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ABSTRACT

The fundamental properties of various automotive suspension 

systems are theoretically investigated on the basis of simple 

vehicle models subjected to realistic inputs chosen to represent 

road surfaces of different qualities. The vehicle response is 

evaluated through a performance index representing ride comfort, 

dynamic tyre load and suspension working space parameters, and 

interpreted in the light of these individual parameters together 

with the implications of the suspension design for attitude 

control and steering behaviour.

Linear analysis procedures are followed in studying the passive, 

active and slow-active suspension systems while suitable 

simulations are used for the non-linear semi-active suspension 

systems. Linear optimal control theory is used to determine the 

optimal parameters of the active and slow-active suspension 

systems. Semi-active suspension behaviours are evaluated on the 

basis of applying the optimal active parameters to each system, 

but the semi-active damper can only dissipate energy and switches 

off when external power would be needed for the system to follow 

the optimal active control law.

Results are generated and discussed for each of these types of 

system and their performance capabilities are compared with each 

other. Conclusions concerning the practical viability of each of 

the systems are drawn.
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CHAPTER(l)

INTRODUCTION

Design and development of automotive suspension systems has 

been of great interest for nearly 100 years. Early systems were 

derived directly from horseless carriage practice. Complicated 

vibration problems have arisen as a result of the increase in 

vehicle speeds which directly affect both the ride comfort and 

the ride safety. The solution of these problems in general may 

be achieved either by the reduction of the excitation level which 

mainly comes from the road surface irregularities or by the 

design of good suspension systems capable of maintaining an 

acceptable level of comfort and ensuring the vehicle safety on 

existing tracks. The latter has been considered an important 

area of study and has been extensively investigated. The 

application of science to the problem has been increasing as time 

has passed.

The primary purpose of the suspension system is to provide a 

high level of ride quality and protect the vehicle structure from 

harmful stresses by performing good isolation from the road 

surface irregularities. This requires a soft suspension. It 

should also assure the lateral stability and controllability at 

various running conditions (road qualities, speeds, accelerating, 

braking, and manoeuvring), besides supporting the variable static 

loads. This requires a stiff suspension.

Although considerable theoretical and practical studies have 

been carried out in order to improve real suspension systems,
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most current road vehicles suffer this fundamental conflict and 

their suspension parameters still compromise between the 

requirements. Moreover, further improvement seems to be very 

difficult to achieve using only conventional elements. However, 

active and semi-active suspension systems offer new possibilities 

for improvement in vehicle behaviour, but the road vehicle 

industry is still cautious about their introduction, except in 

some racing and experimental cars, because of the cost and 

complexity implied.

Development in computer facilities, as well as advances in 

mathematical analysis, offer good opportunity for theoretical 

analysis to be used as an aid to good practical system design. 

It is advantageous to use a simple model containing few 

parameters, if it is possible to reasonably represent a real 

system with this restriction, in order to obtain economical and 

fast guidelines to the system design.

A  good prediction of suspension system performance can be 

achieved by using these facilities based on accurate 

representation of the vehicle dynamics and the guideway inputs, 

and suitable performance criteria by which the system response 

can be evaluated.

A  real vehicle however, is too complicated to be modelled in 

detail for the purpose of studying the fundamental properties of 

suspension systems, particularly when active and semi-active 

devices are introduced. The vertical motion of the full vehicle 

can be represented by the simple two degree of freedom quarter
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car model. This model contains sprung mass (quarter of the body- 

mass), unsprung mass (wheel assembly), suspension elements 

(passive, active, semi-active, or combination of them), and 

linear spring to represent the tyre, as proposed by Hooker

(1979). This simple model has been used in many suspension 

system studies and justified as representing passive, active, 

semi-active, and slow-active suspension systems sufficiently to 

allow effective study of their main design features.

Actual road surface measurements have been described 

statistically by simple spectral density representation in terms 

of the wave number ( the inverse of the wave length). Dodds and 

Robson (1973) suggested the representation of these spectra 

analytically in a general form with road surfaces being 

classified according to their roughness. After processing many 

measured road profiles, they proposed the representation of the 

road surface as having a displacement spectral density function 

of the form

Dr(v)=Bl V " nl

Dr(v)=B2 v " 02 ......................................................................... ( 1 . 1 )

the discontinuity in slope occurring at V=1/27T m"1. Suggested 

values for nl and n2 were 2.9175, 3.075, 1.52, for

0.01 V  < 1/2 TT , and 2 .04, 2.16, 2.142, for V >  1/271 for 

motorways, principal roads and minor roads respectively. 

However, Robson (1979) supported the idea that a single-slope 

spectrum is adequate for some purposes.
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It is beneficial to judge the vehicle response through 

simple criteria representing the main requirements (ride comfort 

and ride safety). The ride comfort parameter is a simple 

indication of the complex vibration environment to which the 

vehicle passengers are subjected. Various methods for evaluating 

the ride quality have been discussed by Smith, McGehee, and 

Healey (1978). One method considered involves simply applying 

the ISO recommended weighting function to the vertical 

acceleration illustrated in Vries (1982). The ride safety can be 

evaluated in terms of the dynamic tyre load variations which 

indicate the road holding. Also the suspension working space is 

an important performance measure. The last of these is connected 

with the attitude changes under loading and in manoeuvring, and 

the handling behaviour of which the vehicle stability is some 

measure.

The validity of various vehicle models has been studied by 

Healey, Nathman, and Smith (1977), through extensive comparisons 

of measured and computed vehicle responses. They used linear 

representations of the full car, one side, and one corner 

subjected to measured road profiles in their theory. They showed 

good agreement between the behaviours of these models and 

suggested the correction of the input spectral density formula in 

order to represent the measured profiles accurately. Also, they 

showed good correlation between the measured responses and those 

of the linearised seven degree of freedom system for the 

frequency range up to 10 Hz. They attributed the differences of 

the higher frequency components to excitations by unbalanced 

wheels or resonances of the vehicle structure.
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Passive suspension systems consist of conventional elements 

such as coil or leaf springs and viscous dampers. The basic 

limitation inherent in using these elements, as indicated by 

Sutton (1979), is that the static deflection varies as the 

inverse square of the body natural frequency (for linear springs) 

and the basic conflict between ride comfort and handling can not 

be completely solved even by using non- linear springs or 

additional cross coupling by such devices as anti-roll bars. 

There are other limitations, as demonstrated by Hedrick and 

Wormley (1975), attributed to the ability of these elements to 

only store or dissipate energy and to generate forces in response 

to local relative displacements and velocities. Self levelling 

mechanisms, by which the static deflection can be removed, are 

useful in commercial vehicles suffering relatively high static 

load changes. They can offer better body isolation if used with 

softer suspensions but this may lead to problems with attitude 

control in cornering and braking and lateral stability and 

control problems.

Passive suspension systems have been studied by Ryba (1974) 

who applied linear systems analysis to the well known quarter car 

model subjected to a white noise random velocity input. More 

recent information than Ryba had available however, suggests that 

more accurate response prediction can be achieved by using the 

road surface representation described by Robson (1979). Ryba 

also studied the possibility of improving the passive suspension 

system by adding dynamic absorbers in four different
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configurations. He concluded that the choice of the suspension 

parameters is a compromise between ride comfort and dynamic tyre 

load variations identifying the suspension working space as an 

important factor in the suspension system design. He also 

demonstrated the possibility of improving both ride comfort and 

dynamic tyre load by using dynamic absorbers of mass equal to the 

wheel mass, but realising an auxiliary mass equal to the unsprung 

mass seems to be impractical.

Active suspensions are closed loop control systems with 

feedback signals representing all or some of the system variables 

to control actuators in place of, or in addition to, the usual 

passive elements. In general they contain external power 

sources, actuators (hydraulic, pneumatic or electromechanical) as 

force generators, measuring and sensing instruments 

(accelerometers, force transducers and potentiometers), and 

conditioning and amplifying devices. Many active suspension 

studies have been conducted in a general ground vehicle context 

and the subject was reviewed by Hedrick and Wormley (1975) and 

recently by Goodall and Kortum (1983). Although both of these 

papers are mainly concerned with rail vehicle systems, some of 

the information included, concerning the analysis procedures, the 

optimisation techniques and the hardware development, is commonly 

applicable.

The best active suspension systems can be expected to be 

designed by applying optimisation techniques. These can allow 

the estimation of the best system parameters for any given
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combination of measured variables and control inputs. Some of 

these techniques are discussed by Hedrick and Wormley (1975) and 

are mentioned by Goodall and Kortum (1983). Thompson (1976) 

applied one form of optimal control theory to active suspension 

systems, assuming an integrated white noise random displacement 

input and a quadratic performance index, the optimal control 

being that (linear state variable feedback) control law which 

minimises the performance index. His scheme included the 

measurement of the height of the vehicle body above the road 

surface and his results showed that significant improvements can 

be gained by measuring the body velocity and the body 

displacement relative to the road as feedback signals to control 

the actuator fitted in parallel with the conventional spring and 

damper. The main disadvantage to applying this theory can be 

attributed to the difficulty of realising the height sensor as 

one of the measuring instruments.

Semi-active systems in principle can be defined as fully 

active systems which exclude the external power source, giving 

zero actuator force when the fully active system would require a 

power supply as indicated by Karnopp, Crosby, and Harwood (1974). 

According to this scheme, the semi-active system employs a 

dissipative device with very low power requirements, needing only 

to measure, process and amplify the system variables used to 

control the damper valve in order to produce a variable damping 

coefficient. Early investigation of this device by Karnopp, 

Crosby, and Harwood (1974), suggested that it has a capability 

for offering performance levels close to what can be achieved by
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a fully active system, but the evidence offered was by no means 

conclusive on the point.

The same conclusion has been suggested recently in Margolis' 

studies through applying semi-active control laws to various 

vehicle models including the single degree of freedom system in 

Margolis (1982-a), the two degree of freedom heave and pitch 

system in Margolis (1982—b ) , and the two degree of freedom body 

and wheel system in Margolis (1983). In Margolis (1982-b), a two 

degree of freedom heave and pitch semi-active suspension system 

was studied by testing each of two different control laws having 

the vertical velocity of the vehicle body mass centre and the 

complete state variables as the measured feedback signals. 

Margolis concluded that both of these systems are far superior to 

the conventional passive system, and approach fully active 

systems in performance capability, but the case made is far from 

complete. Also, he found that the first law provides better low 

frequency isolation than the second one and the converse for the 

high frequency response. The two degree of freedom body and 

wheel semi-active suspension system studied in (1983) has a 

control law which is a combination of the measured body and wheel 

velocities to control a semi-active damper fitted in parallel 

with the passive spring by which the body mass is supported. The 

shortcomings of these studies are associated with applying 

linearisation techniques of doubtful validity in generating 

results in the form of transmissibilities, and endeavoring to 

judge the quality of the suspension system on this basis, and 

with not apparently recognising the fundamental fact that ride
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quality can always be improved if greater working space is 

allowed, Ryba (1974), such that the judgements made are of 

questionable validity.

Sireteanu (1984) studied the two degree of freedom 

suspension system subjected to white noise input. He proposed a 

non-linear damping law based on an argument showing its 

desirability for sine wave motions, and used statistical 

linearisation for obtaining the approximate system response. He 

also added a dynamic absorber to the unsprung mass, making a 

three degree of freedom system, in order to control the wheel 

motion. He concluded that both ride comfort and dynamic tyre 

load control can be improved by using the three mass semi-active 

suspension system, but the calculations involved many 

approximations and the conclusions should be viewed sceptically 

until they are confirmed by more rigorous analysis.

Active suspension systems will be more attractive if their 

benefits can be achieved by using cheaper components. The entire 

cost of such systems may become tolerable if cheaper actuators 

can be realised, particularly since sensors and microprocessors 

are already showing signs of being inexpensive. The use of 

electro-mechanical actuators in rail vehicle suspension systems 

has been considered by Goodall, Williams, and Lawton (1979) in 

order to reduce the capital cost and the maintenance requirements 

inherent in using servo-valve hydraulic actuators. Goodall

(1980) has studied the feasibility of using this system for rail 

lateral suspensions and demonstrated that good ride comfort can
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be gained, with reasonable working space, if the system 

parameters are correctly chosen.

Previous studies of vehicle suspension systems showed the 

main conflict to be between ride comfort and suspension working 

space. There is no limit for improving ride comfort by 

decreasing the spring stiffness, but that can not be acceptable 

according to the increase of the suspension working space and 

also the increase of the dynamic tyre load if the system is 

lightly damped. Further, soft suspensions imply large

deflections under changes in static loading, which can be 

eliminated, at a cost, by a self-levelling system. Without self 

levelling much useful working space will be consumed under heavy 

static loading and will be unavailable for vibration isolation. 

The dynamic tyre load should be held as small as possible 

relative to the static force to minimise sensitivity of the 

steering responses to road irregularities, and in particular to 

avoid the extreme case in which wheels leave the road. The 

various choices of the characteristics of the suspension elements 

allows the generation of different systems having various 

responses. The spectral densities of the responses of these 

systems show body resonance at low frequency when using soft 

springs with damping ratio around 0.3 critical while, for the 

same system under the same conditions, the main problem area 

concerning the dynamic tyre load is around the resonance of the 

unsprung mass. The addition of a tuned dynamic absorber with 

mass equal to the unsprung mass is capable of reducing 

substantially the dynamic tyre load variations, particularly when 

connected to the unsprung mass.
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The objective of this work, is to identify the suspension 

system capabilities by means of studying a practical car model 

subjected to realistic road inputs.

The main activities included can be summarised as :-

1- Presenting a good understanding of passive suspension system 

design.

2- Evaluating the possibility of improving the passive system 

behaviour by using dynamic absorbers based on parameter 

optimisation, i.e. in some sense with optimal parameters.

3- Constructing optimal parameter designs for active suspension 

systems using practically realisable control laws.

4- Generating good semi-active suspension systems based on the 

optimal active parameters.

5- Studying the validity of introducing slow-active actuators, 

as cheaper devices, into the road vehicle suspension systems.

6- Constructing a general discussion including quantitative 

comparisons of all these systems in the context of a general 

purpose vehicle which must operate under a wide variety of 

different conditions.
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In subsequent chapters, the optimal control theory used in 

determining the full and limited state feedback control laws by 

which the responses of the optimal active suspension systems are 

evaluated is discussed (chapter 2). The application of the 

theory to the quarter car model is included and the procedures 

followed are explained for each of the two cases through example 

solutions.

In chapter 3, the linear analysis followed for studying 

passive, active, and slow-active suspension systems and the non

linear procedures used for investigating the semi-active system 

behaviours are discussed. The road surface representations, used 

as input to the linear and non-linear vehicle suspension models, 

are described and the procedures followed for obtaining the 

system response in both cases are explained.

The study in chapter 4 involves investigating the 

performance and design properties of the two and three mass 

passive suspension systems. The linear analysis procedures are 

applied to the two and three mass suspension models using the 

road spectral density representations and the performance 

criteria described in chapter 3.

The behaviour of the full and limited state feedback active 

suspension systems are studied in chapter 5. The optimal control 

theory described in chapter 2 is used for obtaining the feedback 

gain parameters involved following which the performance 

properties of these systems are obtained through the linear 

analysis procedures described in chapter 3.
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In chapter 6, three different types of semi-active 

suspension systems are studied. These types are based on the 

full and limited state feedback control laws calculated in 

chapter 5 and may have a passive damper in parallel with the 

passive spring in addition to the semi-active force generator. 

The non-linear analysis procedures and the time history of the 

road surface profile described in chapter 3 are followed for 

calculating the response of each of these types of systems.

In chapter 7, the validity of using a limited bandwidth 

actuator in the vehicle suspension systems (slow-active systems) 

is evaluated and studied for systems having 4 Hz bandwidth limit 

actuator. The optimal control theory described in chapter 2 is 

used for obtaining parameters and the linear analysis described 

in chapter 3 is used in calculating the responses of these 

systems.

The results obtained in chapters 4 to 7 are discussed in 

chapter 8. In this chapter, the relative performance

capabilities of the systems studied are discussed and compared 

with each other on the basis of having the same suspension 

working space requirements. Also, the implications of the 

adjustable suspension systems, which are treated in detail in the 

appendix, are discussed as possible general purpose systems 

having the capacity to adapt to the different requirements of the 

situation as the running conditions vary.
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CHAPTER(2)

OPTIMAL CONTROL THEORY

2.1 Introduction

Active suspension systems include actuators in place of or 

in addition to the conventional springs and dampers. These 

actuators are capable of generating forces by which the system 

dynamics can be well controlled with relatively high

"intelligence" as compared with passive devices. Part of the 

active system design involves derivation of a suitable control 

law relating the control to all or some of the system state 

variables. Optimal control theory provides straightforward 

methods for obtaining the best possible control law, avoiding 

trial-and-error procedures which are difficult to follow to a

conclusion for systems having many parameters.

Stochastic linear optimal control theory is a branch of 

optimal control theory appropriate for application to the current 

problem, in which the form of the input can be considered to be 

integrated or filtered white noise. It can be applied to systems 

in which the controlled variable is a linear combination of the 

state variables and in which a quadratic performance index is 

employed, representing in the current study, a ride comfort 

parameter, dynamic tyre load variations, and suspension working 

space. The optimal control is that which minimises a weighted 

sum of squares of variables relating to each of these aspects of 

performance.
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In this chapter, the stochastic linear optimal control 

theory applicable is reviewed and discussed for cases with full 

state feedback, and when full state information is not available. 

Application of the theory to the quarter car model is considered. 

Example solutions are presented to illustrate the procedures.

2.2 General Theory

The theory reviewed in this section can be found in detail 

in Kwakernaak and Sivan (1972).

Consider the linear time-invariant system

with n state variables x(t), p control inputs u(t), q controlled 

variables z(t), and white noise disturbance input v(t) satisfying

where E is the expectation operator, is the Dirac delta 

function, and V is a non-negative definite symmetric matrix. 

Consider the performance criterion

x(t)=Ax(t)+Bu(t)+v(t) 2.1

and the controlled variable

z(t)=Cx(t) 2.2

Efv(t) vT (t )] = V 5(t-T) 2.3

E{
to

dt +  x^ (tl)Plx(tl)} 2.4
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where Q and R are positive definite symmetric matrices for 

tO < t < tl and PI is a non-negative definite symmetric matrix. 

The first term in the performance index is to reduce the 

controlled variable z(t) as fast as possible. The second term is 

introduced in order to control the value of the control input 

u ( t ) . The third term may be used if it is necessary to keep the 

terminal state x(tl) as close as possible to the zero state. The 

relative importance of the first and the second terms can be 

determined through the matrices Q and R.

It is required to obtain the optimal control input u(t) by 

which the performance criterion can be minimised for each t, 

tO < t < tl. The case in which all the state variables are 

measurable (stochastic linear regulator problem) is discussed 

first. Then, the practical case in which all the state 

information is not available is considered.

2.2.1 Full State Feedback

The optimal solution of the stochastic linear regulator 

problem (in the steady-state case) is to determine the control 

law

u(t)=-F x(t) ....................  2.5

where

-1  T
F = R B1 P ....................  2.6
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and P is the unique non-negative definite solution of the 

algebraic Riccati equation

AT P +  P A  +  CT Q C - P B R - V P  = 0  ....................  2.7

which minimises the performance index

J = Lim E[zT (t) Q z(t) +  uT ( t) R u(t)] ....................  2.8

t— 00

The necessary conditions under which the Riccati equation 

has a steady-state solution and under which the steady-state 

closed—loop system is stable are

(a) The pair (A,B) defines a stabilizable system.

(b) The pair (A,C) defines a detectable system.

It is well known that the system is stabilizable if all its 

uncontrollable modes are stable, and that the system is 

controllable (and therefore stabilizable) providing the matrix

[B,AB,...... An-1B] ....................  2.9

has rank n. The reason why condition (a) is needed stems from 

the fact that the controllable modes of the system can be 

arbitrarily placed (in respect of eigenvalues) using linear state 

feedback, while the uncontrollable modes remain unaltered by the 

feedback.

The system is detectable if all its unstable modes are 

observable, and the system is observable (and therefore 

detectable) providing the matrix

[CT, AT CT , .......... (A^/1"1^ ]  ...................  2.10
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has rank n.

If the system is unobservable, it can be transformed to the 

form (note the omission of the disturbance input, which does not 

affect the argument)

xl(t)‘
_

'All A12' xl(t)'
+

'  Bl"

i2(t) 0 A22 x2(t) B2
u(t) 2 . 11

z(t) = [0 C 2 ]

xl(t)

x2(t)

2 . 12

where the subsystem (A22, C2) is observable, and All contains the 

unobservable modes. It is then apparent that the performance 

index (2.8) is independent of xl(t), and it can easily be shown 

that the optimal feedback law only depends on x2(t). Thus if in 

this case, All contains any unstable modes, they are not 

stabilized by the feedback and it is clear that condition (b) is 

needed to ensure the stability of the closed-loop system. Once 

the transformation to the form (2.11) and (2.12) has been 

achieved, the control problem reduces from one of dimension n to 

one of dimension equal to that of the matrix A22, with A22, B2, 

and C2 replacing A, B, and C in the Riccati equation (2.7). 

However, although the feedback law in the coordinate system of 

(2.11) and (2.12) only involves x2(t), the feedback law in the 

original coordinate system may involve full state feedback.

If the system is uncontrollable it can be transformed into 

the form (again omitting the input)
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"kl(t)' "All 0 xl(t) ’o "
= +

x2( t) A21 A22 x2(t) B2

'xl(t)'

z(t) = [Cl C2]

_x2(t)_

u(t) 2.13

2.14

where the subsystem (A22, B2) is controllable, and All contains 

the uncontrollable modes. In this case a simple piece of algebra 

shows that the optimal feedback control involves both xl(t) and 

x2(t), but that the uncontrollable modes in All remain unaltered. 

The uncontrollable modes of the system will contribute to the 

performance index (2.8) unless they are also unobservable.

2.2.2 Limited State Feedback

The costs associated with measuring all the state 

variables, particularly for systems subjected to external 

disturbances, can be avoided by using only limited state 

feedback. In this case, only the m  state variables, denoted by 

g(t) and defined as below, can be measured,

g(t)=M x (t) ...................  2.15

where M  is an mxn measurement matrix, and m<n, the system order.

The control law can be chosen to be of the form

u(t)=—K g(t) ...................  2.16
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where K is a constant pxm matrix chosen to minimise the 

performance index (2.8) as before.

Clearly, a necessary condition for an optimal control system 

design to be satisfactory in practical terns is that, if any

modes of the open loop system are unstable, they can be 

stabilised with the feedback available. Since the feedback 

defined by (2.15) and (2.16) can, at most, only alter the 

controllable and observable modes of the system (A,B,M), it is 

also clear that a necessary condition for the design to be stable 

is that the uncontrollable and/or unobservable modes of (A,B,M) 

must be stable. However, the detectability condition on (A,C) 

which for the full state feedback case is needed to guarantee the 

existence and uniqueness of the optimal control, is no longer 

applicable in this context for the limited state feedback case. 

Indeed it is well known that even if (A,B,C) is stabilizable and 

detectable, a minimising solution may not exist in the limited 

state feedback case. Therefore, in particular cases, the problem 

of ensuring closed loop stability is best dealt with numerically 

within the iteration process by which the control law is found 

(see section 2.4.2).

Substituting (2.15) and (2.16) in (2.1) gives the following 

closed loop system

x(t)=A x(t)+v(t) ...................  2.17

where

A=A-BKM 2.18
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The performance index (2.8) may then be determined from

J = trace[Wc(CTQC+MTKT RKM)] = trace[WoV] 2.19

where

2.20

and

AT W o+ W oA+CT QC+MTKT RKM=0 2 .21

Various methods for determining the optimum value of K have 

been proposed, for example by Levine and Athans (1970) and by 

Golub, Nash and van Loan (1979). In the particular application 

described in the next section as well as in all active suspension 

systems studied through the work, physical considerations can be 

used to choose the constant elements of K quite close to the 

optimum values. Hence, the approach taken in this work is to use 

a gradient search technique. For this purpose, the gradient of 

the performance index in (2.19) with respect to any element kij 

(i=l ,2,____p; j=l ,2 , ---- m) of K can be found from

6 J  a j a j

a kii a k i 2 a klm

a j

3 K

a j  a j 

a kpi a kp2

a j 

a kpm
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T T T
= 2 [RKMWcM - B WoWcM ] ................... 2.2;

Hence, the basic algorithm uses the following steps:

(i) Guess an initial value for K

(ii) Solve (2.20) and (2.21) for Wc and Wo

(iii) Calculate J in (2.19) and 0 J / 0 K  in (2.22)

(iv) Update K using a gradient search routine

(v) Go to step (ii) until satisfactory convergence has been 

achieved.

It is perhaps worth noting that when all the state variables 

are available, M in (2.15) becomes the nxn identity matrix. 

Equating the derivatives in (2.22) to zero gives an expression 

for K which when substituted into (2.21) turns this last equation 

into the algebraic Riccati equation (2.7) with Wo=P.

2.3 The Quarter Car Problem

The describing equations of the quarter car model shown in 

F ig.(2.1) in their state space form are

x0(t)= £(t) 

xl( t)=x3 ( t) 

x2(t)=x4(t)

x3(t)=Kt/mwxO(t)-Kt/mwxl(t)-l/mwu(t)

x4( t)=l/mbu(t) ...................  2 23



Tyre
spring

Kt ' 

_____________* X°

Fig. 2. 1 Quarter car active suspension system
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where mw, mb and Kt are the wheel mass, the body mass, and the 

tyre stiffness respectively.

Equations (2.23) in matrix form become

kO(t) 0 0 0 0 0 xO(t) 0 1

xl( t) 0 0 0 1 0 xl( t) 0 0

i2( t) = 0 0 0 0 1 x2(t) + 0 u(t) + 0

ri(t) a -a 0 0 0 x3(t) -1/mw 0

x4( t) 0 0 0 0 0 x4(t) 1/mb

_
0

Sc*) 2.24

zl(t) - 1 1 0  0 0

z2( t) 0 - 1  1 0 0

where a = Kt/mw

with the variables appearing in the quadratic performance index 

being related to the state variables by

xO(t) 

xl(t)

I zl(t) -1 1 0 0 0|

[z(t)J = I = | x2(t) | ...............  2.25

x3(t)

x4(t)

£(t) represents the single white noise disturbance input 

satisfying the requirement (2.3), implying that the road surface 

must have a displacement spectral density function of the form

Dr(y) = B l / v 2

where V is the wave number and B1 is a constant, and that the 

vehicle speed is constant.

The performance index is

r00 T 2
J = J (z1 (t)Qz(t) +  u (t)) dt

0
2.26
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in which Q =
q1

0

0

q2

consists of the constant weighting parameters which reflect the 

importances attached to the dynamic tyre load and to the 

suspension working space in comparison with the ride comfort 

parameter, represented by the control force u(t) to which the 

body acceleration is proportional. R = [1] is implied by this 

form of J.

Comparing (2.24) with (2.1) and (2.2)

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

a -a 0 0 0

0 0 0 0 0

0

0

0

-1/mw

1/mb

A  = 2.27

B = 2.28

and

C =

- 1 1 0  0 0 

0 - 1 1 0 0
2.29
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Testing the controllability of the system through applying

and (2.28) in the form of (2 ,

0 0 0 0 0

0 -1/mw 0 a/mw 0

0 1/mb 0 0 0

■1/mw 0 a/mw 0 --a /mw

1/mb 0 0 0 0

in which the 5th column is a multiple of the 3rd, so that the 

matrix is of rank 4. Thus the system has only one uncontrollable 

mode, and clearly this mode corresponds to the white noise input 

appearing in the first equation in (2.23), which is uncoupled 

from the other equations.

The observability test for (2.27) and (2.29) as in the form 

of (2.10) gives

-1 0 0 0 a -a 0 0
2

-a

1

1 -1 0 0 -a a 0 0 a2
2

-a

0 1 0 0 0 0 0 0 0 0

0 0 1 -1 0 0 -a a 0 0

0 0 0 1 0 0 0 0 0 0

with columns 5,6,9 and 10 linearly dependent on 1, and columns 7 

and 8 linearly dependent on 3, so that the rank is again 4 and 

the system, has one unobservable mode.



27

2.3.1 Full State Information Available

The original state variables x(t) can be transformed into 

the new variables xs(t) according to the relation

xs(t)=S x(t) where

1 0 0 0 0 1 0 0 0 0

-1 1 0 0 0 1 1 0 0 0

-1 0 1 0 0 and S 1 = 1 0 1 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1

this being the transformation of Thompson (1976), and the state 

equations become

xs(t) = SAS xs(t) +  SBu(t) +  Sv(t)

and

z(t) = CS  ̂xs(t) in which

O' 0 
. 1

0 0 0 0

0| 0 
1

0 1 0 0

I

01 0 
1

0 0 1 SB = 0

0 J -a 0 0 0 -1/mw

1
0| 0 0 0 0 1/mb

and

0| 1 0 0 0 

o j - 1  1 0 0

and Q and R u n c h a n g e d .



28

In the coordinate transformation, the uncontrollable mode 

associated with the road surface displacement xsO(t)=xO(t), has 

also become unobservable. The optimal feedback law now only

depends on xsl(t)------xs4(t), irrespective of the fact that

xsO(t) is not bounded, and the sub-problem contained in the lower 

right partitions can be solved to yield the optimal control via 

the Riccati equation (2.7).

2.3.2 Limited State Feedback Available

In any real system, there are costs associated with the 

measurement of the state variables, and it will generally be of 

interest to examine the performances of optimal systems under 

different assumptions about the feedbacks available. In the 

present context, particular difficulties attach to the 

measurement of the height of the road surface, and systems which 

avoid the need for this measurement are of special interest.

With the system (2.24), the control u(t)=-KMx(t), and the 

performance index (2.26), consider the possibility of finding a 

form of M  which will imply (a) no need to measure the road height 

and (b) unobservability in the performance index of the 

uncontrollable neutrally stable mode associated with the input.

Transforming into the new variables xs(t) as before, u(t) 

becomes -KMS ^xs(t), and the performance index will not contain 

xsO(t) if the first term in KMS 1 is zero. This is the condition
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that xsl(t) and xs2(t) contribute in equal and opposite degree to 

the control force, and if M  is of the form

1
o 0 0 0

1o

0 l -1 0 0

0 0 0 1 0

1 
'

O 0 0 0 1

both conditions (a) and (b) above are satisfied, and deriving the 

optimal control K by following the iterative procedure involving 

(2.19), (2.20), (2.21), and (2.22) while at each stage testing

/V
the closed loop system stability by finding the eigenvalues of A 

will be straightforward.

If the fourth or fifth columns of M (or both) were to be 

altered, systems with reduced measurement and signal processing 

implications could be represented. The essential form of M  for a 

well conditioned optimisation would be preserved however, so that 

such cases could be treated as above.

Hac (1985) preferred to describe the road surface displacement 

spectral density by

Dr(y) = B l / ( t f W )

where (j is a constant implying that displacements remain finite 

for vanishingly small wave number.

With this description, the input xsO(t) is bounded and it is 

not now necessary to keep it from contributing to the performance 

index. An optimal control can be found for any form of M (having
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a first column of zeros). As 0( increases from zero, the optimal 

control law will increasingly differ from that deriving from the 

special form of M, i.e. the numerical values of the coefficients 

of xsl(t) and xs2(t) will differ increasingly, and it may be 

anticipated that if a  is very small, numerical problems with this 

approach to the optimisation will occur. In practice however 

this does not appear to be a significant difficulty.

Supposing then that the control available gives a stable 

closed loop system, the optimal control can be determined using 

the algorithm described in section 2.2.2, with the stability 

being tested numerically.

2.4 Example Solutions 

Example solutions will be shown for 

mw=50 kg , mb=250 kg ,and Kt=120000 N/m

2.4.1 Full State Feedback 

In the Riccati equation (2.7)

0 0 1 o' 0

0 0 0 1 0

A = B =

-a 0 0 0 -1/mw

0 0 0 0_ _ l/mb_

1 0 0 0 qi 0

C = and Q =

-1 0 0 0 _ 0 q2
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By choosing the performance index weighting parameters ql and q2 

in different ways, various mathematically optimal control laws 

can be determined* The values chosen for ql and q2 govern the 

balance of the system performance qualities as between dynamic 

tyre load variations, reflecting the rough road manoeuvring 

capabilities, the suspension working space requirements, and the 

passenger discomfort levels.

To illustrate the technique, consider the case in which

ft 8 
ql=40.5xl0 and q2= 3 .35x10 , when numerical solution of the

Riccati equation by the negative exponential method described in

Kuo (1975) gives the control

U(t)=30118xsl(t)-18303xs2(t)+1204xs3(t)-3170xs4(t)

=30118[xl( t)-x0(t)J“18303[(x2(t)-x0(t)]+1204xl(t)-3170x2(t)

Other examples can be found in Thompson (1976). By trial, 

combination of ql and q2 values which give equal and opposite 

c o e f f i c i e n t s  of xsl(t) a n d x s 2 ( t )  in the law can be found, in 

which case, realisation of the control is possible without 

measuring the height of the road as discussed by Thompson (1984).

2.4.2 Limited State Feedback

Using the same values of ql and q2 as in the previous case, and 

taking M  from (2.30), a reasonable initial estimate of the 

optimal control is

K  = [ 0 -30000 -1000 3000 ]
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the form of M  causing the first terra to be of no significance.

/V
Using this to form A  from (2.18) together with the transformation 

of coordinates as SAS ^-SBKM (A from (2.27) B from (2.28), its 

eigenvalues are found to be

- 4 . 7 2 2 + 8 . 9 6 7  and - 1 1 . 2 8 + 5 1 . 7 4

confirming that the closed loop system is stable, and following 

the procedure of section 2.2.2 a performance index

J = 27588 and gradients

3 J/0k2=-0.19404 , 3 J/3k3=-0.38616 ,and 3 J/3k4=-l .7744

are found for a road surface spectral density

Dr(y) = 10”®/ v 2 anc* U = 20 m/s.

Using the gradient information leads to an improved estimate of 

the optimal control

K  = [ 0 -29865 -1035 4243 J

and the cycle is repeated until the gradients are sufficiently 

small with

K = [ 0 -29820 -1008 4457 ]

implying the control

u(t)= 29820[xsl(t)-xs2(t)] +1008xs3(t) -4457xs4(t) 

or u(t)= 29820[xl(t)-x2(t)] +1008xl(t) -4457x2(t)
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Using the same values of ql and q2 but assuming that only the 

difference between xl(t) and x2(t) is available and not their 

individual values

~ 0 I 0 0 0 0
I

0 [ 1 -1 0 0 

M = |
0 [ 0 0 1 - 1

0 J 0 0 0 0

and following the same sequence as above, an optimal control 

u(t)= 3785[xl(t)-x2(t)] + 1320[xl(t)-x2(t)J 

results.

If the road surface spectral density is taken to be 

Dr(v) = 10-S(0.0052 + y2 )

i.e. C< = 0.005 , and

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1 J

corresponding to the measurement of xl(t), x2(t), xl(t) and 

x2(t), then A comes from (2.27) with its first element changed to 

-2 7TU(X , B comes from (2.28) again, and A from (2.18).

An initial estimate

K = [ -30000 30000 -1000 3000 ]
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and a repetition of the process described finally yields 

u(t) = 29293x1(t) -30 5 3 0 x 2 ( t) +998xl(t) -4487x2(t) 

as the control law required.
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CHAPTER(3)

ROAD SURFACE INPUT AND SYSTEM RESPONSE

3.1 Introduction

Passive vehicle suspension systems contain inertial elements 

(masses), restoring elements (springs), and dissipative elements 

(dampers). The suspension system is passive in the sense that 

there is no external power added in order to control the system 

dynamics. The main feature of such systems is the cyclic 

interchange of kinetic and potential energy with some energy 

dissipation in damping devices. Active systems on the other hand 

essentially employ information feedback, involving the 

measurement of variables by sensors and the use of the signals to 

control actuators of some kind. The actuators require an energy 

supply. A mass, spring and damper system with a very slow-acting 

levelling device, needing a small power source, will be 

considered passive in the context of this work. If on the other 

hand, the device is more powerful, faster acting and responsive 

to feedback signals, but of limited bandwidth (about 4 Hz), such 

a system will be described as slow-active. A  feedback controlled 

system in which the actuator has no power supply and is therefore 

a variable damper will be considered semi-active since the 

actuator can do no work on the suspension system. Clearly the 

power supply requirements of a semi—active system are very low.

According to the system behaviour, the suspension systems 

can be classified into linear systems (passive, active, and slow- 

active) and non-linear systems (semi-active).
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The potential of the system analysis is to successfully 

predict the system response from an accurate definition of the 

input and adequate representation of the system characteristics. 

In road vehicles, the main source of disturbances is the road 

surface irregularities, which have a random nature. In the 

present study, the simple spectral density formula derived by 

Robson (1979) from an examination of much experimental data is 

taken to be a suitable description of the disturbance input. The 

physical properties of the system components (masses, spring 

stiffnesses, damping coefficients, and actuator and semi-active 

damper forces) can be combined together to define the 

mathematical model of the suspension system. The response of the 

model in hand can be expressed in terms of the ride comfort 

parameter, the dynamic tyre load variations, and the suspension 

working space.

In this chapter, the road surface irregularity is briefly 

described. The linear and non-linear analyses are discussed. 

The evaluation of the system response is considered.

3.2 Road Surface Description

The road surface irregularities have been represented 

statistically in the spectral density form

Dr( V ) = Bl/ V nl .................  3,1

as a function of the wave number V .

Equation 3.1 as a function of the frequency f becomes
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n1-1, n1 
D r ( f ) = Bl.U '/f 3.2

where Bl is the road roughness constant and U is the vehicle 

s p e e d .

This formula is suitable for application to linear systems in 

which the principle of superposition is applicable.

Non-linear system studies require representing the road 

surface profile in time history form. The time history can be 

generated by adding together 1 sine waves of different 

frequencies and amplitudes which can be chosen to represent 

properly the spectral density function in a chosen frequency 

range. The relationship to generate a single road profile can be 

specified as

3.3

where,

Y(t) is the profile displacement, m

1 is the number of sine waves

k is the number of time samples

f is the frequency in Hz.

df is the frequency interval in Hz.

is the phase angle in rad.

t is the time in second, s
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The phase angles can be determined by a random number generator 

which for any set of values gives the profile an approximately 

Gaussian probability distribution, provided 1 is sufficiently 

large, Newland (1984).

An alternative method to generate the road surface profile by 

simply applying the inverse Fourier transform to the amplitude 

and phase (frequency domain) data as demonstrated by Cebon and 

Newland (1983) is available.

Five time histories generated by using equation 3.3 are plotted

in Fig. 3.1 as examples of these profiles. They are chosen to be

of 4 seconds period. Five different sets of phase angles with

the following additional parameters:

1 = 60 sine waves

k = 3072 samples

f = 0.25 : 15 Hz.

df= 0.25 Hz.

t = 0 : 6 seconds

are used to represent a somewhat worse than average main road

-6
with roughness constant Bl=3.14x10 traversed by a vehicle with 

speed U=20 m/s. The value of nl is taken as 2.5 as proposed by 

Robson (1979).

3.3 Linear Systems

The second order differential equations of the passive 

system can be derived by applying Newton's second law in the form

[ MS J x(t) + [CS] k(t) + [KS] x(t) = y(t) .................  3.4

UNIVERSnYUfE'U
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where y(t) is the input vector, x(t) is the output vector, [MS], 

[CS], and [KSJ are square matrices of order r representing the 

masses, damping coefficients, and stiffnesses respectively, and r 

defines the number of equations (number of degrees of freedom).

• • •

Also, x(t), and x(t) are the first and second derivatives of 

x(t). The system is said to be linear if the separate outputs 

resulting from many inputs can be added together in order to 

correctly obtain the response to the combined excitations (the 

principle of superposition).

If the input variable y(t) is assumed to be harmonic in the form 

j (Jt
y(t) = Y e .................  3.5

The steady-state response can be written as

x(t) = X .................  3.6

where Y is the excitation amplitude vector and X_ is the complex 

output amplitude vector. The vector X_ depends on the driving 

frequency 10 and the system parameters.

Inserting equations 3.5 and 3.6 into 3.4 yields

[ZS(L))J X = Y  .................  3.7

where

2
[ZS(U))J = -U[MS] + M C S ]  + [KSJ 

is the impedance matrix.
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By inspection of equation 3.7 and using unity excitation 

amplitude vector, the frequency response function of the system 

becomes

X = [ZS(U)]“1 .................  3.8

It can be noticed that the active control law is usually a 

function of the output vector x(t) and/or its derivatives x(t) 

and x(t). Also, such an active law is linear. These aspects 

together allow the study of the active suspension systems in the 

same manner. The only difference is to add the coefficients of 

the active control law to the impedance matrix [ZS(U)J.

At this stage, attention should be transferred to the 

suspension system problem. This will be helpful in indicating
*

how the system performance can be evaluated from the solution of 

the complex equation 3.8. For example, it is required to

express the complex frequency response function of the suspension 

working space [Hs(U)j. This function represents the difference 

between two of the output variables (wheel and body motions, 

xl(t) and x2(t)). It can be evaluated as

2 2 1/2 
Hs(UJ) = {[Real(Xl-X2)] + [Imag(Xl-X2)J } .................  3.9

where XI and X2 are the wheel and body amplitudes respectively.

Since the spectral density function represents an amplitude 

square relationship for both the input and the output, the system 

linearity allows multiplying the square of the frequency response 

function by the input spectral density function in order to
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obtain the output spectral density function for any value of the

frequency f. More explanation can be found in Newland (1984) and 

Meirovitch (1975).

Writing the frequency response function 3.9 as a function of the

frequency f, the output spectral density function can be 

formulated as

Ds(f) = D r(f). Hs(f)

2
3.-10

Similarly, the spectral density functions of the body 

acceleration Da(f) and the dynamic tyre load variations Dd(f) can 

be expressed as

Da(f) = Dr(f).

and Dd(f) = Dr(f).

Ha(f )

Hd(f )

2
................  3.11

2
3.12

The ride comfort parameter can be evaluated by weighting the 

spectral density function of the body acceleration 3.11 according 

to the ISO standard weighting function shown in Fig. 3.2, Vries 

(1982).

The individual responses can be expressed in terms of the 

mean square values by numerically integrating the spectral 

density functions over the frequency range of interest. The root 

mean square value of the suspension working space, for example, 

is

3.13



W
e
i
g
h
t
i
n
g
 

f
u
n
c
t
i
o
n
,
 

d
B

U 3

Frequency, Hz

0.25 0.5 1.0 2.0 4.0 8.0 16.0

Fig. 3. 2 ISO weighting functions for squared acceleration



u

The procedures for evaluating the linear system responses are 

illustrated in Fig. 3.3.

3.4 Non-Linear Analysis

Semi-active suspension systems are non-linear because of the 

switching dynamics of the semi-active damper. Simulations are 

necessary for studying these systems.

In this section, the time history of the system response is 

generated. Spectral density functions are derived in order to 

obtain results in standard form.

By inspection of equation 3.4, the equations of motion can be 

written in their state space form as

c(t) = [L] c (t) +  y(t) ................  3.14

with

c( t) =
x ( t )

x(t)

where [LJ is a coefficient matrix of order 2r (r is the number of 

degrees of freedom). It should be noted that the coefficients of 

the semi-active damper are included in the matrix [L].

Once the time history of the input function y(t) is known, the 

set of equations 3.14 can be numerically integrated in order to 

obtain the solution c(t). A suitable set of initial conditions 

c(0) are required. More explanation will be given in chapter 6.
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Fig. 3.3 Linear analysis
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For the same example as in section 3.3, the time history of the 

suspension working space can be derived as

s.w.s.(t) = xl(t) - x2(t) ................  3.15

The steady—state part of the time function 3.15 can be simply 

obtained by eliminating the transient region. The rest of the 

function can be transformed into spectral density form by using 

the Fast Fourier Transform. The arrangements of these

transformations will be explained in chapter 6. The root mean 

square values of the individual responses can be obtained using 

the same procedures as described in section 3.3.

The simulation procedures are summarised in Fig. 3.4.
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CHAPTER(4)

PASSIVE SUSPENSION SYSTEM STUDIES

4.1 Introduction

Passive suspension systems of conventional elements (springs 

and dampers) have limitations in respect of completely 

controlling the vehicle dynamics. The difficulty comes from 

vehicles typically being operated over roads of different 

qualities at different speeds as well as requiring adequate 

attitude control with load changes and manoeuvring. Even for the 

same operating conditions, it is well known that the ride comfort 

parameter can be indefinitely improved (at the expense of the 

suspension working space) by softening the suspension spring. In 

practice, the working space must be restricted. Normal passive 

suspension parameter choices represent a compromise between the 

different requirements and are made according to the vehicle type 

and layout. Adjustable parameter passive suspension systems will 

be discussed in the appendix.

The study in this chapter is restricted to generating 

results by which the fundamental performance properties of 

passive suspensions can be understood. This understanding can 

help the designer to choose the appropriate parameters for 

different operating conditions. The study involves investigating 

the vehicle vertical behaviour by using the well known quarter 

car model subjected to realistic road roughness input. The 

possibility of improving the vehicle performance through adding a 

dynamic absorber to the two mass system is included. In both
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cases, the quality of the suspension system performance is 

assessed by passenger discomfort, dynamic tyre load, and 

suspension working space parameters. Different choices of the 

suspension parameters are made in order to map the two mass 

system properties while an optimisation process is used in order 

to obtain the three mass system parameters. Two different wheel 

to body mass ratios are used in both cases in order to cover the 

normal range of passenger cars. Different ratios of absorber to 

wheel mass are used in studying the three mass suspension 

systems.

4.2 Two Mass System

The two mass suspension system shown in Fig. 4.1 consists 

mainly of a quarter of the body mass (mb) and a wheel assembly 

mass (mw). The passive suspension elements are shown as a linear 

spring of stiffness Ks and a linear damper of coefficient Cs, 

connected between the body and wheel masses. A linear spring of 

stiffness Kt (representing the tyre vertical dynamics) is used to 

support the whole model.

Referring to Fig. 4.1, the equations of motion can be written as,

mwxl(t)=—Ks[xl(t)—x2(t)]-Cs[xl(t)-x2(t)]+Kt[x0(t)-xl(t)]

. 4.1
mbx2(t)= Ks[xl(t)-x2(t)]+Cs[xl(t)-x2(t)J

where,xO(t) is the road roughness displacement, xl(t), xl(t) and

# •
xl(t) are the wheel displacement, velocity and acceleration and
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Fig. 4. 1 Quarter car passive suspension system
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x2(t), x2(t) and x2(t) are the body displacement, velocity and 

acceleration respectively.

Following the procedures described in section 3.3, equations 4.1 

can be reduced to,

r- 2 -i
-1

XI Kt+Ks-lx) mw+ jCstO -Ks- jC s (jJ Kt
=

2
X2 -Ks-jCsL) K s - W m b + j C s U 0

4.2

The solution procedures described in Fig. 3.3 can be simply 

followed for each value of the frequency f which is chosen to be 

in the range from 0.25 to 15 Hz. The solution of the complex 

linear equations 4.2 has been obtained by using the Crout's 

factorisation method available in the form of a NAG library 

subroutine. The frequency response function of the suspension 

working space [Hs(U))J can be derived in the form 3.9. Similarly, 

the frequency response functions of the body acceleration [Ha(U)j 

and dynamic tyre load variations [Hd(<jJ) J can be written as,

Ha(OJ)
2 2 2 1/2 

= U  {[Real(X2)] + [Imag(X2)J } 4.3

and

Hd(W)
2 2 1/2 

= Kt{[Real(Xl-XO)] + [Imag(Xl-XO)] } 4.4

Using the road spectral density formula 3.2 and the frequency 

response functions 3.9, 4.3 and 4.4 as functions of the frequency 

f, the spectral density functions of the suspension working space 

Ds(f), the body acceleration Da(f), and the dynamic tyre load 

Dd(f) can be obtained as described in equations 3.10, 3.11 and 

3.12 respectively. For each value of the frequency, the ISO
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weighting function shown in Fig. 3.2 can be applied to the 

spectral density function of the body acceleration in order to 

obtain the ride comfort parameter by using the following 

parameters:

f/8 for the frequency range from 0.25 to 4 Hz,

0.5 for the frequency range from 4 to 8 Hz, and 

2
32/f for the frequency range from 8 to 15 Hz.

Root mean square values are obtained by taking square roots of 

the trapezoidally integrated spectral density functions over the 

frequency range from 0.25 to 15 Hz.

The body mass mb is chosen to be 250 Kg. while two different 

values of the wheel mass mw (50 and 31.25 Kg) are used to 

represent wheel to body mass ratios (0.2 and 0.125) spanning the 

range normally found in passenger cars. The tyre stiffness Kt is 

chosen to be 120000 N/m to represent a reasonable value of the 

vertical stiffness of a rolling tyre as recorded by van Eldik 

Thieme (1981). The spectral density function 3.2 is used as 

input to the system with constants Bl=3.14x10 and nl=2.5 and 

vehicle speed U=20 m/s.

The spring stiffness is described by the more familiar uncoupled 

undamped natural frequency of the body mass fn, while the damping 

is described by the damping as a proportion of critical of this 

same decoupled system 'J , where,

Values of fn from 0.3 to 2.0 land of 'if from 0.2 to 1.6 are used.
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Results obtained for body to wheel mass ratio of 0.2 are 

shown in Fig. 4.2 and in Fig. 4.3 for 0.125 mass ratio. In both 

figures, the performance relationships have the same form. The 

greatest ride comfort can be obtained by using the softest spring 

possible with very little damping, but the high comfort is 

obtained at the expense of the suspension working space. This 

fact has been indicated by Ryba (1974) and by Sharp and Hassan 

(1984) and can be expected here if the solid curves ( 'ft = 0.2) In 

figures 4.2 and 4.3 were extended towards a higher value of the 

suspension working space by generating more systems with lower 

spring stiffnesses.

The demand for working space can be assessed on the basis that 

the road surface is Gaussian, in which case each system output 

parameter will be Gaussian. Then the displacement of the wheel 

relative to the body measured from static equilibrium will exceed 

(in magnitude) twice the root mean square value for 4.6% of the 

time and three times this value for 0.27% of the time. If, for 

the sake of discussion, we regard the maximum tolerable r.m.s. 

wheel to body displacement to be 1.5, 2.0 or 2.5 cm, various 

systems, classified as groups (a), (b) and (c), can be obtained 

for each of these values. These groups, as depicted in figures

4.2 and 4.3, are summarised in table 4.1 for 0.2 mass ratio and 

in table 4.2 for 0.125 mass ratio. For ease of discussion, 

systems in each group are numbered from (1) to (5). Comparing 

the various systems in each group for each of these mass ratios, 

we can see that the best performing systems are systems (3) in 

which the best comfort and dynamic tyre load can be obtained for
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Fig. A.2 Performance and design properties of two mass passive

systems, mw/mb=0. 200
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Fig. 4.3 Performance and design properties of two mass passive

systems,, mw/mb=0. 125



Table 4.1 Design and performance properties of 

particular two mass passive systems having 

0.200 wheel to body mass ratio

No SWS(cm) RCP DTL(N) fn(Hz) If

1 1.9549 978 1.997 0.400

2 (a) 1.7098 875 1.484 0.566

3 1.5 1.6662 864 1.097 0.800

4 1.6718 872 0.799 1.131

5 1.6759 878 0.569 1.600

1 1.5862 890 1.685 0.283

2 (b) 1.3387 802 1.267 0.400

3 2.0 1.2875 791 0.946 0.566

4 1.2895 798 0.694 0.800

5 1.2907 806 0.495 1.131

1 1.4760 945 1.579 0.200

2 (c) 1.1515 846 1.193 0.283

3 2.5 1.0678 825 0.902 0.400

4 1.0603 826 0.669 0.566

5 1.0584 835 0.478 0.800
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Table 4.2 Design and performance properties of 

particular two mass passive systems having 

0.125 wheel to body mass ratio

No SWS(cm) RCP DTL(N) fn(Hz)

1 1.7854 859 1.904 0.400

2 (a) 1.5794 759 1.421 0.566

3 1.5 1.5478 742 1.053 0.800

4 1.5560 745 0.767 1.131

5 1.5591 747 0.546 1.600

1 1.4279 764 1.616 0.283

2 (b) 1.2111 666 1.220 0.400

3 2.0 1.1696 645 0.913 0.566

4 1.1735 646 0.670 0.800

5 1.1740 649 0.477 1.131

1 1.3166 798 1.520 0.200

2 (c) 1.0244 681 1.154 0.283

3 2.5 0.9500 647 0.875 0.400

4 0.9448 641 0.649 0.566

5 0.9419 645 0.463 0.800
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1.5 and 2 cm suspension working space. For the 2.5 cm suspension 

working space, there are only small differences between ride 

comfort and dynamic tyre load for systems (3) and (4). As the 

value of fn is increased and the value of 'ft decreased, as 

compared with the parameters of system (3), in such a way as to 

keep the same value of the suspension working space, the comfort 

and dynamic tyre load for all groups are sacrificed. Although 

systems (4) and (5) behave as well as systems (3), they are 

practically of little interest because of the very soft springs 

employed as compared with systems (2) and (3).

The relative performances of each group in table 4.1 are shown in 

figures 4.4, 4.5 and 4.6 and in figures 4.7, 4.8 and 4.9 for the 

corresponding groups in table 4.2. Each of these figures 

indicates the frequency response functions and the mean square 

spectral densities of the weighted body acceleration, the dynamic 

tyre load and the suspension working space for systems (1), (3) 

and (5). In all figures, the high peaks of the weighted body 

acceleration and the dynamic tyre load in systems (1) at the body 

resonance can be seen. These peaks are responsible for the high 

r.m.s. values in both the ride comfort parameter and the dynamic 

tyre load in systems (1) as compared with systems (3) and (5). 

In systems (3) and (5), the peaks are significantly reduced with 

slightly higher values of these functions at the wheel resonance 

as a result of reducing the spring stiffness and increasing the 

damping coefficient. Practically, systems with stiffer springs 

may be preferred in the sense that they are better in controlling 

the ride height variations with load changes but on the other
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hand, systems with very stiff springs (systems (1)) perform very 

badly in terms of ride comfort and dynamic tyre load as compared 

with systems (3). Although systems (3) are a little better 

(about 3%) in both comfort and dynamic tyre load than systems 

(2), the spring stiffnesses of systems (2) are double those in 

systems (3).

If we compare the different groups, we find that systems (3) are 

the best performing systems. As the working space available 

increases from 1.5 to 2.5 cm, these best performing systems 

involve lowering spring stiffnesses and damping coefficients, 

implying that the "best" system design depends on the 

relationship between the road roughness and the working space 

available. The performance properties of systems in tables 4.1 

and 4.2 are plotted in figures 4.10 and 4.11 respectively in 

order to map the relationship between ride comfort and dynamic 

tyre load variations for each value of the standard suspension 

working space. These figures indicate that better comfort can be 

gained if the suspension working space available is increased. 

Other results not included, together with an understanding of the 

problem, indicate that the returns diminish as the working space 

to road roughness parameter ratio increases. Better dynamic tyre 

load control is also obtained as the working space increases up 

to a point beyond which this trend is reversed. Variations in 

the optimum dynamic tyre load are small, however, and thus this 

is not a large issue.
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Dynamic tyre load, M

Fig. A. 10 Ride comfort and dynamic tyre load variation 

of two mass passive systems, mw/mb=0. 200
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Dynamic tyre load, N

Fig. A. 11 Ride comfort and dynamic tyre load variation 

of two mass paaalve systems, mw/mb=0.125
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The effect of using different wheel to body mass ratios can 

be seen by comparing systems of the same number in each group in 

tables 4.1 and 4.2. The comparison is based on calculating the 

percentage improvement in both comfort and dynamic tyre load when 

the wheel to body mass ratio is reduced from 0.2 to 0.125. 

Results, as shown in table 4.3, demonstrate that reasonable 

improvements in both comfort and dynamic tyre load are achieved 

accompanied by a slight reduction in the suspension spring 

stiffness for all systems in hand. As the working space 

increases, so the improvements are enhanced, and the spring 

stiffness changes needed are reduced.

Comparing systems within each group, the greatest improvements in 

comfort resulting from reduction of the unsprung mass are 

achieved from systems with the stiffest springs and lowest 

damping factors. The converse is the case for the dynamic tyre 

load.

4.3 Three Mass System

The three mass system shown in fig. 4.12 is developed from 

the quarter car model, shown in Fig. 4.1, by connecting an 

auxiliary mass (ma) to the wheel through a spring of stiffness Ka 

and a damper of coefficient Ca.

The describing equations of motion for this system can be written 

as,



Table 4.3 Changes In results of two mass 

passive systems obtained by reducing the 

mass ratio from 0.2 to 0.125

No SWS(cm) RCP DTL(N) fn(Hz)

1 +  9.5% +13.9% -4.9 % 0.400

2 (a) +  8.3% +15.3% -4.4% 0.566

3 1.5 + 7.7% +16.4% -4.2 % 0.800

4 +  7.4% +17.0% -4.2% 1.131

5 + 7.5 % +17.5% -4.2 % 1.600

1 +11.1% +16.5% -4.3% 0.283

2 (b) +10.5% +20.4% -3.9 % 0.400

3 2.0 +10.1% +22.6% -3.6% 0.566

4 + 9.9% +23.5% -3.6% 0.800

5 +  9.9% +24.2% -3.8% 1.131

1 +12.1% +18.4% -3.9% 0.200

2 (c) +12.4% +24.2% -3.4% 0.283

3 2.5 +12.4% +27.5% -3.1% 0.400

4 +12.2% +28.9% -3.1% 0.566

5 +12.4% +29.5% -3.2% 0.800

+ is the percentage improvement.
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A*;

Fig. 4. 12 Three mass passive suspension system
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mwxl(t) =-Ks[xl(t)-x2(t)] - Cs[xl(t)-x2(t)] - Ka[xl(t)-x3(t)]

- Ca[xl(t)-x3(t)] + Kt[xO(t)-xl(t)]

mbx2(t) = Ks[xl(t)-x2(t)] + Cs[ xl (t)-x2(t)] 

max3(t) = Ka[xl(t)-x3(t)] + Ca[xl(t)-x3(t)]

Following the procedures described in section 3.3 under the same 

assumptions as for equation 4.1, the complex amplitudes XI, X2 

and X3 are given by

_ 2 n
-

_

XI Kt+Ks+Ka-U mw+j(Cs+Ca)L) -Ks-jCsU -Ka-jCaUJ Kt

X2 =
2

-Ks-jCsW Ks-U)mb+jCs U) 0 0

X3 -Ka-jCa UJ 0 Ka-L^ma+ jCaU 0

In this section the effect of the absorber mass on the system 

performance is studied for both wheel to body mass ratios (0.2 

and 0.125) using the same procedures as in section 4.2.

The suspension parameters (Ks and Cs) as well as the absorber 

parameters (Ka and Ca) by which the minimum dynamic tyre load can 

be obtained are calculated for each absorber mass ratio by using 

a Simplex minimisation routine available as a NAG library 

subroutine.

The absorber mass is chosen to vary from 0 to 1 relative to the 

wheel mass. The zero ratio, which represents a two mass system, 

is chosen to be an optimised system on the same basis. The mass 

ratio of unity is chosen to represent a three mass system with an 

unrealistically large absorber mass. Systems are studied over 

this range in order to identify the cost effectiveness of such 

systems.
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The results, shown In figures 4.13 and 4.14, are obtained by 

solving the matrix equation 4.5 using the same procedures and the 

same assumptions as for the two mass system (section 4.2). In 

the figures for both wheel to body mass ratios (0.2 and 0.125), 

the relative performances are illustrated in terms of the r.m.s. 

value of the weighted body acceleration, the dynamic tyre load, 

and the suspension working space as functions of the absorber 

mass to wheel mass ratio. The optimal suspension and absorber 

parameters are included. A least square fitting process is 

applied to the output and parameter values in order to overcome 

the difficulty of obtaining a smooth distribution for these 

values directly from the search routine arising from the flatness 

of the dynamic tyre load function in the neighborhood of the 

minimum. Each function is approximated as a third degree 

polynomial by using the least-square fitting method available as 

a NAG library subroutine. The results in the figures show that 

the improvement in ride comfort as a result of increasing the 

absorber mass ratio is accompanied, for all ratios, by a higher 

value of the suspension working space without significant change 

in the minimum value of the dynamic tyre load.

Two particular systems are compared in order to indicate the 

actual gains available by using a realistic sized absorber mass 

to wheel mass ratio. The first system is chosen from table 4.2 

to be system (3) as the best performing system with 2.5 cm 

suspension working space. The second one is chosen from Fig.

4.14 to be an optimized three mass system having the same value 

of the suspension working space. The results show that a 9%
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improvement in comfort and 4% improvement in dynamic tyre load 

can be gained if an absorber mass to wheel mass ratio of 0.20 is 

used (as compared with the two mass system).

The frequency response functions and the output mean square 

spectral density functions of the body acceleration, the dynamic 

tyre load and the suspension working space for these two systems 

are shown in Fig. 4.15. The spectral density functions of the 

suspension working space are identical with the 2.5 cm r.m.s. 

value. The high frequency peak in the dynamic tyre load spectral 

density (associated with the wheel resonance) is reduced implying 

that better control for the wheel dynamics can be achieved by 

using a dynamic absorber. The spectral density of the weighted 

body acceleration is badly affected due to the absorber resonance 

peak which appears at 4 Hz for this particular system. These 

results imply that the three mass system is better in controlling 

the wheel hop resonance, being particularly important when 

unbalanced wheels are used.
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CHAPTER(5)

ACTIVE SUSPENSION SYSTEM STUDIES

5.1 Introduction

Active suspension systems are intelligent in the sense that 

they employ controllable elements (actuators of some kind). 

These elements, using force feedback, are cabable of generating 

forces which are linear combinations of measured state variables. 

Systems in which all the state variables are measurable will be 

defined as full state feedback active systems. If only some of 

the state variables can be measured, the systems will be defined 

as limited state feedback active systems. The optimal control 

theory discussed in chapter 2 can be applied to the quarter car 

model shown in Fig. 2.1 in order to obtain the optimal control 

law for either case. It is a feature of the optimisations 

however that the road surface input is treated as either an 

integrated or low-pass filtered white noise velocity signal. 

Also, no frequency weighting is applied to the vertical body 

acceleration in order to provide a measure of passenger 

discomfort, so that the resulting laws are optimal for conditions 

which are a little different from those of prime interest. 

Nevertheless parameter variations around the "optimal" points 

have shown these points to be very near optimal for the 

conditions of interest, and the control laws emerging from the 

optimal control theory have been used, as they are, in the 

subsequent frequency response and mean square value calculations.
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These calculations, as described in chapter 3, allow the 

determination of ride comfort, dynamic tyre load and suspension 

working space parameters individually. Many optimal systems of 

different performance properties and parameter values can be 

obtained by using different weightings in the performance index. 

This process allows the identification of the control law and 

performance parameters of those systems with one of the three 

standard suspension working space requirements of special 

interest (1.5, 2.0 or 2.5 cm).

5.2 Calculations

The equations of motion of the active suspension system shown in 

Fig. 2.1 can be written as

mwxl(t) = -u(t) + Kt[x0(t)-xl(t)] 

mbx2(t) = u(t) 5.1

The control law u(t) of the full state feedback system can be 

derived as

u(t) = Kfl[xl(t)-x0(t)] + Kf2[x2(t)-xO(t)]

+Kf3xl(t) + Kf4x2 (t) 5.2

Putting the control law 5.2 into equation 5.1, and following the 

procedures described in section 3.3 (assuming unity input 

amplitude X0), the output amplitudes XI and X2 can be derived as

-1

XI

X2

2
Kt- Draw

2
-LJ mb

Kfl+jKf3W Kf2-Umb+jKf4U

Kt

Kfl+Kf2
5.3
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The same procedures are used in the limited state feedback case 

using the control law in the form,

u(t) = Kllxl(t) + K12x2(t) + K13xl(t) + K14x2(t) ..........  5.4

in order to obtain the output amplitudes XI and X2 ,where,

■1

XI

X2

Kt-(jJmw 

K11+jK13(jJ

2
-L)mb

K12-(jJmb+jK14U

Kt

0
5.5

In both cases, the procedures described in section 3.3 are 

followed in order to calculate the r.m.s. values of the weighted 

body acceleration, the dynamic tyre load and the suspension 

working space.

5.3 Active System Results

The results obtained in this section were generated using 

the same parameter values and the same road quality under the 

same assumptions as in chapter 4. The only difference is to 

replace the passive system's spring rate and damper coefficient 

by the four gains obtained from the optimisation process. 

Various gains are obtained as a result of changing the weighting 

parameters ql and q2 in the matrix Q in equation 2.8.

Results for full and limited state feedback active systems are

shown in figures 5.1 and 5.2 respectively. These results are

presented with the suspension working space as the abscissa. The

ride comfort parameter and the dynamic tyre load as well as the

four feedback gains are included. Using figures 5.1 and 5.2, the
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design and performance parameters of the various types of system 

which have any one of the standard suspension working spaces 

(1.5, 2.0 and 2.5 cm) can be read. These systems are classified 

in each of three groups, in table 5.1 for the full state feedback 

case and in table 5.2 for the limited state feedback case. The 

frequency response functions and the spectral density functions 

for each group are presented in figures 5.3, 5.4 and 5.5 for full 

state feedback systems and in figures 5.6, 5.7 and 5.8 for 

limited state feedback systems refering to 1.5, 2.0 and 2.5 cm 

suspension working space respectively.

Results in the first group in table 5.1 show that the "best" 

dynamic tyre load control is obtained in system (1) as a result 

of using relatively higher values of the four constants Kf1, Kf2, 

Kf3 and Kf4. As these constants decrease, higher comfort can be 

gained accompanied by worsening of the dynamic tyre load 

variations. The "best" dynamic tyre load is obtained due to the 

low peak of the wheel resonance in the frequency response 

function and consequently in the spectral density function, 

without significant change in the peak of the body resonance as 

compared with systems (2) and (3), Fig. 5.3. The same sequence 

of performance is obtained in the second and third groups as can 

be seen in table 5.1 and in figures 5.4 and 5.5.

In the limited state feedback systems, table 5.2, there are no 

significant changes in the constants Kll, K12, K13, and K14 in 

the first group, implying that the optimal control is the same 

for a wide range of weighting parameters ql and q2 in the



Table 5.1 Design and performance properties of

particular full state feedback active systems

No sws

cm

RCP DTL

N

Kfl

N/m

Kf2

N/m

Kf3

Ns/m

Kf4

Ns/m

1 (a) 1.455 772 60526 -53339 1605 -5317

2 1.5 1.433 796 45769 -51015 1378 -4939

3 1.390 826 22280 -49749 920 -4380

1 (b) 1.087 770 30118 -18303 1205 -3170

2 2.0 1.069 790 26565 -19429 1103 -3208

3 1.037 827 21219 -21078 945 -3248

1 (c) 1.020 770 24205 -3873 1280 -1505

2 2.5 1.000 785 22164 -4000 1212 -1517

3 0.954 822 18316 -4743 1063 -1626
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Table 5.2 Design and performance properties of 

particular limited state feedback active systems

No sws

cm

RCP DTL

N

Kll

N/m

K12

N/m

K13

Ns/m

K14

Ns/m

1 (a) 1.393 783 43341 -44990 1455 -4511

2 1.5 1.388 785 39815 -41553 1508 -4278

3 1.387 785 39176 -40980 1525 -4273

1 (b) 1.170 786 19386 -17895 1291 -2790

2 2.0 1.100 805 14210 -13947 1175 -2350

3 1.000 847 13333 -14386 960 -2500

1 (c) 1.173 785 18772 -14912 1309 -2588

2 2.5 1.086 809 12050 -10108 1186 -2017

3 0.956 867 10561 -9386 931 -2170
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performance index. Consequently, these systems have almost the 

same performance properties as can be seen in Fig. 5.6. In the 

second and third groups in table 5.2, the changes in the four 

constants Kll, K12, K13 and K14 as well as the change in the 

performance of these systems have the same behaviour as in the 

corresponding groups in the full state feedback case. The 

difference between the two cases is in the frequency response and 

spectral density functions for both ride comfort and dynamic tyre 

load variations. In the case of the dynamic tyre load we can see 

that, as we move from system (1) to system (3), better control 

for the body resonance is gained accompanied by worse control in 

the wheel resonance, implying higher r.m.s. value of the dynamic 

tyre load. At the same time, better comfort is gained as a 

result of the low spectrum of the weighted body acceleration in 

the frequency range from 0.25 Hz up to the wheel resonance.

The performance properties of the full and limited state feedback 

active systems are plotted in figures 5.9 and 5.10 respectively. 

These figures show the relative performances of these systems for 

the different values of the chosen standard suspension working 

space. In the full state feedback systems, Fig. 5.9, a 

significant improvement in ride comfort can be gained, with 

almost the same level of the dynamic tyre load control, if the 

r.m.s. value of the suspension working space is increased from

1.5 to 2.0 cm. A little further improvement can be gained if the 

suspension working space available is increased from 2.0 to 2.5 

cm. For each value of the suspension working space, the optimal 

system design parameters can be varied over a wide range giving
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Dynamic tyre load,, N

Fig. 5.9 Ride comfort and dynamic tyre load variation 

of full state feedback active systems
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Dynamic tyre load0 N

Fig. 5.10 Ride comfort and dynamic tyre load variation 

of limited 3tate feedback active systems
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the possibility of defining optimal systems with different 

performances.

In the limited state feedback case, Fig. 5.10, systems using 1.5 

cm working space are all very similar to each other despite 

variations in the weighting parameters used in the derivation of 

the control laws. This is in contrast to the other cases. The 

general rule that better comfort can be obtained if more working 

space is made available is defied in the cases of the systems 

with 2.0 and 2.5 cm working spaces. No advantage is gained in 

the latter case, clearly associated with the road roughness and 

vehicle speed assumed. The manner in which the results scale for 

other roughnesses and speeds indicate that the 2.5 cm working 

space systems would show advantage in comfort if the road were 

rougher or the speed higher.
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CHAPTER(6)

SEMI-ACTIVE SUSPENSION SYSTEM STUDIES

6.1 Introduction

Semi-active suspensions are feedback controlled systems in 

which the actuator is limited to providing energy dissipation. 

The main idea is to modulate the force of a damper according to 

some control policy based on measurements describing the 

instantaneous state of the system. The damper acts if energy 

dissipation is required. Otherwise it switches off. The 

behaviour of such systems is non-linear because of the switching 

process of the semi-active damper and a general method for 

predicting the performance properties in such cases is computer 

simulation. Such simulations are followed by frequency analyses 

in order to accurately represent the actual operation of such 

systems. Appropriate control laws must be derived for use in 

these simulations.

In this chapter, three different types of control law are 

used in studying semi-active suspension systems. The first type 

is based on the full state feedback active law while the other 

two are based on limited state feedback active laws with and 

without a passive damper in parallel with the semi-active one. 

Results are generated by incorporating each of these laws in the 

quarter car model subjected to a realistic road input. System 

performances are calculated as the root mean square values of the 

weighted body acceleration, the dynamic tyre load and the
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suspension working space. Results for each type are presented in 

the same manner as in chapter 5. From the many systems 

considered, those requiring each of the standard suspension 

working spaces (1.5, 2.0 and 2.5 cm) are identified for 

comparison with the other types of system, passive and active.

6.2 Calculations

The equations of motion of the quarter car model shown in Fig.

2.1 can be written in the state space form as,

xl(t) = x3(t) 

x2(t) = x4(t)
........................  6 . 1

x3(t) = Kt/mw x0(t) - Kt/mw xl(t) -1.0/mw u(t) 

x4(t) = 1.0/mb u(t)

The control force u(t) is constructed from the control laws 

described in chapter 5 to be in each of three different forms. 

The first form is obtained from the control law of the full state 

feedback active system 5.2 to be

u(t) = Kfl[xl(t)-x2(t)] + Kf3xl(t) + Kf4x2(t)

+ (Kfl+Kf2)[x2(t)-x0(t)] ..........  6.2

while in the case of limited state feedback, the control force is 

given by,

u(t) = Kll[xl(t)-x2(t)] +  K13xl(t) + K14x2(t)

+ (K11+K12)x2(t) ..........  6.3

for the semi-active system without passive damper and by
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u(t) = Kll[xl(t)-x2(t)] + K13[il(t)-i2(t)]

+ (Kll+K12)x2(t) + (K13+K14)x2(t) ..........  6.4

for the semi-active system with a passive damper.

In each of these laws, the first term is realisable as a spring, 

of stiffness Kfl in equation 6.2 and Kll in equations 6.3 and 

6.4, by which the body mass can be supported. The second term in 

equation 6.4 represents a passive damper of coefficient K13 

connected in parallel with the spring. The rest of each law 

represents a semi-active force (S.A.F.) which will be generated 

in the actuator according to the following policy:

The damper generates the force S.A.F. if :

[xl(t)-x2(t)].[S.A.F.J > 0, 

but otherwise gives zero force.

In equation 6.2, the semi-active force required is governed by 

the wheel and body velocities and the relative displacement 

between the body and the road. In the limited state feedback 

cases, the semi—active force needed depends on the wheel velocity 

and the body velocity and displacement in equation 6.3, while in 

equation 6.4 it depends on the body velocity and displacement.

In order to avoid the unrealistic supposition that the semi

active damper can switch from on to off and conversely in an 

instantaneous manner, the switching action has been described in

the simulation as being governed by first order lag dynamics with

-3
a break frequency of 16.3 Hz (time constant, 9.764x10 s ) , which
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also avoids the possibility that good performance predicted for 

the semi- active systems depends on very fast switching.

The simulation operates by taking the road profile data as 

described in section 3.2 and depicted in Fig. 3.1 and the control 

laws as described in equations 6.2, 6.3 and 6.4, and integrating 

the equations of motion 6.1 over a six second duration. The 

phase angles ijj in equation 3.3 are obtained by using a random 

number generator available in the form of a NAG library 

subroutine.

Equations 6.1, after manipulation, are integrated at each point 

of time, starting from zero time with zero initial conditions, by 

using the Runge-Kutta-Merson method available in the form of a 

NAG library subroutine. The solution for the first two seconds 

is then eliminated in order to remove the transient part of the 

system response, the remaining four seconds of output being one 

complete period of the system response to the periodic input. 

Body acceleration, dynamic tyre load and suspension working space 

responses are of special interest. The body acceleration is 

obtained in terms of the body force which is the summation of the 

semi-active damper force and the force generated by the passive 

elements. The latter force represents the spring force in the 

first two cases and the spring and passive damper forces in the 

third case. The body acceleration is determined as,

b.Accn. = (S.A.F. +  Passive force) / mb ..........  6.5
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The dynamic tyre load is calculated in terms of the relative 

displacement between the wheel and the road input as,

d.t.l. = Kt[xO( t)-xl( t) ] ..........  6.6

and the suspension working space is calculated in terms of the 

relative displacement between the wheel and the body as,

s.w.s. = xl(t)-x2(t) ..........  6.7

The stored values representing the time functions 6.5, 6.6 and 

6.7 are frequency analysed by using the Fast Fourier Transform 

algorithm. Each function is chosen to contain 2048 time samples 

with sampling frequency of 512 Hz. The number of samples is 

chosen large enough to allow a sufficient description of the 

exponential function representing the switching process. Once 

the spectral density functions are obtained, the procedures 

described in chapter 3 can be used to obtain the r.m.s. values 

of the system responses of interest.

For each semi—active system of interest, the whole process is 

repeated five times using the different road profiles shown in 

Fig. 3.1, and average values over the five ensembles are formed 

for use as system performance measures. This is to identify to 

what extent the transformed spectral density functions of the 

non-linear systems can be affected by changing the phase 

information used with the spectral density function in producing 

the time history of the road surface input. Limited variations 

of around 2% in r.m.s. values in the system responses were found 

making the average over five ensembles sufficiently 

representative.
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6.3 Semi-active System Results

The same parameter values used in studying the active 

suspension systems are used again for obtaining the semi-active 

system results under the same considerations of road quality and 

vehicle speed. Also, results in this section are presented in 

the same way as in the previous chapter for ease of comparison. 

Results in Fig. 6.1 refer to semi-active suspension systems based 

on full state feedback optimal control laws with no passive 

damper, representing the performance and design properties of 

these systems. The results in figures 6.2 and 6.3 represent the 

performance and design properties of semi-active systems based on 

limited state feedback control laws without and with a passive 

damper. Results in tables 6.1, 6.2 and 6.3 are obtained from 

figures 6.1, 6.2 and 6.3 to represent different systems having 

the same requirement for suspension working space. Each table 

contains data on systems with one of the standard values of 

working space 1.5, 2.0 and 2.5 cm which are defined as groups 

(a), (b) and (c) respectively. The performance properties of the 

systems in tables 6.1, 6.2 and 6.3 are plotted in figures 6.4,

6.5 and 6.6 respectively. In Fig. 6.4, system 2(a) is found to 

be the "best" performing system in terms of controlling the 

dynamic tyre load variations for the 1.5 cm suspension working 

space and it contains a relatively stiff spring (Kfl), as
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Table 6.1 Design and performance properties of 

particular semi—active systems based on full 

state feedback laws with no passive dampers

No SWS

cm

RCP DTL

N

Kfl

N/m

Kf2

N/m

Kf3

Ns/m

Kf4

Ns/m

1 (a) 1.541 819 47514 -39243 1416 -4595

2 1.5 1.486 814 39892 -41514 1290 -4515

3 1.400 849 21081 -47027 885 -4270

1 (b) 1.184 762 26595 -12000 1189 -2541

2 2.0 1.151 777 24000 -13946 1101 -2703

3 1.022 865 14919 -21730 750 -3122

1 (c) 1.130 761 23027 -1946 1290 -1216

2 2.5 1.103 773 21081 -1946 1203 -1324

3 0.903 894 12000 -6000 804 -1730



Table 6.2 Design and performance properties of 

particular semi-active systems based on limited 

state feedback laws with no passive dampers

No sws

cm

RCP DTL

N

Kll

N/m

K12

N/m

K13

Ns/m

K14

Ns/m

1 (a) 1.508 826 42714 -44000 1326 -4500

2 1.5 1.460 817 38286 -40000 1371 -4171

3 1.447 811 36000 -37786 1423 -4000

1 (b) 1.105 800 13778 -13778 1189 -2311

2 2.0 1.024 840 13333 -14556 956 -2489

3 1.000 852 13460 -15405 885 -2514

1 (c) 1.100 797 12000 -10000 1189 -2000

2 2.5 0.974 853 10555 -9111 911 -2178

3 0.856 948 9333 -9333 689 -2567
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Table 6.3 Design and performance properties of 

particular semi-active systems based on limited 

state feedback laws with passive dampers

No sws

cm

RCP DTL

N

Kll

N/m

K12

N/m

K13

Ns/m

K14

Ns/m

1 (a) 1.568 850 38143 -39143 1300 -4158

2 1.5 1.505 841 33500 -34857 1291 -3842

3 1.493 832 31786 -33357 1314 -3697

1 (b) 1.159 780 11591 -10910 1182 -2136

2 2.0 1.077 804 10910 -11818 932 -2330

3 1.055 820 12273 -13636 795 -2455

1 (c) 1.245 772 12836 -7727 1182 -2000

2 2.5 1.159 786 12727 -8523 932 -2500

3 1.034 839 11023 -8410 693 -2932
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Dynamic tyre Load, N

Fig. 6.4 Ride comfort end dynamic tyre load variation of aeml-actlve

systems based on full state feedback laws

with no passive dampers
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Dynamic tyre load, N

Fig. 6.5 Ride comfort and dynamic tyre load variation of semi-actIve

systems based on limited state feedback laws

with no passive dampers
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Dynamic tyre load, N

Fig. 6.6 Ride comfort and dynamic tyre load variation of s e m i - a c t Ive

systems based on limited state feedback laws

with passive dampers
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compared with convention, by which good handling and attitude 

control could be achieved. Moving towards system 3(a), the 

choice is open in the sense that comfort can be gained at the 

expense of the dynamic tyre load. In system 3(a), the "best" 

comfort can be obtained as a result of using a passive spring of 

stiffness very close to a conventional one, indicating that it 

would be acceptable from a handling viewpoint. Better comfort 

can be obtained in this case if more working space is made 

available, softer springs (but still in the conventional range) 

being needed as depicted by systems 2(b) and 2(c).

In the cases based on limited state feedback control laws without 

and with a passive damper, figures 6.5 and 6.6, systems with the 

same working space requirements are found to behave in nearly the 

same way in terms of ride comfort and dynamic tyre load 

variations. In both cases, system 3(a) is found to be the "best" 

performing system for the 1.5 cm suspension working space as a 

result of using a passive spring of stiffness 1.5 times the 

conventional one. Also, the ride comfort is significantly 

improved by increasing the suspension working space from 1.5 to

2.0 cm accompanied by softening the passive spring by a factor of 

three as compared with the systems requiring 1.5 cm suspension 

working space. Only small changes in the system performances and 

in the design parameters are obtained by increasing the 

suspension working space available from 2.0 to 2.5 cm.

The time histories of the motions of three semi-active systems 

based on the limited state feedback control law with no passive
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damper are shown in figures 6.7, 6.8 and 6.9 representing systems 

3(a), 1(b) and 1(c) respectively. These systems are chosen to 

have nearly the same r.m.s. value of the dynamic tyre load 

particularly to show the nature of the switching process. In 

these plots, it can be seen that the semi-active damper rarely 

switches off, implying that it acts as a power dissipative 

element most of the time. It is implied that the performance 

will be very close to what can be achieved by using an active 

element. Figures 6.9, 6.10 and 6.11 can be used to compare the 

motions of systems obtained by using different control laws under 

the same suspension working space requirements (2.5 cm) and the 

same r.m.s. value of the dynamic tyre load variations. In Fig. 

6.10, since a part of the power can be dissipated through the 

passive damper, it can be observed that the semi-active damper 

switches off most of the time implying greater power 

discontinuity as compared with the other two cases.



ac
cn
, 

m/
s 

S.
 
A.
 
F.
 
t
 N 

Ro
ad
 

d 
I s
p 

L
a
c
e
m
e
n
t

112

£

T 1 me, 8
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system based on Limited state feedback control law with no passive damper
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CHAPTER(7)

SLOW-ACTIVE SUSPENSION SYSTEM STUDIES

7.1 Introduction

In this chapter a class of systems in which feedback and 

actuators are used but in which the bandwidth of the active 

control loops is very limited, is discussed. The systems are 

referred to as slow-active. The main idea of such systems is to 

use the active device in controlling the system dynamics around 

the body resonance and to allow passive elements to exercise 

suitable control for the higher frequency components. The 

frequency band of the active device can be limited either by the 

use of a slowly responding actuator (a servo-motor for example) 

or by filtering out the high frequency components of the feedback 

signals. An inherent feature of this type of system is a passive 

spring connected in series with the actuator by virtue of which 

the system becomes essentially passive beyond the frequency limit 

of the actuator. A passive damper is needed to control the wheel 

dynamics.

The effectiveness of such systems is evaluated by generating 

results based on the quarter car model subjected to realistic 

road input. The study involves calculating the optimal

parameters for each system as explained in chapter 2, after which 

the frequency response and spectral density functions can be 

calculated as described in chapter 3. The system performances 

are identified in terms of the ride comfort, the dynamic tyre 

load and the suspension working space parameters as before. The
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effect of limiting the actuator bandwidth is examined first, and 

then further results are generated using a reasonable value of 

the actuator frequency response limit. Among these results, 

systems with each one of the standard suspension working spaces 

(1.5, 2.0 and 2.5 cm) are identified for comparison with each 

other.

7.2 System Model and Calculations

The slow-active suspension model used is shown in Fig. 7.1. 

In this model, the actuator is connected in series with a passive 

spring of stiffness Ks. A passive damper of coefficient Cs is 

connected between the body mass mb and the wheel mass mw. The 

high frequency components of the feedback signal are filtered out 

by using a second order low-pass filter, the actuator being 

treated as ideal for those frequencies passed by the filter. The 

frequency responses of filters having different values of cut-off 

frequency and a damping ratio of 0.707 are shown in Fig. 7.2.

The differential equations of motion of the model shown in Fig.

7.1 can be written as,

mwxl(t) = -Ks[xl(t)-x3(t)] - Cs[xl(t)-x2(t)] + Kt[x0(t)-xl(t)]

mbx2(t) = Ksfxl(t)-x3(t)J + Cs[xl(t)-x2(t)] ..........  7.1

x2(t) - x3(t) = Cm u^(t)

where, x3(t) is the actuator displacement, u^(t) can be thought 

of as a displacement demand signal to be obtained by judicious 

combination of measured system states and Cm is the actuator 

displacement coefficient.
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Frequency, Hz

Fig. 7.2 Frequency responses of second order low-pass filters
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The filter characteristics can be expressed as,

u/(t)= u(t)wf^/ (s^+ 2'ftwfs + wf^ ) ..........  7.2

where wf and are the filter cut-off frequency and damping ratio 

and

u(t) = Kslxl(t) + Ks2x2(t) + Ks3xl(t) + Ks4x2(t)

K s l , Ks2, Ks3 and Ks4 constituting the control law.

Equations 7.1 and 7.2 in their state space form become,

xl(t) = x3(t) 

x2(t) = x4(t)

x3(t) =-Ks/mwxl(t) +Ks/mwx2(t) - Kswf^/mwx5(t) - Cs/mwx3(t)

+ Cs/mwx4(t) - Kt/mwxl(t) + Kt/mwxO(t)

2
x4(t) = Ks/mbxl(t) - Ks/mbx2(t) + Kswf /mbx5(t) + Cs/mbx3(t)

- Cs/mbx4(t)

x5(t) = x6(t)

x6(t) =-2 "ft wfx6(t) - wf x5(t) + u(t) ..........  7.3

where,

2 2 
x5(t) = u(t) /(s +2 ̂  wfs+wf )

The optimisation process employed necessitates the description of 

the road surface input as a filtered integrated white noise 

velocity signal (see chapter 2). This can be derived from the 

white noise process xO(t)= <^(t) (in equation 2.23) by passing the 

signal through an integrator followed by a first order high-
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pass filter in order to remove the infinite power at zero 

frequency from the corresponding displacement spectral density 

function, which will now take the form Dr(V)=Bl/( Ot^ + v S  . The 

road surface input can then be formulated as one of the system 

states being described by

xO(t) = -(1.0/T)x0(t) + £(t) ..........  7.4

where,T is the time constant of the high-pass filter, ^(t) is the 

white noise process, and xO(t) is the displacement input to the 

system model.

The weighting matrix Q in equation 2.4 is

qi 0 0

Q = 0 q2 0 ..................  7

0 0 q3

to represent the weighting parameters ql, q2 and q3 by which the 

relative weights of the dynamic tyre load, the suspension working 

space and the ride comfort parameters in the performance index 

are specified.

The matrix C in equation 2.2 relating the controlled variables 

(which contribute to the performance index) to the state 

variables is formulated as,

1 0 0 0 0 0 -1

-1 1 0 0 0 0 0 ..........  7.6

Ks -Ks Cs -Cs Kswf ̂ 0 0
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The form of the matrix indicates that the three contributions to 

the performance index are the dynamic tyre load as represented by 

the difference between wheel and road displacements, the 

suspension working space as revealed by the difference between 

the wheel and body displacements and the body acceleration as 

given by the sum of the forces acting on the body mass.

The optimisation procedures described in chapter 2 are applied to 

the system equations 7.3 and 7.4 and the relationships in 

equations 7.5 and 7.6 are used in order to obtain the optimal 

parameters Ksl, Ks2, Ks3 and Ks4 by which the performance index 

in equation 2.19 can be minimised. A stability test is included 

in order to calculate the eigenvalues of the closed loop system 

by using the QR method available in the form of a NAG library 

subroutine, in particular to make sure that all of them have 

negative real parts.

The optimal parameters are then used in the system equations 7.1 

and 7.2 in order to calculate the frequency response functions 

and the output mean square spectral density functions of the ride 

comfort parameter, the dynamic tyre load and the suspension 

working space as described in chapter 3, using the input spectral 

density function 3.2.

7.3 Slow-active System Results

The base parameters of the system (body mass, wheel mass and 

tyre stiffness) are chosen to be the same as those used in
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studying the previous systems under the same road conditions and 

vehicle speed. Different values of the spring stiffness Ks and 

the damping coefficient Cs are used in generating results by 

which the idea of limiting the actuator bandwidth can be judged, 

following which an appropriate cut-off frequency for the low-pass 

filter can be chosen.

Results in figures 7.3, 7.4 and 7.5 are obtained using 

springs of stiffnesses 16000, 10000 and 4000 N/m respectively to 

represent a conventional and softer than conventional springs. 

In each of these figures, two different values of the damping 

ratio, 0.2 and 0.4 of critical are employed. The cut-off 

frequency of the low-pass filter in each figure is varied from 

zero, representing a passive system, to a value of 30 Hz, 

representing a constrained optimal active system, the constraint 

deriving from the fact that full state variable information is 

not available to the controller. It can be observed from these 

figures that the system performance properties are significantly 

improved by using a limited bandwidth actuator with a cut-off 

frequency around 4 Hz, as compared with passive systems with the 

same passive elements, and the benefits gained by increasing the 

bandwidth beyond this limit are of no significance. By using the 

limited actuator and conventional spring, improvements in ride 

comfort, dynamic tyre load variations and suspension working 

space parameters can be gained if the system is lightly damped. 

As the damping ratio increased from 0.2 to 0.4 with the same 

spring, the performance improvement is almost all in respect of 

the suspension working space. In systems of soft spring and
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light damping, improvement in dynamic tyre load accompanied by 

worse ride comfort is obtained if the cut-off frequency of the 

low-pass filter is increased to values higher than 7 Hz.

Systems having actuators of 4 Hz bandwidth limit are plotted 

in Fig. 7.6. These results indicate the performance properties 

of interest and the four feedback gains all plotted against the 

suspension working space, to allow the identification of those 

systems with each one of the standard suspension working spaces. 

The systems so identified are classified as groups (a), (b) and 

(c) in table 7.1 to represent systems of 1.5, 2.0 and 2.5 cm 

suspension working space respectively.

The frequency response and spectral density functions of 

these particular systems are plotted in figures 7.7, 7.8 and 7.9 

for groups (a), (b) and (c) respectively. The ride comfort 

parameter is plotted against the dynamic tyre load for each of 

these groups in Fig. 7.10, in which system 1(a) is found to be 

the "best" performing system in terms of ride comfort and dynamic 

tyre load as compared with systems 2(a) and 3(a). As the spring 

stiffness and the damping coefficient in group (a) are decreased, 

systems have higher body and wheel resonance peaks in the dynamic 

tyre load response functions and an increasing body resonance 

peak in the weighted body acceleration function, as can be seen 

in Fig. 7.7, indicating worse comfort and dynamic tyre load 

control. The major weaknesses of these systems are the high 

levels of body acceleration amplitudes at low frequencies for 

which human sensitivity to the vibration is high and of the
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Table 7.1 Design and performance properties

of particular slow-active systems

No sws RCP DTL Ks Cs Ksl Ks2 Ks3 Ks4

cm N N/m Ns/m N/m N/m Ns/m Ns/m

1 (a) 1 .400 795 16000 1600 0.021 0.017 -0.011 0.091

2 1.5 1.400 840 10000 1260 0.025 0.017 -0.141 0.223

3 1.420 884 4000 1200 0.024 0.016 -0.532 0.641

1 (b) 1.136 800 10000 1260 0.010 0.008 0.009 0.041

2 2.0 1.021 834 10000 950 0.024 0.020 0.000 0.100

3 0.950 982 10000 630 0.040 0.040 -0.041 0.209

1 (c) 1 .086 823 4000 1200 -0.008 -0.006 -0.059 0.077

2 2.5 0.986 860 6000 980 -0.003 -0.010 0.025 0.036

3 0.857 961 10000 630 0.010 0.001 0.034 0.059
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Dynamic tyre load, N

Fig. 7.10 Ride comfort and dynamic tyre load variation

of slow-active systems
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dynamic tyre load near to the wheel resonance where difficulties 

of controlling the wheel hop motion may arise particularly when 

unbalanced wheels are used. Improvement in the ride comfort 

parameter accompanied by worse dynamic tyre load control is found 

in group (b) as a result of decreasing the damping coefficient 

and in group (c) as a result of decreasing the damping 

coefficient and increasing the spring stiffness. The frequency 

response plots for these groups, figures 7.8 and 7.9, show that 

the higher peaks of the wheel resonance in systems 3(b) and 3(c) 

are responsible for the higher r.m.s. values of the dynamic tyre 

load variations, implying that the light damping in these systems 

causes big problems to the dynamic tyre load control even if 

stiff springs are used.

The possible advantages of using an adaptable suspension 

damper may be judged to some extent by making comparisons between 

some of these results. Systems 1(b), 2(b), and 3(b) in table

7.1, in which a spring of stiffness 10000 N/m is used, show that 

a variety of systems with different values of ride comfort 

parameter and dynamic tyre load variations can be obtained for 

the same suspension working space requirements (2.0 cm in these 

cases) by using the damping coefficients 1260, 950 and 630 Ns/m. 

It can also be seen that by using the same spring stiffness with 

each of the damping coefficients above, systems 2(a), 2(b) and 

3(c) are obtained needing 1.5, 2.0 and 2.5 cm r.m.s. values of 

the suspension working space, which suggest that very good 

performance under a variety of operating conditions could be 

obtained from systems which combine the slow actuator in series 

with a spring of fixed rate with an adjustable damper.
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A comparison of the frequency response functions and the 

mean square spectral density functions between a conventional 

passive system and two slow-active systems, is made in Fig. 7.11, 

in order to identify, in terms of the system performances, the 

benefits of introducing the limited bandwidth actuator into the 

existing passive system. As can be seen from the figure, 

significant reductions in the spectral density functions of the 

weighted body acceleration, the dynamic tyre load and the 

suspension working space at the body resonance peaks have been 

achieved without change at the wheel resonance. Percentage 

reductions of 13%, 8% and 30% in the r.m.s. values of the ride 

comfort parameter, the dynamic tyre load variations and the 

suspension working space for the first slow-active system are 

obtained and corresponding reductions are 3%, 7% and 39% for the 

second one as compared with the passive system. Although these 

comparisons involve only one road surface quality and vehicle 

speed and involve systems which differ in respect of all three 

performance parameters, it clear that, since they all improve in 

going from passive to active that the slow-active systems have 

some potential. If the active system parameters were altered to 

provide comparisons on an equal working space basis, the 

advantages in respect of ride comfort and dynamic tyre load would 

be greater than those above. Further discussion of these results 

and their implications appears in chapter 8.
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DISCUSSION OF RESULTS

The results presented relate directly to the problem of 

designing a vehicle suspension system subjected to specific 

operating conditions (road surface quality and vehicle speed). 

These results show the performance and design properties of 

passive, active, semi-active and slow-active suspension systems 

as generated in chapters 4 , 5 , 6  and 7 respectively. The passive 

suspension results include systems with 0.125 and 0.200 wheel to 

body mass ratios representing two different types of vehicle and 

systems each having a dynamic absorber mass added to the wheel 

mass. Two types of optimal active suspension systems, based on 

full and limited state feedback control laws, and three different 

types of semi-active suspension system, based on full and limited 

state feedback control laws with and without a passive damper, 

are included. Slow-active suspension systems with limited 

bandwidth actuator (4 Hz) are also covered. In each of these 

types, the system performance has been assessed in terms of ride 

comfort, dynamic tyre load and suspension working space 

parameters and the results have been plotted as r.m.s. values of 

the ride comfort against dynamic tyre load in figures 8.1, 8.2 

and 8.3 for 2.5, 2.0 and 1.5 cm suspension working space 

respectively.

The responses of all the systems, even the semi-active ones, 

are proportional to the inputs, so that the performance 

parameters of any of the systems studied for smoother or rougher

CHAPTER(8)
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Fig. 8.1 Ride comfort and dynamic tyre load variation

of different suspension systems, S W S = 2. 5 cm
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road surface/vehicle speed combinations than that assumed in 

equation 3.2 are scaled down or scaled up versions of those 

plotted in figures 8.1, 8.2 and 8.3. For example, if the 

effective road roughness constant Bl in equation 3.2, describing 

mean square values, were multiplied by 4, all the performance 

parameters would be multiplied by 2, since they are r.m.s. 

values. This includes the suspension working space parameter, so 

that the standard working spaces for which results are plotted 

would be 5, 4 and 3 cm for the new conditions.

The results in figures 8.1, 8.2 and 8.3 show that the 

benefits which can be gained by reducing the wheel mass of the 

passive system or by using the feedback controlled suspension 

elements (actuators or semi-active dampers), and the relative 

performances of these systems to be strongly dependent on the 

suspension working space available. Since the results scale in 

the manner described, the significant parameter is the ratio of

roughness spectral density constant and U is the vehicle speed. 

This ratio has the values 1.49, 1.19, and 0.895 for figures 8.1,

8.2 and 8.3 respectively.

At the high end of that range, Fig. 8.1, the passive 

suspension systems with 0.125 wheel to body mass ratio perform 

better than all the other types of system, having wheel to body 

mass ratio of 0.2, and further performance improvements are 

gained by connecting a dynamic absorber of 0.2 absorber mass to 

wheel mass ratio to the wheel assembly. The "best" passive

the r.m.s. working space to in which Bl is the road
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system with 0.2 wheel to body mass ratio (system 3(c) in table 

4.1) is found to perform as well as the active, semi-active and 

slow-active suspension systems, the best of which requires a 

vehicle body mounted height sensor and will give a 10% 

improvement in ride comfort with some gain in "road-holding". 

The semi-active systems perform nearly as well as the active 

systems on which they are based, and the simulation time 

histories in chapter 6 show that they rarely switch the damper 

off. The performance properties of the slow-active suspension 

systems are very close to those obtained from the limited state 

feedback active systems implying that the passive suspension 

elements (springs and dampers) are adequate for controlling the 

higher frequency components of the system response.

Moving towards the other end of the range, the differences 

between passive, active, semi-active and slow-active systems 

increase while the performance properties of the two passive 

systems (with different mass ratios) come closer to each other. 

The value of the height sensor decreases since the limited state 

feedback systems become as good as those with full state 

feedback. The addition of the passive damper to the semi-active 

suspension systems seems to be of no value in terms of the system 

performance, and the idea should be rejected altogether because 

of space and cost considerations.

Static deflections occurring as a result of varying the 

payload may be too great for the softer passive and semi-active 

suspension systems to be practicable without self-levelling,
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while attitude changes in manoeuvring and deterioration of the 

vehicle handling dynamics by encouragement of vehicle roll in 

cornering may also be excessive with the least stiff systems. An 

interesting and possibly useful feature of the active, semi

active and some of the slow-active systems, which can be deduced 

from tables 5.1, 5.2, 6.1, 6.2, 6.3 and 7.1, is that for any 

given requirement for working space under specific running 

conditions, they are much stiffer statically than corresponding 

passive systems (tables 4.1 and 4.2) giving good ride comfort. 

Thus it may well be appropriate to compare the performances of 

semi-active and slow-active suspension systems with passive 

systems having substantially greater stiffness and substantially 

less damping than those which perform best according to figures

8.1, 8.2 and 8.3, since the "best performing" passive systems 

will often be impracticable because of their low stiffness. The 

active systems can, in principle, be made self-levelling, and be 

made to adjust the control laws in manoeuvring and hard braking 

to obtain low steady state pitch and roll angles and good 

handling.

Almost invariably in reality an automobile suspension system 

must be designed to operate over a wide range of road surface 

roughnesses. The data obtained from Robson (1979) show that the 

ratio of worst to best mean square spectral density constants, 

Bl, for European roads, to be 1000. This variation is 

compensated by the reasonable expectation that the highest 

vehicle speeds will not be needed on the worst road surfaces and 

the best roads are probably so good that vehicle speeds much
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higher than those possible now would be needed to give a 

suspension problem of any significance when traversing them. 

Bearing these things in mind, it seems reasonable to suppose that 

a road vehicle suspension system should operate effectively over 

a 30 to 1 range of effective mean square values, and the 

limitations of fixed parameter passive systems, slow-active 

systems, semi-active systems with fixed spring stiffness, and of 

active systems which employ fixed characteristic passive elements 

in their realisation become very apparent when figures 4.1, 4.2,

5.1, 5.2, 6.1, 6.2, 6.3, and 7.1 are examined. It is clear that 

obtaining good performance for a given road surface but for 

different suspension working spaces requires wide variations in 

suspension parameters, and obtaining good performance for many 

different road surfaces with a fixed working space is an exactly 

equivalent problem. Thus the major weakness of systems which 

contain suspension elements of fixed parameters (springs and 

dampers) is that they can be ideal for only one of the many 

different conditions under which they operate, and will probably 

be far from ideal in conditions differing much from this one. It 

is anticipated however that systems with adjustable elements will 

be capable, with a suitable control stratagem, of performing well 

in many different running conditions.

Among existing practical systems are some with adjustable 

suspension elements. Some of these systems are included in the 

review by Goodall and Kortum (1983) and descriptions of others 

have appeared later. The adjustable rate damper has been 

standard technology for some time. Remote adjustment of the
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damping electrically or pneumatically has been shown to be 

feasible [Yokoya, Asami, Hamajima, and Nakashima (1984) and 

Mizuguchi, Suda, Chikamori, and Koboyashi (1984)], and in either 

case it can be controlled by microprocessor. Changes in 

stiffness appear more difficult to realise than changes in 

damping. Stepwise changes can be effected by using valves to add 

volume to an air spring system or by using a steel spring in 

parallel with a controllable air spring as described by 

Mizuguchi, Suda, Chikamori, and Koboyashi (1984). A limited 

bandwidth active suspension system (slow-active system) is 

available from Automotive Products Ltd, a component manufacturer. 

This system has the capability of improving the ride comfort as 

well as controlling the attitude changes in cornering and braking 

through the use of mechanically controlled hydropneumatic struts, 

see Goodall and Kortum (1983). The electronically controlled 

hydraulic damper (semi-active suspension system) has been tested 

and promoted by Lucas Aerospace Ltd. It has been used for 

improving ride comfort by using the error signal generated by 

comparing the actual vehicle's motions with corresponding signals 

from an ideal vehicle, existing in mathematical model form only, 

to control the hydraulic suspension damper, see Goodall and 

Kortum (1983). A fully active suspension system has been 

developed by Lotus Cars Ltd. In this system servo-valve 

controlled hydraulic actuators take the place of the conventional 

springs and dampers, and inputs to the servo-valves derive from 

an elaborate measurement and signal processing system, Wright and 

Williams (1984).
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It can be seen from the results generated in the appendix 

that a suspension system incorporating slowly variable damping 

will be no different from a conventional fixed parameter system 

in respect of its requirements for spring stiffness. The damping 

should be adjustable over a range from a little less than 

conventional to perhaps two and half times conventional, and 

judicious adjustment will give much improved ride comfort on 

rough roads, a gain in high speed stability, and improvements in 

transient handling responses, but otherwise will give 

conventional performance. A suspension which allows switching 

between a conventional spring rate and half of that (with self

levelling) in which a variable rate damper is employed, offers 25 

to 30% improvement in ride comfort under normal conditions with 

greater gains on rough roads (compared with convention). 

Increasing the range of stiffness variation possible will provide 

only small additional benefits. The slow-active suspension 

results show that if the 4 Hz bandwidth actuator were to be 

electronically controlled, by measuring and processing the body 

and the wheel displacements and velocities, good performance 

gains would be achievable particularly for a vehicle running on 

rough roads. However, further work is required for precisely 

determining these gains for vehicles running on smooth roads. 

The passive spring in series with the actuator may be chosen 

softer than the conventional one since the system is inherently 

capable of self-levelling and dealing effectively with the 

handling problems associated with soft springs.



148

CHAPTER (9)

CONCLUSIONS

The fundamental conflict between ride comfort and suspension 

working space requirements is the main problem in passive 

suspension system design. It is well known that the best comfort 

is obtainable by the use of very soft springs w .̂6h—li-ttlo damping- 

which would require impractically large suspension working space 

for travelling at normal speeds on normal roads, and would suffer 

unacceptablly large riding height changes with load changes, and 

attitude changes in manoeuvring and hard braking. The suspension 

working space available is therefore the starting point for a 

design, and best performances are obtained at values of 

suspension spring stiffness at which riding height changes with 

loading in normal circumstances use up a very significant 

proportion of the available suspension working space. This last 

factor is liable to dictate the choice of a spring rate higher 

than that for optimum performance accompanied by lower damping 

than that of the best dynamic system. Self-levelling removes the 

riding height change constraint, and is clearly particularly 

valuable for high ratios of laden to unladen weight. With the 

introduction of self-levelling, a reduction in spring stiffness 

and an increase in damping will normally bring substantial 

improvements in comfort and tyre load control for a given 

suspension working space.

Slight performance gains in ride comfort and somewhat more in 

dynamic tyre load control can be obtained by reducing the
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unsprung mass, but in view of the practical difficulty of doing 

so to any substantial degree beyond the point at which 

contemporary vehicles stand, the benefits do not appear 

sufficient to warrant extreme efforts in this direction. 

Although some performance gains in both ride comfort and dynamic 

tyre load control are achievable by adding a dynamic absorber to 

the unsprung mass, these benefits become very small when a 

practically dimensioned one is used. This limits the

cost/effectiveness of such systems.

The performance limitations inherent in using conventional 

fixed parameter passive systems in vehicles running on different 

road qualities can be to some extent overcome by the use of 

adjustable passive elements. Substantial improvements in ride 

comfort and in dynamic tyre load control, as compared with 

convention, can be achieved for a vehicle running on rough roads 

if the damping coefficient is increased to perhaps two and a half 

times conventional with a fixed spring of conventional stiffness. 

Again in comparison with a conventional system, roughly 30% 

improvement in ride comfort can be gained in normal running 

conditions if the spring stiffness is switched to a half of the 

conventional one (with self-levelling) with slightly less than 

conventional damping, with greater gains on rough roads if the 

damping is set to two and a half times convention.

Active suspension systems, employing actuators in place of 

the conventional suspension elements, are capable of generating 

forces intelligently by which performance gains over conventional

jt T IfUo LôlJc
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systems are obtainable. As the suspension working space becomes 

more restricted, the performance advantages of active over 

passive suspension systems increase, and it becomes very valuable 

if only a very limited suspension working space is available. 

Obtaining the best performance from any particular type of 

suspension over a variety of operating conditions, involving road 

roughness and vehicle speed variations and a fixed working space, 

requires the adjustment of suspension parameters through wide 

ranges. Fully active systems are capable, in principle, of such 

adjustment, and through avoiding the need to compromise can be 

made much better than fixed parameter passive systems. In 

addition to the performance gains, the active devices, with 

suitable measurements, can be used effectively for controlling 

the attitude changes due to static load changes and in 

manoeuvring, accelerating and braking. There are no big 

performance differences between full and limited state feedback 

active suspension systems which suggests that the value of the 

vehicle body to road surface distance sensor is not great, unless 

it can be used to preview the road surface.

Semi-active suspension systems employing passive springs to 

support the body mass and rapidly variable dampers can perform, 

if suitable control laws are used, better than fixed parameter 

passive systems. Semi—active suspension systems can be made, 

with some practical difficulties, to perform very well in all 

operating conditions, like fully active ones, if the semi-active 

damper is accompanied by a widely variable spring stiffness. In 

view of the relatively high static stiffness of the best
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performing semi-active systems, it may also be possible to obtain 

good performance over a wide variety of operating conditions with 

such types having fixed spring rates. Appropriate results are 

needed for evaluating the performance gains of such systems, with 

regard to the many different running conditions to which they are 

subjected.

With a limited bandwidth actuator fitted in series with a 

passive spring, and a passive damper between the body and wheel 

masses (slow-active suspension system), remarkable performance 

gains in ride comfort, dynamic tyre load control and suspension 

working space can be achieved, as compared with passive 

arrangements, if the actuator bandwidth is limited to 4 Hz, and 

no significant gains occur beyond this limit. The performance 

improvements are also dependent on the suspension working space 

available with the highest improvements at the smallest working 

space available following the same pattern as obtained in respect 

of active and semi-active systems (see figures 8.1, 8.2 and 8.3). 

If the 4 Hz bandwidth limit actuator is used with a conventional 

spring and damper, typical performance improvements of 13%, 8% 

and 30% in the r.m.s. values of ride comfort, dynamic tyre load 

and suspension working space parameters can be made, and clearly 

greater ride comfort improvements could be obtained if both 

systems were designed to have the same suspension working space. 

It can be anticipated that the use of an adaptable damper will 

help in obtaining good performances over many running conditions, 

but appropriate results to confirm the actual gains have not yet 

been generated.
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It can be expected that fully active suspension systems will 

be very expensive as compared with the other systems because of 

the high frequency response servo-hydraulic actuators needed. 

Since recent advances in electronic technology make the measuring 

and processing instrumentation quite cheap, the entire cost of 

the suspension system will be tolerable if cheaper suspension 

elements are available. The adjustable damper passive system has 

the opportunity in terms of cost/effectiveness because of the 

relatively minor extensions to existing technology needed for its 

realisation. It is anticipated that greater capital and running 

costs will be incurred if the adjustable spring rate is added. 

The semi-active suspension system is an attractive alternative 

since no power supply is needed for its operation. Slow-active 

suspension systems are also expected to be economically viable 

because of the relatively small and inexpensive actuators needed 

and the relatively low power source required for their operation.

In view of the results presented, further attention may be 

needed to some unresolved points. Additional understanding will 

come from these new results. The points of interest include;

1- The use of a fixed conventional spring in conjunction with the 

semi—active damper seems to be of valuable practical interest 

because of the simple modifications needed in respect of the 

existing dampers. The actual performance gains and the suitable 

laws required for controlling the dynamics of such systems over 

the wide range of running conditions to which they are subjected 

are not yet known.
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2- The use of a variable rate damper in parallel with a limited 

bandwidth actuator. The actuator in series with a fixed rate 

conventional spring with a controllable damper may provide 

excellent performance and reasonable costs. Suitable results are 

needed for evaluating the performance gains and the control 

policy required for controlling such systems.

3- The use of a servo-motor as a limited bandwidth actuator in 

the slow-active suspension system. More studies are likely to be 

required for determining the motor size, weight and cost and for 

evaluating the power consumption required for its operation.

4- The justification of the theory used in studying the simple 

quarter car models to be applicable to more complicated models. 

Further theoretical studies are required for understanding the 

behaviour of the two sided and full car models.

5- The execution of laboratory work in order to assist the 

theoretical results obtained, to practically test the actual 

performance ability of these systems, to confirm ideas about the 

specifications of the hardware required in their realisation, and 

to provide guidance in the design of prototype vehicles.
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NOMENCLATURE

Symbol Description

/V

A.A.B.C.CS.F.K, matrices defined in the text 

KS,M,MS,P,P1,Q,

R,S,V,Wc,Wo,ZS

B1,B2 road surface roughness constants

Ca dynamic absorber damping coefficient

Cs suspension damper coefficient

Da mean square spectral density of body

acceleration

Dd mean square spectral density of dynamic tyre

load

Dr mean square spectral density of the road

roughness displacement input 

Ds mean square spectral density of suspension

working space

DTL r.m.s. value of dynamic tyre load

E expected value of

Ha frequency response function of body

acceleration

Hd frequency response function of dynamic

tyre load variations 

Hs frequency response function of suspension

working space 

J performance index

Ka dynamic absorber spring stiffness
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Kfl ,Kf2 ,Kf3 ,Kf4 full state feedback gains 

Kll ,K12 ,K13 ,K14 limited state feedback gains

Ks suspension spring stiffness 

Ksl,Ks2,Ks3,Ks4 slow-active feedback gains

Kt tyre spring stiffness

RCP r.m.s. value of weighted body acceleration

SWS r.m.s. value of suspension working space

U vehicle speed

_X output amplitude vector

Y_ input amplitude vector

Y(t) single road profile displacement

b.accn. time history of body acceleration

d.t.l. time history of dynamic tyre load

df frequency interval

dt time interval

f frequency, Hz

fn uncoupled natural frequency

g(t) vector of measurable states

k number of time samples

1 number of sine waves

m number of measurable states

ma dynamic absorber mass

mb car model body mass

mw car model wheel mass

n system order

nl,n2 constants defining the slope of the road

displacement spectrum

p number of control inputs
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q number of controlled variables

r number of degrees of freedom

s Laplace operator

s.w.s. time history of suspension working space

t,T time

u(t) control vector

u(t) filtered control vector

v(t) white noise input vector

wf cut-off frequency

x(t) state vector

xs(t) transformed state vector

y(t) sinusoidal input vector

z(t) controlled state vector

C£ filter constant

^ damping as a proportion of critical

5 Dirac delta function

phase angle

V wave number

^(t) Gaussian random variable of "white noise"

form

^  frequency, rad/s 

Suffices

B.accn. body acceleration

D.T.L. dynamic tyre load

F.R.F. frequency response function

P.S.D. power spectral density



R.C.P. ride comfort parameter

it • in • s • root mean square value

S.A.F. semi-active force

S.W.S. suspension working space

W.B.Accn. weighted body acceleration
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APPENDIX

ADJUSTABLE PASSIVE SUSPENSION SYSTEMS

The results presented in chapter 4 show that the chief 

limitation of conventional fixed parameter passive suspension 

systems arises from the need to compromise in the choice of 

parameters between the demands of smooth and rough surfaces, 

vehicle attitude control with load changes and manoeuvring, and 

high speed vehicle handling quality. The results offered here 

have been obtained as a result of collaboration with a car 

manufacturing company from which the design parameters of an 

existing passenger car have been provided. It should be noted 

however that, it is not possible to include such results in 

chapter 4 because they are not easily compared with the results 

presented in chapters 4 to 7.

For many years, it has been practically feasible to vary the 

suspension damping under manual control, and recently two-state 

dampers under automatic control (with manual over-ride) were 

introduced on some production cars as demonstrated by Yokoya, 

Asami, Hamagima and Nakashima (1984). All that is necessary in 

principle, is that the damper orifice sizes be externally 

controllable. Also for many years, pneumatic and hydropneumatic 

springing systems which pump the vehicle to the same riding 

height regardless of the load carried, and stiffen the suspension 

for increasing load, have been in use, but the stiffness changes, 

although useful, are small. More recently, systems with 

stiffnesses more widely variable by virtue of having steel and

1 62
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controllable air springs in parallel as demonstrated by 

Mizuguchi, Suda, Chikamori and Koboyasha (1984), were introduced. 

It is therefore quite reasonable at this time to consider a 

vehicle with passive suspension systems containing variable 

spring and damping elements to be commercially feasible provided 

its performance is sufficiently good in comparison with that of 

other known systems, in particular fixed parameter, conventional 

systems.

Using vehicle parameters deriving from a part laden current 

production car, and disturbance inputs describing an average main 

road traversed at 70 m.p.h. (31.11 m/s), an average minor road 

traversed at 45 m.p.h. (20 m/s), and a very rough road traversed 

at 30 m.p.h. (13.33 m/s), those combinations of suspension spring 

stiffness and suspension damping parameter which imply a 

particular (realistic) root mean square value of the suspension 

working space are identified. Then, for each of these 

combinations, passenger discomfort and dynamic tyre load 

parameters are determined, and those designs which offer the best 

performance for each condition (of road roughness and speed) are 

identified. The performance properties of these designs 

operating in the other two "off-design” conditions are then 

examined, and the rationale for conventional fixed parameter 

systems is considered. The performance differences between 

purpose designed and compromise systems are then scrutinised, and 

the advantage which can be obtained by varying parameters, and 

the extent of the required parameter variations are regarded.
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The quarter car model used in generating these results is 

shown in Fig. A.l with base parameter values, as indicated in the 

figure, which differ somewhat from those used in studying the 

suspension systems in the previous chapters.

The equations of motion for the model shown in Fig. A.l can be 

written as,

mwxl(t) = -Ks[xl(t)-x2(t)] -Cs[xl(t)-x2(t)J +  Kt[xO(t)-xl(t)]

+Ct[x0(t)-xl(t)J

mbx2(t) = Ks[xl(t)-x2(t)] +Cs[xl(t)-x2(t)J ...........  A.l

The linear analysis discussed in chapter 3 is applied to the 

system equations A.l using the mean square spectral density

1.5 2.5
function D(f)=BlU /f * to represent the different road surface

qualities and the different vehicle speeds. Values of road

-6
constants (Bl) are taken from Robson (1979) to be 0.5x10 , 

-6 -6
5.0x10 and 30x10 to represent the main road, the minor road 

and the very rough road respectively. The performance parameters 

representing passenger discomfort, suspension working space and 

tyre load fluctuations are calculated as described in chapter 3.

The working space standard deviation of particular interest 

is judged to be 4 cm on the following basis. When the vehicle is 

in its static laden condition, the wheel can travel about 8 cm 

relative to the body before either bump or rebound stop is 

contacted. Thus, if the standard deviation of the wheel to body 

displacement were 4 cm, bump or rebound stop contact would occur 

for only 4.55% of the running time according to the linear system
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Fig. A. 1 Quarter car model with base parameter values
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calculations and the idea that the road surface is Gaussian. 

With the choice of 4 cm, the full working space available will be 

well utilised, while the linear system calculations will remain 

reasonably accurate.

-6
For ease of reference, let the condition Bl=0.5xl0 ,

-6
U=31.11 m/s be called (a), the condition Bl=5.0xl0 , U=20.0 m/s

-6
be called (b) and the condition Bl=30xl0 , U=13.33 m/s be called 

(c). Results for condition (a) are shown in figures A.2 and A.3, 

those for (b) in figures A.4 and A.5 and those for (c) in figures 

A.6 and A.7. In each case the range of stiffness and damping 

values are chosen so that the results span the suspension working 

space of special interest, 4 cm. The performance and design 

parameters of those systems giving the 4 cm suspension working 

space value under the conditions (a), (b) and (c) are identified 

in table A.I. The performance properties of systems with 

stiffnesses of 21000 and 10500 N/m, the former representing 

conventional design, as functions of damping are shown in Fig. 

A.8.

Results relating to the systems 5(a), 4(b) and 3(c), which 

give what can arguably be described as the best performances 

under conditions (a), (b) and (c) respectively, are extracted 

from figures A.2 to A.8 and scaled to appear in table A.2.

The results presented relate directly to the vehicle with 

specific loading travelling in a substantially straight path at 

constant speed. In reality, variations in load and accelerating, 

braking and cornering occur, and these components of the
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Table A.l Design and performance properties of 

particular passive systems needing 4 cm suspension 

working space

No Con. RCP DTL

N .

Ks

N/m

Cs

Ns/m

1 0.8386 1309 18350 177

2 0.4824 1184 11286 196

3 (a) 0.2962 1122 6906 217

4 0.2119 1082 4196 239

5 0.1834 1052 2490 261

6 0.1643 1078 1132 248

1 1.5265 1615 25680 834

2 1.1038 1432 15203 911

3 (b) 0.9699 1364 8917 987

4 0.9518 1337 5094 1054

5 0.9532 1335 2697 1086

6 0.9089 1378 1172 1011

1 4.1030 2813 51207 2365

2 3.3114 2352 29167 2523

3 (c) 3.1218 2242 16419 2679

4 3.1211 2242 8968 2780

5 3.1366 2256 4654 2850

6 3.1236 2261 2304 2836
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Table A.2 Main performance properties of passive 

systems of interest.

Condition

System
(a) (b) (c) Parameter

5(a)

0.1834

1052.0

4.0

0.4164 

2388.0 

9.08 *

0.7525 

4316.0 

16.4 *

RCP

DTL(N)

SWS(cm)

4(b)

0.4190 

589.0 

1.76

0.9518

1337.0

4.0

1.7200 

2416.0 

7.23 *

RCP

DTL(N)

SWS(cm)

3(c)

0.7610

546.0

0.97

1.7270 

1241.0 

2.21

3.1220

2242.0

4.0

RCP

DTL(N)

SWS(cm)

Standard

vehicle

0.5818

616.0

1.573

1.3210

1399.0

3.571

2.3870 

2528.0 

6.45 *

RCP

DTL(N)

SWS(cm)

* indicates a requirement for more working space

than is available and the consequent inaccuracy 

of the calculated values of RCP AND DTL.
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operational spectrum must be remembered in interpreting the 

results.

Consider a suspension specifically designed for condition

(a). Of those systems considered the best performing has a 

spring stiffness of 2490 N/m (decoupled undamped natural 

frequency fn =0.43 Hz) and a damping factor 'J = 0.14. This 

system (system 5(a), Fig. A.3 and table A.2) gives a ride comfort 

parameter RCP= 0.183 and a dynamic tyre load parameter DTL= 1052 

N under the condition (a). If it were operating under condition

(b), it would require much more working space between bump and 

rebound stops than it in fact has, in order for it to contact the 

stops sufficiently rarely for the linear calculations to be 

accurate. That is to say that the linear calculations can no 

longer tell us, with some precision, how the system as modelled 

would behave. However, the effect of hitting the stops is to 

some extent equivalent to stiffening the suspension spring, and 

as the system becomes effectively stiffer, its damping factor 

decreases (since Cs must increase as Ks does to maintain 

constant), and the equivalent linear system is too stiff and too 

lightly damped to perform well in comparison with a purpose 

designed system. If the system were to operate in condition (c), 

the same argument applies, but more strongly. Further its static 

stiffness Is so low that even very small load changes would use 

up much of the suspension bump movement available (in the absence 

of self-levelling) and, in any event, attitude changes in 

manoeuvring would be excessive and high speed stability would be 

problematical.
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For condition (b), the system with U=0.4 and fn=0.615 Hz 

(system 4(b), Fig. A.5 and table A.2) performs well, having 

RCP=0.952 and DTL=1337 N. If this system were operating in 

condition (a), scaling of these results and the 4 cm working 

space parameter yields the conclusion that the values of RCP, DTL 

and SWS would be 0.419, 589 N, and 1.76 cm respectively. 

Compared with system 5(a), which is purpose designed for 

condition (a), this performance is very bad in terms of ride 

comfort, but good in terms of wheel load control. If system 4(b) 

were to be used in condition (c), the situation would be similar 

to that involving system 5(a) in condition (b). The limit stops 

would be contacted with sufficient frequency for the system to 

become equivalent to a linear one which is too stiff and 

insufficiently damped for good performance, Fig. A.5. The static 

stiffness of this system [4(b)] is also inadequate in respect of 

loading variations, manoeuvring, and handling dynamics, self

levelling alleviating only the first of these difficulties.

Near to ideal for condition (c) is a design having fn=l.l 

Hz, ^=0.57 (system 3(c), Fig. A.7 and table .2) but operating 

under conditions (b) or (a), this system uses only a little of 

the working space and gives very poor comfort in comparison with 

the purpose designed systems. It is however a good system under 

all conditions from the tyre load control viewpoint.

The standard vehicle design is representative of current 

practice for fixed parameter systems and reference to table A.2 

will reveal that it is good in terms of tyre load control, but
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could, in principle, be improved in terms of comfort out of all 

recognition under conditions (a) and (b), and significantly under 

condition (c) by appropriate parameter adjustments (remembering 

that under condition (c) the standard vehicle will use the limit 

stops excessively and perform much like one of the system having 

too stiff a spring and insufficient damping depicted in Fig. 

A.7). The choice of the parameters of the standard vehicle is 

clearly dictated by the need for attitude control, the spring 

stiffness being too high for best comfort performance under all 

conditions. Using a self-levelling system improves matters a 

little from a ride comfort point of view by allowing a lower 

spring stiffness to be employed, but this may exacerbate high 

speed stability and cornering attitude problems depending on 

other aspects of the vehicle design.

Suppose now that the design of a vehicle in which the 

damping can be controlled while the stiffness is fixed is being 

considered. The stiffness must be substantially that of a 

conventional system for satisfactory attitude control, while best 

performance would appear to result from controlling the damping 

in the following manner. In condition (a), the damping constant 

would be set at about 950 Ns/m since this gives the best comfort, 

Fig. A.8, notwithstanding that the full working space available 

is not used (SWS = 1.68 cm) in this case. In initiating a 

manoeuvre, as sensed by an appropriate combination of steering 

wheel angle and vehicle speed signals [Yokoya, Asami, Hamagima, 

and Nakashima (1984)], the damping constant would be raised to 

about 2050 Ns/m since this value gives the best wheel load
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control, and raising the damping would improve the steering 

responses. The same setting (950 Ns/m) would be employed for any 

road roughness up to condition (b), when the working space would 

be fully used. Consequently, for roughness greater than (b), the 

damping would be increased from 950 Ns/m as necessary to limit 

the working space used, since increasing the damping to limit 

working space is better than increasing stiffness, figures A.5 

and A.7, the effective results of letting the bump and rebound 

stops come into play. The damping needed could be decided from 

continuously updated averaged wheel to body displacement 

information or by sensing the frequency of bump and rebound stop 

contact. Again manoeuvring would demand high damping, perhaps 

2500 Ns/m being the maximum coefficient attainable.

The advantages of this system over one of fixed design are 

that the vehicle handling, particularly at high speed, and/or on 

rougher surfaces, would be improved, and the ride comfort on 

rough roads would be improved quite substantially, but for most 

of the time, the system would be set up much like a conventional 

one.

If we now imagine that the stiffness will be controllable as 

well as the damping. To simplify the discussion and to take 

account of practicalities which suggest that changes in stiffness 

will occur stepwise, let us assume that stiffnesses of 21000 N/m 

and 10500 N/m are obtainable. Reference to Fig. A.8 will reveal 

that for Ks=10500 N/m, least discomfort occurs for Cs=378 Ns/m 

provided that the running conditions are not severe enough to
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cause significant bump and rebound stop contact. With this 

configuration SWS<4cm for roughnesses somewhat worse than (a), so 

that for smoother surfaces the suspension would be set up with 

these parameters. Note that the more flexible the spring is, the 

greater is the separation between the values of damping which are 

best for ride comfort and for wheel load control, so this 

arrangement is not good from the latter point of view. Since 

straight running is being contemplated, this would matter only in 

respect of braking and accelerating, and increasing the damping 

to give ^=0.5 in response to suitable brake pedal position, or 

throttle position and gear engagement signals, would improve this 

aspect. As the road roughness increases, the best policy for 

comfort is to leave the spring stiffness at the lower value and 

to increase the damping up to a likely maximum approaching 3000 

Ns/m sufficient to limit the demand for working space to what is 

available with only infrequent stop contact. By scaling the 

results in Fig. A.8, it can be deduced that in condition (a), The 

discomfort parameter would be about 70% of that for the standard 

configuration shown in table A.2, while in condition (b), it 

would be about 75% of the standard (table A.2). Again scaling 

Fig. A.8 data, in condition (c), RCP would be about 50% of the 

standard based on an estimate of the standard vehicle performance 

(with frequent limit stop contact) in this condition.

At high speed on smooth roads, the low stiffness and light 

damping suggested above may be such that the directional 

stability is poor, and if so, increases in damping should be made 

first, followed by switching to the high stiffness (if needed) to
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correct matters, ride comfort being sacrificed. As before, on 

initiating a steering manoeuvre of significance, switching 

immediately to the high stiffness mode and possibly also to 

maximum damping for a period of one or two seconds would be an 

appropriate policy, providing better handling behaviour than that 

available from a fixed parameter, compromise design.

If the spring stiffness were further reducible to say one 

quarter of that of a conventional car, further fairly small gains 

in comfort with a straightforward extension of the parameter 

adjustment stratagem described would be achieveable. The 

required range of the damping coefficient would not be much 

affected.




