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Abstract

The thermal nature of black hole horizons has engendered a revolution in physics since

its discovery in the 1970s. The first result of this thesis is to extend the analysis of black

hole thermodynamics from horizons to arbitrary ordinary surfaces for static spacetimes.

It is proved that ordinary surfaces do not obey the same first law as black hole horizons,

even for static spacetimes. This result undermines the thermodynamic assumptions of the

emergent gravity program.

The second result of this thesis is to rigorously generalize black hole thermodynamics

to dynamical spacetimes. To achieve this, we firstly transform the physical ADM mass

into a suitable covariant form for applying Stokes’ theorem. Then we analyze the energy

changes under metric perturbations for dynamical non-rotating spacetimes. It is proved

that dynamical horizons still have a perfect analogue to the first law and a Hawking

temperature, hence still behave thermodynamically. Analytic calculations for binary in-

teracting black holes show that the temperature along horizons of dynamical black holes

is generally non-uniform, with equilibrium replaced by local-equilibrium behavior. The

local nature of black hole thermodynamics supports long-held intuitive claims on how

information is encoded on a black hole’s surface.

Finally, the generally non-uniform temperature of interacting black holes induces a

non-equilibrium entropic force between interacting black holes, which cannot be encoded

in general relativity. Extrapolating this force to coalescing black holes provides a proposal

for the first direct test for the thermodynamic nature of black hole entropy from future

precision measurements of gravitational waveforms.
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Chapter 1

Introduction

1.1 Introduction of the thesis

The major theme of this thesis is to rigorously generalize black hole thermodynamics to

dynamical non-rotating spacetimes and give a framework for testing this theory. This

thesis is based on three research papers and all of them are joint work with Professor

Samuel L. Braunstein. By dynamical spacetime, we follow the conventional definition,

i.e., the absence of a timelike Killing vector in the exterior of any horizons [36].

In 1973, Bardeen, Carter and Hawking summarized some of the interesting discoveries

of stationary black holes found in the early 1970s as “The four laws of black hole mechanics”

which are in analogy with the four laws of classical thermodynamics [11]. Despite the

perfect analogy between these two mechanics, many physicists were skeptical about the

thermal nature of black hole horizons. In brief, in 1975, through studying the evolution of

quantum fields in a spacetime with a black hole, Hawking proved that black holes would

radiate particles and hence have a temperature [31]. This discovery caused physicists to

widely accept the claim that stationary black holes are real thermodynamic systems and

obey the four laws of thermodynamics.

Since the 1970s, the thermodynamic properties proved for stationary black hole hori-

zons have been taken and used in several more general scenarios without rigorous proof.

For example, in 1995 Jacobson came up with a beautiful argument to derive the equations

of general relativity [37]. He assumed that the horizon associated with an arbitrary accel-

erated observer (the Rindler horizon) has well-defined local thermodynamic behavior at

each point of its surface [37]. He then expressed the boosted flux of matter across a small

patch of the horizon in terms of the energy-momentum tensor and used the Raychaudhuri
1



Chapter 1: Introduction

equation to express the change of the local horizon area (i.e., entropy) in terms of the

curvature tensor of spacetime. In the end, he used the first law of thermodynamics to

quantitatively link the change of the local horizon entropy and the energy flux, finally

yielding the Einstein field equations [37].

If Jacobson’s thermodynamic assumptions for Rindler horizons is a small step, then

Verlinde must have taken a big step by assuming even ordinary surfaces also behave ther-

modynamically. In 2011, Verlinde heuristically derived Einstein’s equations by assuming

that ordinary surfaces with equal Newtonian potential have the same thermodynamic be-

havior as black hole horizons [59]. He called this the emergent gravity program. He used

a list of famous results in his arguments, e.g., the Unruh temperature [55]. Although

these results are individually proven and accepted, whether they can be connected to each

other by his heuristic arguments is unclear. Instead of discussing whether every step in

his argument is valid, I will directly tackle the questions of whether the thermodynamic

assumptions in his program are consistent with general relativity.

Based on general relativity, the first result of this thesis is to generalize the analysis

of black hole thermodynamics from horizons to ordinary surfaces [64]. To do this, we

closely followed in Bardeen, Carter and Hawking’s footsteps and extended their original

analysis from black hole horizons to ordinary surfaces. We prove that, for static space-

times, ordinary surfaces generally do not obey the same first law as the black hole horizon.

This means general relativity is not consistent with the thermodynamic assumptions in

Verlinde’s emergent gravity program and hence undermines the foundations of this pro-

gram [64]. These results are summarized in chapter 2 of this thesis.

Despite the disruptive effects of black hole thermodynamics on fundamental physics,

Bardeen, Carter, and Hawking’s analysis relied on the assumption that both the initial and

perturbed spacetimes were stationary. In 1994, Iyer and Wald rigorously generalized this

result to allow for arbitrary, though infinitesimal, perturbations from initially stationary

spacetimes [36]. Since the initial spacetime in these two analyses is stationary, important

quantities such as surface gravity are only determined for stationary black holes. As the

surface gravity plays the role of temperature, this means that these rigorous analyses are

limited to scenarios at equilibrium and cannot exhibit out-of-equilibrium behavior that

might be expected for truly dynamical black holes.

Distinct from Bardeen et al. and Iyer and Wald, Ashtekar proposed the so-called

isolated horizon based on a geometric analysis to extend black hole thermodynamics to
2



1.1 Introduction of the thesis

more general scenarios. The key goal of an isolated horizon is to model the state of a

post-collapse black hole ‘after’ ring down [4–8]. In particular, such a horizon is specifically

defined to be at equilibrium with its exterior and hence has a well-defined and provably

uniform surface gravity (temperature) [4–8]. Although the uniform temperature makes

the isolated horizon naturally support the zeroth law of black hole thermodynamics, it

also limits its applicability. For example, the Brill-Lindquist initial conditions describe

interacting black holes, however, it has been found that the horizons for these initial

conditions do not correspond to isolated horizons, except as an approximation for large

inter-black hole distance [39]. Therefore, the concept of an isolated horizon is insufficient

to describe the thermodynamic behaviors of truly dynamical or interacting black holes.

After completing my first paper, I aimed at trying to generalize black hole thermody-

namics to truly dynamical spacetimes [66]. Again following in Bardeen et al.’s footsteps

and the study in chapter 2, I firstly transform the physical ADM energy into a covariant

form suitable for applying Stokes’ theorem. By applying Stokes’ theorem, the resulting

ADM quantities then provide a candidate expression for the surface gravity (correspond-

ing to the temperature) in dynamical spacetimes – a quantity for which there is currently

no consensus [42]. I then study how this energy changes under perturbations to the met-

ric and matter. My analysis shows that the surface of vanishing expansion of outgoing

null-normal congruences obeys a first-law analogue for dynamical non-rotating spacetimes

and hence might be the relevant thermodynamic surface [66].

For this analogue to become an actual law of thermodynamics, I must first confirm that

the surface gravity – the analogue to temperature – actually corresponds to the Hawking

temperature for the dynamical black holes and horizons under study. This was Hawking’s

key realization for stationary black holes upon the discovery of his eponymous radiation

[31]. Repeating Hawking’s original analysis remains daunting, so instead I compute the

tunneling temperature [66] in this dynamical non-rotating setting and find that it agrees

with the temperature conjectured from my candidate surface gravity. This confirms that

horizons of non-rotating dynamical black holes do behave thermodynamically. I then

analytically calculate the temperature of a pair of interacting binary black holes and find

their temperatures are generally non-uniform. All these results are summarized in chapter

3.

In chapter 4, I further analyze the interacting binary black hole system and find that

the non-uniform temperatures of interacting black holes should induce a novel entropic
3
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(a)

l

T

×
𝑇1 𝑇2

(b)

Figure 1.1: Examples of a system experiencing: (a) a conventional equilibrium entropic

force: A flaccid negligible-weight long-chain molecule with end-to-end separation ` sits in

a bath at temperature T . One end of the molecule is fixed so that the force is experienced

at the free end; (b) a non-equilibrium entropic force: Here our long-chain molecule is

threaded across a nanopore between two chambers held at respective temperatures Ti.

force [65]. This new kind of entropic effect may be illustrated by considering a molecular

chain model. When one places such a molecule in a heat bath and fixes one end of

the chain, we feel an entropic force at the free end [69], see Fig. 1.1 (a). Since the

molecular chain is in an equilibrium thermal bath, we call such a force an equilibrium

entropic force. Now consider two thermal baths of different temperatures connected by

a nanoscale channel with a long-chain molecule passing through the channel, see Fig. 1.1

(b). As long as both of the lengths of the chain into each chamber are not too short,

the different temperatures of the two chambers will induce an entropic force dragging the

molecular chain toward the higher temperature chamber, this effect disappearing when

the two chambers have the same temperature. Since this new entropic effect is induced by

the non-uniform temperature of the thermal system, we call it a non-equilibrium entropic

force. We note that the concept of an entropic force which vanishes at equilibrium and

which only exists for out-of-equilibrium scenarios is novel and does not appear in the

literature. We then repeat this analysis for the interacting black holes we studied in

chapter 3. We find that the non-uniform temperature of these black holes can also induce

such a non-equilibrium entropic force among interacting black holes [65]. Applying this

non-equilibrium entropic force to coalescing binary black holes would change the waveform

of the gravitational waves generated [65]. Although this effect is very weak, it should still

be observable in the future precision measurements. More details of this effect are given

in chapter 4.

After having introduced the structure of my thesis, I would like to talk about some of
4



1.2 Some tools and theorems

the tools and theorems that will be used in my analysis.

1.2 Some tools and theorems

1.2.1 Curvature tensor

Since most of our analysis is based on Einstein’s general relativity, I would first like to

introduce some basic concepts. In general relativity, the distribution of matter determines

the curvature of spacetime and the curvature of the spacetime conversely instructs the

motion of matter. So how one may describe curvature is a very fundamental thing for

general relativity and I will now give a short introduction.

𝐴𝐵 𝐶

𝐷

(a)

𝐴𝐵 𝐶

𝐷

(b)

Figure 1.2: Parallel transporting an arbitrary vector field from point A to point D along

two different routes ABD and ACD: (a) In a two-dimensional flat plane. (b) In a two-

dimensional spherical surface. The vectors arriving at D along the two different routes are

identical in (a) but pointing in different directions in (b).

In Euclidean space (flat space), a vector is just a magnitude along a direction and it is

not tied to a point. So if we parallel transport a vector from point A to point D along two

different routes ABD and ACD in the Euclidean plane, as in Fig. 1.2 (a), it is obvious that

the vectors arriving at D along these two different routes are identical. However, if we

parallel transport a vector from point A to point D along two different routes ABD and

ACD on a spherical surface, as in Fig. 1.2 (b), generally the vectors arriving D are different.

This effect may be used to describe the curvature of a manifold and is characterized by

the following equation

Aµ;αβ −Aµ;βα = −RµναβAν , (1.1)

where Aµ is an arbitrary vector field and Rµναβ is the Riemann curvature tensor which
5
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is commonly used to describe the curvature of spacetime in general relativity. In d + 1

dimensions, Greek indices go from 0 to d, lower-case Latin indices go from 1 to d (unless

otherwise stated). I will be working throughout in 3 + 1 spacetime dimensions.

From Eq. (1.1), we can see that the Riemann tensor is anti-symmetric about the second

pair of indices. In fact, the Riemann tensor obeys further symmetry conditions [21]:

Rµναβ = Rαβµν = −Rνµαβ = −Rµνβα, (1.2)

Rµανβ +Rµνβα +Rµβαν = 0. (1.3)

Contracting the first and third (or second and forth) indices of the Riemann tensor yields

the Ricci curvature tensor Rνβ ≡ Rµνµβ , and further contracting the indices of the Ricci

tensor yields the Ricci scalar R ≡ Rµµ. Einstein’s field equations in fact only involve the

Ricci tensor and Ricci scalar:

Rµν −
1
2Rgµν = 8πTµν , (1.4)

where I have taken the cosmological constant to be zero, Tµν is the energy-momentum

tensor, and gµν is the metric tensor of the spacetime which describes the physical length of

intervals (ds2 = gµνdx
µdxν). I will typically use natural units where ~ = c = kB = G = 1

throughout the thesis unless otherwise stated.

Further contracting the indices µ and α of Eq. (1.1) yields

Aµ;µβ −Aµ;βµ = −RνβAν . (1.5)

1.2.2 Hypersurfaces and the 3+1 split formalism

Einstein’s general relativity is described on a four-dimensional manifold combining space

and time, but, when we come to an analysis, we usually want to know what is happening at

any particular time. So it is naturally to foliate the four-dimensional spacetimeM into a

series of three-dimensional (spacelike) surfaces of fixed time which are called hypersurfaces

Σ [30, 70]. Without loss of generality, we may label every hypersurface by a function

t = x0 (the time coordinate) and introduce a coordinate system (xi) = (x1, x2, x3) on

each hypersurface. The coordinate functions xi(P) are chosen as smooth functions on the

manifold, P ∈M, within their respective chart. With such a construction, we have [30,70]

T̂µ = −N∂µx0 = −N 5µ x
0 , (1.6)

6



1.2 Some tools and theorems

with T̂µT̂
µ = −1 and N is the lapse function [70]. Here T̂µ is the unit timelike vector

normal to Σ. 1 Although we now label each hypersurface Σ by the coordinate x0, this does

not require the trajectory at fixed spatial coordinates xi to be normal to Σ. Therefore,

generally the tangent vector (∂0)µ along any curve of constant xi is not parallel to the

unit normal vector T̂µ of Σ. To ensure that T̂µT̂µ = −1 and (5µx
0)(∂0)µ = 1 hold both,

we must have

T̂µ = −N5µx
0 , (∂0)µ = N T̂µ + βµ, (1.7)

where βµ is orthogonal to T̂µ (and by convention β0 = 0). Since βµ characterizes how the

curves of constant xi shift between neighbouring hypersurfaces, it is called the shift vector

and it is tangent to the hypersurface [70].

From Eq. (1.7), we have [30,70]

T̂µ = (−N , 0, 0, 0) , T̂µ =
( 1
N
,
−β1

N
,
−β2

N
,
−β3

N

)
. (1.8)

The projector onto Σ fromM may be expressed as

γµν = gµν + T̂µT̂ν , γµν = gµν + T̂µT̂ ν . (1.9)

In such a manner, the corresponding induced metric of Σ embedded inM may be written

as γab ≡ ∂xµ

∂ya
∂xν

∂yb
gµν and the determinant of the metric gµν obeys the relation

√
−g = N√γ , (1.10)

where γ ≡ det(γab). For clarity sometimes the determinant of the induced metric γab on

hypersurface Σ is written γ(Σ).

1.2.3 Penrose diagram

Since the Penrose diagram is a popular tool to describe some infinite universes in a finite

two dimensional diagram, here I give a short introduction to it and use it to illustrate

some physical scenarios in this thesis.

For a spacetime with a black hole, we may consider the Schwarzschild metric

ds2 = −
(
1− 2m

r

)
dt2 + 1

1− 2m
r

dr2 + r2dΩ2, (1.11)

1Note for a general family of hypersurfaces defined by f(x) = C, ∂µf(x)dxµ = 0 for tangent vectors

dxµ within a given hypersurface, hence ∂µf is normal to the hypersurface. The hypersurfaces, Σ, we study

consist of the family given by f(x) = x0 = C.

7



Chapter 1: Introduction

where dΩ2 = dθ2 + sin2 θdφ2.

When we consider coordinate transformations, there are two different situations 0 <

r < 2m and r > 2m. For 0 < r < 2m, the time coordinate is r; while for r > 2m, the time

coordinate is t.

For both these cases, the metric may be written

ds2 = −
(
1− 2m

r

)
dt2 + 1

1− 2m
r

dr2 + r2dΩ2

= −
(
1− 2m

r

)(
dt2 − dr2

(1− 2m
r )2

)
+ r2dΩ2. (1.12)

Then we make the coordinate transformation dr′ = dr
1− 2m

r

, the integral of this transfor-

mation yields r′ = r + 2m ln(|r − 2m|). When 0 < r < 2m, r′ changes from some finite

value to negative infinity; and when r > 2m, r′ changes from negative infinity to positive

infinity. The exact range relations between r′ and r are (see Fig. 1.3)r
′ ∈ (2m ln(2m),−∞), when r ∈ (0, 2m)

r′ ∈ (−∞,∞), when r ∈ (2m,∞)
. (1.13)

𝑟′

2m

r

2m ln(2m)

0

Figure 1.3: The range of r′ with respect to the original Schwarzschild coordinate r.

With this coordinate transformation, Eq. (1.12) becomes

ds2 = −(1− 2m
r

)(dt2 − dr′2) + r2dΩ2. (1.14)

We then make another coordinate transformation to radial light-cone coordinates u = t+r′,

v = t− r′ and obtain

ds2 = −(1− 2m
r

)du dv + r2dΩ2, (1.15)

8



1.2 Some tools and theorems

where r is a function of u, v, and u, v ∈ (−∞,∞).

Next we make a further coordinate transformation u = tanψ, v = tanχ in order to fit

the light-cone coordinates into a finite range, yielding


du = dψ

cos2ψ

dv = dχ
cos2χ

. (1.16)

With this coordinate transformation, Eq. (1.15) becomes

ds2 = −
(
1− 2m

r

) dψdχ

cos2ψcos2χ + r2dΩ2, (1.17)

where r is a function of ψ, χ. Here ψ, χ ∈ (2i−1
2 π, 2i+1

2 π) and i ∈ Z is the set of integers.

Without loss of generality, we choose i = 0.

We then replace ψ and χ by ψ = 1
2(T + R) and χ = 1

2(T − R). Hence Eq. (1.17)

becomes

ds2 = −
(
1− 2m

r

) dT 2 − dR2

4 cos2
(
T+R

2
)
cos2

(
T−R

2
) + r2dΩ2, (1.18)

where r is now expressed as a function of T,R.

If we ignore the closed spherically-symmetric part of the metric (r2dΩ2), the spacetime

outside the black hole may now be represented by a finite two-dimensional diagram with

the following boundaries (see Fig. 1.4)



T +R = π

T +R = −π

T −R = π

T −R = −π

. (1.19)
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R

T

T = R −𝜋

T = R +𝜋

T = −R −𝜋

T = −R +𝜋

−𝜋

−𝜋 𝜋

𝜋
2m

2m

∞

∞

Figure 1.4: The whole spacetime outside a black hole is now represented by the shadow, and

every point in the shadow is a two-dimensional spherical surface. The timelike coordinate

is T in this figure.

For the spacetime inside the horizon, 0 < r < 2m, all the above steps follow except

that we have one more constraint that r > 0. This constraint limits the scope of T and

R, and the spacetime illustrated by T and R finally looks like Fig. 1.5

R

T

T = R −𝜋

T = R +𝜋

T = −R −𝜋

T = −R +𝜋

−𝜋

−𝜋 𝜋

𝜋
2m

2m

∞

∞

r = 0

Figure 1.5: The whole spacetime inside a black hole is now represented by the shadow,

and every point in the shadow is again a two-dimensional spherical surface. Note that the

timelike coordinate is R in this figure.

If we reverse the time in both Fig. 1.4 and Fig. 1.5, we will obtain two new figures

with time reflection symmetry to the old figures. Merging all these four figures together

yields the familiar Penrose diagram, see Fig 1.6. Since two the external parts are obtained
10



1.2 Some tools and theorems

in this time-reverse procedure, in fact, only one half of the diagram in Fig 1.6 is sufficient

to describe the spacetime of the Schwarzschild metric.

r = 0

r = 0

ⅈ+

ⅈ−

ⅈ0

𝐽+

𝐽−𝐽−

𝐽+

ⅈ0

ⅈ+

ⅈ−

Figure 1.6: The whole spacetime with its time reversed parts is now represented by a

finite region, and every point in the figure is a two-dimensional surface. Here i+ is future

timelike infinity, i− is past timelike infinity, i0 is spatial infinity, J+ is future null infinity

and J− is past null infinity. The time orientation is upward, and lines having a forty five

degree angle with the time orientation are null trajectories.

Let us now consider the Penrose diagram that describes a shell of matter collapsing

to form a black hole. Before the appearance of any black hole, the diagram looks like

the Penrose diagram for Minkowski spacetime. After the formation of a black hole, the

spacetime connects with the spacetime inside a black hole, see Fig. 1.7.

ⅈ0

ⅈ+

𝐽+

r = 0

r = 0

ⅈ−

𝐽−

Figure 1.7: The gray line represents a spherical shell of matter that finally collapses into

a black hole, and every point in the diagram is a two-dimensional spherical surface. The

time orientation is upward. (Only the right-hand side of the diagram is shown.)

11
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1.2.4 Different hypersurfaces appearing in this thesis

I will now use the Penrose diagram to illustrate different hypersurfaces that appear in

this thesis. It is also worth noting that three-dimensional hypersurfaces in spacetime

are divided into three different classes by the characteristics of their normal vectors. A

hypersurface is said to be timelike if its normal vector is spacelike, and conversely, a

hypersurface is spacelike if its normal vector is timelike. When the normal vector of a

hypersurface is null, the hypersurface is called a null hypersurface.

Since the stretched horizon is a ‘boundary’ between a real physical horizon and ordinary

surfaces, I first give a short introduction to the stretched horizon. Stretched horizons

were proposed by Thorne and colleagues as a surrogate for the real black hole horizon

to facilitate their research. In the 3+1 formalism, a stretched horizon is a 2-dimensional

membrane that resides in 3-dimensional space, and it may be chosen to be arbitrarily

close to the real physical horizon depending on the requirements of the calculations at

hand [49,54].

If we allow a stretched horizon to evolve in a spacetime, then it forms a timelike

hypersurface, which is also a claim of found in Ref. [54]. Suppose a stretched horizon is

n Planck length outside the black hole horizon, then, for a Schwarzschild black hole, the

physical distance between black hole horizon and the stretched horizon may be calculated

by

nlP =
∫ 2m+ε

2m

dr√
1− 2m

r

(1.20)

where lP is the Planck length, n ∈ R+ is the number of lP, and m is the mass of the black

hole. Replacing r with 2m+ ε′, so that dr = dε′, Eq. (1.20) may be written as

nlP =
∫ ε

0

√
2m+ ε′

ε′
dε′

=
√

2m
∫ ε

0

√
1
ε′

√
1 + ε′

2mdε′ (1.21)

Then we expand
√

1 + ε′

2m and find that ε ≈ (nlP)2

8m . Therefore, the trajectory of a point

on the stretched horizon in the Penrose diagram is described by xµ = (t, 2m+ (nlP)2

8m , θ, φ).

After going through all the coordinate transformations, r = 2m + (nlP)2

8m in the original

coordinate finally yields

sinR = 2m+ (nlP)2

8m + 2m(cosT + cosR)ln(nlP)2

8m +O
((nlp)4

m2

)
, (1.22)
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1.2 Some tools and theorems

which is represented by the dotted line in Fig. 1.8. From the diagram, it is also easy to

see that the stretched horizon is timelike.

In contrast, ordinary surfaces need not have any relation to black hole horizons. For the

spacetime we discussed above, ordinary surfaces may, for example, be seen as a stretched

horizon for ε finite and large.

r = 0

ⅈ+

ⅈ−

ⅈ0

𝐽+

𝐽−

r = 0

Stretched 

Horizon

ΣBH
ΣEG

ΣSH

Ordinary 

surface

Figure 1.8: The dotted grey line represents the stretched horizon and the solid grey

line represents an ordinary surface. Here ΣBH(green) represents the hypersurface which

stops at the black hole horizon, ΣSH(red) represents the hypersurface which stops at the

stretched horizon, and ΣEG(blue) represents the hypersurface in the emergent gravity

program that stops at an ordinary two-dimensional inner boundary which generally does

not have any relation with the black hole horizon. Every point in the diagram is a two-

dimensional spherical surface. The time orientation is upward.

Finally, we may use the Penrose diagram to describe some different scenarios we are

interested in. When Bardeen, Carter and Hawking originally proved black hole thermo-

dynamics, they considered a 3-dimensional spacelike hypersurface that stops at the black

hole horizon [11] (we ignore rotation here since this thesis does not consider the rotat-

ing case), this hypersurface could now be described by a line (green) that stops at the

horizon, see Fig. 1.8. Similarly, a spacelike hypersurface that stops at the stretched hori-

zon is represented by the red line in this diagram. Verlinde’s emergent gravity program

conjectures that an ordinary inner surface external to the black hole will also behave ther-
13



Chapter 1: Introduction

modynamically [59], and relevant spacelike hypersurface stops at such an ordinary surface

here represented by the blue line in Fig. 1.8. This Penrose diagram, Fig. 1.8, illustrates

examples of the different types of hypersurfaces that will appear in this thesis.

1.2.5 Stokes’ theorem

My work in this thesis primarily focuses on extending the first law of black hole thermody-

namics originally derived by Bardeen, Carter and Hawking [11]. Originally, they analyzed

a hypersurface external to a stationary black hole hence avoiding the physics of the black

hole interior. In this manner, any hypersurface in their analysis has two boundaries: the

black hole horizon and spatial infinity. The behavior of spatial infinity of a spacetime is

related to the global physical energy which is one of the most important quantities in ther-

modynamics. By using Stokes’ theorem, Bardeen et al. transformed the integral at spatial

infinity into an integral on the black hole horizon plus an integral over the hypersurface

between these two boundaries. Let us now briefly summarize Stokes’s theorem.

In a four-dimensional spacetimeM with boundary ∂M, Stokes’ theorem may be writ-

ten ∫
M
Aµ;µ
√
−g dx4 =

∫
∂M

Aµεn̂µ

√
|γ| dy3, (1.23)

where the unit tangent vector n̂µ is outward pointing from M and ε ≡ n̂µn̂µ. Since the

boundary of a boundary is the empty set, applying Stokes’ theorem on a boundary yields

zero.

Similarly, for a three-dimensional spacelike hypersurface Σ in M with boundary ∂Σ,

Stokes’ theorem for an anti-symmetric tensor Fµν may be written as [21]∫
Σ
T̂µF

µν
;ν

√
γ(Σ)d3y =

∫
∂Σ
T̂µF

µνN̂ν

√
γ(∂Σ)d2z, (1.24)

where T̂µ is the future directed timelike unit vector normal to Σ and N̂µ is the outgoing

spacelike unit vector normal to ∂Σ and tangent to Σ itself.

1.3 The definition of mass (energy)

Since thermodynamics is a theory about the transformation of energy and there are mul-

tiple definitions of energy in general relativity, I now give a short discussion about what

is the suitable definition of energy. Since some definitions of energy are based on Killing

vectors (and indeed the original analysis of Bardeen et al. is also based on spacetimes with

Killing vectors), we first give a short introduction to the Killing vector.
14



1.3 The definition of mass (energy)

1.3.1 Killing vector

A Killing vector describes a global symmetry of the spacetime. If Aµ is a Killing vector,

then the Lie derivative of the metric along this vector vanishes everywhere, LA(gµν) = 0,

which means that the metric is independent of the direction tangent to the vector Aµ.

Using the definition of the Lie derivative [47], the Killing condition LA(gµν) = 0 may be

written

LA(gµν) = gµν;λA
λ +Aλ;µgλν +Aλ;νgµλ = Aν;µ +Aµ;ν = 2A(µ;ν) = 0. (1.25)

Therefore, the covariant derivative of a Killing vector field is naturally anti-symmetric

Aµ;ν = A[µ;ν].

In fact, Bardeen et al.’s original analysis of black hole thermodynamics for stationary

spacetimes relies on the existence of Killing vectors. With the help of a Killing vector Kµ,

Eq. (1.5) reduces to a much simpler form:

Kµ
;βµ = RνβK

ν . (1.26)

Further, when Eq. (1.26) appears within an integral over a hypersurface, the anti-symmetry

of the covariant derivative of the Killing vector in Eq. (1.26) allows one easily apply Stokes’

theorem Eq. (1.24) to this integral. This trick was used to good effect by Bardeen, Carter

and Hawking for their stationary spacetime analysis [11].

However, generally, dynamical spacetimes do not have any global symmetry and hence

no Killing vectors. So generalizing black hole thermodynamics to dynamical spacetimes

means losing all the convent tricks discussed above. This is in fact one of the main chal-

lenges we have to overcome in Chapter 3 when we generalize black hole thermodynamics

to dynamical spacetimes.

1.3.2 The Komar and ADM masses

There are two primary definitions of energy on asymptotically-flat spacetimes: the Komar

mass (energy) MKomar and the ADM mass (energy) MADM (though other definitions

exist). The ADM mass is based on the Hamiltonian formulation of general relativity

and is widely accepted as the physical energy on a hypersurface for both stationary and

dynamical spacetimes. In asymptotically rectilinear coordinates, it may be written [2, 3]

MADM = 1
16π

∫
∂Σ∞

(
gij

,jN̂ i − gjj ,iN̂i

)
dA, (1.27)
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where dA =
√
|γ(∂Σ∞)| d2z.

In fact, Bardeen, Carter and Hawking used a different definition of energy in their

analysis, the Komar mass [11,38]:

MKomar = 1
4π

∫
∂Σ∞

Kµ;ν T̂
νN̂µdA, (1.28)

where Kµ is a timelike Killing vector which satisfies the asymptotic normalization con-

dition KµKµ = −1 at spatial infinity. As discussed in Section 1.3.1, since Kµ;ν is anti-

symmetric, it is easy to apply Stokes’ theorem to Eq. (1.28) and hence relate this global

energy to the sum of an integral on the black hole horizon and an integral over the hy-

persurface. Interestingly, the proof of the equivalence between the Komar mass and the

physical ADM mass was achieved by Beig only in 1978 [12] five years after Bardeen et al.’s

original analysis of black hole thermodynamics.

Since the ADM mass is not in a covariant form, it is not straightforward to apply

Stokes’ theorem to it in order to relate an integral on the boundary of a hypersurface

to an integral over the remaining hypersurface. The lack of a suitable covariant form

for the physical energy for dynamical spacetimes is a further obstruction we will need to

overcome when we try to generalize black hole thermodynamics to dynamical spacetimes.

In Chapter 3, we will show for dynamical asymptotically-flat spacetimes, that the ADM

mass may be transformed into a covariant form similar to the expression for the Komar

mass. This covariant expression does not require the presence of a Killing vector and

allows us to apply Stokes’ theorem to our analysis without undue difficulty.
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Chapter 2

Horizons are hot, ordinary

surfaces are not

Since the 1970’s it has been known that black hole (and other) horizons are truly thermo-

dynamic. More generally, surfaces which are not horizons have also been conjectured to

behave thermodynamically. Initially, for surfaces microscopically expanded from a hori-

zon to so-called stretched horizons, and more recently, for more general ordinary surfaces

in Verlinde’s emergent gravity program. To test these conjectures we ask whether such

surfaces satisfy an analogue to the first law of thermodynamics as do horizons. For static

asymptotically-flat spacetimes we find that such a first law holds on horizons. We prove

that this law remains an excellent approximation for stretched horizons. Note that this

result explicitly illustrates the insufficiency of the laws of black hole mechanics alone from

implying truly thermodynamic behavior. For surfaces away from horizons in Verlinde’s

emergent gravity program the first law fails (except for spherically-symmetric scenarios)

thus undermining the key thermodynamic assumption of this program. 1

1Zhi-Wei Wang & Samuel L. Braunstein. These results have been published in Nature Communications
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2.1 Introduction

In 1973, Bardeen et al. [11] derived the laws of black-hole mechanics which are in direct

analogy with the laws of thermodynamics. Together with the discovery of Hawking radia-

tion [31], the truly thermodynamic behavior of black-hole horizons became well established.

Indeed such thermodynamic behavior is now well accepted for all spacetime horizons, in-

cluding those due to accelerated observers [37,55] and cosmological horizons [29].

Later, other surfaces were also attributed with thermodynamic properties. Firstly,

stretched horizons were claimed to be thermodynamic, effectively acting as radiating black

bodies [54] with a temperature T = κ/(2π) determined by their local surface gravity 2

κ and an entropy (a ‘state variable’) associated with a presumed statistical mechanical

interpretation of black hole entropy [54,72]. An explicit re-derivation of the laws of black

hole mechanics has not been previously carried out for stretched horizons. More recently,

a class of ordinary surfaces has been conjectured to behave thermodynamically, forming

the key assumption in Verlinde’s emergent gravity program [59]. This thermodynamic

attribution was justified in part by using it in a heuristic derivation of the full Einstein

field equations in static asymptotically-flat spacetime [59].

In this chapter, we ask whether canonical General Relativity is consistent with the as-

sumption that such ordinary surfaces can be rigorously seen to behave thermodynamically.

We attack this question by focusing on the analogue to the first law of thermodynamics.

Originally this law was derived in an analysis that was specialized to the behavior of hori-

zons [11]. We remove this specialization to reveal the behavior of ordinary surfaces in an

analysis of the first law. In this chapter, we report that the first law holds to an excellent

approximation for stretched horizons. Finally, with the exception of fully spherically-

symmetric scenarios, we find that the first law fails to hold for the ordinary surfaces in

Verlinde’s emergent gravity program.

In order to attempt to derive a first law for ordinary surfaces we closely follow in

the footsteps of Bardeen, Carter and Hawking’s 1973 classic paper [11]. The first step

is to obtain an integral equation for the net energy in a static system, where instead of

an inner boundary located at a black hole horizon, this boundary is a generic ordinary

surface. Next, we consider small ‘changes’ in the net energy corresponding to shifting to a

2In stationary spacetimes the surface gravity corresponds to the force per unit mass needed to hold an

object ‘stationary’ at the horizon as measured by an observer at spatial infinity.
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2.2 Energy and possible temperature

parametrically nearby solution of the Einstein field equations. This ‘differential’ version is

determined by studying the behavior of the net energy under spacetime diffeomorphisms

of the initial metric [11]. As in Bardeen et al., “gauge” freedom in the choice of coordinates

is used to ensure that the hypersurfaces before and after the diffeomorphism are covered

by identical sets of coordinates.

Our analysis is limited to static (and hence non-rotating and with zero shift vector

βµ = 0 in coordinates in which the metric components are time-independent) spacetimes.

For simplicity, we assume that there is no matter exterior to the holographic screen (Tµν =

0).

2.2 Energy and possible temperature

Since the Komar mass (energy) equals the ADM mass in stationary spacetimes [12], in this

chapter we will use the Komar energy as the global physical energy of the hypersurfaces

we are studying.

2.2.1 Integral expression for net energy

Komar form Theorem: For a static asymptotically-flat spacetime with timelike Killing

vector Kµ = (∂0)µ one may derive the total gravitating Komar energy E as an integral

over a spacelike hypersurface Σ that is truncated (or bounded) internally by an ordinary

2-surface ∂Σinner (see Fig. 2.1) [38] by

E = 1
4π

∫
Σ
RµνK

µ T̂ ν
√
|γ(Σ)| d3x+ 1

4π

∫
∂Σinner

κ dA, (2.1)

where κ ≡ Kµ;ν T̂
νN̂µ is the generalized surface gravity on the inner boundary provided

KµKµ = −1 at spatial infinity. Note that this result is generally true without requiring

Tµν = 0 on Σ.

Proof:

Consider a static spacetime with a Killing vector Kµ = (∂0)µ = (1, 0, 0, 0), with

KµKµ = −1 at spatial infinity. As discussed in Section 1.3, the Killing condition implies

that

Kµ;ν = K[µ;ν] ≡
1
2(Kµ;ν −Kν;µ) . (2.2)
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



𝑬

N̂

N̂

𝜕Σ inner

Figure 2.1: Schematic of the spacelike three-dimensional hypersurface of interest, Σ, with

an inner boundary ∂Σinner and a boundary at infinity ∂Σ∞. Here N̂µ is the spacelike

4-vector normal to the boundaries of Σ (note the direction convention on the inner bound-

ary). We assume a general mass distribution within the inner boundary and no matter

outside it. Here E is the Komar energy which equals the ADM energy in stationary

spacetimes [12].

Now recall that permuting the order of a pair of covariant derivatives acting on a 4-vector

Aµ provides a defining feature of the Riemann curvature tensor as [21]

Aµ;αβ −Aµ;βα = −RµναβAν .

Contracting the indices µ and α reduces this to an expression in terms of the Ricci tensor

Aµ;µβ −Aµ;βµ = −RνβAν . (2.3)

Since the Killing vector is anti-symmetric, we must have Kµ
;µ = 0 and we immediately

find that

Kµ
;βµ = RνβK

ν . (2.4)

Integrating this over a spacelike hypersurface Σ, yields∫
Σ
Kµ

;βµ T̂
β
√
|γ(Σ)| d3x =

∫
Σ
RνβK

ν T̂ β
√
|γ(Σ)| d3x (2.5)

here T̂µ is the timelike unit 4-vector normal to Σ with T̂µT̂µ = −1.

The hypersurface is assumed to have an outer boundary at spatial infinity ∂Σ∞, and

an inner boundary ∂Σinner (see Fig. 2.1). In the original work of Bardeen et al. [11], this

inner boundary corresponded to the black hole’s horizon ∂ΣBH. Here we generalize this by
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2.2 Energy and possible temperature

taking it to be an arbitrary closed 2-surface ∂Σinner. The boundary of the hypersurface is

assumed to be oriented, with unit normal N̂µ (see Fig. 2.1), so N̂µN̂
µ = 1 and N̂µT̂µ = 0.

Then applying Stokes’s theorem for an anti-symmetric tensor Eq. (1.24) to the left-

hand-side of Eq. (2.5) we find∫
∂Σ∞

Kµ
;β T̂

βN̂µ

√
|γ(∂Σ∞)| d2z −

∫
∂Σinner

Kµ
;β T̂

βN̂µ

√
|γ(∂Σinner)| d2z

=
∫

Σ
RνβK

ν T̂ β
√
|γ(Σ)| d3x. (2.6)

At this stage, we wish to generalize the concept of surface gravity as a quantity defined

anywhere. Assuming that the surface ∂Σ is non-rotating (corresponding to zero angular

velocity of the spacetime itself) , we may interpret the integrand of the integral on the

boundary in Eq. (2.6) to be the surface gravity, so

κ ≡ Kµ;ν T̂
νN̂µ. (2.7)

It is worth noting that κ/(2π) is precisely the formula Verlinde gives (his Eq. (5.3) of [59])

for what he calls the local temperature of the holographic screen (what he calls ordinary

surfaces of constant Newtonian potential φ = 1
2 ln(−KµKµ) = lnN [59]) as measured with

respect to a reference point at spatial infinity.

This definition of surface gravity allows us to naturally extend the original 1973 analysis

away from black hole horizons. In particular, the left-hand-side of Eq. (2.6) reduces to∫
∂Σ∞

κ
√
|γ(∂Σ∞)| d2z −

∫
∂Σinner

κ
√
|γ(∂Σinner)| d2z. (2.8)

According to the definition of Komar mass Eq. (1.28), the integral over ∂Σ∞ equals 4πE

leading to

E = 1
4π

∫
Σ
RµνK

µ T̂ ν
√
|γ(Σ)| d3x+ 1

4π

∫
∂Σinner

κ dA , (2.9)

This completes the proof of the Komar form Theorem.

Were we to consider the spherically symmetric case, Eq. (2.1) would reduce to

E = 1
4π

∫
Σ
RµνK

µ T̂ ν
√
|γ(Σ)| d3x+ κ

4πA. (2.10)

Just to emphasize what this represents, here the hypersurface Σ extends from an arbitrary

inner boundary, ∂Σinner, out to spatial infinity. Thus, the generalized surface gravity, κ,

and the area, A, are those associated with the inner boundary itself (rather than any

horizon).
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Chapter 2: Horizons are hot, ordinary surfaces are not

Eq. (2.1) has exactly the same form as the conventional formula for the total mass of

the system [11] but extended to an arbitrary 2-dimensional surface (the inner boundary

instead of a horizon). Finally, note that the matter inside the inner boundary need not be

associated with a black hole, it may be ordinary matter, with no horizon present at all.

Thus, were inner boundaries found to have thermodynamic properties (i.e., a well-defined

entropy and temperature), it would not be because such properties were inherited from a

real horizon behind the screen.

2.2.2 Possible local Temperature

Following the results for horizons [11], it is tempting to seek to interpret κ/(2π) from

Eq. (2.1) as the local temperature at any point along an arbitrary 2-surface ∂Σinner. How-

ever, this would be unsatisfactory if true for arbitrary surfaces, since this local temperature

would not be in thermal equilibrium with an actual physical screen held fixed at the same

location; the temperature now coming from the Unruh effect [55] and the local proper

acceleration required to keep each portion of the screen stationary. Only for surfaces of

constant Newtonian gravitational potential φ, where the proper acceleration of a station-

ary observer and the local normal to the surface are parallel, is such thermal equilibrium

possible (see section 2.4.2). Thus the temptation of such a thermodynamic interpretation

should be restricted to the family of ordinary surfaces satisfying φ = constant.

Indeed, this restricted temptation appears to have been satisfied in the emergent grav-

ity program, where for static asymptotically-flat spacetimes, ordinary surfaces of constant

φ are dubbed holographic screens and are claimed to have a local temperature [59] given

by T = κ/(2π) and even claimed to possess a ‘state variable’ quantifying the number of

‘bits’ on the screen. These putative thermodynamic properties are then used in a heuristic

derivation of the full Einstein field equations [59]. If correct, such a claim would mean

that Verlinde’s emergent gravity program would already subsume many decades of results

associated with full General Relativity.
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2.3 Differential “first law” of thermodynamics for stationary spacetimes

2.3 Differential “first law” of thermodynamics for station-

ary spacetimes

2.3.1 The first law we expect

As discussed above, the straightforward generalization, especially in the spherically sym-

metric case, for net energy on a hypersurface might appear to suggest that a temperature

and entropy can actually be defined for any surface by

T = κ

2π , S = A

4 . (2.11)

However, such quantities need to behave thermodynamically. In particular, for our static

system, the net energy E, should admit changes which behave as

δE = TδS, (2.12)

(ignoring work terms) so that the temperature would be acting as an integrating factor

relating changes in the (state function) entropy to changes in the energy. In other words, we

must show that such changes lead to the expected form of the first-law of thermodynamics.

In the simplest case, where the hypersurface Σ is empty of matter, this law should read

δE = 1
8π

∫
∂Σinner

κ δ(dA). (2.13)

2.3.2 Diffeomorphic conditions

Again here we follow in the footsteps of the original analysis of Bardeen, Carter, and Hawk-

ing and consider changes corresponding to parametric differences between diffeomorphicly

nearby solutions. In particular, we will consider two nearby configurations corresponding

to the metrics

gµν , g′µν = gµν + hµν , (2.14)

where hµν ≡ δgµν = −gµσgντδgστ , i.e., δgστ = −hστ .

Without loss of generality and as with the original analysis of Bardeen, Carter, and

Hawking, we may assume that for the two diffeomorphicly related configurations, the

hypersurfaces Σ and Σ′ are described by identical sets of coordinates; this is always possible

due to “gauge” freedom in the choice of coordinate systems [11]. Henceforth we label both

by Σ. Similarly, for their boundaries ∂Σ. Further, as in Ref. [11] we likewise assume that

both configurations have the same Killing vector, so

δKµ = 0, δKµ = hµνK
ν . (2.15)
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Chapter 2: Horizons are hot, ordinary surfaces are not

Since the sets of coordinates of Σ and ∂Σ are unchanged by the diffeomorphism, without

loss of generality we may take [11]

δ(dxµ) ∈ Σ. (2.16)

Because Kµdx
µ = N T̂µdxµ = 0 for all dxµ in Σ, we have δKµ ‖ Kµ, so

δKµ = k0Kµ, (2.17)

for some function k0. Comparing Eq. (2.17) with Eq. (2.15), one finds

hµνK
ν = k0Kµ (2.18)

everywhere. Then contracting T̂µ on both sides of this equation yields

k0 = −hµν T̂µT̂ ν . (2.19)

(In other words, k0 = −hT̂ T̂ in the tetrad basis.)

Similarly, since T̂µdxµ = 0 for all dxµ in Σ, we have δT̂µ ‖ T̂µ, so

δT̂µ = k1
2 T̂µ, (2.20)

for some function k1 (the factor of 1
2 is for later convenience). To get an expression for k1,

we calculate the variation of gµν T̂µT̂ν = −1.

(δgµν)T̂µT̂ν + 2gµν T̂µ(δT̂ν) = 0

⇒ (−hµν)T̂µT̂ν + 2gµν T̂µ(k1
2 T̂ν) = 0, (2.21)

hence

k1 = −hµν T̂µT̂ ν = k0. (2.22)

Recall Kµ = ∂t and T̂µ is normal to Σ, so Kµ = N T̂µ+βµ where βµ is the shift vector

and N = 1/T̂ t is the lapse function [30]. Since we only consider non-rotating spacetimes in

this chapter, without loss of generality, we assume βµ = 0 from now on, then T̂µ = T̂ tKµ

24



2.3 Differential “first law” of thermodynamics for stationary spacetimes

and T̂µ = T̂ tKµ. Then for T̂µ, we find

δT̂µ = δ(gµν T̂ν)

= −hµν T̂ν + 1
2k1T̂

µ

= −gµλhλν T̂ ν + 1
2k1T̂

µ

= −gµλhλνKν T̂ t + 1
2k1T̂

µ

= −gµλk1KλT̂
t + 1

2k1T
µ

= −k1T̂
µ + 1

2k1T̂
µ

= −1
2k1T̂

µ, (2.23)

where we have used Eq. (2.18) in the fourth line.

Again since, dxµN̂µ = 0 for all dxµ in ∂Σ, combined with T̂µN̂µ = 0, we find δN̂µ ‖ N̂µ,

and so we may write

δN̂µ = 1
2k2N̂µ, (2.24)

for some function k2 (the factor 1
2 is introduced for later convenience). In the same way

as for Eq. (2.19) we find

k2 = hµνN̂
µN̂ν , hλν T̂

λN̂ν = 0. (2.25)

We now extend our use of the “gauge” freedom to extend this equality of coordinates

for our nearby solutions slightly away from the inner boundary ∂Σinner, though still within

the hypersurface Σ. Indeed, Bardeen et al. [11] used such freedom on the (future) null

horizon for stationary black holes. Here, we make an analogous construction for the

outgoing spacelike tangent vectors along N̂µ from each point on the boundary ∂Σinner. In

particular, for an infinitesimal ‘distance’ along the tangent vectors dxµ ∝ N̂µ from the

inner boundary, we use gauge freedom to ensure that these vectors satisfy δ(dxµ) = 0.

In other words, gauge freedom allows us to choose the covariant vectors N̂µ normal to

the inner boundary ∂Σinner to remain parallel to themselves under the diffeomorphism.

Consequently

δN̂µ = −1
2k2N̂

µ, (2.26)

a condition similar to those given by Bardeen et al. [11]. Combining Eqs.(2.24) and (2.26)

we find

δN̂µ = −gµν δN̂ν , (2.27)
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Chapter 2: Horizons are hot, ordinary surfaces are not

at the inner boundary ∂Σinner.

Let us now introduce the whole tetrad basis {T̂µ, N̂µ, Ûµ, V̂ µ}; recall T̂µ is normal to

Σ, N̂µ is in Σ but normal to ∂Σ, and Ûµ, V̂ µ lie in ∂Σ. The projector onto the tangent

space on ∂Σ is defined

Pµν ≡ (Û ⊗ Û + V̂ ⊗ V̂ )µν = ÛµÛν + V̂ µV̂ ν . (2.28)

Similarly

gµν = −T̂µT̂ ν + N̂µN̂ν + Pµν . (2.29)

Now tangent vectors in ∂Σ are contained in the span{Ûµ, V̂ µ} and since the coordinates

of ∂Σ are preserved under the diffeomorphism, δUµ and δV µ must also be contained in

span{Ûµ, V̂ µ}. By the same reasoning, δPµν ∈ span{Û ⊗ Û , Û ⊗ V̂ , V̂ ⊗ Û , V̂ ⊗ V̂ }.

Further, since δUµ, δV µ ∈ span{Ûµ, V̂ µ}, we may explicitly write them as

δÛµ = −1
2k3Û

µ − 1
2k4V̂

µ, δV̂ µ = −1
2k5Û

µ − 1
2k6V̂

µ, (2.30)

for some functions k3, k4, k5 and k6. By considering δ(gµνÛµÛν) = 0, δ(gµνÛµV̂ ν) = 0

and δ(gµν V̂ µV̂ ν) = 0, it is easy to show that

k3 = hµνÛ
µÛν

k6 = hµν V̂
µV̂ ν

k4 + k5 = 2hµνÛµV̂ ν . (2.31)

Then by considering δ(ÛµÛµ) = 0, δ(ÛµV̂ µ) = 0, δ(V̂µV̂ µ) = 0 and δ(V̂µÛµ) = 0, one finds

δÛµ = 1
2k3Ûµ + 1

2k5V̂µ, δV̂µ = 1
2k4Ûµ + 1

2k6V̂µ.

(2.32)

Hence, δPµν may be explicitly computed to be

δPµν = −k3Û
µÛν − k6V̂

µV̂ ν − 1
2(k4 + k5)(ÛµV̂ ν + Ûν V̂ µ)

= −1
2(k3 + k6)(ÛµÛν + V̂ µV̂ ν)− 1

2(k3 − k6)(ÛµÛν − V̂ µV̂ ν)

−1
2(k4 + k5)(ÛµV̂ ν + Ûν V̂ µ)

= −1
2(k3 + k6)Pµν − 1

2(k3 − k6)(ÛµÛν − V̂ µV̂ ν)− 1
2(k4 + k5)(ÛµV̂ ν + Ûν V̂ µ).

(2.33)
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2.3 Differential “first law” of thermodynamics for stationary spacetimes

Similarly,

δPµν = k3ÛµÛν + k6V̂µV̂ν + 1
2(k4 + k5)(ÛµV̂ν + Ûν V̂µ)

= 1
2(k3 + k6)Pµν + 1

2(k3 − k6)(ÛµÛν − V̂µV̂ν)

+1
2(k4 + k5)(ÛµV̂ν + Ûν V̂µ). (2.34)

So the key diffeomorphic conditions may be summarized as

δKµ = 0, δKµ = hµνK
ν = k1Kµ

δT̂µ = −1
2k1T̂

µ, δT̂µ = 1
2k1T̂µ

δN̂µ = −1
2k2N̂

µ, δN̂µ = 1
2k2N̂µ

δT̂ t = −1
2k1T̂

t, T̂µhµνN̂
ν = 0

δPµν = Eq.(2.33), δPµν = Eq.(2.34). (2.35)

where k1 = −hµν T̂µT̂ ν and k2 = hµνN̂
µN̂ν .

From Eqs. (2.19), (2.25) and (2.31), we know that in the tetrad basis

hµ̂ν̂ =



−k1 0 0 0

0 k2 0 0

0 0 k3
k4+k5

2

0 0 k4+k5
2 k6


, (2.36)

i.e., hT̂ T̂ = −k1, hN̂N̂ = k2 etc., and where generally k2, k3, . . . , k6 are independent func-

tions from each other.

2.3.3 Diffeomorphic variation of energy

Now we begin to analyse how energy transforms under metric perturbations. We start

by following Bardeen et al.’s original analysis [11], generalizing it where necessary to deal

with a boundary ∂Σinner which is an arbitrary ordinary surface instead of a horizon. It

will be sufficient for our purposes to consider only the case where there is no matter on Σ

itself, so Tµν = 0 there. Geometrically, this corresponds to all the matter lying behind or

within the inner boundary ∂Σinner (see Fig. 2.1).

In order to consider diffeomorphisms which need not respect spherical symmetry, we

return to Eq. (2.1). Using the Einstein field equations we start by rewriting this integral

formula as

E =
∫

Σ
(2Tµν + 1

8πR gµν)Kµ T̂ ν
√
|γ(Σ)| d3x+ 1

4π

∫
∂Σinner

κ dA , (2.37)
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Chapter 2: Horizons are hot, ordinary surfaces are not

recall that R = −8πT where T = Tµνg
µν .

Since N
√
|γ(Σ)| =

√
−g on the hypersurface [30], the variation of the Ricci scalar term

may be computed as

1
8π

∫
Σ
δ(R

√
|γ(Σ)|Kβ T̂β) d3x

= 1
8π

∫
Σ
δ(RN

√
|γ(Σ)| T̂ β T̂β) d3x

= 1
8π

∫
Σ
δ(R
√
−g) T̂ β T̂β d3x

= − 1
8π

∫
Σ

(
(Rµν −

1
2gµνR)hµν − (gµνδΓαµν − gµαδΓλλµ);α

)
Kβ T̂β

√
|γ(Σ)| d3x .

(2.38)

where in the last step we have used the well-known result that [16]

δ(R
√
−g) = −

(
(Rµν −

1
2gµνR)hµν − (gµνδΓαµν − gµαδΓλλµ);α

)√
−g. (2.39)

Lemma 2.1: −(gµνδΓαµν − gµαδΓλλµ);α = 2hµ[µ;ν]
;ν , a result quoted in Ref. [11], there

without proof.

Proof:

Since [44]

δΓαµν = 1
2g

αρ(hµρ;ν + hνρ;µ − hµν;ρ) , (2.40)

we have

−(gµνδΓαµν − gµαδΓλλµ);α

=
(
gµα

1
2g

λρ(hµρ;λ + hλρ;µ − hµλ;ρ)− gµν
1
2g

αρ(hµρ;ν + hνρ;µ − hµν;ρ)
)

;α

= 1
2
(
gµαhρρ;µ − gµν(hαµ;ν + hαν;µ − hµν ;α)

)
;α

= 1
2
(
hρ

ρ;α − (hαν ;ν + hαµ;µ − hµµ;α)
)

;α

= 1
2(2hρρ;α − 2hαµ;µ);α

= 2hµ[µ;ν]
;ν . (2.41)

This completes the proof of Lemma 2.1.

Using Lemma 2.1, the variation of the Ricci scalar term Eq. (2.38) becomes

− 1
8π

∫
Σ

(
(Rµν −

1
2gµνR)hµν + 2hµ[µ;ν]

;ν
)
Kβ T̂β

√
|γ(Σ)| d3x

= − 1
4π

∫
Σ
hµ[µ;ν]

;νKβ T̂β

√
|γ(Σ)| d3x (2.42)
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since the first term is zero if we assume Tµν = 0 on Σ outside the holographic screen.

Lemma 2.2: hµ[µ;ν]
;νξβ = (ξβhµ[µ;ν] − ξνhµ[µ;β]);ν + Lξ(hµ[µ;β]) + hµ

[µ;β]ξν ;ν .

Proof: Expanding out the right-hand-side (rhs) of the claim in Lemma 2.2, we get

rhs = hµ
[µ;ν]

;νξ
β + hµ

[µ;ν]ξβ ;ν − hµ[µ;β]ξν ;ν − hµ[µ;β]
;νξ

ν + Lξ(hµ[µ;β]) + hµ
[µ;β]ξν ;ν

= hµ[µ;ν]
;νξβ + hµ

[µ;ν]ξβ ;ν − hµ[µ;β]
;νξ

ν + Lξ(hµ[µ;β])

= hµ[µ;ν]
;νξβ − Lξ(hµ[µ;β]) + Lξ(hµ[µ;β])

= lhs , (2.43)

where we used hµ
[µ;ν]

;νξ
β = hµ[µ;ν]

;νξβ in the first line and Lξ(hµ[µ;β]) = hµ
[µ;β]

;νξ
ν −

hµ
[µ;ν]ξβ ;ν in the second line.

This completes the proof of Lemma 2.2.

When ξµ is the Killing vector Kµ, Lemma 2.2 reduces to a result quoted in Ref. [11],

there without proof:

hµ[µ;ν]
;νKβ = (Kβhµ

[µ;ν] −Kνhµ
[µ;β]);ν . (2.44)

Applying Eq. (2.44) to Eq. (2.42), the variation of the term involving the Ricci scalar

reduces to

− 1
4π

∫
Σ

(Kβhµ
[µ;ν] −Kνhµ

[µ;β]);ν T̂β

√
|γ(Σ)| d3x. (2.45)

Thus, the variation in the total mass may be written

δE = − 1
4π

∫
Σ

(Kβhµ
[µ;ν] −Kνhµ

[µ;β]);ν T̂β

√
|γ(Σ)| d3x+ 1

4π

∫
∂Σinner

δ(κ dA)

= − 1
4π

∫
Σ

(Kβhµ
[µ;ν] −Kνhµ

[µ;β]);ν T̂β

√
|γ(Σ)| d3x

+ 1
4π

∫
∂Σinner

δκ dA+ 1
4π

∫
∂Σinner

κ δ(dA). (2.46)

Since the term inside the bracket is an anti-symmetric tensor, we may use Stokes’s theorem,

Eq. (1.24), to obtain

δE = − 1
4π

∫
∂Σ∞

(Kβhµ
[µ;ν] −Kνhµ

[µ;β])N̂ν T̂β

√
|γ(∂Σ∞)| d2z

+ 1
4π

∫
∂Σinner

(Kβhµ
[µ;ν] −Kνhµ

[µ;β])N̂ν T̂β

√
|γ(∂Σinner)| d2z

+ 1
4π

∫
∂Σinner

δκ dA+ 1
4π

∫
∂Σinner

κ δ(dA), (2.47)
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where the boundary has been split into the inner boundary ∂Σinner and the boundary

at infinity ∂Σ∞. The contribution for the term at infinity may be evaluated using the

notation of tensorial volume elements [60] as

− 1
4π

∫
∂Σ∞

(Kβhµ
[µ;ν] −Kνhµ

[µ;β])N̂ν T̂β

√
|γ(∂Σ∞)| d2z

= − 1
4π

∫
∂Σ∞

Kβhµ
[µ;ν](T̂β N̂ν − T̂ν N̂β)

√
|γ(∂Σ∞)| d2z

= − 1
4π

∫
∂Σ∞

Kβhµ
[µ;ν] εβν εαµ

= 1
8π

∫
∂Σ∞

(hµµ;ν − hµν;µ)Kβ εβναµ

= −δE , (2.48)

where the orientation of εβναµ is chosen so that εβναµ = −6 ε[βνεαµ] and εαµ is the ‘vol-

ume’ element of the boundary at infinity, and we have applied the result 1
8π
∫
∂Σ∞

(hµµ;ν −

hµ
ν;µ)Kβ εβναµ = −δE in the final step [60].

Eq. (2.48) allows us to transform Eq. (2.47) into

δE = −δE + 1
4π

∫
∂Σinner

(Kβhµ
[µ;ν] −Kνhµ

[µ;β])N̂ν T̂β

√
|γ(∂Σinner)| d2z

+ 1
4π

∫
∂Σinner

δκ dA+ 1
4π

∫
∂Σinner

κ δ(dA). (2.49)

Or equivalently,

δE = 1
8π

∫
∂Σinner

1
2(hµµ;ν − hµν;µ)N̂ν T̂βK

β dA+ 1
8π

∫
∂Σinner

δκ dA+ 1
8π

∫
∂Σinner

κ δ(dA) ,

(2.50)

where we have used KνN̂ν = N T̂ νN̂ν = 0, which follows since T̂µ is normal to Σ and

N̂µ lies in Σ. For the first law to be true, we need the first two boundary integrals of

Eq. (2.50) to exactly cancel each other.

Since KµN̂µ = 0 and (KµN̂µ);ν = 0, then Kµ
;νN̂µ = −KµN̂µ;ν . Therefore, the surface

gravity may be written as

κ = Kµ
;ν T̂

νN̂µ = −KµN̂µ;ν T̂
ν . (2.51)

We next consider the expansion of null normal congruences on the inner boundary which
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may be written as

θ(l) = Pµν lµ;ν

= Pµν(T̂µ + N̂µ);ν

= Pµν(T̂ tKµ);ν + PµνN̂µ;ν

= T̂ tPµνKµ;ν + PµνKµ(T̂ t);ν + PµνN̂µ;ν

= PµνN̂µ;ν

= (gµν + T̂µT̂ ν − N̂µN̂ν)N̂µ;ν

= N̂µ
;µ −Kµ;ν T̂

νN̂µT̂ t

= N̂µ
;µ − κ T̂ t

= 1√
−g

(
√
−gN̂µ),µ − κ T̂ t (2.52)

where lµ = T̂µ+ N̂µ is the outgoing null normal vector of the inner boundary, and we have

used Eq. (2.29) in the fifth line and Eq. (2.51) in the sixth line. Using this relation we

may express the variation of κT̂ t as

δT̂ tκ+ T̂ tδκ = δ( 1√
−g

)(
√
−gN̂µ),µ + 1√

−g
(δ
√
−gN̂µ),µ + 1√

−g
(
√
−gδN̂µ),µ − δθ(l).

(2.53)

Since the left hand of Eq. (2.53) equals −1
2k1T̂

tκ+ T̂ tδκ, we further have

−1
2k1T̂

tκ+ T̂ tδκ

= −1
2g

τνδgτν
1√
−g

(
√
−gN̂µ),µ + 1√

−g
(1
2
√
−ggτνδgτνN̂µ),µ + (δN̂µ);µ − δθ(l)

= −1
2g

τνδgτν
1√
−g

(
√
−gN̂µ),µ + 1

2g
τνδgτν

1√
−g

(
√
−gN̂µ),µ

+1
2(gτνδgτν),µN̂µ + (δN̂µ);µ − δθ(l)

= 1
2(hνν),µN̂µ + (δN̂µ);µ − δθ(l) , (2.54)

where δ
√
−g = 1

2
√
−ggµνδgµν . Hence, the first term in Eq. (2.50) may be written as

1
2(hνν);µN̂

µ = −1
2k1T̂

tκ+ T̂ tδκ− (δN̂µ);µ + δθ(l) (2.55)
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The second term hµ
ν;µN̂ν in Eq. (2.50) may then be expressed as

1
2hµ

ν;µN̂ν = 1
2(hµνN̂ν);µ − 1

2hµ
νN̂ ;µ

ν = 1
2(δgµνN̂ν);µ + 1

2δg
µνN̂µ;ν

= 1
2
(
δ(gµνN̂ν)− gµνδN̂ν);µ + 1

2δ(−T̂
µT̂ ν + N̂µN̂ν + Pµν)N̂µ;ν

= 1
2(δN̂µ − δN̂νgµν);µ + 1

2(k1T̂
µT̂ ν − k2N̂

µN̂ν + δPµν)N̂µ;ν

= 1
2(1

2k2N̂µ);µ − 1
2(δN̂µ);µ + 1

2k1T̂
µT̂ νN̂µ;ν + 1

2δP
µνN̂µ;ν

= 1
2(1

2k2N̂
µ);µ −

1
2(δN̂µ);µ −

1
2k1T̂

tT̂ νN̂µK
µ

;ν + 1
2δP

µνN̂µ;ν

= −(δN̂µ);µ −
1
2k1T̂

tκ+ 1
2δP

µνN̂µ;ν , (2.56)

where we have used Eq. (2.51) in the fifth line, and Eqs. (2.7) and (2.35) in the last step.

Next, consider the final term 1
2δP

µνN̂µ;ν in Eq. (2.56), using Eq. (2.33) we have

1
2δP

µνN̂µ;ν = −1
4
(
(k3 + k6)Pµν + (k3 − k6)(ÛµÛν − V̂ µV̂ ν)

+(k4 + k5)(ÛµV̂ ν + Ûν V̂ µ)
)
N̂µ;ν

= −1
4
(
(k3 + k6)Pµν + (k3 − k6)(ÛµÛν − V̂ µV̂ ν)

+(k4 + k5)(ÛµV̂ ν + Ûν V̂ µ)
)
(lµ − T̂µ);ν

= −1
4
(
(k3 + k6)Pµν + (k3 − k6)(ÛµÛν − V̂ µV̂ ν)

+(k4 + k5)(ÛµV̂ ν + Ûν V̂ µ)
)
(lµ − T̂ tKµ);ν

= −1
4(k3 + k6)θ(l) − 1

4(k3 − k6)σ(l)
+ −

1
4(k4 + k5)σ(l)

× , (2.57)

where σ(l)
+ , σ

(l)
× are the shears of lµ defined by [33]

σ
(l)
+ = (ÛµÛν − V̂ µV̂ ν)lµ;ν σ

(l)
× = (ÛµV̂ ν + Ûν V̂ µ)lµ;ν . (2.58)

Therefore,

1
2hµ

ν;µN̂ν = −(δN̂µ);µ−
1
2k1T̂

tκ− 1
4(k3 +k6)θ(l)− 1

4(k3−k6)σ(l)
+ −

1
4(k4 +k5)σ(l)

× . (2.59)

Finally, substituting Eq. (2.55) and Eq. (2.59) into Eq. (2.50), we find

δE = − 1
8π

∫
∂Σinner

(
δκ+ 1

T̂ t

(
δθ(l) + 1

4(k3 + k6)θ(l) + 1
4(k3 − k6)σ(l)

+ + 1
4(k4 + k5)σ(l)

×

))
dA

+ 1
8π

∫
∂Σinner

δκ dA+ 1
8π

∫
∂Σinner

κ δ(dA) . (2.60)

Or in summary,
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δE = − 1
8π

∫
∂Σinner

(
δθ(l) + 1

4(k3 + k6)θ(l) + 1
4(k3 − k6)σ(l)

+ + 1
4(k4 + k5)σ(l)

×

)
N dA

+ 1
8π

∫
∂Σinner

κ δ(dA). (2.61)

It is worth noting that

δθ(l) = −k2
2 θ

(l) + 1
2(k3 + k6);ρN̂

ρ (2.62)

which separately depends only on k2, k3, k6 which we now prove.

Since Pµν T̂µ;ν = Pµν(KµT̂
t);ν = PµνKµ;ν T̂

t + PµνKµ(T̂ t);ν = 0, θ(l) can be simplified

as

θ(l) = Pµν lµ;ν = Pµν(T̂µ;ν + N̂µ;ν) = PµνN̂µ;ν . (2.63)

Thus the variation of θ(l) is

δθ(l) = δPµνN̂µ;ν + Pµνδ(N̂µ;ν)

= δPµνN̂µ;ν + Pµν(δN̂µ,ν − δΓλµνN̂λ − ΓλµνδN̂λ)

= δPµνN̂µ;ν + Pµν
(
(δN̂µ);ν − δΓλµνN̂λ

)
= δPµνN̂µ;ν + Pµν

(
(k2

2 N̂µ);ν −
1
2g

λρ(hµρ;ν + hνρ;µ − hµν;ρ)N̂λ

)
= δPµνN̂µ;ν + Pµν(k2

2 N̂µ);ν − Pµν
1
2(hµρ;ν + hνρ;µ − hµν;ρ)N̂ρ

= δPµνN̂µ;ν + Pµν(k2
2 N̂µ);ν − Pµνhµρ;νN̂

ρ + 1
2P

µνhµν;ρN̂
ρ, (2.64)

where we have used Eq. (2.40) in the fourth line. Further, using Pµν ;ρN̂
ρhµν = 0, we can

now simplify Eq. (2.64) as

δθ(l) = δPµνN̂µ;ν + Pµν(k2
2 N̂µ);ν − (N̂ρhµρ);νP

µν + N̂ρ;νP
µνhµρ + 1

2(Pµνhµν);ρN̂
ρ

−1
2P

µν
;ρN̂

ρhµν

= δPµνN̂µ;ν + Pµν(k2
2 N̂µ);ν − (k2N̂µ);νP

µν + N̂ρ;ν(δ(Pµνgµρ)− δPµνgµρ)

+1
2(k3 + k6);ρN̂

ρ

= δPµνN̂µ;ν − Pµν(k2
2 N̂µ);ν − δPµνN̂µ;ν + 1

2(k3 + k6);ρN̂
ρ

= −k2
2 P

µνN̂µ;ν + 1
2(k3 + k6);ρN̂

ρ

= −k2
2 θ

(l) + 1
2(k3 + k6);ρN̂

ρ. (2.65)

This completes the proof of Eq. (2.62).
33



Chapter 2: Horizons are hot, ordinary surfaces are not

As the expansion and shear vanish identically in the special case of the event horizon

of a black hole [33], we see that Eq. (2.61) trivially reduces to the first law on the horizon,

Eq. (2.13), thus reproducing the famous 1973 result [11]. Similarly, it follows straightfor-

wardly that for surfaces sufficiently close to the horizon (so-called stretched horizons), the

corrections to the first law can be made negligible.

2.4 Surfaces away from horizons.

2.4.1 Emergent gravity program

Since 2010, Verlinde’s emergent gravity program has attracted huge attention because it

claims that gravity may not be a fundamental effect but instead has a thermodynamic

origin [59]. With some plucky assumptions this program even gives a heuristic derivation

of the laws of Newton and the Einstein field equations.

One of the key assumptions in this argument is that ordinary surfaces away from

horizons also behave thermodynamically. It is claimed that ordinary surfaces (which are

called holographic screens) also have an entropy proportional to their surface area and

a temperature proportional to their surface gravity. Since the Unruh effect shows that

an accelerating observer would record a temperature proportional to its acceleration, to

make their thermal assumption consistent with the Unruh effect, the holographic screens

used in their analysis are taken to have a constant Newtonian potential φ. In this way,

an observer that is stationary at a holographic screen will see the same temperature as is

assigned to the holographic screen.

Then, Verlinde provides a heuristic derivation of the Einstein field equations using

these thermodynamic assumptions. The derivation is heuristic in that it starts with an

assumption of thermal behavior of holographic screens and proceeds with a sequence of

true statements ending with the Einstein field equations. The problem lies in the reasoning

connecting each statement in the sequence. One could test the rigour of the argument by

focusing on the reasoning behind each step. However this would be ultimately unsatisfying

since it would not rule out a different logically correct route. To rule out the existence

of any such route we chose to test whether the thermodynamic properties of holographic

screens were actually consistent with general relativity.
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2.4.2 Local temperature in emergent gravity

We focus here on the temperature defined in the original paper on emergent gravity [59]

which is used there in its heuristic derivation of the Einstein field equations. In Fig. 2.2

we show a schematic of the hypersurface considered there. ∂ΣHS denotes the holographic

screen (ordinary surfaces of constant Newtonian potential φ) which now is the outer bound-

ary of the spacelike hypersurface ΣEG under study, and N̂µ is the unit normal vector to

the holographic screen.

E

N̂

HS


ΣEG

𝜕Σ∞

Figure 2.2: Schematic of the spacelike three-dimensional hypersurface ΣEG used in Ref. [59]

which has the mass under study embedded within it. As can be seen, the 2-surface corre-

sponding to the holographic screen ∂ΣHS is now the outer boundary to ΣEG (compare to

Fig. 2.1); and Ref. [59] defines ∂ΣHS as ordinary surfaces of constant Newtonian potential

φ. (For context, we show spatial infinity as ∂Σ∞ in grey, though it plays no role in this

section.)

The ‘local’ temperature of the holographic screen (as measured at spatial infinity) used

in Ref. [59] is defined as

T ≡ 1
2πe

φ φ;µN̂
µ, (2.66)

where φ is the generalized Newtonian potential, given by φ = 1
2 ln(−KµKµ) = lnN ,

recalling that KµKµ = −N 2. It is now an easy matter to check that

T ≡ 1
2πe

φ φ;µN̂
µ = 1

2πN;µN̂
µ = 1

2π
1

2N (N 2);µN̂
µ

= − 1
2πKν ;µ

1
N
KνN̂µ = 1

2πKµ;ν
1
N
KνN̂µ

= 1
2πKµ;ν T̂

νN̂µ. (2.67)
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In summary, recall the definition of κ in Eq. (2.7), yielding

T ≡ κ

2π . (2.68)

For reference, the Unruh temperature associated with a stationary observer is just the

magnitude of the observer’s proper acceleration aµ over 2π. As the observer’s 4-velocity

is given by T̂µ we easily find

aµ ≡ T̂µ;ν T̂
ν = φ;µ, (2.69)

since T̂µ = T̂ tKµ = Kµ/N = e−φKµ. Thus aµ is perpendicular to surfaces of constant φ.

When Verlinde’s temperature is measured locally (instead of referenced to spatial infinity)

it is Tlocal = 1
2πφ

;µN̂µ. For this to equal the Unruh temperature at the same point,

the local unit normal N̂µ to the screen must be aligned with the proper acceleration aµ

of our stationary observer there. Therefore, it trivially follows that only for surfaces of

constant Newtonian potential φ would the holographic screens be in thermal equilibrium

with stationary physical surfaces of the same shape, size and location. Hence,

Thermodynamic equilibrium ⇒ N̂µ ‖ φ;µ (2.70)

Finally, we show that for surfaces of constant φ, we have δφ = k1/2. Indeed, since

T̂ t = 1/N = e−φ, we have

δφ = − 1
T̂ t
δT̂ t = 1

2k1, (2.71)

where in the last step we have used Eqs. (2.22) and (2.23).

2.4.3 Surfaces away from horizons generally do not satisfy the first law.

So far we have assumed that the inner boundaries before and after the diffeomorphic

perturbation are arbitrary. But could the perturbed boundary be chosen in a specific

manner so as to cause the unwanted terms in Eq. (2.61) to vanish? As already noted,

holographic screens correspond to surfaces of constant Newtonian potential φ = constant.

Thus, the perturbed screen relies on a specification of the constant δφ. In section 2.4.2,

we showed that δφ = 1
2k1, where k1 is a metric perturbation of which the unwanted terms

in Eq. (2.61) are wholly independent. Thus, the ordinary surfaces used within Verlinde’s

emergent gravity program cannot generally satisfy the first law, Eq. (2.13).

One caveat to this claim comes when we consider a fully spherically symmetric scenario;

where both the initial spacetime and screen are spherically symmetric, so the initial shears

σ
(l)
j vanish, and also the final spacetime and screen are spherically symmetric, placing
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2.4 Surfaces away from horizons.

further constraints on the kj . In this case, Birkhoff’s theorem [17] for spherically symmetric

metrics imposes extra constraints between the metric components so that a perturbed

screen may always be chosen so as to satisfy the form of the first law [22]. However, as

noted above, this form will not be preserved under arbitrary metric perturbations.

2.4.4 Vanishing extrinsic curvature tensor

Our analysis has been predicated on static screens. However, there is another way to

define screens, so their normal direction remains parallel to the proper acceleration of a

family of locally coincident timelike observers [46]. These observers are constrained to

have constant 4-acceleration along with a number of other technical assumptions [46]. A

first law is then obtained for these surfaces provided they additionally have a vanishing

extrinsic curvature tensor Kµν = 0 [46]. The first law obtained is of a form with energy

and temperature measured locally instead of at spatial infinity, which for asymptotically-

flat spacetimes are unambiguous. Finally, we note that there is no easy way in this other

formalism [46] to investigate stretched horizons.

In our setting with zero shift vector βµ = 0, so T̂µ = T̂ tKµ, and with our hypersurfaces

Σ orthogonal to T̂µ, we find that Kµν = 0 implies a vanishing expansion θ(l) = 0. Thus,

for our setting, the formalism of Ref. [46] only yields a first law on horizons.

To see that this is the case, observe that the extrinsic curvature tensor of our inner

boundary equals [21]

Kµν ≡ N̂(λ;ρ)P
λ
µP

ρ
ν . (2.72)

Taking the trace of this yields the extrinsic curvature scalar as K = PµνN̂µ;ν = θ(l), where

in the final step we use Eq. (2.63). Thus, for our setting, the first law of Ref. [46] appears

to occur at the horizon; a result which is naively consistent with the classic 1973 result.

Let us now consider a construction for a screen surrounding a gravitating body as

proposed by Ref. [46]: Construct a screen using a family of stationary timelike observers

at fixed radius around a Schwarzschild black hole. It is easy to calculate the extrinsic

curvature tensor for the screen and see, as noted above, that this curvature vanishes only

on the horizon. Hence the screen is on the horizon and the observers are null instead of

timelike observers. Next drop in a spherical shell of matter. As the shell passes the screen

of observers, the horizon (where θ(l) = 0) discontinuously jumps, the surface gravity of

the new horizon changes and the original screen of observers fall into the black hole. We

must then conclude either that the construction using the methods of Ref. [46] of a screen
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Chapter 2: Horizons are hot, ordinary surfaces are not

surrounding the black hole is simply impossible (because the observers are not timelike),

or it fails to continue to hold under perturbation.

Thus, although Ref. [46] purports to describe a dynamical first law for ordinary surfaces

its conditions are either in general impossible to satisfy or are generally not preserved under

perturbation.

2.5 Discussion

The implications of our results are now described for (i) stretched horizons, and (ii) ordi-

nary surfaces.

(i) Stretched horizons have long been considered to act as black bodies [54], effectively

radiating with a temperature κ/(2π). Thus, our demonstration that they also satisfy the

first law to an excellent approximation hardly seems surprising. Nevertheless, we do not

believe that our result here should be interpreted as implying that the surfaces corre-

sponding to stretched horizons themselves should be imbued with actual thermodynamic

properties.

In particular, we may consider an alternative spacetime, identical from the stretched

horizon outward, but instead of a horizon, we consider an infinitesimal shell of matter

just outside what would correspond to its Schwarzschild radius were the shell to collapse

further, yet still within the ‘stretched horizon’. In this latter spacetime, there is no hori-

zon and hence no Hawking radiation. Notwithstanding this, our work proves that the

‘stretched horizon’ still closely satisfies the first law.

We conclude from this that the laws of black hole mechanics are not sufficient in

themselves to guarantee whether any particular surface is truly thermodynamic in nature.

For stretched horizons, we interpret this reasoning to imply that their full thermodynamic

behavior is only inherited from the presence of an underlying horizon, but is not intrinsic to

stretched horizons themselves. This conclusion appears to mimic the initial reluctance of

general relativists [11] from accepting black hole horizons as truly thermodynamic despite

the deep analogy to thermodynamics uncovered in the laws of black hole mechanics. By

contrast, these laws should still be considered a necessary condition.

(ii) Our analysis further rigorously shows that the family of ordinary surfaces called

holographic screens will generally not obey a first law of thermodynamics, in contrast to

the long-standing result for horizons [11]. (Other families would not even be in thermal

equilibrium with a physical surface at the same location.) Recall that the first law is more
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general than thermodynamics: the ‘temperature’ is merely an integrating factor relating

changes in energy to changes in some state variable (entropy in the case of thermodynam-

ics). Failure of the first law means that the putative state variable is not a variable of state

at all. Therefore, even in static asymptotically-flat spacetimes, where Verlinde’s emergent

gravity program claims to derive the full Einstein field equations, our results show that

the key assumption of this program is actually inconsistent with General Relativity.
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Chapter 3

Thermodynamics of dynamical

black holes

The thermodynamic theory of black holes posits that stationary black holes satisfy the

laws of equilibrium thermodynamics such that they have a uniform temperature given

by their surface gravity and a net entropy given by the area law. However, the validity

of thermodynamics beyond stationary black holes remains a wide open question. Here

we study asymptotically-flat dynamical spacetimes without global symmetries. We prove

that the physical energy reduces to a simpler form in such spacetimes and show how

this energy changes during physical processes. That is, we generalize the first law of

thermodynamics for dynamical black holes. We find that spacetime horizons necessarily

behave thermodynamically even in a dynamical setting. In general, the temperature along

the horizons of dynamical black holes is found to be non-uniform, with equilibrium replaced

by local equilibrium behavior. The local nature of the temperature and entropy on a black

hole’s horizon makes rigorous long-held intuitive claims on how information is encoded on

a black hole’s surface and may open the door for a reappraisal of well-known entropic

bounds and paradoxes associated with black holes. Finally, our results demonstrate the

logical equivalence between classical general relativity and the thermodynamic nature of

spacetime horizons, suggesting new insights into a quantum theory of gravity 1.

1Zhi-Wei Wang & Samuel L. Braunstein. Submitted.
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3.1 Introduction

Despite the elegance of the theory of black hole thermodynamics, the discovery of the

thermal nature of stationary, i.e., eternal, black holes has led to a number of paradoxes

relating to information retrieval, the nature of black hole entropy, black hole complemen-

tarity and the equivalence principle versus the fire wall [1,18,31,32,52]. The apparent clash

between information loss in a thermal theory and information preservation in quantum

mechanics [32] has been widely considered to hold the key for an eventual theory of quan-

tum gravity [48]. However, while unitary evolution should presumably hold for arbitrary

dynamics, black hole thermodynamics has only been rigorously proven for infinitesimal

perturbations from the eternal (stationary) setting. Therefore, rigorously generalizing

black hole thermodynamics to dynamical spacetimes may give us more hints for a the-

ory of quantum gravity. I will achieve just such a rigorous generalisation in this chapter

though for uncharged non-rotating spacetimes.

The first law describes how energy, E, changes under perturbation for a thermodynamic

system at a given temperature and quantitatively defines this temperature. As such, it

is the fundamental law which determines if a system is thermodynamic. For stationary

uncharged non-rotating black holes, this law has the form [11]

δE = 1
8π κ δA+ volume terms. (3.1)

Here κ is the conventional surface gravity, A is the horizon area, and the volume terms

depend on the matter content. Equation 3.1 is analogous to the conventional first law of

thermodynamics, δE = T δS + volume terms, where in the analogy, the temperature is

T = κ/(2π) and the net entropy, S = A/4, is given by the area law. Hawking’s discovery

that stationary black holes radiate at a temperature κ/(2π) cemented this result as more

than mere analogy to thermodynamics [31].

Traditional approaches to proving the first law involve perturbations of a stationary

spacetime, typically following changes in the physical, globally defined energy [11, 36]. In

1973, Bardeen, Carter and Hawking proved that stationary black holes satisfy an analogue

to the first law of thermodynamics [11]. Their analysis was based on the assumption that

both the initial and perturbed spacetimes must be stationary [11]. Two decades later,

this result was rigorously extended to include arbitrary infinitesimal perturbations by

Iyer and Wald but still from initially stationary spacetimes [36]. Crucially, important

quantities such as surface gravity as defined in these approaches are only determined in
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the stationary case (corresponding to the initial spacetime). Since surface gravity plays

the role of temperature, these rigorous analyses are limited to thermal equilibrium and

cannot exhibit out-of-equilibrium behaviour that might be expected for astrophysical black

holes. Such approaches cannot probe dynamical surface gravities and the perturbations are

generally not considered to describe physical processes [61]. Nevertheless, this stationary

behavior has been used on an ad hoc basis to model dynamical scenarios by assuming an

evolution through a succession of equilibrium states [28].

Unlike the above approaches for obtaining a first law by considering energy perturba-

tions, Ashtekar et al. obtained a first law (and a zeroth law) of black hole thermodynamics

by studying the geometric structures of equilibrium horizons which they called (weakly)

isolated horizons [4–8]. The key idea of an isolated horizon is to be able to model the state

of a post-collapse black hole ‘after’ ring down. In particular, such a horizon is specifically

defined to be at equilibrium with its exterior and hence has a well-defined and provably

uniform surface gravity. Although such horizons satisfy an analogue to the first law of

black hole mechanics in terms of changes in the “individual horizon masses” [7], the equilib-

rium requirements limit the applicability of this method. Indeed, it was shown that even

the Brill-Lindquist initial conditions do not correspond to a scenario involving isolated

horizons, except as an approximation for large inter-black hole distance [39]. By contrast,

I will show that our method may be applied to interacting black holes (corresponding

exactly to the Brill-Lindquist initial conditions) at the end of this chapter.

Other approaches to obtaining a first law explicitly consider physical processes asso-

ciated with a local flux of energy across the horizon [27]. Such local-flux approaches do

reproduce the results for stationary black holes, but remain unproven in the dynamical

setting. A further difficulty with these approaches is that one cannot unambiguously define

energy locally in general relativity [40].

Despite this large body of work extending the first law, the dynamical case remains

an open problem: Different approaches lead to different definitions of dynamical surface

gravity [42]. Indeed, for over a decade it has been recognized that there is no consensus

for how to define a horizon’s dynamical surface gravity even for spherically symmetric

scenarios [42].

Here we return to first principles and the original perturbative approach [11] to derive

the first law of thermodynamics for dynamical spacetimes. Because we are now working

in a fully dynamical setting, our perturbatively connected pair of spacetimes implicitly
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includes scenarios where they correspond to ‘nearby’ time slices of a single evolving dy-

namical system. Thus, our approach allows for the description of physical processes while

still maintaining mathematical rigor.

The first step is to obtain an integral equation for the net energy in this dynamical

system. Then we must convert this into a description of how small “changes” in the net

energy may be accounted for via a differential version of energy balance. The changes here

actually refer to the differences between nearby solutions of the Einstein field equations

related by a small diffeomorphism of the initial configuration.

We focus specifically on generalizing the first law of black hole mechanics from a one-

black hole stationary spacetime to potentially multi-horizon dynamical spacetimes (where

there is no timelike Killing vector). Generalizing the integral version of the first law into a

multi-horizon spacetime is relatively straightforward. To construct a differential first law,

we study diffeomorphisms of this integral formulation. For simplicity we only consider

uncharged, non-rotating horizons. We suppose that the spacetime is asymptotically-flat

from Theorem 3.1 onwards.

3.2 Covariant energy expression for dynamical spacetimes

Since the first law studies how energy is transformed, we start with a rigorous formulation

of physical energy in dynamical spacetimes. For asymptotically-flat spacetimes this is

provided within the Hamiltonian formulation by the ADM mass [2]. Unfortunately, the

ADM mass is non-covariant in form and difficult to deal with. Our following analysis

shows, for a broad class of dynamical asymptotically-flat spacetimes, that the ADM mass

equals a convenient covariant expression.

3.2.1 Covariant conserved energy-momentum flux tensor

We start by reviewing Komar’s generalized energy formalism [38]. For an arbitrary vector

field ξµ, we define an energy-momentum flux tensor Sµν(ξ)

Sµν(ξ) ≡ 1
2(ξν;µ − ξµ;ν) ≡ ξ[ν;µ]. (3.2)

Like the anti-symmetric electromagnetic field tensor, this tensor has a corresponding ‘en-

ergy’ density flux vector Jµ(ξ) given by [38]

Jµ(ξ) = Sµν(ξ);ν = ξ[ν;µ]
;ν . (3.3)
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The covariant divergence of Jµ(ξ) vanishes since

Jµ;µ = ξ[ν;µ]
;νµ = 1

2(ξν;µ);νµ −
1
2(ξµ;ν);νµ

= 1
2(ξν;µ);νµ −

1
2(ξν;µ);µν

= −1
2R

ν
ανµξ

α;µ − 1
2R

µ
ανµξ

ν;α

= −1
2R

ν
ανµξ

α;µ + 1
2R

µ
αµνξ

ν;α

= 1
2Rανξ

ν;α − 1
2Rαµξ

α;µ

= 1
2Rαν(ξν;α − ξα;ν) = 0. (3.4)

Thus Jµ is a locally covariantly conserved quantity for arbitrary vector fields ξµ. Integrat-

ing Eq. (3.4) over a 4-volume, a subvolume, V ⊂M of the entire manifold, yields
∫
V
Jµ;µ
√
−g d4z = 0, (3.5)

and applying stokes’ theorem Eq. (1.23) we find
∫
∂V
Jµεn̂µ

√
γ(∂V) d3x =

∫
∂V
ξ[ν;µ]

;νεn̂µ

√
γ(∂V) d3x = 0, (3.6)

where ∂V is the boundary of V and n̂µ is the outward pointing unit vector normal to ∂V,

see Fig. 3.1, and γ(∂V) is the determinant of the induced metric on ∂V. This means that

the current flux into the 4-volume equals the current flux out. This is a local conservation

law for an arbitrary vector field in an arbitrary dynamical spacetime.

𝓥

∂𝓥

ො𝑛𝝻

ො𝑛𝝻

ො𝑛𝝻

Figure 3.1: This 4-volume V is a subset of the entire spacetime manifoldM. Here ∂V is

the boundary of V, and n̂µ is the outgoing unit vector normal to the boundary ∂V.

Next, consider a family of non-intersecting spacelike hypersurfaces with vanishing net

flux JµN̂µ out through spatial infinity (N̂µ is the spacelike unit vector normal to the
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Chapter 3: Thermodynamics of dynamical black holes

boundary at spatial infinity). Consider a volume V consisting of the region between a pair

of such hypersurfaces Σ1,Σ2 (see Fig. 3.2) then from Eq. (3.6) we find∫
Σ1
ξ[ν;µ]

;ν T̂µ

√
γ(Σ1) d3x =

∫
Σ2
ξ[ν;µ]

;ν T̂µ

√
γ(Σ2) d3x, (3.7)

where T̂µ is the future directed timelike unit normal to the hypersurfaces.

෠𝑇𝝻

෠𝑇𝝻

𝝨2

𝝨1

෡N𝝻𝝨∞

Figure 3.2: This 4-volume V is a region between two infinity large three dimensional

hypersurfaces Σ1,Σ2; and Σ1,Σ2 and spatial infinity Σ∞ together make up of its boundary.

Here T̂µ is the timelike unit normal vector pointing to the future, and N̂µ is the spacelike

outgoing unit vector normal to the spatial infinity.

Therefore, the integral of JµT̂µ is a conserved quantity independent of which of the

hypersurfaces is chosen and is the generalized Komar energy E(ξ) [36,38,43,63],

E(ξ) ≡ 1
4π

∫
Σ
ξ[ν;µ]

;ν T̂µ

√
γ(Σ) d3x, (3.8)

where here Σ only has a boundary at spatial infinity ∂Σ∞, see Fig 3.3.

Now applying stokes’ theorem for an anti-symmetric tensor on Σ, Eq. (1.24) to Eq. (3.8)

yields

E(ξ) ≡ 1
4π

∫
∂Σ∞

ξ[ν;µ]N̂ν T̂µ

√
γ(∂Σ∞) d2z . (3.9)

Note, E(ξ) reduces to the Komar mass when ξµ is the appropriately chosen Killing vector

for a stationary spacetime. We also require that the net outward flux JµN̂µ vanish at

spatial infinity to ensure that the integral of JµT̂µ is preserved on every hypersurface. We

prove below that this condition generally holds for the conventional spacelike hypersurfaces

on asymptotically-flat spacetime.

Next we review the asymptotically-flat conditions and, based on these conditions,

discuss the connection between the generalized Komar energy and ADM mass.

3.2.2 Conventional asymptotically-flat criteria

We first review the asymptotically-flat conditions used by York in the ADMmass definition

[71]. Based on the Euclidean distance in asymptotically rectilinear coordinates, the metric
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𝝨∞

𝝨2

𝝨1

null infinity

null 
radiation

v

event

Figure 3.3: The Penrose diagram shows that gravitational and light radiation created at

any finite epoch does not reach spatial infinity, Σ∞. Thus E(ξ) of Eq. (3.8) is conserved

independent of the presence or absence of null (e.g., gravitational) radiation produced at

any finite epoch.

and the extrinsic curvature of the hypersurface Σ at spatial infinity are assumed to take

the asymptotic form

gµν = ηµν +O
(1
r

)
, gij,k = O

( 1
r2

)
, gij,kl = O

( 1
r3

)
, (3.10)

Kij = O
( 1
r2

)
, Kij,k = O

( 1
r3

)
, . . . (3.11)

where we use asymptotically rectilinear coordinates with r2 = (x1)2 + (x2)2 + (x3)2 and

ηµν = diag(−1, 1, 1, 1), and the big-O notation f = O(r−n) implies that limr→∞ r
nf equals

some non-vanishing constant. Here Kij is the extrinsic curvature of Σ inM and as usual

Greek indices run from 0 to 3, and lower-case Latin indices run from 1 to 3.

Since

Kµν = −1
2LT̂γµν = −1

2γµν,αT̂
α − 1

2 T̂
α
,µγαν −

1
2 T̂

α
,νγµα,

and T̂µ = (1, 0, 0, 0) + O(1/r), the extrinsic curvature asymptotically-flat conditions of

Eq. (3.11) reduce to

gij,0 = O
( 1
r2

)
, g0i,j = O

( 1
r2

)
, gij,0k = O

( 1
r3

)
, g0i,jk = O

( 1
r3

)
, . . . . (3.12)

Therefore, only the asymptotically-flat conditions for g00,i, g0µ,0 and gµν,00 are not speci-

fied. Parallel with Eq. (3.10), it is conventional to assume g00,i = O(r−2), g0µ,0 = O(r−2)

and gµν,00 = O(r−3), largely by making an analogy between temporal and spatial deriva-
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tives, hence the asymptotically-flat conditions are usually summarized as

gµν = ηµν +O
(1
r

)
, gµν,α = O

( 1
r2

)
, gµν,λβ = O

( 1
r3

)
, . . . . (3.13)

This is an alternate form to those of York, Eqs. (3.10) and (3.11) [71] for the asymptotically-

flat conditions used by some authors [67]. Consequently, Γαµν satisfies

Γαµν = 1
2g

αρ(gµρ,ν + gνρ,µ − gµν,ρ) = O
( 1
r2

)
, (3.14)

and Rµν = O(r−3).

3.2.3 Covariant expression of ADM energy for dynamical spacetimes

Our covariant expression of ADM energy in dynamical spacetimes is based on some prior

results obtained by Ashtekar and Hansen, so we start by introducing a representation of

the ADMmass proved by them [9]. It is worth noting that Chruściel gave a straightforward

proof and statement of this result in his work [23,24].

The Ashtekar-Hansen ADMTheorem: For asymptotically matter free (Tµν = o(r−3))

spacetimes, the ADM 4-momentum vector pADM
µ may be written as [9, 23,24]

pADM
µ ξµ∞ ≡

1
8π

∫
∂Σ∞

ξµxνRµναβN̂
αT̂ βdA. (3.15)

Here the components of ξµ∞ are constant in the asymptotically rectilinear coordinate sys-

tem, ξµ = ξµ∞ + O(1/rn), for n > 0 (we will determine n below), dA =
√
γ(∂Σ∞) d2z, and

xν is an asymptotically rectilinear coordinate (and hence the expression Eq. (3.15) is not

covariant).

Note, the normalization used in Ref. [9] is different from that shown here since they

use a different area measure. Ashtekar and Hansen prove this in a context where they

are only interested in stationary spacetimes with a Killing vector, so it is perhaps unclear

how general Eq. (3.15) is supposed to be. We therefore give a detailed proof with clearly

stated assumptions. In particular, we will not assume the existence of any Killing vectors.

Proof:

It is sufficient for our purposes to use Eq. (3.15) for the ADM mass. Therefore we

limit our proof to pADM
0 , i.e., we take ξµ = (∂t)µ + O(r−n) throughout this proof. Note

that rather than directly saying that the ADM mass is labeled by a vector field at spatial
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infinity equaling (ξµ = ∂t), one may assume [9,23,24]

ξµ = ∂t +O
( 1
rn

)
, ξµ,ν = O

( 1
r1+n

)
, ξµ,νβ = O

( 1
r2+n

)
, . . . , (3.16)

for some n > 0 to be determined.

Lemma 3.1:

pADM
µ ξµ∞ = 3

8π
∫
∂Σ∞

δ
[β
λ δ

α
µδ

γ]
ν ξνηλρηµσgσγ,ρN̂αT̂βdA equals the ADM mass.

Proof:

pADM
µ ξµ∞ = 3

8π

∫
∂Σ∞

δ
[β
λ δ

α
µδ

γ]
ν ξ

νηλρηµσgσγ,ρN̂αT̂βdA

= −3
8π

∫
∂Σ∞

(
δ

[0
λ δ

i
µδ
j]
0 η

λρηµσgσj,ρN̂i +O( 1
r2+n )

)
dA

= −3
8π

∫
∂Σ∞

1
3
(
δ

[0
λ δ

i]
µδ

j
0 + δ

[i
λδ

j]
µ δ

0
0 + δ

[j
λ δ

0]
µ δ

i
0

)
ηλρηµσgσj,ρN̂idA

= 1
16π

∫
∂Σ∞

(
ηiσηjρ − ηiρηjσ

)
gσj,ρN̂idA

= 1
16π

∫
∂Σ∞

(
gij

,jN̂ i − gjj ,iN̂i

)
dA

= MADM, (3.17)

where in the first line we use ξµ = δµ0 +O(r−n) and T̂µ = (−N , 0, 0, 0).

This completes the proof of Lemma 3.1.

Since −3! δ[β
λ δ

α
µδ

γ]
ν = ετβαγετλµν [60], N̂[αT̂β]dA = dSαβ = 1

2εαβτ1τ2dx
τ1∧dxτ2 [9,23,24],

and gσγ,ρ = Γσγρ + Γγσρ, the new ADM mass expression pADM
µ ξµ∞ in Lemma 3.1 can then

be further simplified as

pADM
µ ξµ∞ = 3

8π

∫
∂Σ∞

−1
3! ε

τβαγετλµνξ
νηλρηµσgσγ,ρ

(1
2εαβτ1τ2dx

τ1 ∧ dxτ2
)

= 1
8π

∫
∂Σ∞

−1
4 ετλµνξ

νηλρηµσgσγ,ρ(ετβαγεαβτ1τ2)dxτ1 ∧ dxτ2

= 1
8π

∫
∂Σ∞

−1
4 ετλµνξ

νηλρηµσgσγ,ρ(2!2!)δτ[τ1
δγτ2]dx

τ1 ∧ dxτ2

= −1
8π

∫
∂Σ∞

ετλµνξ
νηλρησµgσγ,ρdx

τ ∧ dxγ

= −1
8π

∫
∂Σ∞

ετλµνξ
νηλρησµ(Γσγρ + Γγσρ)dxτ ∧ dxγ

= −1
8π

∫
∂Σ∞

ετλµνξ
νηλρΓµγρdxτ ∧ dxγ , (3.18)
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where Γγσρ in the fifth line vanishes because the symmetric indices σ and ρ are mapping

to an anti-symmetric tensor.

To further simplify Eq. (3.18), we first introduce some differential tricks we will use.

Since d
√
−g = 1

2
√
−g gδβgδβ,αdxα and ετλµν =

√
−g [τλµν], we have

dετλµν = 1
2ετλµνg

δβgδβ,αdx
α

= 1
2ετλµνg

δβ(Γδβα + Γβδα)dxα

= ετλµνΓββαdx
α. (3.19)

Using Leibnitz’s rule for the exterior derivative, Eq. (3.18) may be simplified as

pADM
µ ξµ∞ = −1

8π

∫
∂Σ∞

ετλµνξ
νηλρΓµγρdxτ ∧ dxγ

= −1
8π

∫
∂Σ∞

d(ετλµνξνηλρΓµγρxτdxγ)− xτd(ετλµνξνηλρΓµγρ) ∧ dxγ

= 1
8π

∫
∂Σ∞

xτd(ετλµνξνηλρΓµγρ) ∧ dxγ

= 1
8π

∫
∂Σ∞

xτηλρ
(
ξνΓµγρdετλµν ∧ dxγ + ετλµνΓµγρdξν ∧ dxγ

+ετλµνξνdΓµγρ ∧ dxγ
)

= 1
8π

∫
∂Σ∞

xτηλρ
(
ξνΓµγρετλµνΓββαdx

α ∧ dxγ + ετλµνΓµγρO( 1
r1+n )ναdxα ∧ dxγ

+ετλµνξνdΓµγρ ∧ dxγ
)

= 1
8π

∫
∂Σ∞

xτηλρετλµνξ
νΓµγρ,αdxα ∧ dxγ

= 1
8π

∫
∂Σ∞

xτgλρετλµνξ
νΓµρ[γ,α]dx

α ∧ dxγ +O
(1
r

)
, (3.20)

where stokes’ theorem and the fact that the boundary of a boundary is an empty set are

used in the second step, and Eq. (3.19) and the asymptotically-flat conditions are used in

the fifth step.

Then since Γµρ[γ,α] = −1
2R

µ
ργα + O( 1

r4 ) and dxα ∧ dxγ = −1
2ε
αγτ1τ2dSτ1τ2 , Eq. (3.20)

may be simplified as

pADM
µ ξµ∞ = 1

8π

∫
∂Σ∞

ετλµνx
τξνgλρ

(
−1

2R
µ
ργα +O( 1

r4 )
)
dxα ∧ dxγ

= 1
16π

∫
∂Σ∞

εµλντξ
νxτRµλαγdx

α ∧ dxγ

= 1
16π

∫
∂Σ∞

εµλντξ
νxτRµλαγ(−1

2ε
αγτ1τ2dSτ1τ2)

= −1
32π

∫
∂Σ∞

εµλντε
αγτ1τ2ξνxτRµλαγdSτ1τ2

= −1
32π

∫
∂Σ∞

(−4!δα[µδ
γ
λδ
τ1
ν δ

τ2
τ ] )ξ

νxτRµλαγdSτ1τ2 . (3.21)

50



3.2 Covariant energy expression for dynamical spacetimes

Next as δα[µδ
γ
λδ
τ1
ν δ

τ2
τ ] may be expanded as

δα[µδ
γ
λδ
τ1
ν δ

τ2
τ ] = 1

3!

(
δα[µδ

γ
λ]δ

τ1
[ν δ

τ2
τ ] − δ

α
[µδ

γ
ν]δ

τ1
[λ δ

τ2
τ ] + δα[µδ

γ
τ ]δ

τ1
[λ δ

τ2
ν]

+δα[λδ
γ
ν]δ

τ1
[µδ

τ2
τ ] + δα[λδ

γ
τ ]δ

τ1
[ν δ

τ2
µ] + δα[τδ

γ
ν]δ

τ1
[λ δ

τ2
µ]

)
= 1

3!

(
δ[α
µ δ

γ]
λ δ

[τ1
ν δτ2]

τ − δ[α
µ δ

γ]
ν δ

[τ1
λ δτ2]

τ + δ[α
µ δ

γ]
τ δ

[τ1
λ δτ2]

ν

+δ[α
λ δ

γ]
ν δ

[τ1
µ δτ2]

τ + δ
[α
λ δ

γ]
τ δ

[τ1
ν δτ2]

µ + δ[α
τ δ

γ]
ν δ

[τ1
λ δτ2]

µ

)
, (3.22)

Eq. (3.21) may be transformed into

1
8π

∫
∂Σ∞

3!(δα[µδ
γ
λδ
τ1
ν δ

τ2
τ ] )ξ

νxτRµλαγdSτ1τ2

= 1
8π

∫
∂Σ∞

(
δ[α
µ δ

γ]
λ δ

[τ1
ν δτ2]

τ − δ[α
µ δ

γ]
ν δ

[τ1
λ δτ2]

τ + δ[α
µ δ

γ]
τ δ

[τ1
λ δτ2]

ν

+δ[α
λ δ

γ]
ν δ

[τ1
µ δτ2]

τ + δ
[α
λ δ

γ]
τ δ

[τ1
ν δτ2]

µ + δ[α
τ δ

γ]
ν δ

[τ1
λ δτ2]

µ

)
ξνxτRµλαγdSτ1τ2

= 1
8π

∫
∂Σ∞

ξνxτ
(
RµλµλdSντ −RµλµνdSλτ +RµλµτdSλν +RµλλνdSµτ

+RµλλτdSνµ +RµλτνdSλµ

)
= 1

8π

∫
∂Σ∞

ξνxτ
(
RdSντ − 2RµνdSµτ + 2RµτdSµν +RµλτνdSλµ

)
= 1

8π

∫
∂Σ∞

ξνxτRµλτνdSλµ = 1
8π

∫
∂Σ∞

ξνxτRµλτνN̂λT̂µdA

= 1
8π

∫
∂Σ∞

ξµxνRµναβN̂
αT̂ βdA, (3.23)

where we use the asymptotically matter-free condition Tµν = o(r−3) in the fourth step

and dSλµ = N̂[λT̂µ]dA in the fifth step. Here the little-o notation f = o(r−n) implies that

limr→∞ r
nf = 0.

This completes the proof of the Ashtekar and Hansen ADM Theorem (for the case of

the ADM mass).

To continue our discussion, instead of directly using Ashtekar and Hansen’s ADM

formula, we prefer to use a more general formula for the ADM mass prior to assuming
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Tµν = o(r−3). From the sixth line of Eq. (3.23), we find

pADM
µ ξµ∞ = 1

8π

∫
∂Σ∞

ξνxτ
(
RN̂[ν T̂τ ] − 2RµνN̂[µT̂τ ] + 2Rµτ N̂[µT̂ν]

)
dA

+ 1
8π

∫
∂Σ∞

ξµxνRµναβN̂
αT̂ βdA

= 1
16π

∫
∂Σ∞

ξνxτ
(
−RT̂νN̂τ + 2Rµν T̂µN̂τ + 2Rµτ N̂µT̂ν

)
dA

+ 1
8π

∫
∂Σ∞

ξµxνRµναβN̂
αT̂ βdA

= 1
16π

∫
∂Σ∞

(
RN̂τx

τ + 2Rµν T̂µξνN̂τx
τ − 2Rµτ N̂µx̂τ

)
dA

+ 1
8π

∫
∂Σ∞

ξµxνRµναβN̂
αT̂ βdA, (3.24)

where in the first step we use ξµN̂µ = O(r−n) and xβT̂β = −t at spatial infinity with t

finite on the hypersurface.

Since the ADM mass is the accepted definition of physical energy as seen at spatial

infinity even in dynamical spacetimes, to continue our discussion with the generalized

Komar energy, we prove:

Theorem 3.1: For asymptotically-flat asymptotically matter-free spacetimes, the ADM

mass equals the generalized Komar energy [38]

E(ξ) = 1
4π

∫
∂Σ∞

ξ[µ;ν]N̂µT̂ν dA, (3.25)

on hypersurfaces labeled by fixed time t provided asymptotically (in rectilinear coordi-

nates): i) ξµ = ∂t + o(r−1), and ii) g0i,j0 = o(r−3) and gij,00 = o(r−3).

Proof:

In order to prove the ADM mass equals the generalized Komar energy, we first prove

three lemmas.

Lemma 3.2: ξµ;ν = ξ[µ;ν] + 1
2Lξ(gµν) for any vector field ξµ.

Proof:

Since

ξ(µ;ν) = 1
2(ξµ;ν + ξν;µ)

= 1
2gµν;τξ

τ + 1
2ξ

τ
;µgτν + 1

2ξ
τ

;νgµτ

= 1
2Lξgµν , (3.26)
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we can then simplify ξµ;ν as

ξµ;ν = ξ[µ;ν] + ξ(µ;ν) = ξ[µ;ν] + 1
2Lξgµν . (3.27)

This completes the proof of Lemma 3.2.

Lemma 3.3: Rµναβξµ = ξ[β;α];ν + 1
2(Lξgνα);β − 1

2(Lξgβν);α for any vector field ξµ.

Proof:

Since ξν;αβ − ξν;βα = Rµναβξ
µ [47], the right-hand-side (rhs) of Lemma 3.3 may be

simplified as

rhs = ξ[β;α];ν + ξ(ν;α);β − ξ(β;ν);α

= 1
2
(
ξβ;αν − ξα;βν + ξν;αβ + ξα;νβ − ξβ;να − ξν;βα

)
= 1

2(ξβ;αν − ξβ;να) + 1
2(ξν;αβ − ξν;βα) + 1

2(ξα;νβ − ξα;βν)

= 1
2
(
Rµβανξ

µ +Rµναβξ
µ +Rµανβξ

µ
)

= 1
2(Rµναβξµ −Rµνβαξµ)

= Rµναβξ
µ = lhs, (3.28)

where we have used Rµανβ +Rµνβα +Rµβαν = 0 [47] in the fourth line to obtain the fifth

line.

This completes the proof of Lemma 3.3.

Then by contracting ν and β, we have

ξ[ν;α]
;ν = Rµαξ

µ − 1
2(Lξgνα);ν + 1

2(Lξgβν);αg
νβ . (3.29)

Lemma 3.4: 2ξ[α;β] = −3(ξ[β;αxν]);ν + ξ[β;α]
;νx

ν + ξ[ν;β]
;νx

α + ξ[α;ν]
;νx

β for any vector

field ξµ and coordinates xµ.

Proof:

Recalling that the coordinates xµ are scalar functions on the manifold we have δβν =
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xβ ;ν and trivially 3ξ[β;αxν] = ξ[β;α]xν + ξ[α;ν]xβ + ξ[ν;β]xα, we may now write

ξ[α;β] = ξ[α;ν]δβν = ξ[α;ν]xβ ;ν = (ξ[α;ν]xβ);ν − ξ[α;ν]
;νx

β

= (3ξ[β;αxν] − ξ[β;α]xν − ξ[ν;β]xα);ν − ξ[α;ν]
;νx

β

= 3(ξ[β;αxν]);ν − ξ[β;α]
;νx

ν − ξ[β;α]xν ;ν − ξ[ν;β]
;νx

α − ξ[ν;β]xα;ν − ξ[α;ν]
;νx

β

= 3(ξ[β;αxν]);ν − ξ[β;α]
;νx

ν − 4ξ[β;α] − ξ[ν;β]
;νx

α − ξ[α;β] − ξ[α;ν]
;νx

β

= 3(ξ[β;αxν]);ν − ξ[β;α]
;νx

ν + 3ξ[α;β] − ξ[ν;β]
;νx

α − ξ[α;ν]
;νx

β , (3.30)

or equivalently,

2ξ[α;β] = −3(ξ[β;αxν]);ν + ξ[β;α]
;νx

ν + ξ[ν;β]
;νx

α + ξ[α;ν]
;νx

β , (3.31)

This completes the proof of Lemma 3.4.

Consequently:

ξ[β;α]
;νx

ν = 2ξ[α;β] + 3(ξ[β;αxν]);ν − ξ[ν;β]
;νx

α − ξ[α;ν]
;νx

β . (3.32)

Further, from Eq. (3.16), we have

Lξgµν = gµν,τξ
τ + ξτ ,µgτν + ξτ ,νgµτ

= gµν,0 + ξτ ,µgτν + ξτ ,νgµτ +O
( 1
r2+n

)
= gµν,0 +O

( 1
r1+n

)
. (3.33)

Consequently, we have (Lξgµν);β = gµν,0β +O(r−4) +O(r−2−n) and recall that n > 0 and

conventionally gµν,0β = O(r−3).
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3.2 Covariant energy expression for dynamical spacetimes

Applying Lemma 3.3 to the last term of Eq. (3.24) yields

1
8π

∫
∂Σ∞

ξµxνRµναβN̂
αT̂ βdA

= 1
8π

∫
∂Σ∞

ξ[β;α];νx
νN̂αT̂ βdA+ 1

16π

∫
∂Σ∞
xν((Lξgνα);β − (Lξgβν);α)N̂αT̂ βdA

= 1
8π

∫
∂Σ∞

(
2ξ[α;β] + 3(ξ[β;αxν]);ν − ξ[ν;β]

;νx
α − ξ[α;ν]

;νx
β
)
N̂αT̂βdA

+ 1
16π

∫
∂Σ∞
xν((Lξgνα);β − (Lξgβν);α)N̂αT̂ βdA

= E(ξ) + 1
8π

∫
∂Σ∞

(
−ξ[ν;β]

;νx
α − ξ[α;ν]

;νx
β
)
N̂αT̂βdA

+ 1
16π

∫
∂Σ∞
xν((Lξgνα);β − (Lξgβν);α)N̂αT̂ βdA

= E(ξ) + 1
16π

∫
∂Σ∞

(
2
(
Rµαξ

µN̂αT̂βx
β −RµβξµT̂ βN̂αx

α
)

+
(
(Lξgνβ);ν − (Lξgλν);βg

νλ
)
xαN̂αT̂

β

−
(
(Lξgνα);ν − (Lξgλν);αg

νλ
)
xβN̂αT̂β +

(
(Lξgνα);β − (Lξgβν);α

)
xνN̂αT̂ β

)
dA

= E(ξ) + 1
16π

∫
∂Σ∞

(
−2RµβξµT̂ βN̂αx

α +
(
(Lξgνβ);ν − (Lξgλν);βg

νλ
)
xαN̂αT̂

β

+
(
(Lξgνα);β − (Lξgβν);α

)
xνN̂αT̂ β

)
dA.

(3.34)

Here, in moving from the second to the third step of Eq. (3.34) we use Eq. (3.32). Next, the

second term in the third line of Eq. (3.34) vanishes because the boundary of a boundary

is empty, and we have also used Eq. (3.29) twice in the fifth line. Finally, we have applied

xβT̂β = −t + O(r−1) in the last step of Eq. (3.34) and hence the terms containing xβT̂β
vanish for any n > 0 and finite t.

Inserting Eq. (3.34) back into Eq. (3.24) and after cancellation of the Rµν term in
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Eq. (3.24) we find

pADM
µ ξµ∞

= E(ξ) + 1
16π

∫
∂Σ∞

(RN̂τx
τ − 2Rµτ N̂µxτ )dA

+ 1
16π

∫
∂Σ∞

((
(Lξgνβ);ν − (Lξgλν);βg

νλ
)
xαN̂αT̂

β +
(
(Lξgνα);β − (Lξgβν);α

)
xνN̂αT̂ β

)
dA

= E(ξ)− 1
8π

∫
∂Σ∞

(Rµτ −
1
2Rgµτ )N̂µxτdA

+ 1
16π

∫
∂Σ∞

((
(Lξgνβ);ν − (Lξgλν);βg

νλ
)
xαN̂αT̂

β +
(
(Lξgνα);β − (Lξgβν);α

)
xνN̂αT̂ β

)
dA

= E(ξ)−
∫
∂Σ∞

TijN̂
ixjdA

+ 1
16π

∫
∂Σ∞

((
(Lξgνβ);ν − (Lξgλν);βg

νλ
)
xαN̂αT̂

β +
(
(Lξgνα);β − (Lξgβν);α

)
xνN̂αT̂ β

)
dA

= E(ξ)

+ 1
16π

∫
∂Σ∞

((
(Lξgνβ);ν − (Lξgλν);βg

νλ
)
xαN̂αT̂

β +
(
(Lξgνα);β − (Lξgβν);α

)
xνN̂αT̂ β

)
dA,

(3.35)

where in the last step we assume Tij = o(r−3) which is weaker than Ashtekar and Hansen’s

assumption Tµν = o(r−3). (As an aside, we note that trivially pADM
µ ξµ∞ = E(ξ) when ξ

is a timelike Killing vector, due to the known equality between the ADM and Komar

masses [12]. .)

Since dA ∼ O(r2) and xi ∼ O(r) at infinity, we have xidA ∼ O(r3). Applying

the asymptotically-flat conditions Eqs.(3.13-3.14) and Eq. (3.33) to the final integral in

Eq. (3.35) then yields

1
16π

∫
∂Σ∞

((
(Lξgνβ),ν − (Lξgλν),βgνλ

)
xαN̂αT̂

β +
(
(Lξgνα),β − (Lξgβν),α

)
xνN̂αT̂ β

+O
( 1
r4

)
+O

( 1
r2+n

))
dA

= 1
16π

∫
∂Σ∞

((
gνβ,0

,ν + ξτ,ν ,νgτβ + ξτ ,βτ − gλν,0βgνλ − ξτ ,τβ − ξτ ,τβ +O
( 1
r3+n

))
T̂ βxαN̂α

+
(
gνα,0β + ξτ ,νβgατ + ξτ ,αβgντ − gβν,0α − ξτ ,βαgντ − ξτ ,ναgβτ +O

( 1
r3+n

))
xνN̂αT̂ β

)
dA

= 1
16π

∫
∂Σ∞

((
gνβ,0

,ν − gλν,0βgνλ
)
T̂ βxαN̂α +

(
gνα,0β − gβν,0α

)
xνN̂αT̂ β +O

( 1
r1+n

))
dA

= 1
16π

∫
∂Σ∞

(
(gν0,0λ − gλν,00)gνλxαN̂α + (gij,00 − g0i,0j)xiN̂ j +O

( 1
r1+n

))
dA

= 1
16π

∫
∂Σ∞

(
(gi0,0j − gij,00)ηijxαN̂α + (gij,00 − g0i,0j)xiN̂ j +O

( 1
r1+n

))
dA

= 1
16π

∫
∂Σ∞

(
(gi0,0j − gij,00)(ηijxαN̂α − xiN̂ j) +O

( 1
r1+n

))
dA, (3.36)
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3.2 Covariant energy expression for dynamical spacetimes

Note, since T̂µN̂µ = 0 and from Eq. (1.8), we have N̂µ = (0, N̂ i) at spatial infinity.

To ensure that Eq. (3.36) vanishes and hence the generalized Komar energy equals

the ADM mass, we require n > 1 and the stronger asymptotically-flat conditions gij,00 =

o(r−3) and g0j,i0 = o(r−3) (condition ii of the theorem).

This completes the proof of Theorem 3.1.

3.2.4 Conservation of generalized Komar energy

In fulfilment of a promise made after Eq. (3.9), I now prove that the net flux of JµN̂µ

vanishes at spatial infinity under the traditional asymptotically-flat conditions. Therefore

such conditions ensure that JµT̂µ is preserved on every hypersurface and that the gener-

alized Komar energy is preserved on every spacelike hypersurface labeled by a finite t (see

Fig. 3.2). Indeed, using Eq. (3.29) and the conventional asymptotically-flat conditions

Eqs. (3.13) and (3.14) the net flux JµN̂µ out through spatial infinity may be written as∫
dt

∫
∂Σ∞

JµN̂µ

√
γ(∂Σ∞)d2z =

∫
dt

∫
∂Σ∞

ξ[ν;µ]
;νN̂µdA

=
∫
dt

∫
∂Σ∞

(
Rαµξ

α + 1
2(Lξgνλ);µg

λν − 1
2(Lξgµλ);λ

)
N̂µdA

=
∫
dt

1
2

∫
∂Σ∞

O
( 1
r3

)
dA = 0, (3.37)

between any pair of hypersurfaces Σ2 and Σ1 separated by a finite ∆t.

3.2.5 Discussion about Theorem 3.1

We emphasize that the vector field ξ has enormous freedom: it is arbitrary on the hy-

persurface except asymptotically at spatial infinity. In particular, there is no requirement

that ξ be a Killing vector. In fact, other than for illustrative examples, none of the results

in this chapter rely on any Killing vectors.

The little-o notation f = o(r−n) implies that limr→∞ r
nf = 0, so condition ii places

a bound on temporal derivatives in the metric at spatial infinity. Indeed, this condition

only modestly strengthens the conventional characterization of asymptotic flatness where

instead it is generically assumed that gµν,αβ = O(r−3), though this latter behavior of the

temporal derivatives of the metric is partly based on an analogy with that of the spatial

derivatives for stationary spacetimes [71].

When ξ = ∂t happens to be a timelike Killing vector E(ξ) recovers the conventional

Komar mass and for such stationary spacetimes the Komar and ADM mass are known
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to be equal [12]. Indeed, many textbooks only consider the Komar mass to be a satisfac-

tory notion of mass for stationary asymptotically-flat spacetimes (e.g., Ref. [60]). Thus,

Theorem 3.1 significantly generalizes the simple covariant form for physical energy from

stationary to dynamical (Killing vector free) spacetimes. Hence, under the conditions of

Theorem 3.1, we may freely exchange the notions of ADM mass and generalized Komar

energy.

3.3 Differential “first law” for dynamical spacetimes

3.3.1 Integral expression for net generalized energy

Let us now see how far we can replicate Bardeen at el.’s analysis of the first law of black hole

mechanics in terms of our covariant expression for physical energy in an asymptotically-

flat dynamical spacetime instead of merely for a stationary spacetime as originally studied.

Some of the arguments will bare initial similarities to those of Chapter 2, where a stationary

spacetime is required.





N̂

𝜕Σinner
N̂

1

2

𝑛

…

Figure 3.4: Schematic of the spacelike three-dimensional hypersurface of interest, Σ. There

is an outer boundary ∂Σ∞ at spatial infinity and an inner boundary ∂Σinner, consisting of

the sum of n individual boundaries of regions which are excised from Σ. Here N̂µ is the

spacelike 4-vector in Σ normal to the boundaries ∂Σ (note the direction convention on the

inner boundary).

Consider a manifold with multiple regions whose interiors are excised from the hyper-

surface Σ (see Fig. 3.4). Recall that permuting the order of a pair of covariant derivatives
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3.3 Differential “first law” for dynamical spacetimes

acting on an arbitrary 4-vector ξµ may be expressed in terms of the Riemann curvature

tensor as [47]

ξµ;αβ − ξµ;βα = −Rµναβξν . (3.38)

Contracting the indices µ and α reduces this to an expression in terms of the Ricci tensor

ξµ;µβ − ξµ;βµ = −Rνβξν . (3.39)

Consequently, for an arbitrary ξµ, we may write

Jβ(ξ) = ξ[µ;β]
;µ = Rµβξ

µ + ξµ;µβ − ξ(µ;β)
;µ. (3.40)

Integrating Eq. (3.40) over a three-dimensional spacelike hypersurface Σ whose outer

boundary is at spatial infinity ∂Σ∞ and inner boundary at ∂Σinner, yields∫
Σ

(Rµβξµ + ξµ;µβ − ξ(µ;β)
;µ)T̂ β

√
γ(Σ) d3x

=
∫

Σ
ξ[µ;β]

;µT̂ β
√
γ(Σ) d3x

=
∫
∂Σ∞

ξ[µ;β]N̂
µT̂ β

√
γ(∂Σ∞) d2z −

∫
∂Σinner

ξ[µ;β]N̂
µT̂ β

√
γ(∂Σinner) d2z

= 4πE(ξ)−
∫
∂Σinner

ξ[µ;β]N̂
µT̂ β

√
γ(∂Σinner) d2z ,

(3.41)

where we have used Theorem 3.1 in the last step. Therefore, we have

E(ξ) = 1
4π

∫
Σ

(Rµβξµ + ξµ;µβ − ξ(µ;β)
;µ)T̂ β

√
γ(Σ) d3x+ 1

4π

∫
∂Σinner

ξ[µ;β]N̂
µT̂ βdA ,

(3.42)

where dA =
√
γ(∂Σinner) d2z. Next, we define the integrand of the boundary terms in

Eq. (3.42) to be a generalized surface gravity

κ(ξ) ≡ ξ[µ;β]N̂
µT̂ β. (3.43)

This definition reduces to the traditional surface gravity definition Eq. (2.7) when ξµ is a

suitable Killing vector. Then Eq. (3.42) becomes

E(ξ) = 1
4π

∫
∂Σinner

κ(ξ)dA+ 1
4π

∫
Σ

(Rµβξµ + ξµ;µβ − ξ(µ;β)
;µ)T̂ β

√
γ(Σ) d3x. (3.44)

Recall that Theorem 3.1 relates the ADM mass to this generalized Komar energy E(ξ),

provided that ξ is suitably constrained at spatial infinity; otherwise this vector field ξ
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Chapter 3: Thermodynamics of dynamical black holes

is arbitrary. Bardeen, Carter and Hawking find a similar expression except there ξ is

required to be a Killing vector [11].

We emphasize that, at this stage, Eq. (3.44) is very general. The inner boundaries are

arbitrary closed surfaces in dynamical spacetimes and ξ remains an arbitrary vector field

(subject to the conditions of Theorem 3.1). As one changes ξ (subject to its asymptotic

constraint), the generalized surface gravity κ(ξ) will also change, only the sum of the

terms on the right-hand-side of Eq. (3.44) have any physical meaning at this point. Next,

I investigate changes in the physical energy δE(ξ) in order to seek an expression which

will be analogous to the first law of thermodynamics. I will prove that, for a suitable

choice of ξ, an inner boundary with special properties will allow changes in the energy to

mimic the first law of thermodynamics. The choice of ξ will then be further authenticated

by showing its generalized surface gravity κ(ξ) agrees with a calculation of the tunneling

temperature [45,66].

3.3.2 Energy changes under diffeomorphic perturbations

The above generalization, in a generic spacetime, for net energy within a hypersurface

might appear to suggest that a temperature and entropy may take the form

T = κ(ξ)
(2π) , S = A

4 . (3.45)

However, such surface quantities need to behave thermodynamically. As in our discussion

in Chapter 2, the net energy E(ξ) should admit changes which behave analogously to

δE(ξ) = TδS, (3.46)

(ignoring work or volume terms) so that the temperature would be acting as an integrating

factor relating changes in the (state function) energy to changes in the entropy. In other

words, we must show that such changes lead to the expected form of the first-law of

thermodynamics. Here we follow in the footsteps of Bardeen et al.’s original analysis and

consider changes corresponding to parametric differences between diffeomorphicly nearby

solutions. In particular, we will consider two nearby configurations corresponding to the

metrics

gµν , g′µν = gµν + hµν , (3.47)

where hµν ≡ δgµν = −gµσgντδgστ , i.e., δgστ = −hστ .

As in Chapter 2 and without loss of generality, we may assume that for the two dif-

feomorphicly related configurations, the hypersurfaces Σ and Σ′ are described by identical
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3.3 Differential “first law” for dynamical spacetimes

sets of coordinates; this is always possible due to “gauge” freedom in the choice of coor-

dinate systems [11]. Henceforth we label both by Σ; similarly, for their boundaries ∂Σ.

Further, from Eq. (1.8) we also have

δ
( T̂µ
N

)
= 0 . (3.48)

Using the Einstein field equations we start by rewriting Eq. (3.44) as

E(ξ) =∫
Σ

2TµβξµT̂ β
√
γ(Σ)d3x (3.49a)

+
∫

Σ
( 1
8πR gµβ)ξµT̂ β

√
γ(Σ)d3x (3.49b)

+ 1
4π

∫
Σ

(ξµ;µβ − ξ(µ;β)
;µ)T̂ β

√
γ(Σ)d3x (3.49c)

+ 1
4π

∫
∂Σinner

κ(ξ) dA . (3.49d)

We will successively investigate diffeomorphisms of each of the subterms Eq. (3.49a)

through Eq. (3.49d).

Since N
√
γ(Σ) =

√
−g on the hypersurface and δ( T̂µN ) = 0, the variation of the energy-

momentum term Eq. (3.49a) may be computed as∫
Σ
δ
(
2TµβξµT̂ β

√
γ(Σ)

)
d3x =

∫
Σ
δ
(
2 ξµ T̂β

N
Tµ

βN
√
γ(Σ)

)
d3x

=
∫

Σ

((
2
√
−g δTµβ + 2Tµβδ

√
−g
)
ξµ
T̂β
N

+ 2TµβT̂β δξµ
√
γ(Σ)

)
d3x

=
∫

Σ

((
2
√
−g δTµβ + 2Tµβ(1

2
√
−g gλνδgλν)

)
ξµ
T̂β
N

+ 2TµβT̂β δξµ
√
γ(Σ)

)
d3x

=
∫

Σ

((
2 δTµβ + Tµ

βhν
ν
)
ξµ + 2Tµβ δξµ

)
T̂β

√
γ(Σ) d3x (3.50)

where we have used δ
√
−g = 1

2
√
−g gµνδgµν in the second line.

Next, we consider the variation of the Ricci scalar term Eq. (3.49b)

1
8π

∫
Σ
δ(R

√
γ(Σ) ξβ T̂β) d3x = 1

8π

∫
Σ
δ
(
RN

√
γ(Σ) ξβ

T̂β
N

)
d3x

= 1
8π

∫
Σ

(
δ(R
√
−g) ξβ T̂β

N
+R T̂βδξ

β
√
γ(Σ)

)
d3x

= − 1
8π

∫
Σ

(
(Rµν −

1
2gµνR)hµν − (gµνδΓαµν − gµαδΓλλµ);α

)
ξβT̂β

√
γ(Σ) d3x

+ 1
8π

∫
Σ
R T̂βδξ

β
√
γ(Σ) d3x (3.51)

where in the last step we use Eq. (2.39).
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Now recalling Lemma 2.1 in Chapter 2 −(gµνδΓαµν − gµαδΓλλµ);α = 2hµ[µ;ν]
;ν . Since

no Killing vector is involved in this result, it is generally true and can be directly applied

to Eq. (3.51). Using Lemma 2.1, the variation of the Ricci scalar term Eq. (3.49b) becomes

− 1
8π

∫
Σ

(
(Rµν −

1
2gµνR)hµν + 2hµ[µ;ν]

;ν
)
ξβ T̂β

√
γ(Σ) d3x+ 1

8π

∫
Σ
R T̂βδξ

β
√
γ(Σ) d3x .

(3.52)

Lemma 2.2 in Chapter 2 is also a general result, applying it to Eq. (3.52), the variation

of Eq. (3.49b) reduces to

−
∫

Σ
Tµνh

µν ξβ T̂β

√
γ(Σ) d3x− 1

4π

∫
Σ

(ξβhµ[µ;ν] − ξνhµ[µ;β]);ν T̂β

√
γ(Σ) d3x

− 1
4π

∫
Σ

(
Lξ(hµ[µ;β]) + hµ

[µ;β]ξν ;ν

)
T̂β

√
γ(Σ) d3x+ 1

8π

∫
Σ
R T̂βδξ

β
√
γ(Σ) d3x .

(3.53)

Then applying stokes’ theorem Eq. (1.24) to Eq. (3.53) yields∫
Σ

(
Rδξβ − Tµνhµνξβ

)
T̂β

√
γ(Σ) d3x − 1

4π

∫
∂Σ

(
ξβhµ

[µ;ν] − ξνhµ[µ;β])N̂ν T̂β

√
γ(∂Σ) d2z

− 1
4π

∫
Σ

(
Lξ(hµ[µ;β]) + hµ

[µ;β]ξν ;ν

)
T̂β

√
γ(Σ) d3x .

(3.54)

Splitting the boundary into the inner boundary and the outer boundary and replacing√
γ(∂Σ) d2z by dA, Eq. (3.54) becomes

1
4π

∫
∂Σinner

(
ξβhµ

[µ;ν] − ξνhµ[µ;β])N̂ν T̂βdA−
1

4π

∫
∂Σ∞

(
ξβhµ

[µ;ν] − ξνhµ[µ;β])N̂ν T̂βdA

+
∫

Σ

(
Rδξβ − Tµνhµνξβ

)
T̂β

√
γ(Σ) d3x− 1

4π

∫
Σ

(
Lξ(hµ[µ;β]) + hµ

[µ;β]ξν ;ν

)
T̂β

√
γ(Σ) d3x .

(3.55)

Note, the direction convention of N̂µ on the inner boundaries and outer boundary (see

Fig 3.4).

In order to further simplify these terms we next consider the diffeomorphic changes in

more detail.

3.3.3 Diffeomorphic conditions

Bardeen et al.’s surface gravity measures the acceleration of a freely falling particle with

respect to the time at spatial infinity (or the coordinate time) [11]. We choose ξµ as N T̂µ
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3.3 Differential “first law” for dynamical spacetimes

(including their first derivatives) at the inner boundary, so our surface gravity has the

same physical meaning and agrees with their surface gravity definition for non-dynamical

spacetimes [11]. Since we are only interested in the non-rotating case, to ensure that the

mass definition E(ξ) has the same meaning before and after the diffeomorphic variation

we impose the constraint δξµ = 0.

Recall that by “gauge” freedom the sets of coordinates of Σ and ∂Σ are chosen to be

unchanged by the diffeomorphism. As a consequence the relevant tangent spaces at any

coordinate point will be unchanged under the diffeomorphism [11]. Thus, as T̂µdxµ = 0

for all tangent vectors dxµ at any point in Σ, we must have δT̂µ ‖ T̂µ, or equivalently

δT̂[µT̂ν] = 0, so

δT̂µ = δ(lnN ) T̂µ ≡ k1T̂µ. (3.56)

Since ξµ = N T̂µ and δξµ = 0 on the inner boundary, δT̂µ may be simplified there as

δT̂µ = −δN
N 2 ξ

µ = −δ(lnN )T̂µ = −k1T̂
µ, (3.57)

which also ensures δ(T̂µT̂µ) = 0.

Similarly, since N̂µdx
µ = 0 for all tangent vectors dxµ in ∂Σ at any point in ∂Σ,

combined with T̂µN̂µ = 0, we find δN̂µ ‖ N̂µ, and so must have

δN̂µ = k2N̂µ. (3.58)

We now extend our use of the “gauge” freedom to extend this equality of coordinates

for our nearby solutions slightly away from the inner boundary ∂Σinner, though still within

the hypersurface Σ. Indeed, Bardeen et al. [11] used such freedom on the (future) null

horizon for stationary black holes. Here, we make an analogous construction for the

outgoing spacelike tangent vectors along N̂µ from each point on the boundary ∂Σinner. In

particular, for an infinitesimal ‘distance’ along the tangent vectors dxµ ∝ N̂µ from the

inner boundary, we use gauge freedom to ensure that these vectors satisfy δ(dxµ) = 0.

In other words, gauge freedom allows us to choose the covariant vectors N̂µ normal to

the inner boundary ∂Σinner to remain parallel to themselves under the diffeomorphism.

Consequently

δN̂µ = −k2N̂
µ, (3.59)

a condition similar to that given by Bardeen et al. [11]. Combining Eqs.(3.58) and (3.59)

we find

δN̂µ = −gµν δN̂ν , (3.60)
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at the inner boundary ∂Σinner.

Next, we introduce a full tetrad basis which we will use at the inner boundary ∂Σinner.

Along with the unit normals T̂µ and N̂µ to ∂Σinner we add two orthogonal unit spacelike

tangent vectors fully within ∂Σinner labeled as Ûµ and V̂ µ. The ‘projector’ onto ∂Σinner is

thus given by

Pµν ≡ (Û ⊗ Û + V̂ ⊗ V̂ )µν = ÛµÛν + V̂ µV̂ ν . (3.61)

Hence

gµν = −T̂µT̂ ν + N̂µN̂ν + Pµν . (3.62)

Further, since the 2-dimensional spacelike tangent space at each point in ∂Σinner is pre-

served under the diffeomorphism (as already noted), we may immediately write

δÛµ = k3Û
µ + k4V̂

µ, δV̂ µ = k5Û
µ + k6V̂

µ. (3.63)

Up until now, we have only used the “gauge” freedom to make the inner boundaries

∂Σinner and hypersurface Σ have identical coordinates for these nearby solutions. In this

way, the diffeomorphism effectively “commutes” through the integral sign in our calculation

of changes in the total energy.

Next, the direction of the covariant vector Ûµ is uniquely determined by

ÛµT̂
µ = ÛµN̂

µ = ÛµV̂
µ = 0. (3.64)

However, as T̂µ and N̂µ are parallel to their diffeomorphism we may also write

ÛµδT̂
µ = ÛµδN̂

µ = 0 (3.65)

From which it then follows that

δÛµ T̂
µ = δÛµ N̂

µ = 0. (3.66)

Since a similar constraint applies to δV̂µ we see that both δÛµ and δV̂µ remain in the

span{Ûµ, V̂µ}. Then by considering δ(ÛµÛµ) = 0, δ(ÛµV̂ µ) = 0, δ(V̂µV̂ µ) = 0 and

δ(V̂µÛµ) = 0, one may write

δÛµ = −k3Ûµ − k5V̂µ, δV̂µ = −k4Ûµ − k6V̂µ. (3.67)

Hence, δPµν may be explicitly computed to be

δPµν = 2k3 Û
µÛν + 2k6 V̂

µV̂ ν(k4 + k5)(ÛµV̂ ν + Ûν V̂ µ)

= (k3 + k6)(ÛµÛν + V̂ µV̂ ν) + (k3 − k6)(ÛµÛν − V̂ µV̂ ν)

+(k4 + k5)(ÛµV̂ ν + Ûν V̂ µ)

= (k3 + k6)Pµν+(k3 − k6)(ÛµÛν−V̂ µV̂ ν)+(k4 + k5)(ÛµV̂ ν+Ûν V̂ µ), (3.68)
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Similarly,

δPµν = −2k3 ÛµÛν − 2k6 V̂µV̂ν − (k4 + k5)(ÛµV̂ν + Ûν V̂µ)

= −(k3 + k6)Pµν − (k3 − k6)(ÛµÛν − V̂µV̂ν)− (k4 + k5)(ÛµV̂ν + Ûν V̂µ). (3.69)

So the key diffeomorphic conditions become

δT̂µ = −k1T̂
µ, δT̂µ = k1T̂µ

δN̂µ = −k2N̂
µ, δN̂µ = k2N̂µ

δPµν = Eq.(3.68), δPµν = Eq.(3.69) (3.70)

with k1 = δ(lnN ).

3.3.3.1 Reduction to the first law

We firstly simplify the inner boundary term of Eq. (3.55).

From Eqs. (3.27) and (3.43), the surface gravity may be written as

κ ≡ ξ[µ;ν]T̂
νN̂µ = ξµ;ν T̂

νN̂µ − 1
2Lξgµν T̂

νN̂µ.

(3.71)

Given the outgoing null normal of the inner boundary (see Fig. 3.4) lµ = T̂µ + N̂µ and

extending N̂µ as a vector field inside Σ away from ∂Σ, consistent with T̂µN̂
µ = 0 and

N̂µN̂µ = 1. The expansion of outgoing null normal congruences on the inner boundary

may be written as

θ(l) = Pµν lµ;ν = Pµν(T̂µ + N̂µ);ν

= Pµν T̂µ;ν + (gµν + T̂µT̂ ν − N̂µN̂ν)N̂µ;ν

= Pµν T̂µ;ν + N̂µ
;µ + N̂µ;ν T̂

µT̂ ν

= 1√
−g

(
√
−gN̂µ),µ + Pµν T̂µ;ν + N̂µ;ν T̂

µT̂ ν

(3.72)

where we have used Eq. (3.62) in moving from the first to the second line.
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From Eq. (3.72), the variation of θ(l) may be simplified as

δθ(l) = δ( 1√
−g

)(
√
−gN̂µ),µ + 1√

−g
(δ
√
−gN̂µ),µ + 1√

−g
(
√
−gδN̂µ),µ

+δ(Pµν T̂µ;ν) + δ(N̂µ;ν T̂
µT̂ ν)

= −1
2g

τνδgτν
1√
−g

(
√
−gN̂µ),µ + 1√

−g
(1
2
√
−g gτνδgτνN̂µ),µ + (δN̂µ);µ

+δ(Pµν T̂µ;ν) + δ
(
(N̂µT̂

µ);ν T̂
ν − T̂µ;νN̂

µT̂ ν
)

= −1
2hν

ν 1√
−g

(
√
−gN̂µ),µ + 1

2hν
ν 1√
−g

(
√
−gN̂µ),µ + 1

2(hνν),µN̂µ + (δN̂µ);µ

+δ(Pµν T̂µ;ν)− δ(ξµ;νN̂
µT̂ ν

1
N

)

= 1
2(hνν),µN̂µ + (δN̂µ);µ + δ(Pµν T̂µ;ν)− δ

( κ
N

+ 1
2N Lξgµν T̂

νN̂µ
)
, (3.73)

where we have used δ
√
−g = 1

2
√
−g gµνδgµν in the first step, gτνδgτν = hν

ν in the second

step, and Eq. (3.71) in the third step. Or equivalently,

−1
2hν

ν;µN̂µ = (δN̂µ);µ + δ(Pµν T̂µ;ν)− δ
( κ
N

+ 1
2N Lξgµν T̂

νN̂µ
)
− δθ(l)

= (δN̂µ);µ + δ
( 1

2N PµνLξgµν
)
− δκ

N
+ k1κ

N
− δ

( 1
2N Lξgµν T̂

νN̂µ
)
− δθ(l),

(3.74)

where we have used T̂µ = ξµ/N and k1 = δlnN .

The other terms in the inner boundary integral in Eq. (3.55) involve hµν;µN̂ν , which

may be simplified as

1
2hµ

ν;µN̂ν = 1
2(hµνN̂ν);µ − 1

2hµ
νN̂ ;µ

ν = 1
2(hµνN̂ν);µ − 1

2h
µνN̂ν;µ

= 1
2(δgµνN̂ν);µ + 1

2δg
µνN̂µ;ν

= 1
2
(
δ(gµνN̂ν)− gµνδN̂ν);µ + 1

2δ(−T̂
µT̂ ν + N̂µN̂ν + Pµν)N̂µ;ν

= −(δN̂µ);µ + k1N̂µ;ν T̂
µT̂ ν + 1

2δP
µνN̂µ;ν

= −(δN̂µ);µ + k1
(
(N̂µT̂

µ);ν T̂
ν − T̂µ;νN̂

µT̂ ν
)

+ 1
2δP

µνN̂µ;ν

= −(δN̂µ);µ − k1
(
ξµ;νN̂

µT̂ ν
1
N

)
+ 1

2δP
µνN̂µ;ν

= −(δN̂µ);µ −
k1κ

N
− k1

2N Lξgµν T̂
νN̂µ + 1

2δP
µνN̂µ;ν . (3.75)

where we used Eq. (3.60) in the third line and Eq. (3.71) in the last step.

Using ξνN̂ν = N T̂ νN̂ν = 0 on ∂Σinner and Eqs. (3.74) and (3.75) the first integral of
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Eq. (3.55) may now be simplified as

1
4π

∫
∂Σinner

(
ξβhµ

[µ;ν] − ξνhµ[µ;β])N̂ν T̂βdA = 1
4π

∫
∂Σinner
−hµ[µ;ν]N̂νNdA

= 1
4π

∫
∂Σinner

1
2
(
hµ

ν;µ − hµµ;ν
)
N̂νNdA

= 1
4π

∫
∂Σinner

[
−δκ+

(
δ
( 1

2N PµνLξgµν
)
− δ

( 1
2N Lξgµν T̂

νN̂µ
)
− δθ(l)

− k1
2N LξgµνN̂

µT̂ ν + 1
2δP

µνN̂µ;ν

)
N
]
dA.

(3.76)

Next, we define the shears of lµ as [33]

σ
(l)
+ = (ÛµÛν − V̂ µV̂ ν)lµ;ν , σ

(l)
× = (ÛµV̂ ν + Ûν V̂ µ)lµ;ν . (3.77)

Thus we have for the final term in Eq. (3.76)

1
2δP

µνN̂µ;ν = 1
2δP

µν(N̂µ + T̂µ);ν −
1
2δP

µν( 1
N
ξµ);ν = 1

2δP
µν lµ;ν −

1
2N δPµνξµ;ν

= 1
2
(
(k3 + k6)Pµν + (k3 − k6)(ÛµÛν − V̂ µV̂ ν)

+(k4 + k5)(ÛµV̂ ν + Ûν V̂ µ)
)
lµ;ν −

1
4N δPµνLξgµν

= 1
2(k3 + k6)θ(l) + 1

2(k3 − k6)σ(l)
+ + 1

2(k4 + k5)σ(l)
× −

1
4N δPµνLξgµν .

(3.78)

We need both the generalized Komar mass and the regular ADM mass definitions to

simplify the boundary term at infinity of Eq. (3.55) [60]. With the asymptotically-flat

conditions discussed above, the boundary term at infinity of Eq. (3.55) may be simplified

as

1
8π

∫
∂Σ∞

(hµµ;ν − hµν;µ)N̂ν NdA = 1
8π

∫
∂Σ∞

(hµα;νg
µα − hνα;µg

µα)N̂ν NdA

= 1
8π

∫
∂Σ∞

(
hµα,ν − Γλµνhλα − Γλανhµλ − hνα,µ + Γλµνhλα + Γλαµhνλ

)
gµαN̂νNdA

= 1
8π

∫
∂Σ∞

(
hµα,ν − hνα,µ +O

( 1
r3

))
gµαN̂νNdA

= 1
8π

∫
∂Σ∞

[(
hµα,ν − hνα,µ

)
ηµαN̂ν +O

( 1
r3

)]
dA

= 1
8π

∫
∂Σ∞

(
hµα,ν − hνα,µ

)
ηµαN̂νdA+O

(1
r

)∣∣∣
∂Σ∞

. (3.79)

where we have applied hµν ' O(1/r) and Γλµνhλα ' O(1/r3) to the second line and used

dA ' O(r2) in the last step.
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Next, we discuss the variation of the area element at infinity dA =
√
γ(∂Σ∞) d2z =

O(r2). Since γ(∂Σ∞) = | ∂xµ
∂zA

∂xν

∂zB
gµν | = | ∂xµ

∂zA
∂xν

∂zB
gµν | and δ|g| = |g| gµνδgµν [47], δ(dA) at

spatial infinity may be simplified as

δ(dA) = δγ(∂Σ∞)

2
√
γ(∂Σ∞)

d2z = O
( 1
r2

)
δ
∣∣∣∂xµ
∂zA

∂xν

∂zB
gµν
∣∣∣

= O
( 1
r2

)∣∣∣∂xµ
∂zA

∂xν

∂zB
gµν
∣∣∣ (∂zA
∂xµ

∂zB

∂xν
gµν

)(∂xµ
∂zC

∂xν

∂zD
δgµν

)
= O

( 1
r2

)
O(r4)

(∂zA
∂xµ

∂zB

∂xν
gµν

)(∂xµ
∂zC

∂xν

∂zD
hµν

)
= O(r2)O

(1
r

)
= O(r). (3.80)

Thus δ(ηµαN̂νdA) = O(r), and since hµα,ν ' O(1/r2), we may pull out the diffeomorphic

variation and simplify Eq. (3.79) as

1
8π

∫
∂Σ∞

(
hµα,ν − hνα,µ

)
ηµαN̂νdA

= 1
8π

∫
∂Σ∞

δ
(
(gµα,ν − gνα,µ)ηµαN̂νdA

)
= 1

8π δ
∫
∂Σ∞
−g00,νN̂

νdA+ 1
8π

3∑
i,j=1

δ

∫
∂Σ∞

(gii,j − gji,i)N̂ jdA, (3.81)

where we have used the asymptotically-flat condition gi0,0 = o(r−2) in the second line and

split the metric into a temporal part and a spatial part in the third line. Then applying

g00 = −N 2 +βkβ
k = −N 2 + o(r−2) and the ADM mass definition [60] to Eq. (3.81) yields

1
8π δ

∫
∂Σ∞

(
−(ξµξµ),νN̂ν + o

( 1
r3

))
dA− 2 δMADM

= 1
8π δ

∫
∂Σ∞
−2ξµ;νξ

µN̂νdA− 2 δMADM

= 1
4π δ

∫
∂Σ∞

(
ξ[ν;µ] −

1
2Lξ(gµν)

)
T̂µN̂νdA− 2 δMADM

= δE(ξ)− 2 δMADM − 1
8π δ

∫
∂Σ∞

Lξ(gµν)T̂µN̂νdA

= δE(ξ)− 2 δMADM − 1
8π δ

∫
∂Σ∞

(
gµν,τξ

τ + ξτ ,µgτν + ξτ ,νgµτ
)
T̂µN̂νdA

= δE(ξ)− 2 δMADM

= − δE. (3.82)

Where we have again applied the asymptotically-flat condition gi0,0 = o(r−2) to the fifth

line, and the last line holds because Theorem 3.1 proves the two mass definitions equal

each other under the conditions assumed. Since the equation is covariant, the conclusion
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will be generally correct although we only prove it in York’s asymptotically rectilinear

coordinates [70].

Next substituting Eqs. (3.76), (3.78) and (3.82) into Eq. (3.55), we find that the vari-

ation of Eq. (3.49b) becomes

−δE − 1
4π

∫
∂Σinner

δκ dA

+ 1
4π

∫
∂Σinner

(
δ
( 1

2N (Pµν − T̂ νN̂µ)Lξgµν
)
− 1

4N
(
δPµν + 2k1N̂

µT̂ ν
)
Lξgµν − δθ(l)

+1
2
(
(k3 + k6)θ(l) + (k3 − k6)σ(l)

+ + (k4 + k5)σ(l)
×

))
NdA

+
∫

Σ

(
Rδξβ − Tµνhµνξβ

)
T̂β

√
γ(Σ)d3x− 1

4π

∫
Σ

(
Lξ(hµ[µ;β]) + hµ

[µ;β]ξν ;ν

)
T̂β

√
γ(Σ)d3x.

(3.83)

Then Eq. (3.49c) may be transformed into

1
4π

∫
Σ

(ξµ;µβ − ξ(µ;β)
;µ)T̂ β

√
γ(Σ)d3x

= 1
4π

∫
Σ

(
ξµ;µ

;β − ξ(µ;β)
;µ

) T̂β
N
N
√
γ(Σ)d3x

= 1
4π

∫
Σ

(
ξµ;νβ − ξ(µ;β)ν

)
gµν

T̂β
N
√
−g d3x, (3.84)

where N
√
γ(Σ) =

√
−g. Since Eq. (3.48) and δ

√
−g = 1

2
√
−g gµνδgµν = 1

2hν
ν√−g, the

variation of Eq. (3.49c) is

1
4π

∫
Σ

(
δ
(
ξµ;νβ − ξ(µ;β)ν

)
gµν +

(
ξµ;νβ − ξ(µ;β)ν

)
hµν

)
T̂β
N
√
−gd3x

+ 1
4π

∫
Σ

(
ξµ;νβ − ξ(µ;β)ν

)
gµν

T̂β
2N hν

ν√−gd3x

= 1
8π

∫
Σ

(
2δ
(
ξµ;νβ − ξ(µ;β)ν

)
gµν T̂β + 2

(
ξµ;νβ − ξ(µ;β)ν

)
hµν T̂β

+
(
ξµ;νβ − ξ(µ;β)ν

)
gµν T̂βhν

ν
)√

γ(Σ)d3x. (3.85)

Further, the variation of Eq. (3.49d) is trivially

1
4π

∫
∂Σinner

δκ dA+ 1
4π

∫
∂Σinner

κ δ(dA) . (3.86)

Based on Eqs. (3.50), (3.83), and (3.86), we find the variation of the total gravitational
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energy Eq. (3.49) may be written

δE = −δE + 1
4π

∫
∂Σinner

κ δdA

+ 1
4π

∫
∂Σinner

(
δ
( 1

2N (Pµν − T̂ νN̂µ)Lξgµν
)
− 1

4N
(
δPµν + 2k1N̂

µT̂ ν
)
Lξgµν − δθ(l)

+1
2
(
(k3 + k6)θ(l) + (k3 − k6)σ(l)

+ + (k4 + k5)σ(l)
×

))
NdA

− 1
4π

∫
Σ

(
Lξ(hµ[µ;β]) + hµ

[µ;β]ξν ;ν

)
T̂β

√
γ(Σ) d3x

+
∫

Σ

((
2 δTµβ + Tµ

βhν
ν
)
ξµ + 2Tµβ δξµ +

(
Rδξβ − Tµνhµνξβ

))
T̂β

√
γ(Σ) d3x

+Eq. (3.85) . (3.87)

Or equivalently,

δE = 1
8π

∫
∂Σinner
κ δ(dA)

+ 1
8π

∫
∂Σinner

(
δ
( 1

2N (Pµν − T̂ νN̂µ)Lξgµν
)
− 1

4N
(
δPµν + 2k1N̂

µT̂ ν
)
Lξgµν − δθ(l)

+1
2
(
(k3 + k6)θ(l) + (k3 − k6)σ(l)

+ + (k4 + k5)σ(l)
×

))
NdA

− 1
8π

∫
Σ

(
Lξ(hµ[µ;β]) + hµ

[µ;β]ξν ;ν

)
T̂β

√
γ(Σ) d3x

+1
2

∫
Σ

((
2 δTµβ + Tµ

βhν
ν
)
ξµ + 2Tµβ δξµ +

(
Rδξβ − Tµνhµνξβ

))
T̂β

√
γ(Σ) d3x

+ 1
16π

∫
Σ

(
2δ
(
ξµ;νβ − ξ(µ;β)ν

)
gµν T̂β + 2

(
ξµ;νβ − ξ(µ;β)ν

)
hµν T̂β

+
(
ξµ;νβ − ξ(µ;β)ν

)
gµν T̂βhν

ν
)√

γ(Σ)d3x. (3.88)

3.3.4 First law for dynamical spacetimes

Now we begin to discuss when Eq. (3.88) will reduce to an analogue of the first law of

thermodynamics.

Firstly, note that the ‘volume terms’ (integrated over Σ) in Eq. (3.88) are exactly those

one would find in the absence of an inner boundary; though in that case the domain of inte-

gration would be larger. They represent the change in global energy due to perturbations

in the volume exterior to the inner boundary. Therefore their presence is independent of

any thermodynamic behavior of the inner boundary. So we may write Eq. (3.88) as
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δE(ξ) = 1
8π

∫
∂Σinner
κ(ξ) δ(dA)

− 1
16π

∫
∂Σinner

[
2 δθ(l) − (k3 + k6) θ(l) − (k3 − k6)σ(l)

+ − (k4 + k5)σ(l)
×
]
N dA

+ 1
32π

∫
∂Σinner

[
δ
( 2
N

(Pµν − T̂ νN̂µ)Lξgµν
)
N −

(
δPµν + 2k1N̂

µT̂ ν
)
Lξgµν

]
dA

+ volume terms, (3.89)

We have expressed Eq. (3.89) in terms of three surface integrals on the inner boundaries

∂Σinner and volume terms integrated over the remaining hypersurface Σ. Were only the

first of these surface integrals present in Eq. (3.89) then this equation would reduce to a

form of the first law of thermodynamics

δE(ξ) = 1
8π

∫
∂Σinner
κ(ξ) δ(dA) + volume terms . (3.90)

Note, in the conventional first law, the extra work terms involve the energy required

to change some conserved charges (charge or angular momentum). For us, we explicitly

study uncharged and non-rotating spacetimes, i.e., our inner boundaries have no conserved

charges upon which work can be done. In other words the additional terms in the inner

boundary must certainly vanish if we wish to recover thermodynamic behavior there.

Therefore, if the first law holds, we expect it looks like Eq. (3.90).

For the second of the surface integrals in Eq. (3.89) to vanish, the inner boundaries

must correspond to surfaces with vanishing expansion θ(l), which also implies that the

shears, σ(l)
j , vanish [33]. This by itself is a weaker condition than is ordinarily used in

defining, for example, an apparent or trapping horizon. [27] We call such surfaces weak

future horizons.

The third of the surface integrals in Eq. (3.89) vanishes whenever the metric is “quasi-

static” on the inner boundary in the sense that Lξgµν = 2 ξ(µ;ν) = 0 at ∂Σinner. Recall that

on the horizon we have ξµ = N T̂µ and due to the inclusion of the lapse functionN , the time

scales involved are those of an observer at spatial infinity. Indeed, one signature feature

of a black hole is that dynamics in close proximity to the horizon appears frozen to such

observers. Therefore this is a rather weak constraint on the dynamics of the horizon and we

call such horizons weakly quasi-static. Formally, this condition corresponds to ξµ locally

satisfying the Killing equation on the horizon. The existence of such an ‘approximate’
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(local) Killing vector is one of the fundamental assumptions in Jacobson’s derivation of

general relativity from the thermodynamic behavior of generic horizons [37].

For weakly quasi-static horizons the generalized surface gravity κ(ξ) reduces to the

form

κ(ξ) = ξµ;ν T̂
νN̂µ = N T̂µ;ν T̂

νN̂µ. (3.91)

This may be interpreted as the force-per-unit-mass applied at spatial infinity to hold an

observer ‘stationary’ at the inner boundary, corresponding to an accelerated observer with

4-velocity T̂µ. Equivalently, this is just the magnitude of the proper acceleration of such an

observer, or more precisely, the limit of a family of such observers as their proper distance

to the inner boundary is taken to zero, when rescaled by the lapse function N in order

to account for measurements referenced to spatial infinity. Thus, up to the rescaling, we

see that the generalized surface gravity is precisely the Unruh temperature considered by

Jacobson [37].

We interpret Eq. (3.90) as analogous to the first law of thermodynamics with surfaces

having: i) a local temperature T = κ(ξ)/(2π). and ii) an entropy given by a local version

of the conventional area law. To fully cement the thermodynamic nature of this analogy

we need to prove that weakly quasi-static horizons do have a temperature T = κ(ξ)/(2π).

I will do this in next section.

3.4 Horizon temperature and local entropy in dynamical

spacetimes

3.4.1 Hawking temperature from quantum tunneling

Theorem 3.2: For non-rotating quasi-static weak future horizons the Parikh-Wilczek

tunneling temperature [45] is given by

Ttunneling = 1
2π ξµ;νN̂

µT̂ ν = κ(ξ)
2π . (3.92)

Proof:

We now consider the Hawking temperature calculated directly using the quantum

tunneling formalism developed by Parikh and Wilczek [45]. We adapt this method to a

scenario where the horizon is without general spherical symmetry. Indeed, there can be

multiple horizons. For the purposes of illustration, we shall consider a spacetime with n
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3.4 Horizon temperature and local entropy in dynamical spacetimes

black holes whose jth horizon is located at r = Rj(θ, φ). The lack of spherical symmetry

allows for the possibility that the local tunneling temperature need not be uniform across

the horizon.

Consider a massless field mode whose amplitude is slowly varying

Ψω(xµ) ∝ exp
(
iω

∫ xµ

`ν dx
ν
)
, (3.93)

where, following Parikh and Wilczek, the Hamilton-Jacobi equation reduces to gµν`µ`ν =

0. In other words, `µ is just a null vector. Being null, we can normalize this vector

arbitrarily. We choose a normalization where `0 = −1 so that the parameter ω in Eq. (3.93)

is the mode’s frequency.

In the Parikh-Wilczek approach, the temperature comes from the integral inside the

exponent of Eq. (3.93) across a pole that occurs at the horizon. The integration is per-

formed (non-radially) along a spacelike path orthogonal to the jth black hole’s horizon, so

that the Boltzmann factor for the jth black hole reduces to

exp
(−~ω
kBTj

)
=
∣∣∣∣∣exp

[
−πωResj

(∫ xµ

`ν dx
ν
)]∣∣∣∣∣

2

, (3.94)

where Resj(f(z)) denotes the residue, here evaluated at the jth horizon, i.e., at r =

Rj(θ, ϕ). (For clarity, we include ~ and kB in this section, but set them again to unity in

our final step below.)

Denoting the direction of the path as it crosses normally to the horizon by the unit

spacelike vector N̂µ, where with our coordinates for the jth horizon N̂µ ∝ ∂µr, then

`µ = lµ/N = (T̂µ + N̂µ)/N , since the normalization is given by T̂0 = −N and N̂0 = 0.

Assuming that the integral
∫ xµ`νdxν along this path has a simple Laurent expansion we

may extract the reciprocal of the Residue by taking the directional derivative along the

path of the reciprocal of `µN̂µ = 1/N . This recipe uniquely pulls out the contribution

from the pole, yielding

1
Resj

(∫ xµ`ν dxν) =
( 1
`µN̂µ

)
;ν
N̂ν = N;νN̂

ν , (3.95)
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and hence the temperature will be given by

Tj(θ, ϕ) = ~
2πkB

( 1
`µN̂µ

)
;ν
N̂ν

∣∣∣∣∣
r=Rj(θ,ϕ)

= ~
2πkB

N;νN̂
ν
∣∣∣
r=Rj(θ,ϕ)

= ~
2πkB

−1
2N (ξµξµ);νN̂

ν

∣∣∣∣
r=Rj(θ,ϕ)

= −~
2πkB

ξµ;ν T̂
µN̂ν

∣∣∣
r=Rj(θ,ϕ)

= ~
2πkB

ξν;µT̂
µN̂ν

∣∣∣
r=Rj(θ,ϕ)

= κ

2π

∣∣∣∣
r=Rj(θ,ϕ)

, (3.96)

recall that on the horizon ξµξµ = −N 2, ξµ = N T̂µ, and ξµ;ν = −ξν;µ since ξµ is a local-

Killing vector (what we call weakly quasi-static) there. The final identification here of the

local tunneling temperature as the local surface gravity comes from Eq. (3.91).

This completes the proof of Theorem 3.2.

In summary so far, we have obtained a first law of black hole mechanics generalized

to dynamical spacetimes. The above calculation of the Hawking temperature as given by

κ/(2π) shows that our result is not merely an analogy, but a proof of an exact thermody-

namic relation. We summary these results as Theorem 3:

Theorem 3.3: Under the assumptions of Theorem 3.1, Eq. (3.90) is a statement

of the first law of thermodynamics in an extended dynamical setting: It describes

real thermodynamic behavior, not mere analogy, for non-rotating weakly quasi-static

weak future horizons.

We should emphasise, that at least in the non-rotating case, the relevant horizon is

determined solely by the vanishing of the expansion; in other words it is the ‘weak future

horizon’ which possesses the thermodynamic properties, without the further conditions

required to define, for example, a trapping horizon or an apparent horizon.

Another point we should emphasise is that we never assume the temperature is a

constant during all the above calculations in this chapter. In fact, we will show below that

the temperature of dynamical black holes generally is not uniform.
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3.4 Horizon temperature and local entropy in dynamical spacetimes

3.4.2 Non-uniform temperature

Here we consider an exact calculation, to explicitly show that our surface gravity (and

hence equivalently the Hawking temperature) will be in general non-uniform along the

horizon even in the quasi-static case.

The specific scenario that we consider will involve interacting black holes on a spacelike

hypersurface Σ where all black holes are assumed to be instantaneously stationary (and

hence the quasi-static condition will be globally satisfied on the entire hypersurface).

Within the 3 + 1 split formalism [25] it is sufficient to construct a metric of the form

ds2 = −N 2dt2 + γij(dxi + βidt)(dxj + βjdt), (3.97)

where γij is the spatial metric on the hypersurface of interest.

The simplest such ‘initial conditions’ [25] are time-symmetric, thus all first-order time

derivatives vanish and we have a conformally-flat spatial metric γij = ψ4ηij (where ηµν
is the Minkowski metric) and define χ ≡ ψN . Under these conditions [25], the vacuum

Einstein field equations on the initial hypersurface Σ reduce to βi = 0 and

(3)∇2ψ = 0, (3)∇2χ = 0, (3.98)

where (3)∇2 is the flat-spatial Laplacian. Assuming an asymptotically-flat spacetime with

n singularities one finds the Brill-Lindquist initial conditions [19,25]

ψ = 1 +
n∑
i=1

µi
2|−→r −−→r i|

, χ = 1−
n∑
i=1

µi
2|−→r −−→r i|

. (3.99)

For a single black hole (i.e., n = 1) Eqs. (3.97) and (3.99) would correspond to a Schwarzschild

black hole in isotropic coordinates, and µ1 would be its mass. For n > 1 black holes, the

total gravitating mass at spatial infinity for this metric is easily calculated to be
∑n
i=1 µi.

Consider the jth horizon. The location of the weak future horizon may be determined

by computing the expansion of outgoing null 4-vectors normal to the horizon. (This is

done explicitly for the case n = 2, of a binary pair of black holes, in Ref. [39].)

Following the results of the previous section, the Hawking temperature on the horizon

is given by the expression

Tj = r2N,r −R,θN,θ − csc2(θ)R,ϕN,ϕ
2π r ψ2

√
(R,θ)2 + csc2(θ)(R,ϕ)2 + r2

∣∣∣∣∣∣
r=Rj(θ,φ)

. (3.100)

An explicit calculation for a binary pair of black holes, n = 2, yields the Hawking

temperature of the j = 1 black hole as (see Chapter 4 for details):
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T1 = 1
8πµ1

[
1− µ2

r12
+ 3µ2(µ2 − µ1 cos θ)

4r2
12

+O
( 1
r3

12

)]
, (3.101)

where r12 is the inter-black hole ‘distance’ (measured in isotropic coordinates), and with

a similar result for T2 taking µ1 ↔ µ2.

Equation (3.101) shows that the temperature varies along the black hole horizons (see

Fig 3.5). Such a failure of the zeroth law, while maintaining the first law, implies that

thermal equilibrium of the horizons is replaced by local equilibrium.

Figure 3.5: Failure of the zeroth law of black hole mechanics, illustrated through an

example of a pair of interacting black holes. We plot an exaggerated profile of the temper-

atures from Eq. (3.101) (the transition from red to blue denotes increasing temperatures).

Generically, interacting black holes are non-equilibrium objects; though they do satisfy

local equilibrium.

3.4.3 Local equilibrium and the elemental area law

Since the temperatures on the horizon may be non-uniform, each element of area must

correspond to a true entropy, or more precisely dS = dA/4, for Eq. (3.90) to be a true first

law. We therefore conclude that the conventional area law applies to each element of area.

We call this extension the elemental area law. This extension gives rigorous meaning to

Bekenstein’s [13] long-standing conjecture of how information is encoded on a black hole

horizon (see Fig. 3.6).

Integrating the elemental area law yields the conventional stationary form of the area

law, S = A/4, but now rigorously obtained for dynamical (Killing vector free) black holes.

As noted by Wald [62] the area corresponds to a Noether invariant. He proposed a natural

extension of this invariant for arbitrary diffeomorphically invariant theories. He then

conjectured that this would correspond to the entropy of dynamical (i.e., non-stationary)

black holes in such theories. Therefore, at least for the case of general relativity, our result

proves Wald’s conjecture about the nature of dynamical black hole entropy. Note, that
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3.5 Cosmological constant

Figure 3.6: Bekenstein’s heuristic picture for information encoding on a black hole’s hori-

zon: each (Planck area)/(4 ln 2) is shown encoding a single bit. This picture is given

rigorous meaning by the elemental area law.

the Noether charge formalism is silent about the entropic content of each element of area.

3.5 Cosmological constant

Our assumption of an asymptotically-flat spacetime excludes a cosmological constant.

However, such a constant provides a potentially simple way to explain the phenomenon of

dark energy. Recent observations [50], suggest that the dark energy density increases with

time, which would be inconsistent with a cosmological constant model. Nevertheless, we

may ask whether cosmological effects may undermine our results. In this section, we use

the stationary theory to show that a cosmological contribution grows with the size of the

black hole, but remains negligible except for black holes roughly 1011 times more massive

than the largest observed black hole in our universe.

Now consider the Schwarzschild metric for a stationary black hole in a spacetime with

a cosmological constant:

gµν = −
(
1− 2M

r
− Λr2

3
)
dt2 + 1

1− 2M
r −

Λr2

3
dr2 + r2dΩ2, (3.102)

where dΩ2 = dθ2 +sin2 θ dφ2,M is the black hole mass and Λ is the cosmological constant.

The location of the horizon is given by the vanishing of the expansion of the outgoing

null normal congruences, which yields the condition that

1− 2M
r
− Λr2

3 = 0. (3.103)

To lowest non-trivial order the location of the black hole horizon is therefore given by

rhorizon = 2M
(
1 + 4ΛM2

3
)

+O(Λ2M4). (3.104)
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From the area law, we may obtain the black hole entropy as

S = A

4 = 4πM2
(
1 + 8ΛM2

3
)

+O(Λ2M4). (3.105)

The tunneling temperature of the horizon satisfies

1
T

= 4πRes
( 1

1− 2M
r −

Λr2

3

)∣∣∣∣∣
r=rhorizon

= 8πM
(
1 + 16ΛM2

3
)

+O(Λ2M4). (3.106)

Using the above results, we verify the form of the stationary first law as

T dS = dM +O(Λ2M4). (3.107)

In summary, the cosmologically perturbed temperature and entropy of our black hole

are given by

T (Λ) =
(
1− 16ΛM2

3
)
T (Λ=0) +O(Λ2M4),

S(Λ) =
(
1 + 8ΛM2

3
)
S(Λ=0) +O(Λ2M4). (3.108)

Now taking the observational value of the cosmological constant as

Λobs = 1.105610−52m−2 ' 1
(1010 ly)2 , (3.109)

where ly denotes a light year. We find that a cosmological effect on black hole thermody-

namics is utterly negligible provided the black hole’s Schwarzschild radius is much smaller

than around 1010 ly. Equivalently, a cosmological effect only begins to become non-trivial

for black holes which are roughly 1011 times more massive than the largest observed black

hole in the universe.

3.6 Discussion

Based on classical general relativity, we have extended the first law of black hole mechanics

from stationary to dynamical spacetimes. We used global methods based on a rigorous

and well-defined physical energy. This allowed us to overcome ambiguities which have

previously been found in attempted generalizations of black hole mechanics to dynamical

scenarios [42]. In this classical setting, for horizons defined by vanishing expansion, we

may apply Hawking’s original theorem [33] for the second law of black hole mechanics

which additionally assumes the null energy condition. In the quantum setting, where this

condition is violated due to quantum effects (leading to Hawking radiation), to regain
78



3.6 Discussion

the second law one must presumably include both the entropic contribution from the

horizon’s area and from the radiation [14]. Such an analysis is beyond the methods of

classical general relativity, which has been our prime focus here.

For a universe with multiple well-separated black holes and hence with negligible in-

teractions our result becomes

δE =
∑
i

Ti δSi + volume terms. (3.110)

One might worry that: i) this is not really a thermodynamic relation, when there are

differing temperatures, and ii) this relation is actually a weaker statement than could

be obtained from local-flux arguments, which would yield a distinct relation for each

black hole. However, we should recall that the flexibility in choosing the diffeomorphisms

means that Eq. (3.110) is actually an infinity of relations. In particular, consider a series

of diffeomorphisms which largely affect only each black hole in turn. In this way, we

would obtain δE = Ti δSi + volume terms, for each black hole. This illustrates that

our monolithic formulation of the first law represents a valid thermodynamic relation for a

multi-component system, and that it certainly embodies no less information than obtained

from (less rigorous) local methods.

In the usual equilibrium setting, one quarter of a black hole’s area is interpreted as

the entropy of the entire black hole, i.e., the area law Sblack hole = A/4. By contrast,

our derivation of the elemental area law, dS = dA/4, clearly shows that this entropy is

a local property of the horizon. Therefore, the entropy associated with the horizon may

not necessarily be that of the entire black hole. Indeed, since no signal from the black

hole interior can escape, one might assign it a temperature, Tinterior = 0, with respect to

an observer at spatial infinity (the interior is unobservable to any external observer, so

such an assignment is not inconsistent). Such an assignment, however, means the first law

would be unchanged by the addition of the vanishing term Tinterior δSinterior. In that case,

the entropy of the entire black hole becomes

Sblack hole = A

4 + Sinterior. (3.111)

Our analysis does not prove this relation, but it does show its consistency with black

hole thermodynamics. Of course, the presence of such an additional term would require a

wholesale reappraisal of black hole information bounds and paradoxes.

Finally, in 1995, Jacobson derived the equations of general relativity by assuming that

generic horizons satisfy local thermodynamic equilibrium [37]. Here, we have proved that
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Chapter 3: Thermodynamics of dynamical black holes

Jacobson’s assumptions themselves follow from classical general relativity. Combined,

these converse results demonstrate the one-to-one logical equivalence between classical

general relativity and the thermodynamic nature of spacetime horizons. While the two

formulations yield the same classical theory of gravity, their vastly different sets of un-

derlying variables likely yield very distinct quantizations. Working on the premise that

thermodynamics is fundamental, Jacobson conjectured that general relativity is an emer-

gent theory and inferred that the canonical route to the quantization of gravity may be

incorrect. The one-to-one equivalence between a metric and thermodynamic formulation

of gravity casts doubt on Jacobson’s paradigm of gravity as an emergent phenomenon,

and hence the question remains open as to the appropriate quantization of gravity. Re-

gardless, the nature of quantum gravity is likely to be further informed by the richer class

of behaviors accessible to dynamical spacetimes as we shall now see in Chapter 4.
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Chapter 4

Non-equilibrium entropic forces:

From molecular chains to black

holes

The tendency of systems to become more disordered, leading to higher entropy, is a uni-

versal phenomenon in nature. Often, a system’s physical drive to increase its entropy can

be recast in terms of an ‘entropic force.’ The power of entropic force formulations arises

from the ability to characterize the behavior of thermodynamic systems in terms of num-

bers of possible states or configurations, rather than requiring a detailed calculation of

the underlying, complex and sometimes unknown physical laws. We extend the concept of

entropic forces from equilibrium scenarios to the non-equilibrium thermodynamic regime.

We illustrate non-equilibrium entropic forces for two scenarios: a microscopic, molecular

system, and a macroscopic, black hole system. In both cases, the entropic force vanishes

at equilibrium. In the latter scenario, extrapolating the force to coalescing black holes pro-

vides the first direct test for the thermodynamic nature of black hole entropy from future

precision measurements of gravitational waveforms. We further show that this entropic

force cannot be encoded in the Einstein field equations defining classical general relativity.

Thus, its observation would constitute the first unequivocal signature of quantum gravity.

By contrast, its absence would compel us to reject the statistical nature of black hole

entropy initiating a major reassessment of the theoretical foundations of physics.
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4.1 Non-equilibrium entropic forces for molecule chains

The prototypical example of an entropic force involves a flaccid negligible-weight long-

chain molecule. In isolation, there is no energetic preference to any configuration, nor

to the distance ` separating the two ends of the molecule. However, when placed in a

bath at a temperature T , an entropic force TdS/d` is experienced at the molecule’s free

end [26], see Fig. 4.1(a). Calculating the entropic force in this way requires only a count

of all possible configurations of the molecular chain and the corresponding configurational

entropy S as a function of the end-to-end separation. Because this force persists even for

systems in equilibrium, we call it an equilibrium entropic force.

(a)

l

T

×
𝑇1 𝑇2

(b)

Figure 4.1: Examples of a system experiencing: (a) an equilibrium entropic force: A

flaccid negligible-weight long-chain molecule with end-to-end separation ` sits in a bath

at temperature T . One end of the molecule is fixed so that the force is experienced at the

free end; (b) a non-equilibrium entropic force: Here our long-chain molecule is threaded

across a nanopore between two chambers held at respective temperatures Ti.

Consider now the entropic force on the same molecule if it is threaded through a

frictionless nanopore between two chambers, with bath temperatures T1 and T2, see

Fig. 4.1(b). Provided both ends dangling into their respective chambers are not too short,

then the net configurational entropy of the molecule is nearly independent of the propor-

tion in each chamber [69]. Under these circumstances, a small shift of the molecule through

the nanopore in the direction of chamber 2 leads to an increase dS2 in the corresponding

configurational entropy S2, with a nearly equal [69] decrease dS1 ' −dS2 in chamber 1.

The almost zero net change in entropy (dS1 +dS2) means that no net entropic force will be

observed on the molecule when T1 = T2 [69]. In contrast, in the non-equilibrium scenario,

when the chambers are held at different temperatures, we find a non-equilibrium entropic

force proportional to
∑2
j=1 TjdSj ' (T2−T1)dS2, driving the molecule towards the cham-
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ber with the higher temperature at an approximately constant rate proportional to the

temperature difference. A potential application of this setup is considered in the Discus-

sion. In summary, non-equilibrium entropic forces can arise purely due to non-equilibrium

environments, even when the overall entropy of a system is conserved.

4.2 Temperature and entropy of dynamical black holes

4.2.1 An entropic force is absent for equilibrium black holes

For entropic forces to apply, the system concerned must be thermodynamic, possessing

both a temperature and an entropy. That stationary black holes meet this condition is

a standard result [11] and is explained in chapter 2. By the second law of black hole

mechanics and the area law, any physical change on a black hole will lead to 1
4δA =

∆S ≥ 0. Therefore, simply shifting the location of a black hole with regard to any other

gravitating body (an in principle physically reversible operation), implies δS ≡ 0. If this

black hole were at equilibrium at temperature T , we observe rather straightforwardly that

TδS = 0. This black hole will therefore not experience an equilibrium entropic force,

despite contrary claims in the literature [41,57] (we point out the technical error in these

studies below).

This is the scenario for equilibrium black holes. As we have seen in chapter 3, a black

hole interacting with any other gravitating body is in fact not an equilibrium system. So

we now briefly review the key results of chapter 3 and then go on to consider the entropic

force for interacting (non-equilibrium) black holes.

4.2.2 Dynamical black hole thermodynamics

The non-equilibrium entropic force among black holes I will discuss is based on our re-

cent rigorous extension of black hole thermodynamics from stationary spacetimes [11] to

dynamical spacetimes (Chapter 3 of this thesis) [66]. In that extension a fully dynami-

cal spacetime was analyzed and a thermodynamic horizon, the weak future horizon, was

identified as the thermodynamic surfaces when these surfaces are weakly quasi-static in

the non-rotating case. We briefly summarize the results of Chapter 3 here.

Consider a spacelike three-dimensional hypersurface Σ (corresponding to a constant

time slice). We may define a future-directed timelike unit vector T̂µ normal to Σ at each

point with T̂µT̂µ = −1.
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Next, consider a generic closed compact 2-surface residing in Σ. At each point on this

surface we may define an outward pointing spacelike unit vector N̂µ normal to the surface

and tangent to Σ, so T̂µN̂µ = 0. Such a surface corresponds to a weak future horizon [66]

if the expansion of outgoing null normal congruences of geodesics vanishes on the surface.

Let us decompose the outgoing and incoming null geodesics as

`µ = 1√
2

(T̂µ + N̂µ), nµ = 1√
2

(T̂µ − N̂µ). (4.1)

Trivially `µ`µ = nµnµ = 0 and satisfy the conventional normalization `µnµ = −1.

From the projector onto the tangent space of this 2-surface

Pµν ≡ gµν + T̂µT̂ν − N̂µN̂ν = gµν + `µnν + nµ`ν , (4.2)

we have the conventional definition of the expansion as

θ(`) ≡ Pµν∇µ`ν . (4.3)

As already noted, weakly quasi-static non-rotating surfaces with vanishing expansion,

carry a local temperature given by

T = ~κ
2πkB

, (4.4)

where kB and ~ are the Boltzmann and Planck constants respectively, and the surface

gravity κ is given by Eq. (3.91) [66]. Further, each element of area dA of this horizon

carries thermodynamic entropy

dS = kB dA
4~G , (4.5)

where G is the gravitational constant (setting c = 1). A result we called the elemental

area law [66].

This local temperature was further found to equal the local Parikh-Wilczek tunneling

temperature of the Hawking radiation [66]. Therefore the theoretical results strongly sup-

port the notion that the entropy and temperature of Eqs. (4.4) and (4.5) correspond to

actual thermodynamic quantities and hence that black hole horizons are true thermody-

namic entities.

4.2.3 n instantaneously stationary black holes

To date, no direct test exists for either entropy or temperature for black holes. Hawking

radiation could provide evidence for temperature but is too weak to measure for astro-

physical black holes [31,56]. That said, experiments on laboratory analogues of black hole
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horizons provide support for the underlying radiation mechanism [10]. Unlike temperature,

we know of no proposal for testing the thermodynamic nature of entropy, either in real

black holes or their laboratory analogues. In what follows, we show that non-equilibrium

entropic forces between black holes can provide just such a test.

To extend the concept of non-equilibrium entropic forces to black holes, we begin with

an example of dynamic, interacting black holes. We will first show that the equilibrium

entropic force vanishes, before deriving the non-equilibrium force, which will, as in the

molecular case, arise from a non-uniform temperature distribution.

Because the effect we are examining is both small and exotic, it is vital here to use exact

analytic calculations over those from numerical relativity; at least for the purposes of proof

of its existence. Consider the analytically describable Brill-Lindquist initial conditions [19]

consisting of n instantaneously stationary black holes in an asymptotically-flat spacetime.

The time symmetry around these initial conditions ensures a solution satisfying both the

quasi-static and non-rotating conditions needed [66] in the dynamical expression of the

first law for black holes. We therefore have a hypersurface with a rigorous non-equilibrium

thermodynamic behavior [19,66].

These initial conditions studied by Brill and Lindquist corresponds to the t = 0 hy-

persurface of the otherwise static metric

ds2 = −N 2dt2 + ψ4ηijdx
idxj , (4.6)

where i, j ∈ {1, 2, 3}, and the lapse function is given by N = χ/ψ with

χ = 1−
n∑
i=1

Gµi
2|−→r −−→r i|

, ψ = 1 +
n∑
i=1

Gµi
2|−→r −−→r i|

. (4.7)

Here −→r i label the ‘location’ of the black holes in isotropic coordinates and the parameters

µi are related to the black hole masses. The relationship between the mass parameters µi
and the physical masses involve the gravitational interaction energy. The difficult problem

of disentangling the mass parameters µi from the physical masses was solved by Brill and

Lindquist utilizing Einstein-Rosen bridges [19] yielding

mi ≡ µi
(

1 +
n∑
j 6=i

Gµj
2rij

)
, (4.8)

where rij ≡ |−→r i − −→r j |. In fact, beyond the analytic tractability of the Brill-Lindquist

system, it is this ability to express the results in terms of the physical masses which is

crucial for correctly computing the entropic forces as we shall see below.
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4.2.4 Location of the black hole horizons for binary black holes

Next, we seek to locate the horizons. From the results of chapter 3 (discussions after

Eq. (3.90)), we know that the horizons with thermodynamic behaviors are defined by

θ(l) = 0. For simplicity, we limit our analysis here to the case of n = 2 black holes, which

we take to be aligned along the z-axis. Without loss of generality, we take −→r 1 = 0 and

write

1− χ = ψ − 1 = Gµ1
2 r + Gµ2

2
√
r2 − 2 r r12 cos θ + r2

12

. (4.9)

By azimuthal symmetry, the horizon for the first black hole (labeled by −→r 1 = 0)

will correspond to a 2-surface r = ∆1(θ) for some function ∆1(θ). A pair of (generally)

independent tangent vectors within this surface are given by

dxµ

dθ
= (0, ∂θ∆1, 1, 0), dxµ

dφ
= (0, 0, 0, 1). (4.10)

We may now construct a future-directed null normal geodesic `µ to this 2-surface. The

null-geodesic condition requires

ds2 = − `2t
N 2 + 1

ψ4

(
`2r + 1

r2 `
2
θ + 1

r2 sin2 θ
`2φ

)
= 0. (4.11)

Normality to the 2-surface requires

`θ = −(∂θ∆1)`r, `φ = 0. (4.12)

Combining Eqs. (4.11) and (4.12) implies

`r = ±ψ2σ
`t
N
, (4.13)

where we define

σ−2 ≡ 1 + (∂θ∆1) 2

r2 > 1. (4.14)

Therefore the outgoing and ingoing future-directed null normal geodesic tangent vec-

tors may be written as

`µ = 1√
2

(−N , ψ2σ,−ψ2σ∂θ∆1, 0)

nµ = 1√
2

(−N ,−ψ2σ, ψ2σ∂θ∆1, 0), (4.15)

respectively.

The expansion may now be explicitly computed as

θ(`) = fσ3
√

2r4ψ3 , (4.16)
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where f = f(r, θ) is given by

f=[r2 + (∂θ∆1)2](4r2∂rψ−4∂θψ ∂θ∆1−ψ∂θ∆1 cot θ)+rψ[2r2+3(∂θ∆1)2−r∂2
θ∆1].(4.17)

Solving θ(`) = 0 order-by-order gives the location of the weak future horizon of the

first black hole as r = ∆1(θ), where

∆1(θ) = Gµ1
2 − G2µ1µ2

4r12
+ G3µ1µ2(µ2 − µ1 cos θ)

8r2
12

+ G4µ1µ2
r3

12

(5µ2
1(1− 3 cos2 θ)

224

−µ2(µ2 − 3µ1 cos θ)
16

)
+ G5µ1µ2

r4
12

(
µ2

2(µ2 − 6µ1 cos θ)
32 − µ2

1µ2(9− 41 cos2 θ)
224

+7µ3
1 cos θ(3− 5 cos2 θ)

832

)
+O(G6) (4.18)

with a similar result for ∆2(θ) from µ1 ↔ µ2. We note that this result has previously been

obtained to lower order in Ref. [39].

4.2.5 Black hole entropy for binary black holes

Now that we have the locus of the ith horizon in Eq. (4.18) we may compute its area and

consequently its entropy. In order to do this we must first compute the induced metric on

this surface; the area then reduces to the 2-volume of the corresponding compact manifold.

The key step in obtaining the induced metric on the inner boundary is simply a co-

ordinate transformation. For simplicity we work in spherical coordinates. We wish to

transform from xi ≡ (r, θ, φ) to zA ≡ (θ, φ) restricted to the surface r = ∆1(θ). We then

use the standard rule for coordinate transformations applied to the metric as

PAB = ∂xi

∂ZA
∂xj

∂ZB
γij , (4.19)

where γij = ψ4ηij and PAB is the induced metric, for A,B ∈ {2, 3} (in comparison with

the projector Pµν for which µ, ν ∈ {0, 1, 2, 3}).

The area on the 2-D manifold is A ≡
∫√
|((PAB))| dθdφ. For the i = 1 black hole we

find

dA1 ≡
√
|((P (1)

AB))|

= 4G2m2
1 sin θ

{
1 + G2m1m2 cos θ

2 r2
12

+ G3m1m2
16 r3

12

[
m1 − 4(m1 + 3m2) cos θ + 3m1 cos 2θ

]
+G4m1m2

64 r4
12

[
−2m2

1 − 11m1m2 + 5m2
1 cos 3θ + (11m2

1 + 56m1m2 + 48m2
2) cos θ

−m1(6m1 + 33m2) cos 2θ
]}

+O(G7), (4.20)
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where we have replaced the mass parameters µi by their physical counterparts mi using

Eq. (4.8). Integration yields the area of the ith horizon as

Ai = 16πG2m2
i +O(G7). (4.21)

Finally, from the (elemental) area law Eq. (4.5) [66] the entropy of the ith black hole is

given by

Si = 4πkBGm2
i

~
+O(G6). (4.22)

This result proves that the entropy of each black hole is indeed independent of the sep-

aration r12 between the black holes, at least to the high-order expansion we explicitly

computed. This result is consistent with our intuition about the statistical mechanical

basis of black hole entropy, which depends only on the black hole’s internal state and

is independent of the external environment, including the presence and location of any

external matter. Were these black holes at equilibrium, the constancy of the entropy in

Eq. (4.22) would imply a vanishing equilibrium entropic force.

There have been previous attempts [41, 57] at computing an entropic force due to

the mutual tidal disturbance between black holes, but they have invariably expressed the

entropy in terms of the mass parameters µi; which as already noted include the interaction

energy. These attempts have incorrectly found a non-zero equilibrium entropic force which

roughly mimics the Newtonian force law. However, as shown above such an equilibrium

force does not exist.

4.2.6 Hawking temperature for binary black holes

Since the surface gravity κ and the temperature along the horizon satisfy the relation [66]

T (θ, φ) ≡ ~κ(θ, φ)
2πkB

, (4.23)

we may obtain the temperature by calculating the surface gravity of each black hole. From

Eq. (3.91), we know that the surface gravity for a quasi-static non-rotating spacetime is

given by

κ(θ, φ) ≡ ξµ;βT̂
βN̂µ, (4.24)

where ξµ = N T̂µ.

Then the resulting temperature, T1, for the first black hole is [66]
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T1(θ) =
~

8πGm1kB
− ~m2

16πm1r12kB
+ ~G(−3m1m2 cos θ +m1m2 +m2

2)
32πm1r2

12kB

+ ~G2

64πm1r3
12kB

(
3m2

1m2 cos θ−3m2
1m2 cos(2θ)−2m2

1m2+12m1m
2
2 cos θ−3m1m

2
2−m3

2

)
+ ~G3

1024πm1r4
12kB

(
−39m3

1m2 cos θ + 24m3
1m2 cos(2θ)− 25m3

1m2 cos(3θ)

+16m3
1m2 − 216m2

1m
2
2 cos θ + 178m2

1m
2
2 cos(2θ) + 134m2

1m
2
2 − 240m1m

3
2 cos θ

+48m1m
3
2 + 8m4

2 − 16m2
1m

2
2 sin2(θ)

)

+ ~G4

57344πm1r5
12kB

(
1092m4

1m2 cos θ − 1092m4
1m2 cos(2θ) + 700m4

1m2 cos(3θ)

−735m4
1m2 cos(4θ)− 637m4

1m2 + 16512m3
1m

2
2 cos θ − 11088m3

1m
2
2 cos(2θ)

+8096m3
1m

2
2 cos(3θ)− 6832m3

1m
2
2 + 26208m2

1m
3
2 cos θ − 22344m2

1m
3
2 cos(2θ)

−15064m2
1m

3
2 + 13440m1m

4
2 cos θ − 2240m1m

4
2 − 224m5

2

)
+O(G5). (4.25)

with a similar result for T2 under the replacement m1 ↔ m2.

4.3 Non-equilibrium entropic force for black holes

4.3.1 Non-equilibrium entropic force due to non-uniform temperature

The non-uniform temperature of Eq. (4.25) suggests the possibility for a non-equilibrium

entropic force. To test whether the non-uniform temperature of Eq. (4.25) gives rise to

a non-equilibrium entropic force in the quasi-static setting of this example, we explicitly

calculate this force on the ith black hole using a continuum version of
∑
j TjdSj/dr

phys
i via

−→
F

phys
i =

2∑
j=1

∫
Tj(θj , φj)

∂

∂−→r phys
i

(
kB dAj(θj , φj)

4~G

)

=
2∑
j=1

∫
Tj(θj , φj)

d−→r i
d−→r phys

i

· ∂

∂−→r i

(
kB dAj(θj , φj)

4~G

)
, (4.26)

where dAj(θj , φj) is the area element of the weak future horizon for the jth black hole

given explicitly in Eq. (4.20), and r phys
i is the physical distance which is generally different

from the parameter ri in the metric.

As the effect is strongest on the side of the black hole horizons nearest each other, the

most relevant physical distance between two black holes should be the physical distance
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between the near points of the two horizons, see Fig. 4.2. This shows the transformation

between physical distance and parametric distance is independent of the angle, hence can

be pulled out of the integral. Further, since Eq. (4.26) only depends on −→r i via the quantity

r12, the entropic force simplifies to

−→
F

phys
i = dr12

dr phys
12

2∑
j=1

∫
Tj(θj , φj)

∂

∂−→r i

(
kB dAj(θj , φj)

4~G

)

= dr12

dr phys
12

−→
F

parametric
i , (4.27)

where −→F
parametric
i is a ‘parametric’ entropic force, with regard to changes in coordinate ri.

Here we first calculate the parametric entropic force. Inserting the area element and

the non-uniform temperature, the lowest orders of the parametric entropic force for the

first black hole are

−→
F

parametric
1 = G4(m3

1m
2
2 +m2

1m
3
2)

8r5
12

r̂12 + G5(−5m4
1m

2
2 − 34m3

1m
3
2 − 5m2

1m
4
2)

32r6
12

r̂12

+3G6(27m5
1m

2
2 + 343m4

1m
3
2 + 343m3

1m
4
2 + 27m2

1m
5
2)

448r7
12

r̂12

+G7 (−175m6
1m

2
2 − 4294m5

1m
3
2 − 7875m4

1m
4
2 − 4294m3

1m
5
2 − 175m2

1m
6
2
)

1120r8
12

r̂12

+O(G8), (4.28)

with a similar result for −→F
parametric
2 by replacing m1 ↔ m2.

𝑚1 𝑚2

𝑟12
phys

𝑟 = 0 𝑟 = 𝑟12Δ1 Δ2 z

Figure 4.2: Here we take the ‘location’ variable r1 of black hole 1 as 0 and r phys
12 represents

the physical distance between the near points of horizons for binary black holes. Note

that r = ∆1 is the horizon radius of black hole 1 and ∆2 is the analogous horizon radius

of black hole 2.

Next we calculate the transformation parameter dr12/dr
phys
12 . To do this, we first

express the physical distance r phys
12 in terms of r12. The physical distance between the
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near points of the binary black hole horizons may be calculated by

r phys
12 =

∫ r12−∆2

∆1
ψ2dr

=
∫ r12−∆2

∆1

(
1 + Gµ1

2r + Gµ2

2
√
r2 − 2r r12 cos θ + r2

12

)2
dr

=
∫ r12−∆2

∆1

(
1 + Gµ1

2r + Gµ2

2
√
r2 − 2r r12 + r2

12

)2
dr

=
∫ r12−∆2

∆1

(
1 + Gµ1

2r + Gµ2
2(r12 − r)

)2
dr

=
∫ r12−∆2

∆1

(
1 + Gµ1

r
+ Gµ2
r12 − r

+ G2µ2
1

4r2 + G2µ1µ2
2r(r12 − r)

+ G2µ2
2

4(r12 − r)2

)
dr

=
(
r+Gµ1 ln r−Gµ2 ln(r12−r)−

G2µ2
1

4r +G2µ1µ2
2r12

(ln r−ln(r12 − r))+ G2µ2
2

4(r12 − r)

)∣∣∣∣r12−∆2

∆1

=
(

(r12 −∆2 −∆1)+Gµ1
(
ln (r12 −∆2)− ln∆1

)
−Gµ2 ln∆2 +Gµ2ln(r12−∆1)

− G2µ2
1

4(r12 −∆2) + G2µ2
1

4∆1
+G2µ1µ2

2r12
(ln(r12 −∆2)−ln∆2)

−G
2µ1µ2
2r12

(ln∆1−ln(r12 −∆1)) + G2µ2
2

4∆2
− G2µ2

2
4(r12 −∆1)

)
,

(4.29)

where we have used θ = 0 in the third line. As we discussed before, here ∆1, ∆2, µ1 and

µ2 are also functions of r12.

From the result of Eq. (4.29), the variation of r phys
12 with r12 may be calculated by

dr phys
12
dr12

=1− d∆2
dr12

− d∆1
dr12

+G
dµ1
dr12

(
ln (r12 −∆2)− ln∆1

)
+Gµ1

( 1
r12 −∆2

(1− d∆2
dr12

)− 1
∆1

d∆1
dr12

)
−G dµ2

dr12

(
ln∆2 − ln(r12−∆1)

)
−Gµ2

( 1
∆2

d∆2
dr12

− 1
r12−∆1

(1− d∆1
dr12

)
)

− G2µ1
2(r12 −∆2)

dµ1
dr12

+ G2µ2
1

4(r12 −∆2)2 (1− d∆2
dr12

) + G2µ1
2∆1

dµ1
dr12

− G2µ2
1

4∆2
1

d∆1
dr12

+G2

2
( µ2
r12

dµ1
dr12

+ µ1
r12

dµ2
dr12

− µ1µ2
r2

12

)
(ln(r12 −∆2)−ln∆2)

+G2µ1µ2
2r12

( 1
r12−∆2

(1− d∆2
dr12

)− 1
∆2

d∆2
dr12

)
−G

2

2
( µ2
r12

dµ1
dr12

+ µ1
r12

dµ2
dr12

− µ1µ2
r2

12

)
(ln∆1−ln(r12 −∆1))

−G
2µ1µ2
2r12

( 1
∆1

d∆1
dr12
− 1
r12−∆1

(1− d∆1
dr12

)
)

+G2µ2
2∆2

dµ2
dr12
−G

2µ2
2

4∆2
2

d∆2
dr12
− G2µ2

2(r12−∆1)
dµ2
dr12

+ G2µ2
2

4(r12−∆1)2 (1− d∆1
dr12

). (4.30)
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Since µ1 and µ2 are the mass parameters and the dependence of µ1 and µ2 on r12

comes from the gravitational potential between these two black holes, one has dµ1
dr12

= dµ2
dr12

.

Therefore, Eq. (4.30) may be further simplified to

dr phys
12
dr12

=1− d∆2
dr12

− d∆1
dr12

+G
dµ1
dr12

(ln (r12 −∆1)(r12 −∆2)
∆1∆2

)

+Gµ1( 1
r12 −∆2

(1− d∆2
dr12

)− 1
∆1

d∆1
dr12

)−Gµ2
( 1
∆2

d∆2
dr12

− 1
r12−∆1

(1− d∆1
dr12

)
)

+G2µ1
2

dµ1
dr12

r12 −∆2 −∆1
∆1(r12 −∆2) + G2µ2

1
4(r12 −∆2)2 (1− d∆2

dr12
)− G2µ2

1
4∆2

1

d∆1
dr12

+G2

2
(µ1 + µ2

r12

dµ1
dr12

− µ1µ2
r2

12

)
(ln (r12 −∆1)(r12 −∆2)

∆1∆2
)

+G2µ1µ2
2r12

( 1
r12−∆2

(1− d∆2
dr12

)− 1
∆2

d∆2
dr12

)
− G2µ1µ2

2r12

( 1
∆1

d∆1
dr12
− 1
r12−∆1

(1− d∆1
dr12

)
)

+G2µ2
2

dµ1
dr12

r12 −∆1 −∆2
∆2(r12−∆1) −

G2µ2
2

4∆2
2

d∆2
dr12

+ G2µ2
2

4(r12−∆1)2 (1− d∆1
dr12

). (4.31)

Or equivalently,

dr phys
12
dr12

=1− d∆2
dr12

− d∆1
dr12

+
(
G
dµ1
dr12

+ G2

2
(µ1 + µ2

r12

dµ1
dr12

− µ1µ2
r2

12

))(
ln (r12 −∆1)(r12 −∆2)

∆1∆2

)
+Gµ1( 1

r12 −∆2
(1− d∆2

dr12
)− 1

∆1

d∆1
dr12

)−Gµ2
( 1
∆2

d∆2
dr12

− 1
r12−∆1

(1− d∆1
dr12

)
)

+G2µ1
2

dµ1
dr12

r12 −∆2 −∆1
∆1(r12 −∆2) + G2µ2

1
4(r12 −∆2)2 (1− d∆2

dr12
)− G2µ2

1
4∆2

1

d∆1
dr12

+G2µ1µ2
2r12

( 1
r12−∆2

(1− d∆2
dr12

)− 1
∆2

d∆2
dr12

)
− G2µ1µ2

2r12

( 1
∆1

d∆1
dr12
− 1
r12−∆1

(1− d∆1
dr12

)
)

+G2µ2
2

dµ1
dr12

r12 −∆1 −∆2
∆2(r12−∆1) −

G2µ2
2

4∆2
2

d∆2
dr12

+ G2µ2
2

4(r12−∆1)2 (1− d∆1
dr12

). (4.32)

Inserting all the relevant expressions into Eq. (4.32), we find

dr phys
12
dr12

=1 + (m1 +m2)G
r12

+
(
m2

1 − 8m2m1 +m2
2
)
G2

4r2
12

+ 3
(
m2m

2
1 +m2

2m1
)
G3

4r3
12

−
(
37m2m

3
1 + 42m2

2m
2
1 + 37m3

2m1
)
G4

56r4
12

+
(
401m2m

4
1 + 2210m2

2m
3
1 + 2210m3

2m
2
1 + 401m4

2m1
)
G5

1456r5
12

+O(G6)

+A ln B
C
, (4.33)
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where A, B and C are each functions of m1, m2, r12, and G. Here

A=−m1m2G
7

2048r12
12

(
11m1m2

(
m4

1 + 10m2m
3
1 + 20m2

2m
2
1 + 10m3

2m1 +m4
2

)2
G5

40m1m2
(
m7

1 + 16m2m
6
1 + 86m2

2m
5
1 + 191m3

2m
4
1 + 191m4

2m
3
1 + 86m5

2m
2
1

+16m6
2m1 +m7

2

)
r12G

4 + 36m1m2
(
3m6

1 + 38m2m
5
1 + 150m2

2m
4
1 + 234m3

2m
3
1

+150m4
2m

2
1 + 38m5

2m1 + 3m6
2

)
r2

12G
3 − 128m1m2

(
2m5

1 + 20m2m
4
1 + 55m2

2m
3
1

+55m3
2m

2
1 + 20m4

2m1 + 2m5
2

)
r3

12G
2 + 560m1m2

(
m4

1 + 8m2m
3
1 + 15m2

2m
2
1

+8m3
2m1 +m4

2

)
r4

12G− 192
(
m5

1 + 15m2m
4
1 + 50m2

2m
3
1 + 50m3

2m
2
1 + 15m4

2m1

+m5
2

)
r5

12

)
, (4.34)

B=
(
m1m2

(
107m3

1 + 975m2m
2
1 + 455m2

2m1 + 455m3
2

)
G5 − 26m1m2

(
12m2

1

+21m2m1 + 28m2
2

)
r12G

4 + 364m1m2(m1 + 3m2)r2
12G

3 − 1456m1m2r
3
12G

2

+1456m1r
4
12G− 2912r5

12

)(
m1m2

(
455m3

1 + 455m2m
2
1 + 975m2

2m1 + 107m3
2

)
G5

−26m1m2
(
28m2

1 + 21m2m1 + 12m2
2

)
r12G

4 + 364m1m2(3m1 +m2)r2
12G

3

−1456m1m2r
3
12G

2 + 1456m2r
4
12G− 2912r5

12

)
, (4.35)

and

C=
(
G2m1m2

(
m1
(
455m3

1 + 455m2m
2
1 + 975m2

2m1 + 107m3
2

)
G4 − 26m1

(
28m2

1

+21m2m1 + 12m2
2

)
r12G

3 + 364m1(3m1 +m2)r2
12G

2 − 1456m1r
3
12G+ 1456r4

12

)
(
m2

(
107m3

1 + 975m2m
2
1 + 455m2

2m1 + 455m3
2

)
G4 − 26m2

(
12m2

1 + 21m2m1

+28m2
2

)
r12G

3 + 364m2(m1 + 3m2)r2
12G

2 − 1456m2r
3
12G+ 1456r4

12

))
. (4.36)

Since r phys
12 and r12 are in one-to-one correspondence, we have

dr12

dr phys
12

= 1
dr phys

12
dr12

. (4.37)

For simplicity, we will write α ≡ dr12
dr phys

12
to represent this distance transformation

connection from now on. Numerical calculations show that α is always positive out-

side the black hole horizon and approaches 1 as r12 approaches ∞. To explicitly show

how α depends on r12, we plot α versus r12 when m1 = m2 = m in Fig.4.3. In this

case, r12 ≈ 1.0775Gm is the ‘kissing distance’, which is the closest the black holes can
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1 2 3 4 5
r12

0.2

0.4

0.6

0.8
α

Figure 4.3: This figure shows how α changes with r12, where α ≡ dr12
dr phys

12
, for m1 = m2 = 1,

G = 1.

approach in isotropic coordinates while remaining separate, so the figure begins from

r12 = 1.0775Gm.

Based on the above analysis and Eq. (4.28), the entropic force may be written as

−→
F

phys
1 = α

(
G4(m3

1m
2
2 +m2

1m
3
2)

8r5
12

+ G5(−5m4
1m

2
2 − 34m3

1m
3
2 − 5m2

1m
4
2)

32r6
12

+3G6(27m5
1m

2
2 + 343m4

1m
3
2 + 343m3

1m
4
2 + 27m2

1m
5
2)

448r7
12

+G7 (−175m6
1m

2
2 − 4294m5

1m
3
2 − 7875m4

1m
4
2 − 4294m3

1m
5
2 − 175m2

1m
6
2
)

1120r8
12

)
r̂12

+O(G8), (4.38)

We first focus on the leading term of the entropic force to do some qualitative analysis.

From Eq. (4.38), the leading term is

−→
F

phys
1 = αG4(m3

1m
2
2 +m2

1m
3
2)

8r5
12

r̂12 +O(G5), (4.39)

Since α > 0, the entropic force in Eq. (4.39) is repulsive. This is due to the distribution

of temperatures, with the higher temperatures on the far sides of the neighboring black

holes, and is consistent with the intuition gained from the behavior of the molecular chain

in Fig. 4.1(b).

The form of Eq. (4.39) is intriguing, especially if we reparameterize it in terms of the

mass ratio ρ = m2/m1 and define the approximate ‘Kissing distance’ rKiss = G(m1+m2)/2.

Now the magnitude of the entropic force of Eq. (4.39) reduces to

F phys = +4α
G

(
ρ

(1 + ρ)2

)2(rKiss
r12

)5
+O(G5), (4.40)
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(a)

𝑚1 𝑚2

(b)

𝑚1 𝑚2

Figure 4.4: Non-equilibrium entropic force between: (a) A pair of black holes. (b) An

identical black hole (m1) and a shell of matter with the same mass as black hole m2 in (a).

Both scenarios give rise to repulsive non-equilibrium entropic forces. The temperature

profiles are identical for the left black hole in both the (a) and (b) scenarios, but give rise

to different forces. (The color provides a highly exaggerated rendition of the temperature

profile along the black holes’ horizons: from red to blue denotes a transition from lower

to higher temperatures.)

revealing that the acceleration due to the entropic force:

i) vanishes in the test-particle limit, where ρ→ 0;

ii) vanishes in the Rindler limit, where ρ→∞; and

iii) conserves total momentum, since
∑
i

−→
F

phys
i = 0.

If we use the same parameterization for the form of the Newtonian force law

F Newton = −Gm1m2
r2

12
= − 4

G

ρ

(1 + ρ)2

(
rKiss
r12

)2
, (4.41)

we see that the entropic force is remarkably short range and relatively weak. For the case

thatm1 = m2, the magnitude of the entropic force is at most about 2.03% of the Newtonian

form at the ‘Kissing point’, decaying rapidly at larger separations. Note that this value is

obtained by a continued fraction approximation of the power series in Eq. (4.38), where

continued fraction approximations are a special case of Padé approximations [15].

The remote contribution (from black hole 2) to the force described by Eq. (4.26)

suggests that this force cannot be encoded in the Einstein field equations. To pin down

this conjecture we construct a modified scenario in section 4.3.2, in which the entropic

force results from contributions of a single black hole. In this modified scenario, the

second black hole is replaced with a shell of matter, designed so that the spacetime metric

everywhere outside the shell is identical to that of the original scenario, and consequently

the temperature profile along the surface of the black hole will also be identical (see

Fig. 4.4(b)). Second, by construction this shell is assumed to be in a pure quantum state.

This ensures that it carries no entropy which may contribute to an entropic force. It
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has been shown in chapter 2 of this thesis that the only spacetime surfaces which carry

thermodynamic properties are those associated with spacetime horizons [64]. The entropic

force between a black hole of mass m1 and this matter shell of mass m2 then becomes

−→
F

phys
1 = αG4m3

1m
2
2

8 r5
12

r̂12 +O(G5). (4.42)

Despite the fact that, outside the shell, the spacetime metric is identical in both sce-

narios, the magnitude of the entropic force on the black hole, and hence its acceleration,

is different. This comparison therefore proves that the spacetime metric is insufficient to

predict motion due to entropic effects. We conclude that this entropic force cannot be

encoded in the conventional Einstein field equations of general relativity.

4.3.2 Replacing black holes by ordinary matter

In this section we consider more carefully the claim that the entropic force is not already

implicitly present in the solutions to the Einstein field equations. Our strategy will be to

show that we can obtain the same solutions to the field equations, but in a scenario where

there are no horizons and hence no entropic forces. We shall achieve this by replacing our

black holes by shells of ordinary matter, which will be assumed to have zero or negligible

regular thermodynamic entropy.

To obtain such solutions, we must write down the full Einstein field equations, including

the presence of matter. In the 3 + 1 formalism [30], assuming βi = 0, we obtain

(3)∇2ψ = −2πGEψ5

(3)∇2χ = +2πG(E + 2F )ψ4χ, (4.43)

on the initial hypersurface, where the energy-momentum variables are defined E ≡ T00

and F ≡ γijTij .

For a single black hole spacetime with massM , the black hole and its entropy carrying

horizon may be replaced with a thin shell of ordinary matter. Solutions to Eqs. (4.43) are

readily obtained as

1− χ = ψ − 1 =



GM

2 r
, r > R

GM

2R
, r ≤ R,

(4.44)
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where R is the shell radius and substituting these expressions into Eqs. (4.43) yields

E = M δ(r −R)
4πR2(1 + GM

2R
)5

F = ψ − χ
2χ E = GM

2R
(
1− GM

2R
) E. (4.45)

These are both positive (and finite) when the shell lies outside the original Schwarzschild

horizon, R > GM/2.

Now consider the solutions involving n black holes replaced by shells of ordinary matter.

Based on the result above for a single black hole this is straightforward to generalize to

this case yielding

1− χ(−→x ) = ψ(−→x )− 1

=



n∑
j=1

Gµj

2 |−→x −−→r j |
, ∀i, |−→x −−→r i| > Ri

Gµi

2Ri
+

n∑
j 6=i

Gµj

2 |−→x −−→r j |
, |−→x −−→r i| ≤ Ri,

(4.46)

These describe n shells centered at −→x = −→r i with respective radii Ri. For the ith shell

Ei(−→x ) = µi δ(|−→x −−→r i| −Ri)
4πR2

i ψ(−→x )5

Fi(−→x ) = ψ(−→x )− χ(−→x )
2χ(−→x ) Ei(−→x ). (4.47)

Again, these are finite and non-negative provided the shells lie outside the location of the

future horizon for the black holes they are respectively replacing. (We note, that one can

trivially generalize these solutions to involve b black holes and n − b shells of ordinary

matter.)

Thus replacing ψ and χ in Eq. (4.7) by the corresponding terms of Eqs. (4.46) and

(4.47) yields the exact same solutions to the Einstein field equations in the entire region

of the initial hypersurface outside the radii corresponding to the solutions with the shells.

The former solutions have black holes and their horizon entropy, the latter have only the

entropy associated with the ordinary matter of the shells, which without loss of generality

we may take to be zero or negligible. Consequently, the entropic forces present in the

former solutions are absent in the latter. We conclude from this that any entropic forces

are not encoded in the conventional Einstein field equations.
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4.3.3 Influence on the gravitational wave form

Our calculations of this non-equilibrium entropic force are exact to the order computed

and cannot be canceled by higher-order contributions. Although the entropic force is

short range and comparatively weak, it would still have an in-principle observable effect

on black hole collision processes. For two merging black holes with similar mass, our

following rough calculations show that the effect of this force on gravitational waves is a

roughly 1.02% frequency shift in the peak chirp frequency before final coalescence. Finally,

it would not be surprising if the underlying phenomenon might be enhanced or diminished

in more general scenarios than those considered here.

The gravitational wave emission by a nearly Newtonian binary star system may be

roughly approximated by the Newtonian force law [40]. Label the two gravitating bodies

by m1 and m2, their total mass and reduced mass are

M = m1 +m2, m = m1m2
M

. (4.48)

If we assume their orbit is circular with distance between the star’s centers r12, then the

orbital angular velocity ω is given by Kepler’s law [53]

ω =
√
M

r3
12
. (4.49)

Note that the gravitational wave’s angular frequency is 2ω.

To estimate the effect of our non-equilibrium entropic force F phys on the wave’s angular

frequency, we use Newton’s second law −→F = m−→a to roughly calculate its effect on the

angular velocity of the gravitating body:

Mm

r2
12
− F phys = ω′

2
r12m, (4.50)

which may be simplified as

ω′ =
√
M

r3
12
− F phys

r12m

=
√
M

r3
12

√
1− r2

12F
phys

Mm
.

For simplicity, we consider two black holes with equal mass at the ‘Kissing distance’ (r12 ≈
1.0775M

2 ). From the discussion following Eq. (4.41), we know F phys ≈ 0.0203FNewton =

0.0203Mm
r2

12
for this case. Then ω′ reduces to

ω′ =
√
M

r3
12

√
1− 0.0203.
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For this case, the non-equilibrium entropic force would cause the frequency of the gravita-

tional waves to shift by roughly 1.02%. Since this effect decreases rapidly as r12 increases,

it may only have an observable effect on the very final stage of black hole coalescence.

4.4 Discussion

Entropic forces are generically studied in equilibrium settings. Here we have described

for the first time an interesting variant exists for non-equilibrium environments and which

vanishes at equilibrium. We called such variants non-equilibrium entropic forces.

Our canonical example consisted of a non-equilibrium entropic force driving a long-

chain molecule through a nanopore from a cooler to a warmer thermal bath. The tem-

perature difference between the baths allows one to sensitively control the rate at which

the molecule is driven through the nanopore. The non-equilibrium entropic force in this

scenario could be generalized to achieve the simultaneous controlled passage of many

molecular strands through parallel nanopores in a similar two-chamber setup, with a va-

riety of plausible applications. For example, such a highly parallel architecture might be

combined with electrically sensing an amino acid’s identity [58] at each nanopore exit for

high-throughput label-free amplification-free sequencing of biological macromolecules. A

key advantage of this approach is its power to overcome the bottleneck associated with

attaining sufficiently slow motion of a molecule through the nanopore for accurate sens-

ing [58].

In the interacting black hole setting, we found that the potential for observation of a

non-equilibrium entropic force would allow for confirmation of the long-standing conjecture

about the thermodynamic nature of spacetime horizons; not just in a laboratory setting

with analogue black holes, but with the actual astrophysical objects themselves.

In string theories of gravity, one convincingly finds that black hole horizons are truly

thermodynamic. One can pass from a thermal state to a black hole by smoothly changing

the string coupling [34]. Indeed, for supersymmetric and near-extremal string-theory

black holes one can even obtain the exact conventional area law [20, 35, 51]. Thus, by

construction, string theories of gravity imply the existence of the entropic force which we

have demonstrated here between black holes and any other gravitating body. Observation

of this entropic force would not only provide further support for string theories, but

would also constitute the first signature of quantum gravity – beyond conventional general

relativity. Conversely, convincing evidence for an absence of such a force would not only
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imply a failure for the full thermodynamic analogy of black holes and spacetime horizons,

but would also convincingly refute one of string theories’ few emphatic predictions.
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Chapter 5

Conclusions

5.1 Summary of contributions

In Chapter 2, to test the thermal assumptions in Verlinde’s emergent gravity program [59],

we extended the analysis of the first law of black hole mechanics beyond the horizon to

generic surfaces for static spacetimes [59,64]:

1. We achieved this by generalizing the tools from Ref. [11] beyond horizons to

arbitrary surfaces.

2. These new tools allowed us to obtain an integral Komar mass expression for

stationary spacetimes with an arbitrary inner boundary. This integral formula

naturally defines a ‘surface gravity’ for ordinary surfaces for static spacetimes.

3. The stretched horizons proposed by Kip Thorne are surfaces microscopically out-

side a horizon [54]. Our analysis shows that such stretched horizons do satisfy

the first law of black hole thermodynamics to high precision.

4. Since there is no fundamental mechanics to support a physical temperature for

the stretched horizon, it can only inherit the thermodynamic phenomenon from

an underlying black hole horizon. Thus, that the first law still holds on the

stretched horizon, in fact implies that the laws of black hole thermodynamics

should only be considered as a necessary condition but not a sufficient condition

for true thermodynamic behavior.

5. For surfaces further away from a horizon (so-called holographic screens) in Ver-

linde’s emergent gravity program, we find the first law fails. Thus eroding the

basis of this program.
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In Chapter 3, we extended the analysis of the black hole thermodynamics, especially

the first law of black hole mechanics, from stationary to dynamical spacetimes [66]:

1. Theorem 3.1 provides a simple, covariant expression to compute the physical

energy (the ADM mass) in a broad class of dynamical asymptotically-flat space-

times. By dynamical spacetime, we follow the conventional definition, i.e., the

absence of a timelike Killing vector (indeed, we do not assume any kind of Killing

vector).

2. Theorem 3.3 rigorously extends the first law of black hole thermodynamics to

the dynamical setting (with no other requirements beyond the black holes having

non-rotating horizons that appear quasi-static to an observer at spatial infinity

— what we dub weakly quasi-static).

3. We emphasize that this first law allows for the description of physical processes

and requires no Killing vectors. In particular, the behavior of the matter outside

the horizon is totally unconstrained. Therefore the thermodynamic behavior we

find for horizons is truly ubiquitous. That the thermodynamic behavior of horizons

is not swamped by the potentially wildly “dirty” and dynamical environments we

study is perhaps the biggest surprise of our work.

4. The extended first law implies an unambiguous definition for a surface gravity for

the horizons of dynamical spacetimes, which reduces to the conventional definition

for stationary spacetimes.

5. We derive a general formula for the Parikh-Wilczek tunneling temperature of the

Hawking radiation for non-rotating weakly quasi-static weak future horizons (our

Theorem 3.2). We find that it is identical to the temperature obtained from our

dynamical surface gravity. This proves that our dynamical first law is not mere

analogy, but a real thermodynamic relation.

6. Using our rigorous formalism and an analytic calculation of an explicit example,

we show that the temperatures associated with interacting black holes are, in

general, non-uniform. Therefore the zeroth law of black hole thermodynamics

generally fails in the dynamical setting.

7. We show that, in order to allow for non-uniform temperatures, the conventional

area law must generalize to a local or elemental form. This provides a rigorous
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meaning to Bekenstein’s early intuition that every element of area of a horizon

represents a fundamental unit of information [13].

8. In 1993, Wald conjectured a “dynamical entropy” for dynamical black holes

within any diffeomorphically invariant theory — which includes general relativ-

ity (Ref. [62]). Our work proves that this conjecture holds true within general

relativity.

9. We show that the thermodynamic surface for dynamic horizons is not the long-

studied trapping horizon, but a much simpler structural element which we dub

the weak future horizon.

10. We prove that the underlying assumptions made by Jacobson in his deriva-

tion of general relativity from a presumed thermodynamic behavior of horizons

(Ref. [37]) are themselves derivable from general relativity itself. Our work shows

that the thermodynamic nature of horizons and general relativity are logically

equivalent (i.e., if A ⇒ B and B ⇒ A then A ≡ B). Therefore either approach

leads to identical classical theories of gravity. The same may not be true when

these approaches are used to obtain a quantum theory of gravity. In particular,

the canonical quantization of the vastly differing underlying variables in these

two theories may lead to very distinct theories of quantum gravity.

In Chapter 4, we characterized an entirely new class of entropic forces which vanish

at equilibrium, but are non-vanishing only out of equilibrium. We called such variants

non-equilibrium entropic forces. This effect is discussed for both molecular chains and

black holes. We found [65]:

1. For a long-chain molecule threaded through a frictionless nanopore between two

chambers with different bath temperatures, a non-equilibrium entropic force ex-

ists and will drive the molecule to the chamber with a higher temperature.

2. For binary black holes in a quasi-static spacetime, the entropy of each black hole

is independent of the distance between the two black holes. This result supports

the intuition that black hole entropy should be independent of the exterior en-

vironments and implies that any equilibrium entropic force between black holes

generally vanishes.
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3. We also calculate an expansion of the non-uniform temperature for such black

holes and we find that this non-equilibrium temperature induces a non-equilibrium

entropic force between dynamical black holes. Our calculations of this non-

equilibrium entropic force are exact to the order computed and cannot be canceled

by higher-order contributions.

4. Replacing one of the black holes in a binary black hole scenario by a shell of

ordinary matter, we find that despite the spacetime metric outside the shell being

unchanged, the magnitude of the entropic force in this new scenario is different

from that in the binary black holes case. This comparison therefore proves that

the spacetime metric is insufficient to predict motion due to entropic effects. We

conclude that this entropic force cannot be encoded in the conventional Einstein

field equations of general relativity. So if it exists, it would be the first signature

of quantum gravity – beyond conventional general relativity.

5. Although the non-equilibrium entropic force is short range and comparatively

weak, we show that it should still have an in-principle observable effect on black

hole collision processes. For binary black holes that are twice the ‘Kissing radius’

away from each other, this effect would be roughly 1.03% shift in the peak chirp

frequency of gravitational radiation during the very final stage of coalescence.

6. String theory is the only theory that is consistent with both quantum mechanics

and gravity [68] but with no current experimental support. It fundamentally

supports the entropy-area law of black holes [20, 35, 51] and thus implies the

existence of the entropic force between black holes and any other gravitating

body. Therefore, the non-equilibrium entropic force proposed in this chapter also

provides a fresh way to test the string theory.

5.2 Critical analysis

In Chapter 2 we proved that the thermodynamic assumptions in Verlinde’s emergent

gravity program are inconsistent with Einstein’s general relativity. One implication of

this result is that Verlinde’s emergent gravity program must reassess its thermodynamic

assumptions. Because there is no one-to-one correspondence between Verlinde’s emergent

gravity program and general relativity, this program cannot directly inherit the achieve-

ments obtained by general relativity. However, the possibility of considering gravity as
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having an entropic origin is still very inspiring.

Our results in Chapter 3 also suggest that entropy should be a local property of the

horizon instead of the originally believed global property of a black hole, and thus the inte-

rior of a black hole may also have an independent entropy. Since no signal from the black

hole interior can escape, a temperature Tinterior = 0 with respect to an observer at spatial

infinity could be assigned to the interior of the black hole. Such an assignment means that

the first law would be unchanged by the addition of the vanishing term Tinterior δSinterior.

In that case, the entropy of the entire black hole becomes

Sblack hole = A

4 + Sinterior. (5.1)

Our analysis does not prove this relation, but it does show its consistency with black

hole thermodynamics. Of course, the presence of such an additional term would require a

wholesale reappraisal of black hole information bounds and paradoxes.

In Chapter 4, our canonical example of non-equilibrium entropic force consisted of a

long-chain molecule passing through a nanopore between a cooler and a warmer thermal

bath. The temperature difference between the baths allows one to sensitively control the

rate at which the molecule is driven through the nanopore. The non-equilibrium entropic

force in this scenario could be generalized to achieve the simultaneous controlled passage of

many molecular strands through parallel nanopores in a similar two-chamber setup, with

a variety of plausible applications. For example, such a highly parallel architecture might

be combined with electrically sensing an amino acid’s identity [58] at each nanopore exit

for high-throughput label-free amplification-free sequencing of biological macromolecules.

A key advantage of this approach is its power to overcome the bottleneck associated

with attaining sufficiently slow motion of a molecule through the nanopore for accurate

sensing [58].

In string theories of gravity, one convincingly finds that black hole horizons are truly

thermodynamic. One can pass from a thermal state to a black hole by smoothly changing

the string coupling [34]. Indeed, for supersymmetric and near-extremal string-theory black

holes one can even obtain the exact conventional area law [20,35,51]. Thus, by construc-

tion, string theories of gravity imply the existence of the entropic force which we have

demonstrated in Chapter 4 between black holes and any other gravitating body. Observa-

tion of this entropic force would not only provide further support for string theories, but

would also constitute the first signature of quantum gravity – beyond conventional general

relativity. Conversely, convincing evidence for an absence of such a force would not only
105



Chapter 5: Conclusions

imply a failure for the full thermodynamic analogy of black holes and spacetime horizons,

but would also convincingly refute one of string theories’ few emphatic predictions.

5.3 Future work

In the analysis of thermodynamics for dynamical black holes, we choose ξµ ≡ N T̂µ =

(1, βi) on the horizons and require that the diffeomorphic variation δξµ vanishes there.

This requirement implies that δβi = 0 which only holds for black holes with zero angular

momentum. Therefore this condition limits our analysis to non-rotating black holes. Since

astrophysical black holes have non-zero angular momentum, extending our analysis to

conditions where δξµ 6= 0 should be of keen future interest.

Except for this issue related to δξµ, to extend our analysis to dynamical spacetimes

with rotation, a covariant form for the ADM momentum and ADM angular momentum are

presumably also needed. Our preliminary calculations show that instead of transforming

the ADM momentum into a covariant expression, we may need to derive a covariant

energy-momentum expression from first principles. This will be one of our main future

research efforts.
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4. Non-equilibrium entropic forces: From molecular chains to black holes.

Zhi-Wei Wang & Samuel L. Braunstein.

In preparation.

3. Black hole mechanics for dynamical spacetimes

Zhi-Wei Wang & Samuel L. Braunstein.

Submitted.

2. Surfaces away from horizons are not thermodynamic

Zhi-Wei Wang & Samuel L. Braunstein.

Nature Communications 9, 2977 (2018).

1. Higher-dimensional performance of port-based teleportation

Zhi-Wei Wang & Samuel L. Braunstein.

Scientific Reports 6, 33004 (2016).
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