) (0.005)

MDRi,0 0.071*** 0.056*** 0.087***

(0.007) (0.006) (0.008)

Firm Fixed-effect Yes Yes Yes

Year Fixed-effect Yes Yes Yes

SOA1(1 − λ̂) 25.70% 22.40% 28.30%

SOA4(1 − (λ̂+ ϕ̂4)) 29.10% 26.00% 31.30%

AIC -31,433.91 -16,896.55 -14,853.57

BIC -31,043.16 -16,541.83 -14,493.47

Wald-1 3,657.54 2,288.99 1,583.97

Wald-2 493.15 286.25 225.59

LR-Test 728.64 207.13 469.30

Firms 2,650 1,069 1,581

Observations 25,968 12,134 13,834

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for equation (3.4) where AFDj denotes the quartile
group allocated to firms conditional on their level of absolute financing deficit . SOA1 reports the SOA
for quartile group one where SOA4 reports the conditional SOA for quartile group four. Bootstrapped
standard errors are reported in parentheses where we set the repetition rate R=250. *, ** and ***
indicate significance at the 10%, 5% and 1% levels, respectively. AIC and BIC report the Akaike
information criterion and Bayesian information criterion, respectively. Wald-1 reports the test statistic
for a Wald test of the joint signicance of the year fixed-effects, asymptotically distributed as χ2 under
the null of no relation. Wald-2 reports the test statistic for a Wald test of the joint signicance of the all
firm-averages, asymptotically distributed as χ2 under the null of no relation. LR-test reports the test
statistic for a likelihood-ratio test comparing a pooled-tobit model to the DPF estimator including
correlated random effects. All variable names, definitions and sources can be found in appendix Table
A.3.1.



Table 3.9: Capital Structure Adjustment Conditional on The Market-to-book ratio

Full Sample Group Affiliated Private

(1) (2) (3)

MDRi,t−1 0.758*** 0.782*** 0.734***

(0.007) (0.010) (0.010)

MDRi,t−1*MBQ2 -0.001 -0.001 0.009

(0.004) (0.005) (0.008)

MDRi,t−1*MBQ3 -0.057*** -0.056*** -0.049***

(0.005) (0.005) (0.007)

MDRi,t−1*MBQ4 -0.148*** -0.119*** -0.164***

(0.008) (0.009) (0.011)

Profitabilityi,t -0.460*** -0.451*** -0.470***

(0.014) (0.019) (0.023)

Market-to-Booki,t -0.009*** -0.006*** -0.012***

(0.001) (0.001) (0.001)

Non-Debt Tax Shieldsi,t -0.180** -0.192 -0.207**

(0.080) (0.126) (0.097)

Sizei,t 0.037*** 0.038*** 0.036***

(0.002) (0.003) (0.003)

Asset Tangibilityi,t 0.043*** 0.018 0.066***

(0.010) (0.012) (0.016)

R&D Expenditure Indicatori,t -0.005* -0.002 -0.010*

(0.003) (0.003) (0.006)

Industry Medium MDRi,t 0.168*** 0.173*** 0.147***

(0.011) (0.018) (0.021)

Absolute Financing Deficiti,t -0.031* -0.045* -0.020

(0.019) (0.023) (0.019)

Sales Growthi,t -0.013*** -0.018*** -0.010***

(0.003) (0.004) (0.003)

Dividend Payout Indicatori,t -0.022*** -0.022*** -0.021***

(0.002) (0.003) (0.003)

Export Intensityi,t -0.006 -0.004 -0.009

(0.007) (0.009) (0.009)

Import Intensityi,t -0.010** -0.006 -0.014***

(0.004) (0.005) (0.005)

MDRi,0 0.077*** 0.064*** 0.092***

(0.007) (0.006) (0.007)

Firm Fixed-effect Yes Yes Yes

Year Fixed-effect Yes Yes Yes

SOA1(1 − λ̂) 24.20% 21.80% 26.60%

SOA4(1 − (λ̂+ ϕ̂4)) 39.00% 33.70% 43.00%

AIC -32,331.78 -17,273.12 -15,387.32

BIC -31,941.02 -16,918.4 -15,027.21

Wald-1 4,010.29 2,463.15 1,767.16

Wald-2 539.34 303.90 260.82

LR-Test 935.76 265.91 621.74

Firms 2,650 1,069 1,581

Observations 25,968 12,134 13,834

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for equation (3.4) where MBj denotes the quartile group
allocated to firms conditional on their level of the market-to-book ratio . SOA1 reports the SOA for
quartile group one where SOA4 reports the conditional SOA for quartile group four. Bootstrapped
standard errors are reported in parentheses where we set the repetition rate R=250. *, ** and
*** indicate significance at the 10%, 5% and 1% levels, respectively.AIC and BIC report the Akaike
information criterion and Bayesian information criterion, respectively. Wald-1 reports the test statistic
for a Wald test of the joint signicance of the year fixed-effects, asymptotically distributed as χ2 under
the null of no relation. Wald-2 reports the test statistic for a Wald test of the joint signicance of the all
firm-averages, asymptotically distributed as χ2 under the null of no relation. LR-test reports the test
statistic for a likelihood-ratio test comparing a pooled-tobit model to the DPF estimator including
correlated random effects. All variable names, definitions and sources can be found in appendix
TableA.3.1.



3.5.3 Capital Structure Adjustment Over The Business Cycle

In this section we present our main empirical findings. We begin by investigating the direct

effect of the business cycle on the SOA. In order to evaluate the impact of the business cy-

cle directly, we first report the estimates from a restricted version of equation (3.5), whereby

we assume homogeneous adjustment costs between firms, yet, heterogeneous adjustment costs

over the business cycle. In Table 3.11 we uncover that the typical Indian firm adjusts both

statistically and economically faster in periods of high economic growth (29.80%) compared to

periods of low economic growth (22.69%), supporting the pro-cyclical view that more prosper-

ous macroeconomic conditions help to alleviate the market frictions associated with adjustment

costs. Furthermore, the net difference across regimes is close to twice the 4% difference reported

by Cook and Tang (2010) in US, thus, we posit that the relief of adjustment costs induced by

macroeconomic performance is greater in India as market frictions and imperfections are more

prominent. In line with Halling et al. (2016), we also observe some notable differences in the

determinants of MDR, specifically, we document large changes in coefficient values in the sub-

stitution channels of non-debt tax shields and the dividend payout indicator, where the former

suggests firms are more likely to prefer alternative tax shields in low growth periods to avoid

increasing bankruptcy risk.

In Table 3.12-3.14 we report both the direct and asymmetric effects the business cycle via our

three measures of firm-specific adjustment costs over high and low growth regimes. Furthermore,

we illustrate the implied SOA in Figure 3.2-3.4. Starting with Table 3.12 and absolute financing

deficit, generally speaking we find the direct effect (i.e. the difference between reference groups

across regimes) to remain consistent with the previous estimates, however, we find limited ev-

idence of asymmetric adjustment across firm-groups over both regimes. Our result show only

firms in the highest quartile adjust faster relative to those in the lowest quartile in high growth

periods. Furthermore, in low growth periods we find private-listed firms display no statisti-

cal sensitivity to their levels of financial imbalance across firm groups, implying homogeneous

adjustment costs given the firms financial imbalance.

In contrast, we report both a direct and indirect effect of the business cycle across market-to-

book quartile groups. In Table 3.13 we find the direct effect of the business cycle to be consistent

with our earlier estimates, with the average firm in our reference group adjusting 5.40% faster

in high growth regimes. However, we also document an increasing, or put differently, greater

asymmetric response across quartile groups over high and low growth periods. That is, firms in



Table 3.10: Capital Structure Adjustment Conditional on Profitability

Full Sample Group Affiliated Private

(1) (2) (3)

MDRi,t−1 0.770*** 0.804*** 0.745***

(0.005) (0.008) (0.010)

MDRi,t−1*PQ2 -0.015*** -0.015*** -0.012*

(0.004) (0.005) (0.007)

MDRi,t−1*PQ3 -0.056*** -0.063*** -0.052***

(0.004) (0.006) (0.008)

MDRi,t−1*PQ4 -0.128*** -0.121*** -0.135***

(0.006) (0.009) (0.010)

Profitabilityi,t -0.286*** -0.263*** -0.305***

(0.017) (0.023) (0.022)

Market-to-Booki,t -0.018*** -0.014*** -0.022***

(0.001) (0.002) (0.002)

Non-Debt Tax Shieldsi,t -0.195*** -0.183 -0.231**

(0.076) (0.111) (0.101)

Sizei,t 0.035*** 0.035*** 0.034***

(0.002) (0.003) (0.003)

Asset Tangibilityi,t 0.033*** 0.008 0.057***

(0.009) (0.011) (0.016)

R&D Expenditure Indicatori,t -0.005 -0.002 -0.011**

(0.003) (0.004) (0.005)

Industry Medium MDRi,t 0.172*** 0.173*** 0.155***

(0.011) (0.018) (0.020)

Absolute Financing Deficiti,t -0.025* -0.038* -0.015

(0.015) (0.022) (0.022)

Sales Growthi,t -0.013*** -0.017*** -0.010***

(0.003) (0.004) (0.004)

Dividend Payout Indicatori,t -0.018*** -0.016*** -0.018***

(0.003) (0.004) (0.004)

Export Intensityi,t -0.003 -0.002 -0.004

(0.007) (0.010) (0.009)

Import Intensityi,t -0.010*** -0.005 -0.015***

(0.004) (0.006) (0.005)

MDRi,0 0.073*** 0.058*** 0.090***

(0.004) (0.006) (0.008)

Firm Fixed-effect Yes Yes Yes

Year Fixed-effect Yes Yes Yes

SOA1(1 − λ̂) 23.00% 19.60% 25.50%

SOA4(1 − (λ̂+ ϕ̂4)) 35.80% 31.70% 39.00%

AIC -32,151.77 -17,207.48 -15,267.95

BIC -31,761.01 -16,852.76 -14,907.85

Wald-1 3,558.77 2,256.92 1,514.60

Wald-2 477.93 268.99 235.02

LR-Test 870.35 247.86 570.59

Firms 2,650 1,069 1,581

Observations 25,968 12,134 13,834

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for equation (3.4) where Pj denotes the quartile group
allocated to firms conditional on their level of profitability. SOA1 reports the SOA for quartile group
one where SOA4 reports the conditional SOA for quartile group four. Bootstrapped standard errors
are reported in parentheses where we set the repetition rate R=250. *, ** and *** indicate significance
at the 10%, 5% and 1% levels, respectively. AIC and BIC report the Akaike information criterion
and Bayesian information criterion, respectively. Wald-1 reports the test statistic for a Wald test
of the joint signicance of the year fixed-effects, asymptotically distributed as χ2 under the null of
no relation. Wald-2 reports the test statistic for a Wald test of the joint signicance of the all firm-
averages, asymptotically distributed as χ2 under the null of no relation. LR-test reports the test
statistic for a likelihood-ratio test comparing a pooled-tobit model to the DPF estimator including
correlated random effects. All variable names, definitions and sources can be found in appendix Table
A.3.1.
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the highest quartile group adjust nearly 1.5 times faster in high growth periods relative to low

growth periods, this can be most clearly observed in Figure 3.3. One possible explanation for the

asymmetric difference in adjustment speeds is high market-to-book value firms could be more

willing to engage in external markets in high periods of macroeconomic performance in order to

pursue investment opportunities. Furthermore, such firms may experience greater missvalaution

in high growth periods thus resulting in lower equity issue costs and greater incentives to adjust

their capital structure mix.

Interesting, the asymmetric impact of macroeconomic performance is even more pronounced

for profitability, however, the direct effect on almost vanishes. In Table 3.13 column (1), we find

difference between high and low regimes for our reference group (Q1) to be both statistically

(at the 10% level) and economically indifferent, with reported speeds of 23.90% and 22.60%,

respectively. Unreported mean statistics infer over both regimes the average firm in Q1 is making

a loss, therefore, irrespective of the wider macroeconomic conditions, it appears firms adjust at

similar rates when they are financially unprofitable. Comparatively, the opposite effect occurs

for highly profitable firms. Firms with the highest profit levels adjustment both statistically and

economically faster in high growth periods, with an asymmetric response in adjustment and net

difference of roughly 14% between regimes. Accordingly, it is likely that such firm use excess

earnings to retire debt and buy-buy equity in high growth periods, however, pose less desire to

do so in low growth periods, and subsequently direct other earnings to other operational areas

or use excess funds as precautionary cash holdings.

Overall, this section illustrates that time-variation in macroeconomic performance to be an

important factor in the adjustment process with high growth periods corresponding to faster

adjustment speeds, consistent with Cook and Tang (2010) and Dang et al. (2014). Our results

in this section demonstrate, however, that the impact of macroeconomic performance can vary

across firm-groups facing alternative cost threshold as firms with high market-to-book and profit

levels display the highest adjustment speeds in high growth regimes, while the adjustment speeds

of firms in financial decline are largely unaffected by external macroeconomic performance.

102



Table 3.11: Capital Structure Adjustment over the Business cycle

Full Sample Group-Affiliated Private

(1) (2) (3)
High Low High Low High Low

MDRi,t−1 0.702*** 0.771*** 0.736*** 0.798*** 0.679*** 0.753***
(0.008) (0.008) (0.009) (0.011) (0.010) (0.012)

Profitabilityi,t -0.446*** -0.459*** -0.432*** -0.450*** -0.456*** -0.468***
(0.015) (0.022) (0.024) (0.028) (0.026) (0.024)

Market-to-Booki,t -0.017*** -0.018*** -0.013*** -0.013*** -0.021*** -0.022***
(0.001) (0.002) (0.002) (0.003) (0.002) (0.003)

Non-Debt Tax Shieldsi,t -0.212*** -0.326*** -0.148 -0.432*** -0.283** -0.303**
(0.074) (0.076) (0.128) (0.147) (0.114) (0.151)

Sizei,t 0.039*** 0.039*** 0.040*** 0.039*** 0.037*** 0.041***
(0.002) (0.002) (0.003) (0.002) (0.003) (0.003)

Asset Tangibilityi,t 0.039*** 0.021** 0.024* -0.011 0.053*** 0.055***
(0.010) (0.010) (0.013) (0.018) (0.015) (0.016)

R&D Expenditure Indicatori,t -0.017*** -0.006 -0.021*** -0.010 -0.015*** -0.003
(0.003) (0.005) (0.005) (0.007) (0.004) (0.006)

Industry Medium MDRi,t 0.168*** 0.150*** 0.165*** 0.162*** 0.150*** 0.122***
(0.019) (0.018) (0.019) (0.019) (0.025) (0.021)

Absolute Financing Deficiti,t -0.005 -0.004 0.001 -0.004 -0.014** -0.004
(0.004) (0.004) (0.004) (0.004) (0.006) (0.006)

Sales Growthi,t -0.019 -0.074** -0.030 -0.087** -0.012 -0.062*
(0.018) (0.029) (0.028) (0.037) (0.025) (0.032)

Dividend Payout Indicatori,t -0.031*** -0.013*** -0.030*** -0.011** -0.030*** -0.014**
(0.003) (0.003) (0.004) (0.005) (0.004) (0.005)

Export Intensityi,t 0.002 -0.012* 0.005 -0.004 -0.000 -0.019*
(0.005) (0.007) (0.010) (0.013) (0.010) (0.010)

Import Intensityi,t -0.005 -0.019*** -0.002 -0.013** -0.009* -0.025***
(0.005) (0.005) (0.006) (0.006) (0.005) (0.006)

MDRi,0 0.067*** 0.085*** 0.051*** 0.070*** 0.082*** 0.102***
(0.007) (0.007) (0.005) (0.011) (0.010) (0.010)

Firm Fixed-Effects Yes Yes Yes
Year Fixed-Effects Yes Yes Yes

SOA(1 − λ̂) 29.80% 22.90% 26.40% 20.20% 32.10% 24.70%
AIC -31,272.05 -16780.47 -14794.04
BIC -30,816.66 -16366.94 -14374.59
Wald-1 2,869.57 1817.46 1,244.53
Wald-2 491.32 280.25 225.53
LR-Test 748.20 218.35 473.96
Firms 2,735 1,110 1,625
Observations 27,681 13,102 14,579

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for a restricted specification of equation (3.5). Sub-columns labeled
High and Low detail the coefficients and standard errors for both high and low regimes of GDP growth, of which by
year classifications are detailed in Table 3.4. Bootstrapped standard errors are reported in parentheses where we
set the repetition rate R=250. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.AIC
and BIC report the Akaike information criterion and Bayesian information criterion, respectively. Wald-1 reports
the test statistic for a Wald test of the joint signicance of the year fixed-effects, asymptotically distributed as χ2

under the null of no relation. Wald-2 reports the test statistic for a Wald test of the joint signicance of the all
firm-averages, asymptotically distributed as χ2 under the null of no relation. LR-test reports the test statistic for
a likelihood-ratio test comparing a pooled-tobit model to the DPF estimator including correlated random effects.
All variable names, definitions and sources can be found in appendix Table A.3.1.



Table 3.12: Capital Structure Adjustment over the Business Cycle Conditional on Absolute
Financing Deficit

Full Sample Group Affiliated Private

(1) (2) (3)
High Low High Low High Low

MDRi,t−1 0.713*** 0.785*** 0.745*** 0.815*** 0.691*** 0.760***
(0.007) (0.008) (0.010) (0.011) (0.012) (0.013)

MDRi,t−1*AFDQ2 -0.003 -0.009** -0.000 -0.008 -0.005 -0.008
(0.004) (0.005) (0.006) (0.007) (0.006) (0.009)

MDRi,t−1*AFDQ3 -0.006 -0.013** -0.007 -0.024*** -0.003 0.001
(0.005) (0.007) (0.008) (0.007) (0.008) (0.012)

MDRi,t−1*AFDQ4 -0.037*** -0.032*** -0.034*** -0.039*** -0.038*** -0.015
(0.007) (0.010) (0.010) (0.014) (0.013) (0.016)

Profitabilityi,t -0.445*** -0.457*** -0.433*** -0.449*** -0.455*** -0.466***
(0.016) (0.022) (0.026) (0.032) (0.024) (0.031)

Market-to-Booki,t -0.018*** -0.018*** -0.013*** -0.014*** -0.021*** -0.022***
(0.001) (0.002) (0.002) (0.002) (0.002) (0.003)

Non-Debt Tax Shieldsi,t -0.207** -0.321*** -0.142 -0.425*** -0.273** -0.302**
(0.086) (0.099) (0.120) (0.150) (0.121) (0.140)

Sizei,t 0.038*** 0.039*** 0.040*** 0.039*** 0.037*** 0.040***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Asset Tangibilityi,t 0.040*** 0.022* 0.026* -0.008 0.052*** 0.055***
(0.011) (0.011) (0.015) (0.019) (0.012) (0.016)

R&D Expenditurei,t -0.005 -0.004 0.001 -0.004 -0.014** -0.004
(0.004) (0.004) (0.004) (0.004) (0.006) (0.007)

Industry Medium MDRi,t 0.167*** 0.149*** 0.165*** 0.162*** 0.150*** 0.121***
(0.017) (0.016) (0.022) (0.020) (0.019) (0.019)

Absolute Financing Deficiti,t 0.047** -0.022 0.045 -0.005 0.050 -0.044
(0.023) (0.037) (0.033) (0.056) (0.041) (0.059)

Sales Growthi,t -0.017*** -0.006 -0.021*** -0.011 -0.015*** -0.003
(0.002) (0.005) (0.005) (0.007) (0.004) (0.005)

Dividend Payouti,t -0.031*** -0.013*** -0.030*** -0.011** -0.029*** -0.013**
(0.003) (0.003) (0.004) (0.004) (0.005) (0.005)

Export Intensityi,t 0.002 -0.012 0.006 -0.005 -0.001 -0.019*
(0.008) (0.008) (0.011) (0.011) (0.009) (0.010)

Import Intensityi,t -0.005 -0.019*** -0.002 -0.013* -0.009 -0.025***
(0.004) (0.005) (0.006) (0.007) (0.006) (0.007)

MDRi,0 0.066*** 0.085*** 0.051*** 0.070*** 0.082*** 0.102***
(0.005) (0.007) (0.008) (0.009) (0.009) (0.010)

Firm Fixed-Effects Yes Yes Yes
Year Fixed-Effects Yes Yes Yes

SOA1(1 − λ̂) 28.70% 21.50% 25.50% 18.50% 30.90% 24.00%

SOA4(1 − (λ̂+ ϕ̂4)) 32.40% 24.70% 28.90% 22.40% 34.70% 25.50%
AIC -31,419.73 -16867.54 -14849.36
BIC -30,915.54 -16409.69 -14384.97
Wald-1 2,877.46 1819.46 1248.20
Wald-2 481.87 277.22 219.50
LR-Test 728.82 216.02 457.97
Firms 2735 1110 1625
Observations 27681 13102 14579

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for equation (3.5) where AFDj represent the quartile groups
classification conditional on absolute financing deficit. Sub-columns labeled High and Low detail the coefficients
and standard errors for both high and low regimes of GDP growth, of which by year classifications are detailed in
Table 3.4. SOA1 reports the SOA for quantile group one where SOA4 reports the conditional SOA for quantile
group four for each respective regime. Bootstrapped standard errors are reported in parentheses were we set the
repetition rate R=250. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. AIC and
BIC report the Akaike information criterion and Bayesian information criterion, respectively. Wald-1 reports
the test statistic for a Wald test of the joint signicance of the year fixed-effects, asymptotically distributed as χ2

under the null of no relation. Wald-2 reports the test statistic for a Wald test of the joint signicance of the all
firm-averages, asymptotically distributed as χ2 under the null of no relation. LR-test reports the test statistic
for a likelihood-ratio test comparing a pooled-tobit model to the DPF estimator including correlated random
effects. All variable names, definitions and sources can be found in appendix Table A.3.1.



Table 3.13: Capital Structure Adjustment over the Business Cycle Conditional on The Market-
to-book ratio

Full Sample Group Affiliated Private

(1) (2) (3)
High Low High Low High Low

MDRi,t−1 0.735*** 0.789*** 0.760*** 0.810*** 0.712*** 0.770***
(0.008) (0.010) (0.010) (0.013) (0.011) (0.014)

MDRi,t−1*MBQ2 -0.002 -0.000 -0.002 0.000 0.009 0.012
(0.005) (0.006) (0.006) (0.008) (0.007) (0.010)

MDRi,t−1*MBQ3 -0.075*** -0.027*** -0.076*** -0.026*** -0.062*** -0.024**
(0.005) (0.006) (0.006) (0.007) (0.009) (0.011)

MDRi,t−1*MBQ4 -0.171*** -0.113*** -0.139*** -0.093*** -0.190*** -0.124***
(0.009) (0.008) (0.013) (0.011) (0.012) (0.015)

Profitabilityi,t -0.453*** -0.466*** -0.441*** -0.455*** -0.466*** -0.478***
(0.018) (0.022) (0.025) (0.031) (0.025) (0.034)

Market-to-Booki,t -0.009*** -0.013*** -0.007*** -0.009*** -0.011*** -0.016***
(0.001) (0.001) (0.002) (0.002) (0.002) (0.003)

Non-Debt Tax Shieldsi,t -0.110 -0.274** -0.064 -0.363*** -0.171 -0.259*
(0.083) (0.111) (0.133) (0.137) (0.112) (0.152)

Sizei,t 0.036*** 0.037*** 0.038*** 0.038*** 0.034*** 0.038***
(0.002) (0.002) (0.003) (0.003) (0.003) (0.003)

Asset Tangibilityi,t 0.052*** 0.030*** 0.036*** -0.003 0.067*** 0.066***
(0.010) (0.010) (0.011) (0.017) (0.013) (0.017)

R&D Expenditurei,t -0.005** -0.004 -0.000 -0.005 -0.013** -0.003
(0.003) (0.004) (0.005) (0.004) (0.006) (0.007)

Industry Medium MDRi,t 0.158*** 0.139*** 0.159*** 0.153*** 0.140*** 0.111***
(0.018) (0.016) (0.018) (0.020) (0.023) (0.023)

Absolute Financing Deficiti,t -0.004 -0.071*** -0.016 -0.082* 0.004 -0.057
(0.018) (0.027) (0.025) (0.042) (0.022) (0.042)

Sales Growthi,t -0.018*** -0.005 -0.022*** -0.010 -0.014*** -0.003
(0.003) (0.004) (0.005) (0.007) (0.004) (0.006)

Dividend Payouti,t -0.029*** -0.013*** -0.030*** -0.012** -0.026*** -0.012**
(0.003) (0.004) (0.004) (0.005) (0.003) (0.005)

Export Intensityi,t -0.002 -0.014* 0.000 -0.008 -0.004 -0.020**
(0.008) (0.008) (0.012) (0.014) (0.008) (0.009)

Import Intensityi,t -0.006 -0.017*** -0.003 -0.012** -0.009* -0.024***
(0.004) (0.004) (0.006) (0.006) (0.005) (0.006)

MDRi,0 0.073*** 0.089*** 0.059*** 0.077*** 0.086*** 0.105***
(0.007) (0.008) (0.008) (0.009) (0.008) (0.011)

Firm Fixed-Effects Yes Yes Yes
Year Fixed-Effects Yes Yes Yes

SOA1(1 − λ̂) 26.50% 21.10% 24.00% 19.00% 28.80% 23.00%

SOA4(1 − (λ̂+ ϕ̂4)) 43.60% 32.40% 37.90% 28.30% 47.80% 35.40%
AIC -32,364.20 -17,275.58 -15,392.49
BIC -31,860.02 -16,817.73 -14,928.1
Wald-1 3110.36 1924.35 1377.50
Wald-2 526.60 295.95 252.95
LR-Test 941.47 281.03 602.74
Firms 2,735 1,110 1,625
Observations 27,681 13,102 14,579

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for equation (3.5) where MBj represent the quartile groups
classification conditional on the market-to-book ratio. Sub-columns labeled High and Low detail the coefficients
and standard errors for both high and low regimes of GDP growth, of which by year classifications are detailed in
Table 3.4. SOA1 reports the SOA for quantile group one where SOA4 reports the conditional SOA for quantile
group four for each respective regime. Bootstrapped standard errors are reported in parentheses were we set the
repetition rate R=250. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.AIC and
BIC report the Akaike information criterion and Bayesian information criterion, respectively. Wald-1 reports
the test statistic for a Wald test of the joint signicance of the year fixed-effects, asymptotically distributed as χ2

under the null of no relation. Wald-2 reports the test statistic for a Wald test of the joint signicance of the all
firm-averages, asymptotically distributed as χ2 under the null of no relation. LR-test reports the test statistic
for a likelihood-ratio test comparing a pooled-tobit model to the DPF estimator including correlated random
effects. All variable names, definitions and sources can be found in appendix Table A.3.1.



Table 3.14: Capital Structure Adjustment over the Business Cycle Conditional on Profitability

Full Sample Group Affiliated Private

(1) (2) (3)
High Low High Low High Low

MDRi,t−1 0.761*** 0.774*** 0.795*** 0.807*** 0.737*** 0.750***
(0.009) (0.009) (0.011) (0.011) (0.011) (0.016)

MDRi,t−1*PQ2 -0.031*** 0.016*** -0.029*** 0.010 -0.029*** 0.024**
(0.006) (0.005) (0.007) (0.008) (0.009) (0.010)

MDRi,t−1*PQ3 -0.086*** -0.001 -0.093*** -0.011 -0.080*** 0.005
(0.007) (0.007) (0.009) (0.008) (0.008) (0.011)

MDRi,t−1*PQ4 -0.175*** -0.046*** -0.162*** -0.049*** -0.184*** -0.042**
(0.010) (0.010) (0.011) (0.014) (0.013) (0.019)

Profitabilityi,t -0.222*** -0.398*** -0.196*** -0.372*** -0.244*** -0.425***
(0.020) (0.025) (0.028) (0.033) (0.025) (0.041)

Market-to-Booki,t -0.020*** -0.019*** -0.016*** -0.014*** -0.024*** -0.022***
(0.002) (0.002) (0.002) (0.003) (0.002) (0.003)

Non-Debt Tax Shieldsi,t -0.138* -0.290*** -0.060 -0.381*** -0.216* -0.278*
(0.075) (0.103) (0.142) (0.144) (0.119) (0.144)

Sizei,t 0.034*** 0.036*** 0.035*** 0.035*** 0.032*** 0.038***
(0.002) (0.002) (0.003) (0.003) (0.003) (0.003)

Asset Tangibilityi,t 0.041*** 0.023** 0.024 -0.011 0.056*** 0.056***
(0.010) (0.011) (0.016) (0.014) (0.015) (0.018)

R&D Expenditurei,t -0.004 -0.005 0.001 -0.005 -0.013*** -0.003
(0.003) (0.004) (0.004) (0.005) (0.005) (0.006)

Industry Medium MDRi,t 0.162*** 0.147*** 0.155*** 0.157*** 0.152*** 0.124***
(0.015) (0.013) (0.020) (0.021) (0.021) (0.020)

Absolute Financing Deficiti,t -0.001 -0.066** -0.012 -0.082** 0.007 -0.052
(0.019) (0.027) (0.027) (0.038) (0.020) (0.043)

Sales Growthi,t -0.015*** -0.008** -0.018*** -0.012* -0.012*** -0.005
(0.003) (0.003) (0.005) (0.007) (0.003) (0.006)

Dividend Payouti,t -0.022*** -0.012*** -0.022*** -0.010* -0.021*** -0.012**
(0.003) (0.003) (0.005) (0.005) (0.005) (0.005)

Export Intensityi,t 0.001 -0.012 0.002 -0.006 0.001 -0.017
(0.007) (0.007) (0.010) (0.013) (0.010) (0.011)

Import Intensityi,t -0.006 -0.018*** -0.002 -0.012** -0.010* -0.025***
(0.004) (0.005) (0.005) (0.006) (0.005) (0.006)

MDRi,0 0.070*** 0.085*** 0.054*** 0.069*** 0.086*** 0.103***
(0.005) (0.006) (0.007) (0.008) (0.008) (0.009)

Firm Fixed-Effects Yes Yes Yes
Year Fixed-Effects Yes Yes Yes

SOA1(1 − λ̂) 23.90% 22.60% 20.50% 19.30% 26.30% 25.00%

SOA4(1 − (λ̂+ ϕ̂4)) 41.40% 27.20% 36.70% 24.20% 44.70% 29.20%
AIC -32,212.17 -17,233.04 -15,285.99
BIC -31,707.98 -16,775.20 -14,821.6
Wald-1 2,807.81 1,804.11 1,198.12
Wald-2 463.50 259.74 226.41
LR-Test 876.89 261.71 559.12
Firms 2,735 1,110 1,625
Observations 27,681 13,102 14,579

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for equation (3.5) where Pj represent the quartile groups clas-
sification conditional on profitability. Sub-columns labeled High and Low detail the coefficients and standard
errors for both high and low regimes of GDP growth, of which by year classifications are detailed in Table 3.4.
SOA1 reports the SOA for quantile group one where SOA4 reports the conditional SOA for quantile group four
for each respective regime. Bootstrapped standard errors are reported in parentheses were we set the repetition
rate R=250. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. AIC and BIC
report the Akaike information criterion and Bayesian information criterion, respectively. Wald-1 reports the
test statistic for a Wald test of the joint signicance of the year fixed-effects, asymptotically distributed as χ2

under the null of no relation. Wald-2 reports the test statistic for a Wald test of the joint signicance of the all
firm-averages, asymptotically distributed as χ2 under the null of no relation. LR-test reports the test statistic
for a likelihood-ratio test comparing a pooled-tobit model to the DPF estimator including correlated random
effects. All variable names, definitions and sources can be found in appendix Table A.3.1.



Figure 3.2: Business Cycle Adjustment Speeds Across Quartile Groups: Absolute Financial
Deficit

Figure 3.3: Business Cycle Adjustment Speeds Across Quartile Groups: Market-to-book

Figure 3.4: Business Cycle Adjustment Speeds Across Quartile Groups: Profitability

Source: Prowess - Author’s own calculation.



3.6 Robustness Analysis

To illustrate the empirical stoutness of our findings provide additional three tests. To avoid

overkill, the analysis presented in this section mainly focuses on our full sample estimates over

the business cycle, however, the unreported results for group affiliated and private listed firms

are widely consistent with the forthcoming discussion.

For the first robustness test we draw from chapter 2 where we documented that the degree

of cross-sectional heterogeneity and the level panel unbalancedness can have a sizable impact on

the bias of the autoregressive coefficient and therefore the implied SOA. To ensure our estimates

are not affected by such factors, we explicitly examine the SOA for surviving firms. Following

Lemmon et al. (2008), we classify survivor firms as firms that exist in the sample dataset for a

minimum of 20 years, therefore, we remove all firms with less than 20 years of observations. Thus,

by there very definition surviving firms in our sub-sample are less unbalanced than our original

full sample. Equally, surviving firms are naturally older and generally display less variance across

explanatory variables and can be considered a more homogeneous sub-sample of firms. In Table

A.3.6 we report the results from our sub-sample estimates are, on average, consistent with our

main findings. We find the direct effect of the business cycle to be slightly more pronounced for

survivors, and in terms of firm-specific variables, we note that survivors with high market-to-book

values in high growth periods adjust economically faster at a considerable 54.10%.

For the second robustness test we examine the consistency of our firm-specific measures of

adjustment cost heterogeneity, by using three similar yet alternative proxies. Specifically, for

our measure of absolute financing deficit, Faulkender et al. (2012) suggests the use of industry

median investment in order to alleviate endogeniety concerns, however, given our quartile clas-

sification approach is by its definition exogenous, we propose an alternative absolute financing

deficit measure based on the deductions of the firms actual investment, thus, providing a more

concise estimate of a firms financial imbalance. For the market-to-book ratio we propose sale

revenue growth, a common alternative proxy of investment opportunities (e.g. D’Espallier and

Guariglia 2015), and for our measure of profitability we use return on capital employed. In

Table A.3.7 we find our alternative measures of absolute financing deficit and return on capital

employed to report similar levels of significance and adjustment speeds. However, while the sale

growth reports a similar pattern of adjustment as the market-to-book ratio, the divergence across

adjustment speeds between firm groups is notably less, suggesting that firms capital structure

adjustment is more responsive to market valuations than book based measures of growth.
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For the third and final robustness test, we examine the potential misspecification of our

quartile dummy variable approach. Specifically, to account for potential within industry decision

making and within industry reference groups, we re-define the quartile groups by year and

industry, thus, accounting for potential within industry differences across our three measures of

adjustment heterogeneity. In Appendix Table A.3.8 we illustrate that the results presented in

this chapter are robust to alternative definitions of quartile rankings. Furthermore, in unreported

results, we test the sternness of our results across alternative quantiles, namely, quintiles and

deciles, and find the results are qualitatively the same.

3.7 Concluding Remarks

The dynamic trade-off theory of capital structure advances that firms facing opposing adjustment

costs should in turn follow different paths towards their optimal target leverage. In this chapter

we employ a novel empirical model specification to test this prediction by investigating both

firm-specific asymmetric adjustment costs over the course of the business cycle. In terms of

empirical approach, we emphasize the importance of robust econometric techniques throughout

this paper by examining a range of econometric estimation procedures. To this end, we claim

that the results presented in this chapter by the DPF estimator best approximate the true SOA

due its propensity to alleviate fractional bias and estimate the autoregressive coefficient most

accurately.

Our results document several forms of asymmetric adjustment with firms with greater finan-

cial imbalance, higher market-to-book ratios and higher profit levels all adjusting faster than their

counterpart, consistent with the exiting literature. More importantly however, the efforts of this

chapter extend the recent work of Cook and Tang (2010), Dang et al. (2014) and Drobetz et al.

(2015) by providing complementary evidence on the pro-cyclical nature of firms capital structure

adjustment speeds from an a new emerging market context. We find the effect of macroeco-

nomic performance on Indian listed firms adjustment speeds is close to twice the 4% difference

reported by Cook and Tang (2010) in the US, therefore, illustrating the greater importance of

macroeconomic performance in a developing market context.

All in all, this study has contributed to academic efforts that seek to pin down the factors

that govern the capital structure adjustment process, thus, addressing our the second research

objective of this thesis. In terms of policy recommendations, despite India’s financial sector

development in recent years, policy makers may endeavour to introduce greater counter-cyclical

109



buffers to alleviate the extenuated market frictions brought about in economic downturns. Ac-

cordingly, future research may look to examine how different macroeconomic shocks - both real

and financial - in emerging economies effect capital market frictions and in turn the capital

structure adjustment process.

110



3.8 Appendix

Table A.3.1: Variable Definitions and Sources

Data Reference Definition Source

Market Debt Ratio (MDR) Total borrowing over the market value of equity plus total borrowing Prowess

Profitability Net earnings over Total Assets Prowess

Market-to-Book Market value of equity plus total borrowing over Total Assets Prowess

Non-Debt Tax Shields Total depreciation over total assets Prowess

Size The natural logarithm of total assets Prowess

Asset Tangibility Fixed assets over total assets Prowess

R&D Expenditure A binary variable equaling one if the firm invested in R&D otherwise zero Prowess

Industry Medium Industry medium leverage ratio based on 2 digit NIC Industry Classifications Prowess

Absolute Financing Imbalance The absolute value of operating income before depreciation Prowess

less income taxes, less interest expense, less mean industry investment

Sales Growth The percentage increase in total sales revenue over total assets Prowess

Dividend Payout A Binary variable equaling one if the firm paid dividends otherwise zero Prowess

Export Intensity Sales revenue generated by foreign sales over total sales revenue Prowess

Import Intensity Foreign raw materials over total materials Prowess

Net Debt Issue The first difference of total debt over total assets Prowess

Net Equity Issue Value of equity issues less the value buy-backs over total assets Prowess

Active Debt The percentage of non-zero values in the numerator of Net Debt Issue Prowess

Debt Increase The percentage of positive values in the numerator of Net Debt Issue Prowess

Debt Decrease The percentage of negative values in the numerator of Net Debt Issue Prowess

Active Equity The percentage of non-zero values in the numerator of Net Equity Issue Prowess

Equity Increase The percentage of positive values in the numerator of Net Equity Issue Prowess

Equity Decrease The percentage of negative values in the numerator of Net Equity Issue Prowess

GDP Growth The reported GDP growth of India OECD

High Growth Dummy The binary classification for high economic performance in India OECD

Low Growth Dummy The binary classification for Low economic performance in India OECD
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Table A.3.2: Unconditional Capital Structure Adjustment Speeds

Author(s) Year of Country Model Sample Average T Debt Type SOA (%)

Publication Specification Coverage

Ozkan 2001 UK 1 1984-1996 10.59 Book 22(1), 41(3)

De Miguel and Pindado 2001 Spain 1 1990-1997 7.64 Market 79(3)

Flannery and Rangan 2006 USA 1 1965-2001 8.60 Market 38(2)

Kayhan and Titman 2007 USA 2 1960–2003 9.96 Market 19(4)

Byoun 2008 USA 2 1972-2002 - Market 22(1)

Lemmon et al. 2008 USA 2 1965-2003 - Book 17(1), 39(2), 22(4)

Brav 2009 UK 2 1993-2002 - Book 23(2)

Chang and Dasgupta 2009 USA 1 1971-2004 - Book 38(2)

Huang and Ritter 2009 USA 1 1963-2001 - Market 21(5)

Cook and Tang 2010 USA 1 1977-2006 - Market 32(2)

Elsas and Florysiak 2011 USA 1 1965–2009 10.38 Market 39(2), 26(7)

Guney et al. 2011 China 1 1994-2006 - Book 35(4)

Dang et al. 2012 UK 1 1996–2003 6.28 Market 60(3)

Aybar-Arias et al. 2012 Spain 1 1995-2005 7.6 Market 44(4)

Öztekin and Flannery 2012 USA 1 1991–2006 8.00 Market 39(4), 37(6)

Öztekin and Flannery 2012 India 1 1991–2006 7.00 Market 30(4), 31(6)

Öztekin and Flannery 2012 UK 1 1991–2006 8.00 Market 25(4), 28(6)

Ebrahim et al. 2014 Malaysia 1 1988-2009 8.39 Book 28(4)

Faulkender et al. 2012 USA 2 1965–2006 - Market 22(1)

Dang et al. 2014 USA 1 2002–2012 8.33 Book 29(3)

Dang et al. 2015 USA 1 1967–2006 15.00 Book 15(1), 40(2), 16(3), 18(4), 7(5), 26(6), 27(7)

Elsas and Florysiak 2015 USA 1 1965–2009 10.38 Market 15(1), 39(2), 26(4), 27(6), 26(7)

Notes: Table 4.1 presents the estimated speed of adjustment for each paper listed, sorted by date. Author(s) lists the name of the author(s). Year
or publication is the citation year of publication. Sample coverage is the country of which the firms of interest reside. Model specification lists if
the author(s) employed a one or two-step approach. Estimation period lists the data sample coverage. Average T consists of either the average
firm years provided by the author or a calculation of total firm-year observations divided by the number of firms. Debt type lists the dependent
variable of interest, SOA(%) reports the estimated speed of adjustment given the type of estimator where (1) denotes the OLS estimator, (2) the
FE estimator, (3) the FD-GMM estimator of Arellano and Bond (1991), (4) the system-GMM estimator of Blundell and Bond (1998), (5) the LD4
estimator of Huang and Ritter (2009), (6) the LSDVC estimator of Kiviet (1995) and finally (7) denotes the DPF estimator of Elsas and Florysiak
(2011) and Elsas and Florysiak (2015).
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Table A.3.3: Panel Structure By Firm

Full Sample Group Affiliated Private
No. of obs. per firm No. of obs. Percentage (%) No. of obs. Percentage (%) No. of obs. Percentage (%)

1997 675 2.23 393 2.87 282 1.70
1998 758 2.50 446 3.25 312 1.88
1999 951 3.14 516 3.76 435 2.62
2000 1,002 3.31 506 3.69 496 2.99
2001 807 2.66 449 3.27 358 2.16
2002 858 2.83 485 3.54 373 2.25
2003 846 2.79 481 3.51 365 2.20
2004 1,207 3.98 618 4.51 589 3.55
2005 1,482 4.89 676 4.93 806 4.85
2006 1,622 5.35 716 5.22 906 5.46
2007 1,719 5.67 726 5.30 993 5.98
2008 1,789 5.90 751 5.48 1,038 6.25
2009 1,728 5.70 731 5.33 997 6.01
2010 1,919 6.33 790 5.76 1,129 6.80
2011 1,929 6.36 794 5.79 1,135 6.84
2012 1,906 6.29 792 5.78 1,114 6.71
2013 1,848 6.10 763 5.56 1,085 6.54
2014 1,799 5.93 767 5.59 1,032 6.22
2015 1,871 6.17 776 5.66 1,095 6.60
2016 1,808 5.96 766 5.59 1,042 6.28
2017 1,789 5.90 769 5.61 1,020 6.14
Total 30,313 100.00 13,711 100.00 16,602 100.00

113



Table A.3.4: Panel Structure By Year

Full Sample Group Affiliated Private
Year No. of obs. Percentage (%) No. of obs. Percentage (%) No. of obs. Percentage (%)

3 405 1.34 117 0.85 288 1.73
4 500 1.65 188 1.37 312 1.88
5 630 2.08 225 1.64 405 2.44
6 960 3.17 318 2.32 642 3.87
7 1,218 4.02 392 2.86 826 4.98
8 1,240 4.09 424 3.09 816 4.92
9 1,503 4.96 387 2.82 1,116 6.72
10 1,860 6.14 470 3.43 1,390 8.37
11 2,145 7.08 759 5.54 1,386 8.35
12 1,968 6.49 756 5.51 1,212 7.30
13 1,846 6.09 624 4.55 1,222 7.36
14 1,652 5.45 672 4.90 980 5.90
15 1,890 6.23 825 6.02 1,065 6.41
16 1,824 6.02 816 5.95 1,008 6.07
17 2,397 7.91 1,275 9.30 1,122 6.76
18 1,638 5.40 1,026 7.48 612 3.69
19 2,223 7.33 1,292 9.42 931 5.61
20 1,600 5.28 940 6.86 660 3.98
21 2,814 9.28 2,205 16.08 609 3.67

Total 30,313 100.00 13,711 100.00 16,602 100.00
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Table A.3.5: Panel Unit Root Tests: Fisher-type Augmented Dickey-Fuller (ADF) & Phillips-Perron (PP)

Augmented Dickey-Fuller Phillips-Perron

Drift Drift and Trend Drift Drift and Trend

MDR -16.651*** -12.322*** -27.062*** -17.104***

Profitability -21.743*** -17.868*** -36.682*** -30.792***

Market-to-Book -17.712*** -5.826*** -32.141*** -22.940***

Non-Debt Tax Shields -15.223*** -13.475*** -24.198*** -20.531***

Size -17.841*** -15.756*** -9.340*** -10.124***

Asset Tangibility -12.169*** -10.347*** -19.712*** -18.003***

Industry Medium -2.703*** -0.455 -19.503*** -16.905***

Absolute Financing Imbalance -47.135*** -31.264*** -95.255*** -78.682***

Sales Growth -45.336*** -39.325*** -91.809*** -80.859***

Export Intensity -17.671*** -13.670*** -25.912*** -20.693***

Import Intensity -22.523*** -14.632*** -31.313*** -19.927***

Source: Prowess - Author’s own calculation.
Notes: The table reports augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) fisher-type panel unit root tests on all
continuous variables. All ADF and PP tests include one lag, while each stylised test has been reported with the inclusion of a
drift and a drift with time trend. Each test is examined under the null hypothesis that all panels contain unit roots with the
alternative hypothesis that at least one panel is stationary. Reported test statistics are based on inverse normal test (Z).*, **
and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources can be
found in appendix Table A.3.1.
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Table A.3.6: Robustness Analysis: Sample Survivors

(1) (2) (3)
High Low High Low High Low

MDRi,t−1 0.689*** 0.798*** 0.726*** 0.793*** 0.770*** 0.810***
(0.016) (0.018) (0.015) (0.017) (0.018) (0.020)

MDRi,t−1*AFDQ2 0.006 -0.006
(0.012) (0.014)

MDRi,t−1*AFDQ3 0.005 -0.007
(0.013) (0.015)

MDRi,t−1*AFDQ4 -0.064*** -0.015
(0.017) (0.020)

MDRi,t−1*MBQ2 -0.010 0.018
(0.012) (0.014)

MDRi,t−1*MBQ3 -0.107*** -0.018
(0.013) (0.014)

MDRi,t−1*MBQ4 -0.267*** -0.080***
(0.018) (0.021)

MDRi,t−1*PQ2 -0.041*** 0.000
(0.014) (0.016)

MDRi,t−1*PQ3 -0.108*** -0.011
(0.015) (0.017)

MDRi,t−1*PQ4 -0.179*** -0.053**
(0.018) (0.022)

Firm Controls Yes Yes Yes
Firm Fixed-Effects Yes Yes Yes
Year Fixed-Effects Yes Yes Yes

SOA1(1 − λ̂) 31.10% 20.20% 27.40% 20.70% 23.00% 19.00%

SOA4(1 − (λ̂+ ϕ̂4)) 37.50% 21.70% 54.10% 28.70% 40.90% 24.30%
AIC -5243.22 -5457.44 -5090.21
BIC -4948.93 -5163.15 -5384.49
Wald-1 709.74 726.02 681.81
Wald-2 158.35 152.46 161.66
LR-Test 58.61 83.88 70.07
Firms 214 214 214
Observations 4,160 4,160 4,160

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for equation (3.5) where AFDj , MBj and Pj represent
the quartile groups classification conditional on absolute financial deficit, the market-to-book ratio
and profitability, respectively. Sub-columns labeled High and Low detail the coefficients and standard
errors for both high and low regimes of GDP growth, of which by year classifications are detailed
in Table 3.4. SOA1 reports the SOA for quantile group one where SOA4 reports the conditional
SOA for quantile group four for each respective regime. Bootstrapped standard errors are reported
in parentheses were we set the repetition rate R=250. *, ** and *** indicate significance at the 10%,
5% and 1% levels, respectively. AIC and BIC report the Akaike information criterion and Bayesian
information criterion, respectively. Wald-1 reports the test statistic for a Wald test of the joint
signicance of the year fixed-effects, asymptotically distributed as χ2 under the null of no relation.
Wald-2 reports the test statistic for a Wald test of the joint signicance of the all firm-averages,
asymptotically distributed as χ2 under the null of no relation. LR-test reports the test statistic for
a likelihood-ratio test comparing a pooled-tobit model to the DPF estimator including correlated
random effects. All variable names, definitions and sources can be found in appendix Table A.3.1.



Table A.3.7: Robust Analysis: Alternative Measures

(1) (2) (3)
High Low High Low High Low

MDRi,t−1 0.716*** 0.779*** 0.738*** 0.783*** 0.761*** 0.794***
(0.007) (0.008) (0.007) (0.008) (0.002) (0.007)

MDRi,t−1*AAFDQ2 0.006 -0.005
(0.005) (0.006)

MDRi,t−1*AAFDQ3 -0.014*** -0.021***
(0.005) (0.007)

MDRi,t−1*AAFDQ4 -0.038*** -0.048***
(0.007) (0.009)

MDRi,t−1*SGQ2 -0.019*** -0.018***
(0.005) (0.007)

MDRi,t−1*SGQ3 -0.044*** -0.034***
(0.006) (0.007)

MDRi,t−1*SGQ4 -0.067*** -0.040***
(0.006) (0.008)

MDRi,t−1*ROCEQ2 -0.067*** -0.023***
(0.017) (0.017)

MDRi,t−1*ROCEQ3 -0.112*** -0.042***
(0.018) (0.018)

MDRi,t−1*ROCEQ4 -0.273*** -0.131***
(0.023) (0.025)

Firm Controls Yes Yes Yes
Firm Fixed-Effects Yes Yes Yes
Year Fixed-Effects Yes Yes Yes

SOA1(1 − λ̂) 28.40% 22.10% 26.20% 21.70% 23.90% 20.60%

SOA4(1 − (λ̂+ ϕ̂4)) 32.20% 26.90% 32.90% 25.70% 47.90% 33.70%
AIC -31,415.51 -31,438.02 -32,005.25
BIC -31,024.76 -31,047.27 -31,414.50
Wald-1 3,663.48 3,625.38 3,357.44
Wald-2 495.88 495.82 481.22
LR-Test 725.24 748.58 847.09
Firms 2,735 2,735 27,35
Observations 27,681 27,681 27,681

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for equation (3.5) where AAFDj , SGj and ROCEj

represent the quartile groups classification conditional on an alternative measure of absolute financial
deficit, sales growth and return on capital employed, respectively. We define industries as via NIC
industry classifications. Sub-columns labeled High and Low detail the coefficients and standard errors
for both high and low regimes of GDP growth, of which by year classifications are detailed in Table 3.4.
SOA1 reports the SOA for quantile group one where SOA4 reports the conditional SOA for quantile
group four for each respective regime. Bootstrapped standard errors are reported in parentheses were
we set the repetition rate R=250. *, ** and *** indicate significance at the 10%, 5% and 1% levels,
respectively. AIC and BIC report the Akaike information criterion and Bayesian information criterion,
respectively. Wald-1 reports the test statistic for a Wald test of the joint signicance of the year fixed-
effects, asymptotically distributed as χ2 under the null of no relation. Wald-2 reports the test statistic
for a Wald test of the joint signicance of the all firm-averages, asymptotically distributed as χ2 under the
null of no relation. LR-test reports the test statistic for a likelihood-ratio test comparing a pooled-tobit
model to the DPF estimator including correlated random effects. All variable names, definitions and
sources can be found in appendix Table A.3.1.
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Table A.3.8: Robustness Analysis: Industry-year Quartile Groups

(1) (2) (3)
High Low High Low High Low

MDRi,t−1 0.716*** 0.779*** 0.733*** 0.772*** 0.763*** 0.773***
(0.007) (0.008) (0.007) (0.008) (0.007) (0.008)

MDRi,t−1*AFDQ2 0.006 -0.006
(0.005) (0.006)

MDRi,t−1*AFDQ3 -0.013** -0.022***
(0.005) (0.007)

MDRi,t−1*AFDQ4 -0.038*** -0.048***
(0.007) (0.008)

MDRi,t−1*MBQ2 0.002 0.011*
(0.005) (0.006)

MDRi,t−1*MBQ3 -0.055*** -0.018***
(0.005) (0.007)

MDRi,t−1*MBQ4 -0.156*** -0.108***
(0.007) (0.008)

MDRi,t−1*PQ2 -0.033*** 0.003
(0.005) (0.006)

MDRi,t−1*PQ3 -0.088*** -0.017**
(0.006) (0.007)

MDRi,t−1*PQ4 -0.155*** -0.061***
(0.008) (0.009)

Firm Controls Yes Yes Yes
Firm Fixed-Effects Yes Yes Yes
Year Fixed-Effects Yes Yes Yes

SOA1(1 − λ̂) 28.40% 22.10% 26.70% 22.80% 23.70% 22.70%

SOA4(1 − (λ̂+ ϕ̂4)) 32.20% 26.90% 42.30% 33.60% 39.20% 28.80%
AIC -31407.51 -32216.51 -32105.25
BIC -31016.76 -31825.76 -31714.50
Wald-1 3661.61 3937.40 3557.44
Wald-2 496.24 530.06 490.22
LR-Test 725.93 917.32 867.09
Firms 2,735 2,735 2,735
Observations 27,681 27,681 27,681

Source: Prowess - Author’s own calculation.
Notes: This table reports the DPF estimates for equation (3.5) where AFDj , MBj and Pj represent the
industry-quartile group classification conditional on absolute financial deficit, the market-to-book ratio
and profitability, respectively. We define industries as via NIC industry classifications. Sub-columns
labeled High and Low detail the coefficients and standard errors for both high and low regimes of GDP
growth, of which by year classifications are detailed in Table 3.4. SOA1 reports the SOA for quantile
group one where SOA4 reports the conditional SOA for quantile group four for each respective regime.
Bootstrapped standard errors are reported in parentheses were we set the repetition rate R=250. *,
** and *** indicate significance at the 10%, 5% and 1% levels, respectively. AIC and BIC report the
Akaike information criterion and Bayesian information criterion, respectively. Wald-1 reports the test
statistic for a Wald test of the joint signicance of the year fixed-effects, asymptotically distributed as χ2

under the null of no relation. Wald-2 reports the test statistic for a Wald test of the joint signicance of
the all firm-averages, asymptotically distributed as χ2 under the null of no relation. LR-test reports the
test statistic for a likelihood-ratio test comparing a pooled-tobit model to the DPF estimator including
correlated random effects. All variable names, definitions and sources can be found in appendix Table
A.3.1.
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Chapter 4

Dividend Decisions, Peer Effects and
Geographical Proximity: Evidence from
India

Abstract: The dividend payout decisions of firms have long been considered independent from

the decisions of their peers. However, recent research has shown that the corporate policies

of firms, including corporate payout policy, are in fact largely interdependent on the policies

of their industry counterparts. In this chapter, we extend this line of enquiry by examining

if the propensity of peer influence on corporate dividend decisions is conditional on said peers

geographical location. Using a large unbalanced panel of 3,670 firms over the period of 1995-

2017, we show that the decisions to increase and decrease dividends are more influenced by the

decisions of their geographically closer industry counterparts, an effect we attribute to imperfect

information and possible pressure from local investor clienteles and/or local market competition.

4.1 Introduction

The decisions of individual economic agents are often influenced by the decisions of their peers.

This notion of social interaction and peer influence has long been established in many areas

of economics, such as: behavioural, labour and urban economics (e.g., Duesenberry et al. 1949,

Scharfstein et al. 1990, Abel 1990, Sacerdote 2001, Glaeser et al. 2003, Zimmerman 2003, Angrist

and Lang 2004, Angrist and Pischke 2008, Maurer and Meier 2008, Moretti 2011, Helmers and

Patnam 2014 and Blume et al. 2015). In recent years, peer effects have also received substantial

attention from the corporate finance literature. Traditionally, the dividend payout decisions

of firms have been assumed to be independent from the actions and/or characteristics of their

peers. However, the recent work of Adhikari and Agrawal (2018) and Grennan (2019) have
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shown that peer behaviour is more important for determining corporate payout policy than

many well established firm-specific determinants, such as profitability and firm size. Similar

interdependencies have also been documented for firms’ capital structure (e.g., Leary and Roberts

2014 and Im 2019), corporate social responsibility policy (e.g., ?), precautionary cash holdings

(e.g., Hoberg et al. 2014 and Chen et al. 2019) and investment decisions (e.g., Patnam 2011 and

Foucault and Fresard 2014).

One of the major empirical challenges of peer effect analysis is the identification and cate-

gorisation of economic agents reference groups (Maurer and Meier, 2008). In practice, reference

groups approximate the peer group structure of economic agents as the true identity of said

peer groups are often unobserved by the researcher. For example, in the context of peer effects

and educational performance, the identification of each student’s friendship (peer) group, is, in

most cases, latent. Accordingly, in order to examine the effects of peer behaviour on exam per-

formance, some broader approximations must be made regarding the peer group structures of

students, e.g. peer groups based on classroom allocation.

What makes reference group categorisation even more challenging is the fact that peer influ-

ence is often nonlinear and can manifest itself through multiple channels (Sacerdote 2011; Duflo

et al. 2011). In addition, the size and topological structure of individual peer groups also often

differ for each individual economic agent. With regards to our previous example, a student’s

friendship (peer) group may consist of a best friend which is likely to be more influential than a

mere associate. Furthermore, the most popular student, by it’s very definition, is going to have

a larger friendship (peer) group than the average student. Ultimately, failing to account for such

intricacies can result in the misspecification of peer measures, which can give rise to spurious

economic inferences about the true nature of peer effects (Angrist 2014; Feld and Zölitz 2017).

In the corporate finance literature, researchers have adopted a number of different refer-

ence groups proxies. Most commonly, researchers have used industry classifications (e.g., Leary

and Roberts 2014 and Adhikari and Agrawal 2018) and/or text-based product similarity groups

(e.g., Grennan 2019 and ?) to construct peer reference groups assuming transitivity, i.e. all

firms within the same industry are interconnected and considered peers of equal influence. Con-

sequently, many of the aforementioned studies fail to account for the potential nonlinearity of

peer effects that are likely to be prominent in the corporate finance setting, and more specif-

ically, for dividend payout decisions. For instance, transitive reference groups ignore market

imperfections such as imperfect and incomplete information, where less easily observed industry

peers - e.g. peers located further away - may be less influential than their closer, more easily
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observed industry counterparts who are more likely to adopt competitive corporate policies. Fur-

thermore, the assumption of transitivity neglects the possibility that information asymmetries

related to geographical location may effect the size and topological structure of individual firms

peer reference groups. The purpose of this chapter is to overcome such limitations.

In this chapter we investigate if firms decisions to increase or decrease dividend payments

are influenced by the actions and/or characteristics of their industry peers. In particular, using

intransitive proximity based reference groups, we examine if geographically closer industry peers

bear greater influence on firms dividend decisions than the broader industry average peer effect.

Prior to our study, the geographical distance to alternative economic agents and institutions

have been found to play an import role in determining corporate payout policy (e.g., John et al.

2011). In its broadest sense, the existing finance literature has shown geographical distance eases

the transfer of soft information, reduces information asymmetries and lowers potential agency

problems (Petersen and Rajan 2002; Liberti and Petersen 2018). As a result of such factors,

both individual (Ivković and Weisbenner, 2005) and institutional (Coval and Moskowitz, 1999)

investors often display a preference bias towards firms with nearby headquarters. Subsequently,

such favouritism towards nearby firms has been found to result in equity market segmentation

and increased competition between firms for local dividend clienteles (Becker et al., 2011), where

more remotely located firms often pay higher dividends to compensate for greater information

asymmetries (John et al., 2011). Based on these premises, in this chapter, we conjecture that

geographically closer industry peers are more likely to influence the dividend decisions of firms

due to more complete information and/or greater rivalry for local dividend clienteles, local market

share, resources and revenue.

The existing studies of peer effects on corporate policies have predominantly documented

the presence of peer influence in developed economies, e.g. the US, where issues of asymmetric

information and agency problems are marginal due to well-functioning capital, labour and prod-

uct markets and strong legal systems. In contrast, issues of incomplete information and agency

problems are particularly severe in emerging economies (Allen et al., 2005). Emerging economies

such as India, are typically characterised by low levels of information dispersion, illiquid capital

markets and high levels of corruption (Khanna and Palepu 1997; La Porta et al. 2000; Khanna

and Palepu 2000). However, since India’s financial liberalisation, numerous initiatives have been

taken by the stock exchange board of India to improve market liquidity and governance prac-

tice, whereby minority shareholder protection in India is now comparable to that of developed

economies (World Bank, 2018). Accordingly, it is the juxtaposition of low information dispersion
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yet improved market and governance conditions that make India an ideal laboratory for our

empirical study.

Using a large unbalanced panel of 3,670 Indian listed firms this chapter investigates the

dividend decisions of Indian firms over the period of 1995-2017. To test our empirical hypothesis,

we use the distance between firms headquarters to create four sets of geographically weighted

peer proximity measures. Specifically, based on the radial distances of 250 miles, 500 miles, 750

miles and 1000 miles, we calculate, for each distance band, the average peer dividend decision

and the average of all peer-specific characteristics. We then estimate, individually, each set of

peer proximity measures on the decisions to increase or decrease dividends.

While the concept of peer influence is indeed intuitively palpable, empirically, the correct

estimation of peer effects is challenging due to a specific form of endogeneity, known as the

reflection problem (Manski, 1993). In its simplest sense, if the dividend decisions of firms are

influenced by their industry counterparts, then firm i’s dividend decision is a function of firm

k’s and vice versa. Thus, a clear simultaneity issue exists. To address this inherent endogeneity

problem, this chapter employs the instrumental variable approach devised by Leary and Roberts

(2014) which has also been adopted by the likes of Adhikari and Agrawal (2018), Grennan

(2019) and Chen et al. (2019). Using stock market data we calculate two measures, namely,

peer idiosyncratic equity shock and peer idiosyncratic equity risk, which we use as instruments

in our identification strategy. In Section 4.3.2, we outline our approach in detail and discuss the

relevance and validity of such measures at length. However, in short, our instrumental variable

approach uses peer idiosyncrasies to isolate peer dividend changes and then we test how the

effected peers’ change in dividend payout influences the unaffected firms’ dividend decision.

Prior to our main discussion, we establish the presence of peer effects under the existing

assumption of transitive peer reference groups. We find, using the overall industry peer averages,

that both dividend increases and dividend decreases are influenced by peer dividend decisions.

These findings both support and conflict with the contemporaneous findings of Grennan (2019)

who only documents industry peers to effect the decision to increase dividends and not decrease.

Similar to Leary and Roberts (2014), Adhikari and Agrawal (2018) and Grennan (2019), we

find the estimated marginal effect of peer influence - for both dividend increases and dividend

decreases - to be larger than many previously identified dividend determinants. Moreover, the

effect of peer influence on dividend decisions proves to be asymmetric - consistent with the survey

evidence of Brav et al. (2005) - with peer behaviour having a more pronounced effect on dividend

decreases.
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With the existence of dividend peer effects confirmed, we address to our main empirical

inquiry. Our results show that the geographical location of peers matter for both dividend

increases and dividend decreases. Using our proximity based peer measures, we find that in-

transitive reference groups based on closer industry peers, e.g. 250 miles, display significantly

greater influence on dividend decisions than wider based peer averages. The negative relationship

between geographical distance indicates that peer influence on corporate dividend decisions is in-

deed nonlinear, where firms are more susceptible to the dividend decisions of their geographically

closer industry counterparts. These finding are in line with the idea of corporate isomorphism

and support our conjecture that firms respond to the decisions of their closer industry peers due

to more complete information, more pressure from local investor clienteles and/or local competi-

tion. Accordingly, our findings lend partial support to the recent work of Adhikari and Agrawal

(2018) and Grennan (2019) who suggest that firms mimic the dividend policies of their rivals in

order to maintain their competitive parity.

To further consolidate our understanding of peer proximity effects, we examine the potential

alternative channels of peer influence and the temporal permanence of our results with respect to

the recent financial crisis. We find that the decision to increase dividends is made independently

from peer firms decision to decrease dividends. In contrast, firms are statically less likely to

decrease dividends if their closer industry counterparts increase their payout. Thus, indicating

an upward stickiness of dividend payout decisions brought on via peer behaviour. With respect

to the temporal stability of our initial results, we find peer effects related to dividend increases

are largely consistent over time, yet, the role of peer influence on dividend decreases is most

statistical and economically significant during/after the recent financial crisis when economic

uncertainty was most pronounced.

To buttress our empirical results we conduct several robustness tests. First, similar to Leary

and Roberts (2014) and Grennan (2019) we address the latent common factors attributable to

our use of industry-based reference groups. We administer a placebo test based on randomly

assigned peer groups and find insignificant peer effects for our randomised reference groups. In

addition, we examine the validity of our results to various standard error structures, potential

omitted factors and extended radius measures. We illustrate that our findings are not a product

of specific variance assumptions nor are they driven by omitted variable bias or arbitrary distance

measures. Overall, our results remain empirically stout.

The contributions made in this chapter are threefold. First, we contribute to the work on peer

effects in corporate finance (e.g., Leary and Roberts 2014, Foucault and Fresard 2014, Kaustia
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and Rantala 2015, Adhikari and Agrawal 2018 and Grennan 2019) by proposing a new reference

group structure based on peer geographical proximity. Accordingly, we propose a alternative

measure that relaxes the strict assumption of within industry transitivity adopted by many

previous studies and allows for the non-linearity of peer effects. Our second contribution is to

the dividend literature regarding geographical distance (e.g., John et al. 2011) as we provide, to

the best of our knowledge, the first evidence that the dividend decisions of firms are influenced

by the dividend decisions of their local industry peers. Finally, we contribute to both the peer

effects and dividend literature by providing the first empirically robust evidence of dividend

decisions and peer effects in India, an alternative institutional setting to the existing peer effects

literature on dividends. Accordingly, as a result of our alternative institutional setting, we prove

peer effect manifestations are not strictly subject to developed institutional contexts, i.e. the

US, nor does the existence of peer influence only display itself in the specific dividend decisions

reported by Adhikari and Agrawal (2018) and Grennan (2019).

The remainder of the chapter is structured as follows. Section 4.2 provides a brief review of

relevant literature and states our empirical hypothesis. Section 4.3 introduces the data used in

our study. Section 4.3.2 discusses our empirical approach, including model specification, peer

proximity measures and instrument construction. Section 4.4 provides summary statistics and

Section 4.5 reports our empirical results. Finally, Section 4.5 documents our robustness analysis

and Section 4.6 concludes the chapter.

4.2 Related Literature and Hypothesis Development

Since the original propositions of Modigliani and Miller (1958) and Miller et al. (1961) the

corporate payout policies of firms have received substantial attention in the corporate finance

literature. Theoretical research promoting the relevance of payout policies have been supported

by a plethora of anecdotal and empirical evidence (e.g., Michaely et al. 1995, Fama and French

2001, Grullon et al. 2002, Short et al. 2002, Allen and Michaely 2003, Brav et al. 2005, DeAngelo

et al. 2006 and Leary and Michaely 2011). However, until recently, the dividend payouts of firms

have largely been analysed independently from the behaviour of their peers, or, at best, within

industry interdependencies have only been investigated indirectly via industry averages, industry

fixed-effects or competition related analysis (e.g., Hoberg et al. 2014 and Grullon et al. 2019).

In its broadest sense, Lieberman and Asaba (2006) propose two possible theories of why

firms may decide to imitate the actions of their peers: i) the information-based theory, which
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suggests that firms may imitate those who are perceived to have superior information and ii) the

rivalry-based theory, which posits firms may keep pace with their peers in order maintain their

competitive parity. The recent empirical evidence on peer effects within the corporate finance

literature shows, in line with the information-based theory, that important corporate decisions

relating to capital structure (e.g., Leary and Roberts 2014) corporate investment (e.g., Foucault

and Fresard 2014) and stock dilution (e.g., Kaustia and Knüpfer 2012) are all influenced by the

behaviours of their larger, better informed and more experienced peers.

In contrast, the dividend payout policies of firms have been shown to be driven by more

competitive tendencies. Specifically, using a large sample of US firms from 1965-2010 Adhikari

and Agrawal (2018) find that the decision to initiate dividends, the amount of dividends paid

and stock repurchases are all influenced by their industry peers, yet, firms place more importance

on the actions of their peers that are similar in age and size. Parallel to this, Grennan (2019)

shows that market leaders often utilise peer influence to their competitive advantage by forcing

financially vulnerable firms to increase dividends in order to limit their free cash flow and future

growth.

To explain such competitive tendencies, a number of arguments exist relating to competition

for market share, resources and revenue. For example, firms in the same industry are often privy

to similar investment opportunities, use similar inputs and compete in the same labour markets.

Therefore, drawing from the theoretical work of Benoit (1984) and Bolton and Scharfstein (1990),

financially vulnerable dividend paying firms may decrease or even omit dividends to match the

potential expansive or predatory behaviour of their cash rich industry counterparts, similar to

the empirical evidence provided by Grennan (2019). In the presence of imperfect and incomplete

information, firms are more likely to observe and indeed react to the behaviour of their nearby

peers rather than their more distance industry counterparts as they compete for market share

and resources.

Another possible motive for peer imitation relates to dividends propinquity with equity mar-

kets and investors. The initial purpose of dividends was to make equity look like debt, thus,

allowing investors an easier means of calculating share value and a more accessible form of

stock comparison (Frankfurter and Wood, 1997). The concept that dividends can be used as

a yardstick measure of valuation remains, to this day, prominent amongst individual (Graham

and Kumar, 2006) and institutional investors (Ben-David, 2010). Given that dividends reflect a

means of value, advocates of the signalling theory often argue that changes in dividend payout

can transmit significant information to investors about a firms future prospects. Empirically,
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it has been shown that markets react positively to dividend initiations and dividend increases,

while negatively to dividend omissions and dividend decreases (e.g., Bhattacharya 1980, Miller

and Rock 1985, John and Williams 1985 and Michaely et al. 1995). Subsequently, considering

that investor generally adopt the same or similar dividend yields to price firms within the same

industry, if firms wish to compete in equity markets for investors, then their hands are effectively

tied as they are forced to imitate the dividend decisions of their industry counterparts. This

notion has been supported by the anecdotal work of Brav et al. (2005, p. 523) which concludes

that “With respect to payout policy, the rules of the game include [...] do not deviate far from

the competitors”.

In addition to investors favoring specific payout decisions, empirical evidence has provided

strong and consistent evidence that both individual and institutional investors exhibit a sizeable

preference bias towards firms in closer geographical proximity. Coval and Moskowitz (1999) use

US mutual fund data from 1995 and examine the distance from mutual funds headquarters to

the headquarters of firms held in their respective portfolios. They find, on average, that mutual

funds held companies that were 10% closer to the funds headquarters than the average of all

listed firms. Moreover, individual investors, of whom have significantly less resources and are

arguably more constrained by information asymmetries, display an even larger bias towards local

companies relative to mutual funds. Ivković and Weisbenner (2005) examine the investments of

30,000 households in the US over 1991-1996 and find the average household invests 31% of its

portfolio in local stocks located within 250 miles.

There exists a number of potential explanations for the such preference bias and favouritism

towards nearby firms. First, geographical proximity has been shown, across a number of areas

in finance, to ease the transfer of soft information, reduce information asymmetries and lower

potential agency problems (Petersen and Rajan 2002, Berger et al. 2005, Uysal et al. 2008 and

Liberti and Petersen 2018). Second, investors tend to have more/better information about closer

firms and the surrounding economy than their more distance alternatives. Finally, behavioural

finance theorist posit that investor bias towards nearby firms is driven by local sentiment, heuris-

tics and/or familiarity bias (Tversky and Kahneman 1973; Huberman 2001). All in all, such

favouritism towards nearby firms often results in investors holding a disproportionate number of

local shares, thus, creating an informal segmentation of domestic equity markets ( Pirinsky and

Wang 2011).

In relation to the above literature, such equity market segmentation and investor favouritism

has lead to the corporate policies of firms catering towards the demands of local investor clienteles.
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Specifically, Becker et al. (2011) show that firms located in close proximity to a large number

of senior investors are more likely to pay higher dividends to match the demands of seniors who

favour cash dividends over alternative means of payment. Moreover, John et al. (2011) finds

that firms located in more rural, less populated areas, often pay higher dividends to account for

increased information asymmetries and monitoring costs. Thus, to rephrase our prior proposition,

if firms wish to compete in equity markets, however, said equity markets are, to a degree,

segmented; then to compete for local dividend clienteles firms must imitate the dividend decisions

of their industry peers, yet, more so, the dividend decisions of their industry counterparts that

closer in geographical proximity.

On this basis, given the existence of imperfect and incomplete information and that firms

compete for more localised divided clienteles, we expect that the dividend decisions of firms are

more likely to be influenced by the payout policies of their closer industry peers than the wider

industry peer average. Consequently, we hypothesise that peer reference groups based on smaller

geographical proximity’s are likely to display a greater level of peer influence on firms’ dividend

decisions. It is this conjecture that we aim investigate empirically.

4.3 Data and Research Design

In this section we introduce the data used in our forthcoming empirical analysis. Section 4.3.1

details the data and our cleaning rules and Section 4.3.2 outlines the empirical methodology

used to investigate the dividend decisions of Indian firms. For the sake clarity, we divide Section

4.3.2 into three segments. In Section 4.3.2.1, we detail the baseline model specification used to

investigate whether dividend increases or dividend decreases are effected by the decisions of their

industry peers, where peers groups are defined by the conventional transitive industry reference

groups. In Section 4.3.2.2, we introduce our alternative peer measures based on geographical

proximity that allow for intransitive reference groups within industries. Finally, in Section 4.3.2.3,

we detail and construct our instrumental variables of peer idiosyncratic equity shock and peer

idiosyncratic equity risk and discuss their relevance and validity.

4.3.1 Data

In order to analyse the dividend decisions of Indian listed firms we draw from a number of

data sources. The primary data used in this chapter is obtained from Prowess, a database

service maintained by the Centre for Monitoring the Indian Economy (CMIE). Prowess provides

daily stock price data for BSE listed firms alongside annual accountancy data in a standardised
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format. To construct our instrumental variables of peer idiosyncratic equity shock and peer

idiosyncratic equity risk we supplemented the market data available in Prowess with BSE Index

data from the Royal Bank of India and US 10 year bond data from the Federal Reserve Bank of

St. Louis. Furthermore, to calculate the distance based peer measures we obtained latitude and

longitude coordinates from Geonames which we then match to each firm’s headquarter address

via pincodes.

After the construction of our two instrumental variables we applied a number of standard

data restrictions to obtain final annual dataset. Following Leary and Roberts (2014), Adhikari

and Agrawal (2018) and Grennan (2019) we excluded all firms operating in financial (NIC64-

NIC66) and utility sectors (NIC35-NIC39) since these industries are largely subject to alternative

accounting standards. Next, we removed all observations that have missing data and removed

all industry-year observations that had less then three observations, where industries are defined

by the two-digit NIC classification. Thus, at a minimum, each firm has at least two industry

peers in any given year. Finally, we winsorized all continuous explanatory variables at the 1st

and 99th percentiles to mitigate the effect of outliers and eradicate any potential errors in the

data.

Our final sample coverage is from 1995-2017 and consists of 3,670 firms with a total of

28,961 firm-year observations, approximating an average panel length of 7.89 years per firm.

The average industry-year observation consists of 71 firms with the largest industry consisting of

203 firms. Detailed summary statistics for our dataset are reported in Section 4.4 and all variable

names, definitions and data sources can be found in Appendix Table A.4.1. Finally, information

regarding the structure of our unbalanced panel and the distribution of firm–year observations

can be found in Appendix Table A.4.2 and Appendix Table A.4.3, respectively.

4.3.2 Research Design

4.3.2.1 Baseline Model Specification

To examine the effects of industry peers on dividend payout decisions we follow the likes of Leary

and Roberts (2014), Kaustia and Rantala (2015), Adhikari and Agrawal (2018) and Grennan

(2019) and adopt the following baseline model specification:

yi,j,t = α+ ϕȳ−i,j,t + ψ′X̄−i,j,t−1 + β′Xi,j,t−1 + ζ ′Zi,j,t−1 + ηj + ηt + υi,j,t (4.1)

where the indices i, j and t correspond to firm, industry, and year, respectively. The dependent

variable yi,j,t is binary and reflects firm i’s decision to either increase or decrease their dividend
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payout in year t. Thus, yi,j,t takes the value of one if firm i increases (decreases) their dividend

payout or else zero. By separating these two types of dividend adjustment we allow for statistical

and economic asymmetries in determinants as advocated by the literature (e.g., Michaely et al.

1995 and Leary and Michaely 2011). The variable ȳ−i,j,t is fractional and denotes the average

peer dividend decision, more specifically, it is the equally weighted average of all firms in industry

j except firm i in year t, to avoid mechanical correlation, where industry j is set at the two-

digit NIC classification level1. We follow Leary and Roberts (2014) and Adhikari and Agrawal

(2018) and use the contemporaneous values of ȳ−i,j,t, as firms in a competitive environment

are more likely to imitate current peer dividend decisions. Subsequently, ȳ−i,j,t is considered

endogenous and therefore calls for instrumental variables. Moreover, it should be noted that by

construction, this measure of peer dividend decision assumes transitivity and equal peer influence

for all industry peers in a given year.

The vectors X̄−i,j,t−1 and Xi,j,t−1 contain peer firm averages and firm-specific characteristics,

where the former vector consists of contextual variables (Manski, 1993) through which firms

may respond to changes in their peers characteristics and the latter vector consists of firm-

specific determinants. Our choice of firm-specific determinants, and in turn, peer characteristics,

are motivated by two central frictions known to effect dividend decisions, namely, information

asymmetries and agency problems (Allen and Michaely 2003; DeAngelo et al. 2009; Connelly

et al. 2011). Specifically, we include eight different variables: profitability, the market-to-book

ratio, investment, leverage, firm size, tangibility and the firm-specific measures of idiosyncratic

equity shock and idiosyncratic equity risk2. We lag all variables by one period to alleviate

potential endogeneity concerns.

It is well documented that profitably has a first order effect on firms dividend payout policies

(Lintner 1956; Fama and French 2001). Naturally, firms with excess income must decide to

either retain earnings, re-invest or distribute dividends. Subsequently, the literature, almost

conclusively, suggests that profitability has a positive association with dividend payouts (Allen

and Michaely, 2003). Therefore, firms with low or even negative profitability are less likely to pay

dividends and are less able to use dividends as a signaling mechanism (DeAngelo et al., 2006).

Unlike profitability, the market-to-book ratio which controls for signalling effects and growth

opportunities have been found to display mixed effects on dividends. Typically, in line with the

1Note: The likes of Leary and Roberts (2014), Adhikari and Agrawal (2018) and Grennan (2019) use three
digit SIC in the US to classify industry peers. However, due to a smaller sample and our peer proximity measures
this study adopts a broader level of industry classification.

2Note: All variable names, definitions and data sources can be found in Appendix Table A.4.1.
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life-cycle theory, mature firms with low growth opportunities are more likely to pay dividends

(Grullon et al., 2002). However, such effects are largely conditional on the institutional setting,

with international studies finding the opposite outside of anglosphere economies (e.g., Denis and

Osobov 2008). With regards to other determinants, it is often argued that increasing investment

reduces the degree of retained earnings available to signal with dividends (Guttman et al., 2010)

while leverage, an adjacent internal governance mechanism, protects free cash flow against agency

problems and is found to have a negative effect on dividend payout. Moreover, larger firms are

often less affected by information asymmetries, while more tangible firms are generally more

transparent than their intangible counterparts. Finally, firms with greater idiosyncratic risk and

more frequent shocks require greater earning reserves and subsequently are less likely to pay

dividends (Hoberg and Prabhala, 2009).

To control for the degree of competition within industries the vector Zi,j,t−1 includes three

variables, namely, a measure of industry competition (Herfindahl-Hirschman Index), the loga-

rithm of the number of firms per industry and a firm-specific measure, which is the logarithm

of the average distance from firm i to the remainder of it’s industry peers in industry j, which

reflects firm i′s degree of by yearly geographical centrality. In addition to the endogenous, con-

textual, firm- and industry-specific determinants, we include industry, ηj , and year, ηt, fixed

effects to account for unobserved effects and common correlated factors that may influence or

indeed cause coinciding dividend decisions. Finally, υi,j,t denotes the firm-specific error term

and is assumed to be correlated within the firm and heteroskedastic. Subsequently, all reported

standard errors are robust to heteroskedasticity and are clustered at the firm level to allow for

within dependence (Petersen, 2009)3.

4.3.2.2 Geographical Peer Proximity Measures

The main limitation of the empirical approach outlined in the previous section is that both

the endogenous, ȳ−i,j,t, and contextual effect, x̄−i,j,t, measures are based on simple leave-out

means with equal weights for all industry peers. Consequently, the economic implications of said

measures is that the relationships between firms, in a given industry, are assumed to be both

transitive and homogeneous irrespective of their geographical location. Thus, such measures im-

ply each firm has perfect information and operates within perfect (unsegmented) equity markets.

The principal aim of this chapter is to address these issues as we investigate how the dividend

decisions of firms are affected by their geographical closer industry counterparts.

3As a form of robustness test in Section 4.6, we examine the validity of our findings to alternative standard
error assumptions. Our main findings remain unchanged.
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In this study, we draw from the spatial econometrics literature, for example: Arbia and Baltagi

(2008) and Bramoullé et al. (2009) and propose an alternative set of peer measures where peer

reference groups are based on industry peers within set geographical distances. Specifically, we

use the geographical distance between firm headquarters to calculate leave-out mean measures

based on the proximity radiuses of 250 miles, 500 miles, 750 miles and 1000 miles. Before we

discuss the favourable properties of the proposed peer proximity measures, we aid our discussion

with a simple example consisting of three firms, namely: firm A, firm B and firm C, where we

outline the steps used to construct our alternative peer measures. To begin, let us consider the

n by 1 vector y which contains each firms decision to either increase dividends or not:

y =

0
1
1

 (4.2)

here each row reflects the corresponding firms dividend decision. Based on the conventional leave-

out mean peer measure, it is clear to see that 100% of firm A’s peers increase their dividends,

whereas only 50% of firm B’s and firm C’s peers increase their dividend payouts. To construct

the proximity-based peer measure we first calculate the distance, in miles, between each firm-pair

headquarters using the haversine formula:

DistanceAB = 2 ·R · arcsin(min(1,
√
z)) (4.3)

z = (sin(
LatA − LatB

2
))2 + cos(LatB) · cos(LatA) · (sin(

LonA − LonB
2

))2 (4.4)

where Lat and Lon denote the respective latitude and longitude coordinates for the headquarters

of firm A and firm B and R is set to 3,963 miles to approximate the earths radius. For the sake

of simplicity, let us assume that firm A is located directly north of firm B by 200 miles while

firm C is located directly south of firm B also by 200 miles. Accordingly, the distance of each

firm-pair can be displayed in an n by n distance matrix which we define as matrix D:

D =

 0 200 400
200 0 200
400 200 0

 (4.5)

here each row of the matrix D reports the distance between each corresponding firm-pair, for

example, D(1, 2) contains the distance between firm A and firm B while D(3, 2) contains the

distance between firm C and firm B. Next, based on a set proximity band, in this case 250

miles, one can then define the following binary n by n peer indicator matrix, P, which we row
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standardise to obtain the spatial weight matrix W:

P =

0 1 0
1 0 1
0 1 0

⇒W =

 0 1 0
0.5 0 0.5
0 1 0

 (4.6)

as we can see the main diagonal element of P and W are equal to zero which prevents any firm

from being defined as it’s own peer. Furthermore, based on the proximity radius of 250 miles,

firm A and firm C only have one corresponding industry peer while firm B has two industry

peers, thus, inducing within industry intransitivity. Finally, by taking the product of matrix W

and the vector y, we obtain the peer proximity measure for the radius of 250 miles, which we

define as Wy:

Wy =

 0 1 0
0.5 0 0.5
0 1 0

 ·
0

1
1

 =

 1
0.5
1

 (4.7)

where the row of the n by 1 vector Wy contains the peer firm average dividend decision for each

firm. In contrast to the simple leave-out mean approach, based on the peer proximity measures

100% of firm A’s and firm C’s peers increase their dividends while only 50% of firm B’s peers

increase their dividend payout.

In order to test our empirical research hypothesis, we use the above procedure and calculate

peer proximity measures for our four proposed radial distances of 250 miles, 500 miles, 750 miles

and 1000 miles. Specifically, for each industry-year observation, we calculate the geographically

weighted peer averages for all endogenous and contextual effect variables and replace them in the

baseline model discussed previously. In doing so, our peer proximity measures and new empirical

specification yield a number of distinct qualities.

Most importantly, by construction, our empirical approach allows for firm-specific reference

groups where said references groups are intransitive within industries. Thus, based on geograph-

ical proximity, peer reference groups are unique in size inducing a more acute measure of firms

peer reference groups which are more likely to encapture the true nature of peer effects under

imperfect information and segmented equity markets. Moreover, by calculating specific peer

proximity measures for each year, we allow peers to both enter and exit the residing firms refer-

ence group. Finally, by using geographically weighted endogenous and contextual effect measures

we are able to see how firms’ decision to increase or decrease dividends are effected by both the

actions and/or characteristics of their closer industry peers. All in all, it is based on these factors

and our forthcoming empirical analysis where this chapter makes it most important contribution

to the literature.
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4.3.2.3 Identification Strategy

In order to identify the effect of industry peers on firms dividend payout decisions this study

adopts an instrumental variable approach. While the notion of peer effects is relatively straight-

forward to contextualise, in practice, the identification of the true causal effect is notoriously

challenging due to a specific form of endogeneity, known as the reflection problem (Manski,

1993). The primary difficulty arises from the presence of the endogenous effect, ȳ−i,j,t, in equa-

tion (4.1). If the decisions of firms in industry j are truly influenced by one another, then firm

i′s outcome is a function of firm k′s and vice versa. Thus, a clear simultaneity issue exists.

To address the inherent endogeneity problem, this study adopts a similar identification strat-

egy to that of Leary and Roberts (2014), Adhikari and Agrawal (2018) and Grennan (2019).

In particular, we use stock factor decomposition to abstract firm-specific idiosyncrasies, namely:

idiosyncratic equity shock and idiosyncratic equity risk, and thereafter, we generate peer mea-

sures of idiosyncratic equity shock and idiosyncratic equity risk which are used as instrumental

variables in our identification procedure. Stock factor decomposition is well established in the

finance literature and has a number of auspicious empirical qualities. First, unlike some possible

alternative instruments - for example, CEO deaths - stock market data is regularly available and

provides sizeable time-series data for each firm. Furthermore, in line with the efficient market hy-

pothesis, stock market prices reflect all firm related information, thus, encompassing all positive

and negative shocks. Finally, stock market data, unlike firm-specific book values, are predomi-

nately exogenous and not as easily subject to value manipulation, therefore, proving empirically

advantageous. In what follows, we illustrate the construction of our two instrumental variables

and discuss their relevance and validity in relation to dividend decisions.

4.3.2.4 Instrument Construction

To construct our two instrumental variables we follow Leary and Roberts (2014) and adopt the

following model specification:

Ri,j,td = αi,j,td + βMi,j,td(RMtd −RFtd) + βINDi,j,td
(R̄−i,j,td −RFtd) + ζi,j,td (4.8)

where Ri,j,td denotes the daily return of firm i in industry j for day td. αi,j,td is the firm-specific

constant, RMtd is daily market return which we proxy by the BSE SENEX 50 index return4.

RFtd is the risk free rate which we proxy by daily yield on US 10 year bonds. R̄−i,j,td is an

4We use the BSE SENEX 50 index return over other indices due to it’s time-series availability. For example,
daily BSE 500 index data is only available from 01/02/1999. In unreported results we test the validity of our
estimates to alternative index’s and our results remain affirmed.
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equally weighted portfolio of the average daily return for all firms in industry j except firm i

on day td, again, set at the two-digit NIC classification level. Accordingly, βMi,j,td and βINDi,j,td
are

the structural parameters for the measures of market excess return (RMt −RFtd) and industry

excess return (R̄−i,j,t −RFtd).

We estimate equation (4.8) for each firm on a rolling annual basis using the historical return

data. We require the minimum number of daily observations to be greater than 50 per year

to ensure a suitable estimation sample. To ensure missing observations are correctly classified,

and not a product of trading breaks, we augment our daily calendar to correspond to the dates

of the daily market return, that is, observations are only classified as missing if daily stock

observations are unavailable and market return data is present. Next, to obtain the expected

and idiosyncratic return for a given company, for example, Tata Motors on the 1st April 2010,

we first estimate equation (4.8) using daily returns from the 1st April 2009 to the 31st March

2010. Then, using the estimated coefficients from (4.8) and the daily factor returns for the 1st

April 2010, we calculate both the expected and idiosyncratic daily returns, as shown below:

Expected Return ≡ R̂i,j,td = α̂i,j,td + β̂Mi,j,td(RMtd −RFtd) + β̂INDi,j,td
(R̄−i,j,td −RFtd) (4.9)

Idiosyncratic Return ≡ ζ̂i,j,td = Ri,j,td − R̂i,j,td (4.10)

where all coefficient values denoted with hats reflect the estimated parameters for a given stock

regression and idiosyncratic return for a given stock is nothing more than actual return minus

the expected return, or put differently, the residual. In order to generate the idiosyncratic return

for Tata motors for the following day we update this process by moving the estimation window

forward by one period. Therefore, it is clear, that this process generates coefficient values that

are firm-specific and time-varying.

In Table 4.1 Panel A, we present the mean, median and standard deviation statistics for

the estimated factor regression’s. Overall, the estimated sample consists of a little less than 5.5

million daily observations where the average (median) number of days per rolling regression is

214 (234). Moreover, the average adjusted R2 is 13.6% and the mean beta coefficient values

sum to just below one (0.209 + 0.711=0.92). In Table 4.1 Panel B, we report the mean, median

and standard deviation statistics for daily return, expected daily return and idiosyncratic daily

return. The mean daily return is 10 basis points with a standard deviation of 0.047 while the

average idiosyncratic return, as expected, equals zero.

Using the estimates of daily idiosyncratic return (ζ̂i,j,td), we generate annual idiosyncratic

equity shock (IESi,j,t) and annual idiosyncratic equity risk (IERi,j,t). For annual idiosyncratic
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equity shock we take a simple arithmetic mean of daily idiosyncratic return from the 1st of April

to the 31st of March and for annual idiosyncratic equity risk we use the standard deviation of

daily idiosyncratic return over the same time frame. Finally, using our two aggregated annual

measures, IESi,j,t and IERi,j,t, we calculate the overall industry peer instrumental variables

of peer idiosyncratic equity shock ( ¯IES−i,j,t) and peer idiosyncratic equity risk ( ¯IER−i,j,t) by

taking the average of idiosyncratic equity shock and idiosyncratic equity risk for firm i′s peers in

industry j, excluding firm i, to avoid mechanical correlation and potential validity validations.

We further calculate their spatial weighted equivalents based on the procedure outlined in Section

4.3.2.2. In each case, we propose the lag of both variables as valid and relevant instruments.

4.3.2.5 Instrument Relevance and Validity

In order to examine whether the dividend decisions of Indian listed firms are influenced by

the decisions of their peers, this study adopts and instrumental variable approach whereby we

instrument peer dividend decisions on our two proposed instruments of peer idiosyncratic equity

shock and peer idiosyncratic equity risk. Subsequently, what lies at the heart of our success in this

Table 4.1: Stock Equity Regression Summary: Merged Sample Statistics

Panel A: Regression Statistics Mean Median S.D.

α̂i,t 0.001 0.000 0.004

β̂M
i,t 0.209 0.201 0.443

β̂IND
i,t 0.711 0.686 0.477

Adjusted R2 0.136 0.106 0.123

Obs. Per Regression 214 234 41

Panel B: Return Statistics Mean Median S.D.

Daily Return 0.001 0.000 0.047

Expected Daily Return 0.001 -0.005 0.016

Idiosyncratic Daily Return 0.000 -0.002 0.043

Total Observations 5,497,095 5,497,095 5,497,095

Source: Prowess - Author’s own calculation.
Notes: The sample consists of all firms in the annual database between 1995 and 2017.
The table reports summary statistics for our daily rolling stock equity factor regressions.
Panel A presents the mean factor loading’s, the adjusted R2 and the observations per
regression. Panel B reports the summary statistics for daily (realised) return, expected
equity return and idiosyncratic equity return, where expected equity return is computed
using the estimated factor loadings and realized factors and idiosyncratic equity return
is computed as the difference between daily and expected equity return. All variable
names, definitions and sources can be found in appendix Table A.4.1.
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chapter is both the validity and relevance of such instruments. While in later sections we affirm

these conditions through the use of appropriate statistical tests, understanding the theoretical

motivation behind our choice of instrumental variables is of equal importance. In fact, we argue

it is crucial for the reader to appreciate the economic properties of our instruments in order to

accept the forthcoming inferences made by this chapter. Therefore, in this section we explain

how the proposed instruments of peer idiosyncratic equity shock and peer idiosyncratic equity

risk are both valid and relevant.

First, for an instrument to be valid it must satisfy the exclusion restriction, that is, the

instrument(s) should not directly effect the dependent variable (Wooldridge, 2005). As previously

detailed, the construction of our two instruments are derived from an augmented asset pricing

model from rich and well established literature (e.g., Fama and French 1993, Carhart 1997 and

Fama and French 2015). The augmented asset pricing model adopted in this study is well known

for it’s ability to decompose stock returns into both common (market) and firm-specific factors.

Furthermore, our explicit inclusion of industry-specific returns alleviates industry-specific, or

more precisely, peer-specific commonalities in the residual. Subsequently, the residuals obtained

via our rolling window estimation procedure are purely firm-specific and free of any market

or peer-specific manifestations (Adhikari and Agrawal, 2018). In addition, Leary and Roberts

(2014) highlight that the residuals from the augmented model are both serially uncorrelated and

serially cross-uncorrelated, therefore, firm-specific shocks do not predict future firm shocks nor

do they predict contemporaneous peer shocks. As a result, the peer averages of idiosyncratic

equity shock and idiosyncratic equity risk are not correlated with our firm-specific measures of

equity shock or risk, and most importantly, do not predict firm-specific dividend decisions.

Second for an instrument to be relevant, it must meet the relevance condition, i.e. the in-

strument(s) must be correlated with the endogenous explanatory variable(s) (Wooldridge, 2005).

Failure to satisfy the relevance condition can often result in weak instrumental variables which

can give rise to spurious economic inferences (Stock and Yogo 2005; Andrews et al. 2019). With

respect to our measures of peer idiosyncratic equity shock and equity risk we discuss relevance

of said variables with respect to two potential concerns for the reader, that is, the relevance of

said measures in relation to dividend payout policy and also the relevance of said market-based

measures in the context of India. Starting with the former, there exists an extensive literature

documenting the relationship between shocks, risk and dividend decisions (e.g., Grullon et al.

2002, Ang and Liu 2007 and Kanas 2013). Survey evidence as far back as Lintner (1956) can be

suggested to identify the negative association between risk and dividends, with managers proving
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reluctant to increase dividends they may ultimately have to reverse. In the anecdotal study of

Brav et al. (2005), such conservatism still proves profound 50 years later, with managers explic-

itly citing firm risk as an important factor when deciding their dividend payout policy. Moreover,

the empirical evidence of Hoberg and Prabhala (2009) in the US shows firm risk contributes to

approximately 40% of the disappearing dividend puzzle. Aside from firm-specific shocks and

risk having a direct impact of dividend decisions, such idiosyncrasies also manifest themselves

indirectly via the core determinants of dividend payout policies, for example, profitability. Be-

nartzi et al. (1997) find firms increase (decrease) dividends if they have experienced positive

(negative) earnings shocks in the current and prior period. Moreover, Adhikari and Agrawal

(2018) illustrates that the same measures of idiosyncratic equity shock and idiosyncratic equity

risk contain significant information about market expectations, with the combination of both

measures predicting profitability up to three years in advance.

With regards to the second point of attention, that is, the relevance of such market-based

measures in an emerging market context, as documented in Chapter 1 section 1.2, since India’s

economic liberalisation in the early 1990’s, India’s economy, and most importantly, capital mar-

kets, have gone under significant legislative and structure reforms. The introduction of SEBI

and numerous reforms have improved minority shareholder protection and liability standards for

investors making India’s legislative standings comparable to a developed economy and, to date,

is ranked the 10th largest stock exchange in terms of both market capitalisation and turnover

(La Porta et al. 2000 and World Bank 2018). Whether or not stock markets of development

and/or emerging economies, truly reflect all available information - inline with the strong per-

spective of the efficient market hypothesis - is naturally up for debate, however, after taking into

account the structural breaks induced by India’s early economic reforms the work of Chaudhuri

and Wu (2003) shows India’s markets display similar mean reverting tendencies consistent to

that of the US (Fama and French, 1988). To further emphasise the relevance of our two pro-

posed instruments, in later sections we examine the temporal permanence of our results through

sub-samples, indeed we find the both instruments to display greater strength in the later samples,

yet, in both cases we find the instrument’s to pass all statistical relevance requirements.

Thus, given the above arguments, we affirm, in line with Adhikari and Agrawal (2018) and

Grennan (2019), that both peer idiosyncratic equity shock and peer idiosyncratic equity risk

theoretically satisfy the validity and relevance conditions required for our proposed instrumental

variable approach.
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4.4 Summary Statistics and Univariate Tests

Prior to our multivariate analysis we provide a brief overview the sample of Indian listed firms

used in our analysis. Table 4.2 reports the summary statistics for our full sample of firms from

1995-2017. In particular, Panel A details firm-specific variables, Panel B reports peer firm av-

erages based on the full set of industry peers and Panel C reports the statistics for our three

additional industry-specific controls. At a general level, over the course of our sample 18,008

(63%) firm-year observations report positive dividend payouts with the average duration of con-

tinued payment being approximately 5.59 years while 3,623 firm-year observations consist of

one-off payments. Put differently, once initiated, the average firm in our sample continues to

pay some form of payout for 5.59 years5. Looking at Panel A in Table 4.2 we note that 36%

of firm-observations in our sample consist of dividend increases while, as expected, the number

of dividend decreases are far less at just below 17%. Further inspection indicates that dividend

increases are relatively steady over the sample duration, however, the majority of dividend de-

creases occur in periods of macroeconomic downturn, with 25% of firms decreasing dividends in

2001, 28% in 2009 and 35% in 2017. Such behaviour could suggest that firms are more concerned

about their financial flexibility than the demands of investors and/or shareholders in periods of

macroeconomic decline and heightened economic uncertainty.

With respect to other core variables, the average firm-year observation generates a profit

of around 5.6% and has positive investment expenditure and positive growth opportunities.

In terms of industry structure, the average industry in our sample consists of 71 firms where

the average degree of firm centrality is close to 548 miles. In contrast, the smallest degree of

centrality within our sample is approximately 17 miles whereas the most remotely located firm

is, on average, 1,334 miles away for their industry counterparts6.

In order to better our understanding of the type of the firms that increase or decrease div-

idends, In Table 4.3 we detail firm, peer and industry mean characteristics for the firm-year

observations in our sample that correspond with such dividend decisions. It is evident that the

characteristics of firms’ that increase dividends differ in many regards to those who decrease

dividends. Most notably, Panel A illustrates that the firms who decide to increase dividends are,

on average, statistically larger, generate more profit and are less risky. However, we also find that

5Note: In unreported results we test the validity of our findings specific to continued dividend payers, i.e.
all firm-year observations that pay dividends for more that one period. We find that our main findings remain
qualitatively the same.

6Note: In terms of context, India measures 1,997 miles from north to south and 1,882 from east to west. The
distance of 1,334 is the equivalent distance between London (UK) and Kyiv (Ukraine) which is approximately
1,330 miles
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said firms have, on average, greater investment opportunities and larger investment expenditure.

Seemingly, on the face of things, such observations are at odds with the life cycle hypothesis

which posits that larger firms tend to increase dividends when there no longer exists positive

investment opportunities (Grullon et al., 2002). Yet, such firm characteristics are consistent with

the empirical analysis of Khanna and Palepu (1997) and Khanna and Palepu (2000) who find

that larger Indian firms, often with group affiliations, have greater investment opportunities than

their smaller, standalone opposites. In Panel B, we show that the peer characteristics of divi-

dend increasing firms also display similar statistical differences. In particular, firms that increase

dividends tend to have more profitable peers and peers with greater growth opportunities.

In Table 4.4 we document the reference group structure statistics and the peer variable

summary statistics for our proximity based peer measures. Specifically, Panel A reports peer

group summary statistics, detailing the mean, the standard deviation, the minimum and the

maximum number of peers within each reference group category. In Panel B, we document

the peer variable averages for each reference group structure, and in Panel C we report the

correlations between our peer proximity measures and the conventional transitive peer averages.

Furthermore, to provide extra clarity to the reader, we illustrate the correlation scatter plots for

the endogenous variables in Panel C, i.e. dividend increases and dividend decreases, in Figure

4.1 and Figure 4.2, respectively.

A number of deductions can be made from Table 4.4. First, as to be expected, in Panel

A, as the proximity distance of peer reference groups increases, the size of the reference groups

converge towards the full set of industry peers in the transitive peer average. In Panel C, the

same relationship can be said to exist for our peer proximity measures as we find that the wider

the proximity band the more correlated the proximity measures are with the overall industry peer

average. Put differently, economically speaking, the smaller the proximity band, the stronger

the assumption of intransitively between industry peers. In addition, as illustrated in Figure

4.1 and Figure 4.2, we find, due to smaller reference groups (degrees of freedom), the peer

proximity measures based on narrower proximity bands display more coarse and less granular

peer averages. Therefore, assuming the existence of peers effects, it can be expected that relative

to the transitive peer average effect, our more intransitive reference group structures - i.e. peer

groups based on narrower proximity bands - will be more likely to yield more opposing economic

results. However, whether the impact of peer location will be statistically significant in effecting

the dividend decisions of firms is yet to be documented, thus, the requirement of our multivariate

analysis.
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Table 4.2: Summary Statistics: Full Sample

Panel A: Firm Variables Observations Mean S.D. Min Q1 Median Q3 Max

Dividend Payout 28,382 0.010 0.014 0.000 0.000 0.006 0.015 0.095

Dividend Increase 28,382 0.359 0.480 0.000 0.000 0.000 1.000 1.000

Dividend Decrease 28,382 0.166 0.372 0.000 0.000 0.000 0.000 1.000

Profitability 28,382 0.055 0.053 -0.028 0.018 0.041 0.076 0.371

Market-to-Book 28,382 1.018 0.994 0.110 0.525 0.720 1.093 11.033

Investment 28,382 0.064 0.087 -0.165 0.010 0.035 0.086 0.641

Leverage 28,382 0.292 0.178 0.000 0.149 0.289 0.420 0.777

Size 28,382 7.302 1.747 3.635 6.000 7.163 8.455 12.906

Tangibility 28,382 0.322 0.185 0.001 0.178 0.310 0.452 0.824

Idiosyncratic Equity Shock 28,382 0.000 0.006 -0.076 -0.002 0.000 0.001 0.090

Idiosyncratic Equity Risk 28,382 0.043 0.026 0.009 0.029 0.037 0.048 0.294

Panel B: Peer Variables

Dividend Payout 28,382 0.011 0.005 0.000 0.007 0.010 0.014 0.040

Dividend Increase 28,382 0.358 0.151 0.000 0.250 0.354 0.451 0.857

Dividend Decrease 28,382 0.165 0.114 0.000 0.082 0.136 0.233 0.625

Profitability 28,382 0.057 0.020 0.009 0.043 0.055 0.069 0.195

Market-to-Book 28,382 1.065 0.574 0.317 0.740 0.965 1.256 14.552

Investment 28,382 0.063 0.036 -0.338 0.043 0.060 0.081 0.222

Leverage 28,382 0.293 0.075 0.060 0.239 0.287 0.350 0.474

Size 28,382 7.302 0.841 5.237 6.686 7.264 7.875 10.149

Tangibility 28,382 0.323 0.103 0.054 0.265 0.330 0.389 0.676

Idiosyncratic Equity Shock 28,382 0.000 0.002 -0.047 -0.001 0.000 0.000 0.046

Idiosyncratic Equity Risk 28,382 0.044 0.015 0.015 0.033 0.037 0.053 0.242

Panel C: Industry Variables

HH Index 28,382 0.126 0.125 0.025 0.054 0.082 0.146 0.919

Number of Firms 28,382 70.631 48.214 3.000 30.000 59.000 107.000 203.000

Average Distance 28,382 548.346 149.438 17.347 445.498 521.132 638.924 1334.249

Source: Prowess - Author’s own calculation.
Notes: The sample consists of all firms from 1995 and 2017. The table reports the summary statistics for all main text variables.
Dividend Payout is the ratio of total cash dividends over total assets. Dividend Increase is a binary variable that takes the value
1 if the firm increase dividends or else zero. Dividend Decrease is a binary variable that takes the value 1 if the firm Decrease
dividends or else zero. Profitability is the ratio of operating income before depreciation over total assets. The market-to-book ratio
is the market value of equity plus the sum of short-term and long term borrowing over the book value of total assets. Investment is
the first difference of net fixed assets plus deprecation over total assets. Leverage is the sum of short and long term borrowing over
total assets. Size is the natural logarithm of total assets. Asset Tangibility is the ratio of fixed assets to total assets. Idiosyncratic
Equity Shock is the average daily idiosyncratic return over the year and Idiosyncratic Equity risk is the standard deviation of daily
idiosyncratic return over the same period. All peer measures are calculated via a leave-out-mean where industries are defined at the
two digit NIC classification. HH index denotes a Herfindahl-Hirschman index calculated as the sum of sales squared. Number of
firms represent the number of firms per industry. Average Distance is calculated as the average distance to peer firm headquarters.
All variable names, definitions and sources can be found in appendix Table A.4.1.
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Table 4.3: Differences of Mean Tests

Full Sample Dividend Dividend Difference Test

Increase Decrease (2) - (3)

(1) (2) (3) (4)

Panel A: Firm Variables

Dividend Payout 0.010 0.020 0.008 0.012***

Dividend Increase 0.359 1.000 0.000 -

Dividend Decrease 0.166 0.000 1.000 -

Profitability 0.055 0.080 0.040 0.040***

Market-to-Book 1.018 1.280 0.924 0.356***

Investment 0.064 0.079 0.065 0.014***

Leverage 0.292 0.278 0.306 -0.028***

Size 7.302 7.822 7.672 0.150***

Tangibility 0.322 0.322 0.328 -0.006**

Idiosyncratic Equity Shock 0.000 0.000 0.000 0.000

Idiosyncratic Equity Risk 0.043 0.037 0.040 -0.003***

Panel B: Peer Variables

Dividend Payout 0.011 0.012 0.010 0.002***

Dividend Increase 0.358 0.402 0.311 0.091***

Dividend Decrease 0.240 0.144 0.219 -0.075***

Profitability 0.057 0.061 0.054 0.007***

Market-to-Book 1.065 1.083 1.016 0.067***

Investment 0.063 0.068 0.063 0.005***

Leverage 0.293 0.296 0.295 0.001

Size 7.302 7.247 7.341 -0.094***

Tangibility 0.323 0.329 0.328 0.001

Idiosyncratic Equity Shock 0.000 0.000 0.000 0.000***

Idiosyncratic Equity Risk 0.044 0.044 0.045 -0.001**

Panel C: Industry Variables

HH Index 0.126 0.125 0.126 0.001

Number of Firms 70.631 69.585 68.892 0.693

Average Distance 548.346 546.405 549.484 -3.079

Total Numbers 28,382 10,177 4,798 -

Source: Prowess - Author’s own calculation.
Notes: The sample consists of all firms from 1995 and 2017. The table reports the difference between
firms that increase dividends and firms that decrease dividends. Panel A reports firm-specific vari-
ables. Panel B reports peer-specific variables where peers are defined as all firms in industry j expect
for firm i in year t. Panel C reports industry related variables. Column (4) reports the difference in
means between column (2) and column (3) where the corresponding asterisk represents the p-value
associated with the t-test for differences in means. * indicates significance at the 10% level,** indi-
cates significance at the 5% level and *** indicates significance at the 1% level. All variable names,
definitions and sources can be found in appendix Table A.4.1.
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Table 4.4: Reference Group Structure and Peer Variables

Proximity Radius Proximity Radius Proximity Radius Proximity Radius Full

250 Miles 500 Miles 750 Miles 1000 Miles Sample

(1) (2) (3) (4) (5)

Panel A: Reference Group Statistics

Mean Number of Peers 18.218 34.505 52.920 63.117 69.631

S.D. of Peers 19.299 32.010 41.520 45.521 48.214

Min Number of Peers 1 1 1 1 2

Max Number of Peers 118 165 195 202 202

Panel B: Peer Variable Means

Dividend Increase 0.358 0.355 0.356 0.357 0.358

Dividend Decrease 0.163 0.164 0.164 0.165 0.165

Profitability 0.058 0.057 0.057 0.057 0.057

Market-to-Book 1.074 1.060 1.066 1.067 1.065

Investment 0.063 0.063 0.063 0.063 0.063

Leverage 0.292 0.294 0.292 0.292 0.293

Size 7.298 7.287 7.286 7.289 7.302

Tangibility 0.321 0.324 0.322 0.322 0.323

Idiosyncratic Equity Shock 0.000 0.000 0.000 0.000 0.000

Idiosyncratic Equity Risk 0.044 0.044 0.044 0.044 0.044

Panel B: Peer Variable Correlations

Dividend Increase 0.646 0.794 0.925 0.973 1.000

Dividend Decrease 0.655 0.793 0.933 0.979 1.000

Profitability 0.639 0.789 0.921 0.974 1.000

Market-to-Book 0.746 0.868 0.955 0.987 1.000

Investment 0.701 0.842 0.951 0.986 1.000

Leverage 0.758 0.875 0.964 0.990 1.000

Size 0.832 0.918 0.975 0.993 1.000

Tangibility 0.844 0.920 0.978 0.993 1.000

Idiosyncratic Equity Shock 0.576 0.758 0.916 0.974 1.000

Idiosyncratic Equity Risk 0.841 0.927 0.979 0.995 1.000

No Peer Observations 1,041 324 74 29 0

Peer Observations 27,341 28,058 28,308 28,353 28,382

Source: Prowess - Author’s own calculation.
Notes: The sample consists of all firms from 1995 and 2017. The Table details statistics relating to our peer proximity reference groups (column (1)
to (4)) and the overall industry average (column (5)). Panel A reports the mean, standard deviation, minimum and maximum number of peers in each
reference group. Panel B reports peer variable averages. Panel C reports the correlation between the corresponding columns peer averages and the peer
averages in column (5). All variable names, definitions and sources can be found in appendix Table A.4.1.
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Figure 4.1: Proximity Scatter Plots: Peer Average Dividend Increase
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Source: Prowess - Author’s own calculation.
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Figure 4.2: Proximity Scatter Plots: Peer Average Dividend Decrease
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4.5 Multivariate Analysis

In this section we report the results from our empirical analysis. Section 4.5.1 documents our

baseline estimates where peer actions and characteristics are defined by transitive industry ref-

erence groups. In Section 4.5.2, we discuss our main empirical findings where we examine the

importance of peer location via our intransitive peer proximity measures. In 4.5.3, we extend

our empirical analysis by examining the impact of alternative economic channels of peer influ-

ence and the temporal permanence of our findings. All forthcoming tables report standardised

coefficients to ease the interpretation of peer measures and all standard errors are clustered at

the firm level to allow for within dependence (Petersen, 2009).

4.5.1 Baseline Results

As outlined in Section 4.3.2, in order to accommodate for the inherent endogeniety issues associ-

ated with peer effect analysis, this study adopts an instrumental variable approach similar to the

likes of Leary and Roberts (2014), Adhikari and Agrawal (2018) and Grennan (2019). Therefore,

for the sake empirical precision, in what follows we strictly report our two-stage least squares es-

timates. Nonetheless, ordinary least squares estimates for our baseline model specification along

with a number of restricted model specifications can be found in Appendix Table A.4.4.

In Table 4.6 we report the first stage results from our two-stage least squares estimates. In

column (1) we report the first stage results for the dividend payout ratio (the ratio of dividends

over total assets) and in column (2) and column (3) we report the results for dividend increases

and dividend decrease, respectively. We include the estimates of the dividend payout ratio

in our baseline analysis for two reasons. First, the dividend payout ratio acts as empirical

benchmark for our discussion of asymmetric responses in dividend determinants. Second, the

ratio of dividends over total assets is arguably one of the most common measures of dividend

payout, thus, its inclusion illustrates the robustness of our analysis to other prominent measures

relating to corporate payout policy. In the interest of compactness, Table 4.5 details solely the

coefficients and standard errors for firm and peer idiosyncratic equity shock and idiosyncratic

equity risk, where the two peer measures are the respective instrumental variables for peer

dividend payout, peer dividend increases and peer dividend decreases7.

The first important takeaway is that across all estimates, peer firm measures prove statisti-

cally significant, while firm-specific measures do not. This observation is crucial as it illustrates

7Note: For completeness, the full set of estimated coefficients are reported in Appendix Table A.4.5.
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the relevance of our instruments, with the firm-specific measures of idiosyncratic equity shock

and idiosyncratic equity risk displaying no direct statistically significant effect on peer dividend

payout or peer dividend decisions. In fact, we find no firm-specific characteristics to consistently

display any statistical significance across all three estimates (see Appendix Table A.4.5). With

regards to the peer measures, we document a positive (negative) relationship between peer id-

iosyncratic equity shock and peer dividend increases (decreases). Furthermore, consistent with

Adhikari and Agrawal (2018) and Grennan (2019), we find peer idiosyncratic equity risk is pos-

itively (negatively) associated with peer dividend decreases (increases). Thus, a positive equity

shock to peer firms, increases the probability that peers will increase dividends. Alternatively,

an increase in peer risk is likely to result in peers decreasing their dividend payout.

To provide more formal statistical support for the relevance our instrumental variables, Table

4.5 reports three types of F-statistics. Specifically, following the suggestions of Andrews et al.

(2019) we report the non-robust Cragg-Donald F-statistics (FN ), the Kleibergen and Paap (2006)

robust F-statistics (FR) and the Olea and Pflueger (2013) effective F-statistic (FEff ), where

the latter is considered the most effective statistic for detecting weak instruments in our over-

identified non-homoskedastic case. Nonetheless, for peer dividend payout, peer dividend increase

and peer dividend decrease we find all the corresponding F-statistic’s to exceed the empirical

requisite of 10, thus, sufficing the minimal bias threshold proposed by Stock and Yogo (2005).

In Table 4.6 we report the second stage results for dividend payout and both dividend de-

cisions. Focusing on the latter, we find peer dividend increases and peer dividend decreases to

be positive and statistically significant at the 5% and 1% level for dividend increases and divi-

dend decreases, respectively. In each case, we fail to reject the null of the Hansen J test, thus

confirming the statistical validity of our instruments. In terms of economic implications, the

coefficients of the transitive peer measures in column (2) and (3) can be interpreted as follows:

a one standard deviation increase in the fraction of peer firms increasing (decreasing) dividend

payments increases the probability that a firm will increase (decrease) dividend payments by

14.7% (19.9%) on average, all else equal. In terms of reference, a one standard deviation in-

crease in peer influence is equivalent to an additional 15.0% (11.4%) of peer firms in the industry

increasing (decreasing) their dividend subject to an average of 35.7% (16.5%).

Given these empirical findings, three important statements can be made. First, both firms

decision to increase and decrease dividends are influenced by the dividend decisions of their

industry peers. Thus, such results provide a clear criticism of the extant literature that fails

to acknowledged the interdependent nature of dividend decisions (e.g., DeAngelo and DeAngelo
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1990, DeAngelo et al. 1992, Grullon et al. 2002, Baker and Wurgler 2004, Goergen et al. 2005 and

Leary and Michaely 2011). Next, consistent with the work of Adhikari and Agrawal (2018) and

Grennan (2019), the economic effect of peer dividend decisions is substantive comparative to other

peer and firm-specific determinants. In fact, for both dividend increases and dividend decreases,

peer dividend decisions prove to be the prevailing effect in the decision making process. Finally,

the degree of peer influence is asymmetric with peer dividend decisions having a more pronounced

effect on dividend deceases, thus, supporting our decision to not focus on dividend ratio’s that

implicitly assume homogeneous coefficients for dividend increases and dividend decreases.

With regards to peer firm averages, we find a number of peer characteristics to be statistically

and economically significant for firms’ dividend decisions. We find that peer characteristics do

not displace firm-specific covariates and therefore both can be considered important for the

decision making process (See Appendix Table A.4.4 for a number of restriction tests). Peer

market-to-book valuations prove statistically significant for both dividend decisions consistent

the signalling theory and the recent work of Foucault and Fresard (2014). Such findings would

suggest that information on firms prospects are reflected in the market valuations of their industry

counterparts, with peer market-to-book valuations displaying a negative (positive) relationship

with dividend increases (decreases). In addition, we find firms are less likely to increase dividends

if their peers are larger and have higher earnings.

With regards to dividend increases, we find the estimates of firm-specific determinants in

column (2) to be largely consistent with the literature. As promoted by Lintner (1956), firm

profitability proves to be a core driver of dividend increases after peer dividend decisions. More-

over, firms are more likely to increase dividends as they become larger, engage in less risk taking

behaviour and hold lower levels of external debt. Interesting, we find that the previous years

investment and market-to-book ratio positively influence dividend increases contrary to the life-

cycle hypothesis. Such behaviour is consistent with our earlier summary statistics and lends itself

more to the pecking order theory wherein said measures correlate to firms current profitability

(Fama and French, 2002).

In many cases, the adjacent narrative holds true for dividend decreases. We find firms with

lower market-book-ratios and higher debt are more likely to decrease dividends. However, it is,

on the face of things, somewhat curious that the previous years profitability displays a positive

effect on both dividend increases and dividend decreases. One possible explanation is that in

order to decrease dividends firms must of in the previous year paid dividends resulting in a

positive correlation. We address this potential misspecification in section 4.6 where we test the
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omission of present and future earnings similar to DeAngelo et al. (1992). In each case, our

results regarding peer influence remain qualitatively unchanged.

All in all, the baseline results presented in this section illustrate the importance of peer

dividend decisions. Our baseline results provide support to the recent work of Adhikari and

Agrawal (2018) and Grennan (2019) and further bear a clear criticism of the extant literature

that fails to account for the interdependent nature of dividend decisions. Our evidence shows

that peers decisions based on transitive reference groups matter for the decisions of Indian listed

firms. In the next section, we relax this assumption and examine the effects of peers based on

intransitive references groups.

148



Table 4.5: Baseline Results: First Stage Estimates

Peer Avg. Peer Avg. Peer Avg.

Dividend Payout Dividend Increase Dividend Decrease

(1) (2) (3)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 0.002 0.001 -0.010

(0.004) (0.006) (0.006)

Idiosyncratic Equity Riski,j,t−1 0.001 0.009 0.009

(0.007) (0.007) (0.007)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 0.047*** 0.058*** -0.060***

(0.007) (0.007) (0.008)

Idiosyncratic Equity Riski,j,t−1 -0.113*** -0.035* 0.089***

(0.017) (0.018) (0.019)

Additional Firm-specific Variables Yes Yes Yes

Additional Peer Firm Averages Yes Yes Yes

Industry Controls Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes

Year-Fixed Effects Yes Yes Yes

F-statisticN 130.650 62.082 78.699

F-statisticR 54.556 36.265 37.957

F-statisticEff 47.544 30.196 38.737

Firms 2,851 2,851 2,851

Observations 22,296 22,296 22,296

Source: Prowess - Author’s own calculation.
Notes: This table presents the first stage estimates for our two-stage least squares (2SLS) estimation procedure. The
sample consists of all firms between 1995 and 2017. The first stage results reported in this table correspond to the second
stage estimates reported in Table 4.6. All coefficients have been scaled by the corresponding variable’s standard deviation
to ease interpretation. Peer Firm Averages denotes variables constructed as the average of all firms within an industry-year
combination, excluding the i′th observation, where industries are defined by two-digit NIC level. Firm-Specific Factors
denotes variables corresponding to firm i′s value. F-statisticN denotes the Cragg-Donald F-statistic, F-statisticR denotes
the Kleibergen and Paap (2006) robust F-statistic and F-statisticEff denotes Olea and Pflueger (2013) effect F-statistic.
The standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in parentheses. *, **
and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources can
be found in appendix Table A.4.1.
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Table 4.6: Baseline Results: Second Stage Estimates

Dividend Dividend Dividend

Payout Increase Decrease

(1) (2) (3)

Instrumented Peer Avg. Div. Payouti,j,t 0.004**

(0.002)

Instrumented Peer Avg. Increasei,j,t 0.147**

(0.067)

Instrumented Peer Avg. Increasei,j,t 0.199***

(0.051)

Firm-specific Variables:

Profitabilityi,j,t−1 0.005*** 0.047*** 0.025***

(0.000) (0.005) (0.003)

Market-to-Booki,j,t−1 0.003*** 0.034*** -0.024***

(0.000) (0.004) (0.004)

Investmenti,j,t−1 -0.000** 0.016*** 0.017***

(0.000) (0.004) (0.003)

Leveragei,j,t−1 -0.003*** -0.013*** 0.008**

(0.000) (0.005) (0.004)

Sizei,j,t−1 0.001*** 0.106*** 0.036***

(0.000) (0.005) (0.004)

Tangibilityi,j,t−1 0.000 -0.001 -0.009**

(0.000) (0.005) (0.004)

Idiosyncratic Equity Shocki,j,t−1 0.001*** 0.016*** 0.000

(0.000) (0.004) (0.003)

Idiosyncratic Equity Riski,j,t−1 -0.002*** -0.041*** -0.020***

(0.000) (0.006) (0.004)

Peer Firm Averages:

Profitabilityi,j,t−1 -0.001** -0.012** -0.011**

(0.000) (0.006) (0.004)

Market-to-Booki,j,t−1 -0.001*** -0.015** 0.010**

(0.000) (0.006) (0.005)

Investmenti,j,t−1 -0.000* -0.008 -0.010

(0.000) (0.006) (0.007)

Leveragei,j,t−1 0.001*** 0.015 0.006

(0.000) (0.009) (0.010)

Sizei,j,t−1 -0.000 -0.048*** -0.025

(0.000) (0.013) (0.018)

Tangibilityi,j,t−1 -0.000 -0.006 0.009

(0.001) (0.016) (0.011)

Industry Controls Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes

Year-Fixed Effects Yes Yes Yes

Hansen J p-value 0.305 0.489 0.719

Firms 2,851 2,851 2,851

Observations 22,296 22,296 22,296

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage estimates for our two-stage least squares (2SLS) es-
timation procedure. The sample consists of all firms between 1995 and 2017. The second stage
results reported in this table correspond to the first stage estimates reported in Table 4.5. All coef-
ficients have been scaled by the corresponding variable’s standard deviation to ease interpretation.
Peer Firm Averages denotes variables constructed as the average of all firms within an industry-
year combination, excluding the i′th observation, where industries are defined by two-digit NIC
level. Firm-Specific Factors denotes variables corresponding to firm i′s value. The standard-errors
are robust to heteroskedasticity and within firm dependence, and are shown in parentheses. *,
** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names,
definitions and sources can be found in appendix Table A.4.1.



4.5.2 Geographical Proximity Results

Table 4.7 and Table 4.8 detail the first stage peer proximity estimates for dividend increases

and dividend decreases, respectively. First of all, it is important to clarify that the instrumental

variables reported in Table 4.7 and Table 4.8 are based on the overall industry peer averages

of idiosyncratic equity shock and idiosyncratic equity risk. Unreported results indicate that

the spatially weighted values of peer idiosyncratic equity shock and peer idiosyncratic equity

risk fail to suffice the appropriate instrument relevance tests for almost all proximity radiuses.

Subsequently, for the sake of consistency and empirical proficiency, we use the overall averages

of peer idiosyncratic equity shock and peer idiosyncratic equity risk in all forthcoming estimates

unless stated otherwise.

We find the instruments of peer idiosyncratic equity shock and peer idiosyncratic equity risk

enter the first stage estimates with expected signs and significance levels. Again, importantly,

firm-specific measures of idiosyncratic equity shock and idiosyncratic equity risk do not deter-

mine peer dividend decisions. That is, we observe no statistically significant effect. For dividend

decreases in Table 4.8, all peer proximity estimates based on intransitive reference groups report

favourable F-statistics greater than 10. However, in Table 4.7, our instrumental variables in

column (1) and column (2) marginally fall short of such threshold and therefore fail to suffice

the rule of thumb (F-statistic > 10) set by Stock and Yogo (2005). To install confidence in the

reader, and to illustrate that our forthcoming results are not a manifestation of weak instrumen-

tal variables, we re-estimate our empirical specifications omitting industry-fixed effects to allow

for greater explanatory power in our instrumental variables. In Appendix Table A.4.7 we demon-

strate that our forthcoming second stage results are indeed consistent and not a manifestation

of weak instrumental variables.

Table 4.9 and Table 4.10 report the second stages results for dividend increases and dividend

decreases, respectively. For both dividend decisions we document a negative relationship between

peer influence and our geographical proximity measures. Specifically, the dividend decisions

of industry peers based on closer proximity bands bear greater influence than those based on

broader peer averages. In terms of economic magnitude, we find the difference in peer influence

between the reference group structures to be substantial. For example, a one standard deviation

increase in the fraction of peer firms increasing (decreasing) dividend payments within 250 miles

increases the probability that a firm will increase (decrease) dividend payments by 27.2% (25.6%)

on average, all else equal. In contrast, a one standard deviation increase in the fraction of peer
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firms increasing (decreasing) dividend payments within 1000 miles only increases the probability

that a firm will increase (decrease) dividend payments by 15.2% (19.7%).

Accordingly, the above findings confirm our empirical hypothesis and demonstrate, that, on

average, the dividend decisions of Indian listed firms are influenced more by the dividend decisions

of their closer industry peers. In relation to Section 4.2, a number of possible explanations coexist

to explain such geographical interdependence. One credible explanation for why firms perceive

the actions of their closer industry counterparts can be made in relation to imperfect information.

In the presence of imperfect and incomplete information, the proportion of realised behaviour has

a natural tendency to gravitate towards the actions of geographical closer industry peers. Put

differently, the cost of acquiring information on local peers is, on average, considerably less than

the cost corresponding to more distant industry counterparts. Subsequently, it is not surprising

given India’s institutional setting, that the dividend decisions of firms are most influenced by the

actions of their closer peers of whom they likely hold more information on. Parallel to this, the

dividend decisions of closer industry peers may also be of more financial pertinence to firms due to

the existence local dividend clienteles. The presence of asymmetric information between investors

and firms result in both individual (Ivković and Weisbenner, 2005) and institutional (Coval and

Moskowitz, 1999) investors favouring the equity of local firms. Therefore, it is consistent to

suggest that the pressure induced by local dividend clienteles may result in firms feeling forced

to keep pace with the dividend decisions of their closer industry counterparts in order to protect

their market value.

With regards to other peer determinants, for dividend increases in Table 4.9 we find the

market-to-book ratio, investment and size of closer industry peers to bear a economically larger

negative effect on dividend increases relative to the wider industry average measures. Accord-

ingly, the similar negative relationship between peer effects and geographical proximity would

imply firms not only take into account the dividend decisions of closer industry peers, but also

their characteristics. In contrast, apart from peer profitability, we find peer characteristics sel-

dom consistently influence firms decision to decrease dividends. Thus, one can infer that the

characteristics of local peers are more important for dividend increase than dividend decreases.

All in all, the above findings contribute new evidence to the peer effects literature in corporate

finance and importantly highlight the existence of non-linear peer effects via proximity based

intransitive reference groups. Next, we dig deeper into the role of peer influence by exploring

the inverse channels of peer effects and the temporal permanence of our findings relative to the

recent financial crisis.
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Table 4.7: Dividend Increase: First Stage Peer Proximity Results

Peer Avg. Increase Peer Avg. Increase Peer Avg. Increase Peer Avg. Increase

250 Miles 500 Miles 750 Miles 1000 Miles

(1) (2) (3) (4)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 0.013 0.013 0.007 0.007

(0.009) (0.008) (0.007) (0.006)

Idiosyncratic Equity Riski,j,t−1 -0.003 -0.002 0.003 0.008

(0.007) (0.007) (0.007) (0.007)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 0.029*** 0.033*** 0.047*** 0.054***

(0.009) (0.008) (0.007) (0.007)

Idiosyncratic Equity Riski,j,t−1 0.031 0.006 0.025 -0.022

(0.023) (0.022) (0.019) (0.019)

Additional Firm-Specific Variables Yes Yes Yes Yes

Additional Peer Firm Averages Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes

F-statisticN 15.270 16.584 30.516 41.683

F-statisticR 9.568 9.679 20.389 27.820

F-statisticEff 8.802 8.818 18.921 25.803

Firms 2,771 2,828 2,847 2,848

Observations 21,240 21,930 22,210 22,270

Source: Prowess - Author’s own calculation.
Notes: This table presents the first stage results for our two-stage least squares (2SLS) analysis of peer proximity effects on dividend
increases. The sample consists of all firms between 1995 and 2017. Column (1) - (4) report the results for the corresponding peer
proximity’s from 250-1000 miles. The first stage results reported in this table correspond to the second stage estimates reported in
Table 4.9. All coefficients have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer Firm
Averages denotes variables constructed as the average of all firms within an industry-year combination, excluding the i′th observation.
Industries are defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding to firm i′s value. F-statisticN

denotes the Cragg-Donald F-statistic, F-statisticR denotes the Kleibergen and Paap (2006) robust F-statistic and F-statisticEff denotes
Olea and Pflueger (2013) effect F-statistic. The standard-errors are robust to heteroskedasticity and within firm dependence, and are
shown in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions
and sources can be found in appendix Table A.4.1.
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Table 4.8: Dividend Decrease: First Stage Peer Proximity Results

Peer Avg. Decrease Peer Avg. Decrease Peer Avg. Decrease Peer Avg. Decrease

250 Miles 500 Miles 750 Miles 1000 Miles

(1) (2) (3) (4)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 -0.014 -0.014 -0.009 -0.008

(0.009) (0.009) (0.007) (0.006)

Idiosyncratic Equity Riski,j,t−1 -0.002 -0.002 0.004 0.009

(0.009) (0.008) (0.007) (0.007)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 -0.032*** -0.039*** -0.057*** -0.060***

(0.009) (0.009) (0.008) (0.008)

Idiosyncratic Equity Riski,j,t−1 0.087*** 0.076*** 0.086*** 0.094***

(0.026) (0.023) (0.020) (0.020)

Additional Firm-Specific Variables Yes Yes Yes Yes

Additional Peer Firm Averages Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes

F-statisticN 18.790 24.394 56.418 69.944

F-statisticR 11.893 15.058 31.153 36.799

F-statisticEff 11.341 14.266 32.206 37.090

Firms 2,771 2,828 2,847 2,848

Observations 21,240 21,930 22,210 22,270

Source: Prowess - Author’s own calculation.
Notes: This table presents the first stage results for our two-stage least squares (2SLS) analysis of peer proximity effects on dividend
decreases. The sample consists of all firms between 1995 and 2017. Column (1) - (4) report the results for the corresponding peer
proximity’s from 250-1000 miles. The first stage results reported in this table correspond to the second stage estimates reported in Table
4.10. All coefficients have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer Firm Averages
denotes variables constructed as the average of all firms within an industry-year combination, excluding the i′th observation. Industries
are defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding to firm i′s value. F-statisticN denotes the
Cragg-Donald F-statistic, F-statisticR denotes the Kleibergen and Paap (2006) robust F-statistic and F-statisticEff denotes Olea and
Pflueger (2013) effect F-statistic. The standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in
parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources
can be found in appendix Table A.4.1.
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Table 4.9: Dividend Increase: Second Stage Peer Proximity Results

250 Miles 500 Miles 750 Miles 1000 Miles

(1) (2) (3) (4)

WInstrumented Peer Avg. Increase250mi.i,j,t 0.272*

(0.153)

WInstrumented Peer Avg. Increase500mi.i,j,t 0.243*

(0.136)

WInstrumented Peer Avg. Increase750mi.i,j,t 0.190**

(0.085)

WInstrumented Peer Avg. Increase1000mi.i,j,t 0.152**

(0.075)

Firm-specific Variables:

Profitabilityi,j,t−1 0.044*** 0.046*** 0.046*** 0.047***

(0.005) (0.005) (0.005) (0.005)

Market-to-Booki,j,t−1 0.035*** 0.036*** 0.033*** 0.034***

(0.005) (0.005) (0.004) (0.004)

Investmenti,j,t−1 0.014*** 0.016*** 0.016*** 0.016***

(0.004) (0.004) (0.004) (0.004)

Leveragei,j,t−1 -0.011** -0.010* -0.012** -0.013***

(0.005) (0.005) (0.005) (0.005)

Sizei,j,t−1 0.105*** 0.106*** 0.106*** 0.106***

(0.006) (0.006) (0.005) (0.005)

Tangibilityi,j,t−1 -0.000 -0.004 -0.001 -0.001

(0.006) (0.007) (0.006) (0.005)

Idiosyncratic Equity Shocki,j,t−1 0.012*** 0.014*** 0.015*** 0.016***

(0.005) (0.004) (0.004) (0.004)

Idiosyncratic Equity Riski,j,t−1 -0.042*** -0.042*** -0.043*** -0.043***

(0.006) (0.006) (0.006) (0.006)

Peer Firm Averages:

WProfitabilityi,j,t−1 -0.025 -0.018 -0.013 -0.010

(0.017) (0.012) (0.009) (0.007)

WMarket-to-Booki,j,t−1 -0.020* -0.021** -0.017** -0.014**

(0.011) (0.009) (0.006) (0.006)

WInvestmenti,j,t−1 -0.008 -0.015*** -0.014** -0.011*

(0.006) (0.006) (0.006) (0.006)

WLeveragei,j,t−1 0.022 0.015 0.015 0.017*

(0.014) (0.011) (0.009) (0.009)

WSizei,j,t−1 -0.075* -0.075** -0.051*** -0.045***

(0.044) (0.035) (0.019) (0.012)

WTangibilityi,j,t−1 0.003 0.005 0.001 -0.000

(0.008) (0.012) (0.013) (0.015)

Industry Controls Yes Yes Yes Yes

Industry Fixed-effects Yes Yes Yes Yes

Year Fixed-effects Yes Yes Yes Yes

Hansen J p-value 0.690 0.435 0.588 0.293

Firms 2,771 2,828 2,847 2,848

Observations 21,240 21,930 22,210 22,270

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage results for our two-stage least squares (2SLS) analysis of peer
proximity effects on dividend increase. The sample consists of firms all firms from 1995-2017. Column (1)
- (4) report the results for the corresponding peer proximity’s from 250-1000 miles. All coefficients have
been scaled by the corresponding variable’s standard deviation to ease interpretation. All column numbers
correspond to the first stage estimates in Table 4.7. Peer Firm Averages denotes variables constructed as
the average of all firms within an industry-year combination, excluding the i′th observation. Industries are
defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding to firm i′s value. The
standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in parentheses.
*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions
and sources can be found in appendix Table A.4.1.
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Table 4.10: Dividend Decrease: Second Stage Peer Proximity Results

250 Miles 500 Miles 750 Miles 1000 Miles

(1) (2) (3) (4)

WInstrumented Peer Avg. Decrease250mi.i,j,t 0.256***

(0.094)

WInstrumented Peer Avg. Decrease500mi.i,j,t 0.252***

(0.080)

WInstrumented Peer Avg. Decrease750mi.i,j,t 0.207***

(0.055)

WInstrumented Peer Avg. Decrease1000mi.i,j,t 0.197***

(0.052)

Firm-specific Variables:

Profitabilityi,j,t−1 0.027*** 0.027*** 0.025*** 0.025***

(0.004) (0.004) (0.004) (0.003)

Market-to-Booki,j,t−1 -0.025*** -0.023*** -0.025*** -0.025***

(0.004) (0.004) (0.004) (0.004)

Investmenti,j,t−1 0.018*** 0.016*** 0.018*** 0.018***

(0.004) (0.004) (0.003) (0.003)

Leveragei,j,t−1 0.010** 0.010** 0.009** 0.008**

(0.004) (0.004) (0.004) (0.004)

Sizei,j,t−1 0.034*** 0.033*** 0.034*** 0.035***

(0.004) (0.004) (0.004) (0.004)

Tangibilityi,j,t−1 -0.010** -0.010** -0.010*** -0.009**

(0.004) (0.004) (0.004) (0.004)

Idiosyncratic Equity Shocki,j,t−1 0.005 0.004 0.003 0.003

(0.004) (0.004) (0.003) (0.003)

Idiosyncratic Equity Riski,j,t−1 -0.017*** -0.017*** -0.019*** -0.020***

(0.005) (0.004) (0.004) (0.004)

Peer Firm Averages:

WProfitabilityi,j,t−1 -0.012** -0.017*** -0.012*** -0.012***

(0.005) (0.005) (0.004) (0.004)

WMarket-to-Booki,j,t−1 0.009* 0.008* 0.006 0.009**

(0.005) (0.005) (0.005) (0.004)

WInvestmenti,j,t−1 -0.006 -0.007 -0.008 -0.012**

(0.005) (0.005) (0.006) (0.006)

WLeveragei,j,t−1 -0.001 0.001 -0.000 -0.003

(0.005) (0.007) (0.008) (0.009)

WSizei,j,t−1 -0.028* -0.032* -0.021 -0.019

(0.016) (0.018) (0.017) (0.017)

WTangibilityi,j,t−1 0.007 0.004 0.018** 0.019*

(0.007) (0.007) (0.009) (0.010)

Industry Controls Yes Yes Yes Yes

Industry Fixed-effects Yes Yes Yes Yes

Year Fixed-effects Yes Yes Yes Yes

Hansen J p-value 0.919 0.860 0.542 0.503

Firms 2,771 2,828 2,847 2,848

Observations 21,240 21,930 22,210 22,270

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage results for our two-stage least squares (2SLS) analysis of peer
proximity effects on dividend decreases. The sample consists of firms all firms from 1995-2017. Column
(1) - (4) report the results for the corresponding peer proximity’s from 250-1000 miles. The second stage
results reported in this table relate to the first stage estimates reported in Table 4.8. All coefficients
have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer Firm
Averages denotes variables constructed as the average of all firms within an industry-year combination,
excluding the i′th observation. Industries are defined by two-digit NIC level. Firm-Specific Factors denotes
variables corresponding to firm i′s value. The standard-errors are robust to heteroskedasticity and within
firm dependence, and are shown in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1%
levels, respectively. All variable names, definitions and sources can be found in appendix Table A.4.1.
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4.5.3 Extended Peer Proximity Analysis

To deepen our understanding of peer effects, we extend our analysis by conducting two additional

empirical exercises. First, we examine the potential alternative economic channels through which

peer effects may manifest themselves. Specifically, we investigate the impact of the opposite peer

dividend decision on firms decision to increase or decrease dividends. In line with the signalling

theory, predatory firms may act opportunistically to peer dividend decreases by increasing their

dividend payout in an attempt to indicate their financial strength to investors. Moreover, in

the presence of agency conflicts, opportunistic managers may also persist in increasing dividends

in order to signal their value in labour markets relative to other managers (Scharfstein et al.,

1990). With regards to dividend decreases, firms and managers may also be reluctant to decrease

dividends to avoid a potential negative market reaction if a significant proportion of their peers

announce dividend increases.

In Table 4.11, we report the second stage results for peer dividend increases and peer dividend

decreases on the opposing dividend decision8. Interesting, in Panel A we find peer dividend

decreases bear next to no statistical effect on firms decision to increase dividends. However, in

Panel B, we find, for all but one peer measure, that peer dividend increases yield a negative

and statistically significant effect on dividend decreases, where, generally speaking, the dividend

decision of closer industry peers carry the most economic importance. Thus, the bidirectional

influence of peer dividend increases illustrates an upward pressure on dividends with firms being

statistically more likely to increase and less likely to decrease dividends as their peers announce

dividend increases.

As a second empirical test, we analyse the temporal permanence of our findings with re-

spect to the recent financial crisis. Drawing from the theoretical work of Banerjee (1992) and

Bikhchandani et al. (1992), in periods of economic uncertainty, information cascades and cor-

porate herding is more likely to occur as firms personal information becomes more costly and

more time consuming to obtain. In such cases, it is suggested that firms are likely put more

weight on the tangible decisions of their industry peers rather than their personal, more opaque,

information (Leary and Roberts, 2014). Accordingly, for our second empirical test we examine

the temporal stability of finding over two sub-samples, one prior to the 2008 financial crisis and

one during/post crisis when global and domestic economic uncertainty was amplified (see Figure

4.3).

8Note: We do not report the first stage estimates of peer dividend increase and peer dividend decrease as
they are identical to the first stage estimates reported in Section 4.5.2 and Section 4.5.3.
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In Table 4.12 and Table 4.13 we report the second stage results for dividend increases and

dividend decreases, respectively9. We find peer dividend increases to be statistically significant

across both periods, however, the dividend decisions of peers prove to be most influential dur-

ing/post crisis. With regards to dividend decreases, we document more striking evidence between

the two sub-samples. We find, prior to the financial crisis, the decision to decrease dividends

was seldom influenced by the dividend decisions of firms industry counterparts. However, similar

to dividend increases, peer decisions during/post crisis period prove statistically and economi-

cally significant across each of our peer measures - i.e. both transitive and intransitive - with

the dividend decisions of closer industry peers, again, proving most influential. Therefore, the

informational content embedded in peer dividend decisions may have provided a more reliable

source of information for firms in periods of heightened economic uncertainty.

Overall, our extended empirical analysis of peer influence indicates that the dividend decisions

of Indian firms are more complex than traditionally perceived. Evidently, peer dividend increases

play a complex role in firms own dividend decisions and prove inflationary yielding upward

pressure on dividends. Moreover, our evidence suggests that the role of peer influence may

in fact have an embedded relationship with the current state of the domestic and even global

economy. However, to more accurately validate this conjecture one requires a more in-depth

empirical analysis, which, for now, we leave open for future research. In the next section we test

the robust of our current contributions.

9Note: First stage estimates for dividend increases and dividend decreases can be found in Appendix Table
A.4.8 and A.4.11, respectively.
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Table 4.11: Alternative Economic Channels of Peer Effects

Panel A: Dividend Increases Results

Dividend Increase

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

WInstrumented Peer Avg. Decrease250mi.i,j,t -0.017

(0.088)

WInstrumented Peer Avg. Decrease500mi.i,j,t -0.068

(0.081)

WInstrumented Peer Avg. Decrease750mi.i,j,t -0.075

(0.059)

WInstrumented Peer Avg. Decrease10000mi.i,j,t -0.081

(0.056)

Instrumented Peer Avg. Decreasei,j,t -0.099*

(0.057)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

Hansen J p-value 0.034 0.045 0.045 0.070 0.096

Firms 2,771 2,828 2,847 2,848 2,851

Observations 21,240 21,930 22,210 22,270 22,296

Panel B: Dividend Decreases Results

Dividend Decrease

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

WInstrumented Peer Avg. Increase250mi.i,j,t -0.130

(0.113)

WInstrumented Peer Avg. Increase500mi.i,j,t -0.255**

(0.115)

WInstrumented Peer Avg. Increase750mi.i,j,t -0.172**

(0.070)

WInstrumented Peer Avg. Increase1000mi.i,j,t -0.218***

(0.064)

Instrumented Peer Avg. Increasei,j,t -0.213***

(0.059)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

Hansen J p-value 0.002 0.024 0.002 0.034 0.084

Firms 2,771 2,828 2,847 2,848 2,851

Observations 21,240 21,930 22,210 22,270 22,296

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage two-stage least squares (2SLS) results for the inverse peer dividend decisions.
Panel A reports the results for dividend increases and Panel B reports the results for dividend decreases. The sample of
each panel consists of all firms from 1995-2017. Column (1) - (4) report the results for the corresponding peer proximity’s
from 250-1000 miles and column (5) reports the results for transitive reference groups based on the full sample of industry
peers. The second stage results reported in this table relate to the first stage estimates reported in Tables 4.5, 4.7 and
4.8. All coefficients have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer Firm
Averages denotes variables constructed as the average of all firms within an industry-year combination, excluding the i′th
observation. Industries are defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding to firm
i′s value. The standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in parentheses.
*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources
can be found in appendix Table A.4.1.
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Figure 4.3: Dividend Decisions and Economic Policy Uncertainty

Source: Author’s own calculation.
Note: This Figure reports the average dividend decision for Indian listed firms from 1995-2017 and two time-series plots of global and domestic economic policy uncertainty.
Dividend increases and dividend decreases reflect the percentage of each dividend decision in each year of our Prowess sample. Global and domestic index data for India is
sourced from https://www.policyuncertainty.com/ where Baker et al. (2016) economic policy uncertainty measures are freely available. India’s economic policy uncertainty
index is measured via text-based analysis of Indian newspapers. The Global index measure is the GDP weighted average of twenty countries economic policy uncertainty
index.
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Table 4.12: Stability of Peer Effects Over Time: Dividend Increase

Panel A: Dividend Increases Results: 1995-2007

Dividend Increase

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

WInstrumented Peer Avg. Increase250mi.i,j,t 0.228**

(0.091)

WInstrumented Peer Avg. Increase500mi.i,j,t 0.231**

(0.093)

WInstrumented Peer Avg. Increase750mi.i,j,t 0.182***

(0.064)

WInstrumented Peer Avg. Increase1000mi.i,j,t 0.186**

(0.074)

Instrumented Peer Avg. Increasei,j,t 0.190**

(0.077)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

Hansen J p-value 0.854 0.924 0.776 0.567 0.424

Firms 2,015 2,063 2,082 2,084 2,086

Observations 9,322 9,688 9,843 9,862 9,871

Panel B: Dividend Increases Results: 2008-2017

Dividend Increase

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

WInstrumented Peer Avg. Increase250mi.i,j,t 0.299***

(0.076)

WInstrumented Peer Avg. Increase500mi.i,j,t 0.266***

(0.074)

WInstrumented Peer Avg. Increase750mi.i,j,t 0.209***

(0.059)

WInstrumented Peer Avg. Increase1000mi.i,j,t 0.206***

(0.063)

Instrumented Peer Avg. Increasei,j,t 0.215***

(0.074)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

Hansen J p-value 0.909 0.876 0.743 0.765 0.791

Firms 2,126 2,167 2,179 2,181 2,184

Observations 11,918 12,242 12,367 12,408 12,425

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage results for our two-stage least squares (2SLS) analysis of dividend increases over
two sub-samples. Panel A details all firms from 1995-2007 and Panel B details all firms from 2008-2017. Column (1) - (4)
report the results for the corresponding peer proximity’s from 250-1000 miles and column (5) reports the results for transitive
reference groups based on the full sample of industry peers. The second stage results reported in this table relate to the first
stage estimates reported in Table A.4.7. All coefficients have been scaled by the corresponding variable’s standard deviation
to ease interpretation. Peer Firm Averages denotes variables constructed as the average of all firms within an industry-year
combination, excluding the i′th observation. Industries are defined by two-digit NIC level. Firm-Specific Factors denotes
variables corresponding to firm i′s value. The standard-errors are robust to heteroskedasticity and within firm dependence,
and are shown in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable
names, definitions and sources can be found in appendix Table A.4.1.
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Table 4.13: Stability of Peer Effects Over Time: Dividend Decrease

Panel A: Dividend Decrease Results: 1995-2007

Dividend Decrease

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

WInstrumented Peer Avg. Decrease250mi.i,j,t 0.211

(0.133)

WInstrumented Peer Avg. Decrease500mi.i,j,t 0.112

(0.075)

WInstrumented Peer Avg. Decrease750mi.i,j,t 0.095*

(0.053)

WInstrumented Peer Avg. Decrease1000mi.i,j,t 0.085

(0.053)

Instrumented Peer Avg. Decreasei,j,t 0.098*

(0.058)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

Hansen J p-value 0.455 0.0793 0.0477 0.0303 0.0713

Firms 2015 2063 2082 2084 2086

Observations 9322 9688 9843 9862 9871

Panel B: Dividend Decrease Results: 2008-2017

Dividend Decrease

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

WInstrumented Peer Avg. Decrease250mi.i,j,t 0.234**

(0.094)

WInstrumented Peer Avg. Decrease500mi.i,j,t 0.167**

(0.070)

WInstrumented Peer Avg. Decrease750mi.i,j,t 0.125**

(0.055)

WInstrumented Peer Avg. Decrease1000mi.i,j,t 0.153**

(0.066)

Instrumented Peer Avg. Decreasei,j,t 0.134**

(0.065)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

Hansen J p-value 0.965 0.729 0.500 0.470 0.483

Firms 2,126 2,167 2,179 2181 2184

Observations 11,918 12,242 12,367 12,408 12,425

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage results for our two-stage least squares (2SLS) analysis of dividend decrease over two
sub-samples. Panel A details all firms from 1995-2007 and Panel B details all firms from 2008-2017. Column (1) - (4) report the
results for the corresponding peer proximity’s from 250-1000 miles and column (5) reports the results for transitive reference
groups based on the full sample of industry peers. The second stage results reported in this table correspond to the first
stage estimates reported in Table A.4.8. All coefficients have been scaled by the corresponding variable’s standard deviation
to ease interpretation. Peer Firm Averages denotes variables constructed as the average of all firms within an industry-year
combination, excluding the i′th observation. Industries are defined by two-digit NIC level. Firm-Specific Factors denotes
variables corresponding to firm i′s value. The standard-errors are robust to heteroskedasticity and within firm dependence,
and are shown in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable
names, definitions and sources can be found in appendix Table A.4.1.
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4.6 Robustness Analysis

In order to assess the empirical firmness of our findings we conduct a number of robustness tests

for both our baseline and peer proximity results. For our first empirical examination we perform

a placebo test similar to Leary and Roberts (2014) and Grennan (2019). We administer the

placebo test to ensure that the evidence of peer influence documented in this study is not a by

product of some unobservable common factor attributed to our use of industry defined reference

groups. Subsequently, the test design is demised around the random allocation of industry

groups, where, if some common latent factor is indeed present, misspecification of peers should

not matter for the overall peer effect.

To deliver our placebo test, we issue, with equal probability, each firm-year observation a

randomly generated number between 0 and 50, then, to match the number of industry classi-

fications in our main sample, we reassign the random numbers into 50 random peer (industry)

groups. We then recalculate the average peer dividend decision and peer idiosyncratic equity

shock and risk for each random industry allocation. In Table 4.14 we report insignificant peer

effects for both dividend increases and dividend decreases. Thus, the results support our earlier

findings by suggesting that peer groups based on industry classifications are significant for peer

effect analysis, and, more importantly, for firm dividend decisions.

For our next robustness test we examine the significance of our findings to alternative standard

error assumptions. In recent years there has been a growing concern towards the use of correct,

or put differently, incorrect standard errors in the corporate finance panel data literature (e.g.,

Hoechle 2007, Petersen 2009 and Thompson 2011), where incorrect assumptions regarding stan-

dard errors can lead to erroneous conclusions about the statistical significance of ones estimates.

To address these concerns, we examine the validity of our findings - which so far have reported

firm clustered standard errors - to different standard-error types. Specifically, we re-estimate

our baseline results for dividend increases and dividend decreases using four alternative standard

error structures, namely: homoscedastic, year clustered, white robust and firm-year clustered.

In Table 4.15 and 4.16 we report the first and second stage results for dividend increases and

dividend decreases and include the coefficient estimates and all five standard error types, where

we re-report firm clustered standard errors for ease of comparison. Across both tables we find

our main empirical findings of peer influence to be statistically robust to alternative standard

error formulations. Furthermore, in almost all cases, peer averages and firm-specific covariates
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maintain their statistical significance with year clustering reporting the highest standard errors

across both tables.

For our third robustness test we stress test the relationship between profitability and dividend

decreases by examining the stability of our baseline results to earning dynamics by including

present and future earnings. To recapitulate, in Section 4.5 we proposed that the lagged level

of profitability possibly effects dividend decreases positively as the previous years earnings are

associated to prior dividend increases. Accordingly, for our third test examine the validity of

our results to the current years level of profitability as well as future profitability. In Table 4.12

we find that the level of current profit (column (1)) and future in profit (column (2)) both have

a negative effect on dividend decreases consistent with the broader literature (e.g. Fama and

French 2002, Grullon et al. 2002 and Leary and Michaely 2011). Thus, in line with our initial

suggestion, it seems that Indian listed firms decide to decrease dividend based on current and

future earnings, this lays parallel with the observation that the majority of dividend decreases in

our sample directly occur in periods of economic downturn when firms earnings are significantly

lower.

In our penultimate robustness exercise, we analyse the stability of our results to potential

omitted factors. While our peer proximity estimates contain a variety of controls e.g. firm-, peer-

and industry-specific variables along with industry- and year-fixed effects, one might suggest that

said model specifications fail to account for potential unobserved state specific factors or the

notion that firms smooth their dividends over time. Accordingly, to address the first potential

endogeneity concern, in Table 4.18 we report the peer proximity estimates for dividend increases

and dividend decreases with the addition of state-wise fixed-effects. As can be observed, our

results remain qualitatively the same, and, therefore, we conclude our main empirical findings

are not a by product of unobserved state-specific factors.

Second, to control for the notion of dividend smoothing, we calculate the consecutive number

of periods that each firm, without break, has increased or decreased their dividend payout with

respect to the current period. As originally documented by Lintner (1956), managers often

smooth their dividends over time, whereby firms adjust towards their optimal payout ratio via

a succession of smaller incremental increases or decreases. To account for the potential non-

linear effects of such smoothing conditions, we also include the quadratic polynomial of each

respective consecutive count variable. In Table 4.19 we report the peer proximity estimates for

dividend increases and dividend decreases with the addition of our dividend smoothing controls.

For both dividend increases and dividend decreases, we find both the level and square of our
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consecutive count variables to be significantly significant at the 1% level, with positive and

negative signs, respectively. The results infer an inverse U-shape of between firms previous

consecutive dividend decisions and their current payout decision, thus, supporting the notion of

dividend smoothing. Nonetheless, after controlling for such omitted behaviour characteristics,

we not that our main empirical results of peer related proximity effects are largely unchanged

thus illustrating the stoutness of our main findings. Furthermore, in unreported results, we test a

number of additional firm variables such as import intensity, export intensity and firm sales along

with the combination of state fixed effects and dividend smoothing. Again, our main findings

prove both statistically and economically robust.

As our final test, we illustrate that our peer proximity based results are not a product of

arbitrary geographical distances. To do so, we increase each proximity radius by 50 miles and

re-calculate the average peer proximity effect for all four distances for both dividend increases

and decreases and re-estimate our empirical specification. In Table 4.17 we illustrate both the

statistical and economic robustness of our findings, with all statistical and economic conclusions

remaining qualitatively indifferent. Furthermore, in unreported results, we repeat this practice

by decreasing our distance measure by 50 miles, again our results remain qualitatively unchanged.
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Table 4.14: Placebo Test: Randomly Assigned Peers

Panel A: First Stage

Placebo Peer Avg. Placebo Peer Avg.

Dividend Increase Dividend Decrease

(1) (2)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 -0.002 0.001

(0.007) (0.006)

Idiosyncratic Equity Riski,j,t−1 0.008 0.005

(0.007) (0.006)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 -0.000 0.002

(0.006) (0.007)

Idiosyncratic Equity Riski,j,t−1 -0.012 0.015

(0.014) (0.013)

Peer Firm Averages Yes Yes

Firm-specific Variables Yes Yes

Industry controls Yes Yes

Year Fixed-effects Yes Yes

F-statisticN 0.575 1.067

F-statisticR 0.373 0.689

F-statisticEff 0.383 0.663

Panel B: Second Stage

Dividend Dividend

Increase Decrease

(1) (2)

Instrumented Placebo Peer Avg. Increasei,j,t -0.909

(1.200)

Instrumented Placebo Peer Avg. Decreasei,j,t 0.575

(0.676)

Peer Firm Averages Yes Yes

Firm Specific Factors Yes Yes

Placebo Industry Controls Yes Yes

Placebo Industry-fixed Effects Yes Yes

Year-fixed Effects Yes Yes

Firms 2,851 2,851

Observations 22,296 22,296

Source: Prowess - Author’s own calculation.
Notes: This table presents the two-stage least squares (2SLS) results for randomly assigned
industry groups. The sample consists of all firms from 1995-2017. Panel A reports the first stage
results. Panel B reports the second stage results. Column (1) and (2) report the results for
our placebo tests estimates for dividend increases and dividend decrease, respectively. Random
peer group classification consists of 50 industry classifications. Each estimate includes all peer
firm averages, firm-specific variables, industry controls and year fixed-effects. F-statisticN

denotes the Cragg-Donald F-statistic, F-statisticR denotes the Kleibergen and Paap (2006)
robust F-statistic and F-statisticEff denotes Olea and Pflueger (2013) effect F-statistic. The
standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in
parentheses. All variable names, definitions and sources can be found in appendix Table A.4.1.
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Table 4.15: Dividend Increase: Standard Error Robustness Analysis

Coefficient Homoscedastic Firm Year White Firm-Year

Clustered Clustered Robust Clustered

(1) (2) (3) (4) (5) (6)

Panel A: First Stage

Firm-Specific Factors:

Idiosyncratic Equity Shocki,j,t−1 -0.016 (0.012) (0.011) (0.010) (0.011) (0.010)

Idiosyncratic Equity Riski,j,t−1 0.007 (0.006) (0.007) (0.007) (0.007) (0.007)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 0.058 (0.005)*** (0.007)*** (0.032)* (0.007)*** (0.032)*

Idiosyncratic Equity Riski,j,t−1 -0.031 (0.012)** (0.018)* (0.072) (0.017)* (-0.073)

Panel B: Second Stage

Instrumented Peer Avg. Increasei,j,t 0.147 (0.065)** (0.067)** (0.033)*** (0.069)** (0.028)***

Firm-specific Variables:

Profitabilityi,j,t−1 0.047 (0.004)*** (0.005)*** (0.007)*** (0.004)*** (0.007)***

Market-to-Booki,j,t−1 0.034 (0.004)*** (0.004)*** (0.005)*** (0.004)*** (0.006)***

Investmenti,j,t−1 0.016 (0.004)*** (0.004)*** (0.005)*** (0.004)*** (0.005)***

Leveragei,j,t−1 -0.013 (0.004)*** (0.005)*** (0.004)*** (0.004)*** (0.005)**

Sizei,j,t−1 0.106 (0.004)*** (0.005)*** (0.009)*** (0.004)*** (0.009)***

Tangibilityi,j,t−1 -0.001 (0.004) (0.005) (0.007) (0.004) (0.008)

Idiosyncratic Equity Shocki,j,t−1 0.016 (0.004)*** (0.004)*** (0.004)*** (0.004)*** (0.004)***

Idiosyncratic Equity Riski,j,t−1 -0.041 (0.004)*** (0.006)*** (0.009)*** (0.005)*** (0.009)***

Peer Firm Averages:

Profitabilityi,j,t−1 -0.012 (0.006)** (0.006)** (0.003)*** (0.006)** (0.003)***

Market-to-Booki,j,t−1 -0.015 (0.006)** (0.006)** (0.004)*** (0.006)** (0.003)***

Investmenti,j,t−1 -0.008 (0.005) (0.006) (0.003)*** (0.006) (0.003)***

Leveragei,j,t−1 0.015 (0.008)* (0.009) (0.004)*** (0.008)* (0.006)*

Sizei,j,t−1 -0.048 (0.011)*** (0.013)*** (0.007)*** (0.011)*** (0.009)***

Tangibilityi,j,t−1 -0.006 (0.015) (0.016) (0.009) (0.015) (0.010)

Source: Prowess - Author’s own calculation.
Notes: This table presents the standard-error robustness analysis of our baseline dividend increase estimates. The sample
consists of all firms in the annual database between 1995 and 2017. Panel A and Panel B report the first and second
stage standard errors for the corresponding variables, respectively. Column (1) reports the associated variable coefficient.
Column (2) reports Homoscedastic standard errors. Column (2) reports firm clustered standard errors. Column (3) reports
year clustered standard errors. Column (4) reports huber-white robust standard errors. Column (5) reports firm-year
robust standard errors, where firm-year standard errors are calculated using Thompson (2011)’s double clustered formula:
Vfirm+Vyear-Vwhite. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names,
definitions and sources can be found in appendix Table A.4.1.
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Table 4.16: Dividend Decrease: Standard Error Robustness Analysis

Coefficient Homoscedastic Firm Year White Firm-Year

Clustered Clustered Robust Clustered

(1) (2) (3) (4) (5) (6)

Panel A: First Stage

Firm-Specific Factors:

Idiosyncratic Equity Shocki,j,t−1 -0.010 (0.006) (0.006) (0.006) (0.006) (0.006)

Idiosyncratic Equity Riski,j,t−1 0.009 (0.006) (0.007) (0.005) (0.006) (0.008)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 -0.060 (0.006)*** (0.008)*** (0.019)*** (0.008)*** (0.019)***

Idiosyncratic Equity Riski,j,t−1 0.089 (0.014)*** (0.019)*** (0.062) (0.019)*** (0.062)

Panel B: Second Stage

Instrumented Peer Avg. Decreasei,j,t 0.199 (0.047)*** (0.052)*** (0.036)*** (0.052)*** (0.036)***

Firm-specific Variables:

Profitabilityi,j,t−1 0.025 (0.003)*** (0.003)*** (0.005)*** (0.003)*** (0.005)***

Market-to-Booki,j,t−1 -0.024 (0.003)*** (0.004)*** (0.007)*** (0.003)*** (0.007)***

Investmenti,j,t−1 0.017 (0.003)*** (0.003)*** (0.004)*** (0.003)*** (0.004)***

Leveragei,j,t−1 0.008 (0.003)** (0.004)** (0.006) (0.003)** (0.006)

Sizei,j,t−1 0.036 (0.003)*** (0.004)*** (0.009)*** (0.003)*** (0.009)***

Tangibilityi,j,t−1 -0.009 (0.004)** (0.004)** (0.005)** (0.003)*** (0.005)*

Idiosyncratic Equity Shocki,j,t−1 0.000 (0.003) (0.003) (0.004) (0.003) (0.004)

Idiosyncratic Equity Riski,j,t−1 -0.020 (0.004)*** (0.004)*** (0.006)*** (0.004)*** (0.006)***

Peer Firm Averages:

Profitabilityi,j,t−1 -0.011 (0.004)** (0.004)** (0.004)*** (0.004)** (0.004)***

Market-to-Booki,j,t−1 0.010 (0.004)*** (0.005)** (0.003)*** (0.005)** (0.003)***

Investmenti,j,t−1 -0.010 (0.006)* (0.007) (0.005)** (0.006) (0.005)*

Leveragei,j,t−1 0.006 (0.009) (0.010) (0.009) (0.010) (0.009)

Sizei,j,t−1 -0.025 (0.016) (0.018) (0.012)** (0.018) (0.013)**

Tangibilityi,j,t−1 0.009 (0.010) (0.011) (0.010) (0.011) (0.010)

Source: Prowess - Author’s own calculation.
Notes: This table presents the standard-error robustness analysis of our baseline dividend decrease estimates.The sample
consists of all firms in the annual database between 1995 and 2017. Panel A and Panel B report the first and second
stage standard errors for the corresponding variables, respectively. Column (1) reports the associated variable coefficient.
Column (2) reports Homoscedastic standard errors. Column (2) reports firm clustered standard errors. Column (3) reports
year clustered standard errors. Column (4) reports huber-white robust standard errors. Column (5) reports firm-year
robust standard errors, where firm-year standard errors are calculated using Thompson (2011)’s double clustered formula:
Vfirm+Vyear-Vwhite. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names,
definitions and sources can be found in appendix Table A.4.1.
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Table 4.17: Dividend Decrease: Profitability Sensitivity Test

Panel A: First Stage

Peer Dividend Decrease

(1) (2) (3) (4)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 -0.008 -0.007 -0.010 -0.008

(0.006) (0.006) (0.007) (0.007)

Idiosyncratic Equity Riski,j,t−1 0.003 0.006 0.005 0.007

(0.007) (0.007) (0.007) (0.007)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 -0.059*** -0.059*** -0.062*** -0.061***

(0.008) (0.008) (0.009) (0.009)

Idiosyncratic Equity Riski,j,t−1 0.104*** 0.103*** 0.069*** 0.068***

(0.019) (0.019) (0.021) (0.021)

Peer Firm Averages Yes Yes Yes Yes

Firm Specific Factors Yes Yes Yes Yes

Placebo Industry Controls Yes Yes Yes Yes

Placebo Industry-fixed Effects Yes Yes Yes Yes

Year-fixed Effects Yes Yes Yes Yes

F-statisticN 70.989 69.198 55.704 54.038

F-statisticR 35.570 34.750 28.380 27.66

F-statisticEff 36.304 35.344 29.174 28.315

Panel B: Second Stage

Dividend Decrease

(1) (2) (3) (4)

Instrumented Peer Avg. Decreasei,j,t 0.194*** 0.168*** 0.193*** 0.167***

(0.052) (0.050) (0.057) (0.055)

Firm-specific Variables:

Profitabilityi,j,t+1 -0.020*** -0.026***

(0.004) (0.004)

Profitabilityi,j,t -0.070*** -0.128*** -0.056*** -0.108***

(0.004) (0.006) (0.005) (0.007)

Profitabilityi,j,t−1 0.099*** 0.096***

(0.005) (0.006)

Peer Firm Averages Yes Yes Yes Yes

Firm Specific Factors Yes Yes Yes Yes

Placebo Industry Controls Yes Yes Yes Yes

Placebo Industry-fixed Effects Yes Yes Yes Yes

Year-fixed Effects Yes Yes Yes Yes

Hansen J p-value 0.427 0.365 0.305 0.319

Firms 2,851 2,851 2,441 2,441

Observations 22,296 22,296 18052 18052

Source: Prowess - Author’s own calculation.
Notes: This table presents the two stage least squares (2SLS) results our profitability
sensitivity analysis on dividend decreases. The sample consists of all firms from 1995-2017.
Panel A reports the first stage estimates and Panel B reports the second stage estimates.
All coefficients have been scaled by the corresponding variable’s standard deviation to
ease interpretation. Peer Firm Averages denotes variables constructed as the average of
all firms within an industry-year combination, excluding the i′th observation. Industries
are defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding
to firm i′s value. F-statisticN denotes the Cragg-Donald F-statistic, F-statisticR denotes
the Kleibergen and Paap (2006) robust F-statistic and F-statisticEff denotes Olea and
Pflueger (2013) effect F-statistic. The standard-errors are robust to heteroskedasticity and
within firm dependence, and are shown in parentheses. *, ** and *** indicate significance
at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources can
be found in appendix Table A.4.1.



Table 4.18: Unobserved State Level Heterogeneity: Dividend Increase and Dividend Decrease

Panel A: Additional Control Results: Dividend Increase

Dividend Increase

250 Miles 500 Miles 750 Miles 1000 Miles

(1) (2) (3) (4)

WInstrumented Peer Avg. Increase250mi.i,j,t 0.276*

(0.162)

WInstrumented Peer Avg. Increase500mi.i,j,t 0.233*

(0.134)

WInstrumented Peer Avg. Increase750mi.i,j,t 0.188**

(0.086)

WInstrumented Peer Avg. Increase1000mi.i,j,t 0.145**

(0.073)

Additional Firm-Specific Variables Yes Yes Yes Yes

Additional Peer Firm Averages Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes

Industry-fixed Effects Yes Yes Yes Yes

State-fixed Effects Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes

Hansen J p-value 0.552 0.348 0.513 0.249

Firms 2,771 2,828 2,847 2,848

Observations 21,240 21,930 22,210 22,270

Panel B: Additional Control Results: Dividend Decrease

Dividend Decrease

250 Miles 500 Miles 750 Miles 1000 Miles

(1) (2) (3) (4)

WInstrumented Peer Avg. Decrease250mi.i,j,t 0.264***

(0.098)

WInstrumented Peer Avg. Decrease550mi.i,j,t 0.253***

(0.081)

WInstrumented Peer Avg. Decrease750mi.i,j,t 0.204***

(0.056)

WInstrumented Peer Avg. Decrease1000mi.i,j,t 0.193***

(0.051)

Additional Firm-Specific Variables Yes Yes Yes Yes

Additional Peer Firm Averages Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes

Industry-fixed Effects Yes Yes Yes Yes

State-fixed Effects Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes

Hansen J p-value 0.998 0.813 0.517 0.478

Firms 2,771 2,828 2,847 2,848

Observations 21,240 21,930 22,210 22,270

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage two-stage least squares (2SLS) results for dividend increases and dividend
decreases with the addition of state level fixed effects. Panel A reports the results for dividend increases. Panel B
reports the results for dividend decrease. The sample of each panel consists of all firms from 1995-2017. Column (1) - (4)
report the results for the corresponding peer proximity’s from 250-1000 miles. The second stage results reported in this
table relate to the first stage estimates reported in Table A.4.9. All coefficients have been scaled by the corresponding
variable’s standard deviation to ease interpretation. Peer Firm Averages denotes variables constructed as the average
of all firms within an industry-year combination, excluding the i′th observation. Industries are defined by two-digit
NIC level. Firm-Specific Factors denotes variables corresponding to firm i′s value. The standard-errors are robust to
heteroskedasticity and within firm dependence, and are shown in parentheses. *, ** and *** indicate significance at the
10%, 5% and 1% levels, respectively. All variable names, definitions and sources can be found in appendix Table A.4.1.
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Table 4.19: Dividend Smoothing Robustness: Dividend Increase and Dividend Decrease

Panel A: Additional Control Results: Dividend Increase

Dividend Increase

250 Miles 500 Miles 750 Miles 1000 Miles

(1) (2) (3) (4)

WInstrumented Peer Avg. Increase250mi.i,j,t 0.303*

(0.155)

WInstrumented Peer Avg. Increase500mi.i,j,t 0.259*

(0.134)

WInstrumented Peer Avg. Increase750mi.i,j,t 0.203**

(0.086)

WInstrumented Peer Avg. Increase1000mi.i,j,t 0.158**

(0.075)

Consecutive Increase Counti,j,t−1 0.084*** 0.088*** 0.089*** 0.098***

(0.007) (0.007) (0.007) (0.007)

Consecutive Increase Count Squaredi,j,t−1 -0.049*** -0.052*** -0.052*** -0.052***

(0.008) (0.009) (0.010) (0.010)

Additional Firm-Specific Variables Yes Yes Yes Yes

Additional Peer Firm Averages Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes

Industry-fixed Effects Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes

Hansen J p-value 0.638 0.348 0.513 0.249

Firms 2,771 2,828 2,847 2,848

Observations 21,240 21,930 22,210 22,270

Panel B: Additional Control Results: Dividend Decrease

Dividend Decrease

250 Miles 500 Miles 750 Miles 1000 Miles

(1) (2) (3) (4)

WInstrumented Peer Avg. Decrease250mi.i,j,t 0.255***

(0.094)

WInstrumented Peer Avg. Decrease550mi.i,j,t 0.252***

(0.079)

WInstrumented Peer Avg. Decrease750mi.i,j,t 0.206***

(0.055)

WInstrumented Peer Avg. Decrease1000mi.i,j,t 0.196***

(0.051)

Consecutive Decrease Counti,j,t−1 0.035*** 0.031*** 0.030*** 0.030***

(0.005) (0.005) (0.005) (0.005)

Consecutive Decrease Count Squaredi,j,t−1 -0.019*** -0.016*** -0.016*** -0.016***

(0.009) (0.010) (0.010) (0.010)

Additional Firm-Specific Variables Yes Yes Yes Yes

Additional Peer Firm Averages Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes

Industry-fixed Effects Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes

Hansen J p-value 0.888 0.916 0.607 0.546

Firms 2,771 2,828 2,847 2,848

Observations 21,240 21,930 22,210 22,270

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage two-stage least squares (2SLS) results for dividend increases and dividend
decreases with the addition of the number of previous continuous increases (decreases) and the square of this variable.
Panel A reports the results for dividend increases. Panel B reports the results for dividend decrease. The sample of each
panel consists of all firms from 1995-2017. Column (1) - (4) report the results for the corresponding peer proximity’s
from 250-1000 miles. The second stage results reported in this table relate to the first stage estimates reported in Table
A.4.10. All coefficients have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer
Firm Averages denotes variables constructed as the average of all firms within an industry-year combination, excluding
the i′th observation. Industries are defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding
to firm i′s value. The standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in
parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions
and sources can be found in appendix Table A.4.1.



Table 4.20: Extended Radius Results: Dividend Increase and Dividend Decrease

Panel A: First Stage

Extended Radius Results: Dividend Increase

300 Miles 550 Miles 800 Miles 1050 Miles

(1) (2) (3) (4)

WInstrumented Peer Avg. Increase300mi.i,j,t 0.374*

(0.219)

WInstrumented Peer Avg. Increase550mi.i,j,t 0.234*

(0.120)

WInstrumented Peer Avg. Increase800mi.i,j,t 0.197**

(0.095)

WInstrumented Peer Avg. Increase1050mi.i,j,t 0.142*

(0.073)

Additional Firm-Specific Variables Yes Yes Yes Yes

Additional Peer Firm Averages Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes

Industry-fixed Effects Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes

Hansen J p-value 0.915 0.374 0.506 0.237

Firms 2,794 2,833 2,847 2,849

Observations 21,474 21,990 22,232 22,288

Panel B: Second Stage

Extended Radius Results: Dividend Decrease

300 Miles 550 Miles 800 Miles 1050 Miles

(1) (2) (3) (4)

WInstrumented Peer Avg. Decrease300mi.i,j,t 0.282***

(0.105)

WInstrumented Peer Avg. Decrease550mi.i,j,t 0.278***

(0.089)

WInstrumented Peer Avg. Decrease800mi.i,j,t 0.223***

(0.062)

WInstrumented Peer Avg. Decrease1050mi.i,j,t 0.205***

(0.055)

Additional Firm-Specific Variables Yes Yes Yes Yes

Additional Peer Firm Averages Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes

Industry-fixed Effects Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes

Hansen J p-value 0.841 0.930 0.487 0.610

Firms 2,794 2,833 2,847 2,849

Observations 21,474 21,990 22,232 22,288

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage two-stage least squares (2SLS) results for our extended radius
analysis. Panel A reports the results for dividend increases. Panel B reports the results for dividend decrease.
The sample of each panel consists of all firms from 1995-2017. Column (1) - (4) report the results for the
corresponding peer proximity’s from 300-1050 miles. The second stage results reported in this table relate
to the first stage estimates reported in Table A.4.11. All coefficients have been scaled by the corresponding
variable’s standard deviation to ease interpretation. Peer Firm Averages denotes variables constructed as
the average of all firms within an industry-year combination, excluding the i′th observation. Industries are
defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding to firm i′s value. The
standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in parentheses.
*, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions
and sources can be found in appendix Table A.4.1.
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4.7 Concluding Remarks

The primary aim of this chapter was to investigate whether Indian listed firms dividend decisions

are influenced by the decisions of their industry peers, and, if so, does the geographical location

of peers matter. Our results conclude that this is indeed the case. We find the dividend decisions

made by Indian firms are influenced by the decisions, and less so, the characteristics of their

industry counterparts. We show that the decisions of geographically closer industry peers bear

greater influence on the dividend payout decisions of Indian listed firms. We perform a number of

additional robust tests and illustrate our empirical findings are not a product of latent common

factors attributable to our use of industry-based reference groups. Moreover, we report our

findings are not a product of specific variance clustering nor are they driven by omitted variable

bias or arbitrary peer proximity distances.

The empirical findings documented in this chapter contribute to the literature on peer effects

in corporate finance in three ways (e.g., Leary and Roberts 2014, Foucault and Fresard 2014,

Kaustia and Rantala 2015, Adhikari and Agrawal 2018 and Grennan 2019). First, this chapter

employs a new reference group structure based intransitive reference groups defined by peers

geographical location. Accordingly, our chapter provides the first empirical evidence of the

relationship between peer dividend decisions and peer location. Finally, our analysis of Indian

listed firms provides the first robust evidence of dividends and peer effects in a emerging market

context and shows peer effect manifestations are not exclusive to the specific dividend decisions

reported by Adhikari and Agrawal (2018) and Grennan (2019).

All in all, our analysis presents new and robust evidence that the dividend decisions of Indian

listed firms are statistically and economically influenced by the decisions of their industry peers.

As a result, this chapter provides a clear criticism of the existing empirical literature on corporate

payout polices, which largely consider dividend decisions independent of their peers behaviour.

In doing so, this chapter presents evidence into why the dividend decisions of firms often coincide

with decisions of their industry counterparts. With regards to future research, we provide two

recommendations. First, a deeper empirical analysis on the relevance of geographical proximity

is required to further aid our understanding of why firms imitate one another and why some peers

are more influential than others. Second, a broader international comparison of peer effects would

help uncover the potential association between emerging market economies and peer influence

touched upon in this chapter. Moreover, an international comparison would provide insight on

the geographic importance of domestic and foreign peer behaviour.
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4.8 Appendix

Table A.4.1: Variable Definitions and Sources

Data Reference Definition Source

Panel A: Daily Data

Daily Return The percentage change of daily close price Prowess

Market Return The percentage change of BSE Senex 50 daily close price Royal Bank of India

Industry Return The leave-out-mean of daily return Prowess

Risk Free Return The daily return on US 10 year bonds Federal Reserve

Daily Expected Return The predicted return for augmented asset pricing model Prowess

Daily Idiosyncratic Return The realised daily return less daily expected return Prowess

Panel B: Firm Annual Data

Dividend Payout Total Cash Dividend (TCD) over Total Assets Prowess

Dividend Increase Takes the value 1 if the change in TCD is positive, or else zero Prowess

Dividend Decrease Takes the value 1 if the change in TCD is negative, or else zero Prowess

Profitability Net earnings over Total Assets Prowess

Market-to-Book Market Capitalisation plus Total Debt over Total Assets Prowess

Investment Change in net investment plus deprecation) over total assets Prowess

Leverage Short term debt plus long term debt over total assets Prowess

Size The natural logarithm of Total Assets Prowess

Tangibility Fixed assets over total assets Prowess

Idiosyncratic Equity Shock The annual average of daily idiosyncratic Return Prowess

Idiosyncratic Equity Risk The annual standard deviation of daily idiosyncratic return Prowess

Panel C: Additional Annual Data

Global EPU Global economic policy uncertainty index Policy Uncertainty

India EPU India economic policy uncertainty index Policy Uncertainty

Latitude and Longitude Latitude and Longitude coordinates GeoNames
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Table A.4.2: Panel Structure By Firm

No. of obs. No. of obs. Percentage (%) Cumulative
per firm Percentage (%)

1 555 1.960 1.960
2 878 3.090 5.050
3 829 2.920 7.970
4 854 3.010 10.980
5 965 3.400 14.380
6 1125 3.960 18.340
7 1124 3.960 22.300
8 1064 3.750 26.050
9 1267 4.460 30.520
10 1619 5.700 36.220
11 1424 5.020 41.240
12 1235 4.350 45.590
13 1364 4.810 50.390
14 1449 5.110 55.500
15 1291 4.550 60.050
16 1328 4.680 64.730
17 1575 5.550 70.280
18 1349 4.750 75.030
19 1190 4.190 79.220
20 1117 3.940 83.160
21 1103 3.890 87.040
22 1216 4.280 91.330
23 2461 8.670 100.000

Total 28,382 100.000 100.000

Table A.4.3: Panel Structure By Year

No. of obs. No. of obs. Percentage (%) Cumulative
per firm Percentage (%)

1995 1333 4.600 4.600
1996 1680 5.800 10.400
1997 1376 4.750 15.150
1998 971 3.350 18.510
1999 749 2.590 21.090
2000 898 3.100 24.190
2001 810 2.800 26.990
2002 652 2.250 29.240
2003 765 2.640 31.880
2004 979 3.380 35.260
2005 1193 4.120 39.380
2006 1346 4.650 44.030
2007 1441 4.980 49.010
2008 1519 5.240 54.250
2009 1396 4.820 59.070
2010 1540 5.320 64.390
2011 1656 5.720 70.110
2012 1536 5.300 75.410
2013 1483 5.120 80.530
2014 1379 4.760 85.290
2015 1379 4.760 90.060
2016 1450 5.010 95.060
2017 1430 4.940 100.000
Total 28,382 100.000 100.000
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Table A.4.4: Baseline Results: Restriction Tests

Dividend Payout Dividend Increase Dividend Decrease

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Peer Avg. Dependent Variablei,j,t 0.001** 0.041*** 0.038***

(0.000) (0.006) (0.004)

Firm-specific Variables:

Profitabilityi,j,t−1 0.005*** 0.005*** 0.005*** 0.046*** 0.046*** 0.047*** 0.026*** 0.026*** 0.026***

(0.000) (0.000) (0.000) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

Market-to-Booki,j,t−1 0.003*** 0.003*** 0.003*** 0.034*** 0.035*** 0.034*** -0.023*** -0.024*** -0.024***

(0.000) (0.000) (0.000) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004)

Investmenti,j,t−1 -0.000*** -0.000** -0.000** 0.016*** 0.016*** 0.016*** 0.018*** 0.018*** 0.018***

(0.000) (0.000) (0.000) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

Leveragei,j,t−1 -0.003*** -0.003*** -0.003*** -0.012** -0.012** -0.012** 0.005 0.005 0.005

(0.000) (0.000) (0.000) (0.005) (0.005) (0.005) (0.003) (0.003) (0.003)

Sizei,j,t−1 0.001*** 0.001*** 0.001*** 0.104*** 0.103*** 0.104*** 0.038*** 0.039*** 0.039***

(0.000) (0.000) (0.000) (0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

Tangibilityi,j,t−1 0.000** 0.000* 0.000** 0.001 0.001 0.000 -0.009** -0.009** -0.009**

(0.000) (0.000) (0.000) (0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

Idiosyncratic Equity Shocki,j,t−1 0.001*** 0.001*** 0.001*** 0.016*** 0.016*** 0.016*** -0.002 -0.002 -0.001

(0.000) (0.000) (0.000) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003)

Idiosyncratic Equity Riski,j,t−1 -0.002*** -0.002*** -0.002*** -0.041*** -0.040*** -0.041*** -0.018*** -0.018*** -0.018***

(0.000) (0.000) (0.000) (0.006) (0.006) (0.006) (0.004) (0.004) (0.004)

Peer Firm Averages:

Profitabilityi,j,t−1 -0.000 -0.000 -0.004 -0.006 -0.002 -0.004

(0.000) (0.000) (0.005) (0.005) (0.004) (0.004)

Market-to-Booki,j,t−1 -0.001*** -0.001*** -0.006 -0.009* 0.010** 0.010**

(0.000) (0.000) (0.004) (0.004) (0.004) (0.004)

Investmenti,j,t−1 -0.000*** -0.001*** -0.008 -0.008 0.005 0.002

(0.000) (0.000) (0.006) (0.006) (0.005) (0.005)

Leveragei,j,t−1 0.001** 0.001* 0.013 0.014 -0.019*** -0.015**

(0.000) (0.000) (0.009) (0.009) (0.007) (0.007)

Sizei,j,t−1 -0.000 -0.000 -0.050*** -0.049*** 0.028*** 0.018*

(0.000) (0.000) (0.012) (0.012) (0.010) (0.011)

Tangibilityi,j,t−1 0.001** 0.001** 0.016 0.010 0.001 0.003

(0.000) (0.000) (0.012) (0.012) (0.010) (0.010)

Industry Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Industry Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year Fixed-effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Firms 2,851 2,851 2,851 2,851 2,851 2,851 2,851 2,851 2,851

Observations 22,296 22,296 22,296 22,296 22,296 22,296 22,296 22,296 22,296

Source: Prowess - Author’s own calculation.
Notes: This table presents the ordinary least squares (OLS) estimates for a number of model specifications. The sample consists of all firms from 1995-2017. All
coefficients have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer Firm Averages denotes variables constructed as the average
of all firms within an industry-year combination, excluding the i′th observation. Industries are defined by two-digit NIC level. Firm-Specific Factors denotes variables
corresponding to firm i′s value. The standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in parentheses. *, ** and *** indicate
significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources can be found in appendix Table A.4.1.



Table A.4.5: Baseline Results: Detailed First Stage Estimates

Peer Avg. Peer Avg. Peer Avg.

Dividend Payout Dividend Increase Dividend Decrease

(1) (2) (3)

Firm-specific Variables:

Profitabilityi,j,t−1 -0.003 -0.007 0.006

(0.005) (0.005) (0.005)

Market-to-Booki,j,t−1 -0.016*** 0.003 -0.001

(0.005) (0.006) (0.006)

Investmenti,j,t−1 -0.008* 0.001 0.002

(0.004) (0.005) (0.006)

Leveragei,j,t−1 0.003 0.006 -0.017***

(0.005) (0.005) (0.005)

Sizei,j,t−1 -0.007 -0.025*** 0.017***

(0.005) (0.005) (0.005)

Tangibilityi,j,t−1 0.022*** 0.010* 0.001

(0.006) (0.006) (0.006)

Idiosyncratic Equity Shocki,j,t−1 0.002 0.001 -0.010

(0.004) (0.006) (0.006)

Idiosyncratic Equity Riski,j,t−1 0.001 0.009 0.009

(0.007) (0.007) (0.007)

Peer Firm Averages:

Profitabilityi,j,t−1 0.178*** 0.053*** 0.043***

(0.009) (0.008) (0.008)

Market-to-Booki,j,t−1 -0.014** 0.060*** 0.006

(0.006) (0.006) (0.006)

Investmenti,j,t−1 -0.072*** -0.009 0.089***

(0.009) (0.008) (0.009)

Leveragei,j,t−1 -0.209*** -0.008 -0.130***

(0.016) (0.017) (0.019)

Sizei,j,t−1 -0.017 -0.034 0.303***

(0.021) (0.023) (0.025)

Tangibilityi,j,t−1 0.265*** 0.148*** -0.040*

(0.026) (0.021) (0.024)

Idiosyncratic Equity Shocki,j,t−1 0.047*** 0.058*** -0.060***

(0.007) (0.007) (0.008)

Idiosyncratic Equity Riski,j,t−1 -0.113*** -0.035* 0.089***

(0.017) (0.018) (0.019)

Industry Controls Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes

Year-Fixed Effects Yes Yes Yes

F-statisticN 130.650 62.082 78.699

F-statisticR 54.556 36.265 37.957

F-statisticEff 47.544 30.196 38.737

Firms 2,851 2,851 2,851

Observations 22,296 22,296 22,296

Source: Prowess - Author’s own calculation.
Notes: This table presents the detailed first stage results for our baseline two-stage least squares (2SLS) estimation
procedure. The sample consists of all firms between 1995 and 2017. The first stage results reported in this table
relate to the second stage results reported in Table 4.6. All coefficients have been scaled by the corresponding
variable’s standard deviation to ease interpretation. Peer Firm Averages denotes variables constructed as the
average of all firms within an industry-year combination, excluding the i′th observation, where industries are
defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding to firm i′s value. F-statisticN

denotes the Cragg-Donald F-statistic, F-statisticR denotes the Kleibergen and Paap (2006) robust F-statistic and F-

statisticEff denotes Olea and Pflueger (2013) effect F-statistic. The standard-errors are robust to heteroskedasticity
and within firm dependence, and are shown in parentheses. *, ** and *** indicate significance at the 10%, 5% and
1% levels, respectively. All variable names, definitions and sources can be found in appendix Table A.4.1.



Table A.4.6: Peer Proximity Results: Restricted Second Stage Estimates

Dividend Increase Dividend Increase

250 Miles 500 Miles 750 Miles 1000 Miles 250 Miles 500 Miles 750 Miles 1000 Miles

(1) (2) (3) (4) (5) (6) (7) (8)

WInstrumented Peer Avg. Decision250mi.i,j,t 0.158*** 0.301***

(0.056) (0.091)

WInstrumented Peer Avg. Decision500mi.i,j,t 0.132*** 0.269***

(0.039) (0.069)

WInstrumented Peer Avg. Decision750mi.i,j,t 0.117*** 0.222***

(0.036) (0.052)

WInstrumented Peer Avg. Decision1000mi.i,j,t 0.111*** 0.209***

(0.030) (0.050)

Firm-Specific Variables Yes Yes Yes Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes Yes Yes Yes

Industry-Fixed Effects No No No No No No No No

Year-Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes

F-statisticN 64.249 144.403 200.948 300.723 22.025 34.911 64.307 76.000

F-statisticR 32.308 59.884 88.812 128.58 14.247 22.056 36.383 41.525

F-statisticEff 33.522 68.183 97.763 140.974 13.907 20.437 36.392 40.981

Hansen J p-value 0.585 0.432 0.515 0.502 0.655 0.546 0.151 0.176

Firms 2,771 2,828 2,847 2,848 2,771 2,828 2,847 2,848

Observations 21,240 21,930 22,210 22,270 21,240 21,930 22,210 22,270

Source: Prowess - Author’s own calculation.
Notes: This table presents the second stage two-stage least squares (2SLS) results for dividend increases and dividend decreases with the omission of industry
fixed-effects. The sample consists of all firms from 1995-2017. Column (1) - (4) report the results for dividend increase and the corresponding peer proximity’s from
250-1000 miles. Column (5) - (8) report the results for dividend decrease and the corresponding peer proximity’s from 250-1000 miles. First stage results are not
reported for the sake of brevity. All coefficients have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer Firm Averages
denotes variables constructed as the average of all firms within an industry-year combination, excluding the i′th observation. Industries are defined by two-digit
NIC level. Firm-Specific Factors denotes variables corresponding to firm i′s value. F-statisticN denotes the Cragg-Donald F-statistic, F-statisticR denotes the
Kleibergen and Paap (2006) robust F-statistic and F-statisticEff denotes Olea and Pflueger (2013) effect F-statistic. The wald test of strict exogeneity reports the
Chi2 statistic for the instrument regression on the corresponding residual. The standard-errors are robust to heteroskedasticity and within firm dependence, and
are shown in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources can be found
in appendix Table 4.1.
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Table A.4.7: Stability of Peer Effects Over Time: Dividend Increase

Panel A: First Stage Dividend Increase Results: 1995-2007

Peer Dividend Increase

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 0.016 0.007 0.001 -0.002 -0.006

(0.010) (0.009) (0.007) (0.006) (0.006)

Idiosyncratic Equity Riski,j,t−1 -0.006 0.008 0.012 0.017** 0.018**

(0.009) (0.007) (0.008) (0.007) (0.008)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 0.023** 0.024*** 0.040*** 0.042*** 0.042***

(0.010) (0.009) (0.008) (0.007) (0.007)

Idiosyncratic Equity Riski,j,t−1 0.145*** 0.135*** 0.162*** 0.120*** 0.111***

(0.030) (0.029) (0.024) (0.023) (0.023)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

F-statisticN 23.401 27.434 65.690 58.492 59.421

F-statisticR 13.752 15.510 37.870 30.259 30.980

F-statisticEff 15.208 16.585 39.620 31.991 32.643

Firms 2,015 2,063 2,082 2,084 2,086

Observations 9,322 9,688 9,843 9,862 9,871

Panel B: First Stage Dividend Increase Results: 2008-2017

Peer Dividend Increase

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 0.014 0.020 0.012 0.017 0.020

(0.016) (0.014) (0.014) (0.013) (0.013)

Idiosyncratic Equity Riski,j,t−1 0.036* 0.020 0.032 0.039* 0.043**

(0.019) (0.019) (0.022) (0.021) (0.019)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 0.048 0.044 0.038* 0.030 0.018

(0.031) (0.028) (0.023) (0.022) (0.020)

Idiosyncratic Equity Riski,j,t−1 0.502*** 0.504*** 0.597*** 0.560*** 0.471***

(0.080) (0.085) (0.072) (0.071) (0.068)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

F-statisticN 36.056 45.101 82.237 83.554 61.406

F-statisticR 20.846 18.249 34.436 31.416 23.908

F-statisticEff 23.091 23.379 45.553 42.630 32.831

Firms 2,126 2,167 2,179 2,181 2,184

Observations 11,918 12,242 12,367 12,408 12,425

Source: Prowess - Author’s own calculation.
Notes: This table presents the first stage results for our two-stage least squares (2SLS) analysis of dividend increases over two sub-
samples. Panel A details all firms from 1995-2007 and Panel B details all firms from 2008-2017. Column (1) - (4) report the results for
the corresponding peer proximity’s from 250-1000 miles and column (5) reports the results for transitive reference groups based on the
full sample of industry peers. The second stage results reported in this table relate to the first stage estimates reported in Table 4.12.
All coefficients have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer Firm Averages denotes
variables constructed as the average of all firms within an industry-year combination, excluding the i′th observation. Industries are
defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding to firm i′s value. F-statisticN denotes the Cragg-
Donald F-statistic, F-statisticR denotes the Kleibergen and Paap (2006) robust F-statistic and F-statisticEff denotes Olea and Pflueger
(2013) effect F-statistic. The wald test of strict exogeneity reports the Chi2 statistic for the instrument regression on the corresponding
residual. The standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in parentheses. *, ** and ***
indicate significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources can be found in appendix
Table A.4.1.
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Table A.4.8: Stability of Peer Effects Over Time: Dividend Decrease

Panel A: First Stage Dividend Decrease Results: 1995-2007

Peer Dividend Decrease

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 -0.010 -0.006 0.000 -0.003 -0.001

(0.011) (0.011) (0.008) (0.006) (0.006)

Idiosyncratic Equity Riski,j,t−1 -0.008 -0.011 -0.008 -0.002 -0.002

(0.010) (0.009) (0.009) (0.008) (0.008)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 -0.024** -0.026*** -0.048*** -0.048*** -0.045***

(0.010) (0.010) (0.009) (0.009) (0.009)

Idiosyncratic Equity Riski,j,t−1 -0.060* -0.119*** -0.135*** -0.134*** -0.120***

(0.035) (0.029) (0.027) (0.027) (0.026)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

F-statisticN 7.243 21.826 54.226 58.055 52.428

F-statisticR 4.629 12.292 29.173 28.724 25.378

F-statisticEff 4.364 12.712 27.811 28.129 24.415

Firms 2,015 2,063 2,082 2,084 2,086

Observations 9,322 9,688 9,843 9,862 9,871

Panel B: First Stage Dividend Decrease Results: 2008-2017

Peer Dividend Decrease

250 miles 500 miles 750 miles 1000 miles Full Sample

(1) (2) (3) (4) (5)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 -0.019 -0.028 -0.030** -0.030** -0.038***

(0.018) (0.018) (0.015) (0.014) (0.014)

Idiosyncratic Equity Riski,j,t−1 -0.041* -0.053** -0.031* -0.023 -0.024

(0.021) (0.021) (0.017) (0.016) (0.016)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 -0.091*** -0.112*** -0.089*** -0.065** -0.054**

(0.035) (0.033) (0.028) (0.027) (0.025)

Idiosyncratic Equity Riski,j,t−1 -0.326*** -0.391*** -0.512*** -0.448*** -0.452***

(0.078) (0.077) (0.065) (0.058) (0.057)

Firm-Specific Variables Yes Yes Yes Yes Yes

Peer Firm Averages Yes Yes Yes Yes Yes

Industry Controls Yes Yes Yes Yes Yes

Industry-Fixed Effects Yes Yes Yes Yes Yes

Year-Fixed Effects Yes Yes Yes Yes Yes

F-statisticN 15.577 27.129 49.817 42.331 42.529

F-statisticR 11.611 18.787 41.055 32.817 34.812

F-statisticEff 11.765 18.349 36.307 31.032 33.256

Firms 2,126 2,167 2,179 2,181 2,184

Observations 11,918 12,242 12,367 12,408 12,425

Source: Prowess - Author’s own calculation.
Notes: This table presents the first stage results for our two-stage least squares (2SLS) analysis of dividend decreases over two sub-
samples. Panel A details all firms from 1995-2007 and Panel B details all firms from 2008-2017. Column (1) - (4) report the results for
the corresponding peer proximity’s from 250-1000 miles and column (5) reports the results for transitive reference groups based on the
full sample of industry peers. The second stage results reported in this table relate to the first stage estimates reported in Table 4.13.
All coefficients have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer Firm Averages denotes
variables constructed as the average of all firms within an industry-year combination, excluding the i′th observation. Industries are defined
by two-digit NIC level. Firm-Specific Factors denotes variables corresponding to firm i′s value. F-statisticN denotes the Cragg-Donald
F-statistic, F-statisticR denotes the Kleibergen and Paap (2006) robust F-statistic and F-statisticEff denotes Olea and Pflueger (2013)
effect F-statistic. The wald test of strict exogeneity reports the Chi2 statistic for the instrument regression on the corresponding residual.
The standard-errors are robust to heteroskedasticity and within firm dependence, and are shown in parentheses. *, ** and *** indicate
significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources can be found in appendix Table A.4.1.
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Table A.4.9: Unobserved State Level Heterogeneity: Dividend Increase and Dividend Decrease

Panel A: Extended Radius Results : Dividend Increase
Peer Dividend Increase

250 miles 500 miles 750 miles 1000 miles
(1) (2) (3) (4)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 0.008 0.007 0.003 0.003
(0.008) (0.007) (0.006) (0.006)

Idiosyncratic Equity Riski,j,t−1 0.003 0.003 0.007 0.008
(0.009) (0.008) (0.008) (0.007)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 0.028*** 0.033*** 0.047*** 0.053***
(0.009) (0.008) (0.007) (0.007)

Idiosyncratic Equity Riski,j,t−1 0.024 0.003 0.023 -0.022
(0.022) (0.022) (0.019) (0.019)

Firm-Specific Variables Yes Yes Yes Yes
Peer Firm Averages Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes
Industry-Fixed Effects Yes Yes Yes Yes
State-Fixed Effects Yes Yes Yes Yes
Year-Fixed Effects Yes Yes Yes Yes

F-statisticN 17.617 23.649 55.948 53.191

F-statisticR 11.176 14.546 30.868 32.183

F-statisticEff 10.569 13.729 31.841 27.110
Firms 2,015 2,063 2,082 2,084
Observations 9,322 9,688 9,843 9,862
Panel B: Extended Radius Results : Dividend Decrease

Peer Dividend Increase

250 miles 500 miles 750 miles 1000 miles
(1) (2) (3) (4)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 -0.009 -0.010 -0.003 -0.010
(0.008) (0.008) (0.007) (0.006)

Idiosyncratic Equity Riski,j,t−1 0.007 -0.000 0.004 0.008
(0.010) (0.009) (0.008) (0.008)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 -0.031*** -0.038*** -0.057*** -0.060***
(0.009) (0.009) (0.008) (0.008)

Idiosyncratic Equity Riski,j,t−1 0.084*** 0.075*** 0.085*** 0.094***
(0.026) (0.023) (0.020) (0.020)

Firm-Specific Variables Yes Yes Yes Yes
Peer Firm Averages Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes
Industry-Fixed Effects Yes Yes Yes Yes
State-Fixed Effects Yes Yes Yes Yes
Year-Fixed Effects Yes Yes Yes Yes

F-statisticN 9.025 13.645 37.576 70.268

F-statisticR 5.070 8.237 22.150 37.044

F-statisticEff 5.283 7.400 21.192 37.266
Firms 2,126 2,167 2,179 2,181
Observations 11,918 12,242 12,367 12,408

Source: Prowess - Author’s own calculation.
Notes: This table presents the first stage two-stage least squares (2SLS) results for dividend increases and dividend
decreases with the addition of state level fixed effects. Panel A reports the results for dividend increases. Panel B
reports the results for dividend decrease. The sample consists of all firms from 1995-2017. Column (1) - (4) report
the results for the corresponding peer proximity’s from 250-1000 miles. The first stage results reported in this table
correspond to the first stage estimates reported in Table 4.18. All coefficients have been scaled by the corresponding
variable’s standard deviation to ease interpretation. Peer Firm Averages denotes variables constructed as the average of
all firms within an industry-year combination, excluding the i′th observation. Industries are defined by two-digit NIC
level. Firm-Specific Factors denotes variables corresponding to firm i′s value. F-statisticN denotes the Cragg-Donald
F-statistic, F-statisticR denotes the Kleibergen and Paap (2006) robust F-statistic and F-statisticEff denotes Olea and
Pflueger (2013) effect F-statistic. The standard-errors are robust to heteroskedasticity and within firm dependence, and
are shown in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable
names, definitions and sources can be found in appendix Table A.4.1.
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Table A.4.10: Dividend Smoothing Robustness: Dividend Increase and Dividend Decrease

Panel A: Extended Radius Results : Dividend Increase
Peer Dividend Increase

250 miles 500 miles 750 miles 1000 miles
(1) (2) (3) (4)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 0.002 0.005 0.003 0.003
(0.008) (0.007) (0.006) (0.006)

Idiosyncratic Equity Riski,j,t−1 0.003 0.003 0.007 0.008
(0.009) (0.008) (0.008) (0.007)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 0.024*** 0.033*** 0.047*** 0.053***
(0.009) (0.008) (0.006) (0.005)

Idiosyncratic Equity Riski,j,t−1 0.047 0.003 0.025 -0.022
(0.022) (0.022) (0.014) (0.012)

Firm-Specific Variables Yes Yes Yes Yes
Peer Firm Averages Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes
Industry-Fixed Effects Yes Yes Yes Yes
Year-Fixed Effects Yes Yes Yes Yes

F-statisticN 10.021 13.490 37.600 53.565

F-statisticR 5.621 8.056 22.146 32.626

F-statisticEff 6.545 7.063 21.326 27.410
Firms 2,015 2,063 2,082 2,084
Observations 9,322 9,688 9,843 9,862
Panel B: Extended Radius Results : Dividend Decrease

Peer Dividend Increase

250 miles 500 miles 750 miles 1000 miles
(1) (2) (3) (4)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 -0.002 -0.008 -0.002 -0.012
(0.008) (0.008) (0.007) (0.006)

Idiosyncratic Equity Riski,j,t−1 0.007 -0.004 0.003 0.008
(0.010) (0.009) (0.008) (0.008)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 -0.032*** -0.038*** -0.057*** -0.060***
(0.007) (0.007) (0.006) (0.008)

Idiosyncratic Equity Riski,j,t−1 0.086*** 0.076*** 0.086*** 0.094***
(0.018) (0.017) (0.015) (0.020)

Firm-Specific Variables Yes Yes Yes Yes
Peer Firm Averages Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes
Industry-Fixed Effects Yes Yes Yes Yes
Year-Fixed Effects Yes Yes Yes Yes

F-statisticN 18.638 24.314 56.343 69.616

F-statisticR 11.829 15.059 31.159 36.772

F-statisticEff 10.429 11.400 31.192 37.266
Firms 2,126 2,167 2,179 2,181
Observations 11,918 12,242 12,367 12,408

Source: Prowess - Author’s own calculation.
Notes: This table presents the first stage two-stage least squares (2SLS) results for dividend increases and dividend
decreases with the addition of state level fixed effects. Panel A reports the results for dividend increases. Panel B
reports the results for dividend decrease. The sample consists of all firms from 1995-2017. Column (1) - (4) report
the results for the corresponding peer proximity’s from 250-1000 miles. The first stage results reported in this table
correspond to the first stage estimates reported in Table 4.19. All coefficients have been scaled by the corresponding
variable’s standard deviation to ease interpretation. Peer Firm Averages denotes variables constructed as the average of
all firms within an industry-year combination, excluding the i′th observation. Industries are defined by two-digit NIC
level. Firm-Specific Factors denotes variables corresponding to firm i′s value. F-statisticN denotes the Cragg-Donald
F-statistic, F-statisticR denotes the Kleibergen and Paap (2006) robust F-statistic and F-statisticEff denotes Olea and
Pflueger (2013) effect F-statistic. The standard-errors are robust to heteroskedasticity and within firm dependence, and
are shown in parentheses. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. All variable
names, definitions and sources can be found in appendix Table A.4.1.



Table A.4.11: Extended Radius Results : First Stage Estimates

Panel A: Extended Radius Results : Dividend Increase
Peer Dividend Increase

300 miles 550 miles 800 miles 1050 miles
(1) (2) (3) (4)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 0.007 0.008 0.002 0.002
(0.008) (0.008) (0.006) (0.006)

Idiosyncratic Equity Riski,j,t−1 -0.004 0.001 0.001 0.006
(0.008) (0.008) (0.006) (0.006)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 0.019** 0.036*** 0.043*** 0.054***
(0.009) (0.008) (0.007) (0.007)

Idiosyncratic Equity Riski,j,t−1 0.037 0.013 0.020 -0.029
(0.024) (0.021) (0.019) (0.020)

Firm-Specific Variables Yes Yes Yes Yes
Peer Firm Averages Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes
Industry-Fixed Effects Yes Yes Yes Yes
Year-Fixed Effects Yes Yes Yes Yes

F-statisticN 6.325 17.123 30.752 54.459

F-statisticR 3.440 10.405 16.993 32.459

F-statisticEff 3.434 9.484 16.127 26.567
Firms 2,794 2,833 2,847 2,849
Observations 21,474 21,990 22,232 22,288
Panel B: Extended Radius Results : Dividend Decrease

Peer Dividend Increase

300 miles 550 miles 800 miles 1050 miles
(1) (2) (3) (4)

Firm-specific Variables:

Idiosyncratic Equity Shocki,j,t−1 -0.010 -0.008 -0.004 -0.008
(0.008) (0.008) (0.006) (0.006)

Idiosyncratic Equity Riski,j,t−1 0.002 0.000 0.004 0.008
(0.008) (0.008) (0.006) (0.006)

Peer Firm Averages:

Idiosyncratic Equity Shocki,j,t−1 -0.030*** -0.034*** -0.053*** -0.055***
(0.009) (0.010) (0.008) (0.008)

Idiosyncratic Equity Riski,j,t−1 0.081*** 0.079*** 0.080*** 0.099***
(0.026) (0.023) (0.022) (0.020)

Firm-Specific Variables Yes Yes Yes Yes
Peer Firm Averages Yes Yes Yes Yes
Industry Controls Yes Yes Yes Yes
Industry-Fixed Effects Yes Yes Yes Yes
Year-Fixed Effects Yes Yes Yes Yes

F-statisticN 16.904 22.017 48.079 62.183

F-statisticR 10.059 12.353 25.068 31.623

F-statisticEff 9.833 11.751 25.745 25.745
Firms 2,794 2,833 2,847 2,849
Observations 21,474 21,990 22,232 22,288

Source: Prowess - Author’s own calculation.
Notes: This table presents the first stage two-stage least squares (2SLS) results for our extended radius analysis. Panel
A reports the results for dividend increases. Panel B reports the results for dividend decrease. The sample consists
of all firms from 1995-2017. Column (1) - (4) report the results for the corresponding peer proximity’s from 300-1050
miles. The first stage results reported in this table relate to the second stage estimates reported in Table 4.20. All
coefficients have been scaled by the corresponding variable’s standard deviation to ease interpretation. Peer Firm
Averages denotes variables constructed as the average of all firms within an industry-year combination, excluding the
i′th observation. Industries are defined by two-digit NIC level. Firm-Specific Factors denotes variables corresponding
to firm i′s value. F-statisticN denotes the Cragg-Donald F-statistic, F-statisticR denotes the Kleibergen and Paap
(2006) robust F-statistic and F-statisticEff denotes Olea and Pflueger (2013) effect F-statistic. The standard-errors
are robust to heteroskedasticity and within firm dependence, and are shown in parentheses. *, ** and *** indicate
significance at the 10%, 5% and 1% levels, respectively. All variable names, definitions and sources can be found in
appendix Table A.4.1.
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Chapter 5

Concluding Remarks

The capital structure and corporate payout policies of firms have puzzled the minds of academics

for the best part of half a century. In the pursuit of greater clarity, this thesis set out to

address a coterie of existing ambiguities within the corporate finance literature by examining the

financial policy dynamics of firms. Specifically, the body of this thesis has devoted its attention to

three important areas of residing ambiguity and, in turn, addressed three fundamental research

questions, namely: i) Why do many researchers provide conflicting evidence on the speeds in

which firms adjust their financial policies?, ii) Which factors are dominant in determining the rate

in which firms adjust their financial policies? and iii) Why do some of the most salient financial

decisions made by firms often coincide with the decisions of their industry counterparts?

In the examination of these questions, this thesis has presented three independent essays that

have collectively contributed substantial theoretical and empirical evidence to the understanding

of financial policy dynamics. In order to conclude this thesis, we now provide a set of closing

remarks together with the limitations of each chapter and potential avenues for future research.

In chapter 2 we utilised Monte Carlo simulations to furnish a systematic analysis of the

dynamic panel estimators commonly employed in the empirical corporate finance literature. In

doing so, the chapter presented a clear and comprehensive picture of the importance of estimator

choice on the reported speed of financial policy adjustment, whereby, the chapter uncovered

the auspicious statistical qualities of three estimators, namely, the QML, LSDVC and DPF

estimators alongside the limitations of the traditional OLS and FE estimators as well as the

popular FD- and SYS-GMM estimators. Accordingly, the contributions put forward by chapter

2 manifest themselves in the horse race to identify the most accurate econometric procedure

for dynamic panel data models. From the analysis undertaken in chapter 2, two important

recommendation can be made for future empirical research. First, future research regarding
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financial policy dynamics should strongly consider deviating from the industry standard GMM

estimators by incorporating the more accurate QML, LSDVC and DPF estimators. Moreover, to

build a more precise and consistent picture on the adjustment speeds of firms’ financial policies,

future research should not only contemplate such estimators as means of robustness test, but,

should more forcefully place such methods at the centre of their empirical analysis. Second,

despite the OLS and FE estimators proving consistently biased across all simulations, such

qualities do not make them redundant from future empirical use. In fact, given the OLS and FE

estimators ability to consistently overestimate and underestimate the autoregressive coefficient,

such statistical methods should be maintained as a means of creating theoretical goal posts in

which the true SOA should, on average, reside.

One potential limitation of our first essay is that our survey of dynamic panel estimators

are drawn predominately from the corporate finance literature, thus, we neglect the potential

benefits of alternative statistical methods employed in adjacent fields. For instance, the empirical

finance literature has long leaned towards instrumental variable estimators to address the issues

of unobserved cross-sectional heterogeneity in short dynamic panel data models. However, in

sociology, the same problems have been dealt with using maximum likelihood estimation and

structural equation modeling. Accordingly, in future research, we may look to compare the

prominent estimators employed across adjacent bodies of literature, with the bootstrap-corrected

fixed effect estimator of Everaert and Pozzi (2007) and the maximum likelihood approaches of

Bai (2013) and Allison et al. (2017) being three estimators for future consideration.

Continuing in this vein, we may also look to enrich our understanding of dynamic panel

estimators by considering alternative Monte Carlo experiments such as the impact of time-vary

structure parameters. Generally speaking, our simulation design along with the wider literature

explicitly assume time-invariant coefficients, yet, in practice, structural breaks and vast entrants

and/or exits of cross-sectional units may indeed effect the stability of parameter coefficients over

time. Therefore, going forward, we may wish to consider the time-varying nature of structural

parameters with the measure of unobserved heterogeneity being a natural candidate to access

the impact of growing unobserved firm divergence on estimator performance.

In chapter 3 we contributed to the literature by providing a comprehensive assessment of how

Indian listed firms facing opposing adjustment costs transition towards their capital structure

target over the course of the business cycle. Our analysis identified the pro-cyclical nature of

adjustment speeds, with Indian listed firms proving sluggish in their capital structure manage-

ment in periods of economic decline, especially those with limited financial flexibility and few
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growth opportunities. Subsequently, at a macroeconomic level, as India continues on its journey

of economic development, policy makers should endeavour to address the counter-cyclical na-

ture capital market frictions. Specifically, the provision of a more efficient and robust financial

sector will help to alleviate the longevity of future macroeconomic shocks as firms will be more

freely available to manage the composition of their capital structure, thus, avoiding periods of

prolonged financial distress and allowing for the effective pursuit of growth promoting corporate

operations.

In light of such suggestions, a potential drawback of the empirical approach adopted in

this chapter is the opacity of our quartile dummy variable specification in the identification

of distinct adjustment asymmetries over the course business cycle. Specifically, the a-priori

style approach used in chapter 3 is partially confined in its ability to clearly identify potential

adjustment cost threshold effects. Future research would thus benefit from the evaluation of

capital structure dynamics via more sophisticated data driven approaches, such as the recent

estimation procedure devised by Seo and Shin (2016) which allows for nonlinear asymmetric

dynamics in a threshold panel data framework. The complexities of this estimation procedure

have been recently made easily available to researchers thanks to the efforts Seo et al. (2019) and

therefore; the incorporation of such methods and the identification of potential kink points would

provide more explicit guidance to policy makers who are looking to tailor economic reforms to

improve the most hindered and constrained firms within India’s economy. Furthermore, future

research in this regard would also favour from an international comparison of corporate leverage

dynamics in order to compare and contrast the potential kink points of adjustment asymmetries

in developed and emerging markets.

In the final empirical chapter of this thesis, chapter 4, we investigated the effects of industry

peers on the dividend decisions of Indian listed firms. Our geographically influenced empirical

approach provided, to the best of our knowledge, the first evidence of peer related proximity

effects as we uncovered the importance of local industry peer dividend decisions on the divi-

dend decisions made by Indian firms. Accordingly, the sizeable efforts of chapter 4 complement

the contemporaneous studies of Adhikari and Agrawal (2018) and Grennan (2019) by making

significant headway in the rapidly growing literature on peer effects within corporate finance.

While we made a substantial contribution in this regard, the research design adopted in chap-

ter 4 can be readily improved in a number of ways. First, the use of more granular and dispersed

firm level data would allow for the incorporation of alternative reference group structures based

186



on exclusive rather than inclusive distance based reference groups. Alternatively, in future stud-

ies we may look to asymmetric inverse distance weights rather than our nearest neighbour style

approach to accommodate for the sparsity of emerging market datasets. Moreover, in line with

gravity model, future studies may also look to integrate such weighting styles with firm-specific

characteristics - e.g. firm size - to construct peer group measures based on both geographical

and economic characteristics. Indeed, the embodiment of such alternative measures would con-

siderably improve our understanding of the relationship between firm location, peer proximity

and industry related peer influence.

Aside from the development of more intricate reference group structures, better information

on the activities of local economic agents - e.g., information on local household portfolios and/or

regional analyst coverage - could be used to deepen our understanding of firms propensity to

accommodate for local dividend clienteles. Furthermore, chapter 4 only provides preliminary

insights into the informational content of peer dividend decisions over the course of the business

cycle. Thus, a more thorough assessment of the such matters would significantly enrich the

existing literature on peer effects within corporate finance. Equally, the examination of proximity

related peer effects on alternative corporate policies also makes for an interesting avenue for future

research.

All in all, this thesis has presented three independent essays on the financial policies of firms.

Whilst significant progress has been made by this thesis to clarify the ambiguities of capital

structure and corporate payout policy dynamics, a number of disparate issues and unanswered

questions still prevail, which, going forward, we will duly endeavour to pursue.
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