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Abstract

The increasingly new data-hungry applications in our digital society now might no longer
be handled efficiently by the current cellular networks. Cell-free massive MIMO network
comes to resolve the traditional way of deploying wireless networks by blurring the cell
boundaries. The network comprises a large number of access points (APs) which connect
the users to a central processing unit (CPU) via fronthauls for coherent transmission
and reception. It is expected that this network can provide a uniformly high data rate
per user and per unit area. In this thesis, we study a centralized approach to cell-free
massive MIMO that can further exploit its potential with considering a practical issue
of limited-capacity fronthauls. We develop different schemes as well as strategies that
make the centralized approach feasible. Thereby, we propose the use of low-resolution
fronthauls and analyse its performance by making use of Bussgang theorem.

The first part of this thesis considers a cell-free network with single-antenna APs,
where a coarse scalar uniform quantizer is devised as an interface to the fronthauls. In
the second part of this thesis, we extend the network to the case of multi-antenna APs,
where two different processing schemes at the APs are studied: individual processing and
joint processing. For each part, two strategies for acquiring the channel state information
(CSI) under low-resolution fronthaul constraint are developed: estimate-and-quantize
(EQ) and quantize-and-estimate (QE). We analyse the performance of both strategies
and take them into account for deriving the achievable rate of the systems. Moreover,
the scalability of the centralized approach is also discussed in terms of fronthaul load
and AP processing. In the last part, we propose the use of a lattice vector quantizer
at multi-antenna APs for the high-mobility and high-density scenario, in which two
procedures for constructing the lattice codebook are developed.
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Chapter 1

Introduction

Mobile wireless communication is probably the fastest technology developed in the last
few decades. The fact that it has changed significantly the way we are living now, however,
might not be realized by most people. The next wireless generation, 5G and beyond
are also predicted to shape our society even more dramatically. The success of their
deployment promises a long list of new applications ranging from seamless video telephony
and 3D video streaming to real-time mobile gaming, telemedicine, self-driving car, and
smart city. The latter showcases just a few applications we can think of as a product of
expanding the network from merely connecting people to additionally connecting things.
Under the umbrella Internet of Things (IoT), the network will embrace all possible
real-world physical objects, such as sensors, traffic objects, machines, etc.

To achieve that ambition, the next wireless generation has to face a huge challenge.
According to the vision of the 5G association 5GPPP, the network should facilitate very
dense wireless communication links with 1000 times higher area capacity to connect over
7 trillion wireless devices serving over 7 billion people [1]. At the same time, it should
save 90% of energy per service provided, and create a secure, reliable Internet. On the
other hand, the radio spectrum as the main resource for wireless communication has been
very crowded. As the number of connected devices dramatically increases, whereas the
available spectrum is increasingly scarce, interference is more inevitable. Thus, carrying
out a communication system with this specification becomes then a delicate engineering
task. Despite the launching of the 5G network will be done soon in several countries by
2020, there are still many requirements that can not be fulfilled by the 5G.

In response to this challenge, researchers are now questioning whether the currently
deployed network, which is based on a cellular system, is still relevant for providing such
diverse applications with such stringent requirements. Historically, the motivation for
deploying cellular networks is to provide wireless service to a large area. Because the



2 Introduction

radio signal attenuates proportionally with the distance, the service area is divided into
multi cells where a certain base station is dedicated to cover a given non-overlapping
cell of area. In order not to interfere between cells, adjacent cells can be operated in
a different spectrum. However, with the increasing number of subscribers and high-
bandwidth consuming applications, the spectrum becomes scarce such that the cells are
pushed to reuse the same frequency to maintain the spectral efficiency. As a consequence,
this creates an inter-cell interference which can severely degrade the user performance
especially for the user at the cell edges. Hence, it requires a deliberately designed
technique to suppress inter-cell interference.

Apart from the success story of the cellular system, the deployment of cells as we have
today seems to constrain the design flexibility. Therefore, the time to rethink the concept
of the cellular system might have come as many tools have been available and many
technologies have been developed. One among others is massive MIMO (Multiple Input
Multiple Output). Massive MIMO offers a solution to the spectrum crunch by making
use of a large number of antennas at the base station while serving many terminals in the
same time-frequency resource [2, 3]. Recently, an unconventional notion has emerged to
deploy massive MIMO without the restriction of cells, which is called as cell-free massive
MIMO [4, 5]. A strong contrast to the cellular system can be seen in how the service
area is defined. In cell-free massive MIMO, a user is not served only by a base station,
which is dedicated to a given area, but by all base stations simultaneously in a large
coverage area. The signal from other base stations, which is conventionally treated as
interference, is now becoming a useful signal. Moreover, there is a massive number of
distributed base stations, or also called access points (AP), who serve a smaller number
of users. By deploying access points in a distributed manner, many advantages can be
obtained such as better coverage and the availability of macro-diversity such that the
throughput per user per area can be increased. To enable this, the access points are
connected to a central processing unit (CPU) via fronthaul links.

1.1 Motivation
Due to its potential to meet high data rate demand for a large number of users with
uniform coverage, cell-free massive MIMO has initiated a new research direction and has
attracted much attention as indicated by the increasing number of published research
papers in the past few years. The initial work on cell-free massive MIMO mostly focused
on the performance analysis when the signal processing, which comprises detection in
the uplink and precoding in the downlink, is performed in a distributed manner at the
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access points, making use of the locally-obtained channel state information (CSI) [6].
The purpose of doing this is usually to deal with the fronthaul load and scalability
issues that exist inherently in a large distributed antenna system (DAS) such as cell-free
massive MIMO. To perform coherent processing at the CPU, the transmission over the
fronthaul links between APs and CPU is performed in the baseband. This means that the
advantages of cell-free massive MIMO must be paid by stringent fronthaul requirements.
Due to the large number of APs, there is then a concern that the CSI signalling over the
fronthaul links becomes unscalable. That is, the fronthaul load will increase excessively
with the number of served users. Thus, when the signal processing is performed at the
APs, it can presumably avoid the CSI signalling over the fronthaul. While this may be
true, the approach is indeed not scalable in terms of data signalling, since the processing
at the AP increases the number of data signals to be transmitted over the fonthaul links
proportionally to the number of users.

In contrast, we study in this thesis a centralized approach to cell-free massive MIMO.
Here, we refer to a scheme as centralized when the CSI is available at the CPU and joint
processing is performed at the CPU. The benefits of the centralized approach over the
distributed approach are twofold. The first and perhaps the most important thing is
that the centralized approach can deliver significantly higher spectral efficiency. This is
shown in [7–10] for various types of joint processing at the CPU. A rather comprehensive
comparison has been provided independently in [11] where the authors sort cell-free
massive MIMO schemes based on the degree of cooperation among APs. From the
perspective of the application, the ability to support a large number of users and at the
same time to deliver a high spectral efficiency can be crucial for the new IoT scenario.
For instance, in [8, 12] it is mentioned that the connected vehicle in autonomous driving
requires very high data rates in the uplink to transmit the surrounding information
generated by the many sensors on it. The second benefit of the centralized approach is
that it is more scalable in terms of data signalling. Indeed, at a particular operating point,
the overall fronthaul load is much lower than the distributed approach as investigated in
[11]. Moreover, a low-complexity strategy can also be applied to reduce the load of the
CSI signalling as shown in [10].

Another issue that is often overlooked in the study of the performance of cell-free
massive MIMO is the fact that the fronthaul links are in practice not perfect. Instead,
the fronthaul links must be subject to a limited capacity. It is well known from the
information theory literature that error-free transmission can be achieved at the channel
output when the rate of the channel input is less than the channel capacity. To that end,
in the uplink scenario, we should represent the received signal at the APs at maximum
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with the rate of the fronthaul capacity. In this case, we represent it as a bitstream and
compress at a rate below than the fronthaul capacity. Hence, an analog-digital converter
(ADC) must be utilized at the APs as an interface to the fronthaul. Regarding the
scalability issue, the unscalable scheme may then lead to a high data rate that requires
high precision ADCs. Furthermore, cell-free massive MIMO is also attractive to support
wireless transmission at millimeter-wave due to its ability to exploit macro-diversity. This
might be useful to reduce the outage probability due to blockages and shadowing to which
the millimeter-wave transmission is sensitive. Obviously, operating at millimeter-wave
can provide us a huge channel bandwidth which allows us to transmit a large amount of
data, but in turn, can exhaust the utilization of ADC. As a consequence, the AP becomes
power-hungry. This is due to the high-resolution quantizer inside the ADC whose power
consumption increases exponentially with the number of quantization bits [13]. In this
situation, utilizing low-resolution quantization might be a feasible option. This is in
line with the prospect of 6G [14], where low-resolution technology is expected to be an
enabler to support the processing of high data rates with low power consumption.

In that respect, it seems important to study a scheme for cell-free massive MIMO
that is scalable and more friendly to the fronthaul. Although much work has been done
in this area [15–25], cell-free massive MIMO is still in its infancy, where further research
needs to be carried out, particularly when the assumption of limited fronthaul capacity
is applied. This thesis aims to fill the remaining gap by proposing a centralized approach
to cell-free massive MIMO with respect to low-resolution fronthaul.

1.2 Contributions
In this thesis, we study the concept of centralized cell-free massive MIMO to further
extent. In this case, we develop some schemes as well as strategies that make the
centralized approach feasible under the practical constraint of limited-capacity fronthaul
links. The fact that a large number of APs is deployed in cell-free-massive MIMO, we
propose the use of low-resolution fronthauls and analyse its performance by making use
of Bussgang theorem. Specifically, the contributions are:

• For single-antenna APs, we devise a low-resolution scalar uniform quantizer as
an interface to the fronthaul, where we model the quantizer using Bussgang
decomposition and characterize its optimum step size.
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• Using the low-resolution scalar uniform quantizer, we develop two strategies for
acquiring the CSI at the CPU. The first is the estimate-and-quantize (EQ) strategy,
and the second is the more scalable quantize-and-estimate (QE) strategy.

• We analyse the performance of both strategies in terms of the mean squared
error (MSE). Through numerical simulation we verify our analysis and asses the
performance of our developed strategies.

• Taking into account the quantization distortion that affects the CSI acquisition
and the data transmission, we derive the achievable rate per-user for the case of
zero-forcing (ZF) detection performed at the CPU. We provide also a simpler SINR
expression for ZF detection.

• We examine also the scalability of the centralized cell-free massive MIMO with
single-antenna APs.

• In the case of multi-antenna APs, we study two different processing schemes at
the APs for low-resolution fronthauls. We investigate in the first scheme the case,
where the received signals across the multiple antennas are treated individually,
and a scalar uniform quantizer with low resolution is used at each antenna. We
develop the EQ and QE strategies for acquiring the CSI for this scheme and derive
the achievable rate.

• Considering that the resulting fronthaul load from the multi-antenna AP increases,
we propose in the second scheme joint processing of the signals received across the
multi antennas. With low bit-rate per dimension, we utilize vector quantizer, which
is modelled by Bussgang decomposition. We develop the EQ and QE strategies for
acquiring the CSI for this scheme and derive the achievable rate.

• Similarly, we examine the scalability of the centralized cell-free massive MIMO
with multi-antenna APs.

• We investigate further the joint processing scheme at multi-antenna APs for the
high-mobility and high-density scenario, for which we suggest the use of a lattice
vector quantizer. For this purpose, we study the lattice quantizer design problem
with a fast processing requirement.

• We address the lattice codebook design problem. To deal with this, we adopt
the geometrical shaping approach. In this case, we propose two procedures for
constructing a lattice codebook devoted to uncorrelated and correlated channel
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scenario. We do a modification to Conway and Sloane algorithm and introduce a
scale factor that brings the codebook to a near-optimal performance.

• To the codebook with a correlated input signal, we propose the use of ellipsoidal
Voronoi shaping and the use of Karhunen–Loève transform in the quantization
process.

Parts of this thesis have been published in a journal article and in conference and
workshop proceedings as listed below.

Journal Papers

• D. Maryopi, M. Bashar, and A. Burr, “On the Uplink Throughput of Zero Forcing
in Cell-Free Massive MIMO With Coarse Quantization,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 7, pp. 7220–7224, Jul. 2019, issn: 0018-9545. doi:
10.1109/TVT.2019.2920070

Conference Papers

• A. Burr, M. Bashar, and D. Maryopi, “Cooperative Access Networks: Optimum
Fronthaul Quantization in Distributed Massive MIMO and Cloud RAN,” in 2018
IEEE 87th Vehicular Technology Conference (VTC Spring), Jun. 2018, pp. 1–5.
doi: 10.1109/VTCSpring.2018.8417560
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1.3 Outline of the Thesis
The thesis is organized as follows. Chapter 2 provides background to the subsequent
chapters. In the first part of this chapter, we will first introduce the basics of massive
MIMO, where we will consider two types of deployment, namely multicell and cell-free
massive MIMO. The implication of having a large number of antennas at the base station
is discussed and the performance of both deployments is given. In the second part of
this chapter, we will present the basic concept of quantization, where we will give an
overview of scalar quantization and vector quantization. Further, we will also describe
two tools that can be used to model a quantization process based on the assumption of
the required resolution.

In Chapter 3, a framework for designing a centralized cell-free massive MIMO
with capacity-limited fronthaul is introduced in the case where only a single antenna
is available at the APs. We begin the discussion in this chapter firstly by defining
centralized cell-free massive MIMO and explaining its general concept. We will then give
the scope of the discussion by describing the considered system model. To deal with a
limited-capacity fronthaul, we wish to design an optimum quantizer for the fronthaul.
This will be presented subsequently for a scalar uniform quantizer with low resolution.
We will then look at an important part of centralized cell-free massive MIMO which is the
CSI acquisition. This is then followed by the scheme for data transmission considering
the limited-capacity fronthaul. Further, the achievable rates of this approach are given
where we will also derive a simpler SINR expression. Then, a scalability issue of cell-free
massive MIMO will also be discussed. We will see that the centralized approach can
resolve some aspects of this issue. Numerical results for validating our analysis and
evaluating the performance of our proposed scheme are then given afterwards.

Chapter 4 will extend the previous chapter to multi-antenna APs, and consider two
schemes of AP processing. In the first scheme, we process the received signal across
the multi-antenna AP separately, where we use independent scalar quantization at each
antenna similar to the work in [9]. Since the resulting fronthaul load from the multi-
antenna AP is larger than for a single-antenna AP, we propose in the second scheme to
jointly process the received signal at the APs. By exploiting the fact that the channel
across the AP’s antenna is correlated, we employ Vector Quantization (VQ) with a small



8 Introduction

number of bits per dimension. After describing the quantization model, we will also
describe how the CSI is acquired in the joint processing scheme and determine the data
rate achievable with this scheme. Before we evaluate its system performance, we will
discuss the scalability and the possibility to extend the centralized cell-free massive MIMO
with multi-antenna APs into a larger network. Then, we will show using simulations
that the joint processing can deliver higher data rate than the individual processing
counterpart at the same fronthaul resolution. In the opposite situation, we can set the
joint processing at the same throughput performance as the individual processing, which
compensates with a lower requirement of the fronthaul load.

In Chapter 5 we will look at lattice vector quantization, which is intended to be
applied at the multi-antenna APs to jointly quantize the received signals following the
scheme in the previous chapter. Therefore, the focus of this chapter is to devise a
codebook for the above-mentioned application. In this case, we consider constructing a
codebook from lattice points. Although the constructed codebook is suboptimal, as we
will see later, by using a lattice we aim to find a good trade-off between performance and
complexity. After giving a brief introduction to lattices, we will describe the codebook
design problem using a lattice. Then, we propose two procedures for constructing a
lattice codebook which is fast and near-optimal. These are intended for uncorrelated
and correlated channel applications, respectively. Finally, we give some numerical results
which evaluate the performance of our proposed procedures.

Finally, in Chapter 6, we summarize the main results of this thesis and provide some
potential research in the future.

1.4 Notation
In this section we introduce some essential notation we use in this thesis. Any specific
notation will be described when it is appeared for the first time. Roman letter, lower-case
boldface letter and upper-case boldface letter are used respectively to denote a scalar,
a column vector and a matrix. The set of all complex and real M × N matrix are
represented by RM×N and CM×N respectively. By ⟨·, ·⟩ we denote the inner product with
∥ · ∥ as its corresponding vector norm or Frobenius norm. The expectation of a random
variable is represented by E{·}. We denote circularly complex Gaussian distribution
with mean m and covariance matrix Σ by CN (m, Σ). We use IN for the N × N identity
matrix and 1N for the all-one vector of dimension N . We denote the complex conjugate
by the superscript (·)∗ and the transpose conjugate by (·)H . For a vector a, diag(a)
denotes a diagonal matrix with the diagonal elements created from vector a.



Chapter 2

Preliminaries

This chapter is intended as a preview and background to the subsequent chapters. In the
first part of this chapter, we will first introduce the basics of massive MIMO, where we
will consider two types of deployment namely multicell and cell-free massive MIMO. The
implication of having a large number of antennas at the base station is discussed and
the performance of both deployments is given. In the second part of this chapter, we
will present the basic concept of quantization, where we will give an overview of scalar
quantization and vector quantization. Further, we will also describe two tools that can be
used to model a quantization process based on the assumption of the required resolution.

2.1 Massive MIMO
The availability of many antennas in Multiple Input Multiple Output (MIMO) systems
can be utilized in different ways. By sending multiple data streams through many
independent paths we can exploit the so called multiplexing gain such that the data rate
is increased. On the other hand, by sending the same data through different paths we
exploit the diversity to make the transmission more reliable. In the multi-user scenario
such as a cellular system, the many users can be treated as a collection of antennas that
form a MIMO system together with the antenna array at the base station. It allows either
many users to be served simultaneously or a good propagation channel to be allocated to
each user.

Massive MIMO is a form of multi-user MIMO system. The most distinguishing thing
between massive MIMO and general multi user MIMO is the number of antennas which
serves the user. In massive MIMO the number of antennas involved is very large and
much greater than the number of user antennas. As the number of antennas increases the
propagation channel begins to enjoy the channel hardening property which means that
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the singular value distribution of the propagation matrix becomes more deterministic
[3]. As explained in [3] it is desired to have all singular values equal to possibly obtain
parallel independent links such that the upper bound of the capacity can be reached.
Furthermore, scaling up the number of antennas at the base station for a fixed number
of users makes the propagation more favorable in the sense that the channels tend to be
nearly orthogonal. Those properties lead then to the practical benefit of massive MIMO
such as increasing the spectral efficiency, optimal use of linear processing etc.

To gain insight to how massive MIMO works, let us consider a multi user MIMO
system consisting of a base station equipped with M antennas and having K users which
are connected by the propagation channel G ∈ CM×K . For reliable communication the
knowledge of channel state information (CSI) is important to compensate the effect of
the channel. If we let the number of antennas M and the number of users K grow very
large, then the matrix G that should be estimated will also grow proportionally. As long
as we can provide the required CSI it seems that we can serve an unlimited number of
users by increasing the number of antennas at the base station. However, CSI acquisition
in large dimension is not trivial and is one of the main limiting factors.

The standard way of acquiring CSI is by sending training pilots, and then the channel
will be estimated from the received pilots. To get a good quality of CSI a certain number
of pilots is required, depending on the propagation environment. In Frequency Division
Duplex (FDD) the uplink and downlink transmission is separated by frequency, and
therefore the channel is different between uplink and downlink. The strategy usually
used in this protocol uses a feedback link. In the case of the downlink, where CSI is
needed for precoding, the base station sends pilots at each antenna at intervals related
to the coherence interval, which is the time-frequency block with approximately static
fading. The users estimate the channel and send the estimated channel back after the
uplink training pilots. When the number of antennas grows very large, this strategy
becomes inefficient because the number of pilots scales with the number of antennas and
thus many resources are used only for pilots in the feedback channel.

To overcome that problem, it is more efficient to operate massive MIMO in Time
Division Duplex (TDD), where uplink and downlink take place in succession. Because
they operate in the same frequency resource, they have the same frequency response over
the available coherence interval. In this situation we can use the estimated channel in
the uplink also for the downlink due to the channel reciprocity. The base station can
use the conjugate transpose of matrix G for doing precoding. Thus, the costly channel
feedback can be saved. On the other hand, there have been some attempts to realize
massive MIMO in FDD such as in [31, 32]. Most of the motivation for it is the availability
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of many frequency bands, which so far have been dedicated for FDD by the previous
technologies. The FDD protocol is also preferred in the situation where the calibration
of the antenna front end between the transmitter and receiver is difficult to perform in
order to maintain the channel reciprocity [33]. However, TDD is still more efficient than
FDD and generally better in terms of the performance for utilizing a large number of
antennas at the base stations [34, 35].

The main features of the massive MIMO scheme in the initial work of Marzetta [2]
are the TDD protocol and the use of large numbers of antennas at non-cooperating base
stations. In the following sections we keep those features and outline the scheme in more
detail based on its system architecture. A comprehensive discussion of massive MIMO
can be found in [33] and in [36] for the context of 5G .

2.1.1 Multicell Massive MIMO

We discuss first in this section a multicell massive MIMO system with co-located antenna
architecture. Suppose that we have a system of L cells each of which has one base station
with M co-located antennas serving K single-antenna users. The propagation channel
between the k-th user in the l-th cell and the m-th base station antenna in the j-th cell
can be modelled by

gjlmk = hjlmkβ
1/2
jlk , where (2.1)

j = 1, ..., L, l = 1, ..., L,

m = 1, ..., M, k = 1, ..., K.

The coefficient hjlmk represents the small scale fading between the k-th user and
the m-th base station antenna of the corresponding l-th and j-th cell. We assume this
coefficient to be uncorrelated and complex Gaussian distributed with zero mean and
unit variance. The large scale fading is denoted by βjlk, which includes the path loss
attenuation and shadowing. Due to the co-located configuration, every single antenna at
the base station of the j-th cell perceives the same large scale fading from the k-th user
in the l-th cell. Thus, we can conveniently write the channel for all K users in particular
cell l to the base station of cell j as a matrix given by

Gjl = HjlD1/2
jl , (2.2)

where the coefficient gjlmk and hjlmk respectively compose the m-th row and k-th column
of matrix Gjl, Hjl ∈ CM×K . Moreover, we denote the k-th column of matrix Gjl by
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gjlk. Here, the matrix Djl = diag(βjlk) ∈ CK×K is a diagonal matrix where it has
all zeros in the off diagonal positions and has large scale fading coefficient βjlk as its
diagonal elements. Further, we would like our channel to posses the channel hardening
and favorable propagation properties. They are respectively fulfilled when the following
conditions

∥gjjk∥2

E{∥gjjk∥2}
→ 1 and

gH
jlmgjjk√

E{∥gjlm∥2}E{∥gjjk∥2}
→ 0 (2.3)

hold almost surely as M → ∞ [33]. To achieve those properties with high probability we
set therefore M ≫ K. This setting will also imply

GH
jl Gjl

M
= D1/2

jl

(
HH

jl Hjl

M

)
D1/2

jl (2.4)

≈ Djl

Pilot Transmission

Prior to receiving or transmitting data every user sends a pilot sequence intended for the
base station to estimate the channel. We assign each pilot sequence according to the
time frequency resource, which has a consequence that the number of orthogonal pilot
sequences is limited by the available coherence time τc and the coherence bandwidth ωc

of the channel. We assume the frequency reuse factor one is applied and the transmission
in each cell is synchronously performed such that the same time-frequency resource is
shared among all K users in L cells. It follows that the same set of pilot sequences should
be reused in each cell.

Suppose that the j-th cell is the cell under observation. The base station in the j-th
cell wants to estimate the channel only from the K users in the j-th cell denoted by Gjj.
Each user in the j-th cell sends its complex valued pilot sequence ϕk ∈ Cτp×1, k = 1, ..., K,
where it has the length τp < τc samples and unit energy ∥ϕk∥2 = 1. This user-specific
pilot is taken from a set of orthogonal sequence Pϕ = {ϕ1, . . . , ϕK}. At the same time,
the other K users in the L − 1 cells send their pilots, and hence the received pilot signal
at the j-th base station is

Yp,j = √
ρp

L∑
l=1

GjlΘl + Wj, (2.5)

where Yp,j has the dimension M × τc and the matrix Θl = [ϕ1l, . . . , ϕKl]T ∈ CK×τc is
composed of pilot sequences from the l-th cell. The notation ρp denotes the normalized
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transmit power of the pilot which is obtained from dividing the pilot transmit power
by the noise power at the receiver. The matrix Wj ∈ CM×τc denotes the additive noise
matrix whose entries are independent complex normal distributed as ∼ CN (0, 1). At
the base station j the received pilot signal is projected onto its own orthogonal pilot
sequences Θj resulting

Yp,jΘ∗
j = √

ρp

L∑
l=1

GjlΘlΘ∗
j + WjΘ∗

j (2.6)

The channel matrix from the user in the cell j is then estimated by least squares as

Ĝjj = √
ρpGjj + √

ρp

L∑
l=1
l ̸=j

GjlΘlΘ∗
j + WjΘ∗

j (2.7)

It can be seen that there exists interference during the pilot transmission, called
pilot contamination, expressed by the second term in equation (2.7). In worst case,
where the pilot sequences from all L cells are taken from the same set Pϕ and possibly
non-orthogonal, we obtain

Ĝjj = √
ρp

L∑
l=1

Gjl + WjΘ∗
j . (2.8)

Because the distance of the K users in the j-th cell is distributed nearer to their base
station, the portion of Gjj in equation (2.8) is larger than Gjl∀l ̸= j. Nevertheless, it
degrades the estimated channel significantly which in turn limits the performance of
massive MIMO more than any other kind of impairment. Due to the greater number of
users allowed in massive MIMO, pilot contamination also has a larger impact in massive
MIMO than in conventional multiuser MIMO. Some solutions to deal with this problem
have been studied. One of the most established way is by implementing pilot reuse and
power control in the pilot transmission [37].

Uplink Data Transmission

Multicarrier modulation as well as single carrier modulation can be employed in massive
MIMO. We consider here the single carrier modulation, but the extension to the multicar-
rier case should be straightforward without many changes. In the uplink phase, for each
channel use, the k-th user in the l-th cell is modeled to send an independent identically
distributed (i.i.d.) random message qkl ∈ N which is obtained from some finite alphabet
M. The message is mapped through modulation onto the complex plane generating the
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transmit symbol xkl ∼ CN (0, 1) which is assumed to be complex Gaussian distributed to
attain the maximum entropy. At the base station of the j-th cell the data-bearing signal
yj is received as a superposition of xkl described by

yj = √
ρu

L∑
l=1

Gjlxl + vj, (2.9)

where vj ∼ CN (0, IK) is the received noise vector. We also assume that the transmit
symbols satisfy E{|xkl|2} = 1 over the codebook, such that the notation ρu represents the
normalized transmit power for the uplink data. Since we normalize the transmit power
by the noise power at the receiver, the quantity ρu can also be seen as the normalized
transmit SNR. Further, the received symbol at each antenna and the transmit symbol of
each user can be arranged in column vectors respectively given by

yj =


y1j

...
yMj

 , xl =


x1l

...
xKl

 .

Due to favorable propagation a linear detector can be used by the base station j to
recover each symbol xkj from the received signal yj with relatively good performance. It
is done by multiplying the received signal yj by the detector matrix AH

rj = AHyj (2.10)

= √
ρu

L∑
l=1

AHGjlxl + AHvj (2.11)

= √
ρuAHGjjxj + √

ρu

L∑
l=1
l ̸=j

AHGjlxl + AHvj,

where A ∈ CM×K is chosen according to the optimized system parameter. The received
symbol rkj for particular user k, which is the k-th element of rj, can be derived further as

rkj = √
ρuaH

k gjjkxkj + √
ρu

K∑
i=1
i ̸=k

aH
k gjjixij + √

ρu

L∑
l=1
l ̸=j

K∑
i=1

aH
k gjlixij + aH

k vj, (2.12)

where ak and gjjk are the k-th column of matrix A and Gjj respectively. In equation
(2.12), it can be seen that the first term expresses the desired symbol, whereas the second
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and the third term express respectively the intracell and intercell interference. It follows
that the Signal to Interference Noise Ratio (SINR) of user k can be expressed by

SINRu,k = ρu|aH
k gjjk|2

ρu

L∑
l=1

K∑
i=1

|aH
k gjli|2 − ρu|aH

k gjjk|2 + ∥ak∥2
. (2.13)

Then, the achievable rate for the k-th user in uplink can be expressed in term of SINRk

as [2]
Ru,k = γUL(1 − τp

τc

)log2(1 + SINRk), (2.14)

where γUL is a coefficient specifying the portion of uplink data.
The achievable rate given in (2.14) implicitly depends on the detector scheme or the

choice of detector matrix A. Among the most studied linear detectors are Maximum
Ratio Combining (MRC), Zero Forcing (ZF) and Minimum Mean squared Error (MMSE),
where each of them is motivated by a different approach. In MRC the aim is to maximize
the SNR of each user, so that the column vector of A is chosen as

aMRC,k = arg max
ak∈CM×1

ρu|aH
k gjjk|2

∥ak∥2 , (2.15)

where the maximum is reached when ak = gjjk. On the other hand, the design goal of
the ZF detector is suppressing the undesired signal from other users. Specifically, we
look for a detector aZF,k which satisfies the following equation

gH
jjkaZF,k = 1 and gH

jjk′aZF,k = 0 ∀k′ ̸= k, (2.16)

or equally satisfies
GH

jjAZF,k = IK , (2.17)

where Ik is an identity matrix of size K. The condition is well known to be fulfilled by
pseudo inverse matrix of GH .

In contrast to MRC and ZF, MMSE makes an effort to take care of SNR and
interference at the same time by minimizing the mean squared error between the received
and the transmitted symbol written as

aMMSE,k = arg min
ak∈CM×1

E
{
|aH

k yj − xkj|2
}

. (2.18)
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It is also well known that the solution of MMSE is a linear Wiener filter. In brief,
assuming a known CSI at receiver the linear detector matrices are generally given by [38]

A =


G MRC
G(GHG)−1 ZF
G(GHG + 1

ρu
Ik)−1 MMSE

(2.19)

Downlink Data Transmission

In the downlink we consider the opposite direction of transmission where the base station
in the j-th cell sends specific data to all K users in the j-th cell. As in the uplink we
consider the same model of single carrier signal with xkj ∈ C as the transmit symbol
intended for the user k in the j-th cell. The data-bearing signal received by the k-th user
in the j-th cell can then be described as

yj = √
ρd

L∑
l=1

GT
jlAxl + vj, (2.20)

where xl is the transmit vector containing the transmit symbol of all K users in the
l-th cell and A is the precoding matrix. We hold the assumption that the base station
knows the channel from the estimate of the uplink training pilot. Further, we make use
of channel reciprocity, where due to the channel hardening the statistics of the actual
channel in the downlink is equal to the statistics of the estimated channel in uplink. As a
consequence, we can apply the same matrix in (2.19) for precoding and the performance
is close to the case of known CSI at users. As in the uplink, we can derive from (2.20)
the SINR in the downlink as

SINRd,k = ρd|aH
k gjjk|2

ρd

L∑
l=1

K∑
i=1

|aH
k gjli|2 − ρd|aH

k gjjk|2 + 1
(2.21)

and the achievable rate as

Rd,k = γDL
(

1 − τp

τc

)
log2(1 + SINRk), (2.22)

with γDL = 1 − γUL denoting the remaining portion of the payload in downlink.
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Fig. 2.1 A Cell-Free Massive MIMO networks with M access points and K users.

2.1.2 Cell-Free Massive MIMO

We observe now a deployment where the massive antennas at each base station from
the multicell networks are spread over a wide area. In this case, we have a distributed
antenna system (DAS) with a very large number of service antennas or access points
(APs) serving a smaller number of users. However, in contrast to multicell massive
MIMO the service area in the networks is not divided into cells. Since there are no cell
boundaries and a large number of APs is used, this network is called cell-free massive
MIMO. In this network, a user is not limited to be served by a dedicated AP in a given
area, but a user can be served jointly by many distributed APs which are connected to
central processing unit (CPU) via fronthaul links. This is illustrated in Fig. 2.1.

In this section we introduce first the simple model of cell free-massive MIMO according
to [6], where the APs and the UEs are each equipped with a single antenna and conjugate
beamforming is used for the detection and precoding at APs. As in the multicell setup,
the channel between the k-th user and the m-th AP is specified by

gmk = hmkβ
1/2
mk , (2.23)

where the coefficient hmk models the small scale fading between the k-th user and the
m-th AP with the assumption to be i.i.d. ∼ CN (0, 1). However, the i.i.d. assumption
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of the small scale fading here is stronger than in multicell massive MIMO, because the
distributed configuration in a large area makes the distances among APs probably to
be far apart so that they are scattered differently. Furthermore, due to the distance
between APs, the average channel gain from the APs to the users, or the large scale
fading coefficient denoted by βmk, is likely to be uncorrelated for each user k and each
AP m. This so called macro diversity makes the transmission more robust to blockages
and shadowing effects which allows all users to be served with adequate signal strength.
As opposed to multicell networks all users are closer to the APs such that a uniformly
good coverage can be assured with high probability.

In consequence of the distributed configuration the overall channel between UEs and
APs can only then be written in matrix notation as

G = H ⊙ D1/2, (2.24)

where ⊙ denotes the Hadamard product or element-wise product. The components of
H, D ∈ CM×K are respectively the small scale and large scale fading coefficient for each
m and k. If we have more than one antenna, suppose N at each AP, then every N rows
of the matrix D have the same components. Nevertheless, we consider in this section the
case of single-antenna APs and UEs. The discussion with multi-antenna APs is deferred
until we come to Chapter 4.

Pilot Transmission

As in multicell massive MIMO we follow the same procedure in the cell-free configuration,
where each user sends a specific pilot sequence to acquire the channel before transmitting
data. We also utilize pilot sequences taken from an orthonormal set

Pϕ = {ϕk ∈ Cτp×1 : ⟨ϕk, ϕl⟩ = δkl, ∥ϕk∥2 = 1, k = 1, ..., K}, (2.25)

where they should have a unit energy and have an inner product equal to one if and only
if the user index k = l otherwise zero. The set Pϕ for instance can be obtained from
a unitary matrix computed by the singular value decomposition of a complex random
symmetric matrix. In this case, the pilot length τp specifies the number of user K that
can use an orthogonal pilot sequence. This can be a problem for a cell-free system due
to the large number of users that should be served simultaneously in a large area. When
K > τp, it can happen that different users send the same pilot and causes a sort of pilot
contamination. To deal with it, a greedy pilot assignment method has been proposed in
[6], which seems to work well.
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At the m-th AP the received pilot ym from all K users is observed as

ym = √
ρp

K∑
k=1

gmkϕk + w, (2.26)

where ρp is the normalized transmit power of the pilot and w is the noise added at
receiver ∼ CN (0, 1). To obtain the channel coefficient for user k the received pilot is
then projected onto the pilot sequence ϕH

k resulting in

ϕH
k ym = √

ρp

K∑
k=1

gmkϕH
k ϕk + ϕH

k w, (2.27)

and estimated by least squares as

ĝmk = √
ρpgmk +

K∑
k ̸=k′

gmk′ϕH
k ϕ′

k + ϕH
k w. (2.28)

Under the assumption that there is a sufficient number of orthogonal pilot sequences
available for K users, the second term will vanish.

To get another perspective we can express all received pilots without additive noise
from M APs as

Y = GΘH , (2.29)

where Θ ∈ CK×K is a pilot matrix with ϕk as its k-th column and Y ∈ CM×K the
received pilot matrix with yT

m as its m-th row. We can then estimate G by performing
right multiplication of Y with Θ.

Uplink Data Transmission

The data-bearing signal xu,k ∈ C with E{|xu,k|2} = 1 is sent in the uplink by the k-th
user. All users send their data simultaneously and the m-th AP receives them as

yu,m = √
ρu

K∑
k=1

gmkxu,k + wu,m. (2.30)

The user detection is done at each AP by multiplying the received signal yu,m with the
detector coefficient amk, which is equal to g∗

mk for conjugate beamforming. We assume
that the channel is not known at the CPU and should be locally obtained from the
estimation at the AP. Thus, the signal ĝ∗

mkyu,m is sent via the m-th fronthaul link, and
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then the CPU receives from all M APs the signal of the k-th user as

ru,k =
M∑

m=1
ĝ∗

mkyu,m

= √
ρu

K∑
k′=1

M∑
m=1

ĝ∗
mkgmk′xu,k′ +

M∑
m=1

ĝ∗
mkwu,m. (2.31)

By plugging equation (2.28) in the equation (2.31) we can obtain the SINR in the uplink
given as [6]

SINRMRC
u,k =

ρu

(
M∑

m=1
γmk

)2

ρu

K∑
k′ ̸=k

(
M∑

m=1
γmk

βmk′
βmk

)2

|ϕH
k ϕk′|2 + ρu

K∑
k′=1

M∑
m=1

γmkβmk′ +
M∑

m=1
γmk

, (2.32)

where γmk , E{|ĝmk|2}.

Downlink Data Transmission

In the downlink the CPU has the data symbol xd,k ∈ C for user k with E{|xd,k|2} = 1.
In the same fashion as in the uplink we can do precoding at the APs using the estimated
channel ĝmk. The m-th AP sends the data-bearing signal for all K users as

yd,m = √
ρd

K∑
k=1

ĝ∗
mkxd,k. (2.33)

The k-th user receives the signal intended for it as

rd,k =
M∑

m=1
gmkyd,m + wd,k

= √
ρd

M∑
m=1

K∑
k′=1

gmkĝ∗
mk′xd,k′ + wd,k. (2.34)

By treating the estimate ĝmk′ in (2.34) as the true channel, the effective channel term
gmkĝ∗

mk′ will approximately turn in to a constant ∥gmk∥2 for k′ = k. Further, we can
blindly decode the transmitted symbol xd,k since we are allowed to cancel out the effective
channel term relying on the channel hardening (2.3). Here, the users do not need to
know the channel realization gmk but only the channel statistics. The SINR in downlink
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for the k-th user is then given by [6]

SINRMRC
d,k =

ρu

(
M∑

m=1
γmk

)2

ρd

K∑
k′ ̸=k

(
M∑

m=1
γmk′

βmk

βmk′

)2

|ϕH
k′ ϕk|2 + ρd

K∑
k′=1

M∑
m=1

γmk′βmk + 1
. (2.35)

2.2 Quantization
One of the main problems in the cell-free massive MIMO scheme described in the previous
section is the high data rate of the I/Q baseband signal to be carried via the fronthaul.
The load is even higher when the number of the user served is large. On the other hand,
the capacity of the fronthaul must be limited to some extent. For this reason, a sort
of signal compression should be performed at APs as well as at the CPU for efficient
transmission. In this section we give an overview of signal compression, particularly
quantization which is an important stage in the compression of a continuous valued
signal.

The subject of signal compression is commonly studied under the terminology of
source coding. It goes back to Shannon who first developed a theory underlying the
quantification of how much a source signal can be compressed under some fidelity criteria.
He gave a formal description when a source signal can be compressed without loss of
information and when it can be compressed with possibly minimum distortion. It brought
us then to two types of source coding namely lossless source coding and lossy source
coding.

The aim of source coding is essentially to represent an information source in an efficient
form which is appropriate for transmission or storage. For analysis, the information
source is usually modeled as a random process, where information as a realization of
random variables is produced by a source in each time unit according to some distribution.
In general, the property desired by the coded source should have a data rate as low as
possible while being able to recover the original information without error. If the source
is in discrete form, the original information can exactly be recovered from its compressed
version by lossless source coding. But if the source is in continuous form such as real
signal, it is often that the source can be recovered only as an approximation of the
original source. This is because a continuous source has an alphabet with an uncountably
infinite number of elements, such that a part of them should be ignored for efficient
computation. In such a case we deal with lossy source coding where an irreversible loss
of information must be accepted.
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Fig. 2.2 The diagram of basics source coding scheme consists of lossy and lossless coding

A common approach for compressing a continuous source is by combining lossless
and lossy source coding as depicted in Fig. 2.2. We have an encoder-decoder pair each
of which consists of a lossy and a lossless part. The lossy encoder-decoder pair are
denoted by α and β, whereas the lossless encoder-decoder pair are denoted by γ and γ−1

respectively. The encoded source, which is intended to be transmitted or stored in a
medium, is represented as codewords in unit of bits. A comprehensive study of these
topics is given in [39, 40], to which we consult for most of our following discussion.

In a lossy source coding system we discard intentionally some amount of information
to make it possible to be further processed with finite precision. As shown in Fig. 2.2,
the lossy part is presented by encoder α and β. The source output x is considered to be
the realization of a continuous random source. To represent x with finite precision, the
encoder α decides in which subset x should be contained. Each subset is associated with
an index s, based on which the encoder γ selects to which codeword the source symbol
can be assigned. Because we have γ and γ−1 as a lossless source coding system, we can
obtain the index s accurately. According to the index s, the decoder β reconstructs then
the source symbol as x̂. This encoder-decoder pair, α and β together, is called quantizer
β(α(x)), and the process of mapping x to x̂ is called quantization.

2.2.1 Scalar Quantization

For the case where we have a single sample x at a unit time as the input to the quantizer,
we deal with a scalar quantization. It performs a mapping from a scalar input to a
scalar reconstruction value in a countable set. An example of simple scalar mapping is
the rounding operation to the nearest integer. The set from which the reconstruction
value is taken is called a codebook. In the former example the codebook is an integer set
which is of infinite size but countable. To be convenient for practical implementation the
codebook size is chosen to be finite.

In general, a scalar quantization mapping with codebook size or quantization level S

can be expressed as
Q : R → X̂ = {x̂0, . . . , x̂S−1} ⊂ R. (2.36)



2.2 Quantization 23

The subset of R, whose elements are mapped onto the same reconstruction value x̂s, is
called as the quantization interval. To avoid ambiguity, we partition the real line into
intervals given by

Is = {x ∈ R : Q(x) = x̂s} = [us, us+1), (2.37)

where us and us+1 are the decision thresholds. The partition requires that the union
of the interval Is should cover the whole real line and there is no intersection between
them. Further, we arrange the thresholds in increasing order us−1 < us < us+1 such
that we can calculate the interval size or step size as ∆s = us+1 − us. Since we should
consider the whole real line as the possible input value, we set the decision threshold
u0 = −∞ and uS = ∞. We call the unbounded intervals (u0, u1) and [uS−1, uS) as the
overload region, whereas the region with the bounded intervals [u1, uS−1) is called the
granular region. By choosing the remaining S − 1 thresholds and S reconstruction values
as system parameters we can then specify the quantization mapping as a cascade of
threshold operators given by

Q(x) =
S−1∑
s=0

x̂sTs(x), where Ts(x) =

1 if x ∈ Is

0 otherwise
(2.38)

An example of a scalar quantization function Q(x) is shown in Fig. 2.3 where we have
a typical staircase characteristic that arises from the cascade of threshold operators in
(2.38).

For efficient storage, the codebook size |X̂ | = S should be chosen with regard to
the expected rate or resolution. While the term rate is universally used to describe the
amount of information per channel use, the term resolution refers more to the measure
of precision in describing an analog signal in digital form. We use both of them in this
thesis interchangeably. More precisely, the average rate of a scalar quantizer can be given
by

R = E{|γ(Q(X))|} =
S−1∑
s=0

p(x̂s)|γ(x̂s)|, (2.39)

where it depends on |γ(x̂s)|, which denotes the length of codeword assigned to x̂s, and
depends on the probability of the quantizer output x̂s given by

p(x̂s) = Pr(X ∈ Is) =
∫ us+1

us

f(x)dx (2.40)

with a probability density function of the input f(x).
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Fig. 2.3 Scalar quantization function of mid-riser quantizer (The quantizer is symmetric
respected to the origin as decision threshold).

As given by equation (2.39), because the average rate R is dictated by γ, we should
make the right assumption for γ in designing the quantizer Q. By applying a fixed-
length code at γ, where a binary codeword with the same length is assigned to every
reconstruction value xs, the quantization level S should be equal to 2R. If we know the
probability of the quantizer output p(xs) for every index s, then we can apply variable
length coding such as a Huffman code at the encoder γ. That is, the quantizer output
with high probability will be assigned to a short codeword, whereas those with low
probability will be assigned to the longer codeword. This allows us then to reduce the
average rate even more.

As mentioned before, the consequence of representing a signal with finite precision
is that we have to accept some errors. However, as long as these errors do not exceed
our fidelity criteria, we can still expect the system to work well. A variety of distortion
measures can be used as the fidelity criteria. We use here the most common one which is
the squared error d(x, x̂) = (x − x̂s)2. Accordingly, we can measure the overall distortion
based on its statistical average. That is, the average distortion of the scalar quantization
is given by

D = E{d(X, Q(X))} =
S−1∑
s=0

∫ us+1

us

(x − x̂s)2fX(x)dx, (2.41)
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The expression in equation (2.39) and equation (2.41) are usually used to assess the
performance of a particular quantizer by deriving the operational rate-distortion function
R(D). By doing so we can evaluate how much rate reduction can be achieved under
some given distortion constraint.

2.2.1.1 Pulse Code Modulation (PCM)

The most straightforward scalar quantization is Pulse Code Modulation (PCM). For this
type of quantizer the step size of each interval is chosen to have the same size:

∆ = A

S
= A · 2−R, (2.42)

where the maximum value xmax and the minimum value xmin from the input are assumed
to be known, so the range A = xmax − xmin can be determined. In practice, maintaining
the input signal in the finite range A can be done for example using Automatic Gain
Control (AGC). The quantizer Q can be expressed then in closed form as

Q(x) =
⌊

x − xmin

∆ + 0.5
⌋

· ∆ + xmin. (2.43)

If we assume the input value x to be uniformly distributed as fX(x) = 1/A for −A/2 ≤
x ≤ A/2, so we can obtain the average distortion from equation (2.41) and (2.43) as

D = ∆2

12 (2.44)

= A2

12 · 2−2R

= σ2 · 2−2R = D(R)

2.2.1.2 Optimized Scalar Quantizer

The PCM quantizer is not necessarily optimal particularly if the distribution of the input
signal is not uniform. In designing the optimal quantizer the task is to find the codebook
X̂ and the intervals Is such that the objective function is minimized or maximized
under some given constraints. The standard objective function used in practice is the
average distortion which is given by equation (2.41) for the scalar quantizer. Given a
fixed-rate scalar quantizer with size S, we should determine the S − 1 thresholds us with
1 ≤ s ≤ S − 1 and the S reconstruction values x̂s with 0 ≤ s ≤ S − 1 that minimize
the average distortion D. The problem can be decomposed into these two following
conditions
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(i) Given the interval Is = [us, us+1), find the corresponding optimal codebook as

{x̂∗
s} = arg min

{x̂s}
E{d(X, Q(X))}

= arg min
{x̂s}

S−1∑
s=0

Ds

= arg min
{x̂s}

S−1∑
s=0

∫ us+1

us

d(x, x̂s)fX(x)dx (2.45)

The minimization can be observed separately for each Is because they are assumed
to be independent, where D is the sum of Ds depending only on each x̂s. Making
use of the Bayes’ rule

fX(x) = fX|x̂s(x|x̂s) · p(x̂s), (2.46)

we can express Ds as

Ds(x̂s) = p(x̂s)
∫ us+1

us

d(x, x̂s)fX|x̂s(x|x̂s)dx

= p(x̂s) · E{d(X, x̂s)|X ∈ Is}. (2.47)

Further, because p(x̂s), given by equation (2.64), does not depend on x̂s, we have
for each intervals the optimal reconstruction value as

x̂∗
s = arg min

{x̂s}
E{d(X, x̂s)|X ∈ Is}. (2.48)

This condition is called the centroid condition and for the squared error distortion
measure it has the solution

x̂∗
s = E{X|X ∈ Is}

=
∫ us+1

us
xfX(x)dx∫ us+1

us
fX(x)dx

(2.49)

(ii) Given the codebook X̂ = {x̂s}, find the optimal intervals I∗
s = [u∗

s, u∗
s+1), which

satisfy

I∗
s = arg min

Is

S−1∑
s=0

∫ us+1

us

d(x, x̂s)fX(x)dx. (2.50)

Because x̂s is fixed, it means if x ∈ Is then

d(x, x̂s) ≤ d(x, x̂j), ∀j ̸= s (2.51)
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or the condition
Q(x) = arg min

x̂s

d(x, x̂s) (2.52)

should be satisfied. This condition is called the nearest neighbour condition. Because
the choice of us affects only the distortion of neighbouring intervals, the solution is
u∗

s which satisfies

d(u∗
s, x̂s) = d(u∗

s, x̂s+1) for 1 ≤ s ≤ S − 1. (2.53)

For the squared error distortion measure the optimal decision threshold is

u∗
s = 1

2(x̂s + x̂s+1) (2.54)

Algorithm 1: Lloyd Algorithm
input : realization {x}, quantizer size S
output : optimum recontruction values {x̂s} and thresholds {us}

1 Choose initial reconstruction values {x̂s};
2 Nearest neighbour condition: associate all samples of the training set {x} with

quantization interval Is according to α(x) = arg min
∀s

d(x, x̂s);

3 Update accordingly the decision threshold us;
4 Centroid condition : update {x̂s} according to

x̂s = arg min
x̂s∈R

E{d(X, x̂s)|α(X) = s}

with the expectation taken from the training set;
5 Repeat steps 2-4 until convergence;

To obtain both the optimal codebook and intervals, Lloyd gave a procedure known
as the Lloyd algorithm, which iterates between the centroid and nearest neighbours
conditions. The required pdf for the centroid condition given in equation (2.49) is
commonly not known in practice. However, we can replace it with a sufficiently large
training set in the algorithm. For a quantizer of size S with encoder mapping α and
squared error distortion d(x, x̂s) the Lloyd algorithm is given in Algorithm 1. We note that
the convergence of Lloyd Algorithm is guaranteed and therefore we may take arbitrary
initial reconstruction values in the first step. However, implausible initialization will
result in long convergence time and convergence to a local optimum [41].
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2.2.2 Vector Quantization

Vector quantization can be seen as a generalization of scalar quantization into higher
dimensions. Suppose that we have a continuous random source {X} with the realization
x, we can arrange N samples of x as N an dimensional vector x. A vector quantization
maps the N dimensional space RN into a countable set of reconstruction values or vectors
in RN . More precisely, it is given by

Q : RN → X̂ , where X̂ = {x̂s}S−1
s=0 ⊂ RN (2.55)

is the codebook of finite size |X̂ | = S with x̂s ∈ RN for each s ∈ J , {1, 2, . . . , S}. The
subset of RN , whose elements are mapped onto the same reconstruction value x̂s, is
called as the quantization cell given by

Cs = {x ∈ RN : Q(x) = x̂s}. (2.56)

In similar fashion to intervals in scalar quantization, by doing vector quantization we
implicitly divide the space RN into cell partitions expressed by

RN =
S−1⋃
s=0

Cs, with ∀s ̸= j : Cs ∩ Cj = ∅ (2.57)

Having defined the cells and their corresponding reconstruction values we can specify the
quantization mapping as a cascade of threshold operators given by

Q(x) =
S−1∑
s=0

x̂sTs(x), where Ts(x) =

1 if x ∈ Cs

0 otherwise
(2.58)

It is obvious that the reconstruction value x̂s tends to be different from the element
of input value x. Representing all values in cell Cs by the reconstruction value x̂s means
that we introduce a distortion to x to some degree. For a quantizer Q with input source
{Xn} we define the average distortion as

D = E{dN(Xn, Q(Xn))} =
S−1∑
s=0

∫
Cs

dN(x, Q(x))fX(x)dx, (2.59)

where fX(x) is the joint probability density function (pdf) of the random vector x and
dN(x, x̂) ≥ 0 is the distortion measure between x and x̂. We use here the mean squared
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error (MSE) as the distortion measure, where we have

dN(x, x̂) = 1
N

∥x − x̂∥2 (2.60)

= 1
N

N−1∑
n=0

(x − x̂n)2 . (2.61)

Plugging this to (2.59) we obtain the average distortion as

D = 1
N

S−1∑
s=0

∫
Cs

∥x − x̂∥2fX(x)dx. (2.62)

Algorithm 2: Linde-Buzo-Gray (LBG) Algorithm
input : vector realization {xn}, codebook size S
output : optimum recontruction values {x̂s}

1 Choose initial reconstruction values {x̂s};
2 Nearest neighbour condition: associate all samples of the training set {xn} with

quantization cell Cs according to α(xn) = arg min
∀s

d(xn, x̂s);

3 Update accordingly the decision threshold us;
4 Centroid condition : update {x̂s} according to

x̂s = arg min
x̂s∈R

E{d(X, x̂s)|α(X) = s}

with the expectation taken from the training set;
5 Repeat steps 2-4 until convergence;

To see the relation between the lossy and lossless coding part we define the average
rate of the source coding system which includes the quantizer Q and lossless coding γ as

R = 1
N
E{|γ(Q(Xn))|} = 1

N

S−1∑
s=0

p(x̂s)|γ(x̂s)|, (2.63)

where |γ(x̂s)| is the codeword length of the encoded reconstruction value x̂s and p(x̂s) is
the pmf of x̂s given by

p(x̂s) =
∫

Cs

fX(x)dx. (2.64)

As stated in equation (2.64), the probability of reconstruction value x̂s depends on the
distribution of the input value x which falls into the cell Cs. In this context, quantization
can be seen as discretization of the pdf.
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To obtain an optimal codebook for vector quantization, the nearest neighbour and
centroid conditions for scalar quantization can be extended to higher dimensions. Using
a similar principle the Linde-Buzo-Gray (LBG) algorithm iteratively alternates between
centroid and nearest neighbour conditions until a convergence is found. The procedure
is presented in detail in Algorithm. 2. In case of two dimensional vector quantization,
the resulting codebooks from the LBG algorithm are illustrated in Fig. 2.4 for some
iterations. We fed the quantizer with independent random Gaussian signals with unit
variance and chose the codebook of size S = 16. As can be seen after 50 iterations, the
arrangement of the reconstruction values conforms the input distribution and most of
the cells roughly have an hexagonal shape. It is well known that the hexagonal shape is
optimum for packing and covering problem in two dimension. This demonstrates that
the codebook has converged and approximately has reached its optimum.
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Fig. 2.4 The convergence of the LBG algorithm, in which the optimal codebook is obtained
after 50 iterations.
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2.2.3 High Resolution Approximation

In this and following subsections, we will discuss two options of modeling quantization
based on assumptions about the resolution. A very common assumption made in practice
is that the input signal is quantized with quite high resolution in order to achieve nearly
the same quality as the original signal. This is done by choosing a large quantization
level (in scalar quantization) or number of cells S (in vector quantization). If we further
assume that that there is no input in the overload region and the pdf of the input signal
is smooth, often a convenient approximation and a reasonable implication can be made.

In scalar quantization, making the quantization level large and ensuring the input
lies in a finite range lead to the condition where the step size ∆ becomes small and the
overload probability of the input becomes low. If the step size is small enough and the
input pdf is smooth, then the input pdf can be approximated as

fX(x) ≈ fs; x ∈ Is. (2.65)

That is, in each interval the input distribution is roughly constant. The probability of the
quantizer output, which is equivalently to the probability of input falling in the interval
Is, can also be given by

p(x̂s) = Pr(X ∈ Is) =
∫ us+1

us

f(x)dx ≈ (us − us+1)fs (2.66)

A similar behaviour is also valid for the quantization error. It is Bennett [40] who
investigated this for the first time and showed that the quantization error is uniformly
distributed under the high-resolution assumption. More precisely, Bennett showed as
follows [42]. Suppose that ϵ = Q(X) − X is the quantization error of the input with
cumulative density function (cdf)

Fϵ(α) = Pr (ϵ ≤ α) and pdf (2.67)

fϵ(α) = dFϵ(α)
dα

; α ∈ (−∆/2, ∆/2). (2.68)

Then, it implies

Pr (ϵ ≤ α) =
S−1∑
s=0

Pr (ϵ ≤ α and X ∈ Is) (2.69)

=
S−1∑
s=0

∫ S/2+s∆+α

−S/2+s∆
fX(β)dβ (2.70)
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≈
S−1∑
s=0

fX (x̂s) α (2.71)

= α

∆

S−1∑
s=0

fX (x̂s) ∆ (2.72)

≈ α

∆ , (2.73)

where equation (2.70) follows from the assumption of smooth pdf and the mean value
theorem of calculus. The last equation is due to the approximation of the Riemann
integral with a summation. We obtain then the pdf of the quantization error as

fϵ(α) ≈ 1
∆ for α ∈

(
−∆

2 ,
∆
2

)
. (2.74)

Additionally, Bennett showed that the power spectral density of ϵ is also flat. Those
two conditions of the noise process ϵ, namely uniformly distributed and white, tend to
be used as arguments for assuming that the signal x and ϵ are independent. Since for
a given quantization error, one could expect that this error has been caused possibly
by many different input signals. If they are fulfilled, then the quantization process can
conveniently be represented using the additive noise model given by

Q(X) = X + ϵ. (2.75)

This model reminds us of the additive white Gaussian noise (AWGN) channel model in
which the output is expressed as simple addition of the original signal with white noise.
In a similar fashion, it is expected that using this model we can provide a tractable
analysis for quantization.

Further, the above assumptions lead to an approximation of the average distortion in
(2.41), which was formulated initially by Bennett [40] given as

D ≈ 1
12

1
S2

∫ xS−1

x1
fX(x̂)λ(x̂)−2dx̂. (2.76)

It expresses the average distortion as a function of the point density of reconstruction
value λ(x), the input pdf fX(x) and the quantization level S. Thus, the approximation
accuracy is increasing with the increasing of quantization level S.
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2.2.4 Low Resolution Approximation

In spite of its simple formulation, the additive noise model for quantization is valid
only based on a weak assumption that the quantization error is uncorrelated to the
input signal. In fact, quantization is a nonlinear operation and the quantization error
is a deterministic function of the input. Hence, the input signal and the quantization
error are essentially correlated, and their correlation is even stronger at low resolution.
Modeling quantization at low resolution using the additive noise model can therefore
result in rather poor performance.

As an alternative, we may make use of the result from Bussgang’s theorem to model
the quantization at low resolution. The theorem describes the statistical property of a
nonlinear system when the input is Gaussian. It is stated in its original form as follows.

Theorem 2.2.1 (Bussgang’s Theorem [43]).
The crosscorrelation function of two Gaussian signals taken after one of them has
undergone nonlinear amplitude distortion is identical, except for a factor of proportionality,
to the crosscorrelation function taken before the distortion.

If we consider only one Gaussian signal that has undergone a nonliear system, then
the above theorem holds for the relationship between the input-output crosscorrelation
and the autocorrelation of the input signal. Let x(t) be a real Gaussian input signal
that undergoes a nonlinear function Q(x) resulting in a signal y(t) at the output, then it
holds that:

Rxy(τ) = αRxx(τ), (2.77)
where ∀τ ∈ R

Rxy(τ) = E{x(t)y(t + τ)} and (2.78)
Rxx(τ) = E{x(t)x(t + τ)} (2.79)

are the crosscorrelation and autocorrelation function of the stationary random process.
The proportionality factor α depends on the characteristic of the nonlinear system Q,
which is given as

α = 1
E{|x|2}

∫
X

xQ(x)fX(x)dx. (2.80)

As investigated by Bussgang in [43], the proportional factor α in (2.80) can be seen as
cross-covariance function between the output and the input of the system, which should
give some constant irrespective of τ . The implication of this Bussgang theorem is that
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we can approximate the nonlinear system Q with the following linear model

y = Q(x) = αx + d, (2.81)

where the distortion d is now uncorrelated to the input x. To verify this, we can compute

E{d(t)x(t + τ)} = E{(y(t) − αx(t))x(t + τ)} (2.82)
= E{y(t)x(t + τ)} − αE{x(t)x(t + τ)} (2.83)
= Rxy(τ) − αRxx(τ) (2.84)
= 0, (2.85)

where the last equation is obtained by plugging in the expression α from equation (2.77).
Further, it is also of particular interest for the analysis to specify the proportionality
factor between the power of the output and the power of the input from a nonlinear
system. For this purpose, a factor λ is defined as

λ ,
E{|y|2}
E{|x|2}

= 1
E{|x|2}

∫
X

|Q(x)|2fX(x)dx. (2.86)

Although the Bussgang decomposition model in (2.81) is not as popular as the additive
noise model, this model has been increasingly used for modeling quantization as reported
among others in [44–47] especially when the resolution is low.



Chapter 3

Centralized Cell-Free massive MIMO
with Single-Antenna Access Points

The demand for higher data rate communication through a wireless medium has been
unstoppable for a long time. Rather, it increases further in the presence of newly
envisioned applications such as autonomous vehicles, where a uniformly high data rate
is expected by all users to be provided simultaneously across a wide area. While the
cell-free massive MIMO discussed in the previous chapter has attracted much attention
due to its ability to increase the capacity per user per unit area, its potential has not
been entirely exploited. In this chapter, we aim to carry out cell-free massive MIMO
to its greatest advantage when only a single antenna is available at access points. We
show that the data throughput per user can be significantly improved if we apply the
centralized approach to cell-free massive MIMO.

The use of a single antenna at APs is particularly worthwhile when the low-cost
implementation of the AP is given a high priority. In this case, the number of required
components such as the channel estimation module, RF-chain and ADC may not be
more than one unit per AP. However, if we choose to operate the network using the
distributed approach, the feasible choice of processing becomes restricted to conjugate
beamforming. This is because the distributed approach prevents any AP obtaining CSI
from other APs. Thus, the only way to process the received data-bearing signal is based
on the locally obtained CSI, where for single antenna AP it is most advantageous to
multiply the received signal by a single coefficient of the corresponding conjugate channel
estimate. Unlike the distributed approach, we allow the APs in a centralized approach
to transfer the CSI to the CPU via the fronthaul. This enables then another form of
processing such as zero-forcing to be applied at the CPU.
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There have been some works that analysed the performance of centralized cell-free
massive MIMO with single antenna APs. For instance, the performance of the centralized
approach using zero-forcing processing in the downlink is studied in [48], whereas MMSE
processing in the uplink is compared in [7] with the standard distributed approach.
However, none of the works mentioned above considered the limited capacity of the
fronthaul links. At the beginning of this thesis project, very few works, such as [26, 49]
had studied cell-free massive MIMO with limited-capacity fronthaul. Moreover, they did
not consider how to realize centralized processing in practice particularly in terms of
obtaining the global CSI.

In this chapter, a framework for designing a centralized cell-free massive MIMO
with capacity-limited fronthauls is introduced in the case where only a single antenna
is available at the APs. We begin the discussion in this chapter firstly by defining
centralized cell-free massive MIMO and explaining its general concept. We will then give
the scope of the discussion by describing the considered system model. To deal with a
limited-capacity fronthaul, we wish to design an optimum quantizer for the fronthaul.
This will be presented in the subsequent section for a scalar uniform quantizer with low
resolution. We will then look at the important part of centralized cell-free massive MIMO
which is the CSI acquisition. This is then followed by the scheme of data transmission
considering the limited-capacity fronthaul. Further, the achievable rates of this approach
are given where we will also derive a simpler SINR expression. Then, the scalability
issue in cell-free massive MIMO will also be discussed. We will see that the centralized
approach can resolve some aspects of this issue. Numerical results for validating our
analysis and evaluating the performance of our proposed scheme are then given.

3.1 The General Concept
We start in this section with describing what we mean principally by centralized Cell-Free
massive MIMO and elaborate the difference to the original cell-free massive MIMO that
uses the distributed approach. To be concise, we specify formally the centralized cell-free
massive MIMO in the following definition.

Definition 3.1 (Centralized Cell-Free massive MIMO).
We say a cell-free massive MIMO network is centralized if all the following conditions
are fulfilled.

1. The CSI between all active UEs and all APs is available at the CPU.

2. The CPU utilizes the globally obtained CSI for joint data processing.
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We may notice that the above definition emphasizes the importance of CSI. This is
reflecting Marzetta’s view which says “CSI isn’t everything: it’s the only thing!” [50].
In contrast, the transfer of CSI has conventionally been seen as the major source of the
increase in the fronthaul load, and therefore to be avoided. To that end, the CSI is
utilized locally at the APs, whereas the coding/decoding of the data-bearing signal takes
place at the CPU. This approach can perform well based on the underlying assumption
that the favorable channel condition is also fulfilled in cell-free massive MIMO as in
colocated massive MIMO. As a result, a low complexity processing such as conjugate
beamforming is sufficient at the APs. However, it was later shown in [51] that the channel
in cell-free massive MIMO is not as favorable as in colocated massive MIMO. That is, the
channel orthogonality in cell-free massive MIMO tends to be poor, especially when the
APs use a single antenna. This is because in cell-free massive MIMO a user is expected
to be closer to some APs rather than to the other APs. Hence, the large scale fading
coefficients to these closer APs are obviously smaller and the channel will experience a
kind of spatial correlation, where some components in the channel matrix are stronger.
Further, the work in [8, 10] revealed the limited performance of conjugate beamforming
for cell-free massive MIMO with single-antenna APs. It is confirmed in [8] that the upper
bound of the signal to interference noise ratio (SINR) per user can be achieved if only if
the single-antenna APs are colocated.

The rationale behind the centralized approach is the fact that cell-free massive
MIMO does not have the same desired channel orthogonality as in the colocated massive
MIMO counterpart [51]. As a consequence, the conjugate beamforming does not give a
satisfactory performance in cell-free massive MIMO even if power control is used. To
improve the performance, centralized cell-free massive MIMO allows the transfer of CSI
to the CPU. Although it costs additional fronthaul load, we will see that it can be
compensated by the fronthaul load reduction from the data-bearing signal and the use of
an appropriate CSI acquisition strategy. We will further show that the CSI exchange is
not something to be avoided, and the effort for bringing CSI to the CPU is often very
well repaid by a significant throughput improvement.

This centralized approach may lead us also to think about cloud-radio access networks
(C-RAN), where the radio access processing of multiple base stations is pooled in one
baseband unit (BBU) [52]. Although C-RAN and centralized cell-free massive MIMO have
a close connection in centralizing the baseband processing, they exhibit some apparent
differences. In C-RAN, radio access is treated as a cloud service which is provided by
the BBU pool through software-defined radio (SDR). By doing this, it is expected that
the deployment and operational cost can be reduced due to the flexible implementation
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Fig. 3.1 The Schematic diagram of the centralized Cell-Free Massive MIMO with L access
points, K users and L capacity-limited fronthaul links.

of the networks. Therefore, C-RAN is independent of radio access technology. Moreover,
C-RAN has been mostly studied by this time in the setting of a cellular system. On
the other hand, cell-free massive MIMO, particularly the centralized approach, was
motivated by different aspects namely to uniformly provide a high data throughput in
a large coverage area. In this case, cell-free massive MIMO in the physical layer sticks
to include the assumption of channel hardening and favourable propagation. Further,
cell-free massive MIMO has an asymmetric setup between uplink and downlink due to
the larger number of APs to the number of users. Therefore, the achievable rate duality
that holds in C-RAN might not be the case in cell-free massive MIMO [53].

3.2 System Model
We consider in this chapter the uplink transmission of a cell-free massive MIMO system
with K single-antenna users (UEs) and L single-antenna APs, which are randomly
placed in a wide area. All UEs can be served simulataneously by all APs in the same
time-frequency resource. We assume that the APs are sufficiently separated greater than
the half wavelength, such that we do not observe any spatial channel correlation between
the APs. To jointly process the signal from all UEs, the APs are connected to a CPU by
L error-free fronthaul links. The main processing for the L APs are centralized at the
CPU by making use of the globally obtained CSI of the served UEs. The communication
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between all APs and the CPU is carried out coherrently in baseband. To gain more
insight, the schematic diagram of the centralized cell-free massive MIMO is depicted in
Figure 3.1. This is actually similar to the original cell-free massive MIMO [6] described in
Section 2.1.2, where the number of UEs K is smaller than the number of serving APs L,
except that the fronthaul link connecting the l-th AP with the CPU has limited capacity
of Cl.

As in canonical massive MIMO described in Section 2.1.1, the network is operated
using the TDD protocol. However, to keep the later analysis simple we consider the
whole coherence interval to be used only for pilot and uplink data transmission. Suppose
that a length τc coherence interval is available, we use a fraction τp for pilot and a fraction
of τu for payload data where τc = τp + τu. The channel we consider in this chapter is also
similar to the one described in Section 2.1.2. Recall that the channel between the k-th
user and the l-th AP is specified by

glk = hlkβ
1/2
lk , (3.1)

where the coefficient hlk models the small-scale fading between the k-th user and the l-th
AP with the assumption that it is i.i.d. ∼ CN (0, 1). The large-scale fading is denoted by
βlk which is likely to be different for each user k and each AP l due to the distributed
configuration. The channel from all K users to all L APs can then be expressed as the
element-wise product of the small-scale fading matrix H ∈ CL×K and the large-scale
fading matrix D ∈ RL×K given by

G = H ⊙ D1/2, where [H]lk = hlk and [D]lk = βlk. (3.2)

3.3 Fronthaul Quantization
As mentioned earlier, we are dealing throughout the thesis with capacity-limited fronthaul
links. We also mentioned that the links should be error-free in the sense that any bit
stream we transmit through the fronthaul link can be reproduced at the CPU with
arbitrary small error probability. However, the way to achieve this error-free transmission
is a discussion of channel coding, and should be beyond the scope of this thesis. Similarly,
we put beyond our scope the problem of the delay imposed by the transmission through
the fronthaul. It is sufficient for us to think that a reliable transmission can be carried
out as long as we send a bit stream less than the channel capacity. Therefore for efficient
transmission, the signal source at the input of the fronthaul link should be represented in
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less than the fronthaul capacity. Since we receive analog signal at the APs but transmit
through the fronthaul in digital form, we need to convert the signal by ADC before the
transmission. In this case, the fronthaul capacity dictates the resolution we use in the
ADC. Further, we consider using a fixed-rate lossless coding such that we may also say
that the fronthaul has a resolution of the fronthaul capacity in bits per channel use.

3.3.1 Quantization Model

To simplify our analysis, we consider fronthaul links with capacity of Cl = C bits per
channel use for all l ∈ {1, . . . , L}. We consider first in this chapter a scalar quantization in
our ADC with resolution R ≤ C bits, which is optimally adjusted at fronthaul resolution
C. The ADC resolution is related to the quantization level S by R = log2 S. More
precisely, we apply an S-level scalar quantizer Q at each AP with

Q(x) =
S−1∑
s=0

qsTs(x), where Ts(x) =

1 if xs < x ≤ xs+1

0 otherwise.
(3.3)

We consider Q to be a uniform quantizer in which we have a fixed step size ∆ = xs+1 −xs

for s = 1, . . . , S − 1, and set the decision threshold x0 = −∞ and xS = ∞. The
reconstruction value is given by qs = (s − S−1

2 )∆. For a complex-valued signal x ∈ C
we quantize the real and imaginary part separately. In this case, whenever we have
xs < Re{x} ≤ xs+1 and xs′ < Im{x} ≤ xs′+1 for (s, s′) ∈ {0, . . . , S − 1}, we obtain

xq = Q(x) = Q(Re{x}) + iQ(Im{x}) (3.4)
= qR

s + iqI
s′ , (3.5)

where qR
s and qI

s′ are respectively the reconstruction values of the real and imaginary
part with the pair (qR

s , qI
s′) ∈ {qR

0 , . . . , qR
S−1} × {qI

0 , . . . , qI
S−1}. Moreover, the quantization

operation should apply elementwise for a vector valued input. We assume that the large
scale fading βlk is relatively constant over a long period and known at the APs. Thus,
we can scale the input-output signal of the quantizer according to βlk and approximate
the normalised input as normally distributed.

Subsequently, we would like to put constraint on the fronthaul resolution which is
expected to be low for some practical reason. As explained in Section 2.2, keeping the
resolution low implies the quantization process becomes strongly nonlinear. As for small
S the function Q is nonlinear, it is not appropriate to model the quantization using the
traditional additive noise model. The assumption in that model that the quantization
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noise is uncorrelated with the input signal is then no longer valid. We therefore use a
more accurate model to analyse our quantization, based on the Bussgang decomposition
[43] (see also Section 2.2.4). Accordingly, for a nonlinear function Q(x) we can write it as

xq = Q(x) = αqx + d, (3.6)

where the distortion term d is uncorrelated to the input signal x. Here, we denote the
proportional factor of the quantizer Q by αq. Recall from Section 2.2.4 that based on
the Bussgang’s theorem [43] the factor αq depends on the characteristic of the quantizer
Q and the distribution f(x) of the input signal x. It is given by

αq = 1
Px

∫
x

xQ∗(x)f(x)dx, (3.7)

where Px = E{|x|2} is the power of x. Further, we define the power ratio of the input x

and the output xq as

λq ,
E{|xq|2}
E{|x|2}

= 1
Px

∫
x

|Q(x)|2f(x)dx. (3.8)

3.3.2 Optimum Quantization

The problem of finding the optimum quantizer has long been addressed by Lloyd and Max
[54, 55] for a mean squared error distortion measure. We have seen in Section 2.2.1, that
the conditions for which a scalar quantizer may achieve the optimum thresholds [xs+1xs)
and optimum reconstruction value qs are the nearest neighbourhood and the centroid
condition. Since the problem has no closed form solution, Lloyd and Max proposed to
solve it numerically by iteratively altering between the two conditions (see Algorithm
1). For the uniform quantizer we consider in this chapter, Max has also provided a
numerical result in [54] for the step size ∆ that gives a minimum distortion in terms of
mean squared error.

Similar to [26], we present in this subsection another way to find an optimum uniform
quantizer based on our Bussgang model. Given a Gaussian input signal x, we are
interested in finding ∆ for which the distortion d in (3.6) is minimized. Instead of
minimizing the mean squared error, we consider here to choose the step size ∆ that
maximizes the signal to distortion noise ratio (SDNR) at the output of the quantizer
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defined as

SDNR = E{|αqx|2}
E{|d|2}

. (3.9)

The power of the distortion can be calculated from (3.6) and (3.8) as

E{|d|2} = E{|xq − αx|2}
= (λq − α2

q)E{|x|2} (3.10)

such that the SDNR can be written as

SDNR =
α2

q

λq − α2
q

=
α2

q/λq

1 − α2
q/λq

. (3.11)

To find ∆ that maximizes SDNR we need first to find an expression of αq and λq as
a function of variable ∆. The closed form expression of them are given in Proposition
3.3.1. Using equations (3.12) and (3.13) we characterize the Bussgang decomposition
such that it is directly related to ∆ and S. This will be useful for the analysis and
numerical evaluation of the quantization process.

Proposition 3.3.1 (Bussgang decomposition scaling factors [26, 56]).
Consider a uniform mid-rise quantizer Q given in (3.3) with Gaussian signal input and
unit variance. If the quantizer Q is modelled by the Bussgang decomposition given in
(3.6), then the linear factor αq and the power scaling factor λq can be written as a function
of the step size ∆ by

αq = ∆√
2π

1 + 2
S/2−1∑

s=1
exp(−s2∆2)

 and (3.12)

λq = ∆2

1
4 + 4

S/2−1∑
s=1

s(1 − Φ(s∆))
 . (3.13)

Proof. By substituting the scalar quantization function Q(x) given in (3.3) into (3.7) we
obtain

αq = 1
Px

∫
x

xQ∗(x)f(x)dx
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= 1
Px

S−1∑
s=0

qs

∫ xs+1

xs

xf(x)dx

= 1
Px

S−1∑
s=0

(
s − S − 1

2

)
∆
∫ xs+1

xs

xf(x)dx (3.14)

= − 1
Px

(
S − 1

2

)
∆
∫ x1

−∞
xf(x)dx

+ 1
Px

S−2∑
s=1

(
s − S − 1

2

)
∆
∫ xs+1

xs

xf(x)dx

+ 1
Px

(
S − 1

2

)
∆
∫ ∞

xS−1
xf(x)dx, (3.15)

where the first term cancels the last term due to the symmetry from the tails of the
Gaussian function. Then, by evaluating the integral with Gaussian distribution f(x) we
obtain

αq = 1
Px

S−2∑
s=1

(
s − S − 1

2

)
∆
∫ xs+1

xs

xf(x)dx (3.16)

= 1
Px

S−2∑
s=1

(
s − S − 1

2

)
∆
√ 2

π
Px

[
−1

2 exp
(
−t2

)]xs+1

xs

 (3.17)

= ∆√
2π

S−2∑
s=1

(
s − S − 1

2

) [
exp

(
−s2∆2

)
− exp

(
−(s + 1)2∆2

)]
. (3.18)

Since we have a uniform step size ∆ for s = 1, . . . , S − 1, we can substitute the decision
threshold xs and xs+1 respectively by s∆ and (s + 1)∆ to obtain the last equation. We
then expand the expression in the bracket such that we have

αq = ∆√
2π

S−2∑
s=1

(
s − S − 1

2

) [
exp

(
−s2∆2

)]

− ∆√
2π

S−2∑
s′=1

(
(s′ − 1) − S − 1

2

) [
exp

(
−s′2∆2

)]
(3.19)

= ∆√
2π

S−2∑
s=1

(
s − S − 1

2 −
(

(s − 1) − S − 1
2

)) [
exp

(
−s2∆2

)]
(3.20)

= ∆√
2π

S−2∑
s=1

exp
(
−s2∆2

)
(3.21)

= ∆√
2π

1 + 2
S/2−1∑

s=1
exp(−s2∆2)

 , (3.22)
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Table 3.1 Optimum step size and power distortion

C [bits] ∆opt [54] MSE [54] E{|d|2} αq

1 1.5960 0.3634 0.231401 0.6367
2 0.9957 0.1188 0.104722 0.8812
3 0.5860 0.03744 0.036037 0.9626
4 0.3352 0.01154 0.011409 0.9885
5 0.1881 0.003490 0.003483 0.9965

where the last equation follows from the symmetry at the decision threshold xs = 0 or
s = S/2 while the equation (3.20) follows from the substitution s′ = s + 1 with some
abuse of notation. Similarly, we can express the power scaling factor as

λq = 1
Px

∫
x

|Q(x)|2f(x)dx

= 1
Px

S−1∑
s=0

q2
s

∫ xs+1

xi

f(x)dx

= ∆2

1
4 + 4

S/2−1∑
s=1

s(1 − Φ(s∆))
 , (3.23)

where Φ is the Gaussian cumulative distribution function. �

Having expressed αq and λq as given in (3.12) and (3.13) allows us now to find the
optimum step size ∆opt that maximizes the SDNR. It has previously shown in [46] for
a memoryless nonlinear system that maximizing SDNR should give the same result as
minimizing the MSE when the linear scale αq is equal to the power scale λq. However,
from (3.10) we can observe that plugging (3.12) and (3.13) into (3.10) then directly
minimizing distortion may result in the trivial solution of ∆opt = 0. Therefore, we prefer
here to maximize the SDNR rather than to minimize the distortion. We note that the
power distortion can not be negative in practice and hence should be equal or greater
than zero. It turns out that we obtain from (3.10) λq ≥ α2

q and (α2
q/λq) ≤ 1. In this

case from (3.11), maximizing the SDNR is equivalent to maximizing α2
q/λq. In Figure

3.2 an example of the maximization problem is illustrated for S = 8 and S = 2, where
the required condition λq ≥ α2

q and (α2
q/λq) ≤ 1 are shown to be fulfilled. The optimum
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Fig. 3.2 The optimum step size obtained from maximizing SDNR [dB].
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∆opt is then obtained from

∆opt = arg max
∆

[
α2

q

λq

]

= arg max
∆


(

∆√
2π

(
1 + 2

S/2−1∑
s=1

exp(−s2∆2)
))2

∆2

(
1
4 + 4

S/2−1∑
s=1

s(1 − Φ(s∆))
)

 . (3.24)

For a real Gaussian input signal x with unit variance, we evaluate the problem in (3.24)
numerically where the results correspond to [54] for S > 2. For S = 2, the problem
(3.24) however does not have a unique solution as shown in Figure 3.2b. Thus, we choose
∆opt = 1.5960 at αq = λq which is also equal to the result in [54]. If ∆opt is chosen, the
resulting power distortion and the proportional factor αq are listed in Table 3.1 for the
first 5 bits resolution.

3.4 Channel State Information Acquisition Strategies
As given in Definition 3.1, one of the key ingredients of centralized cell-free massive
MIMO is the availability of the CSI at the CPU. In this section we present the methods
how to make this CSI available when we constrain the fronthaul resolution to be low. In
this regard, we will consider two CSI acquisition strategies that take into account the
low-resolution fronthaul by utilizing the quantization model described in the previous
section.

We use the common approach where the CSI is acquired based on the estimation of
known pilots transmitted by the users. The k-th user transmits √

τpϕk as its pilot, where
a specific random sequence ϕk ∈ Cτp×1 is taken from an orthonormal basis satisfying
|⟨ϕk, ϕ′

k⟩| = δkk′ and ∥ϕk∥2 = 1. The sequence length τp is assumed to be less than or
equal to the coherence interval τc. The l-th AP observes the received pilot yl from all K

users as

yp,l = √
τpρp

K∑
k=1

glkϕk + wp, (3.25)

where ρp is the normalized transmit power of the pilot and the vector wp ∼ CN (0, IK)
is an additive noise vector with zero mean and identity covariance. To ensure that all
pilots are orthogonal for all K users, one should only allow K ≤ τp users to transmit
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their pilots simultaneously. In this case, the transmitted pilots satisfy

ΘHΘ = τpρpIK , where Θ = √
τpρp[ϕ1, . . . , ϕK ]. (3.26)

Let us consider for a moment the ideal case where the fronthaul is perfect. Then, the
channel glk can be estimated at the AP and sent to the CPU to provide a global CSI
without any impairments. In this case, the received pilot yp,l at the l-th AP is projected
onto ϕH

k giving

rp,lk = ϕH
k yp,l

= √
τpρpglk + √

τpρp

K∑
k′ ̸=k

glk′ϕH
k ϕ′

k + ϕH
k wp. (3.27)

To obtain the estimate of glk we use the Linear Minimum Mean Squared Error (LMMSE)
estimator given by

ĝlk = clkrp,lk. (3.28)

In this case, we choose clk that minimizes the Mean Squared Error (MSE)

ϵlk = E{|glk − ĝlk|2}
= E{|glk|2} + E{|ĝlk|2} − 2Re{E{glkĝ∗

lk}}
= E{|glk|2} + c2

lkE{|rp,lk|2} − 2clk Re{E{glkr∗
p,lk}}. (3.29)

The unique minimum is obtained by taking the derivative of ϵlk and setting it equal to
zero expressed as

0 = ∂ϵlk

∂clk

= 2clkE{|rp,lk|2} − 2Re{E{glkr∗
p,lk}} (3.30)

such that

clk =
Re{E{r∗

p,lkglk}}
E{|rp,lk|2}

(3.31)

=
√

τpρpβlk

τpρp
∑K

k′=1 βlk′ |ϕH
k ϕk′ |2 + 1

, (3.32)
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where the last equation follows from (3.27). Further, we use γlk to denote the mean
square of the channel estimate given by

γlk , E{|ĝlk|2}
= c2

lkE{|rp,lk|2}
= clk Re{E{r∗

p,lkglk}}
= clk

√
τρpβlk

= τpρpβ2
lk

τpρp
∑K

k′=1 βlk′ |ϕH
k ϕk′ |2 + 1

. (3.33)

After substituting the optimal coefficient clk given by (3.31) into (3.29), the minimum
mean squared error can be expressed then as

ϵlk = E{|glk|2} −
(Re{E{r∗

p,lkglk}})2

E{|rp,lk|2}

= E{|glk|2} −
Re{E{r∗

p,lkglk}}
E{|rp,lk|2}

Re{E{r∗
p,lkglk}}

= E{|glk|2} − clk Re{E{r∗
p,lkglk}}

= βlk − clk
√

τρpβlk

= βlk − γlk. (3.34)

We may see (3.34) as the minimum achievable acquisition error which can be used for
comparison with our acquisition strategies with low-resolution fronthaul.

3.4.1 Estimate-and-Quantize

We now return to the case of imperfect fronthaul with low resolution. We consider first
the more straight forward strategy to acquire CSI at the CPU. In this scheme we estimate
the channel coefficient glk first as given in (3.28). In order that it may be sent via limited
fronthaul to the CPU, the estimated channel ĝlk is quantized at each AP. Therefore,
we call this strategy estimate-and-quantize. Since we send the quantized version ĝeq

lk

to the CPU, the amount of CSI overhead resulting from this scheme is proportional to
the number of users K. For a symbol frame of length τc the portion of CSI overhead
is then K/τc. After transferring via the fronthaul the CPU receives ĝeq

lk , which can be
decomposed due to Bussgang (3.6) as

ĝeq
lk = Q(ĝlk) = αeqĝlk + deq. (3.35)



3.4 Channel State Information Acquisition Strategies 49

To see how large the performance loss is due to this strategy we are interested to find
the MSE after the quantization. We formulate in Lemma 3.4.1 the MSE of this EQ
acquisition scheme in relation to the CSI of perfect fronthaul given in (3.34).

Lemma 3.4.1 ( The MSE of Estimate-and-Quantize).
Suppose that the CSI for centralized cell-free massive MIMO with a single antenna AP
is acquired using the Estimate-and-Quantize strategy under a low-resolution fronthaul
constraint. The MSE of the CSI at the CPU is given by

ϵeq
lk = βlk − (2αeq − λeq)γlk. (3.36)

Proof. Following the definition of MSE, we write the MSE of the channel estimate after
quantization as

ϵeq
lk = E{|glk − ĝeq

lk |2} (3.37)
= E{|glk|2} + E{|ĝeq

lk |2} − 2Re{E{g∗
lkĝeq

lk }}. (3.38)

Applying (3.35) allows us to express the expectation in the last term as follows

E{g∗
lkĝeq

lk } = αeqE{g∗
lkĝlk} + E{g∗

lkdeq}
= αeqE{g∗

lkĝlk}, (3.39)

where the second term vanishes because g∗
lk is uncorrelated with deq. This follows because

E{ĝlkdeq} = 0 and our use of a linear MMSE estimator means that the estimation error
prior to quantization is also uncorrelated with ĝlk and hence also with deq. We then
obtain

ϵeq
lk = E{|glk|2} + λeqE{|ĝlk|2} − 2αeq Re{E{g∗

lkĝlk}}.

= E{|glk|2} + λeqγlk − 2αeqγlk

= βlk − (2αeq − λeq)γlk, (3.40)

which completes the proof. �

The MSE expression in Lemma 3.4.1 should hold for general scalar quantization
applied at the APs. We can observe that the EQ acquisition strategy achieves its minimum
error when the term (2αeq − λeq) is maximized. Compared to the CSI acquisition with
perfect fronthaul given in (3.34), the maximum is achieved at value 1. For uniform scalar
quantization we can substitute the term αq and λq with the expression in Proposition
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3.3.1, and find the optimum ∆ numerically as shown in Figure 3.3. As a result, the same
∆ should be chosen as given in the Table 3.1.

In the practical implementation of this scheme the channel estimation does not have to
be performed at low resolution: the channel can be estimated at the AP at high precision,
in the same way as CSI quantization in the coordinated multipoint (CoMP) scenario,
and the estimate subsequently quantized at a lower resolution, in order to reduce the
fronthaul load. If we prefer to implement a low-cost AP, the drawback of this two-stage
quantization remains however the additional complexity and power consumption. In
the next subsection we introduce a simpler strategy where the AP does not require to
estimate the channel and needs only a single-stage low-resolution quantization.
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Fig. 3.3 The scaling term specifying the CSI accuracy of EQ strategy (2αeq − λeq) and QE
strategy (α2

qealk)/(α2
qealk + (λqe − α2

qe)bl) in relation to the step size ∆ for different quantization
level S ∈ {2, 4, 8, 16, 32}

3.4.2 Quantize-and-Estimate

Unlike the previous scheme, here we quantize the received pilot first and then send it
to the CPU to estimate glk. In this case, at the l-th AP we quantize the signal yp,l

from equation (4.32), that is the superposition of pilot sequences received from K users.
After sending its quantized representation through the fronthaul, we obtain at the CPU
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the quantized received pilots which once again may be decomposed using the Bussgang
decomposition as

yq
p,l = Q(yp,l) = αqeyp,l + dqe. (3.41)

We aim next to estimate the channel at the CPU from this noisy quantized observation
yq

p,l for l = 1, . . . , L. Since we assume that there is no channel correlation between the
APs, we can estimate from each AP separately without any performance loss. Thus, we
do a projection of yq

p,l onto ϕH
k which gives

rq
p,lk = ϕH

k yq
p,l

= αqeϕ
H
k yp,l + ϕH

k dqe

= αqerp,lk + ϕH
k dqe. (3.42)

We then apply the LMMSE estimator to obtain the quantize-and-estimate channel
coefficient ĝqe

lk given by

ĝqe
lk =cqe

lk rq
p,lk, (3.43)

where we choose cqe
lk that minimizes the MSE.

Lemma 3.4.2 (The MSE of Quantize-and-Estimate).
Suppose that the CSI for a centralized cell-free massive MIMO with single antenna AP
is acquired using the Quantize-and-Estimate strategy under a low-resolution fronthaul
constraint. The optimum coefficient cqe

lk for the LMMSE estimator (3.43) is given by

cqe
lk =clk

αqealk

α2
qealk + (λqe − α2

qe)bl

, where (3.44)

alk,τpρp

K∑
k′=1

βlk′|ϕH
k ϕk′ |2 + 1, and bl,ρp

K∑
k=1

βlk + 1.

The MSE of the CSI at the CPU is given by

ϵqe
lk = βlk −

(
α2

qealk

α2
qealk + (λqe − α2

qe)bl

)
γlk. (3.45)

Proof. For the estimator in (3.43), the MSE is given by

ϵqe
lk = E{|glk − ĝqe

lk |2}
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= E{|glk|2} + cqe2

lk E{|ĝlk|2} − 2cqe
lk Re{E{g∗

lkĝlk}}. (3.46)

We obtain from

0 = ∂ϵqe
lk

∂cqe
lk

= 2cqe
lkE{|rq

p,lk|2} − 2Re{E{rq∗

p,lkglk}} (3.47)

the coefficient cqe
lk that minimizes the MSE given by

cqe
lk =

Re{E{rq∗

p,lkglk}}
E{|rq

p,lk|2}
. (3.48)

Using (3.42) we can express the numerator of cqe
lk as

Re{E{rq∗

p,lkglk}} = αqe Re{E{r∗
p,lkglk}} + Re{E{ϕH

k dqeglk}}
= αqe

√
τpρpβlk, (3.49)

where the second term vanishes due to uncorrelation. Likewise we can express the
denominator as

E{|rq
p,lk|2} = α2

qeE{|rp,lk|2} + E{|ϕH
k dqe|2}, (3.50)

where the first term is given by

α2
qeE{|rp,lk|2} = α2

qe

(
τpρp

K∑
k′=1

βmk′ |ϕH
k ϕk′|2 + 1

)
(3.51)

and the second term is given by

E{|ϕH
k dqe|2} = ∥ϕH

k ∥2E{|dqe|2}
(3.10)= (λqe − α2

qe)E{|yp,l|2}

= (λqe − α2
qe)
(

ρp

K∑
k=1

βlk + 1
)

. (3.52)

Let alk and bl denote the following expressions

alk,τpρp

K∑
k′=1

βlk′|ϕH
k ϕk′|2 + 1, and bl,ρp

K∑
k=1

βlk + 1,
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then we obtain

cqe
lk =

αqe
√

τpρpβlk

αqealk

αqealk

α2
qealk + (λqe − α2

qe)bl

= clk
αqealk

α2
qealk + (λqe − α2

qe)bl

. (3.53)

Further, we obtain from substituting cqe
lk into (3.46) the MSE given by

ϵqe
lk = E{|glk|2} −

(E{rq∗

p,lkglk})2

E{|rq
p,lk|2}

= βlk −
α2

qeτρpβ2
lk

α2
qealk

α2
qealk

α2
qealk + (λqe − α2

qe)bl

= βlk − γlk

α2
qealk

α2
qealk + (λqe − α2

qe)bl

, (3.54)

which completes the proof. �

In contrast to the scaling term (2αeq − λeq) of the EQ strategy in (3.36), the scaling
term of the QE strategy in (3.45) depends on many variables. In addition to the step
size ∆, this term depends also on the family of pilot sequences, pilot power, pilot length,
large scale fading, and can have a different value for different users and APs. However,
it is the only term appearing in the MSE expression that depends on the step size
∆. To see how it behaves in response to varying step size ∆ we plot the scaling term
(α2

qealk)/(α2
qealk + (λqe − α2

qe)bl) in Figure 3.3 for a certain case with given parameters.
From Figure 3.3 at least we can observe that the values of ∆ given in Table 3.1 are also
a good choice for this strategy.

We note that the MSE expression for the QE strategy in Lemma 3.4.2 is valid for the
general case of scalar quantization and pilot sequences. We did not put any any constraint
on the pilot sequences where they can be orthogonal or non-orthogonal. Lemma 3.4.2
should also be valid whether the available pilot sequences are underused or overused. For
the special case of fully-loaded orthogonal pilots, we can simplify the MSE expression as
given in proposition 3.4.1. This assumption is commonly used in the scenario where no
pilot contamination is present.

Proposition 3.4.1 (The MSE of QE for Fully-Loaded Orthogonal Pilot).
If a unique pilot sequence is assigned to each user and all available orthogonal pilot
sequences are used (fully loaded), then the MSE at the CPU for the QE acquisition



54 Centralized Cell-Free massive MIMO with Single-Antenna Access Points

-40 -35 -30 -25 -20 -15 -10 -5 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) For different quantization level S = {2, 4, 8, 16, 32}.
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(b) For different users with K = 20 and S = 4.

Fig. 3.4 The behaviour of the term Γlk with respect to the pilot power.
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strategy in Lemma 3.4.2 is given by

ϵqe
lk = βlk

1 −
α2

qe

λqe

(
1 + 1

τpρpβlk

)
 . (3.55)

Proof. Taking βlk outside, we obtain the expression

ϵqe
lk = βlk

1 − γlk

βlk

α2
qealk

α2
qealk + (λqe − α2

qe)bl︸ ︷︷ ︸
Γlk

 . (3.56)

Substituting alk, bl and γlk from (3.33), the term Γlk is then given by

Γlk =
τpρpβ2

lk

τpρp

∑K

k′=1 βlk′ |ϕH
k

ϕk′ |2+1

βlk

α2
qe

(
τpρp

∑K
k′=1 βlk′ |ϕH

k ϕk′|2 + 1
)

α2
qe

(
τpρp

∑K
k′=1 βlk′ |ϕH

k ϕk′ |2 + 1
)

+ (λqe − α2
qe)
(
ρp
∑K

k=1 βlk + 1
)

=
α2

qeτpρpβlk

α2
qe

(
τpρp

∑K
k′=1 βlk′|ϕH

k ϕk′ |2 + 1
)

+ (λqe − α2
qe)
(
ρp
∑K

k=1 βlk + 1
)

=
α2

qeτpρpβlk

α2
qeτpρp

∑K
k′=1 βlk′ |ϕH

k ϕk′ |2 + λqeρp
∑K

k=1 βlk + λqe − α2
qeρp

∑K
k=1 βlk

= 1∑K
k′=1

βlk′
βlk

|ϕH
k ϕk′|2 + λqe

α2
qe

K
τp

+ λqe

α2
qe

1
τpρpβlk

− K
τp

. (3.57)

Due to the orthogonality and fully loaded case K = τp, we obtain

Γlk = 1
K∑

k′=1

βlk′

βlk

|ϕH
k ϕk′ |2︸ ︷︷ ︸

1

+ λqe

α2
qe

+ λqe

α2
qe

1
τpρpβlk

− 1
= 1

λqe

α2
qe

+ λqe

α2
qe

1
τpρpβlk

=
α2

qe

λqe

(
1 + 1

τpρpβlk

) ,

Substituting back Γlk in (3.56), we obtain

ϵqe
lk = βlk

1 −
α2

qe

λqe

(
1 + 1

τpρpβlk

)
 , (3.58)

which proves the proposition. �

Expressing the MSE as in Proposition 3.4.1 gives us now more insight into how the
MSE depends on other parameters such as the pilot power ρp. It is interesting to see
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that the term α2
qe/λqe also minimizes the MSE for the solution of maximizing problem

in (3.24). The remaining parameters that can be tuned are the pilot length and pilot
power. To better understand the effect of pilot power on the CSI accuracy, we show in
Figure 3.4a the behaviour of the term Γlk against the pilot power ρp for a fixed pilot
length τp, an arbitrarily given βlk and different values of the quantization level S. As
expected, the term Γlk increases as the pilot power increases for all quantization level,
but it then reaches a certain limit as the pilot power goes beyond a certain level. It can
be observed that the limit depends on S where the value is higher for large S. However,
the power level at which Γlk reaches its limit is independent of S. Next, in Figure 3.4b
we consider the CSI of K = 20 users each of which connects simultaneously to L = 100
APs with quantization level S = 4. We compute Γk for each user k = 1, . . . , K to its
furthest AP using the respective minimum of βlk over L APs to which it connects. As
shown in Figure 3.4b, every users has the same limit of Γk but requires a different power
level to achieve this limit. This observation suggests that each user should transmit with
different pilot power to obtain a good CSI accuracy with high energy efficiency. In this
respect, it might be worth applying a pilot power control.

3.5 Data Transmission
Having the CSI available from all active UEs at the CPU, we are ready now to discuss the
process of data transmission in centralized cell-free massive MIMO with low-resolution
fronthaul. We showcase in this section the data transmission in uplink direction where the
k-th user, k = 1, . . . , K, aims to send its data-bearing signal xu,k ∈ C with E{|xu,k|2} = 1
to the CPU with the help of L single-antenna APs. All users send their data simultaneously
and the l-th AP receives them as

yu,l = √
ρu

K∑
k=1

glkxu,k + wu,l. (3.59)

For a simple implementation, the AP is supposed to be oblivious in the sense that it does
not know the required beamforming vector and the codebook of the users. Consequently,
the AP can not detect nor decode the data signal. This is in contrast to the original
cell-free massive MIMO in Section 2.1.2 where the estimate of data signal x̂u,k is detected
from the received signal yu,l locally at the AP and then the data is decoded at the
CPU. Instead of detecting the data signal, we only coarsely quantize yu,l at the AP to
be represented by a few bits and then sent to the CPU. Specifically, the uplink data
signal received at the l-th APs can be described after the quantization by the Bussgang
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decomposition as

ru,l = Q(yu,l) = αquyu,l + du. (3.60)

To detect jointly the reconstruction value ru,l from all L APs it is convenient to put them
together as a vector ru ∈ CL such that from (3.60) we can write

ru = Q(yu) = αquyu + du, (3.61)
where

yu = √
ρuGxu + wu, (3.62)

xu ∈ CK is the transmitted data from all K users, G is the channel matrix defined in
(3.2) and wu ∼ CN (0, IL) is an additive noise vector. Note that the quantization in
equation (3.61) should be understood as an elementwise operation. Further, by plugging
(3.62) into (3.61) the reconstructed signal ru can be expressed as

ru = √
ρuαquGxu + αquwu + du

= √
ρuαquĜxu + √

ρuαquG̃xu + αquwu + du, (3.63)

where G̃ is the channel estimation error including the quantization error. In this case,
we have the relation

G = Ĝ + G̃, where [Ĝ]lk = ĝeq
lk or [Ĝ]lk = ĝqe

lk (3.64)

from (3.35) and (3.43) depending on the used CSI acquisition strategy. Further, we treat
Ĝ as the true channel and treat the second term and so forth of equation (3.63) as an
effective noise z such that we can write it as

ru = √
ρuαquĜxu + z (3.65)

To detect the transmitted data we may use a linear detection matrix A that is constructed
from the channel estimate Ĝ. The following options are now feasible

A =


Ĝ MRC
Ĝ(ĜHĜ)−1 ZF
Ĝ(ĜHĜ + 1

ρu
Ik)−1 MMSE.

(3.66)
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where ZF and MMSE detection may be preferable due to its ability to suppress interference.
Using the detection matrix given in (3.66) we then obtain the estimated data as

x̂u = AHru

= √
ρuαquAHĜxu + AHz. (3.67)

Subsequently, we suppose that the uplink data is sent to the CPU in the same time frame
as the CSI is transferred. To maximize the rate, the same proportion of power can be
allocated to the pilot and the data as in the training-based scheme of general MIMO
system [57]. Let ρ and ρu denote the total transmit power and the transmit power for
the uplink data respectively, the power allocation for pilot of length τp and for data of
length τu follows

ρuτu = ρτc

2 and ρpτp = ρτc

2 , where τc = τp + τu. (3.68)

3.6 Achievable Rate
In this section, we now try to determine what data rate can be achieved by the centralized
cell-free massive MIMO when the fronthaul resolution is low. In particular, we derive the
expression of the achievable rates when the CPU performs ZF detection. The choice of ZF
is usually made for the reason of a good trade-off between performance and complexity.
Using the ZF detection matrix given in (3.66) the estimated data in the equation (3.67)
is simplified to

x̂u = √
ρuαquxu + AHz, (3.69)

since (ĜHĜ)−1ĜHĜ = IK . The SINR for ZF is then given by

SINRZF =
ρuα2

qu

E{|AHz|2}
. (3.70)

By substituting the effective noise z with the three last terms in (3.63), the denominator
of (3.70) can be written as

E{|AHz|2} = E{AHzzHA}
= E{AH(√ρuαquG̃xu + αquwu + du)(√ρuαquxH

u G̃H + αquwH
u + dH

u )A}
= ρuα2

quE{AHG̃ xuxH
u︸ ︷︷ ︸

IK

G̃HA} + α2
quE{AH wuwH

u︸ ︷︷ ︸
IL

A} + E{AHdqudH
quA}
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= ρuα2
quE{AH

[
K∑

k=1
g̃kg̃H

k

]
A} + α2

quE{AHA} + σ2
du
E{AHA}, (3.71)

where for ZF
E{AHA} = E{(ĜHĜ)−1ĜHĜ︸ ︷︷ ︸

IK

(ĜHĜ)−1}

= E{(ĜHĜ)−1}. (3.72)

We can further express the denominator as

E{|AHz|2} = ρuα2
quE{AH

[
K∑

k=1
g̃kg̃H

k

]
AH} + (α2

qu + σ2
du

)E{(ĜHĜ)−1} (3.73)

such that the SINR for the k-th user is given by

SINRZF
k =

ρuα2
qu[

ρuα2
quE{AH

[∑K
k=1 g̃kg̃H

k

]
AH} + (α2

qu + σ2
du

)E{(ĜHĜ)−1}
]

k,k

. (3.74)

However, due to the nature of the matrix G in the case of distributed massive MIMO,
which tends to have independent large scale fading coefficients, the closed form SINR
expression for ZF is difficult to deal with. To obtain a rather simpler SINR expression for
our quantized CF massive MIMO we follow the approximation derived in [58]. We then
use the SINR expression to formulate the ergodic achievable rate which is the lower bound
of the ergodic capacity of discrete memoryless interference channel [see 33, Corollary 1.3].
The resulting achievable rates for the k-th user using this approximation is summarized
in Proposition 3.6.1. The the ergodic rate in (3.75) is based on the assumption that the
channel fading is a stationary and ergodic random process. This implies that we may
use a coherence time as a set of channel realization to represent the whole process [59].
In this case, we perform the coding with a fixed codebook and take the average in (3.75)
over different coherence time.

Proposition 3.6.1 (The achievable rate of Zero-Forcing).
Suppose that K users are served by L single-antenna APs in uplink Cell-Free massive
MIMO. The ergodic achievable rate of the k-th user with Zero-Forcing and low-resolution
fronthaul is determined by

RZF
u,k = E

{
log2

(
1 + SINRZF

k

)}
. (3.75)

The SINRZF
k can be approximated by

SINRZF
k ≈ ρuα2

qu

(
L − K + 1

L

)
ĝH

k Λ−1ĝk (3.76)
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with L dimensional matrix
Λ=diag{Λ1, ..., ΛL} (3.77)

where

Λl =σ2
du

+α2
quσ2

n+ρuα2
qu

K∑
k=1

ϵq
lk. (3.78)

The data distortion variance caused by quantization and the noise variance are denoted
respectively by σ2

du
= (λqu−α2

qu)σ2
y and σ2

n. The estimation error is given by ϵq
lk ∈ {ϵeq

lk , ϵqe
lk }

depending on the CSI acquisition scheme.

Proof. The main notion is to involve the effective noise z in the ZF detector matrix. In
this case, we use

ĀH = (ĜHΛ−1Ĝ)−1ĜHΛ−1/2, where (3.79)
Λ = E{zzH} and ĀHΛ−1/2Ĝ = IK . (3.80)

Due to the independent realization of the additive noise and estimation error at each
AP we may assume that the effective noise z is uncorrelated over L APs. Thus, we can
express Λ as

Λ = E{zzH}
= E{(√ρuαquG̃xu + αquwu + du)(√ρuαquxH

u G̃H + αquwH
u + dH

u )}
= ρuα2

quE{G̃xuxH
u G̃H} + α2

quE{wuwH
u } + E{dudH

u }

= ρuα2
qu

K∑
k=1

E{g̃kg̃H
k } + α2

quσ2
nIL + σ2

du
IL

= diag{Λ1, ..., ΛL} (3.81)
where

Λl =σ2
du

+α2
quσ2

n+ρuα2
qu

K∑
k=1

ϵq
lk,

σ2
du

is the distortion variance resulting from quantizing data, σ2
n is the noise variance and

ϵq
lk ∈ {ϵeq

lk , ϵqe
lk } is the estimation error from (3.36) or (3.45) depending on the scheme. To

detect the data signal, we apply first a filter Λ−1/2 to rd to whiten z. After the detection
we obtain

x̂d =ĀHΛ−1/2rd

=√
ρuαquxd+(ĜHΛ−1Ĝ)−1ĜHΛ−1z. (3.82)
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The instantaneous SINR (i.e. the SINR for a specific realization of z) for the k-th user
can then be expressed as

SINRZF
k =

ρuα2
qu[

(ĜHΛ−1Ĝ)−1ĜHΛ−1zzHΛ−1Ĝ(ĜHΛ−1Ĝ)−1
]

k,k

. (3.83)

Next, we may approximate zzH in (3.83) by its expectation Λ such that it remains

SINRZF
k

(3.80)
≈

ρuα2
qu[

(ĜHΛ−1Ĝ)−1
]

k,k

(3.84)

In this way, we can express the SINRZF
k as [58]

SINRZF
k ≈ ρuα2

qu

(
L − K + 1

L

)
ĝH

k Λ−1ĝk. (3.85)

This completes the proof of the proposition. �

3.7 Scalability
In this section we discuss now how the AP processing and the fronthaul load of the
centralized cell free massive MIMO with single antenna APs are scaled with the number
of users. As mentioned previously, future networks are required to handle a large number
of users, preferably with low complexity processing and low resource utilization. We call
such a network a scalable network referring to the recent work [60], which appeared at the
time of writing this thesis. As described in [60], there are many aspects of scalability in
cell-free massive MIMO. However, we discuss the most important ones which are the AP
processing and the fronthaul load. To begin with, we discuss first the scalability of the
original cell-free massive MIMO in the uplink in terms of AP processing and fronthaul
load. Then, we compare it with the scalability of the centralized cell-free massive MIMO
respectively using EQ and QE strategy described in Section 3.4.

Recall from Section 2.1.2 that in the original cell-free massive MIMO the APs perform
the channel estimation and the data detection. Suppose that K users should send their
data of length τu simultaneously in the uplink. The l-th single-antenna AP must compute
first K times channel estimation to obtain ĝlk for k = 1, . . . , K from the received pilots
of length τp. In the simplest case of least square channel estimation the l-th AP should
perform at least Kτp complex scalar multiplications. Assuming that the pilot length
τp is fixed and independent of the number of users K, then the AP processing for the
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channel estimation grows linearly with K. When the number of users K → ∞ then the
complexity for the channel estimation in the original cell-free massive MIMO becomes
infinite and hence unscalable. To detect the uplink data of length τu, the l-th AP needs
to perform Kτu complex scalar multiplication ĝ∗

lkyu,l in (2.31) for k = 1, . . . , K. Hence,
the AP processing for the data detection is also unscalable when the number of users K

gets very large.
In terms of the fronthaul load, the original cell-free massive MIMO does not utilize

the fronthaul for transferring the CSI since the estimated CSI has been employed locally
at the AP to detect the data. The fronthaul is then utilized only for transmitting the
detected payload data {ĝ∗

lkyu,l, k = 1, . . . , K}. This means that all we have to transmit
over the fronthaul is the Kτu complex data symbols. Using an ADC with resolution of
log2[S] bits we have then 2 log2[S]Kτu bits fronthaul load. However, the fronthaul load
will be unlimited when the number of users K → ∞. In this case, the original cell-free
massive MIMO is also unscalable in terms of the fronthaul load.

In comparison to the original cell-free massive MIMO, the complexity of the AP
processing in centralized cell-free massive MIMO can be significantly reduced. This is
due to the migration of the data detection to the CPU which presumably has much
more computing power. Recall from (3.60) that the l-th AP needs only to forward
the quantized data signal ru,l to the CPU over a fronthaul. Obviously, this process of
forwarding has low complexity and independent to the number of users K. Since the
the data detection is performed at the CPU, we need also to look at the complexity
of the CSI acquisition at the CPU. If the channel estimation is performed at the AP
such as in the EQ strategy described in Section 3.4.1, then the l-th AP still needs to
compute at least Kτp complex scalar multiplications. It turns out that this strategy has
an unscalable AP processing for the CSI acquisition. In the opposite, if the QE strategy
in Section 3.4.2 is applied, the l-th AP needs only to transmit the quantized received
pilots yq

p,l from equation (3.41). As we assumed previously, the length of the received
pilots τp is fixed and independent of the number of users K. Therefore, we can say that
the centralized cell-free massive MIMO with single-antenna AP using QE strategy is
scalable in terms of the AP processing.

To determine the fronthaul load required by the centralized cell-free massive MIMO
we need to take into account the load for CSI acquisition and the load for transmitting
the data signal. If the EQ strategy is used, then we need to transmit τu received data
symbols and K channel estimates {ĝlk, for k = 1, . . . , K} over the fronthaul. In total,
the fronthaul load is 2 log2[S](K + τu) where an ADC with resolution log2[S] bits is used.
Indeed, the fronthaul load for this strategy is also unscalable, but for large τu, this still
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Table 3.2 The scalability of cell-free massive MIMO with single-antenna AP

Min. AP Processing Min. Fronthaul Load
[Scalar multiplication] [bits]

Original CF maMIMO (MRC) Kτp + Kτu 2 log2[S]Kτu

Centralized CF maMIMO (EQ) Kτp 2 log2[S](K + τu)
Centralized CF maMIMO (QE) - 2 log2[S](τp + τu)

grows more slowly with K than 2 log2[S]Kτu in case of the original cell-free massive
MIMO. In contrast, if the QE strategy is used for centralized cell-free massive MIMO,
only τu received data symbols and τp received pilot symbols should be transferred over
the fronthaul. In this case, we load the fronthaul with 2 log2[S](τp + τu) bits which is
independent of the number of users K. As a result, the centralized cell-free massive
MIMO with single antenna AP using the QE strategy is also scalable in terms of the
fronthaul load. Table 3.2 summarizes the scalability of cell-free massive MIMO with
single-antenna AP for different schemes. As shown in the Table 3.2, the multiplier
2 log2[S] is one of determining factor for the increasing of the fronthaul load. If a high
resolution ADC is employed, then the fronthaul load can increase very rapidly, especially
for the case of the original cell free massive MIMO with a large number of users. On the
other hand, a low-resolution ADC combined with centralized cell-free massive MIMO
using the QE strategy seems to offer a promising solution for the scalability of the
fronthaul load. This observation also suggests that it is feasible in cell-free massive
MIMO to employ fronthaul links with low resolution if the centralized approach is used.

3.8 Performance Evaluation
In the following, we provide some numerical results for the centralized cell-free massive
MIMO described previously. We do simulations with system parameters similar to [6]
where there are L = 200 APs and K = 20 users distributed uniformly in an area of
1×1 km2. We assume that this simulation area is wrapped around to avoid the boundary
effects as shown in Figure 3.5. For the channel glk given in (4.3) we model the large scale
fading βlk = PLlk ·10(σshzlk)/10, where the factor 10(σshzlk)/10 is the uncorrelated shadowing
with standard deviation σsh = 8 dB and zlk ∼ N (0, 1). The path loss coefficient follows
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Table 3.3 Physical parameters used for the simulation:

Area 1 × 1 km2

Carrier frequency f 1.9 GHz
Bandwidth B 20 MHz

AP antenna height hAP 15m
UE antenna height hu 1.65m
Boltzmann constant kb 1.381 × 10−23

Noise temperature T0 290 Kelvin
Noise figure 9 dB

the three-slope model according to

PLlk =


−L − 35log10(dlk), dlk > d1

−L − 15log10(d1) − 20log10(dlk), d0 < dlk ≤d1

−L − 15log10(d1) − 20log10(d0), dlk ≤ d0,

(3.86)

where dlk is the distance between the l-th AP and the k-th user, d0 = 0.01km, d1 = 0.05km,
and

L , 46.3 + 33.9 log10(f) − 13.83 log10(hAP ) − (1.1 log10(f) − 0.7)hu + (1.56 log10(f) − 0.8).
(3.87)

We choose the carrier frequency f = 1.9 GHz, the AP antenna height hAP = 15m
and the user antenna height hu = 1.65m. In our simulation the normalized transmit
SNRs ρu and ρp are defined as the transmit power divided by the noise power which
is B × kb × T0 × noise figure, where we denote by B the communication bandwidth,
by kb the Boltzmann constant and by T0 the noise temperature. The values of the
physical parameters used in the simulation are summarized in Table 3.3. To make a fair
comparison, our simulation considers the fully-loaded orthogonal case with τp = K where
EQ and QE scheme spend the same length of CSI overhead. We allocate 10% of symbols
for acquiring CSI where τp = 20 symbols are spent for the pilot from overall τc = 200.

In Figure 3.6, we first validate with simulations our analytical MSE approximations
which are obtained in (3.36) and (3.45) using Bussgang decomposition. Note that in our
simulation setup the large scale fading has very small value up to -17 order of magnitude.
This boils down to very small channel gain and to very small typical value of MSE. It
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Fig. 3.5 An example of the wrap around model for the simulation of Cell-Free massive MIMO
with L = 100 and K = 10.

is shown in Fig. 3.6 that our analyses for both strategies are quite close to simulations
especially for small S and high transmit power. In at least 80% of cases (those with the
lower MSE) the QE scheme gives a poorer MSE than EQ and for S > 2 this proportion
increases. However, it is the larger channel estimate errors that have stronger influence
on the rate.

Using the corresponding channel estimation errors we then evaluate the average
achievable rates per user given in (3.75). In this case, we compare their performance in
terms of their per-user net throughput defined as

T ZF
u,k , B

1 − τp/τc

2 RZF
u,k , (3.88)

where the CSI overhead is taken into account by the term 1 − τp/τc. As shown in
Fig. 3.7 the QE scheme achieves higher throughput than the EQ scheme for small
S over the whole range of transmit power. The performance gap is decreasing as we
increase the quantization level. For small S, the achievable rates computed by our
approximation (3.76) has only relatively small deviation from the rate computed by
(3.74). This result seems to disagree with the theoretical result [61] which suggests that
performing estimation and then compression should be optimal. However, we note that
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Fig. 3.6 The cumulative distribution of the channel estimation MSE ϵq
lk for the schemes

estimate-and-quantize (EQ) in (3.36) and quantize-and-estimate (QE) in (3.45) with K = 20,
L = 200 and Transmit Power = 0 dBW

we investigate here a rather unidealized system model, where we consider fading and
take into account many interplaying parameters. Therefore, the QE scheme may be
better than the EQ scheme in some specific cases. As in our simulation result, this
may be caused by the nonlinearity of estimation and quantization in the case of low
resolution. Further, we can also clearly observe that ZF with low quantization level
S = 4 can already outperform MRC even with infinite quantization precision. This
demonstrates the great improvement resulting from having global CSI available at the
CPU. With S = 32 or R = 5 bits we are about 5 dB away from ZF with ideal fronthaul
to reach 60 Mbits/s/Hz average throughput per user. Meanwhile, the trade off between
the increasing throughput and the resulting latency due to CSI overhead is left for future
works.

3.9 Summary
In this chapter, we have presented a centralized cell-free massive MIMO system as an
alternative to original cell-free massive MIMO that uses a distributed approach. Its
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Fig. 3.7 The average per user throughput for different number of quantization level S, transmit
power and CSI acquisition schemes for K = 20 and L = 200.

general concept was elaborated, where the CSI from active UEs is available at the CPU,
and in contrast to original cell-free massive MIMO, the CPU utilizes the global CSI
for joint data processing. We have studied the system for the case, where the APs are
equipped with single-antenna and connected to the CPU by low-resolution fronthauls.
Therefore, we characterized a scalar uniform quantization of low-resolution and analysed
its optimality condition using Bussgang decomposition.

To enable the centralized approach under limited-capacity fronthaul links, we have
developed two strategies for acquiring CSI at the CPU, which are estimate-and-quantize
(EQ) and quantize-and-estimate (QE). We have analysed their performance and formu-
lated their MSE expression. Further, we have provided the data transmission scheme
in the centralized cell-free massive MIMO under low-resolution fronthauls. For a given
low-resolution constraint to the CSI and the data, the achievable rate per user of the
single-antenna APs centralized cell-free massive MIMO was derived in case of zero-forcing
(ZF) detection. Moreover, we have also derived a more simple SINR expression for ZF
with the given low-resolution constraint.

By using numerical simulation, we have evaluated its corresponding average through-
put performance for various resolutions. We have also compared its throughput to the
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original cell-free massive MIMO for different CSI strategies. The simulation results showed
that the centralized approach using ZF with 2 bits resolution can already outperform
the original cell-free massive MIMO with ideal fronthaul. Further, the low-complexity
scheme ZF-QE outperforms ZF-EQ at low resolution, especially for 1-bit. The scalability
issue for the centralized cell-free massive MIMO was also addressed in terms of AP
processing and fronthaul load. Our investigation showed that centralized cell-free massive
MIMO with single antenna AP is more scalable than the original cell-free massive MIMO,
particularly when the QE strategy is used.



Chapter 4

Centralized Cell-Free massive MIMO
with Multiple-Antenna Access Points

Improving wireless link capacity by adding more antenna at the receiver or transmitter
end has become an appealing and well-known technique. In the context of cell-free
massive MIMO, one can consider utilizing more than a single antenna at the APs and
expect the same logic to apply to its system performance. As we have seen in the previous
chapter, the centralized approach has also been able to improve the user throughput
in the cell-free massive MIMO. To increase the throughput even further, we can thus
extend the centralized cell-free massive MIMO described in the previous chapter to the
case where the APs are allowed to have more than a single antenna.

The advantages of adding more antennas at the AP have been reported previously
in some studies such as in [51, 62]. As investigated in [62] in the case of conjugate
beamforming and zero-forcing, adding more antennas can in fact increase the throughput
if the same number of APs is deployed. But if the total number of antennas in the system
should remain constant, then the single-antenna scheme with more APs can outperform
the multi-antenna scheme in terms of the outage rate. A further investigation is given in
[51] by examining the channel hardening and favorable propagation. It is shown that
those properties appear much weaker in cell-free massive MIMO with single antenna APs
compared to a massive MIMO system with co-located antennas. While the favorable
propagation can be improved by many factors, the channel hardening can evidently be
improved by deploying multiple antennas at the APs. On the other hand, increasing
the number of antennas at each AP while reducing the number of APs will decrease
the macro diversity which is one of the most advantageous features in cell free massive
MIMO. Therefore, there is a tension in cell free massive MIMO between deploying many
single-antenna APs versus fewer multi-antenna APs. The tension will be stronger if we
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include some other factors such as the fronthaul load and energy efficiency. The known
results so far show that the average rate decreases from many single-antenna APs to
fewer multi-antenna APs as given in [51].

In this regard, we study in this chapter centralized cell-free massive MIMO with
multiple-antenna APs considering the limited capacity of the fronthaul links. At the
time of writing this thesis, we found a comprehensive work independently investigating a
centralized approach with multiple antenna APs and correlated channels [11] but without
assuming limited-capacity fronthaul. On the other hand, the work in [9] investigated a
centralized approach using multiple antenna APs with a limited-capacity fronthaul but
considering uncorrelated channels and separate scalar quantization. Unlike the other
works mentioned above, we consider both in this chapter where we study the centralized
approach with multi-antenna APs with correlated channel and limited-capacity fronthaul.

After describing the considered system model including the spatial channel correlation
model, we will consider two schemes of AP processing in the next two sections. In the
first scheme, we will handle the received signals across the multi-antenna AP individually,
where we use independent scalar quantization at each antenna similar to the work in [9].
Since the resulted fronthaul load from multi-antenna AP is larger than single-antenna
AP, we propose in the second scheme to jointly process the received signal at the APs.
By exploiting the fact that the channels across the AP’s antennas are correlated, we
employ Vector Quantization (VQ) with a small number of bits per dimension. After
describing the quantization model, we will also describe how the CSI is acquired in
the joint processing scheme and how much data rate can be achieved by this scheme.
Before we evaluate its system performance in the subsequent section, we will discuss the
scalability and the possibility to extend the centralized cell-free massive MIMO with
multi-antenna APs into a larger network. Then, we will show using simulations that the
joint processing can deliver a higher data rate than its separate processing counterpart at
the same fronthaul resolution. In the opposite situation, we can set the joint processing to
the same throughput performance as the individual processing, which compensates with
a lower requirement of the fronthaul load. Although we have not resolved the problem of
finding the optimum number of antennas and APs with limited-capacity fronthaul, the
results in this chapter may give some insights into the problem.

4.1 System Model
As in the previous chapter, we consider in this chapter also a cell-free massive MIMO
system for the uplink transmission, where we have K single-antenna users (UEs) intending
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to send their data to the Central Processing Unit (CPU) with the help of L Access
Points (APs). The processing of the signals received at the APs is virtualized at the
CPU, which is connected to the L APs by L error-free fronthaul links which carry the
signals in digitally encoded form. The distinction from the model in the previous chapter
is that the APs are now equipped with N ≥ 1 antennas. We fix the total number of AP
antennas in the system at M = LN .

4.1.1 Channel Model

We denote the channel between the k-th user and the m-th antenna of the l-th AP by
gmk where m = (l − 1)N + 1, . . . , lN for l = 1, . . . , L, and k = 1, . . . , K. For a given l

and k the channel is specified by the N × 1 vector glk ∼ CN (0N , Σlk) where Σlk ∈ CN×N

is the covariance matrix including the large scale fading and the spatial correlation given
by

Σlk = βlkRlk. (4.1)

The large scale fading βlk is a path-loss dependent coefficient whereas the correlation
matrix Rlk ∈ CN×N is dependent on the particular environment between AP and UE.
In this case, we follow the local scattering model given in [33], where any user k at
the azimuth angle θ to the AP l is surrounded by scatterers causing correlation to the
multipath signal components received between the antennas of the AP. This channel
model is illustrated in Figure 4.1. Accordingly, the correlation coefficient can be specified
by an angle of arrival θ̄ which is treated as a random variable with probability density
function f(θ̄) and the entries of the correlation matrix Rlk are then determined by

[Rlk]a,b =
∫

ej2πdH(a−b)sin(θ̄)f(θ̄)dθ̄, (4.2)

where dH is the spacing between antennas 1 ≤ a, b ≤ N . Further, θ̄ can be expressed
as θ̄ = θ + δ, where δ is a random deviation from the nominal angle with Gaussian
distribution and standard deviation σδ.

Using the Karhunen-Loeve representation we can describe the correlated channel
vector as

glk = β
1/2
lk UlΛ1/2

l hlk, (4.3)

where the vector hlk ∼ CN (0N , IN) models the small scale fading between the k-th user
and the l-th AP. The unitary matrix U ∈ CN×r and the diagonal matrix Λ ∈ Rr×r

comprise respectively the eigenvectors and the associated eigenvalues of the correlation



72 Centralized Cell-Free massive MIMO with Multiple-Antenna Access Points

matrix Rlk with rank r. The channel vector of the k-th user to all L APs is then given
by gk ∼ CN (0M , Σk), where Σk = diag (Σ1k, . . . , ΣLk). Further, we stack the channel
from K users to all L APs in the columns of the M × K matrix G = [g1, . . . , gK ], such
that under the assumption of perfect fronthaul the received signal at the CPU can be
modeled as

y = Gx + w, (4.4)

where x ∈ CK is the channel input from all K users and w ∼ CN (0M , IM) is the i.i.d.
additive Gaussian white noise at APs. Later, we will remove the assumption of perfect
fronthaul and assume that the l-th fronthaul link connecting the l-th AP to the CPU
can transmit quantized signals reliably at a maximum rate of Cl.

ClN

l-th AP

UE

Scattering cluster

Multipath
components

Nominal angle θ

Angular interval with
standard deviation σδ

Fig. 4.1 An illustration of the local scattering model for Non Line of Sight (NLoS) channel
between an UE and an AP.

4.2 Individual Processing at Multiple-Antenna APs
We investigate first in this section a simple case where the APs process the received
signal at the multi-antenna individually. Although the received signals to be processed
at the APs are clearly different from the case of single-antenna APs described in the
previous chapter, initially in this section we will not change the processing at each AP
antenna, but will assuming separate processing of the signal at each AP antenna. We will
investigate this naive approach particularly for the fronthaul quantization and will later
compare this with a more advanced approach that we propose. Thus, the description in
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this section may serve as a baseline for comparison with the scheme we propose in the
subsequent section.

4.2.1 Fronthaul Quantization

Due to the limited capacity of the fronthaul link and the high load of the digitally encoded
signal we need to compress the received signal at the AP for efficient transmission to
the CPU. In this section, we consider quantizing the received signals using independent
scalar quantizers followed by independent fixed-rate lossless coding. For N AP antennas
we apply correspondingly N scalar quantizer as illustrated in Figure 4.2. The individual
scalar quantizer we use in this section follows the model described in Section 3.3.1.
However, the quantized signals are sent together via the same fronthaul links. This
results in an increased fronthaul load compared to the case of a single-antenna AP. To
simplify our analysis, we consider fronthaul links with equal capacity of Cl = C bits for
all l ∈ {1, . . . , L}. Thus, the m-th scalar quantizer at the N -antenna AP should set the
number of quantization level smaller than the quantizer in the single-antenna AP by
Sm = 2Rm with Rm = C

N
to meet the fronthaul capacity.

SQ

SQ
N

...

SQ

Cl

l-th AP

Fig. 4.2 Illustration of the individual processing using scalar quantization

4.2.2 CSI Acquisition

For the CSI acquisition we adopt the method from the previous chapter where we may
apply the Estimate-and-Quantize (EQ) or Quantize-and-Estimate strategy (QE) for the
respective channel between the k-th user and the m-th antenna for m = (l − 1)N +
1, . . . , lN . Because we have now N antennas at each AP, the l-th AP observes the
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received pilot Yp,l ∈ CN×τ from all K users as

Yp,l = √
τρp

K∑
k=1

glkϕH
k + Wl (4.5)

where the k-th user sends
√

τϕk as its pilot with transmit power ρp. The superposition
of the pilots from all K users is corrupted at the l-th AP by an additive noise matrix
Wl whose entries are uncorrelated with zero mean and unit variance.

Recall from Section 3.4.1 that for the EQ strategy we first estimate at the l-th AP
the channel coefficient gmk by projecting each row of Yp,l onto ϕH

k and then weighting
appropriately to minimize the MSE to obtain the estimate

ĝlk =
( √

τpρpβlk

τpρp
∑K

k′=1 βlk′ |ϕH
k ϕk′|2 + 1

)
Yp,lϕ

H
k (4.6)

The estimated channel vector is then quantized separately for each element using a
scalar quantizer. Since the quantization processes are carried out independently, we may
decompose each element of the vector using the Bussgang decomposition and write the
quantized channel estimate as

ĝeq
lk = Q(ĝlk) = αeqĝlk + deq. (4.7)

The quantized vectors {ĝeq
lk for k = 1, . . . , K} are then sent together via the l-th fronthaul

link to be gathered at the CPU. For the QE strategy we refer to Section 3.4.2, where we
apply it to each row of the received pilot matrix in (4.5). By treating the elements of the
matrix Yp,l independently the Bussgang decomposition of the quantized pilots are given
by

Yq
p,l = Q(Yp,l) = αqeYp,l + Dqe. (4.8)

The CPU receives Yq
p,l at the output of the l-th fronthaul link, which is then projected

onto ϕH
k and weighted by the LMMSE coefficient cqe

lk from Lemma 3.4.2. We then obtain

ĝqe
lk = cqe

lk Yq
p,lϕ

H
k . (4.9)
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4.2.3 Data Transmission

Consider that all users send their data xu,k with E{|xu,k|2} = 1 simultaneously, then the
l-th AP receives them at the N multiple antenna as

yu,l = √
ρu

K∑
k=1

glkxu,k + wu,l. (4.10)

For a moderately large K we can assume that yu,l is distributed as a multivariate Gaussian
variable. Following the centralized approach, the l-th AP does not perform the data
detection but immediately quantizes the received signal vector yu,l ∈ CN as

ru,l = Q(yu,l) (4.11)
= αquyu,l + du,l, (4.12)

where each element of yu,l is quantized independently allowing a Bussgang decomposition
to each element in the second equation. The CPU collects then the quantized data from
L APs in a stack as a signal vector ru of length LN .


ru,1

...
ru,L


︸ ︷︷ ︸
, ru

= αqu


yu,1

...
yu,L


︸ ︷︷ ︸
, yu

+


du,1

...
du,L


︸ ︷︷ ︸
, du

. (4.13)

Although the received signal ru has the same expression as in the case of the single-antenna
AP, it has a rather different structure due to the received signal

yu = √
ρuGxu + wu, (4.14)

which stems from the different characteristic of the channel G. Expressing the channel
matrix as G = H ⊙ D1/2, the large-scale fading matrix D has now a block structure
where every N rows have the same components due to the deployment of N antennas
at each AP. This will affect the capability of the linear detector matrix to suppress the
interference more effectively. Similarly as given in (3.66), we can construct at the CPU a
linear detector matrix A from the estimated channel Ĝ, where [Ĝ]lk = ĝeq

lk or [Ĝ]lk = ĝqe
lk .

By decomposing the channel G = Ĝ + G̃ as a sum of estimated channel and channel
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estimation error, the estimated data can then be obtained from

x̂u = AHru

= AH(√ρuαquĜxu + √
ρuαquG̃xu + αquwu + du)

= √
ρuαquAHĜxu + AHz, (4.15)

where the effective noise z is given by

z = √
ρuαquG̃xu + αquwu + du. (4.16)

4.2.4 Achievable Rate

Similarly to the previous chapter, we also use the capacity lower bound to specify the
data rate achievable by this scheme. In this case, we can apply a formula in the same
way to [9, Th. 1] and [11, Pr. 1] due to the similar setting we have in this section. The
only difference is that we consider spatially correlated channels and capacity-limited
fronthaul altogether. In the previous works [9, 11], only one of them was considered
respectively. This then changes the value of the estimated channels, the detector matrix
and the estimation errors in the SINR formula. We recall that the signal from the k-th
user after the detection with a general linear detector AH can be written from (4.15) as

x̂u,k = √
ρuαquaH

k ĝkxu,k + √
ρuαqu

K∑
i=1
i ̸=k

aH
k ĝixu,i (4.17)

+ √
ρuαqu

K∑
i=1

aH
k g̃ixu,i + αquaH

k wu + aH
k du,

where ak and ĝk are respectively the k-th columns of matrices A and Ĝ. The first term
in (4.53) is the signal from the k-th user that is desired to decode. All of the other terms
can be regarded as an interference term

νk = √
ρuαqu

K∑
i=1
i ̸=k

aH
k ĝixu,i + √

ρuαqu

K∑
i=1

aH
k g̃ixu,i + αquaH

k wu + aH
k du, (4.18)

which has zero mean and variance

σ2
ν,k = ρuα2

qu

K∑
i=1
i ̸=k

|aH
k ĝi|2 + aH

k

(
ρuα2

qu

K∑
i=1

E{g̃ig̃H
i } + α2

quσ2
nIM + σ2

du
IM

)
ak. (4.19)
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Thus, we can we can use the concept of treating interference as noise and formulate the
achievable rate of this scheme as given in the following proposition.

Proposition 4.2.1.
Consider that K users are served by L APs which are equipped with N antennas and
connected to the CPU by low-resolution fronthaul. If the APs perform individual processing
for each antenna, then the ergodic achievable rate of the k-th user in the uplink of
centralized cell-free massive MIMO is determined by

RIn
u,k = E

{
log2

(
1 + SINRIn

k

)}
. (4.20)

The SINRIn
k is given by

SINRIn
k =

ρuα2
qu|aH

k ĝk|2

ρuα2
qu

∑K
i=1
i ̸=k

|aH
k ĝi|2 + aH

k Λak

(4.21)

with the M=LN dimensional matrix
Λ=diag{Λ1, ..., ΛM}, (4.22)

where

Λm =σ2
du

+α2
quσ2

n+ρuα2
qu

K∑
i=1

ϵq
li, (4.23)

The data distortion variance and the noise variance are denoted respectively by σ2
du

=
(λqu − α2

qu)σ2
y and σ2

n. The estimation error is given by ϵq
lk ∈ {ϵeq

lk , ϵqe
lk } depending on the

CSI acquisition scheme from (3.36) or (3.45).

Proof. The sketch of the proof is the same as the proof in [33, Th. 4.1], where the input
is given here by x = xu,k, the output by y = x̂u,k, the channel response by h = aH

k ĝk, the
random realization affecting the interference is given by u = {ĝk} and the interference
term ν is given by (4.18). It remains to show that the input is conditionally uncorrelated
to the interference term ν. That is

E{x∗ν|h, u} = E{x∗ν|{ĝk}} = 0. (4.24)

We have uncorrelation from the first term of ν due to the assumption that there is
no correlation between the channels of user i ≠ k. From the second term we have
uncorrelation due to the fact that the channel estimate is uncorrelated with the channel
estimation error. The third term is due to the independent realization of the additive
noise and the last term is due to the Bussgang decomposition. �
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4.3 Joint Processing at Multiple-Antenna APs
In practical scenarios, the wireless channel of a multi-antenna system tends to be spatially
correlated. It can be described by the model given in Section 4.1.1, among others. This
spatial correlation is simply omitted by the processing at the AP described in the previous
section, where the received signals at each antenna are treated individually. In contrast,
we propose in this section to process the signals received at the multiple antennas jointly
for the fronthaul quantization. In this case, we use vector quantization (VQ) with a
precision of only small number of bits, so that we can simultaneously exploit the channel
correlation and meet the low bit requirements of the fronthaul.

4.3.1 Fronthaul with Vector Quantization

We consider compression which consists of vector quantization followed by fixed-rate
lossless coding. At each AP a vector quantizer Q is applied as an interface to the fronthaul
with

Q(x) =
S−1∑
s=0

qsTs(x), where Ts(x) =

1 if x ∈ Cs

0 otherwise.
(4.25)

In contrast to the separate scalar quantization in the previous section, we take jointly the
received signal from the N antennas at the AP as the input of our vector quantizer Q.
Figure 4.3 depicts this joint processing scheme for the l-th AP. In this case, we arrange
the N samples from N antennas as an N -dimensional vector x. Whenever the input
vector x ∈ RN falls into the cell Cs, the index s will be transmitted on the fronthaul link,
and the reconstruction value qs taken from the codebook Q = {qs}S−1

s=0 ⊂ RN will be
used at the CPU. The codebook size is chosen in corresponding to the fronthaul capacity
by S = 2C . Moreover, to be comparable with the individual processing in the previous
section, we allocate a rate of RN = 1

N
log2[S] = C

N
bit per dimension for N -dimensional

vector quantization. Here, we keep RN small, to one or two bits per dimension. For a
complex-valued signal we quantize the real and imaginary part separately. We do this
because the correlation affects the real and imaginary part of the channel independently.

The optimal codebooks can be found using the Linde Buzo Gray (LBG) algorithm
for minimum mean squared error [40]. This algorithm is the counter part of Lloyd
algorithm for vector quantization, where the optimal codebook is obtained by iterating
between finding the optimal partition using the nearest neighbour criterion and finding
the optimal reconstruction values from the centroid condition. By doing so we expect to
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adapt the codebooks to the spatial channel correlation. Note that the channel correlation
is a large scale statistical parameter. Hence, we should only run the LBG algorithm once
every coherence block. For a further detail on the LBG algorithm, we suggest the reader
look at Algorithm 2 in Section 2.2.2 or refer to [40].

VQ ClN

l-th AP

Fig. 4.3 Illustration of the joint processing using vector quantization.

4.3.2 Bussgang Decomposition for Vector Quantization

In the same way as the scalar quantizer, the vector quantizer Q given in (4.25) is also
generally non-linear and the error e , x − Q(x) resulting from the quantization process
is correlated with the input vector x. Therefore, using the Bussgang theorem [43] we
would like to express our quantizer as the following linear model

xq = Q(x) = Fx + d. (4.26)

If we consider that the input x is Gaussian, then the distortion d is statistically equivalent
to the quantization error e but uncorrelated with the signal component x. The linear
operator F, which depends essentially on the given distortion characteristic of Q, tells us
also about the proportional factor between the input-output covariance of the quantizer
expressed as [43]

Cxxq = FCxx, where (4.27)
Cxxq = E{xxH

q } and Cxx = E{xxH}. (4.28)



80 Centralized Cell-Free massive MIMO with Multiple-Antenna Access Points

In this case, finding F can be seen as finding the LMMSE estimator for xq from the
observation x [47]

F = CxxqC−1
xx , (4.29)

where the estimation error d is then orthogonal to x. For separate scalar quantizers
observed in the previous section the matrix F has the form of a diagonal matrix, which
can not be the case for a joint processing using vector quantization. In fact, the closed
form expression of F is not yet known for a general quantizer, particularly for vector
quantizers. Therefore, we compute F numerically whenever it is needed by assuming that
we have access to measurements of the input as well as the output of Q. We estimate
the covariance matrix Cxx from the sample covariance matrix

Ĉxx = 1
Nt

Nt∑
nt=1

x[nt]x[nt]H (4.30)

and respectively for Cxqxq and Cxqx. The number of observations Nt can be conveniently
taken as equal to the number of codebooks’ training, where Ĉxx will approach Cxx for
large Nt. Using F given in (4.29) we can then compute the covariance of the distortion
d expressed as

Cdd = E{(xq − Fx)(xq − Fx)H}
= Cxqxq − CxqxC−1

xx CH
xqx. (4.31)

4.3.3 CSI Acquisition with Vector Quantization

In this subsection we address the CSI acquisition problems by utilizing vector quantization
assuming a fronthaul resolution of only a few bits. As in the single-antenna AP, we
consider two possible strategies which will be described as follows.

4.3.3.1 Estimate-and-Quantize

In this scheme we first estimate the channel at the APs and then quantize the resulting
CSI with the quantizer given in (4.25) to meet the fronthaul-capacity limit of C bits.
The channel estimation is done based on the transmission of known pilots. Every user
uses a specific sequence taken from a set Pϕ of orthonormal random sequences ϕk ∈ Cτ×1

with ⟨ϕk, ϕ′
k⟩ = δkk′ and ∥ϕk∥2 = 1, where the sequence length τ is assumed to be less

than or equal to the coherence interval τc. The k-th user sends
√

τϕk as its pilot such
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that the l-th AP observes the received pilot Yp,l ∈ CN×τ from all K users as

Yp,l = √
τρp

K∑
k=1

glkϕH
k + Wl, (4.32)

where ρp is the normalized transmit power of the pilot and Wl is an additive noise matrix
at the l-th AP whose entries are uncorrelated with zero mean and unit variance.

To allow all pilots to be orthogonal for all K users, only K ≤ τ users may transmit
their pilots simultaneously. In this case, the transmitted pilots satisfy

ΦHΦ = τρpIK , where Φ = √
τρp[ϕ1, . . . , ϕK ]. (4.33)

The channel vector glk can be estimated at the APs where the received pilot Yp,l is
projected onto ϕk expressed as

rp,lk = 1
√

τρp

Yp,lϕk

= glk +
K∑

k′ ̸=k

glk′ϕH
k′ ϕk + 1

√
τρp

Wlϕk. (4.34)

To obtain the estimate of glk we use the LMMSE estimator given by

ĝlk = Γlkrp,lk (4.35)
with the gain matrix Γlk is given by

Γlk = Σlk (Ωlk)−1 , (4.36)
where

Σlk = E{glkgH
lk} and Ωlk = E{rp,lkrH

p,lk} = Σlk + 1
τρp

IN . (4.37)

After accomplishing the channel estimation the APs quantize the channel estimate
ĝlk. We assume that the large scale fading βlk is relatively constant over a long period
and known at the APs. Thus, we may scale the input to the vector quantizer accordingly
with βlk and approximate the distribution as multivariate Gaussian. Consequently, the
quantized channel estimate can be written using Bussgang decomposition as

ĝeq
lk = Fg,lĝlk + dg,l. (4.38)
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The channel estimation error after the quantization is given by g̃eq
lk = glk − ĝeq

lk with
covariance

Ψeq
lk = E{g̃eq

lk (g̃eq
lk )H} (4.39)

= E{(glk − ĝeq
lk )(glk − ĝeq

lk )H}
= Σlk − Fg,lCĝg + (Fg,l − IN)(Fg,lCĝg)H + Cdgdg ,

where Cĝg is the cross covariance matrix between the channel glk and its estimate ĝlk,
and Cdgdg is the covariance of the distortion from (4.38). The last equation (4.39) follows
from doing some algebra and the fact that the channel glk and channel estimate ĝlk

are uncorrelated with the distortion dg,l. The channel estimate and estimation error of
the k-th user can be expressed then as a stack of column vectors from all L AP given
respectively by

ĝeq
k =


ĝeq

1k
...

ĝLk

 and g̃eq
k = gk − ĝeq

k ∼ NC(0, Ψeq
k ), (4.40)

where Ψeq
k = diag(Ψeq

1k, . . . , Ψeq
Lk).

4.3.3.2 Quantize-and-Estimate

Instead of transferring the quantized CSI we consider here an alternative CSI acquisition
strategy where we first quantize the received pilots at the APs and then estimate the
channel from the quantized pilots at the CPU. To be more specific, the l-th AP quantizes
the received pilots at the N antennas jointly as

y(t)
qp,l = Q(y(t)

p,l) = Q

(
√

τρp

K∑
k=1

glkϕ
(t)
k

∗
+ w(t)

l

)

= Q
(√

τρpGlϕ
(t)H + w(t)

l

)
(4.41)

where the superscript t = {1, . . . , τ} denotes the index of the pilot sequence. Accordingly
y(t)

p,l is the t-th column of Yp,l in (4.32) and ϕ(t) is the t-th row of Φ in (4.33).
Applying the Bussgang decomposition to (4.41) we obtain

y(t)
qp,l = Fp,ly(t)

p,l + d(t)
p,l

= √
τρpFp,lGlϕ

(t)H + Fp,lw(t)
l + d(t)

p,l . (4.42)
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The CPU receives from all L APs as a stack of (4.42)

y(t)
qp =


y(t)

qp,1
...

y(t)
qp,L

 =


√

τρpFp,1G1ϕ
(t)H + Fp,1w(t)

1 + d(t)
p,1.

...
√

τρpFp,LGLϕ(t)H + Fp,Lw(t)
L + d(t)

p,L.

 (4.43)

which we can concisely rewrite as a M × τ matrix for τ -length sequences of quantized
received pilots given by

Yqp =


y(1)

qp,1 . . . y(τ)
qp,1

... . . . ...
y(1)

qp,L . . . y(τ)
qp,L

 = √
τρpFpGΦH + FpW + D, (4.44)

where the matrix Fp is a M × M diagonal matrix with Fp,l ∈ RN×N in its block diagonal
entries. With similar structure to Yqp ∈ CM×τ the matrices W and D denote respectively
the noise and distortion matrices.

We can then project Yqp onto ϕk and expressed the result as

rqp,k = 1
√

τρp

Yqpϕk

= FpGΦHϕk + 1
√

τρp

(FpW + D)ϕk

= Fpgk + Fp

K∑
k′ ̸=k

gk′ϕH
k′ ϕk + 1

√
τρp

(FpW + D) ϕk. (4.45)

We estimate gk using an LMMSE estimator such that the channel estimate for the k-th
user using the QE strategy is given by

ĝqe
k = Γqp,krqp,k. (4.46)

Following the known result in estimation theory [33, Lemma B.17] we use the gain matrix
Γqp,k given by

Γqp,k = ΣkFH
p (Ωqp,k)−1 , where Σk = E{gkgH

k } and

Ωqp,k = E{rqp,krH
qp,k} = FpΣkFH

p + 1
τρp

(
FpFH

p + DDH
)

(4.47)
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The covariance of the channel estimation error g̃qe
k = gk − ĝqe

k is then given by

Ψqe
k = E{g̃qe

k (g̃qe
k )H} = Σk − ΣkFH

p Ω−1
qp,kFpΣk. (4.48)

Note that the received signals at the APs are uncorrelated over l and t such that the Gram
matrix FpFH

p and DDH have a block diagonal structure. Their submatrices are positive
definite since F and d in (4.26) are positive definite for a large number of observations in
the sample covariance matrix (4.30). Thus, the matrix Ωqp,k is invertible.

Further, we can optimize the codebook Q of each AP off-line for any CSI acquisition
strategy and we need only to update it as the βlk changes. As demonstrated in Figure
4.4a, 4.4b, 4.4c for the EQ strategy and in Figure 4.4d, 4.4e, 4.4f for the QE strategy,
the codebooks can exploit the spatial channel correlation effectively. Due to the LBG
algorithm the reconstruction points {qs} are placed more densely in the region where the
input signals occur with high probability. As the correlation increases, the reconstruction
points get closer to the diagonal to optimally represent the dependency between input
signals. Thus, the distance from the input signals to the points {qs} becomes smaller
resulting in a smaller average distortion.

4.3.4 Data Transmission

Consider, as previously, that all users send their data xu,k simultaneously in the uplink
with E{|xu,k|2} = 1 and the l-th AP receives them as

yu,l = √
ρu

K∑
k=1

glkxu,k + wl. (4.49)

We investigate now the case where the data-bearing signal yu,l ∈ CN is jointly processed
using vector quantization without first performing the data detection at the AP. One
of the advantages of doing this is the possibility to approximate the received signal yu,l

as a multivariate Gaussian variable, particularly when yu,l is a superposition of a very
large number K of user signals. If in contrast we detect the user data signal first, then
the detected user data signal can not be well approximated as Gaussian. Suppose that
we have a rather large K, then we may approximate yu,l as Gaussian and hence we can
make use of the Bussgang decomposition for the vector quantization given in (4.26). In
this case, we can express yu,l after the joint vector quantization as

ru,l = Q(yu,l) = Fu,lyu,l + du,l, (4.50)
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Fig. 4.4 The Voronoi region of 2-dimensional codebooks Q for EQ (a,b,c) and QE (d, e, f)
with different degree of correlation (in this case for random angular spread δ with Gaussian
distribution and different standard deviation σδ = 10◦, 20◦, 40◦).
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and the CPU collects from L APs the quantized data signal as


ru,1
...

ru,L


︸ ︷︷ ︸
, ru

= Fu


yu,1

...
yu,L


︸ ︷︷ ︸
, yu

+


du,1

...
du,L


︸ ︷︷ ︸
, du

, (4.51)

where Fu = diag(Fu,1, . . . , Fu,L) ∈ CM×M with M = LN . Suppose now that the CPU
constructs a linear detector matrix A from the jointly vector-quantized channel estimate
Ĝ given in (4.40) or (4.46), then the estimated data can be obtained from

x̂u = AHru

= AH(Fuyu + du)
= AH(Fu(√ρuGxu + wu) + du)
= √

ρuAHFuĜxu + √
ρuAHFuG̃xu + AHFuwu + AHdu (4.52)

4.3.5 Achievable Rate

Similar to the individual processing scheme, we are now interested to determine the data
rate achievable if the APs jointly process the received signal using vector quantization.
Since we take into account the dependency of the quantization of all M antennas, the
estimated data for the k-th user can be written as

x̂u,k = √
ρu

M∑
m=1

aH
k fmĝkxu,k + √

ρu

K∑
i=1
i ̸=k

M∑
m=1

aH
k fmĝixu,i (4.53)

+ √
ρu

K∑
i=1

M∑
m=1

aH
k fmg̃ixu,i +

M∑
m=1

aH
k fmwu + aH

k du,

where the first term comprises the data for the k-th user to be decoded. The remaining
terms, given by

νk = √
ρu

K∑
i=1
i ̸=k

M∑
m=1

aH
k fmĝixu,i + √

ρu

K∑
i=1

M∑
m=1

aH
k fmg̃ixu,i +

M∑
m=1

aH
k fmwu + aH

k du, (4.54)
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can be seen as interference with variance

σ2
ν,k = ρu

K∑
i=1
i̸=k

M∑
m=1

|aH
k fmĝi|2 +

M∑
m=1

aH
k fm

(
ρu

K∑
i=1

Ψi + σ2
nIM

)
akfH

m + aH
k Cduduak, (4.55)

where Cdudu is the covariance of the data distortion due to quantization and Ψi is the
covariance of the estimation error. Using the same principle of treating interference as
noise we can formulate the achievable rate for this scheme as summarized in the following
proposition.

Proposition 4.3.1.
Assume that K users are served by L APs which are equipped with N antennas and
connected to the CPU with low-resolution fronthaul. If the APs perform joint processing
using vector quantization, then the ergodic achievable rate of the k-th user in the uplink
of centralized cell-free massive MIMO is given by

RJo
u,k = E

{
log2

(
1 + SINRJo

k

)}
. (4.56)

The SINRJo
k is given by

SINRJo
k = ρu

∑M
m=1 |aH

k fmĝk|2

ρu
∑K

i=1
i ̸=k

∑M
m=1 |aH

k fmĝi|2 +∑M
m=1 aH

k fmΛakfH
m + aH

k Cduduak

(4.57)

where

Λ , ρu

K∑
i=1

Ψi + σ2
nIM , (4.58)

Cdudu, σ2
n are respectively the covariance of the data distortion and the noise variance,

Ψi ∈ {Ψeq
i , Ψqe

i } is the covariance of the estimation error from (4.40) or (4.48) depending
on the CSI acquisition scheme.

Proof. The proof is similar to the proof of Proposition 4.2.1 which follows [33, Th.
4.1] apart from replacing the useful signal term with the first term in (4.53) and the
interference term with (4.54). �

In the ideal case of perfect fronthaul, the covariance Cdudu will be a zero matrix and
Fu will be an identity matrix, such that the SINR expression in (4.57) will be equal to
the SINR expression in [11, Eq. (12)] given by

SINRk = ρu|aH
k ĝk|2

ρu
∑K

i=1
i̸=k

|aH
k ĝi|2 + aH

k

(
ρu
∑K

i=1 Ψi + σ2
nIM

)
ak

(4.59)
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Table 4.1 The scalability of cell-free massive MIMO with Multi-antenna AP

Min. AP Processing Min. Fronthaul Load
[Scalar multiplication] [bits]

Original CF maMIMO (MRC) NKτp + NKτu 2 log2[S]Kτu

Centralized CF maMIMO (EQ) NKτp 2N log2[S](K + τu)
Centralized CF maMIMO (QE) - 2N log2[S](τp + τu)

4.4 Scalability
Since we now have multiple antennas at each AP, we discuss briefly in this section how
this affects the scalability of centralized cell-free massive MIMO in terms of AP processing
and fronthaul load. We then discuss another aspect of scalability which is the CPU
processing load when we have a very large number of users distributed in a very large
coverage area. A natural question is whether the centralized approach can still handle a
large number of users in such a scenario.

Suppose that each AP has N antennas and receives signals from K users simulta-
neously. If we employ the original cell-free massive MIMO which uses MRC and least
square estimation, the AP requires to process N times more scalar multiplications for
data detection and channel estimation. But we can apply the same scalar coefficient to
all antennas at the AP, resulting in just one weighted signal per user and data symbol.
Thus, the minimum fronthaul load is 2 log2[S]Kτu which is equal to that in the case
of a single-antenna AP. On the other hand, in centralized cell-free massive MIMO the
fronthaul load scales with N either for EQ or QE CSI acquisition as given in Table 4.1.
In this regard, one might think that the centralized approach requires a greater fronthaul
load. However, since K and τu are typically much larger than N , the centralized approach
may require much less fronthaul load than the original cell-free massive MIMO. In this
case, although the required fronthaul load increases with N , the centralized approach
with multiple antennas is still scalable in terms of AP processing and fronthaul load,
particularly when the QE strategy is applied.

So far we have assumed that in centralized cell-free massive MIMO the CPU has
a very high computing power to perform all the required processing from acquiring
the CSI to decoding the user data. However, for practical consideration such as an
implementation in a big city, the CPU processing may become excessive. When the
number of users and the service area to be covered increases, then the number of APs
required will be very high, and the CPU processing will become unscalable. To deal
with this issue, it is therefore necessary to mention that the centralized concept can be
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Fig. 4.5 The architecture of "Fog-massive MIMO" (F-MaMIMO) from [27] for instance of 3
Edge Processing Units (EPUs). The centralized cell-free massive MIMO can be extended to
form this architecture.

extended to a larger network where the APs in the service area are connected to more
than one CPU. This is illustrated in Figure 4.5 which is studied in [27] under name of
Fog massive MIMO (F-maMIMO). As shown in the figure, the network is a combination
of overlapping cell-free massive MIMO networks. The task of one single CPU is now
delegated to several CPUs which are here called Edge Processing Units (EPUs) due to
their place on the network edge. These EPUs are coordinated to serve the users using the
APs which have the best channel condition. In this case, using the centralized approach
the EPUs have only to know the CSI from their selected APs. Based on the acquired
CSI, the data processing is performed at multiple EPUs which can be attained among
others by making consensus between adjacent EPUs to find the optimal detection matrix.
A similar network of cell-free massive MIMO with multiple CPUs has also recently been
studied in [60] by exploiting the dynamic cooperation clustering (DCC). The concept
is also possible to be combined with the centralized approach described in this thesis.
However, further investigation is beyond the scope of this thesis.
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4.5 Performance Evaluation
We provide in this section some numerical simulations to assess the performance of the
schemes considered above. Unless otherwise stated, we performed our simulations with
M AP antennas in total, L = M/N APs and K = 20 users distributed uniformly in
an area of 1 × 1 km2. This area is wrapped around by its copies so that it resembles
a network with infinite area. The channel glk in (4.3) is modelled with the large scale
fading βlk given as

βlk = PLlk · 10
σshzlk

10 , (4.60)

where the factor 10
σshzlk

10 is the uncorrelated shadowing with standard deviation σsh =
8 dB and zlk ∼ N (0, 1). The path loss coefficient follows the three-slope model which is
similar to the model used in Chapter 3 given by (3.86). We use also for the simulation
the physical parameters given in Table 3.3.

We evaluate first the performance of the CSI acquisition for the individual and
joint processing respectively using the EQ and QE strategy. We use the MSE as the
performance metric, defined as

MSE = 1
MK

E{∥G − Ĝ∥2}, (4.61)

where Ĝ is the channel matrix estimate depending on the acquisition scheme employed.
The MSE of different schemes is evaluated by Monte Carlo simulation, where the
transmission of orthogonal pilots of length τ = K = 20 is repeated over a sufficient
number of independent realizations. For each large scale fading realization we carry out
off-line training with Nt = 100 over random small scale fading to approach the optimal
codebooks for our vector quantizers.

Fig. 4.6 shows the MSE of different acquisition schemes against transmit power for
L = 30, τ = K = 20, N = 4 and RN = 2 bits/dim, equivalent to a fronthaul capacity
C of 8 bits. Along with VQ-EQ and VQ-QE we also present two other schemes as
baselines in which uniform Scalar Quantization (SQ) and estimation are performed at
the individual antennas of the APs for both EQ and QE. For each scheme we plot three
curves with different angular spread standard deviation σδ = 10◦, 20◦, 40◦, with Gaussian
distributed δ. It is expected that the correlation becomes weaker as σδ increases. The
angles of arrival θ are assumed to be random uniformly distributed in [−π, π] according
to the distribution of users.
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Fig. 4.6 The MSE versus transmit power for M = 120, N = 4, K = 20, RN = 2 bits/dim and
σδ = 10◦, 20◦, 40◦.

As can be observed in Figure 4.6, the joint processing schemes VQ-EQ and VQ-QE
can generally provide improvements to the baseline schemes in which the individual
processing is performed at the APs . For both joint processing schemes the channel
estimate becomes more accurate as the channel correlation increases. It is not the case
for the baseline schemes, where the estimate performance is relatively constant. As
the transmit power increases up to −20 dB all schemes show improving performance
as expected. It should be noted that in our simulation set-up the path losses are large
which leads to small channel gains and small typical values of MSE. In all cases, the
lowest MSE can be achieved by VQ-QE at −20 dB transmit power when strong spatial
correlation is present. Above this power the MSE performance of the other schemes
remains constant, but that of VQ-QE degrades. In this regime the quantization noise
dominates the additive noise so that increasing the transmit power has little effect.

The estimator of VQ-QE is derived based on the simplifying assumption that the
quantizer input and the respective quantization noise is Gaussian. Below −20 dB the
additive noise is still able to make the effective noise appear Gaussian so that the
estimator for VQ-QE performs quite well. But in the regime above −20 dB the correlated
quantization noise across the antennas is significantly different from Gaussian which
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Fig. 4.7 The MSE versus angular spread standard deviation σδ for Gaussian distributed δ,
M = 120, K = 20, RN = 2 bits/dim, and TxPower=-20dB

leads to a mismatch in the estimation. This behaviour shows that an appropriate portion
of noise might help to enhance the estimation accuracy in the case of model mismatch.
This condition has been studied previously for instance in [63]. The Similar behaviour
is also observed in [64], where one-bit channel estimation is performed for co-located
massive MIMO with spatial and temporal correlation. The effect is also explained by the
mismatch of the quantization noise to the Gaussian assumption of the estimator: this
is more significant above -20 dB. A full discussion of this effect is however beyond the
scope of the present work. Although the MSE of VQ-QE increases at higher transmit
power, it is still roughly equal to the SQ-EQ scheme in the asymptotic regime.

Fig. 4.7 shows the dependence of MSE on spatial correlation (i.e. σδ). This figure
confirms that the proposed schemes, at least at moderate SNR, can effectively exploit
the strong channel correlation to achieve more accurate CSI. In the asymptotic regime,
where the channels are uncorrelated, the VQ schemes can still achieve a considerable gain
due to the space filling advantage obtained from the dense packing codebooks of VQ.

In addition, we investigate in Figure 4.8 the relationship of the MSE to the number
of antennas per AP. We let the number of antennas N increase whereas the number of
bits per antenna and the total number of antennas are fixed respectively to RN = 1 and
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Fig. 4.8 The MSE versus number of antennas per AP N for M = 120, K = 20, RN = 1
bits/dim, TxPower=-20dB and σδ = 10◦.

M = 120. In this case, increasing N means also increasing the fronthaul capacity C per
AP. As we can observe in Figure 4.8, the MSE performance of the baseline schemes is
independent of N. In contrast, vector quantization, especially VQ-QE, is able to exploit
the correlation of the antennas at an AP to improve the CSI accuracy.

Having evaluated the CSI acquisition performance, we further evaluate numerically the
achievable rate of the individual and joint processing in terms of per-user net throughput
defined as

Tu,k , B
1 − τp/τc

2 Ru,k, (4.62)

where the rate Ru,k ∈ {RIn
u,k, RJo

u,k} is obtained from (4.20) or (4.56). In the simulation,
two simple beamforming vectors ak are considered for the data detection at the CPU,
namely MRC and ZF. We use the same parameters as before except the total number of
antenna M in the system. In this case, we use greater M to achieve higher rate in order
to better distinguish the simulation results among the different schemes.

We first investigate the distribution of the user throughput for M = 200, σδ = 10◦

and transmit power −20 dB at which the lowest MSE is achieved by VQ-QE in Figure
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Fig. 4.9 The CDF of per user throughput for different AP processing schemes and different
quantization rate per dimension with M = 200, K = 20, N = 4, TxPower= −20dB and
σδ = 10◦.

4.6. In this setting, the Cumulative Distribution Function (CDF) of the user throughput
is shown in Figure 4.9 for different schemes including ideal MRC and ideal ZF. For
the case of limited-capacity fronthaul, we use codebooks with the rate RN = 1, 2 bits
per dimension for the joint processing with vector quantization, and with the rate per
antenna Rm = 1, 2 bits for the individual processing with scalar quantization. As can be
seen from the CDF, the joint processing with VQ can clearly outperform the individual
processing. For both schemes, the QE strategy provides the majority of the users with
better throughput than the EQ strategy. However, in terms of the 90 % likely throughput
the EQ strategy slightly outperforms the QE strategy. We can also observe from the
figure that using the joint processing scheme at resolution 2 bit/dim each user can already
achieve at least 10 Mbits/s/Hz with 90% likelihood.

In Figure 4.10, we show the simulation results for the average per-user throughput
against the transmit power. As in the previous figure, the results are given for different
schemes and different strategies at rates 1 bit and 2 bits per dimension. For all low-
resolution schemes and strategies, the average throughputs increases with the number
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Fig. 4.10 The average per user throughput against the transmit power for different AP
processing schemes and different rate per dimension with M = 200, K = 20, N = 4 and
σδ = 10◦.

of bits per dimension, and increase as the transmit power increases up to certain point.
Then, except the joint processing scheme with the QE strategy, the average throughputs
become flat due to the dominant effect of the quantization noise either from the CSI
acquisition or from the data transmission. In the other case of joint processing with the
QE strategy, we see a slight decline in the average throughput with the increasing of the
transmit power. We might suspect that this effect arises from the CSI acquisition of
the QE strategy which has a degraded accuracy in the high power regime as previously
discussed from Figure 4.6. However, the losses due to this effect are insignificant compared
to the gain obtained by switching from individual processing to joint processing. As can
be observed in Figure 4.10, joint processing can more than double the average throughput
per user compared to the individual processing scheme at the same rate per dimension.

In the final simulation, we aim to determine the variation of the average per-user
throughput with the number of antennas at APs when the number of the total of antenna
in the system should be fixed. In this case, we perform a simulation with K = 20 users,
a total of M = 240 antennas, at transmit power −20dB, at quantization resolution
RN = 2 bit/dim, and under a correlated channel with angular spread standard deviation
σδ = 10◦. The simulation results are given in Figure 4.11 with the corresponding number
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of APs L on the upper horizontal axis. Accordingly, as the number of antennas per AP
N increases, we need only deploy a smaller number of APs L in the same service area.
As shown in the figure, the average throughput of the limited-capacity schemes have a
similar tendency to the ideal schemes, where the throughput decreases as the number of
antenna per APs N increases. Therefore, the same explanation in the ideal scheme might
underlie this similar behaviour in the limited-capacity scheme, which is the reduction of
the macro-diversity due to the smaller number of APs. Nevertheless, we have observed in
Figure 4.10 that the throughput can be increased by increasing the fronthaul resolution.
Hence, we might need a higher resolution for the smaller number of multiple-antenna
APs to maintain the same throughput. As a compensation, these fewer multi-antenna
APs require less cost for the infrastructure deployment.
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4.6 Summary
In this chapter, we have extended the centralized cell-free massive MIMO from the
previous chapter to the case where the APs are equipped with multi antennas. To this
network, we considered a channel with spatial correlation across the multi antennas,
which obeys the local scattering model. We considered two schemes for the processing at
the APs. First, we treated the received signal across the multi-antenna individually and
used a scalar quantization for each antenna. Second, we processed the received signals
across the multi-antenna jointly using vector quantization.

Under low-resolution fronthauls, we developed the CSI acquisition strategies; estimate-
and-quantize (QE) and quantize-and-estimate (EQ), respectively for both schemes by
making use of Bussgang decomposition. Subsequently, we derived the achievable rate for
both schemes, when the CSI acquisition and the data transmission are constrained with
low-resolution fronthauls. To asses the performance of our proposed scheme, we have
numerically evaluated the MSE of the CSI acquisition and per-user data throughput.
The results showed that the joint processing with vector quantization can improve the
CSI accuracy as well as the data throughput in spatially correlated channels. We have
also investigated the scalability issue for multi-antenna APs. As long as the number of
user and the length of data payload are greater than the number of APs’ antenna, the
centralized approach with QE strategy is still scalable.





Chapter 5

Lattice Vector Quantization for
Multiple-Antenna Access Points

While delivering high data rates has been the main driver for the development of wireless
communication from one generation to the next, the interest to achieve this in high-
mobility and high-density scenario has appeared only recently due to the new “killer
apps” such as autonomous vehicles. Requirements for this new application would be high
reliability and low latency in addition to high data throughput [8, 12]. A straightforward
strategy such as the quantize-and-estimate with joint processing scheme discussed in
the previous chapter might enable us to meet this demand as it can provide the users
with high data throughput with relatively uncomplicated processing at access points.
However, the primary difficulty of the proposed scheme resides in finding the optimum
codebook for vector quantization, especially in a high dimension. To address this, a
reasonable assumption was made in chapter 4 - that is, that the coherence time of the
channel is long enough such that the optimal codebook can be obtained from sufficient
data training. This optimal codebook then needs to be updated in every coherence block.

However, the above assumption can no longer be made in a high mobility scenario.
This is because the coherence time becomes shorter as the users move rather rapidly.
Hence, although optimum quantization can be achieved by utilizing vector quantization
with optimum codebooks constructed by the LBG algorithm, it is not suitable for users
with high mobility and hence has short coherence time. In this chapter, we are motivated
to provide high data throughput with high mobility, where it is preferable to avoid
a training based method to minimize the processing time. For this purpose, we look
in this chapter at lattice vector quantization, which is intended to be applied at the
multi-antenna APs to jointly quantize the received signals following the scheme in the
previous chapter.
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Therefore, the focus of this chapter is to devise a codebook for the above-mentioned
application. In this case, we consider constructing a codebook from lattice points.
Although the constructed codebook is suboptimal, as we will see later, by using a lattice
we aim to find a good trade-off between performance and complexity. After giving a
brief introduction to lattices in the subsequent section, we will describe the codebook
design problem using a lattice. Then, we propose two procedures for constructing a
lattice codebook which is fast and near-optimal. These are intended for uncorrelated
and correlated channel applications, respectively. Finally, we give some numerical results
which evaluate the performance of our proposed procedures.

5.1 Background on Lattices
We begin in this section with some basic concept and notation of lattices. A more
comprehensive discussion of lattices can be found in [65, 66]. An N -dimensional lattices
Λ is a subset of infinite points in RN , in which the reflection and addition operations will
give another point in Λ [66]. It can be defined as

Λ ={λ =
N∑
n

inbn : in ∈ Z} (5.1)

={λ = Bi : i ∈ ZN}, (5.2)

where i = [i1, . . . , 1N ]T is an N -dimensional integer column vector and B = [b1, . . . , bN ]
is an N × N generator matrix with its columns as linearly independent basis vectors.
Because the same Λ can be generated by many different generator matrices, sometimes
we explicitly write Λ(B) to show that Λ is generated by matrix B. We omit the notation
B when it is clear from the context. For some integer matrix T with | det(T)| = 1, we
say Λ(B′) = Λ(B) if and only if B′ = BT. For example, an integer or cubic lattice
Λ(I) = ZN is generated by an identity matrix I. It turns out that any lattice can be
obtained from the linear transformation of the integer lattice as Λ(B) = BΛ(I).

To each lattice point we can associate a non-overlapping congruent cell such that it
covers the whole RN . The cell associated with the origin (λ = 0) is called the fundamental
cell where a shifting of the lattice points creates a partition of RN . With respect to a
lattice Λ(B), the partition can have different shapes corresponding to the considered
fundamental cell. One simple fundamental cell is a fundamental parallelotope which can
be described using the generator matrix as

P0(B) = {B · [x1, . . . , xN ]T : 0 ≤ x1, x2, . . . , xN ≤ 1}. (5.3)
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Another common fundamental cell is a fundamental Voronoi cell which is defined for a
lattice Λ(B) as

V0(B) = {x : ∥x∥2 ≤ ∥x − λ∥2, ∀λ ∈ Λ(B)}. (5.4)

It is a set of points in RN that are closer or at least equally distant to the origin rather
than any other lattice point. Despite the fact that different cells make different partition,
the volume of the cell is given by the determinant of its generator matrix which is
independent of their shapes. In this case, we have Vol(P0(B)) = Vol(V0(B)) = | det(B)|.

To measure how efficiently the lattice cells can cover the space, the ratio of the second
moment per dimension of a uniformly distributed random variable to the volume of the
cell is usually computed. It is given by

G(Pol) = 1
N

·
∫

Pol
∥x∥2dx

Vol(Pol)1+2/N
(5.5)

for a polytope Pol and called the normalized second moment. The minimum possible
value of the normalized second moment

GN = min
Pol

G(Pol) (5.6)

is achieved by an N -dimensional sphere. For a lattice Λ(B) we can compute the normalized
second moment by

G(Λ) = 1
N

·
∫

V0
∥x∥2dx

Vol(V0(B))1+2/N
. (5.7)

5.2 Lattice Quantizer Design
We recall that quantization can be seen as a mapping process from an input signal to the
elements of a countable set known as the codebook by which transmission is more efficient.
Therefore, the most important aspect of designing a quantizer consists of defining the
mapping rules and choosing the codebook appropriately. In lattice quantization, we aim
to represent the input signal using the lattice points as the codewords in our codebook.
The primary reason underlying this choice is usually due to the highly-ordered structure
possessed by the lattice. It makes a lattice quantizer less complex for the implementation,
especially in high dimensions.
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5.2.1 Codebook Construction

Using lattice points for the codebook is however not straight-forward. As there are many
types of lattice, there arises first the question of which lattice is good for quantization.
For an infinite lattice and uniformly distributed input signal, Conway and Sloane have
proposed in [67] to use the normalized second moment G(Λ) given by (5.7)as a metric.
Since G(Λ) can be interpreted as the mean squared quantization error per symbol, the
lower the normalized second moment the better the lattice for quantization. Based
on this criteria, the best lattices have been found in [67] for quantization in RN up to
the dimension N = 10. They are lattices with the lowest G(Λ) where the hexagonal
or A2 lattice for instance is the best in two dimension and D4 is the best in four
dimensions. Further, the normalized second moment of lattice G(Λ) is lower bounded
by the normalized second moment of the N -sphere GN . As calculated in [67], GN

decreases as the dimension N increases, and converges to 1/(2πe) as N goes to infinity.
Interestingly, as shown in [66, 68], there exists a lattice ΛN for which

lim
N→∞

G(ΛN) = GN = 1
2πe

. (5.8)

Thus, using a lattice in a high dimension for the quantization codebook is an attractive
option.

To use lattice points in practice, we still need a further treatment. This is because a
lattice has intrinsically an infinite number of points, whereas a countable and finite set
of codewords is required for an efficient codebook. Hence, we should pick a subset of
lattice points to be included in the codebook: this is usually called truncation or shaping
of the lattice. It can be done in different ways which can be categorized in at least two
methods namely the probabilistic or “soft” shaping and the geometric or “hard” shaping
[66]. One parameter determining the size of the shaping is the rate of the codewords.
In the first method, the codewords are assigned with variable rate where the distant
lattice points with less probability of occurrence are omitted. An entropy coding such
as the Huffman code can be made use in this method. For the implementation of this
method, it is necessary to think about the limitation of entropy coding which is the need
for buffer feedback [40].

In the second method, which we consider in this chapter, the lattice points are selected
using a shape that can have any arbitrary geometry. Only the lattice points that lie
in the intersection with this shape are included in the codebook. To be more specific,
suppose that we use a shape U ⊂ RN and want to select some lattice points from the
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lattice Λ(B), then the codebook is given as

C = U ∩ Λ(B). (5.9)

In this case, we truncate the lattice points of Λ(B) which are not contained in U . Since U
is a finite subset of RN , an efficient codebook with fixed rate codewords can be obtained.
To do so, we require next to specify U and Λ(B), where some care should be taken to
deal with the granular and overload distortion. We define overload distortion as the error
caused by an input signal that falls in the overload region. That is the region outside the
shape U . Conversely, the granular distortion is the distortion caused by the input signal
that falls inside the shape U called granular region.

The problem of minimizing the granular and overload distortion of the geometric
shaping codebook has been studied in [69] for non-uniformly distributed input signals.
The density and the arrangement of the lattice points inside the granular region are the
determining factors that contribute to the distortion. On the other hand, the overload
distortion is primary determined by the ability of the shape U to fit the distribution of
the input signal. Since the overload and the granular distortion are coupled, the overall
distortion minimization is not easy to find analytically. In [69], the minimum MSE
counted in granular and overload distortion were found numerically, but an expression
to specify U and Λ(B) for minimum distortion were missing. A further study with
more practical perspective has been done in a technical report [70] for a Gaussian input
signal. An N -sphere is used in [70] as the shape U which is later scaled again to fit the
desired rate and the input signal variance. The problem of finding the optimum radius
of the shape which minimise the overall distortion was posed in the report. For a given
dimension N and rate per dimension RN the optimum radius of the sphere is given as

aopt =
√

4RN ln(2)
N

. (5.10)

In the next subsections, we will use part of the result in [70], such as the optimum radius,
to construct our codebook.

5.2.2 Near-Optimum Codebook for Uncorrelated Channel

As mentioned previously, we wish to devise a vector quantization scheme that has low
complexity and sufficiently fast processing for our desired application. For this purpose,
we attempt to make use of the structural advantage of a lattice, where we consider the
construction of the quantization codebook using geometric shaping. However, we do not
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follow the approach given in [70], because the scaling rule proposed in the report is based
on the data training. Instead, we construct the codebook in this chapter using a shape
U that has the form of a Voronoi region of a coarse lattice as proposed by Conway and
Sloane for the first time in [71].

The main advantage of using the Voronoi shape is the availability of a fast encoding,
indexing, and decoding algorithm enabled by exploiting the algebraic structure of the
lattice [71, 72]. We note that the terminology encoding and decoding are switched in
many works due to the transmission and channel coding perspective. On the other hand,
we use the source coding perspective following the description in Section 2.2 as illustrated
in Figure 2.2. In this case, encoding means finding the closest lattice point given an
arbitrary point in RN , whereas indexing is a procedure of assigning index to the lattice
points and conversely decoding is finding the lattice points from a given index. We will
make some modification to the procedure such that a near optimal codebook can be
obtained.
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Fig. 5.1 An illustration of constructing a lattice Voronoi codebook using a fine lattice Λf (cross
points) and a coarse lattice Λc (dots). The optimal sphere radius aopt is shown by the dashed
blue lines.

To be more precise, let us assume that we have an independent identically distributed
Gaussian input signal x ∈ RN with zero mean and unit variance. Suppose that we use a
codebook Cs of size S to quantize x. Then, Cs is constructed by using a fine lattice Λf(B)
and a shape from the Voronoi cell Vc(B) around a coarse lattice Λc(B). For a zero-mean
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input signal, it is reasonable to use the fundamental cell V0c(B). Further, it is required
for the coarse lattice to be a subset of a fine lattice and satisfy the relation

Λc(B) = r Λf(B), (5.11)

where r is an integer determining the codebook size S = rN . Hence, the quantization
rate per dimension is given by

RN = 1
N

log2 S = log2 r [bit/dim]. (5.12)

Unless otherwise stated, we consider subsequently a codebook that is constructed by
lattices Λc and Λf with the same generator matrix. The specific form of our codebook
can be then expressed as

Cs = (V0c + v) ∩ (µ Λf), (5.13)
= {xs = µλf : ∥λf∥2 < ∥λf − (λc + v)∥2, ∀ λf ∈ Λf and λc ∈ Λc}. (5.14)

where a small shift v is sometimes required to avoid some lattice points lying over the
shape boundary. The length of the shift v can be chosen based on many different criteria
such as to minimize the total energy as given in [71]. Other than that, we can choose
any random number that is small compared to the lattice basis. Here, we choose the
latter as suggested in [70] for the sake of simplicity.

Algorithm 3: Codebook Construction (Uncorrelated)
input : Dimension N and rate per dimension RN

output : Matrix Xs whose s-th row is a code xs ∈ Cs

1 Choose generator matrix B with the lowest G(ΛN);

2 Compute the index candidates J̃ =
N∏

n=1
{0, 1, . . . , (r − 1)}n, where r = 2RN ;

3 Compute X̃s =BJ̃ T and Z=(X̃s − v)r−1, where v an arbitrary small shift (5.13);
4 Find the closest lattice point λs ∈ Λf to each point of Z (using algorithm in [72]);
5 Compute Xs = µ(X̃s − rλs − v), where µ is given by (5.15);

In addition, we scale Λf by µ to obtain a truncation within a spherical region. The
radius of the sphere is that at which the volume of N -dimensional Voronoi cell is equal
to the volume of the N -sphere. In this case, we wish to find a scale µ such that the
sphere radius is the optimal radius given by (5.21). This is illustrated in Figure 5.1 for
the case of two dimensions, where we use the hexagonal lattice for both Λc and Λf . The
lattice points of Λc are shown by the red dot points, whereas the lattice points of Λf are
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shown by the cross points. We want to set the sphere radius corresponding to V0c to be
the optimum sphere radius shown by the dashed blue line. For this, the scale µ can be
calculated from

Vol(V0c(B)) = Vol(N -sphere at aopt)
det(µ r B) = VNaN

opt

µNrN det(B) = VNaN
opt

µ = N

√√√√ VNaN
opt

rN det(B)

µ = aopt

r
N

√
VN

det(B) , (5.15)

where VN is the N -dimensional unit ball given by

VN = (π)N/2

(N/2)! =
2N(π)N−1

2
(

N−1
2

)
!

N ! . (5.16)
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Fig. 5.2 The resulting lattice Voronoi codebook obtained by Algorithm 3 for dimension N = 2,
codebook size S = 16 or rate per dimension RN = 2 bit/dim.
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To be mapped into a codeword, each lattice point xs ∈ Cs should be associated with
a unique index s. The set of indices for the codebook Cs can be written as a matrix

J = [s1, . . . , sS]T , where (5.17)
s = (s1, . . . , sN) and sn ∈ {0, . . . , (r − 1)}.

In Algorithm 3, we give the procedure for constructing a lattice codebook for an uncorre-
lated input signal. We should note in step 4 that the algorithm for finding the closest λs

is given in [72] according to the type of lattice. In this case, we should use the algorithm
intended for the lattice that we have chosen in step 1. Accordingly, Figure 5.2 depicts an
example of the resulting codebook together with the assigned indices for the case of two
dimensions with RN = 2 bit/dim. Having constructed the codebook, we can use it for
encoding based on the maximum likelihood method with the decision boundary shown
in the figure by the blue lines.
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Fig. 5.3 The distortion gap between the lattice quantization using the Voronoi lattice codebook
and the optimum quantization (LBG) in relation to a small change of the scale µ by ϵ.

We are interested next to see how far the constructed codebook is from optimal. To
that end, we define a metric MSE gap as the absolute MSE difference between the lattice
quantization codebook Cs and the optimal quantization codebook obtained from the
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LBG algorithm. Further, we do a variational analysis on the MSE gap in which we make
a numerically small change ϵ to the scale µ. The numerical evaluation for the case of two
dimensions and for different quantization rates per dimension RN is depicted in Figure
5.3. The three curves correspond to different numbers of bits per dimension indicated by
the numbers 1, 2, 3. The red dots are the points where the MSE gap has a minimum. As
shown in the figure, they have only a relative small difference from the green dots, which
are the scale µ obtained from (5.15). Up to 3 bits per dimension the MSE gap is still
below 2 dB. As the number of bits per dimension increases, the MSE gap becomes more
sensitive to the scale perturbation as shown by the steeper descent of the curves.

5.2.3 Near-Optimum Codebook for Correlated Channel

In the previous subsection, we have designed a codebook which is intended for an
uncorrelated input signal. Hence, applying such a codebook might be far from optimal
if the channel between the users and the multi-antenna AP is correlated. On the other
hand, we have seen from the previous chapter that the codebook obtained by LBG
algorithm can exploit the spatial channel correlation very well. Motivated by the previous
results, we wish in this subsection to design a codebook for a correlated input signal
while keeping the benefit of the lattice. In particular, we aim to exploit the correlation
without the need for training.

For the above-mentioned purpose, we consider a two-step process where we perform
lattice quantization using an ellipsoid codebook preceded by the Karhunen-Loeve (KL)
transform. Given the correlation matrix of the input signal x ∈ RN , denoted by Rx,
then the KL-transformed signal is given by [40]

y = VT x, where V = [v1, . . . , vN ] (5.18)

is the KL-transformed matrix whose columns are the eigenvectors of Rx. This trans-
formation linearly maps the input into its orthogonal components which can further
simplify the following quantization process. Due to this transformation, we may classify
this approach as transformed vector quantization or transformed lattice quantization in
our special case. Another type of transformation might be more suitable for another
different scenario. After the quantization, we need then to transform back the output
signal using the inverse transform matrix V−1.

Since the input signal x is correlated, the transformed signal y has some dominant
components. To support this, we design a codebook Ce using a lattice shaping that has
an ellipsoidal shaping boundary. We use essentially a similar technique to that described
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Algorithm 4: Codebook Construction (Correlated)
input : Dimension N , rate per dimension RN , Correlation coefficient ρ
output : Matrix Xe whose e-th row is a code xe ∈ Ce

1 Choose generator matrix B with the lowest G(ΛN);
2 Find the appropriate vector r using (5.25) and satisfying constraints in Table 5.1;

3 Compute the index candidates J̃ =
N∏

n=1
{0, 1, . . . , (rn − 1)};

4 Compute X̃e =BJ̃ T and Z=(X̃e − v) ÷ r, where v an arbitrary small shift (5.20);
5 Find the closest lattice point λe ∈ Λf to each point of Z (using algorithm in [72]);
6 Compute Xe = µ ⊙ (X̃e − r ⊙ λe − v), where µ is given by (5.21);

Table 5.1 The admissible vector r [73]

Lattice Constraint on r

A2 r1 and r2 have the same parity (i.e. r ∈ D2)
Dn (n ≥ 2) r1, . . . , rN all share the same parity (i.e. r ∈ 2D∗

n)
2D+

n (n even ≥ 4) r1, . . . , rN all share the same parity
and ∑N

n=1 rn is a multiple of 4 (r ∈ 2D+
n )

in [73] which is actually a generalization of the Voronoi shaping in [71]. Hence, the legacy
of fast processing from [71] is still preserved. To be more specific, consider a lattice

Λe = r ⊙ Λf , (5.19)

where r is a vector with positive integer elements. Subsequently, we denote ⊙ and ÷ as
a pointwise multiplication and a pointwise division. Then, a Voronoi shaping V0e(Λe) is
used, and the codebook can be expressed as

Ce = (V0e(Λe) + v) ∩ (µ Λf), (5.20)

where v is a small shift vector. To ensure an optimal sphere radius for each dimension,
we now have µ as a vector given by

µ = aopt

r
N

√
VN

det(B) , where aopt =
√

4log2(r) ln(2)
N

. (5.21)

In Algorithm 4, we describe the formal procedure for constructing the codebook. We
modify the procedure in the previous subsection, but we do not change the key steps.
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Fig. 5.4 The resulting ellipsoid Voronoi codebook obtained by Algorithm 4 for dimension
N = 2, Codebook size S = 16 and r = [2, 8]T .

However, extra care should be taken in choosing the appropriate vector r in the second
step. It should satisfy the constraint in Table 5.1 for a given type of lattice. Furthermore,
the codebook size is now determined by

S =
N∏

n=1
rn. (5.22)

Hence, the choice of vector r can only be taken from the set

I = D(N, D) = {r1, . . . , rI}, (5.23)

which is the set of N -length vectors from all possible divisor combinations

D = divisor(S) = {d1, . . . , dD}. (5.24)

The next task is to select ri ∈ I that best matches the correlation of the input signal.
To that end, we compute

r = argmin
ri∈I

∥∥∥∥∥
(

ri

∥ri∥

)
−
(

u
∥u∥

)∥∥∥∥∥ , where u = [u1, . . . , uN ]T (5.25)
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is a stack of singular values from the correlation matrix Rx. We show the resulting
codebook in Figure 5.4 for the example of two dimensions, S = 16 and r = [2, 8]T .

5.3 Performance Evaluation
In the following discussion, we evaluate the proposed algorithms by simple simulations,
in which quantization in two dimension will be used as a showcase. We consider a
correlated Gaussian input signal with different degrees of correlation 0 ≤ ρ ≤ 1. A
strongly correlated signal is indicated by a large coefficient ρ. This is shown pictorially
in Figures 5.5 for ρ = 0.8, where the green input signals are relatively concentrated on a
diagonal showing a linear dependency between the two dimensions. We compare first in
both figures the condition when the input signals are quantized using different codebooks
and different rates per dimension.

In Figure 5.5a is first depicted the case when we are asked to quantize an input signal
with ρ = 0.8 using a quantizer with available codebook size S = 4. We see in the figure
that the optimal arrangement of the codebook points obtained by the LBG algorithm
is, in this case, in the form of a line. The figure depicts also the KL-transformed input
signals, which are shown by the yellow dots, overlaying the untransformed input signals,
which are shown by the yellow dots. Similarly, the ellipsoidal lattice codebook algorithm
places the codebook points in a line by selecting the vector r = [1, 4]T . By allowing a
larger codebook size the LBG algorithm can place the codebook points more densely
around the origin following the distribution of the input signal as illustrated in Figure
5.5b. On the other hand, the algorithm for the ellipsoidal lattice codebook can only
arrange the codebook points uniformly. This implies that the probability of a larger
granular distortion is increased. However, the points are still following the boundary of
the transformed input signal, which prevents the overload distortion becoming too large.
Through the simulation, we aim to determine how much the sub-optimum arrangement
of the codebook points can affect the performance of the quantizer.

Figure 5.6 depicts the simulation results for moderately correlated input signals. The
distortion for the ellipsoid lattice codebook vector quantization (E-LVQ) is compared
with the optimum codebook vector quantization (LBG-VQ) in terms of the MSE at a
different rate per dimension RN . As a baseline for the simulation, the distortion of the
lattice codebook vector quantizer (LVQ) obtained by Algorithm 3 is also depicted in the
figure. From Figure 5.6a we can observe that at moderate correlation the gap between
E-LVQ and LBG-VQ is very small at low rate, but increases as the rate increases. On
the other hand, the gap between LVQ and E-LVQ decreases as the rate increases. As we
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Fig. 5.5 An illustration of the codebook points arrangement in relation to the input signals
for different available codebook size S and for correlation ρ = 0.8.
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increase the correlation ρ to 0.7 in Figure 5.6b, the gap between E-LVQ and LBG-VQ is
smaller at higher rates, and the gap between LVQ and E-LVQ getting larger overall the
rate. Further, Figure 5.7 provides the simulation results for a rather strong correlation.
At correlation ρ = 0.8, an additional MSE improvement is shown in Figure 5.7a for the
E-LVQ and LBG-VQ, whereas the MSE of LVQ does not appear to change as previously.
Although in the presence of stronger correlation, the MSE of LVQ relatively stays constant
as shown in Figure 5.7b. In another case, E-LVQ and LBG-VQ are further improved,
although the gap between them becomes larger at a higher rate. Our observation from
the figures reveals that the E-LVQ can adapt to the correlation relatively well, while
the LVQ fails to exploit the correlation. Further, the performance difference between
E-LVQ and LBG-VQ is still acceptable, not exceeding 2 dB, especially at a low rate
per dimension. A near-optimum MSE performance can be achieved when the E-LVQ
operates at low-resolution.

5.4 Summary
We have identified the problem of LBG vector quantization for multi-antenna APs
described in the previous chapter. That is, the processing time is high, which makes
it unsuitable for communication in a high mobility scenario. In this chapter, we have
suggested the use of a lattice vector quantization for such a scenario. We described
the lattice quantizer design problem, which boils down to the codebook construction
problem. For the uncorrelated and correlated channel scenarios, we proposed a procedure
for constructing the lattice codebook, which is based on Voronoi shaping. In this case, the
fast encoding and decoding algorithms from Conway and Sloane [71, 72] were modified.
For both scenarios, we have formulated a general expression of a scale factor, which allows
the codebook to be near-optimal. We have made use of the ellipsoidal lattice codebook
for the correlated channel scenarios and suggested an additional KL transformation in the
quantization process. The performance of the proposed codebooks for uncorrelated and
correlated input signals were evaluated using numerical simulation. The results showed
that the performance gaps of the constructed codebooks to the optimum codebooks are
still acceptable. Further, we have demonstrated that the ellipsoidal codebook can utilize
the correlation to improve the performance.
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Fig. 5.6 The MSE against the number of bits/dimension between LBG vector quantization and
lattice vector quantization and Ellipsoid vector quantization for dimension 2 and correlation
ρ = 0.6 and 0.7.
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Fig. 5.7 The MSE against the number of bits/dimension between LBG vector quantization
and lattice vector quantization and Ellipsoid vector quantization for dimension 2 correlation
ρ = 0.8 and 0.9.





Chapter 6

Conclusion and Future Research

Conclusion
In this thesis, we have studied the centralized approach to cell-free massive MIMO with
low-resolution fronthaul links. The significant importance of this study lies in carrying
out cell-free massive MIMO to its greatest advantage by taking into account the practical
consideration. In general, we have demonstrated that the centralized approach can much
improve the throughput performance even if the fronthaul links are subject to limited
capacity. We have also revealed the contradiction to the widely accepted premise, which
says, that the distributed approach is better than the centralized approach in case of
fronthaul signalling.

In particular, we have developed some schemes as well as strategies to enable the
centralized approach with low-resolution fronthauls. Their performances have been
analysed and assessed using Bussgang decomposition for two cases, which are the single-
antenna APs and the multi-antenna APs. We have shown for the first case, that the
centralized approach using ZF detection with 2 bits resolution can already outperform the
throughput of the original cell-free massive MIMO with ideal fronthaul. Moreover, the
ZF scheme using the simpler QE strategy outperforms the EQ strategy at low-resolution,
especially for 1-bit. In terms of fronthaul load and AP processing, we have revealed
that the centralized approach is more scalable than the distributed approach, and the
QE strategy is more scalable than the EQ strategy with an increasing number of users.
For the second case of multi-antenna APs, we compare two different schemes for the
processing at the APs, namely individual processing and joint processing across the multi
antennas. We have demonstrated that the joint processing with vector quantization can
improve the CSI accuracy as well as the data throughput in spatially correlated channels.
We have also investigated the scalability issue for multi-antenna APs. As long as the
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number of user and the length of data payload are greater than the number of APs’
antenna, the centralized approach with QE strategy is still scalable.

This thesis has further advocated for the use of lattice vector quantization at the
APs to enable high data throughput transmission in high-mobility and high-density
scenarios. For this purpose, we have designed a lattice vector quantizer, which reduces to
the codebook design problem. Based on Voronoi shaping, our fast constructed codebooks
have shown a near-optimal performance in terms of MSE. Further, we have demonstrated
that the ellipsoidal codebook can utilize the correlation to improve the performance.

Future Research
We realize that this thesis has left many open questions and open problems outstanding.
However, these may also create opportunities for further research. We list below some of
the potential research directions which can be carried out for the future.

• Extension of lattice quantization: Although the proposed codebook procedures
in Chapter 5 should be valid for any dimensions, we have investigated their perfor-
mance in the case of two dimensions for the reason of perceptibility and simplicity.
Therefore, it remains to verify the performance in high dimensions. We have also
adopted only the geometric approach for codebook construction. An alternative
such as the joint probabilistic and geometric design would be also interesting for
further investigation. Moreover, we have designed the codebook based on the source
characteristics following the source coding perspective. The fact that the APs act
essentially as relay, and the medium of the fronthaul may affect the performance, it
might be worth designing the codebook from a source-channel coding perspective
or even a secure source-channel coding perspective.

• Fractional bit resolution: As mentioned in [40], an interesting feature of VQ
particularly at low resolution is the ability to quantize with fractional bit resolution
per dimension. Therefore, quantizing the received signal from N multi-antenna
AP using (N − 1) dimensional VQ is an attractive option to further reduce the
fronthaul load and the power consumption.

• Generalization of Bussgang theorem: In Chapter 4, we have modelled the
low-resolution vector quantization using Bussgang decomposition. Unfortunately,
the closed-form expression for the Bussgang model is still missing. Therefore, it
might be required to make use of a more general theorem such as Price’s theorem
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[74] to analyse the correlated distortion of vector quantization or lattice vector
quantization.

• Optimum AP density: As we have seen in Chapter 4, it is not yet clear what is
the optimum AP density and number of antenna per APs in the centralized cell-free
massive MIMO subject to the fronthaul resolution, power consumption, and other
aspects. To deal with this, we might use the tools from stochastic geometry, which
models the randomness in the space in a more systematic way.

• Pilot design: Although the QE strategy is more scalable than the EQ strategy,
the performance of the QE strategy relies on the design of the pilot sequence and
pilot assignment. In this case, a set of robust pilot sequences is required. Research
into solving this problem has been already underway.

• Centralized cell-free Milimeter-wave: As mentioned previously, cell-free mas-
sive MIMO is interesting to support wireless transmission at millimeter-wave. The
close distance of the APs to the users and the ability to exploit macro-diversity
will help us to deal with the channel impairments in millimeter-wave. One of
the challenging issues in millimeter-wave communication is the CSI acquisition,
particularly if we would like to implement a centralized approach.

• Large network with multiple EPUs: We predict that the future network
infrastructure will be somehow in the form of a cell-free network with multiple EPUs
and utilize a sort of dynamic cooperation as mentioned in Chapter 4. Therefore,
we encourage ourselves in the future to investigate further this system architecture
with more practical constraints and more realistic assumptions.





Nomenclature

Abbreviations

5G Fifth Generation

6G Sixth Generation

ADC Analog Digital Converter

AGC Automatic Gain Control

AP Access Point

AWGN Additive White Gaussian Noise

C-RAN Cloud Radio Access Networks

CDF Cumulative Distribution Function

CPU Central Processing Unit

CSI Channel State Information

DAS Distributed Antenna System

DCC Dynamic Cooperation Clustering

E-LVQ Ellipsoid Lattice Vector Quantization

EPU Edge Cloud Processing Unit

EQ Estimate and Quantize

F-maMIMO Fog massive MIMO

FDD Frequency Division Duplex
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I/Q In-phase Quadrature

IoT Internet of Things

KL Karhunen Loeve

LBG-VQ Linde Buzo Gray

LBG Lind Buzo Gray Vector Quantization

LMMSE Linear Minimum Mean Squared Error

LVQ Lattice Vector Quantization

MIMO Mulitple Input Multiple Output

MMSE Minimum Mean Squared Error

MRC Maximum Ratio Combining

MSE Mean Squared Error

PCM Pulse Code Modulation

QE Quantize and Estimate

SDNR Signal to Distortion Noise Ratio

SINR Signal to Interference Noise Ratio

SNR Signal to Noise Ratio

SQ Scalar Quantization

TDD Time Division Duplex

UE User Equipment

VQ Vector Quantization

ZF Zero Forcing
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