
Formal Specification of the
ARINC 653 Architecture Using

Circus

Artur Oliveira Gomes

Submitted for the degree of Master of Science by research

The University of York

Department of Computer Science

March 2012

To Lidiane and my parents.

Abstract

Nowadays, the avionics industry is moving towards the use of a new architecture for

aircraft systems called Integrated Modular Avionics (IMA), which consists of a distributed,

highly integrated platform, in which a variety of applications can be executed in the same

hardware. Standards and guidelines for the development of aircraft systems now provide

guidance for using formal methods during the development process of these systems. In

this dissertation we present an approach for using Circus as a formal language to model

and validate the IMA architecture focusing on temporal partitioning. We provide here an

overview of the IMA architecture, detailing its components and features. We also present

an overview of existing approaches on certification and verification of IMA systems. We

also present a brief survey of formal languages for the design of concurrent systems. Later,

we present a Circus model of three layers of components of the IMA architecture. It

comprises a model of the operating system layer, the application executive (APEX) layer

and the partitions layer. Moreover, we validate the Circus model by translating it into

CSP with time constructs and using the model checker FDR. Finally, we conclude this

dissertation with our plans for future work.

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Objectives . 7

1.3 Structure of the dissertation . 7

2 Background and Related Work 9

2.1 Integrated Modular Avionics . 9

2.1.1 Partitions . 11

2.1.2 Schedules . 12

2.1.3 Health Monitor . 13

2.1.4 Configuration Tables . 13

2.2 Certification and Verification of IMA systems 15

2.2.1 Certification Strategies . 15

2.2.2 Verification of Avionics Systems . 17

2.3 Formal Specification Languages . 18

2.4 Circus . 19

2.5 Final Considerations . 22

3 A Circus Model of the ARINC 653 Components 23

3.1 Common Types and Channels . 25

3.1.1 Types . 25

3.1.2 Channels . 28

3.2 Partitions . 28

3.3 The APEX . 33

3.4 The Operating System . 37

3.4.1 Configuration tables . 37

3.4.2 Circus process . 40

3.4.3 The System Timer . 45

3.4.4 The Module Level Health Monitor 46

3.5 Translating the Circus model into CSP . 48

3.5.1 Specification of the types for the Configuration Tables 49

3.5.2 Translation of the A653 Partition Circus process 49

3.5.3 Translation of Circus processes containing state 50

3.5.4 The Operating System process in CSP 51

8 CONTENTS

3.6 Validation of the model using FDR . 56

3.7 Final Considerations . 58

4 Conclusions 61

4.1 Summary and Contributions . 61

4.2 Future Work . 62

A A Circus Model of the ARINC 653 Components 65

A.1 Types . 65

A.1.1 Basic types definition . 65

A.1.2 Configuration Tables Data Structure 67

A.2 Circus Channels . 71

A.3 Partitions . 74

A.3.1 Channels . 74

A.3.2 Partition process . 74

A.3.3 The Partition Level Health Monitor 75

A.3.4 Partitions Layer Model . 76

A.4 The APEX . 76

A.4.1 APEX Process . 76

A.4.2 The APEX Health Monitor (Multi-Partition) 78

A.4.3 APEX Layer Model . 79

A.5 The Operating System . 79

A.5.1 The Operating System Circus process 79

A.5.2 The Timer . 83

A.5.3 The Operating System Health Monitor (Module) 83

A.5.4 The Operating System Layer Model 84

List of Figures

2.1 ARINC 653 module architecture [2] . 10

2.2 ARINC 653 - Interpartition communication example 12

2.3 ARINC 653 - Partition time window example [2] 13

2.4 ARINC 653 configuration tables structure [2] 14

3.1 ARINC 653 - Overview of the channels used in the Circus model of the

architecture . 23

3.2 ARINC 653 - Channels for the module state transition 28

Acknowledgements

I would like to start thanking my parents for all that they have given me and all that

they have sacrificed for me to chase my dream. Thanks to my parents for giving me

the opportunity to study abroad. For their continuous support and motivation, and for

making me feel safe and comfortable, even far away from home. I will be eternally grateful

to them.

Though it will not be enough to express my gratitude in words to my beloved fiancé,

Lidiane, for her courage, love, and care for me. After almost one year being physically

distant but emotionally present, she left her job and parents to come to England, just to

be close to me. And she came exactly when I needed her the most. We shared moments

that we’ll never forget.

I would also like to thank my supervisor, Dr. Ana Cavalcanti for continuous support

in developing my research project. Her insights helped me to grow as a researcher and

a person. Thanks to my examiner, Professor John Clark, whose suggestions helped me

improve my dissertation.

I would like to express my gratitude to my undergraduate research supervisor, Dr.

Marcel Oliveira, for introducing me to the formal methods. He helped me to grow as a

researcher for many years, and made me look beyond my limitations, always helping to

remind me how far I’ve come, and motivating me to go further and work harder than I

even thought I could. He taught me the basis of the technical knowledge needed in order

to produce the results presented in this thesis, and for that I’ll always be grateful to him.

Many thanks to André Freire, Alvaro Miyazawa, Sara Melo, Miguel Prôa and Pedro

Ribeiro, for being good friends. I’ll always remember the pleasant moments we shared

together. Special thanks to André Freire, for helping me since my arrival in York and

for being a very good friend since then. I would also like to thank Alvaro Miyazava,

for being patient and generous with his time in helping me with technical issues during

my research, and for all the time we spent together. Thanks for Mrs Filomena Ottaway,

formerly Research Study Administrator, for all her help and assistance, since the day of

my application to the Department of Computer Science, and for being a good friend since

then. Finally, many thanks to my workmates, Chris Marriott, Frank Zeyda, Kun, and

Alvaro, for the friendly and supportive work environment.

Author’s declaration

I hereby declare that the contents of this thesis are the result of my own original contri-

bution, except where otherwise stated.

Chapter 1

Introduction

Nowadays, the avionics industry is moving towards the use of a new architecture for

aircraft systems called Integrated Modular Avionics (IMA). This new architecture consists

of a distributed, highly integrated platform, in which a variety of applications can be

executed in the same hardware, promoting reductions of power requirements, weight and

costs of maintenance. Standards and guidelines for the development of aircraft systems

now provide guidance for using formal methods during the development process of these

systems.

In this dissertation, we present an approach for using formal methods, specifically,

Circus as a formal language to model the three top levels of the IMA architecture: the

operating system, the ARINC API module, known as the Application Executive (APEX),

and the partitions. We present here in this chapter the motivation and objectives of our

work.

1.1 Motivation

In the past decades, aircraft systems have been produced using a federated architecture.

By producing equipment using that architecture, airframers need to consider the produc-

tion of their own computer processor architecture, including hardware, connectors, and

operating system for that architecture, as well as the software for the specific avionic ap-

plications. The search for reduction of costs of production, weight and power consumption

has been a challenge.

In order to address those needs, the Integrated Modular Avionics (IMA) architecture

was proposed. The IMA architecture consists of a distributed system, where many aircraft

applications can be executed in the same hardware module, sharing computing resources,

communications and input and output devices.

The guidelines for the IMA architecture have been developed by Aeronautical Radio,

Incorporated (ARINC) [5]. Considerations for implementation of hardware and software

are split into dozens of sections, for example the ARINC 653 [2] document, presents the

components of the interface among IMA applications and the operating system. According

to the DO-178B document, one of the objectives of the verification process is to ensure

that the resulting software is in conformity with its requirement standards; for IMA, this

4 CHAPTER 1. INTRODUCTION

means the use of the ARINC standards.

An operating system is used to manage the access by the applications to the computing

resources, such as, processing unit, memory and sensors. The operating system of the IMA

architecture is designed in such a way to prevent, through the concept of partitioning,

direct communication among applications. It ensures that none of the partitions can

share the same memory area or processing time slice. A module, in accordance with

the ARINC standards, may have different architectural configurations with respect to the

number of applications running, scheduling for these applications and recovery actions in

case of failures.

Cook and Hunt discuss in [12] software reuse in Integrated Modular Avionics. They

suggest that if software can be re-used, it can reduce costs since existing software which

meets their certification requirements does not need to be verified again. This is relevant

if additional features are included in existing software, or if the certification requirements

have not changed and hardware upgrade is needed, or the application is to be implemented

in a different aircraft model. The ARINC 653 standard addresses software reuse to reduce

the verification and validation effort using the concept of partitioning. This work is a

motivation for our approach, as we propose here a specification and validation of fixed

components of the IMA architecture: the components will be validated only once.

There are many works on certification aiming at reliability and safety of IMA appli-

cations. For example, in [28], Hollow et al. discuss certification issues regarding multi-

ple possible architectural configurations of IMA modules. They present a strategy that

consists in identifying key components of different IMA configurations and establishing

equivalence between them. Our work is independent of the architectural configuration of

the module: following the ARINC standards, our models specify that the execution of any

two partitions can not overlap each other, according to its predefined scheduling.

The increasing use of computing software in modern aircraft for the past thirty years

has motivated regulatory authorities to produce standards and guidelines to be used by air-

craft system developers in order to achieve airworthiness certificates. The Radio Technical

Commission for Aeronautics (RTCA) published the Software Considerations in Airborne

Systems and Equipment Certification (DO-178) [1], providing guidelines for the develop-

ment and verification of software of different criticality levels.

According to the DO-178B, software verification is one of the main steps during the

software development process. The software verification process aims at ensuring that

defined system requirements, such as functional and safety requirements, are met in the

produced source code. At the moment of its release, in 1992, the DO-178B defined the

concepts of verification as reviews, analysis and tests. As the use of formal methods and

existing tools was relatively small, it suggested that they can be used in combination with

tests.

In the past ten years, formal methods and its tools have already reached a level of

maturity to make it possible for them to be applied in industrial scale critical software. For

example, Airbus researchers have been using formal methods to analyse their programs [61]

where tools such as Caveat are used to perform fully automatic data and control flow

1.1. MOTIVATION 5

analysis and prove user-specified properties from C programs.

The use of formal methods in industry is a new trend, and as a consequence of its

acceptance, RTCA has recently released a draft of the forthcoming DO-178C document,

providing guidance for using formal methods to be applied during the software life cycle.

The use of formal methods, according to DO-178C, can include the development of formal

models, using some formal notation, and reasoning about these models, referred in the

document as formal analysis. Moreover, the development and use of tools for formal

verification is recommended by DO-178C.

In order to formally verify systems, we first need to produce a formal specification

of it, in which we can describe the system and its desired properties, for example, the

behavioural and timing properties of the system. A formal specification is designed using

specification languages, where systems are described in a higher level than any program-

ming language. Specification languages syntax and semantics are defined with a strong

mathematical background.

Data aspects of the system can be modeled using state-based languages, such as Z [64],

B [3] and VDM [20]. However, state-based languages can not be conveniently used to

model behavioural aspects of the system, such as communication between components.

The consistency of specifications using the mentioned languages can be validated through

theorem proving and model checking. For example, specifications in Z can be validated

using the theorem prover ProofPower-Z [32] and Symbolic Analysis Laboratory (SAL) [60].

Moreover, we are also able to verify specifications in the mentioned languages through

refinement.

Behavioural aspects of a system can be described by using languages such as CSP

(Communicating Sequential Processes) [27, 49] and CCS (Calculus of Communicating

System) [37]. These languages allow us to describe interactions, communications and

synchronisation between processes. But by using languages such as CSP and CCS, the

description of complex data aspects of the system becomes inconvenient.

As we intend to specify complex systems, in which it is necessary to describe both data

and behavioural aspects, we need to look for a formalism that combines both aspects and

allow us to reason about such systems. We can overcome this problem with the help of

combinations of the above presented languages. For instance, B and CSP are integrated

in [63, 6]. Z combined with CCS is presented in [21, 62]. Its combination with CSP is

considered in [39, 50]. Woodcock and Cavalcanti define Circus [65], which is a formalism

that combines not only Z, CSP, but also Morgan’s refinement calculus [38] and Dijkstra’s

language of guarded commands [16]. Its semantics is defined using the Unifying Theories

of Programming [26]. In addition, the description of timing properties of the specification

can be modelled by using Circus Time [55]. Moreover a refinement calculus for Circus is

presented in [42] with tool support [66] using ProofPower-Z [32].

By using Circus, we can profit from its support for concurrent systems, which is one of

the characteristics of IMA programs. We can benefit from the use of the Circus refinement

calculus to model a system at different abstraction levels, and, by using its refinement laws,

verify the consistency of the different refinement levels with the help of formal proofs.

6 CHAPTER 1. INTRODUCTION

In the context of Integrated Modular Avionics, there are some works in which formal

methods are used for the verification of IMA components. For example, Delange et al. [14],

focus on the verification of elements of the ARINC 653 architecture, such as the set of

operating system services available for the applications through the APEX, which is an

application programming interface (API) that offers services from the operating system to

the partitions and is defined as a layer between the operating system and the partitions.

After formal verification of the aspects of the designed architecture, the approach allows

code generation, including the implementation of the APEX services. The generated code

of the components of the architecture is compiled together with externally generated IMA

application source code. The binaries are simulated in POK, an in-house produced runtime

system.

A different approach is suggested in [22], where a modelling framework for IMA appli-

cations called MIMAD, using the synchronous language SIGNAL and the POLYCHRONY

toolset, is proposed. The framework consists of a set of tools, such as, an interface for

software design, a code generator from the SIGNAL specification, compiler, formal verifi-

cation tools and model checker. The interface for software design allows the user to model

ARINC 653 processes contained within a partition. The overall goal of the toolset is to

provide a high-level abstraction in system design; designers use the MIMAD notation.

An approach for the verification of spatial partitioning for IMA applications is pre-

sented by Di Vito [15] where noninterference models are adopted. The main goal of this

work is to analyse how applications originally designed for a federated architecture behave

when migrated into the integrated architecture. The intention is to rule out any observ-

able behaviour of the system in the integrated architecture that can not be reproduced

in the federated architecture. The verification of the models is performed using Proto-

type Verification System (PVS) with theorem proving support for a few different scenarios

as examples. The approach is very relevant; however, it covers only memory aspects of

partitioning for the IMA architecture.

In this dissertation we present a formal specification and validation of the three top

layers of the IMA architecture using Circus. It comprises the operating system, the Appli-

cation Executive (APEX) and the partitions allocated to execute within the IMA module.

This work differs from the literature since we aim at formal modelling of the com-

ponents of the architecture, focusing on capturing temporal partitioning of IMA: timing

properties of the architecture for scheduling the execution of the partitions according to

the ARINC 653 standards document.

The internal execution of the tasks within a partition, ARINC processes, is not cap-

tured in our model. We capture the behaviour of the system in which partitions can

request the use of the APEX services regardless from which ARINC process the request

was originated. Moreover, our model captures the data aspects of the configuration tables,

as specified in the ARINC 653 document, in which the number of partitions, predefined

partition scheduling and recovery actions are specified.

1.2. OBJECTIVES 7

1.2 Objectives

Our main goal in this dissertation is to formally specify and validate the three top levels

of the IMA module; we capture the basic services offered by the operating system of an

IMA module, as specified in the ARINC 653 document. Our model covers the interactions

between the operating system and IMA applications, which are allocated into partitions

within a hardware module. Scheduling capabilities of the ARINC 653 are modelled using

Circus Time constructs.

Some requirements of the IMA programs, such as memory space and processing time,

are listed in the configuration tables. These tables are produced by the system integrator.

In our work, we do not focus on memory requirements of the applications, but only time.

To validate our Circus model of the IMA architecture we use FDR [30]. We produce a

CSP model of our Circus Time model, and then, check some properties of our model such

as deadlock-freedom and livelock-freedom. As the CSP language itself does not support

timed processes, we use approaches that allow us to include time constructs from our

Circus Time model into CSP.

The contribution of this work is to have a formal model of the IMA architecture in

which the interactions between the IMA application and the operating system, managed

through the services of the Application Executive (APEX), are available for a single IMA

application at the same time. Using Circus Time constructs, we are able to specify the

behaviour of the operating system, which uses time to determine whether or not each of

the partitions of the module are going to execute, according to the scheduling table defined

in the configuration tables. We also can prevent two partitions overlapping each other,

with respect to the temporal partitioning, with Circus Time constructs such as timeouts

and interrupts.

The work presented here is relevant since we make use of formal methods in order to

describe a critical system that involves time management during its execution. We aim

at providing a formal model, in conformity with the ARINC 653 standards document,

in which its behaviour is modelled in such a way that allows us to capture the temporal

partitioning properties of the system. The model to be presented in the following chapters

supports different configuration of IMA modules since we describe the architecture in

Circus, including the data structure of the configuration tables.

1.3 Structure of the dissertation

In Chapter 2 we present the Integrated Modular Avionics architecture, describing the

components of the architecture. Moreover, we also present the characteristics and restric-

tions of the ARINC 653 specification. We also review related approaches of verification

of IMA and discuss similarities and open problems. We conclude Chapter 2 presenting an

overview of Circus providing an example of a specification in that language.

In Chapter 3 we present how we formalise the IMA architecture and available services

in Circus Time, based on the ARINC 653 specification. We define a Circus Time process

for each level of the architecture: the operating system, the APEX and the partitions. We

8 CHAPTER 1. INTRODUCTION

also present how we model the interaction between each components of the architecture

and how the execution of the partitions is managed by the operating system during the

lifetime of the module.

The translation from Circus Time to CSP is presented in the Chapter 4, along with

the decisions made in order to represent the equivalent model in CSP which includes the

state variables of the Circus Time processes.

Chapter 5 closes this dissertation with conclusions and lessons learned. Moreover, we

briefly discuss possible directions to future contributions from the current stage of this

work. For instance, we present some steps towards the model generation strategy from

IMA programs to Circus.

Chapter 2

Background and Related Work

In the past few years, management software for commercial aircraft has been developed

to be executed under dedicated hardware, usually based on the use of a federated archi-

tecture. The use of such architecture avoids error propagation: each component of the

airframe, such as aircraft engine controller and autopilot, is executed in its own module

and the interaction with other modules is very restricted. On the other hand, some of

the consequences of using federated architecture are the high amount of redundant hard-

ware, cables, and high power consumption. Moreover, it is likely that the replacement

or upgrade of obsolete software may become difficult and expensive over the years. This

became a motivation for aircraft producers to move towards an architecture where sev-

eral applications are able to run under the same hardware module, sharing its computing

resources. This new architecture is known as Integrated Modular Avionics (IMA).

In this chapter we present the components of the IMA architecture along with a sur-

vey of approaches for certification of avionics systems as well as formal languages and

verification approaches.

2.1 Integrated Modular Avionics

The IMA architecture is motivated by the possibility of providing a higher integration

between programs used for controlling aircraft equipments. The idea is to have a dis-

tributed, flexible and reusable architecture, where applications of different criticalities can

be executed concurrently in the same module.

Instead of having multiple processing units, where each one is allocated in one module

and executes a specific task, the IMA architecture uses an operating system to manage

the execution of applications running in a same IMA module. In the commercial aircraft

industry, the IMA architecture has been designed in accordance to the ARINC standards.

The advantages of the adoption of the IMA architecture are the reduction of hardware

components and cabling, and weight, as well as power consumption. It is possible since

the IMA programs run in the same equipment, sharing resources, and reducing the time

used for communications between the applications. Communications between applications

running within the same module are managed by the operating system, reducing consid-

erably the time and wires used. Moreover, communications between modules, displays,

10 CHAPTER 2. BACKGROUND AND RELATED WORK

sensors and actuators are carried out within the components by a common bus.

The architecture is organised in levels, from hardware to software, with an operating

system, as illustrated in Fig. 2.1. That feature allows the hardware designer to pro-

duce their equipment without taking into account how the designed software behaves in

its equipment. On the other hand, the IMA architecture allows software developers to

freely produce their applications, according to the ARINC 653 standards, regardless of

the hardware equipment it will run into. Moreover, the structure of the IMA architecture

allows aircraft producers to use commercial off-the-shelf components, avoiding obsoles-

cence. Thus, any replacement or upgrade of both hardware and software can happen

independently from each other, reducing costs of maintenance.

Figure 2.1: ARINC 653 module architecture [2]

The key feature to avoid fault propagation is the concept of partitioning: each ap-

plication executed in an IMA module is allocated into a partition. In IMA, partitions

are isolated from each other by using the concept of temporal and spatial partitioning.

Temporal partitioning means that each partition has a slice of time dedicated to execute

its computations and communications, according to the requirements of the application

allocated in the partition. Likewise, spatial partitioning provides a dedicated portion of

the module memory for each partition.

In order to allow the IMA applications to run simultaneously in the same module,

basic services are provided by an application programming interface between the operating

system and the partitions, known as Application Executive (APEX). These services allow

each partition to manage its own tasks, ARINC 653 processes, as well as communicate

with the other partitions through requests to the operating system via the APEX services.

Errors and failures detected during the IMA module execution are managed by the

health monitor, which is able to provide the correct recovery action for such problems.

The health monitor can distinguish the recovery action depending on the kind of effect

that the error can cause within the module, acting either within the executing partition

boundaries or within the entire module.

In order to establish the time and memory boundaries of each partition to be executed

within an ARINC 653 module, a configuration table for each particular set of partitions

is defined by the system integrator. A configuration table is defined for each module and

2.1. INTEGRATED MODULAR AVIONICS 11

depends on the number of partitions to be executed and their particular requirements, such

as time and memory space. Moreover, the configuration tables also contain the schedule

of the partitions execution, based on the requirements of each partition.

In the next subsections we describe in detail the concepts of partitions, scheduling,

health monitor and the configuration tables.

2.1.1 Partitions

Each partition has a set of fixed attributes such as name and identifier. A portion of

the total memory space of the module is dedicated to each partition. Each partition has

access to the resources available in the module for a predefined amount of time, according

to the schedule in the configuration tables. Moreover, the ARINC 653 defines services

for communication within a partition, between the partitions within the module, and also

between partitions allocated in different modules.

Processes

A partition contains one or more ARINC 653 processes, which may operate concurrently

in order to execute the functionalities of its partition. Processes are created and initialised

during the partition initialisation. In a partition restart, the processes are recreated, since

the partition starts again with the initialisation phase. Partitions are able to restart one or

more of its processes. Moreover, a partition may be able to respond to faults and failures

of a process, by restarting or terminating such processes according to the rules defined by

the health monitor in the partition level.

In order to solve an ambiguity problem, we use the convention that when we mention

a process in this dissertation, we are referring to an ARINC 653 process. However, as we

are specifying the ARINC 653 architecture using Circus, which also uses the term process,

we hereafter refer to these as Circus processes.

Each process of a partition has its own name, entry point (which is a memory address

of the memory portion allocated to the partition), as well as a portion of the total time

dedicated to the partition to be executed. Moreover, each process has a period of execution,

deadline, and priority of execution. As the partition has a scheduling policy to execute the

processes, each process can be in a number of different states: dormant, ready, running and

waiting. A process inside a partition is not visible outside the partition. The behaviour of

the process is managed by its partition. The management of a process inside a partition

is made using the APEX services.

Some of the attributes of a process, such as name, period and entry point are statically

defined, and therefore cannot be changed after the partition initialisation. Differently

from the fixed attributes, variable attributes, such as process state, may change during

the execution of the processes in the partition via the APEX services requests.

Partition Communication

The communication between partitions, referred in the ARINC 653 specification as inter-

partition communication, is made using messages. Messages are sent from one source to

12 CHAPTER 2. BACKGROUND AND RELATED WORK

one or more destinations. Message transmission is atomic: a partial message is not deliv-

ered to the destination. As illustrated in Fig. 2.2, interpartition communication allows the

exchange of messages between partitions within the same ARINC 653 module, between

different ARINC 653 modules, and with other non-ARINC 653 modules.

Figure 2.2: ARINC 653 - Interpartition communication example

Each partition has its own port, responsible for sending and receiving messages. A port

using sampling mode is usually used to send and receive the same message with updated

data. In this mode, a message to be sent remains in the port until it is overwritten by

a new occurrence of the message. Similarly, a received message remains in the port until

a new message is received, being replaced by the newer message. Differently from the

sampling mode, the queueing mode uses a queueing policy for transmitting messages. In

this mode, no message is replaced, preventing loss of data. Messages are buffered in a

queue and are transmitted according to a FIFO order.

The operating system has records of each port associated with the partitions. More-

over, all communication between partitions is made through requests to the APEX services.

2.1.2 Schedules

Each partition in the module has access to one of the processors within a time window.

A time window is a portion of the major time frame, the length of the cycle, which is

the time required to process requests from all partitions in the module. As the execution

of all partitions is cyclic, after executing all processes within the major time frame, the

scheduler of the operating system starts a new cycle with the execution of the partition

allocated to its first time window.

For each partition, the time window offset is the delay between the beginnings of the

major time frame until the execution of the partition. Moreover, if the execution of a

partition is periodic, the period is the time between the initial moment of the execution

of the first occurrence until the initial moment of the next execution of the partition.

Finally, a spare time occurs when no partitions are executing, for example, if the next

partition to be executed is periodic and there is still a delay until its execution. Fig. 2.3

gives an example of the order of execution of three partitions, Partitions A, Partition B

and Partition C, where both Partition B and Partition C are executed twice within the

major time frame. After the second execution of Partition C, the scheduler starts again

2.1. INTEGRATED MODULAR AVIONICS 13

the execution of Partition A.

The schedule of partition execution is defined in the configuration tables, in which the

system integrator defines the required amount of time for each partition and the order of

execution based on the requirements of each application allocated into a partition.

Figure 2.3: ARINC 653 - Partition time window example [2]

2.1.3 Health Monitor

The health monitor is an essential mechanism used in the ARINC 653 module. It is

responsible for handling errors and failures raised during the execution of the module. A

set of recovery actions is defined in the configuration tables. There are three different

levels of health monitor within a module: module, multi-partition, and partition.

In the module level, the health monitor manages the errors regarding the execution

of the module itself, when the error raised is not related to the partition currently being

executed. The health monitor can decide whether or not the module should be reinitialised,

switched off, or if the error must be ignored.

In the multi-partition level, the set of recovery actions are used to decide whether

or not the partition in execution can compromise the module. In this level, the health

monitor can decide if the decision taken affects only the partition or the module.

Finally, the partition level health monitor responds to errors specific to the execution

of processes within a partition. Raised errors can lead the health monitor to reinitialise

the partition or set it to idle.

2.1.4 Configuration Tables

The configuration tables are an essential feature of the ARINC 653 module: they are

used for describing the structure of the module. The ARINC 653 standard specifies that

configuration tables are described using Extensible Markup Language (XML) schemas.

These tables are produced by the system integrator, which is responsible for collecting the

requirements of each partition allocated within the module and to provide means for their

execution, such as a schedule of partition execution with the required amount of time for

each partition. Any particular set of applications may be executed in any ARINC 653

14 CHAPTER 2. BACKGROUND AND RELATED WORK

module, once the requirements for its execution are predefined in the configuration tables.

Figure 2.4: ARINC 653 configuration tables structure [2]

The configuration tables are split in three blocks, as illustrated in Fig. 2.4. As an

ARINC 653 module can have more than one allocated partition, the section Partition (in

green) provides information about the requirements of each partition within the module,

such as time and memory requirements. Moreover, the requirements for communication

between partitions, such as port type, message size, and the name of the ports for each

partition are also provided in the Partition section of the configuration tables. The section

Schedules (in yellow) provides the correct order of execution of the partitions within the

module. Finally, the errors and recovery actions performed by the health monitor are also

provided in the section HealthMonitor (in blue).

An example of an XML configuration table is illustrated below. In this example,

a single partition systemManagement is allocated within the module, with two memory

regions and a single communication port. The schedule of the module is defined by a single

partition, the systemManagement partition with a time window of 2 × 107 nanoseconds

(0.02 seconds). Moreover, the health monitor section of the configuration table example

contains the set of recovery actions of the three levels presented in Section 2.1.4, in case

a system error is raised during the execution of the module.

2.2. CERTIFICATION AND VERIFICATION OF IMA SYSTEMS 15

<ar: MODULE Name=" ARINC 653 Module" xsi: schemaLocation=" ARINC653 ModuleExample. xsd"

xmlns: ar=" ARINC653" xmlns: xsi=" http:// www. w3. org/2001/ XMLSchema- instance">

<ar: Partitions>

<ar: Partition>

<ar: PartitionDefinition Name=" systemManagement" Identifier="1"/>

<ar: PartitionPeriodicity Duration="20000000" Period="20000000"/>

<ar: MemoryRegions>

<ar: MemoryRegion Type=" RAM" Size="1048576" Name=" mainMemory" AccessRights=" READ_WRITE"/>

<ar: MemoryRegion Type=" Flash" Size="524288" Name=" Flash" AccessRights=" READ_ONLY"/>

</ ar: MemoryRegions>

<ar: PartitionPorts>

<ar: PartitionPort>

<ar: QueuingPort MaxMessageSize="30" Name=" Stat_2Dq" MaxNbMessage="30" Direction=" DESTINATION"/>

</ ar: PartitionPort>

</ ar: PartitionPorts>

</ ar: Partition>

<ar: Schedules>

<ar: PartitionTimeWindow PeriodicProcessingStart=" false" Duration="20000000"

PartitionNameRef=" systemManagement" Offset="0"/>

</ ar: Schedules>

<ar: HealthMonitoring>

<ar: SystemErrors>

<ar: SystemError ErrorIdentifier="5" Description=" segmentation error"/>

</ ar: SystemErrors>

<ar: ModuleHM StateIdentifier="2" Description=" system function execution">

<ar: ErrorAction ErrorIdentifierRef="5" ModuleRecoveryAction=" SHUTDOWN"/>

</ ar: ModuleHM>

<ar: MultiPartitionHM TableName=" System partitions HM table">

<ar: ErrorAction ErrorIdentifierRef="5" ErrorLevel=" PARTITION" />

</ ar: MultiPartitionHM>

<ar: PartitionHM MultiPartitionHMTableNameRef=" System partitions HM table" TableName=" systemManagement HM table">

<ar: ErrorAction ErrorIdentifierRef="5" PartitionRecoveryAction=" IDLE"

ErrorLevel=" PROCESS" ErrorCode=" MEMORY_VIOLATION" />

</ ar: PartitionHM>

</ ar: HealthMonitoring>

</ ar: MODULE>

Listing 2.1: Example of an ARINC 653 XML configuration table

2.2 Certification and Verification of IMA systems

In this section we first give an overview of works on certification aiming at reliability and

safety of IMA applications. Then, we focus on some works related to the application of

formal methods in aircraft systems, especially, those works related to formal verification

of IMA systems.

2.2.1 Certification Strategies

A first example of approaches to certification is presented in [11], where Comny et al.

present an approach for the development of safety assurance contracts. The analysis

starts with the identification of safety dependencies between components and the analysis

of the impact to the system, caused by failures in one of these components. Then, the

development for a contract for each derived safety requirement is made. A contract is

based on a set of rules (preconditions, postconditions, and rely and guarantee conditions)

between a server and its clients. The contract development process consist in the analysis

of how a component meets its derived safety requirements, which can be performed at

four levels, ranging from high-level requirements to a more detailed level such as syntactic,

performance or reliability requirements. Among those levels, architectural and behavioural

requirements can also be analysed.

16 CHAPTER 2. BACKGROUND AND RELATED WORK

Another approach for the development of safety cases for certification of avionics sys-

tems is presented in [41]. The goal is to define a method capable of identifying changes

in modular applications, in order to facilitate the process of recertification. A way of

constructing a safety case for certification is presented, where some aspects of the mod-

ification of the application should be analysed. Among these aspects, it is important to

analyse if the modified (or new) element conforms with the design rules and API usage

criteria for ARINC 653 applications; identify the impact of the modification (or inclusion)

of the element in the system; and provide arguments for the certification authorities, such

as potential safety implications, and evidence of testing to ensure that the modification

does not affect any other application, and any incorrect operation inside the modified ap-

plication is detected during the initialisation stage. This work adopts the goal structuring

notation (GSN) as a way to provide arguments for the certification. As an example in

this paper, the GSN structure is used to achieve evidence to the certification of timing

characteristics of the integrated modular system.

Another approach for modular certification is presented in [18], where Fenn et al.

argues about modular and incremental certification to be applied in aerospace software

development. The use of modular and incremental certification is justified by the costs of

recertification of changes made. Some steps in order to achieve modular and incremental

certification are presented, such as identifying change scenarios (either functional or op-

erational) and identifying dependency-guarantee relationships and dependency-guarantee

contracts in order to identify the relations between software elements. Determination of

whether a system should be certified using the presented approaches requires aspects such

as modularity, degreee of software reuse and level of system complexity to be considered.

These criteria should be used to identify whether or not a system should be certified us-

ing the presented methods. Moreover, modular certification should be applied during the

entire lifetime of legacy systems, specifically when changes are made to these kinds of

applications.

Modular certification is also discussed in [53]. Rushby presents an approach which

consists in certifying modularised systems not considering the set of all functions as a

whole, but to certify the system considering the properties of each functionality in iso-

lation. However, as the system presents interaction between modules and some of those

modules depend on other ones, this certification approach should include assumptions of

the related modules during the certification of a given module, by using assume-guarantee

reasoning. Assume-guarantee reasoning is used for certification instead of its original

context, verification.

A strategy of certification of reconfigurable IMA systems is presented in [28]. It is

justified by the need to reduce costs of certification. The strategy aims to identify a set

of different IMA configurations which can be equivalent, requiring certification of only a

single key member of that set. This work differs from ours as we define and validate a

unique model of the architecture, independently from the configuration tables, instead of

possible architectural configurations.

All the above presented works rely on certification approaches focusing on the analysis

2.2. CERTIFICATION AND VERIFICATION OF IMA SYSTEMS 17

of safety requirements. However, software certification does not prove that the system is

correct. It only guarantees that the software is in conformance with the standards set

by the certification agency. Moreover, we can not analyse whether or not the behaviour

of the system meets its specification requirements with certification methodologies. It is,

however, possible using formal methods, in which we can analyse the behaviour of the

whole system and also the interactions between its components.

In the next subsection we present some verification approaches of avionics systems.

2.2.2 Verification of Avionics Systems

In [22], the Modelling Paradigm for Integrated Modular Avionics Design (MIMAD), a

framework for developing IMA applications is presented. It uses the synchronous language

SIGNAL [23] and the POLYCHRONY [25] toolset with features like code generation,

compiler, formal verification and model checking. However the approach lacks validation of

safety properties. The framework includes a graphical user interface which allows the user

to easily design IMA applications. Moreover, the concepts of modularity and reusability

are present in this work, allowing the reuse of generated models in other contexts. The

overall goal of the toolset is to provide a high-level abstraction in system design.

However, the work presented in [22] focuses on modelling only the components of

the partition level of the architecture, managing how partitions can access to the APEX

services. Differently, in our work, we model the three top levels of the IMA architecture,

as illustrated in Fig. 2.1, and focus on temporal partitioning. With temporal partitioning,

we model how the operating system manages the execution of partitions with respect to

the time slice dedicated to each partition. As a consequence, we can capture how the

operating system allows each of the partitions to have access to the APEX services and

perform its internal calculations.

The Architecture Analysis and Design language (AADL) is used by Delange et al.

in [13] to design ARINC architectures including hardware description. Their models are

verified using Real Time Scheduling theory instead of formal methods, focusing on schedul-

ing simulations with support of the Cheddar toolset [29]. Code generation of AADL models

is also provided in [13]. The code generated from the AADL model is split in two layers:

module and partition. The former provides services related to partition management such

as scheduling and interpartition communication, while the latter provides services to the

ARINC 653 process management, such as interpartition communication and memory allo-

cation. The generated code from the AADL model of the architecture is compiled together

with provided IMA-application source code resulting in binaries files to be executed using

the AADL runtime system, POK. The executed binaries are analysed in terms of time

isolation and memory constraints. In our approach, the model of the IMA architecture is

validated only once.

Moreover, in [14], Delange et al. validates the ARINC 653 architecture using theo-

rems written in Requirements Enforcement Analysis Language (REAL) [52]. With these

theorems, they can verify ARINC constraints such as time and memory isolation and also

fault coverage.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

However, none of the above presented works has presented a formal specification of the

IMA architecture that captures the configuration tables data for partitioning management,

partitioning scheduling and handling errors.

An approach for the verification of spatial partitioning for IMA applications is pre-

sented by Di Vito [15], where noninterference models are adopted. The main goal of this

work is to analyse how applications originally designed for federated architecture behaves

when migrated into the integrated architecture. The intention is to rule out any observ-

able behaviour of the system in the integrated architecture that can not be reproduced in

the federated architecture. The verification of the models are performed using Prototype

Verification System (PVS) [43] with theorem proving support for a few different scenarios

as examples. The approach is related to ours; however, it covers only memory aspects of

partitioning for the IMA architecture. However, in our work we focus on temporal aspects

of the concept of partitioning for IMA.

Comparing the above presented approaches with the work presented in this disserta-

tion, we do not capture the internal behaviour of the partitions. What we present here

is a formal model of the IMA architecture in which partitions are executed according to

a schedule and, for each partition in its execution period; a number of services are made

available from the Application Executive (APEX). Modelling ARINC 653 processes, pro-

cess scheduling, intra-partition communication as well as the APEX services for these

features, is to be part of our future work.

2.3 Formal Specification Languages

In this dissertation we present a formal specification of the IMA architecture, according to

the ARINC 653 standards. We present in this section an overview of the existing formal

languages and possibilities of reasoning techniques.

State-based languages, such as Z [64], B [3] and VDM [20], are used to model data as-

pects of the system. By using these languages, we can provide a mathematical description

of systems, using, for example, set theory, first-order logic and lambda calculus. On the

other hand, to model behavioural aspects of the system, such as communication between

components, using state-based languages becomes inconvenient.

The consistency of state-based specifications can be validated through theorem proving

and model checking. State-based verification through refinement is possible for the men-

tioned languages. A refinement calculus for Z, based on Morgan’s work [38], is presented

in [9]. Reasoning about the Z specification can be made through theorem proving [32, 54].

The B-method allows the system development through refinement [45], with tool support

provided by the B-toolkit [47]. Moreover, proofs obligations regarding refinement can be

discharged using a theorem prover, such as Atelier B [10]. Refinement of VDM specifi-

cations are presented in [40, 34]. For instance, in [34], VDM specifications are manually

translated to PVS [44].

With the help of languages such as CSP (Communicating Sequential Processes) [27, 49]

and CCS (Calculus of Communicating System) [37], we can describe interactions, com-

munications, and synchronisation between processes. Notions of refinement are presented

2.4. CIRCUS 19

in [49] and are supported by a model-checking tool FDR [30]. Moreover, animators such as

ProBE [31] are also available for CSP specifications. However, differently from state-based

languages, the description of data aspects of the system with the languages mentioned

above becomes inconvenient.

As we aim at verifying complex systems, it is unlikely that we can capture both data

and behavioural aspects of the system with the above presented formalisms in isolation.

We thus need a formalism that can be used to write models that combine both aspects

and allows us to prove the refinement of such systems.

Many formalisms have been combined in order to overcome this problem. For instance,

combinations of Object-Z [17], an extension of Z that includes notions of object-orientation,

with CSP are presented in [58, 19, 33]. A refinement method for [58] is presented in [59].

Mahony et al. merges Object-Z with timed CSP in [35]. B and CSP are integrated

in [63, 6]. Z combined with CSP is presented in [39, 50]. Moreover, its combination with

CCS is presented in [21, 62].

Woodcock and Cavalcanti define Circus [65], which is a formalism that combines not

only Z, CSP, but also Morgan’s refinement calculus [38] and Dijkstra’s language of guarded

commands [16]. Its semantics is defined based on the Unifying Theories of Program-

ming [26]. Moreover a refinement calculus for Circus is presented in [42] with tool sup-

port [66] using ProofPower-Z [32]. An extension of Circus for specifying timing aspects of

systems, Circus Time, is presented in [57, 56].

By using Circus we are able to model the IMA architecture, which allows us to model

the data aspects of the architecture with using the notion of state, and also we can specify

the complex behaviour of the architecture, including Circus Time constructs for scheduling

of ARINC partitions. Moreover, we are also able to capture concurrency between the

ARINC partitions, modelled as Circus processes, in parallel between each other. It is also

important to mention that it is possible to use the Circus refinement calculus [42] in order

to prove the refinement between the abstract and more concrete Circus models of systems.

2.4 Circus

We present in this section a brief overview of the components of the Circus notation. We

also provide an example of a small specification in Circus along with the description of

each component.

Circus allows us to specify concurrent systems including data and behavioural aspects.

As Circus is a combination of Z and CSP, a Circus model consists of a sequence of Z

paragraphs, such as schemas and axiomatic definitions, channels, channel sets declarations

and process definitions. A Circus process is composed a state paragraph, a list of actions,

and is concluded by the main action of the process. An action can be a schema expression,

a command, a call to another previously defined action or a combination of actions using

CSP operators such as choice and parallel composition.

We detail the structure of a Circus process with the example of a specification of Ping,

a computing network service, which calculates the amount of time necessary to send a

message to a server and receive a confirmation. The result of the service is a sequence

20 CHAPTER 2. BACKGROUND AND RELATED WORK

of messages stating whether or not the server has responded to the request, and in case

of response, the service can tell the length between the request and the answer. We

first define two types used in the specification of the Ping Circus process. The first one

IP ADDR is an abstract type denoting the IP address of the requested server. Then, we

define the type RESPONSE , which can be either RESP for a response from the server or

a TIMEOUT if the server does not answer within 1000 milliseconds.

[IP ADDR]

RESPONSE ::= RESP | TIMEOUT

We also define a few communication channels for the Circus process Ping : send data and

receive data are used to communicate with the server, sending and receiving the data

for the request; the channel tick denotes the passage of time; and display resp outputs

a sequence containing the result of the request, stating whether each ping request had a

reply or a timeout.

channel send data, receive data : IP ADDR

channel tick

channel display resp : RESPONSE × N

The structure of a Circus process is defined as follows. It has a process name and a

sequence of paragraphs delimited by begin and end. Depending on the Circus process, it

can have parameters, such as the ip variable of the Circus process Ping illustrated below.

process Ping =̂ ip : IP ADDR • begin

The process may contain a state, and a sequence of Circus actions, and is concluded with

the main action of the Circus process, preceded by a ‘•’symbol. In this example, we present

the state PingSt , which contains two components: the maximal number of ping requests

is stored in max rep; and the number of requests already performed within the execution

of the process is stored in counter .

state PingSt == [max rep : N; counter : N]

We initialise the state with the Circus action InitSt , in which the initial value for max rep

is 4, and the counter is initially set to 0.

InitSt =̂ max rep, counter := 4, 0

The Circus action Send starts the Ping request by sending a signal to the address ip via

the channel send data. Then, the signal tick marks that one time unit is elapsed and

finally the action ends by executing the Receive Circus action with the parameter set to 1,

meaning that one time unit has elapsed since the request for the server ip.

Send =̂ send data!ip −→ tick −→ Receive(1)

2.4. CIRCUS 21

Next, the Receive Circus action, which has an input variable, time, is defined as an external

choice between (1) a received signal from the server ip, and then it displays the time of

the received message, or (2) a signal tick , meaning that time is passing with no answer

from ip and ending with a recursion of Receive with the value of time incremented by one

time unit.

Receive =̂ time : N •(
receive data?ip −→ display resp!(REC , time)−→ counter := counter + 1

@tick −→ Receive(time + 1)

)

We define the behaviour of the Ping requests by defining the Circus action, Run which is a

recursion. We formalise a recursion in Circus by using the constructs µX • P ; X , where P

is the action being executed. Two behaviours are expected during the recursion, which are

specified in an if P −→Q 8R−→ S fi predicate: if P is satisfied, then the action behaves

like Q ; otherwise, if R is satisfied, then it behaves like S . The behaviours expected in

the Run process are the following. (1) If the number of requests has not been reached,

counter < max rep, the Send Circus action is executed with a maximum execution time

of 1000 time units , and will be timed out after reaching this interval (
1000

⊲). Then, after

the timeout of the Send action, the Run Circus action checks if the size of the sequence

req packets is equal to the number of ping requests. If the size of req packets is less than

counter , then, it means that the server ip has not answered the request before the timeout

and thus the component req packet component is concatenated with another element of

the sequence, which states that there was no answer from the server, and the counter

component is incremented by one unit. However, if the size of the sequence req packet is

equal to counter , it means that there has been an answer from ip, and then, the counter

component is incremented by one unit. (2) If the number of requests, counter has reached

the maximal number of requests max rep, then, a signal Skip ends the recursion and

terminates the Circus action Run.

Run =̂ µX •




if(counter < max rep)−→


Send
1000

⊲(
display resp!(TIMEOUT , time)−→

counter := counter + 1

)


 ; X

8(counter = max rep)−→ Skip

fi




The main action of the Ping Circus process consists in the sequential composition of the

InitSt and Run Circus actions.

• InitSt ; Run

end

22 CHAPTER 2. BACKGROUND AND RELATED WORK

In this example we give an overview of a Circus process. During the construction of out

model in the next chapter, we present a few other operator like those used for interactions

between Circus processes can be modelled using CSP operators such as parallelism and

choice. Moreover, we will detail the translation from Circus to CSP and how we introduce

the Circus Time constructs into CSP.

2.5 Final Considerations

We have presented in this chapter the structure of the IMA architecture, detailing its

components. IMA applications are allocated within a partition, with predefined time and

memory resources. Each partition can have one or more internal processes, which are

not visible outside the partition boundaries. Partitions have access to the resources of

its module, such as sensors and actuators, through request of the APEX services. The

schedule of execution of the partitions within a module is defined in the configuration

tables. Finally, the health monitor is the component of the module that controls failures

and errors detected within the module and provides the correct recovery action for the

errors, specified in the configuration tables.

Moreover, we have given an overview of existing approaches on certification and ver-

ification of aircraft systems. We focus on those works that apply formal methods to the

verification of IMA systems. We have concluded this chapter with a survey of existing

formal languages for specification of concurrent systems. By using Circus we are able to

formalise the IMA architecture, to capturing both data and the behaviour of the architec-

ture and also model scheduling capabilities of the architecture. This is subject of the next

chapter.

Chapter 3

A Circus Model of the ARINC 653

Components

In this chapter we present how we formalise the three top layers of the IMA architecture

using Circus, according to the ARINC 653 requirements. The model presented here covers

general features required by the ARINC specification and provides basic services to the

IMA applications in general. After producing the formal model, we translate it into CSP

in order to validate it using the model checker FDR [30], and are able to animate it using

ProBE [31].

In our model, we define a Circus process for each component of the module, illustrated

as rectangular blocks in the Fig. 3.1. The communication between the Circus processes is

made using Circus channels, illustrated as arrows in that figure, indicating the direction

of the data communication.

Figure 3.1: ARINC 653 - Overview of the channels used in the Circus model of the archi-
tecture

24 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

The figure presents the three top levels of the ARINC 653 architecture as previously

presented and illustrated by the Fig. 2.1: the operating system on the bottom, the

Application Executive (APEX) in the middle and the partitions on the top.

As an ARINC module can have more than one partition running within the mod-

ule, we model the set of partitions as the Circus process Partitions, which is a parallel

composition of each A653 Partition Circus process. We use parallelism since the parti-

tions operate concurrently, but they must synchronise between them three times during

the execution of the module: when it is switched on, with the signal moduleInit ; at the

end of the initialisation, synchronising on moduleEndInit ; and when the module is to be

switched off, with the signal moduleEnd . Besides those synchronisations, any other direct

communication between partitions is not allowed according to the ARINC 653 specifica-

tion. The communication between partitions, referred as interpartition communication, is

made through the APEX services.

The process Partitions has tree inputs. The first one is the sequence of fixed attributes

of each partition, defined in the configuration tables. The other two inputs are sequences

of data related to the health monitor for individual partitions: the set of errors and specific

recovery actions for each partition. The inputs of Partitions are the inputs of each of the

interleaved A653 Partition process.

The APEX Circus process manages the services used for communication, scheduling

and managing the status of the partitions running within the ARINC module. It has two

inputs, related to the health monitor error list and recovery action tables in the level of

the set of partitions.

The OperatingSystem Circus process has three inputs: the sequence of execution of

the partitions, which contains, for each partition, its name and timing properties such as

duration and period, the list of errors, and recovery actions for the health monitor in the

module level.

Although each partition has a particular identifier, the paragraph of the configuration

table that contains information regarding the sequence of execution in the module identifies

each partition by its name. However, partitions are referred in the APEX services by their

identifiers. For that reason, we define that each Circus channel used for the communication

between the APEX and the partitions carries the identifier of the partition that is currently

accessing the resources of the module. Moreover, internal operations in the operating

system are used to calculate the partition identifier related to the name of the partition

to be executed within the schedule.

We model the three levels of the ARINC health monitor as three Circus processes:

ModuleHM , MultiPartitionHM and PartitionHM . The recovery actions related to the

ARINC module are managed by the ModuleHM process. The recovery actions in the

module level are used when the error raised is not synchronous to execution of a parti-

tion. When the error is related to a partition in execution, the MultiPartitionHM process

analyses whether or not the recovery action is in the context of the partition or of the

module itself. Finally, if the raised error impacts processes of the partition in execution,

the PartitionHM process decides the correct recovery action for the context of error inside

3.1. COMMON TYPES AND CHANNELS 25

the partition. In this dissertation, however, we do not model the health monitor recovering

actions for any of the architecture levels. This is part of our future work and is discussed

in Section 4.2.

In this chapter, we will present the formalisation of the IMA architecture using Circus.

Firstly, we present how we model the ARINC 653 types and Circus channels to be used

in our model. Then, we introduce the Circus model for the partitions layer, a model for

the APEX layer, and we present our model for the operating system and how we capture

the scheduling capability and the temporal partitioning properties. After presenting the

Circusmodel of the architecture, we present its translation into CSP and finally we conclude

this chapter with the validation of the model using FDR.

3.1 Common Types and Channels

The following types are used for modelling the configuration tables and defining the types

of data communicated through Circus channels for the APEX services. We follow the

ARINC 653 notation for modelling types used in our specification, by using upper-case

letters and underscores to refer to types in our Circus model. The channels presented

in this section are used to describe the execution of an IMA module. Channels used for

communication between Circus processes of the model are presented in the description of

the components of our specification in this chapter. The complete list of those channels

can be found in the Appendix A.2 of this dissertation.

3.1.1 Types

The ARINC 653 document defines the types of variables used in the configuration tables

and APEX services. These types are generally natural numbers, strings, and sets of

constants and identifiers of memory allocated areas, which depend on the programming

language used for implementation. In order to model these types, we adopt the following

approach. For those types that depend on the programming language, we define a Z

given set. For those types that do not depend on any programming language, like a type

of natural numbers, we define a name (Z abbreviation) as specified in the ARINC 653

document. In order to model the structure of the ARINC 653 configuration tables, we use

Z schemas. In this section, we provide a few examples of how we formalise the types of

the ARINC module using Circus. Other types are presented in the Appendix A.1.

The ARINC 653 document specifies that the sequence of execution of the partitions

within a module depends on the order defined in the configuration tables. Moreover, at

least one partition should be allocated in the module. We can formalise these requirements

using the following definition: a non-empty injective sequence of type X . The formal

definition of iseq1[X] is presented below.

iseq1[X] == { s : seqX | s 6= 〈〉 ∧ s ∈ N֌ X }

The type DecOrHexValueType can have integer decimal or hexadecimal values. According

to the ARINC 653 document, the definition of types in both Ada and C uses integers for

26 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

numeric values. For that reason, we define the type DecOrHexValueType as the set of

integers. The type IdentifierValueType, a new name for the type DecOrHexValueType, is

the type of identifiers in the configuration table.

DecOrHexValueType == Z

We define the type NameType for names of the partitions and ARINC 653 processes, which

is type of String .

[String]

NameType == String

An example of the formalisation of the types used in the APEX module is the type of the

time-related variables, like the elapsed time since the module was switched on. The type

for these variables is SYSTEM TIME TYPE , which is defined as DecOrHexValueType:

integer numbers with a minimum time interval of one nanosecond.

SYSTEM TIME TYPE == DecOrHexValueType

Every APEX service is designed in such a way to return informative messages stating

whether the service has been successfully executed or detailing, in case of failure, the possi-

ble cause of the problem. The ARINC specification document defines

RETURN CODE TYPE as the type of the return messages, and we define it in Z as

a set of constants characterised by a free type.

RETURN CODE TYPE ::= NO ERROR | NO ACTION | NOT AVAILABLE

| INVALID PARAM | INVALID CONFIG

| INVALID MODE | TIMED OUT

There are some constants that are used in multiple types. For that, we create the type

ARINC CONSTANTS , which contains the set of all constants used in the definition of the

ARINC 653 types, and then, we define the new types as subsets of ARINC CONSTANTS .

ARINC CONSTANTS ::= COLD START | WARM START | COLD RESTART

| WARM RESTART | IDLE | NORMAL

| ERROR MODE | IGNORE | SHUTDOWN

| RESET | ARINC CONSTANTS NULL

As an example, we define the possible operation modes of a partition. The possible operat-

ing modes are NORMAL, IDLE , COLD START and WARM START for initialisation.

Moreover, according to the specification, the operation that changes the operating mode

of a partition must not accept any other operating mode; it returns a message stating that

the parameter is invalid if it receives a different operating mode.

In order to include that operating modes in our model, we define a subset of the

3.1. COMMON TYPES AND CHANNELS 27

ARINC CONSTANTS , which includes the set of the possible operating modes. In Z,

we specify a subset of a type, such as ARINC CONSTANTS , by using the operator ’\’,

which excludes all constants described in the right-hand side of the operator from the set

on the left-hand side.

We define the set of accepted operating modes, OPERATING MODE TYPE , as a

subset of ARINC CONSTANTS , restricted to the NORMAL, IDLE , COLD START and

WARM START constants, excluding the rest of the constants such as COLD RESTART ,

WARM RESTART and ERROR MODE . For the initialisation of a partition, we re-

strict the set of operating modes to only COLD START or WARM START . The type

OPERATING INIT MODE TYPE , defined below, is also a subset of

ARINC CONSTANTS .

OPERATING MODE TYPE ==

ARINC CONSTANTS \ {COLD RESTART ,WARM RESTART ,

ERROR MODE , IGNORE ,SHUTDOWN ,

RESET ,ARINC CONSTANTS NULL}

OPERATING INIT MODE TYPE ==

ARINC CONSTANTS \ {IDLE ,NORMAL,

COLD RESTART ,WARM RESTART ,

ERROR MODE , IGNORE ,SHUTDOWN ,

RESET ,ARINC CONSTANTS NULL}

In the definition of the partition state, we use the START CONDITION TYPE , which

represents the circumstances of the initialisation of the partition. Its constants defined be-

low allow the system to know whether it was initialised normally or if it was re-initialised

due to a failure. The possible start conditions are: NORMAL START , in case of a

normal power-up; PARTITION RESTART , in the case of a restart using an APEX ser-

vice to set the partition operating mode to either COLD START or WARM START ;

HM NORMAL START , in the case of a recovery action performed based on a decision

of the Health Monitor at module level; and HM PARTITION RESTART in the case of

a recovery action at partition level.

START CONDITION TYPE ::= NORMAL START | PARTITION RESTART

| HM NORMAL START | HM PARTITION RESTART

We also define the lock level type used to enable or disable preemption in the partition.

Partitions may have different lock levels depending on their level of criticality. The AR-

INC 653 specifies that lock levels are integers, and for that reason, in our model, the

LOCK LEVEL TYPE is modelled as a Z abbreviation of DecOrHexValueType.

LOCK LEVEL TYPE == DecOrHexValueType

In the next section we present the channels used for describing the execution of the IMA

module.

28 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

3.1.2 Channels

The life cycle of an ARINC module is illustrated in the Fig. 3.2. In our Circus model, the

transition between the possible states of an ARINC 653 module is communicated to the

components of the module using signals over Circus channels, illustrated in italic characters

below each transition.

Figure 3.2: ARINC 653 - Channels for the module state transition

When the module is powered on, synchronisation on the channel moduleStart is used

to inform the partitions that the APEX is in the initialisation state. At this point, all the

partitions are initialised. When the initialisation is successfully completed, a signal on the

channel moduleEndInit indicates to the operating system that it is to start to manage the

partitions, processes and communication. That signal also informs the partitions that the

module is operational and the processes inside the partitions are ready to run. Moreover,

during its lifetime, a partition may be powered off. In this case, the channel moduleEnd

causes an interruption, ending the execution of the partitions.

channel moduleInit ,moduleEndInit ,moduleEnd

We conclude the description of the common types and channels used in our model of the

IMA architecture. In the next sections we present how we model the structure of each of

the layers of the IMA architecture using Circus.

3.2 Partitions

We model a partition as a Circus process, A653 Partition, with three parameters: a

partitionId of type PARTITION ID TYPE , which is the identifier of a partition; the

sequence of recovery actions, partHM , for the partition level; and the list of possible

errors, sysError , that can be detected within the ARINC module, defined in the configu-

ration tables. In this first model, A653 Partition Circus processes have no state, since we

are still not dealing with internal ARINC 653 processes within the partitions. However, we

provide here how those processes will communicate with the partition requesting to have

access to the APEX services. In general lines, a process request to its associated partition

to have access to the APEX services through a given Circus channel. Then, the partition

will send that request to the APEX , receive the result of the request and send it back

to the process through another Circus channel. A new model including those processes is

part of our future work and is discussed in Section 4.2.

process A653 Partition =̂ partitionId : PARTITION ID TYPE ;

partHM : A653 PartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType • begin

3.2. PARTITIONS 29

The first Circus action of the A653 Partition Circus process is GetTime, which obtains

the current system time from the ARINC 653 operating system through a request of

the APEX service GET TIME . The action GetTime starts with a signal from an AR-

INC 653 process, processId , of the partition partitionId in execution via the channel

proc req system time. Then, it sends a signal to the APEX with the identifier of the

partition, partitionId , requesting the system time of the operating system through the

channel part req system time. Then, the APEX responds to the request with the system

time t through the channel part get system time, which is sent back to the requesting

process through the channel proc get system time. Finally, the return code rc is received

from the APEX through the channel return code.

GetTime =̂

proc req system time.partitionId?processId−→

part req system time.partitionId−→

part get system time.partitionId?t−→

proc get system time.partitionId .processId !t−→

return code.partitionId?rc −→ Skip

In order to change the operating mode of the partition, the SetPartitionMode Circus action

is used. Similar to the GetTime action, it receives a signal from the executing process,

processId with the new operating mode for that partition, OPERATING MODE , and

then sends it to the APEX , through the channel part req set partition mode. Then, the

APEX responds to the request with the return code of the service, rc stating whether or

not the APEX SET OPERATING MODE was successfully executed or if an error was

raised.

SetPartitionMode =̂

proc set partition mode.partitionId?processId?OPERATING MODE−→

part set partition mode.partitionId !OPERATING MODE−→

return code.partitionId?rc −→ Skip

A process of the partition in execution can request, through the APEX

service GET PARTITION STATUS , the current status of a partition. The action

GetPartitionStatus receives a request of the partition status from the process processId

through the channel proc req partition status, then requests it to the APEX , through

a signal part req partition status, which carries the identifier of the partition in execu-

tion. Then, the partition status, st , is received from the APEX through the channel

part get partition status, and the received values are sent back to the requesting process

within the partition through the channel proc get partition status. Finally, the return

30 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

code, rc, is received from the APEX .

GetPartitionStatus =̂

proc req partition status.partitionId?processId−→

part req partition status.partitionId−→

part get partition status.partitionId?st−→

proc get partition status.partitionId .processId !st−→

return code.partitionId?rc −→ Skip

The Circus action GetSamplingPortId obtains the identifier of a sampling port of the par-

tition in execution, through request to the APEX service GET SAMPLING PORT ID .

The internal process in execution within a partition, processId , requests the identifier as-

sociated to the sampling port name, SAMPLING PORT NAME , through the channel

proc req sampling port id . Then, the channel part req sampling port id sends the re-

quest to the APEX . Finally, the channel part get sampling port id receives the identifier,

spid from the APEX and then sends it back to the process processId through the channel

proc get sampling port id .

GetSamplingPortId =̂

proc req sampling port id .partitionId?processId?SAMPLING PORT NAME−→

part req sampling port id .partitionId !SAMPLING PORT NAME−→

part get sampling port id .partitionId?spid−→

proc get sampling port id .partitionId !processId !spid−→

return code.partitionId?rc −→ Skip

The Circus action ExecPartitionServices starts with a signal execPartition from the oper-

ating system and then it starts a recursion that offers the above presented Circus actions,

GetTime, SetPartitionMode, GetPartitionStatus and the GetSamplingPortId . The execu-

tion of the ExecPartitionServices may be interrupted at any time by the operating system

through a signal interruptPartition, sent when the duration period of the execution of the

partition is over.

ExecPartitionServices =̂

execPartition.partitionId−→



µX •




SetPartitionMode

@ GetPartitionStatus

@ GetSamplingPortId

@ GetTime



; X

△ (interruptPartition.partitionId −→ Skip)




The Circus action ExecPartition describes the behaviour of an ARINC partition during

the life time of a module. The action starts with a signal initPartition sent by the op-

erating system, with the identifier of the partition, partitionId , which indicates that the

partition is being initialised. After it is initialised, the partition sends the list of possible

3.2. PARTITIONS 31

errors and the recovery actions to the partition level health monitor, through the channel

part send mpHM table. Then, it recurses offering the Circus action ExecPartitionServices

in each iteration. It may be interrupted by either a signal endPartition indicating that the

partition is being disabled or either reinitPartition followed by the action ReinitPartition

indicating that the partition is being reinitialised.

ExecPartition =̂ initPartition.partitionId−→

part send partHM table.partitionId !pHM !sysError−→

moduleEndInit−→


(µX • ExecPartitionServices ; X)

△

(
endPartition.partitionId −→ Skip

@ reinitPartition.partitionId −→ ReinitPartition

)



The Circus action ReinitPartition starts with a signal partHM restart partition from the

Health Monitor. Then, it recurses offering the Circus action ExecPartitionServices in

each iteration and may be interrupted by either a signal endPartition indicating that the

partition is being disabled or reinitPartition followed by the action ReinitPartition.

ReinitPartition =̂ partHM restart partition.partitionId−→


(µX • ExecPartitionServices ; X)

△

(
endPartition.partitionId −→ Skip

@ reinitPartition.partitionId −→ ReinitPartition

)



The main action of the A653 Partition Circus process describes how a partition is executed.

The execution of a partition starts with a signal that the APEX is being initialised,

through the channel moduleInit and then, the Circus action ExecPartition is executed

until the interruption from the APEX through the moduleEnd channel indicating that

the module will be switched off.

• moduleInit −→ (ExecPartition △ moduleEnd −→ Skip)

end

An ARINC 653 module allows one or more partitions to run at the same time in that

module. Each partition has its own health monitor, modelled here as PartitionHM Cir-

cus processes, related to each partition running under the same module. The Circus process

PartitionHM is composed by a state PartitionHMSt which stores the values of the system

errors, sysError , and the possible recovery actions for that partition, pHM .

In our model, we do not capture the behaviour of the health monitor for any of the

three layers of the architecture presented in this dissertation. In the current stage of our

model, the only action that occurs in the PartitionHM Circus process consists in an input

channel, part send partHM table with the values of possible errors, se, and recovery

actions, phm. Then the state variables are updated with these values. At any moments,

the PartitionHM process may be interrupted by a signal moduleEnd or endPartition.

32 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

process PartitionHM =̂ partitionId : PARTITION ID TYPE • begin

statePartitionHMSt == [pHM : A653 PartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType]

•

(
part send partHM table.partitionId?phm?se−→

pHM , sysError := phm, se

)

△

(
moduleEnd −→ Skip

@ endPartition.partitionId −→ Skip

)

end

Thus, each partition, modelled as a A653 Partition Circus process is put in parallel with

its health monitor, the PartitionHM Circus process, and communicates with each other

via the channels that compose the PartitionHMChannels channel set.

channelsetPartitionHMChannels ==

{| part send partHM table,moduleEnd , endPartition |}

We define the layer that contains the ARINC partitions as the Partition Layer Circus pro-

cess. It has three inputs: the parameter partitionIds of type PPARTITION ID TYPE ,

which is a set of partition identifiers; the sequence of recovery actions, partHM , for the

partition level; and the list of possible errors, sysError , that can be detected within the

ARINC module. For each partition with identifier id in the set of partitionIds, the el-

ements of the input of the Partition Layer process are associated to the inputs of each

A653 Partition Circus process and its related PartitionHM process. Each partition syn-

chronises with the channels moduleInit , moduleEndInit and moduleEnd . Each ARINC

partition is defined as a process A653 Partition Circus process, in parallel with its associ-

ated PartitionHM Circus process.

process Partitions Layer =̂ partitionIds : PPARTITION ID TYPE ;

partHM : seq
1
A653 PartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType

•




f
pid : partitionIds J {|moduleInit ,moduleEnd ,moduleEndInit |}K

•

(
A653 Partition(pid , partHM (pid), sysError)

JPartitionHMChannels K PartitionHM (pid)

)



In the next section we present our model for the Application Executive (APEX) using

Circus.

3.3. THE APEX 33

3.3 The APEX

The APEX Circus process is modelled with two parameters from the configuration ta-

bles: the set of possible errors that can happen within the system (sysError) and the

multipartition level health monitor actions (mpHM).

process APEX =̂ sysError : seq
1
A653 ErrorIdentifierType;

mpHM : seq
1
A653 MultiPartitionHMTableType • begin

The action GET TIME is the APEX service that requests the current time to the op-

erating system. The APEX receives the request from the partition in execution, pid ,

via the channel part req system time, and then sends a signal to the operating system

through the channel apex req system time to indicate that the partition pid is request-

ing the system time. Then the operating system returns the time t through the channel

apex get system time, and then the APEX sends the time to the partition via the channel

part get system time.

GET TIME =̂ part req system time?pid−→

apex req system time.pid−→

apex get system time.pid?t−→

part get system time.pid !t−→

return code.pid !NO ERROR −→ Skip

The second action is SET PARTITION MODE , through which the APEX process can

change the operating modes of each partition. This action receives the new operating mode

(nopm) from the partition in execution, through the channel part set partition mode

and then, it behaves according to the conditions specified for that service in the ARINC

document.

If the new operating mode nopm does not belong to the possible operating modes,

OPERATING MODE TYPE , then the channel return code sends a signal that the value

received is invalid. However, if the actual operating mode opm is NORMAL and the

value of nopm is also NORMAL, then a signal apex new partition mode fail is sent and

the return code channel sends the message NO ACTION stating that the mode was

not updated. Another condition is if the value of nopm leads the operating mode of

the partition to IDLE or any of the OPERATING INIT MODE TYPE , the channel

apex req new partition mode sends the nopm value to the operating system and the

return code channel sends a signal with a NO ERROR value. Finally, in case the current

operating mode nopm is not NORMAL and the new value of nopm is NORMAL, then

the channel apex req new partition mode sends the nopm value to the operating system

and the return code channel sends a signal with a NO ERROR value.

34 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

SET PARTITION MODE =̂

part set partition mode?pid?nopm−→

apex req partition mode.pid−→

apex get partition mode.pid?opm−→


if (nopm 6∈OPERATING MODE TYPE)−→

return code.pid !INVALID PARAM −→ Skip

8 (opm = NORMAL ∧ nopm = NORMAL)−→

apex new partition mode fail .pid−→

return code.pid !NO ACTION −→ Skip

8 (opm = COLD START ∧ nopm = WARM START)−→

apex new partition mode fail .pid−→

return code.pid !INVALID MODE −→ Skip

8
(

nopm = IDLE

∨ nopm ∈ OPERATING INIT MODE TYPE

)
−→

apex req new partition mode.pid !nopm−→

return code.pid !NO ERROR −→ Skip

8 (opm 6= NORMAL ∧ nopm = NORMAL)−→

apex req new partition mode.pid !nopm−→

return code.pid !NO ERROR −→ Skip

fi




One of the actions of the APEX process used to manage partitions is the service

GET PARTITION STATUS . Partitions must not have direct access to the properties de-

fined in the configuration tables. This information is managed by the operating system and

is provided to the partition through a request via the GET PARTITION STATUS ser-

vice. First, the identifier of the current partition is received from the partition through the

channel part req partition status, and then it is sent via the channel

apex req partition status to the operating system. The operating system returns the

current status of the partition, cp, through the channel apex get partition status, and fi-

nally the channel part get partition status sends back to the partition its current status.

GET PARTITION STATUS =̂

part req partition status?pid−→

apex req partition status.pid−→

apex get partition status.pid?cp−→

part get partition status.pid !cp −→ Skip

Another service of the APEX that gets the identifier of a sampling port of the current par-

tition, pid , is modelled as the Circus action GET SAMPLING PORT ID . The partition

sends the name of the requested port, spn, through the channel part req sampling port id

and then the name of the port is sent to the operating system via the channel

3.3. THE APEX 35

apex req sampling port id . The operating system responds through the channel

apex get sampling port id with a number, spid , that is verified: if the received iden-

tifier is equal to −1, then that sampling port identifier is sent to the partition along with

an error of invalid configuration; otherwise, the sampling port identifier is sent to the

partition, but no error is reported.

GET SAMPLING PORT ID =̂

part req sampling port id?pid?spn−→

apex req sampling port id .pid !spn−→

apex get sampling port id .pid?spid−→


if (spid = - 1)−→

part get sampling port id .pid !spid−→

return code.pid !INVALID CONFIG −→ Skip

8 (spid 6= - 1)−→

part get sampling port id .pid !spid−→

return code.pid !NO ERROR −→ Skip

fi




The collection of APEX services are defined by the ExecApexServices action. The ac-

tion receives as input through the channel execPartition the identifier of the partition

in execution, pid , and then recurses offering the actions defined above, GET TIME ,

SET PARTITION MODE , GET PARTITION STATUS , and

GET SAMPLING PORT ID . At anytime, the action may be interrupted by a signal

from the operating system, interruptPartition, which is sent when the period of execution

of that partition is over, or a signal endPartition in order to disable the partition.

ExecApexServices =̂ execPartition?pid−→


µX •




GET TIME

@ SET PARTITION MODE

@ GET PARTITION STATUS

@ GET SAMPLING PORT ID



; X

△

(
interruptPartition.pid −→ Skip

@ endPartition.pid −→ Skip

)




The Circus action ExecApex allows the partition in execution to have access to those

services presented above during the allowed time for its execution. The APEX pro-

cess starts the ExecApex sending the set of errors and recovery actions to the Multi-

Partition health monitor, through the channel apex send mpHM table, and then, a sig-

nal moduleEndInit is sent, informing the partitions allocated within the module that it is

running and the APEX services are currently available to the partitions. Then it recurses

the ExecApexServices Circus action.

ExecApex =̂ apex send mpHM table!mpHM !sysError−→

moduleEndInit −→ (µX • ExecApexServices ; X)

36 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

The APEX is initialised with a signal from the operating system, via the channel

moduleInit , indicating that the module is being initialised. Then, the ExecApex is executed

during the lifetime of the APEX Circus process until it receives a signal to terminate the

process via the channel moduleEnd .

• moduleInit −→ (ExecApex △ moduleEnd −→ Skip)

end

We present here the structure of the MultiPartitionHM Circus process. It behaves as fol-

lows: it receives the list of errors and recovery actions from the APEX through the channel

apex send mpHM table and then, assign these values to the state variables mpHM and

sysError . This model does not cover how the health monitor behaves according the list

of errors, sysError , and the recovery actions, mpHM , in the multipartition level. This is

part of our plans for future work and is discussed in the Section 4.2.

process MultiPartitionHM =̂ begin

state MultiPartitionHMSt ==

[mpHM : seq
1
A653 MultiPartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType]

• apex send mpHM table?mp?se−→

mpHM , sysError := mp, se

△moduleEnd −→ Skip

end

We define below the Circus channel set MultiPartitionHMChannels for communication

between the APEX and the MultiPartitionHM Circus process.

channelsetMultiPartitionHMChannels == {| apex send mpHM table,moduleEnd |}

Finally, we define the APEX Layer , according to the Fig. 3.1, with the parallelism be-

tween the APEX Circus process and the MultiPartitionHM Circus process, communicating

through the channels that compose the MultiPartitionHMChannel .

process APEX Layer =̂ mpHM : seq
1
A653 MultiPartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType

•

(
APEX (sysError ,mpHM)

JMultiPartitionHMChannels K MultiPartitionHM

)

We have presented here the structure of APEX layer of the IMA architecture. In the

next section we present how we model the operating system level of the architecture using

Circus.

3.4. THE OPERATING SYSTEM 37

3.4 The Operating System

As previously mentioned in this document, none of the partitions running within an AR-

INC 653 module has access to its attributes, such as port names or timing restrictions.

This information is stored by the operating system. In our model, the content of the

configuration tables is provided to the operating system Circus process. We then need

to model the data structure of the configuration tables for an ARINC module based on

information from the ARINC 653 document, as illustrated by Fig. 2.4.

3.4.1 Configuration tables

The configuration tables consist of a set of data which contain information regarding the

components of an ARINC module, such as the requirements for each partition, sched-

ule for execution, and health monitoring. In Z, we then model a schema Module with

four components: the module Name, a set of Partitions to run within the partition, the

Schedules of execution of the partitions, and a HealthMonitor with the list of errors and

recovery actions for that module. Each of these components is presented in the sequel.

A Partition is composed by four components modelled as Z schemas:

A653 PartitionBaseType, A653 PartitionPeriodicityType, A653 MemoryRegionType and

PortBaseType. For instance, the A653 PartitionBaseType stores information about the

Identifier and the Name of the partition, as illustrated below.

A653 PartitionBaseType

Identifier : PARTITION ID TYPE

Name : NameType

A Partition is composed of four components: a PartitionDefinition of type

A653 PartitionBaseType1, containing its name and identifier; a PartitionPeriodicity of

type A653 PartitionPeriodicityType, that contains records of the period and duration

of its execution; a MemoryRegions component of type iseq1[A653 MemoryRegionType],

which is a non-empty injective sequence of memory regions allocated to that partition;

and a PartitionPorts, which is a non-empty injective sequence of PartitionPort for inter-

partition communication. In the A653 Partition schema, the use of non-empty sequences

reflects the fact that there must be at least one memory region and one port associated

with a partition.

Partition

PartitionDefinition : A653 PartitionBaseType

PartitionPeriodicity : A653 PartitionPeriodicityType

MemoryRegions : iseq1[A653 MemoryRegionType]

PartitionPorts : iseq1[PartitionPort]

1The entire specification of the components of the configuration tables can be found in the Appendix A

38 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

As the ARINC 653 module supports multiple partitions, the type PartitionsType is speci-

fied a non-empty injective sequence of partitions (iseq1[Partition]): there must be at least

one partition allocated in that ARINC 653 module.

PartitionsType == iseq1[Partition]

In order to model the operating system of an ARINC module, we need to define a way

to identify the partitions that have access to the module resources such as processor and

sensors. As presented in Fig. 2.3 in Section 2.1.2, the order of execution of the parti-

tions within a major time frame is defined by the Name of the partition, Duration of

execution, the Offset between the beginning of the major time frame and the execution

of such partition, and whether or not the process is periodic or aperiodic. These prop-

erties are used in the scheduler section of the configuration tables and are defined as the

A653 PartititonTimeWindowType schema below.

A653 PartitionTimeWindowType

PartitionNameRef : NameType;

Duration,Offset : DecOrHexValueType;

PeriodicProcessingStart : Boolean

The schedule for execution of the partitions within an ARINC 653 module, ScheduleType,

is defined as a non-empty injective sequence of A653 PartitionTimeWindowType.

ScheduleType == iseq1[A653 PartitionTimeWindowType]

The HealthMonitoringType component contains records of the set of possible errors,

SystemErrors, and recovery actions for these errors. The recovery actions are split in

three levels: ModuleHM contains records of the possible recovery actions for errors that

affects the module itself; MultiPartitionHM allows the health monitor to decide whether

the error raised will affect only one partition, more than one partition or the entire module;

and PartitionHM stores the recovery actions to be applied only within the boundaries of

the partition in execution.

HealthMonitoringType

SystemErrors : iseq1[A653 ErrorIdentifierType]

ModuleHM : iseq1[A653 ModuleHMTableType]

MultiPartitionHM : iseq1[A653 MultiPartitionHMTableType]

PartitionHM : iseq1[A653 PartitionHMTableType]

3.4. THE OPERATING SYSTEM 39

We conclude the formal structure of the configuration tables with the schema Module.

It contains records of the presented types: Name of the module; the set of Partitions that

are currently being executed within the ARINC 653 module as well as the Schedules of

execution of the partitions, and the HealthMonitoring with the list of errors and recovery

actions.

Module

Name : NameType

Partitions : PartitionsType

Schedules : ScheduleType

HealthMonitoring : HealthMonitoringType

Each partition has a set of attributes whose values are used by the operating system to

control and maintain each partition’s operation. These attributes are returned to the

partition through request to the APEX service GET PARTITION STATUS . We de-

fine the PartitionVariables schema to include the set of attributes of a partition: its

OPERATING MODE , stating whether it is initialising, running, or idle;

a START CONDITION ; and the LOCK LEVEL for process preemption.

PartitionVariables

OPERATING MODE : OPERATING MODE TYPE

START CONDITION : START CONDITION TYPE

LOCK LEVEL : LOCK LEVEL TYPE

We also model the PARTITION STATUS TYPE , which is used in the APEX service

that requests the status of the partition that is currently being executed. The service

returns to the partition all its information, such as the Identifier of the partition, its

Period and Duration of execution, and also the values of the variable attributes of that

partition.

PARTITION STATUS TYPE

Identifier : PARTITION ID TYPE

Period : SYSTEM TIME TYPE

Duration : SYSTEM TIME TYPE

PartitionVariables

In the next section we present our Circus model for the operating system of the IMA

architecture.

40 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

3.4.2 Circus process

We formalise the ARINC 653 operating system with a Circus process OperatingSystem.

The process has a single input, module of type Module, presented above.

process OperatingSystem =̂ module : Module • begin

The state of the OperatingSystem Circus process comprises the following components: a

non-empty injective sequence of PartitionVariables; the major time frame of the execu-

tion of the partitions; the current time in the system, system time; the current partition

in execution within the module according to the Schedules; the identifier of the parti-

tion in execution, current partition id ; and the set of sampling and queuing ports cur-

rently assigned within the module. The only invariant of the state is that the number of

partitions variables is equal to the number of Partitions allowed to execute within the

module.

OSSt

partitions variables : iseq1[PartitionVariables]

major time frame : SYSTEM TIME TYPE ;

system time : SYSTEM TIME TYPE

current partition : A653 PartitionTimeWindowType

current partition id : PARTITION ID TYPE

sampling ports : (SAMPLING PORT ID TYPE 7→

SAMPLING PORT NAME TYPE)

queuing ports : (QUEUING PORT ID TYPE 7→

QUEUING PORT NAME TYPE)

partitions variables = #module.Partitions

state OSSt

The Circus action InitPartition initialises each partition that is going to execute in the

module by sending a signal through the channel initPartition with the identifier of each

partition, pid . In Circus, we model the interleaving between the signals sent to each of the

partitions, pids, allowed to execute within the ARINC 653 module.

InitPartition =̂ 9 pid : (1 . . (#module.Partitions)) • initPartition.pid −→ Skip

In order to calculate the major time frame, we define the Circus action MajorTimeFrame

modelled as a Z schema. We first declare that the state is being updated (∆OSSt)

and we declare the variable getMajorTimeFrame of type PartitionsType. Then we in-

troduce three predicates: firstly, the variable getMajorTimeFrame contains the same el-

ements of module.Partitions; secondly, getMajorTimeFrame is ordered by the Period in

3.4. THE OPERATING SYSTEM 41

decreasing order; and the new value of major time frame is updated with the longest

period between the executions of a partition, which is the period of the first element of

getMajorTimeFrame; Finally, the predicate θ(OSSt \ {major time frame})′ = θ(OSSt \

{major time frame}) denotes that besides major time frame, the rest of the state vari-

ables remain unchanged after the execution of MajorTimeFrame.

MajorTimeFrame

∆OSSt

getMajorTimeFrame : PartitionsType

∀ x : ranmodule.Partitions

• #(module.Partitions ⊲ {x}) = # (getMajorTimeFrame ⊲ {x})

∀ p1, p2 : ran getMajorTimeFrame

• p1.PartitionPeriodicity .Period > p2.PartitionPeriodicity .Period

major time frame ′ = (getMajorTimeFrame(1)).PartitionPeriodicity .Period

θ(OSSt \ (major time frame))′ = θ(OSSt \ (major time frame))

We model the Circus action NextPartition in order to update the current partition and

its identifier. The current partition is assigned with the first element of the sequence

module.Schedules restricted to those partitions where its Offset of the is greater than or

equal to the modulo of system time, i.e., the next partition to be executed within the

schedule and the major time frame. Moreover, the new value of the current partition id

state component is assigned with the identifier of the partition where the Name is equal to

the PartitionNameRef of the current partition. Only the variables current partition id

and current partition are updated after the execution of NextPartition.

NextPartition

∆OSSt

current partition ′ = head (module.Schedules↾

{p : A653 PartitionTimeWindowType |

(system time modmajor time frame) ≤ p.Offset})

(module.Partitions(current partition id ′)).PartitionDefinition.Name =

(current partition ′).PartitionNameRef

θ(OSSt \ (current partition id , current partition))′ =

θ(OSSt \ (current partition id , current partition))

The action UpdateSystemTime receives a signal from the Timer Circus process with the

actual value of the system time and then assigns that value to the system time state

component.

UpdateSystemTime =̂ updateClock?x −→ system time := x

42 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

The Circus action OSGetTime responds to the APEX service GET TIME , where the par-

tition in execution requests the current time of the module. When requested, the APEX

sends a signal apex req system time with the identifier of that partition in execution,

then the action UpdateSystemTime updates the system time variable and finally, the cur-

rent value of the system time component is sent back to the APEX through the channel

apex get system time.

OSGetTime =̂ apex req system time.current partition id −→UpdateSystemTime;

apex get system time.current partition id !system time −→ Skip

In order to respond to the APEX service GET PARTITION STATUS , the Circus action

OSGetPartitionStatus is used to obtain the status of the requesting partition. First, a sig-

nal

apex req partition status is received from the APEX. Then the auxiliary action

PartitionStatus collects the data of the partition and stores it in the variable p of type

PARTITION STATUS TYPE , without changing the state (ΞOSSt). Finally, the chan-

nel apex get partition status is used to send p back to the APEX with the values of the

current status of the requesting partition.

PartitionStatus

ΞOSSt

p! : PARTITION STATUS TYPE

(p!).Identifier =

(module.Partitions(current partition id)).PartitionDefinition.Identifier

(p!).Period =

(module.Partitions(current partition id)).PartitionPeriodicity .Period

(p!).Duration =

(module.Partitions(current partition id)).PartitionPeriodicity .Duration

(p!).LOCK LEVEL =

(partitions variables(current partition id)).LOCK LEVEL

(p!).OPERATING MODE =

(partitions variables(current partition id)).OPERATING MODE

(p!).START CONDITION =

(partitions variables(current partition id)).START CONDITION

OSGetPartitionStatus =̂ var p : PARTITION STATUS TYPE •

apex req partition status.current partition id −→ (PartitionStatus);
apex get partition status.current partition id !p −→ Skip

The Circus action SetPMode, below, is used in the OSSetPartitionMode action. It updates

the component OPERATING MODE of the partition with identifier current partition id

3.4. THE OPERATING SYSTEM 43

within the sequence partitions variables, with the new operating mode nopm received from

the APEX in the action OSSetPartitionMode. The input variable nopm? is used to update

the value of the OPERATING MODE variable. We use the predicate let ... • in order to

assign new values to a variable o of type PARTITION VARIABLES . Then the override

operator ⊕ is used to replace the existing values in the of the sequence partitions variables

in the position current partition id to the new values assigned in o. We also state that

only partitions variables is updated in OSSt .

SetPMode

∆OSSt

nopm? : OPERATING MODE TYPE

partitions variables ′ =

(let o == 〈|OPERATING MODE == nopm?,

START CONDITION ==

(partitions variables(current partition id)).START CONDITION ,

LOCK LEVEL ==

(partitions variables(current partition id)).LOCK LEVEL |〉

• partitions variables ⊕ {current partition id 7→ o})

θ(OSSt \ (current partition id , current partition, partitions variables))′ =

θ(OSSt \ (current partition id , current partition, partitions variables))

The operating system responds to the APEX service SET PARTITION MODE , which

requests to change the operating mode of the partition in execution, via the Circus action

OSSetPartitionMode. A signal apex req partition mode is received from the APEX , then,

the operating system returns the current operating mode of the partition in execution,

opm, through the channel apex get partition mode.

OSSetPartitionMode =̂ var opm : OPERATING MODE TYPE •

apex req partition mode.current partition id−→

apex get partition mode.current partition id !(

(PartitionsVariables(current partition id)).OPERATING MODE)−→





apex req new partition mode.current partition id?nopm−→

if(nopm = IDLE)−→

endPartition.current partition id −→ (SetPMode)
8 (nopm ∈ OPERATING INIT MODE TYPE)−→

reinitPartition.current partition id −→ (SetPMode)
8 (nopm = NORMAL)−→ (SetPMode)
fi




@ apex new partition mode fail?current partition id −→ Skip




The APEX Circus process determines whether or not the new operating mode that the

partition is requesting to change is acceptable. If the new operating mode is accepted by

the conditions of the APEX service, then, the new operating mode, nopm is received from

the APEX through the channel apex req new partition mode.

44 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

The action verifies whether or not the partition must be disabled or reinitialised.

If the new mode of that partition is IDLE , then a signal endPartition is sent to the

current partition. Otherwise if the new mode belongs to the set

OPERATING INIT MODE TYPE , then, a signal reinitPartition is sent to the

current partition. Otherwise, if the new mode is NORMAL, the auxiliary action SetPMode

assigns the new operating mode to the attributes of the partition in execution. However,

if the new mode is not accepted by the APEX , it sends to the operating system a signal

apex new partition mode fail and no action is taken.

The Circus action OSGetSamplingPortId responds to the request of the APEX service

GET SAMPLING PORT ID with the identifier of a sampling port. The APEX sends

the request with the partition name spn and then the operating system does the following:

if spn is in the range of the set of sampling ports, then, the channel

apex get sampling port id returns the identifier that corresponds to the name of the

requested sampling port, and the channel return code informs the APEX that the action

was concluded with no error; otherwise, if spn is not in the range of sampling ports, the

channel apex get sampling port id returns - 1, used to indicate that no port was found

with that name and then, return code returns a message that the requested configuration

is invalid.

OSGetSamplingPortId =̂

apex req sampling port id .current partition id?spn−→


if(spn ∈ ran sampling ports)−→

apex get sampling port id .current partition id !(µ

x : (dom(sampling ports ⊲ {spn})) • x)−→

return code.current partition id !NO ERROR −→ Skip

8 (spn 6∈ ran sampling ports)−→

apex get sampling port id .current partition id !(- 1)−→

return code.current partition id !INVALID CONFIG −→ Skip

fi




On the operating system side, the set of the actions that responds to requests of the APEX

services is defined as the Circus action ExecOSServices, which is the recursion of the exter-

nal choice between the above defined actions, such as OSGetTime and

OSGetPartitionStatus.

ExecOSServices =̂

execPartition.current partition id−→


µX •




OSGetTime

@ OSGetPartitionStatus

@ OSSetPartitionMode

@ OSGetSamplingPortId



; X




The action ExecOS is executed in the main action during the execution of the

OperatingSystem Circus process. It starts by calculating the major time frame with

3.4. THE OPERATING SYSTEM 45

the action MajorTimeFrame, then it recurses as follows: at each iteration, the action

UpdateSystemTime updates the current time within the module, then NextPartition cal-

culates the next partition and its identifier, next partition id . If the Offset of the next

partition to be executed is higher than the modulo of system time and major time frame,

it means that the operating system must wait and no service is available to the ARINC

partitions. Otherwise, the Circus action ExecOS is executed within the allowed Duration

interval of execution of the current partition. When the Duration is reached, a Cir-

cus timeout is triggered with an interrupt signal by the channel interruptPartition for

that partition in execution and then the action recurses.

ExecOS =̂ var getMajorTimeFrame : PartitionsType • (MajorTimeFrame);


µX • UpdateSystemTime ; (NextPartition);



if

(
current partition.Offset >

(system time modmajor time frame)

)
−→

wait

(
current partition.Offset−

(system time modmajor time frame)

)
; X

8
(

current partition.Offset =

(system time modmajor time frame)

)
−→


 ExecOSServices

current partition.Duration

⊲

interruptPartition.current partition id ; X




fi







The OperatingSystem Circus process starts with a signalmoduleInit , then it sends the list of

errors and recovery actions to theModuleHM through the channel os send modHM table.

Afterwards, then it executes ExecOS . At any time, the execution of ExecOS may be

interrupted by a signal moduleEnd , which means that the module is going to be switched

off.

• moduleInit−→

os send modHM table!(module.HealthMonitoring .ModuleHM)!(

module.HealthMonitoring .SystemErrors)−→ (ExecOS

△moduleEnd −→ Skip)

end

We conclude here the model of the operating system of the IMA architecture. We present

next the construction of the timer used to represent time lapse within the IMA module.

3.4.3 The System Timer

In order to calculate the elapsed time since when the module was switched on, we model

the Circus process Timer .

process Timer =̂ begin

46 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

We define that the Timer state, TimerSt , is composed by a single component, clock that

contains records of the current system time.

state TimerSt == [clock : SYSTEM TIME TYPE]

The main action Counter recurses by offering the interleaving of two actions: on the left

hand side, at each iteration, the system waits one nanosecond (wait(1)) and then, the clock

is incremented by one nanosecond; on the right hand side, the updateClock channel offers

the current time within the module, clock , for one nanosecond and then a Circus timeout

is triggered and the action recurses again.

Counter =̂




µX •


(wait(1) ; clock := clock + 1)

9
(

(µY • updateClock !clock −→Y)
1

⊲ Skip

)

 ; X




The Timer process starts with a signal moduleInit , then it executes Counter until the

interruption by a signal moduleEnd .

• moduleInit −→ (Counter △ moduleEnd −→ Skip)

end

In the next section we introduce the model of the health monitor for the IMA module.

3.4.4 The Module Level Health Monitor

Similarly to the MultiPartitionHM Circus process, we model the ModuleHM Circus process

that recovers the faults and failures within the module level. At the current stage of our

work, the ModuleHM Circus process only receives the list of errors and recovery actions

from the OperatingSystem Circus process through the channel os send mHM table and

then assigns these values to the state variables mHM and to sysError . This Circus process

still does not cover how the health monitor behaves according the list of errors, sysError ,

and the recovery actions, mHM , for the module level.

process ModuleHM =̂ begin

state ModuleHMSt == [modHM : seq
1
A653 ModuleHMTableType;

sysError : seq
1
A653 ErrorIdentifierType]

• (os send modHM table?mp?se −→modHM , sysError := mp, se)

△moduleEnd −→ Skip

end

3.4. THE OPERATING SYSTEM 47

We define below the Circus channel set ModuleHMChannels for communication between

the OperatingSystem and the MultiPartitionHM Circus process.

channelsetModuleHMChannels == {| os send modHM table,moduleEnd |}

Finally, we define the OS Layer , according to the Fig. 3.1, with the parallelism between

the OperatingSystem Circus process and the ModuleHM Circus process, communicating

through the channels that composes the ModuleHMChannel .

process OS Layer =̂ module : Module

•







OperatingSystem(module)

J{| updateClock |}K
Timer




JModuleHMChannels K ModuleHM




We conclude the construction of our Circus model of the IMA architecture with the

IMA Module Circus process which represents the structure of the three top layers of

the IMA architecture: operating system, the Application Executive (APEX), and the

set of partitions. We model the IMA Module Circus process as a parallel composition

of the three Circus process presented in this chapter: Partition Layer , APEX Layer ,

and OS Layer . The communication between Partition Layer and APEX Layer is made

through channels of the Circus channel set PartitionApex . Similarly, the communication

between APEX Layer and OS Layer is made through the channels that compose the

ApexOS Circus channel set. In our formalisation, we distribute the content of the config-

uration tables through the components of the IMA Module Circus processes. The model

is based on the ARINC 653 document, which is equivalent to the structure illustrated in

Figure 3.1.

process IMA Module =̂ module : Module

•




OS Layer(module)

JApexOsK


APEX Layer

(
module.HealthMonitoring .MultiPartitionHM ,

module.HealthMonitoring .SystemErrors

)

JPartitionApex K

Partitions Layer




1..#module.Partitions,

module.HealthMonitoring .PartitionHM ,

module.HealthMonitoring .SystemErrors










In the previous sections of this chapter we presented how we model the IMA archi-

tecture using Circus. So far, we have presented the structure of the partitions and how

they communicate with the lower levels of the IMA architecture. We also have presented

the structure of the Application Executive. Finally, we model the operating system, in-

cluding scheduling capabilities and how we capture the temporal partitioning properties

48 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

of the architecture. In the next section, we present the steps taken in order to validate the

Circus model by translating it into an equivalent CSP version in order to perform model

checking and animation using existing tools.

3.5 Translating the Circus model into CSP

In this section we present an overview of the translation process from the Circus model

of the IMA architecture into CSP in order to validate and animate the model using FDR

and ProBE. During the translation, parts of the Circus specification had to be adapted in

order to have an equivalent CSP specification.

In the translation from Circus to CSP, we need to define the types in our model as

subsets of the types used in the Circus model. Types must be finite and small in order to

avoid state explosion. As we are dealing with the model checker FDR, we need to avoid

the generation of infinite states during the compilation process. For example, we define

the type DecOrHexValueType as a subset of natural numbers, ranging from 0 up to 10.

DecOrHexValueType = {0..10}

Another restriction related to the translation of our model into CSP is that we cannot

define as an abstract type the type String defined in our Circus specification. We define

free types to construct a set of possible values for our types. For example, the free

type StringAccessRights is used in the definition of memory areas for a partition, and

is illustrated below.

datatype StringAccessRights = READ_ONLY | READ_WRITE | NoA ccessRights

Then we model the type String , illustrated below, as free types such as the presented

above StringAccessRights.

datatype String = SNT.StringNameType | SAR.StringAccessR ights

| SMRT.StringMemoryRegionType | SMRN.StringMemoryRegio nName

| SPNT.StringSAMPLING_PORT_NAME_TYPE | QPNT.StringQUEU ING_PORT_NAME_TYPE

The translation of the free type ARINC CONSTANTS is pretty straightforward from

our Circus model.

datatype ARINC_CONSTANTS = COLD_START | WARM_START | COLD_RESTART | WARM_RESTART

| IDLE | NORMAL | ERROR_MODE | IGNORE | SHUTDOWN | RESET

| ARINC_CONSTANTS_NULL

The translation of the subsets OPERATING MODE TYPE and

OPERATING INIT MODE TYPE is made using the operation diff which results in the

subtraction of elements in curly brackets, {COLD RESTART ,WARM RESTART , ...}

from the set of ARINC CONSTANTS .

OPERATING_MODE_TYPE = diff(ARINC_CONSTANTS,

{COLD_RESTART, WARM_RESTART, ERROR_MODE,

IGNORE, SHUTDOWN, RESET, ARINC_CONSTANTS_NULL })

OPERATING_INIT_MODE_TYPE = diff(ARINC_CONSTANTS,

{COLD_RESTART, WARM_RESTART, IDLE, NORMAL, ERROR_MODE,

IGNORE, SHUTDOWN, RESET, ARINC_CONSTANTS_NULL})

3.5. TRANSLATING THE CIRCUS MODEL INTO CSP 49

3.5.1 Specification of the types for the Configuration Tables

We translate Z schemas into CSP as tuples. Each component of a Z schema is trans-

lated as an element of a tuple. For example, the schema Partition is translated as a

tuple of four components where, for example, the first component of the tuple is of type

A653 PartitionBaseType and the fourth component is of type PartitionPort .

nametype Partition = (A653_PartitionBaseType, A653_Part itionPeriodicityType,

MemoryRegion, PartitionPort)

In order to avoid state explosion, we also need to provide subsets of the non-empty

injective sequences defined in our Circus model. First, we define instances of elements of

those sequences. For example, we present below three instances of partitions, Partition1,

Partition2, and Partition3 of type Partition.

Partitions1 = ((SPtN.PartitionName1, 1), (2, 1), Partitio nPort1, MemoryRegionType1)

Partitions2 = ((SPtN.PartitionName2, 2), (1, 1), Partitio nPort2, MemoryRegionType1)

Partitions3 = ((SPtN.PartitionName3, 3), (3, 1), Partitio nPort3, MemoryRegionType1)

Instead of translating types that are non-empty sequences of defined types, we create a set

with a few examples of possible sequences of that particular type. We illustrate this with

the example of the type PartitionType, which is a set of three sequences of partitions.

nametype PartitionsType = {<Partitions1>, <Partitions1, Partitions2>,

<Partitions1, Partitions2, Partitions3>}

We translate the schema Module similarly to the definition of Partition. It is a tuple

containing a name, a sequence of partitions, the sequence of execution of the partitions,

and the information regarding the health monitor for all the levels in the architecture.

nametype Module = (NameType, PartitionsType, ScheduleTyp e, HealthMonitoringType)

In Circus, when we want to have the values of a component of a schema, we simply

describe it as the name of the variable, followed by a character ‘.’(dot) and the name of

the component. For example, if we want to access the Name of a component AModule of

type Module, we describe it as AModule.Name. However it is not possible to use that type

of construct in CSP. We need to adopt a different approach for the translation: we define

an auxiliary operation, for example, getModuleName illustrated below, in which the input

is a tuple of type Module and the result is the name of the module. The equivalent result

in CSP to AModule.Name is getModuleName(AModule).

getModuleName((Name, Partitions, Schedules, HealthMoni toring)) = Name

getPartitions((Name, Partitions, Schedules, HealthMoni toring)) = Partitions

getPartSchedules((Name, Partitions, Schedules, HealthM onitoring)) = Schedules

getHealthMonitoring((Name, Partitions, Schedules, Heal thMonitoring)) = HealthMonitoring

3.5.2 Translation of the A653 Partition Circus process

In Circus the actions of a process is enclosed between a begin token and a ‘•’, and the main

action of the process is included after the ‘•’. We translate Circus actions of processes into

CSP by defining the process as local definitions using the construct let within. Moreover,

50 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

the main action of the process is defined after the within token. As an example, the

structure of the Circus process A653 Partition is translated into CSP as illustrated below:

Circus actions such as GetTime are included after the let token and then the main action

is defined after within.

A653_Partition(partitionId, pHM, sysError) =

let

GetTime = proc_req_system_time.partitionId?processId - >

part_req_system_time.partitionId ->

part_get_system_time.partitionId?t ->

proc_get_system_time.partitionId.processId!t ->

return_code.partitionId?rc -> SKIP

...

within moduleInit -> (ExecPartition /\ (moduleEnd -> SKIP))

3.5.3 Translation of Circus processes containing state

Differently from Circus, there is no direct translation of the state of a Circus process into

CSP. We can represent the state of the process by creating a new process, for the state, in

which every component of the Circus state is defined as input of the process in CSP and

the access to those values is made through CSP channels, allowing the main action of the

translated process to access the values of the state components and also assign new values

to these components.

In general lines, whenever a value of the state is updated, a channel prefixed by ‘set ’ re-

ceives the value from the main action and the state process recurses with the new value

received. However, when the main action is going to access any of the components of

the state, it made by request through a channel prefixed by ‘get ’ and then the state

process recurses without modifying any of the values of the components. Each ‘get ’ or

‘set ’ channel is offered in an external choice. After the communication of the channel,

the state process recurses. Then, the state process is put in parallel with the main action

of the translated process, communicating via the channels of the state process.

We illustrate this with the example of the process PartitionHM , translated from Cir-

cus. In the example, a CSP process PartitionHMSt , representing the state of the process

PartitionHM , is modelled with the two components of the state as inputs of the process.

The channels set partHM table and get partHM table will, respectively, update and offer

the values of the state. Moreover, as the main process of the PartitionHM process can be

interrupted by the channels endPartition and moduleEnd , these channels are also offered

in the external choice of the state process PartitionHMSt , and their communication will

result in the termination of the process by a SKIP .

The state process PartitionHMSt and the main action MainPartitionHM are put in

parallel, synchronising on the channels of the channel set PartitionHMStChannels, pre-

sented below. Moreover, we define a initial set of values for the initialisation of the state

process, and the channels used only for communication between the state and the main

action is hidden from outside the PartitionHM process.

PartitionHMStChannels =

3.5. TRANSLATING THE CIRCUS MODEL INTO CSP 51

{|set_partHM_table, get_partHM_table, moduleEnd, endPa rtition|}

PartitionHM(partitionId) =

let

PartitionHMSt(pHM,sysError) =

set_partHM_table?phm?se ->

PartitionHMSt(phm, se)

[] get_partHM_table!pHM!sysError ->

PartitionHMSt(pHM, sysError)

MainPartitionHM =

(part_send_partHM_table.partitionId?phm?se ->

set_partHM_table!phm!se -> SKIP)

within ((MainPartitionHM [|PartitionHMStChannels|]

PartitionHMSt(PartitionHMTableInit, SystemErrorInit))

/\ ((moduleEnd -> SKIP)

[] (endPartition.partitionId -> SKIP))

) \{|set_partHM_table,get_partHM_table|}

Before starting the validation of our Circusmodel of the IMA architecture, we had modelled

the partition layer as an interleaving of the partitions. It was justified by the fact that

the ARINC 653 standards specifies that partitions can not communicate with each other

without requesting communication via the APEX services.

However, whilst animating the CSP model, translated from Circus, using ProBE, we

noticed that: all partitions should be initialised simultaneously; after the initialisation

phase, the partitions should be available all at the same time; and all partitions should be

interrupted at the end of execution of the module simultaneously. The use of interleaving

would cause nondeterminism during the execution of the system, since any partition could

be ready to request the APEX services while others were still in the initialisation phase.

We then concluded that all partitions should synchronise at the same time with the APEX

and the operating system on the channels moduleInit , moduleEndInit , and moduleEnd .

Partitions_Layer(partitionIds, partHM, sysError) =

([| {|moduleInit, moduleEnd, moduleEndInit|} |] partitio nId: partitionIds

@ ((A653_Partition(partitionId, getPartHM(partHM, part itionId), sysError)

[|PartitionHMChannels|] PartitionHM(partitionId)

) \ {| part_send_partHM_table |}))

3.5.4 The Operating System process in CSP

The most complex part of the translation of the Circus model into CSP consists in the

translation of the Circus process OperatingSystem. We had to change the name of the

input of the OperatingSystem CSP process since the name module is already being used

for the definition of the type Module and the parser used in FDR is not case sensitive.

We then define the variable modl as the input of the OperatingSystem CSP process. We

start the translation by creating the equivalent process to the Circus state, OSSt , of the

OperatingSystem process. During the translation of the state OSSt into CSP, we define

that the access and update of the values of the state components is made via new channels,

introduced in our CSP model for the communication between the state process and the

rest of the translated CSP process of the OperatingSystem.

52 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

At the beginning of the execution of the state process OSSt , we include a restriction,

the invariant of the OSSt process, equivalent to the Circus model. At each recursion of

the process, the invariant is checked: the state process will terminate if the invariant is

broken. Moreover, for each component of the state, we define a ‘get ‘ and ‘set ‘ channel,

offered in an external choice, in order to allow the OperatingSystem main action to have

access and update the values of the state components.

OperatingSystem(modl) =

let

OSSt(PartitionsVariables, major_time_frame, system_ti me, current_partition,

current_partition_id, sampling_ports, queuing_ports) =

if (# PartitionsVariables == # getPartitions(modl))

then ((set_PartitionsVariables?pv ->

OSSt(pv, major_time_frame, system_time,

current_partition, current_partition_id,

sampling_ports, queuing_ports))

[] (get_PartitionsVariables!PartitionsVariables ->

OSSt(PartitionsVariables, major_time_frame, system_ti me,

current_partition, current_partition_id,

sampling_ports, queuing_ports))

[] ...)

else SKIP

...

We present one of the auxiliary operations for the translation of the Circus model of

the operating system into CSP. The operation OrderSeq is used by the CSP process

MajorTimeFrame in order to return the partition, within the sequence of partitions of

a module, with the highest Period . If the sequence of partitions has a single partition, the

OrderSeq will return that partition.

OrderSeq(<e>)=e

OrderSeq(<e>ˆx)=

let OrderSeq1(<e>ˆs,m) =

if (getPeriod(getPartitionPeriodicity(e))

> getPeriod(getPartitionPeriodicity(m)))

then OrderSeq1(s,e) else OrderSeq1(s,m)

OrderSeq1(<>,m) = m

within OrderSeq1(x,e)

As we cannot have direct access to the state components of the translated CSP model

from the Circus processes, we use channels for communication with the state in CSP.

For example, the MajorTimeFrame Circus action is translated into CSP using opera-

tions like OrderSeq in order to obtain the longest Period of a partition. However, as

the major time frame state component is updated with the result of that operations, we

update that component in the state process OSSt by communicating the new value of

major time frame with the state via the channel set major time frame.

MajorTimeFrame =

set_major_time_frame!getPeriod(getPartitionPeriodic ity(

OrderSeq(getPartitions(modl)))) -> SKIP

Another example of our translation strategy from Circus into CSP is the process

UpdateSystemTime, which receives the value x from the Timer process via the channel

updateClock and then sends x to the state process via the channel set system time. We see

3.5. TRANSLATING THE CIRCUS MODEL INTO CSP 53

here that instead of using an assignment to a state variable, for example system time := x ,

the value is sent to the state process and updated after the synchronisation.

UpdateSystemTime = updateClock?x -> set_system_time!x -> SKIP

In our translation model, there are several channels that uses state values in its communi-

cations. It is the case of the state component current partition id of the OperatingSystem

Circus process. It is used to indicate the identifier of the partition that can have access to

the APEX services. We can have access to such value in our CSP model by including it in

the scope of the translated Circus action by first receiving that value from the state process

via an input channel, for example get current partition id and then we enclose the action

of the process within parenthesis. Thus, every communication or internal calculation of

the process can use the value of the state component, like current partition id .

The Circus action OSGetTime is translated into CSP as follows: the channel

get current partition id receives from the state process the identifier of the current par-

tition in execution, then it receives from the APEX a signal that the partition with

identifier cid is requesting the time of the system. Next, the process UpdateSystemTime

process is executed. Finally, the current value of the time is received from the state

process via get system time and then it is sent back to the APEX through the channel

apex get system time.

OSGetTime = get_current_partition_id?current_partitio n_id ->

(apex_req_system_time.current_partition_id -> UpdateS ystemTime;

get_system_time?st -> apex_get_system_time.current_pa rtition_id!st -> SKIP)

The translation of the action OSGetPartitionStatus does not use the auxiliary Circus ac-

tion PartitionStatus. In CSP, we start the equivalent process by requesting that the

state process provide the identifier of the current partition in execution. This com-

munication is used for every translated Circus action into CSP. Then, the APEX re-

quests the current status of the partition with identifier current partition id . Follow-

ing, the sequence of PartitionsVariables, pv , is received from the state process. Fi-

nally, if the number of elements of the sequence pv is greater than zero, the channel

apex get partition status will send to the APEX the tuple of type PartitionsVariables

of the partition current partition id with the values of that partition. We are able to

construct the tuple of type PartitionsVariables by using the auxiliary operations such as

getPid and getPeriod , which returns these values from the input tuple.

OSGetPartitionStatus =

get_current_partition_id?current_partition_id ->

(apex_req_partition_status.current_partition_id ->

get_PartitionsVariables?pv ->

if (#pv > 0)

then apex_get_partition_status.current_partition_id! (

getPId(getPartitionBase(

getPartition(getPartitions(modl), current_partition_ id))),

getPeriod(getPartitionPeriodicity(

getPartition(getPartitions(modl), current_partition_ id))),

getDuration(getPartitionPeriodicity(

getPartition(getPartitions(modl), current_partition_ id))),

(getPVOperMode(getPS(pv, current_partition_id)),

54 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

getPVStartCond(getPS(pv, current_partition_id)),

getPVLockLvl(getPS(pv, current_partition_id)))) -> SKI P

else SKIP)

In our Circus model, we use Circus Time constructs in order to capture the scheduling

capabilities of the IMA architecture. For example, we use the Wait construct in order to

specify the time delay before the execution of the next partition according to the schedule

defined in the configuration tables. We also use the Circus Time timeout construct in order

to interrupt the execution of the actual partition when its allocated time slice has expired.

In order to capture the timed behaviour of our Circus specification in CSP, which

natively does not allows us to specify timed models, we need to explicitly incorporate the

passage of time in our specification. One solution is to include an event tock , which marks

the passage of time. That approach is called tock-CSP [51]. Every process that relies on

timing constraints must synchronise with the tock event. With tock , we are able to define

equivalent processes in CSP for the Circus Time constructs Wait and timeout [51].

We present first the process Wait, which is modelled as follows: the input n defines

how many tock events will occur before the end of the execution of the Wait process. In

other words, the process Wait will delay n time units the execution of the next process

in the system.

Wait(n) = if n>0 then tock -> Wait(n-1) else SKIP

We model the timeout construct in CSP in the following way. The process Timeout has

three inputs: process A, process B , and t time units for the timeout. We first define a

local process that recurses decrementing t time units, represented by occurrences of tock

event. When the counter reaches zero, an event timeout occurs and the Counter process

terminates. The main action of the Timeout process is the parallel composition between

the process A △ timeout −→ B and the Counter process, synchronising on timeout and

tock events. The process A △ timeout −→ B means that A is executed until a timeout

signal from the process Counter , interrupting A and starting the execution of B . An

example of using timeout is presented in [51], however, a definition of construct Timeout

using tock-CSP is not presented. Our definition of a Timeout differs from [57], in which,

an external choice is used and A can only be executed if it engages a communication or if it

terminates before the Wait period d . In our example, A is executed until an interruption

(/\) with a signal timeout , triggered by Counter(t) followed by the process B after t

elapses.

Timeout(A,B,t) =

let Counter(t) =

if (t>0) then tock -> Counter(t-1)

else timeout -> SKIP

within ((A /\ timeout -> B) [|{|timeout,tock|}|] Counter(t)) \ {|timeout|}

Having modelled the equivalent processes to the Circus Time constructs, we can now trans-

late the ExecOS process of the OperatingSystem, which is the core process of the operating

system.

The execution of the ExecOS process starts by updating the system time component

of the state process. Next, the process NextPartition calculates which of the partitions is

3.5. TRANSLATING THE CIRCUS MODEL INTO CSP 55

to be executed next. Then it recurses as follows: at each iteration, if the offset of the next

partition to be executed is greater than the current system time, then the Wait process

is executed during the interval between the current time until reaching the offset of the

partition and then it recurses. However, if the offset of the partition to be executed in the

sequel is equal to the current system time, then the Timeout process is executed with the

following inputs: the process ExecOSServices; InterruptActions, which is simply a signal

interruptPartition to the partition of identifier current partition id ; and the duration of

execution of that partition.

ExecOS =

let

X = (UpdateSystemTime ; NextPartition ;

get_system_time?system_time ->

(get_current_partition_id?current_partition_id ->

(get_major_time_frame?major_time_frame ->

(if major_time_frame > 0

then get_current_partition?current_partition ->

(if (getPartitionTimeWindowOffset(current_partition) >

(system_time % major_time_frame))

then Wait(getPartitionTimeWindowOffset(current_parti tion) -

(system_time % major_time_frame)) ; X

else if (getPartitionTimeWindowOffset(current_partiti on) ==

(system_time % major_time_frame))

then Timeout(ExecOSServices,

InterruptAction(current_partition_id),

getPartitionTimeWindowDuration(current_partition)) ; X

else SKIP)

else SKIP))))

within MajorTimeFrame; X

As we translate the state of the OperatingSystem Circus process as a state process in

CSP, we need to define the main action of the Circus process as a particular CSP process,

in order to put it in parallel with the state process OSSt .

We define here the main action of the OperatingSystem process as the CSP process

OSMainAction which is similar to the main action of the Circus process. The difference is

how we access the values of the health monitor from the input variable modl , using here,

auxiliary operators such as getModuleHMTable and getSystemError .

OSMainAction =

moduleInit ->

os_send_modHM_table!(getModuleHMTable(getHealthMoni toring(modl)))!(

getSystemError(getHealthMonitoring(modl))) ->

(ExecOS /\ moduleEnd -> SKIP)

We conclude the translation of the OperatingSystem Circus process into CSP with the

parallelism between the main action of the OperatingSystem, represented by the process

OSMainAction, and the state process OSSt , with the initial values of the state defined as

inputs of the process. These values are not specified in the ARINC 653 document, but

are simply defined by us, and does not affect the execution of the process. All the state

values are updated in the during of execution of the OSMainAction. The two processes

synchronise on the channel set OSStchannels, which comprises the channels for obtaining

and updating the values of the state components. However, the communication between

56 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

the state process OSSt and the OSMainAction is hidden from outside the OperatingSystem

process.

within (OSMainAction [|OSStchannels|]

OSSt(<PartitionVariables1>, 0, 0, PartitionTimeWindowN ull,

0, {(0,SPNT.SPNone)}, {(0,QPNT.QPNone)})) \ OSStchannel s

The CSP process equivalent to the Circus process OS Layer is presented below: the

OperatingSystem process is put in parallel with the ModuleHM process, translated simi-

larly to the PartitionHM process previously presented here, and the Timer process, which

the translated process uses the defined Wait and Timeout processes for timing manage-

ment.

OS_Layer =

((ModuleHM [|ModuleHMChannels|]

(OperatingSystem(amod)\OSStchannels)) \ {|os_send_mod HM_table|})

[|{|updateClock,moduleInit,moduleEnd|}|]

(Timer \ {|get_clock,set_clock|})

We conclude the translation of our Circus model of the IMA architecture with the equiv-

alent CSP process of the Circus process Module. It consists of the parallel composition

between the OS Layer , the Partitions Layer and the APEX Layer , synchronising on the

channels belonging to the channel sets ApexOS and PartitionApex .

Module(modl) =

OS_Layer [| ApexOs |]

(Partitions_Layer({1..#getPartitions(modl)},

getPartitionHMTable(getHealthMonitoring(modl)),

getSystemError(getHealthMonitoring(modl)))

[| PartitionApex |]

APEX_Layer(getSystemError(getHealthMonitoring(modl)),

getMultiPartitionHMTable(getHealthMonitoring(modl))))

In this section we presented the translation of our model of the IMA architecture from

Circus to CSP2. In the next section, we discuss the validation of the model using FDR.

3.6 Validation of the model using FDR

We validated our CSP model of the IMA architecture using FDR, with assertions regarding

deadlock freedom, livelock freedom, determinism and termination. These assertions were

checked for each translated process individually, for example, for the A653 Partition and

the PartitionHM processes. Then, the checks were performed for the parallelism between

the Circus processes, such as the Partition Layer and OS Layer .

With help of these assertions, we were able to define the channel sets used for the

communication between the layers of the architecture, specified as processes. In particular,

the assertions regarding the termination of the processes has shown the expected result:

none of the partitions processes or the APEX process should terminate by itself. We see in

FDR that these processes never terminate. However, when the assertion for termination

2The full version of the CSP specification can be found elsewhere at
http://www.cs.york.ac.uk/∼artur/ima-spec.csp

3.6. VALIDATION OF THE MODEL USING FDR 57

is assessed for the Module(modl) process, we see that the system terminates, which means

that the operating system is the one that triggers the termination of the other processes.

Moreover, as mentioned before in this section, by using the animator ProBE, we could

identify that instead of interleaving the partitions within a module, they should be in par-

allel, synchronising during the initialisation of the module, at the end of the initialisation

phase, and at the point in which the module is switched off.

Verifying the assertions about the specification in FDR required a large amount of

time due to the complexity of the system. Since we are dealing with a large number of

processes in parallel and their communication channels, some of the assertions required

more than 15 hours to verify. The amount of time was increased with the inclusion of tock

events and timing constructs in the specification.

There is one thing we need to have in mind when performing model checking of Cir-

cus specifications: we need to avoid state explosion. In FDR, the translated specification

of the IMA architecture into CSP can cause state explosion due to the infinite number of

possible states of the system. We then have to restrict, in the CSP specification, the types

to a small subset of the original types specified in Circus.

As a consequence, we can not explore a wide number of examples of configuration

tables for IMA modules. For instance, the inclusion of more than two partitions in the

example of configuration table used in this dissertation increases exponentially the number

of internal calculations in FDR, and consequently, increases the amount of time required

by FDR to verify the assertions.

Considering that this specification includes only four of the dozens of APEX services

such as those for partition and process management, interpartition and interpartition

communication and health monitoring, and we use in our assertions a small example of

the configuration tables, it looks like that the amount of time required to validate this

model including new APEX services will be highly increased. One solution for this problem

might be the use of compression techniques [48] in FDR, which might help to reduce the

amount of time verify for the internal calculations of the model checker.

Until now thre is no automatic translation tool from Circus into CSP, aiming at model

checking with FDR. And because we are translating the specification by hand, we should

pay attention to several details of the equivalences between the two formalisms. In most of

the Circus constructs, we have a pretty straightforward translation into CSP, as we know

that Circus is derived from CSP.

We have to closely look at the inclusion of the notion of a state in the translated CSP

processes from Circus. We include extra CSP channels for the communication between

the CSP internal process, that describes the behaviour of the system, and the state of the

process.

Moreover, we have also to carefully analize and design equivalent constructs for the

predicates of Z schema expressions, which are not always very straightforward, requiring

sometimes the creation of auxiliary functions in order to establish the equivalence between

the model in CSP and the one in Circus.

In summary, we can cite a few basic requirements in order to design a tool for au-

58 CHAPTER 3. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

tomatic translation from Circus into CSP: (1) Identify the sets of channels used in the

Circus specification for communication between the Circus processes. (2) Identify the state

of the Circus process, its components and invariants, then create a new set of channels for

the communication between the state and the components of the Circus process, offering

and updating the values of the components of the state, through internal communication

using CSP channels hidden from outside the equivalent CSP process from the Circus pro-

cess. (3) In case of the use of Z schema expressions, identify the predicates of the operation

and design equivalent constructs of them in CSP.

In our case, as we use Circus Time constructs in our specification, we can not have

direct translation into CSP as FDR does not support timed CSP. However, we have to

manually deal with the translation of Circus Time constructs into CSP by using tock -CSP.

Specification of specific properties during the execution of the model such as examples

of expected and unexpected sequences of execution of IMA partitions can be described as

part of future work.

3.7 Final Considerations

We have presented in this chapter how we use Circus in order to specify the three top

layers of the IMA architecture and how we validate it in FDR using a translated version of

the model into CSP. During the translation from Circus to CSP, we can see the similarities

between the syntax of the two languages, since we know that Circus is a combination of Z

and CSP. We translate choice of actions, parallelism and interleaving between processes

keeping the same order of the execution flow of the model just as described in Circus.

Types defined in Circus as natural numbers are redefined in CSP as small finite subsets

in order to avoid state explosion whilst using FDR. Abstract types are translated into

CSP as free types with a few constants used for modelling the configuration tables. Free

types specified in Circus are translated into CSP as datatypes. Moreover, schema types

are translated into nametypes in which the components of the schema are structured in a

tuple. We also define functions in CSP in order to obtain the values of these nametypes.

We also keep the same name for the CSP channels from the Circus specification. The

notation used for describing the types of channels that communicate more than one value

of the same type in CSP is slightly different from Circus: the character ‘×’ (cross) is

replaced by a ‘.’ (dot).

Circus processes are translated as CSP processes. The actions of the Circus process are

described as local processes and are located between the construct let within. Moreover,

the main action of the Circus process is described after the within.

Capturing the state of Circus processes requires the creation of another local process.

We create a state process of the CSP process in which the components of the Circus state

are translated as inputs of the state process. Moreover, the access and update of values of

the state is made through communication using new channels for getting and setting the

values of the state.

Parallelism, interleaving and choice are captured in CSP in a similar syntax from the

Circus notation. The translation of the Circus Time model is made with help of tock-CSP.

3.7. FINAL CONSIDERATIONS 59

We use equivalent CSP notation for the Wait and timeout Circus Time constructs [51].

In the next section we present the conclusions regarding the current state of the above

presented work and directions for future work.

Chapter 4

Conclusions

In this dissertation we present a formal model of the IMA architecture. In particular we

use Circus as a formal language to model and validate the IMA architecture. The resulting

model captures the temporal partitioning feature of the IMA partitions within a module.

4.1 Summary and Contributions

In this dissertation we provided an overview of the IMA architecture, detailing its com-

ponents and features. We also present an overview of existing approaches on certification

and verification of IMA systems. Moreover, we present a brief survey of formal languages

for the design of concurrent systems. By using Circus, we are able to formally specify the

IMA architecture including scheduling capabilities used for temporal partitioning using

Circus Time constructs.

Afterwards, we provided a Circus model [24] of three layers of components of the IMA

architecture. It comprises a model of the operating system layer, the application executive

(APEX) layer and the partitions layer. The complete Circus model of the IMA architecture

is included in the Appendix A.

We first present the partitions layer, which represents the set of partitions that are exe-

cuted within an ARINC 653 module. They are modelled in Circus as a generalised parallel

composition between each A653 Partition and its health monitor, the PartitionHM Cir-

cus process, defined as a new Circus process called Partitions Layer .

The APEX layer is modelled in Circus as the parallel composition of two Circus pro-

cesses: the APEX , which manages the requests of its services from the partitions; and the

MultiPartitionHM , which behaves according to its recovery actions, in case of detected

errors.

And finally, the operating system layer is modelled as the parallel composition of three

Circus processes. The OperatingSystem, contains records of the partitions requirements,

and behaves as described in the ARINC 653 documents, where the partitions are executed

within a schedule. We modelled the scheduling capability of the operating system using

Circus Time constructs, using the timed interrupt construct to interrupt the execution

of partitions. Moreover the Circus process Timer provides to the OperatingSystem the

actual time of the system. Finally, the ModuleHM receives the information regarding

62 CHAPTER 4. CONCLUSIONS

health monitoring for the module level: its behaviour regarding errors and failures is part

of our future work.

We were able to validate our model using FDR with assertions regarding deadlock

freedom, livelock, nondeterminism and termination check which is not mentioned in none

of the related work in verifying avionics systems, presented in Section 2.2.2.

4.2 Future Work

The next steps for this work consist in expanding the presented Circus model of the ar-

chitecture. We need to model the ARINC processes within a partition, and model a

scheduler for these process within a partition, based on the ARINC 653 document. More-

over, we need to extend the range of APEX services, including the services for process

management, time management, interpartition communication, intrapartition communi-

cation, and health monitoring. We also need to model the behaviour of the health monitor

Circus processes for the module, the APEX and the partitions.

As we are dealing with a complex specification, we can see that it becomes more

difficult to validate it in FDR after including new services of the APEX and using larger

examples of configuration tables. We know that compression techniques may be helpful

in order to reduce the time required from FDR in order to verify the assertions about the

specification. Although, we are not sure about how much time it would be reduced by

using these techniques in the CSP specification of the IMA architecture presented here.

In this work, we address the specification of time requirements of IMA partitions.

However, the specification of spatial partitioning aspects of IMA partitions is also an

interesting subject of research.

An interesting piece of future work is that, once having the Circus model of the IMA

architecture extended to capture the internal computations of the partitions, i.e., including

scheduling and communication services for the processes as well as including the health

monitor recovery services, it can be used as a Circus library in order to be able to verify

implementations of IMA programs.

By taking advantage of existing work related to Circus, it might be possible to prove the

refinement between Circus models of Simulink diagrams [36] and Circus models of concrete

implementations of these programs [46] within an IMA module. The idea is to produce a

model generation strategy which puts together the Circus model of the IMA architecture,

presented in this dissertation with Circus models of implementations of IMA applications

within an IMA module. The components of the IMA architecture presented here are fixed,

and since their Circus model is always the same, they are verified only once. However,

only specific components of the Circus model regarding IMA applications will need to be

verified when included in the validated model of the architecture.

By using Circus, we can profit from its support for concurrent systems, which is one

of the characteristics of IMA programs. Another benefit from adopting this approach

as part of our work is that we can verify discrete time programs specified in Simulink.

Moreover, we can benefit from modularity, which is essential for our approach, as we plan

to verify the IMA applications in isolation from the architecture model. However, we need

4.2. FUTURE WORK 63

to extend this to Circus Time, as it is used during the construction of the Circus model of

the IMA architecture, based on the ARINC 653 standards.

Another contribution for future work could be the extension of existing work [7] on the

translation strategy of Simulink diagrams into Circus models in order to produce models

with Circus Time constructs. By using Circus Time constructs we are able to capture the

scheduling capabilities specified by ARINC 653, producing Circus models of IMA systems

using Circus Time constructs such as Wait and timeouts. Moreover, it might be necessary

to analyse the existing refinement strategy [8] for Circus to the context of avionics systems:

it would be necessary to develop new refinement laws regarding the Simulink libraries for

this subject.

Finally, an interesting piece of future work outside the scope of this thesis would be

the use of an industrial-scale case study that could help us to evaluate the scalability of

our approach. Moreover, it would allow us to see how automated is our approach and

how we could develop a tool that automates our proposed model generation strategy of

implementations of IMA programs.

Appendix A

A Circus Model of the ARINC 653

Components

A.1 Types

iseq1[X] == { s : seqX | s 6= 〈〉 ∧ s ∈ N֌ X }

A.1.1 Basic types definition

1. Definition for numbers

DecOrHexValueType == Z

2. Definition for Strings

[String]

NameType == String

3. Definition of Boolean

Boolean ::= TRUE | FALSE

4. Definition of Time

SYSTEM TIME TYPE == DecOrHexValueType

5. Definition of Partitions and Process Identifiers

PARTITION ID TYPE == DecOrHexValueType

PROCESS ID TYPE == DecOrHexValueType

66 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

6. Definition of messages provided in the end of the execution of an APEX service

RETURN CODE TYPE ::= NO ERROR | NO ACTION | NOT AVAILABLE

| INVALID PARAM | INVALID CONFIG

| INVALID MODE | TIMED OUT

7. Definition of ARINC constants, including operating modes and recovery actions.

ARINC CONSTANTS ::= COLD START | WARM START | COLD RESTART

| WARM RESTART | IDLE | NORMAL

| ERROR MODE | IGNORE | SHUTDOWN

| RESET | ARINC CONSTANTS NULL

8. Definition of Operating modes, subsets of ARINC CONSTANTS .

OPERATING MODE TYPE ==

ARINC CONSTANTS \ {COLD RESTART ,WARM RESTART ,

ERROR MODE , IGNORE ,SHUTDOWN ,

RESET ,ARINC CONSTANTS NULL}

OPERATING INIT MODE TYPE ==

ARINC CONSTANTS \ {IDLE ,NORMAL,

COLD RESTART ,WARM RESTART ,

ERROR MODE , IGNORE ,SHUTDOWN ,

RESET ,ARINC CONSTANTS NULL}

9. Start Condition

START CONDITION TYPE ::= NORMAL START | PARTITION RESTART

| HM NORMAL START | HM PARTITION RESTART

10. Lock Level

LOCK LEVEL TYPE == DecOrHexValueType

A.1. TYPES 67

11. Errors and levels of error definition

ErrorCodeType ::= DEADLINE MISSED | APPLICATION ERROR

| NUMERIC ERROR | ILLEGAL REQUEST

| STACK OVERFLOW | MEMORY VIOLATION

| HARDWARE FAULT | POWER FAIL

MODULE LEVELS ::= PARTITION | PROCESS

| MODULE | MODULE LEVELS NULL

PartitionHMTableErrorLevelType ==

MODULE LEVELS \ {MODULE}

MultiPartitionHMTableErrorLevelType ==

MODULE LEVELS \ {PARTITION }

12. Recovery Actions definition for Module and Partition levels

ModuleLevelErrorRecoveryActionType ==

ARINC CONSTANTS \ {COLD RESTART ,WARM RESTART ,

COLD START ,WARM START ,

IDLE ,NORMAL,ERROR MODE ,

ARINC CONSTANTS NULL}

PartitionLevelErrorRecoveryActionType ==

ARINC CONSTANTS \ {COLD START ,WARM START ,NORMAL,

ERROR MODE ,SHUTDOWN ,

RESET ,ARINC CONSTANTS NULL}

13. Port message types definition

[MESSAGE ADDR TYPE]

SAMPLING PORT NAME TYPE == NameType

MESSAGE SIZE TYPE == DecOrHexValueType

SAMPLING PORT ID TYPE == DecOrHexValueType

VALIDITY TYPE ::= INVALID | VALID

QUEUING PORT ID TYPE == DecOrHexValueType

[QUEUING PORT NAME TYPE]

QUEUING DISCIPLINE TYPE ::= FIFO | PRIORITY

MESSAGE RANGE TYPE == DecOrHexValueType

WAITING RANGE TYPE == DecOrHexValueType

PortDirectionType ::= SOURCE | DESTINATION

A.1.2 Configuration Tables Data Structure

1. Partitions

(a) Partition Status Type Definition

68 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

A653 PartitionBaseType

Identifier : PARTITION ID TYPE

Name : NameType

(b) Partition Memory Region Type Definition

A653 MemoryRegionType

Name,Type,AccessRights : NameType

Size : DecOrHexValueType

MemoryRegion == iseq1[A653 MemoryRegionType]

(c) Partition Periodicity Type Definition

A653 PartitionPeriodicityType

Period : SYSTEM TIME TYPE

Duration : SYSTEM TIME TYPE

(d) Partition Ports Types Definition

i. Port Base (used in both port types)

PortBaseType

Name : NameType

MaxMessageSize : DecOrHexValueType

Direction : PortDirectionType

ii. Sampling Port

A653 SamplingPortType

PortBaseType

iii. Queuing Port

A653 QueueingPortType

PortBaseType

MaxNbMessage : DecOrHexValueType

A.1. TYPES 69

iv. Partition Ports Definition

PartitionPort ::= SamplingPort〈〈A653 SamplingPortType〉〉

| QueueingPort〈〈A653 QueueingPortType〉〉

PartitionPorts == iseq1[PartitionPort]

(e) Partition definition

Partition

PartitionDefinition : A653 PartitionBaseType

PartitionPeriodicity : A653 PartitionPeriodicityType

MemoryRegions : iseq1[A653 MemoryRegionType]

PartitionPorts : iseq1[PartitionPort]

(f) Sequence of Partitions definition

PartitionsType == iseq1[Partition]

2. Partition Schedule

A653 PartitionTimeWindowType

PartitionNameRef : NameType;

Duration,Offset : DecOrHexValueType;

PeriodicProcessingStart : Boolean

ScheduleType == iseq1[A653 PartitionTimeWindowType]

3. Health Monitor

(a) Error Identifier Types

A653 ErrorIdentifierType

ErrorIdentifier : IdentifierValueType

Description : NameType

(b) Partition Health Monitor Definition

70 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

PErrorActionType

ErrorIdentifierRef : IdentifierValueType

ErrorLevel : PartitionHMTableErrorLevelType

PartitionRecoveryAction : ModuleLevelErrorRecoveryActionType

ErrorCode : ErrorCodeType

A653 PartitionHMTableType

TableName : NameType

MultiPartitionHMTableNameRef : NameType

ErrorAction : seq
1
PErrorActionType

(c) Multi-Partition Health Monitor Definition

MPErrorActionType

ErrorIdentifierRef : IdentifierValueType

ErrorLevel : PartitionHMTableErrorLevelType

A653 MultiPartitionHMTableType

TableName : NameType

ErrorAction : seq
1
MPErrorActionType

(d) Module Health monitor definition

MErrorActionType

ErrorIdentifierRef : IdentifierValueType

ModuleRecoveryAction : ModuleLevelErrorRecoveryActionType

A653 ModuleHMTableType

StateIdentifier : IdentifierValueType

Description : NameType

ErrorAction : seq
1
MErrorActionType

(e) Health monitor Definition

A.2. CIRCUS CHANNELS 71

HealthMonitoringType

SystemErrors : iseq1[A653 ErrorIdentifierType]

ModuleHM : iseq1[A653 ModuleHMTableType]

MultiPartitionHM : iseq1[A653 MultiPartitionHMTableType]

PartitionHM : iseq1[A653 PartitionHMTableType]

4. Module Definition

Module

Name : NameType

Partitions : PartitionsType

Schedules : ScheduleType

HealthMonitoring : HealthMonitoringType

5. Partition Status Type Definition

PartitionVariables

OPERATING MODE : OPERATING MODE TYPE

START CONDITION : START CONDITION TYPE

LOCK LEVEL : LOCK LEVEL TYPE

PARTITION STATUS TYPE

Identifier : PARTITION ID TYPE

Period : SYSTEM TIME TYPE

Duration : SYSTEM TIME TYPE

PartitionVariables

A.2 Circus Channels

1. Channels for communication between the Operating System, APEX and the Parti-

tions indicating the life stage of the ARINC Module.

channel moduleInit ,moduleEndInit ,moduleEnd

2. Channels used by the Operating System Circus process to control the partitions

execution.

channel initPartition, endPartition, reinitPartition : PARTITION ID TYPE

channel execPartition, interruptPartition : PARTITION ID TYPE

channel return code : PARTITION ID TYPE × RETURN CODE TYPE

72 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

3. Channels for communication between the APEX and the Operating System

channel apex req sampling port id : PARTITION ID TYPE

×SAMPLING PORT NAME TYPE

channel apex get sampling port id : PARTITION ID TYPE

×SAMPLING PORT ID TYPE

channel apex req new partition mode : PARTITION ID TYPE

×OPERATING MODE TYPE

channel apex req partition status : PARTITION ID TYPE

channel apex get partition status : PARTITION ID TYPE

×PARTITION STATUS TYPE

channel apex req system time : PARTITION ID TYPE

channel apex get system time : PARTITION ID TYPE

×SYSTEM TIME TYPE

channel apex req partition mode : PARTITION ID TYPE

channel apex get partition mode : PARTITION ID TYPE

×OPERATING MODE TYPE

channel apex new partition mode fail : PARTITION ID TYPE

4. Channels for communication between the APEX and its health monitor

channel apex send mpHM table : iseq1[A653 MultiPartitionHMTableType]

×(seq
1
A653 ErrorIdentifierType)

5. Channels for communication between Partitions and the APEX

channel part set partition mode : PARTITION ID TYPE

×ARINC CONSTANTS

channel part req partition status : PARTITION ID TYPE

channel part get partition status : PARTITION ID TYPE

×PARTITION STATUS TYPE

channel part req system time : PARTITION ID TYPE

channel part get system time : PARTITION ID TYPE

×SYSTEM TIME TYPE

channel part req sampling port id : PARTITION ID TYPE

×SAMPLING PORT NAME TYPE

channel part get sampling port id : PARTITION ID TYPE

×SAMPLING PORT ID TYPE

channel partHM restart partition : PARTITION ID TYPE

A.2. CIRCUS CHANNELS 73

6. Channels for communication between each Partition and its health monitor

channel part send partHM table : PARTITION ID TYPE

×A653 PartitionHMTableType

×(seq
1
A653 ErrorIdentifierType)

7. Channels for communication between ARINC processes and its Partition

channel proc req system time : PARTITION ID TYPE

×PROCESS ID TYPE

channel proc get system time : PARTITION ID TYPE

×PROCESS ID TYPE

×SYSTEM TIME TYPE

channel proc set partition mode : PARTITION ID TYPE

×PROCESS ID TYPE

×ARINC CONSTANTS

channel proc req sampling port id : PARTITION ID TYPE

×PROCESS ID TYPE

×SAMPLING PORT NAME TYPE

channel proc get sampling port id : PARTITION ID TYPE

×PROCESS ID TYPE

×SAMPLING PORT ID TYPE

channel proc req partition status : PARTITION ID TYPE

×PROCESS ID TYPE

channel proc get partition status : PARTITION ID TYPE

×PROCESS ID TYPE

×PARTITION STATUS TYPE

8. Channel for communication between the Operating System and its health monitor

channel os send modHM table : iseq1[A653 ModuleHMTableType]

× seq
1
A653 ErrorIdentifierType

9. Channel for communication between the Timer and the Operating System

channel updateClock : SYSTEM TIME TYPE

74 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

A.3 Partitions

A.3.1 Channels

channelsetPartitionApex == {| part req partition status, part get partition status,

part req sampling port id , part get sampling port id ,

part req system time, part get system time,

return code, part set partition mode,

moduleInit ,moduleEnd ,moduleEndInit , endPartition, reinitPartition |}

A.3.2 Partition process

process A653 Partition =̂ partitionId : PARTITION ID TYPE ;

partHM : A653 PartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType • begin

GetTime =̂

proc req system time.partitionId?processId−→

part req system time.partitionId−→

part get system time.partitionId?t−→

proc get system time.partitionId .processId !t−→

return code.partitionId?rc −→ Skip

SetPartitionMode =̂

proc set partition mode.partitionId?processId?OPERATING MODE−→

part set partition mode.partitionId !OPERATING MODE−→

return code.partitionId?rc −→ Skip

GetSamplingPortId =̂

proc req sampling port id .partitionId?processId?SAMPLING PORT NAME−→

part req sampling port id .partitionId !SAMPLING PORT NAME−→

part get sampling port id .partitionId?spid−→

proc get sampling port id .partitionId !processId !spid−→

return code.partitionId?rc −→ Skip

A.3. PARTITIONS 75

GetPartitionStatus =̂

proc req partition status.partitionId?processId−→

part req partition status.partitionId−→

part get partition status.partitionId?st−→

proc get partition status.partitionId .processId !st−→

return code.partitionId?rc −→ Skip

ExecPartitionServices =̂

execPartition.partitionId−→



µX •




SetPartitionMode

@ GetPartitionStatus

@ GetSamplingPortId

@ GetTime



; X

△ (interruptPartition.partitionId −→ Skip)




ExecPartition =̂ initPartition.partitionId−→

part send partHM table.partitionId !pHM !sysError−→

moduleEndInit−→


(µX • ExecPartitionServices ; X)

△

(
endPartition.partitionId −→ Skip

@ reinitPartition.partitionId −→ ReinitPartition

)



ReinitPartition =̂ partHM restart partition.partitionId−→


(µX • ExecPartitionServices ; X)

△

(
endPartition.partitionId −→ Skip

@ reinitPartition.partitionId −→ ReinitPartition

)



• moduleInit −→ (ExecPartition △ moduleEnd −→ Skip)

end

A.3.3 The Partition Level Health Monitor

process PartitionHM =̂ partitionId : PARTITION ID TYPE • begin

76 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

statePartitionHMSt == [pHM : A653 PartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType]

•

(
part send partHM table.partitionId?phm?se−→

pHM , sysError := phm, se

)

△

(
moduleEnd −→ Skip

@ endPartition.partitionId −→ Skip

)

end

channelsetPartitionHMChannels ==

{| part send partHM table,moduleEnd , endPartition |}

A.3.4 Partitions Layer Model

process Partitions Layer =̂ partitionIds : PPARTITION ID TYPE ;

partHM : seq
1
A653 PartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType

•




f
pid : partitionIds J {|moduleInit ,moduleEnd ,moduleEndInit |}K

•

(
A653 Partition(pid , partHM (pid), sysError)

JPartitionHMChannels K PartitionHM (pid)

)



A.4 The APEX

channelsetApexOs == {| moduleInit ,moduleEnd ,moduleEndInit ,

endPartition, reinitPartition, return code,

apex get sampling port id , apex req new partition mode,

apex req partition status, apex get partition status,

apex req system time, apex get system time,

apex req partition mode, apex get partition mode,

apex req sampling port id , apex new partition mode fail |}

A.4.1 APEX Process

process APEX =̂ sysError : seq
1
A653 ErrorIdentifierType;

mpHM : seq
1
A653 MultiPartitionHMTableType • begin

A.4. THE APEX 77

GET TIME =̂ part req system time?pid−→

apex req system time.pid−→

apex get system time.pid?t−→

part get system time.pid !t−→

return code.pid !NO ERROR −→ Skip

GET PARTITION STATUS =̂

part req partition status?pid−→

apex req partition status.pid−→

apex get partition status.pid?cp−→

part get partition status.pid !cp −→ Skip

SET PARTITION MODE =̂

part set partition mode?pid?nopm−→

apex req partition mode.pid−→

apex get partition mode.pid?opm−→


if (nopm 6∈OPERATING MODE TYPE)−→

return code.pid !INVALID PARAM −→ Skip

8 (opm = NORMAL ∧ nopm = NORMAL)−→

apex new partition mode fail .pid−→

return code.pid !NO ACTION −→ Skip

8 (opm = COLD START ∧ nopm = WARM START)−→

apex new partition mode fail .pid−→

return code.pid !INVALID MODE −→ Skip

8
(

nopm = IDLE

∨ nopm ∈ OPERATING INIT MODE TYPE

)
−→

apex req new partition mode.pid !nopm−→

return code.pid !NO ERROR −→ Skip

8 (opm 6= NORMAL ∧ nopm = NORMAL)−→

apex req new partition mode.pid !nopm−→

return code.pid !NO ERROR −→ Skip

fi




78 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

GET SAMPLING PORT ID =̂

part req sampling port id?pid?spn−→

apex req sampling port id .pid !spn−→

apex get sampling port id .pid?spid−→


if (spid = - 1)−→

part get sampling port id .pid !spid−→

return code.pid !INVALID CONFIG −→ Skip

8 (spid 6= - 1)−→

part get sampling port id .pid !spid−→

return code.pid !NO ERROR −→ Skip

fi




ExecApexServices =̂ execPartition?pid−→


µX •




GET TIME

@ SET PARTITION MODE

@ GET PARTITION STATUS

@ GET SAMPLING PORT ID



; X

△

(
interruptPartition.pid −→ Skip

@ endPartition.pid −→ Skip

)




ExecApex =̂ apex send mpHM table!mpHM !sysError−→

moduleEndInit −→ (µX • ExecApexServices ; X)

• moduleInit −→ (ExecApex △ moduleEnd −→ Skip)

end

A.4.2 The APEX Health Monitor (Multi-Partition)

process MultiPartitionHM =̂ begin

state MultiPartitionHMSt ==

[mpHM : seq
1
A653 MultiPartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType]

• apex send mpHM table?mp?se−→

mpHM , sysError := mp, se

△moduleEnd −→ Skip

end

A.5. THE OPERATING SYSTEM 79

channelsetMultiPartitionHMChannels == {| apex send mpHM table,moduleEnd |}

A.4.3 APEX Layer Model

process APEX Layer =̂ mpHM : seq
1
A653 MultiPartitionHMTableType;

sysError : seq
1
A653 ErrorIdentifierType

•

(
APEX (sysError ,mpHM)

JMultiPartitionHMChannels K MultiPartitionHM

)

A.5 The Operating System

A.5.1 The Operating System Circus process

process OperatingSystem =̂ module : Module • begin

OSSt

partitions variables : iseq1[PartitionVariables]

major time frame : SYSTEM TIME TYPE ;

system time : SYSTEM TIME TYPE

current partition : A653 PartitionTimeWindowType

current partition id : PARTITION ID TYPE

sampling ports : (SAMPLING PORT ID TYPE 7→

SAMPLING PORT NAME TYPE)

queuing ports : (QUEUING PORT ID TYPE 7→

QUEUING PORT NAME TYPE)

partitions variables = #module.Partitions

state OSSt

InitPartition =̂ 9 pid : (1 . . (#module.Partitions)) • initPartition.pid −→ Skip

80 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

MajorTimeFrame

∆OSSt

getMajorTimeFrame : PartitionsType

∀ x : ranmodule.Partitions

• #(module.Partitions ⊲ {x}) = # (getMajorTimeFrame ⊲ {x})

∀ p1, p2 : ran getMajorTimeFrame

• p1.PartitionPeriodicity .Period > p2.PartitionPeriodicity .Period

major time frame ′ = (getMajorTimeFrame(1)).PartitionPeriodicity .Period

θ(OSSt \ (major time frame))′ = θ(OSSt \ (major time frame))

NextPartition

∆OSSt

current partition ′ = head (module.Schedules↾

{p : A653 PartitionTimeWindowType |

(system time modmajor time frame) ≤ p.Offset})

(module.Partitions(current partition id ′)).PartitionDefinition.Name =

(current partition ′).PartitionNameRef

θ(OSSt \ (current partition id , current partition))′ =

θ(OSSt \ (current partition id , current partition))

UpdateSystemTime =̂ updateClock?x −→ system time := x

OSGetTime =̂ apex req system time.current partition id −→UpdateSystemTime;

apex get system time.current partition id !system time −→ Skip

A.5. THE OPERATING SYSTEM 81

PartitionStatus

ΞOSSt

p! : PARTITION STATUS TYPE

(p!).Identifier =

(module.Partitions(current partition id)).PartitionDefinition.Identifier

(p!).Period =

(module.Partitions(current partition id)).PartitionPeriodicity .Period

(p!).Duration =

(module.Partitions(current partition id)).PartitionPeriodicity .Duration

(p!).LOCK LEVEL =

(partitions variables(current partition id)).LOCK LEVEL

(p!).OPERATING MODE =

(partitions variables(current partition id)).OPERATING MODE

(p!).START CONDITION =

(partitions variables(current partition id)).START CONDITION

OSGetPartitionStatus =̂ var p : PARTITION STATUS TYPE •

apex req partition status.current partition id −→ (PartitionStatus);
apex get partition status.current partition id !p −→ Skip

SetPMode

∆OSSt

nopm? : OPERATING MODE TYPE

partitions variables ′ =

(let o == 〈|OPERATING MODE == nopm?,

START CONDITION ==

(partitions variables(current partition id)).START CONDITION ,

LOCK LEVEL ==

(partitions variables(current partition id)).LOCK LEVEL |〉

• partitions variables ⊕ {current partition id 7→ o})

θ(OSSt \ (current partition id , current partition, partitions variables))′ =

θ(OSSt \ (current partition id , current partition, partitions variables))

82 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

OSSetPartitionMode =̂ var opm : OPERATING MODE TYPE •

apex req partition mode.current partition id−→

apex get partition mode.current partition id !(

(PartitionsVariables(current partition id)).OPERATING MODE)−→





apex req new partition mode.current partition id?nopm−→

if(nopm = IDLE)−→

endPartition.current partition id −→ (SetPMode)
8 (nopm ∈ OPERATING INIT MODE TYPE)−→

reinitPartition.current partition id −→ (SetPMode)
8 (nopm = NORMAL)−→ (SetPMode)
fi




@ apex new partition mode fail?current partition id −→ Skip




OSGetSamplingPortId =̂

apex req sampling port id .current partition id?spn−→


if(spn ∈ ran sampling ports)−→

apex get sampling port id .current partition id !(µ

x : (dom(sampling ports ⊲ {spn})) • x)−→

return code.current partition id !NO ERROR −→ Skip

8 (spn 6∈ ran sampling ports)−→

apex get sampling port id .current partition id !(- 1)−→

return code.current partition id !INVALID CONFIG −→ Skip

fi




ExecOSServices =̂

execPartition.current partition id−→


µX •




OSGetTime

@ OSGetPartitionStatus

@ OSSetPartitionMode

@ OSGetSamplingPortId



; X




A.5. THE OPERATING SYSTEM 83

ExecOS =̂ var getMajorTimeFrame : PartitionsType • (MajorTimeFrame);


µX • UpdateSystemTime ; (NextPartition);



if

(
current partition.Offset >

(system time modmajor time frame)

)
−→

wait

(
current partition.Offset−

(system time modmajor time frame)

)
; X

8
(

current partition.Offset =

(system time modmajor time frame)

)
−→


 ExecOSServices

current partition.Duration

⊲

interruptPartition.current partition id ; X




fi







• moduleInit−→

os send modHM table!(module.HealthMonitoring .ModuleHM)!(

module.HealthMonitoring .SystemErrors)−→ (ExecOS

△moduleEnd −→ Skip)

end

A.5.2 The Timer

process Timer =̂ begin

state TimerSt == [clock : SYSTEM TIME TYPE]

Counter =̂




µX •


(wait(1) ; clock := clock + 1)

9
(

(µY • updateClock !clock −→Y)
1

⊲ Skip

)

 ; X




• moduleInit −→ (Counter △ moduleEnd −→ Skip)

end

A.5.3 The Operating System Health Monitor (Module)

process ModuleHM =̂ begin

84 APPENDIX A. A CIRCUS MODEL OF THE ARINC 653 COMPONENTS

state ModuleHMSt == [modHM : seq
1
A653 ModuleHMTableType;

sysError : seq
1
A653 ErrorIdentifierType]

• (os send modHM table?mp?se −→modHM , sysError := mp, se)

△moduleEnd −→ Skip

end

channelsetModuleHMChannels == {| os send modHM table,moduleEnd |}

A.5.4 The Operating System Layer Model

process OS Layer =̂ module : Module

•







OperatingSystem(module)

J{| updateClock |}K
Timer




JModuleHMChannels K ModuleHM




process IMA Module =̂ module : Module

•




OS Layer(module)

JApexOsK


APEX Layer

(
module.HealthMonitoring .MultiPartitionHM ,

module.HealthMonitoring .SystemErrors

)

JPartitionApex K

Partitions Layer




1..#module.Partitions,

module.HealthMonitoring .PartitionHM ,

module.HealthMonitoring .SystemErrors










Bibliography

[1] DO-178B: Software Considerations in Airborne Systems and Equipment Certification,

1992.

[2] ARINC 653 - Avionics Application Software Standartd Interface, November 2010.

[3] Jean-Raymond Abrial. The B-book - Assigning Programs to Meanings. Cambridge

University Press, 2005.

[4] Keijiro Araki, Andy Galloway, and Kenji Taguchi, editors. Integrated Formal Methods,

Proceedings of the 1st International Conference on Integrated Formal Methods, IFM

99, York, UK, 28-29 June 1999. Springer, 1999.

[5] ARINC. Aeronautical Radio, Incorporated (ARINC), July 2011.

[6] Michael Butler and Michael Leuschel. Combining CSP and B for Specification and

Property Verification. In In Proceedings of Formal Methods 2005 (in press), Newcastle

upon, pages 221–236. Springer, 2005.

[7] A. L. C. Cavalcanti, P. Clayton, and C. O’Halloran. From Control Law Diagrams to

Ada via Circus. Formal Aspects of Computing, 23(4):465 – 512, 2011.

[8] A. L. C. Cavalcanti and Phil Clayton. Verification of Control Systems using Circus. In

ICECCS ’06: Proceedings of the 11th IEEE International Conference on Engineering

of Complex Computer Systems, pages 269–278, Washington, DC, USA, 2006. IEEE

Computer Society.

[9] A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC—A Refinement Calculus for Z.

Formal Aspects of Computing, 10(3):267—289, 1999.

[10] Clearsy. Atelier B. http://www.atelierb.eu/ , August 2011.

[11] Philippa Conmy, Mark Nicholson, and John McDermid. Safety Assurance Contracts

for Integrated Modular Avionics. In SCS ’03: Proceedings of the 8th Australian work-

shop on Safety critical systems and software, pages 69–78, Darlinghurst, Australia,

Australia, 2003. Australian Computer Society, Inc.

[12] A. Cooka and K.J.R. Hunt. ARINC 653 — Achieving Software Re-use. In Micropro-

cessors and Microsystems, volume 20, pages 479–483. Elsevier, 1997.

86 BIBLIOGRAPHY

[13] Julien Delange, Laurent Pautet, and Fabrice Kordon. Modeling and Validation of

ARINC653 architectures. In Embedded Real-time Software and Systems Conference,

2010.

[14] Julien Delange, Laurent Pautet, Alain Plantec, Mickael Kerboeuf, Frank Singhoff,

and Fabrice Kordon. Validate, Simulate, and Implement ARINC653 Systems Using

the AADL. Ada Lett., 29:31–44, November 2009.

[15] Ben L. Di Vito. A formal model of partitioning for integrated modular avionics.

NASA Contractor Report CR-1998-208703, NASA Langley Research Center, August

1998.

[16] Edsger W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation

of Programs. Commun. ACM, 18:453–457, August 1975.

[17] Roger Duke, Gordon Rose, and Graeme Smith. Object-Z: a Specification Language

Advocated for the Description of Standards. COMPUTER STANDARDS AND IN-

TERFACES, 17, 1995.

[18] J. Fenn, R. Hawkins, P. Williams, T. Kelly, M. Banner, and Y Oakshott. The Who,

Where, How, Why and When of Modular and Incremental Certification. In 2nd IET

International Conference on System Safety. IET, 2007.

[19] Clemens Fischer. CSP-OZ: a Combination of Object-Z and CSP. In Proceedings of the

IFIP TC6 WG6.1 international workshop on Formal methods for open object-based

distributed systems, pages 423–438, London, UK, UK, 1997. Chapman & Hall, Ltd.

[20] John S. Fitzgerald and Peter Gorm Larsen. Modelling Systems - Practical Tools and

Techniques in Software Development (2. ed.). Cambridge University Press, 2009.

[21] A. J. Galloway and W. J. Stoddart. An Operational Semantics for ZCCS. In Pro-

ceedings of the 1st International Conference on Formal Engineering Methods, ICFEM

’97, pages 272–, Washington, DC, USA, 1997. IEEE Computer Society.

[22] Abdoulaye Gamati, Christian Brunette, Romain Delamare, Thierry Gautier, and

Jean-Pierre Talpin. A Modeling Paradigm for Integrated Modular Avionics Design.

EUROMICRO Conference, 0:134–143, 2006.

[23] Abdoulaye Gamatie and Thierry Gautier. The Signal Synchronous Multiclock Ap-

proach to the Design of Distributed Embedded Systems. IEEE Transactions on Par-

allel and Distributed Systems, 99(RapidPosts):641–657, 2009.

[24] Artur Oliveira Gomes. Circus specification of the IMA architecture. http://

www-users.cs.york.ac.uk/ ˜ artur/circus-spec.zip , September 2011.

[25] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann. POLYCHRONY

for System Design. Journal of Circuits, Systems, and Computers, 12(3):261–304,

2003.

BIBLIOGRAPHY 87

[26] Jifeng He and C. A. R. Hoare. Unifying Theories of Programming. In Ewa Orlowska

and Andrzej Szalas, editors, RelMiCS, pages 97–99, 1998.

[27] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1985.

[28] Paul Hollow, John Mcdermid, and Mark Nicholson. Approaches to Certification of

Reconfigurable IMA Systems. In INCOSE 2000, pages 17–20, 2000.

[29] LISyC laboratory Université de Bretagne Occidentale and Ellidiss Technologies. The

Cheddar project : a free real time scheduling analyzer, August 2011.

[30] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR2 User Manual.,

October 2010.

[31] Formal Systems (Europe) Ltd. ProBE Manual., October 2010.

[32] Lemma 1 Ltd. ProofPower. http://www.lemma-one.com/ProofPower/ , Au-

gust 2009.

[33] Ian MacColl and David A. Carrington. Specifying Interactive Systems in Object-Z

and CSP. In Araki et al. [4], pages 335–352.

[34] Savi Maharaj and J. Bicarregui. On the Verification of VDM Specification and Re-

finement with PVS. In Proceedings of the 12th international conference on Automated

software engineering (formerly: KBSE), ASE ’97, pages 280–, Washington, DC, USA,

1997. IEEE Computer Society.

[35] Brendan Mahony and Jin Song Dong. Blending Object-Z and Timed CSP: An in-

troduction to TCOZ. In The 20th International Conference on Software Engineer-

ing(ICSE98, pages 95–104. IEEE Press, 1997.

[36] Chris Marriott. A Tool Chain for the Automatic Generation of Circus Specifications

from Control Law Diagrams. Master’s thesis, University of York, United Kingdom,

2010.

[37] R. Milner. A Calculus of Communicating Systems. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1982.

[38] Carroll C. Morgan. Programming From Specifications, 2nd Edition. Prentice Hall

International series in computer science. Prentice Hall, 1994.

[39] Alexandre Mota and Augusto Sampaio. Model-Checking CSP-Z. In In Proceedings

of the European Joint Conference on Theory and Practice of Software, volume 1382

of LNCS, pages 205–220. Springer-Verlag, 1998.

[40] Paul Mukherjee. System Refinement in VDM-SL. In Proceedings of the 2nd IEEE

International Conference on Engineering of Complex Computer Systems, ICECCS

’96, pages 483–, Washington, DC, USA, 1996. IEEE Computer Society.

88 BIBLIOGRAPHY

[41] Mark Nicholson, Philippa Conmy, Iain Bate, and John McDermid. Generating and

Maintaining a Safety Argument for Integrated Modular Systems. In Adelard for

the Health and Safety Executive, HSE Books, ISBN 0-7176-2010-7, and Contract

Research, pages 0–7176, 2000.

[42] M. V. M. Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus.

PhD thesis, Department of Computer Science - University of York, UK, 2005. YCST-

2006-02.

[43] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification sys-

tem. In Deepak Kapur, editor, 11th International Conference on Automated Deduc-

tion (CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,

Saratoga, NY, jun 1992. Springer-Verlag.

[44] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System.

In Deepak Kapur, editor, 11th International Conference on Automated Deduction

(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,

Saratoga, NY, jun 1992. Springer-Verlag.

[45] Marie-Laure Potet and Yann Rouzaud. Composition and Refinement in the B-

Method. In Proceedings of the Second International B Conference on Recent Ad-

vances in the Development and Use of the B Method, pages 46–65, London, UK,

1998. Springer-Verlag.

[46] Pedro Fernando Ribeiro. Modelling Ada implementations of control law diagrams in

Circus. Master’s thesis, University of York, United Kingdom, 2011.

[47] Ken Robinson. The B Method and the B Toolkit. In Proceedings of the 6th Interna-

tional Conference on Algebraic Methodology and Software Technology, AMAST ’97,

pages 576–580, London, UK, 1997. Springer-Verlag.

[48] A. W. Roscoe, Paul H. B. Gardiner, Michael Goldsmith, J. R. Hulance, D. M. Jackson,

and J. B. Scattergood. Hierarchical compression for model-checking csp or how to

check 1020 dining philosophers for deadlock. In Ed Brinksma, Rance Cleaveland,

Kim Guldstrand Larsen, Tiziana Margaria, and Bernhard Steffen, editors, TACAS,

volume 1019 of Lecture Notes in Computer Science, pages 133–152. Springer, 1995.

[49] A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of

Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

[50] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. Non-interference through Determin-

ism. In Journal of Computer Security, pages 33–53. Springer-Verlag, 1994.

[51] A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010.

[52] Ana-Elena Rugina, Peter H. Feiler, Karama Kanoun, and Mohamed Kaâniche. Soft-

ware dependability modeling using an industry-standard architecture description lan-

guage. CoRR, abs/0809.4109, 2008.

BIBLIOGRAPHY 89

[53] John Rushby. Modular Certification. Technical report, SRI International, 2002.

[54] Mark Saaltink. The Z/EVES System. In Proceedings of the 10th International Con-

ference of Z Users on The Z Formal Specification Notation, ZUM ’97, pages 72–85,

London, UK, 1997. Springer-Verlag.

[55] Adnan Sherif. A Framework for Specification and Validation of Real-Time Systems

using Circus Actions. PhD thesis, Center of Informatics - Federal University of Per-

nambuco, Brazil, 2006.

[56] Adnan Sherif, Ana Cavalcanti, Jifeng He, and Augusto Sampaio. A process algebraic

framework for specification and validation of real-time systems. Formal Asp. Comput.,

22(2):153–191, 2010.

[57] Adnan Sherif and Jifeng He. Towards a time model for circus. In Chris George and

Huaikou Miao, editors, ICFEM, volume 2495 of Lecture Notes in Computer Science,

pages 613–624. Springer, 2002.

[58] Graeme Smith. A Semantic Integration of Object-Z and CSP for the Specification

of Concurrent Systems. In Proceedings of FME 1997, volume 1313 of LNCS, pages

62–81. Springer-Verlag, 1997.

[59] Graeme Smith and John Derrick. Refinement and Verification of Concurrent Systems

Specified in Object-Z and CSP. In First International Conference on Formal Engi-

neering Methods (ICFEM 97, pages 293–302. IEEE Computer Society Press, 1997.

[60] Graeme Smith and Luke Wildman. Model checking z specifications using sal. In

Helen Treharne, Steve King, Martin C. Henson, and Steve A. Schneider, editors, ZB,

volume 3455 of Lecture Notes in Computer Science, pages 85–103. Springer, 2005.

[61] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal Verification

of Avionics Software Products. In Proceedings of the 2nd World Congress on Formal

Methods, FM ’09, pages 532–546, Berlin, Heidelberg, 2009. Springer-Verlag.

[62] K. Taguchi and K. Araki. The State-Based CCS Semantics for Concurrent Z Spec-

ification. In Proceedings of the 1st International Conference on Formal Engineering

Methods, ICFEM ’97, pages 283–, Washington, DC, USA, 1997. IEEE Computer

Society.

[63] Helen Treharne and Steve Schneider. Using a Process Algebra to Control B Opera-

tions. In Araki et al. [4], pages 437–456.

[64] J. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof. Series

in Computer Science. Prentice Hall International, 1996.

[65] Jim Woodcock and Ana Cavalcanti. The Semantics of Circus. In Proceedings of the

2nd International Conference of B and Z Users on Formal Specification and Devel-

opment in Z and B, ZB ’02, pages 184–203, London, UK, UK, 2002. Springer-Verlag.

90 BIBLIOGRAPHY

[66] F. Zeyda and A. Cavalcanti. Mechanical Reasoning about Families of UTP Theories.

In P. Machado, A. Andrade, and A. Duran, editors, SBMF 2008, Brazilian Symposium

on Formal Methods, pages 145–160, 2008. Best paper award.

