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ABSTRACT

Fine mapping studies aim to prioritize causal variants in complex diseases within genome-

wide association studies (GWAS) regions. Bayesian approaches have been widely used

in recent fine mapping studies because of the advantage they have in overcoming the

limitations of the frequentist approach. The commonly used prior distribution on the

causal single-nucleotide polymorphism (SNP) effect size is a Normal distribution with

mean zero. Previous studies have shown that the posterior distribution and Bayes factor

are both highly sensitive to the Normal prior variance, it is therefore reasonable to assume

that posterior summaries are also sensitive to the parametric form of the prior. We show

that the Laplace prior for the SNP effect size better reflects both the effect sizes observed

in breast cancer GWAS top hits, and the number of yet-to-be-discovered SNPs, than the

Normal prior. We estimate the prior parameters from the GWAS top hits and develop

single-SNP and multi-SNP approaches for the Laplace prior. We compare our approaches

with other existing fine mapping methods using simulated data from HAPGEN and real

data from iCOGs. Our analysis shows that the Laplace prior performs better than the

current gold standard multi-SNP fine mapping method in terms of causal SNP ranks.





Publications

Walters, K., Cox, A., Yaacob, H. (2019) Using GWAS top hits to inform priors in Bayesian

fine-mapping association studies. Genetic Epidemiology. doi: 10.1002/gepi.22212

Yaacob, H., Walters, K. and Cox, A. (2019) Utilizing the information from GWAS data

to inform priors in Bayesian fine-mapping association studies. In: Human Heredity. 47th

European Mathematical Genetics Meeting (EMGM), 08-09 Apr 2019, Dublin, Ireland.

Karger, p. 247. doi: 10.1159/000499459.





Thesis content

Chapter 1 discusses the relevant background of genetics. We begin the chapter by introducing the hu-

man genome and explain all genetic terminology relevant to the research. We further discuss protein

production which leads to genetic mutation and genetic variations. Moreover, we describe DNA inher-

itance and cell division. This background gives us an overview of how genetics play a role in causing

diseases. At the end of this chapter, we define the minor allele frequency and linkage disequilibrium

which are terms often used in this thesis.

Chapter 2 introduces population-based association studies. We briefly explain the role of linkage

disequilibrium in association studies. We also introduce the four types of population-based asso-

ciation studies and focus on discussing the genome-wide association studies (GWAS) and also fine

mapping studies. This chapter is mainly about the statistical methods that are currently being used in

a single-SNP analysis in association studies. Initially, we discuss the standard frequentist approach

and highlight the limitations. The limitations in the frequentist approach has been the motivation for

us to use Bayesian approach instead. Thus, in the last part of Chapter 2, we review the currently used

univariate Bayesian approaches in fine mapping.

Chapter 3 begins with a description of the GWAS breast cancer top hits data. This data is funda-

mental to our research. Through this data, we inform the effect size prior which is used to develop a

Bayesian approach throughout this thesis. The information from the top hits data are used to estimate

the hyperparameters. We compare the most common effect size prior used in fine mapping, which

is the Gaussian prior, with our proposed prior, the Laplace prior. To estimate the hyperparameters,



we use maximum likelihood estimation. We take into account the number of unidentified SNPs in

estimating the hyperparameters. The uncertainty of the estimates is also discussed in this chapter.

Chapter 4 is the derivation of the univariate Bayesian approach to fine mapping. In the beginning

of the chapter, we describes the simulated data to be used in evaluating the performance of the Bayesian

approaches. ROC curves are used to illustrate the ranking performance of all approaches. A brief

discussion of ROC curves is provided in this chapter. We further derive the posterior distribution of

the effect size and the Bayes factor using the Laplace prior. From the posterior distribution, we derive

the posterior expected value, the posterior median, the posterior credible interval and the posterior

highest density interval. In addition to observing the ranking performance of the Laplace Bayes factor,

it is also used to identify the noteworthy SNPs. The Laplace Bayes factor is extended to the Laplace

Gamma Bayes factor to account for the uncertainty of the parameter estimates which depends on the

number of yet-to-be-discovered (YTBD) SNPs.

Chapter 5 reviews current multiple Bayesian approaches to fine mapping. This chapter starts off

with a description of the multivariate logistic regression. We then discuss Bayesian variable selection

and finally compare and contrast the current Bayesian variable selection methods used in fine mapping.

Chapter 6 contains the derivation of the multiple Bayesian approach. We derive the posterior

probability of a model using the Gaussian distribution and the Laplace distribution as the prior for

the effect size. We specify the prior probability for the number of causal SNPs to follow a binomial

distribution.

Chapter 7 examines the performance of the multiple Bayesian approaches. We first describe the

simulated data used in this chapter. We compare the ranking performance (using ROC curves) of the

Laplace prior with the Gaussian prior and FINEMAP in 5 different scenarios. The five scenarios are

the 5 different maximum number of causal SNPs allowed in the model. The posterior probabilities

using the Laplace prior are also provided. We also identify the noteworthy SNPs using the Laplace

Bayes factor which can be derived from the posterior probabilities.

Chapter 8 describes the application of the Bayesian approaches to the real data which is available



from the Collaborative Oncological Gene-environment Study (COGS). The data is described at the

beginning of the chapter. The same approaches used in Chapter 7 are used to compare the ranks of

the SNPs. We also include the p-value in the comparison to see the difference between frequentist and

Bayesian approaches. We further use the Laplace prior to identifying the noteworthy SNPs.

Chapter 9 summarises the thesis. We provide the limitations of our method and suggest some

possible further work to be considered.
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Chapter 1

Introduction to protein production and DNA

inheritance

The discussion in this chapter are mostly referred from Human Molecular Genetics by Tom Strachan

and Andrew Read (Strachan, 2011) and Human Molecular Genetics by Peter Sudbery and Ian Sudbery

(Sudbery, 2009).

1.1 Chromosome and Inheritance

Genetics is the study of heredity and the variation of inherited characteristics. The inheritance of

traits by offspring from each parent is defined by genes. Each human has around 20,000 genes which

reside in chromosomes and are made of deoxyribonucleic acid (DNA). Cells in our body contain 46

chromosomes, of which 23 come from our father and the other 23 originate from our mother. There

are two types of cells in a human, haploid and diploid. Haploid cells contain a single copy of each

chromosome, and diploid cells contain two copies of each chromosome. Most cells in our body are

diploid cells, and the sperm and egg are haploid cells. Upon fertilisation, they create a single cell with

two sets of the 23 chromosomes.
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The chromosomes hold all the genetic information in the form of double stranded DNA. The flow

of genetic information within cells follows from a DNA sequence as a template to produce proteins

via messengers. The ribonucleic acid (RNA) acts as the messenger in this flow. Proteins carry out

most of the body functions and determine traits.

Traits or in other terms, often called phenotypes are observable physical characteristics of a human.

Phenotypes are determined by genotypes which are formed by the combination of two alleles at a

particular locus or position on the chromosome. Alleles at the same locus explain the same trait.

However, there are two alleles for each locus, and the difference in these two alleles will result in

different expression of that trait. As an example, for an individual with a facial dimples (trait), there

are two forms of allele, dimples (D) and no dimples (d). Thus, the facial dimples can be expressed in

either dimples or no dimples depending on the genotype, as follows.

Genotype can either be described as homozygous or heterozygous. A homozygous genotype is

when an individual has two identical alleles for a particular trait. In contrast, heterozygous genotype

is when an individual has two different alleles at a particular locus. Alleles may be dominant or

recessive and it is this feature which contributes to how the trait is expressed. Referring to the previous

example, for an individual’s facial dimples, having dimples (D) is dominant and not having dimples

(d) is recessive. If an individual has a homozygous dominant genotype (DD), that individual has

facial dimples. If an individual has the dd genotype, a homozygous recessive, the phenotype for

this individual is not having facial dimples. If the individual has the heterozygous genotype Dd, this

individual has facial dimples.

Thus for an individual with a heterozygous genotype, the expression of the trait is conditioned

on the genetic dominance. In the case of a complete dominance such as eye colour, a heterozygous

dominant allele will completely mask the recessive allele and express a dominant phenotype. In in-

complete dominance, the phenotype expressed is a mixture of both dominant and recessive alleles. In

co-dominance, both alleles completely express their traits, which results in a third phenotype.
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1.2 Deoxyribonucleic Acid (DNA)

Deoxyribonucleic acid, commonly known as DNA is the molecular basis of inheritance. DNA stores,

replicates and expresses genetic information. It can be found in the nuclei of all cells in the body.

The DNA molecule is formed of a double helix. Each strand of the helix is built up by molecules

called nucleotides. Each nucleotide consists of a carbon-based sugar called deoxyribose, a phosphate

group and a nitrogenous base. The sugar and phosphate are linked together to create the backbone of a

DNA. Figure 1.1(a) illustrates the sugar-phosphate backbones on the outside of the double helix. The

backbone of each strand has two ends, a 3′ end and a 5′ end. One of the backbones run from a 5′ to 3′

direction and the other backbone runs the opposite, from 3′ to 5′ end. The backbones of these strands

are antiparallel.

Figure 1.1: An illustration of the deoxyribonucleic acid (DNA). (a) The sugar-phosphate backbones on the outside of the
double helix. (b) The complementary base pairs between bases in two antiparallel strands. (c) The molecular structure of
DNA (OpenStax, (accessed September 25, 2019)).
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There are 4 types of nucleotides: adenine (A), thymine (T), cytosine (C) and guanine (G). Each

base is always attached to the 1′ carbon of the sugar. T and C are called pyrimidines because these

bases have one carbon ring. A and G bases have two rings, they are called purines. These bases make

up the rungs of the DNA double helix.

Bases bond with one another across the helix as base pairs. The association between bases are

known as complementary base pairs, where A must pair with T while G pairs with C as shown in

Figure 1.1(b) . The order of the bases along the length of the helix are sequences that code the genetic

information in humans. Due to the pairing in DNA, the composition of A is equal to T, and G is the

same as C. The A-T base pair connects with two hydrogen bonds and G-C bonds with three hydrogen

bonds.

Figure 1.1(c) illustrates the molecular structure of DNA. The hydrogen bonds stabilize the DNA

double helix. The strong covalent bonds between the phosphate and sugar cause the two DNA strands

to intertwine. The hydrogen bonds that hold the two strands together through complementary base

pairs are non-covalent. These hydrogen bonds are weak which make the helix easily formed and

broken for DNA replication prior to cell division. DNA replication allows new cells to receive the full

set of genetic instruction. The two strands of DNA act as a template for the synthesis of another two

new strands, finally resulting in the production of a set of identical DNA.

1.3 Ribonucleic acid (RNA)

As mentioned above, Ribonucleic acid (RNA) is needed to carry the information from DNA to pro-

teins. Unlike DNA, RNA is commonly single stranded. The nucleotides of RNA are quite similar to

the nucleotides of DNA, being built of a phosphate, a nitrogenous base and a sugar. The sugar in RNA

is called ribose (rather than deoxyribose in DNA). The other difference between RNA and DNA is in

one of the nitrogenous bases. Instead of thymine, RNA contains uracil (U) nucleotide. Enzymes in the

cell recognize DNA and RNA through these differences in structure.
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The most common RNA types are messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal

RNA (rRNA). These three types of RNAs have their individual roles but work together in synthesizing

protein. mRNA codes the genetic information from DNA and carries the codes from the nucleus to

the cell’s cytoplasm. tRNA interprets the codes in mRNA and carries the amino acid to the ribosome

to produce protein. The ribosome is a complex structure of rRNA and proteins which translate the

mRNA code into protein. A more detailed explanation of the role of RNAs will be discussed in the

process of protein synthesis.

1.4 Amino acid, polypeptide and protein

Amino acids are compounds containing carbon, hydrogen, oxygen, nitrogen, and some have sulphur

atoms. These atoms form an amino group, a carboxyl group and a side chain. The side chain is the

part that differentiates one amino acid from another. There are 20 amino acids and these are linked

together in various combinations to become polypeptides and proteins.

The specific side chain of the amino acids define the unique characteristics of each polypeptide.

The polypeptide chains fold into a fixed three-dimensional structure to form proteins. There are four

levels of protein structural organization. The first is primary structure, amino acids linked in a linear

sequence to form polypeptides. A secondary protein structure is where polypeptide chains interact

with each other to form beta sheets and alpha helices. The three-dimensional shape of the polypep-

tide chain is the tertiary structure of protein. Lastly the quaternary structure is where more than one

polypeptide chain come together to form a protein.

There are thousands of proteins in each cell. Proteins are responsible for keeping our body func-

tioning. Each protein has its own individual function which includes maintaining the tissues, balancing

fluids, storing nutrients and many more. The various molecular structures that form proteins lead to

their different functional properties. Our cells continuously produce proteins based on the information

coded in DNA through the process of the central dogma of life.
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1.5 The central dogma of life

The process of synthesizing protein based on the DNA genetic code is known as the central dogma of

life. The process has two parts, transcription and translation. The transcription process is the process

of making a single RNA strand from a DNA template. The RNA is then translated into proteins.

1.5.1 Transcription of DNA

In this stage, the genetic information from the DNA is copied to make a single mRNA molecule by

the enzyme RNA polymerase. The process begins at a region in the DNA called a promoter. Once

the RNA polymerase attaches to the promoter, it starts to “unzip” the DNA helix to expose two DNA

strands; template strand and coding strand.

RNA polymerase builds mRNA by stepwise addition of new nucleotides. The synthesizing of new

mRNA is in the direction of 5′ to 3′. A new nucleotide is added at the 3′ end of the growing mRNA

strand. Each new nucleotide added on the mRNA complements the nucleotide on the DNA template

strand. Nucleotide G, C, T and A on DNA template strand will build nucleotide C, G, A and U on

mRNA respectively. Thus the mRNA has the same information as the coding strand apart from every

T is now U instead.

The mRNA gets longer as RNA polymerase moves along the DNA. The transcription ends after

RNA polymerase transcribes a DNA sequence known as terminator. The mRNA is then released and

the RNA polymerase will detach from the DNA. In a eukaryotic cell, a RNA transcript is considered

as pre-mRNA. It has to go through another stage of processing into a mRNA before being translated

into proteins. To modify the pre-mRNA, two components are added to the 5′ end and 3′ end of the

pre-mRNA strand. 5′ cap is a modified G nucleotide added to the first nucleotide on the pre-mRNA to

protect it and help the ribosome to attach to it. A long chain of A nucleotides which creates a poly-A

tail is attached to the 3′ end. The poly-A tail stabilizes the pre-mRNA and helps to export the mRNA
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to cytoplasm.

During transcription, the whole DNA sequence which includes a mix of exons and introns are

copied into the pre-mRNA. Exons are the coding sequence use to encode a protein whereas introns

are non-coding sequence. Introns are not use for protein translation and they are removed by RNA

splicing. A complex molecule known as a spliceosome binds to introns and cuts them out. In addition,

the spliceosome pastes the exons together to make a mature mRNA. At this stage, the mature mRNA

moves out from the nucleus to go through the process of translation in cytoplasm.

1.5.2 Translation process

In the cytoplasm, the mRNA will engage with the ribosome to initiate the process of translation. The

ribosome is a cell structure made of proteins and rRNA, which has two subunits; a large ribosome

subunit and a small ribosome subunit. The ribosome travels along the mRNA in the 5′ to 3′ direction

to read and scan the genetic information. It then uses this information to encode the mRNA into a

sequence of amino acids.

Figure 1.2: An illustration of DNA translation. (Molnar and Gair, (accessed September 25, 2019)).
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The information is read in groups of three nucleotides called codons. There are 64 different codons

resulting from arranging A, U, G, C nucleotides. 61 of these codons encode for amino acids, while

the other three codons are stop codons which terminate the translation. Since there are 61 codons

and only 20 amino acids, there is redundancy in the genetic code; more than one codon can code for

the same amino acid. Each tRNA carries a specific amino acid and contains the anticodon which is

complementary to the codon on mRNA.

An illustration of DNA translation is shown in Figure 1.2. The translation begins with an initiator

tRNA carrying the amino acid methionine and attaching to the small ribosome subunit, which binds

to the 5′ end of the mRNA and moves along the mRNA until it arrives at the start codon (AUG). Once

the initiator tRNA attaches to the start codon, together with the large ribosome subunit, an initiation

complex is formed. At this point, there are now three sites on the ribosome to produce polypeptides.

The three sites are known as site P, site A and site E.

The initiation tRNA binds with AUG at site P. Another tRNA carrying an amino acid with an

anticodon complementary to the next codon enters site A. The peptide bond forms to connect amino

acid on tRNA in P site to amino acid on tRNA in A site. The chain continues to grow in the elongation

process when the ribosome moves onto the next codon on the mRNA in 3′ direction. The tRNA on the

P site no longer has an amino acid, this tRNA is shifted to E site and exits the ribosome. At the same

time the tRNA at A site shift to P site and a new tRNA with a new amino acid and anticodon lands on

site A. This process continues until it terminates when new tRNA at site A binds with the stop codon.

The final stage is where the polypeptide releases to go through further processing to form protein.

The small and large subunits separate to allow another translation process to begin on another strand

of mRNA.
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1.6 Genetic mutation

As outlined above, the synthesis of proteins relies on the DNA sequence. For a protein to function

correctly, the DNA must be in the correct sequence to allow the codons to be read correctly and hence

form the exact protein. However, changes or in other words mutations in DNA sequence can lead to

abnormalities in protein function. Mutation is defined as permanent changes that occur in the DNA

nucleotide sequence. Mutation can happened through inheritance or can arise during DNA replication.

There are several types of mutations. One type of mutation is called a frameshift mutation. This

occurs by insertion or deletion of one or more nucleotide bases, but not in multiples of three nu-

cleotides. Bases are added or removed, which alters the number of nucleotides in the DNA sequence.

This disrupts the triplet codon reading frame and hence affects the amino acid sequence, often leading

to the introduction of a premature stop codon and hence a truncated protein which is non-functional.

The second type of mutation is point mutation. Point mutation happens through the substitution

of the wrong nucleotide bases, where a single nucleotide base is replaced by another nucleotide base.

This changes the structure of a gene. The amino acid coded from a point mutation can result in either

a normal protein, a faulty protein or incomplete protein. This is because the point mutation can be

a silent, missense or nonsense mutation respectively. In silent mutations, the substitution affects the

codon but the new codon encodes the same amino acid. However, if the substitution generates a

codon for a different amino acid, this will result in a different type of protein which may be faulty.

This is call a missense mutation. Nonsense mutation occurs when the nucleotide being substituted

changes the original codon into a stop codon. This stops the translation prematurely, hence producing

an incomplete protein. Mutation can cause disease such as cancer. One example is where mutations in

the BRCA1 and BRCA2 genes result in dysfunctional BRCA1 or BRCA2 protein, leading to cancer.
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1.7 Genetic variation

Genetic variation can be described as the differences in the DNA sequence within and among popula-

tions of the same species. This manifests as different forms of alleles in the DNA sequence which may

yield different phenotypes, although not all allelic variation results in different phenotype, much of it

is silent. Genetic variation plays a role in determining disease susceptibility. It can arise in the popu-

lation through mutation and through sexual reproduction. Mixing of traits from parents to offspring,

and through genetic recombination during gamete formation can lead to different gene combinations

and hence increase genetic diversity. An individual’s genetic make-up is termed their genome.

Inherited mutations are one form of genetic variation but these tend to be rare. The most common

type of genetic variation are Single Nucleotide Polymorphism (SNP). SNPs occur at a particular lo-

cation where there is a change in a single nucleotide in a DNA sequence. SNPs exist naturally in the

genome in more than 1% of a population and hence distinguish one individual from another individual.

DNA sequence in every human are almost identical. To have a better understanding of SNPs, we

compare DNA sequences from two individuals in a population. The first individual has a sequence of

CGAGGTAAT and the second individual has CGATGTAAT. Notice that both sequences are similar

except for the fourth position of the nucleotides. This is an example of a SNP in each individual; the

first individual has a G whilst the second individual has a T.

SNPs are stable, inherited and abundantly distributed in the genome. There are approximately 10

million SNPs in one person’s genome. SNPs sometimes occur in coding regions of the genome, but

more often occur in noncoding regions. SNPs in coding regions may not necessarily change the amino

acid sequence of the protein. The majority of diseases are not caused by individual SNPs. However,

SNPs can affect disease role and can be informative to predict disease susceptibility. SNPs are used as

markers in population studies especially association analysis to identify putative disease genes. These

studies rely on the process of Mendelian inheritance of individual SNPs and the patterns of genetic

crossing over (recombination) during gamete formation, over many generations.
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1.8 Inheritance and cell division

1.8.1 Mendelian inheritance

Inheritance is the process in which genetic material is passed on from parents to their child. Our

genome is made of one copy of genome from each of our parents. According to Mendel’s experiment

using pea plants, the key principles of Mendelian’s inheritance are as follows: 1) traits are determined

by genes that are passed on from parents to child, 2) for each trait the child has, the child inherits one

allele from the mother and one from the father and 3) although the trait may not be visible in a child,

he or she can still pass the gene on to their next generation. Mendel’s discoveries on the different

patterns of inheritance led to Mendel’s law of inheritance.

The first law of inheritance is the law of segregation. Every individual has two alleles for each trait.

Thus, according to the law of segregation, each gamete will randomly inherit only one of the alleles.

The second law is the law of independent assortment. This law states that the sorting of alleles into

gametes happens independently, which make all combinations of alleles have the same possibilities

to occur. In the third law of inheritance, the law of dominance, because alleles can be dominant or

recessive, only one form of trait can appear, thus the dominant allele expresses itself in a trait.

1.8.2 Independent assortment

As mentioned in Section 1.7, sexual reproduction is one of the main sources of genetic variation.

Before sexual reproduction occurs, the germ cells go through the process of meiosis, a process of cell

division, to produce gametes. In males, the gametes are called sperm cell and in female, they are called

egg cells. Gametes are haploid cells. Through fertilization, a diploid cell called the zygote is formed

by the union of the sperm and egg cell. The zygote grows through the process of mitosis, producing

diploid daughter cells and develops into a new organism. The offspring is unique and is genetically

different from both the parents. Each offspring has its own unique combinations of genes from the
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gametes produced in meiosis, due to the independent assortment of the chromosome in this process.

The process of meiosis involves two stages of cell division; meiosis I and meiosis II. Prior to

meiosis, the chromosomes in the germ cell duplicate. The cell than begins the first stage of meiosis

which divides the cell into two haploid cells and further divide into four haploid cells at the end of

meiosis II. The four haploid cells are the gametes, each has half the number of chromosomes from the

original cell. Each gamete contains a unique assortment of chromosomes, and all gametes are thus

genetically distinct from the parents.

Homologous chromosomes look the same and have similar types of gene, however they are non-

identical. In a homologous chromosome, one could carry a dominant allele of a gene such as A

and the other carry a recessive allele such as a. Independent assortment occurs when homologous

chromosomes aligned themselves randomly and independently of one another along the cell’s equator

during metaphase. This reshuffling of genes results in two different sets of daughter cells. In human,

there are 23 chromosomes assorted independently, thus, this will result in having gametes with 223

possible combinations of chromosomes.

Figure 1.3 illustrates the process of independent assortment in meiosis. As an example, we il-

lustrate two pairs of homologous chromosomes. One chromosome carries a recessive allele a and a

dominant allele A, and the other carries a recessive allele b and a dominant allele B. In the event of

independent assortment, there are two possibilities of alignment. The cell may adopt alignment 1, in

which chromosome with allele A and chromosome with allele B end up in the same daughter cell. In

an alternative alignment, the alleles in the daughter cell are allele A and allele b. This is because in

this alignment, chromosome with allele A aligned together with chromosome having allele b. In the

second stage of meiosis, the two daughter cells from each alignment further divides into four gametes

with equal number of the genotypes; AB, ab, Ab, aB.
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Figure 1.3: An illustration of the process of independent assortment for two pairs of homologous chromosomes. The
illustration on the left shows alignment 1. The illustration on the right shows the alternative alignment, alignment 2
(Meiosis and Formation of Eggs and Sperm, 2000 (accessed September 25, 2019)).

1.8.3 Genetic recombination

In addition to the independent assortment of homologous chromosomes, the genetic material is further

rearranged through crossing over. Crossing over exchanges genetic information between homologous

chromosomes. This process takes place during pairing of two homologous chromosomes in the first

stage of meiosis I. At this point, paternal chromosome with allele A and B and maternal chromosome

with allele a and b are line up in preparation for crossing over. This causes one part of the chromosome

to exchange and resulting in four different combination of chromatids (the single strand chromosomes

resulting from the second meiotic division, as shown in Figure 1.3); AB, Ab, aB and ab. An illustration

of the process of crossing over is shown in Figure 1.4.

If we observe the genotype of the resulting chromatids, there are two gametes having the same

genotype as their parents which are AB and ab. These are called non-recombinant genotype. For the

other two gametes with genotype Ab and ab, these are the outcomes of recombination and are called

recombinant genotype.
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Figure 1.4: An illustration of the crossing over process between two homologous chromosomes during prophase in meiosis
(Mitosis Compared With Meiosis, 2009 (accessed September 25, 2019)).

The rate of recombination between two loci on the chromosome depends on the distance between

them. If two loci on the same chromosome are far apart, the rate of recombination increases. Alleles

from distant loci are likely to be in linkage equilibrium, i.e. all combinations of alleles at the two loci

are present at their expected frequencies in the population. However, if the loci are close together on

the same chromosome, their alleles are likely to be in linkage disequilibrium, i.e. the allele combina-

tions deviate from their expected frequencies. The rate of recombination during inheritance is one of

the factors that affects linkage disequilibrium. A more detailed explanation on linkage disequilibrium

is described in Section ??.

1.9 The role of genetics in disease

Geneticists are focused on identifying genes involved in disease. This can explain genes that cause

disease or explain how these genes contribute to the cause of disease. Identifying disease genes could
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help in measuring people’s risk in developing the disease. This could also give further interest in iden-

tifying treatment for people at risk. Another purpose of identifying disease genes is to help geneticists

understand the mechanism of the disease. As an example, geneticists can investigate the pattern of

inheritance to examine disease inheritance in large families.

There are two main categories of genetic diseases; Mendelian and complex diseases. Mendelian

diseases, such as cystic fibrosis, sickle-cell disease and Huntingdon’s disease, are rare in which they

only occur in less than 0.1% of the population. These diseases are caused by single gene mutations.

The pattern of inheritance of the single gene mutation is predicted to cause expression of the disease.

Thus, individuals carrying this mutation are at high risk of developing the disease.

In contrast, complex diseases such as asthma, diabetes and cancer are more common in the popu-

lation. Complex diseases are multifactorial diseases, which are influenced by genetic variation, envi-

ronment and lifestyle. Although an individual inherits genes that affect their susceptibility to a certain

disease, it does not mean that he or she will certainly develop the disease. The development of disease

is also influenced by the environment and lifestyle of an individual. Having a healthy environment

and lifestyle can prevent or change the progression of diseases. Genetic factors can affect the individ-

ual’s risks associated with disease. A distinction between Mendelian disease and complex disease are

summarised in Table 1.1.

Table 1.1: The distinction between two genetic diseases; Mendelian disease and complex disease.

Mendelian Disease Complex Disease

Examples of disease
Cystic fibrosis
Sickle-cell disease
Huntingdon’s disease

Asthma
Diabetes
Cancer

Inheritance Mendelian inheritance No pattern of inheritance

Factors Single gene mutation
More than one gene
Environmental

Percent in population Rare (< 0.1%) Common (> 1%)
Effect on phenotype Predicts the phenotype Affects the risk of having the phenotype

Analytic tools Linkage analysis Association studies

Identifying disease susceptibility genes is a difficult task. Using genotype technologies, it is possi-

15



ble to identify the location of the disease genes by their associated genetic markers. The most common

analytical tools to locate disease genes are genetic linkage analysis and genetic association studies. The

objective of linkage analysis is to locate the disease gene by applying an understanding of the pattern

of inheritance within families carrying the disease. In this analysis, the evidence for linkage is tested

using a likelihood ratio test at different recombination fractions in families of two or three generations.

Linkage analysis has been a powerful tool in identifying disease gene in Mendelian diseases.

Genetic association studies have become the most efficient approach to assess genes associated

with complex disease. The main aim for this type of study is to identify genetic variants that can be

associated with risk of disease. This association can be measured by an odds ratio, the ratio of the

odds of disease in a person with a risk allele and the odds of disease in a person who does not have the

risk allele. An approach to this study involves thousands of individuals in a genome-wide association

study to seek for association between genotype and disease in a population. By using association

studies, we can effectively examine the recombination rates over many generations. Moreover, we can

consider including the environmental factors into this study. Since complex diseases are polygenic

and multifactorial, genetic association study is the best tool to identify the variants associated to the

susceptible to these diseases. Population-based association studies are further discussed in Section

2.1.

1.10 Minor allele frequency

Minor allele frequency (MAF) is widely used in population-based association studies. MAF is derived

from allele frequency which calculates the frequency of an allele appearing in a population. Another

way of describing allele frequency is how common a specific allele is within a population. In general,

allele frequency is defined as follows
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Frequency of allele A =
Number of copies of allele A in population

Total number of allele A and allele a in population
(1.1)

If we have two alleles in the population, allele A and allele C, the sum of allele frequencies of

these alleles must be equal to one. Thus, if in a population, there are 13 alleles A and 5 alleles C, the

allele frequency of A is 13/ (13+5) = 0.72 and allele frequency for C is 5/(5+13) = 0.28. The MAF of

a SNP is the allele frequency of the rare allele. Over generations, the allele frequency in a population

changes. The use of MAF in population studies is to differentiate between common and rare variants

in the population.

1.11 Linkage disequilibrium

In Section 1.8.3, we mentioned the phenomena of linkage disequilibrium (LD). Recombination is not

the only factor affecting LD. Other factors include non-random mating, mutation rate, genetic drift

and population structure. LD is defined as a non-random association between alleles at two or more

different loci.

1.11.1 Measures of linkage disequilibrium

Suppose we have two loci. The first loci having alleles A and a. The second loci having alleles B and

b. The frequencies for each allele are pA, pa, pB and pb. Thus, there are four possible haplotypes: AB,

Ab, aB and ab. The haplotype relative frequencies are pAB, pAb, paB and pab. One measure of LD is

defined as the difference between the haplotype relative frequencies and the product of allele relative

frequencies. If we calculate the frequency to measure LD of allele A in the first loci and allele B in
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the second loci, LD can be defined as

D = pAB – pA pB. (1.2)

However, the magnitude ofD is difficult to interpret as a measure of LD. Thus, a preferred measure

for LD is by normalising D to the maximum value possible. The normalised D, given as D′, is

therefore,

D′ =
D

Dmax
. (1.3)

D′ varies between 0 for no LD to 1 for complete LD. An alternative measure of LD is by deriving r2,

the correlation between two alleles:

r2 =
D2

pA pa pB pb
(1.4)

where r2 only takes positive values between 0 and 1. In association studies, the most common mea-

sures of LD used is r2, partly because it relates to the statistical power at a tag SNP, relative to the

power at the causal SNP. This is the LD measure we use in this thesis.
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Chapter 2

Current univariate statistical methods used in

population-based association studies

2.1 Population-based association studies

One approach to identifying risk alleles is population-based association studies. In such studies, the

variants are determined from hundreds or thousands of unrelated individual with or without the disease.

The study is designed to look into whether the frequency distribution of the genotype of affected

individuals are significantly different to that of unaffected individuals. Under the null hypothesis, there

is no association between the risk allele and disease, the frequency of the risk allele should be equal

in both cases (with disease) and controls (without disease). In complex diseases, many unaffected

individuals could carry the risk allele and some individuals with disease may not carry the risk allele.

The reason unrelated individuals may share mutations is that they are assumed to came from a com-

mon ancestor. Thus, individuals with the disease have inherited the same part of a mutation-carrying

chromosomal region from their common ancestor. Many non-causal alleles could be associated with

the disease because they might be in linkage disequilibrium (LD) with the causative allele. LD plays

an important role in association studies since it increases the number of potential causal variants and
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makes it difficult to pinpoint the actual causal SNP.

Population-based association studies can be classified into four types. All studies have the aim of

identifying association between variants and disease trait. The first type are candidate polymorphism

studies in which the studies focus on determining whether a particular functional polymorphism (SNP)

is associated with the disease. The second type are candidate gene studies. In these studies, SNPs

under investigation are not necessarily functional but are simply within the gene region. The third

and fourth types of studies are genome-wide association studies and fine mapping studies which we

describe in more detail.

2.1.1 Genome-wide association studies

Genome-wide association studies (GWAS) has been successful and have become a powerful tool in

genetic studies in current research (Bush and Moore, 2012). This is because GWAS overcome the

limitation in candidate gene studies in which the studies require prior knowledge of the biological

information of the gene. GWAS scans markers across the genome of many people to assess possible

association with disease in every region. This is made possible with the completion of The Human

Genome Project in 2003 and The International HapMap Project in 2005. The information from these

projects include databases contain human genome sequence, pattern of DNA sequence variation, vari-

ant frequencies and correlation between variants which are to facilitate GWAS in finding the genetic

contribution to diseases.

A chip-based microarray technology has been used in GWAS to measure SNP variation in the

population. With 10 million SNPs in the genome, it will be costly and time consuming to genotype

all SNPs to include in a GWAS. By utilizing this technology, we can avoid genotyping SNPs with

redundant information. One or a few SNPs can be genotyped (tag SNPs) to gain information about 10

to 20 other SNPs. This is because many of the SNPs are associated with each other. Thus, this bring

us to the concept of linkage disequilibrium (LD).

20



Linkage disequilibrium (LD) (Section 1.11) gives an advantage in carrying out a GWAS. The

presence of LD would either results in SNP having a direct or an indirect association with the disease.

A direct association refers to the genotyped SNP statistically found to be having an association with

the disease. However, this is not a typical case in GWAS. More often, the tag SNP has an indirect

association because it does not actually cause the disease but might be in high LD with other SNPs

that could be a causal SNP.

With hundreds of thousands of SNPs are evaluate in GWAS, a very large number of cases and

controls are used in GWAS to detect association of the risk alleles. In a traditional statistical test, an

association is based on a p-value threshold of 0.05. However, the large number of SNPs lead to increase

in false positive rates. Thus, in GWAS, the p-value threshold (5 × 10−8) has been modified using a

Bonferroni correction for multiple testing with million tests. An effective sample size is required in

order to have the power to detect a GWAS p-value threshold. In GWAS, the typical statistical power

used is 80% (Hong and Park, 2012).

Several genome-wide association studies have successfully identified regions harbouring common

variants associated with complex diseases such as type II diabetes and schizophrenia (Schaid et al.,

2018). As an example, in breast cancer, as of 2017, there are 148 breast cancer susceptible loci

identified through GWAS (Stacey et al., 2007, 2008; Zheng et al., 2009; Ahmed et al., 2009; Thomas

et al., 2009; Turnbull et al., 2010; Fletcher et al., 2011; Ghoussaini et al., 2012; Siddiq et al., 2012;

Michailidou et al., 2013; Cai et al., 2014; Milne et al., 2014; Michailidou et al., 2015, 2017) . Results

from GWAS tell us that these loci are associated with the disease but does not identify the causal SNP.

Within the GWAS significant locus, there is atleast one SNP likely to be in LD with the tag SNP and

could be the potential causal SNP. With many highly correlated SNPs in the associated region, it is

challenging to determine that a particular SNP contributes to increasing the risk of having disease.
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2.1.2 Fine mapping genes

GWAS provide insights into plausible causal variants in GWAS disease-associated region. Current

research is interested in prioritizing causal SNPs within GWAS-associated regions and identifying the

target genes which can provide information about the disease causing mechanism. It is known that

there are hundreds or thousands of SNPs in a small region of interest. Filtering the SNPs to pinpoint

the causal SNPs is challenging. This is because SNPs in the region are highly correlated with each

other and this makes it difficult to distinguish between causal SNPs and those in LD with them. To

disentangle the signal in correlated SNPs, various statistical approaches can be used to fine map the

genes.

There are different statistical approaches used to prioritize casual SNPs from an associated region.

One approach is filtering the SNPs based on p-value or a certain LD threshold (Spencer et al., 2014).

In another statistical approach, the Bayesian framework, the strength of association is measured using

Bayes factors which compare the evidence under the null with the evidence under the alternative

hypothesis. Variants are filtered into a credible set believing that the causal variant will be included in

the set.

An advantage of fine mapping is that causal variants filtered from a GWAS region using statistical

approaches can be further investigated based on their biological function. Various types of functional

data exist for use in fine mapping studies. The functional annotation can be incorporated into Bayesian

statistical analyses and hence can improve the performance of fine mapping the causal variants.
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2.2 Standard frequentist statistical approach

2.2.1 Logistic regression

Our interest is to fit statistical models to assess association of SNPs with case-control binary outcomes.

We want to understand how the predictors can affect the chances of the outcome to occurs. This can

best be done using logistic regression. The reason is, the logit function in logistic regression directly

relates to the probability of the outcome occurring (usually of having a disease) to not having a disease.

Therefore, we let

p(y = 1) =
exp(α + βx)

1 + exp(α + βx)
. (2.1)

Where y is a binary variable with 1 representing a diseased individual and 0 a control, and x represents

the genotype coded in some way and possibly imputed. Now, the right-hand side of Equation (2.1)

could only yield the values between 0 to 1. This expression is called logistic function. In the case

where an event occurs with probability p(y = 1), the odds in favour is p(y = 1)/p(y = 0). Using

Equation (2.1), the odds in favour of an occurring event is,

p(y = 1)

p(y = 0)
= exp(α + βx). (2.2)

By taking the logarithm of both sides of Equation (2.7), we now have,

log

[
p(y = 1)

p(y = 0)

]
= α + βx. (2.3)

Thus, we assume a linear relationship between log [p(y = 1)/p(y = 0)] and x instead of assuming
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p(y = 1) has a linear relationship with x. Therefore, in logistic regression, we want to fit the model as

in Equation (2.3).

2.2.2 Odds Ratio

We are interested in the association between variants and disease. This is usually quantified in terms

of odds ratio. Odds ratio (OR) relates the odds of an occurring event in cases to the odds of an event

occurring in controls. In the context of genetics, OR measures the ratio of odds of a disease in an

individual with a genotype over an individual with another genotype. The genotype is coded as 0, 1 or

2 which represent the number of copies of the risk alleles at a SNP. A homozygous wildtype is SNP

with no risk allele, thus the genotype is coded as 0. A homozygous risk SNP has genotype coded as

2 which indicates two risk alleles. Genotype coded as 1 is for heterozygous SNP, one of the alleles is

the risk allele.

In this thesis, we assumed SNP has an additive effect on the disease, from Equation 2.7, the odds

of disease for a homozygous wildtype is

p(y = 1|x = 0)

p(y = 0|x = 0)
= exp(α). (2.4)

For a heterozygous SNP, the odd of disease is

p(y = 1|x = 1)

p(y = 0|x = 1)
= exp(α + β) (2.5)

and for homozygous risk SNP, the odd of disease is given by

p(y = 1|x = 2)

p(y = 0|x = 2)
= exp(α + 2β). (2.6)

Thus, if we let homozygous wildtype be the reference genotype, the odds ratio for an individual with
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a heterozygous SNP having a disease is

OR =
exp(α + β)

exp(α)

= exp(β) (2.7)

ORs can be easily related to the parameters of logistic regression model (with a logit link) when

we fit the model as in Equation 2.3. The estimated coefficient, β, which is determined by maximum

likelihood estimation, is the estimate of the log OR. Throughout this thesis, the log OR is referred as

the effect size of a SNP.

2.2.3 Frequentist approach and its limitation

Frequentist approaches had been widely used in assessing evidence for true causal association between

genetic variants and disease present in a population. In this approach, the p-value is computed under

the null hypothesis of no association. In GWAS, if a SNP has a p-value less than the p-value threshold

( 5× 10−8 ), this shows some evidence against the null hypothesis of no association with the disease.

This SNP is now considered as a candidate causal SNP.

P-value is often used to place the rejection region to make conclusions either to reject or not to

reject the null hypothesis. If p-value is less than the rejection region, thus, we reject the null hypothesis.

In hypothesis testing, there is some probability of rejecting the null hypothesis known as the power of

the test. Thus, p-values should be interpreted with regard to power. However, our question turns to

how confident are we in quantifying the evidence that the SNP is truly associated to the disease?

Identical p-values calculated at different SNPs and in different studies lead to different conclusion

about the evidence of true association, because the power maybe different. A SNP’s minor allele

frequency, the effect size and the sample size of the study affect the power of the test. Thus, with a

powerful test, we will have smaller p-values with more evidence to reject null hypothesis. However,
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if a test has low power, such p-value may be supporting more evidence on the null hypothesis of no

association. With large or small power, there are still risks of discarding evidence of detecting SNPs

with true association.

2.3 Bayesian approaches

Bayesian approaches are becoming increasing common as an alternative to overcome the limitation of

the frequentist approach. A Bayesian approach does not suffer from having to take account of power,

it is incorporated into the Bayes factor. In a Bayesian analysis based on Bayes factors, the strength of

evidence of an association can be computed among SNPs and throughout the studies without needing

to interpret them with respect to allele frequencies and sample sizes (Wakefield, 2008). Furthermore,

this approach has an advantage in providing a way to incorporate genomic information in the analysis

(Spencer et al., 2016).

2.3.1 Summarising posterior distributions

The essential elements in Bayesian analysis are the prior distribution and likelihood function. The

prior distribution, π(θ) specifies knowledge about the parameter, θ before the data is observed. A like-

lihood function, f(x|θ) gives the likelihood of the data x given the parameter. Bayes theorem allows

the computation of the posterior distribution by incorporating both prior distribution and the likeli-

hood function, which is a probability distribution. Bayes theorem states that, the posterior probability

distribution of a parameter given the data can be computed as follows

f(θ |x) =
f(x|θ) π(θ)∫

θ
f(x|θ) π(θ) dθ

where the integral could be multi-dimensional.

The posterior distribution captures the posterior uncertainty of the parameter. This can be de-
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scribed by the summaries of the posterior distribution. In Bayesian analysis, the summaries that are

often used are the point estimates and the interval estimates. Posterior point estimates, i.e expected

value and median, give a value that best estimates, in some sense, the unknown parameter. On the

other hand, interval estimates give an interval indicating the uncertainty in the parameter. Commonly

used Bayesian interval estimates are credible interval and highest density interval. All the summary

statistics can be derived from the posterior distribution.

2.3.2 Bayes factor

The purpose of hypothesis testing is to evaluate if there is enough statistical evidence to support one

hypothesis about a parameter. Early research used univariate frequentist approaches in hypothesis

testing which utilise p-values from a likelihood ratio test. However, the p-value has it weaknesses.

The p-value indicates the frequency of observing a more extreme test statistics in multiple imagi-

nary experiments given the null hypothesis is actually true, with no consideration of the alternative

hypothesis.

Another alternative to hypothesis testing is by using a Bayesian approach. One common Bayesian

approach considers the marginal likelihood of the data in both null and alternative hypotheses. The

ratio of the values of the marginal likelihood under each hypothesis are compared. This ratio between

these two competing hypotheses is called a Bayes factor (BF). Generally, the Bayes factor is given by

Bayes factor =
f(data | H1)

f(data | H0)
. (2.8)

A Bayes factor is equal to 1 shows that the data is equally likely under both hypotheses. If the

Bayes factor is greater than 1 it gives more evidence to the alternative, and if it is less than 1 the data

is more supported under the null hypothesis.

Since Bayes factors take account of both hypotheses, this gives a major advantage in hypothesis

testing compared to p-values. Interpretation of Bayes factor is straightforward as the Bayes factor

27



specifies how much more likely the data are under one hypothesis compared to the other hypothesis.

A drawback of Bayes factor is that a threshold needs to be applied, which is not easy to specify

meaningfully.

2.3.3 Posterior odds

To assess the evidence that a causal association exists, we are required to obtain the posterior odds

on the alternative hypothesis. This requires the prior probability of the alternative hypothesis to be

specified. The prior probability of the alternative hypothesis is denoted by π, so the prior probability

on the null hypothesis is given by 1 − π. Using Bayes theorem, the posterior probability of the

alternative hypothesis is

P (H1 | data) =
f(data | H1)× π

f(data)
. (2.9)

Thus, the posterior odds on the alternative hypothesis is given by

P (H1 | data)

P (H0 | data)
=
f(data | H1)

f(data | H0)
× π

1− π
. (2.10)

Equation (2.10) can be written as

Posterior odds onH1 = Bayes factor× prior odds (PO) onH1. (2.11)

Computing the Bayes factor for each SNP therefore leads to the posterior probability of association

(PPA) which is given by

PPA =
Posterior Odds on H1

(1 + Posterior Odds on H1)
. (2.12)
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PPA is basically a probability, regardless of power, sample size and the number of SNPs being tested.

PPA can also be thought of as p-value in a Bayesian analysis. Thus, it can be used to make decision

on which SNPs to take forward for further analysis. To have strong evidence of true association (large

PPA), the Bayes factor has to be large relative to the odds onH0. This can be proven by using Equation

(2.11) and Equation (2.12).

PPA =
BF× π

1−π

1 + BF× π
1−π

PPA =
BF× π

(1− π) + BF× π
. (2.13)

Following Equation (2.13), for PPA to be large, it requires

1 − π � BF× π

1� π(BF + 1)

BF � 1− π
π

BF � Prior odds on H0. (2.14)

2.3.4 Wakefield Bayes factor in univariate analyses

The currently most commonly used Bayes factor in GWAS and fine mapping was derived by Wakefield

(2008) who came up with an asymptotic approximate Bayes factor that overcomes both concerns about

computation and specifying the prior on the intercept. His approach is applicable to be used with

large sample sizes since it requires the asymptotic Gaussian distribution of the maximum likelihood

estimation (MLE) from the logistic regression in Equation (2.3) as follows

α̂
β̂

 ∼ N

(α
β

 ,

I00 I01

IT01 I11


−1)
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where α is the intercept and

I00 I01

IT01 I11

 is the Fisher Information matrix. Wakefield derived the Bayes

factor from the ratio comparing H0 and H1 which is the reciprocal of the Bayes factor we defined in

Equation (2.8). Thus, the Bayes factor is

Bayes Factor =
P (data |H0)

P (data |H1)

=

∫
p(α̂, β̂ |α, β = 0) π(α) dα∫ ∫
p(α̂, β̂ |α, β) π(α, β) dα dβ

. (2.15)

Previously, Wakefield (2007) assumed α and β were independent. Later, he relaxed the assumption

by reparameterising α to be θ (Wakefield, 2008). The new parameter θ depends on β and α as follows

θ = α +
I01

I00

β.

We show in Appendix A that cov(θ̂, β̂) = 0 where β̂ is a vector and that var(β̂) is the same in both

parameterisations. This case is a special of that in Appendix A. Following Equation (2.15), the Bayes

factor can be written in the same form by replacing α by θ. Assuming independent priors on θ and β,

the joint prior is π(θ, β) = π(θ) π(β). Asymptotically, the Bayes factor now becomes

Bayes Factor =

∫
p(θ̂, β̂ | θ, β = 0) π(θ) dθ∫ ∫
p(θ̂, β̂ | θ, β) π(θ, β) dθ dβ

=

∫
p(θ̂ | θ) π(θ) dθ p(β̂ |β = 0)∫

p(θ̂ | θ) π(θ) dθ
∫
p(β̂ |β) π(β) dβ

=
p(β̂ |β = 0)∫
p(β̂ |β) π(β) dβ

. (2.16)

The main idea is to have a Bayes factor that no longer depends on the prior of the intercept (α).

Basically, it is easy to put a prior on the effect size (β) since we have some idea about the effect size. It

is not really clear what is the sensible prior for the intercept could be. Thus, assuming independent on
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θ and β allow us to derive Bayes factor without the intercept. According to Wakefield (2008), although

we assume independent prior on θ and β, this does not mean α and β are independent priors.

Wakefield (2008) used the asymptotic Gaussian distribution of the maximum likelihood estimator

(MLE) of β (β̂), which gives N(β,V ). β is the log odds ratio (OR) of the causal SNP which Wakefield

(2008) assumed, a priori, to follow a normal distribution with mean 0 and variance W . Thus, the prior

specification for this parameter is, β ∼ N(0,W ). By specifying prior a N(0,W ) on β and a likelihood

β̂|β ∼ N(β, V ), Equation (2.16) results in an asymptotic Bayes factor derived by Wakefield (2008),

which from now on is called WBF. WBF can be calculated as

WBF =

√
V +W

W
exp(−z

2

2

W

V +W
).

To calculate WBF, it requires the Z-score (z2 = β̂/V ) which is the usual Wald test, the standard

error
√
V and the prior effect size variance, W . WBF uses the summary statistics from a univariate

logistic regression to estimate β̂ and V . However, the prior variance, W also needs specification. We

use the Gaussian approximation of the MLE of β̂ as our likelihood in the rest of the thesis.

The choice of W is crucial because WBF highly depends on the value of W . Wakefield suggested

two distinct choices in specifying W : (1) W independent of the minor allele frequency and (2) W

dependent on the minor allele frequency. Spencer et al. (2015) suggested that, instead of specifying

a fixed value to W , they specify a probability distribution on W and allow uncertainty about W .

They considered 4 priors for W which include three priors from parametric families and a fixed form.

These priors depend on the variance obtained from the genotype data, which therefore makes it not

a true priors in a Bayesian sense. However, these priors allow flexibility in the calculation of Bayes

factor and yield tractable integrals and therefore easy to evaluate Bayes factor. Another approach to

specifying W is by maximizing the marginal likelihood (Spencer et al., 2016), a so-called Empirical

Bayes estimate.
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2.3.5 Bayesian decision theory

Bayes factor also can be used in Bayesian decision theory to assess whether the strength of an as-

sociation is noteworthy i.e is an association worth paying attention to. The posterior probability of

the null and cost related to the decision making are required to describe a Bayesian decision theory

approach in reporting either the null hypothesis (H0) or the alternative hypothesis (H1) (Wakefield,

2007). Reporting an association to be noteworthy is based on minimizing the posterior expected cost.

Table 2.1 provides the cost related to making a decision (δ). Cω is the cost of a false non-discovery

and the cost of a false discovery is represented by Cη.

Table 2.1: CostC(δ,H) of Decision Making. Cη is the cost of a false discovery andCω is the cost of a false non-discovery.

Decision
Non Noteworthy (δ = 0) Noteworthy (δ = 1)

Truth H0 0 Cη
H1 Cω 0

We let δ = 0 if the decision is non-noteworthy and δ = 1 if the decision is noteworthy. The

posterior expected cost of making decision δ is given by

E[C(δ)] = C(δ,H0)P (H0 | β̂) + C(δ,H1)P (H1 | β̂).

where C(δ,H) is the cost in Table 2.1. Thus, for making both decisions, the posterior expected cost

are

E[C(δ = 1)] = Cη × P (H0 | β̂) + 0 × P (H1 | β̂)

= Cη × P (H0 | β̂) (2.17)

E[C(δ = 0)] = 0 × P (H0 | β̂) + Cω × P (H1 | β̂)

= Cω × P (H1 | β̂). (2.18)
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If we choose to report on a noteworthy association (δ = 1), a decision can be made by minimizing

the posterior expected cost, i.e E[C(δ = 1)] < E[C(δ = 0)]. Therefore, an association is noteworthy

is based on

Posterior Probability of H0 <
Cω/Cη

1 + Cω/Cη
. (2.19)

where R = Cω/Cη is a ratio of costs of making incorrect decisions. In the case R = 4, which means

the cost of a type II error is 4 times bigger than the cost of a type I error, we can conclude that the

association is significant if the posterior odds on the null hypothesis is less than R = 4 since the

posterior odds on the null hypothesis is, using Equation (2.19), R = Cω/Cη.

We can easily calculate the posterior probability of H0 from the posterior odds of H0. Let π0 be

the prior probability of H0. The posterior odds is given by

Posterior Odds of H0 = prior odds of H0 / BF.

So the posterior probabilty of H0 is

P (H0 | β̂) =
π0

π0 + BF(1− π0)
. (2.20)

Though the interpretation of the Bayes factor is straightforward, there are a few concerns to take

into consideration about the Bayes factor. The main concern is regarding the computation of Bayes

factors. From Equation (2.8), the Bayes factor in a univariate analysis of fine-mapping data is given

by

Bayes factor =
f(data | H1)

f(data | H0)

=

∫
β ∈R/{0} f(data | β)π(β) dβ

f(data | β = 0)
.
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Where β is the effect size given in Equation (2.1). π(β) is the prior for the parameter under the alterna-

tive. From the above equation, we can see that the computation involves (possibly multi-dimensional)

integration which, depending on the prior, could require numerical methods, for example Monte Carlo

integration.
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Chapter 3

Using GWAS top hits data and estimates of

the number of yet-to-be-discovered SNPs to

inform the effect size prior

3.1 Breast cancer top hits data

In previous years, genome wide association studies have been conducted to identify breast cancer

susceptibility loci. Easton et al. (2007) had first identified five new independent SNPs associated with

breast cancer. Following this discovery, more SNPs are identified to be significant (Stacey et al., 2007,

2008; Zheng et al., 2009; Ahmed et al., 2009; Thomas et al., 2009; Turnbull et al., 2010; Fletcher

et al., 2011; Ghoussaini et al., 2012; Siddiq et al., 2012; Cai et al., 2014; Milne et al., 2014) with 41

SNPs being the largest identification by Michailidou et al. (2013). These SNPs were identified through

similar genome wide approaches using up to 70000 cases and 68000 controls from both European and

Asian ancestry. All identified SNPs are associated at genome wide significant level of 5× 10−8 . With

large statistical power, these analyses are able to capture SNPs with odds ratio between 1.05 and 1.26

(Fachal and Dunning, 2015).
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Michailidou et al. (2013) suggested that there are a large number of SNPs associated with breast

cancer risk although in current study these SNPs are not significantly associated at genome wide

significant level. Hence, Michailidou et al. (2013) further analyze a set of 10668 SNPs selected from

two GWAS. The estimated OR are calculated for each SNP to observe its direction in both GWAS.

Assuming if all SNPs are actually non causal, they expect half of the SNPs are in the same direction

and the other half are in the opposite direction. However, of 10668 SNPs, 5918 SNPs are in the same

direction (both positive or both negative) in the two GWAS meanwhile 4750 SNPs are in the opposite

direction. Thus, it is estimated that there are about 1168 additional loci that are associated with higher

risk of having breast cancer, most will presumably have very small effect sizes.

In 2015, Michailidou et al. carried out a meta-analysis of 11 GWAS using case-control breast

cancer data and also case-control genotyped data from 41 studies restricting only the women of Eu-

ropean ancestry. They resulted in identifying 15 more SNPs associated with breast cancer risk at

GWAS p-value threshold (Michailidou et al., 2015). In a further GWAS of breast cancer, another 65

new SNPs are reported to be associated at p-value less than 5 × 10−8 with the smallest odd ratio of

1.02 (Michailidou et al., 2017). In this analysis, they used a larger number of case-control data from

European ancestry and also included case-control data of East Asian ancestry.

Combining all SNPs identified in various studies above, as of 2017, we have a total of 148 GWAS

significant SNPs (top hits) associated with breast cancer risk. Figure 3.1 shows the histogram of the

frequency distribution of the log odds ratios from the top hits data used. From the histogram, we can

observe that the log odds ratios have an absolute value greater than log 1.02. This shows that the

statistical power in previous studies was not sufficient enough to capture SNPs with very small odds

ratios.

In this thesis, we will develop a Bayesian statistical approach to fine mapping by suggesting a

suitable prior for the effect size. With the 148 Breast Cancer top hits data, we can utilize this data to

inform the prior for the effect size. Important information such as the estimated number of unidentified

SNPs and the threshold value of the odds ratio are also taken into account. The summaries of the top
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hits data and the additional information we have are crucial in estimating the prior parameters. This

is because the prior parameters may strongly influence the results of a Bayesian statistical approach to

fine mapping.
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Figure 3.1: Histogram shows the frequency distribution of the log odds ratio from the Breast Cancer top hits data with
148 samples. The red dotted lines represent |log(1.02)|.
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3.2 Estimate the hyperparameter used in Wakefield Bayes factor

Wakefield Bayes factor (WBF) is a common used Bayes factor in GWAS which allow the effect size

prior to follow a normal distribution. WBF requires a prior on the log OR, β having mean zero and

varianceW . To be able to calculate WBF, we need to specifyW . There are several ways to specifyW ,

one assumes independence of the effect size and the minor allele frequency (MAF), another specifies

W so that the WBF ranks match those of the p-values, the so called p-value prior (Wakefield, 2009).

However, generally there is uncertainty about the value of W . Instead of specifying a fixed value for

W , Spencer et al. (2015) allow for uncertainty about W in the calculation of WBF. Besides having

a prior for the log OR, they considered priors for W from three different parametric families (power,

exponential and hybrid) and a fixed form (reciprocal).

In this research, we are interested in assessing how well the normal prior fits the top hits data. The

specification of W is made through estimation by using the Maximum Likelihood Estimate (MLE)

obtained from the known top hits data.

3.2.1 MLE forW without considering the number of yet-to-be-discovered SNPs

Previously we mentioned about the top hits data having values of absolute log ORs (|β|) greater than a

certain value of log OR (βc). To calculate the MLE for W , we have to take this into consideration. Let

β be the random variable for the log OR having a Gaussian distribution with mean=0 and variance=W

β ∼ N(0,W ).
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If we condition on |β| to be greater than βc (where βc > 0) we require

P (|β| > βc | β ∼ N(0,W )) =

∫ −βc
−∞

1√
2πW

exp

(
− β2

2W

)
dβ +

∫ ∞
βc

1√
2πW

exp

(
− β2

2W

)
dβ

= 2

[
Φ

(
−βc√
W

)]

where Φ(·) is the the distribution function of a standard normal random variable. Thus

f(β
∣∣ |β| > βc, β ∼ N(0,W )) =

1√
2πW

exp

(
− β2

2W

)
2

[
Φ

(
−βc√
W

)]
=

exp
(
− β2

2W

)
√

8π
√
W

[
Φ
(−βc√

W

)] .

If βi (1 ≤ i ≤ n) are the observed top hits log odds ratio then the likelihood function is

L(W ; β1, β2, ..., βn) =
n∏
i=1

exp
(
− β2

i

2W

)
√

8π
√
W

[
Φ
(−βc√

W

)]
=

exp
(
− 1

2W

∑n
i=1 β

2
i

)[√
8π
√
W

(
Φ
(−βc√

W

))]n
and the log-likelihood is

l(W ; β1, β2, ..., βn) = −n log
√
W − n log

[
Φ
(−βc√

W

)]
−
∑n

i=1 β
2
i

2W
+ constant (3.1)

Using the top hits data, with n = 148 and βc = log1.02 we obtained a MLE for W which is

Ŵ = 0.0069 using optim in R. The cumulative distribution function (CDF) for the normal prior when
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we condition |β| to be greater than a positive βc is given as follows

F (β) =



AΦ( β√
W

) if β ≤ −βc

1
2

if |β| < βc

1
2

+ A

[
Φ( β√

W
)−

(
1− Φ

(−βc√
W

))]
if β ≥ βc

where A =
(
2Φ
[−βc√

W

])−1.

Figure 3.2 shows the empirical cumulative distribution function (ECDF) for the log odds ratio from

the 148 Breast Cancer top hits data and also the CDF for the normal prior (N(0,W )) using Ŵ = 0.0069.

The plot shows that the normal prior with Ŵ = 0.0069 does not provide a good fit for the top hits data.

The reason behind the poor fit could be that we did not take into consideration of the number of SNPs

with very small ORs which have not been picked up in the top hits data when we did the calculation

for the MLE.

3.2.2 MLE for W by taking account the number of yet-to-be-discovered SNPs

In Section 3.2.1, the CDF for the estimation of Ŵ does not fit well with the ECDF for the top hits

data as seen in Figure 3.2. As mentioned before, we did not consider the number of unidentified

SNPs with very small ORs which were not captured in the top hits data. In order to contributes to a

more accurate estimate and have a better MLE that fits the ECDF, we now take account the number of

yet-to-be-discovered (YTBD) SNPs in obtaining the MLE for W .

The estimation of W is performed by forming three separate groups in the top hits data (Kulldorff,

1961). The first group consists of β ≤ −βc, the second group consists of |β| < βc and the last group

consists of β ≥ βc. Let P denote the probability that a Gaussian random variable falls in an interval
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Figure 3.2: Empirical cumulative distribution function (ECDF) for the log odds ratio in 148 Breast Cancer top hits data
and the Normal prior (N(0,W )) cumulative distribution function (CDF) using Ŵ = 0.0069.

[β0, β1] and let F be the distribution function

P = F (β1)− F (β0)

P =

[
1− Φ

(
−|β1|√
W

)]
− Φ

(
−|β0|√
W

)
P = 1− 2 Φ

(
−|βc|√
W

)
; if |β1| = |β0| = |βc| (3.2)

Following Equation (3.2), the likelihood function of the parameter W can be written as

L(W ; β1, β2, ..., βn) = P n2

n1+n3∏
j=1

f(βj)

=

[
1− 2 Φ

(
−|βc|√
W

)]n2 n1+n3∏
j=1

1√
2πW

exp

(
−

β2
j

2W

)

where,

n1 = the number of SNPs in the first group (β ≤ −βc)
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n2 = the number of yet-to-be-discovered SNPs in the second group (|β| < βc)

n3 = the number of SNPs in the third group (β ≥ βc)

βj = log odds ratio of the jth observed SNP in the top hits data.

The log-likelihood is

l(W ; β) = n2 log
[
1− 2 Φ

(
−|βc|√
W

)]
−
(n1 + n3

2

)
log(W )− 1

2W

n1+n3∑
j=1

β2
j + constant. (3.3)

We compare four different numbers of YTBD SNPs (250,500,750 and 1000) to calculate the values of

Ŵ . Using the same 148 Breast Cancer top hits data and the same value for βc = log1.02, using optim

in R, we obtained the values for Ŵ = 0.0032, 0.002, 0.0015, 0.0012 respectively.

Figure 3.3 shows the CDF for every Ŵ with its respective number of YTBD SNPs and the ECDF

for the 148 Breast Cancer top hits data. All the CDF plots with each value of Ŵ give a slightly better

fit to the ECDF of the top hits data compared to the Normal prior CDF when the number of YTBD

SNPs was not taken into account.

3.3 The uncertainty in the hyperparameter W

In both cases either we consider the number of YTBD SNPs or not in estimating the MLE, we can see

that there are uncertainties in the values of estimated W depending on how many unidentified SNPs

are not in the top hits data. Since we estimated W using MLE, the uncertainty of Ŵ can be translated

into a likelihood interval based on the log-likehood function of W .

If the data is a set of n i.i.d observations that depends on W and is distributed according to the

likelihood function, l for the true model parameter W , we define

Λ = −2(l(W ∗; β)− l(Ŵn; β))
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Figure 3.3: Empirical cumulative distribution function of the log odds ratio in 148 Breast Cancer top hits data with different
number of yet to be discovered SNPs (250, 500, 750 and 1000) and the cumulative distribution function for Normal prior
(N(0,W )) with values of W obtained as the MLE using the respective number of yet-to-be-discovered SNPs.
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where W ∗ is the true value of W and Ŵn is the MLE of W based on a sample of n i.i.d realisation.

Wilk’s Theorem stated that in a large sample limit, as n → ∞, Λ ∼ χ2
1. Therefore we can define a

likelihood region as

{Λ : l(W ; β) > l(Ŵn; β)− c}

where for a single parameter W , c is defined as c = 1
2
χ2

1,0.95 ≈ 1.92 in a 95% confidence region.
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Figure 3.4: Log likelihood interval (in red) limits for W without considering yet-to-be-discovered SNPs based on Wilk’s
Theorem.

Figures 3.4 and 3.5 show the log likelihood region for the estimated W in both cases either con-

sidering or not the number of YTBD SNPs. In Figure 3.4, we did not take into account the number of

YTBD SNPs when estimating W where as in Figure 3.5(a), 3.5(b), 3.5(c) and 3.5(d) we did account

for the number of YTBD (250, 500, 750, 1000) when estimating W . The likelihood region is between
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(c) Interval limits for W by taking into account 750 yet-
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Figure 3.5: Log likelihood interval (in red) limits for W based on Wilk’s Theorem. (a) shows the log likelihood interval
(in red) for W by taking account of 250 yet-to-be-discovered (YTBD) SNPs. (b), (c) and (d) shows the log likelihood
interval for W by taking account of 500, 750 and 1000 yet-to-be-discovered SNPs respectively.
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the limits are in red lines. The lower and upper limits for every estimated W are shown in Table 3.1.

The values of W ranges from 0.0011 up to 0.0087.

The uncertainty of W should be accounted for in the calculation when obtaining the Bayes factor

using the normal prior. Estimation of W either considering or not the number of YTBD led to a CDF

that has a poor fit to the ECDF of the top hits data. The density function for each normal prior with

different values of estimated W were plotted on the histogram showing the frequency density of the

148 Breast Cancer top hits data as shown in Figure 3.5. Since the Normal prior does not reflect the

distribution of the top hits data, we need a better distribution that has heavier tails and more mass for

|β| < βc. We also need to consider a prior that gives a tractable Bayes factor.

Table 3.1: Maximum likelihood estimation (MLE) for W and its 95% likelihood interval using various number of yet-to-
be-discovered (YTBD) SNPs estimated using the 148 top hits data with a critical value of log odd ratio, βc=log 1.02.

Top Hits data no. YTBD SNPs Ŵ Lower Limit Upper Limit

148

Top Hits Data

not considered 0.0069 0.0056 0.0087
1000 0.0012 0.0011 0.0013
750 0.0015 0.0014 0.0017
500 0.0020 0.0018 0.0023
250 0.0032 0.0029 0.0037

3.4 Laplace prior

Previous studies have been using the Gaussian distribution as the prior for the log ORs. Specifying

the hyperparameter for the Gaussian prior by using the MLE from analysing the top hits data does not

reflect the top hits data since the top hits data has a heavier tail as shown in Figure 3.6. A sensible

choice would be a distribution that has more mass close to zero with heavier tails and could have a

tractable integral when computing the Bayes factor or posterior distribution.

The Laplace distribution meets the criteria we wanted in reflecting the log ORs from the 148 top

hits data. A random variable X have a Laplace distribution La(µ,λ) if its probability density function
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Figure 3.6: Histogram shows the frequency density of the log odds ratio in 148 Breast Cancer top hits data with probability
density function (PDF) for Normal prior (N(0,W )) with different values of W (0.0032,0.002,0.0015,0.0012).
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is defined as follows

fX(x | µ, λ) =
λ

2
exp(−λ|x− µ|). (3.4)

The cumulative distribution function is given as

F (x) =



1
2
exp(λ(x− µ)) if x < µ

1− 1
2
exp(−λ(x− µ)) if x ≥ µ

The log ORs estimates are from a large sample and so the true logistic likelihood can be replaced

with the asymptotic distribution of the MLE which is a Normal distribution with mean (β) and variance

(V). Figure 3.7 shows the likelihood function and the probability density for the Normal prior with

variance, W = 0.0069. A Laplace probability density function is plotted on top of the likelihood

and normal prior (N(0,W )) with the parameter, λ obtained by equating the Laplace variance and the

Gaussian variance ( 2
λ2

= W ).

In this research, a Laplace prior β ∼ La(λ), assuming µ = 0 is chosen for the log odds ratio

for the reason that we only consider probability density functions symmetric at 0 to become our prior

because the rare alleles are equally likely to be protective as to increase disease risk.

3.5 Estimate MLE for λ from top hits data

The hyperparamter λ requires specification to be used in further calculation in any Bayesian method.

The same MLE approach we used in estimating W for the Gaussian prior is used in estimating λ. We

will look at both including the number of YTBD SNPs and not including them in estimating the MLE.
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Figure 3.7: Probability densities for priors and likelihood. The likelihood for log odds ratio follows a Normal distribution
with mean = 0.05 and variance = 0.03. The Laplace prior uses λ = 17.02 giving the same variance as the Normal prior
(W = 0.0069).
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3.5.1 MLE for λ without considering the number of yet-to-be-discovered SNPs

In this section, we estimate λ using the MLE from the log ORs in the 148 Breast Cancer top hits data

by conditioning the absolute value of the odd ratios to be more than log (βc). The same reason was

given in Section 3.2.1.

Let β be the random variable for the log ORs following a Laplace distribution of λ and µ = 0. The

Laplace prior can be written as follows,

β ∼ La(λ).

If we condition on | β | to have values greater than βc and βc is positive, we require

P (|β| > βc | β ∼ La(λ)) = P (β > βc | β ∼ Ex(λ)

= exp(−λβc)

which leads to a density function

f(β| |β| > βc, β ∼ La(λ)) =
λ
2
exp(−λ|β|)
exp(−λβc)

and the cumulative distribution function is given as follows

F (β) =



1
2
exp(−λ(β + βc)) if β ≤ −βc

1
2

if − βc < β < βc

1− 1
2
exp(−λ(β − βc)) if β ≥ βc.
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If βi (1 ≤ i ≤ n) are the observed top hit log odds ratio then the likelihood function is

L(λ; β1, β2, ..., βn) =
n∏
i=1

λ
2
exp(−λ|βi|)
exp(−λβc)

=
n∏
i=1

λ

2
exp

(
− λ[|βi| − βc]

)
=

(
λ

2

)n
exp

(
− λ

n∑
i=1

[|βi| − βc]
)

and the log-likelihood is

l(λ; β1, β2, ..., βn) = n logλ− λ
n∑
i=1

(|βi| − βc) + constant. (3.5)

To estimate the MLE (λ̂), we set dl
dλ

= 0

n

λ
−

n∑
i=1

(|βi| − βc) = 0

λ̂ =
n∑n

i=1(|βi| − βc)
. (3.6)

Estimating λ requires the log ORs from the top hits data, the number of samples (n) in the top hits

data and specifying βc. Using the 148 Breast cancer top hits data with n = 148 and βc = log 1.02 the

λ̂ obtained is equal to 18.3116. The uncertainty in λ̂ will be considered in Section 3.6.

The Laplace prior CDF with λ = 18.3116 was plotted together with the Normal prior CDF from

Section 3.2.1 on top of the ECDF of the 148 top hits data as shown in Figure 3.8. From the plots in

Figure 3.8, the CDF for the Laplace prior shows a better fit to the ECDF for the top hits compared to

the Normal prior CDF. Figure 3.9 shows another illustration of the comparison by using the probability

density function (PDF) of both priors. The PDFs were plotted on the histogram showing the probability

density of the top hits data. In this section, we did not take into consideration the number of YTBD

SNPs in estimating lambda. From Figure 3.9, it is predicted that the Laplace prior would have a better
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Figure 3.8: Empirical cumulative distribution function (ECDF) for the log odds ratio in 148 Breast Cancer top hits data
and the cumulative distribution function (CDF) for Normal prior with Ŵ = 0.0069 and Laplace prior with λ̂ = 18.3116
in cases where we conditioned |β| > βc.
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Figure 3.9: The truncated Normal probability density function (PDF) in black and the truncated Laplace PDF in red with
the symmetric truncation for |β| < log 1.02 in addition to the histogram of the log odds ratio from the 148 Breast Cancer
top hits data.
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fit to the top hits data if we included the number of YTBD SNPs into the calculation of MLE.

3.5.2 MLE for λ taking account the number of yet-to-be-discovered SNPs

As mentioned before, the Laplace prior may have a better fit to the top hits data if we take into account

the number of YTBD SNPs in the calculation of the likelihood of λ. The same concept was applied in

Section 3.2.2 where we conditioned the absolute value of the log ORs (β) to have values greater than

the critical value of log ORs (βc).

First, we let P1 denote the probability of a random variable with a La(λ) distribution falling in an

interval (|β| < βc),

P1 = F (β1)− F (β0)

P1 =

[
1− 1

2
exp(−λ|β1)|

]
− 1

2
exp(−λ|β0|)

P1 = 1− exp(−λ|βc|); if |β1| = |β0| = |βc|. (3.7)

The likelihood function of the parameter λ can be written as

L(λ; β1, β2, ..., βn) = P n2
1

n∏
j=1

f(βj)

=

[
1− exp(−λ|βc|)

]n2 n∏
j=1

λ

2
exp(−λ|βj|)

=

[
1− exp(−λ|βc|)

]n2
(
λ

2

)n
exp

(
− λ

n∑
j=1

|βj|
)

where

n = the number of SNPs in the top hits data

n2 = the number of yet-to-be-discovered SNPs

βj= log odds ratio of the jth observed SNP in the top hits data.
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The log-likelihood,

l(λ; β) = n2log
[
1− exp(−λ|βc|)

]
+ n logλ− λ

n∑
j=1

|βj|+ constant (3.8)

The calculation for the MLE is undertaken using optimize in R. To estimate the MLE for λ, we

set the first derivative of the log-likelihood to become zero and considered the same number of YTBD

SNPs as the ones in Section 3.2.2. Using the same top hits data with βj =log ORs, βc =log 1.02,

n = 148 and n2 = (1000, 750, 500, 250), the values for λ̂ with different numbers of YTBD SNPs are

shown in Table 3.2. In making sure that the values are a maximum value, the second derivatives were

checked to be less than zero.

Table 3.2: The Maximum Likelihood Estimation (MLE) for λ estimated using different number of yet-to-be-discovered
(YTBD) SNPs.

number of yet-to-be-discovered SNPs λ̂
1000 60.47
750 52.27
500 42.41
250 30.05

The CDF for each value of λ̂ with respective number of YTBD SNPs are shown in Figure 3.10.

We can observe that by considering the number of YTBD SNPs into the calculation of the MLE, the

Laplace prior has a better fit to the top hits data.

Walters et al. (2019) show how to formally compare the fit of the two priors. Using the hyper-

parameter as the MLE, the CDF for both priors were plotted on the ECDF of the top hits data with

its respective number of YTBD SNPs (Figure 3.11). The Laplace prior CDF shows a better fit to the

ECDF of the top hits data in all scenarios of the different number of YTBD SNPs compared to the

CDF for the Normal prior. Therefore, the Laplace prior is the better choice of prior for the log ORs

to be used in a Bayesian approach of fine-mapping SNPs. Before we go any further in developing a

Bayesian approach using Laplace distribution as the prior, we have to look into the uncertainty of the
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hyperparameter.
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Figure 3.10: Empirical cumulative distribution function (ECDF) showing the log odds ratio in 148 Breast Cancer top hits
data with different number of yet to be discovered SNPs (250, 500, 750 and 1000) and the cumulative distribution function
(CDF) for Laplace prior with values of λ obtained from the number of yet to be discovered SNPs respectively.
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Figure 3.11: Comparing the resemblance of the cumulative distribution function (CDF) for Normal and Laplace prior
using their respective estimated hyperparameter to the empirical cumulative distribution function (ECDF) for the log odds
ratio in the 148 Breast Cancer top hits data with different number of yet-to-be-discovered (YTBD) SNPs (250, 500, 750
and 1000).
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3.6 The uncertainty in λ̂

Table 3.2 shows how the values of λ̂ vary according to the choices we made on the number of YTBD

SNPs in the top hits data. The uncertainty in λ̂ has to be accounted for, in order to provide information

on plausible values of the parameter. In this section, we will look at the uncertainty of the parameter

using the standard error of the parameter rather than the likelihood interval used in Section 3.6.

3.6.1 Standard Error of λ̂ in two different Breast cancer top hits data

Typically, the MLE has good properties when the sample size is large. To measure the uncertainty

of the estimate, we calculate the standard error of the MLE by using the observed information. The

standard error (se) for λ̂ can be obtained by first calculating the variance. Asymptotically we have

λ̂ N(λ, I−1)

where

I = − d
2l

dλ2

∣∣∣∣
λ=λ̂

.

In the first case where we did not take into account the number of YTBD SNPs as in Section 3.5.1,

following the log-likelihood function in equation 3.5, we obtain the first and second derivatives of the

log-likelihood function as follows

dl

dλ
=
n

λ
−

n∑
i=1

(|βi| − βc)

d2l

dλ2
= − n

λ2
.
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The variance for λ̂ when we did not consider the number of YTBD SNPs is therefore

V ar(λ̂) ≈ λ2

n
. (3.9)

Given the log-likelihood in Equation 3.8 in Section 3.5.2 in the case when the number of YTBD

SNPs are considered, the derivatives are as follows

dl

dλ
=
n2|βc|exp(−λ|βc|)
1− exp(−λ|βc|)

+
n

λ
−

n∑
j=1

|βj|

d2l

dλ2
= −n2

|βc|2exp(−λ|βc|)
[1− exp(−λ|βc|)]2

− n

λ2

therefore, the variance for λ̂ in this case is

V ar(λ̂) ≈
[
n2
|βc|2exp(−λ|βc|)

[1− exp(−λ|βc|)]2
+

n

λ2

]−1

. (3.10)

The standard error of λ̂ were calculated in two different Breast Cancer top hits datasets. Table 3.3

shows the variation of λ̂ in both datasets. We first look at the top hits data with 148 samples that we

currently used, with the critical value of the log odd ratio, βc = log 1.02, n = 148 causal SNPs and

varying numbers of YTBD SNPs. The values of λ̂ when we take 95% confidence intervals of the MLE

have a range from 15.30 up to 64.15. As we increase the numbers of YTBD SNPs, the uncertainty

also increases. Thus, this shows that the estimates of λ are sensitive to the choice of number of YTBD

SNPs.

Another top hits dataset was used to estimate λ and to look at its uncertainty using the same

method. This dataset was based on the previous availability of Breast Cancer top hits data at an earlier

time point having a smaller (68) number of top hits and a bigger critical value of log odds ratio, βc=log

1.05 (Fachal and Dunning, 2015). Using the same number of YTBD SNPs as before, it is shown in

Table 3.3 that the value of λ̂ varies according to the number of YTBD SNPs with interval extremes
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ranging from 16.52 to 52.14. We noticed that, the estimated lambda were not only sensitive on the

choices of number of YTBD SNPs, but are also sensitive towards the critical value and the number of

top hits.

Table 3.3: Maximum likelihood estimates of λ and its standard error (se) using various number of yet-to-be-discovered
(YTBD) SNPs for two different Breast Cancer top hits data. The 148 top hits data have a critical value of log odd ratio,
βc = log 1.02and the 68 top hits data have βc =log 1.05. The confidence interval (CI) for the MLE is based on 95%
confidence.

Top Hits data no. YTBD SNPs λ̂ var(λ̂) se(λ̂) Lower CI Upper CI

148
Top Hits

not considered 18.31 2.27 1.51 15.30 21.32
1000 60.47 3.53 1.88 56.79 64.15
750 52.27 3.28 1.81 48.65 55.89
500 42.41 2.90 1.70 39.01 45.82
250 30.05 2.30 1.52 27.02 33.09
50 17.25 1.51 1.23 14.84 19.65

68
Top Hits

not considered 21.81 6.99 2.64 16.52 27.10
1000 48.56 3.44 1.83 44.98 52.14
750 43.84 3.26 1.81 40.23 47.45
500 37.63 3.15 1.78 34.08 41.18
250 28.48 2.86 1.69 25.09 31.86
50 15.73 2.14 1.46 12.86 18.60

34
Top Hits

not considered 23.27 8.46 2.91 17.57 28.97
1000 37.98 3.06 1.75 44.98 52.14
750 35.03 3.05 1.75 40.30 47.39
500 31.01 3.03 1.74 34.14 41.11
250 24.65 2.94 1.71 25.15 31.81
50 13.84 2.47 1.57 10.76 16.92

3.6.2 Estimate λ̂ by halving the top hits data

The estimates for λ are sensitive to the number of YTBD SNPs, the number of top hits in the data

and the presence of the critical value of log odds ratio. In this section, we would like to look at the

sensitivity of the value of λ̂ when we reduce the number of top hits data to half.

We consider halving the number of top hits data based on quartiles. The first and fourth quartiles

were merged together to form another dataset of top hits. The new critical value (βc) will then be
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identified by observing the smallest absolute value of the log ORs. The values of λ will be estimated

using the same approach in Section 3.5. The standard error of the estimated λ was calculated to

observe the uncertainty of the estimates. The variation of estimated λ with its respective standard

error when we halve the 68 top hits data are shown in Table 3.3. The top hits data now has 34 sample

size with a new critical value βc = log 1.09 with λ̂ ranging from 17.57 to 52.14.

As we reduced the number of top hits to half, we could see the estimated λ for all numbers of

YTBD SNPs considered decrease. However, the uncertainty of the λ̂ increases. Furthermore, βc

changes by having a bigger value compared to when we have larger number of top hits. This is

because when we have smaller number of top hits, we have less information and this leads to having

more uncertainty on the estimated λ. In most cases, as studies gets bigger over time, sample size gets

bigger and this will lead to increasing in power which allows them to find causal SNPs with smaller

effect size.

Given the results in Section 3.5.2 and by reducing the number of top hits, the value of λ̂ is sensitive

to the number of top hits data, the choices we made on the number of YTBD SNPs and the critical

value of the log OR in the top hits data. Therefore, we must take into account the uncertainty in λ̂

when estimating the hyperparameter for the Laplace prior.
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Chapter 4

Univariate Bayesian approaches to fine

mapping using the Laplace prior

4.1 A description of the simulated data used

Before we go any further in developing the Bayesian approach with a Laplace prior, we require simu-

lated genotype data with a single causal SNP to test our approach later in this chapter.

The performance of the Bayesian approach will be analysed based on scenarios with different

causal SNPs, ORs and sample sizes. The aim is to observe whether the known “true” causal SNP in

the simulated data is picked or not as a causal SNP among the candidates ones. The datasets were

simulated from the HAPGEN2 software (Su et al., 2011) which produces haplotype sequences based

on LD structure in a reference dataset. The reference data used in this case is the European haplotypes

of the August 2010 release of the 1000 genome data. These generated sequences depend on the OR

specified by the user for the causal SNP. In particular, we simulated data on Chromosome 2 around

the CASP8 region between base pair 201666128 and 201866128.

We are interested in testing the Bayesian approach on simulated data with OR varying from 1.08

to 1.15 in two scenarios with rare causal SNPs (MAF=0.09) and common causal SNP (MAF=0.3). 20
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datasets were simulated with sample sizes chosen for every scenario to achieve 80% and 60% power

where power is given by

Power = P (β̂ > cα| β̂ ∼ N(β, V ))

= P

(
β̂ − β√
V

>
cα − β√

V

)
= P

(
Z >

cα − β√
V

)
(4.1)

where Z is the standard normal distribution, cα = is the critical value at level α, β = is the log OR,

and V = (n×MAF×(1−MAF))−1 is the variance (Wakefield, 2008).

The sample sizes refer to the total number of cases and controls where we assume that the number

of cases is always equal to the number of controls. Table 4.1 shows the values used in the data

simulation from HAPGEN2 in scenarios with causal SNPs with different MAF, ORs and sample sizes.

Table 4.1: Simulated data scenarios used in HAPGEN2 with SNPs having different MAF, odds ratio and sample sizes

Power MAF Odds Ratio Sample Size Number of SNPs

80%

0.3
1.15 10000 193
1.12 15000 225
1.08 32000 229

0.09
1.15 24500 232
1.12 38000 226
1.08 81000 236

60%

0.3
1.15 7900 191
1.12 12100 225
1.08 26000 229

0.09
1.15 20300 230
1.12 31000 225
1.08 67000 235

As mentioned before, the simulated data from HAPGEN2 were haplotype sequences and we re-

quire genotype data to test the Bayesian approach. R codes were created to create the genotype data

from the haplotype sequence and to calculate the MAF for all SNPs in the dataset to check if there are

extremely rare or monomorphic SNPs. These SNPs need to be removed because the statistical power
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is very low for rare and monomorphic SNPs to detect an association with a phenotype. Monomorphic

SNPs are not SNPs in our dataset. The simulated data have 412 SNPs in each dataset for every sce-

nario. However, after removing the rare and monomorphic SNPs, each scenario have different number

of SNPs as shown in Table 4.1.

4.2 Deriving the posterior distribution and the posterior sum-

maries

Previously in Chaper 2 Section 2.3.4, we mentioned about Wakefield Bayes factor (WBF) as the most

common Bayesian approach in GWAS. Another Bayesian approach in identifying causal SNPs is by

using summaries from the posterior distribution. Using this approach helps to identify the SNPs by

ranking the SNPs based on the posterior summaries. The posterior distribution of the intercept α and

the effect size parameter β is given by

f(α, β | α̂, β̂) =
f(α̂, β̂ | α, β) π(α, β)∫
f(α̂, β̂ | α, β) π(α, β) dβ

(4.2)

By using the same assumption and argument to derive WBF in Section 2.3.4 (that cov(θ̂, β̂) = 0 and

that they are jointly normally distributed), the posterior distribution for the reparameterised intercept

θ and the effect size β in Equation (4.2) can be written as

f(θ, β | θ̂, β̂) =
f(θ̂ | θ)f(β̂ | β)π(θ)π(β)∫ ∫
f(θ̂ | θ)f(β̂ | β)π(θ)π(β) dθ dβ

=
f(θ̂ | θ) π(θ)∫
f(θ̂ | θ)π(θ) dθ

f(β̂ | β)π(β)∫
f(β̂ | β)π(β) dβ

. (4.3)

Our interest is in parameter β, the log odds ratio, thus by taking the integral of Equation (4.3) with
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respect to θ, the marginal on β can be obtained as

f(β | β̂) =

∫
f(θ, β | θ̂, β̂) dθ

=
f(β̂ | β)π(β)∫

f(β̂ | β)π(β) dβ
. (4.4)

The posterior density describes our posterior uncertainty about β, the log odds ratio. We have

already decided on the prior for the log odds ratio to follow the Laplace distribution β ∼ La(λ)

and the likelihood of the data to follow a Gaussian distribution, β̂ | β ∼ N(β, V ). The posterior

distribution can be derived from Equation (4.4). First, we derive the numerator in Equation (4.4) as

follows

f(β̂ | β)π(β) =
1√

2πV
exp

(
− 1

2V
(β̂ − β)2

)
× λ

2
exp

(
− λ|β|

)
=

λ

2
√

2πV
exp

(
− 1

2V
(β̂ − β)2 − λ|β|

)
=

λ

2
√

2πV
exp

(
− 1

2V
[(β̂ − β)2 + 2V λ|β|]

)
. (4.5)

To obtain the denominator in Equation (4.4), we have

∫ ∞
−∞

f(β̂ | β)π(β) dβ

=

∫ ∞
−∞

λ

2
√

2πV
exp

(
− 1

2V
[(β̂ − β)2 + 2V λ|β|]

)
dβ

=

∫ 0

−∞

λ

2
√

2πV
exp

(
− 1

2V
[(β −Q−)2 + (β̂2 −Q2

−)]

)
dβ

+

∫ ∞
0

λ

2
√

2πV
exp

(
− 1

2V
[(β −Q+)2 + (β̂2 −Q2

+)]

)
dβ. (4.6)
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The values for Q− and Q+ are defined as follows

Q− = β̂ + V λ (4.7a)

Q+ = β̂ − V λ. (4.7b)

Since the denominator in Equation (4.6) has two parts, integrating over the negative support gives

f(β̂ | β < 0) =

∫ 0

−∞

λ

2
√

2πV
exp

(
− 1

2V
[(β −Q−)2 + (β̂2 −Q2

−)]

)
dβ

=

∫ 0

−∞

λ

2
√

2πV
exp

(
− 1

2V
(β −Q−)2

)
× exp

(
− 1

2V
(β̂2 −Q2

−)

)
dβ

=
λ

2
exp

(
− 1

2V
(β̂2 −Q2

−)

)[∫ 0

−∞

1√
2πV

exp

[
− 1

2V
(β −Q2

−)

]
dβ

]
=
λ

2
exp

(
− 1

2V
(β̂2 −Q2

−)

)[
Φ

(
−Q−√
V

)]
(4.8)

where Φ(·) is the distribution function of a standard normal. A similar approach by completing the

squares gives the positive support as follows

f(β̂ | β > 0) =
λ

2
exp

(
− 1

2V
(β̂2 −Q2

+)

)[
1− Φ

(
−Q+√
V

)]
. (4.9)

Thus, Equation (4.6) can be derived by adding Equation(4.8) and Equation (4.9). Fulfilling both

positive and negative support gives

∫ ∞
−∞

f(β̂ | β)π(β) dβ

=
λ

2
exp

(
− 1

2V
(β̂2 −Q2

−)

)[
Φ

(
−Q−√
V

)]
+
λ

2
exp

(
− 1

2V
(β̂2 −Q2

+)

)[
1− Φ

(
−Q+√
V

)]
=
λ

2
D (4.10)

67



with

D = exp

(
− 1

2V
(β̂2 −Q2

−)

)[
Φ

(
−Q−√
V

)]
+ exp

(
− 1

2V
(β̂2 −Q2

+)

)[
1− Φ

(
−Q+√
V

)]
.

To compute the posterior distribution on the negative support of β (β < 0)

f(β | β̂) =
f(β̂ | β)π(β)∫∞

−∞ f(β̂ | β)π(β) dβ

=

λ
2
√

2πV
exp

(
− 1

2V
(β −Q−)2

)
× exp

(
− 1

2V
(β̂2 −Q2

−)

)
λ
2
D

=
E−√
2πV

exp

(
− 1

2V
(β −Q−)2

)
with E− =

exp

(
− 1

2V
(β̂2 −Q2

−)

)
D

(4.11)

Following a similar approach, we can obtain the positive support β ≥ 0 of the posterior distribution as

follows

f(β | β̂) =
E+√
2πV

exp

(
− 1

2V
(β −Q+)2

)
with E+ =

exp

(
− 1

2V
(β̂2 −Q2

+)

)
D

(4.12)

Hence, the posterior distribution with a Laplace prior is given by combining Equation (4.11) and

Equation (4.12) as follows

f(β | β̂) =



E−√
2πV

exp

(
− 1

2V
(β −Q−)2

)
if β < 0

E+√
2πV

exp

(
− 1

2V
(β −Q+)2

)
if β ≥ 0

(4.13)

The posterior density is continuous at β = 0 since lim
β→0−

f(β|β̂) = lim
β→0+

f(β|β̂). Examples of

the posterior densities are shown in Figure 4.1 and 4.2. The posterior summaries obtained from the
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posterior distribution give information about the parameter of interest (β). In Bayesian analysis, point

estimates (i.e. expected value and median) and interval estimate (i.e. credible interval and highest

density posterior interval) are often computed as the summaries of the posterior distribution. Posterior

point estimates do not identify SNPs with a true association, but can be used to rank causal SNPs. The

interval estimates can be used to determine whether β = 0 is in some posterior interval.

4.2.1 Posterior expected value

The first posterior point estimate that we will derive from the posterior distribution is the expected

value, E(β | β̂). The posterior expected value is given by,

E(β | β̂) =

∫ ∞
−∞

βf(β | β̂) dβ

=

∫ 0

−∞
β

[
E− exp

(
− 1

2V
(β −Q−)2

)
√

2πV

]
dβ +

∫ ∞
0

β

[
E+ exp

(
− 1

2V
(β −Q+)2

)
√

2πV

]
dβ.

(4.14)

We need to evaluate the two integrals in Equation 4.14.To calculate the posterior expected value

for β < 0

E−√
2πV

∫ 0

−∞
β

[
exp
(
− 1

2V
(β −Q−)2

)]
dβ

=
E−√
2πV

∫ 0

−∞
(β −Q−)

[
exp
(
− 1

2V
(β −Q−)2

)]
dβ +

E−Q−√
2πV

∫ 0

−∞
exp
(
− 1

2V
(β −Q−)2

)
dβ

=
E−√
2πV

[
− V

[
exp
(
−
Q2
−

2V

)]]
+ E−Q−

∫ 0

−∞

1√
2πV

[
exp
(
− 1

2V
(β −Q−)2

)]
dβ

=
E−√
2πV

[
− V

[
exp
(
−
Q2
−

2V

)]]
+ E−Q−

[
Φ

(
−Q−√
V

)]
. (4.15)

Using the same approach in calculating the posterior expected value for the negative support of β, we
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can calculate E(β | β̂) for β ≥ 0 which gives

∫ ∞
0

β

[
exp[− 1

2V
(β −Q+)2]

D+

]
dβ =

E+√
2πV

[
V
[
exp
(
−
Q2

+

2V

)]]
+ E+Q+

[
1− Φ

(
−Q+√
V

)]
. (4.16)

By adding Equation (4.15) and Equation (4.16), the posterior expected value is

E(β | β̂) = E+

[√
V

2π

[
exp
(
−
Q2

+

2V

)]
+Q+

[
1− Φ

(
−Q+√
V

)]]

− E−

[√
V

2π

[
exp
(
−
Q2
−

2V

)]
−Q−

[
Φ

(
−Q−√
V

)]]
. (4.17)

4.2.2 Posterior median

Another posterior summary is the posterior median, m. Since there are two parts of the posterior

distribution, f(β−|β̂) (when β < 0) and f(β+|β̂) (when β ≥ 0), we have to take into consideration

where the median might fall, either in the negative region of the posterior or in the positive region. If

the median falls in the positive region

∫ ∞
m

f(β+|β̂) dβ =
1

2∫ ∞
m

E+√
2πV

exp

(
− 1

2V
(β −Q+)2

)
dβ =

1

2

E+

[
1− Φ

(
m−Q+√

V

)]
=

1

2
.

Thus, to compute the posterior median

E+

[
1− Φ

(
m−Q+√

V

)]
=

1

2

m = Φ−1

(
1− 1

2E+

)√
V +Q+. (4.18)
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A similar approach can be used to calculate posterior median if the posterior median falls in the

region where β is less than 0. This gives

∫ m

−∞
f(β−|β̂) dβ =

1

2∫ m

−∞

E−√
2πV

exp

(
− 1

2V
(β −Q−)2

)
dβ =

1

2
.

The posterior median in a negative region is

m = Φ−1

(
1

2E−

)√
V +Q−. (4.19)

4.2.3 Posterior credible interval

Beside the point estimates discussed in Section 4.2.1 and 4.2.2, an interval estimate, the credible

interval (CI), can be obtained from the posterior distribution. A Bayesian credible interval has equal

tail probabilities. A general 100(1− α)% credible interval for β, [βL, βU ] can be obtained as follows

∫ βL

−∞
f(β|β̂) dβ =

∫ ∞
βU

f(β|β̂) dβ =
α

2
.

where 1 - α is the ‘confidence’ or ‘credible’ level.

Before proceeding to calculate the limits in the interval, recall that the posterior obtained in equa-

tion (4.13) consists of negative and positive regions. Thus, we lay out several cases on the regions that

the interval might fall in. The cases are:

1. lower limit falls in the negative region and upper limit is in the positive region. i.e βL < 0 and

βU > 0.

2. the interval falls in the negative region i.e [βL,βU ] ⊂ (−∞, 0].

3. the interval falls in the positive region i.e [βL,βU ] ⊂ [0,∞).
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Case 1

We first look into case 1 where βL < 0 and βU > 0. This is guaranteed to be true when

min{
∫ 0

−∞ f(β−|β̂),
∫∞

0
f(β+|β̂)} > α/2. The 100(1 − α)% credible interval for case 1 is defined

as

∫ βL

−∞
f(β−|β̂) dβ =

∫ ∞
βU

f(β+|β̂) dβ =
α

2
.

To obtain the lower limit,βL, we have

∫ βL

−∞
f(β−|β̂) dβ =

α

2∫ βL

−∞

E−√
2πV

exp

(
− 1

2V
(β −Q−)2

)
dβ =

α

2

E−Φ

(
βL −Q−√

V

)
=
α

2

βL = Φ−1

(
α

2E−

)√
V +Q−. (4.20)

Using the same approach, we can obtain the upper limit, βU as follows

βU = Φ−1

(
2E+ − α

2E+

)√
V +Q+. (4.21)

Case 2

The second case is where the interval [βL, βU ] falls in the negative region of the posterior. If∫∞
0
f(β+|β̂) dβ < α/2, thus the upper limit is certain to be in the negative region, (i.e βU < 0). The

100(1− α)% credible interval for case 2 is

∫ βL

−∞
f(β−|β̂) dβ =

∫ 0

βU

f(β−|β̂) dβ +

∫ ∞
0

f(β+|β̂) dβ =
α

2
.
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To obtain the upper limit, βU , we have

∫ 0

βU

f(β−|β̂) dβ +

∫ ∞
0

f(β+|β̂) dβ =
α

2

1−
∫ βU

−∞
f(β−|β̂) dβ =

α

2

1− E−Φ

(
βU −Q−√

V

)
=
α

2

βU = Φ−1

(
2− α
2E−

)√
V +Q−. (4.22)

Since in this case, the lower limit, βL falls in the same region as in case 1, thus the lower limit is the

same as the one in Equation (4.20).

Case 3

In case 3, the lower limit falls in the positive region if
∫ 0

−∞ f(β−|β̂) dβ < α/2. Therefore,

∫ 0

−∞
f(β−|β̂) dβ +

∫ βL

0

f(β+|β̂) dβ =

∫ ∞
βU

f(β+|β̂) dβ =
α

2
. (4.23)

is the 100(1− α)% credible interval when [βL,βU ] > 0. The upper limit can be obtain using Equation

(4.21). To have a simpler calculation for the lower limit in case 3, Equation 4.23 can be defined as

1− α =

∫ βL

βU

f(β+|β̂) dβ

= E+

[
Φ

(
βU −Q+√

V

)
− Φ

(
βL −Q+√

V

)]
. (4.24)

Rearranging Equation (4.24), we have

βL = Φ−1

[
Φ

(
βU −Q+√

V

)
−
(

1− α
E+

)]√
V +Q+. (4.25)
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Figure 4.1 shows the illustration of the 95% posterior credible interval in all cases. The posterior

density using λ̂ = 60.47 were obtained from a SNP with different log odds ratio and variances in every

cases. The red shaded area is the α/2 area, using α = 0.05.

4.2.4 Highest density posterior interval

Besides Bayesian credible intervals, the Highest density posterior interval (HDI) is another type of

Bayesian interval estimates. The HDI does not have an equal tail probabilities. The idea of HDI is

to take a horizontal line and shift it down until the area below the density is 1 − α. In our case,

100(1− α)% HDI is defined as

∫ βU

βL

f(β|β̂) dβ = 1− α

and the density

f(βL|β̂) = f(βU |β̂).

An illustration of a 83% HDI (the white area under the graph) is shown in Figure 4.2. The posterior

density was plotted using λ̂ = 64.15, β̂ = −0.1016 and V =0.00091. To be able to determine the limits

using HDI, we have to take into account all the cases as discussed in previous Section 4.2.3. We listed

several conditions to check if these conditions fulfil all the cases in Section 4.2.3 as follows

1. Case 1: the interval falls in the negative region i.e [βL,βU ] ⊂ (−∞, 0).

(a) Q− < 0 and
∫ 0

2Q−
f(β−|β̂) dβ > 1− α

2. Case 2: the interval falls in the positive region i.e [βL,βU ] ⊂ (0,∞).

(a) Q+ > 0 and
∫ 2Q+

0
f(β+|β̂) dβ > 1− α
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(a) The 95% posterior credible interval for a speci-
fied SNP where the lower limit, βL is less than zero
and upper limit, βU is greater than zero.
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(b) The 95% posterior credible interval for a speci-
fied SNP where both lower and upper limits is less
than zero
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(c) The 95% posterior credible interval for a spec-
ified SNP where both lower and upper limits is
greater than zero

Figure 4.1: The 95% posterior credible interval for a specified SNP. Posterior densities were plotted using λ̂ = 60.47 with
different log odds ratio and variances for all cases. The red shaded area is the α/2 area with α = 0.05. (a) shows the
95% posterior credible interval for a SNP with log odd ratio, β̂ = 0.0595 and variance, V = 0.00458. (b) shows the 95%
posterior credible interval for a SNP with β̂ = -0.11988 and V = 0.0009425 and (c) is the 95% posterior credible interval
for a SNP with β̂ = 0.1113 and V = 0.00029.
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3. Case 3: the lower limit falls in the negative region and upper limit is in the positive region. i.e

βL < 0 and βU > 0.

(a) Q− < 0 and
∫ 0

2Q−
f(β−|β̂) dβ < 1− α

(b) Q+ > 0 and
∫ 2Q+

0
f(β+|β̂) dβ < 1− α

(c) Q− > 0, Q+ < 0 i.e | β̂ |< V λ
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Figure 4.2: The 83% highest density posterior interval for a specified SNP. The posterior density was plotted using
λ̂ = 64.15 for a SNP with log odd ratio, β̂ = -0.01016 and variance, V = 0.00091.
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To start with, we first look into the first case, case 1. This case gives condition 1(a) as

∫ 0

2Q−

f(β−|β̂) dβ > 1− α

E−

∫ 0

2Q−

1√
2πV

exp

(
− 1

2V
(β −Q−)2

)
dβ > 1− α

E−

[
Φ

(
0−Q−√

V

)
− Φ

(
2Q− −Q−√

V

)]
> 1− α

E−

[
Φ

(
−Q−√
V

)
− Φ

(
Q−√
V

)]
> 1− α

E−

[
1− 2Φ

(
Q−√
V

)]
> 1− α. (4.26)

Similarly for condition 2(a) in case 2, the condition is

∫ 2Q+

0

f(β+|β̂) dβ > 1− α

E+

∫ 2Q+

0

1√
2πV

exp

(
− 1

2V
(β −Q+)2

)
dβ > 1− α

E+

[
Φ

(
2Q+ −Q+√

V

)
− Φ

(
0−Q+√

V

)]
> 1− α

E+

[
Φ

(
Q+√
V

)
− Φ

(
−Q+√
V

)]
> 1− α

E+

[
2Φ

(
Q+√
V

)
− 1

]
> 1− α. (4.27)

In case 3, condition 3(a) and 3(b) follows Equation (4.26) and (4.27) respectively with reversed in-

equalities. Thus, these conditions fully specify all cases to be true. Once we know where the limits

might fall based on all the cases, we can then find the values for the lower and upper limits. We pro-

ceed by finding the limits according to cases and conditions listed above.
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Condition 1(a)

E−

[
Φ

(
βU −Q−√

V

)
− Φ

(
βL −Q−√

V

)]
= 1− α

we have βU −Q− = −βL +Q−, thus

E−

[
Φ

(
−βL +Q−√

V

)
− Φ

(
βL −Q−√

V

)]
= 1− α.

Since Φ

(
−βL+Q−√

V

)
+ Φ

(
βL−Q−√

V

)
= 1, we have

E−

[
2Φ

(
−βL +Q−√

V

)
− 1

]
= 1− α

βL = Q− −
√
V Φ−1

(
1− α− E−

2E−

)
. (4.28)

We mentioned βU −Q− = −βL + Q−, rearranging the equation will give the upper limit in this case

as

βU = −βL + 2Q− (4.29)

Condition 2a

To obtain the upper and lower limit for condition 2(a), we noticed the similarity in conditioned 2(a)

and condition 1(a). Therefore, the only changes needed are in Equation (4.28) in which E− and Q−

are change to E+ and Q+ respectively.

78



Condition 3a

∫ 0

βL

f(β−|β̂) dβ +

∫ βU

0

f(β+|β̂) dβ = 1− α

E−

[
Φ

(
−Q−√
V

)
− Φ

(
βL −Q−√

V

)]
+ E+

[
Φ

(
βU −Q+√

V

)
− Φ

(
−Q+√
V

)]
= 1− α. (4.30)

To obtain the values for the interval [βL, βU ], we also have

f(β− = βL|β̂) =
E−√
2πV

exp

(
− 1

2V
(βL −Q−)2

)
= h1

f(β+ = βU |β̂) =
E+√
2πV

exp

(
− 1

2V
(βU −Q+)2

)
= h2

where h1 is the height of the density at βL and h2 is the height of the density at βU . We want a

100(1− α)% HDI for β at the same height, i.e h1 = h2 = h. Therefore, f(βL|β̂) = f(βU |β̂) = h and

hence

E−√
2πV

exp

(
− 1

2V
(βL −Q−)2

)
=

E+√
2πV

exp

(
− 1

2V
(βU −Q+)2

)
E−
E+

exp

(
− 1

2V
(βL −Q−)2

)
= exp

(
− 1

2V
(βU −Q+)2

)
. (4.31)

from Equation (4.11) and (4.12), we have

E−
E+

=

exp

(
− 1

2V
(β̂2 −Q2

−)

)
exp

(
− 1

2V
(β̂2 −Q2

+)

)
= exp

(
− 1

2V
(Q2

+ −Q2
−)

)
. (4.32)
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We substitute Equation (4.32) into Equation (4.31),

exp

(
− 1

2V
(Q2

+ −Q2
−)

)
exp

(
− 1

2V
(βL −Q−)2

)
= exp

(
− 1

2V
(βU −Q+)2

)
n

(βL −Q−)2 − (Q2
− −Q2

+) = (βU −Q+)2. (4.33)

Expanding Equation (4.33) gives

β2
L − 2Q−βL − (β2

U − 2Q+βU) = 0.

To obtain the lower limit, we have

βL =
2Q− ±

√
4Q2
− + 4(β2

U − 2Q+βU)

2

βL = Q− ±
√
Q2
− + β2

U − 2Q+βU . (4.34)

In this case, βU > 0 and Q+ < 0, therefore
√
Q2
− + β2

U − 2Q+βU > |Q−|.

If βL = Q− +
√
Q2
− + β2

U − 2Q+βU , thus βL > 0. This is not the solution for this case. The

only solution to obtain a βL less than zero is by choosing

βL = Q− −
√
Q2
− + β2

U − 2Q+βU . (4.35)

From Equation (4.35), we substitute βL − Q− = −
√
Q2
− + β2

U − 2Q+βU into Equation (4.30).

This gives

E−

[
Φ

(
−Q−√
V

)
− Φ

(
−
√
Q2
− + β2

U − 2Q+βU
V

)]
+

E+

[
Φ

(
βU −Q+√

V

)
− Φ

(
−Q+√
V

)]
= 1− α (4.36)
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To obtain βU , Equation 4.36 can be solve numerically using uniroot in R. Using βU , we then solve for

βL in Equation (4.35).

Condition 3(b)

Similar to condition 3(a), we have E−
E+

from Equation (4.31) which leads to Equation (4.33). Ex-

panding Equation (4.33) gives

β2
U − 2Q+βU − (β2

L − 2Q−βL) = 0

and hence βU = Q+±
√
Q+ + β2

L − 2Q−βL. In this case, βL < 0 andQ− > 0, so
√
Q2

+ + β2
L − 2Q−βL >

|Q+|.

βU = Q+ −
√
Q+ + β2

L − 2Q−βL gives a negative value for βU which is not a solution in this

case. In order to have a solution that satisfies βU greater than zero, the only solution is

βU = Q+ +
√
Q+ + β2

L − 2Q−βL. (4.37)

To find the limits, from Equation (4.37) we substitute βU −Q+ =
√
Q+ + β2

L − 2Q−βL in Equation

(4.30) to obtain values for βL and thus solve for βU .

Condition 3(c)

To solve for the limit in condition 3(c), we can use the same argument as in condition 3(a). We

have lower limit βL from Equation (4.34). In this case βL can not have a positive value, hence βL

with a positive square root is not the solution for this case. The only solution is when we have βL

with a negative square root as in Equation (4.35). This gives βL < 0. The solution for [βL,βU ] can be

obtained as the ones in condition 3(a) by solving Equation (4.35) and (4.36).
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4.2.5 Receiver operating characteristic (ROC) curve.

A receiver operating characteristic (ROC) curve is an essential tool to visualise the performance of

a classifier. A ROC curve is based on two basic measures; sensitivity and specificity. Sensitivity,

also known as True Positive Rate (TPR), is represented on the y-axis against the False Positive Rate

(FPR) on the x-axis which can be calculated as 1 - Specificity. Table 4.2 shows the 2 by 2 contingency

table to illustrate the four possible outcomes from a classifier. TPR can be estimated by dividing the

number of true positives by P. Whereas FPR is the number of false positives divided by N. To create

a ROC curve, ROC points (a point with a pair of FPR and TPR values) of a classifier are connected

by a straight line which starts at (0,0) and ends at (1,1) in the ROC space. FPR and TPR pairs are

determined by varying the threshold of the classifier.

Table 4.2: 2x2 contingency table to illustrate the four possible outcomes from a classifier and an instance.

Predicted Condition
Positive Negative Total

True
Condition

Positive True Positive (TP) False Negative (FN) P
Negative False Positive (FP) True Negative(TN) N

Interpreting the performance of the classifier comes from understanding where the ROC curve lies

in the ROC space. The diagonal line, y = x represent a classifier with a random performance level

which separates the ROC space into two areas. ROC curves which appear in the lower right triangle

indicate a poor performance level (worse than guessing) and the ones that appear in the top left indicate

good performance level. Figure 4.3 shows an example of a ROC curve plot for a single dataset with a

single causal SNP where each SNP is assigned some numerical value, which depends on the analysis

method.

ROC curves for multiple dataset

Averaging ROC curves is a method to obtain a ROC curve for multiple datasets. This can be done

by merging the datasets together into one large dataset. However, merging these datasets does not
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Figure 4.3: Receiver operating characteristic (ROC) curve for one dataset with a single causal SNP.

provide any measure of variance among the datasets. To overcome this, Fawcett (2006) came up with

methods that averages the datasets in different ways. The two methods are vertical averaging and

threshold averaging. In vertical averaging, we average the TPR throughout the datasets at fixed FPRs

meanwhile in threshold averaging, we average both TPR and FPR across datasets at a given fixed

threshold.

4.2.6 ROC curves comparing posterior summaries in univariate analyses

The posterior summaries were obtained by using the output from a simple logistic regression analysis

for a particular SNP; the parameter estimates (β̂) and the standard error (
√
V ). Since we need to

specify a value for lambda, we used λ̂ = 64.15 obtained from Section 3.6.1 since this estimate of

lambda is the maximum λ̂ from the 95% CI for λ̂ obtained from the top hits data with 148 samples

and βc= log 1.02.

The rankings for the interval estimates were based on the probability contained within the largest

interval that does not contain 0. For posterior credible intervals, the tail probabilities must be equal,
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so the interval probability is

1− 2×min{P (β < 0|β̂), P (β ≥ 0|β̂)}.

While in posterior HDI, the areas which does not include 0 are not necessarily the same. The area

depends on the intersection points with the horizontal line when the line crosses the density where

β = 0.

To evaluate the performance among the posterior expected value, posterior median, posterior cred-

ible interval and posterior HDI in ranking the SNPs, we used the 20 simulated datasets to obtain β̂ and
√
V for each SNP in each dataset using univariate logistic regression analysis and hence calculated

values for the true positive rates (TPR) and false positive rates (FPR) for every posterior summary as

the threshold was varied. The performance for each posterior summary can be observed using ROC

curves using the method of vertical averaging. The scenarios we consider were given in Table 4.1.

Figure 4.4 shows the ROC curves for different posterior summaries based on the simulated data for

FPR ≤ 0.04. Observing the ROC curves for a single common causal SNP (MAF=0.3), the posterior

HDI shows the best performance among other posterior summaries in the scenario where we have a

high OR (OR=1.15), however, the posterior summaries have very similar performance with OR=1.12

and OR=1.08.

For a single rare causal SNP with MAF=0.09, the performance of the posterior summaries has

different results in performance for every scenario. We first look at the case with OR=1.15 and 1.12.

It is interesting to see that the posterior summaries using the point estimates, i.e posterior mean and

median, have the same performance. A similar result was also shown by the interval estimates. In

the scenario with OR=1.15, the point estimates perform marginally better than the interval estimates.

However, in the scenario with OR=1.12, it shows the reverse. Each posterior summary in the scenario

with OR=1.08 has a different performance with the posterior HDI performing the best.

Comparing the performance of all the posterior summaries in all six scenarios, we could see very
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Figure 4.4: Receiver operating characteristic (ROC) curves comparing the performance of posterior expected value, pos-
terior median and posterior credible interval in ranking SNPs. The prior for the posterior distribution has λ̂ = 64.15. All
rankings were carried out on 20 simulated datasets from HAPGEN using a single rare causal SNP (MAF=0.09) and a
single common causal SNP(MAF=0.3) with three different odd ratios (OR = 1.08, 1.12, 1.15). The sample size (SS) for
each scenario depends on 80% power.
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Figure 4.5: Receiver operating characteristic (ROC) curves comparing the performance of posterior expected value, pos-
terior median and posterior credible interval in ranking SNPs. The prior for the posterior distribution has λ̂ = 64.15. All
rankings were carried out on 20 simulated datasets from HAPGEN using a single rare causal SNP (MAF=0.09) and a
single common causal SNP(MAF=0.3) with three different odd ratios (OR = 1.08, 1.12, 1.15). The sample size (SS) for
each scenario depends on 60% power.
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little difference between them apart from the scenario with a single common causal SNP with OR=1.5.

Most of the scenarios, the TPRs for all the posterior summaries go up to one (all of the causal SNP

are caught) by the time FPR is 0.04. This is an exception for the first scenario (OR = 1.15 and MAF

= 0.3). In this scenario, at FPR equal to 0.04, all the posterior summaries caught about 75% to 85%

of the causal SNPs. Although with the same statistical power (80% ) of picking up causal SNPs, there

are still differences in performance for all posterior summaries.

Generally, the classification (ranking) performance of the posterior summaries is very good at

80% power in all scenarios. Among the four posterior summaries, we could see that in most scenarios,

atleast two posterior summaries performed similarly. Only in two scenarios (a single common SNP

with OR=1.15 and a single rare causal SNP with OR = 1.08), the performance of each posterior

summary performed differently resulting in posterior HDI having the best performance among all.

However, after considering all scenarios, it is difficult to come with a conclusive choice of the best

posterior summaries.

In order to come up with a conclusive choice, we decided to reduce the statistical power. We

predict that by reducing the statistical power, the performance of each posterior summaries might

be distinguishable. Thus, we reduce the sample size for every scenario to yield 60% power. All

the posterior summaries were recalculated using the new simulated data with reduced sample sizes.

However, the ORs and MAFs remained the same for all 6 scenarios.

Figure 4.5 shows the ROC curves for the posterior summaries in different scenarios with new sam-

ple sizes. The performance of the posterior summaries is now marginally more different compared to

80% power but there is still much overlap. However, in every scenario, all posterior summaries take

longer to reach TPR equals to one. Among the ORs with a single common causal SNP, the posterior

HDI shows the best performance compared to other posterior summaries. A different result in perfor-

mance is shown with a single rare causal SNP as the posterior HDI show the poorest performance. It

is interesting to see that the performance for each posterior summary shows dissimilar results in every

OR with a single rare causal SNP.
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It appears that there is no obvious result in showing which posterior summary has the best perfor-

mance in ranking the SNPs in various scenario. However, we decided to pick posterior HDI as the best

posterior summary since it appears to show a better performance in many of the scenarios. We now

examine the performance of the Laplace Bayes factor that places a Laplace prior on the log OR of all

SNPs and compare it with the performance of the posterior HDI.

4.3 Laplace Bayes factor

We previously used posterior summaries to rank the SNPs for association with the phenotype and

concluded that the best summary among them was the posterior HDI. In this section, we discuss

another Bayesian approach, the Bayes factor. The choice of Laplace prior was made for the reason

that we want to have a prior that led to a tractable integral in calculating the Bayes factor and that

placed more mass near zero but also exhibits heavier tails. A Laplace Bayes factor (LBF) with a

Laplace prior and a Gaussian likelihood is derived in this section. The LBF not only ranks the SNPs, it

can be used in updating the posterior probability of association (PPA) and hence can determine which

SNPs are noteworthy.

The Laplace Bayes factor is derived from the Bayes factor’s general equation given in Equation

(2.8). We also rely on the justification discussed in Section 2.3.4 which explained why we do not need

a prior on the intercept. Using the Bayes factor in Equation (2.16), under the null Hypothesis of no

effect (β = 0)

f(β̂ | β = 0) =
1√

2πV
exp

(
− β̂

2

2V

)
. (4.38)
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Under the alternative Hypothesis (β 6= 0), from Equation (4.10), we can obtain f(β̂ | H1) which gives

f(β̂ | H1) =
λ

2
exp

(
− 1

2V
(β̂2 −Q2

−)

)[
Φ

(
−Q−√
V

)]
+
λ

2
exp

(
− 1

2V
(β̂2 −Q2

+)

)[
1− Φ

(
−Q+√
V

)]
(4.39)

where Q− and Q+ were defined in Equation (4.7a) and (4.7b) respectively. This gives the Laplace

Bayes factor (LBF) as follows

λ
√

2πV

2
exp

(
Q2
−

2V

)[
Φ

(
−Q−√
V

)]
+
λ
√

2πV

2
exp

(
Q2

+

2V

)[
1− Φ

(
−Q+√
V

)]
(4.40)

4.3.1 ROC curves for Laplace Bayes factor

We continue to rank the SNPs by using the new derived LBF using the same procedure on the same

simulated datasets previously used in ranking the SNPs with posterior summaries. As mentioned in

Section 3.6, there is a lot of λ̂. We consider how sensitive the LBF is to te choice of λ̂ is to the LBF. We

considered two values of lambda from the 148 top hits data. These values are the lowest and highest

values specified in any of the 95% confidence intervals (15.3, 64.15) obtained from Table 3.3.

TPR and FPR values for LBF with both estimated lambda values were obtained for all 6 scenarios

with rare and common single causal SNP with various ORs given in Table 4.1. The performances for

both LBFs were quantified using ROC curves and were plotted together with the ROC curves for the

posterior HDI as shown in Figure 4.6. We restricted the ROC curves to have FPR ≤ 4% to clearly see

the differences in performance between both LBFs.

First, we look at the ROC curves for the scenario with a single rare causal SNP (MAF=0.09). Each

approach shows different performance in all given ORs. In the scenario with OR=1.15, the LBF using

both lambdas has a better performance compared to posterior HDI but in the scenario with OR=1.08,

it shows the opposite result. For OR=1.12, the LBF with λ̂ = 64.15 and the posterior HDI perform the

same and are better than the LBF with λ̂ = 15.30.
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In scenarios with a single common causal SNP (MAF=0.3), the ROC curves for every approach in

all ORs show the performances are quite similar to each other. We cannot tell which approach shows a

better performance in scenarios with OR=1.12. In the scenario with OR=1.08, the LBF with λ̂ = 64.15

has a slightly better performance than the others. For OR=1.15, the performance has a similar result

as the result in the scenario with OR=1.12 with a single rare causal SNP.

If we want to compare just the LBF, the LBF obtained using λ̂ = 64.15 performed better in most

of the scenarios shown in Figure 4.6. We now compare the performance of the posterior HDI and both

LBFs in all scenarios if we reduce the power from 80% to 60%. We recalculated both LBFs with the

same estimated lambda using new simulated data keeping the ORs and MAFs the same. The only

changes made in each scenario is the total sample sizes since the power had been reduced by 20%.

Figure 4.7 shows the ROC curves for both LBFs and also the posterior HDI in various scenarios with

new total sample sizes. Figure 4.7 shows that all the ROC curves now have a much more difference

between the classifiers in all scenarios. In most of the scenarios, both LBFs perform better than the

posterior HDI except for OR=1.15 with a single common causal SNP. We can also see that the LBF

with a higher estimated lambda have the best performance among others.

Based on the ROC curves, we can conclude that the LBF generally performs better than the pos-

terior summaries. The ROC curves give information about the performance for ranking the SNPs.

We further look at the LBF in updating the prior to the posterior probability of association (PPA) and

determine the noteworthiness of all SNPs.

4.3.2 Noteworthiness of the SNPs using Laplace Bayes factor

In addition to using the LBF for ranking the SNPs, the LBF can be used to assess whether the strength

of an association is noteworthy. We observed the noteworthiness of SNPs in all scenarios using the

LBF and set the prior odds of the null hypothesis (π0) to be 0.995. As priori, we expect 99.5% of

SNPs in the region not be causal and associated to disease. We also set the cost of ratio, (Cω/Cα)= 1
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Figure 4.6: Receiver operating characteristic (ROC) curves comparing the SNP ranking performance of the posterior
highest density interval (HDI) with Laplace Bayes factor (LBF) with two different values of λ̂. The values of λ̂ used are
15.30 and 68.32. All rankings were carried out on 20 simulated datasets from HAPGEN using a single rare causal SNP
(MAF=0.09) and a single common causal SNP(MAF=0.3) with three different odd ratios (OR = 1.08, 1.12, 1.15). The
sample size (SS) for each scenario depends on 80% power.
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Figure 4.7: Receiver operating characteristic (ROC) curves comparing the SNP ranking performance of the posterior
highest density interval (HDI) with Laplace Bayes factor (LBF) with two different values of λ̂. The values of λ̂ used are
15.30 and 68.32. All rankings were carried out on 20 simulated datasets from HAPGEN using single a rare causal SNP
(MAF=0.09) and a single common causal SNP(MAF=0.3) with three different odd ratios (OR = 1.08, 1.12, 1.15). The
sample size (SS) for each scenario depends on 60% power.
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(missing a discovery is equally as costly as reporting a null hypothesis). By using Equation 2.19, we

will report a noteworthy SNP if the posterior probability on H0 is less than 0.5. The posterior odds

and posterior probabilities with a LBF are derived from Equation 2.20.

P (H0 | β̂) =
π0

π0 + LBF(1− π0)
. (4.41)

The TPR for each scenario is calculated as the proportion of the twenty causal SNPs that are

noteworthy (i.e the proportion over the 20 datasets). The FPR is the proportion of non causal SNPs

declared noteworthy across all 20 datasets. Referring back to the ROC curves in Figure 4.6, in terms

of ranking, the performance of the LBFs using λ̂ = 15.30 and λ̂ = 64.15 are slightly different in most

scenarios. The decision to declare a SNP is noteworthy depends on the actual value of the Laplace

Bayes factor rather than the ranks. Table 4.3 shows the TPR and FPR values for noteworthy SNPs

using the LBF in the scenarios in Table 4.1 with sample sizes yielding 80% power.

Table 4.3: True Positive Rates (TPR) and False Positive Rates (FPR) for declaring if the SNP is noteworthy using the
Laplace Bayes factor (LBF) with λ̂ = 64.15 and λ̂ = 15.30 in various scenarios for a single causal SNP. The sample size
for each scenario gives 80% power.

λ̂ MAF Odd Ratios Sample Size FPR TPR

64.15

0.3
1.15 10000 0.027 0.4
1.12 15000 0.035 0.7
1.08 32000 0.054 1

0.09
1.15 24500 0.0015 0.35
1.12 38000 0.0044 0.4
1.08 81000 0.0038 0.6

15.3

0.3
1.15 10000 0.095 1
1.12 15000 0.083 0.95
1.08 32000 0.078 1

0.09
1.15 24500 0.010 1
1.12 38000 0.020 0.7
1.08 81000 0.0083 0.6

From Table 4.3, generally, more of the common causal SNPs are detected to have noteworthy
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associations compared to the rare causal SNPs. For the LBF with estimated lambda equal to 64.15, if

we examine the TPRs according to the ORs, we can see that as the OR gets smaller, more of the causal

SNPs are picked up as having a noteworthy association. In the case where the LBF uses an estimated

lambda of 15.30, all the causal SNPs in the 20 datasets with MAF=0.3 have a noteworthy association

except for one causal SNP with OR=1.12. For rare causal SNPs, as the OR gets smaller, the number

of noteworthy causal SNPs detected decreases, contradicting the pattern for λ = 64.15.

Declaring a SNP to have an association that is noteworthy is determined by the posterior odds on

the null hypothesis which depends on the LBF. The differences in the number of causal SNPs having

a noteworthy association in every scenario are therefore strongly related to the LBF obtained for the

causal SNP in each dataset. A large value of LBF will reduce the posterior odds on the null and hence

increase the chance that the SNP will have a noteworthy association. From Equation 4.41, the SNP

Bayes factor should be more than 199 in order for the SNP to be claimed as noteworthy. The pattern

of the TPR in Table 4.3 can be explained by observing the values of the LBF for causal SNP in each

scenario.

Thus, boxplots are plotted to represent the distribution of the LBF of the 20 causal SNPs from

the 20 datasets in all six scenarios. Figures 4.8 and 4.9 are boxplots for distribution of the LBF with

λ̂ = 15.30 and λ̂ = 64.15 respectively. As mentioned above, we require the LBF to exceed 199 for the

SNP to be noteworthy in our analysis. Generally, in both the LBFs with λ̂ = 15.30 and λ̂ = 64.15, the

boxplots with a single common causal SNP (MAF=0.3) show larger values compared to a single causal

SNP with MAF=0.09. Hence, this explains why more of the common causal SNPs were detected to

have a noteworthy association compared to the rare causal SNPs across the 20 datasets.

We observed the boxplots for scenarios having TPR=1 (all 20 causal SNPs are noteworthy) to

understand the distribution of the LBFs. From these boxplots, the LBFs in these scenarios are very

large and have distributions with large median. This shows that all the causal SNPs across the 20

datasets have large LBFs which exceed the LBF threshold in our analysis. In scenarios with TPR less

than equal to 0.4, the boxplots observed have median less than the LBF=199 explaining more than
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50% of the causal SNPs are not noteworthy. In scenario with a single common SNP with OR=1.12,

the distribution of the LBF with λ̂ = 15.30 shows very large median, however there is one SNP with

small value of LBF and hence contributes to TPR=0.95.

The distribution of the LBF described the pattern of TPRs in Table 4.3. Thus, the decision on the

noteworthiness of SNPs depends on the LBF of each SNP. A large LBF would decrease the posterior

probability on H0 and hence increase the chance of declaring the SNP as noteworthy. However, other

factors such as the SNP’s odds ratio and minor allele frequency and also the estimated λ affect the size

of the LBF.

As a result, the decision on the noteworthiness of SNPs depends on the LBF of each SNP. The

chance of declaring a SNP as noteworthy increases when the LBF is large. The size of the LBF depends

on other factors such as the SNP’s odds ratio and minor allele frequency and also the estimated λ. As

shown in Table 4.3, the LBF with a smaller estimated lambda (λ̂ = 15.30) appears to declare more

noteworthy causal SNPs. This demonstrates that the LBF is sensitive to the choice of the λ̂ and this

can also be observed in Section 4.3.1. Hence, we propose a Bayes factor that allow for the uncertainty

in the estimated λ.

4.4 Laplace Gamma Bayes factor

The calculation for the posterior summaries and the LBFs depends on the value of λ̂ that we choose.

The choice we make on λ̂ can make a significant difference in the performance of posterior summaries

and the LBF in ranking the SNPs. The choices also affect the PPA and hence affect the noteworthiness

of the SNPs. The value of λ̂ was estimated from the top hits data taking account the number of YTBD

SNPs. Hence, the value of λ̂ varies according to how many SNPs are estimated to be unidentified.

Figure 4.10 shows the relationship between λ̂ and the number of YTBD SNPs. The uncertainty in λ̂

in the plot is based on the 95% confidence interval from Table 3.3.

Since there is uncertainty in the estimated value of λ, we should also include the uncertainty in
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(a) λ̂ = 64.15, MAF=0.3.
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Figure 4.8: Boxplots representing the distribution of the Laplace Bayes factor (LBF) of the 20 causal SNPs in six scenarios.
The MAF and value of λ are given in the caption. The odds ratio is given on the x-axis of each plot.
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(a) λ̂ = 15.30, MAF=0.3

(b) λ̂ = 15.30, MAF=0.09.

Figure 4.9: Boxplots representing the distribution of the Laplace Bayes factor (LBF) of the 20 causal SNPs in six scenarios.
The MAF and value of λ are given in the caption. The odds ratio is given on the x-axis of each plot.
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Figure 4.11: Plot shows the Gamma probability density function (PDF) for the number of yet-to-be-discovered SNPs, N
with θ = 4× 106 and φ = 4000
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the number of YTBD SNPs when calculating the Bayes factor. Let N represent the random variable

for the number of YTBD SNPs (N must be a positive value). Subsequently, we put a prior on N that

follows a Gamma distribution since the support on Gamma Distribution (θ, φ) only allows value to be

more than zero. Although N is a discrete random variable, we decide to use a continuous distribution

to represent N in order to have a simpler calculation.

The parameters chosen must lead to a sensible prior and have high mass around N = 1000.

Hence, the parameters are estimated from the mean (E(N) = θ/φ) and variance (V ar(N) = θ/φ2)

of the Gamma distribution with mean = 1000 and variance =0.25. Therefore, N follows a Gamma

distribution with θ = 4 × 106 and φ = 4000. Figure 4.11 shows the plot of the Gamma density

function. The probability density function (PDF) is given as follows

fN(n) =


1

Γ(θ)
φθnθ−1e−φn if n > 0

0 if otherwise
(4.42)

Let λ be the derived random variable and g(λ) be the new PDF associated with λ. The transfor-

mation function, λ = 2
√
N is obtained from the relationship between λ and N shown in Figure 4.10.

From the transformation function, we obtain N = λ2/4. The new PDF associated with λ is given as

follows

g(λ) = fN(λ) .

∣∣∣∣dNdλ
∣∣∣∣

=
φθ(4λ2)θ−1e−4φλ2

Γ(θ)
(8λ)

=
2(4φ)θ λ2θ−1 e−4φλ2

Γ(θ)
(4.43)
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This is the Nakagami Distribution, NK(λ; θ, θ
4φ

) and thus, λ ∼ NK(θ, θ
4φ

).

To obtain the Laplace Gamma Bayes factor (LGBF), we now have

λ ∼ NK

(
θ,

θ

4φ

)
β | λ ∼ La(λ)

β̂ | β ∼ N(β, V ).

We are comparing the hypothesis of H0 : β = 0 against H1 = β 6= 0. Under the null hypothesis, we

have

f(β̂ | β = 0) =
1√

2πV
exp
(−β̂2

2V

)
(4.44)

and under the alternative hypothesis,

f(β̂ | β 6= 0) =

∫
β

∫
λ

Π(λ)f(β | λ)f(β̂ | β) dλ dβ. (4.45)

Therefore, using the general Bayes factor formula in Equation (2.8), the LGBF is given by

LGBF =

∫
β

∫
λ

Π(λ)f(β | λ)f(β̂ | β) dλ dβ

1√
2πV

exp
(−β̂2

2V

) . (4.46)

The integrals in the numerator cannot be solve analytically, hence, the calculation for LGBF is per-
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formed using Monte Carlo Integration by re-expressing the integral as an expectation.

∫
β

f(β̂ | β)

[ ∫
λ

Π(λ)f(β | λ) dλ

]
dβ

=

∫
β

f(β̂ | β) f(β) dβ

= Eβ f(β̂ | β)

≈ 1

n

n∑
i=1

f(β̂ | βi) (4.47)

where β is sampled by sequential Monte Carlo with large n.

4.4.1 ROC curves for Laplace Gamma Bayes factor

In order to evaluate the performance of LGBF, we calculate the TPR and FPR values for every scenario

using the same procedure we did in obtaining for posterior summaries and LBF. Figure 4.12 shows the

ROC curves for the LGBF plotted with the ROC curves for LBF with two estimated λ (λ̂=64.15 and

λ̂=15.30). The ROC curves are zoom into FPR ≤ 4%. It is predicted that the LGBF will have a ROC

curve in between the ROC curves of the maximum and minimum estimated lambda used in obtaining

LBF. This predicted does not apply to all scenarios. Most of the LGBF have the same performance as

LBF with λ̂ = 64.15. This is because this LBF used λ̂ = 64.15 which were estimated considering 1000

YTBD SNPs. As mentioned before, the parameters for the Gamma prior in LGBF were estimated to

have mean=1000. However, the results for LGBF and LBF (λ̂ = 64.15) shows a better performance

compared to LBF with λ̂ = 15.30.

To see more significant differences among the Bayes factor, the sample size for all scenario were

reduced to depend on 60% power. Figure 4.13 shows the ROC curves with FPR ≤ 4% of all three

Bayes factors obtained from 20 simulated datasets with the same scenario of single causal SNPs but

with reduced sample size with 60% power. The prediction on LGBF’s ROC curves to be in between

both LBFs can be only be seen in scenario with OR=1.15 for a single common causal SNPs. Others
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Figure 4.12: Receiver operating characteristic (ROC) curves shows the results of SNP ranking using Laplace Gamma
Bayes factor (LGBF) and Laplace Bayes factor with two different MLE (λ̂=64.15 and λ̂=15.30). The SNPs ranking were
carried out on 20 simulated datasets from HAPGEN having 80% power with a single causal SNP of various scenarios.
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Figure 4.13: Receiver operating characteristic (ROC) curves shows the results of SNP ranking using Laplace Gamma
Bayes factor (LGBF) and Laplace Bayes factor with two different MLE (λ̂=64.15 and λ̂=15.30). The SNPs ranking were
carried out on 20 simulated datasets from HAPGEN having 60% power with a single causal SNP of various scenarios.
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show that LGBF and LBF (λ̂ = 64.15) have the same performance.

Although the LGBF and LBF (λ̂ = 64.15) have similar performance in ranking SNP, we further

look into how LGBF affect PPA and therefore affect the decision to call a SNP as noteworthy.

4.4.2 Noteworthiness of the SNPs using Laplace Gamma Bayes factor

The notewortiness of SNPs by using LGBF used the same concept as the noteworthiness using LBF in

section 4.3.2. An association is detect as noteworthy is based on equation 4.41. The only different is

the Bayes factor in the posterior odds. Instead of using LBF, we now used LGBF. The posterior odds

is given as follow

Posterior Odds of H0 = prior odds of H0 / LGBF

Pr(H0 | β̂) =
π0

π0 + LGBF(1− π0)
. (4.48)

Table 4.4: True Positive Rates (TPR) and False Positive Rates (FPR) for decision made if the SNP is noteworthy using
Laplace Gamma Bayes factor (LGBF) in various scenarios of single causal SNP.

MAF Odd Ratios Sample Size FPR TPR

0.3
1.15 10000 0.0273 0.4
1.12 15000 0.0355 0.7
1.08 32000 0.0537 1

0.09
1.15 24500 0.0015 0.35
1.12 38000 0.0044 0.35
1.08 81000 0.0038 0.6

Table 4.4 shows the TPR and FPR for decision made if the SNP is noteworthy using (LGBF) in

various scenarios with single causal SNP. The decision in identifying SNPs to have a noteworthy as-

sociations using LGBF are almost identical to the results for LBF (λ̂ = 64.15) in table 4.3. Over the

20 datasets, the causal SNP with MAF=0.3 appears more to have association that is noteworthy com-

pared to rare causal SNP (MAF=0.09). Since we are interested in detecting a noteworthy association

in smaller ORs, from Table 4.4, the number of SNPs appeared as noteworthy increases when the ORs
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gets smaller.

We predicted LGBF to give a way of weighting the values between LBF with λ̂ = 64.15 and

λ̂ = 15.3. However, ranking SNPs and identifying SNPs that have noteworthy associations using

LGBF does not support our prediction. LGBF shows an almost identical results as using LBF with

λ̂ = 64.15 (N=1000). This is because the parameters chosen for the Gamma distribution for the prior

on N have high mass around N = 1000 as shown in Figure 4.11. This is saying that N is 1000. One

way to improve this is to have a more sensible prior on N by spreading the mass between 50 to 1000

(the number of YTBD SNPs considered in this thesis). However, in our thesis, this might not give

any significant results since there are no big difference (in most scenarios) between the performance

of LBF with λ̂ = 64.15 and λ̂ = 15.3 as shown in Figure 4.12 and 4.13. Although this method was

not very sensible, we had shown that the method works since it gives the same result as LBF with

λ̂ = 64.15.

105





Chapter 5

Current multivariate Bayesian statistical

approaches to fine mapping

In previous chapters we discussed statistical approaches to single-SNP analysis. Bayes factors were

calculated for each SNP, one at a time, to test for association with the phenotype. However, Bayes

factor only explain the association and do not detect causality, which means a non-causal SNP could

obtain a similar Bayes factor to a causal SNP if these SNPs are in strong LD. This makes it difficult to

distinguish the real causal SNP. Furthermore, there could be more than one causal SNP in the GWAS

associated region.

To overcome this problem, we use multivariate (multi-SNP) analysis by using many SNPs in the

region as explanatory variables in the regression. Problems arise however in selecting the causal

SNPs from the set of SNPs available in the region. This problem can be addressed by using variable

selection in which a small subset of the variables is chosen to be included in the model. In recent years,

Bayesian variable selection is commonly used in fine mapping. PiMASS (Guan and Stephens, 2011),

CAVIARBF (Chen et al., 2015) and FINEMAP (Benner et al., 2016) are among the methods applying

multiple regression with Bayesian variable selection in fine mapping. We next briefly describe multiple

logistic regression and then go on to review Bayesian variable selection.
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5.1 Multiple logistic regression

Multivariate logistic regression can be extended from logistic regression in a univariate setting dis-

cussed in Section 2.2.1. Equation (2.1) refers to the probability of an individual with a disease. Thus,

extending equation (2.1) into a multivariate setting gives

pi =
exp(α + β1X1 + β2X2 + · · ·+ βpXp)

1 + exp(α + β1X1 + β2X2 + · · ·+ βpXp)

=
exp (βTxi)

1 + exp(βTxi)
. (5.1)

where pi is the probability of having disease, β = (α, β1, ..., βp) is the vector of beta coefficient and

xi is a vector of explanatory variables with the first value, xi = 1 as the intercept. The odds of disease

occurring are

pi
1− pi

= exp (βTxi). (5.2)

To have a linear relationship between the odds and the explanatory variables, we use logit transfor-

mation by taking the logarithm of both sides of equation (5.2). Thus, the multivariate logistic model

is expressed as

log

[
pi

1− pi

]
= βTxi. (5.3)

5.2 Bayesian variable selection

Recent developments in statistical approaches have allowed researchers to use available data to identify

SNPs that might have causal association with disease. Multiple logistic regression in section 5.1

describes the basic model used to test for association with p explanatory variables. However, not all of
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the explanatory variables are useful to predict disease outcome. Thus, selecting which explanatory

variables are good predictors of disease is key. The explanatory variables selected are known as

potential causal SNPs and are to be tested in follow up studies to identify all the true causal SNPS. One

way to do this is to choose an optimal model from the 2p possible models of different combinations of

selected SNPs. However, it would not be computationally practical to consider all 2p possible models

individually. There are frequentist approaches to tackling this problem, such as stepwise regression

and Lasso but our focus is only on Bayesian methods.

A Bayesian approach overcomes this problem by treating the parameters as random variables often

with some point mass at zero. Bayesian variable selection (BVS) estimates the posterior probability

for all models. BVS aims to select a small subset from all measured variables with high posterior

probability since we can assume that only a small number of variables have an effect on disease

outcome. The variables with no effect have an effect size of zero. Kuo and Mallick (1998) introduced

a binary indicator variable to determine weather a predictor is considered or not considered to be

included in the model. This is the approach taken by many multi-SNP fine mapping methods (Park

and Casella, 2008; Griffin and Brown, 2010; Guan and Stephens, 2011; Bhattacharya et al., 2012;

Chen et al., 2015; Benner et al., 2016; Alenazi et al., 2019) and is the approach we use.

Standard BVS searches over models containing different variables. To perform model selection,

effect size priors that rely on shrinkage can be used. The specification of the prior can be a difficult

task as it requires meaningful interpretation of the effect sizes. It is also challenging because the choice

of prior will affect posterior. One way of implementing BVS is deciding which regression coefficients

have values equal to zero (O’Hara and Sillanpää, 2009). Thus, specifying prior probabilities to the

regression coefficients can force the regression coefficients to zero or close to zero.

Continuous prior distribution can represent an interesting prior for the regression coefficients. Con-

tinuous priors aim to shrink the regression coefficients with small values to zero while keeping the true

large values. Commonly, the regression coefficient follows a normal distribution with a suitable prior

on its variance to give appropriate shrinkage. This became the motivation for other researchers to use
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a scale mixture of normal distributions for the effect size prior. (Park and Casella, 2008; Griffin and

Brown, 2010; Bhattacharya et al., 2012; Alenazi et al., 2019).

Another way of specifying priors in BVS is using mixture priors also termed spike and slab priors

(Mitchell and Beauchamp, 1988). In contrast to a continuous prior, there are two components in a

spike and slab prior in which the spike is a point mass at zero whilst the slab specifies some other

distribution elsewhere. A priori, the regression coefficients are assumed to be independent of each

other. George and McCulloch (1993) modified the spike and slab prior by introducing a latent variable

to distinguish zero and non-zero regression coefficients. They then used a mixture of two normal

distributions on both components and fixed a very small variance for the normal distribution on the

spike component to have it centered around zero.

As well as priors on the effect size, we also need to specify priors for each possible model (combi-

nation of SNPs). According to Forte et al. (2018), commonly used priors on each model in the model

space follow a Binomial distribution with probability ρ. The hyperparameter ρ can either be a fixed

or a random value. The typical choice for a fixed value, ρ = 1/2p, assigns equal probability to each

model. When treated as a random variable, the default choice for ρ has a uniform distribution.

How easy it is to derive the posterior depends on the choice of the prior. It is convenient to choose

a prior that gives a tractable integral when we derive the marginal likelihood. Since the model space

is vast with p being large, this will affect the choice of the computational method in variable selection.

The standard approach used with Bayesian models for posterior evaluation and exploration is Markov

chain Monte Carlo (MCMC). An MCMC algorithm samples from the posterior distribution in the

model space but it is challenging with large p since it is difficult to be sure that the posterior over 2p

possible models is sufficiently explored.
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5.3 Current Bayesian variable selection method used in fine map-

ping

There are numerous different approaches used in fine mapping to identify multiple causal SNPs in a

GWAS associated region. In recent years, researchers have developed a number of statistical software

packages to perform fine mapping based on a Bayesian approach. In general, they use a Bayesian vari-

able selection method to prioritize potential causal variants by selecting a variant or a set of variants.

The outputs from these different software are typically Bayes factor and posterior inclusion probability

(PIP). These outputs help in deciding which variant or variants should be prioritized.

One of the earliest piece of software developed to tackle the limitations of single-SNP analyses is

PiMASS (Guan and Stephens, 2011) in which they applied Bayesian Variable Selection Regression

(BVSR) to GWAS. However, BVSR is also practical for fine mapping with hundred (or thousands) of

covariates. This method focuses on the analysis of quantitative phenotypes but also allows a binary

phenotype by introducing the probit link function. The genotype data is used as the independent

variables in this analysis.

The prior specification in PiMASS focuses on appropriate priors for the hyperparameters they

considered important which relates to the sparsity of the model and the effect sizes. They specified

continuous prior on both hyperparameters with the sparsity hyperparameter follows a uniform distribu-

tion. Guan and Stephens (2011) propose a novel prior on the effect size hyperparameter which relates

the prior to the total proportion of variance explained (PVE) in the outcome. In previous studies, the

specification of priors for the sparsity and the effect size assumed the hyperparameters were indepen-

dent random variables. This implies that the effect size hyperparameter and the indicator variable are

also independent. This assumption can lead to the PVE increasing as the number of covariates rises.

For this reason, Guan and Stephens (2011) did not use this assumption in PiMASS as they believe

more covariates will have smaller PVE, or a higher PVE may be achieved with a small number of
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covariates. Therefore, a prior for the effect size hyperparameter given the indicator variable is specified

to yield a flat prior on the PVE. This leads to a prior distribution on the effect sizes that leads to less

shrinkage than other priors used before. As in most of Bayesian analysis, PiMASS used MCMC

for the computation of the posterior distrubution for the parameters by sampling using a Metropolis-

Hasting algorithm. They applied a Rao-Blackwellization technique to reduce the sampling variance

when calculating the PIP.

In fine mapping, a number of studies have utilized GWAS summary statistics to perform multiple

regression with variable selection. This is to allow analysis of GWAS data summary statistics without

the need for the actual genotype data which may not be available. Kichaev et al. (2014) introduce

PAINTOR, one of the first pieces of software that made use of the observed summary statistics (the

association Z-scores) in modelling multiple causal variants. On top of using the association Z-scores,

they also incorporate functional annotation data into their analysis. A standard way to obtain Z-scores

is from the Wald statistics taken from regressing the phenotype on the SNPs.

Instead of specifying a prior distribution on the effect sizes of the SNPs, Kichaev et al. (2014)

developed a method implemention in CAVIAR which introduced a prior probability through a standard

logistic model applied to the effect size of the annotation given a SNP is causal. This is the method

used by Kichaev et al. (2014) to incorporate the functional annotation data into the model. PAINTOR

uses an EM algorithm to infer the parameters of the model and fixes the value for the effect sizes of

the SNPs. They also restricted the number of causal SNPs in the region to be at most three potential

causal SNPs. The posterior probabilities for each SNP are computed via exhaustive search.

Without the functional annotation, PAINTOR is comparable to CAVIAR (Hormozdiari et al.,

2014). PAINTOR and CAVIAR do not specify a prior distribution for the effect size of the SNPs.

They allow the observed summary statistics to follow a multivariate normal distribution. The effect

size of the SNP is fixed and is included in the calculation of the mean for the observed summary

statistics. Chen et al. (2015) described the relationship of CAVIAR with a Bayesian method for fine

mapping called BIMBAM (Servin and Stephens, 2007). They showed that these methods are in fact
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identical which led them to come up with another method which specifies a prior distribution on the

effect size of all SNPs. Chen et al. (2015) called this method CAVIARBF.

CAVIARBF applied the standard BVS approach to computing posterior probabilities of SNPs

being causal. To reduce the total number of models in the model space, CAVIARBF allow users to

fix the maximum number of causal variants in the model. Thus, it requires for them to specify a prior

for each model. They used the binomial distribution discussed in Section 5.2. As for the prior on the

effect sizes, they used a Gaussian prior with a small variance of 0.01. CAVIARBF calculates Bayes

factors analytically by comparing each model with the null model. They further use Bayes factor to

calculate the PIP to prioritize SNPs.

One of the main factors to consider when choosing methods to perform fine mapping is the com-

putational time. Benner et al. (2016) suggests that all the methods using summary statistics discussed

above are too slow or even impossible to run when users set the number of causal variants to be more

than three. This became a motivation for Benner et al to develop a novel software, FINEMAP, by intro-

ducing another computational algorithm whilst retaining the statistical model used in CAVIARBF. In

FINEMAP, they fix the number of causal SNPs in the model to be up to five which is an improvement

over CAVIARBF which allows for at most three causal SNPs. However, FINEMAP does not take into

account the functional annotations in its model.

FINEMAP implement a Shotgun Stochastic Search (SSS) algorithm which uses a similar proce-

dure as an MCMC algorithm to explore the model space. Rather than exploring the model space

sequentially, as MCMC would, SSS explores the model in a parallel fashion at each iteration. For a

given current model in an iteration, the proposed models are defined by deleting, changing and adding

a causal SNP to the current model. The new current model in the next iteration is sampled from the

proposed models in the previous iteration. All proposed models in each iteration are evaluated, and

their posterior probabilities are saved in a list. This list grows to contain the posterior probabilties of

models ever proposed. Thus, if there appear any already-evaluated models in the next iterations, its

posterior probabilities would not be recomputed. This is the advantage of the SSS algorithm which
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makes the method run quickly. The posterior probabilities in the list can be further used in calculat-

ing the Bayes factor and PIP of each SNP. The processing time is not the only factor that gives an

advantage to FINEMAP, Benner et al claim that FINEMAP is more accurate especially when they in-

crease the number of causal SNP to more than the maximum possible in CAVIARBF. A possible major

drawback of FINEMAP is the same as for MCMC in BVS. It is difficult to know whether FINEMAP

adequately explores the model space or whether it gets stuck in a local posterior mode.

All software discussed in this section is summarised in Table 5.1. The similarities and differences

of each method are highlighted. Typically, the prior for the effect sizes in a GWAS or fine-mapping

study is Gaussian distribution. In Section 3.4, we already obtained a prior driven by the GWAS top

hits data and used that distribution as a prior in single-SNP analysis in Chapter 4. Consequently in

the coming chapters, we develop a multi-SNP Bayesian approach using the Laplace prior discussed in

Chapter 3 and compare the results with those using a Gaussian prior.
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Table 5.1: A summary of current software used in Bayesian fine mapping
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Chapter 6

A multivariate Bayesian approach with

Gaussian and Laplace priors

Bayesian model selection in a fine map setting calculates the posterior probability of a specific model

(M). A model in fine mapping is formed from indicator variables for each SNP which are then

organized in a vector c. The indicator variables take the value of 1 for causal SNPs and 0 otherwise.

For p SNPs, there are 2p possible models ranging from having all 0 values (no causal SNP present) to

having all values equal to 1 which means all SNPs are causal.

We restrict the space of models to those with at most K causal SNPs. This is equivalent to those

models Mc, such that ||c||1 ≤ K, where || · ||1 is the L1 norm. Using a Bayesian approach, we

can compute the posterior probability of a specific model by combining the prior probability of the

model, the prior density of the effect size and the likelihood of the observed data, β̂ derived from the

phenotype and genotypes. The calculation for the posterior probability ofMc is given as follows
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P (Mc) =
P (Mc, β̂)

P (β̂)

=
P (Mc)P (β̂|Mc)

P (β̂)
. (6.1)

WhereMc represents the model containing only those SNPs where the elements of c are 1.

6.1 Defining the prior probability of the model P (Mc)

The prior probability for each model, M, can be defined by letting the number of causal SNPs, k,

follow a binomial distribution with probability ω. The prior probability of k causal SNPs in the model

is

P (Mc| k, p, ω) =

p
k

 ωk (1− ω)p−k for k = 0, 1, ..., p. (6.2)

Since we restrict the space of models to have at most K causal SNPs, we need to normalise the prior

model. Thus, for each model, the prior is

P (Mc) =

p
k

 ωk (1− ω)p−k

K∑
k=1

p
k

 ωk (1− ω)p−k

for k = 0, 1, ..., K. (6.3)

where K = ||c||1.
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6.2 Deriving the marginal likelihood P (β̂|Mc)

P (β̂|Mc) is the probability density of the observed data under a specific model,Mc. In a Bayesian

setting, we treat P (β̂|Mc) as a marginal likelihood evaluated by integrating f(β̂,β|Mc) over βc

where βc = {βj for which cj = 1}. If we let βN = {βj for which cj = 0} then we have

P (β̂|Mc) =

∫
βc

f(β̂,βc |Mc) dβc

=

∫
βc

f(β̂,βc ,Mc)

P (Mc)
dβc

=

∫
βc

P (Mc) f(βc |Mc) f(β̂|βc ,Mc)

P (Mc)
dβc

=

∫
βc

f(βc |Mc) f(β̂|βc ,Mc) dβc (6.4)

where f(β |Mc) is the joint prior distribution for the effect sizes of SNPs given the model and

f(β̂|βc ,Mc) is the likelihood of the data given all the effect sizes.

6.3 The likelihood of the data, f (β̂|βc,Mc)

In our case the data used is the estimated β from the fitted multiple linear regression, along with

the covariance of the estimated effect sizes, V . β̂ is conditioned on β and distributed as normal

distribution. Thus,

β̂ |β ∼ Np(β,V )

where V is the variance covariance matrix from the fitted linear regression. In Section 5.2, we defined

β = (α, β1, ..., βp) where α is the intercept in the logistic regression model in Equation (5.3). For
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computational reasons, we would not to include the intercept. However, we need to have a justification

for not needing to use the intercept in the model. We have shown how a transformed intercept can yield

cov(α̂, β̂) = 0 for a scalar β̂ (Section 4.2) but we need to justify it for a vector β (refer Appendix A).

Given a model, Mc, the likelihood is introduced through a partitioned matrix by grouping the

SNPs into causal (βc) and non-causal (βN ) as follows

 β̂c |βc
β̂N |βN

 ∼ N

(βc
0

 , V

)
.

The pdf is given as

f(β̂ |βc ,Mc) = (2π)−p/2|V |−1/2 exp

(
− 1

2

β̂c − βc
β̂N − 0


T

V −1

β̂c − βc
β̂N − 0

). (6.5)

We let,

Σc Σ

ΣT ΣN

 = V −1 (6.6)

where Σc is a ||c||1× ||c||1 variance covariance matrix of the causal SNPs, ΣN is a (p− ||c||1)× (p−

||c||1) variance covariance matrix of the non-causal SNPs and Σ is a ||c||1 × p SNPs variance matrix.

Expanding the exponent term in Equation (6.11) gives

−1

2

[
(β̂c − βc)T Σc (β̂c − βc) + (β̂c − βc)T ΣT β̂N + β̂TN Σ (β̂c − βc) + β̂TN ΣN β̂N

]
. (6.7)

Σ is a scalar matrix, therefore, (β̂c − βc)T ΣT β̂N = β̂TN Σ (β̂c − βc). Thus, Equation (6.7) can be
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written as

− 1

2

[
(β̂c − βc)T Σc (β̂c − βc) + 2(β̂c − βc)T Σ β̂N + β̂TN ΣN β̂N

]
= −1

2

[
β̂Tc Σc β̂c − β̂Tc Σc βc − βTc Σc β̂c + 2

(
β̂c

T
Σ β̂N − βTc Σ β̂N

)
+ β̂TN ΣN β̂N

]
. (6.8)

To simplify Equation (6.8) we note that β̂Tc Σc βc = βTc Σc β̂c because Σc is a symmetric matrix.

Thus, the exponent term is

− 1

2

[
β̂Tc Σc β̂c − 2β̂Tc Σc βc + βTc Σc βc + 2

(
β̂c

T
Σ β̂N − βTc Σ β̂N

)
+ β̂TN ΣN β̂N

]
= −1

2

[
βTc Σc βc − 2(β̂Tc Σc + β̂TN ΣT )βc + β̂Tc Σc β̂c + 2β̂Tc Σ β̂N + β̂TN ΣN β̂N

]
= −1

2

[
βTc Σc βc − 2(β̂c

T
Σc + β̂TN ΣT )βc +Q

]
(6.9)

where

Q = β̂Tc Σc β̂c + 2β̂Tc Σ β̂N + β̂TN ΣN β̂N

=

 β̂c
β̂N


T Σc Σ

ΣT ΣN


 β̂c
β̂N


= β̂TV −1β̂. (6.10)

The pdf for the likelihood of the data is therefore

f(β̂ |β ,Mc) =

[
(2π)p |V |

]−1/2

exp

(
− 1

2

[
βTc Σc βc − 2(β̂c

T
Σc + β̂TN ΣT )βc +Q

])
.

(6.11)
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6.4 Spike and slab prior

There are several ways to specify the prior distribution of the effect size. We assume a maximum

number of causal SNPs (K) in the model. In this research we chose a mixture prior with two compo-

nents; the spike and slab. The spike component is a point mass at zero and the slab component is a

continuous distribution with a mass spread over all possible real values of β excluding β = 0. Thus,

the general prior distribution for the effect size of SNP j has pdf

f(βj| cj) = (1− g)(1− cj) + g h(βj)

where cj is the jth elements of c and h(βj) is the slab component of the prior. When cj = 0, the prior

is a point mass of (1− g) at βj = 0. When cj = 1, the prior is the density h(βj) scaled by g.

g is the probability of the effect sizes is non zero whilst (1− g) is the probability of the effect size

is zero. The choice we made on g is the same as how we choose ω in Section 6.1. The reason we chose

ω = 1/p is because we want to get the expected value of 1 which is a prior (Benner et al., 2016). We

consider two different priors for the slab component in this research. The priors are the Gaussian prior

and the Laplace prior which will be discussed in Section 6.5 and 6.6 respectively.

6.5 Deriving P (β̂|Mc) using the Gaussian prior

We derive P (β̂|Mc) using a Gaussian prior on the slab component as follows

βc|Mc ∼ N||c||1(0,W )
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where,W = diag(w1, w2, ..., w||c||1). Hence the pdf is

f(βc|Mc) =

[
(2π)||c||1 |W |

]−1/2

exp

(
− 1

2
βTc W

−1 βc

)
. (6.12)

From Equation (6.4) we want to integrate f(βc |Mc) f(β̂|βc ,Mc) over βc. Using the Gaussian

prior in Equation (6.12) and the likelihood in Equation (6.11), we have

f(βc |Mc) f(β̂|βc ,Mc)

=

[
(2π)p+||c||1 |V | |W |

]−1/2

exp

(
− 1

2
βTc W

−1 βc −
1

2

[
βTc Σc βc − 2(β̂c

T
Σc + β̂TN ΣT )βc +Q

])
=

[
(2π)p+||c||1 |V | |W |

]−1/2

exp

(
− 1

2

[
βTc (W−1 + Σc)βc − 2(β̂c

T
Σc + β̂TN ΣT )βc +Q

])
.

(6.13)

The exponent term in Equation (6.13) can be expressed as

βTc (W−1 + Σc)βc − 2(β̂c
T

Σc + β̂TN ΣT )βc +Q

= βTc Ωβc − 2Hβc +Q (6.14)

where Ω = W−1 + Σc andH = β̂c
T

Σc + β̂TN ΣT .

We need to put Equation (6.9) into the form (βc − µ)T Ω (βc − µ) + R in order to express

Equation (6.13) as a Gaussian Kernel. Now we have,

(βc − µ)T Ω (βc − µ) + R

= βTc Ωβc − 2µTΩβc + µTΩµ+R. (6.15)
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Equating Equation (6.9) and (6.15) gives,

H = µTΩ

HT = ΩTµ

= Ωµ since ΩT = Ω.

Therefore

µ = Ω−1HT

µT = HΩ−1 since Ω−1 is symmetric.

and

µTΩµ = (HΩ−1)Ω(Ω−1HT )

= HΩ−1HT (6.16)

SinceQ = µTΩµ+R, we have,

R = Q− µTΩµ.

We substituteQ from Equation (6.10) and µTΩµ from Equation (6.16) intoR which gives

R = β̂T V −1β̂ −HΩ−1HT . (6.17)
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We can express Equation (6.13) as

[
(2π)p+||c||1 |V | |W |

]−1/2 |Ω−1|1/2

|Ω−1|1/2
exp

(
− 1

2

[
(βc − µ)T Ω (βc − µ) +R

])
. (6.18)

Where,

Ω = W−1 + Σc. (6.19)

µ = Ω−1HT

= Ω−1 (Σc β̂c + Σ β̂N )

= Ω−1 (V −1
∗ )T β̂ where V −1

∗ = V −1
p×||c||1 . (6.20)

V −1
p×||c||1 is a submatrix of V −1 containing all rows of V −1 but only columns of V −1 where cj = 1.

From Equation (6.17)

R = β̂T V −1β̂ −HΩ−1HT

= β̂T V −1β̂ − β̂TV −1
∗ (Ω−1) (V −1

∗ )T β̂

= β̂T
[
V −1 − V −1

∗ (Ω−1) (V −1
∗ )T

]
β̂. (6.21)

By integrating Equation (6.18) over βc, we can obtain the marginal likelihood with a Gaussian prior

as follows
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P (β̂|Mc)

=

∫
βc

f(βc |Mc) f(β̂|βc ,Mc) dβc

=

∫
βc

[
(2π)p+||c||1 |V | |W |

]−1/2 |Ω−1|1/2

|Ω−1|1/2
exp

(
− 1

2

[
(βc − µ)T Ω (βc − µ) +R

])
dβc

=

[
(2π)p |V | |W | |Ω|

]−1/2

exp

(
− R

2

)∫
βc

√
(2π)−||c||1 |Ω|exp

(
− 1

2

[
(βc − µ)T Ω (βc − µ)

])
dβc

=

[
(2π)p |V | |W | |Ω|

]−1/2

exp

(
− R

2

)
(6.22)

6.6 Deriving P (β̂|Mc) using the Laplace prior

A Laplace prior on the slab component gives

βc|Mc ∼
∏
j:cj=1

La (βj;λ)

with pdf

f(βc|Mc) =

(
λ

2

)||c||1
exp (−λATβc) (6.23)

whereA is a ||c||1 × 1 vector with jth element

Aj =


−1 if βj < 0

1 if βj > 0.

(6.24)
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From Equation (6.4) we integrate f(βc |Mc) f(β̂|βc ,Mc) over βc to obtain P (β̂|Mc). Using

the Laplace prior in Equation (6.23) and the likelihood in Equation (6.11), we have

f(βc |Mc) f(β̂|βc ,Mc)

=

(
λ

2

)||c||1 [
(2π)p |V |

]−1/2

exp

(
− 1

2

[
βTc Σc βc − 2(β̂c

T
Σc + β̂TN ΣT )βc +Q

]
− λATβc

)
=

(
λ

2

)||c||1 [
(2π)p |V |

]−1/2

exp

(
− 1

2

[
βTc Σc βc − 2(β̂c

T
Σc + β̂TN ΣT − λAT )βc +Q

])
.

(6.25)

The exponent term in Equation (6.25) can be expressed as,

βTc Σc βc − 2(β̂c
T

Σc + β̂TN ΣT − λAT )βc +Q

= βTc νβc − 2Kβc +Q (6.26)

where ν = Σc and K = β̂c
T

Σc + β̂TN ΣT − λAT . Thus, to express Equation (6.25) as a Gaussian

Kernel, we put Equation (6.26) into the form

(βc − µ)T ν (βc − µ) + T

= βTc νβc − 2µTνβc + µTνµ+ T . (6.27)

Equating Equation (6.26) and Equation (6.27) gives

K = µTν

KT = νTµ

= νµ since νT is symmetric.
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Therefore,

µ = ν−1KT

µT = K ν−1

and

µTνµ = (K ν−1)νν−1KT

= K ν−1KT . (6.28)

SinceQ = µTνµ+ T , it follows that

T = Q− µTνµ.

SubstitutingQ from Equation (6.10) and µTνµ from Equation (6.28) into T gives

T = β̂T V −1β̂ −K ν−1KT . (6.29)

Equation (6.25) can be expressed in Gaussian Kernel form as follows

(
λ

2

)||c||1 [
(2π)p |V |

]−1/2 |ν−1|1/2

|ν−1|1/2 exp
(
− 1

2

[
(βc − µ)T ν (βc − µ) + T

])
. (6.30)
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Where,

ν = Σc (6.31)

µ = ν−1KT

= ν−1 (Σc β̂c + Σ β̂N − λA)

= ν−1 [(V −1
∗ )T β̂ − λA] (6.32)

and from Equation (6.29)

T = β̂T V −1β̂ −K ν−1KT

= β̂T V −1β̂ −
[
β̂TV −1

∗ − λAT
]

(ν−1)
[
(V −1

∗ )T β̂ − λA
]

= β̂T V −1β̂ −
[
β̂T V −1

∗ ν−1 (V −1
∗ )T β̂ − β̂TV −1

∗ ν−1 λA− λAT ν−1 (V −1
∗ )T β̂ + λ2AT ν−1A

]
.

β̂TV −1
∗ ν−1A is equal to AT ν−1 (V −1

∗ )T β̂ since they are scalars and the matrix ν−1 symmetric.

This gives

T = β̂T V −1β̂ −
[
β̂T V −1

∗ ν−1 (V −1
∗ )T β̂ − 2λβ̂TV −1

∗ ν−1A+ λ2AT ν−1A

]
= β̂T V −1β̂ − β̂T U (V −1

∗ )T β̂ + 2λβ̂TU A− λ2AT ν−1A

= β̂T [V −1 − U (V −1
∗ )T ]β̂ + 2λβ̂TU A− λ2AT ν−1A (6.33)

where U = V −1
∗ ν−1.

The marginal likelihood using a Laplace prior can be obtained by integrating Equation (6.30) over

βc as follows

129



P (β̂|Mc) =

∫
βc

f(βc |Mc) f(β̂|βc ,Mc) dβc

=

∫
β1∈R

∫
β2∈R

· · ·
∫

β||c||1∈R

f(βc |Mc) f(β̂|βc ,Mc) dβ1dβ2 · · · dβ||c||1 (6.34)

Equation (6.34) integrates over the space, R||c||1 . However, in our case, the likelihood with a Laplace

prior depends on the vector A in Equation (6.24). This affects the limits of the integration. For

Aj = 1, the integration is over all the positive real numbers, R≥0 while for Aj = −1, the limits are

from negative infinity to zero. For a specific model,Mc, there are 2||c||1 combinations ofA. Thus, the

marginal likelihood is

P (β̂|Mc) =

∑
A∈{−1,1}||c||1

∫
β1∈θ1

∫
β2∈θ2

· · ·
∫

β||c||1∈θ||c||1

f(βc |Mc) f(β̂|βc ,Mc) dβ1dβ2 · · · dβ||c||1

(6.35)

where

θj =


(−∞, 0) if Aj = −1

(0,∞) if Aj = 1.

and f(βc |βc,Mc) depends on A. From Equation (6.30), we factor out expressions which do not
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depend on βc in order to simplify the integration. Hence,

f(βc |Mc) f(β̂|βc ,Mc)

=

(
λ

2

)||c||1 [
(2π)p |V |

]−1/2 |ν−1|1/2

|ν−1|1/2 exp
(
− 1

2

[
(βc − µ)T ν (βc − µ) + T

])
=

(
λ

2

)||c||1 [
(2π)p+||c||1−||c||1 |V | |ν|

|ν|

]− 1
2

exp

(
− 1

2

[
(βc − µ)T ν (βc − µ) + T

])
=

(
λ

2

)||c||1[
(2π)p−||c||1|V ||ν|

]− 1
2

exp

(
−T
2

)√
(2π)−||c||1 |ν| exp

(
− 1

2

[
(βc − µ)T ν (βc − µ)

])
(6.36)

We integrate f(βc |Mc) f(β̂|βc ,Mc) in Equation (6.35) by using the expression in Equation

(6.36). This gives the marginal likelihood for a model using a Laplace prior as follows

P (β̂|Mc) = J

∑
A∈{−1,1}||c||1

Y

∫
β1∈θ1

∫
β2∈θ2

· · ·
∫

β||c||1∈θ||c||1

Z dβ1dβ2 · · · dβ||c||1 (6.37)

where

J =

(
λ

2

)||c||1[
(2π)p−||c||1|V ||ν|

]− 1
2

,

Y = exp

(
− T

2

)

and

Z =
√

(2π)−||c||1 |ν| exp
(
− 1

2

[
(βc − µ)T ν (βc − µ)

])
.

Integration in Equation (6.37) can be evaluated directly in R using the mvtnorm package. Using

pmvnorm in this package allows us to compute multivariate normal probabilities functions with dif-
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ferent limits.

6.7 Calculate posterior probability for each model P (Mc | β̂)

In Section 6.2, we described how to calculate P (β̂|Mc), the probability density of the observed data

under a specific model,Mc. We use this to calculate P (Mc | β̂). In the beginning of this chapter, we

mentioned there are 2p possible models including the null model with all 0 values in c, i.e when there

are no causal SNP present in the model. Computing the posterior probability for the null model,M0

is straight forward. Since there is no causal SNP, the joint prior probability of all the zero effect sizes

is equal to 1 because the prior takes the spike component. For the null model,M0, all effect sizes of

the SNPs are zero. For this reason, P (β̂|M0) is simply the probability density of the observed data

under the null model where β = 0. The observed data is normally distributed as mentioned in Section

6.3 with 0 mean and gives

P (β̂|M0) =
√

(2π)−p |V −1| exp
(
− 1

2
β̂T V −1 β̂

)
. (6.38)

The posterior probability, P (Mc | β̂) for each model is shown in Equation 6.1 which requires the

joint probability in the numerator and the probability of the data, P (β̂), in the denominator. The nu-

merator joint probability can be obtained by multiplying the prior probability of the model as discussed

in Section 6.1, with the marginal likelihood of the data as discussed in Section 6.5 for the Gaussian

prior or in Section 6.6 for the Laplace prior. For the null model,M0 the prior model, P (M0) can be

obtained by letting k = 0 in Equation (6.3).

To obtain the denominator, P (β̂), we sum over the joint probability of all models including the

null model. The posterior probability of a specific model,Mc can be extended from Equation (6.1) as
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follows

P (Mc | β̂) =
P (Mc)P (β̂|Mc)

P (β̂)

=
P (Mc)P (β̂|Mc)

P (M0)P (β̂|M0) +
∑
Mc∈M P (Mc)P (β̂|Mc)

(6.39)

where M is the set of all models allowed which depends on the maximum number of causal SNPs

allowed in the model.
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Chapter 7

Application of the multivariate approaches to

simulated data

7.1 A description of the simulated data used

Similar to testing the methods in the univariate approach in Chapter 3, we simulate data from HAP-

GEN2 (Su et al., 2011) in order to test the approaches we discussed in Chapter 6. In our analysis, we

look into a scenario which includes two causal SNPs in the region. The elements that we considered

in simulating the data are the odds ratio and the MAF of the two causal SNPs, the sample size and

the marginal power. By specifying the values of the OR and MAF, the sample size needed to achieve

a given power for the analysis could be determined following the calculation to compute power in

Equation (4.1).

The first element we considered is the odds ratio for the two causal SNPs. The selection of the

odds ratio was based on the intersection between the Gaussian and Laplace distribution as shown in

Figures 7.1 and 7.2. We wanted to assess whether the Laplace prior would actually yield much of an

improvement over the Gaussian prior for log ORs that have similar prior probability densities under

both priors. This is not guaranteed since it depends on the MLEs and likelihood variance. To plot the
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Figure 7.1: The minimum OR (in red) and the maximum OR (in blue) where the Gaussian prior has higher density than
the Laplace prior distributions plotted using MLEs without considering the number of yet-to-be-discovered SNPs. Only
positive log odds ratios are considered.

distributions, we used the MLE of the parameters by varying the number of YTBD SNPs as given in

Table 3.1 for the Gaussian distribution and Table 3.3 for the Laplace distribution. In Figure 7.1, the

distributions are plotted using the MLEs without considering the number of YTBD SNPs meanwhile

in Figure 7.2, the MLEs used do consider the number of YTBD SNPs (chosen to be 250, 500,750 and

1000).

In each plot, we determine the odds ratio using the points where both distributions intersect. The

minimum OR and the maximum OR where the Gaussian prior has a higher density for each plot are

summarised in Table 7.1. As we vary the number of YTBD SNPs, the minumum ORs range from

1.018 up to 1.043, meanwhile the maximum ORs have the highest value of 1.234 and the lowest value

of 1.135. We do not want to choose odds ratios too small or too large otherwise it be difficult to

choose a sample size that yields reasonable power for both SNPs. From the range of the maximum

and minimum ORs, we select the OR to be 1.03 and 1.13 for each of the causal SNPs. These ORs are
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Figure 7.2: The minimum OR (in red) and the maximum OR (in blue) where the Gaussian prior has higher density than
the Laplace prior distributions plotted using MLEs by taking into account 250, 500,750 and 1000 of yet-to-be-discovered
SNPs. Only positive log odds ratios are considered.
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between the minimum and the maximum ORs in the scenarios in the last four rows of Table 7.1.

Table 7.1: The maximum and the minimum odds ratio from the intersection of Gaussian and Laplace distribution by
varying the number of yet-to-be-discovered SNPs.

no. YTBD SNPS Ŵ λ̂
minimum

OR
maximum

OR
not considered 0.0069 18.31 1.0426 1.2336

250 0.0032 30.05 1.0302 1.1764
500 0.002 42.41 1.024 1.1568
750 0.0015 52.27 1.0203 1.1457

1000 0.0012 60.47 1.0179 1.1348

The next element to consider is the MAF for the two causal SNPs. We defined one of the causal

SNP as a common SNP with a MAF of 0.5. The other causal SNP has a MAF of 0.03 and is termed

as a rare SNP. To achieve reasonable power, based on Equation (4.1), we assigned the smaller OR to

the common SNP and the larger OR to the rare SNP. Thus, the common causal SNP has an OR of 1.03

with a MAF equal to 0.5. Meanwhile, the rare causal SNP has an OR equal to 1.13 and a MAF of

0.03.

After specifying the ORs and MAFs for both causal SNPs, we need to decide on the sample size

for our simulated data. We defined the total sample size as the total number of cases and the total

number of controls, with equal numbers for both cases and controls. Thus, our simulated data has a

sample size of 70000 cases and 70000 controls. We wanted the sample size to be large enough to be

able to detect association at both loci without being too large to give too high a power at either locus.

In our simulated data, the marginal power for the common causal SNP is 0.53 while for the rare

SNP, the power is 0.82. We simulated 10 datasets each containing 412 SNPs. We use the same region

as for our univariate analysis. However, there are extremely rare and monomorphic SNPs which we

need to remove from the simulated data. We only retain SNPs that are neither monomorphic nor rare

(MAF ≤ 0.01) in every dataset. Another factor that we observed is multicollinearity. If two SNPs

are highly correlated (r2 ≥ 0.99), one of the SNP is eliminated from the data. We also reduce the

number of SNPs in the data by removing SNPs having very small Wakefield Bayes factor. This is to
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reduce the computational time of our method. SNPs with very small Bayes factor are not going to

be selected so there seems little point in including them and these Bayes factors are not going to be

generated from SNPs with moderate effect sizes. According to Kass and Raftery (1995), they interpret

a Bayes factor of more than three to mean strong evidence against the null hypothesis. However, if we

use a Bayes factor of three as our threshold, the number of SNPs reduced to only 10 SNPs, which is

too small. Thus, we reduced the Bayes factor threshold to a smaller value (0.4) to allow more SNPs

to be included. The number of SNPs remaining in the data is 50. A Bayes factor of 0.4 makes the

null hypothesis two and a half times more likely than the alternative hypothesis so this seems like a

reasonable threshold to apply. The causal SNPs in the simulated data are summarized in Table 7.2.

Table 7.2: The odds ratio, minor allele frequency (MAF) and marginal power for the two causal SNPs specified in the
simulated data with a sample size of 70000 cases and 70000 controls

Elements Causal SNP 1 Causal SNP 2
Odd Ratio 1.03 1.13

MAF 0.5 0.02
Marginal power 0.53 0.82

SNP number 1 50

7.2 Comparing the performance of the Laplace and Gaussian pri-

ors with FINEMAP

We are interested in comparing the performance of the Bayesian model selection method using the

Gaussian and Laplace prior derived in Chapter 6. Another interest is to compare the performance of

the two methods with FINEMAP (Benner et al., 2016), one of the current packages available for fine-

mapping. FINEMAP has been shown to be the gold standard in many fine mapping situations (Benner

et al., 2016). The FINEMAP software requires the Z-scores from each SNP and the LD between

SNPs as the input. FINEMAP allows us to specify the maximum number of causal SNPs from 1 to 5.

Users can obtain the posterior probabilities for each SNP and also its Bayes factor. However, in this
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section, we only focus on using the posterior probabilities for ranking purposes. We use λ̂ = 64.15 to

calculate the posterior probabilities using Laplace prior since using this value in single-SNP analysis

in Section 4.3.1 had shown that the Laplace Bayes factor has the best performance compared to other

values. λ̂ = 64.15 corresponds to the upper limit of the confidence level of λ̂ when considering 1000

YTBD SNPs. Thus, to calculate the posterior probabilities using Gaussian prior, we specify W equal

to 0.0011 as this is the MLE for W when considering 1000 YTBD SNPs. We also used the same value

of W in FINEMAP.

In Chapter 6, we showed how to calculate the posterior probability of each model (Equation 6.39).

To calculate the posterior probability of causal association for each SNP, we sum the posterior prob-

abilities of all models containing that SNP. By using the posterior probability, we can examine the

ranking performance of the Gaussian prior, Laplace prior and FINEMAP. We are able to compute the

posterior probabilities of each SNP for every method using the simulated data discussed in Section

7.1. The maximum number of causal SNPs allowed in the model are varied from one to five when

computing the posterior probabilities to assess the effect of varying this limit. The probability ω in

Equation 6.3 is taken to be one fiftieth since we have 50 SNPs in the data. Table 7.3 shows the prior

probabilities of the number of causal SNPs given ω = 1/50. We illustrate the ranking performance of

each method by using ROC curves. The true positive rates (TPRs) and false positive rates (FPRs) are

calculated using the posterior probability and plotted in a ROC curve. Since we simulated 10 datasets,

we used the vertical averaging method introduced by Fawcett (2006) to plot the ROC curves. The

ROC curves for each method are compared on the same plot.

Figure 7.3 shows five comparisons of ROC curves by varying the maximum number of causal

SNPs. All the ROC curves shown in Figure 7.3 are plotted using FPRs up to 20 %. In the case when

we allowed only one causal SNP in the model, the performance of each method is not very distinctive.

However, when more causal SNPs are allowed in the model, the performance of every method is

distinguishable. In most cases, the Gaussian prior shows poor performance compared to the Laplace

prior and FINEMAP. When we increase the maximum number of causal SNPs to two, the Laplace
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Table 7.3: The prior probabilities of the number of causal SNPs in the model

Prior probability (ω = 1/50)
Number of

SNPs 0 1 2 3 4 5

Maximum
number

of
causal SNPs

1 causal 0.4949 0.5051 0 0 0 0
2 causals 0.3952 0.4031 0.2016 0 0 0
3 causals 0.3708 0.3783 0.1892 0.0618 0 0
4 causals 0.3653 0.3728 0.1864 0.0609 0.0146 0
5 causals 0.3643 0.3718 0.1859 0.0607 0.01456 0.002733

prior starts to perform better than FINEMAP and the Gaussian prior. The Laplace prior continues

to have better performance than the other two methods when the maximum number of causal SNPs

increases to three, four and five. As a result, we conclude that the Laplace prior is the best method to

rank SNPs based on posterior probability of each SNP for this particular scenario.

7.3 Comparing the posterior probabilities using the Laplace prior

according to the maximum number of causal SNPs specified

The method that used the Laplace prior appeared to be the best among the three methods in ranking

SNPs based on posterior probabilities. Consequently, in this section, we continue to evaluate the

performance of the Laplace prior. The posterior probabilities of each SNP are computed as we vary

the maximum number of causal SNPs allowed in the model. We continue using the range from one to

five for the maximum number of causal SNPs in the model, the same as in Section 7.2. Using ROC

curves, we can observe the ranking performance of the Laplace prior as we change the maximum

number of causal SNPs allowed in the model.

Figure 7.4 shows the ranking performance of the posterior probabilities using the Laplace prior

(with λ̂ = 64.15) by allowing one, two, three, four and five causal SNPs in the model. The ROC curve

when allowing only one causal SNP in the model shows a poor performance. The ranking performance

gets better when the maximum number of causal SNP increases to two. This is presumably because
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Figure 7.3: ROC curves comparing the SNPs ranking performance of the posterior probabilities using three approaches;
the Laplace prior, the Gaussian prior and FINEMAP. The maximum number of causal SNPs allowed in the model are
varied from one to five to calculate the posterior probabilties in all approaches. The Laplace prior used λ = 64.15. The
Gaussian prior and FINEMAP used W = 0.0011
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Figure 7.4: ROC curves comparing the ranking performance of the posterior probabilities obtained with a Laplace prior
as the maximum number of causal SNPs allowed in the model varies. The value of λ is 64.15.

there are 2 causal SNPs in the simulated data. As we increase the maximum number of causal SNPs

to three, the ROC curve shows a better performance compared to the ROC curve when we specify

a maximum of two causal SNPs. As we increase to a maximum of four causal SNPs, the ranking

performance improves only marginally. However, as we increase it to five, the ROC curve overlap the

ROC curve when we allow four causal SNPs. This shows that the ranking performance when we allow

five causal SNPs remains the same as the performance when we allow four causal SNPs in the model.

It seems as though there is no decrease in performance as we increase the maximum number of causal

SNPs increase.

The ROC curve only considers the ranks. We further investigate if allowing three or more causal

SNPs in the model changes the posterior probabilities of each SNP by very much. Datasets one to ten

results in different posterior probabilities for each SNP. Thus, we average the posterior probabilities

of each SNP across the 10 datatsets. The average posterior probabilities are presented in Table 7.4 as

the maximum number of causal SNPs varies from three to five.

From the ROC curves in Figure 7.4, we see that the ranking of SNPs based on the SNPs individual
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Table 7.4: The posterior probabilities for the 50 SNPs selected based on the univariate Bayes factor when allowing a
maximum of three, four and five causal SNPs in the model.

Maximum no. of causal
SNPs allowed in the model
3causal 4causal 5causal

SNP1 0.47416 0.48004 0.48180
SNP2 0.02295 0.02908 0.03147
SNP3 0.01411 0.01811 0.01974
SNP4 0.01409 0.01774 0.01921
SNP5 0.20760 0.21185 0.21333
SNP6 0.01667 0.02056 0.02206
SNP7 0.01350 0.01711 0.01858
SNP8 0.01279 0.01623 0.01762
SNP9 0.15100 0.15375 0.15485

SNP10 0.01410 0.01808 0.01971
SNP11 0.01558 0.01922 0.02067
SNP12 0.01181 0.01481 0.01603
SNP13 0.01309 0.01660 0.01803
SNP14 0.08079 0.08442 0.08581
SNP15 0.01179 0.01467 0.01583
SNP16 0.01158 0.01468 0.01595
SNP17 0.02085 0.02599 0.02803
SNP18 0.01553 0.01954 0.02113
SNP19 0.01620 0.02077 0.02268
SNP20 0.01438 0.01804 0.01951
SNP21 0.01319 0.01680 0.01827
SNP22 0.01795 0.02058 0.02165
SNP23 0.01456 0.01824 0.01975
SNP24 0.01502 0.01909 0.02072
SNP25 0.01241 0.01574 0.01709

Maximum no. of causal
SNPs allowed in the model

3 causals 4 causals 5 causals
SNP26 0.01746 0.02109 0.02251
SNP27 0.01539 0.01900 0.02045
SNP28 0.01386 0.01741 0.01884
SNP29 0.01410 0.01766 0.01911
SNP30 0.01435 0.01796 0.01941
SNP31 0.01287 0.01618 0.01753
SNP32 0.01225 0.01542 0.01670
SNP33 0.01614 0.02014 0.02171
SNP34 0.01207 0.01528 0.01659
SNP35 0.01468 0.01841 0.01994
SNP36 0.01744 0.02197 0.02377
SNP37 0.14291 0.15108 0.15383
SNP38 0.01430 0.01803 0.01953
SNP39 0.02356 0.02797 0.02967
SNP40 0.01347 0.01722 0.01876
SNP41 0.01365 0.01725 0.01871
SNP42 0.01284 0.01611 0.01744
SNP43 0.01301 0.01626 0.01757
SNP44 0.01700 0.02122 0.02291
SNP45 0.06163 0.06956 0.07244
SNP46 0.01484 0.01861 0.02012
SNP47 0.01247 0.01574 0.01709
SNP48 0.01339 0.01693 0.01839
SNP49 0.01276 0.01595 0.01723
SNP50 0.24001 0.25295 0.25704
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posterior probabilities are indistinguishable in scenarios when we allow a maximum of four and five

causal SNPs in the model. When analysing the posterior probabilities of every SNP across the three

columns in Table 7.4, the posterior probabilities are different. Generally, as the maximum number of

causal SNPs in the model increases, the posterior probability of a SNP also increases. We focus on

one of the two causal SNPs in the simulated data, SNP 1, which is ranked first in all scenarios. The

posterior probability of causal association of SNP 1 when the maximum number of causal SNP is three

is 0.47416 and with a maximum of four causal SNPs in the model is 0.48004. The absolute difference

between these two probabilities is 0.005878. However, when the maximum causal SNP in the model

is five, the posterior probability of SNP 1 to be included only increases by 0.001761.

A similar result is obtained when we observe the posterior probabilities for all SNPs. The average

absolute difference between posterior probabilities when allowing three and four causal SNPs in the

model is 0.004. As we increase the number of maximum causal SNPs from four to five, on average,

the absolute difference in posterior probabilities is 0.002. The difference is small, half the difference

between allowing three and four causal SNPs in the model. These very small differences in the pos-

terior probabilities show that either by allowing a maximum of four or five causal SNPs in the model,

the posterior probabilities are still comparable.

Throughout this section, we worked with the posterior probabilities of causal association of each

SNPs when we vary the maximum number of causal SNPs in the model. By observing the ranking

performance, we could see that there was no difference in the ranks of the SNPs based on the posterior

probabilities when there are four and five causal SNPs in the model. However, there are differences in

the actual values of the posterior probabilities of each SNP as the maximum number of causal SNPs

allowed increases from three to four and to five. Another quantity we can examine is the Bayes factor

of each SNP since these can tell us about the noteworthiness of the SNPs.
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7.4 Comparing the noteworthiness of SNPs using the Laplace prior

according to the maximum number of causal SNPs specified

In addition to computing the posterior probabilities for each SNP, a Bayes factor can be computed for

a SNP to quantify the evidence that the SNP has an association with the disease. The Bayes factor can

be derived from the posterior probability of a SNP being causal and its prior probability. The Bayes

factor is given as

Bayes factor =
P (cj = 1| β̂ )

P (cj = 0| β̂ )

/
P (cj = 1)

P (cj = 0)
(7.1)

where P (cj = 1| β̂ ) is the posterior probability of a SNP being causal. The prior probability of as

SNP being causal is given as

P (cj = 1) =

K∑
k=1

p−1Ck−1

pCk
Pk. (7.2)

Pk is the prior probability of k causal SNP in the model given by Equation (6.2).

Using the posterior probabilities obtained from Section 7.3, we compute the Bayes factor (Equa-

tion (7.1)) for each SNP in every scenario of the maximum number of causal SNPs allowed in the

model. The Bayes factor can be used to asses the noteworthiness of a SNP. This can be defined by

Equation (2.19). The posterior probability ofH0 can be computed using Equation (2.20) by specifying

the prior odds of H0 and by using the Bayes factor obtained. We vary the ratio of costs of making in-

correct decisions (R = Cω /Cη) to explore the noteworthiness SNPs at different values of R. Table 7.5

summarises the SNPs picked up as noteworthy as we vary the values of R and the maximum number

of causal SNPs allowed in the model.

The common causal SNP specified in datasets, (SNP 1) is shown to be noteworthy in all scenarios.
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Table 7.5: The noteworthy SNPs at different values of the maximum number of causal SNPs and ratios of costs of making
incorrect decisions corresponds to the Bayesian false-discovery probabilities (BFDP).

Ratio of costs,
R

4 10 19 49

BFDP 0.8 0.91 0.95 0.98
1 causal {1,5,9,50} {1,5,9,14,50} {1,5,9,14,37,50} {1,5,9,14,37,50}
2 causals {1,5,9,50} {1,5,9,14,37,50} {1,5,9,14,37,50} {1,5,9,14,37,39,45,50}
3 causals {1,5,9,50} {1,5,9,37,50} {1,5,9,37,50} {1,5,9,14,37,40,50}
4 causals {1,9} {1,5,9,37,50} {1,5,9,37,50} {1,5,9,14,37,50}
5 causals {1} {1,5,9,50} {1,5,9,37,50} {1,5,9,14,37,50}

As for SNP 50, the rare causal SNP specified, it appears to be noteworthy in all scenarios except the

scenarios allowing four and five causal SNPs in the model with R = 4. In addition to these two

specified causal SNPs, there are a number of SNPs appeared to be noteworthy. SNP 5 appeared to be

noteworthy in all scenarios where SNP 50 is noteworthy. As for SNP 9, the only scenario where SNP

9 is non-noteworthy is when there are five causal SNPs in the model and R = 4. In most cases we can

see that SNP 14 and SNP 37 are noteworthy alongside SNP 1, SNP 50, SNP 5 and SNP 9. There are

three more SNPs declared to be noteworthy when R = 49. The SNPs are SNP 39 and SNP 45 in the

model where there are 2 causal SNPs and SNP 40 in model with three causal SNPs.

From Table 7.5, we could observe an increasing pattern in the number of SNPs declared to be

noteworthy when the ratio of cost, R increases regardless how many causal SNPs are allowed in the

model. However, the pattern is not consistent across the maximum number of causal SNPs allowed

in the model. In cases where R = 10 and R = 49, as the maximum number of causal SNP increases

from one to two, the number of noteworthy SNPs increases but not in cases where R = 4 and R = 19

where the number remains the same. Allowing three, four and five causal SNPs in the model with

R = 10, 19 and 49 has captured a smaller number of noteworthy SNPs compared to having two causal

SNPs in the model. In cases where R equals 4 or 10, the number of noteworthy SNPs reduce by one as

we increase the maximum number of causal SNPs from four to five. However, the noteworthy SNPs

remain the same in cases where R is 19 or 49.
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It is interesting to see the results of the noteworthiness of SNPs using Laplace prior. Our first

interest turns to observing SNP 5 and SNP 9 being picked up as noteworthy in 90% of the scenarios.

We suspect that these two SNPs are in high LD with either one of the causal SNP specified in the

dataset. However, that is not true. Hence, we observe the Bayes factor for SNP 5 and SNP 9 in all

cases of the maximum number of causal SNPs allowed in the model. This is because, the Bayes factor

affect the decision of declaring a SNP is noteworthy as discussed in Section 4.3.2. In almost all cases,

the Bayes factor for SNP 5 and SNP 9 exceeds the Bayes factor threshold in deciding if SNPs are

noteworthy.

As mentioned before, as R increases, more SNPs are declared to noteworthy as shown in Table

7.5. From Equation 2.19, increasing the ratio of cost (R) would increase the threshold and hence

more SNPs are declare to be noteworthy. The value of R depends on the cost of false non-discovery

Cω and cost of a false discovery Cη specified. According to Wakefield (2008), it is considered to be

more costly to not identify a causal SNP as noteworthy compared to identifying a non-causal SNP as

noteworthy. Hence, it is better to have the cost of false non-discovery to be larger than the cost of a

false discovery.
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Chapter 8

Application to Breast Cancer Consortium

Data

8.1 iCOGs data

In Chapters 4 and 7, we compared our multi-SNP Laplace prior method with other fine mapping meth-

ods by applying them to the simulated data from HAPGEN (Su et al., 2011). A real dataset is available

from the Collaborative Oncological Gene-environment Study (COGS) for use in fine mapping. COGS

develop a genotyping array named iCOGs focusing on a large number of target SNPs highly associ-

ated with breast, prostate and ovarian cancer (Michailidou et al., 2013). The iCOGs data available for

our thesis concentrate on breast cancer, in which the Breast Cancer Association Consortium (BCAC)

selected a region in Chromosome two with base position between 201500074 and 202569992. The

selected region contains the CASP8 gene, a gene that could affect susceptibility to cancer.

BCAC selected 585 SNPS to be genotyped. However, after quality control checks, only 501 SNPs

were selected. Due to missing genotype, another 1232 SNPs were imputed using IMPUTE2 (Marchini

and Howie, 2010) adding to the 501 SNPs genotyped. The data consists of 46450 cases and 42500

controls which contribute to a total sample size of 89050. To reduce the computational time, we further
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reduce the number of SNPs in the data according to the marginal Wakefield Bayes factor. The same

approach used in Section 7.1 is applied by specifying a Bayes factor of 3 as a threshold (Kass and

Raftery, 1995). From 1733 SNPs, we managed to reduce the SNPs to 120.

8.2 Comparing methods by ranking SNPs using iCOGs data

In Chapter 7, the Laplace prior was compared to the Gaussian prior and FINEMAP via posterior

probabilities of causal asscoiation for SNPs in the simulated data. The SNPs were ranked based on

their posterior probabilities and the ranking performance of all methods were compared using ROC

curves. In this Chapter, we are interested in evaluating the performance of the Laplace prior versus

the p-value, the Gaussian prior and FINEMAP when applied to the iCOGs data. We include p-value

simply out of interest to see the difference between frequentist and Bayesian approaches. The p-value

comes from a univariate logistic regression with a Wald test. This can be examined by ranking the

SNPs based on the posterior probabilities using Laplace prior and comparing the ranks of the top

ranked Laplace prior SNPs in other methods. Our analysis is based on the 30 top ranked SNPs, using

the Laplace prior.

Table 8.2 shows the top 30 SNPs ranked using the posterior probabilities computed using the

Laplace prior. In this table, we could observe the ranks of the top 30 SNPs based on the p-value,

the Gaussian prior and FINEMAP. To compute posterior probabilities using the Laplace prior, the

Gaussian prior and FINEMAP, the maximum number of causal SNP allowed in the model is one

initially. The same information is presented in Table 8.3, 8.4, 8.5 in which we change the maximum

number of causal SNPs to two, three and four respectively. In Chapter 7, we concluded that allowing

five causal SNPs resulted in similar posterior probabilities as allowing four causal SNP. Thus, in

analysis the iCOGs data, we compare the methods only allowing up to four causal SNPs in the model.

Allow five causal SNPs also takes a long time to run.

When allowing one causal SNP in the model, based on Table 8.2, SNP 31 is ranked first with a
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posterior probability of 0.4827, with about 50% chance of being a causal SNP. We can observe that

the top 10 SNPs ranked by the Laplace prior are consistently ranked in the top 10 across all methods.

Other SNPs are ranked among the top 50 in other methods. Most of the SNPs selected in the top 30 are

common SNPs with only four rare SNPs (ranked first, 18th, 20th and 29th). SNPs ranked 8th onwards

have very small posterior probabilities (less than 1%) which indicates that these SNPs are unlikely to

be causal. We further evaluate the performance of the Laplace prior when allowing more SNPs in the

model.

In Table 8.3, SNP 31, SNP2, SNP 1, SNP 3, SNP 16 and SNP 24 are ranked the top 6 SNPs when

allowing a maximum of two causal SNPs in the model. However, SNP 31 although still ranked first,

the posterior probability is smaller than when allowing one causal SNP in the model. The same rare

SNPs (SNP 31, SNP 602, SNP 1639 and SNP 681) are selected in the top 30 SNPs in this scenario.

Some of the top 30 SNPs using the Laplace prior are ranked very low in other method. As an example,

SNP 602 ranked 10th and 11th in three methods, is ranked 100th for the Gaussian prior. There is more

variation in the SNP ranks across methods with a maximum of two causal SNPs compared to one.

As we increase the maximum number of causal SNPs in the model to three, the posterior prob-

abilities of all the SNPs using the Laplace prior increase compared to allowing two causal SNPs in

the model. SNP 31 which still ranked as first in all methods, has a posterior probability of 0.4728.

Other SNPs have posterior probability less than 16%. More rare SNPs in the table are being selected

in the top 30 SNPs ranked by the Laplace prior. All the rare SNPs are ranked above 15 except for SNP

1656 which is ranked 27th. Generally, these rare SNPs have lower rank in other methods. The same

observation is true for other more common top ranked SNPs.

As expected, SNP 31 ranked first when allowing four causal SNPs in the model and is consistent

in other methods. SNPs 2, SNP 1 and SNP 3 remained ranked as second, third and fourth respectively

using the Laplace prior. In terms of posterior probabilities, the top 30 SNPs have higher posterior

probabilities (at least 2% higher) compared to the top 30 SNPs when allowing three causal SNPs. In

this scenario, there are three more rare SNPs selected in the top 30 using the Laplace prior adding to
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6 rare SNPs being selected in scenarios when we allow one, two and three causal SNPs in the model.

The additional three rare SNPs (SNP 811, SNP 816 and SNP 812) are already among the top 30 SNPs

in other methods. There are few SNPs which are ranked very low using other methods but which are

selected to be in the top 30 ranked SNPs using the Laplace prior. These SNPs are SNP 342, SNP 251,

SNP 256 and SNP 244.

There are 19 SNPs consistently ranked as the top 30 in all scenarios. These SNPs are SNP 1, SNP

2, SNP 3, SNP 7, SNP 16, SNP 24, SNP 31, SNP 602, SNP 1022, SNP 1056, SNP 1062, SNP 1067,

SNP 1069, SNP 1087, SNP 1088, SNP 1090, SNP 1091 and SNP 1096, SNP 1639. In all scenarios,

SNPs 31, 2, 1 and 3 are consistently being in the top 4 SNPs. The top 4 SNPs have consistent posterior

probability across all scenarios. SNP 31 has a posterior probability of around 0.5. SNP 2, SNP 1 and

SNP 3 have posterior probabilities between 0.13 and 0.16. Among the top 4 SNPs, the only rare SNP

is SNP 31.

A Spearman’s correlation was run to determine the strength of the relationship between the Laplace

prior and the other three methods. Table 8.1 shows the Spearman’s correlation coefficient for p-value,

the Gaussian prior and FINEMAP in relation to the Laplace prior. We consider running the Spear-

man’s correlation of every method in each maximum number of causal SNPs allowed (row). When

a maximum of one causal SNP is allowed in the model, all methods show a very strong correlation

with the Laplace prior. However, when we allow a maximum of two causal SNPs in the model, the

Spearman’s correlations decrease showing a moderate correlation between the Laplace prior and all

three methods. The relationship continues to have a moderate relationship when we increase the max-

imum number of causal SNP. All three methods (the Gaussian prior and FINEMAP) show a positive

correlation meaning the higher the SNPs are ranked in Laplace prior, the higher the SNPs are rank in

p-value, the Gaussian prior and FINEMAP.
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Table 8.1: The Spearman’s correlation between Laplace prior and the other three methods (p-value, the Gaussian prior and
FINEMAP) in all cases of maximum number of causal SNPs allowed in the model.

Methods
p-value Gaussian prior FINEMAP

Maximum number
of causal SNPs

allowed
in the model

1 0.9428 0.9745 0.9428
2 0.9428 0.6236 0.4105
3 0.9428 0.6292 0.5356
4 0.9428 0.5526 0.5761

8.3 Comparing the noteworthiness of SNPs using the Laplace prior

in iCOGs data

In this section, we examine the noteworthiness of the SNPs in the iCOGs data. This can be achieved

by the decision made using Equation (2.19). To calculate the posterior probability of H0, Equation

(2.20) requires us to specify the prior odds of H0 and the Bayes factor (Equation (7.1)). We use four

different values of R (the ratio of costs of making incorrect decision) to examine the noteworthiness

of SNPs when we allow up to a maximum of four causal SNPs in the model. Table 8.6 presents the

SNPs identified as noteworthy when varying the values ofR and the maximum number of causal SNPs

allowed in the model.

Initially, specifying R = 4 results in no noteworthy SNPs when we allow one and two causal

SNPs in the model. However, as the maximum number of causal SNPs increase to three and four, SNP

31 is picked up to be noteworthy. When specifying R equals to 10, SNP 31 appears to be the only

noteworthy SNP in all scenario. As we increase the value of R to 19, SNP 2 appears to be noteworthy

alongside SNP 31 as we allow four causal SNPs in the model. More SNPs are captured as noteworthy

in the case where R = 49. We noticed that, all noteworthy SNPs are among the 19 SNPs consistently

ranked as top 30 in Section 8.2 which also includes the top 4 SNPs. Out of seven noteworthy SNPs,

three of them are rare SNPs (SNP 31, SNP 602 and SNP 1639).
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Table 8.2: The 30 top ranked SNPs in the iCOGs data based on posterior probabilities using the Laplace prior. The ranking
based on the p-value, the posterior probabilities using the Gaussian prior and FINEMAP are also included. The posterior
probabilities calculated for all Bayesian methods allow one causal SNP in the model.

Ranking

SNPs MAF Posterior probabilities
(Laplace prior)

Laplace
prior p-value Gaussian

prior FINEMAP

31 0.081 4.83e-1 1 1 1 1
2 0.124 1.38e-1 2 2 2 2
1 0.124 1.27e-1 3 3 3 3
3 0.123 1.25e-1 4 4 4 4

16 0.124 6.07e-2 5 5 5 5
24 0.122 2.81e-2 6 6 6 6
7 0.121 1.42e-2 7 7 7 7

29 0.171 8.61e-3 8 8 8 8
27 0.170 5.69e-3 9 9 9 9
10 0.258 5.80e-4 10 10 10 10
23 0.257 5.02e-4 11 12 11 14
14 0.258 5.02e-4 12 13 12 13
6 0.257 4.91e-4 13 14 13 12
9 0.257 4.70e-4 14 15 14 16
8 0.257 4.68e-4 15 16 15 15

15 0.254 3.74e-4 16 17 16 17
4 0.256 3.01e-4 17 18 18 18

602 0.074 2.14e-4 18 11 17 11
1096 0.486 1.46e-4 19 22 20 22
1639 0.087 1.34e-4 20 19 19 19
1056 0.426 1.31e-4 21 23 21 26
1087 0.446 1.22e-4 22 27 23 29
1022 0.495 8.54e-5 23 37 30 37
1062 0.498 8.50e-5 24 38 31 38
1069 0.498 8.34e-5 25 39 32 41
1090 0.497 8.18e-5 26 40 33 43
1067 0.484 8.11e-5 27 42 35 40
1088 0.497 8.04e-5 28 41 36 42
681 0.071 7.94e-5 29 20 22 20
1091 0.497 7.82e-5 30 43 39 44
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Table 8.3: The 30 top ranked SNPs in the iCOGs data based on posterior probabilities using the Laplace prior. The ranking
based on the p-value, the posterior probabilities using the Gaussian prior and FINEMAP are also included. The posterior
probabilities calculated for all Bayesian methods allow two causal SNP in the model.

Ranking

SNPs MAF Posterior probabilities
(Laplace prior)

Laplace
prior p-value Gaussian

prior FINEMAP

31 0.081 0.45657 1 1 1 1
2 0.124 0.14908 2 2 3 2
1 0.124 0.13782 3 3 4 3
3 0.123 0.13406 4 4 5 4
16 0.124 0.06838 5 5 6 5
24 0.122 0.03267 6 6 21 6

1639 0.087 0.03170 7 19 2 19
1087 0.446 0.02444 8 27 22 30
1056 0.426 0.02443 9 23 23 33
602 0.074 0.02342 10 11 100 10

1096 0.486 0.02072 11 22 25 22
7 0.121 0.01814 12 7 26 7

1022 0.495 0.01794 13 37 27 37
1067 0.484 0.01697 14 42 28 54
1062 0.498 0.01648 15 38 30 40
1069 0.498 0.01615 16 39 31 43
1090 0.497 0.01602 17 40 32 45
1014 0.488 0.01587 18 45 34 57
1088 0.497 0.01572 19 41 35 44
1012 0.488 0.01556 20 47 36 60
1091 0.497 0.01531 21 43 38 46
1078 0.482 0.01494 22 50 39 61
1021 0.495 0.01482 23 48 40 42
1010 0.491 0.01469 24 49 37 32
1055 0.499 0.01406 25 46 41 49
1020 0.495 0.01372 26 53 42 47
1007 0.497 0.01318 27 51 43 52
1047 0.499 0.01204 28 54 44 53
1030 0.493 0.01177 29 56 45 59
1035 0.409 0.01174 30 58 107 85
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Table 8.4: The 30 top ranked SNPs in the iCOGs data based on posterior probabilities using the Laplace prior. The ranking
based on the p-value, the posterior probabilities using the Gaussian prior and FINEMAP are also included. The posterior
probabilities calculated for all Bayesian methods allow three causal SNP in the model.

Ranking

SNPs MAF Posterior probabilities
(Laplace prior)

Laplace
prior p-value Gaussian

prior FINEMAP

31 0.081 0.47283 1 1 1 1
2 0.124 0.15388 2 2 3 3
1 0.124 0.14274 3 3 4 4
3 0.123 0.13777 4 4 6 2

16 0.124 0.07323 5 5 16 5
1639 0.087 0.07133 6 19 2 16
602 0.074 0.06019 7 11 29 10
24 0.122 0.03684 8 6 26 6

1056 0.426 0.03399 9 23 5 31
1087 0.446 0.03329 10 27 25 32
342 0.452 0.03255 11 100 82 70
1671 0.063 0.02972 12 21 65 19
1096 0.486 0.02926 13 22 30 22
681 0.071 0.02702 14 20 66 21
251 0.205 0.02477 15 80 101 56

7 0.121 0.02283 16 7 35 7
1022 0.495 0.02152 17 37 43 40
1062 0.498 0.02132 18 38 38 43
1069 0.498 0.02092 19 39 41 44
1067 0.484 0.02068 20 42 45 54
1090 0.497 0.02067 21 40 39 47
1088 0.497 0.02031 22 41 42 39
1091 0.497 0.01982 23 43 44 49
1014 0.488 0.01937 24 45 49 57
256 0.203 0.01925 25 95 104 66
1012 0.488 0.01901 26 47 50 62
1656 0.087 0.01895 27 52 12 24
244 0.221 0.01878 28 96 105 65
1010 0.491 0.01870 29 49 48 30
1078 0.482 0.01840 30 50 52 55
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Table 8.5: The 30 top ranked SNPs in the iCOGs data based on posterior probabilities using the Laplace prior. The ranking
based on the p-value, the posterior probabilities using the Gaussian prior and FINEMAP are also included. The posterior
probabilities calculated for all Bayesian methods allow four causal SNP in the model.

Ranking

SNPs MAF Posterior probabilities
(Laplace prior)

Laplace
prior p-value Gaussian

prior FINEMAP

31 0.081 0.49168 1 1 1 1
2 0.124 0.15707 2 2 4 3
1 0.124 0.14612 3 3 5 4
3 0.123 0.14064 4 4 9 2

1639 0.087 0.10466 5 19 3 15
602 0.074 0.07903 6 11 30 10
16 0.124 0.07716 7 5 20 5

342 0.452 0.05535 8 100 33 68
1671 0.063 0.05129 9 21 35 17

24 0.122 0.04045 10 6 29 6
1056 0.426 0.03910 11 23 2 25
1087 0.446 0.03797 12 27 27 31
251 0.205 0.03709 13 80 55 59
681 0.071 0.03689 14 20 44 21

1096 0.486 0.03475 15 22 40 22
256 0.203 0.02891 16 95 75 71

1656 0.087 0.02883 17 52 16 28
244 0.221 0.02846 18 96 80 73
7 0.121 0.02703 19 7 38 7

1062 0.498 0.02388 20 38 50 34
1022 0.495 0.02349 21 37 47 40
1069 0.498 0.02345 22 39 54 39
1090 0.497 0.02315 23 40 45 41
1088 0.497 0.02278 24 41 48 36
1067 0.484 0.02276 25 42 67 52
1091 0.497 0.02227 26 43 53 53
811 0.078 0.02199 27 24 13 23
816 0.078 0.02177 28 25 14 32
812 0.081 0.02160 29 26 23 27

1014 0.488 0.02138 30 45 72 55
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Table 8.6: The noteworthy SNPs at different values of the maximum number of causal SNPs and ratios of costs of making
incorrect decisions corresponds to the Bayesian false-discovery probabilities (BFDP).

Ratio of costs, R 4 10 19 49
BFDP 0.8 0.91 0.95 0.98

1 causal na {31} {31} {1,2,3,31}
2 causals na {31} {31} {1,2,3,31}
3 causals {31} {31} {31} {1,2,3,16,31,1639}
4 causals {31} {31} {2,31} {1,2,3,16,31,602,1639}

8.4 Breast cancer risk association at CASP8 region.

The iCOGs data used in this chapter focuses on breast cancer by selecting a region in Chromosome 2

containing CASP8 gene as explained in Section 8.1. CASP8 codes for caspase protein that is involve

in apoptosis, a biological process which programmed cell death. As our cell constantly replicates,

some cells die or need to be ‘deleted’ during development to maintain balance in our body. In some

cases, there are cell that can harm our body such as infected and cancerous cell. Thus, if apoptosis does

not occur, cell continues dividing and could lead to cancer. This could happen because of a variant in

the CASP8 gene that causes the caspase protein to not function correctly (Elmore, 2007).

One of the first true variant in CASP8 identified by candidate gene study to be associated with

breast cancer is D302H (rs1045485) (Cox et al., 2007). D302H (rs1045485) shows a highly significant

association of the minor allele and has a 10% decrease in risk. In a further fine-mapping studies,

there was evidence showing that D302H (rs1045485) has a weak association (Ptrend = 0.046) with

breast cancer (Shephard et al., 2009; Michailidou et al., 2013). Moreover, these studies show another

3 variants (rs3834126, rs6435074, rs6723097) in CASP8 region having significant association with

breast cancer. An independent variant in the same region, rs10931936, was also found to be associated

but is in low LD (r2 = 0.083) with D302H (rs1045485) (Turnbull et al., 2010). In 2015, Lin et al.

(2015) analyzed the same data we used in Section 8.2 by using a meta-analysis of iCOGs together

with nine GWAS breast cancer data to clarify the role of CASP8 in the risk of having breast cancer.

There is a significant association for an imputed SNP rs1830298 in ALS2CR1 which is telomeric to
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CASP8 and the genotyped SNP rs10197246 in CASP8. These two SNPs are in high LD (r2 = 0.9)

and they are likely to have the same association signal.

Based on our analysis in Section 8.2, the results show that SNP 31 has been ranked first con-

sistently in all the methods that we used to compare. SNP 31 also appeared to be noteworthy even

when we changed the ratio of cost, R values. Apparently, to the best of our knowledge, SNP 31

(rs2540050) is not known to be causal or to be in the list of potential causal SNPs. However, another

Bayesian approach which incorporates functional genomic information had also highly ranked SNP

31 (rs2540050) (Alenazi et al., 2019).
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Chapter 9

Discussion

9.1 Focus of the research

The essential elements in a Bayesian approach are the likelihood distribution and the prior distribution.

Using these two elements, a posterior probability distribution of a parameter can be computed to update

our belief about the parameter. The computation of the posterior distributions depends on the choice of

prior distribution specified. To specify a sensible prior distribution can be challenging. The commonly

used prior distribution in fine mapping is Gaussian. In most of the fine mapping literature, the mean

in the Gaussian prior takes the value 0. However, there are many ways of defining the value of the

variance: by elicitation, specifying a fixed value or specifying a prior on the hyperparameter.

In our thesis, we developed a Bayesian approach that computes the posterior distribution and the

Bayes factor which leads to identifying disease-specific SNPs. The choice we made about the prior

distribution of the effect sizes is based on the GWAS top hits data. A sensible choice of distribu-

tion that reflects the GWAS top hits data is the Laplace distribution. The Laplace distribution gives a

tractable integral when computing the posterior summaries and the Bayes factor. Similar to the Gaus-

sian distribution used in previous fine mapping studies, we need to define value for the parameters.

Since we want the distribution to symmetric around zero, we define the location parameter to be zero.

161



The value of the scale parameter λ is estimated using Maximum Likelihood Estimation (MLE).

According to Michailidou et al. (2013), there are 1168 SNPs unidentified SNPS with very small odds

ratio. Thus, we take two approaches of estimating the λ. The first approach is by not considering

how many unidentified SNPs are there in the GWAS top hits data. The second approach is by varying

the number of yet-to-be-discovered SNPs (YTBD) and using those numbers in the calculation of the

MLE. We also use the same approach to estimate the variance parameter in a Gaussian prior.

Using the MLE as the hyperparameter for both the Gaussian prior and the Laplace prior, we showed

that the Laplace prior has a better fit to the GWAS top hits data. This is true either by considering the

number of YTBD SNPs or not. We then calculated Bayesian posterior summaries using a Laplace

prior and compared the performance with other fine mapping methods by applying it to simulated data

from HAPGEN and also on real data from iCOGs.

Both single-SNP and multi-SNP analyses have shown that the Laplace prior method had better

performance to rank SNPs compared to other existing fine mapping methods. In single-SNP analysis,

the results appeared to be sensitive to the minor allele frequency, odds ratio, sample size and the

number of yet-to-be-discovered (YTBD) SNPs. We proposed to specify a prior on the number of

YTBD SNPs that allows for the uncertainty in the estimated λ. This leads to deriving a Bayes factor

we called the Laplace Gamma Bayes factor. The results in multi-SNP analysis showed that increasing

the maximum number of causal SNPs in the model, increases the posterior probabilities of causal

association. Thus, the Laplace prior is sensitive to the maximum number of causal SNPs allowed in

the model.

9.2 Limitations

In this thesis, we choose to compare the Laplace prior with FINEMAP. Based on the ability of

FINEMAP to allow a maximum of five causal SNPs in the model, we also allow a maximum of 5

causal SNPs in our method. However, without prior knowledge of how many causal SNPs there are in
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the region, questions can be raised with regards to the maximum number of causal SNPs in the model.

Most methods in fine mapping assumed there are at least one causal SNP in the region. Instead of

using this assumption, we take into account that there might be no causal SNP in the region, thus al-

lowing our method to deal with models with zero causal SNPs. Nevertheless, users may want to know

what maximum number of causal SNPs to specify or even if they specify a certain number, how could

they tell that there might be more causal SNPs in the region than the ones specified. Our methods

simply look at the ranking performance and how much the posterior probabilities change as we vary

the maximum number of causal SNPs in the model. It would be better to have a way to incorporate

this into our method to make it clearer for the user to specify the maximum number of causal SNPs.

In our multi-SNP analysis, our analysis and discussion were based on the posterior probability of

causal association of individual SNPs. The posterior probability describes our uncertainty about the

SNP having an association with breast cancer risk. However, a major interest in fine-mapping is to

look into the correct multi-SNP model. A SNP with high posterior probability does not mean that the

SNP is causal. It could be that it tags another SNP in the data which potentially could be the causal

SNP. Thus, by analysing the correct multi-SNP model, this could help in identifying the actual causal

SNP in the region.

Another drawback in our method is the computational time. Table 9.1 shows the computational

time for Laplace prior, Gaussian prior and FINEMAP using the simulation data in Section 7.1 with 50

SNPs. We could see that as we increase the maximum number of SNPs allowed in model, the more

time is takes to compute for every approach. The reason is, if we have p SNPs and allow k causal

SNPs in the model, we have pCk combinations of models. Generally, the more p we have and the

more k we allow, the more time it takes to compute. From Table 9.1, the Laplace prior took more time

to compute compared to the Gaussian prior and FINEMAP. In the Laplace prior, each combination

of model has more combinations which depends on the vector A defined in Equation (6.24). Thus,

more time is needed to compute the Laplace prior. We already reduce the computational time by

reducing the number of SNPs in the data based on the marginal Bayes factor. However, there are other
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approaches to explore in order to have our method run faster.

Table 9.1: The computational times (in minutes) for Laplace prior, Gaussian prior and FINEMAP using the simulation
data from HAPGEN2.

Methods
Laplace Prior Gaussian Prior FINEMAP

Maximum
number of causal

SNPS allowed
in the model

1 0.45 0.22 0.03
2 2 0.57 0.04
3 26 1.11 0.25
4 156 7.7 0.45
5 918 69.6 0.55

The SNPs in the region are sometimes highly correlated and these SNPs give similar signals which

makes it difficult to pinpoint the causal SNPs. Before we analyse the genotype data using our method,

we filter out all the highly correlated SNPs (r2 ≥ 0.99) from the data. This may result in removing

the potential causal SNP. Our method identifies plausible causal SNPs to prioritize from the posterior

probabilities and Bayes factors. This set of plausible causal SNPs is not selected using any biological

knowledge. To identify the true causal SNPs, the plausible causal SNPs can be further tested in

functional studies.

9.3 Future work

Research in genetic epidemiology is continuously growing with a lot of different approaches currently

being introduced. It would be interesting to further modify our method with some improvement from

the limitations we identified. The Laplace distribution has shown to be a better fit for the prior on the

effect sizes compared to Normal distribution. We based our analysis using the breast cancer GWAS

top hits data. However, this can be further used in other complex diseases since now some complex

diseases have a significant number of GWAS top hits available. Our approach brings the idea to use

the information from the GWAS top hits data in specifying more objective priors on the effect size.

Besides reducing the number of SNPs in the data based on the marginal Bayes factor to make our
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method run faster, we could modify our approach using sequential method. This method allows us to

remove some SNPs after considering all the possible pairs of causal SNPs. Another approach that can

be considered is to implement a Shotgun Stochastic Search (SSS) algorithm which has been used in

FINEMAP and proven to run very quickly.

One way to tackle the signal of highly correlated SNPs in the data is by integrating functional

genomic information into our method. This could also be an alternative method to aid in assessing the

potential disease causality of the prioritized SNPs. An advantage of using a Bayesian approach is that

we could extend our method by allowing the effect size prior to depend on the functional information

or to allow the prior probability of causal association to depend on functional information. With the

extensive functional information data available, we could readily use this data to inform our priors.

Incorporating the genomic information into our method could help with identifying a causal SNP

among a correlated groups of SNPs.
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Appendix A

Justification for not including the intercept in

the model

The exponential term from the pdf for the likelihood of the data which includes the intercept is given

as

1

2

α− α̂
β − β̂


T

V −1

α− α̂
β − β̂

 . (A.1)

We let

V −1 =

 A D

DT C

 (A.2)
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whereA is the scalar variance for α,D is a 1×p variance covariance matrix andC is a p×p variance

covariance matrix for β. Thus, the likelihood is

l = −1

2

[
(α− α̂)2A+ 2(β − β̂)TDT (α− α̂) + (β − β̂)TC(β − β̂)

]
+ constant

(A.3)

We begin by reparameterising the parameters to be

β∗ = β (A.4)

and

α∗ = α +
D

A
β∗. (A.5)

The new likelihood with the new parameterisation is

l∗ = −1

2

[(
α∗ − D

A
β∗ − α̂

)2

A+ 2(β∗ − β̂)TDT

(
α∗ − D

A
β∗ − α̂

)
+ (β∗ − β̂)TC(β∗ − β̂)

]
+ constant.

(A.6)

The likelihood is now re-written ignoring the first order terms. The reason we did not include the first

order terms is because when we calculate the second derivatives, the first order terms will give zero.

Thus, the new likelihood (ignoring the first order terms in α∗ and β∗) is

l∗ = −1

2

[(
α∗ − D

A
β∗
)2

A+ 2(β∗)TDT

(
α∗ − D

A
β∗
)

+ (β∗)TCβ∗
]

+ constant. (A.7)
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We first differentiate the new likelihood with respect to α∗. This gives

∂l∗

∂α∗
= −1

2

[
2A

(
α∗ − D

A
β∗
)

+ 2(β∗)TDT

]
. (A.8)

Next, we take the second differentiate with respect to α∗ which gives

∂2l∗

∂α∗2
= −1

2

[
2A

]
= −A. (A.9)

The second differentiate with respect to α∗ and β∗ is

∂l∗

∂β∗α∗
= −1

2

[
2A

(
− D
A

1p

)
+ 2 1TpD

T

]
= 0. (A.10)

where 1p is p× 1 vector of 1s.

To find the second derivative of the log-likelihood with respect to β∗, we simplify Equation (A.7)

by only considering second order terms in β∗. The new likelihood is

l∗ = −1

2

[
A

(
D

A
β∗
)2

+ 2(β∗)TDT

(
− D
A
β∗
)

+ (β∗)TCβ∗
]

+ constant. (A.11)

SinceDβ∗ = (Dβ∗)T = (β∗)TDT , Equation (A.11) can be expressed as

l∗ = −1

2

[
1

A
(Dβ∗)(Dβ∗) + 2Dβ∗

(
− (β∗)TDT

A

)
+ (β∗)TCβ∗

]
+ constant

= −1

2

[
1

A
Dβ∗(β∗)TDT − 2

A
Dβ∗(β∗)TDT + (β∗)TCβ∗

]
+ constant

= −1

2

[
(β∗)TCβ∗ − 1

A
Dβ∗(β∗)TDT

]
+ constant (A.12)
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The first derivatives of Equation (A.12) with respect to β∗ is

∂l∗

∂β∗
= −1

2

[
(C +CT )β∗ − 1

A
(2DTDβ∗)

]
= −1

2

[
2Cβ∗ − 2

A
(DTDβ∗)

]
= −

[
Cβ∗ − D

TDβ∗

A

]
=

[
DTD

A
−C

]
β∗. (A.13)

Following from Equation (A.13), the second derivatives is

∂2l∗

δ∂∗2
=
DTD

A
−C. (A.14)

Using all the derivatives calculated above gives a new Expected Information matrix as follows

Inew =

−E( δ
2l∗

δα∗2
) −E( δ2l∗

δα∗β∗
)

−E( δ2l∗

δα∗β∗
) −E( δ

2l∗

δβ∗2
)

 =

A 0p

0Tp −[D
TD
A
−C]

 . (A.15)

Thus, the new variance covariance matrix, V , is obtained as V = I−1 which gives

Vnew =

A−1 0p

0Tp −[D
TD
A
−C]−1

 . (A.16)

and the covariance for β̂ under the new parameterisation is

Cov(β̂) = −
[
DTD

A
−C

]−1

= −
[
C − D

TD

A

]−1

. (A.17)

To prove that the covariance for the new β̂ is equal to original β̂, we need to use a result from

Lu and Shiou (2002), which relates to the inverse of 2 × 2 block matrices. To obtain the variance
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covariance matrix (V ), we need to invert V −1 in Equation (A.2) giving

V =

∗ ∗

∗ [C − DTD
A

]−1

 . (A.18)

The elements ∗ represent some matrices, not of interest. So, the covariance of the original β̂ is

Cov(β̂) = −
[
C − D

TD

A

]−1

. (A.19)

Equation (A.19) proves that after parameterisation, the covariance for β̂ remain the same. We also

see from Equation (A.16) that after parameterisation cov(α̂, β̂) = 0p and α̂ and β̂ are independent

since they have a joint multivariate normal distribution. The result demonstrates that although we do

not include the intercept in the likelihood of the data, we can still use the V from the fitted logistic

regression with the original parametrisation, including the intercept.
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Appendix B

Pseudocode to calculate the joint probability

with a Gaussian prior

Function to run multivariate generalized linear model (GLM)

FUNCTION: run multiGLM

Input: phenotype and genotype matrix, number of SNPs

Output: list of beta hats and variance covariance matrix

# run GLM

model = glm (formula, family = binomial)

# obtain the estimated effect size, beta hats

beta hats = coeffiecient(model) [-1]

# obtain variance covariance matrix

var beta hats = vcov(model) [-1,1]

return list of (beta hats, var beta hats)

end function

Function to calculate prior for each model with specified maximum number of causal SNPs
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FUNCTION: calculate prior model

Input: number of SNPs, number of causal SNPs

Output: matrix for prior probability

# create matrix to store prior probability, Pk

for k = 0 to number of causal SNPs do

# obtain number of causal SNPs for each row (k+1) in first column

# obtain the prior probability for each row (k+1) in the second column

end for loop

return (Pk )

end function

Function to obtain SNPs combination for each model

FUNCTION: combine snps

Input: number of SNPs, number of causal SNPs

Output: matrix of SNPs combination

# numbering each SNPs using sequence of numbers, snps

# obtain matrix of SNPs combination using function comb, snps combine

return ( snps combine)

end function

Codes to calculate joint probability for each model

# define the number of SNPs in the data , num snps

# define the number of maximum causal SNPs allowed in the model, max causal snps

# call function calculate prior model to obtain prior probability for each number of causal SNPs,

prior probs
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# run GLM on genotype and phenotype data by calling function run multiGLM

# obtain estimated effect size for each SNPs from GLM, beta hats

# obtain variance covariance matrix for all SNPs from GLM, V

# obtain inverse of the variance covariance matrix for all SNPs, V inv

# loop through number of causal SNPs in the model

# create vector to store the list of marginal likelihood for each model, ml by model not null

# create vector to store the list of joint probability for each model, joint by model not null

for number of causal SNPs in the model =1 to max causal snps do

# vector of length ’number of causal SNPs in the model’ for specified w, W

# call function combine snps to determine all possible combination of SNPs, snps comb

# from snps comb, determine total number of SNPs combination, num combinations

# loop through number of combinations to calculate marginal likelihood and joint

probability for each model

# create matrix to store the marginal likelihood for each snps comb,

ml by model not null[[number of causal SNPs in the model]]

# create matrix to store the joint probability for each snps comb,

joint by model not null[[number of causal SNPs in the model]]

for i=1 to num combinations do

# from snps comb define the causal SNPs in the model for each i,

causal snps in model

# calculate the marginal likelihood for each i and store in

ml by model not null[[number of causal SNPs in the model]]
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# calculate the joint probability for each i and store in

joint by model not null[[number of causal SNPs in the model]]

end loop for num combinations

end loop for number of causal SNPs in the model
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Appendix C

Pseudocode to calculate the joint probability

with a Laplace prior

Code to calculate the joint probability for each model

# define the number of SNPs in the data , num snps

# define the number of maximum causal SNPs allowed in the model, max causal snps

# call function calculate prior model to obtain prior probability for each number of causal SNPs,

prior probs

# run GLM on genotype and phenotype data by calling function run multiGLM

# obtain estimated effect size for each SNPs from GLM, beta hats

# obtain variance covariance matrix for all SNPs from GLM, V

# obtain inverse of the variance covariance matrix for all SNPs, V inv

# specify value for lambda

# loop through number of causal SNPs in the model
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# create vector to store the list of marginal likelihood for each model, laplace ml by model not null

# create vector to store the list of joint probability for each model, laplace joint by model not null

for number of causal SNPs in the model =1 to max causal snps do

# call function combine snps to determine all possible combination of SNPs, snps comb

# from snps comb, determine total number of SNPs combination, num combinations

# determine all combinations of A, A comb

# determine total number of combinations of A, num A combinations

# set up matrix for lower and upper limit for each combination of A to be used

in obtaining CDF

# loop through number of combinations to calculate marginal likelihood and joint

probability for each model

# create matrix to store the marginal likelihood for each snps comb,

laplace ml by model not null[[number of causal SNPs in the model]]

# create matrix to store the joint probability for each snps comb,

laplace joint by model not null[[number of causal SNPs in the model]]

for i=1 to num combinations do

# from snps comb define the causal SNPs in the model for each i, causal snps in model

# loop through all combinations of A

# create a vector to store values for each combination of A, for each comb A

for j=1 to num A combinations do

# from A comb define A for each j

# calculate exp(-t/2) × CDF for each j and store in for each comb A

end loop for combinations of A

# calculate marginal likelihood for each i and store in
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laplace ml by model not null[[number of causal SNPs in the model]]

# calculate joint probability for each i and store in

laplace ml by model not null[[number of causal SNPs in the model]]

end loop for number of SNPs combinations

end loop for number of causal SNPs in the model
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