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Abstract

This thesis is concerned with the development of efficient and reliable numerical algorithms

for the solution of nonlinear systems of partial differential equations (PDEs) of elliptic and

parabolic type. The main focus is on the implementation and performance of three different

nonlinear multilevel algorithms, following discretisation of the PDEs: the Full Approximation

Scheme (FAS), Newton-Multigrid (Newton-MG) and a Newton-Krylov solver with a novel pre-

conditioner that we have developed based on the use of Algebraic Multigrid (AMG). In recent

years these algorithms have been commonly used to solve nonlinear systems that arise from the

discretisation of PDEs due to the fact that their execution time can scale linearly (or close to

linearly) with the number of degrees of freedom used in the discretisation.

We consider two mathematical models: a thin film flow and the Cahn-Hilliard-Hele-Shaw

model. These mathematical models consist of nonlinear, time-dependent and coupled PDEs

systems. Using a Finite Difference Method (FDM) in space and Backward Differentiation For-

mulae (BDF) in time, we discrete the two models, to produce nonlinear algebraic systems. We

are able to solve these nonlinear systems implicitly in computationally demanding 2D situa-

tions. We present numerical results, for both steady-state and time-dependent problems, that

demonstrate the optimality of the three numerical algorithms for the thin film flow model.

We show optimality of the FAS and Newton-Krylov approaches for the time-dependent Cahn-

Hilliard-Hele-Shaw (CHHS) problem.

The main contribution is to address the question of which of these three nonlinear solvers is

likely to be the best (i.e. computationally most effective) in practice. In order to asses this, we

discuss the careful implementation and timing of these algorithms in order to permit a fair direct

comparison of their computational cost. We then present extensive numerical results in order

to make this comparison between these nonlinear multilevel methods. The conclusion emerging

from this investigation is that it does not appear that there is a single superior approach, but

rather that the best approach is problem dependent. Specifically, we find that our optimally

preconditioned Newton-Krylov approach is best for the thin film flow model in the steady-state

and time-dependent form, whilst the FAS solver appears best for the time-dependent CHHS

model.
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Chapter 1

Introduction

1.1 Objective of the Thesis

The objective of this thesis is to investigate and implement efficient and accurate multilevel

algorithms for solving nonlinear parabolic and elliptic systems of partial differential equations

(PDEs). Nonlinear multilevel schemes are well established in the literature as fast solvers for

nonlinear PDEs of elliptic and parabolic type [5, 24, 28, 122], however, there appears to have

been little attempt to make a systematic investigation of the relative performance of such al-

gorithms for nonlinear systems.

We obtain numerical solutions which are robust and efficient using nonlinear multilevel methods

for solving the nonlinear algebraic systems of equations that arise from the finite difference dis-

cretisation and implicit time integration of particular PDE systems. Specifically, we considered

the application of the FAS, Newton-MG and preconditioned Newton-Krylov algorithms for two

specific nonlinear problems: a thin film flow system and the Cahn-Hilliard-Hele-Shaw (CHHS)

system. We especially seek numerical algorithms that give optimal time complexity for these

nonlinear problems, since the advantage of such approaches becomes critically important as the

problem size increases.

We present extensive numerical results for the efficient and accurate implementations of the

nonlinear multilevel FAS, Newton-MG and Newton-Krylov algorithms (with a newly proposed

preconditioner) for solving the thin film flow model. We also present numerical results for the

efficient and accurate application of the FAS and Newton-Krylov algorithms (with a newly pro-

posed preconditioner) for solving the CHHS model. These demonstrate that numerical results

are efficient in the sense that they are either optimal in time (i.e. linear time complexity) or

1
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very close to optimal.

The main contributions that have been made in this thesis can be summarised as follows:

– Development and implementation of three multilevel algorithms for the thin film flow

system of equations: a nonlinear FAS algorithm, a Newton-MG algorithm and a precon-

ditioned Newton-Krylov algorithm.

– The development of a novel preconditioner for the Newton-Krylov algorithm applied to

the thin film flow problem. This uses algebraic multigrid (AMG) as a component of a

more complex approximate block factorization.

– A detailed comparison of the three nonlinear multilevel algorithms for solving the thin

film flow problem in both steady-state and time-dependent cases. We observed in both

cases that the Newton-Krylov algorithm with our new preconditioner is the most efficient

solver.

– Implementation of two optimal multilevel algorithms, a nonlinear FAS and a precondi-

tioned Newton-Krylov algorithm for a two-phase model, namely the Cahn-Hilliard-Hele-

Shaw (CHHS) system. We develop a new preconditioner based on an approximate block

factorization plus AMG approach, similar in principle to that used in the thin film flow

problem.

– A comparison of, and contrast between, the nonlinear multigrid FAS and the precon-

ditioned Newton-Krylov approach for solving the Cahn-Hilliard-Hele-Shaw model in 2D.

For this nonlinear system, we observed that the FAS algorithm is the more efficient solver.

These contributions are described in detail and discussed in depth in this thesis. We close the

introduction by outlining the structure of the thesis.

1.2 Outline of the Thesis

This thesis has seven chapters, the first of which is this introduction. The remainder of the

thesis is organized as follows.

– Chapter 2 gives background and introduction to the application area of elliptic and

parabolic PDEs, including the particular nonlinear mathematical models that we are

considering as model problems in this research.

– In Chapter 3 a review of literature relevant for this thesis is given, including an overview of

the computational methods used in the thesis, such as the spatial discretisation, and tem-

poral discretisation. We discuss numerical methods such as the Finite Difference Method

(FDM) and the family of Backward Differentiation Formulae (BDF) used to approximate



3 1.2. Outline of the Thesis

the model problems. We review the definition and basic properties of nonlinear algebraic

equation systems and Differential-Algebraic Equation (DAE) systems.

– In Chapter 4 we introduce several of the most significant methods for solving linear and

nonlinear systems of algebraic equations. These include iterative methods for linear sys-

tems such as Multigrid and Krylov subspace methods. Numerical algorithms for solutions

of nonlinear systems are presented based on the Newton, Newton-Krylov and Multigrid

algorithms. Furthermore, we discuss the three nonlinear multilevel algorithms which form

the core of this thesis: the FAS multigrid algorithm, Newton-multigrid and the precondi-

tioned Newton-Krylov algorithm.

– In Chapter 5 we examine the performance of our numerical implementations of the three

nonlinear multilevel algorithms for solving the thin film flow model in 2D. We con-

sider these implementations in both steady-state (elliptic) and time-dependent (parabolic)

cases. Detailed numerical results and comparison between these algorithms are presented

in this chapter as well.

– In Chapter 6 we present the numerical solution of the Cahn-Hilliard-Hele-Shaw (CHHS)

system of equations using two nonlinear multilevel algorithms, the FAS and precondi-

tioned Newton-Krylov schemes. We present detailed numerical results and make a relative

comparison of the approaches.

– In Chapter 7 our conclusions and suggestions for future avenues of research are presented.

– In Appendices A and B, we discuss technical details associated with the nonzero entries

in the Jacobian matrix for degrees of freedom next to Dirichlet boundary conditions for

the thin film flow model and the CHHS model, respectively. The main body of the thesis

only discusses Jacobian entries away from the Dirichlet boundary in order to aid clarity

for the reader.



Chapter 2

Mathematical Models

In this chapter, we introduce the mathematical models and concepts that are related to the

research in this thesis. In the first section of this chapter, we will present an introduction to the

application area of elliptic and parabolic PDEs. Thereafter we discuss certain mathematical

models which will subsequently be used to demonstrate and assess the algorithms developed

later.

2.1 Introduction to the Application Area of Elliptic and

Parabolic PDEs

PDEs are differential equations that include unknown multivariable functions and their asso-

ciated partial derivatives. They arise in many areas of science and engineering which govern

many natural phenomena. The functions sought have independent variables often representing

time and spatial directions. In simple cases, analytical techniques are utilized whereas com-

puter algorithms have to be employed for more intricate equations. Let us take a look at a two

dimensional, second-order linear partial differential equation which can be written as:

a
∂2u

∂x2
+ b

∂2u

∂x∂y
+ c

∂2u

∂y2
+ d

∂u

∂x
+ e

∂u

∂y
+ fu+ g = 0, (2.1)

according to [87,104,105,121,125]. Here a, b, c, d, e, f, and g may be functions of the independent

spatial variables x and y. However for nonlinear problems they may also be functions of the

dependent variable u. We can classify PDEs into three broad categories which can be determined

by the characteristic polynomial of the highest order derivatives in Equation (2.1). PDEs are

elliptic when b2 − 4ac < 0, parabolic when b2 − 4ac = 0 and hyperbolic when b2 − 4ac > 0. We

now discuss common examples of the three different types. One of the most common hyperbolic

4
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PDEs discussed according to [45,87,105,108,121] is the one-dimensional wave equation:

∂2u

∂t2
= c2

∂2u

∂x2
. (2.2)

Note that, although this is termed ”one-dimensional”, there are still two independent variables.

The reason for this is that in most applications t represents time and x represents the single

space variable.

We see in [87,105,121] that the simplest example of an elliptic equation is Laplace’s equation:

∂2u

∂x2
+

∂2u

∂y2
= 0, (2.3)

which is generally associated with steady-state behavior in two space dimensions. Furthermore

a simple example of a parabolic equation is the one-dimensional heat equation:

∂u

∂t
= k

∂2u

∂x2
. (2.4)

where u(t, x) signifies the temperature at time t and position x. Usually k is considered con-

stant, however, it can depend both on x and t.

In three dimensions, the function u(x, y, z, t) of three spatial variables (x, y, z) and the time

variable t, satisfies the heat equation:

∂u

∂t
− k

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= 0. (2.5)

Conventionally we can write Equation (2.5) as follows,

∂u

∂t
− k ∆u = 0, (2.6)

where ∆ is the Laplace operator for the spatial derivatives.

For a unique solution, we require consistent initial and boundary conditions. Thus we define

a bounded region Ω to be the spatial domain while we define (0, T ] to be the temporal region.

Now the full domain for this PDE is Ω × (0, T ] and we require the values of u or its normal

derivative at all points to be defined on the boundary of Ω (∂Ω) and the value of u at t = 0

(initial data) at all spatial points. We explore two broad categories of boundary conditions

for models in this research: Dirichlet and Neumann. An example, of a Dirichlet boundary

condition takes the form:

u = g on ∂ Ω× (0, T ], (2.7)
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where g is a known function on the boundary ∂ Ω of the spatial region Ω. On the other hand,

a Neumann boundary condition takes the form:

∂u

∂ñ
= f on ∂ Ω× (0, T ], (2.8)

where f is a known function, and ñ is the outward normal to ∂ Ω. Therefore a positive value

of f indicates outflow across the boundary ∂ Ω. As indicated in [32] and [108], PDEs can have

purely Neumann boundary conditions or Dirichlet boundary conditions or have a mixture of

both. It is possible to define Dirichlet boundary conditions on part of the domain with Neu-

mann boundary conditions for the rest.

We have only described linear elliptic, hyperbolic and parabolic PDEs in one, two and three

dimensions at this point. The purpose of our work is to study efficient methods to solve non-

linear PDEs. Hence the remainder of this section is used to introduce some nonlinear PDEs.

In particular, we restrict our attention to nonlinear parabolic and elliptic problems. The inter-

ested reader should consult [2,45,87,105,108,121] for discussions on nonlinear hyperbolic PDEs.

There are various forms of nonlinearity to consider. For instance, we can turn the linear

Equation (2.4) into a nonlinear equation by defining the coefficient c(u), which is a known

nonlinear function, as follows:
∂u

∂t
=

∂

∂x

(
c(u)

∂u

∂x

)
. (2.9)

The Equation (2.9) is termed the nonlinear diffusion equation (or nonlinear heat equation)

in [2, 121], and is an example of a nonlinear parabolic PDE.

We can vary this nonlinear equation in several ways, for example by [72]:

– appending more spatial variables giving,

∂u
∂t = ∂

∂x (c(u) ∂u
∂x ) + ∂

∂y (c(u) ∂u
∂y ) + ∂

∂z (c(u) ∂u
∂z ), (2.10)

where u = u(x, y, z, t),

– adding a nonlinear forcing term f such as

∂u
∂t = ∂

∂x (c(u) ∂u∂x ) + ∂
∂y (c(u) ∂u∂y ) + f(u, x, y), (2.11)

where u = u(x, y, t).

By introducing the divergence operator ∇.v which acts on an arbitrary vector function v, and
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the gradient operator ∇v, the PDE Equation (2.10) can be expressed as:

∂u

∂t
= ∇. (c(u) ∇u) . (2.12)

Now that we have introduced the basic definitions, it is possible to introduce specific applications

where we can model the phenomena as a system of nonlinear PDEs. These models will be used

to investigate several numerical algorithms later in the thesis. In particular, we have two models

in mind. Firstly a thin film model for fully developed flows over a defined topography in one

and two dimensions. The second of these models is used to investigate the mixing of fluids,

namely a two-phase field model called the Cahn-Hilliard-Hele-Shaw (CHHS) model.

2.2 Thin Film Flow Model

Thin film flow approximations are used in a wide variety of applications from biomedical sciences

(e.g. thin tear films in the eye or fluid linings in the lungs of animals, see [23,31,64,68]) through

to engineering and physics (e.g. coating processes in manufacturing or modelling the behaviour

of a raindrop along a window under the action of gravity, see [40, 53, 76, 103, 114, 115, 145]).

Generally, thin film flows involve a liquid that is bounded between a solid substrate and a

free surface with another fluid. In many applications, this can just be air. The distinguishing

features of the applications being discussed is that the motion perpendicular to the substrate

may be neglected.

2.2.1 Derivation

A mathematical model of fully-developed flow is illustrated in the following subsections in one

and two-dimensions. We introduce briefly the derivation of the thin film flow model [99,115,145].

The motion of a general flow is governed by the time-dependent Navier-Stokes equations which

are:

ρ

(
∂U

¯
∂T

+ U
¯
.∇U

¯

)
= −∇P + µ∇2U

¯
+ ρ g

¯
, (2.13)

∇.U
¯

= 0. (2.14)

Here we have assumed that the fluid is incompressible, of density ρ, and of viscosity µ. The

fluid occupies a given domain in its initial condition, and we denote pressure as P and fluid

velocity as U
¯

= (U, V,W ). For the flow of a fluid down a plane inclined at an angle α, the

body force g
¯

= g(sinα, 0,−cos α), where the acceleration due to gravity is g = 9.81ms−2. Using

characteristic lengths H0 as the thin film flow thickness and L0 as the extent of the substrate, to

have a valid thin film approximation, the ratio ε = H0

L0
is required to be sufficient small [51,53],

and T0 is the time which is proportional to that derived by Orchard [99] for the levelling of

surface disturbances. Use of this assumption in order to simplify the Navier-Stokes equations

(2.13) and (2.14) is known as the lubrication approximation or long-wave approximation. This
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approach works in terms of the corresponding non-dimensional (lower case) variables (for more

details see these references [51,53,99]).

h(x, y, t) =
H(X,Y, T )

H0
, s(x, y) =

S(X,Y )

H0
, (x, y) =

(X,Y )

L0
, z =

Z

H0
,

p(x, y) =
2P (X,Y )

ρ g L0 sinα
, t =

T

T0
, T0 =

µL0

σε3
, (u, v,

w

ε
) = (U, V,W )

T0

L0
. (2.15)

Here h(x, y, t) and p(x, y, t) are the thin film flow thickness and the pressure variable respectively

and s(x, y) is the bed shape topography of the substrate. The fluid in Figure 2.1 is supposed

to be Newtonian and incompressible, of fixed density ρ and viscosity µ, with surface tension σ.

Furthermore, (x, y, z) are non-dimensional Cartesian spatial coordinates, (u, v, w) is the non-

dimensional fluid velocity, t denotes time non-dimensionalised against a time scale T0 which

is obtained by Orchard [99]. Further simplifications associated with thin film flow for the

governing Equation (2.13) assume the convection ρ (U
¯
.∇U

¯
) to be negligible. Applying this

assumption to Equation (2.13), reduces to the Stokes equations and further simplifications, in

which high order terms in ε are neglected, leads to the following system of equations for the

fluid thickness, h(x, y, t) and the pressure field, p. We do not describe the derivation of this

pressure here, however, the outcome is to yield the thin film equation as follows:

∂h

∂t
=

∂

∂x

[
h3

3
(
∂p

∂x
− 2)

]
+

∂

∂y

[
h3

3
(
∂p

∂y
)

]
. (2.16)

During this fully-developed flow, the pressure is expressed as follows,

p = − ε3

Ca
4(h+ s) + 2ε (h+ s− z) cot α, (2.17)

where Ca is Capillary number which indicates the ratio of viscosity µ to surface tension σ

and N = Ca
1
3 cot α measures the relative significance of the normal component of gravity (see

[13,53,115] for more details). Equation (2.17) indicates that z is independent to Equation (2.16)

has no influence on the evolution of the film thickness and it is therefore neglected from the

next Equation (2.19). Consequently, this term is neglected in the following results. According

to the derivation in the paper by Gaskell et al. [53], the choice of length scale L0 to be equal

to the capillary length Lc,

L0 = Lc =

(
σH0

3 ρ g sinα

) 1
3

=
H0

(6Ca)
1
3

, (2.18)

then the pressure in Equation (2.17) can be rewritten as

p = −64(h+ s) + 2
3
√

6N(h+ s). (2.19)
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Full details of this derivation may be found in the paper by Gaskell et al. [53].

α

Flow direction

Gravity

Free surface

s(x, y)
Bed shape

z

y

x

h(x, y, t)

Incline plane

Figure 2.1: Two-dimensional thin film flow h(x, y, t) over a bed shape topography s(x, y) on a substrate
inclined at an angle α.

Note that the thin film flow illustrated in Figure 2.1 is displayed for a two-dimensional flow

h(x, y, t) over a bed shape topography s(x, y) on a substrate inclined at an angle α, showing

the coordinate system and parameters determining the bed shape topography.

For completeness of this model, we need to define the boundary and initial conditions for both

dependent variables h(x, y, t) and p(x, y, t). For simplicity, we have used a constant Dirichlet

boundary condition. This requires that the changes to the free surface are sufficiently far from

the boundaries.

In brief, the system of PDEs for fully-developed thin film flow consists of Equations (2.16)

and (2.19) together with a numerical description of the bed shape topography s(x, y), and

appropriate initial and boundary conditions. In the following subsections, we will introduce

two numerical approaches for the thin film flow model: the first one is Kalliadasis’s model [76],

described in one-dimension, and the second one is Sellier’s model [53], in one and two dimensions.

2.2.2 Kalliadasis’s Model

In this subsection, we are interested in the steady-state case, which means that we assume
∂h
∂t = 0 in Equation (2.16). We consider here Kalliadasis’s model which is applied to the
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coating of a surface feature through free surface flow over a cavity. For the complete description

of this system of equations, one can read [76]. The following assumptions are made: steady-

state; α = 900; and one-dimensional flow down the vertical plane (which means there is

nothing varying in y direction, including the bed shape topography). We assume boundaries

are sufficiently far from the topographic feature. Therefore, by applying this simplification to

Equation (2.16) and Equation (2.19), these equations become as follows,

0 =
d

dx

[
h3

3
(
dp

dx
− 2)

]
, (2.20)

and

p = −6
d2

dx2
(h+ s). (2.21)

By substituting Equation (2.21) into Equation (2.20) we obtain

0 =
d

dx

[
h3

3

(
−6

d3

dx3
(h+ s)− 2

)]
. (2.22)

Following Kalliadasis et al. [76], we scale Equation (2.22) to obtain the fourth-order mathemat-

ical model which is

0 =
d

dx

[
h3 (3

d3

dx3
(h+ s) + 1)

]
. (2.23)

This is solved for x ∈ [X1, X2], along with the boundary conditions h = 1 when x = X1 and

x = X2 and dh
dx = 0 when x = X1 and x = X2. We then reduce Equation (2.23) from a

fourth-order ODE to a third-order ODE for the film thickness h(x), and then to three coupled

first-order equations. By integrating Equation (2.23) once with respect to x we obtain this

form,

h3(3
d3

dx3
(h+ s) + 1) = c1. (2.24)

Without producing a justification [76] assumes uniform flow at x = X1, so that 3 d3

dx3 (h+s) = 0

at x = X1. This allows them to obtain c1 = 1 in (2.24) to get,

h3(3
d3

dx3
(h+ s) + 1) = 1. (2.25)

As noted by [76], we will consider here Equation (2.25) and reduce it from one third-order

ODE to three coupled first-order equations. Equation (2.25) may be rearranged (with modified

notation so that (d
3h
dx3 ) is replaced by (hxxx)) to the form,

hxxx = −sxxx +
1− h3

3h3
. (2.26)
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To transform this into three coupled first-order equations define unknowns as follows,uv
w

 =

 h

hx

hxx

 . (2.27)

From this we obtain that uxvx
wx

 =

 hx

hxx

hxxx

 =

 v

w

−sxxx + 1−u3

3u3

 , (2.28)

such that we have a system of equations in the form:

ux = v

vx = w

wx = −sxxx + 1−u3

3u3 .

(2.29)

Kalliadasis [76] defines 6 boundary conditions in order to ensure a unique solution to this

discrete system. We follow Kalliadasis in stating the boundary conditions from his paper [76].

u(X1) = u(X2) = 1,

v(X1) = v(X2) = 0,

w(X1) = w(X2) = 0.

(2.30)

Now we have a nonlinear system of three equations and three unknowns which we will refer to

as Kalliadasis’s model. We will solve this system numerically in Chapter 5.

2.2.3 Sellier’s Model

There is an alternative approach to Kalliadasis’s model which is used by Sellier [51, 53] there-

fore we named it here as Sellier’s model. In this system, Sellier used two coupled second-order

equations rather than three coupled first-order equations as in Kalliadasis’s model. The math-

ematical formulation of Sellier’s system of equations is described in more detail in [51, 53]

and [145].

We considered Sellier’s model in the time-dependent case in one space dimension, which is as

follows:
∂h

∂t
=

∂

∂x

[
h3

3
(
∂p

∂x
− 2)

]
. (2.31)

We may allow any angle α, however, we simplify Equation (2.19) by assuming the angle α = 900
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which gives us that,

p = −6
∂2

∂x2
(h+ s). (2.32)

In one-dimension boundary conditions are defined as the following on the domain x ∈ [X1, X2]:

h(X1) = 1,

p(X1) = 0,
∂h
∂x (X2) = ∂p

∂x (X2) = 0,

(2.33)

also we can use Dirichlet boundary condition at x = X2. The initial conditions for the time-

dependent case are provided at t = 0, which implies that u(x, 0) = u0(x) in one-dimension. It

is essential to specify appropriate boundary conditions and initial conditions in order to solve

this model in the time-dependent case. This system of PDEs for time-dependent thin film flow

in one-dimension consists is solved numerically in Chapter 5.

The steady-state case of Sellier’s model in one-dimension is given by the following expression,

0 =
∂

∂x

[
h3

3
(
∂p

∂x
− 2)

]
. (2.34)

together with the pressure Equation (2.32).

To complete this model, for both dependent variables, h and p, the boundary conditions have

to be defined, as we described in the time-dependent case above.

We may also consider here the equations already introduced as Equations (2.16) and (2.19)

which is Sellier’s model in the time-dependent case in two space dimension, with some simpli-

fication to the pressure in Equation (2.19) by assuming the angle α = 900 which is stated as

follows,

p = −64(h+ s), (2.35)

where 4 is the two-dimensional Laplacian,

4 =
∂2

∂x2
+

∂2

∂y2
. (2.36)

The steady-state case of Sellier’s model of the thin film flow system of equations in two-

dimensions is given by the following expression,

0 =
∂

∂x

[
h3

3
(
∂p

∂x
− 2)

]
+

∂

∂y

[
h3

3
(
∂p

∂y
)

]
, (2.37)

together with the pressure Equation (2.35).

Moreover, the time-dependent case of Sellier’s model of the thin film flow system of equations
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in two-dimensions is given by the following expression,

∂h

∂t
=

∂

∂x

[
h3

3
(
∂p

∂x
− 2)

]
+

∂

∂y

[
h3

3
(
∂p

∂y
)

]
, (2.38)

together with the pressure Equation (2.35). In two-dimension, we have defined the Dirichlet

boundary condition again here on the domain (x, y) ∈ [X1, X2]× [Y1, Y2] as the following:

h(X1,Y ) = h(X2,Y ) = h(X,Y1) = h(X,Y2) = 1,

p(X1,Y ) = p(X2,Y ) = p(X,Y1) = p(X,Y2) = 0,
(2.39)

We define the initial conditions for the time-dependent case in two-dimension for each variable

as h(x, y, t = 0) = h0(x, y) and p(x, y, t = 0) = p0(x, y). In the following section, we have

described another nonlinear system which is phase-field models.

2.3 Phase-Field Models

2.3.1 Introduction

In many scientific fields, models may arise which involve the evolution of interfaces between

materials. We introduce here the notion of phase-field models that are used to approximate

interface problems based upon a diffuse interface. Phase-field models are not the only technique

to compute the evolution of interfaces. Other approaches include modelling as a free boundary

problem where a sharp interface [75] is used and explicitly tracked. A further technique is

called the level set method which is described in [80] for example. We consider a phase-field

application as a further example of a nonlinear parabolic system of PDEs.

The application of a diffuse interface approximation based upon a supplementary phase vari-

able (φ) is described in [84]. The phase-field variable is smooth (differentiable) and is nearly

constant valued in most of the domain, but taking a different constant value in each phase.

However, between phases, at the interface regions, the value of the phase-field variable changes

smoothly but rapidly between the two bulk values [36]. There are many different applications

for phase-field models which are presented in the literature [36,50,88,89,120], but they all based

on the diffuse interface approximation. The phase-field equations themselves are typically de-

rived from physical energy minimisation principles [84]. Moreover, in [4,34,38,59,84] there are

many applications which are presented for phase-field models.
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Figure 2.2: Description of phase variable φ in a two-phase-field system, describing two phases by values
of φ = 1 and φ = −1.

Figure 6.2 displays a phase variable φ in a two-phase system: φ = 1 describes the first phase

(e.g. solid) and φ = −1 describes the second phase (e.g. liquid). These two phases are isolated

via a diffuse interface with a thickness ε. The selection of ε is important in the phase-field

models because if this value becomes very small then the models will become difficult to solve

numerically due to sharp interface issues. If the interface is too diffuse the model will not be

accurate. The variable for the phase-field is coupled with physical variables, such as energy,

temperature and velocity to form the governing equations [84]. Note that no sharp interface

tracking is required as the position of the interface is recovered from the values of φ (e.g. the

contour φ = 0 in this case).

2.3.2 A Two-Phase Model: The Cahn-Hilliard-Hele-Shaw Model

The Cahn-Hilliard (CH) equation begins from the work in [35,36], and plays a vital role in many

application including the study of multi-phase flows such as [141]. After that, Shinozaki and

Oono [120] applied a variation of the CH equations to simulate a binary fluid in a Hele-Shaw

cell and the result of this model is named as the Cahn-Hilliard-Hele-Shaw (CHHS) system of

equations. The CHHS is derived by Lee et al. in [89]. Since the most of the mathematical

models concentrate on different aspects, this system of equations is important and represent

some of these aspects this is because of that it appears in several models such as spinodal

decomposition of a binary fluid in a Hele-Shaw cell, cell sorting, and tumour growth and flows

in porous media [88, 89, 120, 140, 141]. We present here a simplification of the CHHS system,
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which was presented in Wise’s paper [139] and Yang’s thesis [145]:

∂φ
∂t = ∆µ−∇.(φ u), (2.40)

µ = φ3 − φ− ε2 ∆φ, (2.41)

u = −∇ p− γφ∇µ, (2.42)

∇.u = 0. (2.43)

Here µ(x, y, t) is a chemical potential, u is the fluid advective velocity, ε is the phase-field in-

terface thickness, γ > 0, φ(x, y, t) = ±1 denotes pure fluids, and p(x, y, t) is a pressure. The

CHHS model that we used in this research requires γ > 0, but if we use γ = 0, then Equations

(2.40), (2.42) and (2.43) will be reduced to the CH equations [35].

In practice, when substituting Equation (2.42) into Equation (2.40) and Equation (2.43), we

obtain three coupled equations for φ, µ, and p:

∂φ
∂t = ∇.((1 + γφ2)∇µ) +∇.(φ∇p), (2.44)

µ = φ3 − φ− ε2 ∆φ, (2.45)

−∆p = γ∇.(φ∇µ). (2.46)

In [139] Wise solves on [−Lx, Lx] × [−Ly, Ly] where Lx = Ly = 3.2, with a zero Neumann

boundary condition on all variables. We therefore complete the above system with the boundary

conditions as follows,
∂φ
∂n = ∂µ

∂n = ∂p
∂n = 0 on ∂Ω, (2.47)

where n here is the unit outward normal of the boundary ∂Ω. Note that the pressure variable p

appears only in gradient form in the CHHS system, consequently, it has no unique solution and

we will deal with this issue in Chapter 6.

A consistent initial condition is also required. Hence, given φ(x, y, t = 0), we evaluate Equation

(2.45) to get µ(x, y, t = 0). Given φ(x, y, t = 0) and µ(x, y, t = 0) it is then necessary to solve

Equation (2.46) to obtain p(x, y, t = 0). We will consider the numerical solution of the CHHS

model again in more detail in Chapter 6.

In this chapter, we have introduced the mathematical models that we will solve numerically in

this thesis. In the next chapter, we move to discuss some of the most broadly applied methods

for the discretisation of PDE’s in space and time as well as the numerical methods for solving the

discrete linear and nonlinear system of equations that arise. Following that, we can discretise

and solve the mathematical models that have been presented in this chapter.



Chapter 3

Introduction to Discretisation

Techniques

In the previous chapter, we discussed a range of elliptic and parabolic PDE systems and we

presented two particular mathematical models that we will consider in more detail in this the-

sis: a thin film model and a phase-field model in two-dimensions. In this chapter, we introduce

some of the fundamental concepts behind the discretisation of PDEs in space and time. The

discretised PDEs which form systems of linear and nonlinear algebraic and differential algebraic

equation standard solution algorithms for these problems are presented.

Scientific computing and numerical approximation techniques are used to solve mathematical

problems for which it is not possible to obtain exact solutions by analytical methods. The

choice of a particular numerical scheme is subjective as each has advantages and disadvantages,

which may depend on the PDE or the domain on which it is defined. The goal of this chapter is

to introduce the discretisation techniques that are later applied to the one-dimensional mathe-

matical models defined in Chapter 2 and their generalization to two-dimensional problems.

A discretisation scheme for a PDE, or a system of PDEs, is a process of approximating a con-

tinuous mathematical solution as the solution of a discrete system of algebraic equations. One

of the most common, and simplest, schemes is the finite difference method which is discussed

in Section 3.1.1. There are other discretisation schemes that may also be applied, and some

of these are outlined briefly in Section 3.1.2. Each of these discretisation methods requires the

approximation of the spatial parts of the PDEs with a discrete representation based on a finite

number of parameters. In the case of an elliptic PDE, or system, this results in an algebraic

system of equations to determine these parameters.

16
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In the case of a parabolic PDE, or system, application of these spatial discretisation methods

reduces the problem to an initial value system of Ordinary Differential Equations (ODEs). Ap-

proximation in space by finite difference or finite element methods will result in sparse systems

of algebraic equations. This is important here for improving efficiency of our solution algorithms

and is considered in Section 3.2. The spatial approximation is followed by a discretisation in

time to complete the reduction to algebraic form. When the PDE system contains a mixture

of parabolic and elliptic equations the spatial discretisation results in a system of Differential

Algebraic Equations (DAEs) which must then be solved (see Section 3.4).

3.1 Spatial Discretisation

Spatial discretisation methods approximate the spatial derivatives of the PDEs with a finite

number of degrees of freedom. In many approaches, this approximation is determined based

on decomposing the spatial domain Ω into a set of points or cells, as in finite difference or

finite element methods for example. We introduce in this section various options for the spatial

discretisation. In Section 3.1.1, we introduce the finite difference method and we present a

selection of other spatial methods in Section 3.1.2.

3.1.1 Finite Difference Method

Finite difference methods (FDM) are commonly used in engineering and science research appli-

cations (see, amongst others, [81,87,117,121]) due to their simplicity, especially on rectangular

geometries. FDM depend on the approximation of a derivative as the difference in the depen-

dent variable over a finite set of points [72,121]. We limit our discussion here to a fixed spacing

between adjacent nodes. In other words, the spatial domain of the model is divided into a set

of uniformly spaced points. This means that the spatial domain [X1, X2] is approximated as a

set of N + 1 points {x1, x2, x3, . . . , xN+1}, where

xi = X1 + (i− 1) ∆x, 1 ≤ i ≤ N + 1, (3.1)

∆x =
X2 −X1

N
. (3.2)

Here ∆x indicates the mesh size. The goal is to approximate the dependent variables through

estimation of their values over this set of points. That is, we seek to compute their value at

each node i.

Spatial derivatives are approximated at a given point x by using Taylor series expansions to

link the derivative at that point to values of the dependent variable at neighbouring nodes. The
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Taylor expansion of f(x+ ∆x) is as follows:

f(x+ ∆x) = f(x) +
f ′(x)

1!
∆x+

f (2)(x)

2!
∆x2 + · · ·+ f (n)(x)

n!
∆xn + · · · (3.3)

and for f(x−∆x),

f(x−∆x) = f(x)− f ′(x)

1!
∆x+

f (2)(x)

2!
∆x2 − · · ·+ (−1)n

f (n)(x)

n!
∆xn + · · · (3.4)

The forward difference approximation of the first derivative f ′, is derived from Equation (3.3)

as:

f ′(x) ≈ f(x+ ∆x)− f(x)

∆x
. (3.5)

This results in truncation error terms from the Taylor series approximations which describes

the accuracy of these expressions. For the first derivative,

f(x+ ∆x)− f(x)

∆x
= f ′(x) +

f (2)(x)

2
∆x+ · · · (3.6)

or
f(x+ ∆x)− f(x)

∆x
= f ′(x) +O(∆x). (3.7)

We use theO(∆x) symbol to illustrate the linear dependence of the truncation error on the mesh

spacing. This means that the error of the approximation is proportional to ∆x as ∆x −→ 0.

Likewise, the backward difference approximation of the first derivative of f ′ is derived from

Equation (3.4) as:
f(x)− f(x−∆x)

∆x
= f ′(x) +O(∆x). (3.8)

These approximations of f ′ at point x are said to be consistent at first-order [2, 121]. By

subtracting Equation (3.4) from Equation (3.3) we obtain the central difference approximation

to the first derivative,

f(x+ ∆x)− f(x−∆x)

2∆x
= f ′(x) +O(∆x2). (3.9)

This gives a second-order consistent approximation to f ′. Similarly, we can derive an approxi-

mation of the second derivative f (2), by adding Equations (3.3) and (3.4), which allows one to

derive the expression,

f(x+ ∆x)− 2f(x) + f(x−∆x)

∆x2
= f (2)(x) +O(∆x2). (3.10)

This is called the central difference approximation for the second derivative. On our finite

difference grid we can apply these approximations at each point xi. For instance, using a grid
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such as that illustrated in Figure 3.1, we may approximate the differential equation,

d2u

dx2
= f, (3.11)

with the algebraic system,
ui+1 − 2ui + ui−1

∆x2
= fi, (3.12)

for i=2,...,N, and ui = u(xi) (where we assume Dirichlet boundary conditions define u1 and

uN+1).

1 2 . . . i− 1 i i + 1 . . . N N + 1

x1 xN+1

∆x

Figure 3.1: An example of a 1D mesh with uniform spacing.

Next we present a simple parabolic PDE in one space dimension. This is the heat conduction

equation (or the diffusion equation as in chemical problems) which takes the following form:

∂u

∂t
= a2 ∂2u

∂x2
, (3.13)

where u = u(x, t), a2 is the diffusivity, [108]. We define the spatial domain here to be a region

Ω, whilst the temporal domain is defined to be (0, T ). On the region Ω let us create a mesh as

in Figure 3.1.

To complete this problem, we define the initial and boundary conditions as follows,

u(x, 0) = g(x), X1 < x < XN+1, (3.14)

u(X1, t) = f1(t), 0 < t < T, (3.15)

u(XN+1, t) = f2(t), 0 < t < T, (3.16)

where the functions g(x), f1(t) and f2(t) are given and this process starts when t = 0.

The generalisation of finite difference schemes to two or three dimensions is straightforward.

Following the same approach as in one-dimension, we may use the second order central differ-

ences formula for each second derivative on the uniform grid to obtain

ui−1,j − 2ui,j + ui+1,j

∆x2
+
ui,j−1 − 2ui,j + ui,j+1

∆y2
= O(∆x2,∆y2), (3.17)

where ui,j ≈ u (xi, yj) for 2 ≤ i ≤ N and 2 ≤ j ≤ M . For example, consider the discretisation
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of the 2D Poisson equation,
∂2u

∂x2
+
∂2u

∂y2
= 0, (3.18)

on the domain [X1, X2] × [Y1, Y2] with Dirichlet boundary conditions. We may approximate

this domain by a set of points (xi, yi) where

xi = X1 + (i− 1) ∆x, 1 ≤ i ≤ N + 1, (3.19)

yj = Y1 + (j − 1) ∆y, 1 ≤ j ≤M + 1, (3.20)

∆x =
X2 −X1

N
, (3.21)

∆y =
Y2 − Y1

M
. (3.22)

Here ∆x indicates the mesh size in x direction and ∆y indicates the mesh size in y direction.

The functions are approximated over these sets of points, or mesh, in terms of their values at

each node (xi, yi) [121]. A section of this finite difference grid in 2D is shown in Figure 3.2.

(i− 1, j) (i+ 1, j)

(i, j + 1)

(i, j − 1)

(i, j)

Figure 3.2: Part of a 2D mesh with each component of the five-point stencil marked as a red circle.

In Figure 3.2, we have displayed a vertex mesh of each component of the five-point stencil

marked as a red circle in 2D. We can define the Dirichlet boundary condition on boundary

points directly.

These finite difference strategies will be used in the following chapters to approximate the

solutions of nonlinear parabolic PDEs. The goal of each of these spatial discretisation methods

is to reduce the parabolic problems to initial value systems of ordinary differential equations.

These systems are discrete in space, however, they are still continuous in time [32].

Temporal discretisation schemes will be discussed in Section 3.3, however before this in the

next subsection, we will introduce some other spatial discretisation schemes that are commonly
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used elsewhere.

3.1.2 Other Spatial Discretisation Schemes

There are several different alternatives for spatial discretisation schemes. Two common choices

are the finite volume and the finite element methods, although such schemes will not be con-

sidered in this research. In the finite volume scheme a solution is approximated on a grid using

the cell average of the integral over that element. This approach is very common for hyperbolic

systems of equations which often arise from methods of advective flows, as in [90]. Finite vol-

ume schemes can also be used to find the solution of PDEs of elliptic and parabolic type [94].

However, for elliptic and parabolic problems finite difference and finite element discretisations

are much more widespread. For more detail on finite volume methods we refer the reader

to [90,133].

Next, we briefly mention finite element methods (FEM), which are used in various areas of

computational science and engineering to find approximate solutions to PDEs [47, 146]. These

schemes are often used for problems in which the domain is geometrically complex. The FEM

relies on the weak form of PDEs which makes it well suited for problems with Neumann bound-

ary conditions. As with the finite difference method, the spatial domain is covered with a set

of points.

In one dimension the solution of the governing differential equations is approximated over the

set of intervals between the points by low order polynomials between each pair of neighbouring

points (a spatial element). The set of N non-overlapping elements, or mesh, totally covers

the domain. The precise details are not described here, but the method is based upon rep-

resenting the approximate solution in terms of a set of local basis functions that interpolate

the approximation over the mesh. The approximated weak form is integrated over the set of

elements to convert the PDE system to a sparse system of algebraic equations which can then

be solved for the coefficients of the basis functions. There are many textbooks that focus on the

FEM theory and for more information, the interested reader is referred to the literature [107]

and [72,81,87,106,117] for a focus on the practical side of this method.

In this thesis, we shall focus solely on the FDM as this technique is sufficient to investigate

multilevel techniques based on local stencils. Similar multilevel solution techniques based on

local stencils from FEM or FVM are possible, however, we will not consider them in this thesis.

An interested reader can learn more about these techniques in [18,79,90,124].

Furthermore, there are other types of discretisation schemes which are based on global stencils.

For example, spectral methods use infinitely differentiable basis functions defined globally (e.g.

a Fourier basis) which are orthogonal. These schemes are less suitable for multilevel solvers

as it is not generally possible to define a suitable smoother. We direct the reader to [37] for
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further detail on the study of these methods. An example of another discretisation method is

the collocation method (see [72]).

3.2 Sparse Matrices

A sparse matrix is a matrix with the majority of its components zero. More precisely, an

N ×N matrix B is said to be sparse if the number of non-zero entries grows like O(N) as N

grows. Conversely, if the majority of its components are non-zero, then we say that this matrix

is dense. The dense matrix always requires a large amount of memory and time in order to

solve large problems, since it is necessary to store the full matrix. However, this issue does

not appear when we use sparse matrices. The FDM or FEM methods typically produce sparse

matrices. Sparse matrix algorithms can be employed for common matrix operations, and also

when storing and manipulating matrices on a computer. They typically require specialised data

structures. Sparse matrices require much less storage than dense matrices of the same size. The

advantage of a sparse matrix is that produces enormous savings in memory and floating point

operations when we are storing only the nonzero entries in some format.

There are two common sorts of sparse matrices: structured (regularly structured) and unstruc-

tured (irregularly structured). The first type is comprised of regularly structured matrices

whose non-zero entries form a regular known pattern, usually with a small number of non-zero

diagonals. The simplest examples of regularly structured matrices are matrices that consist of

only a few diagonals (e.g. bi-diagonal, tri-diagonal or penta-diagonal). The second type is com-

prised of irregularly structured matrices, which are matrices with irregularly located non-zero

entries.

The efficient algorithms have to work with these sparse matrices with data stored in the specific

storage format. There are different storage formats of sparse matrices, for example, the simplest

storage format for a sparse matrix is known as the coordinate format, COO, which is a very

flexible format. Usually, this format stores a listing of (row, column, value). Where the entries

are sorted first by row and then by column, to improve memory access times. The constructing

of the data depends on three arrays:

– an array that stores all real values (or complex) of nonzero elements of the matrix, AA,

– a corresponding integer array including their row numbers, JR,

– a corresponding integer array including their column numbers, JC.

When NNZ indicates the total number of nonzero elements, then all three arrays are NNZ

length, the number of nonzero elements.
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For example, consider the matrix whose entries are given as follows, [111,123]:

A =


16. 0. 0. 21. 0.

36. 24. 0. 15. 0.

9. 0. 8. 7. 6.

0. 0. 20. 1. 0.

0. 0. 0. 0. 11.

 .

Then the COO format gives:

AA 16. 15. 36. 24. 21. 9. 8. 11. 6. 20. 1. 7.

JR 1 2 2 2 1 3 3 5 3 4 4 3

JC 1 4 1 2 4 1 3 5 5 3 4 4

This method is very simple storage format. Another storage format is the Compressed Sparse

Row (CSR) format which represents a matrix A by three one-dimensional arrays, that respec-

tively contain nonzero values, the starting location of rows, and column indices. This format

allows fast row access. In this format, the new data construction has three arrays with the

following functions:

– A real array AA contains the real values aij stored row by row, from row 1 to n and the

length of AA is NNZ.

– An integer array JA contains the column indices of the elements aij as stored in the array

AA and the length of JA is NNZ.

– An integer array IA contains the pointers to the beginning of each row in the arrays AA

and JA. Therefore, the content of IA(i) is the location in arrays AA and JA where the

ith row begins. The length of IA is n+ 1 with IA(n+ 1) = NNZ + 1.

AA 16. 21. 36. 24. 15. 9. 8. 7. 6. 20. 1. 11.

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 16 36 9 20 11

This scheme is preferred over the COO format because it is usually more helpful for implement-

ing standard computations. Therefore, CSR is most commonly applied as the entry format in

sparse matrix software packages. An alternative format to the Compressed Sparse Row CSR

format is storing the columns instead of the rows. This format is called the Compressed Sparse

Column (CSC) format but is less commonly used.

Furthermore, sparse matrix operators and algorithms should be efficient, in terms of compu-

tational work as well as storage requirements, as mentioned above (cf [65] and [111]). In the

following section, we will consider temporal discretisation schemes.
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3.3 Temporal Discretisation

The spatial discretisations explained in the previous section are used for the nonlinear systems

of differential equations which are considered in detail in Section 5.2.1 and Section 5.2.3 in

Chapter 5. In this thesis, our foremost interest is not only in solving steady-state problems but

also to solve time-dependent problems. Consequently one has to think about suitable temporal

discretisation schemes. The schemes mainly used here are implicit multi-step methods which

will be presented in Section 3.3.2.

Now, we introduce the temporal discretisation schemes in the following subsections. Integration

methods can be divided into implicit and explicit. Explicit methods are cheap per step but

subject to some stability conditions, see [32] and [58]. These conditions tend to be especially

severe for parabolic problems and so explicit methods are not usually used. For example, in [121]

Smith describes that ∆t < C (∆x)2 for second-order parabolic systems and ∆t < C (∆x)4 for

fourth-order parabolic systems, for some constant C [12]. Implicit methods are more costly

per step, but have improved stability, allowing fewer, larger time steps, and consequently, are

widely used for such problems.

3.3.1 Implicit Versus Explicit Integration Methods

In Subsection 3.1.1 we described a semi-discrete system that is discrete in space and continuous

in time, (i.e. takes the form of an initial value system of ordinary differential equations ODEs).

Therefore, we need to obtain a fully discrete system that can be used for numerical computa-

tions. In this section, we proceed with the study of temporal discretisation schemes. Several

numerical schemes of the implicit and explicit schemes have been discussed in the literature to

solve various mathematical models in engineering and in science, see [33], [32], [85], [71] and [56].

There are many classes of explicit methods that can provide a higher order of accuracy, such

as the explicit Runge-Kutta methods which are classified as one-step (multi-stage) meth-

ods [118, 129]. There are also explicit multi-step methods (e.g. Adams-Bashforth method,

finite difference methods [33, 72]). Explicit schemes, in general, are calculated at the current

time step only from known values from the previous time steps.

The simplest example of an explicit scheme is the Forward Euler scheme. The explicit methods

are simple to solve, and this is the main advantage of these methods. Nevertheless, explicit

methods are generally only conditionally stable. In other words, the numerical solution is stable

only when the time step size is adequately small. Therefore, implicit schemes can be used to

replace explicit ones in cases where the stability requirements of the latter impose stringent

conditions on the maximum time step size.
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As implied above, implicit methods are more expensive to implement, especially for nonlinear

problems, but the advantages of these schemes are to achieve satisfactory accuracy with larger

time steps. Taking into account that one needs to solve a system of nonlinear equations at each

time step the increase in the time step size over explicit schemes may have to be very significant

to make this approach worthwhile. A simple example of an implicit scheme is the backward

Euler scheme. The choice between the explicit or implicit schemes is based upon the problems

itself that we want to solve and the accuracy that we require. Moreover, to control the issues of

conditional stability, we used the implicit techniques since these techniques have much greater

regions of stability than explicit techniques. We direct the reader to [71,72,121,139] for further

details.

We present here more detail of the simplest examples of an explicit and an implicit scheme,

known as the Forward and the Backward Euler scheme, respectively. We will be concerned with

the following general ODE initial value problem IVP:

dy

dt
= f(t, y) in (0, T ], (3.23)

with the initial condition at time t = t0 as y(t0) = y0.

The Forward Euler method which is also called the explicit Euler method is probably the

simplest method to solve the IVP in Equation (3.23). To solve the IVP in Equation (3.23) by

the Forward Euler method, we replace the time derivative by

dy

dt

∣∣
t=tn

=
yn+1 − yn

∆t
+O(∆t). (3.24)

The IVP in Equation (3.23) then reduces to

yn+1 − yn
∆t

= f(tn, yn) +O(∆t).

This gives us

yn+1
∼= yn + ∆t f(tn, yn), (3.25)

for n = 0, ...,M . We can see that given an initial condition y0, all the quantities on the right-

hand side of the equation (3.25) are known from the previous step. We say that this method is

of order one, because of the truncation error in Equation (3.24).

The Backward Euler method is an implicit scheme for solving first-order ODEs. Here yn+1 is

presented only in terms of an implicit equation. To solve the IVP in Equation (3.23) by the
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Backward Euler method, we replace the time derivative by

dy

dt

∣∣
t=tn+1

=
yn+1 − yn

∆t
+O(∆t). (3.26)

The IVP in Equation (3.23) then reduces to

yn+1
∼= yn + ∆t f(tn+1, yn+1). (3.27)

The θ-scheme is an implicit numerical scheme given here as follows:

yn+1 = yn + ∆t [θf(tn+1, yn+1) + (1− θ)f(tn, yn)], (3.28)

where θ ∈ [0, 1]. It is worth pointing out that when θ = 0 the scheme is the explicit forward

Euler scheme Equation (3.25) and when θ = 1 this scheme is the implicit backward Euler

scheme Equation (3.27) [72] and [32]. When θ = 1
2 we obtain the second-order CrankNicolson

scheme:

yn+1 = yn +
∆t

2
[ f(tn+1, yn+1) + f(tn, yn)]. (3.29)

For example, an application of this scheme can be seen in [51]. There schemes are limited in

accuracy to at most order two (θ = 1
2 ).

In the next section, we introduce a family of backward differentiation formulae. In this case,

the accuracy can have arbitrary high order.

3.3.2 A Family of Backward Differentiation Formulae

We will proceed with the study of the most popular implicit multi-step method known as the

Backward Differentiation Formulae BDF [5, 6]. These are implicit methods known to have

excellent stability [63, 85]. The general formula (or the p-step formula) for the BDF schemes

can be given as follows [6],

yn+1 =

p−1∑
j=0

αj yn−j + ∆t βf(tn+1, yn+1), (3.30)

where the superscript n + 1 denotes the unknown solution at the current time step, ∆t is the

size of the time step (which is supposed constant for this description), n−j indicates the known

solution from the previous time step, and tn = t0 + n∆t. The coefficients αj and β are param-

eters chosen so that the method achieves order p accuracy, (i.e. p denotes the order of accuracy

in time). More features of these methods can be found in [5,63,85]. The first 6 formulae of this

family are tabulated in Table 3.1 [6].

The algebraic system arising from an application of a fully implicit scheme is nonlinear if the
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PDE is nonlinear.

Table 3.1: The coefficients of the family of BDF methods in Equation (3.30) for order up to p = 6.

p β α0 α1 α2 α3 α4 α5

1 1 1

2 2
3

4
3 − 1

3

3 6
11

18
11 − 9

11
2
11

4 12
25

48
25 − 36

25
16
25 − 3

25

5 60
137

300
137 − 300

137
200
137 − 75

137
12
137

6 60
147

360
147 − 450

147
400
147 − 225

147
72
147 − 10

147

3.4 Differential Algebraic Equations

Differential Algebraic Equations DAEs can arise from the spatial discretisation of mixed PDEs

where some are time-dependent and some are not. This can occur in a broad variety of prob-

lems from engineering and science such as mechanics, electrical circuits, fluids, dynamics, and

chemical process control [5].

The most general DAE form is given by the equation

F (ẋ, x, t) = 0, t0 ≤ t ≤ tf , (3.31)

where x = x(t) = (x1(t), . . . , xn(t)) is a vector of dependent variables and suitable initial

conditions are defined, x(t0) = x0. The DAEs are not directly solvable for the derivatives of all

components of the function x because some equations are algebraic equations. Hence they are

more general than the ODE systems of the form

ẋ = F (x, t). (3.32)

A typical way to present a DAE system is to let x denote the variables described by ODEs

and y denote the algebraic variables. The DAE system may be then rewritten as follows:

ẋ(t) = f(x(t), y(t), t), (3.33)

0 = g(x(t), y(t), t). (3.34)

Additional information about DAE systems can be found in [24]. Note that the spatial dis-

cretisation for the time-dependent thin film flow model of Equations (2.31) and (2.32) takes the



Chapter 3. Introduction to Discretisation Techniques 28

form of Equations (3.32) and Equation (3.33).

This may be expressed as,

∂Y

∂t
=Fh (t, Y, Z),

0 =Fp (Y, Z),

(3.35)

where

Y = (h1, h2, h3, ..., hn+1)T ,

Z = (p1, p2, p3, ..., pn+1)T .
(3.36)

Note that we present this example in more detail in Chapter 5, where the precise definition of

Fh and Fp are discussed in the more details. In order to solve the system (3.35) by using the

θ-method, we write,

Yn+1 − Yn
4t = θ Fh (tn+1, Yn+1, Zn+1) + (1− θ)Fh (tn, Yn, Zn),

0 = Fp (Yn+1, Zn+1).

(3.37)

In the following chapter, some basic solution algorithms are introduced for the discrete algebraic

systems that arise from implicit temporal discretisation schemes.



Chapter 4

Solution Algorithms for

Algebraic Systems

4.1 Introduction

In this chapter, we introduce various standard solution methods for the algebraic systems aris-

ing from the discretisation of linear and nonlinear elliptic and parabolic PDEs and systems. We

provide an introduction to some of the most important methods in order to solve these systems

of algebraic equations. We conclude with a description of three nonlinear multilevel algorithms,

which are the focus of this thesis.

This chapter begins with a short summary in section 4.1.1 of the application of direct solvers

for linear systems of equations. In section 4.1.2, a brief overview of the variety of iterative

methods for linear and nonlinear problems is given. In section 4.2, we discuss some of the

iterative methods for linear systems in more detail. In this section, we also introduce the basic

computations required to apply multigrid algorithms for solving appropriate linear algebraic

systems. Furthermore, Krylov subspace methods are discussed, along with the discussion of

their preconditioning. We present some iterative methods for nonlinear algebraic systems in

section 4.3, including Newton’s method and some important nonlinear iterations: FAS, Newton-

Multigrid and Newton-Krylov.

29
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4.1.1 Direct Methods

Let us consider the following linear system of n equations:

A u = b, (4.1)

where A ∈ Rn×n is a coefficient matrix, u ∈ Rn is the unknown vector and b ∈ Rn is known. If

the matrix A is nonsingular then one can find a unique solution for this system which is given

by u = A−1 b. The action of the matrix A−1 is needed in an efficient way however, as this

matrix is not commonly explicitly formed [55]. These solvers produce the exact solution (up to

rounding error) in a finite and predictable number of steps. Standard methods include Gaussian

elimination, LU decomposition and Cholesky decomposition (cf [5, 32, 55, 72, 111]). For dense

matrix systems, their expense is O(n3) making them impractical for very large problems.

The discretisation of linear PDE systems most often requires a large sparse matrix system to be

solved. The advantages of this sparse matrix system is that it can be stored on the computer

with much decreased storage needs over a dense matrix, therefore, it is important to exploit the

properties of the sparse matrix in practice. Direct methods tend to be quite memory intensive

since these methods construct a decomposition of matrix A, which may not be sparse even if

A is. Therefore, for large problems, such direct methods can be prohibitive because they allow

the fill-in of matrix entries that change initially zero entries to non-zero values through the

execution of the algorithm.

By making careful use of re-ordering of the equations and the unknowns, the best sparse direct

solvers for large sparse matrices are able to provide solution methods with asymptotic time

complexity O(n3/2), where n is the number of unknowns [54]. This has been accomplished

in a number of computer packages for sparse matrix computation on sequential and parallel

architectures, notably MUMPS, a MUltifrontal Massively Parallel sparse direct Solver [3] and

SuperLU [91]. In this thesis, we have exploited the MATLAB ”backslash” function as an effi-

cient direct solver for solving large sparse linear systems such as Equation (4.1). This function

is used for solving the simultaneous linear equations in MATLAB, expressed by u = A \ b,
which relies on the structure of the coefficient matrix A, which is equivalent to LU factorizing

the matrix. However, there are many other software libraries that efficiently implement sparse

direct methods in serial and parallel [3, 14,44,91].

A sparse direct solver based upon LU factorisation includes four stages:

– Applied reordering stage, which reorders the rows and columns in an attempt to approx-

imately minimize fill-in at the factorization stage.

– Determine the non-zero structure of the factors and allocate memory efficient data struc-

tures for the factors by applying a symbolic analysis of the factorisation stage.
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– The numerical factorisation stage in which the L and U factors are formed.

– The solution stage, using the factors to execute the forward and back substitution.

Note that for a non-symmetric matrix numerical stability may also be an issue, so the numerical

factorization could cause the ordering and symbolic factorization stages to have to be revisited.

Typically, sparse direct algorithms are very good solvers and are very efficient for medium to

large problem sizes. However, for very large sparse systems we need an algorithm to have asymp-

totic complexity that is as close to optimal as possible. Such linear time complexity of O(n) is

not generally achievable using direct methods. Consequently, we will not consider sparse direct

solvers in more detail, but we will consider alternative solvers (which are the iterative methods).

In the next subsection, we continue the discussion of methods for solving linear systems of

equations that are suitable for use with large sparse problems with an alternative approach by

iterative solvers.

4.1.2 Iterative Methods

In contrast to direct solvers which obtain an exact solution (apart from rounding errors) in a

finite number of steps, with iterative methods we seek to obtain an acceptable approximation

with a finite number of iterations. A series of approximate solutions which converge to the

exact solution of the linear system are produced by iterative methods. Iterative methods may

be employed for linear or nonlinear problems. Iterative methods start with an initial guess for

the solution and successively update it until the solution is as accurate as required.

From a theoretical point of view, an infinite number of iterations could be needed to converge

to the exact solution, but, from a practical point of view, termination of the iteration occurs

when some norm of the residual (or any suitable measure of error) is as small as required.

Iterative methods for the solution of linear systems of equations abound (cf [55, 77, 111]). Sec-

tion 4.2.2 outlines stationary iterative methods such as Jacobi, weighted Jacobi and Gauss-

Seidel [55, 72]. Relaxation methods for solving large linear systems are rarely used separately

now. Nevertheless, if we combine these basic methods with more efficient algorithms such as

Multigrid and Krylov subspace methods, we can obtain new successful methods. We will de-

scribe the important multigrid techniques in section 4.2.4 in detail. In section 4.2.5, we also

describe non-stationary iterative methods such as Krylov subspace methods [24, 111], as well

as introducing preconditioning techniques. In section 4.3 we introduce some iterative solu-

tion algorithms for nonlinear systems, which include FAS, Newton’s method, Newton-MG and

Newton-Krylov [49,78,100].
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4.2 Iterative Methods for Linear Systems

In this section, we briefly discuss some iterative methods for solving linear systems of equations.

We introduce the standard Jacobi and Gauss-Seidel methods in subsection 4.2.2 as a solver.

Then, we describe the linear multigrid method in subsection 4.2.4. In the next subsections, we

explain some different types of iterative methods, namely the Krylov subspace methods, includ-

ing the Conjugate Gradient method (CG) in subsection 4.2.5.2 and the Generalized Minimal

RESidual method (GMRES) in subsection 4.2.5.3.

4.2.1 Introduction

To solve systems of linear equations, we can use alternative solvers from direct methods based

upon iterative methods. The earliest iterative methods used for solving large linear systems

are the relaxation methods. These methods are based upon providing an approximate solu-

tion and then systematically modifying the components of the approximation in a particular

order until the convergence is reached [111]. There are numerous such iterative methods avail-

able to solve large sparse linear algebraic systems that arise from the discretisation of ellip-

tic PDEs. For further information, we refer the reader to the broad literature on this field

(e.g. [5, 18,32,47,55,72,77,111] and references therein).

In this section, we will present some iterative methods that can be used to solve large sparse

linear systems that will appear later in this thesis. However, the primary interest of this the-

sis is the computation of a solution of nonlinear PDEs, and an important step towards that

goal is to compute the solutions of linear systems which arise as a key ingredient in, for in-

stance, Newton-type iterative algorithms. Discretisation of a linear differential equation or

of a linearised nonlinear differential equation (through spatial discretisation techniques such as

finite elements or finite differences) leads to a finite dimensional system given by Equation (4.1).

In sections 4.2.2 and 4.2.3, we introduced Jacobi and Gauss-Seidel methods, these typically

require the matrix A to be strictly diagonally dominant or an irreducibly diagonally dominant

to guarantee convergence. In section 4.2.4, where multigrid is introduced, it is assumed that

A matrix is the result of either direct discretization linear elliptic operator or the linearization

of discretization of the nonlinear elliptic operator. Finally, in section 4.2.5, Krylov subspace

methods that introduced for both general nonsymmetric (GMRES) and symmetric positive

definite (CG) matrices. In the following subsection, we introduce the important linear Jacobi

and Gauss-Seidel iteration methods.

4.2.2 Jacobi and Gauss-Seidel Methods

We start by introducing stationary iterative (relaxation) methods for solving linear systems,

specifically the Jacobi, weighted Jacobi, Gauss-Seidel and Red-Black-Gauss-Seidel methods.
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Following [28] and [130], we begin by describing these methods as a solver represented by the

matrix A from Equation (4.1) in split form as:

A = D − L− U, (4.2)

where D is the diagonal of A, and L and U are strictly lower and upper triangular matrices

respectively.

Let

RJ = D−1 (L+ U). (4.3)

Then Jacobi iteration in matrix form is given by

uk+1 = RJ u
k +D−1 b, (4.4)

where uk and uk+1 are the approximations of the solution u in iterations k = 0, 1, 2, ..., n. In

this method, we only use the values from the previous iteration which means that we cannot

use the components of the new approximation as soon as they are updated.

Let

Rω = (1− ω)I + ωRJ . (4.5)

Then weighted or (damped) Jacobi iterations in matrix form are given by:

uk+1 = Rω u
k + ωD−1 b, (4.6)

where ω ∈ R is the weighting factor that is usually chosen as ω ∈ (0, 1]. If ω = 1 we yield the

original Jacobi iterations. We will perform experiments with different values of the ω parameter

in the following chapter, where this choice can be important with the algorithms used in this

thesis.

Now we define the Gauss-Seidel method which is an effective alternative method to the Jacobi

method. This method can use the components of the new approximations as soon as they are

computed, which means that we can improve the iterations by using the most up-to-date values

of the approximation. Starting from Equation (4.2) we let

RG = (D − L)−1U, (4.7)

and then the Gauss-Seidel iterations are given by:

uk+1 = RG u
k + (D − L)−1 b. (4.8)
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We define the Successive Over-Relaxation (SOR) method, which is the weighted-Gauss-Seidel

method, as follows. We choose ω > 0 and let

RSOR = (D − ωL)−1. (4.9)

In matrix form the iterations are given by:

uk+1 = RSOR [(1− ω)D + ω U ]uk +RSOR ω b, (4.10)

which reduces to the Gauss-Seidel method, when ω = 1. When a different weighting parameter

ω ∈ (0, 2) is used this method is also known as Successive Over-Relaxation (SOR) method. The

convergence (or not) of these iterations relies on the properties of the matrix A in the linear

operator Equation (4.1) (cf [8, 61,67,77,111]).

4.2.3 Red-Black-Gauss-Seidel

The strategy of the Red-Black-Gauss-Seidel (RB-GS) iteration is concerned with the order of

the unknowns. The advantage of this method (the Red-Black ordering or odd-even ordering)

is not immediately apparent, however, for the Gauss-Seidel method, the order in which the

variables are updated is relevant, particularly if there is an underlying spatial discretisation,

such as FDM. Each red node only has black neighbours in all directions; furthermore, each

black node only has red nodes in all directions. If we are doing Gauss-Seidel with this ordering,

then, we will update the solution at all the red nodes first, followed by all the black nodes.

Because no red node depends on data from any other red node, the red nodes can be treated

in any order without changing results; they just have to be treated before the black nodes.

Similarly, the black nodes can be treated in any order, followed by the red nodes. This makes

Red-Black-Gauss-Seidel method popular for parallel computer implementation as it reduces

communication overheads. Our implementations are always sequential, however, we still apply

the Gauss-Seidel method with this order (Red-Black) in this thesis as it turns out to perform

within multigrid in an efficient manner, as we will see in the later chapters.

For example we illustrate the Red-Black-Gauss-Seidel method by considering a simple model

as follows [28,130],

−uk−1 + 2uk − uk+1 = h2bk, 1 6 k 6 n− 1

u0 = un = 0.

This system of n− 1 algebraic equations arises from the finite difference discretisation of a 1D
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Laplacian, which we can write in component form as,

uk =
1

2
(uk−1 + uk+1 + h2bk), k = 1, ..., n− 1. (4.11)

We present here the Red-Black-Gauss-Seidel (RB-GS) iteration, in component form first by

using the updating of all even components:

u2k =
1

2
(u2k−1 + u2k+1 + h2b2k), k = 1, ...,

n− 1

2
; (4.12)

and after that we update all the odd components by

u2k+1 =
1

2
(u2k + u2k+2 + h2b2k+1), k = 0, ...,

n− 1

2
. (4.13)

Figure 4.1 illustrates the red-black ordering for 1D and 2D models respectively.

x

y

Figure 4.1: A sketch displays on the top a 1D mesh and on the bottom a 2D mesh with the red
points (•) and the black points (•) for representation of the Red-Black-Gauss-Seidel method. The red
points correspond to points whose (i, j) index sum is even in 1D and 2D.

The iterative methods considered to this point typically converge very slowly. In most cases, the

reason behind this is that the high-frequency components of the error are damped very quickly

but the low-frequency components very slowly. Such iterative methods have a beneficial feature

known as the smoothing property. This smoothing property means that it is possible to reduce
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the higher frequency error components very quickly within a few iterations. In the next sec-

tion, we will further discuss the smoothing property, where its use becomes valuable within the

context of multigrid methods. It is not generally efficient to use these relaxation methods as

solvers for systems arising from elliptic and parabolic PDE discretisations because of their slow

convergence. Nevertheless, these methods remain popular as components of multigrid methods

because of their smoothing properties (cf [28, 47,121,130,137,138]).

Consequently, next, we will describe the essential techniques that we will use in this thesis,

namely the multilevel algorithms, where we will use these relaxation methods not as solvers

but as smoothers.

4.2.4 Multigrid Methods

Southwell described in his 1946 paper [122] the idea of applying multiple grids to reduce over-

all computational work by solving a system on a coarse grid and after that interpolating the

solution to develop the initial guess on a fine grid. Multigrid methods begin from this idea

but make greater use of the available grids. In 1977, Brandt published a paper in which he

described an effective geometric multigrid method for solving linear and nonlinear boundary

value problems. This seminal paper was entitled ”Multi-Level adaptive solutions to boundary-

value problems” [19]. The fundamental contribution in Brandt’s Multigrid method was the use

of a series of coarser grids to accelerate the solution on the finest grid. In Brandt’s paper, there

are three main concepts. Firstly, he demonstrated the use of the Multigrid method on linear

boundary value problems using a sequence of coarser grids, known as a V-cycles. Secondly,

Brandt shows the use of the Multigrid method with the Full Approximation Scheme (FAS) al-

gorithm for nonlinear boundary value problems. That is, rather than solving the error equation

on the coarse grid; he solves a modified version of the whole problem on each grid to account

for the nonlinear nature. Ultimately, he incorporated the idea of adaptive mesh refinement,

which extends the FAS algorithm with the Multi-Level Adaptive Technique MLAT [19]. Since

then multigrid principles have become widely used, not just for the application of a numerical

solution of differential equations and optimisation but also, in control theory, computational

tomography and particle physics. For more details see [17, 19, 83, 130, 137, 145], for example.

Furthermore, there is a notable introductory book [28] explaining the principles of multigrid,

which describes in detail linear and nonlinear problems, and how to apply the finite difference

multigrid method for solving PDE systems.

In this section, we describe some of the fundamentals of multigrid methods for solving linear

systems of PDEs of elliptic type. Multigrid methods are iterative solvers and very efficient

for solving the sparse systems of algebraic equations that arise from discrete PDEs. Multigrid

methods are termed scalable methods since these methods can solve a linear system with n

unknowns with only O(n) computational operations, so-called optimal efficiency. Furthermore,
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the multigrid algorithm is directly suitable for both linear and nonlinear systems and can show

behaviour that is independent of mesh and the types of boundary conditions.

Multigrid methods use simple iterative methods, such as weighted Jacobi and weighted Gauss-

Seidel to reduce a high-frequency component of the error. This process is called (pre or post)

smoothing, and it can be exploited in the multigrid methods. Therefore, we will use these meth-

ods as a smoother throughout this thesis. These classical iterative methods are effective when

the error has a high frequency. Consequently, through using a few iterations of the iterative

method on a fine grid, we can obtain a large decrease in the highest frequency components

of the error. Then, through transferring data to a coarse grid, where the error again is of a

higher-frequency (relative to the grid spacing), the iterative method can again quickly reduce

the highest frequency components of the error. In other words, once the error is smooth on a

grid, it is possible to move to the coarse grid to reduce the lower frequency error components

more quickly (since further components of the error appear high-frequency on the coarse grid).

When the coarsest grid is eventually reached, we then use a coarse grid solver to get an exact

solution on that grid and prolongate (interpolate) these results back to the finest grid to get

the final solution. This process overall is much less costly than solving only on the fine grid

because the coarser grids have fewer grid points and the convergence rate is accelerated. The

overall algorithm is called a Multigrid (MG) method.

There are two broad classes of multigrid methods: one is the Geometric MultiGrid (GMG),

and the other is the Algebraic MultiGrid (AMG). The GMG method operates on a hierarchy

of defined grids, whereas the AMG method does not need a hierarchy of grids to be produced,

which means that instead of using geometric data on a sequence of grids, it uses algebraic data of

the matrix associated with the discrete system of equations. Some of the development, analysis

and applications of AMG methods are presented in [27, 93, 132, 143]. Furthermore, multigrid

methods can be used as preconditioners for other iterative methods [83]. We will consider this

in later sections. We continue first with an introduction to the linear GMG method as a solver.

4.2.4.1 Geometric Multigrid (GMG)

Multigrid methods are motivated by a couple of basic considerations: first, many iterative

methods have a strong error smoothing effect if they are employed for discrete elliptic (and

parabolic) problems, and second, the smooth error can be well expressed on the coarser grid

where its approximation is computationally cheaper. In this subsection, we will introduce some

common notation and describe the linear GMG method. We first introduce the discrete

problems on the fine grid (which we refer to here as grid L, see below) such that

AL uL = bL, (4.14)
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Algorithm 1 Linear Geometric Multigrid GMG V-cycle

Function vL = LMGV-cycle (AL, vL, bL, L)
1: Update the solution vL by applying ν1 iterations of the selected smoother on

the fine grid (Pre-smoother)
2: Calculate the residual, rL = bL −AL vL
3: Restrict the residual, rL−1 = IL−1

L (rL)
4: Set the initial guess eL−1 to be 0
5: if (L− 1 = Lmin) then Solve the problem on the coarsest grid (AL−1eL−1 = rL−1)
6: else eL−1 = LMGV-cycle (AL−1, eL−1, rL−1, L− 1)

7: Interpolate the error eL−1 from coarse grid to fine grid eL = ILL−1(eL−1)
8: Calculate the correction vL = vL + eL

9: Update the solution vL by applying ν2 iterations of the selected smoother on
the fine grid (Post-smoother)

Grid level 1

Grid level 2

Grid level 3

Grid level 4Finest grid

Coarsest grid

x

y

Figure 4.2: An illustration of the geometric multigrid grid hierarchy using four grid levels in two
dimensions.
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where AL is the coefficient matrix, uL is the exact solution vector to the system of equations, bL

is the vector of the right-hand side, and the superscript L indicates the fine grid (or level). We

seek vL which indicates an approximate solution to the system of equations. The error eL, is

the difference between the true solution uL and the approximate solution vL, and is given by

eL = uL − vL. (4.15)

We will then compute the residual (or defect) rL on the fine grid which is defined as follows:

rL = bL − AL vL, (4.16)

and satisfies the error equation as follows,

AL eL = rL. (4.17)

Importantly, the residual rL may be computed, however, the error eL is usually unknown. Note

that the relation between the error and the residual in the linear multigrid, can be recognized

from:

AL eL = AL (uL − vL)

= AL uL −AL vL

= bL −AL vL

= rL.

(4.18)

In a GMG we use a sequence (ΩL) of finite-dimensional (coarser) grids such that

ΩL−1 ⊂ ΩL, L = 2, ..., J, (4.19)

where ΩJ is the finest grid, on which the solution is desired. Hence, we choose the grids such

that they form a hierarchy

Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ ... ⊂ ΩJ . (4.20)

Let VL represent the sequence of finite-dimensional function spaces which can be represented

on grid ΩL: then

V1 ⊂ V2 ⊂ V3 ⊂ ... ⊂ VJ , (4.21)

where each V L, L = 1, ..., J is defined by grid ΩL. We consider the discretised system of

equations (4.14). To develop a linear multigrid V-cycle recursively, we apply two operators

to move functions between the different function spaces. These operators are the restriction

operator IL−1
L , and interpolation (or prolongation) operator ILL−1, where the subscripts and
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superscripts L and L− 1 indicate the fine and coarse level, respectively:

IL−1
L : V L → V L−1, L = 2, . . . , J, (4.22)

ILL−1 : V L−1 → V L, L = 2, . . . , J. (4.23)

We want to solve the problem (4.14) on grid ΩL, when L 6= 1 for the exact discrete solution

uL ∈ V L. After a number of iterations of linear geometric multigrid has been implemented;

we obtain vL ∈ V L which is the approximate solution to the exact solution uL. We can obtain

the error approximation eL−1 via the error Equation (4.17) but on a coarser grid. To solve the

problem

AL−1 eL−1 = rL−1 (4.24)

is much less expensive than on the fine level L. There are two ways of forming the matrix

AL−1 which are: to discretize the PDEs on the coarse grid (which is what we are doing in this

thesis) or to use Galerkin projection approach as described in [28, 130, 137]. We then compute

an updated approximation of v as follows:

vupdate = vL + ILL−1 e
L−1.

This is an exact coarse grid correction, where vL denotes the approximation to (4.14) on grid

ΩL, and eL−1 denotes the exact solution to the residual equation on grid ΩL−1. If there are

only two grids in the hierarchy, in this case, the coarse grid problem will be solved exactly

(though its interpolation onto the fine grid will not be exactly eL). The linear geometric multi-

grid algorithm (Algorithm 1) does not solve the error Equation (4.24) exactly, however, instead

it computes an approximate update to the solution on the fine grid by recursively solving the

coarse grid equation by the same linear multigrid algorithm. Figure 4.2 displays a hierarchy of

four uniform grids in 2D, where the coarsest grid is grid level 1 and the finest grid is grid level 4.

Now we discuss the linear multigrid method in more detail, where the superscripts L and L− 1

indicate here the fine and coarse level respectively. We must define three operators on the

grid as part of our MG algorithm: restriction, interpolation and smoothing. IL−1
L denotes the

restriction operator. We choose the full weighting operator in two-dimensions as a restriction

operator from [28] given by

vL−1
i,j =

1

16
[vL2i−1,2j−1 + vL2i−1,2j+1 + vL2i+1,2j−1 + vL2i+1,2j+1

+ 2 (vL2i,2j−1 + vL2i,2j+1 + vL2i−1,2j + vL2i+1,2j) + 4 vL2i,2j ],

(4.25)

for 1 ≤ i, j ≤ n
2 − 1. The interpolation (or prolongation) operator ILL−1 transfers the error

approximation eL−1 from the coarse grid to the fine grid, where ILL−1v
L−1 = vL. We consider
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here the linear interpolation operator in two-dimensions given by

vL2i,2j = vL−1
i,j ,

vL2i+1,2j =
1

2
(vL−1
i,j + vL−1

i+1,j)

vL2i,2j+1 =
1

2
(vL−1
i,j + vL−1

i,j+1)

vL2i+1,2j+1 =
1

4
(vL−1
i,j + vL−1

i+1,j + vL−1
i,j+1 + vL−1

i+1,j+1),

(4.26)

where 0 ≤ i, j ≤ n
2 − 1.

Several standard iterative (relaxation) methods, such as the weighted Jacobi, the Gauss-Seidel

and the weighted Red-Black-Gauss-Seidel methods, have the smoothing property, which is very

important for the multigrid methods as we have mentioned earlier. We can state that it-

erative methods possess the smoothing property if these methods are effective at reducing

high-frequency components of the error. The purpose of smoothing is to allow the numerical

resulting iteration error to be approximated well on a coarser grid. According to reference [47],

a formal definition of smoothing property is:

‖ A (I − P−1A)kx ‖≤ η(k) ‖ x ‖A with η(k) −→ 0 as k −→ ∞, (4.27)

for all vectors x ∈ Rn, where ‖ x ‖A= (x, x)
1
2

A =‖ xT Ax ‖2, η must be independent of the

grid size and P is the preconditioning which is approximate the coefficient matrix A which we

will discuss in Subsection 4.2.5.4. In practice, these means that we can obtain a substantial

decrease of the high-frequency components of the error by applying a few sweeps of these iter-

ative methods on the fine grid (cf [16,17,28,130]).

We have to use a number ν of smoothing steps before and after the coarse grid correction

step; it is not necessary for the number of steps before and after to be the same number. We

implement ν1 steps of an iterative smoothing method on the fine grid (pre-smoothing step),

calculate the residual of the current fine grid approximation, and then restrict the residual

to the coarse grid with the restriction operator IL−1
L . We then solve the coarse grid residual

equation (or approximately solve it using a recursive call). Next, we interpolate the correction

applying a prolongation (interpolation) operator ILL−1 for the error to the fine grid, then add

the interpolated correction to the current fine grid approximation (coarse grid correction step).

We implement ν2 steps of an iterative method on the fine grid (post-smoothing step). One MG

iteration (V-cycle) of the linear geometric multigrid algorithm is described in Algorithm 1. This

iteration can be repeated until a suitable norm of the residual is achieved, or a user-defined

stopping criterion is satisfied.

Obtaining an optimal efficiency may be problem dependent but it is often the case that these
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procedures converge well. Such V-cycle procedures involve exact solutions on the coarsest grid,

with the application of a suitable smoother on each fine grid (cf [16,17,28,111,138,145]).

One essential merit for multigrid methods is that the number of V-cycles that are required

for convergence is independent of the fine mesh level J . Hence, the V-cycle represented in

Algorithm 1 can be repeated until a user-defined stopping criterion is met, usually a suitable

norm of the residual. In the following subsection, we describe multigrid cycle strategies in more

detail.

4.2.4.2 Multigrid Cycle Strategies

There are many cycle strategies for multigrid such as V-cycle, W-cycle and Full-cycle [130,145].

In the previous subsection, we presented a V-cycle approach, which includes one coarse grid

correction only at each level of the multigrid cycle. In other words, the multigrid V-cycles start

by using the pre-smoother on the finest grid and finish with the post-smoother on the finest

grid with only one coarse grid correction within each level of V-cycle. Various other potential

strategies for cycling between the different grid levels are also possible. We describe here some

different multigrid cycle strategies.

Another strategy is the W-cycle, where after we have applied the smoother at every level we

then apply two coarse grid corrections successively. This means that one additional coarse grid

correction is required after each new interpolation. The development of the W-cycle increases

the number of coarse grid solves used in one cycle, simultaneously with raising the total number

of smooths undertaken at each grid level. In some situations, this can make the algorithm

converge faster (i.e. in fewer cycles than the V-cycle). However, the W-cycle has additional

cost for each cycle. An example of the application of the W-cycle, we refer the reader to [92].
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V-Cycle

Fine grid

pre-smooth
post-smooth

Coarse grid

Restriction Interpolation

Figure 4.3: A representation of the V-cycle for 2D used in the multigrid iteration of the linear Equation
(4.1) using four grid levels [67].

The last multigrid cycle strategy that we will describe here is named the Full-cycle. It is

different from the two types described above in that it starts on the coarsest grid and then

interpolates the solution to the next finer level. Then a single V-cycle (or W-cycle) is used

followed by further interpolation of the solution to the next finer level. On reaching the finest

grid a standard cycle is repeated [130,145]. It is worth noting that the Full-cycle is just applied

once at the start of the calculation. For more details, the reader is referred to [39] where an ap-

plication that includes the Full-cycle and the W-cycle can be found. In Figure 4.3, one V-cycle

is illustrated for a multigrid method. Figures 4.4 and 4.5 illustrate two V- and W-cycles re-

spectively, whilst Figures 4.6 and 4.7 illustrate the Full-cycle using V- and W-cycles respectively.
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Two V-cycles

Grid level 1

Grid level 2

Grid level 3

Grid level 4

Figure 4.4: Structure of two V-Cycle iterations of the four-grid multigrid method. Within the cycles,
• displays the smoothing that is used; � indicates the exact solution on the coarsest grid.

Two W-cycles

Grid level 1

Grid level 2

Grid level 3

Grid level 4

Figure 4.5: Structure of two W-Cycle iterations of the four-grid multigrid method. Within the cycles,
• displays the smoothing that is used; � indicates the exact solution on the coarsest grid.
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One full V-cycle

Grid level 1

Grid level 2

Grid level 3

Grid level 4

Figure 4.6: Structure of a full V-Cycle iteration for the four-grid multigrid method. Within the cycles,
• displays the smoothing that is used; � indicates the exact solution on the coarsest grid.

One full W-cycle

Grid level 1

Grid level 2

Grid level 3

Grid level 4

Figure 4.7: Structure of a full W-Cycle iteration for the four-grid multigrid method. Within the cycles,
• displays the smoothing that is used; � indicates the exact solution on the coarsest grid.

In the following subsection, we will describe the Algebraic Multigrid AMG method.

4.2.4.3 Algebraic Multigrid (AMG)

In subsection 4.2.4.1 we have described the GMG method which uses a grid hierarchy and

therefore is suitable, in particular, for sequences of structured grids. In this subsection, we con-

sider a more general approach, namely Algebraic MultiGrid (AMG). This approach is suitable

for both structured and unstructured grids and therefore problems with complicated spatial

domains. Consequently, we can use this technique when we cannot use the GMG methods, i.e.
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when there is no hierarchy of grids available. This method was first introduced in the early

1980s [20–22] since when a lot of studies have been developed. There are many books and

papers that have been written on AMG such as [26,28,95,126,127,130].

Algebraic Multigrid approaches may also be used in the form of a preconditioner for other

iterative methods instead of as a solver in itself. In this thesis, we will use AMG methods

as a part of our preconditioner in order to accelerate the convergence of our outer iteration.

In particular, we will use this method with a Krylov subspace approach to achieve optimal

efficiency [70]. However, we start with a brief introduction to AMG as a solver.

Algebraic multigrid methods generate a coarse grid problem from a fine grid problem in an

algebraic way. These methods can, therefore, be efficient in solving large systems derived from

discretisation undertaken on unstructured grids, e.g. [20, 28, 48, 93, 128, 131, 132]. Algebraic

multigrid requires solely the coefficients in the matrix A of problem Equation (4.1), without

explicit data of the problem geometry mesh or discretisation. This method defines inter-grid

transfer operators, coarse grids, and coarse grid equations depending only on the matrix coef-

ficients. The coarse grid system is determined by division of the set of unknowns (nodes) into

two disjoint sets: the fine and coarse unknowns, based on the properties of the matrix and an

appropriate algebraic smoothness condition. Following this, an approximation is formed that

only involves the coarse unknowns, along with transfer operators between levels. Once defined,

multigrid cycles can be used in a similar way to GMG, but now using only the algebraically

defined grid operations. The advantages for AMG, are that it can be used when only the matrix

information is provided or when the GMG is hard to apply. Nevertheless, there can be disad-

vantages for AMG methods: they can require a large computational expense while building the

matrix hierarchy and the transfer operators [101]; and they may be less robust than GMG (i.e.

the coarsening process may break down).

We have introduced in the previous subsections some of the fundamentals of linear multigrid

methods. In the following subsection, we will turn to the Krylov subspace methods, another

family of iterative methods, which are also very successful in practice.

4.2.5 Krylov Subspace Methods

In this subsection we will describe some of the different types of Krylov subspace methods or

non-stationary iterative methods. Moreover, we provide a short description of preconditioning

techniques.
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4.2.5.1 General Technique

Krylov subspace methods describe a large class of methods that have been very successful and

powerful for solving linear equations, including, those arising from discretisations of partial

differential equations. Krylov subspace methods belong to the family of subspace correction

methods [142] and projection methods [111]. In the particular case that an operator is symmet-

ric positive definite, we describe the subspace correction structure. The first use of the Krylov

subspace method was in the 1950s [69]. These methods are also very well established in the

literature (cf [8, 49,55,77,102,110,111,113] amongst many others).

Krylov methods are formed as a minimisation problem over the span of a set of Krylov ba-

sis vectors generated by matrix-vector products of the matrix under consideration. The idea

of these methods is that we are working in a high-dimensional space and the goal is to find

an appropriate increasing sequence of low-dimensional subspaces in which to find approximate

solutions. Krylov subspace methods work by forming a basis from the sequence of successive

matrix powers multiplied by the initial residual. The approximations to the solution are then

made by minimising the residual over the subspace created by the span of each basis set. There

are various types of Krylov subspace methods, such as for solving a sparse symmetric positive

definite system, one uses Conjugate Gradient (CG), for solving a sparse symmetric indefinite

system, one uses Minimal Residual Method (MINRES), and for a general sparse nonsymmetric

system, one uses Generalized Minimal RESidual (GMRES) method [111]. We will discuss two

of the most common Krylov subspace methods in the following sections: the CG method and

the GMRES method.

Let A be a matrix which we assume to be sparse and nonsingular (e.g. from Equation (4.1)) so

that the evaluation of r0 → Ar0 is O(n). Let u0 be the initial approximation to the solution

of problem (4.1). For a given vector b consider the kth Krylov subspace

Kk = span{r0, A r0, .., Ak−1 r0}, k = 1, 2, 3, . . . (4.28)

where r0 = b − Au0 is a nonzero vector. Clearly Kk ⊂ Kk+1 and the objective is simply to

find for each k the solution uk ∈ Kk which best solves the equation Auk = b, that is the one

that minimises the appropriate norm (for instance the A-norm) ‖ Auk − b ‖, and show that

as k → n the solution uk tends to the true solution u. Note that although such an approach

should yield the exact solution after n iterations (in the absence of rounding errors), in practice

we treat Krylov subspace methods as iterative techniques and seek a suitable approximation

uk in fewer iterations.

In practice for general problems, it is unavoidable that the given span of Kk becomes almost

linearly dependent for large k. This is highly undesirable when using floating point arithmetic,
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therefore an important modification, for an effective implementation of such methods, is to

also compute an orthogonal basis for Kk iteratively. This is performed by applying Arnoldi’s

method, in which some orthogonalisation procedure is executed. Common choices are Gramm-

Schmidt, Householder and Lanczos orthogonalisation [111]. In the following sections, Krylov

subspace methods for the solution of linear systems are discussed, covering various types of

Krylov subspace methods and the preconditioning technique.

4.2.5.2 The Conjugate Gradient (CG) Method

The Conjugate Gradient (CG) method is an iterative method and is defined as an orthogonal

method on the Krylov subspace. This method was discovered in the 1950s [69], as a direct

method. Over the last 40 years, the CG method has developed into a broad application as an

iterative method and has generally replaced the family of fixed point iterative methods. We use

this method if matrix A in Equation (4.1) is an n×n symmetric positive definite (SPD) matrix

only. The CG method is an effective mechanism for solving large sparse symmetric positive

definite systems. For further details, the reader is referred to articles such as [69,77,111,119].

There is a relation between the CG method and the Lanczos method for estimating eigenval-

ues of symmetric matrices [86]. Specifically, like the CG method, the Lanczos method (for

symmetric matrices) has the great property that orthogonal basis can be calculated for Krylov

subspaces using just a two-term recurrence relation. Therefore, they provide very efficient solu-

tion algorithms for linear systems. Features of the connection between conjugate gradient and

Lanczos method are discussed in detail in [47,55,111].

It is noteworthy that the CG method is very efficient and its iteration can continue without

storing a basis for the whole Krylov subspace in this method. In the case of an SPD matrix

A, we can reduce the orthogonalisation step to a 2-term recurrence relation. This makes the

cost of each CG iteration strictly O(n) when A is sparse. For a general Krylov method (e.g.

GMRES) the cost grows with the iteration number k.

4.2.5.3 The Generalized Minimal RESidual (GMRES) Method

The Generalized Minimal RESidual (GMRES) method implements the residual minimization

idea by constructing uk from the least squares method based on the constructed orthonormal

basis for Kk which is derived from an Arnoldi-based method. The main issue to be addressed

in this approach is to implement this most efficiently via QR decomposition and Hessenberg

matrices (cf [8, 112]).

In the GMRES method, all of the k basis vectors that define the subspace must be stored. The

orthogonalisation step requires the use of all previous basis vectors. In each iteration of the

GMRES method, a matrix-vector product is needed to make a new basis vector. The method
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terminates based upon a calculation of the residual (i.e. when the norm of the residual is

sufficiently small). Hence, in the GMRES method, as for other iterative techniques, it is not

important to form matrix A explicitly: the method only requires the matrix-vector product.

From a theoretical point of view, the GMRES algorithm’s storage requirements per iteration

grow linearly as the iteration progresses. Therefore, in practice, it is important to use restarts

based upon a maximum Krylov dimension to control storage requirements. For a detailed de-

scription of the algorithm, see [8, 111,142,144].

When we distinguish between the CG and GMRES methods, we observe that one advantage

of the CG method is that this method obtains the solution without the need to store the basis

vectors, as is the situation for GMRES. The CG method is very efficient and attractive com-

putationally. Therefore, the CG method is less memory intensive and is computationally less

expensive than GMRES for symmetric positive definite matrices, (cf [8,55,111]). The GMRES

method is more expensive but can be applied to general non-symmetric and/or indefinite ma-

trices, for which CG will not converge. We have used the GMRES method in this thesis since

we deal with non-symmetric matrices in the mathematical models that are solved here. For a

discussion regarding an efficient algorithm and implementation of GMRES scheme, the reader

is referred to [111].

In the following section, we introduce the main concepts behind preconditioning techniques.

4.2.5.4 Preconditioning

The speed of convergence of the solution methods described above can often be enhanced by a

process called preconditioning. In principle, this is the selection of a matrix or an operator P

that transforms the equation Au = b to one of the standard forms:

(P−1A)u = P−1 b

which is termed left preconditioning, or

(AP−1)(Pu) = b

which is termed right preconditioning, or

(P−1
1 AP−1

2 )u = P−1
1 b

which indicates both left and right preconditioning (where P = P1 P2). P is chosen such that

a faster rate of convergence is obtained, thus reducing the number of iterations required. It is

most common to select P by one of two general ways:

– P is an approximate factorisation of A.
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– P−1 is an approximate inverse of A.

It is often the case that such matrices P can be found by a careful analysis of the problem [10].

An example is given in the case when one is solving the Laplace equation with spatially varying

coefficients, and where P corresponds to the discretisation of the Laplacian with constant

coefficients where the action of the inverse P−1 can be computed efficiently. In these methods,

one never computes the full matrix P−1A, only vector evaluations of P−1Au are ever computed.

The design of a good preconditioner P should be guided by the following conditions:

– The matrix P should be a good approximation to A and computationally cheap to com-

pute.

– The action of the matrix P−1 should computationally cheap to compute.

– The eigenvalues of AP−1 should be restricted away from zero and infinity and should be

clustered into a small number of sets.

The development of preconditioners is a vast, open research area. For the CG method, which

applies to an SPD matrix A, the convergence rate is determined by the spectral condition

number κ of the matrix A, which is the ratio

κ =
λmax
λmin

(4.29)

between the maximum and the minimum eigenvalues of A. The convergence of the CG method

relates the error before and after n steps of the CG iteration (in [77,111]) and may be bounded

by

‖u− un‖A ≤ 2

(√
κ− 1√
κ+ 1

)n
‖u− u0‖A, (4.30)

where the A-norm is defined as follows: ‖u‖2A = (u, u)A = uT Au. The CG method converges

very quickly in the A-norm if the spectral condition number of the symmetric positive definite

operator A is approximately equal to one which means that κ =
λmax
λmin

≈ 1. The drawback of

CG (and GMRES) iterations is that the convergence rate relies on the spectrum of the operator

A. We state that a matrix A is poorly conditioned if the spectrum is not bounded as n −→∞
(cf [9, 55,111,119]).

For some systems of equations, it is natural to write the linear system Equation (4.1) in block

form as follows,

Au =

(
K DT

B 0

)(
x

y

)
=

(
f

g

)
, (4.31)

where K is ∈ Rn ×Rn and D,B ∈ Rn ×Rm. This equation, named a saddle point system, can

arise in practical applications such as the discretisation of Stokes equation. We can solve the

Equation (4.31) iteratively using any iterative methods, especially Krylov subspace methods
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such as MINRES (e.g [135]) or GMRES (e.g [112]) which are appropriate in the symmetric

(if D = B) and nonsymmetric (if D 6= B ) problems, respectively. We will consider the

nonsymmetric problem in this research. We can precondition the coefficients of matrix A by,

PD =

(
K 0

0 S

)
, (4.32)

where PD is a block diagonal preconditioner and the Schur Complement is S = BK−1DT .

Equation (4.32) is an example of a block diagonal preconditioner [135]. Another preconditioner

for the nonsymmetric problem uses the form as follows,

PT =

(
K DT

0 S

)
, (4.33)

where PT is the block upper triangular preconditioner and the Schur Complement is again

S = BK−1DT . The Krylov method with the PD block diagonal and the PT block triangular

preconditioning requires only three and two iterations to converge respectively [47,97,135,136].

These preconditioners, with exact Schur complement matrices, are theoretically important as

they have a bounded convergence rate independent of the problem size. Nevertheless, the ex-

act Schur complement is impractical to compute due to requiring involves an inverse matrix,

making it expensive to compute and requiring large memory and storage. Consequently, prac-

tical preconditioners replace S with cheaper sparse approximations. The advantage of these

preconditioners is to accelerate the algorithm and to decrease the number of iterations required

for convergence while not growing significantly the amount of computational work required for

each iteration.

In general, there is no single best preconditioner, however, to obtain a good preconditioner for

the problems that we are dealing with we try to remain close to the original problem structure,

and use our knowledge of the problem [136]. Overall, preconditioned Krylov-subspace methods

represent another class of potentially optimally efficient iterative methods. The final efficiency

depends crucially on the efficiency of the preconditioning process.

This concludes the overview of solution algorithms for linear systems and provides a basis for the

discussion of solution algorithms for nonlinear systems presented in the next section. We direct

the readers for more details of preconditioning techniques and algorithms for preconditioned

Krylov methods to read [47,97,111,119,135,136].
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4.3 Iterative Methods for Nonlinear Systems

In this section, we consider two classes of methods: nonlinear multigrid methods and variations

of Newton’s method. The first method presented is the nonlinear multigrid FAS method in

subsection 4.3.2. The standard Newton method is introduced in subsection 4.3.3. We then

discuss two extensions to the basic Newton’s method: the Newton-MG method in subsection

4.3.3.2 and the Newton-Krylov method in subsection 4.3.3.3.

4.3.1 Introduction

This subsection is devoted to a description of nonlinear algebraic systems in order to define the

notation used. A typical nonlinear algebraic system of n equations in n variables (e.g. resulting

from the discretisation of a nonlinear PDE) (see [5, 24]) can be written as:

f1(u1, u2, . . . , un) = 0

f2(u1, u2, . . . , un) = 0

f3(u1, u2, . . . , un) = 0

...

fn(u1, u2, . . . , un) = 0.

(4.34)

This nonlinear system can be formulated in vector notation as:

F(u) = 0, (4.35)

where

u = [u1, u2, ..., un]T ,

is a vector of n unknown values that we are seeking and

F(u) = [f1(u1, u2, ..., un), f2(u1, u2, ..., un), ..., fn(u1, u2, ..., un)]T , (4.36)

is a set of nonlinear equations.

Note that, in general, we do not know in advance if a solution for Equation (4.35) exists, and, if

it does, whether it is unique. However, we proceed on the assumption that at least one solution

does exist and return to multigrid methods in order to search for such a solution.

4.3.2 Nonlinear Multigrid FAS

The linear multigrid scheme, described in Section 4.2.4, can be generalised to nonlinear systems.

In this section, we will be using multigrid methods for solving nonlinear systems of equations



53 4.3. Iterative Methods for Nonlinear Systems

based upon the Full Approximation Scheme (FAS). The first description of FAS was in [19].

Since then, it has been used in many studies and was shown to lead efficiently to the solution

of some systems of nonlinear equations (e.g. [16,17,145] and many others). FAS seeks to apply

the ideas from the linear multigrid iteration and use them directly in a nonlinear multigrid

iteration. The general nonlinear Equation (4.35) may also be written in the form:

A (u) = b, (4.37)

where A is nonlinear in the unknown a, and b does not depend on u, and u, b ∈ Rn. Given

an estimate v of the solution u, we can define the error e = u − v, as we have defined earlier

for a linear system. We start by explaining that the important difference between linear and

nonlinear algebraic systems is in the relationship between the residual and the error. In the

standard linear multigrid case, the error equation is Ae = r and we can determine this error

by solving the error equation. Now the residual is r = b−A(v), so when we subtract Equation

(4.37) from this residual we obtain,

A(u)−A(v) = r. (4.38)

In general A(e) = A(u− v) 6= r, which means that we cannot solve the simple error equation as

we have done in the linear multigrid. Therefore, we must consider Equation (4.38) as a residual

equation. We can write Equation (4.37) in the following equivalent form,

A(v + e)−A(v) = r, (4.39)

i.e.

A(v + e) = r +A(v). (4.40)

The idea behind the coarse grid correction part of the Full Approximation Scheme FAS is to

approximate Equation (4.40) on a coarser grid. Consequently, in this scheme the coarse grid

problem is solved for the full solution, v + e, rather than the error, e, but with a modified

right-hand side.

In order to solve the nonlinear problem using FAS, we need to implement (pre or post) nonlinear

smoothing as well as the coarse grid correction. We will describe here the nonlinear smoothing

first, then we will describe the overall FAS algorithm after that.

We start by smoothing the solution using a few sweeps from a pre-smoother on the fine grid in

the FAS algorithm. To do this, we use the nonlinear Jacobi or nonlinear Gauss-Seidel iterations

which are described in [28]. An approximation solution vk is updated by using the nonlinear
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Jacobi iteration as follows,

vk+1
i = vki +

Fi(v
k)

Ji(vk)
, i = 1, ..., n, (4.41)

where the superscripts k + 1 and k are the current and previous iterations of the nonlinear

Jacobi iteration, respectively, Ji(v
k) is the first derivative of Fi(v

k) with respect to vki . For the

nonlinear Gauss-Seidel iteration one simply applies the most up-to-date components of v in the

evaluation of Fi and Ji on the right-hand side. The smoothing properties of the nonlinear ω-

weighted Jacobi and the nonlinear ω- weighted Gauss-Seidel will depend upon the particular

nonlinear algebraic discrete system. Consequently, optimal choices for ω cannot be obtained

easily but may be estimated after a sequence of numerical experiments. To describe the FAS

algorithm, we return to the residual Equation (4.38) and we will use it to obtain the coarse grid

correction. We suppose that uL is the exact solution on grid L,

AL(uL) = bL, (4.42)

and that vL is an approximate solution. We now compute the residual on the fine grid as

follows:

rL = bL − AL(vL). (4.43)

Then, we restrict both the residual rL and the approximate solution vL from the fine grid to

the coarser grid:

rL−1 = IL−1
L (rL), (4.44)

vL−1 = IL−1
L (vL), (4.45)

using the standard restriction operations [28, 130]. Therefore, the Equation (4.40) is approxi-

mated on the coarser grid with the modified right-hand side as follows:

AL−1 (vL−1) = bL−1, (4.46)

bL−1 = rL−1 +AL−1 (vL−1). (4.47)

If Equation (4.46) is solved for vL−1 then the error approximation eL−1 can be computed on

the coarse grid as follows:

eL−1 = vL−1 − vL−1. (4.48)

Then we interpolate the error eL−1 from the coarse grid to obtain eL on the fine grid.

eL = ILL−1(eL−1). (4.49)
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This gives the correction vector which is applied to the fine grid solution.

vL = vL + eL. (4.50)

Then we smooth this updated solution with a few sweeps from the post-smoother on the fine

grid, see Algorithm 2. The nonlinear multigrid FAS is a popular implementation of a nonlinear

multigrid method and has been applied effectively for many systems of nonlinear equations,

e.g. [51–53,62,74,96,109,116].

We have presented the first of the nonlinear multilevel algorithms, the FAS algorithm, in this

subsection. In the following subsection 4.3.3, we will introduce the Newton method which is

often used to linearise nonlinear systems, and we will use this as a basis for further algorithms,

namely Newton-Multigrid 4.3.3.2 which is a Newton iteration that uses a multigrid solver for

each linear solve, and the Newton-Krylov method.

Algorithm 2 Nonlinear multigrid (FAS) algorithm for the solution of the nonlinear system.

Function: vL = FASV cycle(vL, bL, L)
1: Update the solution vL by applying ν1 iterations of the selected smoother on the fine grid

(Pre-smoother)
2: Calculate the nonlinear residual rL = bL −AL (vL) .
3: Restrict the residual rL−1

0 = IL−1
L rL on the coarse grid L− 1.

4: Restrict the solution vL−1
0 = IL−1

L vL on the coarse grid L− 1.
5: Calculate the modified right-hand side bL−1 = rL−1

0 + AL−1(vL−1
0 ) on the coarser

grid.
6: if (L− 1 = Lmin) then Solve the problem on the coarsest grid (AL−1(vL−1) = bL−1)
7: else vL−1 = FASV cycle(vL−1

0 , bL−1, L− 1)

8: Calculate the error approximation eL−1 on the coarse grid eL−1 = vL−1 − vL−1
0 .

9: Interpolate the correction equation from coarse grid to the fine grid eL =
ILL−1e

L−1.
10: Calculate the correction equation to the fine grid vL = vL + eL.
11: Update the solution vL by applying ν2 iterations of the selected smoother on the fine grid

(Post-smoother)

4.3.3 Newton’s Methods

In this section, we will introduce different types of inexact Newton methods as well as two multi-

level algorithms to solve the linear algebraic system of equations that arise at each Newton step.

In subsection 4.3.3.1, we introduce the Newton method in general. Newton’s method provides

a global linearisation of nonlinear systems. That means that the result is a linear system at

each nonlinear iteration which requires some appropriate iterative linear solver. Therefore, we

will present two different types of multilevel algorithms. The first one, presented in subsection

4.3.3.2 is the combination of the Newton method (outer-iteration) with a multigrid method
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(inner-iteration) for the linear system. The second algorithm, presented in subsection 4.3.3.3, is

the combination of the Newton method (outer-iteration) with a Krylov method (inner-iteration)

for the linear system.

4.3.3.1 General Algorithm

Newton’s method is very well established and one of the most popular methods for solving

nonlinear equations and systems (cf [42,43,49,77,78,100]). In this section, we describe how this

method works. Suppose we need to solve the scalar nonlinear equation F (u) = 0. By using a

Taylor expansion with an initial guess u0 we can write, [11],

F (u0 + δ) = F (u0) + δF ′(u0) +
δ2

2
F ′′(ξ), (4.51)

for some ξ between u0 + δ and u0. By neglecting the second order term, assuming that F (u0 +

δ) = 0 (i.e. u = u0 + δ) and solving for δ we can obtain an improved approximated solution

u0 + δ, where

δ = −F ′(u0)−1F (u0). (4.52)

Now we can extend the Newton method for solving a system of n nonlinear equations with n

unknowns straightforwardly from the scalar Newton method. We assume F : Rn → Rn is a

differentiable function and that all the partial derivatives of F with respect to u exist. The

iterative approach converging on a solution assumes that we have some current approximation

uk, k = 0, 1, 2, .... We can obtain the following formula, analogous to (4.52), for an updated

approximation uk+1:

uk+1 = uk −
(
∂F

∂u
(uk)

)−1

F(uk). (4.53)

In order to solve the nonlinear system (4.35), we are using Equation (4.53) to generate a

sequence of approximations u1, u2, ..., uk; where (∂F∂u (uk)) is the n × n Jacobian matrix of

partial derivatives,

Jij =
∂Fi
∂uj

, i = 1, 2, . . . , n, j = 1, 2, . . . , n,

evaluated at the current solution uk. We can write this matrix in full as:

J(uk) =


∂f1
∂u1

∂f1
∂u2

∂f1
∂u3

. . . ∂f1
∂un

∂f2
∂u1

∂f2
∂u2

∂f2
∂u3

. . . ∂f2
∂un

...
...

...
. . .

...
∂fn
∂u1

∂fn
∂u2

∂fn
∂u3

. . . ∂fn
∂un

 . (4.54)

Solving Equation (4.53) requires the inversion of an n×n matrix at every Newton iteration (in

practice the solution of an n × n linear system at each Newton iteration). For implementing

the system (4.53), we divide the iterative method into two steps as follows:
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– We find the vector δ by solving the n× n linear system

J(uk) δ = −F(uk). (4.55)

We can solve the system (4.55) for δ by using a standard numerical method for a system

of n linear equations.

– Following this we use the equation

uk+1 = uk + δ, (4.56)

in order to update the solution uk. Then we apply Equation (4.55) and Equation (4.56)

iteratively until we meet some suitable convergence or failure criteria, for example, until

the following convergence condition is satisfied:

‖F(uk+1)‖ < Tol, (4.57)

where Tol is a user provided value.

The Newton method is extremely popular due to its local quadratic convergence. However,

this performance requires a good initial guess and precise convergence properties are problem

dependent (see [42,78,100]).

There are a wide variety of Newton-type methods, some of which will be reviewed here. In the

monograph [42] Deuflhard divided Newton methods into various classes. The first one is that

described above, termed the exact Newton method for general nonlinear problems. In this form,

the linear system requires the exact numerical solution of the linear equations (4.55). However,

the drawback of this method is that at each step we require to solve a system of linear equations

by applying a direct method. This can be costly especially when the number of unknowns is

large.

Consequently, we will consider a second class of Newton methods: the inexact Newton methods.

These methods solve the linear system approximately, or approximate the Jacobian (one can

approximate the Jacobian in different ways), or both. For instance, when F(u) = 0 represents a

system of nonlinear equations, which is obtained from the discretisation of a PDE, the Jacobian

matrix is often sparse. As a result, sparse iterative solvers may be applied to produce a Newton

method that is more efficient applying a dense direct solver. The Newton iteration is defined to

be the outer iteration, and the linear iterative steps applied to obtain an approximate update

are defined to be the inner iteration. The full scheme then consists of an approximate inner

solve at each Newton step k in the inexact Newton method.
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There are various types of inexact Newton methods. For example, an inexact Newton method

that computes an approximate solution to the Newton equations in a form such that

J(uk) δk = −F (uk) + rk, k = 0, 1, . . . , (4.58)

uk+1 = xk + δk, (4.59)

‖ rk ‖
‖ F (uk) ‖ ≤ ηk, (4.60)

where rk is the residual, {ηk} is the (decreasing) forcing sequence which is used to control the

level of accuracy; we assume that this sequence is uniformly less than one. If ηk = 0, this rep-

resents the exact Newton’s method. In this method, for example, we solve the linear equation

approximately for the Newton step, rather than approximate the Jacobian (cf [41,42,46]).

Another type of inexact Newton method is the simplified Newton method [42]. This method is

defined by keeping the Jacobian fixed (frozen) during the full iterations:

J(u0) δk = −F (uk), k = 0, 1, . . . (4.61)

uk+1 = xk + δk. (4.62)

Since we use the old Jacobian approximation the computational expense per iteration is reduced

at the potential cost of growing the number of iterations and probably reducing the convergence

domain of the Newton iterations.

A further enhancement to Newton’s method is the so-called globalised Newton method. In this

thesis, we apply Newton’s method to linearise the nonlinear system of equations that arise from

the finite difference discretisation of nonlinear PDEs. We are interested in finding optimal ways

to solve these linear systems. For boundary value PDE problems, an initial approximation is

often not given, and it may be hard to obtain a good initial approximation. However, if the

convergence relies on the quality of the initial solution, it may be that the initial approxima-

tion is not close enough to guarantee convergence and consequently, even the exact Newton’s

method diverges. In this circumstance, a global Newton method may be more suitable. This

method is able to compensate for an initial poor approximation to the solution by using damp-

ing strategies. As an example, a global Newton method is defined using a damping parameter

λk, (see [7, 42,43]).

The global Newton method is given as,

J δk = −F (uk), (4.63)

uk+1 = uk + λk δk , k = 0, 1, . . . (4.64)
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where the parameter λk > 0 is chosen ideally such that

‖F (uk+1)‖ ≤ ‖F (uk)‖. (4.65)

This cannot be guaranteed, and a separate algorithm for choosing λk must be used at each

Newton iteration.

We now present a final type of inexact Newton method which are Newton-like methods. In this

approach, we replace the Jacobian by some approximation such that

M(u) δk = −F (uk), k = 0, 1, . . . (4.66)

uk+1 = uk + δk, (4.67)

or replace the Jacobian by some fixed Jacobian J(v) with v 6= u0. For example, we may consider

”sparsing” a large Jacobian, e.g. ignoring fill-in during factorization, to allow the use of a direct

sparse solve for the Newton-like corrections and thus decrease the work per iteration.

4.3.3.2 Newton-Multigrid

In this subsection, we consider an inexact Newton method combined with a multigrid solver

applied to a general nonlinear problem. This method is common in practice, and called Newton-

multigrid, this algorithm includes the linear multigrid which is used as a solver for the linear

system of equations. We use this algorithm to solve the discrete nonlinear system arising from

the discretisation of a nonlinear PDE. We can apply the Newton method which we introduced in

Subsection 4.3.3, to linearise the nonlinear system, which requires a linear system to be solved

at each Newton step. Hence, we apply the multigrid method for solving the linear system.

Therefore, we will use a combination of Newton’s method with the linear multigrid method in

order to solve the linear system that appears at each Newton iteration. Let

F (u) = 0, (4.68)

be a nonlinear problem, where F is a set F = {F1, F2, ..., Fn} of n nonlinear equations and u is a

vector u = {u1, u2, .., un} of n unknown values (see [78,100]). In order to solve this system using

the Newton-MG method, we have to consider two different types of systems and iterations: the

nonlinear system that we solve with Newton iterations, which is the outer iteration, and the

linear system that we solve with the MG iterations, which is the inner iteration. We start by

solving Equation (4.68) using Newton method as follows:

J(v) δ = −F (v), (4.69)

v = v + δ. (4.70)
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where

J(v) =
∂F (v)

∂u
,

F (v) is the nonlinear residual of the discrete PDE, and v is an approximate solution to the

exact solution u. We now solve the system (4.69) using Algorithm 1.

At the next Newton iteration v is changed, therefore the Jacobian has changed on the finest

grid, and all of the coarser grids as well. Hence, once we have updated v,

v = v + δ, (4.71)

we must restrict this value to the coarse grid as follows:

vL−1 = IL−1
L (vL), (4.72)

so, as to compute the new Jacobian on each grid. We repeat the whole process at each Newton

iteration. In this subsection, we have described how one may apply Newton’s method to lin-

earize the nonlinear system of equations that arise from the finite difference discretisation of a

nonlinear PDE, and then we show how to apply the MG method to the linear system. For the

interested reader, the Newton-MG approach is successful in practice (see [29,60,66,73,82] where

one can find that the results give mesh-independent convergence). Now we turn our attention

to the last nonlinear multilevel approach in this thesis that uses multilevel principles which is

a Newton-Krylov algorithm with a multilevel preconditioner.

4.3.3.3 Newton-Krylov

Newton’s method is an attractive method to solve nonlinear systems of PDEs due to its

quadratic convergence. When we apply this method for the nonlinear system, we require a

linear solver to solve the linear system at each Newton iteration. It is reasonable to solve

the linearised system approximately using an iterative method such as Multigrid, as in the

Newton-MG algorithm in Subsection 4.3.3.2, or using Krylov methods as in the Newton-Krylov

algorithm. In this subsection, we consider the Newton-Krylov algorithm.

We have already introduced the overall idea of Krylov methods in Subsection 4.3.3.1. Here

we describe the Newton-Krylov method which has the inexact Newton methods as the outer

iteration for the nonlinear system and a Krylov subspace solver as the inner iteration for the

linear system at each nonlinear iteration. The combination of these two methods that make

the Newton-Krylov method one of the most powerful methods to solve nonlinear algebraic sys-

tems. The Krylov subspace approach produces a range of iterative linear algebra methods that

include the standard conjugate gradient CG method for symmetric positive-definite SPD sys-

tems [69,77,111] and methods for nonsymmetric linear systems such as the generalized minimal
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residual method (GMRES) [8,112]. Which method can be used is determined by the properties

of the linearised system, which in turn depends on the nonlinear system itself. Here we solve

with an iterative Krylov method using GMRES since the Jacobian system is nonsymmetric for

the problems we consider.

Krylov-subspace methods are commonly used with a preconditioner that accelerates the con-

vergence of the linear iterations. In order to reduce the number of GMRES iterations and speed

this algorithm up, several preconditioners have been developed in this research. One important

choice of preconditioner is the application of a single V-cycle of multigrid or algebraic multigrid.

This can work well for a problem arising from the discretisation of a single nonlinear elliptic

PDE but may not be suited to more general problems [16,47,97,136]. An interested reader may

find more details in the literature (cf [9, 16, 30, 42, 78, 82, 98] and [144] amongst many others).

For nonlinear systems, we can consider block-based preconditioners, where multilevel algorithm

may be applicable to part of the preconditioning process. Such preconditioners will be designed

and discussed as part of this work.

4.4 Summary

This thesis is essentially concerned with the development and application of nonlinear multi-

level approaches to the solution of nonlinear elliptic and parabolic systems of PDEs. Therefore,

we have presented three common nonlinear multilevel approaches: the first approach is the

nonlinear multilevel algorithm (which is the FAS algorithm), then, a linear multigrid method

in combination with Newton’s method gives the second approach, and the third multilevel ap-

proach is Newton-Krylov with a multilevel preconditioner. In the remainder of this thesis, we

consider how to apply these three sophisticated nonlinear multilevel algorithms to nonlinear

systems arising from discretising systems of nonlinear PDEs.

All these three approaches can deliver optimal efficiency for certain nonlinear systems as we

will see in the later chapters. It is the purpose of this thesis to investigate which is the most

efficient. Furthermore, for the Newton-Krylov approach, we will develop novel preconditioners

that are suited to problems involving PDE systems.

In Brabazon’s thesis and paper [16,17] a comparison was made between the Newton-Multigrid

and FAS methods for a single PDE. We extend this work to the comparison between these

two methods for solving a nonlinear system of PDEs of equations and add the third nonlinear

multilevel method for solving the nonlinear system of PDEs.

For the purposes of this thesis, we are interested in implementing these different nonlinear

multilevel algorithms for two examples of nonlinear system of PDEs, which will be done in the
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later chapters. In the next chapter, we describe their application to the first model in this thesis,

that is the thin film flow system of equations introduced in Sections 5.5 and 5.9. After that,

we apply them to the second model, namely the Cahn-Hilliard-Hele-Shaw system of equations

introduced in Section 6.3.



Chapter 5

Thin Film Flow System

5.1 Introduction

The focus of this chapter is on developing and contrasting efficient and accurate numerical

solvers for systems of nonlinear parabolic partial differential equations: specifically, those mod-

elling time-dependent thin film flows in two dimensions. The cases of steady-state flows and

one-dimensional problems are also considered. A further aim of this chapter is to examine the

performance of detailed numerical implementations for three different nonlinear multilevel algo-

rithms. We consider these implementations in both steady-state (elliptic) and time-dependent

(parabolic) cases, and we make comparisons between them using MATLAB. In all cases, our

computational approach uses the finite difference method FDM in space, as we have described

in Chapter 3, and implicit time integration with backward differentiation BDF1 in time, which

is also described in Chapter 3, for the transient cases.

To solve nonlinear time-dependent problems we must use a nonlinear solver at each time step.

Therefore, at each time step the resulting fully discrete nonlinear algebraic system is solved,

with the fsolve MATLAB function in the one-dimensional case, or by using three different non-

linear multilevel schemes in the two-dimensional case. The numerical results in 1D and 2D are

shown for the computation of steady-state profiles, allowing comparison and validation against

previously published work in the one-dimensional case (cf [53,76,145]). We discuss two different

mathematical models in the one-dimensional case, as a prelude to the two-dimensional case,

selecting the better of these models to then use in two dimensions.

We begin by considering two different mathematical models for the same physical problem

63
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(thin film flow) in the one-dimensional case. We refer to these as Kalliadasis’s model, [76],

and Sellier’s model, [51, 53, 145]. Kalliadasis’s model is a third-order PDE given by Equation

(2.26), whereas Sellier’s model is given by two coupled second-order PDEs (2.32) and (2.34)

in the steady-state case. We approximate both models by using the FDM on regular grids in

Section 5.2. In the first instance, we solved both discrete problems using the MATLAB fsolve

function. This is used to demonstrate the superiority of Sellier’s scheme hence only this scheme

is considered for subsequent investigation. In these investigations, we contrast three different

nonlinear multilevel schemes in 2D. Moreover, we have solved Sellier’s model in 2D for both

the steady-state and the time-dependent cases with all three of the nonlinear multilevel schemes.

The multilevel schemes considered in this chapter are able to solve a nonlinear algebraic system

of equations, arising from discretization of our elliptic and parabolic problems, optimally with

a computational expense of O(N) for N unknowns. We will compute the 2D case with each

nonlinear multilevel solution method for both steady-state and time-dependent problems and

present their results in sections 5.4 and 5.8. Finally, we will discuss and compare computational

performance for all cases individually.

5.2 Steady-State Thin Film Flow Solving in 1D

In this section the discretisation methods described in the previous chapter are applied to two

mathematical models for the thin film flow in one-dimension:

– The Kalliadasis’s model, Equation (2.26).

– The Sellier’s model, Equations (2.32) and (2.34).

We are interested in computing the steady-state solution, which means that this solution de-

pends only on the spatial discretisation. In other words, the steady-state solution requires us

to set ∂h
∂t = 0 in the mathematical model and obtain an ordinary differential equation in x to

be solved.

5.2.1 Kalliadasis’s Model

In this subsection, we study the FDM approximation of the solution of the Kalliadasis’s model,

formulated as a third-order ODE, Equation (2.26) which is described in Chapter 2. We take a

particular topography bed shape s as follows,

s(x) = D

[
1 +

1

π

(
− tan−1

(x
δ

)
+ tan−1

(
x−W
δ

))]
, (5.1)

where x is the Cartesian coordinate. Also, D and W are the trench (or bump) depth and width,

respectively, and δ is the parameter that controls the steepness of the trench (or bump) sides
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(see Figure 5.1). This equation allows computation of the steady-state one-dimensional thin

film flow over a topography of shape s(x). The depth of the film is the dependent variable h(x).

The free surface shape is h(x) + s(x). For more details, the interested reader may consult [76]

and [53].

The Kalliadasis’s model Equation (2.22) may be rearranged to the form of the system of Equa-

tions (2.26) as we have described previously in Chapter 2. After that, we discretise by using a

finite difference method FDM as we will see in this section.

We define a function F : R3(N+1) → R3(N+1) consistent with Equation (2.27) such that the

unknowns are grouped together as:

U =



u1

...

uN+1

v1

...

vN+1

w1

...

wN+1



. (5.2)

We want to create the discrete nonlinear system of equations F (U) = 0, by applying the finite

difference scheme. We define a uniform grid xi = X1 + (i− 1)∆x, for i = 1, 2, . . . , N + 1 and

∆x = X2−X1

N , and the domain is X1 < x < X2 where every point xi in the grid has 3 unknowns

ui, vi and wi. In other words, every point xi in the grid requires a solution (ui, vi, wi). Then

for j = 1, . . . , N we discretise as follows:

Fj(U) =
uj+1 − uj
4xj

− 1

2
(vj + vj+1),

FN+j(U) =
vj+1 − vj
4xj

− 1

2
(wj + wj+1),

F2N+j(U) =
wj+1 − wj
4xj

− 1

2

[
(−sxxx)j +

1− u3
j

3u3
j

+ (−sxxx)j+1 +
1− u3

j+1

3u3
j+1

]
,

(5.3)

where

(sxxx)(j) =
(s(j+2) − 2s(j+1) + s(j))− (s(j) − 2s(j−1) + s(j−2))

2(4x)3
. (5.4)
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Boundary conditions described in Equation (2.30) are imposed as constraints of the form:

F3N+1(U) = (u1 − 1)2 + (uN+1 − 1)2 − λ = 0,

F3N+2(U) = v2
1 + v2

N+1 − λ = 0,

F3N+3(U) = w2
1 + w2

N+1 − λ = 0.

(5.5)

Here λ is a prescribed penalty parameter. In practice, we require a small λ for an accurate

solution. Note that this is the exact scheme used in [76] with boundary conditions that Kalli-

adasis imposed.

Now, we have a system with 3(N + 1) nonlinear algebraic equations and 3(N + 1) unknowns

(uj , vj , wj) for j = 1, 2, . . . , N + 1. In other words, we have a potentially solvable nonlinear

system. We can now attempt to solve this system by using the MATLAB function fsolve [78]

with a chosen initial guess.

In practice, we require a continuation approach (to obtain convergence) that defines a trans-

formation from a simple case to the desired nonlinear problem. We have used the continuation

parameter λ to define the transformation, and we solve a sequence of nonlinear equations using

the previous solution as the initial data for the next solution. We started with λ = 1 and

then gradually reduced it. We have also used the parameter δ for a continuation indicating

the steepness of the topographical features from Equation (5.1). We started with a large δ

(shallow slope) and then gradually reduced it. In practice (see Table 5.1) we reduce λ first

until sufficiently small, then reduce δ to produce the designed geometry of the bed. Conse-

quently, we introduced a better initial guess every time and then solved the discrete system for

this model by using the MATLAB fsolve function. In the following subsection, we discuss the

results obtained using this solution strategy for this model.

5.2.2 Empirical Results and Discussion for Kalliadasis’s Model

In this subsection, we present our numerical results for Kalliadasis’s model solved using MAT-

LAB’s fsolve function. We show nine test situations with trenches of widths 1, 5 and 10 and

depth D=1 in Figures 5.1, 5.2 and 5.3, respectively. Different numbers of grid points were used

as well. The topography s is defined by Kalliadasis et al. in [76] and afterwards by Gaskell et

al. in a similar way in [53] and presented in Equation (5.1).

Figures 5.2b and 5.3b display non-physical solutions of the nonlinear system Equations (5.3)

and (5.5) which implies that these systems may have multiple solutions. The solutions shown

in these figures are solutions of this system but are not the ones of physical interest. Figures

5.1c, 5.2c and 5.3c depict the results of Kalliadasis’s model with large values of δ (i.e. a shallow

sloping wall). It is clear from these figures that this model can work well with a fine grid for
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large values of δ. However, according to the results in Figures 5.1, 5.2 and 5.3 we have also

found that Kalliadasis’s model does not work well in every situation, which means that Kalli-

adasiss model does not give satisfactory accuracy in every situation. This may be due to the

presence of the third derivative sxxx term in Equation (2.26). This term is not approximated

smoothly, and it requires more grid points in order to be accurate. It is worth to note that this

model can be accurate but needs increasing numbers of grid points for a small value of δ.

In order to provide further details of the continuation strategy employed to obtain the results

in Figures 5.1 to 5.3, we show in Table 5.1 the intermediate cases for solving Kalliadasis’s model

with 401 mesh points, D = 1 and W = 1. We solve this model with the starting value of λ = 1

and δ = 0.5 and then we reduce both. We introduce a better initial guess at each stage through

continuation and then solve the discrete system for this model.

Table 5.2 shows the numerical calculations based on Kalliadasis’ model with 401 mesh points

and different values of λ, δ and W = 1, 5 and 10. Each row corresponds to the equivalent

row in Table 5.1 and the ”iterations” column gives the number of iterations taken by fsolve.

Table 5.3 shows the equivalent results of numerical calculations for Kalliadasis’s model with

801 mesh points. It is apparent that it is very difficult to get convergence as λ→ 0 for small δ.

Consequently, it can be seen from the data displayed in Table 5.4 that the model gives much

better results if δ = 0.5 (and so the bed topography is artificially smooth).

To summarise, the scheme introduced in [76] proved to be expensive, unreliable and also can

converge to non-physical solutions as well. Therefore, we now consider an alternative model to

solve the same problem more efficiently, without the problematic third derivative terms.
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(a) N = 400 and δ = 0.025.

(b) N = 800 and δ = 0.025.

(c) N = 800 and δ = 0.5.

Figure 5.1: The bed shape s is shown in blue (bottom curve), and the numerical solution in green (top
curve), for D = 1 and W = 1. We see that the numerical solution requires large values of N unless the
bed shape is artificially smooth.
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(a) N = 400 and δ = 0.025.

(b) N = 800 and δ = 0.025.

(c) N = 800 and δ = 0.5.

Figure 5.2: The bed shape s is shown in blue (bottom curve) and the numerical solution in green (top
curve), for D = 1 and W = 5. We see that the numerical solution requires large values of N unless the
bed shape is artificially smooth.
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(a) N = 400 and δ = 0.025.

(b) N = 800 and δ = 0.025.

(c) N = 800 and δ = 0.5.

Figure 5.3: The bed shape s is shown in blue (bottom curve) and the numerical solution in green (top
curve), D = 1 and W = 10. We see that the numerical solution requires large values of N unless the
bed shape is artificially smooth.
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Table 5.1: The continuation process with values λ = [1, 0.1, 0.01, .001, 0.0001] and
δ = [0.5, 0.4, 0.2, 0.05, 0.025].

λ δ
1 0.5
0.1 0.5
0.01 0.5
0.001 0.5
0.0001 0.5
0.0001 0.4
0.0001 0.2
0.0001 0.05
0.0001 0.025

Table 5.2: Newton iterations for different cases for Kalliadasis’s model with 401 mesh points, D = 1,
W = 1, 5 and 10, λ = [1, 0.1, 0.01, 0.001, 0.0001] and δ = [0.5, 0.4, 0.2, 0.05, 0.025] (see Table 5.1).

W=1 W=5 W=10
Iterations Converge Iterations Converge Iterations Converge
9 Yes 9 Yes 9 Yes
6 Yes 6 Yes 6 Yes
5 Yes 5 Yes 5 Yes
5 Yes 5 Yes 103 Yes
4 Yes 6 Yes 104 Yes
4 Yes 104 Yes 102 Yes
6 Yes 104 Yes 103 Yes
31 Yes 104 Yes 108 Diverge
7 Yes 102 Yes 106 Diverge
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Table 5.3: Newton iterations for different cases for Kalliadasis’s model with 801 mesh points, D = 1,
W = 1, 5 and 10, λ = [1, 0.1, 0.01, 0.001, 0.0001] and δ = [0.5, 0.4, 0.2, 0.05, 0.025](see Table 5.1).

W=1 W=5 W=10
Iterations Converge Iterations Converge Iterations Converge
10 Yes 10 Yes 9 Yes
6 Yes 6 Yes 6 Yes
5 Yes 5 Yes 5 Yes
5 Yes 5 Yes 103 Yes
4 Yes 6 Yes 104 Yes
4 Yes 103 Yes 104 Yes
6 Yes 102 stall 112 stall
15 Yes 103 stall 111 stall
11 Yes 109 Diverge 132 Diverge

Table 5.4: Newton iterations for different cases for Kalliadasis’s model with 801 mesh points, W = 1, 5
and 10, D = 1 and δ=[0.5].

λ W=1 W=5 W=10
- Iterations Converge Iterations Converge Iterations Converge

1 10 Yes 10 Yes 9 Yes
0.1 6 Yes 6 Yes 6 Yes
0.01 5 Yes 5 Yes 5 Yes
0.001 5 Yes 5 Yes 103 Yes
0.0001 4 Yes 6 Yes 104 Yes

5.2.3 Sellier’s Model

Our motivation here is to find the numerical solution for the fully-developed thin film flow

model described by Equations (2.31) and (2.32) and to contrast this approach with that of

Kalliadasis’s, described in the previous subsections. To make this comparison, we begin by

considering a simple case, namely, Sellier’s model to solve the same problem in 1D [53, 115].

This model is described by two coupled second-order ODEs for p(x) and h(x) where:

p− ∂2

∂x2
(h+ s) = 0, (5.6)

∂

∂x

(
h3

(
3
∂p

∂x
+ 1

))
= 0. (5.7)
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We will use the FDM approximation to approximate Equations (5.6) and (5.7). This results in

a nonlinear system F (U) = 0 involving the vector of unknowns U , defined as follows:

U =



h1

...

hN+1

p1

...

pN+1


. (5.8)

We considered in 1D the equivalent version of Sellier’s model which are Equations (5.6) and

(5.7) these are scaled slightly differently from the other version in 2D, as we described early in

Chapter 2 in Section 2.2.2. We considered this version due to the fact that this model is consis-

tent with Kalliadasis’s model and we can make a direct comparison between these two models

in 1D. The version of Sellier’s model in 2D that we will carry on with are in Equations (2.31)

and (2.32).

We now approximate Equations (5.6) and (5.7) with the FDM for the derivatives in the x

direction. In this discretisation, we replace the derivatives by central difference approximations

on a uniform grid, where every point xi in the grid has 2 unknown values pi and hi. In other

words, every point xi in the grid requires a solution (pi, hi). The resulting discrete problem is

as follows:

pi −
[
hi+1 − 2hi + hi−1

(4x)2

]
−
[
si+1 − 2si + si−1

(4x)2

]
= 0,

i = 2, . . . , N,

(5.9)

1

4x

( (
hi + hi+1

2

)3(
3

(
pi+1 − pi
4x

)
+ 1

)
−
(
hi + hi−1

2

)3(
3

(
pi − pi−1

4x

)
+ 1

))
= 0,

i = 2, . . . , N.

(5.10)
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We define the following nonlinear equations

[Fp(U)]i = pi −
[
hi+1 − 2hi + hi−1

(4x)2

]
−
[
si+1 − 2si + si−1

(4x)2

]
= 0,

[Fh(U)]i =
1

4x

( (
hi + hi+1

2

)3(
3

(
pi+1 − pi
4x

)
+ 1

)
−

(
hi + hi−1

2

)3(
3

(
pi − pi−1

4x

)
+ 1

))
= 0,

i = 2, . . . , N.

(5.11)

These equations together represent a nonlinear system of 2(N − 1) equations with 2(N + 1)

unknowns. We set four boundary conditions to complete the system at i = 1 and i = N + 1 as

follows,

h1 = 1,

hN+1 − hN
4x = 0,

p1 = pN+1 = 0.

(5.12)

In the following subsection, we will solve this model with the MATLAB fsolve function.

5.2.4 Empirical Results and Discussion of Sellier’s Model

We present the numerical solutions of Sellier’s model computed with MATLAB’s fsolve function

in this subsection. The numerical solutions will use different values of width W = 1, 5 and

10. Table 5.5 shows that the numerical solutions converge well for Sellier’s model, with a small

number of Newton iterations, for various choices of δ and D = 1, W = 1, 5 and 10. Figure 5.4

shows plots of the numerical solution of Sellier’s model with δ = 0.001. The bed shapes s are

shown in red (bottom curve), and the numerical solutions are in blue (top curve). We see that

the numerical solutions are always smooth with different values for the trench.
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(a) The trench with D = 1 and W = 1.

(b) The trench with D = 1 and W = 5.

(c) The trench with D = 1 and W = 10.

Figure 5.4: The bed shape s is shown in red (bottom curve) and the numerical solution with N = 400
is in blue (top curve). We see three different cases for the trench when solving Sellier’s model.
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Table 5.5: Newton iterations using fsolve MATLAB function for Sellier’s model with D = 1, W = 1, 5
and 10 with different values of δ.

δ W=1 W=5 W=10
- Iterations Converge Iterations Converge Iterations Converge

0.7 5 Yes 5 Yes 5 Yes
0.5 4 Yes 5 Yes 5 Yes
0.3 4 Yes 4 Yes 4 Yes
0.1 5 Yes 5 Yes 5 Yes
0.05 4 Yes 5 Yes 5 Yes
0.01 4 Yes 4 Yes 4 Yes
0.001 4 Yes 4 Yes 4 Yes

A comparison of Tables 5.2 and 5.5 demonstrates that the convergence of the solutions for

Sellier’s model is much better than the convergence of the solutions for Kalliadasis’s model,

with a smaller number of iterations and greater reliability.

5.2.5 Discussion and Comparison

In the previous subsections, numerical experiments with Kalliadasis’s and Sellier’s models in

one-dimension were presented; both used MATLAB’s fsolve function in the steady-state case.

From these experiments, we see that one of the clear advantages of Sellier’s model is that we

do not need to use continuation to get a suitable initial guess since it is converging quickly

and reliably from the basic initial guess h0 = 1 and p0 = 0. Hence, the nonlinear thin film

flow system can be solved far more reliably using Sellier’s model rather then Kalliadasis’s model.

We have validated our results against existing published results in [76, 145], (see Figures 5.20-

5.21 in pages (164-166) in [145], against Figure 5.4 in this chapter). What we have found is

that Sellier’s model is more robust than the model that Kalliadasis used, therefore, we will

only use Sellier’s model for the rest of this thesis. In the following section, we will describe the

time-dependent discretisation with fixed time step for Sellier’s model of thin film flow in 1D.

5.3 Time-Dependent Thin Film Flow Solving in 1D

We have described spatial discretisation with uniform grids for solving Kalliadasis’s and Sellier’s

models in the former subsections; we have also considered the steady-state numerical solution

of the nonlinear thin film flow system in 1D for both models. In this section, we will discretise

Sellier’s model to obtain the time-dependent numerical solution of the nonlinear parabolic PDEs

in one-dimension. We will consider the backward Euler BDF1 implicit method with first-order

accuracy to approximate the time derivative.
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The purpose of this section is to provide a step towards the more challenging 2D problem.

Consequently, we introduce the full discretisation in 1D in the next subsection and discuss this

in the following subsection. Detailed numerical results are not provided in 1D however as the

2D case, discussed subsequently, is our primary interest.

5.3.1 The Fully Discrete System for the Thin Film Flow Model in 1D

The goal of this subsection is to produce discretisation schemes that can be applied to the

one-dimensional mathematical model of Sellier’s Equations (2.32) and (2.34) and then be ex-

tended to the two-dimensional cases. We have applied the FDM in space and a fully implicit

scheme in time for the thin film flow system. At each time step, the resulting discrete nonlinear

algebraic system must be solved. We have considered the first-order BDF1 implicit method to

approximate the time derivative leading to a fully discrete system in space and time at each

time step.

We have explained how the thin film steady-state equations could be discretised in Equations

(5.9) and (5.10). In this part, the time derivative will also be discretised using the BDF1

scheme. The time dependence appears only in the term ∂h
∂t . Therefore, we apply to this term

the BDF1 scheme, i.e. the backward Euler method in time. It is worth pointing out that we

require this temporal discretisation in Equation (2.31) only (and not Equation (2.32)). The

fully discrete thin film Equation (2.31) is therefore given as:

hn+1
i,j − hni,j
4t =

1

4x

1

3

(
hn+1
i,j − hn+1

i+1,j

2

)3((
pn+1
i+1,j − pn+1

i,j

4x

)
− 2

)

− 1

3

(
hn+1
i,j − hn+1

i−1,j

2

)3((
pn+1
i,j − pn+1

i−1,j

4x

)
− 2

) ,
(5.13)

and the pressure Equation (2.35) becomes the implicit form

pn+1
i,j +

6

(4x)2

[
(hn+1
i+1,j + si+1,j)− 2(hn+1

i,j + si,j) + (hn+1
i−1,j + si−1,j)

]
= 0. (5.14)

This is a nonlinear system involving the unknown values of h and p at each grid point (i, j) on

the new time level (n+ 1).

5.3.2 Discussion

In the previous subsection, we have presented the discrete nonlinear algebraic systems that arise

from spatial and temporal discretisation schemes for elliptic (and parabolic) PDEs of Sellier’s

models in one-dimension.
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It is worth mentioning that there are several standard implicit schemes for time-dependent

systems in the literature such as BDF2 and θ methods; however, for simplicity, we decided

to select the BDF1 method for the rest of our work. For the remainder of this chapter, we

will consider Sellier’s model in two dimensions using FDM in space (and BDF1 scheme in time

when relevant), which produces a fully implicit discrete system of the thin film flow model.

We will apply more sophisticated approaches than MATLAB’s fsolve in order to solve the

resulting nonlinear system of equations. Specifically, we consider the nonlinear multigrid Full

Approximation Scheme FAS, Newton-MG and Newton-Krylov with a new preconditioner (based

around Algebraic Multigrid), which we will refer to as Newton-Krylov-AMG for convenience.

5.4 Steady-State Thin Film Flow Solving in 2D

In this section, we will consider the thin film flow system given by Sellier’s model that was

presented in the previous section. We shall consider here three different multilevel solution al-

gorithms: nonlinear multigrid FAS, Newton-MG and a Newton-Krylov-AMG solver with a new

preconditioner that we have developed, based on the use of an algebraic multigrid. Moreover,

we will discuss the implementation of each nonlinear algorithm for solving the thin film flow

system to ensure that the implementation is efficient, with sufficient information provided for

the reader to recreate an implementation that achieves similar results. We also demonstrate

the performance of the nonlinear solvers for the three different multilevel algorithms applied to

the steady-state thin film flow system.

In Subsection 5.4.1, we introduce the discrete system for the thin film flow system in the steady-

state problem. Then, we present the Jacobian matrix in the steady-state case in Subsection

5.4.2. In the following section, we demonstrate the three different nonlinear multilevel algo-

rithms together with associated empirical results. The first approach is nonlinear MG FAS

in Subsection 5.5.1; the second approach is Newton-MG in Subsection 5.5.2, and the third

approach is Newton-Krylov-AMG in Subsection 5.5.3.

5.4.1 The Discrete System for Thin Film Flow Model in 2D

We have presented the finite difference discretisation scheme in Chapter 3 in general and in

Subsection 3.1.1. We consider this approach to solving the steady-state thin film flow problem in

two-dimensions. This discretisation scheme leads to the following nonlinear system of algebraic
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equations:

[Fh(U)]i,j =
1

4x

[
1

3

(
hi,j + hi+1,j

2

)3((
pi+1,j − pi,j
4x

)
− 2

)

−1

3

(
hi,j + hi−1,j

2

)3((
pi,j − pi−1,j

4x

)
− 2

)]

+
1

4y

[
1

3

(
hi,j + hi,j+1

2

)3
pi,j+1 − pi,j
4y

−1

3

(
hi,j + hi,j−1

2

)3
pi,j − pi,j−1

4y

]
= 0,

(5.15)

and

[Fp(U)]i,j = pi,j +
6

(4x)2
[(hi+1,j + si+1,j)− 2(hi,j + si,j) + (hi−1,j + si−1,j)]

+
6

(4y)2
[(hi,j+1 + si,j+1)− 2(hi,j + si,j) + (hi,j−1 + si,j−1)] = 0.

(5.16)

Here U is a vector of all of the unknowns hi,j and pi,j , which are the approximate thin film

height and pressure of gird point (i, j) respectively, where Equation (5.15) is the discretisation

of Equation (2.37) and Equation (5.16) is the discretisation of Equation (2.35). Note that these

equations hold at interior grid points only (2 ≤ i ≤ N and 2 ≤ j ≤M, say): boundary conditions

are discussed in Appendix A. The exclusion of boundary conditions from the discussion that

follows purely to aid clarity.

5.4.2 The Jacobian Matrix in Steady-State Case

Our goal in this subsection is to define the Jacobian of the nonlinear system given by Equations

(5.15) and (5.16). The full analytical Jacobian matrix is a sparse matrix; this is because we

use a discretisation scheme that is based upon local approximation, i.e. the FDM. Therefore,

we present in this subsection the expression of the sparse analytical Jacobian matrix that

will be required for all three nonlinear solution algorithms that we use. Alternatively, this

Jacobian matrix can be calculated numerically, using finite differences. However, for the FDM

discretisation, it is also straightforward and efficient to compute the Jacobian analytically in

sparse matrix form.

Let JS be the analytical Jacobian matrix for the thin film flow system in the steady-state case

which is arranged in the following four blocks:

JS =

J11 J12

J21 J22

 , (5.17)
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or

JS =

 ∂Fp∂h ∂Fp
∂p

∂Fh
∂h

∂Fh
∂p

 , (5.18)

where, referring to Equations (5.15) and (5.16)

F =

(
Fp

Fh

)
, (5.19)

and U is ordered with the height unknowns followed by the pressure unknowns:

U =

(
h

p

)
. (5.20)

Now we generate the entries of the matrix (5.18), J11, J12, J21 and J22, from Equations (5.15)

and (5.16). As noted in subsection 5.4.1, the terms that we present here are for typical interior

points of the domain but may also be modified according to the appropriate boundary condi-

tions (see Appendix A). We consider only the non-zero entries of each block, which can be used

to build the analytical Jacobian efficiently in a sparse format.

We differentiate Equation (5.16) with respect to hi+1,j , hi−1,j , hi,j , hi,j+1 and hi,j−1 to obtain

the non-zero entries of J11 as follows:

∂Fpi,j
∂hi+1,j

=
6

(∆x)2
, (5.21)

∂Fpi,j
∂hi−1,j

=
6

(∆x)2
, (5.22)

∂Fpi,j
∂hi,j

= −2

(
6

(∆x)2
+

6

(∆y)2

)
, (5.23)

∂Fpi,j
∂hi,j+1

=
6

(∆y)2
, (5.24)

∂Fpi,j
∂hi,j−1

=
6

(∆y)2
, (5.25)

where i = 2, ..., N., j = 2, ...,M.

Now we differentiate Equation (5.16) with respect to pi,j to obtain the non-zero entries of J12,

∂Fpi,j
∂pi,j

= 1, (5.26)
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where i = 2, ..., N., j = 2, ...,M.

Now we differentiate Equation (5.15) with respect to hi+1,j , hi−1,j , hi,j , hi,j+1 and hi,j−1 to

obtain the non-zero entries of J21 as follows:

∂Fhi,j
∂hi+1,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)]
, (5.27)

∂Fhi,j
∂hi−1,j

=
−1

2(∆x)

[(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]
, (5.28)

∂Fhi,j
∂hi,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)

−
(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]

+
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)

−
(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
,

(5.29)

∂Fhi,j
∂hi,j+1

=
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)]
, (5.30)

∂Fhi,j
∂hi,j−1

=
−1

2(∆y)

[(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (5.31)

where i = 2, ..., N., j = 2, ...,M.

Finally, we differentiate Equation (5.15) with respect to pi+1,j , pi−1,j , pi,j , pi,j+1 and pi,j−1 to

obtain the non-zero entries of J22 as follows:

∂Fhi,j
∂pi+1,j

=
1

3 (∆x)2

(
hi+1,j + hi,j

2

)3

, (5.32)

∂Fhi,j
∂pi−1,j

=
1

3 (∆x)2

(
hi,j + hi−1,j

2

)3

, (5.33)
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∂Fhi,j
∂pi,j

=
1

3 (∆x)2

[(
hi+1,j + hi,j

2

)3

+

(
hi,j + hi−1,j

2

)3
]

+
1

3 (∆y)2

[(
hi,j+1 + hi,j

2

)3

+

(
hi,j + hi,j−1

2

)3
]
,

(5.34)

∂Fhi,j
∂pi,j+1

=
1

3 (∆y)2

(
hi,j + hi,j+1

2

)3

, (5.35)

∂Fhi,j
∂pi,j−1

=
1

3 (∆y)2

(
hi,j + hi,j−1

2

)3

, (5.36)

where i = 2, ..., N., j = 2, ...,M.

The sparsity pattern of the matrix is the distribution of the non-zero entries in this matrix.

The sparse Jacobian matrix for the thin film flow system has the block sparse structure shown

in Figure 6.2.

Figure 5.5: The sparse Jacobian matrix for the thin film flow system on a 33×65 grid in the steady-state
case in two dimensions.

In the following subsection, we describe the use of the Jacobian matrix in the three different

solution methods for the solution of the system Equations (5.15) and (5.16).
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5.5 Steady-State Solvers

We introduce the three nonlinear solution techniques: FAS, Newton-MG and the new precon-

ditioned Newton-Krylov-AMG algorithm, in this section. Then, we compare their performance

in the steady-state problem in 2D.

5.5.1 FAS

The FAS algorithm is called the full approximation scheme because the coarse grid problem

solves for an approximation of the full solution. We have presented this nonlinear multigrid

scheme in detail in Algorithm 2 in Chapter 4. This algorithm is one of the primary algorithms

that we are interested in applying in this thesis and it is designed to handle the nonlinearity

directly, based on a nonlinear smoother and by a coarse grid correction which uses a modified

right-hand side. We have selected the most popular transfer operators in the FAS algorithm

as mentioned earlier, where we are using a linear interpolation operator and a full-weighting

restriction operator. In this subsection, we refer back to the Subsection 4.3.2 in Chapter 4 for

the details of this algorithm. While we have described the principle of the nonlinear multigrid

FAS algorithm, however, we will explain here how we apply this algorithm to the thin film

flow system in two-dimensions with more specific details. In particular, we describe the specific

choices of smoother that we have employed.

As we have mentioned before in Chapter 4 the nonlinear multigrid FAS introduces a number

of operators including (pre, post) smoother, residual, restriction, right-hand side (RHS) and

interpolation (prolongation). In this algorithm, the error is computed on the coarse grid before

we interpolate back to the fine grid. There are also different options for each operator and some

of them are more expensive than others; for example, for the smoother, among other options,

we have a choice between the point-wise nonlinear Jacobi, point-wise nonlinear weighted Jacobi

and the point-wise nonlinear Gauss-Seidel Red-Black methods. There are also parameters con-

trolling the number of sweeps that we perform by pre and post-smoothers ν1 and ν2, respectively.

In our implementation, we have applied both a point-wise nonlinear Jacobi iteration and a

point-wise nonlinear Red-Black-Gauss-Seidel iteration as the smoother. The Red-Black order-

ing is selected for the Gauss-Seidel smoother because we only need to update the Jacobian

evaluation after each red and black sweep, making it much more efficient than other orderings

when using the five-point stencil, see [100]. We have used a single Newton step for each iter-

ation of the nonlinear Red-Black-Gauss-Seidel method in our smoother implementation. The

FAS algorithm applies a coarse grid correction which is based on solving for the solution on the

coarser grid by restricting both the residual r and the approximate solution v to the coarser

grids with a modified RHS, and by using an Newton method as the solver on the coarsest grid.
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The nonlinear discrete algebraic system of equations of the thin film flow model can be written

as follows:

Fi(U) = 0, i = 1, . . . , neq, (5.37)

where neq is the total number of unknowns in Equations (5.15) and (5.16).

In general, we can define each nonlinear Jacobi iteration as an approximate solve for the ith

equation

Fi(u
k
1 , ..., u

k
i−1, u

k+1
i , uki+1, ..., u

k
neq) = 0, (5.38)

for i = 1, . . . , neq, where k and k+1 denote the current and new approximations. This provides

a simple smoother for nonlinear multigrid.

For the nonlinear system considered here, we create a slightly more complex smoother based

on a simultaneous update of h and p at each point of the grid. To apply this smoother we use

Jbi which is the (2× 2) block-diagonal system of our analytical Jacobian matrix. At each grid

point, we solve the linear system,(
∂Fpi
∂hi

∂Fpi
∂pi

∂Fhi
∂hi

∂Fhi
∂pi

)
︸ ︷︷ ︸

Jbi

(
δhi

δpi

)
= −

(
Fpi

Fhi

)
, (5.39)

where nu is the number of unknown grid points and i = 1, . . . , nu. Then, having solved

Equation (5.39) we update h and p at each node i = 1, . . . , nu:(
hk+1
i

pk+1
i

)
=

(
hki
pki

)
+

(
δhi

δpi

)
. (5.40)

At each step of the smoother we therefore build the (2 × 2) Jacobian point diagonal block for

i = 1, . . . , nu and solve these (2×2) systems. The updates given by Equations (5.39) and (5.40)

may be applied in a Jacobi or a Gauss-Seidel manner.

To summarise, with the nonlinear Newton-Jacobi or the nonlinear Newton-Gauss-Seidel meth-

ods as smoothers for the discrete thin film flow model, we update two unknowns h and p

associated with one grid point simultaneously with one nonlinear Newton-Jacobi or one non-

linear Newton-Gauss-Seidel iteration. In the nonlinear Newton-Gauss-Seidel method, we used

the most up-to-date values of the solution rather than only using the previous solution as in

the nonlinear Newton-Jacobi method.

To be more general, we have actually implemented weighted versions of the smoothers: the

nonlinear ω-weighted-Jacobi and the nonlinear ω-weighted-Red-Black Gauss-Seidel smoother
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with different parameters of ω, see Subsection 4.2.2 in Chapter 4. We will compare these

different smoothers with the different parameters ω to select the best smoother with the best

parameters for the FAS algorithm on this problem in Subsection 5.7.1.

5.5.2 Newton-MG

In this subsection, we consider the Newton-MG algorithm. Our implementation is a standard

application of Newton’s method. We applied a global linearisation of the nonlinear problem

which means that we linearised the nonlinear problem using the Newton iterations, after which

we solve the linear system arising at each Newton iteration by using the linear MG method.

We considered the general form of the discrete nonlinear system arising from application of the

FDM to the thin film flow system of equations, (4.37). Again the nonlinear discrete algebraic

system of equations is written as Equation (5.37). There are two variables which are h and p,

the number of the unknowns is neq in the thin film flow system, and J is the (neq×neq) sparse

analytical Jacobian matrix. After we linearised the nonlinear system using Newton’s method,

we can write a linear system as follows,(
∂Fp
∂h

∂Fp
∂p

∂Fh
∂h

∂Fh
∂p

)
︸ ︷︷ ︸

J

(
δh

δp

)
= −

(
Fp

Fh

)
, (5.41)

J δ = −F. (5.42)

Then we obtain that (
hk+1

pk+1

)
=

(
hk

pk

)
+ δ. (5.43)

Here J is the sparse Jacobian matrix and the Equation (5.43) gives the update. For the Newton-

MG algorithm, a fixed MG V-cycle is used to approximate the solution of Equation (5.42). To

implement this we need to calculate the Jacobian matrix on every grid level. At each Newton

step we build the sparse (neq × neq) Jacobian matrix then we solve the Equation (5.42) using

linear MG to obtain the correction δ. Once we obtain δ by a linear MG solver (or a fixed

V-cycle), we can carry out the update Equation (5.43). We repeat the whole process at each

Newton iteration.

In the following subsection, we turn our consideration to the third nonlinear multilevel algorithm

which is Newton-Krylov-AMG with a new preconditioner that we have applied to the thin film

flow model in the steady-state case.
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5.5.3 Newton-Krylov-AMG

This subsection focuses on the nonlinear Newton-Krylov algorithm with a new AMG-based

preconditioner. Krylov-subspace methods are commonly used with a preconditioner that accel-

erates the convergence of the linear iterations; therefore, we consider an implementation of this

algorithm to solve the thin film flow model. In this thesis, we develop our algorithm for solving

the nonlinear thin film flow system optimally with a new preconditioner. Since Krylov methods

converge slowly when employed to this type of a system, we will require a preconditioner in

order to reach acceptable convergence rates. As we have mentioned previously the algebraic

multigrid AMG iterative methods are the most effective for solving large sparse linear systems

that are obtained from the discretisation of single elliptic partial differential equations. Our

goal is to incorporate AMG methods as a part of a preconditioner for Krylov subspace methods

for our linearised system.

In the Newton-Krylov algorithm, there are two different types of iterations: outer iterations

and inner iterations. The outer iterations are the nonlinear Newton’s iterations, which we use

to linearise the nonlinear system. The inner iterations are the linear Krylov methods for solving

linear systems. We have a nonsymmetric matrix J , therefore, we will use GMRES as a Krylov

subspace method in our implementation. It is the combination of the two types of iterations

that make the Newton-Krylov method, one of the most powerful methods for solving nonlinear

algebraic systems, provided a suitable preconditioner is available, as we will confirm in our

numerical experiments. In our case, we will use a new preconditioner that incorporates AMG,

for which we apply a software implementation that is available in the Harwell Subroutine Li-

brary (HSL) [15,70]. This software involves routines called HSL-MI20 for the AMG scheme and

HSL-MI24 for the GMRES scheme. Building on this, we will provide a new optimal (or near

optimal) preconditioner for Newton-Krylov iterations as a part of the solution of the discrete

nonlinear system of PDEs.

We discussed the discrete nonlinear thin film flow system in section 5.4.1; the linearisation of

this system leads to a large sparse linear system which must be solved at each step. Let us

rewrite the linear system (5.41) in the following matrix form:(
K I

Bα Kα

)(
δh

δp

)
=

(
Fp

Fh

)
(5.44)

where K =
∂Fp
∂h , I =

∂Fp
∂p , Bα = ∂Fh

∂h and Kα = ∂Fh
∂p are block matrices.

We require a preconditioner, P say, to approximate the action of the full Jacobian. We examine



87 5.5. Steady-State Solvers

the numerical solution of Equation (5.44) with right preconditioning, which requires solution of

J P−1u = b. (5.45)

We do not require the matrix J P−1 to be formed explicitly, however we do require the precon-

ditioner equation to be solved whenever required, i.e.

P z = r. (5.46)

Let z = (zh zp)
> and r = (rp rh)> be column-vectors so that, for a block upper triangular

preconditioner, Equation (5.46) has the following matrix form:

P1 z =

(
K I

0 S1

)(
zh

zp

)
=

(
rp

rh

)
, (5.47)

where P1 is our first proposed preconditioner and S1 = Kα − BαK−1I. Here we address the

question on how to choose a good preconditioner for solving the linearized thin film flow model

at each Newton iteration.

For the first preconditioner P1 we use the exact Schur Complement, S1 in the (2, 2) block. The

benefit of using the exact Schur Complement is that this preconditioned system needs just two

iterations to converge [47,97,135]. However, obviously, this is not efficient since we use a lot of

memory and great expense to compute S1. Therefore, we will investigate how to improve this

preconditioner by replacing the Schur Complement S1 by an approximation.

We have made approximations of the preconditioners firstly, via approximate the Schur Com-

plement by replacing it with the first term in the Schur Complement and then we examine this

preconditioner via eigenvalues. However, these preconditioners are not practical and efficient.

Therefore, we decided to make a further approximation, which is a more efficient approach by

using AMG, which is practical and efficient implementation as we will discuss below.

Our approach will be to develop a sequence of potential preconditioners for the matrix J in

Equation (5.44). As also described, the first choice of a preconditioner is P1, the upper triangular

block preconditioner written as follows:

P1 =

(
K I

0 S1

)
, (5.48)

where S1 is the Schur Complement S1 = Kα −BαK−1I.

The second preconditioner that we consider, P1a, is the upper triangular block preconditioner
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formulated as follows:

P1a =

(
K I

0 Kα

)
, (5.49)

where we have replaced S1 with Kα which we hope will provide an approximation to the Schur

Complement.

A third preconditioner, P1b, uses one AMG iteration with this approximate Schur Complement,

AMG(Kα), for the (2, 2) block and, similarly replace the (1, 1) block in P1a with an AMG

approximation to K. The advantage of using AMG is in the fact that it is much faster than an

exact solve but is spectrally equivalent. Hence,

P1b =

(
AMG(K) I

0 AMG(Kα)

)
, (5.50)

where AMG(X) is one AMG iteration for the matrix X.

As with the preconditioners P1, P1a and P1b we can also introduce a second sequence of potential

preconditioners by using forward elimination instead of using the backward elimination (to

create block lower triangular preconditioners). These preconditioners are denoted P2, P2a and

P2b. Here P2 is the lower block triangular preconditioner written as follows:

P2 =

(
S2 0

Bα Kα

)
, (5.51)

where S2 is the Schur Complement S2 = K − IK−1
α Bα.

The preconditioner P2a is given by the lower block triangular matrix as follows:

P2a =

(
K 0

Bα Kα

)
, (5.52)

and the preconditioner P2b is given by the lower block triangular matrix as follows:

P2b =

(
AMG(K) 0

Bα AMG(Kα)

)
. (5.53)

Note that the preconditioners P1a and P2a approximate the Schur Complement but still solve

the backward (or forward) elimination exactly (using backslash in MATLAB in our implemen-

tations). The preconditioners P1b and P2b approximate the Schur Complement and the other

diagonal block by using one AMG V-cycle. In other words, we applied AMG separately for each

diagonal block in the P1b and P2b preconditioners in Equations (5.50) and (5.53) respectively.
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We are using HSL-MI20 for the AMG preconditioner, available in Harwell Subroutine Library

(HSL) [70]. For comprehensive details of the implementation of the Algebraic Multigrid pre-

conditioning from HSL-MI20, see [1, 15,112].

The numerical results of the Newton-Krylov-AMG algorithm preconditioned with P1, P1a, P1b,

P2, P2a and P2b are presented in Subsection 5.7.3.

5.6 Behavior of Eigenvalues

In this subsection, we considered the eigenvalues of each of the preconditioned systems pro-

posed in the previous subsection. Our motivation here is to study and understand the quality

of the preconditioners for the GMRES solution. This is because if the eigenvalues of matrix

J are widespread, then the GMRES scheme can have slow convergence [136]. Furthermore, if

we have a good preconditioner, we should have a good approximation to the original matrix

J that clusters the eigenvalues in small groups and, also, these eigenvalues should be bounded

away from zero and infinity as the FDM grid is refined. As noted by Greenbaum et al. [57] for

any convergence curve we can obtain with GMRES used to a matrix having for any wanted

eigenvalues. However, these eigenvalues do not give any guarantee about the convergence of

performance but often give a good indicator.

In Table 5.6 and Table 5.7, we present the maximum eigenvalues and the minimum eigenvalues

of the coefficient matrix J and the preconditioned matrix JP−1
1a and the preconditioned matrix

JP−1
2a respectively for the first Newton iteration as a sequence of three grids which are the grid

level 3, 4, 5 on the grid size 9 × 17, 17 × 33 and 33 × 65 respectively. We observed that the

eigenvalues of J are not all real, however, the maximum and the minimum values are only the

real part in the complex case. As we can clearly see in these tables, the spread area of the

eigenvalues of the original matrix grows with the grid size, whereas the area of the eigenvalues

of the preconditioned systems is relatively fixed for all grids sizes, and as we can also see, these

preconditioned systems improve the results and make the majority of the eigenvalues cluster in

a small area.

From Figure 5.6 to Figure 5.11 we show the eigenvalues of the matrix J in blue and the pre-

conditioned matrix JP−1
1a in red, on the grid sizes 9× 17, 17× 33 and 33× 65 respectively. In

Figure 5.7, Figure 5.9 and Figure 5.11 we display the eigenvalues of our preconditioned matrix

P1a the majority of these eigenvalues are shown to cluster in a small range around one as the

grid is refined on the grid size 9× 17, 17× 33 and 33× 65.

From Figure 5.12 until Figure 5.17 we display the eigenvalues of the matrix J in blue and the

preconditioned matrix JP−1
2a in red, on the grid sizes 9×17, 17×33 and 33×65 respectively. In
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Figure 5.13, Figure 5.15 and Figure 5.17, we show the eigenvalues of our preconditioned matrix

P2a again, the majority of these eigenvalues cluster in a small range around one on the grid size

9× 17, 17× 33 and 33× 65.

From these figures, we observed that when we used our preconditioning procedures P1a and P2a

the majority of the eigenvalues cluster in a small range around one, with just a small number

of separated eigenvalues elsewhere in the complex plane. These results imply that our precon-

ditioners are good preconditioners and that Kα and K do indeed provide good approximations

to S1 and S2 respectively.

Table 5.6: The maximum and minimum eigenvalues (or real part in the complex case) of the coeffi-
cient matrix J and the preconditioned matrix JP−1

1a where the imaginary parts are unchanged by the
preconditioning, as can be seen from the figures 5.6-5.11.

Grid level Min (Reλ(J)) Max (Reλ(J)) Min (Reλ(JP−1
1a )) Max (Reλ(JP−1

1a ))
3 -29.9876 -0.1961 1.0000 1.0000
4 -122.1418 -0.2094 1.0000 1.0000
5 -490.7803 -0.2128 1.0000 1.0000

Figure 5.6: The eigenvalues of the origi-
nal matrix J on grid size 9× 17.

Figure 5.7: The eigenvalues of the up-
per triangular block preconditioned ma-
trix JP−1

1a on grid size 9× 17.
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Figure 5.8: The eigenvalues of the origi-
nal matrix J on grid size 17× 33.

Figure 5.9: The eigenvalues of the up-
per triangular block preconditioned ma-
trix JP−1

1a on grid size 17× 33.

Figure 5.10: The eigenvalues of the orig-
inal matrix J on grid size 33× 65.

Figure 5.11: The eigenvalues of the up-
per triangular block preconditioned ma-
trix JP−1

1a on grid size 33× 65.
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Table 5.7: The maximum and minimum eigenvalues (or real part in the complex case) of the coeffi-
cient matrix J and the preconditioned matrix JP−1

2a where the imaginary parts are unchanged by the
preconditioning, as can be seen from the figures 5.12- 5.17.

Grid level Min (Reλ(J)) Max (Reλ(J)) Min (Reλ(JP−1
2a )) Max (Reλ(JP−1

2a ))
3 -29.9876 -0.1961 1.0000 1.0000
4 -122.1418 -0.2094 1.0000 1.0000
5 -490.7803 -0.2128 1.0000 1.0000

Figure 5.12: The eigenvalues of the orig-
inal matrix J on grid size 9× 17.

Figure 5.13: The eigenvalues of the lower
triangular block preconditioned matrix
JP−1

2a on grid size 9× 17.
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Figure 5.14: The eigenvalues of the orig-
inal matrix J on grid size 17× 33.

Figure 5.15: The eigenvalues of the lower
triangular block preconditioned matrix
JP−1

2a on grid size 17× 33.

Figure 5.16: The eigenvalues of the orig-
inal matrix J on grid size 33× 65.

Figure 5.17: The eigenvalues of the lower
triangular block preconditioned matrix
JP−1

2a on grid size 33× 65.

In the next subsections, we will present the numerical results of the three nonlinear multilevel

algorithms and, also, we will discuss and compare all these algorithms to assess which algorithm

is the best.
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5.7 Numerical Results in the Steady-State Case

All computational results obtained in this section have been generated using the MATLAB

software. We have performed extensive numerical experiments in order to optimize the param-

eters selected for the FAS, Newton-MG and Newton-Krylov-AMG nonlinear multilevel schemes.

Furthermore, in subsection 5.7.4 we will compare our best choice of parameters for these three

nonlinear multilevel schemes to determine the best between them.

In our experiments the domain is X1 = −10, X2 = 10, Y1 = −5, Y2 = 5, dx = (X2−X1)/(mx−
1), and dy = (Y2 − Y1)/(my − 1). The grid size is my = 2LMAX + 1 and mx = 2 ∗ (my − 1) + 1

in directions X and Y , where LMAX denotes the maximum grid level. In all these tests we

used pure Dirichlet Boundary conditions. The number of unknown grid points is defined as

nu = nx · ny, where nx = mx− 2 and ny = my − 2. The number of equations is neq = 2 · nu.

We defined the Dirichlet boundary condition on the domain (x, y) ∈ [X1, X2] × [Y1, Y2] here

as the following; h = 1; p = 0.

For the topography shape function, we choose a flat bed with an oblong shaped hole, (see Figure

5.18), which is given by:

S(x, y) = min(max(d,−1), 0), (5.54)

where
d = max(dx, dy)

dx = max(x,−x− 4),

dy = max(y − 2,−y − 2).

The numerical results of our experiments in the steady-state case are presented in Subsection

5.7.1 for the FAS algorithm, in Subsection 5.7.2 for the Newton-MG algorithm and in Subsec-

tion 5.7.3 for the Newton-Krylov-AMG algorithm. Also, all these three multilevel algorithms

optimality are discussed and compared in Subsection 5.7.4.

In order to choose the best parameters for the first two algorithms we employ two different

types of a smoother: the weighted Jacobi and the weighted Red-Black Gauss-Seidel smoothers;

these smoothers are applied with varying values of the parameter ω. Moreover, in order to

compare the convergence of Newton iterations (outer iterations), we use two different values for

the nonlinear residual tolerance, Tol = 1e − 04 and Tol = 1e − 08. For the third solver, inner

tolerance values are varied in order to control the convergence of GMRES iterations (inner

iterations) and we consider different choices for the restart parameter (Restart) of GMRES

iterations and the maximum number of GMRES iterations (Maxit) in each case. We define

here the (Restart) to restart the method every restart inner iterations, (Maxit) to be the

maximum number of outer iterations which means that the total number of iterations which

does not exceed restart. Table 5.8 shows the different sizes for the grid levels that we have used

to solve the thin film flow system in the following subsections.
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Table 5.8: The grid level, grid size, the number of unknown grid points nu, and the number of equations
neq = 2 · nu used in the thin film flow system of equations.

Grid level Grid size No. of unknown grid points No. of equations
3 9× 17 7× 15 210
4 17× 33 15× 31 930
5 33× 65 31× 63 3906
6 65× 129 63× 127 16002
7 129× 257 127× 257 64770
8 257× 513 257× 511 260610
9 513× 1025 511× 1023 1045506

5.7.1 Numerical Results using FAS

In this subsection, we consider the numerical solutions provided by the nonlinear FAS multigrid

solver. We solve a thin film flow test problem depicted in Figure 5.18. We have performed

extensive numerical tests to optimize the parameter selection for the FAS method in the steady-

state case.

Figure 5.18: Oblong hole bed shape s in blue (bottom) and the free surface (numerical solution) h+ s
in red (top), where w = 2, D = 0.5 and δ = 0.05.
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FAS with Jacobi smoother and varying damping factor ω

The first set of results presented illustrate the effect of varying damping factor ω when applying

the weighted Jacobi smoother with 1 pre- and 1 post-smooth, a coarse grid of level 3 and a

nonlinear tolerance of Tol = 1e− 8.

In Tables 5.9 to 5.14 we use varying damping factor ω in the range of ω = 1/3, 1/2, 2/3, 0.8, 0.9

and ω = 1, with the aim of finding the optimal value for the nonlinear Jacobi smoother with

a (1, 1) pre- and post-smoother and the coarsest grid level = 3. The best choice for the free

parameter damping factor ω for the Jacobi smoother is ω = 0.8 since for ω less or greater than

0.8 the performance of FAS is slower and requires more V-cycles to fully converge. Therefore,

we will use ω = 0.8 in the FAS algorithm with the Jacobi smoother. Note however that the

method becomes optimal (i.e. bounded V-cycles and cost of O(N)) in all cases.

Table 5.9: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 1/3 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 1 1 47 2.0224
6 3 1 1 49 5.1757
7 3 1 1 49 18.8803
8 3 1 1 49 74.4457
9 3 1 1 50 307.5922

Table 5.10: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 1/2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 1 1 30 1.7213
6 3 1 1 31 3.2970
7 3 1 1 32 12.3587
8 3 1 1 32 48.8317
9 3 1 1 32 198.3339
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Table 5.11: FAS performance for varying grid size for the thin film flow the in steady-state case with
Jacobi ω = 2/3 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 1 1 22 1.2078
6 3 1 1 22 2.4214
7 3 1 1 23 9.2648
8 3 1 1 23 36.6635
9 3 1 1 23 148.9333

Table 5.12: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 1 1 18 0.6510
6 3 1 1 18 1.8613
7 3 1 1 18 6.7937
8 3 1 1 18 26.9172
9 3 1 1 18 110.7459

Table 5.13: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 0.9 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 1 1 33 1.5486
6 3 1 1 35 3.6341
7 3 1 1 33 12.4522
8 3 1 1 36 53.3293
9 3 1 1 34 218.8187
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Table 5.14: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 1 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 1 1 50 2.1967
6 3 1 1 50 5.4753
7 3 1 1 50 20.1664
8 3 1 1 50 80.1653
9 3 1 1 50 323.8340

FAS with Jacobi smoother and varying Coarse grid level

The next set of results in Tables 5.15 to 5.17 show the effect of varying the coarsest grid level

when ω = 0.8, Tol = 1e − 8 and 1 pre- and 1 post-smooth are used. Each of these results is

compared to those in Tables 5.12, suggesting that level = 3 is the best choice for the coarsest

grid; therefore, we will use this grid level when comparing the number of pre- and post-smooth

V-cycles.

Table 5.15: FAS performance for varying grid size for the thin film flow in the steady-state case with
nonlinear Jacobi smoother and ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 4 1 1 17 1.0801
6 4 1 1 17 2.2852
7 4 1 1 18 7.3415
8 4 1 1 18 27.6254
9 4 1 1 18 114.5418
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Table 5.16: FAS performance for varying grid size for the thin film flow in the steady-state case with
nonlinear Jacobi smoother and ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

6 5 1 1 17 4.6934
7 5 1 1 18 9.6021
8 5 1 1 18 29.8901
9 5 1 1 18 113.8811

Table 5.17: FAS performance for varying grid size for the thin film flow in the steady-state case with
nonlinear Jacobi smoother and ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

7 6 1 1 17 21.0544
8 6 1 1 17 39.8623
9 6 1 1 18 127.0208

FAS with Jacobi smoother and varying (pre, post)smooth

We now investigate the impact of increasing the number of pre- and post- smooths. In Tables

5.18 to 5.22 we use FAS with Coarse Grid = 3 and ω = 0.8 for the nonlinear Jacobi parameter.

The data obtained in these tables show how the results of the implementation of FAS with values

for the (pre, post)smooth V-cycle varied as (2, 1), (2, 2), (3, 1), (3, 2), and (3, 3). We can observe

that for a higher pre- and post-smooth value the number of V-cycles goes down. However,

despite this, the computation timing increases relative to Table 5.12 due to the extra work of

pre and post smoothing. Consequently, we conclude that the best approach to use the pre- and

post-smooth (1, 1) in this case.
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Table 5.18: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 2 1 13 0.9794
6 3 2 1 14 2.0484
7 3 2 1 14 7.5969
8 3 2 1 14 30.3407
9 3 2 1 14 124.6346

Table 5.19: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 2 2 11 0.9805
6 3 2 2 12 2.2287
7 3 2 2 12 8.4265
8 3 2 2 12 33.7618
9 3 2 2 11 127.5553

Table 5.20: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 3 1 11 1.0454
6 3 3 1 12 2.2434
7 3 3 1 12 8.4433
8 3 3 1 12 33.8368
9 3 3 1 12 139.1426
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Table 5.21: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 3 2 10 1.0412
6 3 3 2 11 2.4819
7 3 3 2 11 9.5792
8 3 3 2 11 38.0472
9 3 3 2 10 142.6714

Table 5.22: FAS performance for varying grid size for the thin film flow in the steady-state case with
Jacobi ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No.V-Cycle -

5 3 3 3 9.0 1.0629
6 3 3 3 10 2.6604
7 3 3 3 10 10.2694
8 3 3 3 10 41.2773
9 3 3 3 10 169.5089

FAS with Red Black Gauss-Seidel with varying damping factor ω

We now turn to FAS with the Red-Black Gauss-Seidel smoother; we again begin by varying the

values ω with (pre, post)smooth set to (1, 1) and relative tolerance Tol = 1e−8. In Tables 5.23 to

5.28 we display the results of the numerical solution of the thin film flow using the FAS algorithm

with ω = 0.8, 0.9, 1, 1.1, 1.2, 1.5, (pre, post)smooth = (1, 1) and the Coarse Grid = 3. We say

from Tables 5.26 and 5.27 the best choice is in the range, ω = 1.1 and ω = 1.2. The results

presented in Table 5.26 and Table 5.27 are almost the same, hence we will continue with ω = 1.2.

Note that those iterations counts and solution times are better than those obtained using Jacobi

smoothing.
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Table 5.23: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 0.8 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 13 0.9020
6 3 1 1 14 1.7741
7 3 1 1 14 6.4454
8 3 1 1 14 25.5605
9 3 1 1 14 104.8452

Table 5.24: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 0.9 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 11 0.8180
6 3 1 1 11 1.4028
7 3 1 1 12 5.5443
8 3 1 1 12 22.0452
9 3 1 1 11 83.5470

Table 5.25: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 10 0.9964
6 3 1 1 10 1.3196
7 3 1 1 10 4.7933
8 3 1 1 10 19.1804
9 3 1 1 10 78.5549
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Table 5.26: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.1 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 9 0.7306
6 3 1 1 9 1.1573
7 3 1 1 9 4.1897
8 3 1 1 9 16.6104
9 3 1 1 9 68.7326

Table 5.27: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 9 0.7431
6 3 1 1 9 1.1468
7 3 1 1 9 4.1946
8 3 1 1 9 16.6510
9 3 1 1 9 68.9505

Table 5.28: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.5 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 15 0.9863
6 3 1 1 16 2.0189
7 3 1 1 16 7.3688
8 3 1 1 16 29.1187
9 3 1 1 16 119.2528

FAS with Red Black Gauss-Seidel smoother and varying Coarse grid level

Tables 5.29 to 5.31 show results obtained with Red Black Gauss-Seidel varying coarse grid level

G, whilst fixing ω = 1.2, 1 pre- and 1 post- smooth and Tolerance = 1e − 8. In this case, a

coarsest level of Coarse Grid = 5 (i.e. 33× 65) appears to be the optimal choice.
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Table 5.29: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 4 1 1 7 0.8659
6 4 1 1 8 1.2688
7 4 1 1 8 4.0395
8 4 1 1 8 15.5780
9 4 1 1 8 64.1942

Table 5.30: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

6 5 1 1 7 2.2061
7 5 1 1 7 4.3632
8 5 1 1 7 14.3745
9 5 1 1 7 56.7912

Table 5.31: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

7 6 1 1 7 8.8157
8 6 1 1 7 18.9920
9 6 1 1 7 62.389

FAS with Red Black Gauss-Seidel smoother and varying (pre, post)smooth

In Tables 5.32 to 5.36 we vary the number of pre- and post- smooth using Red-Black Gauss-

Seidel with ω = 1.2, a coarsest level of grid Coarse Grid = 5 and Tol=1e− 8. As with Jacobi

smoothing, we see that more applications of the smoother always increases the execution time

(compared to Table 5.30), despite reducing the number of cycles.
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Table 5.32: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

6 5 2 1 6 2.4477
7 5 2 1 6 4.8636
8 5 2 1 6 17.0141
9 5 2 1 6 67.7573

Table 5.33: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

6 5 2 2 5 2.3402
7 5 2 2 6 6.0235
8 5 2 2 6 21.8361
9 5 2 2 6 87.5491

Table 5.34: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

6 5 3 1 6 2.6502
7 5 3 1 6 5.9880
8 5 3 1 6 21.6831
9 5 3 1 6 86.9037
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Table 5.35: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

6 5 3 2 5 2.4898
7 5 3 2 6 7.1425
8 5 3 2 6 26.5750
9 5 3 2 6 107.0374

Table 5.36: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

6 5 3 3 5 2.6804
7 5 3 3 5 6.8983
8 5 3 3 5 26.1816
9 5 3 3 5 105.7665

FAS with Red Black Gauss-Seidel smoother and varying damping factor ω and

Tol=1e− 4

Tables 5.37, 5.38, 5.39, 5.40 and Table 5.41 detail a series of experiments where we used FAS with

the Red-Black Gauss-Seidel smoother, (pre, post)smooth = (1, 1) and relative tolerance Tol =

1e− 4 with varying values for the parameter ω = 0.8, 0.9, 1, 1.1, 1.5 and the Coarse Grid = 3.

It is apparent from these tables that if we double the exponential of the relative tolerance for

FAS from Tol = 1e − 4 to Tol = 1e − 8, as a result the number of V-cycles approximately

doubles (compared with Table 5.23). Furthermore, we see that the choice of Tol has no impact

on the optimal parameter choices for FAS.



107 5.7. Numerical Results in the Steady-State Case

Table 5.37: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 0.8 and Tol = 1e− 4.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 7 1.7562
6 3 1 1 7 1.3118
7 3 1 1 7 4.9286
8 3 1 1 7 19.7533
9 3 1 1 7 81.5252

Table 5.38: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 0.9 and Tol = 1e− 4.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 5 0.3091
6 3 1 1 6 1.1042
7 3 1 1 6 4.2145
8 3 1 1 6 16.9673
9 3 1 1 6 70.1030

Table 5.39: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1 and Tol = 1e− 4.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 5 0.3251
6 3 1 1 5 0.9213
7 3 1 1 5 3.5355
8 3 1 1 5 14.2875
9 3 1 1 5 59.3023
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Table 5.40: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.1 and Tol = 1e− 4.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 4 0.2518
6 3 1 1 4 0.7476
7 3 1 1 4 2.8526
8 3 1 1 4 11.5240
9 3 1 1 4 48.1700

Table 5.41: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.5 and Tol = 1e− 4.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 3 1 1 8 0.5135
6 3 1 1 8 1.4734
7 3 1 1 8 5.6196
8 3 1 1 8 22.4259
9 3 1 1 8 91.4122

FAS with Red Black Gauss-Seidel smoother, Coarse grid level= 4 and Tol=1e− 4

We undertake experiment for the Red-Black Gauss-Seidel smoother with the Coarse Grid = 4

and the tolerance is Tol = 1e− 4. Table 5.42 shows that we again take approximately half the

number of V-cycles compared to Tol = 1e− 8 (see Table 5.29).

Table 5.42: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 4.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

5 4 1 1 4 0.6404
6 4 1 1 4 0.6662
7 4 1 1 4 2.0394
8 4 1 1 4 7.9207
9 4 1 1 4 33.5427
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Summary

We have now investigated how a choice between the Jacobi and the Red-Black Gauss-Seidel

smoother with varying values of free parameters affects the performance of the FAS algorithm

applied to the thin film flow in the steady-state problem. The best results in terms of the over-

all execution time that we have obtained are presented in Table 5.30. The experiment in Ta-

ble 5.30 demonstrates application of FAS with the nonlinear Red-Black Gauss-Seidel smoother

with parameter ω = 1.2, (pre, post)smooth = (1, 1), Coarse Grid = 5 and the relative tolerance

Tol = 1e−8. All of these empirical results strongly suggest that our implementation is optimal

for the thin film flow in the steady-state problem. To sum up, all numerical results of our FAS

algorithm that are given here have shown results we require a bounded number of iterations,

independent of grid size.

In the following subsection, we will present the numerical results obtained with the Newton-MG

algorithm for the thin film flow system in the steady-state problem.

5.7.2 Numerical Results using the Newton-MG

We have performed extensive numerical experiments in order to optimize the parameter selec-

tion for the Newton-MG algorithm for the thin film flow system in the steady-state case. We

present these experiments in this section.

Newton-MG with Jacobi smoother and varying damping factor ω

In Tables 5.43 to 5.47 ω is varied in the range of ω = 1/3, 1/2, 2/3, 0.8 and ω = 0.9, with the

goal of determining the optimal value for the linear Jacobi smoother with a (1, 1) pre- and post-

smoother and the coarsest grid level = 3. In each test, we are using a fixed number of V-cycles

(3) to undertake each approximate linear slove. We found that the best choice for the free

parameter ω for the Jacobi smoother is ω = 0.8 since for ω less or greater than 0.8 the overall

performance of Newton-MG is slower. Hence, we will use ω = 0.8 in the Newton-MG algorithm

with the Jacobi smoother in order to determine the best values for other free parameters.
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Table 5.43: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi with ω = 1/3, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 21 1.7336
6 3 1 1 3 22 5.7000
7 3 1 1 3 23 24.0488
8 3 1 1 3 24 103.1880
9 3 1 1 3 25 433.3207

Table 5.44: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi with ω = 1/2, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 13 1.2531
6 3 1 1 3 14 3.6475
7 3 1 1 3 15 15.6734
8 3 1 1 3 16 68.1310
9 3 1 1 3 16 277.6096

Table 5.45: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi with ω = 2/3, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 10 1.0320
6 3 1 1 3 11 2.8734
7 3 1 1 3 11 11.4921
8 3 1 1 3 12 51.1680
9 3 1 1 3 12 209.9194
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Table 5.46: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi with ω = 0.8, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance for
Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 8 0.8860
6 3 1 1 3 9 2.3694
7 3 1 1 3 10 10.4693
8 3 1 1 3 10 42.6646
9 3 1 1 3 10 174.9716

Table 5.47: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi with ω = 0.9, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance for
Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 15 1.3442
6 3 1 1 3 17 4.4525
7 3 1 1 3 17 17.7399
8 3 1 1 3 18 76.6504
9 3 1 1 3 18 311.5757

Newton-MG with Jacobi smoother and varying Coarse grid level

In Tables 5.48 and 5.49 we contrast the effect of varying the coarsest grid, relative to Table 5.46

(Coarse Grid = 3). We see that both results are superior to those in Table 5.46. Suggestion

that Coarse Grid = 4 or Coarse Grid = 5 are better choices.
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Table 5.48: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi ω = 0.8, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance for
Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 1 1 3 8 2.2833
6 4 1 1 3 9 2.2841
7 4 1 1 3 9 9.0643
8 4 1 1 3 10 41.6204
9 4 1 1 3 10 168.3731

Table 5.49: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi ω = 0.8, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance for
Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

6 5 1 1 3 9 2.6596
7 5 1 1 3 9 9.0757
8 5 1 1 3 10 41.1382
9 5 1 1 3 10 168.0172

Newton-MG with Jacobi smoother and varying (pre, post)smooth

In tables 5.50 to 5.54 we use Newton-MG with Coarse Grid = 5 and ω = 0.8 for the linear

Jacobi smoother. The data obtained in these tables present the results of the implementation of

Newton-MG with values for the (pre, post)smooth V-cycle varying between (2, 1), (2, 2), (3, 1), (3, 2),

and (3, 3), again based upon a fixed number of V-cycles per linear solve. We can see that even

if we have a fewer number of Newton iterations, the total timing becomes worse. Therefore,

the pre- and post-smooth (1, 1) is the best choice in this problem, with fixed V-cycles per inner

solve, as shown in Table 5.48.
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Table 5.50: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi ω = 0.8, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance for
Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

6 3 2 1 3 7 2.6626
7 3 2 1 3 8 11.1954
8 3 2 1 3 8 46.7468
9 3 2 1 3 8 189.9418

Table 5.51: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi ω = 0.8, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance for
Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

6 3 2 2 3 6 2.5352
7 3 2 2 3 6 12.3482
8 3 2 2 3 7 51.6027
9 3 2 2 3 7 211.5170

Table 5.52: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi ω = 0.8, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance for
Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

6 3 3 1 3 6 2.8363
7 3 3 1 3 7 12.7122
8 3 3 1 3 7 53.0417
9 3 3 1 3 8 247.6334
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Table 5.53: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi ω = 0.8, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance for
Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

6 3 3 2 3 6 2.9703
7 3 3 2 3 7 13.8123
8 3 3 2 3 7 60.3435
9 3 3 2 3 7 258.5162

Table 5.54: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Jacobi ω = 0.8, fixed V-cycle, the number of V-cycles = 3 and the relative tolerance for
Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

6 3 3 3 3 6 3.0349
7 3 3 3 3 6 13.6574
8 3 3 3 3 7 67.5521
9 3 3 3 3 7 277.4261

Newton-MG with Red Black Gauss-Seidel smoother and varying damping factor ω

In Tables 5.55 to 5.60, we present the results of the numerical solution of the thin film flow using

the Newton-MG algorithm with the Red Black Gauss-Seidel smoother and damping factors

ω = 0.8, 0.9, 1, 1.1, 1.2, 1.5, (pre, post)smooth = (1, 1), three V-cycles per linear solve and the

Coarse Grid = 3. Tables 5.57 to 5.59 show the best choice of ω to be between ω = 1.0 and

ω = 1.2. Hence subsequent tests will use values in this range.
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Table 5.55: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 0.8, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 7 0.8453
6 3 1 1 3 8 2.0750
7 3 1 1 3 8 8.2375
8 3 1 1 3 8 33.7755
9 3 1 1 3 9 155.0077

Table 5.56: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 0.9, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 6 0.7643
6 3 1 1 3 7 1.8013
7 3 1 1 3 8 7.2468
8 3 1 1 3 8 33.8062
9 3 1 1 3 8 138.9229

Table 5.57: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 6 0.7504
6 3 1 1 3 6 1.4803
7 3 1 1 3 7 6.9759
8 3 1 1 3 7 28.5065
9 3 1 1 3 7 117.4988
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Table 5.58: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.1, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 6 0.7642
6 3 1 1 3 6 1.4771
7 3 1 1 3 6 5.9768
8 3 1 1 3 6 24.5663
9 3 1 1 3 7 117.8308

Table 5.59: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.2, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 6 0.7516
6 3 1 1 3 6 1.4798
7 3 1 1 3 6 5.9709
8 3 1 1 3 6 24.3250
9 3 1 1 3 7 117.3044

Table 5.60: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.5, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 3 1 1 3 8 0.8896
6 3 1 1 3 9 2.3411
7 3 1 1 3 10 10.3174
8 3 1 1 3 10 42.2273
9 3 1 1 3 10 173.9966
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Newton-MG with Red Black Gauss-Seidel smoother and varying V-cycle Tol

Tables 5.61 to 5.63 present the numerical results for Newton-MG performance for the thin film

flow in the steady-state case with Red Black Gauss-Seidel smoother with ω = 1.1, (pre, post)smooth =

(1, 1), Coarse Grid = 4. We have used a varying number of V-cycles (with a maximum num-

ber of 20), based upon different values for the relative stepping tolerance based on the linear

residual. The values considered are Tol = 1e − 2 Tol = 1e − 4 and Tol = 1e − 6, respectively:

with the former always being superior.

Similarly, Tables 5.64, 5.65 and 5.66, present results computed with different fixed choices of

V-cycle number for each Newton step. We have again used the Red Black G-S smoother with

ω = 1.1, (pre, post)smooth = (1, 1), Coarse Grid = 4. Tables 5.61 to 5.63 show that when we

vary the tolerance the number of V-cycles is almost always fixed. Therefore, considering tables

5.61 to 5.66 together, from now on we are going to fix the number of V-cycles (at 3) rather

than fix the tolerance.

Table 5.61: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.1, maximum number of V-cycles is 20 and Tol = 1e− 2.

Input Output

Grid Size Smoother Newton Solver MG Solver Time (sec)
Fine Coarse Pre Post No. Newton Iteration No. MG V-Cycle -

5 4 1 1 6 2 0.6818
6 4 1 1 6 3 1.5447
7 4 1 1 6 3 6.2639
8 4 1 1 6 3 25.6072
9 4 1 1 7 3 123.2017

Table 5.62: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.1, maximum number of V-cycles is 20 and Tol = 1e− 4.

Input Output

Grid Size Smoother Newton Solver MG Solver Time (sec)
Fine Coarse Pre Post No. Newton Iteration No. MG V-Cycle -

5 4 1 1 5 4 2.1790
6 4 1 1 5 5 1.8114
7 4 1 1 5 5 7.7283
8 4 1 1 6 5 37.8208
9 4 1 1 6 5 154.9409
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Table 5.63: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.1, maximum number of V-cycles is 20 and Tol = 1e− 6.

Input Output

Grid Size Smoother Newton Solver MG Solver Time (sec)
Fine Coarse Pre Post No. Newton Iteration No. MG V-Cycle -

5 4 1 1 5 6 0.9217
6 4 1 1 5 7 2.6403
7 4 1 1 5 7 11.1125
8 4 1 1 5 7 46.8816
9 4 1 1 5 7 195.2469

Table 5.64: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.1, fixed number of V-cycles = 3.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 1 1 3 6 0.4078
6 4 1 1 3 6 1.5277
7 4 1 1 3 6 6.2500
8 4 1 1 3 6 25.5887
9 4 1 1 3 7 123.2528

Table 5.65: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.1, fixed V-cycle, the number of V-cycles = 5 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 1 1 5 5 2.3588
6 4 1 1 5 5 1.8444
7 4 1 1 5 5 7.7822
8 4 1 1 5 6 38.4403
9 4 1 1 5 6 156.5030
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Table 5.66: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.1, fixed V-cycle, the number of V-cycles = 7 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 1 1 7 5 0.6540
6 4 1 1 7 5 2.6332
7 4 1 1 7 5 11.5455
8 4 1 1 7 5 47.2581
9 4 1 1 7 5 193.0136

Newton-MG with Red Black Gauss-Seidel smoother and varying Coarse grid level

We now experiment the coarse grid level to find the optimal choice for the Newton-MG algo-

rithm. Comparing Table 5.59, Table 5.67 and Table 5.68 we observed that the best coarse grid

level for this problem is Coarse Grid = 4 as we can see in Table 5.67.

Table 5.67: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.2, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 1 1 3 6 0.7679
6 4 1 1 3 6 1.3197
7 4 1 1 3 6 5.6554
8 4 1 1 3 7 27.3475
9 4 1 1 3 6 100.5532
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Table 5.68: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.2, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

6 5 1 1 3 6 1.2389
7 5 1 1 3 6 5.7582
8 5 1 1 3 6 23.9345
9 5 1 1 3 7 111.8401

Newton-MG with Red Black Gauss-Seidel smoother and varying (pre, post)smooth

In Tables 5.69 to 5.73 we present results of experiments with the following (pre, post)smooth

values: (2, 1), (2, 2), (3, 1), (3, 2), and (3, 3), in order to determine the best value of pre-

and post- smooth for this algorithm. We can compare to Table 5.67 to see that the choice

(pre, post)smooth = (1, 1) is most efficient here.

Table 5.69: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.2, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 2 1 3 6 0.7497
6 4 2 1 3 6 1.8728
7 4 2 1 3 6 7.7227
8 4 2 1 3 7 35.9747
9 4 2 1 3 6 137.7003
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Table 5.70: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.2, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 2 2 3 6 0.8589
6 4 2 2 3 6 1.9488
7 4 2 2 3 6 9.8611
8 4 2 2 3 7 46.1188
9 4 2 2 3 7 188.2890

Table 5.71: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.2, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 3 1 3 6 0.8109
6 4 3 1 3 6 1.9556
7 4 3 1 3 6 9.4684
8 4 3 1 3 7 38.9025
9 4 3 1 3 6 159.4066

Table 5.72: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.2, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 3 2 3 6 0.9077
6 4 3 2 3 6 2.3472
7 4 3 2 3 6 9.8690
8 4 3 2 3 7 47.2647
9 4 3 2 3 7 193.1786
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Table 5.73: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.2, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 3 3 3 6 0.9702
6 4 3 3 3 6 2.5451
7 4 3 3 3 6 10.7489
8 4 3 3 3 6 44.1336
9 4 3 3 3 7 212.4052

Summary

When we compare the best results of the Newton-MG algorithm with Jacobi smoother with

parameter ω = 0.8, (pre, post)smooth = (1, 1), Coarse Grid = 5 and the relative tolerance

Tol = 1e− 8 in Table 5.49 with the best results of the Newton-MG algorithm with Red-Black

G-S smoother with ω = 1.2, (pre, post)smooth = (1, 1), Coarse Grid = 4 and the relative toler-

ance Tol = 1e − 8 in Table 5.67, we conclude that the Newton-MG algorithm with Red-Black

G-S smoother is most efficient in this case. Furthermore, only a very approximate linear multi-

grid solve is required: based upon 3 V-cycles per Newton iteration. Moreover, in almost all of

these examples, when we double the number of grid points we find that the number of V-cycles

stays constant. In addition, when the problem size is increased by a factor of 4 the total time

is also increased by a factor of approximately 4 which implies a linear complexity of O(N) of

the overall algorithm for each Newton iteration.

In the following subsection, we illustrated the numerical results of the thin film flow using the

Newton-Krylov-AMG with our proposed new multilevel preconditioners for the steady-state

problem.

5.7.3 Numerical Results using Newton-Krylov-AMG

In this section, we perform a wide set of numerical experiments to optimize the parameter

selection for the Newton-Krylov-AMG. In order to achieve a suitable preconditioner with robust

convergence rates, we will solve the discrete nonsymmetric Jacobian system with the GMRES

method and various preconditioners. The results that follow involve various choices for the

values of the parameters for the different preconditioners. Within our preconditioners, when we

apply AMG(K) and AMG(Kα), we can choose what the (pre, post)smooth values are, compared

to the default of (pre, post)smooth = (2, 2) in the Harwell Subroutine Library (HSL) [70].
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Newton-Krylov-AMG with the Preconditioner P1

Table 5.74 demonstrates that, as explained in the previous sections and in [97, 135, 136], P1 in

Equation (5.48) is an optimal preconditioner in terms of iterations taken. It is prohibitively

expensive, however, due to the computation of the Schur Complement matrix and direct linear

algebra.

Table 5.74: Newton-Krylov-AMG solver performance in steady-state case, using P1 with GMRES
maximum iteration Maxit = 20, (the relative tolerance for GMRES is Tol = 1e− 4) and Restart = 20
where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

3 4 1 2 1.20 0.2686
4 5 1 2 1.20 0.2060
5 5 1 2 1.20 3.1470
6 5 1 2 1.20 119.2166

Newton-Krylov-AMG with the Preconditioner P1a and varying GMRES Tol

In order to improve the efficiency of the preconditioner, we took the upper triangular blocks

of the matrix J and replaced the exact Schur complement with an approximation, i.e. the

block matrix S1 ' Kα in the preconditioner P1a in Equation (5.49). The numerical results

of Tables 5.75, 5.76 and 5.77 show the performance of Newton-Krylov with P1a preconditioner

with different tolerances for the GMRES iterations. The advantage of this preconditioner is

that it has a constant number of iterations as reported in these tables. It is still relatively slow,

however, as we solve the diagonal blocks with direct linear algebra.

Table 5.75: Newton-Krylov-AMG solver performance in steady-state case, using P1a with GMRES
maximum iteration Maxit = 20, (the relative tolerance for GMRES is Tol = 1e − 2), Restart = 20
and the relative tolerance for Newton is Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 11 9.16 0.4606
5 6 8 11 9.16 0.2976
6 6 8 11 9.16 1.5546
7 6 8 11 9.16 6.2882
8 7 8 11 9.14 34.1152
9 7 8 11 9.14 160.6913
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Table 5.76: Newton-Krylov-AMG solver performance in steady-state case, using P1a with GMRES
maximum iteration Maxit = 20, (the relative tolerance for GMRES is Tol = 1e − 3), Restart = 20
and the relative tolerance for Newton is Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 12 10.60 0.3643
5 5 10 12 10.60 0.2790
6 6 10 12 10.50 1.8098
7 6 10 12 10.50 6.9315
8 6 10 12 10.50 33.0380
9 6 10 12 10.50 156.0248

Table 5.77: Newton-Krylov-AMG solver performance in steady-state case, using P1a with GMRES
maximum iteration Maxit = 20, (the relative tolerance for GMRES is Tol = 1e − 4), Restart = 20
and the relative tolerance for Newton is Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 11 14 12.20 0.3671
5 5 11 14 12.20 0.3107
6 5 11 14 12.20 1.6498
7 5 11 14 12.20 6.5998
8 6 11 14 12.16 36.7750
9 6 11 14 12.16 174.6869

Newton-Krylov-AMG with the Preconditioner P1b, (pre, post)smooth = (1, 1) and vary-

ing GMRES Tol

As we can see from Tables 5.75, 5.76, 5.77, the results presented demonstrate a good perfor-

mance of the P1a preconditioner with respect to the GMRES iteration count, which is constant

for all cases. On the other hand, the P1a preconditioner is not optimal with respect to run-

ning time. Therefore, we need to develop this preconditioner to reduce the time required to

solve this system. In order to improve the efficiency of the algorithm, we performed our new

preconditioner by replacing the exact Schur Complement with an approximation that uses one

AMG V-cycle with Gauss-Seidel smoothing and varying pre- and post-smoothing iterations to

solve for the diagonal blocks in the new preconditioner P1b in Equation (5.50). Tables 5.78 to

5.80 present a series of experiments using P1b where we varied tolerance for GMRES between

Tol = 1e− 02, Tol = 1e− 03 and Tol = 1e− 04 with Tol = 1e− 08 as the tolerance for Newton

iterations with (pre, post)smooth = (1, 1). We see that all three choices yield close to optimal,
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O(N) algorithms, with Tol = 1e − 03 being marginally best. Moreover, the overall solution

times are extremely competitive when compared with the other methods we have considered so

far.

Table 5.78: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 2), Restart = 20, (pre, post)smooth = (1, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 11 9.50 1.5636
5 6 8 11 9.50 0.1894
6 7 8 11 9.42 0.8940
7 7 8 11 9.57 2.9539
8 7 8 11 9.57 11.7392
9 7 8 11 9.57 49.7900

Table 5.79: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (1, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 11 14 11.80 0.0762
5 6 10 13 11.50 0.1962
6 6 10 14 11.66 0.7764
7 6 10 14 11.83 2.7540
8 6 10 14 11.66 11.1152
9 6 10 14 11.83 47.9053
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Table 5.80: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 4), Restart = 20, (pre, post)smooth = (1, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 12 16 13.80 0.1892
5 5 12 17 13.80 0.1846
6 5 13 16 14.00 0.7169
7 6 13 16 14.16 3.0731
8 6 13 16 14.00 12.6077
9 6 13 16 14.16 54.1662

Newton-Krylov-AMG with the Preconditioner P1b, (pre, post)smooth = (2, 1) and vary-

ing GMRES Tol

Tables 5.81, 5.82 and 5.83 show the performance of the Newton-Krylov-AMG with precondi-

tioner P1b with (pre, post)smooth = (2, 1) for the AMG parts of the P1b preconditioner. Whilst

this is still optimal it is slower than the (pre, post)smooth = (1, 1) case.

Table 5.81: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 2), Restart = 20, (pre, post)smooth = (2, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 11 9.50 0.1890
5 6 8 11 9.33 0.1700
6 7 8 11 9.42 0.8102
7 7 8 11 9.57 2.9748
8 7 8 11 9.57 12.1842
9 7 8 11 9.57 51.4669
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Table 5.82: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (2, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 14 11.60 0.1329
5 6 10 13 11.33 0.1956
6 6 10 13 11.33 0.7997
7 6 10 14 11.50 2.8242
8 6 10 14 11.50 11.5426
9 6 10 14 11.66 49.4254

Table 5.83: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 4), Restart = 20, (pre, post)smooth = (2, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 12 16 13.80 0.1226
5 5 12 16 13.40 0.1761
6 5 12 16 13.60 0.7294
7 6 13 16 14.00 3.1993
8 6 13 16 14.00 13.0380
9 6 13 16 14.00 56.0957

Newton-Krylov-AMG with the Preconditioner P1b, (pre, post)smooth = (2, 2) and vary-

ing GMRES Tol

Tables 5.84 to 5.86 present a series of experiments with (pre, post)smooth = (2, 2) for the P1b

preconditioner. Again the results are close to optimal but slower than the (pre, post)smooth =

(1, 1) case.
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Table 5.84: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 2), Restart = 20, (pre, post)smooth = (2, 2) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 11 9.33 0.1453
5 6 8 11 9.33 0.1735
6 6 8 11 9.33 0.7088
7 7 8 11 9.42 2.9970
8 7 8 11 9.42 12.3526
9 7 8 11 9.57 53.4829

Table 5.85: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (2, 2) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 13 11.20 0.1422
5 6 10 13 11.00 0.1651
6 6 10 13 11.16 0.8109
7 6 10 13 11.16 2.8836
8 6 10 12 11.00 11.5203
9 6 10 14 11.66 50.5599
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Table 5.86: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 4), Restart = 20, (pre, post)smooth = (2, 2) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 11 15 13.00 0.1544
5 5 12 16 13.20 0.1808
6 5 12 15 13.40 0.8016
7 5 12 15 13.40 2.6800
8 6 12 15 13.33 12.8699
9 6 12 16 13.66 57.2634

Newton-Krylov-AMG with the Preconditioner P1b, (pre, post)smooth = (3, 3) and vary-

ing GMRES Tol

Tables 5.87, 5.88 and 5.89 show the performance of the Newton-Krylov-AMG with (pre, post)smooth =

(3, 3) for the P1b preconditioner. Once more these results are inefficient compared to the

(pre, post)smooth = (1, 1) case.

Table 5.87: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 2), Restart = 20, (pre, post)smooth = (3, 3) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 11 9.16 1.6449
5 6 8 11 9.33 0.2409
6 6 8 11 9.16 0.8569
7 6 8 11 9.33 2.8122
8 7 8 11 9.42 13.1644
9 7 8 11 9.42 54.8534
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Table 5.88: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (3, 3) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 12 11.00 0.1456
5 5 10 13 11.00 0.1736
6 6 10 12 11.00 0.8373
7 6 10 12 11.00 3.0425
8 6 10 13 11.16 12.4137
9 6 10 13 11.16 52.5767

Table 5.89: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 4), Restart = 20, (pre, post)smooth = (3, 3) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 11 15 13.00 0.3912
5 5 11 15 12.80 0.1936
6 5 11 15 12.80 0.7843
7 5 12 15 13.00 2.7414
8 6 12 15 13.33 13.8272
9 6 12 15 13.33 58.3836

Newton-Krylov-AMG with the Preconditioner P2 and varying GMRES Tol

Now we repeat all experiments for the preconditioner P1 in Equation (5.48) with the precon-

ditioner P2 in Equation (5.51). In Tables 5.90 to 5.92 we show that P2 with different GMRES

tolerances is an optimal preconditioner in terms of bounding Newton and GMRES iterations.

However, it is prohibitively expensive, since we are required to solve the diagonal blocks with

direct linear algebra.
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Table 5.90: Newton-Krylov-AMG solver performance in steady-state case, using P2 with the exact
Schur Complement S2 = K − IK−1

α Bα, with GMRES maximum iteration Maxit = 20, (the relative
tolerance for GMRES is Tol = 1e − 2), Restart = 20, and the relative tolerance for Newton is Tol =
1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

3 4 1 2 1.75 0.2768
4 5 1 2 1.80 0.2171
5 5 1 2 1.80 3.4141
6 5 1 2 1.80 143.9946

Table 5.91: Newton-Krylov-AMG solver performance in steady-state case, using P2 with the exact
Schur Complement S2 = K − IK−1

α Bα, with GMRES maximum iteration Maxit = 20, (the relative
tolerance for GMRES is Tol = 1e − 3), Restart = 20, and the relative tolerance for Newton is Tol =
1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

3 4 1 2 1.75 0.2718
4 5 1 2 1.80 0.2527
5 5 1 2 1.80 3.4280
6 5 1 2 1.80 140.4432

Table 5.92: Newton-Krylov-AMG solver performance in steady-state case, using P2 with the exact
Schur Complement S2 = K − IK−1

α Bα, with GMRES maximum iteration Maxit = 20, (the relative
tolerance for GMRES is Tol = 1e − 4), Restart = 20, and the relative tolerance for Newton is Tol =
1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

3 4 1 2 1.75 0.2589
4 5 1 2 1.80 0.2519
5 5 1 2 1.80 3.5432
6 5 1 2 1.80 141.8519
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Newton-Krylov-AMG with the Preconditioner P2a and varying GMRES Tol

In order to develop the efficiency of the preconditioner, we took the lower triangular blocks

of the matrix J and replaced the exact Schur complement with an approximation, i.e. the

block matrix S2 ' K in the preconditioner P2a in Equation (5.52). The numerical results of

Tables 5.93, 5.94 and 5.95 show the performance of Newton-Krylov with P2a preconditioner

with different tolerances for the GMRES iterations. It is still far too slow due to the direct

solution of the blocks. However, the benefit of this preconditioner is that it has a bounded

number of iterations despite the approximation of the Schur complement as recorded in the

previous tables.

Table 5.93: Newton-Krylov-AMG solver performance in steady-state case, using P2a with GMRES
maximum iteration Maxit = 20, (the relative tolerance for GMRES is Tol = 1e − 2), Restart = 20
and the relative tolerance for Newton is Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 9 8.66 0.3654
5 6 8 9 8.66 0.2951
6 6 8 9 8.66 1.5369
7 7 8 9 8.57 7.1852
8 7 8 9 8.57 33.3193
9 7 8 9 8.57 157.1997

Table 5.94: Newton-Krylov-AMG solver performance in steady-state case, using P2a with GMRES
maximum iteration Maxit = 20, (the relative tolerance for GMRES is Tol = 1e − 3), Restart = 20
and the relative tolerance for Newton is Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 11 10.60 0.3840
5 6 10 11 10.33 0.3854
6 6 10 11 10.16 1.8421
7 6 10 11 10.16 7.2628
8 6 10 11 10.16 33.8123
9 6 10 11 10.16 157.4489
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Table 5.95: Newton-Krylov-AMG solver performance in steady-state case, using P2a with GMRES
maximum iteration Maxit = 20, (the relative tolerance for GMRES is Tol = 1e − 4), Restart = 20
and the relative tolerance for Newton is Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 11 12 11.80 0.3914
5 5 11 12 11.80 0.3233
6 5 11 12 11.80 1.6995
7 6 12 12 12.00 8.1155
8 6 12 12 12.00 38.2169
9 6 12 12 12.00 179.7662

Newton-Krylov-AMG with the Preconditioner P2b, (pre, post)smooth = (1, 1) and vary-

ing GMRES Tol

As we can see from Tables 5.93, 5.94 and 5.95 the results presented demonstrate a good per-

formance of the P2a preconditioner with respect to the Newton and GMRES iteration count,

which is constant for all cases. On the other hand, the P2a preconditioner is not optimal with

respect to running time. Therefore, we need to improve this preconditioner to decrease the time

needed to solve this system. In order to improve the efficiency of the algorithm, we created

our new preconditioner by replacing the exact Schur Complement with the approximation that

applies one AMG V-cycle with Gauss-Seidel smoothing and varying pre- and post-smoothing

iterations to solve the lower triangular blocks in the new preconditioner P2b in Equation (5.53).

In the same way we analyse the performance of the lower triangular block preconditioner P2b.

Tables 5.96 to 5.98 display a series of experiments where we varied the tolerance of GMRES

between Tol = 1e − 02, Tol = 1e − 03 and Tol = 1e − 04, where the tolerance of Newton

iterations is Tol = 1e− 08 with (pre, post)smooth = (1, 1) for the P2b preconditioner.

Table 5.97 shows the best performance of the Newton-Krylov-AMG with our new P2b precon-

ditioner with Tol = 1e − 03 of GMRES iterations with (pre, post)smooth = (1, 1). We see that

all three choices yield optimal, O(N) algorithms, however, with Tol = 1e− 03 being marginally

best.
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Table 5.96: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 2), Restart = 20, (pre, post)smooth = (1, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 10 9.00 0.1372
5 7 8 10 9.28 0.2059
6 7 8 10 9.28 0.7881
7 7 8 10 9.28 2.8808
8 7 8 10 9.28 11.6850
9 7 8 10 9.28 49.2499

Table 5.97: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (1, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 12 11.20 0.0887
5 6 10 13 11.16 0.1959
6 6 10 13 11.16 0.7592
7 6 10 13 11.33 2.7394
8 6 10 13 11.16 11.0972
9 6 10 13 11.50 47.7340
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Table 5.98: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 4), Restart = 20, (pre, post)smooth = (1, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 12 14 13.20 0.0625
5 5 13 14 13.20 0.1784
6 6 13 15 13.66 0.8596
7 6 13 15 13.66 3.0550
8 6 13 15 13.66 12.5570
9 6 13 15 14.00 54.3331

Newton-Krylov-AMG with the Preconditioner P2b, (pre, post)smooth = (2, 1) and vary-

ing GMRES Tol

Tables 5.99, 5.100 and 5.101 show the performance of the Newton-Krylov-AMG with our

new preconditioner for the P2b preconditioner with tolerance Tol = 1e − 08 for Newton it-

erations and a varying number of GMRES iterations with the AMG solver undertaken using

(pre, post)smooth = (2, 1). Whilst this is still optimal it is slower than the (pre, post)smooth =

(1, 1) case.

Table 5.99: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG precon-
ditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 2), Restart = 20, (pre, post)smooth = (2, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 10 9.00 0.1672
5 6 8 10 9.16 0.1842
6 7 8 10 9.00 0.7947
7 7 8 10 9.14 2.8884
8 7 8 10 9.28 12.0089
9 7 8 10 9.28 50.6377
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Table 5.100: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (2, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 12 11.00 0.1318
5 6 10 13 11.00 0.1891
6 6 10 13 11.00 0.7765
7 6 10 13 11.16 2.8153
8 6 10 13 11.16 11.4794
9 6 10 13 11.33 48.8011

Table 5.101: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 4), Restart = 20, (pre, post)smooth = (2, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 13 14 13.40 0.1572
5 5 13 14 13.20 0.1840
6 5 13 14 13.40 0.7453
7 6 13 15 13.66 3.1882
8 6 12 15 13.33 12.8373
9 6 13 15 13.66 56.2028

Newton-Krylov-AMG with the Preconditioner P2b, (pre, post)smooth = (2, 2) and vary-

ing GMRES Tol

Tables from 5.102 to 5.104 present a series of experiments where we use various tolerances for

GMRES which are Tol = 1e − 02, Tol = 1e − 03 and Tol = 1e − 04 with tolerance 1e − 08

for Newton iterations with the AMG solver undertaken using (pre, post)smooth = (2, 2) for the

P2b preconditioner. Again the results are optimal but slower than the (pre, post)smooth = (1, 1)

case.
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Table 5.102: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 2), Restart = 20, (pre, post)smooth = (2, 2) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 10 9.00 0.1433
5 6 8 10 8.83 0.1745
6 7 8 10 9.14 0.8815
7 7 8 10 8.85 3.0020
8 7 8 10 9.14 12.1891
9 7 8 10 9.28 51.5405

Table 5.103: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (2, 2) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 12 10.80 0.2042
5 6 10 12 10.66 0.2211
6 6 10 12 10.66 0.7892
7 6 10 12 10.83 2.8675
8 6 10 12 10.83 11.7889
9 6 10 13 11.33 50.9960
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Table 5.104: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 4), Restart = 20, (pre, post)smooth = (2, 2) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 12 14 13.00 0.1444
5 5 12 14 12.50 0.1825
6 5 12 14 12.80 0.7453
7 6 13 14 13.33 3.2500
8 6 12 15 13.00 13.1054
9 6 13 14 13.33 56.9457

Newton-Krylov-AMG with the Preconditioner P2b, (pre, post)smooth = (3, 3) and vary-

ing GMRES Tol

Tables 5.105, 5.106 and 5.107 show that the performance of the Newton-Krylov-AMG with the

tolerance Tol = 1e− 08 for Newton iterations and a varying number of GMRES iterations with

the AMG solver undertaken using (pre, post)smooth = (3, 3) for the P2b preconditioner. These

numerical results are still optimal, however, it is still slower than the (pre, post)smooth = (1, 1)

case.

Table 5.105: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 2), Restart = 20, (pre, post)smooth = (3, 3) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 6 8 10 9.00 0.1581
5 6 8 10 8.83 0.1825
6 6 8 10 8.83 0.7361
7 7 8 10 9.00 3.1785
8 7 8 10 8.85 13.0604
9 7 8 10 9.00 55.7512
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Table 5.106: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (3, 3) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 12 10.80 0.0665
5 6 10 12 10.66 0.2100
6 6 10 12 10.66 0.8264
7 6 10 12 10.66 3.0199
8 6 10 13 10.83 12.4680
9 6 10 12 10.83 53.4020

Table 5.107: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 4), Restart = 20, (pre, post)smooth = (3, 3) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 12 14 12.80 0.1579
5 5 12 14 12.60 0.1919
6 5 12 14 12.80 0.7945
7 6 12 15 12.83 3.4287
8 6 12 15 12.83 14.1624
9 6 12 15 13.00 60.5789

Summary

From all the previous numerical results for the P1b and P2b preconditioners we found that

the optimal performance is given by Table 5.79 and Table 5.97 where GMRES tolerance is

Tol = 1e − 03 and (pre, post)smooth = (1, 1). It is apparent from Tables 5.79 and 5.97 that

these preconditioners P1b and P2b each require a small and bounded number of Newton itera-

tions and both of them have short running time which confirms that they are superior to other

preconditioners.

To conclude, from all these results, we can remark that the best new preconditioners for solving

the thin film flow in the steady-state case system are P1b and P2b which significantly decrease

the number of Newton and GMRES iterations as well as the execution time compared to no
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preconditioning. Moreover, when we compared the execution time of P1b and P2b we observed

that they are much cheaper overall and also, their execution times scale linearly with the size of

the problem. In the following subsection, we discuss and compare the results of the numerical

solution of the thin film flow system using the three separate nonlinear multilevel algorithms in

order to decide on the best numerical solution for the steady-state problem in two dimensions.

5.7.4 Discussion and Comparison

In this subsection, we compare the FAS, Newton-MG and Newton-Krylov algorithms for the

numerical solution of the thin film flow in the steady-state problems. The analysis of the time-

dependent problems will develop in section 5.8.

We have demonstrated that all three nonlinear multilevel algorithms are successful with regards

to the thin film flow system. Optimal FAS, Newton-MG and Newton-Krylov-AMG performance

show that all three multilevel algorithms have O(N) cost. We have used the analytic Jacobian

for all three nonlinear multilevel algorithms to improve their efficiency. Nevertheless, the best

parameters in each case were obtained through extensive numerical tests; we found that these

algorithms are sensitive to the choice of parameters and that the best selection of parameters

for one algorithm is not necessarily the best choice for the other two algorithms.

For the FAS algorithm we have found that the best value of the parameter ω is ω = 1.2 and the

best smoother is Red Black G-S, with the best value of the parameter pre- and post-smooth

(pre, post) = (1, 1) and the best coarse grid size is G = 5, as shown in Table 5.30. For clarity,

this table is presented here again as the following:

Table 5.108: FAS performance for varying grid size for the thin film flow in the steady-state case with
Red Black G-S with ω = 1.2 and Tol = 1e− 8.

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post No. V-Cycle -

6 5 1 1 7 2.2061
7 5 1 1 7 4.3632
8 5 1 1 7 14.3745
9 5 1 1 7 56.7912

In this table, the whole times perform optimally and the number of V-cycle iterations is fixed.

The experiments presented in subsection 5.7.1 show that when we increase grid levels, the

number of V-cycles remains constant which implies that it is independent of the problem size.

Moreover, the execution time of this algorithm increases by approximately a factor of 4 from

one run to the next. As the problem size also grows by a factor of 4, this suggests that our FAS
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nonlinear multigrid algorithm converges with a linear complexity of O(N).

For the Newton-MG algorithm we have found that the best value of the parameter ω is 1.2,

with the best smoother being Red Black G-S smoother, with the best value of the parameter

pre- and post-smooth is (pre, post) = (1, 1) and the best coarse grid size is G = 4, as shown in

Table 5.67. For simplicity, we present this table here again as the following:

Table 5.109: Newton-MG performance for a varying grid size for the thin film flow in the steady-state
case with Red Black G-S with ω = 1.2, fixed V-cycle, the number of V-cycles = 3 and the relative
tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle No. Newton Iteration -

5 4 1 1 3 6 0.7679
6 4 1 1 3 6 1.3197
7 4 1 1 3 6 5.6554
8 4 1 1 3 7 27.3475
9 4 1 1 3 6 100.5532

As we can see from this Table the total times behave optimally and the number of Newton

iterations remains almost constant. Furthermore, we have observed that the execution time

is increased by approximately a factor of 4 from one run to the next; as the problem size is

increased by a factor of 4, this implies that our Newton-MG algorithm converges with a linear

complexity of O(N).

For our newly proposed preconditioner applied with Newton-Krylov and with the AMG block

solved using (pre, post) = (1, 1) (whereas the default for the AMG preconditioner that is used

by applying HSL-MI20 software is (2, 2)), we found little to choose between P1b and P2b, where

the best results are presented in Table 5.110 and Table 5.111. Here we display these tables

again for simplicity as the following:
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Table 5.110: Newton-Krylov-AMG solver performance in steady-state case, using P1b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (1, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 11 14 11.80 0.0762
5 6 10 13 11.50 0.1962
6 6 10 14 11.66 0.7764
7 6 10 14 11.83 2.7540
8 6 10 14 11.66 11.1152
9 6 10 14 11.83 47.9053

Table 5.111: Newton-Krylov-AMG solver performance in steady-state case, using P2b AMG pre-
conditioned with GMRES maximum iteration Maxit = 300, (the relative tolerance for GMRES is
Tol = 1e − 3), Restart = 20, (pre, post)smooth = (1, 1) and the relative tolerance for Newton is
Tol = 1e− 8, where the number of Newton iterations is NNI.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine NNI Min Max Average -

4 5 10 12 11.20 0.0887
5 6 10 13 11.16 0.1959
6 6 10 13 11.16 0.7592
7 6 10 13 11.33 2.7394
8 6 10 13 11.16 11.0972
9 6 10 13 11.50 47.7340

As seen in both tables, the computational time is optimal and the needed number of Newton

and GMRES iterations is fixed as the grid is refined.

While all three nonlinear multilevel algorithms return an optimal solution for the thin film flow

in the steady-state problem, the best performance overall is obtained by the Newton-Krylov-

AMG with our new preconditioner.

For the study at hand, it assists to show that the comparison between the very best numeri-

cal results of FAS algorithm performance in Table 5.108 with the very best numerical results

of Newton-MG algorithm performance in Table 5.109 with the very best numerical results of

Newton-Krylov-AMG preconditioner algorithm performance in Table 5.111. From this com-

parison, this research has shown that the best nonlinear multilevel approach to solve the thin
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film flow in the steady-state case is the Newton-Krylov-AMG with our new preconditioner al-

gorithm. The present work has been the first attempt to thoroughly examine the nonlinear

system of equations by using these three nonlinear multilevel algorithms. We can highlight

that from all these extensive experiments in this section, the Newton-Krylov-AMG with the

new preconditioner is our preferred algorithm which gives optimal performance and is superior

to both Newton-MG and FAS algorithms in terms of time running.

To conclude, we have obtained an optimal solution through FAS and Newton-MG, however,

FAS is superior to Newton-MG for the thin film flow in the steady-state case. Nevertheless,

our preconditioned Newton-Krylov-AMG is superior to both. In the following section, we will

compare FAS, Newton-MG and Newton-Krylov-AMG applied to the thin film flow nonlinear

system in the time-dependent case.

5.8 Time-Dependent Thin Film Flow Solving in 2D

So far we have considered the steady-state numerical solution of the nonlinear thin film flow

system of equations. In this section, we consider the fully discrete thin film flow model in

the time-dependent case and we solve it using implicit time stepping combined with the three

different nonlinear multilevel solvers under consideration.

We have applied the BDF1 method as the temporal discretisation scheme and the FDM as the

spatial discretisation scheme for the model in this work. Subsequently, we applied these three

nonlinear algorithms to solve the discrete nonlinear system that results from discretising the

nonlinear thin film flow system at each time step.

The system of nonlinear equations for the time-dependent problem, in general, will require a

complete set of initial and boundary conditions to determine the numerical solution. Therefore,

we apply Dirichlet boundary conditions and initial conditions for this system, as we described

earlier in Chapter 2 in Section 2.2.3.

We will describe the three nonlinear multilevel algorithms in the time-dependent problem, in

the few next subsections, after that we will compare these algorithms in order to evaluate which

multilevel algorithm is the best for solving the time-dependent thin film flow system.

5.8.1 The Fully Discrete System for Thin Film Flow Model in 2D

To obtain the nonlinear algebraic equations that we consider in this subsection we discretise

Sellier’s model (Equations (2.38) and (2.35)) in time with a fixed step 4t to replace the deriva-

tive ∂h
∂t . The pressure Equation (2.35) does not change because it contains no time derivative.
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The thin film Equation (2.38) reduces to the equations [Fh(U)] = 0, where

[Fh(U)]i,j =
hn+1
i,j −h
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. (5.55)

In the following subsection, we have written in a compact way the expression of the analytical

Jacobian matrix in the time-dependent problem which is a critical component in all three

nonlinear multilevel algorithms.

5.8.2 The Jacobian Matrix in Time-Dependent Case

The analytical sparse Jacobian in the time-dependent case is almost exactly the same as the

analytical Jacobian in the steady-state case in Equation (5.17) that we have illustrated in

Section 5.4.2. The only modification is that the block J21 which represents the derivative of

equation Fh with respect of h has the minor addition of the weighted identity block I as follows,

JT =

 J11 J12

(−1
∆t )I + J21 J22

 . (5.56)

In our multilevel schemes, we need this Jacobian for FAS, as a part of smoother, and for

Newton’s method, which requires the Jacobian matrix at each nonlinear iteration. This can

be calculated numerically, using finite differences, but for the FDM discretisation, it is also

straightforward, fast and efficient to compute the Jacobian analytically in sparse matrix form.

We presented here the analytical expressions for the Jacobian matrix in the time-dependent

problem. From Equations (5.55) and (5.16), we can simply derive the Jacobian terms corre-

sponding to the points away from the Dirichlet boundary conditions, with appropriate modifi-

cations for points next to the boundary, (see Appendix A). These terms can be used to build the

analytical Jacobian efficiently and in the sparse format because all other entries in the Jacobian

are zero.

In the next subsection, we demonstrate the performance of the three nonlinear multilevel al-

gorithms for the time-dependent problem which will be described in the numerical results in

subsection 5.10.
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5.9 Time-Dependent Solvers

In this section, we discuss the three nonlinear solution techniques: FAS, Newton-MG and the

new preconditioned Newton-Krylov-AMG algorithm applied to the time-dependent thin film

flow problem.

5.9.1 FAS

We used the FAS nonlinear multigrid algorithm in order to solve the thin film flow for the time-

dependent problem in 2D. We illustrated earlier the FAS algorithm in detail in Algorithm 2 in

Chapter 4. The numerical results of our implementation tests for this algorithm are illustrated

in Subsection 5.10.1.

5.9.2 Newton-MG

The application of Newton’s method gives a global linearization of the thin film flow nonlinear

system. The result of this linearization is the linear system for the correction solution δ, as

shown in Equations (5.42) and (5.43). The Newton-MG algorithm as we explained earlier in

Section 4.3.3.2 implements Newton iteration as outer iteration then applies linear multigrid

iteration as the linear solver. We have presented the numerical results that we generated using

Newton-MG algorithm in Subsection 5.10.2.

5.9.3 Newton-Krylov-AMG

We have described earlier the Newton-Krylov-AMG algorithm with the new preconditioner

which is one of the main focuses of this thesis. We discuss in this subsection, the algebraic

discrete nonlinear systems that arise from the discretisation of the time-dependent problem.

These discretization and linearization lead to large sparse linear systems which require to be

solved at each nonlinear iteration. Let us rewrite the linear system Equation (5.41) in the

following matrix form: (
K I

B∗α Kα

)(
δh

δp

)
=

(
Fp

Fh

)
(5.57)

where K =
∂Fp
∂h , I =

∂Fp
∂p , B∗α = Bα + −1

∆t I = ∂Fh
∂h and Kα = ∂Fh

∂p are block matrices.

As already observed in the steady-state case, crucial to the performance of a Krylov scheme

such as GMRES is a good preconditioner [112]. We consider here potential preconditioners

which are based upon the natural extension of P1 and P2 to the time-dependent case.

The first preconditioner P3 in Equation (5.58) in the time-dependent problem uses a direct

solver (backslash) with the exact Schur Complement. The advantage of using the exact Schur

Complement is that it gives a perfect solution because this preconditioner just requires at max-

imum two iterations to converge. Nevertheless, clearly, we understood that this is not efficient
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since it uses a lot of memory and it is expensive to compute. Consequently, we examined and

improved this preconditioner by replacing the exact Schur Complement S3 by the approximate

matrix S3 ' Kα in the different preconditioner P3a and then apply this preconditioner by using

the direct solver. The more practical preconditioner P3b, uses one AMG iteration with the

approximate Schur Complement AMG(Kα).

The first choice of a preconditioner is P3 in the time-dependent case, which is the upper trian-

gular block preconditioner written as follows:

P3 =

(
K I

0 S3

)
, (5.58)

where S3 is the exact Schur Complement S3 = Kα −B∗αK−1I.

The preconditioner P3a is the upper triangular block preconditioner formulated as follows:

P3a =

(
K I

0 Kα

)
, (5.59)

where S3 ' Kα approximates the block matrix.

The preconditioner P3b is the upper triangular block preconditioner written as follows:

P3b =

(
AMG(K) I

0 AMG(Kα)

)
, (5.60)

where AMG(X) represents the action of one AMG iteration applied to matrix X.

Our second choice of a preconditioner in the time-dependent case is P4, the lower triangular

block preconditioner written as follows:

P4 =

(
S4 0

B∗α Kα

)
, (5.61)

where S4 is the exact Schur Complement S4 = K − IK−1
α B∗α.

The preconditioner P4a is given by the block lower triangular matrix as follows:

P4a =

(
K 0

B∗α Kα

)
, (5.62)

where S4 ' K the approximate of the Schur Complement.



147 5.10. Numerical Results in Time-Dependent Case

The preconditioner P4b is given by the block lower triangular matrix as follows:

P4b =

(
AMG(K) 0

B∗α AMG(Kα)

)
. (5.63)

We again use the software implementation that is available in Harwell Subroutine Library

(HSL). This includes HSL-MI20 for the AMG method and HSL-MI24 for the GMRES method.

The numerical results of the Newton-Krylov-AMG algorithm preconditioned with P3, P3a, P3b,

P4, P4a and P4b are presented in the subsection 5.10.3. In the following section, we present the

numerical results that have been reached using the FAS, Newton-MG and Newton-Krylov-AMG

nonlinear multilevel algorithms for the time-dependent nonlinear problem.

5.10 Numerical Results in Time-Dependent Case

The computational results that are presented in this section have used the same scenarios

and grid sizes that we used in the steady-state problem. We have implemented extensive nu-

merical experiments to optimize the parameters selected for the all three nonlinear multilevel

algorithms which are: FAS, Newton-MG and Newton-Krylov-AMG with new preconditioner.

Several choices of the parameters were employed for each scheme. Moreover, in subsection

5.10.4, we will compare our selection of parameters for these three nonlinear multilevel schemes

to decide the best among them.

Figure 5.19 shows the initial conditions that we have used for the thin film flow system. We

display the numerical solutions for the thin film flow system at T = 5 (the end of the solution)

in Figure 5.20. Throughout this subsection, the numerical results have been completed using

the time step size ∆t = 0.1 and the number of time steps taken to estimate the performance of

the three nonlinear multilevel algorithms is always 10.

We have performed comprehensive numerical experiments to optimize the parameter selection

for all three nonlinear multilevel schemes to solve this system. In the time-dependent case and

the results that follow explore optimal choices for each method.
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Figure 5.19: The free surface (numerical solution) h+ s at Time T=0.



149 5.10. Numerical Results in Time-Dependent Case

Figure 5.20: The free surface (numerical solution) h+ s at Time T=5.

5.10.1 Numerical Results using FAS

This subsection focuses on the numerical results of our nonlinear multigrid FAS solver in the

time-dependent case. We start with the numerical results of the FAS algorithm with Jacobi

smoother. We undertake numerical experiments of this algorithm with different values of ω.

Then later we test the same algorithm with Red-Black-G-S smoother and other values of ω.

We conclude by determining the best parameters for the FAS algorithm.

FAS with Jacobi smoother and varying damping factor ω

From Tables 5.112 to 5.115 we apply varying ω in the range of ω = 1/2, 2/3, 0.8 and 0.9, with

the purpose of finding the optimal value for the nonlinear Jacobi smoother with a (1, 1) pre-

and post-smoother and the coarsest grid level G = 3. We observed that the best selection for

the free parameter ω for the Jacobi smoother is ω = 0.8 since for ω less or greater than 0.8 the

performance of FAS is poorer in terms of the number of V-cycles and the overall time of this

algorithm. Therefore, we used ω = 0.8 in the FAS algorithm with the Jacobi smoother as the

best choice.
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Table 5.112: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps=10, by using nonlinear Jacobi with ω = 1/2 and the relative tolerance
for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 28 30 28.9 9.6797
6 3 1 1 29 32 30.9 33.2597
7 3 1 1 30 34 32.0 136.2223
8 3 1 1 31 35 32.8 564.2420
9 3 1 1 31 35 33.2 2.2962e+03

Table 5.113: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, by using nonlinear Jacobi with ω = 2/3 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 20 22 20.7 7.3419
6 3 1 1 22 23 22.4 23.0547
7 3 1 1 22 25 23.4 93.5495
8 3 1 1 23 25 24.0 390.6789
9 3 1 1 23 26 24.2 1.5753e+03

Table 5.114: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, by using nonlinear Jacobi with ω = 0.8 and the relative tolerance
for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 16 17 16.9 4.9573
6 3 1 1 18 19 18.3 18.2336
7 3 1 1 19 20 19.3 74.5960
8 3 1 1 19 21 19.7 307.1344
9 3 1 1 19 21 20.0 1.2785e+03
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Table 5.115: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, by using nonlinear Jacobi with ω = 0.9 and the relative tolerance
for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 27 33 28.5 9.7206
6 3 1 1 26 35 28.2 28.3622
7 3 1 1 25 33 26.7 104.4816
8 3 1 1 23 36 25.4 404.4691
9 3 1 1 21 34 23.4 1.5339e+03

FAS with Jacobi smoother and varying Coarse grid level

We now seek the best coarse grid for the FAS algorithm with the Jacobi smoother. By examining

the data in Tables 5.114, 5.116 and Table 5.117, we observed that the best coarse grid level for

this problem is G = 5.

Table 5.116: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, by using nonlinear Jacobi with ω = 0.8 and the relative tolerance
for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 4 1 1 15 17 16.1 6.0567
6 4 1 1 17 19 17.8 19.5984
7 4 1 1 17 20 18.6 80.9420
8 4 1 1 18 21 19.1 333.7422
9 4 1 1 18 21 19.5 1.3757e+03
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Table 5.117: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, by using nonlinear Jacobi with ω = 0.8 and the relative tolerance
for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

6 5 1 1 15 17 15.8 21.6336
7 5 1 1 16 18 17.0 74.5368
8 5 1 1 17 18 17.9 308.3932
9 5 1 1 17 19 18.0 1.2607e+03

FAS with Red Black Gauss-Seidel smoother and varying damping factor ω

We used an alternative smoother for the FAS algorithm which is the Red-Black Gauss-Seidel

smoother; we vary the values ω and (pre, post)smooth with relative tolerance Tol = 1e − 8 in

order to compare the data obtained from this smoother with the data obtained from the Jacobi

smoother.

In Tables 5.118 to 5.122 we present the results of the numerical solution of the thin film flow sys-

tem in the time-dependent using the FAS algorithm with the Red-Black Gauss-Seidel smoother;

with ω = 0.8, 0.9, 1, 1.1, 1.2, (pre, post)smooth = (1, 1) and the coarse grid G = 3. In Table

5.120 the best choice of ω is presented, ω = 1 with the basis of (1, 1) V-cycle and G = 3. These

results again show that the Gauss-Seidel smoother seems to out-perform the Jacobi smoother.

Table 5.118: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 0.8 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 13 13 13.0 4.4897
6 3 1 1 14 14 14.0 17.5544
7 3 1 1 14 15 14.4 69.8695
8 3 1 1 14 15 14.9 291.1552
9 3 1 1 14 16 15.1 1.2169e+03
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Table 5.119: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 0.9 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 11 11 11.0 3.8332
6 3 1 1 11 12 11.4 14.3914
7 3 1 1 12 12 12.0 58.5282
8 3 1 1 12 13 12.1 237.9691
9 3 1 1 12 13 12.3 1.0040e+03

Table 5.120: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 9 10 9.70 3.3760
6 3 1 1 10 10 10.0 12.5476
7 3 1 1 10 10 10.0 48.8703
8 3 1 1 10 10 10.0 197.8073
9 3 1 1 10 10 10.0 812.6604

Table 5.121: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1.1 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 9 11 10.3 3.5917
6 3 1 1 9 11 10.7 13.4578
7 3 1 1 9 11 10.7 52.1803
8 3 1 1 9 11 10.7 210.9789
9 3 1 1 9 11 10.7 871.6197
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Table 5.122: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1.2 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 11 13 12.7 4.7572
6 3 1 1 11 14 12.9 16.2018
7 3 1 1 11 14 13.0 63.2957
8 3 1 1 11 14 13.0 255.1201
9 3 1 1 11 14 13.0 1.0513e+03

FAS with Red Black Gauss-Seidel smoother and varying Coarse grid level

We seek the best coarse grid for the FAS algorithm with the Red-Black Gauss-Seidel smoother.

By studying the data in Tables 5.123, 5.124 and Table 5.125, we see that the best coarse grid

level for this problem is G = 5 in Table 5.124.

Table 5.123: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 4 1 1 8 8 8.00 3.7844
6 4 1 1 9 10 9.20 11.5405
7 4 1 1 9 10 9.90 47.4262
8 4 1 1 10 11 10.4 202.5769
9 4 1 1 10 11 10.5 841.7728
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Table 5.124: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

6 5 1 1 7 8 7.6 11.4158
7 5 1 1 8 9 8.8 43.3668
8 5 1 1 9 10 9.4 180.2312
9 5 1 1 9 10 9.6 746.0546

Table 5.125: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

7 6 1 1 7 7 7.0 48.2318
8 6 1 1 8 9 8.1 177.2111
9 6 1 1 8 9 8.7 748.6868

FAS with Red Black Gauss-Seidel smoother and varying (pre, post)smooth

We used grid level G = 5, in Table 5.126 and Table 5.127, when we are comparing the number

of pre- and post-smooth V-cycles for this algorithm. We use (pre, post)smooth = (2, 1), and

(pre, post)smooth = (2, 2) with ω = 1 and G = 5. From these numerical results, we found that

the best (pre, post)smooth is (1, 1) in Table 5.124. This is because it delivers converged results

in a lower time, despite requiring a greater number of FAS V-cycles per time step.

Table 5.126: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

6 5 2 1 7 7 7.0 13.6032
7 5 2 1 7 8 7.9 55.9508
8 5 2 1 8 9 8.1 228.2863
9 5 2 1 8 9 8.5 961.5642
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Table 5.127: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

6 5 2 2 6 7 6.3 15.1146
7 5 2 2 7 7 7.0 63.2483
8 5 2 2 7 8 7.6 272.5561
9 5 2 2 7 8 7.9 1.1651e+03

FAS with Red Black Gauss-Seidel smoother and varying damping factor ω with

4t = 0.5

In order to consider the impact of the choices of the time step size on parameter choices Tables

5.128 to 5.129 illustrate the numerical results using the FAS algorithm with the Red-Black

Gauss-Seidel smoother; ω = 1, 1.2, with 4t = 0.5, (pre, post)smooth = (1, 1) and the coarse grid

G = 3. As we can see from these tables when we have done some tests with a bigger value of

the time step 4t, for example as 4t = 0.5, we observed that the optimal value of ω is ω = 1.2

which is the same behaviour of the performance of the steady-state problem. However, when we

take a smaller value of the time step, for example, 4t = 0.1, then we have a different optimal

value of ω.

Table 5.128: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.5 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 10 10 10.00 5.5976
6 3 1 1 11 11 11.00 14.6976
7 3 1 1 11 12 10.10 55.3000
8 3 1 1 11 12 11.90 236.3196
9 3 1 1 11 12 11.90 967.7897
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Table 5.129: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.5 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1.2 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 9 11 10.40 3.8698
6 3 1 1 9 11 10.60 12.9924
7 3 1 1 9 11 10.80 52.1182
8 3 1 1 9 11 10.80 211.3831
9 3 1 1 9 11 10.80 873.2995

Summary

All numerical results of our FAS algorithm that are presented have confirmed that its perfor-

mance is close to optimal across a wide range of impact parameters. The timings show that

our FAS implementation scales linearly with the number of unknowns.

Furthermore, for 4t = 0.1, the test in Table 5.124 shows that the FAS algorithm with the

nonlinear Red-Black Gauss-Seidel smoother with parameter ω = 1, (pre, post)smooth = (1, 1),

Coarse Grid = 5 and the relative tolerance Tol = 1e − 8 is the best choice based on all the

experiments that we have performed. Although the optimal choice of ω for this time step size is

different to that observed in the steady-state case, when 4t is increased the optimal parameter

size for ω becomes the same as for the steady-state case.

5.10.2 Numerical Results using Newton-MG

In this subsection, we consider the numerical solutions provided by the Newton-MG solver in

the time-dependent problem in 2D.

Newton-MG with Jacobi smoother and varying damping factor ω

In Tables 5.130 to 5.133 ω is varied in the range of ω = 1/2, 2/3, 0.8 and 0.9, with the aim

of determining the optimal value for the linear Jacobi smoother with a (1, 1) pre- and post-

smoother and with the coarsest grid level G = 3. We found that the best selection for the

free parameter ω for the Jacobi smoother is ω = 0.8 and if ω is less or greater than 0.8 the

performance of Newton-MG is poorer as regards the number of V-cycles and the total time of

the algorithm. Consequently, we applied ω = 0.8 for the Newton-MG algorithm with the Jacobi

smoother in order to determine the best values for other free parameters.
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Table 5.130: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, by using Jacobi with ω = 1/2, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 3 1 1 3 11 13 11.0 7.4568
6 3 1 1 3 11 15 13.3 29.8859
7 3 1 1 3 12 15 13.1 130.2145
8 3 1 1 3 12 16 13.8 558.9905
9 3 1 1 3 13 17 14.4 2.3552e+03

Table 5.131: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, by using Jacobi with ω = 2/3, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 3 1 1 3 7 10 8.10 5.3074
6 3 1 1 3 8 11 8.80 21.9305
7 3 1 1 3 9 12 9.70 98.0223
8 3 1 1 3 9 12 10.2 420.4773
9 3 1 1 3 10 13 10.7 1.7997e+03

Table 5.132: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, by using Jacobi with ω = 0.8, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 3 1 1 3 6 8 6.6 5.9891
6 3 1 1 3 7 9 7.4 18.7619
7 3 1 1 3 7 10 7.9 81.3211
8 3 1 1 3 8 10 8.5 353.1812
9 3 1 1 3 8 10 8.7 1.4731e+03
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Table 5.133: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, by using Jacobi with ω = 0.9, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 3 1 1 3 10 15 11.1 7.1385
6 3 1 1 3 10 17 11.6 28.7511
7 3 1 1 3 10 17 11.7 117.5133
8 3 1 1 3 10 18 11.7 478.9011
9 3 1 1 3 10 18 11.6 1.9431e+03

Newton-MG with Jacobi smoother and varying Coarse grid level

In Tables 5.134 to 5.135 we apply Newton-MG with varying coarsest grid level which are

Coarse Grid = 4 and Coarse Grid = 5 with ω = 0.8 for the Jacobi smoothing parameter. We

see that there is only a small difference between these results and these in Table 5.132, however,

Coarse Grid = 5 appears to be the best choice.

Table 5.134: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, by using Jacobi with ω = 0.8, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 4 1 1 3 5 8 6.4 5.6777
6 4 1 1 3 6 9 7.2 18.0794
7 4 1 1 3 7 10 7.8 80.2832
8 4 1 1 3 7 10 8.2 347.6653
9 4 1 1 3 7 11 8.6 1.4709e+03
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Table 5.135: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, by using Jacobi with ω = 0.8, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

6 5 1 1 3 6 8 6.5 16.3939
7 5 1 1 3 6 9 7.1 72.8956
8 5 1 1 3 7 10 7.0 335.2895
9 5 1 1 3 7 10 8.0 1.4192e+03

Newton-MG with Red Black Gauss-Seidel smoother and varying damping factor ω

We now consider using Gauss-Seidel as the linear MG smoother. In Tables 5.136 to Table 5.140

we display the numerical results of Newton-MG performance with the Red-Black G-S smoother

for a varying ω in the range of ω = 0.8, 0.9, 1, 1.1 and 1.2, with the goal of determining the

optimal value for the smoother with a (1, 1) pre- and post-smoother. We see that ω = 1 is the

best choice, Table 5.138. Furthermore, this performance is better than the Jacobi smoother.

Table 5.136: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 0.8, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 3 1 1 3 5 6 5.2 5.4253
6 3 1 1 3 5 7 5.6 14.8932
7 3 1 1 3 5 7 6.0 65.8999
8 3 1 1 3 6 8 6.4 278.6617
9 3 1 1 3 6 8 6.6 1.1724e+03



161 5.10. Numerical Results in Time-Dependent Case

Table 5.137: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 0.9, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 3 1 1 3 4 6 4.5 4.8026
6 3 1 1 3 4 6 4.9 12.2991
7 3 1 1 3 5 7 5.3 53.9997
8 3 1 1 3 5 7 5.5 229.8439
9 3 1 1 3 5 7 5.7 983.5401

Table 5.138: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 1, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 3 1 1 3 4 5 4.2 4.4412
6 3 1 1 3 4 6 4.4 11.4054
7 3 1 1 3 4 6 4.5 47.6886
8 3 1 1 3 4 6 4.7 204.0510
9 3 1 1 3 4 6 4.9 878.4558

Table 5.139: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 1.1, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 3 1 1 3 4 5 4.2 3.1313
6 3 1 1 3 4 5 4.3 11.2437
7 3 1 1 3 4 6 4.5 48.7204
8 3 1 1 3 4 6 4.5 200.3037
9 3 1 1 3 5 6 5.1 929.7864
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Table 5.140: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 1.2, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 3 1 1 3 5 6 5.1 3.6864
6 3 1 1 3 5 6 5.2 13.4801
7 3 1 1 3 5 6 5.3 56.8154
8 3 1 1 3 6 7 6.1 267.1056
9 3 1 1 3 6 7 6.1 1.1014e+03

Newton-MG with Red Black Gauss-Seidel smoother and varying Coarse grid level

Our aim here is to find the best coarse grid for the Newton-MG algorithm with the Red-Black

G-S smoother. By examining Table 5.141, 5.142 and 5.143 we found that the best coarse grid

level for this problem is Coarse Grid = 6. This value is quite high, however, we note that the

”backslash” solver in Matlab is able to exploit the sparsity of the Jacobian matrix on this grid.

Table 5.141: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 1, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

5 4 1 1 3 3 5 3.7 2.7224
6 4 1 1 3 4 5 4.2 10.6236
7 4 1 1 3 5 6 4.6 48.4196
8 4 1 1 3 5 6 4.8 209.6136
9 4 1 1 3 4 6 5.0 902.6206
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Table 5.142: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 1, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

6 5 1 1 3 3 5 3.8 9.8680
7 5 1 1 3 4 6 4.4 45.4568
8 5 1 1 3 4 6 4.6 199.3704
9 5 1 1 3 4 6 4.8 867.0142

Table 5.143: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 1, fixed V-cycle, the number of
V − cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

7 6 1 1 3 3 5 3.8 39.8166
8 6 1 1 3 4 5 4.2 182.4501
9 6 1 1 3 4 6 4.4 793.0276

Newton-MG with Red Black Gauss-Seidel smoother and varying (pre, post)smooth

In Table 5.144 and Table 5.145 we experimented with the grid level G = 5 with two values of

pre- and post-smooth in order to determine the best value; we experimented with the following

(pre, post)smooth values: (2, 1) and (2, 2). We found that the best value of the (pre, post)smooth

in this algorithm is (pre, post)smooth = (1, 1), as we can see in Table 5.142.

Table 5.144: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 1, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

6 5 2 1 3 3 5 3.6 12.1579
7 5 2 1 3 3 5 4.1 58.5123
8 5 2 1 3 4 5 4.2 257.2189
9 5 2 1 3 4 6 4.4 1.0977e+03
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Table 5.145: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 1, fixed V-cycle, the number of
V cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

6 5 2 2 3 3 5 3.5 14.4514
7 5 2 2 3 3 5 3.8 69.0380
8 5 2 2 3 3 5 4.1 314.7424
9 5 2 2 3 4 5 4.2 1.3230e+03

Summary

We observe that in all cases the number of linear V-cycles stays approximately constant as the

grid level is increased. In addition, when the problem size is grown by a factor of 4 the total

time is also grown by a factor of 4 which indicates a linear time complexity of O(N).

When we compare the best results of the Newton-MG algorithm with Jacobi smoother with

parameter ω = 0.8, (pre, post)smooth = (1, 1), coarse grid Coarse Grid = 5 and the relative

tolerance Tol = 1e− 8 in Table 5.135 with the best results of the Newton-MG algorithm with

Red-Black G-S smoother with ω = 1, (pre, post)smooth = (1, 1), coarse grid Coarse Grid = 6

and the relative tolerance Tol = 1e − 8 in Table 5.143, we conclude that the Newton-MG

algorithm with Red-Black G-S smoother is the best in this case.

5.10.3 Numerical Results using Newton-Krylov-AMG

We consider the numerical solutions produced by using the Newton-Krylov-AMG with our new

preconditioner to solve the thin film flow system in the time-dependent problem in 2D in this

subsection. We show extensive numerical experiments to optimize the parameter selection for

the Newton-Krylov-AMG.

Newton-Krylov-AMG with the Preconditioner P3

Table 5.146 shows the preconditioner P3 in Equation (5.58) with 4t = 0.1 and the number

of time step = 10, GMRES with maximum iteration Maxit = 20, Tol = 1e − 4 for GMRES

and Restart = 20 (i.e. if 20 iterations were to be taken then GMRES would restart: by fixing

this parameter to be the same as Maxit we are ensuring no restart). This preconditioner is

an optimal preconditioner in terms of iterations, it is prohibitively expensive, however, because

we solve the diagonal blocks with direct linear algebra and the computation of the exact Schur

Complement matrix.
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Table 5.146: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3 preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 20, Tol = 1e− 4 and Restart = 20 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 4 3.3 1 2 1.03 20.0886
6 3 4 3.3 1 2 1.03 743.6201

Newton-Krylov-AMG with the Preconditioner P3a and varying GMRES Tol

To improve the efficiency of the preconditioner, we took the upper triangular blocks of the

matrix J and replaced the exact Schur Complement with an approximation, i.e. the block

matrix S3 ' Kα in the preconditioner P3a in Equation (5.59). The numerical result of Tables

5.147, 5.148 and 5.149 show the performance of Newton-Krylov with the P3a preconditioner

with different tolerances for the GMRES iterations. The power of this preconditioner is that it

has a constant number of iterations as reported in the previous tables. It is still relatively slow,

however, since we solve the diagonal blocks with direct linear algebra (backslash).

Table 5.147: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3a preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 20, Tol = 1e− 2 and Restart = 20 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 4 6 5.1 7 14 11.70 3.0421
6 5 6 5.2 7 14 11.65 16.8074
7 5 6 5.4 7 14 11.75 69.4758
8 5 7 5.6 7 14 11.76 350.2836
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Table 5.148: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3a preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 20, Tol = 1e− 3 and Restart = 20 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 4.0 10 17 14.29 2.8900
6 4 5 4.2 10 17 14.42 15.8726
7 4 5 4.2 10 17 14.35 64.2262
8 4 5 4.3 10 17 14.41 320.6469

Table 5.149: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3a preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 20, Tol = 1e− 4 and Restart = 20 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.5 12 19 16.97 4.8324
6 3 5 3.5 12 19 16.91 15.8431
7 3 5 3.7 12 20 16.91 65.5000
8 3 5 3.7 12 20 16.97 321.3882

Newton-Krylov-AMG with the Preconditioner P3b, (pre, post)smooth = (1, 1) and vary-

ing GMRES Tol

As we can see from Tables 5.147, 5.148 and 5.149, the results displayed confirm a good perfor-

mance of the P3a preconditioner with respect to the GMRES iteration count, which is constant

for all cases. On the other hand, the P3a preconditioner is not optimal with respect to running

time, due to the fact that we solve the diagonal blocks with direct linear algebra (backslash).

Consequently, we require to improve this preconditioner to decrease the time needed to solve

this system. In order to develop the efficiency of the algorithm, we implemented our new

preconditioner P3b in Equation (5.60) by solving the diagonal blocks approximately using one

AMG V-cycle with Gauss-Seidel smoothing. Tables 5.150 to 5.153 demonstrate a series of

experiments using P3b in Equation (5.60) where we varied the tolerance for GMRES between

Tol = 1e − 02, Tol = 1e − 03, Tol = 1e − 04 and Tol = 1e − 05 with Tol = 1e − 08 as the

tolerance for Newton iterations with (pre, post)smooth = (1, 1). We can see that all four choices

yield close to optimal, O(N) algorithms, however, as we can see in Table 5.152, Tol = 1e− 04

represents the best choice.
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Table 5.150: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 2 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 5 6 5.3 8 16 12.96 1.8212
6 5 7 5.5 8 17 13.07 7.7314
7 6 7 6.1 7 17 13.11 30.2351
8 6 7 6.2 8 17 13.04 126.0949
9 6 7 6.2 8 17 12.88 538.1471

Table 5.151: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 3 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 4 5 4.2 12 20 16.09 1.8333
6 4 5 4.2 12 20 16.04 6.8254
7 4 6 4.4 12 20 16.06 25.0371
8 4 6 4.6 12 20 16.02 107.2297
9 4 6 4.8 12 20 16.04 485.2609

Table 5.152: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 4 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.5 16 27 18.80 1.7292
6 3 5 3.7 16 27 19.00 6.7337
7 3 5 3.9 16 27 18.92 24.8841
8 4 5 4.1 16 26 18.95 107.3758
9 4 5 4.2 16 26 18.80 480.2390
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Table 5.153: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 5 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 4 3.3 18 33 23.18 1.9120
6 3 5 3.5 17 32 23.05 8.2297
7 3 5 3.6 18 32 22.97 27.8777
8 3 5 3.6 18 32 22.69 108.4429
9 3 5 3.7 18 31 22.67 488.7844

Newton-Krylov-AMG with the Preconditioner P3b and (pre, post)smooth = (2, 1)

Table 5.154 shows the performance of the Newton-Krylov-AMG with preconditioner P3b with

4t = 0.1 and the number of time step = 10, GMRES with maximum iteration Maxit = 300,

Tol = 1e − 4 and Restart = 20 and with (pre, post)smooth = (2, 1) for the P3b preconditioner.

Whilst this is still optimal it is slightly slower than the (pre, post)smooth = (1, 1) case in Table

5.152.

Table 5.154: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 4 and Restart = 20 with (pre, post)smooth = (2, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.5 15 26 18.42 1.7551
6 3 5 3.5 16 26 18.54 6.4956
7 3 5 3.7 15 26 18.59 24.1367
8 3 5 4.0 15 26 18.66 107.6126
9 4 5 4.1 16 25 18.58 483.2393

Newton-Krylov-AMG with the Preconditioner P3b and (pre, post)smooth = (2, 2)

Table 5.155 presents an experiment with 4t = 0.1 and the number of time step = 10, GM-

RES with maximum iteration Maxit = 300, Tol = 1e − 4 and Restart = 20 and with

(pre, post)smooth = (2, 2) for the P3b preconditioner. Again the result is close to optimal but

slower than the (pre, post)smooth = (1, 1) case (see Table 5.152).
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Table 5.155: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 4 and Restart = 20 with (pre, post)smooth = (2, 2) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.5 15 25 18.31 1.6221
6 3 5 3.5 16 25 18.54 6.6744
7 3 5 3.7 16 25 18.52 25.0829
8 3 5 3.7 15 25 18.51 103.5058
9 4 5 4.1 16 25 18.53 493.0444

Now we repeat all experiments of the preconditioner for P3 to the preconditioner for P4.

Newton-Krylov-AMG with the Preconditioner P4

Table 5.156 presents the solver with the preconditioner P4 in Equation (5.61) with 4t = 0.1

and the number of time step = 10, GMRES with maximum iteration Maxit = 20, Tol = 1e−4

and Restart = 20. As expected, whilst this preconditioner is optimal in terms of iterations, it

is prohibitively expensive due to the computation of the exact Schur Complement matrix and

direct linear algebra.

Table 5.156: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4 preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 20, Tol = 1e− 4 and Restart = 20 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 4 3.3 1 2 1.96 31.6763
6 3 4 3.3 1 2 1.96 1.0292e+03

Newton-Krylov-AMG with the Preconditioner P4a and varying GMRES Tol

In order to improve the efficiency of the preconditioner, we took the lower triangular blocks of

the matrix J and replaced the exact Schur complement with an approximation, i.e. the block

matrix S4 ' K in the preconditioner P4a in Equation (5.62). The numerical results of Tables

5.157, 5.158 and 5.159 display the performance of Newton-Krylov with the P4a preconditioner

with different tolerances for the GMRES iterations. It is still relatively slow, due to the fact

that we solve the diagonal blocks using direct linear algebra. Nevertheless, the advantage of



Chapter 5. Thin Film Flow System 170

this preconditioner is that it still has a constant number of iterations as shown in the previous

tables.

Table 5.157: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4a preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 20, Tol = 1e− 2 and Restart = 20 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 5 7 5.4 7 14 11.46 3.2134
6 5 7 5.7 7 14 11.61 17.5422
7 5 7 5.9 7 14 11.71 74.8088
8 6 7 6.1 7 14 11.78 377.0737

Table 5.158: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4a preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 20, Tol = 1e− 3 and Restart = 20 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 4 5 4.1 10 17 14.43 2.9346
6 4 6 4.4 10 17 14.56 16.6231
7 4 6 4.4 10 17 14.54 68.4870
8 4 6 4.5 10 17 14.55 338.7543

Table 5.159: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4a preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 20, Tol = 1e− 4 and Restart = 20 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.6 12 20 17.19 2.8957
6 3 5 3.6 12 19 17.11 15.8467
7 3 5 3.7 12 19 17.13 65.9065
8 3 5 3.8 12 19 17.18 331.7706
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Newton-Krylov-AMG with the Preconditioner P4b, (pre, post)smooth = (1, 1) and vary-

ing GMRES Tol

Similarly, we analyse the performance of the lower triangular block preconditioner P4b in Equa-

tion (5.63) where the diagonal blocks systems are solved by using one AMG V-cycle with

Gauss-Seidel smoothing and varying pre- and post-smoothing iterations. Tables 5.160 to 5.163

display a series of experiments where we varied the tolerance of GMRES between Tol = 1e−02,

Tol = 1e − 03, Tol = 1e − 04 and Tol = 1e − 05, with 4t = 0.1 and the number of time step

= 10, GMRES with maximum iteration Maxit = 300, Tol = 1e − 2 and Restart = 20, where

the tolerance of Newton iterations is Tol = 1e − 08 with (pre, post)smooth = (1, 1) for the P4b

preconditioner. Table 5.162 shows the best performance of the Newton-Krylov-AMG for the

P4b preconditioner with Tol = 1e− 04 of GMRES iterations with (pre, post)smooth = (1, 1).

Table 5.160: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 2 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 5 7 5.6 8 15 12.85 1.8731
6 6 7 6.1 8 15 12.95 8.4716
7 6 8 6.2 8 15 12.95 30.4000
8 6 8 6.6 8 15 12.87 132.8622
9 7 8 7.1 8 15 12.73 610.7726

Table 5.161: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 3 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 4 5 4.2 12 18 16.09 1.6516
6 4 6 4.3 12 18 16.02 6.9997
7 4 6 4.6 13 17 16.06 26.1467
8 4 6 4.8 13 17 16.02 111.1767
9 5 6 5.1 12 17 16.02 511.5625
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Table 5.162: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 4 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.7 15 21 18.72 1.8223
6 3 5 3.9 15 20 18.79 7.0630
7 4 5 4.1 16 20 18.82 25.9074
8 4 5 4.2 16 20 18.82 109.0045
9 4 5 4.2 16 20 18.73 476.1476

Table 5.163: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 5 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.5 19 28 23.37 1.8252
6 3 5 3.5 19 27 23.05 7.4963
7 3 5 3.6 18 27 23.00 27.1795
8 3 5 3.8 19 27 22.91 115.6118
9 3 5 3.9 18 27 22.82 667.1306

Newton-Krylov-AMG with the Preconditioner P4b, (pre, post)smooth = (2, 1) and vary-

ing GMRES Tol

Table 5.164, Table 5.165 and Table 5.166 display the performance of the Newton-Krylov-AMG

with preconditioner P4b with 4t = 0.1 and the number of time step = 10, GMRES with

maximum iteration Maxit = 300, Restart = 20, Tol = 1e − 2, Tol = 1e − 3 and Tol = 1e − 4

and with (pre, post)smooth = (2, 1) for the P4b preconditioner. As with P3b this smoothing cycle

is always slower than the (pre, post)smooth = (1, 1) case.
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Table 5.164: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 2 and Restart = 20 with (pre, post)smooth = (2, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 5 7 5.8 8 14 12.63 1.9969
6 6 7 6.1 8 14 12.67 8.6558
7 6 7 6.2 8 14 12.67 31.0850
8 6 8 6.4 8 14 12.68 132.0033
9 6 8 6.9 8 14 12.57 607.8185

Table 5.165: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 3 and Restart = 20 with (pre, post)smooth = (2, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 4 5 4.2 12 17 15.90 1.6929
6 4 5 4.2 12 17 15.90 7.0146
7 4 6 4.4 12 17 15.88 25.6084
8 4 6 4.6 12 17 15.87 109.8941
9 4 6 5.0 12 17 15.80 515.3217

Table 5.166: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 4 and Restart = 20 with (pre, post)smooth = (2, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.6 16 20 18.52 1.6247
6 3 5 3.8 15 20 18.57 7.0786
7 3 5 3.9 15 20 18.64 25.3014
8 3 5 4.1 16 20 18.58 109.3549
9 4 5 4.2 15 20 18.51 687.2969
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Newton-Krylov-AMG with the Preconditioner P4b, (pre, post)smooth = (2, 2) and vary-

ing GMRES Tol

Tables 5.167 to Table 5.169 show the performance of the Newton-Krylov-AMG with precon-

ditioner P4b with 4t = 0.1 and the number of time step = 10, GMRES with maximum it-

eration Maxit = 300, Restart = 20, Tol = 1e − 2, Tol = 1e − 3 and Tol = 1e − 4 and

with (pre, post)smooth = (2, 2) for the P4b preconditioner. Again this is always slower than the

(pre, post)smooth = (1, 1) case (see Table 5.162).

Table 5.167: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 2 and Restart = 20 with (pre, post)smooth = (2, 2) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 5 7 6.0 7 14 12.51 2.2768
6 6 7 6.1 8 14 12.52 8.9916
7 6 7 6.1 8 14 12.56 32.7711
8 6 8 6.3 7 14 12.50 136.2320
9 6 8 6.4 8 14 12.53 742.2679

Table 5.168: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 3 and Restart = 20 with (pre, post)smooth = (2, 2) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 4 5 4.2 12 17 15.78 1.8425
6 4 6 4.3 12 17 15.86 7.4499
7 4 6 4.4 12 17 15.86 26.8078
8 4 6 4.5 12 17 15.72 111.5711
9 4 6 4.6 12 17 15.76 490.3956
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Table 5.169: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 4 and Restart = 20 with (pre, post)smooth = (2, 2) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.5 15 20 18.42 1.9267
6 3 5 3.7 15 20 18.51 7.1637
7 3 5 4.0 15 20 18.57 27.0173
8 3 5 3.9 15 20 18.41 108.3852
9 3 5 4.0 15 20 18.42 482.7263

Summary

When we compare the Tables 5.150, 5.151, 5.152 and 5.153 of our preconditioner P3b, we ob-

serve that when we make Tol smaller for the numerical solution of this model we found that

the average number of GMRES iterations goes up but the average number of Newton iterations

goes down. Likewise, when we compare the Tables 5.160, 5.161, 5.162 and 5.163 of our pre-

conditioner P4b, we found the same results, which is when we increase the average number of

GMRES iterations the average number of Newton iterations decrease. This is to be expected

and shown that there is an optimal accuracy with which to solve the linear system.

We can draw the conclusion based upon these numerical results with the steady-state case we

found that the better choice of GMRES tolerance is to take Tol = 1e − 3, whereas, in the

time-dependent case the choice of GMRES tolerance is to take Tol = 1e − 4. Note that when

we increase the accuracy by taking the GMRES tolerance below Tol = 1e − 4, the number of

Newton iterations does not decrease any more, therefore, this choice is the best choice.

In the time-dependent case, we observed that the optimal values are slightly different when we

take a small time step. In this case, the solution at the previous step gives a good initial guess

and hence we take only a few Newton iterations. However, when we do a large time step, as

we can see in Tables 5.128 and 5.129, the performance is closer to the steady-state case. One

of the challenges of solving the nonlinear problem efficiently is finding the best choice of the

parameters which can depend on the problem itself.

From all the former numerical results for the P3b and P4b preconditioners we found that the

best performance of the Newton-Krylov-AMG algorithm is given by Table 5.152 and Table

5.162 from P3b and P4b preconditioners respectively. These results are almost identical, where

GMRES tolerance is Tol = 1e− 04 and (pre, post)smooth = (1, 1).
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To conclude, from all these numerical results, we can observe that the best new preconditioners

for solving the thin film flow in the time-dependent case system are the P3b and P4b precondi-

tioners which significantly reduce the number of Newton and GMRES iterations as well as the

execution time. Furthermore, their execution times scale almost linearly with the size of the

problem.

In the following subsection, we discuss and compare the numerical results of the numerical

solution of the thin film flow system by applying the three separate nonlinear multilevel algo-

rithms in order to obtain the best numerical solution for the time-dependent problem in two

dimensions.

5.10.4 Discussion and Comparison

In this Chapter, we are particularly interested in the numerical solution of the thin film flow

model using the three different nonlinear multilevel algorithms for the discrete systems of equa-

tions representing the steady-state and time-dependent problems. In this particular section,

the numerical experiments for the time-dependent solution of the thin film flow system have

been used to demonstrate close to an optimal solution using each approach.

We have used the analytic Jacobian for all three nonlinear multilevel algorithms to develop their

efficiency. Although, the best parameters in each case were achieved by extensive numerical

tests; we observed that these algorithms are sensitive to the selection of free parameters and

that the best choice of parameters for one algorithm is no longer the best choice for the other

two algorithms. As shown in Table 5.124, for the FAS algorithm we found that the best value

of the parameter ω is ω = 1 with the best smoother is Red Black G-S, with the best value of

the pre- and post-smooth (pre, post) = (1, 1) and the best coarse grid size is G = 5. For clarity,

we present here the best numerical result of the FAS algorithm again as Table 5.170.

Table 5.170: FAS performance for varying grid size for thin film flow in time-dependent case with
4t = 0.1 and No. of time steps = 10, with nonlinear Red Black G-S with ω = 1 and the relative
tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

6 5 1 1 7 8 7.6 11.4158
7 5 1 1 8 9 8.8 43.3668
8 5 1 1 9 10 9.4 180.2312
9 5 1 1 9 10 9.6 746.0546
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We observed that the execution time is grown by approximately a factor of 4 as the problem

size is grown by a factor of 4, this indicates that our FAS algorithm converges with a linear

time complexity of O(N).

For the Newton-MG algorithm we determined that the best value of the parameter ω is ω = 1

with the best smoother which is Red Black G-S smoother, with the best value of the parameter

pre- and post-smooth is (pre, post) = (1, 1) and the best coarse grid size is G = 6, as shown in

Table 5.143. We displayed the best numerical result of the Newton-MG algorithm again here

in Table 5.171, for simplicity, as follows,

Table 5.171: Newton-MG performance for varying grid size for thin film flow in time-dependent case
with 4t = 0.1 and No. of time steps = 10, Red Black G-S with ω = 1, fixed V-cycle, the number of
V − cycle = 3 and the relative tolerance for Newton is Tol = 1e− 8.

Input Output

Grid Size Smoother MG Solver Newton Solver Time (sec)
Fine Coarse Pre Post No. MG V-Cycle Min Max Average -

7 6 1 1 3 3 5 3.8 39.8166
8 6 1 1 3 4 5 4.2 182.4501
9 6 1 1 3 4 6 4.4 793.0276

We noted that the execution time is increased by just a little more than a factor of 4 from

one run to the next; as the problem size is increased by a factor of 4. This implies that our

Newton-MG algorithm converges with close to linear complexity of O(N).

For our newly proposed preconditioners applied with Newton-Krylov, we observed that the best

results are presented in Table 5.152 for the P3b preconditioner and in Table 5.162 for the P4b

preconditioner with GMRES Tol = 1e − 4. We presented here these numerical results again,

for simplicity, as Table 5.172 and Table 5.173.
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Table 5.172: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P3b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 4 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.5 16 27 18.80 1.7292
6 3 5 3.7 16 27 19.00 6.7337
7 3 5 3.9 16 27 18.92 24.8841
8 4 5 4.1 16 26 18.95 107.3758
9 4 5 4.2 16 26 18.80 480.2390

Table 5.173: Newton-Krylov-AMG with AMG preconditioned solver in the time-dependent case, using
P4b preconditioner with 4t = 0.1 and the number of time step = 10, GMRES with maximum iteration
Maxit = 300, Tol = 1e− 4 and Restart = 20 with (pre, post)smooth = (1, 1) and the relative tolerance
for Newton is Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time (sec)
Fine Min Max Average Min Max Average -

5 3 5 3.7 15 21 18.72 1.8223
6 3 5 3.9 15 20 18.79 7.0630
7 4 5 4.1 16 20 18.82 25.9074
8 4 5 4.2 16 20 18.82 109.0045
9 4 5 4.2 16 20 18.73 476.1476

As we can see from these tables, they have close to an optimally of the computational time and

the required number of GMRES iterations is constant as the grid is refined. While all three

nonlinear multilevel algorithms yield close to an optimal solution time for the thin film flow

in the time-dependent problem, the best performance is achieved by the Newton-Krylov-AMG

with our new preconditioner. The most obvious conclusion to arise from this examination is

that the Newton-Krylov-AMG with our new preconditioner is the best and quickest nonlinear

multilevel algorithm (of these we have considered) for solving the thin film flow in the time-

dependent problem in 2D.

To sum up, we have achieved close to an optimal numerical solution by using FAS and Newton-

MG algorithms, furthermore, FAS is superior to Newton-MG for the thin film flow model in

the time-dependent problem. However, our preconditioned Newton-Krylov-AMG is superior

to both. Hence, the numerical results that we have shown in this chapter are confirmed that
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Newton-Krylov-AMG with our new preconditioner is the best approach to solve the thin film

flow system in the time-dependent problem.

5.11 Summary

A number of approaches have been considered for both the steady-state and time-dependent

problems to solve the thin film flow system. In this chapter, we demonstrated that the three non-

linear multilevel algorithms can provide grid independent convergence and close to linear time

complexity. As far as we know this is the first time comparison for the thin film flow system has

been made using the three nonlinear multilevel algorithms. Comparison of the numerical results

illustrates the superior computational efficiency the implementation of Newton-Krylov-AMG

over FAS and Newton-MG algorithms for the thin film flow system in both the steady-state and

the time-dependent problems. A further contribution of this research to the current literature

lies in the fact that the optimal behaviour of the Newton-Krylov-AMG algorithm requires the

design of a new block preconditioner for the Jacobian system.

We have found the numerical solutions of thin film flow model using the nonlinear multilevel

methods outlined in this thesis for the steady-state and the time-dependent problems. The main

components are nonlinear multilevel approaches in conjunction with a linearisation strategy.

Furthermore, it is shown that the nonlinear fourth-order system can be solved almost optimally

using FAS, Newton-MG, and Newton-Krylov with our new preconditioning Newton-Krylov-

AMG solvers. There are three nonlinear methods and we have tried to do a fair comparison

between them: we did this by putting our best effort into optimizing each method. We have

compared them with the best choice of the parameters.

As a final observation in this chapter, we note that the Newton-MG approach is consistently

slower than the other two. Consequently, in the following chapter, when we consider a different

time-dependent nonlinear system, we focus on the FAS and Newton-Krylov approaches.



Chapter 6

The Cahn-Hilliard-Hele-Shaw

System

6.1 Introduction

In this chapter, we present the Cahn-Hilliard-Hele-Shaw (CHHS) system of equations previously

described in Chapter 2, Section 2.3.2. This system of equations arises in various models such as

spinodal decomposition of a binary fluid in a Hele-Shaw cell, cell sorting, and tumour growth

as well as in two-phase flows in porous media. Recall that the Cahn-Hilliard-Hele-Shaw system

of equations is given as follows:

∂φ
∂t = ∇.((1 + γφ2)∇µ) +∇.(φ∇p), (6.1)

µ = φ3 − φ− ε2 ∆φ, (6.2)

−∆p = γ∇.(φ∇µ). (6.3)

In this chapter, we will solve this model on the domain [−Lx, Lx] × [−Ly, Ly] where Lx =

Ly = 3.2 in 2D and t > 0. This system is specified with Dirichlet boundary conditions

throughout, which are:

φ = −1

µ = 0

p = 0.

(6.4)

To demonstrate this solver, we consider the initial conditions φ(x, y, t = 0), µ(x, y, t = 0) and

p(x, y, t = 0). For Equation (6.1), we require the initial conditions φ(x, y, t = 0) and define

180
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these as follows:

φ = tanh

(
10 ∗

(
1

2
−R

))
, (6.5)

where

R = (x2 + y2)
1
2 .

Once we have specified φ we can obtain µ by evaluating Equation (6.2) to compute µ(x, y, t = 0).

We can then solve the Laplace Equation (6.3) to compute p(x, y, t = 0). To uniquely solve

Equation (6.3) boundary conditions for p are required; we choose p = 0 on the boundary,

which is compatible with (6.4). In the remainder of this chapter, we present a discussion and

comparison of two different nonlinear multilevel algorithms in order to solve the discretised

CHHS system of equations efficiently.

6.2 The Fully Discrete System for the Cahn-Hilliard-Hele-

Shaw Model

In this section, we introduce the fully discrete system for this problem, where the time derivative

is discretised using BDF1 scheme and the five points FDM is used in space. We require a

temporal discretisation method in Equation (6.1) only. We applied the BDF1 method with a

fixed 4t to replace the derivative ∂φ
∂t . The discrete CHHS system is given by the approximation

of Equation (6.1) as follows,

φn+1
i,j − φni,j
4t =

(
1

4x2

)[
(1 + γ (

φn+1
i+1,j + φn+1

i,j

2
)2)(µn+1

i+1,j − µn+1
i,j )− (1 + γ (

φn+1
i,j + φn+1

i−1,j

2
)2)(µn+1

i,j − µn+1
i−1,j)

]

+

(
1

4y2

)[
(1 + γ (

φn+1
i,j+1 + φn+1

i,j

2
)2)(µn+1

i,j+1 − µn+1
i,j )− (1 + γ (

φn+1
i,j + φn+1

i,j−1

2
)2)(µn+1

i,j − µn+1
i,j−1)

]

+

(
1

4x2

)[
(
φn+1
i+1,j + φn+1

i,j

2
)(pn+1

i+1,j − pn+1
i,j )− (

φn+1
i,j + φn+1

i−1,j

2
)(pn+1

i,j − pn+1
i−1,j)

]

+

(
1

4y2

)[
(
φn+1
i,j+1 + φn+1

i,j

2
)(pn+1

i,j+1 − pn+1
i,j )− (

φn+1
i,j + φn+1

i,j−1

2
)(pn+1

i,j − pn+1
i,j−1)

]
. (6.6)

Furthermore, the discrete form of Equation (6.2) is

µn+1
i,j = (φn+1

i,j )3 − φn+1
i,j

−ε2
[

1

4x2
(φn+1
i+1,j − 2φn+1

i,j + φn+1
i−1,j) +

1

4y2
(φn+1
i,j+j − 2φn+1

i,j + φn+1
i,j−1)

]
. (6.7)
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and Equation (6.3) becomes

− 1

4x2
(pn+1
i+1,j − 2pn+1

i,j + pn+1
i−1,j)−

1

4y2
(pn+1
i,j+1 − 2pn+1

i,j + pn+1
i,j−1)

=
γ

4x2

[(
φn+1
i+1,j + φn+1

i,j

2

)
(µn+1
i+1,j − µn+1

i,j )−
(
φn+1
i,j + φn+1

i−1,j

2

)
(µn+1
i,j − µn+1

i−1,j)

]

+
γ

4y2

[(
φn+1
i,j+1 + φn+1

i,j

2

)
(µn+1
i,j+1 − µn+1

i,j )−
(
φn+1
i,j + φn+1

i,j−1

2

)
(µn+1
i,j − µn+1

i,j−1)

]
. (6.8)

This is a nonlinear system involving the unknown values of φ, µ and p at each grid point (i, j)

on the new time level (n + 1). Having shown the discrete CHHS system, in the two different

following section we will implement the two different multilevel solvers that we are investigating

in this chapter. Before doing so, however, we consider the Jacobian of this system.

6.2.1 The Jacobian Matrix

The FDM spatial discretisation with the temporal discretisation scheme BDF1 is presented in

Equations (6.6), (6.7) and (6.8). Our aim here is to examine the analytical Jacobian of this

discrete nonlinear CHHS system. This full analytical Jacobian matrix is a sparse matrix; since

we are applying a discretisation scheme that is based upon local approximation, i.e. the FDM.

Consequently, we offer here the expression of this sparse matrix that will be needed for the two

nonlinear solution algorithms that we will apply in this chapter.

Let J1 be the analytical Jacobian matrix for the CHHS system which is arranged in the following

nine blocks:

J1 =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 , (6.9)

or

J1 =


∂Fφ
∂φ

∂Fφ
∂µ

∂Fφ
∂p

∂Fµ
∂φ

∂Fµ
∂µ

∂Fµ
∂p

∂Fp
∂φ

∂Fp
∂µ

∂Fp
∂p

 , (6.10)

where

[Fφ(U)]i,j = −
φn+1
i,j − φni,j
4t

+

(
1

4x2

)[
(1 + γ (

φn+1
i+1,j + φn+1

i,j

2
)2)(µn+1

i+1,j − µn+1
i,j )− (1 + γ (

φn+1
i,j + φn+1

i−1,j

2
)2)(µn+1

i,j − µn+1
i−1,j)

]
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+

(
1

4y2

)[
(1 + γ (

φn+1
i,j+1 + φn+1

i,j

2
)2)(µn+1

i,j+1 − µn+1
i,j )− (1 + γ (

φn+1
i,j + φn+1

i,j−1

2
)2)(µn+1

i,j − µn+1
i,j−1)

]

+

(
1

4x2

)[
(
φn+1
i+1,j + φn+1

i,j

2
)(pn+1

i+1,j − pn+1
i,j )− (

φn+1
i,j + φn+1

i−1,j

2
)(pn+1

i,j − pn+1
i−1,j)

]

+

(
1

4y2

)[
(
φn+1
i,j+1 + φn+1

i,j

2
)(pn+1

i,j+1 − pn+1
i,j )− (

φn+1
i,j + φn+1

i,j−1

2
)(pn+1

i,j − pn+1
i,j−1)

]
, (6.11)

[Fµ(U)]i,j = −µn+1
i,j + (φn+1

i,j )3 − φn+1
i,j

−ε2
[

1

4x2
(φn+1
i+1,j − 2φn+1

i,j + φn+1
i−1,j) +

1

4y2
(φn+1
i,j+j − 2φn+1

i,j + φn+1
i,j−1)

]
, (6.12)

and

[Fp(U)]i,j =
1

4x2
(pn+1
i+1,j − 2pn+1

i,j + pn+1
i−1,j) +

1

4y2
(pn+1
i,j+1 − 2pn+1

i,j + pn+1
i,j−1)

+
γ

4x2

[(
φn+1
i+1,j + φn+1

i,j

2

)
(µn+1
i+1,j − µn+1

i,j )−
(
φn+1
i,j + φn+1

i−1,j

2

)
(µn+1
i,j − µn+1

i−1,j)

]

+
γ

4y2

[(
φn+1
i,j+1 + φn+1

i,j

2

)
(µn+1
i,j+1 − µn+1

i,j )−
(
φn+1
i,j + φn+1

i,j−1

2

)
(µn+1
i,j − µn+1

i,j−1)

]
. (6.13)

Furthermore, we define

F =

FφFµ
Fp

 , (6.14)

U to be the vector of unknowns as follows:

U =

φ
n+1

µn+1

pn+1

 , (6.15)

and φn+1, µn+1 and pn+1 to be the vectors of unknown values on grid points at time level (n+1).

We produce in this subsection the entries J11, J12, J13, J21, J22, J23, J31, J32, and J33 of the

analytical matrix (6.9) from Equations (6.6), (6.7) and (6.8). The terms that we show here are

for typical interior points of the domain, however, they may likewise be modified according to

the Dirichlet boundary conditions (see Appendix B). We consider only here the non-zero entries

of each block, which can be applied to produce the analytical Jacobian efficiently in a sparse

format.

In the following presentation, we drop superscript (n + 1) to make the notation simpler. We

differentiate Equation (6.11) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain the
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non-zero entries of J11 as follows:

∂Fφi,j
∂φi+1,j

=
1

∆x2

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) +

(
pi+1,j − pi,j

2

)]
, (6.16)

∂Fφi,j
∂φi−1,j

= − 1

∆x2

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) +

(
pi,j − pi−1,j

2

)]
, (6.17)

∂Fφi,j
∂φi,j

= − 1

∆t
+

1

∆x2

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) +

(
pi+1,j − pi,j

2

)]

− 1

∆x2

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) +

(
pi,j − pi−1,j

2

)]
+

1

∆y2

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) +

(
pi,j+1 − pi,j

2

)]
− 1

∆y2

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) +

(
pi,j − pi,j−1

2

)]
, (6.18)

∂Fφi,j
∂φi,j+1

=
1

∆y2

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) +

(
pi,j+1 − pi,j

2

)]
, (6.19)

∂Fφi,j
∂φi,j−1

= − 1

∆y2

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (6.20)

where i = 2, . . . , N and j = 2, . . . ,M .

We differentiate Equation (6.11) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain

the non-zero entries of J12 as follows:

∂Fφi,j
∂µi+1,j

= (
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2))

]
, (6.21)

∂Fφi,j
∂µi−1,j

= (
1

∆x2
)

[
(1 + γ ((

φi,j + φi−1,j

2
)2))

]
, (6.22)

∂Fφi,j
∂µi,j

= −(
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2)) + (1 + γ ((
φi,j + φi−1,j

2
)2))

]

−(
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2)) + (1 + γ ((
φi,j + φi,j−1

2
)2))

]
, (6.23)

∂Fφi,j
∂µi,j+1

= (
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2))

]
, (6.24)

∂Fφi,j
∂µi,j−1

= (
1

∆y2
)

[
(1 + γ ((

φi,j + φi,j−1

2
)2))

]
, (6.25)

where i = 2, ..., N., j = 2, ...,M.
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We differentiate Equation (6.11) with respect to pi+1,j , pi−1,j , pi,j , pi,j+1 and pi,j−1 to obtain

the non-zero entries of J13 as follows:

∂Fφi,j
∂pi+1,j

= (
1

∆x2
)

[
φi+1,j + φi,j

2

]
, (6.26)

∂Fφi,j
∂pi−1,j

= (
1

∆x2
)

[
φi,j + φi−1,j

2

]
, (6.27)

∂Fφi,j
∂pi,j

= −(
1

∆x2
)

[
φi+1,j + φi,j

2
+
φi,j + φi−1,j

2

]

−(
1

∆y2
)

[
φi,j+1 + φi,j

2
+
φi,j + φi,j−1

2

]
, (6.28)

∂Fφi,j
∂pi,j+1

= (
1

∆y2
)

[
φi,j+1 + φi,j

2

]
, (6.29)

∂Fφi,j
∂pi,j−1

= (
1

∆y2
)

[
φi,j + φi,j−1

2

]
, (6.30)

where i = 2, . . . , N and j = 2, . . . ,M .

We differentiate Equation (6.12) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J21 as follows:

∂Fµi,j
∂φi+1,j

= −(
(ε)2

∆x2
), (6.31)

∂Fµi,j
∂φi−1,j

= −(
(ε)2

∆x2
), (6.32)

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
, (6.33)

∂Fµi,j
∂φi,j+1

= −(
(ε)2

∆y2
), (6.34)

∂Fµi,j
∂φi,j−1

= −(
(ε)2

∆y2
), (6.35)

where i = 2, . . . , N , j = 2, . . . ,M and σ = −1 + 3 (φi,j)
2.

We differentiate Equation (6.12) with respect to µi,j to obtain the non-zero entries of J22 as

follows:
∂Fµi,j
∂µi,j

= −1, (6.36)

where i = 2, . . . , N and j = 2, . . . ,M .
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Since Equation (6.12) does not feature the pressure, when we differentiate with respect to

pi+1,j , pi−1,j , pi,j , pi,j+1 and pi,j−1 all entries of J23 are zero.

We differentiate Equation (6.13) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J31 as follows:

∂Fpi,j
∂φi+1,j

= (
γ

∆x2
) (

1

2
) (µi+1,j − µi,j), (6.37)

∂Fpi,j
∂φi−1,j

= −(
γ

∆x2
) (

1

2
) (µi,j − µi−1,j), (6.38)

∂Fpi,j
∂φi,j

= (
γ

∆x2
)(

1

2
) [(µi+1,j − µi,j)− (µi,j − µi−1,j)]

+(
γ

∆y2
)(

1

2
) [(µi,j+1 − µi,j)− (µi,j − µi,j−1)] , (6.39)

∂Fpi,j
∂φi,j+1

= (
γ

∆y2
) (

1

2
) (µi,j+1 − µi,j), (6.40)

∂Fpi,j
∂φi,j−1

= −(
γ

∆y2
) (

1

2
) (µi,j − µi,j−1), (6.41)

where i = 2, . . . , N and j = 2, . . . ,M .

We differentiate Equation (6.13) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain

the non-zero entries of J32 as follows:

∂Fpi,j
∂µi+1,j

= (
γ

∆x2
)

(φi+1,j + φi,j)

2
, (6.42)

∂Fpi,j
∂µi−1,j

= (
γ

∆x2
)

(φi,j + φi−1,j)

2
, (6.43)

∂Fpi,j
∂µi,j

= −(
γ

∆x2
)

[
(φi+1,j + φi,j)

2
+

(φi,j + φi−1,j)

2

]

−(
γ

∆y2
)

[
(φi,j+1 + φi,j)

2
+

(φi,j + φi,j−1)

2

]
, (6.44)

∂Fpi,j
∂µi,j+1

= (
γ

∆y2
)

(φi,j+1 + φi,j)

2
, (6.45)

∂Fpi,j
∂µi,j−1

= (
γ

∆y2
)

(φi,j + φi,j−1)

2
, (6.46)

where i = 2, . . . , N and j = 2, . . . ,M .
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We differentiate Equation (6.13) with respect to pi+1,j , pi−1,j , pi,j , pi,j+1 and pi,j−1 to obtain

the non-zero entries of J33 as follows:

∂Fpi,j
∂pi+1,j

= (
1

∆x2
), (6.47)

∂Fpi,j
∂pi−1,j

= (
1

∆x2
), (6.48)

∂Fpi,j
∂pi,j

= −(2) (
1

∆x2
+

1

∆y2
), (6.49)

∂Fpi,j
∂pi,j+1

= (
1

∆y2
), (6.50)

∂Fpi,j
∂pi,j−1

= (
1

∆y2
), (6.51)

where i = 2, . . . , N , j = 2, . . . ,M . Now let us rewrite the analytical Jacobian matrix J1 in

Equation (6.10) of the CHHS system as follows:

J1 =


−1
4tI +B1 K1 K2

σ +Kε −I 0

B2 K3 K

 , (6.52)

where −1
4tI +B1 =

∂Fφ
∂φ , K1 =

∂Fφ
∂µ , K2 =

∂Fφ
∂p , σ+Kε =

∂Fµ
∂φ , −I =

∂Fµ
∂µ , B2 =

∂Fp
∂φ , K3 =

∂Fp
∂µ ,

and K =
∂Fp
∂p are block matrices.

We can change the row (and/or column) ordering of the sparse analytical Jacobian matrix J1

in Equation (6.10) as an alternative order for the sparse Jacobian. Let J2 be the analytical

Jacobian matrix for the alternative ordering which is presented as in the following nine blocks:

J2 =

 σ +Kε −I 0
−1
4tI +B1 K1 K2

B2 K3 K

 , (6.53)

where

F =

FµFφ
Fp

 , (6.54)

and the ordering of the unknowns is still given by

U =

φµ
p

 . (6.55)
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Figure 6.1: The sparse Jacobian matrix J1 for the Cahn-Hilliard-Hele-Shaw model in grid size 652 and
the number of unknowns N = 2883.

Figure 6.2: The sparse Jacobian matrix J2 for the Cahn-Hilliard-Hele-Shaw model in grid size 652 and
the number of unknowns N = 2883.

The sparsity pattern of the J1 and J2 matrices is the distribution of the non-zero entries in

these matrices. Shown in Figure 6.1 and Figure 6.2 are the sparse analytical Jacobian matrices

J1 and J2 for the CHHS system in their different orders; both have block sparse structure.
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In the following subsection, we describe the use of the Jacobian matrix as part of two different

multilevel solution methods for the solution of the nonlinear system of equations (6.6), (6.7)

and (6.8).

6.3 Two Different Solvers

In this section, we consider two nonlinear multilevel algorithms: the FAS and the Newton-

Krylov-AMG algorithm. Recall that in Chapter 5 we compared FAS against two Newton

methods, Newton-MG and Newton-Krylov-AMG, and found that the Newton-Krylov-AMG

algorithm consistently and significantly outperforms Newton-MG provided we find a good pre-

conditioner. Therefore, we focus only on FAS and Newton-Krylov-AMG algorithms (and gen-

erating good AMG-based preconditioners) in this Chapter.

We consider here the fully-discrete system that arises from the discrete CHHS system at each

time step and the steps required to apply the FAS and Newton-Krylov-AMG algorithms in

Subsection 6.3.1 and Subsection 6.3.2. We present their results in Subsections 6.5.1 and 6.5.2

respectively.

6.3.1 FAS

In this subsection, we consider the FAS algorithm in order to solve the discrete CHHS system.

We displayed the FAS scheme in detail in Algorithm 2 in Chapter 4. This algorithm requires a

nonlinear smoother and uses a coarse grid correction scheme on a hierarchy of grids. We have

chosen the simplest transfer operators in the FAS algorithm, where we are applying a linear

interpolation operator and a full-weighting restriction operator in the same way as we have

done with the first model in Chapter 5.

The nonlinear discrete algebraic system of equations of the CHHS model can be written as

follows:

Fj(U) = 0, j = 1, . . . , neq, (6.56)

where neq = 3× nu is the number of equations with nu the number of unknown grid points in

the Cahn-Hilliard-Hele-Shaw system of equations. In other words, neq is the total number of

unknowns in (6.15).

We can specify the nonlinear Gauss-Seidel iteration, for unknown uk+1
j , as solving for uk+1

j in

Fj(u
k+1
1 , ..., uk+1

j−1 , u
k+1
j , ukj+1, ..., u

k
neq) = 0, (6.57)

where k and k + 1 denote the current and new approximations. Similarly to Chapter 5 we

use the Red-Black G-S smoother extended to a point-wise (3× 3) block update as follows. We
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produce a smoother based on a simultaneous update of φ, µ and p at each point of the grid.

In order to use this smoother, we define Jbj which is the (3 × 3) block-diagonal system of our

analytical Jacobian matrix at point j of the grid. We can define these values analytically from

the expressions for the diagonal entries in Equations (6.16)-(6.51). We can solve such a system

as follows: 
∂Fφj
∂φj

∂Fφj
∂µj

∂Fφj
∂pj

∂Fµj
∂φj

∂Fµj
∂µj

∂Fµj
∂pj

∂Fpj
∂φj

∂Fpj
∂µj

∂Fpj
∂pj


︸ ︷︷ ︸

Jbj

δφjδµj
δpj

 = −

FφjFµj

Fpj

 , (6.58)

for j = 1, . . . , nu, where nu is the number of unknown grid points.

Having solved (6.58) we update the solution at node j to obtain:φ
k+1
j

µk+1
j

pk+1
j

 =

φ
k
j

µkj
pkj

+

δφjδµj
δpj

 . (6.59)

In each step, we build and solve the jth (3 × 3) system: the updated Equation (6.59) may be

applied in a Gauss-Seidel manner by updating each j = 1, ..., nu in turn.

We have tested the FAS algorithm with the nonlinear weighted-Red-Black Gauss-Seidel smoother

with various parameters of ω in order to solve the CHHS model. Results are presented in sub-

section 6.5.1.

6.3.2 Newton-Krylov-AMG

This subsection concentrates on the nonlinear Newton-Krylov algorithm with a new AMG-

based preconditioner. Krylov-subspace methods are generally used with a preconditioner that

accelerates the convergence of the linear iterations as we mentioned before in Chapter 4. Conse-

quently, we consider an implementation of this algorithm to solve the Cahn-Hilliard-Hele-Shaw

model. In this subsection, we develop an algorithm for solving the nonlinear Cahn-Hilliard-

Hele-Shaw system (almost) optimally with our new preconditioners.

The Cahn-Hilliard-Hele-Shaw discrete system is a non-symmetric system; therefore, to solve

this system iteratively we choose a preconditioned GMRES scheme. Since Krylov methods

converge slowly when used to this sort of a system, we will need a preconditioner to achieve fast

and robust convergence rates. As we have mentioned earlier in Chapter 4 the AMG iterative

methods are one of the most efficient for solving large sparse linear systems that are obtained

from the discretisation of single elliptic partial differential equations. Our purpose here is to

combine AMG methods as a component of a preconditioner for Krylov subspace methods for
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our, more complex, linearised system.

We have developed and implemented this algorithm as discussed in Chapter 4 but generalized

to reflect that we have now a more complicated system arising from three discretised equations.

The Newton-Krylov algorithm as we described earlier has two different iterations: outer iter-

ations and inner iterations. Newton’s iterations which are the outer iterations and the inner

iterations which are the linear Krylov methods. Moreover, we will apply a new preconditioner

that includes AMG, for which we employ a software implementation that is available in the

Harwell Subroutine Library (HSL) [70]. We will implement new optimal (or near optimal) pre-

conditioners for the Newton-Krylov iterations as a part of the solution of the discrete nonlinear

system.

We can write the linearised system Equation (6.58) in the following block form:
−1
4tI +B1 K1 K2

σ +Kε −I 0

B2 K3 K


δφδµ
δp

 =

FφFµ
Fp

 , (6.60)

where each block was defined earlier by the analytical expression in Equations (6.16) to (6.51).

We note that all blocks denoted K represent discrete elliptic operations. To apply AMG it is

advantageous to have blocks on the diagonal that represent elliptic operators, hence, we make

use of the reordering that gives J2 as the Jacobian. For this Jacobian, we define a perfect

preconditioner P such that

P z = r. (6.61)

Let z = (zφ zµ zp)
> and r = (rµ rφ rp)

> be column-vectors so that Equation (6.61) has the

following block form:

P z =

 σ +Kε −I 0
−1
4tI +B1 K1 K2

B2 K3 K


zφzµ
zp

 =

rµrφ
rp

 . (6.62)

Before we describe our practical preconditioners we need to implement the Gauss elimination

procedure on the analytical Jacobian J2, Equation (6.53) in similar processes to obtain an exact

block reduction for a (3 × 3) system. To simplify our notation, we will rewrite the analytical

Jacobian J2 in Equation (6.53) in a compact way as follows,A −I 0

B C D

E F G

 . (6.63)



Chapter 6. The Cahn-Hilliard-Hele-Shaw System 192

If we now apply block elimination we obtain the following sequence:A −I 0

0 H1 D

E F G

 , (6.64)

where H1 = C +A−1(B), A −I 0

0 H1 D

0 H2 G

 , (6.65)

where H2 = F +A−1(E), and A −I 0

0 H1 D

0 0 H3

 , (6.66)

where H3 = G−DH−1
1 (H2) .

We may write these simple expressions in terms of the original matrix entries, such as,

H1 = K1 + (σ +Kε)
−1(−1
4tI +B1),

H2 = K3 + (σ +Kε)
−1(B2),

H3 = K −K2[K1 + (σ +Kε)
−1(−1
4tI +B1)]−1[K3 + (σ +Kε)

−1(B2)].

The Schur Complement blocks H1 and H3 are expensive to compute but we note that their

form may suggest suitable approximations, such as,

H1 = K1 + (σ +Kε)
−1(−1
4tI +B1) ' K1,

H3 = K −K2[K1 + (σ +Kε)
−1(−1
4tI +B1)]−1[K3 + (σ +Kε)

−1(B2)] ' K.

These practical approximations will allow us to apply AMG to each block on the diagonal but

we must evaluate the effect of these approximations on the overall performance of the algorithm.

We will develop various preconditioners here as proposed, potentially efficient, preconditioners

for the CHHS model. These preconditioners come from the approximation of an exact Schur

Complement, which is the block reduction for (3× 3) system in Equation (6.66).

The first two possible selections of a preconditioner for the CHHS model are P5 and P6 for J1,

based on the original ordering, Equation (6.52). The P5 and P6 preconditioners are the diagonal

blocks and upper triangular block preconditioners respectively, where the Schur Complement,
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are approximated as above:

P5 =


−1
4tI +B1 0 0

0 −I 0

0 0 K

 . (6.67)

and

P6 =


−1
4tI +B1 K1 K2

0 −I 0

0 0 K

 . (6.68)

Now we will consider the alternative ordering in the Jacobian, J2, based on the ordering Equa-

tion (6.53). The P7 and P8 preconditioners are diagonal blocks and the upper triangular block

preconditioners respectively. Again the Schur Complement, blocks are approximated to give:

P7 =

σ +Kε 0 0

0 K1 0

0 0 K

 , (6.69)

and

P8 =

σ +Kε −I 0

0 K1 K2

0 0 K

 . (6.70)

Moreover, we also consider P8a which is a different option for P8 which replaces, two blocks in

the diagonal with one V-cycle AMG iteration. As in Chapter 5, the notation AMG(X) means

that applying one V-cycle of AMG to the matrix X, for example:

P8a =

σ +Kε −I 0

0 AMG(K1) K2

0 0 AMG(K)

 . (6.71)

In the following preconditioner, we will apply one V-cycle of AGM to all three blocks in the

diagonal of the matrix J2 in Equation (6.53), which indicates the P8b preconditioner:

P8b =

AMG(σ +Kε) −I 0

0 AMG(K1) K2

0 0 AMG(K)

 . (6.72)

In the following preconditioner, we will approximate and replace the first block in the diagonal

only by the identity matrix whereas the other blocks in the diagonal are still the same as in P8:

P9 =

−I −I 0

0 K1 K2

0 0 K

 . (6.73)
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In the next preconditioner, we will approximate and replace the first block in the diagonal only

by the second term of the first block which is Kε, however, the other blocks in the diagonal are

still the same as P8 and P9:

P10 =

Kε −I 0

0 K1 K2

0 0 K

 . (6.74)

In the following preconditioner, we replace two of the diagonal blocks of P10 with one V-cycle

AMG iteration, which defines the P10a preconditioner:

P10a =

Kε −I 0

0 AMG(K1) K2

0 0 AMG(K)

 . (6.75)

Here P10a is an upper triangular block preconditioner, we solved by using a direct solver (back-

slash) for the first block in the diagonal and replacing the two other blocks in the diagonal of

P10 with one V-cycle AMG iteration.

In the final preconditioner that we consider, we modify P10 by using one V-cycle AMG iteration

for all three blocks on the diagonal:

P10b =

AMG(Kε) −I 0

0 AMG(K1) K2

0 0 AMG(K)

 . (6.76)

Here P10b is an upper triangular block preconditioner, we solved by using one V-cycle AMG

iteration for all three blocks in the diagonal.

In this subsection, we have presented a large number of potential preconditioning strategies

designed for use with the Newton-Krylov algorithm for solving the CHHS system in 2D. In

Subsection 6.5.2, we will display some numerical results of the Newton-Krylov-AMG algorithm

with these preconditioners for the discrete the CHHS model.

6.4 Behaviour of Eigenvalues

We investigate here the behaviour of the eigenvalues of our proposed preconditioned matrices.

It might be reasonable to obtain insight into the properties of the proposed preconditioners

from the eigenvalues of the preconditioned matrix JP−1 for each preconditioner. In particular,

if the effect of the preconditioner P is to cluster the eigenvalues of JP−1 and to bound the

eigenvalues away from zero, we may expect it to be effective in practice. As we mentioned

before in Section 5.6, the eigenvalues do not provide any guarantee regarding the performance,
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however, they often provide a good indicator [57].

Therefore, in this subsection, we will present selections of plots of the eigenvalues resulting

from the use of our new preconditioner for the CHHS model. Figures from Figure 6.3 to Fig-

ure 6.10 display the eigenvalues of the original matrix J1 and the preconditioned matrices J1P
−1
5

and J1P
−1
6 respectively.

Our goal here is to investigate and understand the quality of our preconditioners for the GMRES

solution. Due to the eigenvalues of the matrix J1 having a broad spread as shown in Figures 6.3

and 6.5, the GMRES scheme has slow convergence [136]. We can see clearly from Figure 6.3

until Figure 6.10 the effect of the grid size and the impact of the preconditioners P5 and P6 for

the matrix J1 in Equation (6.52). The eigenvalues of the diagonal preconditioned matrix P5

and the upper triangular preconditioned matrix P6 are clustered in a small range around one

and bounded away from the origin and infinity, and appear independent of the grid size. We

show in Table 6.1 and Table 6.2 the minimum and the maximum numbers of the eigenvalues of

the coefficient matrix J1 and the preconditioned matrices J1P
−1
5 and J1P

−1
6 respectively.

As previously stated Figure 6.3 to Figure 6.10 provide a representative depiction of the eigenval-

ues of our preconditioner for the preconditioners P5 and P6 for the original matrix J1. Similarly,

for the re-ordered Jacobian J2, Figure 6.11 to Figure 6.18 provide a representative depiction

of the eigenvalues when applying preconditioners P7, Equation (6.69), and P8 Equation (6.70),

respectively. The plots on the left side of these figures show eigenvalues for the original matri-

ces and those on the right of these figures show eigenvalues with our preconditioners. These

figures indicate that the preconditioned systems have spectra which are clustered around one

and bounded away from the origin. Consequently, the application of P7 and P8 also results

in systems that are good in terms of the behaviour of their eigenvalues. We will consider the

second ordering, given by J2 in Equation (6.53), for the rest of our numerical tests.

Table 6.1: The maximum and minimum eigenvalues (or real part in the complex case) of the matrix
J1 and the diagonal preconditioned matrix J1P

−1
5 of the CHHS model, where the imaginary parts do

change slightly as can be seen in the figures 6.3-6.7. The main effect is to bunch the eigenvalues much
more closely to 1.

Grid level Min (Reλ(J1)) Max (Reλ(J1)) Min (Reλ(J1P
−1
5 )) Max (Reλ(J1P

−1
5 ))

92 0.4751 1.0001 0.7001 1.1499
172 0.4797 1.0023 0.5627 1.2186
332 0.4809 1.0127 0.4167 1.2916



Chapter 6. The Cahn-Hilliard-Hele-Shaw System 196

Table 6.2: The maximum and minimum eigenvalues (or real part in the complex case) of the matrix J1
and the upper triangular preconditioned matrix J1P

−1
6 of the CHHS model, where the imaginary parts

do change slightly as can be seen in the figures 6.8-6.10. The main effect is to bunch the eigenvalues
much more closely to 1.

Grid level Min (Reλ(J1)) Max (Reλ(J1)) Min (Reλ(J1P
−1
6 )) Max (Reλ(J1P

−1
6 ))

92 0.4751 1.0001 0.8122 1.2617
172 0.4797 1.0023 0.6566 1.7087
332 0.4809 1.0127 0.4572 3.9230

Figure 6.3: The eigenvalues of the coef-
ficients of the original matrix J1 on grid
size 172.

Figure 6.4: The eigenvalues of the diago-
nal preconditioned matrix J1P

−1
5 on grid

size 172.
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Figure 6.5: The eigenvalues of the origi-
nal matrix J1 on the grid size 332.

Figure 6.6: The eigenvalues of the diago-
nal preconditioned matrix J1P

−1
5 on grid

size 332.

Figure 6.7: The eigenvalues of the origi-
nal matrix J1 on grid size 172.

Figure 6.8: The eigenvalues of the upper
triangular preconditioned matrix J1P

−1
6

on grid size 172.
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Figure 6.9: The eigenvalues of the origi-
nal matrix J1 on grid size 332.

Figure 6.10: The eigenvalues of the upper
triangular preconditioned matrix J1P

−1
6

on grid size 332.

Now we consider the maximum and minimum eigenvalues of the systems resulting from the P7

and P8 preconditioners. In Tables 6.3 and 6.4 we present the minimum and maximum eigenval-

ues of the original matrix and the minimum and maximum eigenvalues of the preconditioned

systems J2P
−1
7 and J2P

−1
8 . As we can see from these tables, the eigenvalues of the original ma-

trix J2 are spread out across a wide range. Conversely, the maximum and minimum eigenvalues

of our preconditioned system J2P
−1
7 is bounded in a small range compared to the eigenvalues

of the matrix J2. Furthermore, the range of the eigenvalues of the original matrix J2 rises with

the grid size rises, whereas the range of the eigenvalues of our preconditioner P7 is fixed and

appears independent of the grid size, as shown in Table 6.3.

Although, as we can see in Table 6.4, the maximum eigenvalues for J2P
−1
8 increases as the grid

size increases this appears from Figures 6.11 and 6.18 to result from one isolated eigenvalue away

from the cluster of eigenvalues. However, this one isolated eigenvalue could be taken care with

one iteration of GMRES and it may not affect the convergence of our algorithm. Figure 6.11

to Figure 6.18 shows the spectrum of J2, J2P
−1
7 and J2P

−1
8 on different grid sizes. We can see

clearly from these Figures the impact of the grid size and the effect of the preconditioners on the

matrix J2 in Equation (6.53). From all these figures, we can observe that the eigenvalues of our

preconditioned system are limited in a small range far from zero and infinity, and independent

of the grid size (except for isolated eigenvalues). In contrast, the eigenvalues of the matrix J2

are spread out in a broad range and this range increases as the grid size increments.



199 6.4. Behaviour of Eigenvalues

Table 6.3: The maximum and minimum eigenvalues (or real part in the complex case) of the matrix
J2 and the diagonal preconditioned matrix J2P

−1
7 of the CHHS model, where the imaginary parts do

change slightly as can be seen in the figures 6.11-6.14. The main effect is to bunch the eigenvalues
much more closely to 1.

Grid level Min (Reλ(J2)) Max (Reλ(J2)) Min (Reλ(J2P
−1
7 )) Max (Reλ(J2P

−1
7 ))

92 0.4750 5.2321 0.9998 1.0000
172 0.4797 178.1767 0.9978 0.9998
332 0.4808 741.2419 0.5036 1.0000

Table 6.4: The maximum and minimum eigenvalues (or real part in the complex case) of the matrix
J2 and the upper triangular preconditioned matrix J2P

−1
8 of the CHHS model, where there are still

extreme eigenvalues present, it does not bunch them all near to 1, but the effect of a small number of
outlying eigenvalues can be effectively removed with the Krylov subspace iterations. (e.g. Figure 6.16
and Figure 6.18).

Grid level Min (Reλ(J2)) Max (Reλ(J2)) Min (Reλ(J2P
−1
8 )) Max (Reλ(J2P

−1
8 ))

92 0.4750 5.2321 1.0000 354.9371
172 0.4797 178.1767 1.0000 732.8284
332 0.4808 741.2419 0.7536 588.2470

Figure 6.11: The eigenvalues of the orig-
inal matrix J2 on grid size 172.

Figure 6.12: The eigenvalues of the di-
agonal preconditioned matrix J2P

−1
7 on

grid size 172.



Chapter 6. The Cahn-Hilliard-Hele-Shaw System 200

Figure 6.13: The eigenvalues of the orig-
inal matrix J2 on grid size 332.

Figure 6.14: The eigenvalues of the di-
agonal preconditioned matrix J2P

−1
7 on

grid size 332.

Figure 6.15: The eigenvalues of the orig-
inal matrix J2 on grid size 172.

Figure 6.16: The eigenvalues of the upper
triangular preconditioned matrix J2P

−1
8

on grid size 172.
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Figure 6.17: The eigenvalues of the orig-
inal matrix J2 on grid size 332.

Figure 6.18: The eigenvalues of the upper
triangular preconditioned matrix J2P

−1
8

on grid size 332.

The computational cost of applying preconditioner P8 makes it impractical to apply, however

in the next subsection, we consider the performance of the variants P8a and P8b, with other

variations. The following section also considers FAS performance on the discrete CHHS system

of equations by way of comparison.

6.5 Numerical Results

The purpose of this section is to demonstrate the efficacy of our nonlinear multilevel algorithms

which are FAS and Newton-Krylov-AMG for solving the CHHS model. In Subsection 6.5.1,

we test the performance of the FAS algorithm with various options in order to select the best

parameters. Furthermore, we examined the Newton-Krylov-AMG algorithm and tested various

parameters and preconditioners for this model. We will describe these numerical results in more

detail in Subsection 6.5.2.

In order to determine the convergence of V-cycles iterations in FAS algorithms and Newton iter-

ations (outer iterations) in the Newton-Krylov-AMG algorithm, we used the residual tolerance

Tol = 1e− 08 in all cases. For the Newton-Krylov-AMG algorithm, inner tolerance values are

varied to limit the convergence of GMRES iterations (inner iterations). We consider the best

parameters for both of these algorithms with the weighted Red-Black Gauss-Seidel smoother;

which is applied with varying values of the free parameter ω.

To define the CHHS model we choose γ = 2, ε = 0.1 in all cases. There is one Equation (6.1) in

this system which is time-dependent and we solve it with a fixed time step 4t = 0.001. In our
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experiments in this chapter the domain is X1 = −3.2, X2 = 3.2, Y1 = −3.2, Y2 = 3.2. In all ex-

periments we used only Dirichlet boundary conditions. The grid dimension are my = 2LMAX +1

and mx = my in directions x and y, where LMAX denotes the maximum grid level. The number

of unknown grid points is defined as nu = nx · ny, where nx = mx− 2 and ny = my − 2. The

grid size is defined as dx = (X2 −X1)/(mx− 1), and dy = (Y2 − Y1)/(my− 1). The number of

equations is neq = 3 · nu.

In the following Table 6.5 the grid level, the grid dimension, unknowns grid points nu and the

number of equations neq = 3 × nu that we have used to solve the Cahn-Hilliard-Hele-Shaw

system of equations are stated for reference.

Table 6.5: The grid level, the grid size, unknowns grid points nu and the number of equations neq =
3× nu in the discrete Cahn-Hilliard-Hele-Shaw system of equations.

Grid Grid Size Unknowns Grid Points N. of Equations
3 9× 9 7× 7 147
4 17× 17 15× 15 675
5 33× 33 31× 31 2883
6 65× 65 63× 63 11907
7 129× 129 127× 127 48387
8 257× 257 255× 255 195075
9 513× 513 511× 511 783363
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Figure 6.19: The evolution of the numerical solution the Cahn-Hilliard-Hele-Shaw system of equations
for φ with Grid level= 652 in 2D at time T=0.
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Figure 6.20: The evolution of the numerical solution the Cahn-Hilliard-Hele-Shaw system of equations
for µ with Grid level= 652 in 2D at time T=0.
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Figure 6.21: The evolution of the numerical solution the Cahn-Hilliard-Hele-Shaw system of equations
for p with Grid level= 652 in 2D at time T=0.
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Figure 6.22: The evolution of the numerical solution the Cahn-Hilliard-Hele-Shaw system of equations
for φ with Grid level= 652 in 2D at time T=0.02.
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Figure 6.23: The evolution of the numerical solution the Cahn-Hilliard-Hele-Shaw system of equations
for µ with Grid level= 652 in 2D at time T=0.02.
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Figure 6.24: The evolution of the numerical solution the Cahn-Hilliard-Hele-Shaw system of equations
for p with Grid level= 652 in 2D at time T=0.02.

Figures from Figure 6.19 to Figure 6.24, display the evolution of the numerical solution the

Cahn- Hilliard-Hele-Shaw system of equations of the initial and the end solution of the CHHS

system in 2D for φ, µ and p respectively.
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The numerical results presented in Figure 6.25 show the evolution of all variables φ, µ and p

with time for the solution of the Cahn-Hilliard-Hele-Shaw system of equations for grid levels 9.

This shows a 1D slice through the centre line of the 2D domain and (y = 0).

Figure 6.25: The evolution of the numerical solutions of the variables φ, µ and p for the Cahn-Hilliard-
Hele-Shaw system of equations for Grid 9 in 1D at time T=0, T=0.02 and T=0.5.

In a similar way as for the thin film flow model, we will generate numerical results for the CHHS

model using different parameters choices so as to compare the best values for each solver. In the

following subsections, we explain the different choices of free parameters for the two nonlinear

multilevel algorithms, and we will display their numerical results there.
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6.5.1 Numerical Results using FAS

For the numerical solution of the time-dependent thin film flow system with the FAS algorithm,

in Chapter 5, we observed that the best choice of the parameters for the FAS algorithm was the

nonlinear Red-Black Gauss-Seidel smoother with parameter ω = 1, (pre, post)smooth = (1, 1)

and Coarse Grid = 5 with the relative tolerance Tol = 1e − 8. Therefore, we will start our

experiments in this section with these selections of the free parameters for the FAS algorithm,

for solving the Cahn-Hilliard-Hele-Shaw system of equations. Then, we will vary the parameters

to investigate what is the best choice of parameters for this system.

FAS with Red Black Gauss-Seidel smoother and (pre, post)smooth = (1, 1), ω = 1 and

Coarse Grid = 5

Table 6.6 presents the performance of the FAS algorithm of the solution of the CHHS model

with the Red-Black-G-S smoother, (pre, post)smooth = (1, 1), ω = 1 and Coarse Grid = 5.

Moreover, when the problem size is grown by a factor of 4 the total time is also grown by

a factor of 4 which means that linear time complexity of O(N). However, as one can see

in Table 6.6 with each row, the total time grows less than factor four, despite, the fact the

number of unknowns increases by a factor of four, this may be because that when we solve with

Coarse Grid = 5 this represents quite a lot of work. Hence the proportion of total work on the

coarse grid is a big proportion and so we only approach the asymptotic scaling of a factor of

four when the fine grid is very fine.

Table 6.6: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 1 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

6 5 1 1 7 8 8.00 34.5098
7 5 1 1 8 8 8.00 65.2943
8 5 1 1 8 8 8.00 191.0100
9 5 1 1 8 9 8.15 696.3082

FAS with Red Black Gauss-Seidel smoother and varying damping factor ω

We now consider the nonlinear Red-Black Gauss-Seidel smoother with varying value of the free

parameter ω. From Table 6.7 to Table 6.12, we use varying ω = 0.8, 0.9, 1, 1.1, 1.2 and 1.5, with

the aim of determining the optimal value for the nonlinear Red-Black Gauss-Seidel smoother

with a (1, 1) pre- and post-smoother and the (coarsest) grid level Coarse Grid = 3. Note that

the optimal choice of ω is not expected to depend upon the choice of grid. As in the previous
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chapter we observed that the best choice for the parameter ω for the Red-Black Gauss-Seidel

smoother is ω = 1. Therefore, we use ω = 1 in the FAS algorithm with the Red-Black Gauss-

Seidel smoother with a (1, 1) pre- and post-smoother as the best choices, as shown in Table

6.13.

Table 6.7: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 0.8 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 9 10 9.75 8.2364
6 3 1 1 10 10 10.0 15.9341
7 3 1 1 10 10 10.0 53.7230
8 3 1 1 10 10 10.0 208.4905
9 3 1 1 10 10 10.0 844.5687

Table 6.8: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 0.9 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 8 8 8.00 6.0530
6 3 1 1 9 10 9.20 14.8112
7 3 1 1 10 10 10.0 54.1207
8 3 1 1 10 10 10.0 206.6188
9 3 1 1 10 10 10.0 823.2040
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Table 6.9: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 1 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 6 7 6.25 6.7972
6 3 1 1 8 8 8.00 13.4090
7 3 1 1 8 9 8.95 48.3214
8 3 1 1 9 10 9.95 205.4950
9 3 1 1 9 10 9.95 816.8447

Table 6.10: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 1.1 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 6 6 6.00 4.7087
6 3 1 1 9 10 9.75 16.0541
7 3 1 1 8 9 8.90 48.9073
8 3 1 1 8 10 9.85 207.8731
9 3 1 1 8 10 9.95 849.3583

Table 6.11: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 1.2 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 7 8 7.70 6.0455
6 3 1 1 10 10 10.0 16.4973
7 3 1 1 9 10 9.95 55.0479
8 3 1 1 9 10 9.95 211.2513
9 3 1 1 9 10 9.95 831.5742



213 6.5. Numerical Results

Table 6.12: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 1.5 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 3 1 1 10 10 10 7.5102
6 3 1 1 10 10 10 16.4433
7 3 1 1 10 10 10 55.7032
8 3 1 1 10 10 10 212.5388
9 3 1 1 10 10 10 841.1717

Whilst numerical results in Tables 6.7, 6.8, 6.9, 6.10, 6.11 and 6.12 suggest that for the best

and optimal total execution time of the FAS algorithm for the solution of the CHHS system of

equations is ω = 1, if we change this value we still observe close to optimal numerical results.

That is, we have an almost fixed number of V-cycles and the time is scaling almost linearly in

all cases, presenting evidence that the FAS algorithm is acting close to optimally.

FAS with Red Black Gauss-Seidel smoother and ω = 1 and with varying Coarse

grid level

Results so far show a coarse level of Coarse Grid = 5 is superior to Coarse Grid = 3. In Table

6.13, we consider Coarse Grid = 4 using the same parameters. By examining Table 6.6, Table

6.9 and Table 6.13 and we observe that the best coarse grid level for the FAS algorithm to solve

this problem is Coarse Grid = 4 (see Table 6.13).

Table 6.13: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 1 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 4 1 1 6 6 6.00 7.4894
6 4 1 1 7 8 7.50 15.8361
7 4 1 1 8 8 8.00 47.3338
8 4 1 1 8 8 8.00 171.1253
9 4 1 1 8 9 8.15 691.6424
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FAS with Red Black Gauss-Seidel smoother and varying (pre, post)smooth

We applied grid level Coarse Grid = 4, in Table 6.14 and Table 6.15, using (pre, post)smooth =

(2, 1) and (pre, post)smooth = (2, 2), with ω = 1 and G = 4. As we can see in Table 6.14 and

Table 6.15, even though the number of V-cycles decreased the computational cost increased.

Consequently, we observed that the best choice of (pre, post)smooth is (1, 1) with ω = 1 and

Coarse Grid = 4 in Table 6.13.

Table 6.14: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 1 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 4 2 1 5 5 5.00 6.8284
6 4 2 1 6 6 6.00 16.0370
7 4 2 1 6 6 6.00 51.7765
8 4 2 1 7 7 7.00 226.2201
9 4 2 1 7 7 7.00 866.6310

Table 6.15: FAS performance for solving the CHHS model with γ = 2.0, ε = 0.1 and the number of
time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 1 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 4 2 2 4 5 4.75 7.1577
6 4 2 2 5 6 5.85 19.2701
7 4 2 2 6 7 6.40 71.6780
8 4 2 2 6 7 6.55 280.1953
9 4 2 2 6 7 6.75 1.1123e+03

Summary

The best results in terms of the total execution time that we have obtained are presented

in Table 6.13. From Table 6.7 to Table 6.11 we show a sequence of experiments where we

used FAS with the Red-Black Gauss-Seidel smoother, (pre, post)smooth = (1, 1) and relative

tolerance Tol = 1e−8 with the coarsest Coarse Grid = 3 and differing values for the parameter

ω = 0.8, 0.9, 1, 1.1, 1.2 and 1.5. These experimental results suggest that our implementation

is close to optimal for the CHHS model. In Table 6.14 and Table 6.15, we changed the number



215 6.5. Numerical Results

of pre- and post- smooth with using Red-Black Gauss-Seidel with ω = 1, Tol=1e − 8 and the

coarsest level of grid Coarse Grid = 4. We observed that more applications of the smoother

always raises the execution time, despite decreasing the number of overall cycles. The test in

Table 6.13 shows that FAS with the nonlinear Red-Black Gauss-Seidel smoother with parameter

ω = 1, (pre, post)smooth = (1, 1), Coarse Grid = 4 is the best selection of the free parameters,

based on all tests that we have achieved for this model.

6.5.2 Numerical Results using Newton-Krylov-AMG

In this subsection, we investigate and test the numerical solutions presented by applying the

Newton-Krylov solver with our proposed preconditioners to solve the CHHS system in 2D. The

numerical results that follow include several choices for the values of the parameters for the

various preconditioners, in order to determine the best preconditioning strategy based upon

our proposed block structure.

Newton-Krylov with P7, associated with J2

Since we will consider the alternative ordering for the system of equations that leads to the

Jacobian given by J2 in Equation (6.53), we start our experiments by examining the P7 pre-

conditioner. The preconditioner P7 in Equation (6.69) is a block diagonal preconditioner which

contains an approximation of the Schur Complement in Equation (6.66) for the original ma-

trix J2, and this is solved exactly using a direct solver (backslash in MATLAB). We display

the performance of Newton-Krylov with P7 preconditioner with Tol = 1e− 3 for the GMRES

iterations in Table 6.16. As is to be expected, this is not an optimal preconditioner (in terms of

time complexity), because we solve the diagonal blocks using direct linear algebra. Moreover,

for each fine grid level, it has an almost fixed number of Newton iterations and an almost fixed

number of GMRES iterations which means that this preconditioner could be the being for a

preconditioning strategy if this direct solver can be eliminated.

Table 6.16: Solving the CHHS model using Newton-Krylov with P7 which is block diagonal precon-
ditioner, using (backslash) direct solver with γ = 2.0, ε = 0.1 and the running times (in seconds),
over 20 steps with fixed time step size 4t = 0.001, GMRES with maximum iteration Maxit = 300,
Tol = 1e− 3 and Restart = 150 and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 4 4 4.00 23 66 52.94 21.3791
6 4 5 4.05 24 86 65.98 128.1302
7 4 5 4.25 24 87 67.86 551.0928
8 4 5 4.85 24 88 70.59 2.9480e+03
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Newton-Krylov with P8, associated with J2

The preconditioner P8 in Equation (6.70) is an upper block triangular preconditioner which is

based upon our approximation of the Schur Complement in Equation (6.66). As in the previous

example the diagonal blocks are solved using a direct solver (backslash in MATLAB). In Table

6.17 we present the performance of Newton-Krylov with P8 preconditioner with Tol = 1e − 3

for the GMRES iterations. As expected, this preconditioner is not an optimal (in terms of the

time executions), since we solve the diagonal blocks using a direct linear algebra. However, it

has almost a constant number of Newton iterations and almost constant number of GMRES

iterations which again indicates that it may be the basis for a better preconditioner. We,

therefore, consider two possible modifications.

Table 6.17: Solving the CHHS model using Newton-Krylov with P8 which is block upper triangle
preconditioner, using (backslash) direct solver with γ = 2.0, ε = 0.1 and the running times (in seconds),
over 20 steps with fixed time step size 4t = 0.001, GMRES with maximum iteration Maxit = 300,
Tol = 1e− 3 and Restart = 150 and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 4 4 4.00 13 35 27.55 10.3939
6 4 4 4.00 10 43 32.20 60.0039
7 4 5 4.25 10 44 34.44 313.9960
8 5 5 5.00 9 45 34.92 1.5416e+03

Newton-Krylov-AMG with P8a, associated with J2

The preconditioner P8a in Equation (6.71) is an upper block triangular preconditioner which

is solved using a direct solver (backslash) for the first diagonal block (1, 1), and using one

V-cycle of the algebraic multigrid method for the other two blocks on the diagonal. Table

6.18, illustrates the performance of Newton-Krylov solver with preconditioner P8a using the

GMRES tolerance Tol = 1e − 3 and Newton Tol = 1e − 8. It can be seen from this table

that the numerical results achieved using this preconditioner are close to optimal than for P8

preconditioner. This is because the number of Newton iterations is constant, and GMRES

iterations appear almost fixed. The use of the direct solver (backslash) in the first diagonal

block (1, 1) is likely to present perfect scaling, however.
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Table 6.18: Solving the CHHS model using Newton-Krylov with P8a preconditioner, using (backslash)
direct solver for the first block in the diagonal with γ = 2.0, ε = 0.1 and the number of time steps = 20
with fixed time step size 4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e − 3
and Restart = 150 and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 4 4 4 20 40 33.43 6.7713
6 4 4 4 16 47 38.85 30.3869
7 5 5 5 17 51 42.44 171.1324
8 5 5 5 16 51 42.10 674.4229

Newton-Krylov-AMG with P8b, associated with J2 with varying (pre, post)smooth

We now consider the P8b preconditioner in Equation (6.72), obtained by replacing the three

blocks on the diagonal of P8 preconditioner with one AMG V-cycle. We used for this precondi-

tioner one AMG V-cycle with Gauss-Seidel smoothing for each diagonal block, and consider the

effect of varying the pre-and post-smoothing within the AMG solver, using (pre, post)smooth =

(1, 1) and (pre, post)smooth = (2, 2).

When we apply the P8b preconditioner, the software implementation that we use for the

AMG(σ + Kε) returns a warning at the coarsening stage for the (1, 1) block. This warning

states that it was not possible to create a full grid hierarchy for the Jacobian system. This

means that the AMG coarsening has failed to achieve the level of coarsening that is targetted,

and we will discuss this issue briefly in Subsection 6.5.3. Nevertheless, even with this warning,

the running time of the P8b preconditioner is close to optimal. The numerical results of the

CHHS system by using the P8b preconditioner are reported in Table 6.20. Tables from 6.19 to

6.20 display a set of tests where we apply different values of (pre, post)smooth with γ = 2.0,

ε = 0.1 and the number of time steps = 20 which is using the fixed time step size 4t = 0.001,

GMRES with maximum iteration Maxit = 300, Tol = 1e − 3 and Restart = 150. In these

tables, as we can clearly see that the number of Newton iterations are constant and the number

of GMRES iterations are almost constant and that the P8b preconditioner is almost optimal in

terms of time complexity. Furthermore, these tables show that the better choice for the AMG

smoothing strategy is (pre, post)smooth = (1, 1). (Note that the default choice in the AMG

software that we have used is (pre, post)smooth = (2, 2)).
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Table 6.19: Solving the CHHS model using Newton-Krylov with P8b preconditioner which is block
upper triangle preconditioned using AMG solver with γ = 2.0, ε = 0.1 and the number of time steps
= 20 with fixed time step size4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e−3
and Restart = 150 with (pre, post)smooth = (1, 1) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 4 4 4 19 39 32.68 4.4336
6 4 4 4 17 45 37.66 21.9373
7 5 5 5 18 48 40.19 93.0952
8 5 5 5 18 48 40.38 374.9731
9 5 5 5 18 48 40.35 1.8154e+03

Table 6.20: Solving the CHHS model using Newton-Krylov with P8b preconditioner which is block
upper triangle preconditioned using AMG solver with γ = 2.0, ε = 0.1 and the number of time steps
= 20 with fixed time step size4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e−3
and Restart = 150 with (pre, post)smooth = (2, 2) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 4 4 4 19 36 30.81 6.8427
6 4 4 4 17 44 36.56 22.5150
7 5 5 5 18 46 39.11 98.2018
8 5 5 5 18 46 39.07 392.9243
9 5 5 5 18 46 38.99 2.0275e+03

Newton-Krylov-AMG with P8b, associated with J2 with varying GMRES Tol

Based on the observation that the best of the preconditioners considered so far is the P8b

preconditioner, Tables 6.19, 6.21 and 6.22 show a set for experiments for the P8b preconditioner,

when we varied the convergence tolerance for GMRES between Tol = 1e− 3, Tol = 1e− 4 and

Tol = 1e − 6. In these tests we use the AMG solver with (pre, post)smooth = (1, 1) and again

show the system with γ = 2.0, ε = 0.1 and the number of time steps = 20 (using the fixed time

step size 4t = 0.001). As we can clearly see in these tables, the number of Newton iterations

are almost constant and the number of GMRES iterations are almost constant, and the P8b

preconditioner is almost optimal in terms of time complexity in all these cases. However, Table

6.21 shows the best performance of the Newton-Krylov with our preconditioner P8b occurs with

Tol = 1e− 4 for the GMRES iterations.
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Table 6.21: Solving the CHHS model using Newton-Krylov with P8b preconditioner which is block
upper triangle preconditioned using AMG solver with γ = 2.0, ε = 0.1 and the number of time steps
= 20 with fixed time step size4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e−4
and Restart = 150 with (pre, post)smooth = (1, 1) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 3 3 3.00 29 45 40.22 4.0845
6 3 4 3.15 24 54 45.25 20.5059
7 4 4 4.00 25 58 48.51 90.3437
8 4 4 4.00 25 58 48.60 356.1623
9 4 5 4.05 25 58 48.69 1.7426e+03

Table 6.22: Solving the CHHS model using Newton-Krylov with P8b preconditioner which is block
upper triangle preconditioned using AMG solver with γ = 2.0, ε = 0.1 and the number of time steps
= 20 with fixed time step size4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e−6
and Restart = 150 with (pre, post)smooth = (1, 1) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 2 3 2.35 45 58 52.42 4.0867
6 3 3 3.00 43 70 59.80 25.7710
7 3 4 3.05 41 74 61.86 89.3078
8 3 4 3.05 41 75 61.85 350.9432
9 3 4 3.15 41 75 62.15 1.8449e+03

Newton-Krylov with P9, associated with J2

In this subsection, we consider the different preconditioner associated with J2 which is P9. We

consider this (and P10 in the next subsection) because we have a minor issue in the previous

preconditioner, P8b, regarding the difficulty of coarsening the (1, 1) block effectively. In order

to avoid this issue, we suggest approximating this preconditioner by replacing this first block

only in the diagonal by the identity matrix, which gives the P9 preconditioner.

From Table 6.23, we can see that the GMRES iterations are slightly increased when the grid

size is increasing. Since we are seeking to bound the iteration count as the mesh is refined we

can deduce that this is not an ideal preconditioner. Therefore, there is no need to go to further

approximation for this preconditioner.
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Table 6.23: Solving the CHHS model using Newton-Krylov with P9 which is block upper triangle
preconditioner, using (backslash) direct solver with γ = 2.0, ε = 0.1 and the running times (in seconds),
over 20 steps with fixed time step size 4t = 0.001, GMRES with maximum iteration Maxit = 300,
Tol = 1e− 3 and Restart = 150 with (pre, post)smooth = (2, 2) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 3 4 3.95 26 50 41.76 12.7220
6 4 4 4.00 27 57 47.68 75.5696
7 4 5 4.10 27 57 49.06 297.8608
8 4 5 4.25 40 84 71.16 2.0583e+03

Newton-Krylov with P10, associated with J2

An alternative to the previous approximation of the P8 preconditioner is now considered by

examining the P10 preconditioner. In order to avoid the issue in the P8b preconditioner, we pro-

pose approximating this preconditioner by removing the reaction term in the first block (1, 1),

which we hypothesize may have caused the problem with the AMG coarsening. This leads to

let another potential preconditioner, which is the P10 preconditioner in Equation (6.74).

In Table 6.24, we show the performance of the Newton-Krylov solver with preconditioner P10

with fixed4t = 0.001, the number of time steps are = 20, and GMRES with maximum iteration

Maxit = 300, Restart = 150, and Tol = 1e−3. The benefit of this preconditioner is that it has

an almost constant number of Newton iterations and an almost constant number of GMRES

iterations. However, it is still not optimal in time since we solve the diagonal blocks by using

direct linear algebra. This is now addressed through consideration of P10a and P10b.

Table 6.24: Solving the CHHS model using Newton-Krylov with P10 which is block upper triangle
preconditioner, using (backslash) direct solver with γ = 2.0, ε = 0.1 and the running times (in seconds),
over 20 steps with time step size 4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol =
1e− 3 and Restart = 150 and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 4 5 4.30 17 91 68.94 28.1251
6 5 5 5.00 14 102 78.36 191.6535
7 5 6 5.05 14 105 78.72 763.8447
8 5 6 5.10 14 103 78.75 3.5078e+03
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Newton-Krylov-AMG with P10a, associated with J2

In the P10a preconditioner in Equation (6.75), we have done further approximation to the P10

preconditioner, in which we used the (backslash) direct solver for the first block in the diagonal

and we replaced the two other blocks in the diagonal with one-AMG V-cycle. In Table 6.25,

we show the performance of Newton-Krylov with preconditioner P10a with fixed 4t = 0.001,

the number of time steps are = 20, and GMRES with maximum iteration Maxit = 300,

Restart = 150 and Tol = 1e− 3.

This preconditioner is shown to be relatively slow because we solve the (1, 1) diagonal block

using direct linear algebra. However, this preconditioner has an almost constant number of

Newton iterations and a bounded number of GMRES iterations, which means that it may have

the potential for optimal behaviour if we can make further improvements.

Table 6.25: Solving the CHHS model using Newton-Krylov with P10a preconditioner, using (backslash)
direct solver for the first block in the diagonal and we replaced the two other blocks in the diagonal
with one-AMG V-cycle with γ = 2.0, ε = 0.1 and the number of time steps = 20 with fixed time step
size 4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e− 3 and Restart = 150 and
Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 4 5 4.20 25 94 76.32 13.6387
6 5 5 5.00 24 109 87.59 91.4400
7 5 6 5.05 24 115 90.21 388.1750
8 5 6 5.15 24 116 91.06 1.5881e+03

Newton-Krylov-AMG with P10b, associated with J2 with varying (pre, post)smooth

In the P10b preconditioner in Equation (6.76), we approximated the first block of P10a using

AMG. Table 6.26 and Table 6.27 display the result of the P10b preconditioner with the AMG

solver undertaken using (pre, post)smooth = (1, 1) and (pre, post)smooth = (2, 2) respectively.

Note that they appear to be performing very well up to the final mesh, at which point the

execution time grows dramatically. This will be discussed further in Subsection 6.5.3.
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Table 6.26: Solving the CHHS model using Newton-Krylov with P10b preconditioner which is block
upper triangle preconditioned using AMG solver with γ = 2.0, ε = 0.1 and the number of time steps
= 20 with fixed time step size4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e−3
and Restart = 150 also, with (pre, post)smooth = (1, 1) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 4 4 4.00 39 75 65.61 9.1506
6 4 5 4.80 35 88 75.93 50.9454
7 5 5 5.00 36 91 77.09 181.1328
8 5 6 5.05 37 92 77.28 715.5243
9 5 6 5.20 36 91 77.07 4.3585e+03

Table 6.27: Solving the CHHS model using Newton-Krylov with P10b preconditioner which is block
upper triangle preconditioned using AMG solver with γ = 2.0, ε = 0.1 and the number of time steps
= 20 with fixed time step size4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e−3
and Restart = 150 also, with (pre, post)smooth = (2, 2) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 4 4 4.00 38 74 64.37 9.2810
6 4 5 4.80 34 86 73.68 54.0540
7 5 5 5.00 35 90 75.57 210.0908
8 5 6 5.05 35 89 75.31 754.0217
9 5 6 5.20 35 89 75.16 4.4798e+03

Newton-Krylov-AMG with P10b, associated with J2 with varying GMRES Tol

In Table 6.26, Table 6.28 and Table 6.29, we show a series of tests where we varied the tolerance

of GMRES between Tol = 1e − 03, Tol = 1e − 04 and Tol = 1e − 06, where the tolerance of

Newton iterations is Tol = 1e − 08 and (pre, post)smooth = (1, 1) for the P10b preconditioner.

In Table 6.28, we display that the P10b preconditioner with GMRES tolerance Tol = 1e− 4 is

the best choice. Nevertheless, despite having fixed Newton iterations and almost fixed GMRES

iterations the execution time still gives superlinearity when moving from grid 8 to grid 9.

Consequentially, this preconditioner is still sub-optimal.
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Table 6.28: Solving the CHHS model using Newton-Krylov with P10b preconditioner which is block
upper triangle preconditioned using AMG solver with γ = 2.0, ε = 0.1 and the number of time steps
= 20 with fixed time step size4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e−4
and Restart = 150 also, with (pre, post)smooth = (1, 1) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 3 4 3.40 58 87 75.74 9.7501
6 4 4 4.00 59 103 89.94 51.8372
7 4 5 4.05 60 105 91.15 175.0671
8 4 5 4.10 59 106 91.20 686.3724
9 4 5 4.20 60 106 91.07 3.8034e+03

Table 6.29: Solving the CHHS model using Newton-Krylov with P10b preconditioner which is block
upper triangle preconditioned using AMG solver with γ = 2.0, ε = 0.1 and the number of time steps
= 20 with fixed time step size4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e−6
and Restart = 300 also, with (pre, post)smooth = (1, 1) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 3 3 3.00 82 104 94.51 8.5607
6 3 4 3.05 86 125 108.88 54.0815
7 3 4 3.05 86 128 110.63 169.8623
8 3 4 3.20 86 132 111.68 683.8858
9 3 4 3.30 87 131 111.95 5.7580e+03

Summary

In this subsection, we performed numerical tests to optimize the parameter selection for the

Newton-Krylov algorithm with a variety of preconditioners based upon block factorizations and

their simplification. From the numerical results displayed in Table 6.16 and Table 6.17 for the

P7 and P8 preconditioners, we note that the approximations to the Schur Complement, that we

propose appear to yield close to optimal iteration counts. However, the use of the direct solver

(backslash) means that it is impractical to solve very large problems due to its less effective

use of memory and superlinear time growth. Nevertheless, this inspired us to consider further

improvements. Numerical results using the P8b preconditioner are given in Tables 6.19, 6.20,

6.21 and 6.22. We found that the best performance of the Newton-Krylov algorithm with P8b

preconditioner is provided by Table 6.21, where we used the GMRES tolerance is Tol = 1e− 4

and (pre, post)smooth = (1, 1). Each of these cases requires a fixed number of Newton iterations

and scale almost linearly in running time, showing that they are close to being optimal precon-
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ditioners.

In Tables 6.26, 6.28 and 6.29, we show results of the performance of the Newton-Krylov solver

with our P10b preconditioner with different tolerance for GMRES which are Tol = 1e − 3,

Tol = 1e − 4 and Tol = 1e − 6 respectively. In order to compare these results, we observed

that the best performance of the Newton-Krylov algorithm for solving the CHHS system of

equations with the P10b preconditioner is given in Table 6.28, where the GMRES tolerance is

Tol = 1e − 4, (pre, post)smooth = (1, 1) and the Newton tolerance is Tol = 1e − 8. In this

table, we found the numerical result has an almost constant number of Newton and GMRES

iterations, however, we do not see the desired scaling of linear running time.

In summary, from all these numerical results, we can observe that the best choice of new

preconditioner for solving the CHHS system of equations is P8b. This leads to a fixed number

of Newton and GMRES iterations as well as an almost linear total execution time. In the

next subsection, we discuss and compare the numerical results of the numerical solution of the

CHHS system of equations by using the two nonlinear multilevel algorithms to achieve the best

numerical solution for the CHHS problem in two dimensions.

6.5.3 Discussion and Comparison

In this chapter, we demonstrated the optimal performance of the FAS algorithm as well as the

almost optimal preconditioners that we developed for the Newton-Krylov-AMG algorithm. In

this subsection, we compare the FAS and Newton-Krylov-AMG algorithms for the numerical

solution of the CHHS problem.

As we can see in Subsection 6.5.1 in all the numerical results for the FAS algorithm we have

presented, this algorithm performed optimally, or very nearly optimally, even if we do not make

the very best choices of the free parameters. The best numerical results in terms of the total

execution time and the number of V-cycles are presented in Table 6.13. We observed that the

best value of the parameter ω is ω = 1 with the best smoother Red Black G-S, the best value

of the pre- and post-smooth (pre, post) = (1, 1) and the best coarse grid size is G = 4. For

simplicity, we present here the best numerical result of the FAS algorithm again as in Table 6.30.
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Table 6.30: FAS performance for solving the CHHS model with with γ = 2.0, ε = 0.1 and the number
of time steps = 20 with fixed time step size 4t = 0.001, with nonlinear Red Black G-S with ω = 1 and
the relative tolerance for FAS is Tol = 1e− 8

Input Output

Grid Size Smoother FAS Solver Time (sec)
Fine Coarse Pre Post Min Max Average -

5 4 1 1 6 6 6.00 7.4894
6 4 1 1 7 8 7.50 15.8361
7 4 1 1 8 8 8.00 47.3338
8 4 1 1 8 8 8.00 171.1253
9 4 1 1 8 9 8.15 691.6424

Our experiments presented in subsection 6.5.1 show that when we increase the grid size, the

number of V-cycles remains almost fixed which indicates that the performance is independent

of the problem size. Furthermore, the total execution time of this algorithm grows by approxi-

mately a factor of 4 as the problem size increases by a factor of 4, which implies that our FAS

algorithm is optimal, with a linear time complexity of approximately O(N).

The second part of this discussion considers the numerical performance of the Newton-Krylov-

AMG algorithm, as we described in detail in Subsection 6.5.2. For our newly proposed precon-

ditioner, we observed that both the P8b and P10b preconditioners are almost optimal and both

are qualitatively good preconditioners. However, from our experiments, we observe that the P8b

preconditioner is better than the P10b preconditioner. The best performance of the Newton-

Krylov-AMG algorithm is for the P8b preconditioner with GMRES tolerance Tol = 1e − 4

presented in Table 6.21. We present this table again here for simplicity as shown in Table 6.31.

Table 6.31: Solving the CHHS model using Newton-Krylov with P8b preconditioner which is block
upper triangle preconditioned using AMG solver with γ = 2.0, ε = 0.1 and the number of time steps
= 20 with fixed time step size4t = 0.001, GMRES with maximum iteration Maxit = 300, Tol = 1e−4
and Restart = 150 with (pre, post)smooth = (1, 1) and Newton Tol = 1e− 8.

Input Output

Grid size Newton Solver GMRES Solver Time
Fine Min Max Average Min Max Average -

5 3 3 3.00 29 45 40.22 4.0845
6 3 4 3.15 24 54 45.25 20.5059
7 4 4 4.00 25 58 48.51 90.3437
8 4 4 4.00 25 58 48.60 356.1623
9 4 5 4.05 25 58 48.69 1.7426e+03

In Table 6.31, the performance of the Newton-Krylov-AMG with the P8b preconditioner is ob-
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served to be nearly optimal. It has an almost fixed number of Newton iterations and GMRES

iterations. We use AMG as a part of this preconditioner. The AMG coarsening does not

compete quite as desired for every block. In particular, we find that the coarsening of the J11

diagonal block in the Jacobian matrix sometimes fails to reach the target number of levels on a

warning is issued. The numerical results in Table 6.31 show the total time is close to optimal,

but not fully optimal because the AMG is less effective due to it not coarsening as we expected.

Nevertheless, it is close to optimal and good preconditioner.

Further insight into our P8b preconditioner for the CHHS system can be obtained by considering

the structure of the J11 diagonal block in more detail. The AMG cannot coarsen the J11 block

fully. If we consider the block J11 =
∂Fµ
∂φ , where [Fµ(U)]i,j is the discrete equation written as,

[Fµ(U)]i,j = −µn+1
i,j + (φn+1

i,j )3 − φn+1
i,j

−ε2
[

1

4x2
(φn+1
i+1,j − 2φn+1

i,j + φn+1
i−1,j) +

1

4y2
(φn+1
i,j+j − 2φn+1

i,j + φn+1
i,j−1)

]
, (6.77)

then, from Equation (6.33) we have,

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
. (6.78)

In the J11 block Jacobian the off-diagonal terms are the Laplacian constant coefficients in

Equations (6.31), (6.32), (6.34) and (6.35). On the diagonal of the Jacobian block, we can

clearly see from Equation (6.78), there are two main terms: the nonlinear term (or reaction

term) and the linear term (or diffusion term). When we apply the block preconditioner, we

solve the linear system to find the vector δφ (the first part of the unknowns),

J11δφ = −Fµ. (6.79)

AMG forms a sequence of coarsen approximations to the J11 block. This requires that the diag-

onal entries do not become negative during this process, which is guaranteed for SPD matrices.

In this case of J11 block we can examine the diagonal (6.78), and see that the sign of this term

depends on the current value of φ(i,j) and the ∆x, ∆y. In particular, on a sufficiently fine grid

(when ∆x and ∆y are small) the diagonal is always positive. Moreover, on a very coarse grid

the diagonal may become negative when φ(i,j) is close to zero. Hence we cannot guarantee the

positive-diagonal property of this matrix and in practice for very coarse grids. This might be a

reason why the AMG coarsening can break down. Therefore, to avoid this problem, we suggest

ignoring the nonlinear term (the reaction term) in the J11 diagonal block producing the P10b

preconditioner.

In the P10b preconditioner the AMG coarsening completes, but the preconditioner is a further
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approximation since we have removed the source term. Therefore, in practice, P10b is less effec-

tive. The numerical results of the P10b preconditioner show that the growth in the total time is

slightly sub-optimal (i.e. worse than linear). Nevertheless, it is still close to optimal and overall

a good preconditioner in terms of bounding the Newton and GMRES iteration count. The

number of iterations needed when using the P10b preconditioner in the Newton-Krylov-AMG

was significantly larger than for the P8b preconditioner. In practice, both of these precondition-

ers have advantages, even though each preconditioner is not quite perfectly optimal in terms of

the total execution time.

For comparison, in Table 6.21 we presented the numerical results for the Newton-Krylov-AMG

algorithm with the P8b preconditioner and in Table 6.26 we presented the numerical results for

the Newton-Krylov-AMG algorithm with the P10b preconditioner. We can see that for the P10b

preconditioner more GMRES iterations are required than for the P8b preconditioner, however,

interestingly, in the P10b preconditioner, we observed that number of GMRES iterations are

almost fixed when the grid size is increased.

We conclude this discussion by the clear conclusion that the better algorithm for solving the

CHHS model is our optimal FAS solver. This can be attributed in part to the fact that we

have not been able to design a truly perfectly optimal preconditioner in this case, compared to

the thin film flow case where the comparison was reversed. Moreover, these numerical results

presented in this chapter allow us to confidently say that the FAS algorithm is better than our

preconditioned Newton-Krylov algorithm in order to solve the CHHS system.

6.6 Summary

We have presented numerical results to demonstrate that the two nonlinear multilevel algo-

rithms yield almost optimal efficiency for the CHHS problem, however, the best performance is

achieved by the FAS algorithm for solving this problem. This is contrast to the thin film model

considered in Chapter 5, where we showed that the Newton-Krylov algorithm was the most

efficient. In that case, we were able to limit the number of GMRES iterations required at each

Newton iteration. In the case of the CHHS system it was possible to design a preconditioner

in a similar way but this required further approximations that made it less efficient overall. In

this case, the more robust behaviour of the FAS algorithm provided a more efficient solution

strategy. We conclude that the numerical results for the nonlinear nonsymmetric problem de-

pend largely on the problem itself, which means that there is not likely to be one approach that

is going to be the best, but it is problem dependent.
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Conclusion and Future Research

In this chapter, we summarise the main outcomes of this thesis, highlight the core conclusion

and suggest future avenues of research.

7.1 Conclusion

Nonlinear multilevel schemes are established as fast solvers for nonlinear PDEs of Elliptic and

Parabolic type. In order to obtain the robust and efficient solution of nonlinear PDE systems,

we considered in this thesis three nonlinear multilevel schemes: the Full Approximation Scheme

(FAS), the Newton-Multigrid (Newton-MG) algorithm and the Newton-Krylov algorithm with

a new preconditioner that we have developed, based on the use of Algebraic Multigrid (AMG).

This research considered the efficient numerical solution of two representative nonlinear sys-

tems: the thin film flow model; and, the Cahn-Hilliard-Hele-Shaw (CHHS) model. In both

cases, we discretised with FDM in space and an implicit scheme in time. At each time step,

the resulting discrete nonlinear algebraic system must be solved efficiently. We have therefore

compared and contrasted the three nonlinear multilevel schemes to solve the discrete system

for the thin film flow model. Moreover, we have also compared and contrasted the FAS and

Newton-Krylov-AMG algorithms when solving the discrete system for the CHHS model. These

schemes are all optimal or near optimal (i.e. their computational cost increases close to linearly

with the number of degrees of freedom).

We presented extensive numerical results for the numerical solution of the thin film flow in

the steady-state and time-dependent problems that demonstrate the optimality of these three

approaches, as well as demonstrating, through comparative numerical results, that the best

228
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numerical approach of the three is the Newton-Krylov algorithm with our new block precondi-

tioner based on the use of AMG.

For the discrete CHHS system, we focused on the FAS and Newton-Krylov algorithms. We

present extensive results for the time-dependent case. We designed a new block preconditioner

for the Newton-Krylov algorithm. In this case, we could not produce a completely optimal

algorithm but results demonstrated close to optimal behaviour.

Conversely here, the numerical solution of the CHHS model implies that FAS is superior to

the Newton-Krylov-AMG algorithm in terms of execution time. An advantage of the FAS it-

eration over the Newton iteration here is in the large Jacobian matrix which does not require

to be stored, and hence the memory requirements are smaller. Therefore, for the very large

system sizes, the FAS iteration may be achievable whereas the Newton-Krylov iteration is not.

However, a novel preconditioner is implemented and developed in Chapters 5 and 6 for two dif-

ferent nonlinear systems which permit straightforward comparisons of the computational time

required in the Newton-Krylov-AMG method for each model.

In conclusion, the research carried out and documented in this thesis gives a good basis for the

use of multilevel solution algorithms for the efficient and accurate numerical solution of complex

nonlinear PDE systems. The numerical experiments that we have performed in this thesis imply

that the best choice of numerical algorithm for the nonlinear PDE system is problem dependent,

which suggests that it is not possible to develop a single approach that would outperform all

other strategies for any given nonlinear system.

7.2 Future work

We have presented these nonlinear multilevel numerical solution methods and compared their

computational performance for solving two separate nonlinear systems of equations. Nonlinear

systems can be found in many aspects of mathematics, science and engineering and it would be

interesting to study further nonlinear systems and solve them with the algorithms developed

here. In this section, we will suggest some possible avenues for future research.

– It is likely that our nonlinear multilevel algorithms can be extended to other nonlinear

PDE systems that can be expressed in Parabolic form, for example, the multi-phase flow

(in tumour growth [25] or in porous media [134]).

– It would be interesting to examine how the use of a different stencil for FDM, or an FEM

approximation, would affect the numerical algorithms presented here.

– One could develop and implement the application of a single AMG V-cycle and use it in

our preconditioner as part of the Newton-Krylov algorithm rather than use the Harwell
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Subroutine Library (HSL). This may give more insight into the Newton-Krylov algorithm

for the CHHS system that was solved in this work.

– A theoretical analysis of the nonlinear multilevel schemes that we have considered in this

thesis can be made in order to provide insight into how the nonlinear multilevel schemes

can be anticipated to perform in practice. Brabazon [17] presented such an analysis for

single nonlinear PDEs.

– One limitation of our current approach is the memory usage. Further work could explore

more memory efficient implementations of our algorithm. It is possible, for example, to

extend the CHHS model to 3D and therefore adjust our currently accurate and efficient

nonlinear multilevel algorithms in order to make this model more efficient in memory to

be practical for actual computation in 3D.
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Appendix A

The Jacobian Matrix for the

Thin Film Flow Model

In Appendix A, we generate the entries of the matrix in Equation (5.18) with applied Dirichlet

boundary conditions. The internal points of this matrix are the same as the analytical Jacobian

matrix that we have presented in Chapter 5 in Section 5.4.2. However, we illustrate here the

modified matrix entries near boundaries.

From Equations (5.15) and (5.16) we can simply derive the Jacobian terms for the boundary

conditions. These terms can be used to build the analytical Jacobian efficiently and in the same

sparse format for the thin film flow model as before in Chapter 5.

A.1 Fp Equation

We differentiate Equation (5.16) with respect to hi+1,j , hi,j and hi,j+1 to obtain the left bottom

points for J11 as follows:
∂FPi,j
∂hi+1,j

=
6

(∆x)2
, (A.1)

∂FPi,j
∂hi,j

= −2 (
6

(∆x)2
+

6

(∆y)2
), (A.2)

∂FPi,j
∂hi,j+1

=
6

(∆y)2
, (A.3)

where pi−1,j = pi,j−1 = 0 and hi−1,j = hi,j−1 = 1 from the Dirichlet boundary conditions and

i = 1, j = 1.

We differentiate Equation (5.16) with respect to hi+1,j , hi−1,j , hi,j and hi,j+1 to obtain the
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center bottom points for J11 as follows:

∂FPi,j
∂hi+1,j

=
6

(∆x)2
, (A.4)

∂FPi,j
∂hi−1,j

=
6

(∆x)2
, (A.5)

∂FPi,j
∂hi,j

= −2(
6

(∆x)2
+

6

(∆y)2
), (A.6)

∂FPi,j
∂hi,j+1

=
6

(∆y)2
, (A.7)

where pi,j−1 = 0 and hi,j−1 = 1 from the Dirichlet boundary conditions and i = 2, ..., N − 1,

j = 1.

We differentiate Equation (5.16) with respect to hi+1,j , hi−1,j , hi,j and hi,j+1 to obtain the

right bottom points for J11 as follows:

∂FPi,j
∂hi−1,j

=
6

(∆x)2
, (A.8)

∂FPi,j
∂hi,j

= −2(
6

(∆x)2
+

6

(∆y)2
), (A.9)

∂FPi,j
∂hi,j+1

=
6

(∆y)2
, (A.10)

where pi+1,j = pi,j−1 = 0 and hi+1,j = hi,j−1 = 1 from the Dirichlet boundary conditions and

i = N , j = 1.

We differentiate Equation (5.16) with respect to hi−1,j , hi,j , hi,j−1 and hi,j+1 to obtain the

centre right points for J11 as follows:

∂FPi,j
∂hi−1,j

=
6

(∆x)2
, (A.11)

∂FPi,j
∂hi,j

= −2(
6

(∆x)2
+

6

(∆y)2
), (A.12)

∂FPi,j
∂hi,j+1

=
6

(∆y)2
, (A.13)

∂FPi,j
∂hi,j−1

=
6

(∆y)2
, (A.14)

where pi+1,j = 0 and hi+1,j = 1 from the Dirichlet boundary conditions and i = N , j = 2, ...,M−
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1.

We differentiate Equation (5.16) with respect to hi+1,j , hi−1,j , hi,j and hi,j+1 to obtain the top

right points for J11 as follows:

∂FPi,j
∂hi−1,j

=
6

(∆x)2
, (A.15)

∂FPi,j
∂hi,j

= −2(
6

(∆x)2
+

6

(∆y)2
), (A.16)

∂FPi,j
∂hi,j−1

=
6

(∆y)2
, (A.17)

where pi+1,j = pi,j+1 = 0 and hi+1,j = hi,j+1 = 1 from the Dirichlet boundary conditions and

i = N , j = M .

We differentiate Equation (5.16) with respect to hi−1,j , hi,j , hi,j−1 and hi,j+1 to obtain the

top centre points for J11 as follows:

∂FPi,j
∂hi+1,j

=
6

(∆x)2
, (A.18)

∂FPi,j
∂hi−1,j

=
6

(∆x)2
, (A.19)

∂FPi,j
∂hi,j

= −2(
6

(∆x)2
+

6

(∆y)2
), (A.20)

∂FPi,j
∂hi,j−1

=
6

(∆y)2
, (A.21)

where pi,j+1 = 0 and hi,j+1 = 1 from the Dirichlet boundary conditions and i = 2, ..., N − 1,

j = M .

We differentiate Equation (5.16) with respect to hi+1,j , hi−1,j , hi,j and hi,j+1 to obtain the top

left points for J11 as follows:

∂FPi,j
∂hi+1,j

=
6

(∆x)2
, (A.22)

∂FPi,j
∂hi,j

= −2(
6

(∆x)2
+

6

(∆y)2
), (A.23)

∂FPi,j
∂hi,j−1

=
6

(∆y)2
, (A.24)
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where pi−1,j = pi,j+1 = 0 and hi−1,j = hi,j+1 = 1 from the Dirichlet boundary conditions and

i = 1, j = M .

We differentiate Equation (5.16) with respect to hi+1,j , hi,j , hi,j−1 and hi,j+1 to obtain the

centre left points for J11 as follows:

∂FPi,j
∂hi+1,j

=
6

(∆x)2
, (A.25)

∂FPi,j
∂hi,j

= −2(
6

(∆x)2
+

6

(∆y)2
), (A.26)

∂FPi,j
∂hi,j+1

=
6

(∆y)2
, (A.27)

∂FPi,j
∂hi,j−1

=
6

(∆y)2
, (A.28)

where pi−1,j = 0 and hi−1,j = 1 from the Dirichlet boundary conditions and i = 1, j =

2, ...,M − 1.

A.2 Fh Equation

We differentiate Equation (5.15) with respect to hi+1,j , hi,j and hi,j+1 to obtain the left bottom

points for J21 as follows:

∂Fhi,j
∂hi+1,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)]
, (A.29)

∂Fhi,j
∂hi,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)
−
(
hi,j + 1

2

)2 ((pi,j
∆x

)
− 2
)]

+
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)
−
(
hi,j + 1

2

)2(
pi,j
∆y

)]
, (A.30)

∂Fhi,j
∂hi,j+1

=
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)]
, (A.31)

where pi−1,j = pi,j−1 = 0 and hi−1,j = hi,j−1 = 1 from the Dirichlet boundary conditions and

i = 1, j = 1.
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We differentiate Equation (5.15) with respect to hi+1,j , hi−1,j , hi,j and hi,j+1 to obtain the

center bottom points for J21 as follows:

∂Fhi,j
∂hi+1,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)]
, (A.32)

∂Fhi,j
∂hi−1,j

=
−1

2(∆x)

[(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]
, (A.33)

∂Fhi,j
∂hi,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)
−
(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]

+
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)
−
(
hi,j + 1

2

)2(
pi,j
∆y

)]
, (A.34)

∂Fhi,j
∂hi,j+1

=
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)]
, (A.35)

where pi,j−1 = 0 and hi,j−1 = 1 from the Dirichlet boundary conditions and i = 2, ..., N − 1,

j = 1.

We differentiate Equation (5.15) with respect to hi−1,j , hi,j and hi,j+1 to obtain the right

bottom points for J21 as follows:

∂Fhi,j
∂hi−1,j

=
−1

2(∆x)

[(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]
, (A.36)

∂Fhi,j
∂hi,j

=
1

2(∆x)

[(
1 + hi,j

2

)2((−pi,j
∆x

)
− 2

)
−
(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]

+
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)
−
(
hi,j + 1

2

)2(
pi,j
∆y

)]
, (A.37)

∂Fhi,j
∂hi,j+1

=
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)]
, (A.38)

where pi+1,j = pi,j−1 = 0 and hi+1,j = hi,j−1 = 1 from the Dirichlet boundary conditions and

i = N , j = 1.

We differentiate Equation (5.15) with respect to hi−1,j , hi,j and hi,j+1, hi,j−1 to obtain the

center right points for J21 as follows:
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∂Fhi,j
∂hi−1,j

=
−1

2(∆x)

[(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]
, (A.39)

∂Fhi,j
∂hi,j

=
1

2(∆x)

[(
1 + hi,j

2

)2((−pi,j
∆x

)
− 2

)
−
(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]

+
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)
−
(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.40)

∂Fhi,j
∂hi,j+1

=
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)]
, (A.41)

∂Fhi,j
∂hi,j−1

=
−1

2(∆y)

[(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.42)

where pi+1,j = 0 and hi+1,j = 1 from the Dirichlet boundary conditions and i = N , j =

2, ...,M − 1.

We differentiate Equation (5.15) with respect to hi−1,j , hi,j and hi,j−1 to obtain the top right

points for J21 as follows:

∂Fhi,j
∂hi−1,j

=
−1

2(∆x)

[(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]
, (A.43)

∂Fhi,j
∂hi,j

=
1

2(∆x)

[(
1 + hi,j

2

)2((−pi,j
∆x

)
− 2

)
−
(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]

+
1

2(∆y)

[(
1 + hi,j

2

)2(−pi,j
∆y

)
−
(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.44)

∂Fhi,j
∂hi,j−1

=
−1

2(∆y)

[(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.45)

where pi+1,j = pi,j+1 = 0 and hi+1,j = hi,j+1 = 1 from the Dirichlet boundary conditions and

i = N , j = M .

We differentiate Equation (5.15) with respect to hi+1,j , hi−1,j , hi,j and hi,j−1 to obtain the

center top points for J21 as follows:
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∂Fhi,j
∂hi+1,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)]
, (A.46)

∂Fhi,j
∂hi−1,j

=
−1

2(∆x)

[(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]
, (A.47)

∂Fhi,j
∂hi,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)
−
(
hi,j + hi−1,j

2

)2((
pi,j − pi−1,j

∆x

)
− 2

)]

+
1

2(∆y)

[(
1 + hi,j

2

)2(−pi,j
∆y

)
−
(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.48)

∂Fhi,j
∂hi,j−1

=
−1

2(∆y)

[(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.49)

where pi,j+1 = 0 and hi,j+1 = 1 from the Dirichlet boundary conditions and i = 2, ..., N − 1,

j = M .

We differentiate Equation (5.15) with respect to hi+1,j , hi−1,j , hi,j and hi,j−1 to obtain the top

bottom points for J21 as follows:

∂Fhi,j
∂hi+1,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)]
, (A.50)

∂Fhi,j
∂hi,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)
−
(
hi,j + 1

2

)2 ((pi,j
∆x

)
− 2
)]

+
1

2(∆y)

[(
1 + hi,j

2

)2(−pi,j
∆y

)
−
(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.51)

∂Fhi,j
∂hi,j−1

=
−1

2(∆y)

[(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.52)

where pi−1,j = pi,j+1 = 0 and hi−1,j = hi,j+1 = 1 from the Dirichlet boundary conditions and

i = 1, j = M .

We differentiate Equation (5.15) with respect to hi+1,j , hi−1,j , hi,j and hi,j−1 to obtain the

center left points for J21 as follows:
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∂Fhi,j
∂hi+1,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)]
, (A.53)

∂Fhi,j
∂hi,j

=
1

2(∆x)

[(
hi+1,j + hi,j

2

)2((
pi+1,j − pi,j

∆x

)
− 2

)
−
(
hi,j + 1

2

)2 ((pi,j
∆x

)
− 2
)]

+
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)
−
(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.54)

∂Fhi,j
∂hi,j+1

=
1

2(∆y)

[(
hi,j+1 + hi,j

2

)2(
pi,j+1 − pi,j

∆y

)]
, (A.55)

∂Fhi,j
∂hi,j−1

=
−1

2(∆y)

[(
hi,j + hi,j−1

2

)2(
pi,j − pi,j−1

∆y

)]
, (A.56)

where pi−1,j = 0 and hi−1,j = 1 from the Dirichlet boundary conditions and i = 1, j =

2, ...,M − 1.

We differentiate Equation (5.15) with respect to pi+1,j , pi,j and pi,j+1 to obtain the left bottom

points for J22 as follows:

∂Fhi,j
∂pi+1,j

=
1

3 (∆x)2

(
hi+1,j + hi,j

2

)3

, (A.57)

∂Fhi,j
∂pi,j

=
1

3 (∆x)2

[(
hi+1,j + hi,j

2

)3

+

(
hi,j + 1

2

)3
]

+
1

3 (∆y)2

[(
hi,j+1 + hi,j

2

)3

+

(
hi,j + 1

2

)3
]
,

(A.58)

∂Fhi,j
∂pi,j+1

=
1

3 (∆y)2

(
hi,j+1 + hi,j

2

)3

, (A.59)

where pi−1,j = pi,j−1 = 0 and hi−1,j = hi,j−1 = 1 from the Dirichlet boundary conditions and

i = 1, j = 1.

We differentiate Equation (5.15) with respect to pi+1,j , pi,j , pi,j−1 and pi,j+1 to obtain the

centre right points for J22 as follows:

∂Fhi,j
∂pi−1,j

=
1

3 (∆x)2

(
hi,j + hi−1,j

2

)3

, (A.60)
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∂Fhi,j
∂pi,j

=
1

3 (∆x)2

[(
1 + hi,j

2

)3

+

(
hi,j + hi−1,j

2

)3
]

+
1

3 (∆y)2

[(
hi,j+1 + hi,j

2

)3

+

(
hi,j + hi,j−1

2

)3
]
,

(A.61)

∂Fhi,j
∂pi,j+1

=
1

3 (∆y)2

(
hi,j+1 + hi,j

2

)3

, (A.62)

∂Fhi,j
∂pi,j−1

=
1

3 (∆y)2

(
hi,j + hi,j−1

2

)3

, (A.63)

where pi+1,j = 0 and hi+1,j = 1 from the Dirichlet boundary conditions and i = N , j =

2, ...,M − 1.

We differentiate Equation (5.15) with respect to pi+1,j , pi−1,j , pi,j and pi,j+1 to obtain the

center bottom points for J22 as follows:

∂Fhi,j
∂pi+1,j

=
1

3 (∆x)2

(
hi+1,j + hi,j

2

)3

, (A.64)

∂Fhi,j
∂pi−1,j

=
1

3 (∆x)2

(
hi,j + hi−1,j

2

)3

, (A.65)

∂Fhi,j
∂pi,j

=
1

3 (∆x)

[(
hi+1,j + hi,j

2

)3
1

(∆x)
+

(
hi,j + hi−1,j

2

)3
1

(∆x)

]

+
1

3 (∆y)

[(
hi,j + hi,j+1

2

)3
1

(∆y)
+

(
hi,j + 1

2

)3
1

(∆y)

]
, (A.66)

∂Fhi,j
∂pi,j+1

=
1

3 (∆y)2

(
hi,j+1 + hi,j

2

)3

, (A.67)

where pi,j−1 = 0 and hi,j−1 = 1 from the Dirichlet boundary conditions and i = 2, ..., N − 1,

j = 1.

We differentiate Equation (5.15) with respect to pi−1,j , pi,j and pi,j+1 to obtain the right bottom

points for J22 as follows:

∂Fhi,j
∂pi−1,j

=
1

3 (∆x)2

(
hi,j + hi−1,j

2

)3

, (A.68)

∂Fhi,j
∂pi,j

=
1

3 (∆x)

[(
1 + hi,j

2

)3
1

(∆x)
+

(
hi,j + hi−1,j

2

)3
1

(∆x)

]



241 A.2. Fh Equation

+
1

3 (∆y)

[(
hi,j + hi,j+1

2

)3
1

(∆y)
+

(
hi,j + 1

2

)3
1

(∆y)

]
, (A.69)

∂Fhi,j
∂pi,j+1

=
1

3 (∆y)2

(
hi,j+1 + hi,j

2

)3

, (A.70)

where pi+1,j = pi,j−1 = 0 and hi+1,j = hi,j−1 = 1 from the Dirichlet boundary conditions and

i = N , j = 1.

We differentiate Equation (5.15) with respect to pi−1,j , pi,j and pi,j+1 to obtain the top right

points for J22 as follows:

∂Fhi,j
∂pi−1,j

=
1

3 (∆x)2

(
hi,j + hi−1,j

2

)3

, (A.71)

∂Fhi,j
∂pi,j

=
1

3 (∆x)

[(
1 + hi,j

2

)3
1

(∆x)
+

(
hi,j + hi−1,j

2

)3
1

(∆x)

]

+
1

3 (∆y)

[(
1 + hi,j

2

)3
1

(∆y)
+

(
hi,j + hi,j−1

2

)3
1

(∆y)

]
, (A.72)

∂Fhi,j
∂pi,j−1

=
1

3 (∆y)2

(
hi,j−1 + hi,j

2

)3

, (A.73)

where pi+1,j = pi,j+1 = 0 and hi+1,j = hi,j+1 = 1 from the Dirichlet boundary conditions and

i = N , j = M .

We differentiate Equation (5.15) with respect to pi+1,j , pi−1,j , pi,j and pi,j−1 to obtain the

center bottom points for J22 as follows:

∂Fhi,j
∂pi+1,j

=
1

3 (∆x)2

(
hi+1,j + hi,j

2

)3

, (A.74)

∂Fhi,j
∂pi−1,j

=
1

3 (∆x)2

(
hi,j + hi−1,j

2

)3

, (A.75)

∂Fhi,j
∂pi,j

=
1

3 (∆x)

[(
hi+1,j + hi,j

2

)3
1

(∆x)
+

(
hi,j + hi−1,j

2

)3
1

(∆x)

]

+
1

3 (∆y)

[(
hi,j + 1

2

)3
1

(∆y)
+

(
hi,j + hi,j−1

2

)3
1

(∆y)

]
, (A.76)

∂Fhi,j
∂pi,j−1

=
1

3 (∆y)2

(
hi,j−1 + hi,j

2

)3

, (A.77)
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where pi,j+1 = 0 and hi,j+1 = 1 from the Dirichlet boundary conditions and i = 2, ..., N − 1,

j = M .

We differentiate Equation (5.15) with respect to pi+1,j , pi,j and pi,j−1 to obtain the top right

points for J22 as follows:

∂Fhi,j
∂pi+1,j

=
1

3 (∆x)2

(
hi+1,j + hi,j

2

)3

, (A.78)

∂Fhi,j
∂pi,j

=
1

3 (∆x)

[(
hi+1,j + hi,j

2

)3
1

(∆x)
+

(
hi,j + 1

2

)3
1

(∆x)

]

+
1

3 (∆y)

[(
1 + hi,j

2

)3
1

(∆y)
+

(
hi,j + hi,j−1

2

)3
1

(∆y)

]
, (A.79)

∂Fhi,j
∂pi,j−1

=
1

3 (∆y)2

(
hi,j + hi,j−1

2

)3

, (A.80)

where pi−1,j = pi,j+1 = 0 and hi−1,j = hi,j+1 = 1 from the Dirichlet boundary conditions and

i = 1, j = M .

We differentiate Equation (5.15) with respect to pi+1,j , pi,j , pi,j+1 and pi,j−1 to obtain the

center left points for J22 as follows:

∂Fhi,j
∂pi+1,j

=
1

3 (∆x)2

(
hi+1,j + hi,j

2

)3

, (A.81)

∂Fhi,j
∂pi,j

=
1

3 (∆x)

[(
hi+1,j + hi,j

2

)3
1

(∆x)
+

(
hi,j + 1

2

)3
1

(∆x)

]

+
1

3 (∆y)

[(
hi,j+1 + hi,j

2

)3
1

(∆y)
+

(
hi,j + hi,j−1

2

)3
1

(∆y)

]
, (A.82)

∂Fhi,j
∂pi,j+1

=
1

3 (∆y)2

(
hi,j+1 + hi,j

2

)3

, (A.83)

∂Fhi,j
∂pi,j−1

=
1

3 (∆y)2

(
hi,j + hi,j−1

2

)3

, (A.84)

where pi−1,j = 0 and hi−1,j = 1 from the Dirichlet boundary conditions and i = 1, j =

2, ...,M − 1.



Appendix B

The Jacobian Matrix for the

CHHS Model

In Appendix B, we present the entries of the matrix in Equation (6.10) with applied Dirichlet

boundary conditions. The entries at internal points of this matrix are the same as the analytical

Jacobian matrix that we have presented in Chapter 6 in Section 6.2.1.

From Equations (6.6), (6.7) and (6.8) we can simply derive the Jacobian terms for the boundary

conditions. These terms can be used to build the analytical Jacobian efficiently and in the same

sparse format for the CHHS model as before.

B.1 Fφ Equation

We differentiate Equation (6.6) with respect to φi+1,j , φi,j and φi,j+1 to obtain the non-zero

entries of J11 as follows:

∂Fφi,j
∂φi+1,j

= (
1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]
, (B.1)

∂Fφi,j
∂φi,j

= −(
1

∆t
) + (

1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]

−(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
+(

1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
−(

1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.2)

243
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∂Fφi,j
∂φi,j+1

= (
1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
, (B.3)

where φi−1,j = φi,j−1 = −1, µi−1,j = pi−1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = 1, j = 1.

We differentiate Equation (6.6) with respect to φi+1,j , φi−1,j , φi,j and φi,j+1 to obtain the

non-zero entries of J11 as follows:

∂Fφi,j
∂φi+1,j

= (
1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]
, (B.4)

∂Fφi,j
∂φi−1,j

= −(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
, (B.5)

∂Fφi,j
∂φi,j

= −(
1

∆t
) + (

1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]

−(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
+(

1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
−(

1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.6)

∂Fφi,j
∂φi,j+1

= (
1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
, (B.7)

where φi,j−1 = −1 and µi,j−1 = pi,j−1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = 1.

We differentiate Equation (6.6) with respect to φi−1,j , φi,j and φi,j+1 to obtain the non-zero

entries of J11 as follows:

∂Fφi,j
∂φi−1,j

= −(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
, (B.8)

∂Fφi,j
∂φi,j

= −(
1

∆t
) + (

1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]

−(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
+(

1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
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−(
1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.9)

∂Fφi,j
∂φi,j+1

= (
1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
, (B.10)

where φi+1,j = φi,j−1 = −1, µi+1,j = pi+1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = N , j = 1.

We differentiate Equation (6.6) with respect to φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain the

non-zero entries of J11 as follows:

∂Fφi,j
∂φi−1,j

= −(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
, (B.11)

∂Fφi,j
∂φi,j

= −(
1

∆t
) + (

1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]

−(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
+(

1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
−(

1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.12)

∂Fφi,j
∂φi,j+1

= (
1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
, (B.13)

∂Fφi,j
∂φi,j−1

= −(
1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.14)

where φi+1,j − 1 and µi+1,j = pi+1,j = 0 from the Dirichlet boundary conditions and i = N ,

j = 2, ...,M − 1.

We differentiate Equation (6.6) with respect to φi−1,j , φi,j and φi,j−1 to obtain the non-zero

entries of J11 as follows:

∂Fφi,j
∂φi−1,j

= −(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
, (B.15)

∂Fφi,j
∂φi,j

= −(
1

∆t
) + (

1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]

−(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
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+(
1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
−(

1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.16)

∂Fφi,j
∂φi,j−1

= −(
1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.17)

where φi+1,j = φi,j+1 = −1, µi+1,j = pi+1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = N , j = M .

We differentiate Equation (6.6) with respect to φi+1,j , φi−1,j , φi,j and φi,j−1 to obtain the

non-zero entries of J11 as follows:

∂Fφi,j
∂φi+1,j

= (
1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]
, (B.18)

∂Fφi,j
∂φi−1,j

= −(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
, (B.19)

∂Fφi,j
∂φi,j

= −(
1

∆t
) + (

1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]

−(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
+(

1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
−(

1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.20)

∂Fφi,j
∂φi,j−1

= −(
1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.21)

where φi,j+1 = −1 and µi,j+1 = pi,j+1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = M .

We differentiate Equation (6.6) with respect to φi+1,j , φi,j and φi,j−1 to obtain the non-zero

entries of J11 as follows:

∂Fφi,j
∂φi+1,j

= (
1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]
, (B.22)

∂Fφi,j
∂φi,j

= −(
1

∆t
) + (

1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]
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−(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
+(

1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
−(

1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.23)

∂Fφi,j
∂φi,j−1

= −(
1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.24)

where φi−1,j = φi,j+1 = −1, µi−1,j = pi−1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = 1, j = M .

We differentiate Equation (6.6) with respect to φi+1,j , φi,j , φi,j+1 and φi,j−1 to obtain the

non-zero entries of J11 as follows:

∂Fφi,j
∂φi+1,j

= (
1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]
, (B.25)

∂Fφi,j
∂φi,j

= −(
1

∆t
) + (

1

∆x2
)

[
γ (φi+1,j + φi,j) (µi+1,j − µi,j) + (

pi+1,j − pi,j
2

)

]

−(
1

∆x2
)

[
γ (φi,j + φi−1,j) (µi,j − µi−1,j) + (

pi,j − pi−1,j

2
)

]
+(

1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
−(

1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.26)

∂Fφi,j
∂φi,j+1

= (
1

∆y2
)

[
γ (φi,j+1 + φi,j) (µi,j+1 − µi,j) + (

pi,j+1 − pi,j
2

)

]
, (B.27)

∂Fφi,j
∂φi,j−1

= −(
1

∆y2
)

[
γ (φi,j + φi,j−1) (µi,j − µi,j−1) + (

pi,j − pi,j−1

2
)

]
, (B.28)

where φi−1,j = −1 and µi−1,j = pi−1,j = 0 from the Dirichlet boundary conditions and i = 1,

j = 2, ...,M − 1.

We differentiate Equation (6.6) with respect to µi+1,j , µi,j and µi,j+1 to obtain the non-zero

entries of J12 as follows:

∂Fφi,j
∂µi+1,j

= (
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2))

]
, (B.29)
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∂Fφi,j
∂µi,j

= −(
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2)) + (1 + γ ((
φi,j + φi−1,j

2
)2))

]

−(
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2)) + (1 + γ ((
φi,j + φi,j−1

2
)2))

]
, (B.30)

∂Fφi,j
∂µi,j+1

= (
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2))

]
, (B.31)

where φi−1,j = φi,j−1 = −1, µi−1,j = pi−1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = 1, j = 1.

We differentiate Equation (6.6) with respect to µi+1,j , µi−1,j , µi,j and µi,j+1 to obtain the

non-zero entries of J12 as follows:

∂Fφi,j
∂µi+1,j

= (
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2))

]
, (B.32)

∂Fφi,j
∂µi−1,j

= (
1

∆x2
)

[
(1 + γ ((

φi,j + φi−1,j

2
)2))

]
, (B.33)

∂Fφi,j
∂µi,j

= −(
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2)) + (1 + γ ((
φi,j + φi−1,j

2
)2))

]

−(
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2)) + (1 + γ ((
φi,j + φi,j−1

2
)2))

]
, (B.34)

∂Fφi,j
∂µi,j+1

= (
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2))

]
, (B.35)

where φi,j−1 = −1 and µi,j−1 = pi,j−1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = 1.

We differentiate Equation (6.6) with respect to µi−1,j , µi,j and µi,j+1 to obtain the non-zero

entries of J12 as follows:

∂Fφi,j
∂µi−1,j

= (
1

∆x2
)

[
(1 + γ ((

φi,j + φi−1,j

2
)2))

]
, (B.36)

∂Fφi,j
∂µi,j

= −(
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2)) + (1 + γ ((
φi,j + φi−1,j

2
)2))

]

−(
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2)) + (1 + γ ((
φi,j + φi,j−1

2
)2))

]
, (B.37)

∂Fφi,j
∂µi,j+1

= (
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2))

]
, (B.38)

where φi+1,j = φi,j−1 = −1, µi+1,j = pi+1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = N , j = 1.
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We differentiate Equation (6.6) with respect to µi−1,j , µi,j and µi,j−1 to obtain the non-zero

entries of J12 as follows:

∂Fφi,j
∂µi−1,j

= (
1

∆x2
)

[
(1 + γ ((

φi,j + φi−1,j

2
)2))

]
, (B.39)

∂Fφi,j
∂µi,j

= −(
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2)) + (1 + γ ((
φi,j + φi−1,j

2
)2))

]

−(
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2)) + (1 + γ ((
φi,j + φi,j−1

2
)2))

]
, (B.40)

∂Fφi,j
∂µi,j+1

= (
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2))

]
, (B.41)

∂Fφi,j
∂µi,j−1

= (
1

∆y2
)

[
(1 + γ ((

φi,j + φi,j−1

2
)2))

]
, (B.42)

where φi+1,j = −1 and µi+1,j = pi+1,j = 0 from the Dirichlet boundary conditions and i = N ,

j = 2, ...,M − 1.

We differentiate Equation (6.6) with respect to µi−1,j , µi,j and µi,j−1 to obtain the non-zero

entries of J12 as follows:

∂Fφi,j
∂µi−1,j

= (
1

∆x2
)

[
(1 + γ ((

φi,j + φi−1,j

2
)2))

]
, (B.43)

∂Fφi,j
∂µi,j

= −(
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2)) + (1 + γ ((
φi,j + φi−1,j

2
)2))

]

−(
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2)) + (1 + γ ((
φi,j + φi,j−1

2
)2))

]
, (B.44)

∂Fφi,j
∂µi,j−1

= (
1

∆y2
)

[
(1 + γ ((

φi,j + φi,j−1

2
)2))

]
, (B.45)

where φi+1,j = φi,j+1 = −1, µi+1,j = pi+1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = N , j = M .

We differentiate Equation (6.6) with respect to µi+1,j , µi−1,j , µi,j and µi,j−1 to obtain the

non-zero entries of J12 as follows:

∂Fφi,j
∂µi+1,j

= (
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2))

]
, (B.46)

∂Fφi,j
∂µi−1,j

= (
1

∆x2
)

[
(1 + γ ((

φi,j + φi−1,j

2
)2))

]
, (B.47)
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∂Fφi,j
∂µi,j

= −(
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2)) + (1 + γ ((
φi,j + φi−1,j

2
)2))

]

−(
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2)) + (1 + γ ((
φi,j + φi,j−1

2
)2))

]
, (B.48)

∂Fφi,j
∂µi,j−1

= (
1

∆y2
)

[
(1 + γ ((

φi,j + φi,j−1

2
)2))

]
, (B.49)

where φi,j+1 = −1 and µi,j+1 = pi,j+1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = M .

We differentiate Equation (6.6) with respect to µi+1,j , µi,j and µi,j−1 to obtain the non-zero

entries of J12 as follows:

∂Fφi,j
∂µi+1,j

= (
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2))

]
, (B.50)

∂Fφi,j
∂µi,j

= −(
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2)) + (1 + γ ((
φi,j + φi−1,j

2
)2))

]

−(
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2)) + (1 + γ ((
φi,j + φi,j−1

2
)2))

]
, (B.51)

∂Fφi,j
∂µi,j−1

= (
1

∆y2
)

[
(1 + γ ((

φi,j + φi,j−1

2
)2))

]
, (B.52)

where φi−1,j = φi,j+1 = −1, µi−1,j = pi−1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = 1, j = M .

We differentiate Equation (6.6) with respect to µi+1,j , µi,j , µi,j+1 and µi,j−1 to obtain the

non-zero entries of J12 as follows:

∂Fφi,j
∂µi+1,j

= (
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2))

]
, (B.53)

∂Fφi,j
∂µi,j

= −(
1

∆x2
)

[
(1 + γ ((

φi+1,j + φi,j
2

)2)) + (1 + γ ((
φi,j + φi−1,j

2
)2))

]

−(
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2)) + (1 + γ ((
φi,j + φi,j−1

2
)2))

]
, (B.54)

∂Fφi,j
∂µi,j+1

= (
1

∆y2
)

[
(1 + γ ((

φi,j+1 + φi,j
2

)2))

]
, (B.55)

∂Fφi,j
∂µi,j−1

= (
1

∆y2
)

[
(1 + γ ((

φi,j + φi,j−1

2
)2))

]
, (B.56)

where φi−1,j = −1 and µi−1,j = pi−1,j = 0 from the Dirichlet boundary conditions and i = 1,

j = 2, ...,M − 1.
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We differentiate Equation (6.6) with respect to pi+1,j , pi,j and pi,j+1 to obtain the non-zero

entries of J13 as follows:
∂Fφi,j
∂pi+1,j

= (
1

∆x2
)

[
φi+1,j + φi,j

2

]
, (B.57)

∂Fφi,j
∂pi,j

= −(
1

∆x2
)

[
φi+1,j + φi,j

2
+
φi,j + φi−1,j

2

]

−(
1

∆y2
)

[
φi,j+1 + φi,j

2
+
φi,j + φi,j−1

2

]
, (B.58)

∂Fφi,j
∂pi,j+1

= (
1

∆y2
)

[
φi,j+1 + φi,j

2

]
, (B.59)

where φi−1,j = φi,j−1 = −1, µi−1,j = pi−1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = 1, j = 1.

We differentiate Equation (6.6) with respect to pi+1,j , pi−1,j , pi,j and pi,j+1 to obtain the non-

zero entries of J13 as follows:

∂Fφi,j
∂pi+1,j

= (
1

∆x2
)

[
φi+1,j + φi,j

2

]
, (B.60)

∂Fφi,j
∂pi−1,j

= (
1

∆x2
)

[
φi,j + φi−1,j

2

]
, (B.61)

∂Fφi,j
∂pi,j

= −(
1

∆x2
)

[
φi+1,j + φi,j

2
+
φi,j + φi−1,j

2

]

−(
1

∆y2
)

[
φi,j+1 + φi,j

2
+
φi,j + φi,j−1

2

]
, (B.62)

∂Fφi,j
∂pi,j+1

= (
1

∆y2
)

[
φi,j+1 + φi,j

2

]
, (B.63)

where φi,j−1 = −1 and µi,j−1 = pi,j−1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = 1.

We differentiate Equation (6.6) with respect to pi−1,j , pi,j and pi,j+1 to obtain the non-zero

entries of J13 as follows:
∂Fφi,j
∂pi−1,j

= (
1

∆x2
)

[
φi,j + φi−1,j

2

]
, (B.64)

∂Fφi,j
∂pi,j

= −(
1

∆x2
)

[
φi+1,j + φi,j

2
+
φi,j + φi−1,j

2

]

−(
1

∆y2
)

[
φi,j+1 + φi,j

2
+
φi,j + φi,j−1

2

]
, (B.65)
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∂Fφi,j
∂pi,j+1

= (
1

∆y2
)

[
φi,j+1 + φi,j

2

]
, (B.66)

where φi+1,j = φi,j−1 = −1, µi+1,j = pi+1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = N , j = 1.

We differentiate Equation (6.6) with respect to pi−1,j , pi,j , pi,j+1 and pi,j−1 to obtain the non-

zero entries of J13 as follows:

∂Fφi,j
∂pi−1,j

= (
1

∆x2
)

[
φi,j + φi−1,j

2

]
, (B.67)

∂Fφi,j
∂pi,j

= −(
1

∆x2
)

[
φi+1,j + φi,j

2
+
φi,j + φi−1,j

2

]

−(
1

∆y2
)

[
φi,j+1 + φi,j

2
+
φi,j + φi,j−1

2

]
, (B.68)

∂Fφi,j
∂pi,j+1

= (
1

∆y2
)

[
φi,j+1 + φi,j

2

]
, (B.69)

∂Fφi,j
∂pi,j−1

= (
1

∆y2
)

[
φi,j + φi,j−1

2

]
, (B.70)

where φi+1,j = −1 and µi+1,j = pi+1,j = 0 from the Dirichlet boundary conditions and i = N ,

j = 2, ...,M − 1.

We differentiate Equation (6.6) with respect to pi−1,j , pi,j and pi,j−1 to obtain the non-zero

entries of J13 as follows:
∂Fφi,j
∂pi−1,j

= (
1

∆x2
)

[
φi,j + φi−1,j

2

]
, (B.71)

∂Fφi,j
∂pi,j

= −(
1

∆x2
)

[
φi+1,j + φi,j

2
+
φi,j + φi−1,j

2

]

−(
1

∆y2
)

[
φi,j+1 + φi,j

2
+
φi,j + φi,j−1

2

]
, (B.72)

∂Fφi,j
∂pi,j−1

= (
1

∆y2
)

[
φi,j + φi,j−1

2

]
, (B.73)

where φi+1,j = φi,j+1 = −1, µi+1,j = pi+1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = N , j = M .

We differentiate Equation (6.6) with respect to pi+1,j , pi−1,j , pi,j and pi,j−1 to obtain the non-

zero entries of J13 as follows:

∂Fφi,j
∂pi+1,j

= (
1

∆x2
)

[
φi+1,j + φi,j

2

]
, (B.74)
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∂Fφi,j
∂pi−1,j

= (
1

∆x2
)

[
φi,j + φi−1,j

2

]
, (B.75)

∂Fφi,j
∂pi,j

= −(
1

∆x2
)

[
φi+1,j + φi,j

2
+
φi,j + φi−1,j

2

]

−(
1

∆y2
)

[
φi,j+1 + φi,j

2
+
φi,j + φi,j−1

2

]
, (B.76)

∂Fφi,j
∂pi,j−1

= (
1

∆y2
)

[
φi,j + φi,j−1

2

]
, (B.77)

where φi,j+1 = −1 and µi,j+1 = pi,j+1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = M .

We differentiate Equation (6.6) with respect to pi+1,j , pi,j and pi,j−1 to obtain the non-zero

entries of J13 as follows:
∂Fφi,j
∂pi+1,j

= (
1

∆x2
)

[
φi+1,j + φi,j

2

]
, (B.78)

∂Fφi,j
∂pi,j

= −(
1

∆x2
)

[
φi+1,j + φi,j

2
+
φi,j + φi−1,j

2

]

−(
1

∆y2
)

[
φi,j+1 + φi,j

2
+
φi,j + φi,j−1

2

]
, (B.79)

∂Fφi,j
∂pi,j−1

= (
1

∆y2
)

[
φi,j + φi,j−1

2

]
, (B.80)

where φi−1,j = φi,j+1 = −1, µi−1,j = pi−1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = 1, j = M .

We differentiate Equation (6.6) with respect to pi+1,j , pi−1,j , pi,j , pi,j+1 and pi,j−1 to obtain

the non-zero entries of J13 as follows:

∂Fφi,j
∂pi+1,j

= (
1

∆x2
)

[
φi+1,j + φi,j

2

]
, (B.81)

∂Fφi,j
∂pi,j

= −(
1

∆x2
)

[
φi+1,j + φi,j

2
+
φi,j + φi−1,j

2

]

−(
1

∆y2
)

[
φi,j+1 + φi,j

2
+
φi,j + φi,j−1

2

]
, (B.82)

∂Fφi,j
∂pi,j+1

= (
1

∆y2
)

[
φi,j+1 + φi,j

2

]
, (B.83)

∂Fφi,j
∂pi,j−1

= (
1

∆y2
)

[
φi,j + φi,j−1

2

]
, (B.84)

where φi−1,j = −1 and µi−1,j = pi−1,j = 0 from the Dirichlet boundary conditions and i = 1,
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j = 2, ...,M − 1.

B.2 Fµ Equation

We differentiate Equation (6.7) with respect to φi+1,j , φi,j and φi,j+1 to obtain the non-zero

entries of J21 as follows:
∂Fµi,j
∂φi+1,j

= −(
(ε)2

∆x2
), (B.85)

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
, (B.86)

∂Fµi,j
∂φi,j+1

= −(
(ε)2

∆y2
), (B.87)

where φi−1,j = φi,j−1 = −1, µi−1,j = pi−1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = 1, j = 1.

We differentiate Equation (6.7) with respect to φi+1,j , φi−1,j , φi,j and φi,j+1 to obtain the

non-zero entries of J21 as follows:

∂Fµi,j
∂φi+1,j

= −(
(ε)2

∆x2
), (B.88)

∂Fµi,j
∂φi−1,j

= −(
(ε)2

∆x2
), (B.89)

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
, (B.90)

∂Fµi,j
∂φi,j+1

= −(
(ε)2

∆y2
), (B.91)

where φi,j−1 = −1 and µi,j−1 = pi,j−1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = 1.

We differentiate Equation (6.7) with respect to φi−1,j , φi,j and φi,j+1 to obtain the non-zero

entries of J21 as follows:
∂Fµi,j
∂φi−1,j

= −(
(ε)2

∆x2
), (B.92)

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
, (B.93)

∂Fµi,j
∂φi,j+1

= −(
(ε)2

∆y2
), (B.94)

where φi+1,j = φi,j−1 = −1, µi+1,j = pi+1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet
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boundary conditions and i = N , j = 1.

We differentiate Equation (6.7) with respect to φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain the

non-zero entries of J21 as follows:

∂Fµi,j
∂φi−1,j

= −(
(ε)2

∆x2
), (B.95)

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
, (B.96)

∂Fµi,j
∂φi,j+1

= −(
(ε)2

∆y2
), (B.97)

∂Fµi,j
∂φi,j−1

= −(
(ε)2

∆y2
), (B.98)

where φi+1,j = −1 and µi+1,j = pi+1,j = 0from the Dirichlet boundary conditions and i = N ,

j = 2, ...,M − 1.

We differentiate Equation (6.7) with respect to φi−1,j , φi,j and φi,j−1 to obtain the non-zero

entries of J21 as follows:
∂Fµi,j
∂φi−1,j

= −(
(ε)2

∆x2
), (B.99)

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
, (B.100)

∂Fµi,j
∂φi,j−1

= −(
(ε)2

∆y2
), (B.101)

where φi+1,j = φi,j+1 = −1, µi+1,j = pi+1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = N , j = M .

We differentiate Equation (6.7) with respect to φi+1,j , φi−1,j , φi,j and φi,j−1 to obtain the

non-zero entries of J21 as follows:

∂Fµi,j
∂φi+1,j

= −(
(ε)2

∆x2
), (B.102)

∂Fµi,j
∂φi−1,j

= −(
(ε)2

∆x2
), (B.103)

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
, (B.104)

∂Fµi,j
∂φi,j−1

= −(
(ε)2

∆y2
), (B.105)
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where φi,j+1 = −1 and µi,j+1 = pi,j+1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = M .

We differentiate Equation (6.7) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J21 as follows:

∂Fµi,j
∂φi+1,j

= −(
(ε)2

∆x2
), (B.106)

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
, (B.107)

∂Fµi,j
∂φi,j−1

= −(
(ε)2

∆y2
), (B.108)

where φi−1,j = φi,j+1 = −1, µi−1,j = pi−1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = 1, j = M .

We differentiate Equation (6.7) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J21 as follows:

∂Fµi,j
∂φi+1,j

= −(
(ε)2

∆x2
), (B.109)

∂Fµi,j
∂φi,j

= −1 + 3 (φi,j)
2 + 2 (ε)2

[
(

1

∆x2
) + (

1

∆y2
)

]
, (B.110)

∂Fµi,j
∂φi,j+1

= −(
(ε)2

∆y2
), (B.111)

∂Fµi,j
∂φi,j−1

= −(
(ε)2

∆y2
), (B.112)

where φi−1,j = −1 and µi−1,j = pi−1,j = 0 from the Dirichlet boundary conditions and i = 1,

j = 2, ...,M − 1.

We differentiate Equation (6.7) with respect to µi+1,j , µi,j and µi,j+1 to obtain the non-zero

entries of J22 as follows:
∂Fµi,j
∂µi,j

= −1, (B.113)

where φi−1,j = φi,j−1 = −1, µi−1,j = pi−1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = 1, j = 1.

We differentiate Equation (6.7) with respect to µi+1,j , µi−1,j , µi,j and µi,j+1 to obtain the
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non-zero entries of J22 as follows:
∂Fµi,j
∂µi,j

= −1, (B.114)

where φi,j−1 = −1 and µi,j−1 = pi,j−1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = 1.

We differentiate Equation (6.7) with respect to µi−1,j , µi,j and µi,j+1 to obtain the non-zero

entries of J22 as follows:
∂Fµi,j
∂µi,j

= −1, (B.115)

where φi+1,j = φi,j−1 = −1, µi+1,j = pi+1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = N , j = 1.

We differentiate Equation (6.7) with respect to µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain the

non-zero entries of J22 as follows:
∂Fµi,j
∂µi,j

= −1, (B.116)

where φi+1,j = −1 and µi+1,j = pi+1,j = 0 from the Dirichlet boundary conditions and i = N ,

j = 2, ...,M − 1.

We differentiate Equation (6.7) with respect to µi−1,j , µi,j and µi,j−1 to obtain the non-zero

entries of J22 as follows:
∂Fµi,j
∂µi,j

= −1, (B.117)

where φi+1,j = φi,j+1 = −1, µi+1,j = pi+1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = N , j = M .

We differentiate Equation (6.7) with respect to µi+1,j , µi−1,j , µi,j and µi,j−1 to obtain the

non-zero entries of J22 as follows:
∂Fµi,j
∂µi,j

= −1, (B.118)

where φi,j+1 = −1 and µi,j+1 = pi,j+1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = M .

We differentiate Equation (6.7) with respect to µi+1,j , µi,j and µi,j−1 to obtain the non-zero

entries of J22 as follows:

∂Fµi,j
∂µi,j

= −1, (B.119)

where φi−1,j = φi,j+1 = −1, µi−1,j = pi−1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = 1, j = M .
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We differentiate Equation (6.7) with respect to µi+1,j , µi,j , µi,j+1 and µi,j−1 to obtain the

non-zero entries of J22 as follows:

∂Fµi,j
∂µi,j

= −1, (B.120)

where φi−1,j = −1 and µi−1,j = pi−1,j = 0 from the Dirichlet boundary conditions and i = 1,

j = 2, ...,M − 1.

B.3 Fp Equation

We differentiate Equation (6.8) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J31 as follows:

∂Fpi,j
∂φi+1,j

= (
γ

∆x2
) (

1

2
) (µi+1,j − µi,j), (B.121)

∂Fpi,j
∂φi,j

= (
γ

∆x2
)(

1

2
) [(µi+1,j − µi,j)− (µi,j − µi−1,j)]

+(
γ

∆y2
)(

1

2
) [(µi,j+1 − µi,j)− (µi,j − µi,j−1)] , (B.122)

∂Fpi,j
∂φi,j+1

= (
γ

∆y2
) (

1

2
) (µi,j+1 − µi,j), (B.123)

where i = 1, j = 1.

We differentiate Equation (6.8) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J31 as follows:

∂Fpi,j
∂φi+1,j

= (
γ

∆x2
) (

1

2
) (µi+1,j − µi,j), (B.124)

∂Fpi,j
∂φi−1,j

= −(
γ

∆x2
) (

1

2
) (µi,j − µi−1,j), (B.125)

∂Fpi,j
∂φi,j

= (
γ

∆x2
)(

1

2
) [(µi+1,j − µi,j)− (µi,j − µi−1,j)]

+(
γ

∆y2
)(

1

2
) [(µi,j+1 − µi,j)− (µi,j − µi,j−1)] , (B.126)

∂Fpi,j
∂φi,j+1

= (
γ

∆y2
) (

1

2
) (µi,j+1 − µi,j), (B.127)

where i = 2, ..., N − 1, j = 1.
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We differentiate Equation (6.8) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J31 as follows:

∂Fpi,j
∂φi−1,j

= −(
γ

∆x2
) (

1

2
) (µi,j − µi−1,j), (B.128)

∂Fpi,j
∂φi,j

= (
γ

∆x2
)(

1

2
) [(µi+1,j − µi,j)− (µi,j − µi−1,j)]

+(
γ

∆y2
)(

1

2
) [(µi,j+1 − µi,j)− (µi,j − µi,j−1)] , (B.129)

∂Fpi,j
∂φi,j+1

= (
γ

∆y2
) (

1

2
) (µi,j+1 − µi,j), (B.130)

where i = N , j = 1.

We differentiate Equation (6.8) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J31 as follows:

∂Fpi,j
∂φi−1,j

= −(
γ

∆x2
) (

1

2
) (µi,j − µi−1,j), (B.131)

∂Fpi,j
∂φi,j

= (
γ

∆x2
)(

1

2
) [(µi+1,j − µi,j)− (µi,j − µi−1,j)]

+(
γ

∆y2
)(

1

2
) [(µi,j+1 − µi,j)− (µi,j − µi,j−1)] , (B.132)

∂Fpi,j
∂φi,j+1

= (
γ

∆y2
) (

1

2
) (µi,j+1 − µi,j), (B.133)

∂Fpi,j
∂φi,j−1

= −(
γ

∆y2
) (

1

2
) (µi,j − µi,j−1), (B.134)

where i = N , j = 2, ...,M − 1.

We differentiate Equation (6.8) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J31 as follows:

∂Fpi,j
∂φi−1,j

= −(
γ

∆x2
) (

1

2
) (µi,j − µi−1,j), (B.135)

∂Fpi,j
∂φi,j

= (
γ

∆x2
)(

1

2
) [(µi+1,j − µi,j)− (µi,j − µi−1,j)]

+(
γ

∆y2
)(

1

2
) [(µi,j+1 − µi,j)− (µi,j − µi,j−1)] , (B.136)
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∂Fpi,j
∂φi,j−1

= −(
γ

∆y2
) (

1

2
) (µi,j − µi,j−1), (B.137)

where i = N , j = M .

We differentiate Equation (6.8) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J31 as follows:

∂Fpi,j
∂φi+1,j

= (
γ

∆x2
) (

1

2
) (µi+1,j − µi,j), (B.138)

∂Fpi,j
∂φi−1,j

= −(
γ

∆x2
) (

1

2
) (µi,j − µi−1,j), (B.139)

∂Fpi,j
∂φi,j

= (
γ

∆x2
)(

1

2
) [(µi+1,j − µi,j)− (µi,j − µi−1,j)]

∂Fpi,j
∂φi,j+1

= (
γ

∆y2
) (

1

2
) (µi,j+1 − µi,j), (B.140)

∂Fpi,j
∂φi,j−1

= −(
γ

∆y2
) (

1

2
) (µi,j − µi,j−1), (B.141)

where i = 2, ..., N − 1, j = M .

We differentiate Equation (6.8) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J31 as follows:

∂Fpi,j
∂φi+1,j

= (
γ

∆x2
) (

1

2
) (µi+1,j − µi,j), (B.142)

∂Fpi,j
∂φi,j

= (
γ

∆x2
)(

1

2
) [(µi+1,j − µi,j)− (µi,j − µi−1,j)]

+(
γ

∆y2
)(

1

2
) [(µi,j+1 − µi,j)− (µi,j − µi,j−1)] , (B.143)

∂Fpi,j
∂φi,j−1

= −(
γ

∆y2
) (

1

2
) (µi,j − µi,j−1), (B.144)

where i = 1, j = M .

We differentiate Equation (6.8) with respect to φi+1,j , φi−1,j , φi,j , φi,j+1 and φi,j−1 to obtain

the non-zero entries of J31 as follows:

∂Fpi,j
∂φi+1,j

= (
γ

∆x2
) (

1

2
) (µi+1,j − µi,j), (B.145)

∂Fpi,j
∂φi,j

= (
γ

∆x2
)(

1

2
) [(µi+1,j − µi,j)− (µi,j − µi−1,j)]



261 B.3. Fp Equation

+(
γ

∆y2
)(

1

2
) [(µi,j+1 − µi,j)− (µi,j − µi,j−1)] , (B.146)

∂Fpi,j
∂φi,j+1

= (
γ

∆y2
) (

1

2
) (µi,j+1 − µi,j), (B.147)

∂Fpi,j
∂φi,j−1

= −(
γ

∆y2
) (

1

2
) (µi,j − µi,j−1), (B.148)

where i = 1, j = 2, ...,M − 1.

We differentiate Equation (6.8) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain

the non-zero entries of J32 as follows:

∂Fpi,j
∂µi+1,j

= (
γ

∆x2
)

(φi+1,j + φi,j)

2
, (B.149)

∂Fpi,j
∂µi,j

= −(
γ

∆x2
)

[
(φi+1,j + φi,j)

2
+

(φi,j + φi−1,j)

2

]

−(
γ

∆y2
)

[
(φi,j+1 + φi,j)

2
+

(φi,j + φi,j−1)

2

]
, (B.150)

∂Fpi,j
∂µi,j+1

= (
γ

∆y2
)

(φi,j+1 + φi,j)

2
, (B.151)

where i = 1, j = 1.

We differentiate Equation (6.8) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain

the non-zero entries of J32 as follows:

∂Fpi,j
∂µi+1,j

= (
γ

∆x2
)

(φi+1,j + φi,j)

2
, (B.152)

∂Fpi,j
∂µi−1,j

= (
γ

∆x2
)

(φi,j + φi−1,j)

2
, (B.153)

∂Fpi,j
∂µi,j

= −(
γ

∆x2
)

[
(φi+1,j + φi,j)

2
+

(φi,j + φi−1,j)

2

]

−(
γ

∆y2
)

[
(φi,j+1 + φi,j)

2
+

(φi,j + φi,j−1)

2

]
, (B.154)

∂Fpi,j
∂µi,j+1

= (
γ

∆y2
)

(φi,j+1 + φi,j)

2
, (B.155)

where i = 2, ..., N − 1, j = 1.

We differentiate Equation (6.8) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain
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the non-zero entries of J32 as follows:

∂Fpi,j
∂µi−1,j

= (
γ

∆x2
)

(φi,j + φi−1,j)

2
, (B.156)

∂Fpi,j
∂µi,j

= −(
γ

∆x2
)

[
(φi+1,j + φi,j)

2
+

(φi,j + φi−1,j)

2

]

−(
γ

∆y2
)

[
(φi,j+1 + φi,j)

2
+

(φi,j + φi,j−1)

2

]
, (B.157)

∂Fpi,j
∂µi,j+1

= (
γ

∆y2
)

(φi,j+1 + φi,j)

2
, (B.158)

where i = N , j = 1.

We differentiate Equation (6.8) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain

the non-zero entries of J32 as follows:

∂Fpi,j
∂µi−1,j

= (
γ

∆x2
)

(φi,j + φi−1,j)

2
, (B.159)

∂Fpi,j
∂µi,j

= −(
γ

∆x2
)

[
(φi+1,j + φi,j)

2
+

(φi,j + φi−1,j)

2

]

−(
γ

∆y2
)

[
(φi,j+1 + φi,j)

2
+

(φi,j + φi,j−1)

2

]
, (B.160)

∂Fpi,j
∂µi,j+1

= (
γ

∆y2
)

(φi,j+1 + φi,j)

2
, (B.161)

∂Fpi,j
∂µi,j−1

= (
γ

∆y2
)

(φi,j + φi,j−1)

2
, (B.162)

where i = N , j = 2, ...,M − 1.

We differentiate Equation (6.8) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain

the non-zero entries of J32 as follows:

∂Fpi,j
∂µi−1,j

= (
γ

∆x2
)

(φi,j + φi−1,j)

2
, (B.163)

∂Fpi,j
∂µi,j

= −(
γ

∆x2
)

[
(φi+1,j + φi,j)

2
+

(φi,j + φi−1,j)

2

]

−(
γ

∆y2
)

[
(φi,j+1 + φi,j)

2
+

(φi,j + φi,j−1)

2

]
, (B.164)

∂Fpi,j
∂µi,j−1

= (
γ

∆y2
)

(φi,j + φi,j−1)

2
, (B.165)
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where i = N , j = M .

We differentiate Equation (6.8) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain

the non-zero entries of J32 as follows:

∂Fpi,j
∂µi+1,j

= (
γ

∆x2
)

(φi+1,j + φi,j)

2
, (B.166)

∂Fpi,j
∂µi−1,j

= (
γ

∆x2
)

(φi,j + φi−1,j)

2
, (B.167)

∂Fpi,j
∂µi,j

= −(
γ

∆x2
)

[
(φi+1,j + φi,j)

2
+

(φi,j + φi−1,j)

2

]

−(
γ

∆y2
)

[
(φi,j+1 + φi,j)

2
+

(φi,j + φi,j−1)

2

]
, (B.168)

∂Fpi,j
∂µi,j−1

= (
γ

∆y2
)

(φi,j + φi,j−1)

2
, (B.169)

where i = 2, ..., N − 1, j = M .

We differentiate Equation (6.8) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain

the non-zero entries of J32 as follows:

∂Fpi,j
∂µi+1,j

= (
γ

∆x2
)

(φi+1,j + φi,j)

2
, (B.170)

∂Fpi,j
∂µi,j

= −(
γ

∆x2
)

[
(φi+1,j + φi,j)

2
+

(φi,j + φi−1,j)

2

]

−(
γ

∆y2
)

[
(φi,j+1 + φi,j)

2
+

(φi,j + φi,j−1)

2

]
, (B.171)

∂Fpi,j
∂µi,j−1

= (
γ

∆y2
)

(φi,j + φi,j−1)

2
, (B.172)

where i = 1, j = M .

We differentiate Equation (6.8) with respect to µi+1,j , µi−1,j , µi,j , µi,j+1 and µi,j−1 to obtain

the non-zero entries of J32 as follows:

∂Fpi,j
∂µi+1,j

= (
γ

∆x2
)

(φi+1,j + φi,j)

2
, (B.173)

∂Fpi,j
∂µi,j

= −(
γ

∆x2
)

[
(φi+1,j + φi,j)

2
+

(φi,j + φi−1,j)

2

]
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−(
γ

∆y2
)

[
(φi,j+1 + φi,j)

2
+

(φi,j + φi,j−1)

2

]
, (B.174)

∂Fpi,j
∂µi,j+1

= (
γ

∆y2
)

(φi,j+1 + φi,j)

2
, (B.175)

∂Fpi,j
∂µi,j−1

= (
γ

∆y2
)

(φi,j + φi,j−1)

2
, (B.176)

where i = 1, j = 2, ...,M − 1.

We differentiate Equation (6.8) with respect to pi+1,j , pi,j and pi,j+1 to obtain the non-zero

entries of J33 as follows:
∂Fpi,j
∂pi+1,j

= (
1

∆x2
), (B.177)

∂Fpi,j
∂pi,j

= −(2) (
1

∆x2
+

1

∆y2
), (B.178)

∂Fpi,j
∂pi,j+1

= (
1

∆y2
), (B.179)

where φi−1,j = φi,j−1 = −1, µi−1,j = pi−1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = 1, j = 1.

We differentiate Equation (6.8) with respect to pi+1,j , pi−1,j , pi,j and pi,j+1 to obtain the non-

zero entries of J33 as follows:
∂Fpi,j
∂pi+1,j

= (
1

∆x2
), (B.180)

∂Fpi,j
∂pi−1,j

= (
1

∆x2
), (B.181)

∂Fpi,j
∂pi,j

= −(2) (
1

∆x2
+

1

∆y2
), (B.182)

∂Fpi,j
∂pi,j+1

= (
1

∆y2
), (B.183)

where φi,j−1 = −1 and µi,j−1 = pi,j−1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = 1.

We differentiate Equation (6.8) with respect to pi−1,j , pi,j and pi,j+1 to obtain the non-zero

entries of J33 as follows:

∂Fpi,j
∂pi−1,j

= (
1

∆x2
), (B.184)

∂Fpi,j
∂pi,j

= −(2) (
1

∆x2
+

1

∆y2
), (B.185)
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∂Fpi,j
∂pi,j+1

= (
1

∆y2
), (B.186)

where φi+1,j = φi,j−1 = −1, µi+1,j = pi+1,j = 0 and µi,j−1 = pi,j−1 = 0 from the Dirichlet

boundary conditions and i = N , j = 1.

We differentiate Equation (6.8) with respect to pi−1,j , pi,j and pi,j+1 to obtain the non-zero

entries of J33 as follows:
∂Fpi,j
∂pi−1,j

= (
1

∆x2
), (B.187)

∂Fpi,j
∂pi,j

= −(2) (
1

∆x2
+

1

∆y2
), (B.188)

∂Fpi,j
∂pi,j+1

= (
1

∆y2
), (B.189)

∂Fpi,j
∂pi,j−1

= (
1

∆y2
), (B.190)

where φi+1,j = −1 and µi+1,j = pi+1,j = 0 from the Dirichlet boundary conditions and i = N ,

j = 2, ...,M − 1.

We differentiate Equation (6.8) with respect to pi−1,j , pi,j and pi,j−1 to obtain the non-zero

entries of J33 as follows:

∂Fpi,j
∂pi−1,j

= (
1

∆x2
), (B.191)

∂Fpi,j
∂pi,j

= −(2) (
1

∆x2
+

1

∆y2
), (B.192)

∂Fpi,j
∂pi,j−1

= (
1

∆y2
), (B.193)

where φi+1,j = φi,j+1 = −1, µi+1,j = pi+1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = N , j = M .

We differentiate Equation (6.8) with respect to pi+1,j , pi−1,j , pi,j and pi,j−1 to obtain the non-

zero entries of J33 as follows:
∂Fpi,j
∂pi+1,j

= (
1

∆x2
), (B.194)

∂Fpi,j
∂pi−1,j

= (
1

∆x2
), (B.195)

∂Fpi,j
∂pi,j

= −(2) (
1

∆x2
+

1

∆y2
), (B.196)
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∂Fpi,j
∂pi,j−1

= (
1

∆y2
), (B.197)

where φi,j+1 = −1 and µi,j+1 = pi,j+1 = 0 from the Dirichlet boundary conditions and

i = 2, ..., N − 1, j = M .

We differentiate Equation (6.8) with respect to pi+1,j , pi,j and pi,j−1 to obtain the non-zero

entries of J33 as follows:
∂Fpi,j
∂pi+1,j

= (
1

∆x2
), (B.198)

∂Fpi,j
∂pi,j

= −(2) (
1

∆x2
+

1

∆y2
), (B.199)

∂Fpi,j
∂pi,j−1

= (
1

∆y2
), (B.200)

where φi−1,j = φi,j+1 = −1, µi−1,j = pi−1,j = 0 and µi,j+1 = pi,j+1 = 0 from the Dirichlet

boundary conditions and i = 1, j = M .

We differentiate Equation (6.8) with respect to pi+1,j , pi,j , pi,j+1 and pi,j−1 to obtain the non-

zero entries of J33 as follows:
∂Fpi,j
∂pi+1,j

= (
1

∆x2
), (B.201)

∂Fpi,j
∂pi,j

= −(2) (
1

∆x2
+

1

∆y2
), (B.202)

∂Fpi,j
∂pi,j+1

= (
1

∆y2
), (B.203)

∂Fpi,j
∂pi,j−1

= (
1

∆y2
), (B.204)

where φi−1,j = −1 and µi−1,j = pi−1,j = 0 from the Dirichlet boundary conditions and i = 1,

j = 2, ...,M − 1.
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