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Abstract
The evolution of driving technology has recently progressed from active safety fea-
tures and advanced driver assistance system (ADAS) to fully sensor-guided Au-
tonomous Vehicle (AV). Bringing such robotic vehicles to roads requires not only
simulation and testing but formal verification to account for all possible traffic sce-
narios.

It is important to guarantee safety for all agents moving in the same environ-
ment (in our case study; people, vehicles and our AV) while the AV is exploring
the surroundings. Comparing with static or controlled environments, high dynamic
environments present many other difficulties: the detection and tracking of the
moving objects, the prediction of their future state in the world, and the run-time
planning and navigation.

To demonstrate the feasibility of our safety system and to contribute to the
field of self-driving vehicles, we have designed our open-source AV software using
the Robot Operating System (ROS) and Gazebo simulator. The overall structure
of our AV system framework consists of (i) A perception system of sensors that
feeds data into (ii) a Rational Agent (RA) based on a Belief-Desire-Intention (BDI)
architecture and designed using sEnglish based Natural Language Programming
(NLP). The RA used for decision-making is connected to (iii) a verification system,
and (iv) a feedback control system for following a self-planned path.

A new hybrid verification approach, which combines the use of two well-known
model checkers: a Model Checker for Multi-Agent Systems (MCMAS) and Prism,
is presented for this purpose. MCMAS is used to check the consistency and stability
of the agent logic during design-time. Prism is used to provide the RA with the
probability of success while it decides which action to take during run-time oper-
ation. This then allows the RA to select movements of the highest probability of
success from several alternatives.

The AV system as mentioned above has been implemented on a prototype
electric vehicle as a fully functional AV (level-4 autonomy) in collaboration with
Tata Motors European Technical Centre (TMETC) to test the feasibility of our AV
system. Both the simulation and practical implementation considers a parking lot
environment to check the feasibility of this approach. A demonstration of our AV
system is shown in a video link below. 1

1https://tiny.cc/mohammed-av-2019
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Chapter 1

Introduction

1.1 Background

Autonomous robots are now widely used in various industries, and their operational

space is well protected to prevent harm from direct interaction with them. In

order to introduce robots into our daily life, we need to create safe systems of

robot navigation in their dynamic and crowded environments. Recently, different

mobile robots such as the ones shown in figure 1.1 have been developed to work

autonomously among humans. These robots have been used in department stores,

hospitals, museums, office buildings and other public places.

Current robots are capable of serving various purposes such as the delivery

of goods, guidance, assistance in workshops and homes, providing telepresence,

entertainment, and cleaning. With regards to transport vehicles, both industry and

governments are interested in the development of assisted driving for safety. They

are working towards the ultimate goal of the creation of fully autonomous vehicles

that could move freely and safely on roads among different objects and other road

users. Roads are considered dangerous environments where road accidents show a

high rate of deaths in many countries [13] where studies show that more than 90% of

all car accidents are caused by human errors and only 2% by vehicle failures [14]. In

urban environments, pedestrians and cyclists are the victims in a high percentage

1



1. INTRODUCTION

of accidents. Recently, technologies pertinent to safety, have been increasingly

added to cars to reduce accidents, courtesy to the ongoing research towards safe

autonomy. In reality, only a few examples of fully autonomous driving systems exist

under constrained infrastructures, such as autonomously driven metros and some

prototypes of autonomous lorries and cars on instrumented streets and motorways.

For safety limitations, most of these prototypes are still restricted to tests or under

the condition that the driver has to be behind the driving wheel at all times.

Robot navigation in a static and controlled environment is different from dy-

namic and changing environments where it still represents a significant challenge

for robotics research. In a static environment, global path planning is sufficient. In

contrast, in highly dynamic environments, difficulties arise which necessitate run-

time motion planning and navigation, the detection and tracking of moving objects

and their prediction and influence on the future state of the world.

GPS navigation can be complemented by the run-time perception of the vehicle

environment, which takes into account possible sources of uncertainty involved in

the sensing process. In the past decade, the problem of uncertain, incomplete, and

changing information in the field of navigation has obtained further attention in the

robotics community; the aim is to develop and include probabilistic frameworks for

integration and precise elaboration of the available information.

Figure 1.1: Three different kinds of autonomous robots.

2



1.2 Motivation

1.2 Motivation

Autonomous Vehicles (AVs) are capable of driving without human intervention or

supervision in an unpredictable, uncertain, and complex driving environments. It

represents the highest level of autonomy and thus the ideal, future end state of

these vehicles.

In 2004–2007 Defence Advanced Research Projects Agency (DARPA) spon-

sored competitions [15, 16] have made a big impact on the development of au-

tonomous ground vehicles [17, 18]. However, results remain limited to non-complex

driving environments [19]. AVs which operate in complex active environments re-

quire methods that generalise to unpredictable circumstances and for reasoning

promptly in order to reach human-like ability and react safely even in complex ur-

ban situations, where informed decisions require accurate perception. Some of the

DARPA Grand and Urban winning teams vehicles with their perception system

onboard are shown in figure 1.2.

The development and deployment of AVs on some of our roads in the near future

is realistic and can also bring significant benefits. In particular, it can solve problems

related to (i) improvement of traffic congestion, (ii) reduction of the number of

accidents, (iii) help in the parking process, and reduction in traveller’s time by

identifying a free parking space, (iv) encouraging shared use of AVs to reduce overall

fuel consumption [20].

Significant efforts are undertaken in industry and academia on hardware and

algorithmic research. AVs have to cope with different challenges such as perception,

planning and control. Decision-making while driving is a vital process that also

needs attention [21]. The primary cause of human accidents comes from wrong

decision-making, and there will be no point in developing an AV if those wrong

decisions continue to be made at a similar rate as by humans. In [22, 23, 24]

we can have a glance at some of the accidents that the self-driving cars have been

involved in so far, there are different reasons for those accidents, a common reason

3



1. INTRODUCTION

is the misinterpretation of the vehicle’s environment, also the wrong decisions to

deal with the driving scenario at that particular moment. Hence we focused on

making sure that the decision process of our vehicle has been thoroughly verified

according to various criteria of safety that has been mentioned in chapter 3.

There are already several AV tests that are being undertaken. Some of them

will lead to practical vehicles on our streets quite soon, a few examples are: in

Phoenix (USA) the use of a fully driverless taxi service is expected to commence

soon [25]; in Singapore’s university district there is the world’s first self-driving taxi

service, which has been operated by NuTonomy since August 2016 [26]; while there

are a large number of cars equipped with autonomous driving technology that are

expected to see on the streets of South Korea in 2020 [26].

Figure 1.2: Four self-driving vehicles represent top-ranked teams participated in
DARPA Urban (top two figures) and Grand (Bottom two figures) challenges.

Software agents have been rapidly developed during the past two decades.

Some well-known agent types are reactive, deliberative, multi-layered, and Belief-

Desire-Intention (BDI) rational agents [27]. Limited Instruction Set Agent (LISA)

[4] which we used in this work is a new multi-layered implementation to Rational

Agents (RAs) based on the BDI agent architecture, which is particularly suitable for
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achieving goals by autonomous systems. Most approaches to agents of autonomous

robotic depend on logic-based reasoning cycles to keep the robot safe and within

acceptable behaviour limits [28]. Within the pre-programmed set of rules, it is es-

sential that the robot can establish consistency between its perception-based beliefs,

its rules, its planned actions and their consequences.

Despite the increased research activity in machine learning techniques and ad-

vanced planning and decision-making methods, verification and guaranteed perfor-

mance of the autonomous driving process remain challenging problems [29]. Recon-

figurable and adaptive RA based control systems have proved capable of robustly

progressing a vehicle in space and time to avoid other vehicles and people [30]. Nev-

ertheless, to make decisions with foresight, and consideration to other traffic par-

ticipants in a social context, integration is essential within overall decision-making

based on behaviour rules and experience. Rational agents, which could also be re-

ferred to as Cognitive or Autonomous agents, have exhibited significant robustness

in their implementation of various applications. However, for real-world critical

applications, some safety concerns remain after extensive testing, creating the need

for an appropriate verification framework.

The gap for a level 4 AVs is the lack of a simple yet efficient platform for

decision-making operation that could be connected to a verification platform to

make sure that all the decisions are safe and feasible for run-time vehicle operation.

This is what our new rational agent is made for, where we tried to fill the gap for

the lack of such a system.

Testing of these systems through prototype development is one approach that

attempts to partially answer operational safety questions. The best that can be

done in testing is a representative set of scenarios on real vehicles. Simulations

can provide validation and illustrations of correct social behaviour of the AV, but

they cannot take into account rare combinations of events that may arise during

real deployment of the AV. Hence the gap here is the lack of verification meth-

ods which are needed to account for low probability scenarios. If good dynamical

models are available to represent robotic skills of sensing and action, then formal

5



1. INTRODUCTION

verification can rely on a finite interaction model of the vehicle with the dynamics

of the environment [31, 32].

We filled this gap by providing a new verification methodology for safe decision-

making onboard a Tata Ace vehicle (Ace-EV). Safety aspects are also developed for

a prototype system designed for an autonomous parking scenario with the ability

to deal with the two most vulnerable type of traffic participants: vehicles and

pedestrians. The prototype autonomy level is 4, in that our system can work

autonomously in a specific environment until it is interrupted for the task of parking.

Here the Society of Automotive Engineering (SAE) levels [33] of autonomy have

been used, which can vary from a human-control (level 0) to a fully autonomous

system (level 5).

The car manufacturers nowadays depend on their closed-source software tools

and platforms to design their autonomous vehicle systems. This considered as

a barrier for researchers who want to design an open-source AV system. We have

tackled this gap by using the open-source robot operating system (ROS) to design a

comprehensive open-source platform for a realistic self-driving vehicle. Autonomous

vehicle and self-driving vehicle are used interchangeably in this thesis, and both refer

to the same meaning.

In our work, we first designed an AV system and its environment, which are

programmed and modelled in ROS [34] and Gazebo simulator [35]. Second, we

investigate how a robotic software agent can use model checking through MCMAS

[36] to examine the consistency and stability of its rules set during design-time,

which involves beliefs and actions specified in Computational Tree Logic (CTL) for

a RA that has been implemented within the LISA agent architecture [3, 4]. Third,

some of the required RA properties are formally specified through Probabilistic

Timed Programs (PTPs) and Probabilistic Computation Tree Logic (PCTL) for-

mulae then formally verified with the Prism model checker [37] in onboard vehicle

operations which also referred to as run-time verification process.
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1.3 Research questions and methodology

Abstractly, the design of an AV can be divided into two main parts: the high-

level and the low-levels [38]. The latter is responsible for the sensors, planners,

actuators, and their related devices and algorithms. The former, however, captures

the critical decision-making capability that the AV must exhibit while there is no

responsible human ‘driver’. This high-level decision-making is software responsible

(called Rational Agent) for clearly determining the actions that will be invoked at

the low-level (referred to in this thesis as Agent Skills).

There are three main research questions that we focus on in this thesis; those

are:

1. How we can ensure the safety and feasibility of decisions made by the au-

tonomous vehicle while driving, by using three different approaches: verifica-

tion, validation and testing?

2. How we can design a simple, feasible, realistic and reconfigurable autonomous

vehicle system using the Robot Operating System (ROS)?

3. How to use the ROS-based system to drive a real vehicle in real life driving

scenario in a parking lot environment?

The main question and theoretical contribution we have answered in this work

is the safety and feasibility of decisions made by a decision-maker onboard the AV.

To explain this in details, we have presented in this section the reasons behind the

complexity and the sources of possible errors of decision-making operation. This

point is also fully covered in chapter 3.

The two other questions or problems that we tackled in this thesis are the

simulation and hardware implementation of the AV system, and both are explained

in details in chapter 4 and 5.

7



1. INTRODUCTION

1.3.1 Autonomous control in a dynamic environment

We designed a new AV in simulation (using ROS) and hardware implementation (on

a Tata Ace electric vehicle) that can navigate in an uncertain dynamic and restricted

environment represented by a parking lot. This example of a level 4 autonomy in

a parking lot environment is mentioned in [9, 39]. We have also designed a new

Rational Agent (RA) to drive the vehicle, and we developed techniques to allow the

RA to check its decisions while driving in a priori unknown parking lot environment

among static and moving objects. The AV’s task is to generate and perform a

continuous sequence of steering, accelerating and braking actions that lead to its

intended destination while avoiding collisions with the other objects around it. Our

novel autonomous vehicle system in both simulation and implementation involves

perception, prediction and planned action taking while constrained by rules, and is

briefly summarised as follows:

• Perception: The AV is equipped with sensors; the odometry data coming from

the LiDAR laser scanner gives the vehicle the knowledge about its position

relative to the world (heading and position) while the mono cameras and a

stereo camera (visual sensors) are used for recognition.

• Prediction: In order for the AV to make decisions, it should make predictions

of the immediate future. A dynamic model of the AV’s environment is con-

tinuously updated, and real-time re-planning is applied to avoid any collisions

whiles reaching the desired destination within reasonable time duration and

on the shortest path.

• Action: When a movement decision is taken, the sequence of operations ob-

tained by the planner is sent to the vehicle’s actuators for steering, movement

and braking.
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1.3.2 AV perception system

AVs depend on many sensors to find their way among static and dynamic objects;

each of those sensors has its strengths and deficiencies. Both cameras and LiDAR

are usually used together. LiDAR provides excellent odometry, localisation, map-

ping and range information but with limits to object identification; on the other

hand, cameras provide better recognition but with limits to spatial information

obtained [40]. A multi-sensor system can provide reliable information for percep-

tion when it performs computations in parallel to provide timely processing of the

sensory data [41].

In this thesis, the proposed perception system is used for localisation and map-

ping, also for calculating the positions of objects around the AV. The architecture

of our AV’s perception system is divided into three subsystems: The LiDAR sub-

system, vision pre-processing, and tracking-classification system with coordinate

transformation. The cameras take images for object recognition and aid free park-

ing space detection that the LiDAR complements by checking distances to obtain a

more precise occupancy grid than it would be possible by camera-based vision only.

The position of the objects found by perception is converted into data in the global

coordinate system. In vision pre-processing, a region of interest (ROI) is identified

in the image space that is processed further with classification, depth information

by LiDAR and object tracking.

1.3.3 Dynamic environment modelling

The AV needs to generate a map for its dynamic environment to enable it to navi-

gate safely in the current and future time. This takes the form of a Spatio-temporal

model that takes into account the position, direction as well as the shape of moving

objects around it. The initial position and predicted trajectory of these objects can

be estimated based on a probability distribution model. To counter the issues of

prediction, the perception system needs to make some hypotheses, such as the rep-

resentation of the surrounding objects in the sensor data, including their behaviour
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and motion model. With these hypotheses, the mapping system will be able to

distinguish the occupied and free spaces in the surroundings, decide which objects

are static and which are dynamic, register the entry of new objects, follow them

and stop monitoring the objects that are beyond a defined distance.

1.3.4 Dealing with consistency and stability

In order for the AV to keep itself within a safe and permitted behaviour, the rea-

soning cycle of its rational agent uses logic inference with a set of rules that the

AV should follow. The agent should also be responsible for maintaining the con-

sistency between its rules, perception-based beliefs, the planned actions and their

consequences. In this project, we investigate how the RA for the AV can use model

checking techniques to check the consistency and stability of its different predi-

cates. A set of rules has been modelled using a Boolean Evolution System (BES)

with synchronous semantics that can be interpreted as a Labelled Transition Sys-

tem (LTS). The consistency and stability of the logic system have been formulated

in Computation Tree Logic (CTL). In this project, the RA of our AV has a set

of rules, beliefs, and actions, and hundreds of logic statements to be programmed

during design-time. In our approach, the MCMAS model checker is used to check

the consistency and stability of the logic statements during design-time, by going

through all possible combinations of logic states and making sure that all states

are stable and consistent. In case of inconsistency, the MCMAS model checker will

generate a counterexample to show a possible conflict between the predicates for

sensing, consequences and actions.

1.3.5 Dealing with uncertainty

The navigation problem of the AV traditionally assumes that the geometry, po-

sition and motion of the AV and the other objects are accurately known. Also,

it proposes that the AV can perform the desired actions without any errors. In

the real world, the AV and its environment cannot satisfy those assumptions: the
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known information is at best imperfect, actions taken have an error bound, the fu-

ture trajectory of the moving objects is unknown. Furthermore, the AV could have

little or no knowledge about its environment, so it needs to rely on its perception

system (sensor observation) to build or refine different models. To deal with the

uncertainty of the environment, we adopted a probabilistic approach by generating

Probabilistic Timed Program (PTP) models which were regularly updated during

run-time to reflect the changes in the environment. Those will be verified online

using the Prism model checker to provide the RA with the sequence of actions that

will lead to the highest probability of success.
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1.4 Contributions

The contribution of this thesis is divided into four categories, which together rep-
resent a new safety approach for the decision-making of the designed AV system
presented in simulation and hardware implementation:

1. Development and implementation of a Rational Agent (RA) in Limited In-
struction Set Agent (LISA) based on Belief-Desire-Intention (BDI) principles
in order to control the Autonomous Vehicle (AV) and make decisions in real-
time based on feedback control and perception systems. This agent is applied
to both the simulated and the real vehicle to guide vehicle movements un-
der physical and rule-based constraints of vehicle movements and the state of
the environment. This is the first time a RA is designed in LISA to drive a
full-size ground vehicle in a complex environment. This work is presented in
chapter 3.

2. A novel theoretical framework, called ‘hybrid’ for it merges both the design-
time verification by the MCMAS model checker and the run-time verification
by the Prism model checker. This verification theory provides a compre-
hensive approach to the verification of AV decisions. These results present a
new and efficient way to design a safety system for a real AV. This work is
presented in chapter 3.

3. Design, development and implementation of a new open-source physics-based
model of an AV system for the Tata Ace electric vehicle and the intended
environment based on Robot Operating System (ROS) and Gazebo simulator.
This includes design, modelling, and simulation of the installed sensors and
the vehicle body and dynamics with error bounds. This model represents a
new and complete platform in the simulation of an AV that could be used
by vehicle developers and researchers for further developments or to check
different algorithms related to autonomous driving. This work is presented in
chapter 4.

4. The engineering development and implementation work of the vehicle percep-
tion and actuation systems on the Tata Ace electric vehicle to test the fea-
sibility of the above ROS-based control system for future use on self-driving
cars. This real AV implementation and its simulation model share the same
rational agent and associated planning and control abilities designed for a
parking lot environment. This work is to satisfy the testing requirements of
the industry and to check the feasibility of the above-described system on a
real testbed. This work is presented in chapter 5.
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A number of papers and poster presentations were published during the course of
the work described in this thesis, which are listed below. Those are mainly my work
and written by myself, the other names mentioned apart from my supervisor have
reviewed the papers and gave their comments.

Papers:

1) Mohammed Al-Nuaimi, and Sandor M. Veres. "ROS-based hardware imple-
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Chapter 2

Background

2.1 Autonomous control systems

In systems engineering, continuous research on feedback control over the past decade

has led to the development of autonomous or semi-autonomous ‘intelligent’ con-

trollers. These controllers have the ability of making decisions and executing those

decisions in terms of actions, parameters and performance at a certain level of au-

tonomy. The term ‘intelligence’ is considered as one of the hardest concepts to

define, and apply. A general definition of intelligence can however be stated as

[1, 42]:

“An Intelligence is the ability of a system to act appropriately in an

uncertain environment, where a proper action is that which increases the

probability of success, and success is the behavioural sub-goals achieve-

ment that supports the system’s final goal”.

A key feature of an autonomous control system is the ability to behave ap-

propriately under significant uncertainty in both the system and its environment

for extended periods of time, and it must have the capability of compensating for

system failure without external intervention. Such control systems are evolved from

conventional control systems by adding intelligent components. Those autonomous
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control systems consist of software and hardware, which can perform the necessary

control functions, without external intervention, over extended periods. There are

several degrees of autonomy; a fully autonomous controller should perhaps have the

ability even to perform hardware repair to its own system when needed; this could

be particularly important for autonomous systems to work in extreme terrains such

as space and in-depth oceans explorations. Note that conventional (automatic)

controllers have a low degree of autonomy since they can only tolerate and con-

trol a few plant parameters. To achieve a high degree of autonomy, the controller

must be able to perform some functions in addition to conventional control func-

tions such as tracking and regulation. Autonomous controllers can be used in a

variety of systems; hence, they enable the host machine to work autonomously in

different terrains without the need for observation or supervision [43]. The general

architecture of an autonomous system is shown in figure 2.1.

In this chapter, a description of the architecture of our autonomous controller is

presented through a rational agent for an autonomous ground vehicle. The control

system processes the data coming from the perception system and interacts with

the environment through system actuators. The goal of the autonomous controller

is to provide a high level of adaptation to changes in vehicle dynamics and the en-

vironment and to provide a high level of tolerance to faults to deal with unexpected

situations.

An example of an automatic controller is the autopilot of an aircraft that can

maintain the desired flight trajectory of the plane. This could be considered easier to

implement compared with the autopilot control system for an autonomous ground

vehicle that can take most of the driver responsibilities while driving, and this is

due to the nature of the environment for both of the controllers.

Techniques for the autonomous system are still under development, and in

many cases, they still need human supervision for adequate safety. Furthermore,

autonomous systems are becoming more popular as they can sometimes be much

cheaper to develop and deploy than human-operated systems [30]. Despite that

the idea of giving a machine the freedom to think and make decisions might seem
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Figure 2.1: General architecture of an autonomous system [1].

dangerous. It is obvious, however, that we require such systems, especially [42]:

• when the robots work in unsafe or difficult environments for humans, such as

contaminated areas or deep-sea explorations.

• when the system operates in extremely remote areas such as spaceships, where

the signals need a very long time to travel in space, hence a fully autonomous

system is needed.

• when the speed of the environment beyond human capabilities to deal with,

such as high-speed manufacturing or minute and second trading on the stock

exchange.

Another critical issue for the autonomous controller is reliability. The au-

tonomous system should do well in situations that involve uncertainty in dynamics

and the environment for a considerable amount of time, and they should be able to

learn from system failure without external intervention. Behaviour of this kind is

very desirable for developed systems.
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The following methods of control system design could be adapted to acquire

autonomy [44]:

1. Algorithmic-numerical methods, based on state-of-the-art conventional con-

trol, estimation, identification, and communication theory.

2. Symbolic methods of decision-making, for instance, those used in the field of

Artificial Intelligence (AI).

A high degree of tolerance to failures should be part of the autonomous con-

troller’s characteristics along with the ability to supervise and tune the control

algorithm where failures should be detected and isolated to ensure system reliabil-

ity. The autonomous controller should be able to plan the sequence of procedures

necessary to complete a complicated task while having the ability to learn to en-

hance the performance of the system. Several developed techniques should work

together to acquire autonomy such as sensing, learning, and planning, along with

conventional control systems [44].

In the next section, we have presented some background information about

the autonomous vehicles, including a brief history and current progress, also their

autonomy levels based on the society of automotive engineering (SAE).

2.2 Autonomous Vehicles (AVs)

The story of the driverless car is almost as old as the car itself. Probably the first

presentation of the idea that captured the attention and opened the people vision

to this futuristic concept came in 1939 as a part of the Futurama at the General

Motors highways and horizons exhibition at the New York world’s fair [45]. At that

time, people thought that soon it would be possible to implement this concept on

the ground - at least that was the vision.

This idea comes to light again after the vast development within a few decades

in computer and communications systems which moved from big, expensive and
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limited systems to those that were small, cheap and widely available. In 2004,

the U.S. military DARPA department launched several competitions for driverless

vehicles. While no vehicle managed to finish the 240 km path through the desert in

the first run of the grand competition, in the second run which came the year after,

five vehicles managed to reach the final destination, the fastest at an average speed of

30.7 km/h. In the third run, which happened two years later, and called the Urban

challenge; four cars were able to finish a 96 km urban area road while following

traffic rules. These successes not only attracted attention from different research

groups from around the globe, e.g. [46, 47, 48], but also from the automotive

industry, as can be seen in the huge investment from the car manufacturers and

tech companies into the autonomous driving technologies.

Legally, self-driving cars are still in a Gray area. For example, at the time of

writing this thesis, self-driving in highways and general driving scenarios are allowed

as long as the driver agrees to supervise the vehicle at all times. Since a self-driving

system tempts the driver to other tasks and since continuous observation over a

prolonged time without involvement is physiologically very difficult to impossible,

hence it still unclear if this shifting of responsibility by the car manufacturers will

be successful.

In the past years, several proposals for the autonomy classification of vehicles

were made, e.g. among the most notable ones: National Highway Traffic Safety

Administration (NHTSA), 2013 [49]; Society of Automotive Engineering (SAE)

International, 2014 [50]; SAE International, 2016 [39]; SAE International, 2018 [9].

These days, the latest categorisation by SAE International is usually the dominant

standard. It differentiates six levels (0 to 5) of autonomy based on how much

human intervention and monitoring is required and in what situations, see table

2.1 for further details. Following this categorisation, the above definition of AV is

applied to any vehicle of SAE International (2018) level 4 for predefined areas and

level 5 for all domains.
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Table 2.1: Levels of driving automation definitions [9].

2.2.1 Levels of autonomy

A system that behaves by itself is known as: automatic or autonomous. An auto-

matic system works by following an input given by an operator. The steam engine

is an example of an automatic system; it can regulate the amount of torque using

a mechanical speed sensor. An autonomous system goes beyond automatic, it can

regulate its input without any external intervention, depending on the perception

of the environment. In general, autonomous systems show different levels of auton-

omy. For instance, a complex air conditioning system can have many actuators and

sensors and can make many decisions about its operation, but it is obviously “less”

autonomous than an AV capable of driving autonomously. SAE standards describe

six levels in total for ground vehicles, five with different levels of autonomy and one

with none. A similar description can be found in [51]:

• (Level 0 - No Automation): At this level, the driver is in complete control

of the vehicle driving operation with no warnings, assistance, or interventions
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from any assistance system nether onboard nor remotely operated at all times.

• (Level 1 - Driver Assistance): The driving automation system will help the

driver by performing part of the dynamic driving task such as stability control

and pre-charged brakes while the primary driving task will be the responsibil-

ity of the driver who will exist behind the steering wheel at all times to drive

the vehicle and maintain safe operation and also responsible for engage/dis-

engage the driving automation system when needed.

• (Level 2 - Partial Driving Automation): The driving automation system/s will

be capable of further assisting the driver using information about the driving

environment in certain driving conditions such as some autopilot capabilities

and the adaptive cruise control in certain locations and roadways. Again, the

primary driving responsibility will be on the driver to maintain safe operation,

engage/disengage the assistance systems, and take full responsibility when

needed.

• (Level 3 - Conditional Driving Automation): The driving automation systems

will further control the vehicle up to the limit of autopilot capabilities for

driving the vehicle in certain conditions (for all dynamic aspects of the driving

task) while there is no need for the driver to monitor the system, but must be

available and conscious to respond immediately and appropriately to a request

to intervene when needed. The assistance systems are capable of performing

lane changing and holding in some cases; the system asks the driver to take

over with sufficient warning when it detects some limits that the system cannot

deal with.

• (Level 4 - High Driving Automation): At this level, the automated driving

systems are capable of entirely driving the vehicle at all times in specific

environments or for extended times for all environments up to the purpose of

the vehicle, in specific driving applications there is no need for a driver. This

means that all situations in the specific predefined driving application should

be handled by the automated systems onboard. An example of this level is the
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autonomous parking valet, and the geographically prescribed central business

district where it is used to deliver supplies such as in the industrial or factory

area.

• (Level 5 - Full Driving Automation): This is the upper limit of an autonomous

driving system where it is possible to design the vehicle with no steering

wheel. Also, there is no need to monitor or control the vehicle at any time.

This system should be able to drive the vehicle at all times, in all driving

environments and in all environmental conditions that can be managed by a

human driver. At this level, there is no need for the driver (at any time) to take

control of the vehicle. The vehicle is capable of monitoring roadway conditions

for an entire trip while performing all safety-critical driving functions (for both

unoccupied and occupied vehicles).

The above mentioned levels of autonomy are the main terminologies used to

describe the vehicle. However it is also common in the automotive community to

divide the levels of autonomy into 3 categories as below:

• Safe-driving: This level is also known as "partial autonomy" represented in

SAE International (2018) as level 1 and 2. It represents vehicles which are

still driven by a human driver in all situations, but which have several (com-

bined) advanced assistance systems (e.g. adaptive cruise control, lane assis-

tant). These systems provide an easier, more comfortable, and most of all,

safer driving experience compared to non-assisted driving (SAE International

(2018) level 0).

• Self-driving: In certain, predefined situations (e.g. highways or in conges-

tion), the vehicle drives autonomously and handles all situations. In these

situations, the vehicle can autonomously come to a safe emergency stop. A

clear protocol is followed when control transitions from or to the human driver

(e.g. before leaving the highway), allowing for enough transition time. This

is an equivalent of the "high autonomy" category by SAE International (2018)

levels 3 and 4.
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• Driver-less vehicle: The vehicle can drive autonomously in all situations on

every road (SAE International (2018) level 5) which is also called "full auton-

omy". This category represents the vision as defined at the beginning of this

section.

From the definitions mentioned above, and up to the time of writing this thesis,

the law forbids driverless vehicles on the public roads. Even those that are fully

equipped with the necessary hardware and software are still considered within level

4 because of the need for a person who can take the driving responsibility in case

of emergency.

Although autonomous driving has been an area of research interest for a long

time, the DARPA Grand and Urban challenges inspired research community to

develop a number of autonomous vehicle testbeds across the academia and the

automotive industry. Stanford’s Junior [52] provides a testbed with multiple sensors

for recognition and planning. It is capable of dynamic object detection and tracking

and precision localisation. Other few notable testbed vehicles born as a result of

DARPA challenge are Talos from MIT [18], NavLab11 and Boss from CMU [17].

Costley et al. [53] discuss a testbed for automated vehicle research available at Utah

State University. Researchers at the University of California have also developed a

testbed named LISA-Q [54] (Different from LISA agent implementation presented

in chapter 3 of this thesis) for autonomous and safe driving.

The main method used for the implementation of the different AVs during

the DARPA Urban challenge is based on a three-layer planning system combines

mission, behavioural and motion planning to drive in urban environments. The

mission planning layer considers which street to take to achieve a mission goal. The

behavioural layer determines when to change lanes, precedence at intersections and

performs error recovery manoeuvres. The motion planning layer selects actions to

avoid obstacles while making progress towards local goals. Mostly, those systems

were developed from the ground up to address the requirements of the DARPA

Urban challenge using a spiral system development process with a heavy emphasis

on regular, regressive system testing.
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An example of this approach is the DARPA winning vehicle (Boss) [17], where

the motion planning subsystem consists of two planners, each capable of avoiding

static and dynamic obstacles while achieving the desired goal. Two broad scenar-

ios are considered: structured driving (road following) and unstructured driving

(manoeuvrings in parking lots). For structured driving, a local planner generates

trajectories to avoid obstacles while remaining in its lane. For unstructured driv-

ing, such as entering/exiting a parking lot, a planner with a four-dimensional search

space (position, orientation, and the direction of travel) is used. Regardless of which

planner is currently active, the result is a trajectory that, when executed by the ve-

hicle controller, will safely drive toward a goal. The perception subsystem processes

and fuses data from multiple sensors onboard the vehicle to provide a composite

model of the world to the rest of the system. The model consists of three main

parts: a static obstacle map, a list of the moving vehicles in the world, and the

location of the vehicle relative to the road.

The mission planner computes the cost of all possible routes to the next mission

checkpoint given knowledge of the road network. The mission planner reasons about

the optimal path to a particular checkpoint, much like a human would plan a route

from their current position to a destination. The mission planner compares routes

based on knowledge of road blockages, the maximum legal speed limit, and the

nominal time required to make one manoeuvre versus another.

The behavioural system formulates a problem definition for the motion planner

to solve based on the strategic information provided by the mission planner. The

behavioural subsystem makes tactical decisions to execute the mission plan and

handles error recovery when there are problems. The behavioural system is roughly

divided into three sub-components: Lane Driving, Intersection Handling, and Goal

Selection. The roles of the first two sub-components are self-explanatory. Goal

Selection is responsible for distributing execution tasks to the other behavioural

components or the motion layer, and for selecting actions to handle error recovery.

The nearest AV design approach to the work presented in this thesis is the

Cognitive and Autonomous Test vehicle (CAT) testbed (which is a model of a Ford
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Escape vehicle). The simulation is based on ROS developed by a research group

from the University of Arizona [55]. It provides packages for some sensor simulations

(2D SICK laser scanner and a mono camera), and it also supports Hardware in Loop

(HIL) to connect the system to a physical platform.

Availability of testbeds for vehicle research is not limited to ones mentioned

above, but those (apart from the CAT vehicle) lack extensive support for HIL

simulation. Also, those testbeds are mainly the result of a collaboration between the

academia and the automotive industry providing their own closed source systems.

Most of the approaches presented above has been proposed and demonstrated

to work within a particular environment. These approaches cover level 4 of auton-

omy, the same level that the work in this thesis presented. However, this thesis

mostly focuses on the problem of safe decision-making, although it still present-

ing a new design of level 4 of autonomy based on ROS for an easy and low-cost

development system.

It is still important to mention here that the new commercial approach to the

design of fully autonomous vehicles (level 5 of autonomy according to SAE levels)

is to adapt the deep learning approaches for an end-to-end vehicle controller, this

topic is beyond the scope of this thesis and the interested reader could have a look

at, for example [56, 57, 58].

In the next section, we have presented some background information about the

software that we used to control the vehicle while driving, which is called a rational

agent. We also mentioned its different implementations and related structures.

Then we covered its formal definition with a simple example to clarify its different

aspects. Then we went through the language that we used to define the reasoning

cycle of our rational agent, which is called the Natural Language Programming

(NLP).
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2.3 Rational Agent (RA)

The representation of autonomy can be described by the decision-making ability

that includes the generation of data abstractions for logic-based reasoning and

symbolic processing along with cognitive modelling for the environment. Other

features such as navigation, tracking, path planning, communications and control

are considered to be necessary skills for Rational Agents (RAs) [1, 42]. Skills can

be defined as sub-programs that are managed and controlled by the RA, these skills

are usually connected to sensors as input devices or actuators as output devices to

perform different tasks such as perception, planning or motion control of the AV.

An exhaustive common definition for an agent is given in [59], where the term

is defined as follows:

“An agent is a computer system that is situated in some environment,

and capable of autonomous action in this environment to meet its design

goals. The environment is the set of objects not part of the agent body,

with which the agent interacts by sensing and acting”.

In this work, we used the term ‘rational agent’ which could also be referred to as

Cognitive or Autonomous agent. Rational means rule-based system that can do

reasoning based on logic. The RA definition provided in many references including

[1, 29, 42, 59, 60, 61], where the characteristics of this agent could be summarised

as follows:

• Re-activeness: Agents are provided with sensory systems that allow them to

perceive their environment and respond to expected or unexpected changes

in order to meet their final goal.

• Pro-activeness: Agents are capable of carrying on goal-directed behaviour.

This means that the agent does not need to wait until there is a change in

the environment, but instead, it could take the initiative of action in order to

meet their final objective.
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• Autonomy: Agents are capable of running without external assistance or in-

tervention. The level of autonomy depends on the type of objectives and the

environment where the agent is supposed to work in. In general, we specify

goals to the agent; therefore, the generation of plans and sub-goals is ulti-

mately bounded by the goal that we specify.

• Social Ability: Agents can communicate with each other, or possibly with

humans, and cooperate with them to increase the efficacy of their specific

task.

The two main pillars for an agent-based system are the agent program and

the agent architecture [62]. The agent program is the actual code that built to

communicate with a set of skills in order to drive the vehicle. The skills are peace

of software and hardware working together to provide the necessary data to the

agent in order to make a decision or to receive a decision from the agent and

control the vehicle based on it. For example, the perception subsystem is a skill

that perceives the environment, analyse the information and produce useful data

for the agent to make decisions. Another example is the planning subsystem that

receives the information from both the perception subsystem and the agent then

plans a route for the AV to move safely and meaningfully in the environment.

The agent architecture describes the outlines or structure of the agent program

and the interface with the different levels of skills. In [63] the authors describe the

agent architecture as “the backbone of robotic systems”. Different applications have

different needs, hence choosing the right architecture is vital to reflect the agent

program in a correct way. A systematic overview of those architectures have been

given in [42, 64] including: purely logic-based [65, 66, 67], situated [68] or behaviour-

based [69, 70], situation calculus [71, 72, 73], Belief-Desire-Intention (BDI) [74, 75,

76]. These different architectures are not completely distinct. Usually, modern

architectures are structured in a layered way, those layers represent different levels

of abstraction, as explained in [77, 78], and in few implementations in [79, 80, 81].

Figure 2.2 represents the general architecture of an agent-based system. The
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Figure 2.2: General structure for agent-based control system.

agent reasoning represents the top-level part of the overall system (with a higher

level of abstraction), which is connected to the lower levels of the system (with a

lower level of abstraction), and are referred to as skills as mentioned above. The

agent controls the vehicle by making decisions represented by issuing action com-

mands to the lower level skills, before that, the agent collects information from the

environment using the sensors through the perception skill to update the necessary

abstracted data called symbolic Boolean variables.

The formal definition of an agent system is described in the following sub-

section. The RA presented in chapter 3 is based on the BDI architecture, which

is the most popular and trusted model [38] for agent reasoning. This agent im-

plementation can be described by three symbolic sets of data: Beliefs, Desires and

Intentions. The Beliefs set represents the knowledge derived from sensors to provide

an observation of the current state of the environment (the information that the

agent has about the world). The Desires set to correspond to the long-term goals

that the agent wants to accomplish using predefined sets of actions that the agent

might perform to accomplish the task. The Intentions set represents the short-term

goals the agent is committed to working towards.

There are different agent implementations along with their agent programming

languages, based on the BDI paradigm. The main implementations developed in

a BDI approach for programming rational agents include: Logic-based Procedural

Reasoning System (PRS), Jason [82, 83], 3APL [84, 85], Brahms [86], Jadex [87],

Gwendolen [88], and GOAL [89, 90]. Rational agents belong to one of these imple-

mentations usually have a set of beliefs, a set of plans, and a set of goals. Plans

28



2.3 Rational Agent (RA)

determine how an agent can act based on its current beliefs and pre-programmed

goals. This method forms the basis of practical reasoning in such agents. Executing

a plan will be reflected on the current beliefs, and the short term goals of an agent

may change while the agent performs actions in its environment. In [91, 92], the

authors have mentioned the role of plans in the reasoning process in more details.

A new agent implementation of the BDI architecture (which is a modified

version of Jason) is called Limited Instruction Set Agent (LISA) [4], which has

been used in this work. We have described LISA in details in chapter 3 of this

thesis.

2.3.1 Formal definition of a rational agent

The Rational Agent (RA) definition of our autonomous vehicle follows [42, 59, 93]

and is based on BDI architecture for robotic agents. The basic principles of this

agent design are defined as:

Definition 2.1 (Rational BDI agent). A rational agent in the BDI architecture

can be fully defined and implemented by listing the following characteristics:

A = {B,B0, L,Π, A,A0}

where:

• B is the atomic belief set, the set of all possible beliefs that the agent may

encounter during operation. The current belief base at time t is defined as

Bt ⊂ B. During operation, beliefs may be changed. This occurs through

events so that at time t, beliefs may be added, deleted or modified. These

events are represented in the set Et ⊂ B, which is called the Event set. Events

are divided into internal or external events. Internal events are described as

“mental notes” if they are generated by internal actions. External inputs will

appear through input from a sensor hence called “percepts” as they represent

a measurement of the environment.

29



2. BACKGROUND

• B0 is the Initial Beliefs set, the information about the world that is available

to the agent at the first iteration. Initially, once the agent is initialised, it will

have a set of beliefs about the environment.

• L = RP ∪ RB = {l1, l2, . . . lnl} is a set of implication rules and it consists

of both the Physics based Rules RP and the Belief Rules RB. These are

logic-based and represent a description of how the beliefs B can be linked

together and interpreted. It describes theoretical reasoning about physics and

behaviour rules to enable the agent to adjust its current knowledge about the

world and influence its decision on actions to be taken.

• Π = {π1, π2, . . . , πnπ} is the set of executable plans which formulate the plans

library. At any given time t, there will be a collection of plans πt which

could be activated. These are subsets of the complete plan library, Πt ⊂ Π,

which is commonly named the Desire set. A set I ⊂ Πt ⊂ Π of intentions is

also defined. This set contains plans that the agent is committed to execute.

Each plan is built up as a sequence πj(λj) of actions where πj is a triggering

condition for the plan, and λj provides a single or set of actions belong to

that plan that will be carried out.

• A = {a1, a2, . . . , ana} is a set of all available actions. Actions may be either

internal, when they either modify the knowledge base (current beliefs) or gen-

erate internal events, or external, when they are linked to external functions

that operate in the environment.

• A0 ∈ A is the set of initial actions. The initial actions A0 ⊂ A are a set

of actions that are executed when the agent is first to run. Typically these

actions are general goals that activate specific initial plans set up by the

programmer.

Each triggering condition for the plans in Π is composed of two parts: a trig-

gering event ‘e’ and a context ‘c’, and it is usually expressed in the form ‘e : c’. An

event is a belief paired with either a ‘+’ or ‘−’ operator to indicate that the belief
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is either added or removed. By defining the plan library, a set

E ⊆ B × {+,−} (2.1)

of events is implicitly defined by the set of all triggering events. The context is a

logic condition that the agent verifies against the current Beliefs when a plan is

triggered. The expression

B |= c (2.2)

signifies that the Beliefs set B “satisfies” a logic expression ‘c’, or in other words

when the conditions expressed by ‘c’ are true on B.

The reasoning cycles of a Belief-Desire-Intention (BDI) agent are usually op-

erated on indefinite bases (continuously from the time the system start until its

shutdown). The following definition introduces the operational sets of a rational

BDI agent that are regularly updated throughout the agent operation.

Definition 2.2 (Operational sets of a rational BDI agent). Given a rational

BDI agent A, if ‘time’ t ∈ N≥1 is the integer count of reasoning cycles:

• B[t] ⊂ B is the Current Beliefs set, the set of beliefs available at time t.

Beliefs in B[t] can be negated (usually with a ‘\’ symbol).

• E[t] ⊂ E is the Current Events set, which contains events that are active at

time t.

• D[t] ⊂ Π is the Applicable Plans or Desires, which contains all plans πj such

that B[t] |= πj(0).

• I[t] ⊂ Π is the Intentions set, which contains plans πj that the agent is

committed to execute. Any plan stays in the Intentions set until all the

actions listed in it have been executed, unless a plan withdrawal action is

issued to cancel the plan.

For most BDI agent implementations the reasoning cycle is operated as follows:

At the beginning of every cycle, B[t] is updated by checking for external inputs
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and internal actions; from the changes that happen at each reasoning cycle to the

current beliefs, a set of events is generated and added to E[t]. The plan library is

then search for plans that feature a triggering condition that satisfies the current

beliefs set (B[t] |= π(0)). These plans are then copied to D[t]. A single plan from

the Desires set is then selected for execution and added to I[t]. Then the agent

takes applicable actions from the active plans in I[t] and executes one (or more) of

them. At this point the cycle is complete and B[t+ 1] is generated.

To illustrate the above definitions, we have provided the example below for an

AV in a parking lot scenario.

Example 2.1. An AV is left in a parking lot, so the initial belief is that the AV is

in a parking lot and it should start looking for a free parking space. The AV starts

moving, and in the meantime, a pedestrian is moving nearby, the agent will get

this information from the perception system as an external event occurred at time

t, and this will trigger the associated belief. Based on the current beliefs set and

the set of rules (RP and RB) the agent will choose a plan, the external event also

called the trigger event of a plan that is available to the agent in order to proceed

to the target, a plan has an action or a set of actions, such as move forward for 2m

then turn right for 90◦ and so on. The beliefs set will keep updating based on the

information coming from the perception system as an external events or from an

internal events such as the battery level of the AV. The agent will keep monitoring

those beliefs and compare it with the AV rules then choose a plan from the set of

plans available to the agent where each plan consist of a single action or a sequence

of actions to execute and keep proceed until reaching the final destination.

2.3.2 Decision making in rational agents

The approach of agent-based decision-making, which is also called Agent-Oriented

Programming (AOP), is originally evolved from Object-Oriented Programming (OOP).

The first example of OOP, designed with decision-making capabilities, is probably

given in [94]. A more recent example of this kind of decision-making can be found
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in [95], where it presents a layered control architecture of OOP, consisting of de-

liberative, control execution and reactive layers. Usually, the OOP framework is

linked to Hybrid Systems (HSs) modelling software. Some example applications of

this kind can be found in [96, 97, 98].

A vital feature of an AV is the ability to process multiple objectives at the

same time, such as planning, collision avoidance, and decision-making to choose

the best action to execute. On the other hand, the AV should behave in ways that

are robust to kinds of uncertainties, such as sensors affected by noise, unpredictable

obstacle movement, wheel slip, etc. To process a specific task successfully, the AV

must be able to make a plan, proceed through the steps of the plan, and decide

when to reinitialise the plan. A critical plan in almost any AV is to find a collision-

free path. During execution, other sub-goals are involved in processing unexpected

changes in the environment. In general, rational agents have to deal robustly with

uncertainties. To overcome uncertainty, several approaches have been presented.

In [99], an example is presented using an extension of Markov Decision Processes

- Partially Observable Markov Decision Processes (POMDP). A POMDP model

the uncertainty in navigation, including actuators and sensor uncertainties and

approximates the current configuration knowledge. Related work in this field [100,

101] is aimed to find the best sequence of actions to reduce localisation uncertainty.

Model Predictive Control (MPC) is considered to be an alternative approach

to model uncertainty within a planning framework [102]. The representation of

uncertainty is estimated in the frame of the Extended Kalman Filter (EKF) [103].

MPC also used for lane-keeping and obstacle avoidance [104], also as a steering wheel

controller [105]. Note however that the MPC approach does not accommodate a

reasoning system with memory which agents do. MPC also cannot handle advance

conceptual perceptions, long term goals and plan execution. It also does not have a

computational framework that combines both discrete and continuous states. Hence

agents represent a higher-level framework that is suitable to apply for AVs reasoning

system while the MPC approach could only be used to control individual subsystem

as mentioned above.
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2.3.3 Natural Language Programming (NLP)

Natural Language Programming (NLP) is an ontology-assisted way of programming

in terms of natural language sentences, e.g. English. A structured document with

content, sections and subsections for explanations of sentences forms a NLP docu-

ment, which is actually a computer program. The smallest unit of a statement in

NLP is a sentence. Each sentence is stated in terms of concepts from the underlying

ontology [106].

An AV’s decision-programming is complicated, time-consuming and error-prone,

and requires expertise in both the AV platform and the intended tasks. Within the

automotive industry, there are many vendor-specific tools and programming lan-

guages, which require specific proficiency.

In this work, we aim to provide an AV decision system that could be readable

and understandable by any driver interested. We are also looking to extend the

driver’s understanding of how the decision-making is performed for vehicle choices

it makes. This also enables to check the system by law enforcement authorities,

insurance companies and lawyers (before a lawful use of the system and after an in-

cident to investigate). We used the system-English (sEnglish) meaning-definition-

system as a Natural Language Programming (NLP) [107], where English sentences

are used in high level programming of agent decisions.

An ontology encompasses a representation, formal naming and definition of

the categories, properties and relations between the concepts, data and entities

that substantiate one, many or all domains of discourse. More simply, an ontology

is a way of showing the properties of a subject area and how they are related, by

defining a set of concepts and categories that represent the subject [108].

In sEnglish, an ontology is defined as a formal data framework that matches

a set of concepts within a domain; in other words, a vocabulary that the agent

uses for reasoning in a specific domain and can be understood by non-experts such

as drivers of vehicles. An example of such kind of description is in [93, 107] for

autonomy in space missions. sEnglish has been used to build both the agent code
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Figure 2.3: sEnglish editor with an ontology segment in the Machine Ontol-
ogy Language (MOL) expressing the concepts and related data structures used.
Classes are indicated by a single ‘>’ symbol, subclasses by multiple ‘>’ symbols and
attributes by the ‘@’ symbol.

and external functions that could be used to deal with different skills in the system.

The sEnglish agent description language has been developed to simplify the

programming of agents and make their reasoning transparent to people who interact

with robots. Figure 2.3 shows a code fragment of Machine Ontology Language

(MOL) that has been used in sEnglish documents. The sentences of the program

divided into classes and subclasses, where the classes are indicated by single ‘>’

character and subclasses indicated by two or more ‘>’ characters, according to the

programming hierarchy. Every class features attributes indicated by ‘@’ character

that is specified a colon ‘:’ followed by a standard data type or another class type.

The programming environment for sEnglish is called the sEnglish Publisher.
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A suitably written, structured script in an sEnglish document can contain the

high-level code of the complete reasoning of a LISA agent in English sentences.

The agent can then control either a simulated or real environment containing the

vehicle and other traffic participants.

Two types of sEnglish statements can be used: sentences and mental notes.

The first is defined within a square bracket, [. . . ], an associated sEnglish docu-

ment, and the latter is defined within square brackets preceded by a ‘hat’ operand

^[...]. BDI agent implementations, such as Jason and LISA, can be fully defined and

implemented by specifying the Initial Beliefs and Goals, Initial Actions, Perception

Process, Reasoning and Executable Plans, see [109].

One of the well described frameworks for AOP is the Cognitive Agent Toolbox

(CAT) [110], which supports the development of agent reasoning with NLP in sEn-

glish and is also used to link multiple external software suites such as Matlab and

Prism creating a unified agent framework that supports the verification process.

An sEnglish document is represented by a reasoning file and multiple action files.

An sEnglish reasoning file is structured in multiple sections as follows: INITIAL

BELIEFS AND GOALS, INITIAL ACTIONS, and PERCEPTION PROCESS, these sections

are used to describe and configure the model of the world, REASONING represents

a list of the logic-based implication rules, while EXECUTABLE PLANS represents the

sets of Plans or Plan Library.

The action files list and describes the available actions; those actions could

be implemented in different programming languages as a sequence of sEnglish

sentences associated with predicates that can be used by the reasoning file.

In the next section, we have defined and presented the three different aspects

that we used to check our autonomous vehicle system and those are: validation,

verification and testing. Then we went into the details of the formal verification

method that is the topic of the next chapter. We mentioned how we verified the

logic and decisions of our rational agent during both design-time and run-time

operation and the two verification tools used in this work: MCMAS and Prism

model checkers and their related algorithms.
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2.4 Verification

2.4.1 Verification of dynamic systems

Safety and reliability of autonomous systems need thorough assessment, especially

the safety-critical systems. System checking can be divided into three main cate-

gories:

1. Validation (usually through simulation);

2. Formal verification;

3. Testing (usually through hardware implementation).

Validation through simulation is a close imitation of the studied system or op-

eration of its process; developing a model is the first act required for simulation.

This model should be a well-defined description of the simulated subject and de-

scribe its key characteristics, such as its abstract, functions, behaviour or physical

properties. Here the model represents the system itself, while the simulation rep-

resents its operation over time. The simulation can then be used for validation to

check the correctness of the system and its individual components based on pro-

posed scenarios [111, 112]. The simulation might point out to unsafe states during

its iterations. In this case, one can show that a system is unsafe. However, one

cannot prove that the system is safe if the simulation did not discover an unsafe

state since there exist infinitely many possible trajectories due to uncertain initial

states, inputs, and parameters. Thus, simulation is not sufficient alone since the

trajectory that hits the unsafe set may have been missed.

Testing is usually a practical approach to check if a given system consisting of

software and hardware matches an abstract specification of that system. Testing

can only be applied to an existing prototype of the system [113, 114]. The same

thing mentioned above on simulation is applied here on testing. This approach

alone cannot prove that the system is safe. However, testing is necessary as a final
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step to check other aspects that simulation and verification cannot go through, such

as the behaviour of the system under real-life circumstances.

Formal verification, on the other hand, works on a model of the system (rather

than a prototype) and is based on a mathematical proof of the correctness of the

model.

In the field of testing, there is an increasing demand in the tools and algorithms

development, starting from a formal system specification for the automatic selection

and generation of tests. In the simulation approach, there are different simulators

for different systems and purposes. Formal verification has been presented to be an

essential support for the certification of safety-critical systems [115, 116].

We can divide approaches to the formal verification of systems into two broad

classes [59, 60]:

1. Axiomatic (theorem proving);

2. Semantic (model checking).

Axiomatic verification means to derive a systematical logical theory from the

system program that represents the behaviour of that system. This is usually re-

ferred to as Automated Theorem Proving (ATP) and uses tools called theorem

provers, which deal with the development of computer programs capable of show-

ing some statement (the conjecture) as a logical consequence of other statements

(the axioms). ATP is used to establish a logical consequence of a program, using a

computer. The ATP system inputs are the theorem statement and a set of axioms

(including hypotheses), while the output is a proof that the conjecture is a logical

consequence of the axioms. Computers cannot understand the meaning of a state-

ment in any spoken language because the logical consequence is independent of the

meaning. In the same way, a computer is just a tool for establishing logical conse-

quence where an ATP system is not capable of ‘proving’ non-logical consequences

[117].

It is possible to reduce axiomatic verification to a proof problem. The difficulty
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of this proof problem restricts axiomatic approaches. Proofs are hard enough, even

in classical logic; the addition of modal and temporal connectives to logic makes

the problem considerably harder. Hence, more efficient verification approaches have

been developed. Model checking [118] as the name suggests is based on the seman-

tics of the specification language, while the axiomatic approaches generally rely on

a syntactic proof.

The other difference is that the theorem proving method can only be used

during design-time. In contrast, model checking can be used during both design-

time and run-time verification (both of these approaches have been used in this

thesis). Model checking is defined as [2]:

“A formal verification technique which allows for desired behavioural properties

of a given system to be verified based on a suitable model of the system through

systematic inspection of all states of the model”.

The power of this approach comes from its capabilities to be performed auto-

matically with the ability to provide counterexamples in case of failure (a model

fails to satisfy a given property) which provides necessary debugging information.

Besides, the model checking tools have proved to be mature enough to be used by

a large number of successful industrial applications [2].

System verification is used to prove that the product or the designed model

has specific properties. For instance, a system should never reach a state where it

cannot go any further (a deadlock case); this can be obtained from the specification

of the system. In case of no matching between the model of the system and one

or more of its properties, then the model is considered to be “wrong”. Otherwise,

the model is “correct”. The diagram of the model checking verification approach is

shown in figure 2.4.

2.4.2 Verification of autonomous agent

Recently, autonomous transportation systems have entered the public domain (e.g.

transportation drones, autonomous cars). The concern arises whether those systems
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Figure 2.4: Schematic diagram of the model checking method [2]

are efficient, reliable, and most importantly whether they are safe or not. AVs

systems can cause accidents with severe damage to property and human life, and

such systems are considered as safety-critical. These systems must be certified

according to applicable standards as adequately safe before they can be used [1].

While testing is still a necessary part of the verification process, validation

through simulation and formal verification are considered vital tools in this domain,

mainly at the early stages of design where experimental testing can be considered to

be dangerous and infeasible. Simulation is similar to an implementation; simulation

runs are usually incomplete, and it used to show the continuous dynamics and allows

to check the behaviour of a system. On the other hand, verification through model

checking allows us to formally verify the properties of a finite representation (model)

of the system. Formal verification of system behaviour is a growing area due to the

wide-spread of agents with a decision-making ability in the field of autonomous

systems, and those agents have to be proven safe [31].

The precision of verification models mainly depends on the accuracy of the
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abstraction operation. Probabilistic model checking can deal with the uncertainty

of the state of the environment, and it needs to be taken into consideration as it

can affect decisions made by the agent [31]. Formal verification tools use temporal

logic statements to model transitions between discrete states of the environment

that are triggered by internal states, actions, and logic-based reasoning of agents.

All three concepts of system checking have been implemented in this work

for the ultimate goal of designing a safe and reliable self-driving vehicle. Formal

verification is proposed and demonstrated in chapter 3, simulation which is also used

to validate the system is developed and presented in chapter 4, testing is deployed

through the hardware implementation of the AV system and clarified in chapter 5.

A detailed case study is presented in chapter 6.

2.4.3 Verification through model checking

Verification by model checking is inseparable from temporal logic [119, 120]. The

model checking problem relies upon the close relationship between models for tem-

poral logic and finite-state machines. The first probabilistic model checkers were

proposed in the 1980s and 90s [121, 122, 123]. However, the first industrial-strength

algorithms were developed in the early 2000s [124, 125]. It can be represented sim-

ply as: given a formula ϕ of language L, and a model M for L, determine whether

or not ϕ is valid in M , i.e., whether or not M |=L ϕ.

Suppose that ϕ is the specification for some system, and π is a program that

claims to implement ϕ. Then, to determine whether or not π truly implements ϕ,

we proceed as follows [60]:

1. Take π, and from it generate a model Mπ that corresponds to π, in the sense

that Mπ encodes all the possible computations of π;

2. Determine whether or not Mπ |= ϕ, i.e., whether the specification formula

ϕ is valid in Mπ; the program π satisfies the specification ϕ just in case the

answer is "yes."
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Usually, the generated model is independent of the given specifications; this

means the given model could be used with different specifications without the need

to rebuild the model again. However, it is still possible in some applications, to tailor

the generated model to given specifications to reduce the size of the model with the

cost of generalisation. In case the model does not satisfy the given specification, then

the verification software will generate a counterexample [126]. The counterexample

shows the first state or the set of states and its transitions in the state space that

does not satisfy the given specifications.

For the above two steps of verification, the difficulties come in the first step: it

is not a trivial task to automate the process of generating a model for the system

under investigation, assuming that the second step of verification could be easier

to perform with the help of the model checker tool. We have discussed a possible

method to alleviate this problem in chapter 3. In the next two sections, we covered

the two model checkers used in this work. The first is the MCMAS model checker

which is used during the design-time phase to check the beliefs, rules, and actions

for stability and consistency. The second is the Prism model checker which is used

during the run-time operation to check the probability of success for the intended

action before execution. The detailed process for both model checkers is given in

chapter 3.

It is essential to mention here that our interest is to verify the logic-based rules

and decisions of a rational agent. There is another approach in model checking

that has been used by others to assess the safety of autonomous vehicle movements

through geometric and mathematical models of both the AV and other static or

dynamic objects around. This method called Reachability analysis [127] and it is

used to determine the set of states that a system can reach, starting from a set

of initial states under the influence of a set of input trajectories and parameter

values. Reachability analysis depends on mathematical models of the trajectories

for nearby objects, an example of this approach [128, 129, 130] is to calculate the

reachable positions of other traffic participants and verify that it does not intersect

with the trajectory of the AV for a short prediction horizon, then safety can be guar-
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anteed for that time horizon. This method is similar to our run-time verification;

however, in reachability analysis, there is no guarantee that the other objects will

behave as predicted. Hence we supported our verification method with a design-

time rule-based verification of the AV’s actions that prevent collision with other

objects around, adding another layer of protection.

2.4.4 MCMAS model checker

MCMAS is a symbolic model checker for multi-agent systems. It enables the auto-

matic verification of specifications that use standard temporal modalities as well as

the correctness, epistemic, and cooperation modalities. These additional modalities

are used to capture the properties of various scenarios.

MCMAS [36, 131] is specifically developed for agent-based specifications and

scenarios. It supports specifications based on Computation Tree Logic (CTL)

among others as described in [132, 133, 134]. The model input language includes

variables and basic types, and it implements the semantics of interpreted systems,

thereby naturally supporting the modularity presented in agent-based systems. MC-

MAS implements Ordered Binary Decision Diagrams (OBDD) based algorithms op-

timised for interpreted systems and supports fairness, interactive execution (both

in explicit and symbolic mode) and counterexample generation.

Agents can be described in MCMAS by the Interpreted Systems Programming

Language (ISPL). The approach is symbolic and uses OBDDs, thereby extending

standard techniques for temporal logic to other modalities distinctive of agents.

Interpreted systems [133] provide the formal semantics for MCMAS programs.

In this formalism, each agent is characterised by a set of local states and local actions

that are performed based on a local protocol and the situation of its environment.

The system evolves based on an evolution function starting from the initial states

and determines the changes of the local states of an agent as a result of its local

actions and the actions of other agents around. The evolution of all the agent’s

local states can be expressed as a set of runs to a set of reachable states. These
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can be used to interpret formulae involving epistemic and temporal operators for

reasoning about the correct behaviour of the agents, and the CTL operators to

expressing states of affairs that agents can enforce.

Computational Tree Logic (CTL)

Computation Tree Logic (CTL) and Linear-time Temporal Logic (LTL) [135] are

popular logic for verification of transition systems. They are used to specify proper-

ties of a system under investigation. LTL deals with one possible future behaviour,

while CTL accounts for all possibilities of future behaviours. In this project, we use

CTL to ensure stability and consistency using efficient implementation techniques

of CTL model checking.

Definition 2.3 (Computational Tree Logic (CTL)). Given a countable set P of

atomic formulae, the language LCTL of Computational Tree Logic CTL [136, 137],

is given by the following grammar [138]:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | EXϕ | EGϕ | E(ϕ1 Uϕ2) |

EFϕ | AFϕ | AXϕ | AGϕ | A(ϕ1 Uϕ2)
(2.3)

In this definition, p ∈ P is an atomic formula; EXϕ means “a path exists

such that at the next state ϕ holds”; EGϕ means “a path exists such that ϕ holds

globally along the path”; E[ϕ1Uϕ2] means “a path exists such that ϕ1 holds until

ϕ2 holds”. Notice that CTL operators are composed of a pair of symbols: the first

symbol (A) is a quantifier over paths, while the second symbol (E) expresses some

constraint over paths. Also, notice that EU is a binary operator, that could be

written as EU(ϕ1, ϕ2).

The second line of the above equation means, respectively: “a path exists such

that ϕ holds at some future point”; “for all paths, ϕ holds at some point in the

future”; “for all paths, in the next state ϕ holds”; “for all paths, ϕ holds globally”;

“for all paths, ϕ1 holds until ϕ2 holds”. These additional CTL operators could be
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used to simplify the specification process of various requirements.

The semantics of CTL is given in terms of transition systems: a transition

system M = 〈S, S0, T,H〉 is a tuple in which S is a set of states, S0 is the initial

state, T ⊆ S×S is a transition relation, and H : S → 2P is an evaluation function.

The transition relation T models temporal transitions between states: given two

states s and s′ of S, s T s′ means that s′ is an immediate successor of s. It is

usually assumed that every state has a successor, i.e., the transition relation T is

serial. the satisfaction for a CTL formula ϕ at state s inM, denoted by s |= ϕ, is

recursively defined as follows [139]:

• s |= p iff p ∈ H(s);

• s |= ¬ϕ iff it is not the case that s |= ϕ;

• s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2;

• s |= EXϕ iff there exists a path π starting at s such that π(1) |= ϕ.

• s |= EGϕ iff there exists a path π starting at s such that π |= ϕ for all i ≥ 0;

• s |= EFϕ iff there exists a path π starting at s such that for some i ≥ 0,

π(i) |= ϕ;

• s |= E(ϕ1Uϕ2) iff there exists a path π starting at s such that for some i ≥ 0,

π(i) |= ϕ2 and π(j) |= ϕ1 for all 0 ≤ j < i;

• s |= AXϕ iff for all paths π starting at s, we have π(1) |= ϕ.

• s |= AGϕ iff for all paths π starting at s, we have π(i) |= ϕ for all i ≥ 0;

• s |= AFϕ iff for all paths π starting at s, there exists i ≥ 0 such that π(i) |= ϕ;

• s |= A(ϕ1Uϕ2) iff for all paths π starting at s, there exists i ≥ 0 such that

π(i) |= ϕ2 and π(j) |= ϕ1 for all 0 ≤ j < i;
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2.4.5 PRISM model checker

Computerised systems entered many aspects of our life, including safety-critical

systems such as avionics and automotive applications. Also taking into consider-

ation the increasing complexity of such systems necessitates the development of

rigorous techniques to verify their correctness. Moreover, this analysis should also

consider the quantitative aspects of the systems for verification. This includes both

probabilistic behaviour and real-time characteristics; for example, strict timing re-

quirements [140].

Quantitative verification techniques have received a lot of attention and progress

in recent years. An important modelling formalism for real-time systems is timed

automata, where well-known verification tools such as UPPAAL [141] exist. For

probabilistic systems, the most commonly used models are Markov Decision Pro-

cesses (MDPs) [142, 143] and Markov chains [144]. Probabilistic model checking

tools such as MRMC [145] and Prism are widely used and have been successfully

applied to the verification of different systems. A general weakness of these tools

is that they require the user to develop a model of the system in that tool’s cus-

tom modelling language. To solve this issue and to encourage the use of these

tools, it is important to generate the model of the system for the quantitative ver-

ification techniques in the languages used by real system designers. The case for

non-probabilistic verification has been progressed in this direction where the model

of the system to be used by the model checking tools can now be developed directly

from mainstream programming languages such as C and Java [140].

Prism is a probabilistic model checker [37, 146], a verification tool for modelling

and formal analysis of systems that present probabilistic behaviour. Prism has been

used to analyse different kind of systems from different domains, such as planning

and synthesis, communication, game theory, performance and reliability, security

protocols, etc. Prism can build and analyse several probabilistic models as listed

below, plus extensions of these models with costs and rewards [146]:
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1. Markov Decision Processes (MDPs).

2. Continuous-Time Markov Chains (CTMCs).

3. Discrete-Time Markov Chains (DTMCs).

4. Probabilistic Automata (PA).

5. Probabilistic Timed Automata (PTA).

Prism can be used to build a probabilistic model of a system. It also provides

support for automated analysis for a wide range of quantitative properties of these

models for querying mainly about probabilities and timing properties, such as,

“what is the probability of an airbag failing to deploy on-demand” or “what is the

probability that the system will turn off within 3 hours because of failure?”, or “what

is the worst-case expected time taken for the algorithm to terminate?”. Prism

combines both state-of-the-art symbolic data algorithms and structures based on

the Binary Decision Diagrams (BDDs). It also includes a simulation engine for

discrete events, providing support for approximate/statistical model checking, and

implementations of various analysis techniques [147, 148, 149].

In this thesis, we describe a framework for the quantitative verification of soft-

ware that exhibits real-time, probabilistic and non-deterministic behaviour. In ad-

dition to the list of some application domains mentioned above that Prism can

deal with, there are other areas where Prism could be used to play a critical role

in developing a safe system such as [31] where the authors used Prism to verify the

behaviour of an autonomous agent for an unmanned aerial vehicle (UAV). Prism is

a probabilistic model checker that can return answers about probabilities and tim-

ing properties based on the described models of the real-time probabilistic system,

and the set of queries asked. With this been said, we took a forward step of utilising

Prism for a safety check of decisions made by decision-making system onboard an

AV as illustrated in chapter 3.
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Markov decision processes (MDPs)

MDPs [148], can describe both probabilistic and non-deterministic behaviour. Non-

determinism could be used as a valuable tool for modelling concurrency; for this

reason, an MDP is used to describe the behaviour of several parallel probabilistic

systems. Another advantage for non-determinism is when the exact probability of

a transition is unknown, or when it is known but not considered relevant. A formal

definition of an MDP is as below.

Definition 2.4 (Markov Decision Processes (MDPs)). An MDP can be de-

scribed as a tuple (S, s, Steps, L) where:

• S is the finite set of states

• s ∈ S is the initial state

• L : S → 2AP is the labelling function

• Steps : S → 2Dist(S) is the transition function

The transition function Steps for MDP is used to map each state s ∈ S to

a non-empty, finite subset of Dist(S), the set of all probability distributions over

S (i.e. the set of all functions of the form µ : S → [0, 1] where ∑s∈S µ(s) = 1).

For a given state s ∈ S, the elements of the transition function Steps(s) represent

non-deterministic choices available in that state.

A path is a non-empty sequence in the MDP of the form s0
µ1−→ s1

µ2−→ s2 ...

where si ∈ S, µi+1 ∈ Steps(si) and µi+1(si+1) > 0 for all i ≥ 0. Paths is the

set of all infinite paths starting in state s. It is important to resolve both the

non-deterministic and probabilistic choices to trace a path through an MDP. It is

supposed that an adversary makes the non-deterministic choices (also known as a

‘policy’ or ‘scheduler’), which selects a choice based on the history of choices made

so far. An adversary A can be defined formally as a function mapping every finite
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path ωfin of the MDP onto a distribution A(ωfin) ∈ Steps(last(ωfin)). We denote

by PathAs , the subset of Paths which corresponds to adversary A.

To make the most of MDP verification, it is not enough to only verify the prob-

abilistic behaviour of a single adversary of MDP, but we must also verify meaningful

properties by computing the maximum or minimum probability that some specified

behaviour is observed over all possible adversaries.

Probabilistic Timed Programs (PTP)

PTPs can be considered as an extension of MDPs with real-valued clocks and state

variables, or as an extension of PTAs [149, 150, 151] with state variables [140, 152].

For timed automata formalisms, discrete variables are typically considered to be a

straightforward syntactic extension since their values can be encoded into locations.

Given a set V of variables, let Asrt(V), Val(V) and Assn(V) be a set of asser-

tions, valuations and assignments over V respectively. Given a set S, let P(S) be

the set of subsets of S and D(S) the set of discrete probability distributions over S.

A set X of clock variables represents the time elapsed since the occurrence of various

events. The set of clock valuations is RX≥0 = {t : X → R≥0}. For any clock valuation

t and any δ ≥ 0, the delayed valuation t + δ is defined by (t + δ)(x) = t(x) + δ for

all x ∈ X . For a subset Y ⊆ X , the valuation t[Y := 0] is obtained by setting all

clocks in Y to 0: t[Y := 0](x) is 0 if x ∈ Y and t(x) otherwise.

A (convex) zone is the set of clock valuations satisfying a number of clock

difference constraints, i.e. a set of the form: ρ = {t ∈ RX0
≥0 | ti − tj . bij}. The set

of all zones is Zones(X ).

Definition 2.5 (Probabilistic Timed Program (PTP) [140]). A PTP is a tuple

of the form: P = (L, l0,X ,V , vi, I, T ) where:

• L is a finite set of locations;

• l0 ∈ L is the initial location;

• V is a finite set of state variables;
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• v0 ∈ Val(V) is the initial valuation;

• X is a finite set of clocks;

• I : (L,V)→ Zones(X ) is the invariant condition;

• T : (L,V)→ P(Trans(L,V ,X )) is the probabilistic transition relation, where:

Trans(L,V ,X ) = Asrt(V)×Zones(X )×D(Assn(V)×P(X )×L)

A state of a PTP contains the valuation of L, V and X , and written as (l, v, t).

A new state can be reached by either an elapse of some time δ ∈ R≥0 or a transition

τ = (G, E ,∆) ∈ T (l) where G ∈ Asrt(V) is the guard, E ∈ Zones(X ) is the enabling

condition, and ∆ = λ1(f1, r1, l1) + · · · + λk(fk, rk, lk)) is a probability distribution

over an update fj ∈ Assn(V), clock resets rj ⊆ X and a target location lj ∈ L.

The delay δ must be chosen such that the invariant I(l) remains continuously

satisfied; since I(l) is a (convex) zone, this is equivalent to requiring that both t

and t + δ satisfy I(l). The chosen transition τ must be enabled, i.e., the guard G

and the enabling condition E in τ must be satisfied by v and t + δ, respectively.

Once τ is chosen, an assignment, set of clocks to reset, and successor location are

selected at random, according to the distribution ∆ in τ .

When the agent starts a reasoning cycle, it will obtain a set of actions that

can be safely applied. If the set contains more than one action, then we use PTP

to find the most suitable action for the self-driving vehicle to take. PTP models

the dynamic and uncertain physical environment containing the self-driving vehicle

itself and other static or moving objects, such as pedestrians and other vehicles.

Probabilistic Computational Tree Logic (PCTL)

PCTL [153] is an extension of the temporal logic CTL with the addition of probabil-

ity. It is the same as the pCTL logic of [154]. PCTL is used to write specifications
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for MDPs. A formal definition of PCTL is as below.

Definition 2.6 (Syntax of PCTL).

φ ::= true | a | φ1 ∧ φ2 | ¬ φ | P./ p [ψ] (2.4)

ψ ::= Xφ | φ1 U φ2| φ1 U
≤kφ2 (2.5)

where a is an atomic proposition, ./ ∈ {≤, <,≥, >}, p ∈ [0, 1] and k ∈ N.

A property of a model will be expressed as a state formula while the Path for-

mulas occur as the parameter of the probabilistic path operator P./ p [ψ]. Intuitively,

a state s satisfies P./ p [ψ] if the probability of taking a path from s satisfying ψ in

the interval specified by ./ p.

Path formulas use the operators X (next), U (until) and U≤k (bounded until)

which are standard in temporal logic. Intuitively, Xφ is true if φ is satisfied in the

next state; φ1 Uφ2 is true if φ2 is satisfied at some point in the future and φ1 is true

up until then; and φ1 U
≤kφ2 is true if φ2 is satisfied within k time-steps and φ1 is

true up until that point.

The use of MDP-based architecture and PCTL is reported in chapter 3 in more

detail. We refer the reader to [155, 156, 157] for more details on MDPs and PCTL.

Performance queries

Given a PTP, we can use the following PCTL queries to check its properties:

• P./=?[F a],

• P./=?[F≤T a],

where ./∈ {max, min}, a is a Boolean expression that does not refer to any clocks

and T is an integer expression. The first query asks what is the maximum/min-

imum probability that a is eventually satisfied, and the second one inquires the
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probability that a can be satisfied within a time-bound T . Based on these queries,

we can compute the maximum/minimum probability of all target states that satisfy

a without time limit or within a bound T . For example, we can ask what is the

minimum probability for the AV to move to a specific location within a certain

time. A concrete example is presented in chapter 6.

Agent reasoning in a most BDI agent-based system is intrinsically probabilistic

in its nature, though often not described as such. Perception beliefs occur with

some probability and so do events at time intervals in a stochastic fashion. One can

reliably say that the environment can be modelled as a stochastic process against

which the success of the agent, with its own decision-making, can be verified using

a probabilistic model checker.

A BDI agent of this type is completely defined, in definition 2.1, by listing all

beliefs and actions, a set of rules and a set of plans that operate on these beliefs by

sequentially executing actions. This is in principle a system with well-defined states

and transitions, assuming probability distributions of random inputs are known.

Here the PTP models represent the next possible actions of the AV, (the next

steps of the AV), it also generates probabilistic steps of the other agents in the

same environment. The model checker will check and compare all the PTPs using

PCTL properties to check whether the proposed path or action of the vehicle has

any negative consequences on the other agents moving around or on the AV and its

passengers.

In the next section, we covered in some details the middleware we used to

design our autonomous vehicle system which is called the Robot Operating System

(ROS) and the Gazebo simulator where those are fully covered in chapter 4.

2.5 Robot Operating System (ROS)

ROS [34] is a powerful and flexible framework for writing robot software. It is

a collection of libraries and tools that have been designed to simplify the task of
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developing a robust and complex robotic system behaviour for a wide variety of

robotic platforms. A significant advantage of this framework is the fact that it

provides an extensive set of implemented algorithms and drivers used in robotics.

The ROS framework is based on a set of nodes that use messages, topics and

services to communicate. Figure 2.5 illustrates the connection between the different

ROS nodes and the ROS master node (roscore), which is the interior design of each

ROS-based system. The ROS core master node is the first node to run in order for

other ROS nodes to communicate. When the ROS core node is active and running,

other nodes can exchange messages by subscribing and publishing to specific topics

or by directly invoking the services and actions of the other nodes as shown in figure

2.6. The ROS-based system structure consists of the following [158]:

• Master node (roscore): The ROS master node works as an intermediate node

that supports connections between different ROS nodes. The master has all

the information about all nodes running in the ROS platform. It will exchange

information of a node with another to establish a connection between them.

After exchanging the information between those nodes, the communication

will start between the two ROS nodes directly.

• Nodes: A base system unit in ROS middleware is called (Node). Nodes are

used for different tasks such as device handling, data processing, or algorithm

execution, and they use topics or services to communicate between them. ROS

software is distributed into multiple packages. A package can contain one or

multiple nodes, and it is usually developed for performing one type of task. A

robotic system may have many nodes to perform its different computations:

for example, an AV may have nodes for hardware interfacing, processing data

from cameras or laser scans, localisation and mapping and other objectives.

ROS nodes could be created using ROS client libraries such as roscpp and

rospy.

• Topics: A stream of data used to exchange information between different

nodes. It could be used to send a single message or sequence of messages of
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one type. These messages could be a system input such as sensor readings or

system outputs such as commands for the motor to change the speed. Each

topic has a specific message type and a unique name. A node cannot publish

and subscribe at the same time with a specific topic; however, there are no

restrictions on the number of different nodes publishing or subscribing.

• Services: In this mode, one node (the server) registers service in the system.

Later, any other node in the same system can ask for that service and get a

response in a way similar to the client-server model. Compared with topics,

services allow for two-way communication, where the request can also contain

some data.

The main intention behind the building of the ROS framework was to become

a generic software framework for robots. Even though robotics research was hap-

pening before ROS, most of the software was exclusive to their own robots. Their

software may be open source, but it is challenging to reuse.

Access to a first-generation ROS network is not secured, which is a significant

security threat for autonomous cars when using ROS. The communication among

ROS nodes is not secured; thus, the whole system is vulnerable. Someone who gains

access to the car’s ROS network can access and alter the car’s behaviour. However,

this drawback has been addressed in the newest version of ROS (ROS version 2).

Even with the present drawback, it can be argued that ROS is the right solution

for developing autonomous driving prototypes [159, 160].

ROS has been used in this work to design the AV model and its skills such

as perception, planning, and control. It is also possible to connect the AV system

designed in ROS to a testbed vehicle through Hardware-In-Loop (HIL) process, as

shown in chapter 4 and 5.
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Figure 2.6: Visualisation of ROS concepts
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2.5.1 Mathematical model of a ROS package

One way to describe a ROS based system is a tri-partite graph with vertices for

nodes, topics and services. New topics and services can be easily introduced that

can allow reconfiguration of the system to provide agents with the information they

required, albeit sourced from different locations. All node communication must

occur through topics or services [161]. A semi-formal definition of the ROS graph

is:

Definition 2.7 (ROS-graph). A ROS-graph isG = (N, T, S,E,D,C,X, λ), where

N is the set of vertices representing ROS nodes, T is the set of topics, and S is

the set of services, C is a partially ordered set of object classes and X is a set of

labels on vertices. E ⊂ (N × T )∪ (T ×N)∪ (N × S)∪ (S ×N) is a set of directed

edges to represent publishing of, and subscription to, topics and provision of, and

subscription to, services, respectively. D : E− → C∗, E− = T ∪ (N ×S)∪ (S×N),

is a data descriptor function where C∗ is a notation for finite sequences of entries

from the set of a data object classes C, which are used in services and topics to send

information between nodes. Each of N, T, S are labelled by a surjective labelling

function λ : N ∪ T ∪ S → X.

A ROS system enables the nodes to advertise or use services and to publish

or subscribe to topics. G represents the maximum ability of the robot when the

system has all nodes, topics and services nominally functioning. If some nodes are

not available due to sensor, actuator or computational hardware breakdown, then

G needs sufficient redundancy to enable continued functioning of the robot or at

least some of its functionality. The ROS graph G defines all the possible data flows

for sensor readings, signal processing and control activities in the environment.
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2.5.2 Gazebo Simulator

Simulation of a robot is an essential tool for developing a robotics system. A well-

designed simulator makes it possible to accurately test different algorithms, design

robot parts, train an Artificial Intelligence (AI) system using realistic scenarios,

and perform regression testing. Gazebo [35, 162] is a physics-based 3D simulator

compatible with ROS which offers the ability to accurately and efficiently simulate

complex robot systems along with their environments.

Gazebo provides capabilities to build three-dimensional worlds with robots,

terrain, and other objects. All are powered by a physics engine for modelling differ-

ent kinds of characteristics such as illumination, gravity, and other forces. Gazebo

could be used to test and evaluate robots in different scenarios, usually quicker than

using physical robots in the real world. Gazebo also makes it easier to test other

aspects of the robot, such as battery life, error handling, navigation, and different

machine learning algorithms [162, 163].

Gazebo has been used in this work to simulate the AV system and it’s parking

lot environment as shown in chapter 4.

2.6 Conclusion

In this chapter, we mainly presented the techniques, methods and algorithms that

we used to design our self-driving vehicle. We mentioned how those could be used

together to design the system, and we covered some of their different types. We

also presented some other approaches and progress made by others for the design

of a self-driving vehicle.

As mentioned in chapter 1, we covered and provided solutions for three impor-

tant gaps in the field of research.

1. Design, a simple yet efficient software agent, to control and drive the vehicle

in a restricted environment.
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2. Develop new methods to check the safety and feasibility of the decision-making

process of the self-driving vehicle.

3. Provide an open-source based reconfigurable autonomous vehicle system that

supports hardware-in-loop by engaging a real vehicle platform, which could

be used to validate the design and test different related algorithms.

Here we presented how different techniques are connected and fitted together

as one platform simply and efficiently for the ultimate goal of presenting a fully

working AV with a novel safety system. The schematic diagram of our AV system

is clarified in figure 2.7 that cover the work done in chapter 3 and 4, and partially

in chapter 5.
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Figure 2.7: Overall system diagram.
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Chapter 3

Rational Agent Design and

Formal Verification

3.1 Introduction

An agent system can be described as a hybrid agent architecture [38]. Here the

term ‘hybrid’ indicates systems with logical discrete decision-making separated from

continuous control in a complete framework [164, 165]. This kind of system utilises

logical decision processes to control physical system dynamics. This is usually the

primary approach to the design of autonomous control systems where the decision-

making process should make appropriate choices to control a system with well-

defined functions; see figure 3.1. We can see some examples of such system in

[96, 97, 98, 166, 167]. The general definition of a hybrid system is not specific to the

logical decision-making; in its broader context it includes a variety of systems that

combine both discrete and continuous subsystems working side by side; obviously,

most robotic systems represent this kind of Hybrid System (HS) models. In this

work, this discrete decision-making process represents a rational agent, able to make

justifiable decisions, reason about them, and dynamically modify its strategy when

needed [30, 168]. This architecture is operable for agents deployed in a variety of

scenarios such as handling nuclear waste [169, 170] or coordinating driverless cars

61



3. RATIONAL AGENT DESIGN AND FORMAL VERIFICATION

on motorways [171]. This software agent is responsible for the behaviour of the

system, receiving information and taking decisions, thus defining its response to

changes in the environment.

The AV should make a ‘correct’ decisions, quickly and reliably. Consequently,

we focused in this chapter on the high-level decision-making process, where an AV

decision-maker is modelled as a rational agent. Using this agent-based approach we

may write high-level plans for describing the AV decisions and actions and, since

these plans are transparent and explicit, we can formally verify some properties

related to this agent’s behaviour [30], such as “it is always true the AV will stop in

the event of an unexpected emergency” or " it is always true that the AV will not

break the rules of driving".

The agent systems, in general, are structured in two parts: an agent reasoning

and a set of skills. The agent reasoning responsible for applying decisions through

actions, and the skills are responsible for gathering the necessary information from

the environment and execute those actions on the ground. Verifying those actions

before preceding with them represents a significant step to check the safety of the

overall robotic system and other objects in the environment.

The Rational Agent (RA) uses cues from the environment in order to make a

decision. These decisions are based around a set of beliefs, desires and intentions

that define its behaviour [27, 61] as explained in section 2.3.1. Desires correspond

to the long-term goals of the agent; for example, a desire for an AV might be to

reach a free parking space. Beliefs represent the distillation of information derived

from sensors to provide an observation on the current state of the environment, for

example, if the sensors of an AV detect a person, the agent will hold the belief that

a human is nearby. Intentions, contrasting with desires, represent short-term goals

of the agent, for example, once a person is detected, the autonomous agent will have

the intention to avoid that person while they are nearby. The agent can satisfy its

intentions by having some knowledge and prediction of the state and intentions of

the other nearby objects in the environment.

In the second half of the chapter, we will see how the agent decision can be
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verified. The verification can be divided into two parts. The first of them is the

design-time verification of the agent’s predicates (beliefs, rules, and actions), this

operation is needed once during the development stage of the agent using the MC-

MAS model checker. This process is to check the consistency and stability of the

agent code and, if appropriate, generate a counterexample showing where the sys-

tem model does not meet its specifications. The programmer could then correct

this repetitively during the design-time stage. The second part of the verification

process involves the run-time operation of the agent. It involves finding the most

reliable action and checking the probability of its success using the Prism model

checker.

The first step in the run-time verification is to generate models that represent

the agent behaviour and other objects’ possible behaviour and can be understood

by the model checker. The agent model represents the set of rule-based actions the

agent is intended to perform, also a set of probabilities representing the probability

distribution over the other agents’ actions. For this work we have chosen the Prob-

abilistic Timed Program (PTP) that has the same characteristics of Probabilistic

Timed Automata (PTA) such as the ability to represent the continuous-time op-

eration of the AV and the nondeterminism, with the addition of discrete-valued

variables [140] to represent the path of the AV as a set of points. This is the most

suitable model to use because the other models do not satisfy the system needs

(probabilistic and non-deterministic). Once these models are generated, the model

checker can offer many options to explore the agent possible and safe actions, then

return the result to the agent for safe operation. A key point for run-time verifica-

tion is the ability to introduce probabilistic information about the environment.

This chapter is dedicated to the first research question of ‘How we can ensure

the safety and feasibility of decisions made by the autonomous vehicle while driving

by using the formal verification as the main approach?’.
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Abstraction
skill

Agent
Reasoning

Sequencing
skill

Sensing
skill 

Control
skill

Detection, SLAM, ...etc.
(Skills).

Environment

Autonomous system
hierarchical architecture

Control signal

Symbolic data

Numeric data
Continuous
information

Low level of
abstraction

High level of
abstraction

Path planning, motion
planning, ...etc. (Skills).

Figure 3.1: Hierarchical structure for LISA-based BDI agent architecture showing
the different levels of skills which can interact with each other. The agent reasoning
activates and controls each skill.
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3.2 Rational agent design

Here we use the notion of a rational agent introduced by Bratman [172] and de-

scribed in detail by Rao and Wooldridge [168]. Rational Agents (RA) are software

entities that perceive their environment through sensing, generate beliefs about this

environment, then use these beliefs in a reasoning process. Based on its own mental

state, such as its intentions, a rational agent can take actions that may change the

environment [168]. A rational agent can be implemented in several ways, but we

choose to utilise the popular BDI (Belief, Desire and Intention) architecture [61].

We designed a unified framework which is necessary for developers and pro-

grammers to describe the agent reasoning and a model of its environment and to

automate the process of generating a verifiable model describing both the agent

reasoning and the surrounding environment.

The system presented in this work has a unified framework to model and verify

the reasoning process of the LISA agent implementation [4, 173] (based on the BDI

agent architecture) that has been designed to facilitate both the design-time and

the run-time verification and to support automatic generation of verifiable models

for the run-time verification process. It is essential to mention that LISA is not a

contribution of this thesis. LISA has been used to facilitate the design of a RA that

could be connected to a verification system.

Similar to other implementations of AgentSpeck based BDI architecture, the

LISA system has been structured in a layered way with the reasoning layer in the

top then subsystems represented by a set of skills in different abstraction layers.

Those skills have been developed for the AV to perform specific tasks such as per-

ception, localisation, mapping, and planning, and those tasks are controlled by the

agent reasoning processes. Because the agent reasoning can only process symbolic

data, we developed an abstraction/sequencing skills that situated between the agent

reasoning and the other set of skills as shown in figure 3.1, which are used to con-

vert the numeric data coming from the RA skills to symbolic data used by the RA
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reasoning and vice versa.

Although Jason [83] is a suitable, popular and efficient agent implementation

for Agent-Oriented Programming (AOP) to develop rational agents, there was a

need for developing LISA agent implementation based on Jason. The reason is that

Jason was developed with no automatic verification process in mind, means that

adding a verification process to Jason implementation is difficult. An alternative

and feasible option were to develop a new agent implementation based on Jason

that would ease the verification operation. The result is called the Limited Instruc-

tion Set Agent (LISA), that we used in this thesis with some modifications (initially

it is developed for an autonomous water surface vehicle) to make it suitable for our

self-driving ground vehicle system. This agent implementation provides a reasoning

operation that was developed to facilitate the modelling process by automatically

generate probabilistic models represent the behaviour of the AV and the proba-

bilistic behaviour expected from different objects in the environment that can be

verified with a probabilistic model checker. The agent code is developed in a Natu-

ral Language Programming (NLP) based software called sEnglish [107] to provide

an easy to read the document by both the developer and end-user without much

advanced prior knowledge.

It is essential to mention here that the BDI architecture used in this work has

both advantages and disadvantages. Starting with its advantages, it uniquely solves

the problem of creating a computational framework where decisions about predicted

continuous physical phenomena are combined with the application of traffic rules

and social behaviours of the convention, which varies country by country. How

to drive in a parking lot can be formulated in rules, and there is no need for a

more complex paradigm. The verification challenge is to create decision rules which

apply in most likely traffic situations. The essence of verification is that we need

to account for all eventualities (which are physically much limited for vehicles)

in a non-deterministic or probabilistic manner. Hence this paradigm making the

verification process much easier compared with a more complex decision-making

approach such as deep-learning.
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The disadvantage of this architecture is that in its core, it is still a rule-based

approach that provides a significant advantage of verification but with the price

of generalisation of driving scenarios as it is limited by the number of rules that

describe the intended driving scenario. This means poor scalability and iterative

design where it needs the developers to start from the beginning if they want to

provide an AV that can drive in another environment apart from the intended

one. Another disadvantage is that agent-based systems in its current form do not

accommodate a learning-based approach, means that the agent cannot learn from

its previous mistakes compared with the Artificial Intelligent (AI) based systems

that can have such important feature. However, we are not aiming in this work to

provide an AV that can drive in general driving scenarios. We are also not providing

a general verification framework that can be used with other approaches such as

artificial intelligence. Our verification system could only be used with a rule-based

system such as BDI architecture.

This AV system, in general, could be referred to as an Intelligent system because

it looks forward in time and based on run-time calculation, it can make decisions.

Those decisions are not pre-calculated; they actually calculated during run-time of

the vehicle making the AV have the ability to predict and see the future.

In this thesis, we will go through the steps of how we designed a LISA based

RA that is capable of guiding and driving our AV safely in a restricted environment

represented by a parking lot.

3.2.1 Agent architecture

Our AV system is consists of two interacting elements: the rational agent logic

(reasoning cycle) and the system skills that the agent needs to use to access the

environment. Functionally, it should be possible to abstract properties from the

dynamic system to provide the necessary abstractions for the agent logic to operate

and reason over in a sense-reason-act loop.

This hybrid system design deals with two types of data. The higher-level part
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of the system represented by the agent reasoning processes that can only deal with

symbolic, discrete and highly abstracted data while the lower-level part represented

by the skills of the agent can deal with numeric, continuous or discrete data at a

lower form of abstraction. Middle layer skills do perform this conversion between

the two forms of data types called the abstraction and the sequencer. The agent

then will be able to understand the situation of the environment and compare it

with the sets of beliefs, rules and objectives to decide what action to choose for

the next step. After choosing a suitable action from the actions list, the agent

then sends the commands to the sequencer skill to translate those commands to a

sequence of data that could be understood by the planning and control subsystems

of the AV to apply the selected actions on the ground.

The agent skills can operate in a single execution or a continuous execution

mode. Single execution is when the program is only required to run once then to

stop, send the generated result and wait for another request from the agent reasoning

to run again. Examples include the startup check of the system components and the

battery level check of the AV. The run repeated skills are more involved with the

autonomous driving operation such as the perception, localisation, planning and

control, where those need to keep monitor, process and send/receive data to/from

the agent continuously. The agent program offers the possibility to define such sets

of skills and actions that can be used for such purpose. Here we have examined the

six categories of agent skills in more details:

1. Sensing: Sensing or state determination represents a fundamental skill which

is the ability to determine the dynamic and kinematic state for the AV and

other moving objects in the environment. The information on the state of the

environment comes continuously from the physical sensors onboard the AV.

A sensor is amenable to some noise; hence, this agent skill is also responsible

for translating the noisy environmental data coming from sensors into a form

of data that next skill (subsystem) can deal with.

An example of sensing skill for the AV is the detection and recognition of dif-

ferent objects. Sensor fusion is also part of the sensing operation that produces
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more accurate, more complete information based on the data received from

the different sensors onboard the AV. The data generated from the sensing

skill is continuously transferred to the other skills for further processing based

on the autonomous driving operation requirements until reaching the final

stage of conversion to a form of understandable data by the agent reasoning

operation.

2. Detection and Simultaneous Localisation And Mapping (SLAM):

These primary skills, among others (Path Planning and Motion Planning) are

the backbone of the autonomous driving operation. They work by processing

the data coming from the sensing subsystem in order to establish a clear idea

about the state of the AV in its environment and the states of other objects

around. This operation includes the detection of different objects around

the AV (this include classification and localisation of those objects), also the

SLAM [174, 175, 176] to build a map for the environment and to find the

position of the AV inside that environment at the same time. More detailed

information is presented in chapter 4.

3. Abstraction: This intermediate subsystem situated between the previously

mentioned subsystem and the agent reasoning. The abstraction skill converts

streams of numerical input variables into a higher-level pre-defined set of

Boolean variables that the agent reasoning can process. An example is when

the perception system detects that the AV has reached the destination. It

will send numeric data to the abstraction skill to translate it to symbolic

representation such as ‘I am near the destination’ or ‘I am at the destination’.

It is also responsible for translating the external messages coming from the

other agents or the system operator into belief commands in the current belief

set.

4. Sequencing: This skill is doing the opposite work from the abstraction skill.

Once the agent reasoning makes a deliberation and issues a command in sym-

bolic form, the sequencer will translate this command into a numerical data-

type for the control system to understand. For example, if the agent reasoning
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of the AV issues a command such as ‘Go to point X’, Sequencing skill would

retrieve the numerical counterpart value of the variable ‘X’, then send these

data to the next planning algorithm to generate a sequence of safe waypoints,

and finally pass this information on to navigation or control subsystems.

5. Planning, and exploration: The agent is responsible for high-level com-

mands, such as: ‘Explore the parking lot’ or ‘Go to point Y’, but it does

not know precisely how to perform the continuous sequence of steps in order

to reach ‘Y’.

Planning a route between two points represents the invocation and execution

of the relative code as planning routines exist external to the feedback control

mechanisms operating on hardware. Here is an example of a simple tasking

process that may get triggered on a discrete instance to provide a feedback con-

trol with the required information. For planning a routine in a high-level agent

implementation, a proper NLP sentence is ‘Generate timed path TP0 from

current state vector Xnow to desired state vector Xdes’. In order

to generate a sequence of safe waypoints, this sentence is then translated

in the sequencing skill then passed to the Planning algorithm to retrieve an

updated map from the SLAM skill, and so on.

6. Control: This subsystem used to control the AV actions in the environment.

They start when the command issued in the agent reasoning is translated to

some understandable numeric data form and then sent to the control skill for

actions execution. The effect of this skill is monitored by the sensing operation

and reported back to the agent for possible correction if necessary. The control

skill represents the interface of the agent with physical actuators and hardware

that influences the environment, for example, the vehicle motors. An example

would be a ‘waypoint following’ that makes sure that the vehicle is heading

towards the next waypoint defined by the path planning algorithm.
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3.2.2 Agent reasoning

The agent reasoning block shown in figure 3.1 represents the core of the decision-

making process for the agent-based system. It links the information available to

the agent from different resources with the set of available actions in order to act

and affect the surrounding environment to bring the agent to the desired state pre-

programmed in the agent core knowledge [62]. The agent reasoning is operated in

iterations called reasoning cycles. The agent code is developed with the NLP called

system-English (sEnglish) [107].

The main reason behind the development of the LISA system was to provide

automatic modelling, and probabilistic verification of agent actions by the inclusion

of pre-programmed probabilistic distributions of the possible behaviour of other

agents in the agent code based on prior observations or knowledge. The agent will

then include this information within the generated probabilistic models to be used

by the probabilistic model checker.

Figure 3.2 shows a schematic representation of the reasoning cycle of the agent,

the reasoning cycle R can be summarised in the following 5 steps [3, 173]:

1. Current Beliefs update: The reasoning cycle starts by updating the current

beliefs set from the recent data available. This step is done by the belief update

function denoted fBU in figure 3.2, as a result, the current beliefs set is updated

fromB[t−1] toB[t]. The fBU receives the updated set of beliefs then compares

it with the pre-programmed instructions to check what it should do with each

belief; i.e. either add them or delete them from the current beliefs set. The

information comes from either the incoming messages, sensory perception, and

action feedbacks of external actions, or from the internal actions generating

mental notes.

2. Current Beliefs review: The generated events from the update of the cur-

rent beliefs set will trigger plans for the agent to execute. These events are

beliefs that are copied from the current beliefs set B[t] to the current events
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Figure 3.2: The Internal structure of the LISA reasoning cycle. Functions are
represented by blocks with rounded corners, external functions represented as dia-
mond shaped blocks, static sets with white square blocks, and dynamic sets with
grey blocks. Numbers represent the order of executions for the functions in the
reasoning cycle [3, 4].

set E[t]. This process is done by a function called the belief review function

denoted fBR in figure 3.2, which maps B[t − 1] and B[t] to a new current

events set E[t].

3. Retrieving applicable plans: This is the stage where the agent starts

to make decisions by choosing a plan for each event. The plan library Π

contains a set of plans, each plan indicated by its contents πj(λj), where π is

the plan, and λ is the contents of the plan, with λ ∈ [0, nλj ], starting with the

triggering conditions π(0) and a context. The plan is triggered when there

are two conditions satisfied: a match between its triggering condition and a

current triggering event, and when the B[t] satisfies the context (B[t] � cj).

All the plans satisfy the two mentioned conditions are copied into a subset of

the Desires set D[t]. This operation is performed on all events of E[t], and

then it resets to an empty set while the Desires set becomes:
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D[t] = {D1[t], D2[t], . . . , Dne [t]} (3.1)

where each Dj[t] is the set of plans triggered by an event ej ∈ E[t] and

ne = |E[t]| is the number of events at time t. This process performed by the

function fP shown in figure 3.2.

4. Plan selection: If the agent finds that more than one plan is applicable for

an intended event, then it should make a choice on which plan to choose for

that particular event. This process is performed by a function called Option

Selection Function denoted FO.

FO : ℘(Π)→ π (3.2)

that maps a set of plans ℘(Π) to a single plan π. Since the Desires set contain

sets of plans relative to different events, the option selection function must be

applied to each of them. The result of this selection process is a set of plans

called Intentions that are copied into the Intentions Set I[t].

5. Actions execution: Once a plan is part of the Intentions set, the agent

is committed to executing it as a final step of the current reasoning cycle.

At the end of the reasoning cycle, the agent takes the next available action

from each plan, and it calls an external function if the action is external, or

passes instructions to the fBU to update (add or remove) mental notes from

the current beliefs set in the next reasoning cycle. Otherwise once an action

is issued, it will be removed from the associated plan. The function that

performs these operations is indicated with fact in figure 3.2.

Because internal actions are executed within a single reasoning cycle, hence

the agent only needs to be aware of the external actions, and this could be

done through action feedback. If the last executed action from a plan has

not yet returned action feedback, the plan is held within a particular subset

of the Intentions set called suspended intentions. This operation is managed
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automatically by the system, and no intervention from the developer is needed.

A simple example of AV parking scenario that clarify the steps above is pre-

sented in example 2.1.

3.2.3 Agent code

In this work, we used sEnglish software [93, 107] with its NLP to design a RA for a

self-driving vehicle. For this application, we build semantically rich agent skills and

world descriptions. Then we generate executable code for both virtual and physical

AV system. This procedure has been designed with a focus on the applicability of

these methods in an industrial setting with real-time constraints.

With sEnglish, the plans operate over a description of the world that is cap-

tured within the system ontology and maintained by data from sensors in the world

model. The system ontology provides a translatable and straightforward descrip-

tion between concepts a programmer would readily understand, such as nouns, and

those that an agent can use or manipulate, such as variables or pieces of data.

In sEnglish, an agent’s plans are described using English sentences. The mean-

ing of sentences is explained by other sentences until any further decomposition

reaches the signal processing level, and no remaining concepts need to be defined.

The agent takes its decisions by relying on information from its environmental

model or knowledge base, which is a database regularly updated via sensors and

perception mechanisms, and potentially any learned inferences. This database is

organised into a high-level ontology and provides information about the system,

and in particular the current state of the environment.

The programmer declares plans, although this makes the agent less-creative at

run-time, as the plan library is fixed and not dynamically generated by the agent.

This has significant advantages in terms of fast execution and viable formal verifi-

cation [177]. In many safety-critical systems, formal verification of the core agent

is crucial. Hence, this kind of BDI agent combines the advantages of deliberative
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agents with the advantages of reliability and clearness. The primary purpose here is

to produce a unified world model understood by Prism for the run-time verification

process. The agent program consists of three main files:

1. Reasoning file (.sej): used to describe the agent logic.

2. Ontology file (.ont): used to define hierarchies of variable types that the agent

needs to coordinate skills.

3. Action files (.sep): to describe the external actions and link them with their

associated skills.

The syntax of sEnglish can be summarised as:

• Natural language sentences are enclosed by Square brackets ‘[. . .]’. If these

square brackets are preceded by a ‘hat’ symbol ‘ˆ[. . .]’ then this sentence is

a belief (percept or mental note). A belief sentence can be negated with a

tilde ‘∼’ symbol.

• addition or deletion of a belief is denoted by ‘+’ and ‘−’ symbols which precede

the current beliefs set. The same syntax is used for expressing both events

and internal actions.

• external actions can also be represented by sentences enclosed by square brack-

ets ‘[. . .]’ but should not be preceded by any symbol. Each external action

should be associated with an action .sep file. External actions can only be

listed within the list of initial actions or as a part of plans.

• Each action or sentence is terminated with a dot ‘ . ’ except the triggering

condition of plans.

• Common keywords are used for logic statements, such as not, and, or, while

and others.

The structure of the sEnglish file is as follows [93]:
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1. INITIAL BELIEFS AND GOALS.

Contain a list of all the beliefs B and initial beliefs B0, which are copied into

B[t] at the beginning of agent operation.

2. INITIAL ACTIONS.

Contain a list of all the actions A and initial actions A0 which are executed

at the beginning of agent operation.

3. PERCEPTION PROCESS.

Are used to configure objects for world modelling and Boolean symbolic sen-

tences in order to represent perception inputs. This section lists all the per-

cepts, except action feedbacks that can be listed in the dedicated action ‘.sep’

files.

4. REASONING.

All logic based implication rules L are listed in this section and are applied to

B[t] in all reasoning cycles. Implication rules can add or remove beliefs from

the current beliefs set and are presented in the form:

If <condition > then <action >

where <condition> can be any logic based rule on beliefs fromB and <action>

is an internal action of addition or deletion of a mental note from B[t].

5. EXECUTABLE PLANS.

Each plan in the plan library Π is listed in the form:

If < triggering_event >while <context >then <action >

<action> could be internal, if it adds or deletes beliefs from the current beliefs

set, or external if it calls external functions through their action files. A simple

example of the above-listed points is given in figure 3.3 with a more detailed

example given in figure 6.1 along with the explanation.

Action definition files .sep are used to describe the way the agent calls action

executions, e.g. invokes skills. Each file includes:
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1 // Plan 12
2 If ^[ moving vehicle detected ] while ^[ distance more than 3m

and less than 6m] and ^[ object getting closer ] then
3 [ Activate slow mode.]
4 [ Generate object avoidance waypoints WP.]
5 +^[ object PTP generated ]
6 [ Update drive mode.].

Figure 3.3: Sample of a plan definition written in sEnglish. Line 2 is the triggering
condition, while the external and internal actions represented by lines 3-6.

• Procedure name, same as the file name.

• sEnglish sentences, that action is associated with.

• sEnglish code: the action can be defined as a sequence of subactions repre-

sented by other sEnglish sentences.

• Input and output classes: if the skill needs inputs or outputs, they must be

defined here.

• Process, repeat mode: the subsystem in which the action is implemented and

the type of action (runOnce or runRepeated).

• Performance feedback: the list of all possible action feedbacks for the executed

actions.

Probabilistic modelling of the environment

The movement prediction of an object for autonomous driving applications could

be acquired through two methods: The first is through short term prediction by

tracking the target object and applying some path prediction algorithm to provide

short term probability of the object’s path [178]. This is mostly an accurate method,

but it is difficult to merge with our RA system since the agent needs to provide the

probabilities internally and include them with probabilistic models for each object

for run-time verification. It also provides a short-time horizon that is valid for up

to a few seconds.
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The second method which we used in this work is a medium-term prediction

method, which is a common pattern observation based on a large dataset of obser-

vation sequences in a simplified form of the work presented in [179]. This method

works better for our system because it could be included in the reasoning cycle of the

agent. This method is only valid for particular environments in which objects follow

a predictable pattern, for example, pedestrians in a parking lot. It also requires the

acquisition of those patterns through datasets or offline manual observations. After

producing these patterns for a limited number of objects, they could be included in

the agent code at the design stage to be used later during run-time operation. This

method is less accurate than the first one because those objects may not always

follow the pre-defined pattern. However, it is simpler and provides a better time

horizon than target tracking, hence it is used in this work for our simple driving

scenario to get the system works. It is also common to set a priori maximum time

horizon after which the prediction is not valid.

For this application, the agent needs to have the ability to generate probabilistic

models directly within the reasoning cycle; this means that the agent code needs

to feature probability distributions that describe the probabilistic nature of the AV

system and other objects in the environment.

The probability distribution and nature of any dynamic object mainly depends

on the application and the environment. Probability distributions of dynamic envi-

ronmental objects are obtained from large datasets collected using physical sensors

or by simulation, while a manufacturer usually provides the rate of failure of sensors

and actuators.

There are two sources of probabilistic behaviour in the LISA system; those are

in the form of perception predicates: sensory percepts and action feedbacks.

Action feedbacks are percepts that are fed into the agent reasoning from action

execution functions after executing an action. It is the programmer’s responsibility

to define all the possible action feedbacks and their probability distributions by

including all the information needed to generate the probability distribution within

the action definition file (.sep).
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Sensory percepts present behaviour that is less predictable compared to action

feedbacks as they are not guaranteed to occur within finite time intervals. Therefore

they require probability distributions for modelling activation and deactivation. In

order to describe their probabilistic nature over time with a finite number of nu-

merical values, the approach taken here is to define a single probability distribution

that is symmetric around an average Gaussian distribution, with a given variance,

and evenly space copies of the same distribution over time by a given amount, for

example the average value.

Another difference from action feedbacks is that a sensory percept does not

necessarily have to be deactivated after a fixed amount number of reasoning cy-

cles. This process must be accounted for with a second probability distribution for

deactivation.

The reasoning file contains all the information needed to model the probabilistic

nature of a sensory percept, and this information is listed under the ‘PERCEPTION

PROCESS’ section. This section should contain all the possible sensory percepts with

their modelled probability values.

All beliefs in LISA are represented by predicates, which change over time in a

probabilistic manner. This means that, with regards to a sensory percept, the time

within which it changes is a random variable. For a given environmental model,

the probability distribution to describe these random changes can be reasonably

assumed to be known. Action feedbacks, which provide information on the success

of agent actions can exhibit a different kind of random behaviour. To start with,

they can only be activated upon invocation of the action. Also, irrespective of

whether they fail or succeed, they do change to an affirmative completion value

within some time limit from the first failure message generation. In the LISA

framework, time is counted as an integer number of reasoning cycles.
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sEnglish to ROS

The method we used to connect the agent designed in sEnglish to the rest of the

ROS system is summarised here, while more information about the self-driving

vehicle system designed in ROS, is given in chapter 4.

The sEnglish system is natively compatible with ROS, as shown in figure 2.3.

The collection of sEnglish sentences that are setup by the programmer can comprise

of more complex sentences until atomic actions are then reached. These atomic

actions can either be represented as sentences linked to libraries or native C++ code.

The programmer can directly interface this C++ code to existing ROS libraries;

therefore, the agent can be directly linked into the distributed ROS system.

A recent example of this operation is shown in handling nuclear material for

a robot arm [170] where an sEnglish agent is developed and linked to a ROS

network, in one case controlling a KUKA IIWA manipulator. In another, the agent

is plugged into a different, but compatible drive for a KUKA KR180 manipulator.

The only difference is the underlying drivers, providing an identical interface is

provided, typically through topics and services available in ROS. The programmer

can rapidly configure an sEnglish agent to operate within a distributed network for

different applications.

3.3 Formal verification

In our autonomous system, the decision-making subsystem has direct contact with

the verification subsystem represented by the MCMAS and Prism model checkers

in order to make safe and fast decisions. It is important to say that the verification

tools do not interact directly with each other; their only interaction is with the

RA. The second point to mention is that they do not operate at the same time,

MCMAS is only used during the agent development stage, while Prism used when

the vehicle is working. At design-time, MCMAS can check if the logical reasoning

system of the agent is consistent and stable; this has another advantage of reducing
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the number of iterations required in simulation to validate the system. The agent

will depend on this logic rules and actions during run-time operation to choose

a suitable action and check the probability of success using Prism based on the

current probability distribution of the moving object’s actions in order to move

safely in the environment.

3.3.1 Design time verification in MCMAS

As mentioned in the previous section, our autonomous system is a logic-based ratio-

nal agent that has its own belief set to explain the reasoning behind its behaviour.

In order for an autonomous agent to keep permitted and safe behaviour, it uses

logical inference represented by a set of rules. In our case, we investigated how an

AV agent can use model checking to establish consistency between its perception-

based beliefs, its rules, and its planned actions and their consequences. A set of rules

can be modelled as a Labelled Transition System (LTS) using a Boolean Evolution

System (BES). Consistency and stability properties can be formulated using Linear

Temporal Logic (LTL) and Computation Tree Logic (CTL) [139].

For a safety-critical system, it is vital to have the ability to make fast decisions

based on logical consistency, e.g. [180, 181, 182, 183, 184, 185] and to be able to

detect when an inconsistency occurs. A logic-based system, in general, has a belief

set, which provides the basis of reasoning for a robot’s behaviour [180]. An AV is

prone to accidents if there is one or more inconsistent beliefs, e.g., the AV can hit an

obstacle, instead of avoiding it, if it mistakenly believes that any route of avoidance

could cause more damage, due to, for instance, misperception of the environment.

Consistency checking for a safety-critical system has implications for legal certi-

fication. Humans tend to formulate legal and social behaviour rules in terms of log-

ical implications, and robots tend to do something similar. Future legal frameworks

for certification of AVs will need to take into account a verifiable decision-making

process.

MCMAS has been used to check the consistency of beliefs, rules and actions of
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our AV in real-time against a set of formulae designed for this purpose. Inconsistent

rules may lead to an unsafe action causing unacceptable behaviour or an accident

when there is more than one possible action. Unstable rules will prevent the AV

from selecting an action in a timely manner. The agent logic code could be long

and complicated to be checked manually. An example is when there are multiple

actions that could fit for a particular external event, these actions may contradict

each other, causing wrong decision to be made while driving. This sort of scenario

is so difficult to be checked manually and here where it comes the power of the

verification tool.

In our approach to verification, we use CTL, a description of which can be

found in section 2.4.4. Separate variables are used for each belief, and each pre-

programmed plan is indexed by a variable. Using this method, one can define

complex properties which formulate all kinds of aspects of the reasoning process.

The MCMAS model checker can generate counterexamples. Counterexamples are

traces in model execution that do not satisfy the CTL specification required for

the system under consideration. Counterexamples can be used to correct an agent

program in an iterative process. For instance, consider the situation where an agent

is defined with two actions that are alternative to each other and that should never

be co-executed, such as ‘go left’ and ‘go right’. Although the intention of an

agent programmer may be to avoid these two actions happening simultaneously, it

is not guaranteed. A model checker, however, can reveal such a situation and point

to corrections needed in the program.

Through the iterative process of design-time verification, a developer can im-

prove the agent code by checking a model of the code against a set of properties in

order to improve the decision-making capabilities of the agent reasoning.

Modelling agent perception and reasoning process

The Binary Decision Diagram (BDD) is very useful for real-time robotic agents with

complex reasoning processes, to enhance solver efficiency to be capable of dealing
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with large search space for both online and offline applications by compressing the

search space and generating a succinct and unique representation of a Boolean

formula.

BDDs have been widely adopted and applied successfully to the verification

of large systems [119]. In this project, we used the BDDs based symbolic model

checking approach [186] to describe the search space of the agent’s predicate model

and discover inconsistency in a set of logic rules and statements on relationships in

a current model of the world, behaviour rules, planned actions, and past actions

of a robotic agent. In case of discovering any inconsistency, the developer can

correct with the guide of counterexample [119, 126] during design-time to improve

the reasoning process.

Our knowledge representation of the AV is based on predicates that are ab-

stracted and derived from the sensors in the simulated or real environments.

Definition 3.1 (Boolean Evolution System). A BES = 〈B,R〉, where:

• B = Bknown∪Bunknown is a set of predicates (Boolean variables) B = {b1, · · · , bn},

• Bknown = Btrue ∪ Bfalse is a set of known predicates,

• Bunknown is a set of unknown predicates in its initial evaluation that could be

determined later as Bknown (Btrue ∨ Bfalse), or continue to be Unknown,

• R is a set of reasoning rules (evolution rules) of the form X → Y , R =

{r1, · · · , rm} defined over B.

Bknown is a set of Boolean predicates, modelling certain predicates, and Bunknown

a set of pseudo-Boolean predicates that model uncertain predicates. A pseudo-

Boolean predicate has three values: unknown, true and false, and is initialised as

unknown. X is a Boolean formula, called a guard or enabling condition, and defined

over B. Y is an assignment of the form a := true (abbr. a) or a := false (abbr.

¬a) with a ∈ B.
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At the beginning of a reasoning cycle, all predicates in Bknown are initialised as

either true or false, while all predicates in Bunknown initialised as unknown. The rules

without any unknown predicates in their guard are evaluated and the assignments

in all enabled rules, i.e., their guard becomes true, are executed simultaneously.

This results from a new evaluation over B and all rules are re-evaluated over this

new evaluation. The reasoning process continues until the evaluation is not changed

anymore, or a timeout is triggered.

When a guard g of a rule is evaluated to true on a valuation B of B, we say that

the rule is enabled. After applying all enabled evolution rules over B simultaneously,

we obtain a new valuation B′. If two enabled rules set a variable to different values

in B′, then the reasoning system is inconsistent. Starting from valuation B0, we

can apply the evolution rules infinitely and obtain valuations B1
, . . . ,Bi, . . . if the

reasoning system is consistent. However, the system is unstable if for any pair of

adjacent valuations Bi and Bi+1, we have Bi 6= Bi+1.

Stability and consistency check

Linear-time Temporal Logic (LTL) and Computation Tree Logic (CTL) [135] are

popular logic for verification of transition systems. They are used to specify proper-

ties of a system under investigation. LTL deals with one possible future behaviour,

while CTL accounts for all possibilities of future behaviours. In our work, we used

CTL to study stability and consistency using efficient implementation techniques

of CTL model checking.

The MCMAS modelling language which is called Interpreted System Program-

ming Language (ISPL) used to model a Boolean Evolution System (BES) program

[36]. Both consistency and stability can be captured by CTL formulae and the

model can be checked efficiently by MCMAS. When the BES is not consistent or

stable, a counterexample is generated by MCMAS to demonstrate the violation.

This counterexample is very useful for the developers to correct the system. Due

to its optimised implementation, MCMAS can handle large systems with hundreds
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of predicates.

Definition 3.2 (Consistency). Three problems might occur during evolution of a

BES:

1. Two enabled rules try to update the same Boolean variable with opposite

values at some time.

2. A variable in Bknown is updated to the opposite value of its initial value at

some time.

3. A variable in Bunknown is updated to the opposite value at some time after its

value has been determined (Bunknown are initially set to unknown, which can

be overwritten using the evolution rules).

If none of the above three points occur, then the system is said to be consistent.

Otherwise, it is inconsistent.

The first category of Inconsistency in the belief base can be expressed using

the following CTL formula [32]:

AG(¬(EXB1 ∧ EX¬B1) ∧ · · · ∧ ¬(EXBn ∧ EX¬Bn)). (3.3)

The boolean evolution system is consistent in case the above formula evaluated

to true.

The second category of Inconsistency can be expressed using the following CTL

formula [32]:

AG(¬(Bn1+1 ∧ EX¬Bn1+1) ∧ ¬(¬Bn1+1 ∧ EXBn1+1)∧

· · · ∧ ¬(Bn ∧ EX¬Bn) ∧ ¬(¬Bn ∧ EXBn)).
(3.4)

The boolean evolution system is consistent in case the above formula evaluated

to true.
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The third category of inconsistency can be checked in the same way mentioned

above over the unknown variables.

Definition 3.3 (Stability). A BES is stable if from any valuation and applying

the rules recursively, it eventually reaches a valuation B where no other valuation

can be obtained, i.e., B′ = B. We say that B is a stable valuation, written as Bs.

The instability problem can be checked by the following CTL formula [32]:

AF ((AG B1 ∨ AG¬B1 ∨ AG K1) ∧ · · · ∧

(AG Bn1 ∨ AG¬Bn1 ∨ AG Kn1)∧

(AG Bn1+1 ∨ AG¬Bn1+1) ∧ · · · ∧

(AG Bn ∨ AG¬Bn)).

(3.5)

The boolean evolution system is stable in case the above formula evaluated to

true.

Consistent rules cannot generate contradictory conditions throughout the whole

reasoning process, which means that at no time can a predicate be assigned to true

and false simultaneously. Stable rules make the reasoning process terminate in fi-

nite steps. In other words, a stable evaluation is reached eventually such that this

stable evaluation is obtained by extending the reasoning process one step further.

The detailed proofs of those lemmas are illustrated in our previous work [32].

Compilation from LISA to ISPL in MCMAS is reasonably straightforward if

sensory events and all possible outcomes of continuous control actions are abstracted

into a finite set of predicates. Sensing predicates define three values in ISPL, and

operational predicates are represented as Boolean. The evolution system represents

the logical inference in MCMAS. Time-step variables aid triggers, context and serial

execution of actions in combination with activity and outcome predicates. The

outcome predicates are defined to be able to take on all feasible combinations of

their assignment in the evolution system representing executable plans in LISA.

Three kinds of rules have been set to the agent to follow: physical rules, behaviour
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rules, and consequence rules. To reduce the complexity of choosing an action, only

physically feasible combinations of predicates of action-outcome are allowed. This

means that the chosen action should not have any conflict with the physical set of

rules. By using a model checker such as MCMAS, representation of reasoning can

reveal logical inconsistencies in the agent program of the AV.

During the development time, the main objective of the developer is to gen-

erate a model that represents the agent reasoning operation. From there on, the

verification process is straight forward using the MCMAS model checker to explore

properties of the generated model in order to make sure that it meets the proposed

specifications. If it is not, then the model checker will generate a counterexample

identifying design flaws in the agent code that can then be corrected. A complete

case study that clarifies the procedure outlined in this section can be found in

chapter 6.

Implementation

In this section, we explain the steps involved in building the Boolean evolution

system model in the ISPL program from which the corresponding transition system

can be generated using MCMAS. We will go through the program generated for the

AV in order to check for the stability and consistency of its predicates, as mentioned

earlier in this section. This program is based on definition 3.1.

Programs written in ISPL contain definitions for a set of agents, initial states,

and the specifications of the system as following:

Agent 1 ... end Agent

...

Agent n ... end Agent

InitStates ... end InitStates

Evaluation ... end Evaluation

Formulae ... end Formulae
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The agents here represent not only the AV but also other agents (objects)

defined within agent environment. Here we will explain our MCMAS program in

more details.

1. The AV and the environment agents definitions are:

Agent AV

Vars: ... end Vars

Actions = {...};

Evolution: ... end Evolution

Protocol: ... end Protocol

end Agent

Agent Environment

Vars:

Pedestrian: boolean;

Vehicle: boolean;

end Vars

...

end Agent

In the definition of the RA, we can define all the predicates in section Vars.

These include the Beliefs, Uncertain beliefs, and others. In the Actions sec-

tion, we can define all the actions available to the agent at any time. The

Evolution function specifies the transition relation between local states, while

the Protocol can be used to define a set of enabled actions for each local

state. The same thing goes for agent environment where it is possible to de-

fine similar sets for any given agent in the program. Each variable in Vars

can be specified either as a Boolean variable if it is part of the Bknown =

(Btrue ∨ Bfalse), or as an enumerated variable if it is part of the Bunknown =

(Btrue ∨ Bfalse ∨ Unknown).
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The Evolution rule set of each agent is a list of variables from the Vars set

translated into a form of “a if b”, where a is a set of assignments and b is

Boolean expression (guard) as shown below:

Evolution:

A1=true if B1=true;

A3=true if B1=false and B2=true and B3=false;

A1=true if B3=true;

...

end Evolution

2. InitStates: Having defined all the sets related to each agent, we come to the

second step of defining the InitStates of the Program. We mentioned the

initial state of each agent as shown below:

InitStates

AV.P1=Unknown and AV.P2=Unknown and ...

...

end InitStates

Here AV refers to the agent name, while P1, P2, A1, A2 refer to the variables

in Vars of that agent.

3. Evaluation: An atomic proposition of the form “x if y”, where x is the name

of the atomic proposition, and y is a Boolean expression that defines the set

of states for which x holds. Part of the ISPL code is shown below:

Evaluation

B1_true if AV.B1=true;

B1_false if AV.B1=false;

...

P6_false if AV.P6=False;

P6_unknown if AV.P6=Unknown;
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...

end Evaluation

4. Formula: In the last part of the ISPL code, we define the set of queries
required to check for consistency and stability. Part of the code written for
this purpose is shown below:

Formula

AG(!(EX B1_true and EX B1_false) and !(EX B2_true and EX B2_false) and ...

...

AF((AG B1_true or AG B1_false) and (AG B2_true or AG B2_false) and ...

...

AG !(A1_true and (A2_true or A3_true or A4_true or A5_true)) ;

AG !(A2_true and (A1_true or A3_true or A4_true or A5_true)) ;

...

end Formulae

The steps above are all that are required to construct the ISPL code to verify

the agent code during design-time. It is important to mention again that this code

is constructed by the programmer during the development time and need to be run

once unless the code is modified. A full case study is explained in chapter 6.

3.3.2 Run time verification in PRISM

Prism is a modern probabilistic model checker that allows within a very short time

to verify relatively large models, providing a feasible technique to the run-time

verification approach for improving the capabilities of decision-making of the agent

[4].

In this section, we will go through the method used to verify AV actions during

run-time operation. This process needs to discover through sensors the environment

around for detecting possible threats or obstacles, and to look for free parking spaces

in a parking lot. This information is then processed and abstracted before being

sent to the agent to enrich the agent reasoning with data for its operational cycles.
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The first step of the formal verification is to generate a model that represents

the agent reasoning and fully describe its behaviour. In the case of an AV, it is

also essential to include the interface with the environment by generating models

that represent the behaviour of objects moving nearby. This interface consists of

the symbolic data generated by the abstraction subsystem where this will be used

to execute a sequence of various actions and mental notes.

A feature of the Limited Instruction Set Agent (LISA) system is that the user

can include probability distributions of input variables within the agent code (see

Section 3.2.3) during the design stage. The agent will later convert this to proba-

bilistic Prism code that can be verified against a set of queries representing prob-

abilistic specifications, for example, Probabilistic Computation Tree Logic (PCTL)

specifications. This operation is described in this section.

When a complete probabilistic model of the system is available, it is possible to

provide an estimation on the consequences of actions so that the agent can choose

a suitable action based on this knowledge to bring the world to the desired state

[3, 4].

We demonstrate in the next subsection that the RA system can be modelled as

a PTP by translating the agent program automatically into a code for Prism. The

model checking technique presented here is used to predict possible consequences

of actions so that the agent can select the best strategy.

In this section, we assume that the response of the physical environment of

the agent is also modelled as a PTP (E) in terms of the predicates feedback to the

belief base of the agent under various environmental states. E is composed of en-

vironmental states, and transitions which under each state through the conditional

probabilities of the environment corresponds to triggering of predicates through the

sensor system of the robotic agent. Given that the agent has well-defined decision

structures as described in this chapter, the environment-agent model will also be a

PTP. This section describes how the combination of probability distributions, when

combined with the environmental PTP and the logic-based decision-making of the

agent, can be modelled in Prism.
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First, we introduce the formal model of PTPs, the technique that will be used

to describe the probabilistic models of different objects for Prism model checker in

this work. The PTPs combine:

• Stochastic behaviour, through discrete probabilistic choice;

• Non-determinism and concurrency, through parallel composition;

• Timed behaviour, through real-valued clocks in the style of timed automata;

• Control flow and discrete data variables to capture program behaviour.

PTP is a framework for quantitative verification of software that exhibits both

probabilistic and real-time behaviour.

Quantitative verification is a formal method for the analysis of probabilistic

and timed systems. It constructs a mathematical model that captures the system’s

behaviour, then the analysis of formally specified quantitative properties. These

might include, for example, the probability of an AV failing to stop within 1.5 sec-

onds based on the current AV speed, or the probability of a nearby pedestrian to

continue walking towards the AV based on the current scenario. Here the probabilis-

tic models are built based on pre-programmed probabilities collected from available

datasets and observation of similar cases only as a proof of concept. Larger datasets

and more accurate prediction methods need to be used for better and more accurate

results in real-life scenarios. In this work, we obtain some common patterns for the

behaviour of the pedestrian and drivers under some circumstances. We use Prism

to verify the success of the AV’s actions within a highly probabilistic environment.

Notice that this permits an analysis not just of a system’s correctness, but also its

performance and reliability.

Implementation

The Prism language and verification algorithms provide a range of tools to ver-

ify our PCTL properties. In Section 3.2.2, we described the implementation of
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the agent reasoning, including an approach for a feasible modelling solution for a

probabilistic model of the agent environment. This has been implemented using

sEnglish based on NLP to describe the probability distribution of the activation

and deactivation of the action feedbacks and the agent percepts continuously.

The described model of the LISA system includes the behaviour of the agent

reasoning along with its interface with the world; hence it is considered to be an

internal model that can be used for probabilistic evaluation during the run-time

verification process, for the outcome of possible plan choice.

We designed a translator that works as a part of the sEnglish system environ-

ment to translate the agent reasoning code to PTP models that can be verified by

Prism; it is a direct text processing algorithm in C++ running as a ROS node

that can run in few milliseconds (hence its time is neglected). The agent will also

translate the properties of the models in PCTL and the query of questions the agent

needs to ask. As soon as the equivalent PTP models are verified, then the agent

will know about different properties expressed in PCTL. A Boolean variable for

each belief is defined, and transition probabilities are taken from the probability

distributions defined in the sEnglish code.

Here we have presented the method we used for the verification process to help

in selecting the plans with the best possible outcome in terms of safety of the AV,

passengers, and other agents in the environment.

Through the tests, we noticed that this time is still within the acceptable range

to be included in the reasoning cycles of the agent without producing a significant

delay or affecting on the overall agent performance, as we can see from the case

study presented in chapter 6. However, it is important to mention that this is

mainly because of the limited usage of Prism where this is reflected in the size of

the PTP model generated and the number of PCTL queries.

However, despite the many capabilities that the model checker can provide

once the model is generated, we did not utilise the model checker for in-depth

investigation of multiple queries over the generated PTP models as it is not useful
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Verification DesiresBeliefs
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PTP model PCTL
queries

Fo

Figure 3.4: Plan selection function for the verification process.

during run-time operation because the time here is quite limited; also it is not

necessary for our implementation and the targeted scenario. The reason is that

the reasoning cycle for the rational agent takes 100 ms to complete, this time put

restrictions on the size of the PTP models, and the size of the related queries. Hence

we only targeted the collision probabilities between the AV and the other objects

moving around within a specific distance.

For example, in case two objects are moving near the AV and detected by the

perception system to be a moving pedestrian and a vehicle, then the total number of

PTPs generated is three, one for the AV and one for each detected object. A further

investigation and queries could take the time of verification exponentially and make

the results generated from these verification queries not feasible for the reasoning

cycle of the agent. We implemented a function called plan selection function that is

part of the LISA agent architecture to utilise the Prism model checking to get the

probability of success for the available set of plans then to select the most suitable

plan for execution. In [4], the authors used the same technique for a water surface
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vehicle.

Figure 3.4 show the structure of the run-time verification process implemented

through the Plan Selection function. The function is part of the reasoning cycle

presented in figure 3.2, the plan selection function (Fo). However, in the final op-

eration of the agent, this function is still external to the agent program. Ideally,

the run-time verification is fast enough to be executed at least once for each rea-

soning cycle. However, an even faster execution time might be needed when more

than one event triggers multiple plans. A possible practical solution is that if the

plan selection requires more time than what is provided by one reasoning cycle, the

agent then suspends the decision-making process until the results of the run-time

verification are available. A possible safety option for the AV during this time is to

command a stop action until the verification operation is complete.

Here we will list PTPs models generated while the AV is moving in a parking

lot in a simulated environment and there are a vehicle and a pedestrian nearby as

shown in figure 6.5. The Agent generated three PTPs for this case to determine a

safe plan selection and action execution:

module AV

s1 : [0..6];

x1 : [0..1] init 0;

y1 : [0..12] init 0;

c1 : clock;

In the above listed code, we can see the definition of the module name in the

first line, then the rational agent define in the PTP code the number of steps for a

specific predefined action, also a definition of the X and Y relative coordinates of

the AV, and finally the clock that is reset at every step.

[] s1=0 & c1 <= 2 & c1 >= 1 -> (s1’=1)&(c1’=0)&(y1’=3);

[] s1=1 & c1 <= 2 & c1 >= 1 -> (s1’=2)&(c1’=0)&(y1’=6);

[] s1=2 & c1 <= 2 & c1 >= 1 -> (s1’=3)&(c1’=0)&(x1’=1)&(y1’=9);
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[] s1=3 & c1 <= 2 & c1 >= 1 -> (s1’=4)&(c1’=0)&(x1’=1)&(y1’=12);

[] s1=4 & c1 <= 2 & c1 >= 1 -> (s1’=5)&(c1’=0)&(x1’=1)&(y1’=15);

[] s1=5 & c1 <= 2 & c1 >= 1 -> (s1’=6)&(c1’=0)&(x1’=0)&(y1’=18);

[] s1=6 -> (s1’=6);

endmodule

After that the agent will define those steps (that form the action) seeking for

its success probability as shown above. Each line contains the step number, clock,

and the next coordinate that the AV is moving towards.

The same thing is applied to the other two objects moving nearby with one

critical difference which is the inclusion of probabilistic distribution for those objects

behaviour as shown below for the other vehicle moving towards the AV.

module vehicle

s3 : [0..14] init 0;

x3 : [-1..0] init -1;

y3 : [4..16] init 16;

c3 : clock;

[] s3=0 & c3 <=2 & c3 >= 1 -> 0.6 : (s3’=1)&(y3’=14)&(c3’=0) + 0.1 :

(s3’=2)&(y3’=16)&(c3’=0) + 0.3 : (s3’=3)&(y3’=12)&(c3’=0);

[] s3=1 & c3 <=2 & c3 >= 1 -> 0.7 : (s3’=4)&(y3’=12)&(c3’=0) + 0.1 :

(s3’=5)&(y3’=14)&(c3’=0) + 0.2 : (s3’=6)&(y3’=10)&(c3’=0);

[] s3=2 & c3 <=2 & c3 >= 1 -> 0.6 : (s3’=7)&(y3’=10)&(c3’=0) + 0.1 :

(s3’=10)&(y3’=12)&(c3’=0) + 0.3 : (s3’=8)&(y3’=8)&(c3’=0);

[] s3=3 -> (s3’=3);

[] s3=4 & c3 <=2 & c3 >= 1 -> 0.6 : (s3’=9)&(y3’=10)&(c3’=0) + 0.2 :

(s3’=10)&(y3’=12)&(c3’=0) + 0.2 : (s3’=11)&(y3’=8)&(c3’=0);

[] s3=5 -> (s3’=5);

[] s3=6 & c3 <=2 & c3 >= 1 -> 0.6 : (s3’=11)&(y3’=8)&(c3’=0) + 0.3 :

(s3’=9)&(y3’=10)&(c3’=0) + 0.1 : (s3’=12)&(y3’=6)&(c3’=0);

...

endmodule

Here we can see that every step is a probabilistic step means that the agent is
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assuming that the object will behave in this way based on pre-programmed possible

behaviour of those objects. The agent use the same method for generating the PTP

model for the nearby pedestrian.

3.4 Conclusion

A BDI-based LISA agent implementation for a self-driving vehicle system is pre-

sented, with a new verification approach to allow for automatic modelling and ver-

ification of AV’s decision-making using model checking tools. The reason that this

design developed as part of an autonomous system for a self-driving vehicle is to

provide an applicable system that can be analysed at both stages of developing and

operation to make sure it is safe enough to be used for such safety-critical system.

The autonomous system consists of multiple layered architecture with the agent

reasoning on top (represented by a high-level of abstraction), and lower-levels of

skills (with a lower-level of abstraction). Agent reasoning is responsible for decision-

making by generating run-time decisions to control the AV’s system and guiding

the AV until destination. The AV system contains different groups of skills that

either receive information for the environment then process it and send the essential

data to the agent, or to receive decisions from the agent, process these data and

send commands to the actuators.

The agent program is based on the sEnglish language with a few improve-

ments on the framework to allow the programmer to include probability distri-

butions and to describe the outcome of perception beliefs and action feedback.

Including all the necessary information enables the system to generate a complete

and verifiable model of the agent reasoning.

In order to perform verification of the agent code, a model of the system is

needed. For the design-time verification, we generated a CTL model that could be

verified using MCMAS model checker. Once a model of the system is constructed

from the agent code, then it is possible to run different queries to check the stability
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and consistency of the agent logic. In case the model checker discovers something

wrong, then it will generate a counterexample that could be analysed and used to

correct the logic. This, in turn, allows improving the agent program by iteratively

correcting design flaws.

A PTP model is chosen for the run-time verification. PTP models are essential

to represent the information about the AV and its environment that is needed by

the agent reasoning to decide in a probabilistic manner by using the model checker.

During run-time verification, this process can be used to make probabilistic es-

timates of the future outcome of the AV actions. This has been established by

connecting the Plan Selection function to a run-time verification process. Prism

initialises the probabilistic model according to the information included and gener-

ates probabilities for the plan success rates that are used later to select a plan that

minimises failure rates and optimises the performance.
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Chapter 4

Modelling and Simulation of the

AV

4.1 Introduction

In this chapter, we have presented our Autonomous Vehicle (AV) and the park-

ing lot environment in simulation. This chapter is divided into two main sections.

First, we went through the basics of AV design for a parking lot scenario in a simple

MATLAB/Simulink model that clarifies the background information needed such

as the dynamics of the vehicle and the properties of the parking operation for the

interested reader to understand. Then in section 4.3 we presented the main contri-

bution represented by the AV system and the parking lot environment designed in

ROS and Gazebo simulator which was also useful for system validation. The novelty

of the work in this section represented by the fact that this is the first time such a

comprehensive and complex AV system is designed in open-source software repre-

sented by ROS along with its proposed environment. We went through the stages

of design and simulation represented by the perception system, the decision-making

system (only mentioned briefly in this chapter because it has been thoroughly in-

vestigated and clarified in chapter 3), the planning system, and the control system.

Despite that most of the techniques used in this work are off-the-shelf, however we
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have presented an important contribution from both the academic and industrial

points of view. There is a massive demand for such realistic AV system that could

be easily connected to a physical platform, as discussed in chapter 5 for other re-

search purposes. It is also important to mention that we have slightly modified the

off-the-shelf algorithms used in some cases, in other cases it is heavily modified or

new features added to make it compatible in a useful way for the AV system design.

However, these modifications are mainly done on the code so it might not be clear

for the reader. We will try to point out the main features when possible.

This chapter is dedicated to the second research question of ‘How we can design

a simple, feasible, realistic and reconfigurable autonomous vehicle system using the

Robot Operating System?’.

4.2 Modelling and simulation in MATLAB/Simulink

The work presented in this section is only an introduction for the work presented

in section 4.3. In this section, we only tried to explain the different aspects of

designing an AV system. Section 4.2 is not a contribution, and it does not contain

proper results. However, it has been presented in this chapter so that the interested

reader can go through it to understand the basics of AV design for a parking lot

scenario before going through the details mentioned in section 4.3. First of all, we

have presented below some of the critical definitions that will help to understand

the system design.

4.2.1 Coordinate systems in AV

In both the simulation and the real-world implementation, there are four types of

coordinate systems [187]:

• World: A universal fixed coordinate system where all the objects in the envi-

ronment, including the AV and its sensors, are placed. This coordinate system
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is essential in path planning, motion planning, localisation and mapping, as

shown in figure 4.1 below.

�

β

β

� Course Angle

Figure 4.1: World coordinate system.

• Vehicle: This is the vehicle self coordinate system which is in the centre of the

rotating axis (below the midpoint of the rear axle). The vehicle coordinate

system is represented by (XV , YV , ZV ) in figure 4.2.

Figure 4.2: Vehicle coordinate system.

Values provided by any sensor are transformed into the AV coordinate system

to merge it into a unified reference. For planning and Simultaneous Locali-

sation And Mapping (SLAM), the state of the AV can be described using its

position.
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• Sensor: This is specific to every perception sensor of the AV. The location

of the sensor contains the origin of its coordinates system. A camera is an

example of a sensor that often used in an automated driving system. In a

camera coordinate system, points are described with the origin located at the

optical centre of the camera. A 3D body can be rotated about three orthogonal

axes, as shown in figure 4.3. Borrowing aviation terminology, these rotations

will be referred to as roll, pitch, and yaw [188]. A roll is a counterclockwise

rotation about the x-axis. A pitch is a counterclockwise rotation about the

y-axis. A yaw is a counterclockwise rotation about the z-axis.

Figure 4.3: Camera coordinate system.

• Spatial: This coordinate system is specific to a camera sensor, particularly,

to an image captured by a camera, as shown in figure 4.4. The locations on

this system are represented by a 2D map of pixels of the image identified by

an integer row and column pair. This is important to specify different objects

locations in the image.

Figure 4.4: Spatial coordinate system.
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4.2.2 Environment model

In our scenario, this is represented by the parking lot model, which includes the

static (both free and occupied parking spaces), and dynamic objects represented by

pedestrians and moving vehicles. The SLAM subsystem of the AV usually builds

the occupancy map for the environment. In this example designed in Simulink,

we just wanted to present the idea of parking operation; hence the occupancy grid

has already been given to the vehicle, this could happen in a real scenario as well

through for instance: a camera monitoring the entire parking space or using a

vehicle-to-infrastructure (V2I) system. The example of a parking lot used here

consists of three occupancy grid layers: Parked vehicles, Stationary obstacles, and

Road markings.

Those three occupancy grid map layers have different kinds of obstacles that

demonstrate different levels of risk for the AV navigating through it. With this

representation of the structure, each occupancy grid can be processed and updated

separately. Light cells represent free cells, and dark cells represent occupied cells.

The summation of those three layers is shown in figure 4.6.

There is a value given to each cell in the grid, and those values are between 0

and 1, an occupancy threshold property would determine whether the cell is free or

not. A cell is considered occupied if its cost is higher than the occupied threshold

property and free otherwise.

We define the physical properties of the AV, such as its dimensions, and max-

imum steering angle, where those are needed while planning the trajectory and

control of the AV. We also defined the starting point of the AV, which is shown

in figure 4.6 from the left gate of the parking lot. The pose of the AV is specified

in world coordinates as [x, y, θ]. The centre of the AV’s rear axle is represented by

(x, y) in the world coordinate system while the orientation of the AV is represented

by (θ) with respect to the world X-axis.
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4.2.3 Simulation of the AV and its environment

Designing a control system that is capable of autonomously parking a vehicle is

not an easy challenge. This system should control and steer the AV to explore the

parking lot and guide the AV to an available parking space. Such a control system

makes use of onboard sensors. For instance:

• LiDAR sensors for detecting obstacles, calculating accurate distance measure-

ments and for localisation and mapping.

• Cameras used for detecting road signs, lane markings, pedestrians, other ve-

hicles, and free parking spaces.

• A stereo camera used in addition to the above for distance measurements.

While the AV plans its path through the parking lot by perceiving the envi-

ronment using its sensors, it should deal with dynamic changes in the environment,

such as pedestrians passing nearby, and readjust its plan.

Our MATLAB/Simulink model implements a subset of features required for

the AV; it mainly targets the planning and checking of the dynamic system of the

vehicle. It also focuses on a feasible path planning. We excluded dynamic obstacle

avoidance and map generation from this example. However, those essential parts of

the AV system have been implemented with the ROS described later in this chapter.

Decision making layer

The system of the AV involves organising all relevant information into hierarchical

layers. The higher layers are responsible for a more abstracted task. The decision-

making layer (the rational agent described in chapter 3) is situated at the top of this

stack. It is responsible for managing and activating/deactivating the different parts

of the system, also for supplying sequence tasks of navigation. This layer collects

information from all relevant subsystems, for the primary purpose of guiding the

AV safely and efficiently.
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Figure 4.5: Autonomous vehicle system in MATLAB designed for parking lot sce-
nario.

105



4. MODELLING AND SIMULATION OF THE AV

Figure 4.6: Simulation of a parking lot designed in MATLAB.

The AV should find its global path which could be obtained either from a

vehicle-to-everything (V2X) (which includes both vehicle-to-vehicle communication

(V2V) or vehicle-to-infrastructure communication (V2I)) or from a mapping service

— dividing the global path into shorter parts allowing the dynamic trajectory for

each point to be planned differently for that link. For example, the final parking

manoeuvre needs a different speed profile compared with the previous path seg-

ments. In general, this becomes vital during the navigation in roads that involve

different numbers of lanes, speed limits, and road signs. In this simple example,

we represent the map as an occupancy grid, with locations of the available parking

spaces and road links provided manually. Use a static global path plan which is

stored as a table in MATLAB; this table determines the speed limit as well as the

starting and ending positions. The global path plan can be described as a sequence

of lane segments that leads to a parking space. In autonomous parking, the routing

algorithm is provided either by a mapping service or the local parking infrastructure

or obtained while exploring the parking lot.
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Motion planning

After the AV has generated its global path (in this case the path is given manually

as points saved in a table), the path must be divided into shorter trajectories or

intermediate waypoints and keep doing this with every global path that the AV

generates until reaching the final destination. Those shorter trajectories should be

both dynamically feasible and collision-free. A feasible trajectory is one that can

be followed by the vehicle based on its motion and dynamic constraints. A parking

environment involves low accelerations and low velocities where this permit to safely

neglect the dynamic constraints rising from inertial effects. We created a Rapidly-

exploring Random Tree (RRT) object for our path planner [189]. This method can

find a kinematically feasible trajectory by constructing a tree of collision-free and

connected vehicle poses. The red line in figure 4.6 represents areas of the generated

costmap where the centre of the vehicle (centre of the rear axle) should follow to

avoid hitting any obstacles.

Vehicle control and Simulation

The smoothed path, along with the reference speed, produces a feasible trajectory

that the AV can follow using a feedback controller.

A feedback controller is also used to correct errors in the trajectory that could

come from, for example, inaccuracies in localisation or tire slippage. In particular,

the controller consists of two components:

• Lateral control: Used to control the steering angle to direct the vehicle to

follow the reference path.

• Longitudinal control: To maintain the reference speed of the reference path

by controlling the brake and the throttle.

The feedback controller requires a simulator that can execute the desired con-

troller commands using a suitable vehicle model. Here we simulate the AV using
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the following kinematic bicycle model [190]:

ẋr = vr × cos (θ)

ẏr = vr × sin (θ)

θ̇ = vr
l
× tan (δ)

v̇r = ar

Here (xr, yr, θ) represents the vehicle pose in world coordinates. vr, ar, l and

δ represent the rear-wheel speed, rear-wheel acceleration, wheelbase, and steering

angle, respectively. The position and speed of the front wheel can be obtained by

[190]:

xf = xr + l cos (θ)

yf = yr + l sin (θ)

vf = vr
cos(δ)

In this Simulink model, we used Stanley block [191, 192] as showing figure 4.5

provided in Simulink as a vehicle controller subsystem to control the longitudinal

and lateral values, means to regulate the pose and the velocity of the vehicle, re-

spectively. The longitudinal controller Stanley block computes the acceleration and

deceleration commands, in m/s, that controls the velocity of the vehicle. Specify

the reference velocity, current velocity, and current driving direction. The controller

computes these commands using the Stanley method [191], which the block imple-

ments as a discrete Proportional-Integral (PI) controller with integral anti-windup

to control the throttle and the brake of the vehicle through the deceleration/ac-

celeration values. The Stanley lateral controller uses a nonlinear control law to

minimise the cross-track error and the heading angle of the front wheel relative to

the reference path. The lateral controller Stanley block computes the steering angle

command that adjusts a vehicle’s current pose to match a reference pose. We set

the Stanley block lateral controller to a dynamic bicycle model to provide realis-

tic vehicle dynamics. To compute the steering command, we also set the current

steering angle, the current yaw rate of the vehicle and the path curvature.
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4.3 Modelling and simulation in ROS and Gazebo

A standard AV has a control architecture incorporating both low-level and high-

level components. The low-level components include sensors and actuators for ob-

ject recognition, navigation, environment modelling and mapping, route planning

and other skills. High-level system components are responsible for decision-making

based on data provided by low-level components.

The perception system provides a stream of images and 3D point cloud data

obtained from sensors commonly used in AVs [193]. The AV consists of 8 mono-

cameras (three on each side and two at the back), a stereo camera on the front

and a LiDAR on top that can be shifted and tilted by the Rational Agent (RA) for

better coverage. The stereo camera in front of the vehicle uses a deep-learning object

detector that can detect different objects, including those that could exist in real life

parking lot environment. The perception system can also locate free parking spaces

depending on fiducial markers (landmarks or reference markers - details presented

in section 5.3.1). These data are converted to abstracted sentences to be fed to the

RA onboard the vehicle. In chapter 6, we carried out a case study for the parking

lot scenario shown in figure 4.10 to demonstrate the method of verification and to

show the feasibility of our approach.

Our novel AV system shown in figure 4.7 is based on a modular design that

makes practical implementation relatively simple and allows for future updates. We

used LISA agent implementation due to its capability to execute actions based on

decision-making to pursue goals while also not being too complicated to enable

verification. The decision process also uses rules and abstractions from predictions

of the future (consequences of future events) and can re-plan the path of the AV

when needed.

The RA is capable of sensing the environment and move the vehicle in a

collision-free path without the need for human support. To achieve this, the per-

ception system builds a model of the environment, locates surrounding objects and
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Figure 4.7: General autonomous vehicle system overview.

updates its model after each perception cycle. The software agent has rule-based

reasoning, planning capability and some feedback control skills for steering and

velocity regulation. Our RA has been implemented using Natural Language Pro-

gramming (NLP) of agents and robots in sEnglish [93] that compiles into the LISA

agent.

The vehicle in simulation supports a reconfigurable, scalable, and modular

design to ease the implementation of different system parts and further development.

The physics-engine based simulation consists of a model of our Tata ace electric

vehicle, as shown in figure 4.8 with the same specifications and parameters as the

real vehicle we were developing. All the sensors used in the simulation have the

same properties as the real sensors used with the Tata electric vehicle shown in

figure 5.1.

The AV is based on packages built in C++ and Python, and compatible with

ROS. ROS provides libraries and tools for writing control and perception algorithms

and other applications for AVs. With various levels of software and hardware ab-

straction, device drivers for a seamless interface of sensors, libraries for simulat-

ing sensors and visualisers for diagnostics purposes, ROS provides middleware and

repository by which distributed simulation can take place, and the software instal-

lation is straightforward. Being a distributed computing environment, it implicitly

handles all the communication protocols.
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However, standard ROS packages lack domain-specific requirements for exper-

imentation with a car-like robot. A typical setup of an AV consists of a vehicle

controller and sensors strategically mounted on different points of the vehicle. In

order to control motion seamlessly, we have created interfaces for control and con-

sistent consumption of sensor data. We have tested the current state of the vehicle

and issued control signals well before the real platform is engaged. Once all the

algorithms have been validated in simulation, they were implemented on the real

vehicle, and the physical platform has then replaced its equivalent simulated version.

3 Mono
cameras

3D Lidar
Stereo
camera

Figure 4.8: The test vehicle we designed in ROS and Gazebo showing sensor con-
figuration.

In the following subsection, we will examine the AV system decomposed into

four components, as shown in figure 4.9: First we have the perception system that

used to get data about the surroundings and feed it to the second stage represented

by the RA who decides on a local driving task the progress of the car towards

the destination by rules of interaction and rules of the road. The next stages are

the Global path planner and the Local path planner, which are responsible for

generating the abstract path of the AV from the starting point to its destination,

then select a continuous motion plan through the environment to achieve a local

navigational task. The last component is the control system that executes the

111



4. MODELLING AND SIMULATION OF THE AV

Point
Cloud

LiDAR
VLP-16

Local
PP

Global
PP

Deep-learning
 Pedestrians and

Vehicles
Detection

Move
Base

Stereo
Camera

Loam
Velodyne

Eight
Mono

Cameras

Aruco Marker
Detection

Cost
Map

Pedestrians
and Vehicles

Detection

Rational
Agent

Steering
wheel

Sensor
Fusion

Verification
System

Acceleration
- Brake

Inside ROS Middleware

ROS node ROS -
Sensor

ROS -
Actuator

Outside ROS Middleware

Rational
Agent

Verification
System

Figure 4.9: General AV system showing the main nodes designed in ROS (secondary
and supporting nodes are not shown here), RA designed in sEnglish and verification
system designed in MCMAS and Prism verification tools.

motion using actuators and reactively corrects errors in the execution of the planned

motion. In the remainder of the section, we discuss each of these components briefly.

4.3.1 Perception system

The perception system is responsible for providing a model of the world to the

decision-making and planning subsystems. The model includes the moving objects

(represented as a list of tracked objects), static obstacles (represented in a regular

grid), and localising the vehicle relative to, and estimating the shape of, the roads

it is driving on.

Nowadays, vision-based detection techniques work by extracting image features
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to segment Regions Of Interest (ROI) then detect different objects within those

regions. In particular, detection of people and vehicles has made significant progress

in the autonomous and assisted driving areas [194], [195].

Radar is a good information source for perceptual tasks; however, the spatial

resolution of radar is typically poor compared to camera and LiDAR. Thus, much re-

cent perception research revolves around cameras and LiDARs. Detection methods

based on mono cameras suffer in two ways: despite methods proposed for moving

mono-cameras, fast and accurate range measurement remains an issue, which is vi-

tal for critical object detection in autonomous driving applications. Besides, optical

sensors can suffer from a limited field of view and poor operation during low light-

ing conditions. On the other hand, LiDAR has usually been used with Advanced

Driver-Assistance Systems (ADAS) applications. It has become part of the AV

perception system because of the high precision range measurements and the wide

fields of view that it provides. The main issue for the LiDAR-based system is that

LiDAR scans can poorly distinguish between different objects, especially in a dense

environment. Stereo cameras can provide more precise depth data and a wider an-

gle compared with mono cameras; however, the detection angle still less than for 3D

LiDAR and with less accuracy and speed of depth data, especially for long distances

which are often vital for AVs. The integration of cameras and LiDAR sensors can

therefore enhance the fast object detection and recognition performance [196]. This

type of sensor fusion system is known as the classic LiDAR-camera fusion system.

In this simulation-based system, we used the same methods and techniques of

our approach for the real AV system shown in chapter 5, where we used a Velodyne

VLP-16 LiDAR, one ZED stereo camera, and eight raspberry pi mono cameras.

The LiDAR is connected directly to ROS for point cloud data processing, the front-

facing stereo camera is connected to a Jetson TX2 running YOLOv3 deep-learning

based objects detection [197]. The mono cameras are using the processing power

of their host raspberry pi system for Aggregated Channel Features (ACFs) object

detector of pedestrians and vehicle [6]. Those mono cameras along with the stereo

camera covering a 360◦ FOV. The camera system has also been equipped with a
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Table 4.1: Properties of sensors for the AV in simulation.

Sensor type No. of sensors Resolution No. of frames
/Speed of rotation

LiDAR 1
3D 16-layer (up to 50m)

360◦H/ 30◦V
1864 PPS

300 RPM

Stereo camera 1 Colour 1344x376 10 FPS
Mono camera 8 Colour 640x480 6 FPS

method for fiducial follow that use aruco markers to detect location and orientation

of free parking slots, as shown in figure 4.13 (right camera 1 and 2). along with the

occupancy grid data generated by the LiDAR, the AV is capable of detecting free

parking spaces simply and efficiently.

When a known object is detected by one of the cameras, the associated LiDAR

measurements are processed for the distance calculation by matching the location

of the detected object with the 3D point cloud data belonging to the same object.

Based on the generated depth map, the positions of the objects are calculated

from the ROI, those measurements from LiDAR are calculated according to the

coordinates transformation.

We used LiDAR Odometry And Mapping (LOAM) [7] ROS package for Velo-

dyne VLP-16 3D LiDAR. This package provides a real-time method for mapping

and state estimation, where it contains two major threads running in parallel. An

Odometry thread measures the motion of the LiDAR between two movements, at

a higher frame rate. It also eliminates distortion in the point cloud caused by the

motion of the LiDAR. Then there is a Mapping thread that takes the undistorted

point cloud and incrementally builds a map, while simultaneously computes the

pose of the LiDAR on the map at a lower frame rate. The LiDAR state estimation

is a combination of the outputs from those threads.

Figure 4.11 shows the map built in RViz (ROS Visualisation tool) for the AV

current path in the parking lot shown in figure 4.12, the sides of the objects that

are facing the LiDAR are shown on the map with white lines. We added another

layer of protection (inflation layer) using a costmap function which helps the AV
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Figure 4.10: Parking lot designed in Gazebo simulator.

to keep an extra safe distance from any object within their inflation distance. The

costmap is guiding the AV through the motion planning process by showing the cost

of each cell that the AV could go through. The inflation layer is an optimisation

that adds new values around obstacles (i.e. inflates the obstacles) in order to make

the costmap represent the configuration space of the AV. Inflation is the process of

propagating cost values out from occupied cells that decrease with distance. This

could be set according to the environment type; it is represented on the map with

blue lines surrounding the white lines. Cost means that a cell might be occupied

and will cause a collision if the AV pass trough it while moving, hence the AV will

try to move away from any object by the amount of the inflation layer distance.

This distance could be dynamic, which means that the inflation layer for a dynamic

object is different from static ones. Finally, the data for the detected objects and

their locations are sent to the RA for further processing.
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Figure 4.11: This map has been generated using the LiDAR 3D point cloud with the
LiDAR odometry and mapping data for parking scenario, this is based on LOAM
velodyne ROS package. The parked vehicles has been detected and the system add
an inflation layer for protection.

Figure 4.12: Parking lot scenario developed in ROS and Gazebo simulator to check
the proposed system.
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Figure 4.13: Pedestrians and cars detected by the AV using camera sensors. Right
camera 1 and 2 show the aruco marker detection attached tot he parking spaces
when this info combined with the occupancy grid generated by the LiDAR, it will
be easy to detect the free parking spaces.
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4.3.2 Autonomous behaviour (Decision making system)

Recent approaches for AVs have used prediction methods in order to avoid the

collision by estimate the possible trajectory of the surrounding dynamic objects for

the next few seconds.

However, to ensure safety in real-world driving scenarios, the AV needs to

handle complex clutter and modelling interactions with other road users. Most

solutions proposed for DARPA urban challenge were explicitly tailored to the com-

peting demands and those approaches, e.g. [17] [198] use a rule-based finite state

machine for AV to choose between predefined behaviours. This approach needs a

safety assessment in order to deal with uncertainties. AV with human-like driving

behaviour requires cooperation and interactive-based decision-making; hence, the

intention of the other vehicles or pedestrians need to be modelled and integrated

into a unified planning framework. While AVs need the ability to reason the inten-

tions of other participants, those also need to infer the AV’s intention reasonably

[21].

By simulating the proposed traffic scenario, we can search for a possible best

policy by scored against the AV’s cost function and then the best policy is executed

from the set of available policies for the AV. Possible trajectories can also be sam-

pled, and the reaction to the environment can be determined according to the RA

model. The AV must be able to interact with other traffic participants according to

the driving rules and conventions of the road. Given a sequence of road segments

specifying the route should be followed, the high-level behavioural layer (RA) is re-

sponsible for selecting an appropriate driving behaviour at any point of time based

on the perceived behaviour of other traffic participants and road conditions. For

example, when the AV is navigating in a parking lot looking for a free parking

space, the RA will command the AV to observe the behaviour of other vehicles and

pedestrians during its movement and let the AV proceed only when it is safe to

go. Because the driving context and the available behaviours in each context can

be modelled as finite sets, hence a natural way to automate the decision-making
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process is to represent the behaviours as a Finite State Machine (FSM) with transi-

tions controlled by the perception system (reflect the situation of the environment)

and the model of the reasoning system. FSM, coupled with specific subsystems

to considered driving scenarios has been adopted by most teams in DARPA urban

challenge as a mechanism for behaviour control.

In the literature, similar approaches have been made by reducing decisions to

a limited set of options and conducting evaluations with an individual set of policy

assignments for each option. The probabilistic representation of the system mod-

els can be divided into four main types: Discrete-Time Markov Chain (DTMC),

Continuous Time Markov Chain (CTMC), Markov Decision Processes (MDP), and

Probabilistic Timed Automata (PTA). A typical implementation of a highway sim-

ulation showed the potential of the probabilistic approach represented by MDP to

learning different driving styles [199]. In [200] authors showed an enhanced ver-

sion of the algorithm and its performance by generating human-like trajectories in

parking lots, with only a few demonstrations required during learning. A Partially

Observable MDP (POMDP) which is an extension of MDP has been used in [201]

to integrate the road context and the motion intention of another vehicle in an

urban road scenario.

Our RA and its physical environment have been modelled as a PTP model

in terms of the predicates fed back to the belief base of the agent under variant

states of the environment while the PCTL is used for specification logic [152]. A

PTP incorporate probability, dense real-time and date. Its semantics are defined

as infinite-state MDPs consists of the states of the environment and the transition

between those states, which, through the conditional probabilities of the environ-

ment, correspond to triggering of predicates through the sensor system of the AV.

The rules are used to set the relationship between the perception predicates (be-

liefs) and the available actions, when this combination get verified by MCMAS then

there will be no space for an unfeasible action in the agent’s actions list, this will

be reflected later on the run-time verification by reducing the state-space available

to check by Prism.
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4.3.3 Planning system

Planning modules are concerned with the vehicle’s path, motion, and behaviour in

the perceived environment. Typically they comprise collision-free trajectory gener-

ation, velocity and acceleration management and reactive control for collision risk

mitigation. To provide the flexibility of updating and to handle large maps, envi-

ronment maps are organised into sub-maps. These are integrated and corrected for

changes by a graph optimisation approach with critical landmarks as nodes [202].

The Rational agent decides the path in the form of abstracted waypoints, those

abstracted waypoints commands written in NLP is not possible to apply them di-

rectly to the control system, it first sent to the global path planning to generates

proper route segments, in case of looking for a free parking space, then it will be

multiple route segments to explore the parking space until reaching the destination.

Route constitutes a sequence of road links and in path segments waypoints. Path

planning includes functions for trajectory waypoint selection and trajectory eval-

uation on screened paths. Finally, trajectory control consists of longitudinal and

lateral vehicle motion controllers for motion realisation.

In general, the Planning (Navigation) module consists of a global planner (Path

planning) to find the optimal path with prior knowledge of the environment and

local planner (Motion planning) to calculate the path that is dynamically feasible for

the control system with collision avoidance [203]. The AV is navigation problem is

reduced to a 2D space of a single plane (X, Y ) where the (Z) dimension is neglected.

The generated plan is a collection of waypoints for global, Pi = (Xi, Yi)T , and local

Pi = (xi, yi, θi)T , ∈ R2 × S1 , where S is the navigation environment of the AV.

In this work, we are concerned with path planning method based on Dijkstra

method [204] and motion planning using Timed-Elastic Band (TEB) [205, 206] in

both simulation and real experimental platform based on Ackermann model.
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Path planning (Global planner)

This subsystem component computes the fastest route through the road network

to reach the next checkpoint in the mission, based on knowledge of road blockages,

speed limits, and the nominal time required to make special manoeuvres such as

lane changes or U-turns.

The RA is setting the waypoints to move the AV in the environment. These

high-level commands are then sent to the path planning ROS node to generate the

route for the AV from the starting point to the desired destination. The entrance of

the parking lot represents the starting point, and the destination is a free parking

slot, which is an unknown place that needs to be discovered by the perception

system while exploring the area. We used a ROS-based Dijkstra algorithm [207]

for its simplicity and efficiency. This method represents the roads as a directed

graph with weights represents the cost of passing a road segment. This process

starts with a set of nodes (free space) that the AV can navigate and assigning a

cost value to each one of them, this value is then increased with the next nodes,

and the algorithm needs to find a path with minimum cost.

After finding the appropriate path, all the nodes in that path are translated

into positions Pi = (Xi, Yi)T in the reference axes. The outcome is not smooth, and

some points are not compliant with the vehicle kinematics, and geometry, hence

the second stage is necessary (motion planning).

Dijkstra algorithm

Dijkstra [208] is a Breadth-First-Search (BFS) algorithm for finding the shortest

paths from a single source vertex to all other vertices. It processes vertices in

increasing order of their distance from the source, which are also called root vertices.

The shortest path between two vertices is a path with the shortest length (i.e. least

number of edges), also called link distance.

Let G = (U, V ) be a weighted undirected graph, with weight function w : E →
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R mapping edges to real-valued weight. If e(u, v), then we write w(u, v) for w(e).

The length of a path p = 〈v0, v1, v2, v3...vk〉 would be the total of the weight of

its constituent edges as in equation below:

length(p) =
k∑
1
w(vi−1, vi) (4.1)

The distance from u to v, denoted by δ(u, v) is the length of the minimum path

if there is a path from u to v; and ∞ is otherwise.

The general idea of Dijkstra’s algorithm is to report vertices in increasing order

of their distances from the source vertex while constructing the shortest path tree

edge by edge; at each step adding one new edge, corresponding to the construction

of the shortest path to the current new vertex. This is accomplished in the following

steps:

1. Maintain an estimate d[v] of the δ(s, v) of the shortest path for each vertex v.

2. Always d[v] ≥ δ(s, v) and d[v] equals the length of a known path (d[v] =∞ if

we have no path so far).

3. Initially, d[s] = 0 and all other d[v] values are set∞. The algorithm will then

process the vertices one by one in some order. The processed vertex’s estimate

will be validated as being the real shortest distance; i.e. d[v] = δ(s, v).

The term “processing a vertex u” means finding new paths and updating d[v]

for all v ∈ adj[u] if necessary. The process by which an estimate is updated is called

relaxation. When all vertices have been processed, d[v] = δ(s, v) for all v.

Motion planning (Local planner)

The motion planning layer is responsible for executing the current motion goal

issued from the behaviours layer. This goal may be a location within a road lane
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when performing nominal on-road driving, a location within a zone when traversing

through a zone.

In all cases, the motion planner creates a path towards the desired goal, then

tracks this path by generating a set of candidate trajectories that follow the path

to varying degrees and selecting from this set the best trajectory according to an

evaluation function. This evaluation function differs depending on the context, but

includes consideration of static and dynamic obstacles, curbs, speed, curvature, and

deviation from the path. The selected trajectory can then be directly executed by

the vehicle. For more details on all aspects of the motion planner, see [209].

In order to transform the global path into suitable waypoints, the TEB motion

planner creates a shorter waypoints Pi = (xi, yi, θi)T within the original path planner

waypoints (as much as possible) taking into consideration the vehicle constraints

and the dynamic obstacles. Hence the map is reduced to the area around the AV

and continuously updating.

When the path planning node determines the path of driving to be performed

in the current context, then the ROS-based TEB local planner algorithm we used

[210] will translate this path into a shorter continuous trajectories that are feasible

for the control system and actuators to track and follow, this trajectory should

also avoid collision with obstacles, detected by the sensors on-board, also should

be comfortable for the passengers. In case there is an object nearby then the agent

will check the possibility of collision using Prism model checker and then modify

the trajectory when needed.

Timed Elastic Band (TEB)

A Timed Elastic Band [211] is composed of a fixed number n of geometric waypoints

or vehicle poses Pi. The following equations are based on the vehicle coordinate

system shown in figure 4.2. The set of waypoints is described by:

Q = {Pi}i=1...n (4.2)
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where each waypoint consists of the tuple:

Pi =

 xi

yi

 (4.3)

Two consecutive waypoints are separated by a time interval ∆Ti. Our approach

considers these time intervals as constant as in contrast to robot navigation there is

no objective of a fastest trajectory. In the context of collision the timed elastic bands

merely optimises the location of intermediate waypoints as there are no boundary

conditions for the final vehicle state. The set of time intervals is given by:

τ = {∆Ti}i=1...n−1 (4.4)

The vehicle velocity, turn rate and accelerations are obtained from the finite

differences between a pair or triple of consecutive waypoints:

vi =

√
(xi − xi−1)2 + (yi − yi−1)2

∆Ti
(4.5)

The change of the velocity yields the longitudinal acceleration:

ax,i = vi − vi−1

∆Ti
(4.6)

The course angle is defined by:

λ = arctan
(
yi − yi−1

xi − xi−1

)
(4.7)

The change of the course angle yields the course rate:

λ̇i = λi − λi−1

∆Ti
(4.8)

Based on the course rate and the velocity the lateral acceleration is given by:
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ay,i = viλ̇i (4.9)

The total acceleration is described by:

atot =
√
a2
x,i + a2

y,i (4.10)

The change of the acceleration, also called jerk, in both lateral and longitudinal

direction is given by:

ȧx,i = ax,i − ax,i−1

∆Ti
(4.11)

ȧy,i = ay,i − ay,i−1

∆Ti
(4.12)

4.3.4 Control system

A control system is necessary to execute the proposed trajectory of the AV. The

move_base [212] control node provides an implementation of actions by executing

acceleration, brake, and steering messages. The move_base node provides a ROS

interface for configuring, running, and interacting with the navigation stack. The

move_base node receives a list of waypoints and target velocities generated by the

planning subsystem and passes them to an algorithm that determines how much to

steer, accelerate/brake, in order to follow the target trajectory.

The process of carrying out the planned motion and correct tracking errors

is determined by the amount of input for each actuator, and a feedback controller

controls this process. These tracking errors are due to the inaccuracies of the vehicle

model; hence, this closed-loop system is vital to ensure the robustness and stability

of the operation. Running the move_base node on the AV ROS system that is ap-

propriately configured results in accurate trajectory following of the trajectory that
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attempts to achieve a goal pose with its base to within a user-specified tolerance.

4.4 Conclusion

In the first part of this chapter, we went through the fundamental details related
to the AV system in a MATLAB/Simulink model where it gives the reader the
necessary introductory information for studying the different characteristics for the
AV design and parking lot operation.

In the second part, we presented our method of the designed system that
consists of the model of Tata Ace vehicle, the autonomous system for the vehicle
that has been connected to the rational agent and verification system presented
in chapter 3. It is important to mention again that the novelty of this chapter is
represented by the fact that such a useful system is introduced for the first time. A
system that is based on free and open-source platforms represented by the model
of a full-size vehicle along with it real dynamic model, sensors and actuators, all
controlled by a novel decision-making system that built from the ground to satisfy
the need of safe driving in real-life driving scenarios. This decision-making system
is connected to the vehicle platform from one side and to a novel verification system
built for the ground to provide a safety layer over the decisions made by the rational
agent.

We also want to mention here that the initial idea was to design the 3D model
for the vehicle and its sensors, also the parking environment in ROS and Gazebo
simulator, while to design the AV perception and control systems in MATLAB. Af-
ter a few months of work, this method did not work properly, and there were many
problems related to the synchronisation and slow processing of data in MATLAB
also related to the connection of MATLAB to an external physical system. MAT-
LAB is not capable of controlling a complex real-time physical system, at least at
the meantime with the limited resources and capabilities of the related toolboxes,
including the parallel computation and real-time toolboxes. Hence we then built
the whole autonomous system in ROS.
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Chapter 5

Implementation and Experimental

Setup

5.1 Introduction

This chapter is a complement to the previous one. Here we presented our experi-

mental AV, the Tata Ace electric prototype as shown in figure 5.1. The autonomous

system we designed for this vehicle is described in chapter 4; hence we only men-

tioned in this chapter the implementation and the experimental setup that consists

of: the sensors, main processing units, CAN bus system, and actuators including the

steering wheel and rear wheels driving controllers. The methods take into account

the distributed computing system we installed on the Ace-EV. Safety, low-cost,

and ease of implementation are the central themes in this work. The reason for

this engineering or technical contribution mentioned in this chapter is to support

some requirements of the industry. The techniques and algorithms used in this

chapter are off-the-shelf; however, those have not been designed to work seamlessly

together in one system; therefore, we modified them based on the system needs so

that they become compatible with each other and with the hardware tools used.

These modifications have been mentioned in some details with the related sections

in this chapter.
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This chapter is dedicated to the third research question of ‘How to use the

ROS-based autonomous vehicle system to drive a real vehicle in real life driving

scenario in a parking lot environment?’.

3 RasPi mono
cameras

3D VLP-16 Lidar
ZED stereo

camera

Figure 5.1: Our electric experimental vehicle showing the hardware and sensors
attached to the body of the vehicle. The sensors configuration is the same as the
AV in simulation in figure 4.8.

5.2 Tata Ace electric vehicle

Tata Ace electric vehicle was first launched into the UK market in 2012. The model

that we got from Tata motors research centre is a custom-built electric vehicle

modified for autonomous driving. Modifications were driven by the need to provide

computer control and also to support safe and efficient testing of algorithms. Thus,

modifications can be classified into two categories: those for automating the vehicle

and those that made testing either safer or easier. A commercial off-the-shelf drive-

by-wire system was installed and integrated into the Ace EV with electric motors

to turn the steering column, depress the brake and acceleration pedal, because it
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is an electric vehicle, there was no need to apply computer-controlled transmission

shaft. The computer and communication systems were fitted in the cargo area.

Ace EV maintains normal human driving controls (steering wheel, brake and

acceleration pedals) so that a driver can quickly and efficiently take control during

testing. Ace EV has its original seats in addition to a custom centre console with

power and network outlets which enable developers to power laptops and other

accessories, supporting longer and more productive testing. The van has also been

modified from a flatbed van to a panel van to provide a better place for a person to

sit inside for extended periods indoors or outdoors, also to protect human occupants

in the event of a collision or roll-over during testing. For autonomous operation, a

safety button is fitted to disable autonomous driving and stop the vehicle.

Ace EV van has two independent power busses. The main power bus re-

mains intact with its 80VDC/140Ah coming from 10 batteries (each 8V/140Ah)

connected in series. This source used to provide power for the two DC motors con-

nected to the rear wheels and to provide the power for the rest of the dashboard,

steering wheel motor and the break/acceleration system. We also fitted an auxil-

iary 12VDC/230Ah power system connected to an inverter to provides power for

the communication hardware along with three computers and eight mini-computers

working together onboard the van.

For computation, Ace EV uses two laptops each core i7, with 16GB of RAM

and SSD storage for faster handling of data. It also uses one Nvidia Jetson TX2

computer-on-board running on ARM (Cortex-A57 (quad-core) + Nvidia Denver2

(dual-core)) CPU, also 8GB of RAM and connected to external SSD for storage.

The system also connected to 8 Raspberry Pis (model 3B) mini-computers onboard.

All the computers and sensors are connected through a gigabit Ethernet network

for reliable and fast communication.

Ace EV uses a combination of sensors to provide the redundancy and coverage

necessary to navigate safely in a parking lot environment. The configuration of

sensors on Ace EV is illustrated in table 5.1.
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5.3 Perception system

Humans are continuously receiving information from the environment using our five

primary senses, and we will not be able to decipher these data and know what is

relevant without perception. An example for this is when we drive on a highway;

there is a continuous stream of information around the driver such as the signs on

the road, lane markings, nearby vehicles, pedestrians passing, and traffic jams. We

need to be able to make instant decisions to maximise our profits while making

sure all the agents around are safe; those decisions should also follow the rules of

driving. This ability to extract and understand the relevant information from the

surrounding is the central pillar for the safe and meaningful operation of any AV.

Through perception, the AV can detect and track the other objects around from a

distance using the cameras and other onboard sensors, also to identify any potential

threats. The perception capability in the AV is available for 360◦ around the AV.

Perception comes as a first stage in the computational pipeline in any AV system.

It has got much attention that can be seen through the rapid development of the

sensors and detection algorithms. Once the AV can extract relevant knowledge

from its environment, it can plan its path and move safely, all without human

intervention.

Our AV experimental perception system consists of one LiDAR sensor (Velo-

dyne VLP-16) connected to the main computer running state-of-the-art LOAM

Velodyne package for state estimation and mapping, one stereo camera (ZED stereo

camera) connected to Nvidia Jetson TX2 running deep-learning state-of-the-art

YOLOv3 object detector for detecting objects (pedestrians and vehicles) around

the AV. Eight mono cameras connected to eight Raspberry Pi running OpenCV-

based Aggregated Channel Features (ACF) object detector for detecting objects

and aruco markers. The sensors configuration is shown in the schematic diagram

in figure 5.2.
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Figure 5.2: Schematic diagram of the perception system sensors configuration and
their direction. Both the camera system and the LiDAR system provide 360◦ cov-
erage each.

Table 5.1: Properties of sensors for the real testbed.

Sensor type No. of sensors Resolution No. of frames
/Speed of rotation

LiDAR 1
3D 16-layer (up to 100m)

360◦H/ 30◦V
300,000 PPS

600 RPM

Stereo camera 1 Colour 1344x376 10 FPS
Mono camera 8 Colour 640x480 6 FPS
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5.3.1 Camera system

Our eyes can be considered as the main perception sense among our five primary

senses for moving around. For the AV, the same thing could be said about the

cameras as it is the most accurate way to create a visual representation of the

environment. AVs relies on cameras attached to the body of the vehicle to create

together a 360◦ field of view. Some have a wide field of views such as a stereo

camera or fish-eye camera, and others have a narrower view like the conventional

mono cameras.

Although they provide accurate visuals, cameras still have their limitations.

It is difficult for them to detect objects in low visibility conditions, like rain, fog,

or night time, it is also difficult for the mono cameras to provide accurate depth

information of the detected objects.

Stereo camera

At the time of writing this thesis, ZED is still one of the best stereo cameras

available in the market to sense space and motion accurately for outdoors usage.

It is also fully compatible with ROS through ROS wrapper and also comes with

an adequate price, for these reasons this camera has been used. As mentioned, we

used one ZED stereo camera placed at the front of the AV to perceives the world

in three dimensions, as shown in figure 5.1 and figure 5.3. Using binocular vision

and high-resolution sensors, the camera can tell how far objects are around the AV

from 0.3m to 25m at up to 100 FPS (depending on the set resolution and speed

of the host machine). Full technical specifications of this sensor are listed in table

5.2. ZED stereo camera is connected to a host processing computer (Nvidia Jetson

TX2).
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Table 5.2: Technical specifications for the ZED stereo camera [10].

Figure 5.3: Front view to the AV showing the stereo camera, and the LiDAR which
is attached to belt driven linear actuator.
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Figure 5.4: Jetson TX2 development kit

Nvidia Jetson TX2

Graphics processing units (GPUs) are currently playing an essential role in ac-

celerating computations in the image processing area of autonomous driving. The

massive parallelism provided by GPUs makes them suitable for accelerating compu-

tations and handling multiple input streams from sensors such as cameras, LiDARs,

and radar. For this reason, companies including (Tesla, Audi, Volvo, etc.) have

started using GPU-equipped computing platforms in realising autonomous percep-

tion features [213]. For this reason, we used the powerful commercial computer-on-

board (Jetson TX2).

Nvidia Jetson TX2 shown in figure 5.4 is an embedded System-on-Module

(SoM) with technical specifications mentioned in table 5.3 that is useful for deploy-

ing computer vision and deep learning applications [214], hence we used it with

the deep-learning YOLOv3 objects detection to accelerate the process using such

small size device. Linux operating system is installed on Jetson TX2 to run the

YOLOv3 algorithm through CUDA toolkit [215] as a ROS node that is connected

to the roscore in the main computer.
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Table 5.3: Technical specifications for the Jetson TX2 module [11].

GPU 256-core Nvidia PascalTM GPU architecture with 256 Nvidia CUDA cores

CPU Dual-Core Nvidia Denver 2 64-Bit CPU
Quad-Core ARM R© Cortex-A57 MPCore

Memory 8GB 128-bit LPDDR4 Memory
1866 MHx - 59.7 GB/s

Storage 32GB eMMC 5.1
Power 7.5W / 15W

YOLOv3 object detector

Through just a glance, humans can know what kind of objects are in an image, where

they are, and how they interact. The visual system for humans is accurate and fast,

allowing us with little conscious thought to perform complex tasks like driving.

Hence, we can say that fast and accurate algorithms for object detection would

provide the necessary information about the environment to drive cars without

specialised sensors.

Multiple fast and accurate computer vision algorithms such as: Faster Region-

based Convolutional Neural Networks (Faster R-CNN) [216], Single Shot Detector

(SSD) [217], You Only Look Once (YOLO) [197], can be considered as the state-

of-the-art nowadays in this area. For our experimental tests and driving scenario

we found that YOLO is outperforming the other methods in terms of providing

accurate real-time detections. An in-depth comparison between those algorithms

could be found in [218, 219].

In 2016, Redmon et al. proposed the end-to-end object detection method

YOLO [5]. As shown in figure 5.5. YOLO divides the image into S × S grids and

predicts B bounding box and C class probability for each grid cell. Each bounding

box consists of five predictions: w, h, x, y, and object confidence. The values of w

and h represent the width and height of the box relative to the whole image. The

values of (x, y) represent the centre coordinates of the box relative to the bounds of

the grid cell. The object confidence represents the reliability of the existing object

in the box, which is defined as:
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Confidence = Pr(object)× IOU(truthPred.) (5.1)

In the Equation above, Pr(object) represents the probability of the object

falling into the current grid cell. IOU (truth pred.) represents the intersection

over union (IOU) of the predicted bounding box and the real box. Then, most

bounding boxes with low object confidence under the given threshold are removed.

Finally, the Non-Maximum Suppression (NMS) method [220] is applied to eliminate

redundant bounding.

To improve the YOLO prediction accuracy, Redmon et al. proposed a new

version YOLOv2 in 2017 [221]. A new network structure Darknet-19 was designed

by removing the full connection layers of the network, and batch normalisation [222]

was applied to each layer. Referring to the anchor mechanism of Faster R-CNN, k-

means clustering was used to obtain the anchor boxes. Besides, the predicted boxes

were retrained with direct prediction. Compared with YOLO, YOLOv2 dramati-

cally improves the accuracy and speed of object detection. However, as a general

object detection model, YOLOv2 applies to cases where there are a variety of classes

to be detected, and the differences among the classes are large, such as persons, cars,

and bicycles. YOLOv3 [197] is not a big difference from its predecessor, the authors

claimed small improvements to the algorithm with the training of a new classifier

network that is better than the other ones.

You only look once (YOLOv3) is a state-of-the-art, real-time, single neural

network object detection algorithm that depends on frame object detection as a

regression problem to spatially separated the bounding boxes and associated class

probabilities directly from full images in one evaluation. Since the whole detection

pipeline is a single network, it can be optimised end-to-end directly on detection

performance.

YOLO divides each image into a grid of S × S, and each grid predicts N

bounding boxes and confidence. The confidence reflects the accuracy of the bound-

ing box and whether the bounding box actually contains an object(regardless of
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Figure 5.5: YOLO detects models as a regression problem. It divides the image
into an S × S grid and for each grid cell predicts B bounding boxes, confidence
for those boxes, and C class probabilities. These predictions are encoded as an
S × S × (B ∗ 5 + C) tensor [5].

class). YOLO also predicts the classification score for each box for every class in

training. It is possible to combine both the classes to calculate the probability of

each class being present in a predicted box. However, one limitation for YOLO is

that it only predicts 1 type of class in one grid; hence, it struggles with very small

objects. So, total S × S × N boxes are predicted. However, most of these boxes

have low confidence scores, and it needs to set a threshold for confidence to remove

most of them, as shown in figure 5.5.

In YOLOv3 as shown in figure 5.6, object detection is defined as a regression

problem, and object bounding boxes and detection scores are directly estimated

from image pixels. This approach eliminates the need for an object proposal step.

First, the input image is resized to a resolution of 416×416 pixels. Next, the image is

divided into 7× 7 grid regions, and two centres of the bounding boxes are assumed

in each grid cell. Therefore, each grid predicts two bounding boxes with their

associated confidence scores (this means a prediction of at the most 98 bounding

boxes per image). A single convolutional network runs once on the image to predict
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Figure 5.6: YOLO detection system. The image processing go through three stages:
(1) resize the input image to 416×416 then (2) runs a single convolutional network
on the image, then (3) thresholds the resulting detections by the model’s confidence
[5].

object bounding boxes. The network is composed of 24 convolutional layers followed

by two fully connected layers which connect to a set of bounding box outputs.

Finally, a non-maximum suppression is applied to suppress duplicated detections.

YOLO looks at the whole image during training and test time; therefore, in addition

to object appearances, its predictions are informed by contextual information in the

image.

YOLOv3 have been designed to work within a PC environment using mono

cameras. In this work, we used a ZED stereo camera connected to Nvidia Jetson

TX2 working with Ubuntu OS 16.04. Hence we did some slight modifications to

configure the algorithm for the different processing machine and the different type

of camera, also to enable accurate range measurement using the stereo camera. The

final result was very satisfying in terms of quality and speed as shown in table 5.1,

also figure 5.15 and the video demonstration with the link provided at the end of

this chapter.

Mono cameras

The mono camera system is consist of: The host computer, the camera module,

and the objects detector algorithms for vehicles/pedestrians and the aruco markers.
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Table 5.4: The Raspberry Pi model 3 B+ Specs [12].

SOC Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC
CPU 1.4GHz 64-bit quad-core ARM Cortex-A53 CPU
RAM 1GB LPDDR2 SDRAM

WIFI Dual-band 802.11ac wireless LAN (2.4GHz and 5GHz )
and Bluetooth 4.2

Ethernet Gigabit Ethernet over USB 2.0 (max 300 Mbps).
Thermal management Yes

Video Yes – VideoCore IV 3D. Full-size HDMI
Audio Yes

USB 2.0 4 ports
GPIO 40-pin
Power 5V/2.5A DC power input

Operating system support Linux and Unix

The host computer (Raspberry Pi 3 Model B+) and its camera module

As mentioned, we needed to cover 360◦ around the vehicle, and this has been done

based on one stereo camera and eight mono cameras. The front-facing camera is

the most important; hence we used a stereo camera with a deep-leaning object

detector running on the Jetson TX2. However, it is not possible to adopt the same

approach for the rest of eight cameras as this is very expensive and not necessary

in our parking lot scenario; hence we used a much-less expensive method by using

the budget Raspberry Pi system to run the object detectors with decent accuracy

and speed as shown in table 5.1 also figure 5.11 and the video referred to in the end

of this chapter.

The Raspberry Pi is a mini-computer, System-on-Module (SoM). It uses an

ARM-compatible CPU and GPU units included in Broadcom system featured by

Pi model. For the model used in this work (Pi 3 Model B+), the speed of the CPU

varies from 700 MHz to 1.2 GHz and onboard memory of 1 GB RAM; detailed specs

are shown in table 5.4. Each Pi is connected to a camera module. We used v2 Pi

camera that has a Sony IMX219 8-megapixel sensor. The camera module can be

used to take high-definition video, as well as stills photo [223]. The Raspberry Pi

module, the camera module, and the mounting method is shown in figure 5.7. Rasp-

berry Pi is running ACF object detector through a light version of Linux/Ubuntu

called (Lubuntu 16.04), and ROS installed.
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Figure 5.7: Raspberry Pi module, Raspberry Pi camera V2 module, and Raspberry
Pi case for mounting on the vehicle.

Figure 5.8: Side view to the AV showing three Raspberry Pi cameras attached and
the LiDAR dragged to the left side of the AV then tilted for better view to the area
near the left side of the AV.
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Figure 5.9: Overview of the ACF detector. Given an input image I, compute several
channels C = Ω(I), sum every block of pixels in C, and smooth the resulting lower
resolution channels. Features are single pixel lookups in the aggregated channels.
Boosting is used to learn decision trees over these features (pixels) to distinguish
object from background. With the appropriate choice of channels and careful atten-
tion to design, ACF achieves state-of-the-art performance in pedestrian detection
[6].

ACF object detector for vehicles and pedestrians

Real-time image processing on a low-cost embedded system is still a challenging re-

search area. For this embedded platform, there is a trade-off between accuracy and

processing time. We used the Aggregated Channel Features (ACF) detector algo-

rithm (to detect pedestrians and cars) that can perform in real-time on a Raspberry

Pi embedded system while still keeping a decent accuracy.

ACF detector proposed in [6] used a combined feature which consists of three

channels of LUV colour space (where L stands for luminance, whereas U and V

represent chromaticity values of colour images), a normalised gradient channel and

a six-channel Histogram of oriented Gradient (HoG) and then arranged in a boosted

tree. The block diagram of the ACF detector method is presented in figure 5.9. ACF

detector will extract the proposal region consisting of the positive area and negative

region. Positive proposal regions are obtained from training data containing the

bounding box of the ground truth area. Meanwhile, the negative proposal region is

extracted automatically by the sliding window in all image area except the bounding

box of ground truth area.

Let I(x, y) be the RGB image ofm×n size consisting of three channels. Firstly,

the image is transformed into the LUV colour space, and then the gradient magni-

tude of the image I is calculated using the following formula.
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M(i, j) =
√

(∂I(i, j)
∂x

)2 + (∂I(i, j)
∂y

)2 (5.2)

Also, the gradient orientation of image I is expressed by the following equation:

O(i, j) = tan−1(
∂I(i,j)
∂y

∂I(i,j)
∂x

) (5.3)

where ∂I(i,j)
∂x

derivative I at the coordinates (i, j) in the x-direction and ∂I(i,j)
∂y

is the derivative I at the coordinates (i, j) in the y-direction. The gradient image

is smoothed using a convolution operation between the gradient image and a tri-

angular filter [1 2 1] / 4. After that, the smoothed image is normalised to get the

details of the gradient scale by the following equation:

M̃(i, j) = M(i, j)
S(i, j) + c

(5.4)

where S(i, j) is the smoothed image and c is a small normalisation constant,

e.g. c = 0.005.

The steps to compute the HoG with the bin number = 6 and the cell size =

4 are as follows. For each sub-window called a cell with 4× 4 size, the normalised

gradient, M̃(i, j), is quantised into six bin histograms, with the orientation range

0-180, based on the value of O(i, j). The assignment of the gradient in the q-

oriented bin uses the linear interpolation. The HoG feature size is m
cellsize

× n
cellsize

×

bin_number. The aggregate features obtained are arranged in a decision tree and

trained using bootstrapping and AdaBoost classifier alternately and repeatedly as

many N stages. At each step, the negative examples are extracted and accumulated

with the previous ones [6, 224].

With the appropriate choice of channels and careful attention to design, ACF

achieves satisfying performance in pedestrian detection [6, 225], also in cars detec-

tion [226, 227]. A sample of this method for pedestrians and vehicles detection in

a parking lot is shown in figure 4.13. Each Raspberry Pi is also running Aruco
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marker detection.

Aruco marker (Fiducial) detection

The standard method in parking scenarios to find a free parking space is to detect

the white parking rectangle painted on the ground that point out to an unoccupied

parking spaces, this sometimes could be difficult to detect if it is partially covered

by the next parked vehicle or if there are vehicles parked on both sides of the free

parking space where those will make the detection of the white rectangle from a

distance a difficult problem. This method also does not provide the same level of

information for the AV compared with the method used in this work.

We used a method called aruco marker detection (similar to QR codes) [228].

This method allows the robot to determine its position and orientation by looking

at fiducial markers that are fixed in the environment of the robot [229, 230]. In

our case, we flipped the concept, which means that the AV can determine the

position and orientation of the aruco marker if the position and orientation of the

AV are known in the environment. Initially, the position of a marker is specified

or automatically determined. After that, a map (in the form of a file of 6DOF

poses) is created by observing the fiducial marker and determining the translation

and rotation between the camera and that marker with the condition that all the

camera intrinsic parameters are known and defined, the aruco marker size should

also be known and defined. An example from our parking lot is shown in figure

5.11.

Aruco markers are binary square fiducial markers that can be used for camera

pose estimation. Their main benefit is that their detection is robust, fast and simple.

The aruco module includes the detection of these types of markers and the tools to

employ them for pose estimation and camera calibration [231]. An aruco marker

is a square marker composed by a wide black border and an inner binary matrix

which determines its identifier (ID). The black border facilitates its fast detection in

the image, and the binary codification allows its identification and the application
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Figure 5.10: Aruco markers patterns.

of error detection and correction techniques. The marker size determines the size

of the internal matrix. For instance, a marker size of 4x4 is composed of 16 bits.

Some examples of aruco markers are shown in figure 5.10 below.

The aruco_detect node detect the markers, this node is running inside the

Raspberry Pi board (We installed a light version of Linux and ROS in the raspberry

pi) and connected to the central ROS system running in the main computer through

Ethernet switch (The Ethernet switch is connecting all the sensors and the eight

Raspberry Pis with the two main computers and the Jetson TX2 computer board).

For every marker visible in the image, the algorithm generates a set of vertices

in image coordinates, as shown in figure 5.11. Since the size of the fiducial and the

intrinsic parameters of the camera are known, the pose of the fiducial relative to

the camera can be estimated.

5.3.2 LiDAR system

Laser scanners are becoming more popular among self-driving cars. During the

DARPA challenge competitions, all the top-ranked cars heavily depended on laser

scanners in their perception systems [15, 16]. Google self-driving car project (Waymo)

heavily relay on LiDAR as well, and many other car manufacturers [232, 233]. There

are multiple reasons for this preference, as mentioned in the previous chapter. Below

we have presented the LiDAR used in this project which is the Velodyne VLP-16.
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Figure 5.11: Aruco marker detection that has been used to determine a parking
space position and orientation through a mono camera attached to the body of the
AV.

Figure 5.12: Velodyne VLP-16 LiDAR
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(a) AV start from the starting point looking for
a free parking space, the first step is to move
forward until the perception system detect the
Aruco marker that indicates the existence of a
free parking space.

(b) Here we can see that the AV detected the
Aruco marker through the left first camera at-
tached to the body of the AV, and start the
process of parking based on the coordinated
obtained from the aruco marker.

Figure 5.13: A 3D point cloud example generated by the LiDAR for the path
planning of the AV, the coordinates are generated by the Agent then deliberated
with the Planning system for guiding the AV in a safe and feasible path to reach
parking space. For a detailed view of this operation, please have a look at the video
refereed to in the abstract section of this thesis.
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Figure 5.14: The inflation of the objects detected by the LiDAR where this adds a
higher level of protection from a collision, the inflation layer is generated by ROS
and controlled by the agent. The thickness of the inflation layer set by the developer
and can vary from a few centimetres to a few meters.

Velodyne VLP-16 LiDAR

The Velodyne VLP-16 LiDAR (PUCK) shown in figure 5.12 is a multi-beam 3D

LiDAR (Light Detection And Ranging) that scans the environment in 3D at very

high speeds (up to 20Hz), generating around 300,000 points per second. It is man-

ufactured by Velodyne Inc., a U.S. based company which evolved from the DARPA

Grand Challenge in 2005. The company holds a great reputation for its class-leading

LiDAR technologies, used in a variety of applications including autonomous vehi-

cles, vehicle safety systems, 3D mobile mapping, and 3D aerial mapping [234]. The

Velodyne VLP-16 LiDAR features are:

• Number of laser emitter/detector pairs: 16.

• Horizontal Field of View (FOV): 360◦.

• Vertical Field of View FOV: 30◦.

• Rotation rates: 5 Hz to 20 Hz.

• Maximum range of laser returns: 100 m.
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• Low power consumption: 8 Watts.

• Ranging accuracy between 22 and 27 mm.

In figure 5.13 we can see using the RViz (ROS visualisation tool) the planning

operation of the AV in the parking lot. In the beginning, the AV will not detect

any aruco marker because it is still far from the parking spaces, hence the agent

commands the vehicle to move forward as shown in part (A) of the figure. After

few moments, the perception system detects an aruco marker using the left mono

camera and the agent amend the trajectory through the planning operation as we

can see in part (b) of the same figure, to guide the AV to the free parking space.

We have included another level of safety to the planning operation through

the map inflation layer, as shown in figure 5.14. Here we can control how far we

want the AV to be from objects around by adding an inflation layer with variable

thickness, the value of thickness should be set by the developer. However, it could

be activated and deactivated by the Agent through ROS.

Figure 5.15 shows a camera and 3D point cloud from the experimental au-

tonomous system created by the stereo camera and VLP-16 LiDAR with rotation

speed around 10Hz (600 RPM). The front camera detected a pedestrian moving in

different positions. We can also see the pedestrian as a white point in front of the

rendered vehicle in the point cloud, which could be used to determine the position,

speed, and direction of the object. The LiDAR is placed on the top front side of the

rendered vehicle, as shown in figure 5.3. The LiDAR can detect objects nearby, but

with no recognition, the objects recognition in our system is only occurred in the

cameras subsystem and then pointed out to the place of the object in the LiDAR

point cloud.

LiDAR operating principles

LiDARs work on the principle of Time of Flight (ToF) measurement of laser beams.

A laser emitter emits an infrared (typically 905nm wavelength) laser pulse and

measures the time taken for the pulse to get reflected from an object. Then, the
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device calculates the distance of the object from the measured time. The Velodyne

VLP-16 LiDAR consists of 16 laser emitter/detector pairs operating at the 905 nm

wavelength. These 16 pairs fire about thousands of times per second in a sequential

manner, thereby enabling users to create 3D point clouds in real-time. Figure 5.15

illustrates how the 16 laser emitter/detector pairs scan the environment.

The 16 laser emitter/detector pairs sweep horizontally gathering a series of ToF

hits from the obstacles in front of them. The vertical separation between the two

pairs is 2◦, and this vertical angle increases exponentially with increasing distance

due to beam divergence. In simple terms, the beams will appear far apart from each

other as the distance increases. Apart from the ToF based distance, the VLP-16

LiDAR provides the azimuth angle, elevation angle, the reflectivity of an object with

256-bit resolution (independent of laser power), dual returns of the reflections from

the transmitted laser beams (strongest and last), and timestamps based on either

an attached GPS device or its internal clock. It furnishes all these data through

an Ethernet port. The LiDAR also provides a neat web-server user interface that

allows users to change device parameters like the port numbers, FOV, etc. [235].

The LiDAR utilises a SLAM (Simultaneous Localisation And Mapping) pack-

age to localise the position of the AV in the environment and to build the map for

that environment, this SLAM package called LOAM (Lidar Odometry And Map-

ping) Velodyne.

LOAM Velodyne

Mapping in 3D is a popular technology [236, 237]. Mapping with LiDARs is com-

mon as LiDARs can provide high-frequency range measurements where errors are

relatively small constant irrespective of the distances measured. In the case that

the only motion of the LiDAR is to rotate a laser beam, registration of the point

cloud is simple. However, if the LiDAR itself is moving as in many applications of

interest, accurate mapping requires knowledge of the LiDAR pose during continuous

laser ranging. One common way to solve the problem is using independent position
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(a) Person recognised to the left of the front side camera, we can see the same object detected by
the LiDAR in RViz.

(b) Person in the right with the correspondence detection from the LiDAR frame in RViz.

Figure 5.15: A 3D point cloud example generated by a single rotation of the LiDAR
sensor, the method used here is by detecting the object through the camera sys-
tem, segment and classify them then project them back into the LiDAR frame for
acquiring their data: distance, position, direction, and velocity. We can see in this
figure a person detected by the front stereo camera and the correspondence LiDAR
detection.
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estimation (e.g. by a GPS/INS) to register the laser points into a fixed coordinate

system. Another set of methods use odometry measurements such as from wheel

encoders or visual odometry systems [238, 239] to register the laser points. Since

odometry integrates small incremental motions over time, it is bound to drift, and

much attention is devoted to the reduction of the drift (e.g. using loop closure).

The key idea to obtain a high-level of performance is to divide the typically

complex problem of SLAM, which seeks to optimise a large number of variables

simultaneously, by two algorithms. One algorithm performs odometry at a high

frequency but low fidelity to estimate the velocity of the LiDAR. Another algorithm

runs at a frequency of an order of magnitude lower for fine matching and registration

of the point cloud [7].

As laser scanner scans while rotating, like the Velodyne VLP-16 LiDAR scans

with a full-spherical rotation, and a full spherical rotation forms a sweep. LOAM

extract edge point and surface point in each scan by evaluating the smoothness of

each point of a sweep. The smoothness is calculated by:

c = 1
|S|· ‖XL

(k,i) ‖
‖

∑
j∈S,J 6=i

(XL
(k,i) −XL

(k,j)) ‖ (5.5)

Where L denoting in the LiDAR frame, k denoting at the start time of the kth

sweep, i/j denoting the ith/jth point, S denoting the consecutive point set of point

i, and X denoting the coordinates of points in the LiDAR frame at the start time of

the kth sweep. The points with the maximum c value are extracted as edge points

and points with minimum c value as surface points.

Having all the features extracted, first LOAM transforms the feature points in

current sweep and last sweep to the same coordinate, namely the end time of last

sweep LiDAR frame. During the transformation, LOAM use linear interpolation of

pose transforms (r, t) between two sweeps to correct the distortion as the scanner

rotates when the platform is moving. Then it finds the correspondence of each

feature point. The searching processing is occurred by minimising the distance of

features to the corresponding lines or surfaces to get the optimal transform (r, t)
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Figure 5.16: Block diagram of the LiDAR odometry and mapping software system
[7].

between two sweeps. As each feature point to the corresponding line or surface

provides a distance, LOAM stacking all the distances to a nonlinear function:

f(r, t) = d (5.6)

Computing the Jacobian matrix J of f with respect to (r, t), then Eq. 5.6 can

be solved by nonlinear iteration method, namely the Levenberg-Marquardt method:

T ← T − (JTJ + λdiag(JTJ))−1JTd (5.7)

Where T denote the combination of r and t.

The mapping processing of LOAM is almost the same as odometry processing.

The differences are that there is no need to correct distortion and the correspon-

dence is found between current sweep and the point clouds in the map, which is

accumulated during the mapping processing by adding feature points transformed

from the LiDAR frame to the map frame. The map frame is fixed on the initial

LiDAR pose. The last optimal object of mapping processing is the pose related to

the map frame.

Figure 5.16 depicts the software system and the split between the mapping and

transform computation.

The stages in the above block diagram are as follows: the point cloud registra-

tion refers to the points received by a laser scan, which in this step are saved into
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a tensor. After this, the LiDAR odometry is computed assisting which both map

generation and transform integration (which is finer odometry).

Starting with feature analysis, both sub-algorithms extract feature points lo-

cated on edges and planar surfaces, and merge the edge points to an edge line, and

planar surfaces to planar surface patches. The geometric distributions of local point

clusters have correspondences to other clusters that can be found by studying the

associated eigenvalues and eigenvectors.

Plane and edge detection are done using the Random Sample Consensus (RANSAC)

plane fitting method. It can be interpreted as an outlier detection method. Thus,

the inliers or data that can be explained by some model parameters can be sep-

arated from the outliers. In 3 dimensions, a plane of best fit can be found, and

the outliers may mark other surfaces that RANSAC can be performed on again,

iteratively sectioning out all the planes in each laser scan.

After a full scan is separated into all its planes (inliers) and edges, a scan

can be separated into four sub-regions each with up to 2 edge points and four

planar points. After the identification of planes and edges, the Iterative Closest

Point (ICP) algorithm is used to find the transformation between frames. More

specifically, Iterative closest point attempts to find the translation t and rotation R

that minimises the sum of the squared error between two corresponding point sets.

Based on a number of point clouds, the transformation can be identified and

then the clouds can be fused to produce a single cloud. As it can be imagined,

the higher the number of points, the more time it takes to perform this numerical

computation and find the transformation between two clouds. For this to be done

in real-time, the point cloud must be downsampled, using the method of voxel-

grid downsampling. This method will merge each point with several points near it

to reduce significantly the number of points while preserving much of the spatial

information.

The LiDAR mapping algorithm runs at a lower frequency than the odometry

algorithm and is only called once per sweep. As the pose transformation between
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Figure 5.17: Belt driven linear actuator/Right - Stepper motor controlled by uStep-
per arduino board/Left.

two point clouds is known, the mapping algorithm matches and registers the point

clouds in the world coordinates. As this will be done repetitively, the map will

quickly grow to uphold a strong accuracy due to the LiDAR odometry.

The problem addressed in this work is to perform an ego-motion estimation

with point cloud perceived by a 3D LiDAR, and build a map for the traversed

environment to provide motion estimates for the guidance of an AV. The LiDAR is

installed on a moving mechanism as shown in figure 5.17.

LiDAR moving mechanism

We used a belt-driven linear actuator shown in figure 5.17 placed on the top of the

AV as a movement mechanism for the LiDAR, as shown in figure 5.8. The LiDAR is

capable of moving between left and right sides of the AV for better visualisation of

the surrounding when needed (e.g. when come to parking space and need to check

distances from the vehicle aside. We build a tilting mechanism in the laboratory to

enable the LiDAR not only to move freely between the two sides of the vehicle but

also to tilt with a specific angle in order to have a clear vision of objects nearby.

The LiDAR tilting mechanism is controlled through uStepper controller.
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uStepper controller board

uStepper (Rev B) [240, 241] is a compact Arduino compatible board, with a built-

in stepping motor driver and 12-bit rotational encoder, which allow the uStepper

direct installation on the back surface of a NEMA 17 size stepper motor. This

compact system allows developing of applications by using a stepping motor, with

no need for messy wiring that we used to see in the separated Arduino-motor system.

Additionally, tracking of the absolute position of the motor shaft can be done by a

12-bit rotary encoder, which allows the uStepper to identify the exact steps.

5.4 Control system

5.4.1 Controller Area Network (CAN bus)

The Controller Area Network (CAN) is an entrenched networking system, which

developed by Robert Bosch during 1980s, had been explicitly designed in consider-

ation of real-time requirements, low cost and ease handling resulted in expanding

its utilisation by automotive and automation industries.

Initially, The CAN had evolved for control components interconnection in au-

tomotive vehicles. Because of complicated control functions which carried out by

engine management systems, anti-lock brakes, traction controls and other systems,

therefor, dedicated lines demanded to connect different control components. Never-

theless, the constant increase in complexity has resulted in a physical maximum in

the number of wires demanded and the actual size of the connector. CAN facilitate

a dramatic decrease in wiring complexity, besides it enables multiple devices to be

connected using one pair of wires, allowing simultaneous data exchange between

them. [242].

The basic features of CAN are:

• High-speed serial interface: CAN can be configured to work from a few kilo-
bytes up to 1 Megabit transmission rates.
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• Short data lengths: The short data lengths of CAN messages mean that data
access time is very low compared to other systems.

• Low-cost material: can works on a simple twisted pair of wires, consequently,
connecting a CAN network is less costly compared to a multi-core or Coaxial
cables which often demanded by other bus systems.

• Multicast and peer-to-peer connection: With CAN, it is easy to broadcast
information to all nodes or a subset of the bus and easily implement a peer-
to-peer connection.

• Rapid reaction times: The ability to transmit information without the need
for code or permission from the bus arbiter leads to quick reaction times.

• Troubleshooting: The high level of error detection and the number of error
detection mechanisms provided by CAN devices mean that CAN is highly
reliable as a network solution.

CAN operating principles

After the connection is established with the different nodes, data start to flow over

a CAN network; no individual nodes are processed. Instead, an identifier message

is set to act as a unique tag on its data content. The identifier determines not only

the contents of the message but also its priority. When a node wants to transfer

information, it just passes the data and the identifier to its CAN controller and

sets the related send request. Next, it is up to the CAN controller to format the

contents of the message and transfer the data in the form of a CAN frame. Once the

node can reach the bus and transmit its message, all other nodes become receivers.

After the message is received correctly, these nodes perform an acceptance test to

find out whether the data is relevant to that specific device, based on the message

ID. Therefore, the connection can be made not only on a peer-to-peer basis, where

a single node accepts the message but also to implement simultaneous broadcasts

and connections where multiple nodes can accept the same message using a single
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transmission. Moreover, the ability to transmit data on an event basis means that

Bus load usage can be kept to a minimum.

Node 1
Topcon AES-25
steering wheel

controller

Node 2
Curtis 1236E
rear wheels
controller

PCAN-USB
PC interface

Host computer
ROS AV system

Figure 5.18: CAN bus system showing the two driving nodes for the AV.

Lateral control (Topcon AES-25 Steering wheel controller)

The AV is factory equipped with a lateral control (Topcon AES-25 Steering wheel

controller). The motor controller generates the electrical signals to drive the motor

to a prescribed angular position. The steering control system prescribes the position

to which the motor is driven and communicated to the motor controller via a CAN

bus link. The angular position of the motor is determined by an incremental optical

encoder mounted inside the motor housing. The encoder provides the ability to

resolve the 4096 steps per shaft revolution and indicate the direction of rotation.

Four equally spaced index marks per revolution allow accurate commutation for the

motor drive electronics [243].

Longitudinal control (Curtis 1236E rear wheels controller)

The AV is also factory equipped with a longitudinal control (Curtis 1236E) that

provides advanced control of AC induction motors performing on-vehicle traction

drive. This controller provide a highly cost-effective combination of power, perfor-

mance and functionality to control the rear wheels powered by AC motor through

CAN bus system [244]. The technical details about the vehicle control system are

further explained in appendix B.
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5.5 Conclusion

In this chapter, we have presented the hardware used to implement the autonomous

system on the experimental Tata ace eclectic vehicle. The main parts of the au-

tonomous system have been presented in the previous chapter; hence, we did not

went through the same topics again but only presented the hardware parts of the

system.

The perception system consists of one Velodyne LiDAR VLP-16 that is at-

tached to a belt-driven linear-actuator on the top of the AV. The LiDAR can ob-

serve a 360◦ view around the vehicle, and it can also move left or right using a

stepper motor when it reaches one side of the vehicle it can then tilt with a specific

angle controlled by ROS through uStepper Arduino board as shown in figure 5.8.

The perception system also has a high-resolution stereo camera that has been opti-

mised to work with outdoors robots, and it can accurately estimate the distance of

objects up to 20m from the vehicle, this is connected to Nvidia Jetson TX2 board

for running the YOLOv3 object detector, this board running a Linux/Ubuntu 16.04

and ROS kinetic system that is also connected to the main roscore on the main com-

puter through Ethernet connection. There are also eight mono cameras connected

to Raspberry Pi 3 each. Those are running a light version of Ubuntu/Lubuntu 16.04

and ROS and connected to the main roscore through Ethernet connections as well.

Those sensors have been used for their low cost and adequate performance. The

autonomous control system is connected to the physical vehicle actuators through

the CAN-bus network, as shown in figure 5.18. This system proved to be capable of

driving and guiding the vehicle efficiently in a parking lot, and this has been tested

in a small parking lot designed for this purpose in the AMRC research centre in

Sheffield / UK, as shown in the videos demonstration link attached below. The AV

is capable of detecting and avoiding objects while driving, looking for a free parking

space and commencing the parking operation. The prototype vehicle was designed

with an emergency button that is easy to access when needed to stop the vehicle 1.

1https://tiny.cc/mohammed-av-2019
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Chapter 6

Case Study

6.1 Introduction

This chapter presents a case study for both design-time and run-time verification

of the agent logic and reasoning cycle. This agent is controlling the AV in simu-

lation for a parking lot environment. The AV start the work autonomously from

the entrance of the parking lot and continue until it finds a free parking space and

executes the parking action successfully. Before going into the details of the verifi-

cation system, we first presented an example of the agent code shown in figure 6.1

then we defined the meaning of its sentences (The agent reasoning code is attached

in appendix A).

6.2 Agent design for a parking lot environment

An example of the agent code is shown in figure 6.1 that is cyclically repeated to

guide the AV through the reasoning cycles and generate PTP models for the nearby

traffic participants based on perception predicates.

In the example, the formation of plans is shown for an agent undertaking an

autonomous parking manoeuvre. In this case, plans represent the agent’s actions;
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1 PERCEPTION PROCESS
2 Monitor the following Boolean :
3 Parking space located .{[] ,[0 ,5]}
4 Pedestrian detected .{[] ,[ -2 ,4]}
5 Generate PTP for Pedestrian .
6 {[I am at global waypoint ] ,[0 ,0]}

8 EXECUTABLE PLANS
9 // Plan 1

10 If ^~[ Parking space located ] then +^[ Need to explore parking
lot.].

12 // Plan 2
13 If ^[ Need to explore parking lot] then [ Generate exploration

waypoints .]
14 [ Update drive mode.].

16 // Plan 3
17 If ^[ Free parking lot detected ] then -^[ Need to explore

parking lot]
18 +^[ Commencing parking operation ].

20 // Plan 4
21 If ^[ Commencing parking operation ] then [ Generate parking

waypoints .]
22 [ Update drive mode.].

24 // Plan 5
25 If ^[ Pedestrian detected ] while ^[ Distance more than 3m and

less than 6m] and
26 ^[ Object getting closer ] then [ Activate slow mode.]
27 [ Generate object avoidance waypoints .]
28 +^[ Object PTP generated .]
29 [ Update drive mode.].

31 // Plan 6
32 If ^[ pedestrian detected ] while ^[ distance less than 3m] then
33 [ Activate stop mode.]
34 [ Update drive mode.].

36 // Plan 7
37 If ^[ moving vehicle detected ] while ^[ distance more than 6m

and less than 12m] and
38 ^[ object getting closer ] then
39 [ Generate object avoidance waypoints .]
40 +^[ object PTP generated ]
41 [ Update drive mode.].
42 .
43 .
44 .

Figure 6.1: Example of the agent code used to control the AV, the full code has
been listed in appendix A.
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each is represented by a triggering condition. The perception process represents

sensing data that is collected on every evaluation. The ‘ˆ[. . .]’ represents the

evaluation of a belief condition that can be set by an internal event. In this case,

both plans start by evaluating whether a specific belief is matched. Should this

belief be matched, a series of actions is then planned, again any element headed

‘ˆ[. . .]’ shows then update of a belief. Elements shown within square brackets are

executable sentences that contain code defined deeper within the structure which

links to actuation.

Plan 1 can be read as follows: if I believe that no free parking space is detected,

then I believe that I need to explore the parking lot. This is then extended by Plan

2, which can be read as if I believe that I need to explore the parking lot then a

set of exploration waypoints should be generated, and these should be uploaded to

activate the drive mode. Plan 3 is used to capture the condition when a parking

space is detected and can be read as: if I believe that I have detected a free parking

space, then I remove the belief that I need to explore the parking lot, and I believe

I can commence parking operation.

Plan 4 contains the high-level code with trigger for planning this movement:

if I believe that I can commence the parking operation, I should generate a set of

waypoints for the parking space and update the drive mode to reflect this. Plans 5,

6, and 8 can be read as two pairs; each deals with the detection of an object, either

a person or a moving vehicle. Generally, if the object is detected at a distance more

than 12m then no action is required, if the distance is less than 12m and more than

6m, then do generate an object avoidance waypoints and update the drive mode. If

it is detected at a distance less than 6m and higher than 3m, then the drive mode

is switched to a slower mode, and a new set of waypoints is generated to avoid the

object; otherwise, the vehicle is stopped.
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6.3 Verification of decision making for a parking

lot scenario

This section presents an example of a parking lot scenario, where the AV is searching

for a free parking space. In order to showcase the approach, we will consider here

a basic scenario in which the AV must decide what to do in a situation where it

detects an obstacle and/or a complex environment. In the case of an obstacle,

the AV may decide it can plot a safe path around it whereby it considers the

obstacle to be avoidable, and so retains control. During this process, the RA will

continuously monitor the road users in its environment and decides its actions and

trajectory based on the data from the perception system. The RA then checks all

the probability of success of the intended actions before any execution using Prism

model checker.

MCMAS is used to verify (during design-time) the rules (mainly represent the

driving rules) and actions (the movements of the AV based on the environmental

situation) that need to be considered within zone 1 and 2 of the AV, as shown in

figure 6.3. We used a limited set of predicates (rules, plans and actions) for the

parking lot scenario as a proof of concept; real-life driving scenarios will need more

rules to determine the proper behaviour of the AV.

The AV needs to build a feasible trajectory and to maximise the distance from

the objects around a suitable cost-map. The movements of the traffic participants

usually amenable to a probabilistic model, as based on the type of environment.

A trajectory for a pedestrian walking in a parking lot is estimated by a prediction

method also accounting for previously collected datasets in similar scenarios, e.g.

[245, 246]. A pedestrian may keep walking at the same speed if there is a car passing

nearby or could reduce the speed, stop or change the path; the same idea can be

implemented for car drivers, taking into consideration the driving rules and the car

dynamics.

In this work, the agent generates probabilistic behaviour models for the non-
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stationary objects based on the observed information and from previously recorded

data for behaviour of pedestrians and drivers in similar real-life scenarios. The de-

tails of this operation have been clarified in chapter 3/section 3.2.3. The verification

system will take into consideration probabilities for the moving objects, verifying

the intended actions of the AV against them using the Prism probabilistic model

checker, to select the most likely-to-succeed trajectory/action for execution. The

agent keeps updating the probabilistic models of the dynamic objects and sends it

to an onboard Prism in each reasoning cycle of the agent.

This operation is repeated as long as there are no objects within zone 1 of the

AV shown in figure 6.3, as soon as one of the moving objects come across zone 1

then the AV will stop. If there is any moving object within zone 2, then the AV

will halve the speed, based on pre-programmed rules and the Prism feedback that

verifying the predicted movement of the other objects and choosing the best action

to execute.

6.3.1 Design time verification of agent logic in MCMAS

Here we first define then verify a set of predicates that will form the rules of basic

driving, to be used later by the AV during its run-time operation as shown in table

6.1 and figure 6.2. The number of those rules could rapidly increase depending on

the driving scenario and the environmental situation. While it is challenging for the

designer to check that there is no conflict between them manually for this simple

case study, it will be even harder when taking into account other general driving

scenarios.

It is essential to mention that there is no direct connection between MCMAS

and the agent reasoning cycle because this verification process is carried out at

design-time. The programmer needs to design the sets of predicates for the agent,

then use those in the verification software to check their stability and consistency,

correct any errors that the model checker refer to through the counterexample then

it is safe to use them with the agent code to take control of the vehicle during
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run-time operation.

Predicates definition

Here we define three sets of predicates: sensing abstractions, future events conse-

quences, and actions, as listed in table 6.1. The operational logic of the RA is

restricted to the parking lot scenario. The RA will choose its decisions based on

the sensory abstractions and a set of rules, as shown in figure 6.2, those rules deter-

mine the best action to be carried out by the AV based on the sensing abstractions

and the possible future event consequences. MCMAS is used to compute with the

resulting Boolean evolution system to verify the logical stability and consistency of

those predicates.

Figure 6.2: Fragment of the agent’s evolution rules in MCMAS.
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Table 6.1: List of sensory and action’s abstractions of the agent.
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Worst case mathematical model

Each rule can be verified by computing the minimum space-time distance of the

evolution of the progress of the oncoming car/pedestrian/object (denoted by E )

and that of the AV (denoted by V ):

E : Ec + [vet cos(α), vet sin(α), st], t > tc (6.1)

V : Vc + [vat cos(β), vat sin(β), st], t > tc (6.2)

which describe the future movements of the environmental object and the AV,

respectively. tc is the current time when sensing of E and AV decision have been

completed, and Ec and Vc are the oncoming objects and the AV position at the

time of the sensor measurement are abstracted, and the decision is made by the AV

about what to do. We say that no collision occurs in the worst case if the geometric

distance (in 2D) of these two lines is greater than 1m for any possible heading angle

α and positions Ec as shown in figure 6.3. s is a time separation factor defined as

s = 1m/s to make the dimensions in space-time compatible and used as a scaling

factor for time equivalence of space separation (the smaller s is chosen, the bigger

will be the time difference requirement for two objects occurring in the same place).

The validity of all rules in figure 6.2 have been checked using this type of simple

worst-case analysis.

Table 6.2: Properties of the verified agent logic in MCMAS.

Execution time
in (sec.)

Number of
reachable states

BDD memory
in use (bytes)

Peak number
of nodes

0.038 1.05267e+06 6641468 16352

Verifying the predicates in MCMAS provided the data listed in table 6.2. From

this table, we can see that the time needed for MCMAS to verify the agent predicates

is (0.038 sec.), this time is not critical compared with the time needed for Prism

to verify the PTP model. The reason is that the MCMAS is used during the

design-time stage, so even if it took a long time, it would not negatively affect
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AV

Zone 1

Zone 2

6m

3m

1m

1m

2m

2m

Figure 6.3: Schematic for the two zones defined in the agent rules in figure 6.2, the
black arrow refers to the direction o driving, any moving object access to zone 2,
the AV will slow down, while accessing zone 1, the AV will stop until it is clear then
move again.

Figure 6.4: Part of the checking formulas in MCMAS with their verification result.
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the decision-making system. The result of verifying the sets of queries explained

in chapter 3/section 3.3.1 is shown in figure 6.4. Those are the queries that the

developer ask the MCMAS model checker to check the stability and consistency

of the agent logic. From figure 6.4, we can see that all the seven formulas ask to

the model checker, their result are (true) means that the agent logic developed is

stable and consistent. If any formula gave a (false) result, then the model checker

will provide a counterexample to show which state or set of states does not satisfy

the properties in queries. Then it will be easy for the developer to correct the logic

based on the given counterexample.

6.3.2 Verification of agent decision making in PRISM

Probabilistic decision-making and threat-assessment methods assign probabilities

to different events, e.g., how likely it is to collide with another object in the next

few seconds given some assumptions on uncertainties. Figure 6.5 illustrates the

proposed scenario for the AV in terms of trajectory generation based on the possible

behaviour of other objects around where the AV is moving forward looking for a

free parking space, at the same time, a pedestrian and a vehicle (P2, V1) is moving

towards the AV, another pedestrian (P1) standing in position (x=3.5m, y=4m)

from the AV in relative coordinates. The RA will generate PTP models for the

two traffic participants (P2, V1) and also for the AV to find the best trajectory

and speed under the current circumstances. The RA will keep updating the PTP

models with every reasoning cycle (100 ms -this time is set by the developer) and

verifying those PTPs using Prism model checker.

Because the object (P1) is not moving and it is outside (zone 2), also not in

the same path of the AV, hence the agent will ignore it, and the AV will continue

moving in same speed (5mph). However, if the pedestrian (P1) entered (zone2),

then the AV will reduce the speed according to sensory abstraction (SOF1) and

action (AM2). For demonstration purposes, we discretised the trajectory by one

meter apart. We also discretised the possible pedestrian’s and vehicle’s trajectories.

While during the AV operation, the RA is getting these data continuously in real-
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V1

P2

P1

Figure 6.5: A driving scenario in simulation.

time from the perception system without the need for discretisation.

For the agent to build a meaningful PTP model while the AV is moving, it

has been formerly equipped with a possible probabilistic behaviour for both pedes-

trians and drivers in such an environment. This possible probabilistic behaviour is

designed and equipped to the agent mind during the design phase only as a proof

of concept; hence it cannot be generalised to other driving scenarios, and it cannot

be guaranteed an accurate prediction for real-life scenarios, it only presented here

to show a simple yet precise and efficient example.

For instance, when a pedestrian notice that s/he is walking towards a moving

vehicle, the pedestrian may slow down with a high probability. The pedestrian may

also choose to stop at some point or even change the lane to a safer one, it is also

common that the pedestrian may be distracted by something, e.g., using a mobile

device, and hence, does not notice the AV. If this is the case, the pedestrian contin-

ues to walk at the average speed. The last case could be included in the generated

model of the traffic participants using methods explained in [247]. While there are
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some similar probabilities for the driver with limits to the dynamic movements of

the vehicle, the driver may decide to continue driving same speed, reduce the speed

or to stop in order to give a chance for the AV to pass easily.

From the above scenario in figure 6.5, we can see that the vehicle and the

pedestrian are in the same horizontal line and this gives a small gap for the AV to

pass through,

To simulate a realistic scenario, and to equip the RA with a possible behaviour

of pedestrians and drivers, we recorded manually small dataset for such objects

behaviour in a few parking lots, and we also used JAAD dataset [248] for pedestrians

and drivers reactions to vehicles around them in different scenarios. A possible

future work step mentioned in chapter 7 is to equip the AV system with a more

accurate prediction method, e.g. [246, 249] beside the current one to precisely

predict the behaviour of objects around the AV instead of the limited accuracy

approach used in this work.

Regarding the AV exploration of a parking lot, it is essential to mention that

efficient exploration of the environment is outside the scope of our work, and our

system is not equipped with a proper space exploration method. It is only equipped

with a general planning method that is enough for small and simple parking lots.

In the case of large or complex parking lots, our AV planning system will struggle

to guide the AV efficiently. The vehicle will start moving rapidly, and it may go

through the same road a few times before finding a free parking space (in case there

is a free parking space in the parking lot). We have pointed out this issue in chapter

7 as part of possible future work.

6.3.3 Example in detail

As mentioned before, all the possible states of the system can be explored during

formal verification, including rare cases that may be difficult to discover during

simulation and testing. A general parking scenario has been presented to illustrate

the use of the RA predicates (sensory abstractions, future event consequences, and
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actions) designed for this case study. We have defined two regions around the AV

for safety purposes depending on the direction of movement, as shown in figure

6.3. Assuming the AV is moving forward, as soon as the AV detect an object within

(6m) in front or (2m) any other side represented by (zone 2), the AV will slow down

from average speed of (5mph) to (2mph), as soon as this object become within (3m)

from the front of the AV or (1m) from any other side represented by (zone 1), the

AV will stop. Here it is essential to mention that the experimental AV has been

equipped with a mean for communication with other pedestrians and drivers using

audio to prevent a deadlock state when the AV stop and wait for others to move

and vice versa, the AV will play a recorded sound saying to others for example "you

are free to move and the vehicle will be waiting for you". We have defined further

details for the AV to deal with the traffic participants around by calculating the

speed of those objects using the LiDAR sensor. Assuming there is an object moving

fast towards the AV, as soon as this object enter (zone 2) the AV will stop instead

of slowing down as shown in table 6.1, this will give more time for the other object

(running pedestrian or fast-moving car) to reduce their speed, change direction or

to stop, and this will reduce or eliminate any possible collision.

A simple proposed example of how the agent chooses its actions is as follows:

based on the scenario in figure 6.5 there is a car (V1) coming on the opposite

direction of the AV from a distance of (8m), and the driver starts to slow down

when notice another vehicle coming, the AV is moving at its average speed and

building its trajectory based on the map and the moving objects around. As soon

as the other vehicle (V1) enter (zone 2) the sensing event (SOF2) from table 6.1 will

be activated, and this will activate the future event (FCF2) then this will trigger

action (AM2) which leads to slow down. In the meanwhile, the walking pedestrian

(P2) reached within (zone 2), sensing event (FSFE1) and this may lead to collision

according to a future event (FCF1), the AV here will not take any further action

because it is already working in reduced speed. However, as soon as the car or the

pedestrian or both entered (zone 1) (SON2 or FCNE1 or both), future event (FCN1

or FCN2 or both), this will trigger the action (AM1) to execute stop action. All the

stationary parked cars in the parking lot will not be considered as a threat because
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they are not in the proposed path of the AV, and they are not moving.

The regulation for the speed of vehicles in a parking lot is varying between

different countries and it is usually between (5mph and 10mph), based on this and

for safety reasons and prototype development we set the speed of our AV to be

(5mph) in case of no moving objects within (zone 1 and 2).

As we mentioned, both the RA and the planning system will send control com-

mands to the move_base control system to set the movements of the AV. However,

actions like (AA1 and AA2) have a pre-programmed sequence for performing a

parking manoeuvre as shown in the video link we referred to in the abstract.

In case there are two or more rules in conflict with each other, MCMAS will

present this case by a counterexample showing how the inconsistency is reached.

Also, it cannot be the case that two opposite actions are activated at the same time.

For the run-time verification, the initial PTP model generated by the RA for

the AV’s trajectory is shown in figure 6.6. We used a relative coordinate system

considering that the LiDAR position on the top of the AV is the centre of the

coordinates at any time, knowing that the RA is taking the dimensions of the AV

into calculations while processing. In this example, we will refer to the coordinates

of the participants according to a fixed moment at a particular time interval (x1, y1)

to represent the coordination of the AV, (x2, y2) for the object (P2), the (x3, y3) for

the object (V1). The (C) letter in the PTP models represents the clock, which will

be counting and resetting with every transition.

Figure 6.7 shows the PTP model for the pedestrian’s possible behaviour. For

this example, we assume that the average speed of the pedestrian is near to the

speed of the AV inside the parking lot. The pedestrian may prefer to stop after

noticing the AV with a probability of (0.1) or to stop later when the distance became

critical. We assume that the pedestrian will keep walking in the same lane with

a probability of (0.6), s/he could also decide to change the lane and walk behind

the moving car (V1) for more safety with a probability of (0.3). In both cases,

the pedestrian may prefer to walk at the same speed or to reduce it with some
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probabilities, as shown in figure 6.7.

Figure 6.8 shows the possible PTP model for (V1). We assumed that the driver

might notice the AV and decide to stop with probability (0.1). With a probability

of (0.6), the driver may decide to slow down, or may prefer to continue the same

speed with a probability of (0.3). The RA will then modify the AV’s PTP model

according to the newly generated behaviour model of the other objects around.

We would like to clarify again and as mentioned before in section 6.3.2 that

those probabilities representing the different movements of objects in a parking lot

environment assigned to different events are pre-programmed to the agent mind

during the design phase as a proof of concept, and it cannot be generalised to

different driving scenarios. It is saved as a large table with direct access from the

RA in run-time AV operation while building the PTP models.

Note that the parameters used to generate the PTP models, such as the speed

and probability, may not reflect the exact behaviour of the AV, P2, or V1. The RA

is building those PTPs based on the location, speed, and direction of the moving

objects. In general, this framework will help to predict a possible behaviour for

the different objects around, then to verify the current trajectory/action for the AV

against the possible trajectory/action of the nearby objects, and this will help in

reducing the possibility of collision. More accurate PTP models could be generated

after collecting more behaving data through real driving tests.
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Figure 6.6: Initial PTP model generated for the AV’s behaviour.

In case the probabilities assigned to different objects movement are not reflect-

ing the real movements of those objects at any particular time and to avoid any

possible collision, we require that the pedestrian and/or the vehicle is at least (1m)
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Figure 6.7: PTP model generated for the pedestrian’s behaviour.
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Figure 6.8: PTP model generated for the vehicle’s behaviour.
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away from the AV. This can be represented by the following expression:

φ ≡ (x1 − x2)2 + (y1 − y2)2 >= 1. (6.3)

φ ≡ (x1 − x3)2 + (y1 − y3)2 >= 1. (6.4)

Where (x2, y2), represent the coordinate of the pedestrian, (x3, y3) is the co-

ordinate for the car. As Prism cannot deal with real numbers, we multiple the

distance by 2. We compute the maximum probability of the violation of Equation

(6.3, 6.4), by the following PCTL property:

Pmax=?[F ¬φ]. (6.5)

Due to the discretisation of the trajectory, the negation of Equation (6.3) is

translated into the following expression:

(((x2 > x1 ∧ x2 − x1 ≤ 1) ∨ (x1 > x2 ∧ x1 − x2 ≤ 1))∧

((y2 > y1 ∧ y2 − y1 ≤ 1) ∨ (y1 > y2 ∧ y1 − y2 ≤ 1)))

While the negation of Equation (6.4) is translated into:

(((x3 > x1 ∧ x3 − x1 ≤ 1) ∨ (x1 > x3 ∧ x1 − x3 ≤ 1))∧

((y3 > y1 ∧ y3 − y1 ≤ 1) ∨ (y1 > y3 ∧ y1 − y3 ≤ 1)))

The verification results for the proposed scenario are shown in table 6.3 re-

turned from Prism for formula (6.5), which indicates information about the model

generated for both the pedestrian and the car and the probability of collision with

every one of them under the current motion plan. Based on these data, the AV can

choose whether to take a particular action or not. Basically, if the probability of the
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Table 6.3: Verification results for the proposed scenario.

PTP
model States Transitions Choices Ver.

time

Maximum
collision

probability
Pedestrian 1238 3884 3624 0.036s 0.252

Car 659 2230 1960 0.019s 0.003

collision is high, then the RA should neglect the action and look for an alternative

from the plan library. The last two columns are presenting the most important

data regarding the time needed by Prism to verify a particular PTP model. We

designed the RA in a way that it can only generate light weight PTP models in

order to get them verified within one reasoning cycle of the agent. Here the time is

an important factor because all of the computations need to be done while the AV is

in operation if more time is needed then Prism will not be able to return the results

within one reasoning cycle and this will result in RA hold its decision for taking a

particular action and in the same time trying to slow down the speed of the AV if

needed or even to stop. From all the tests we did, we can say that this case did not

happen and the agent was always able to respond to the environmental situation

in a timely manner. However, we have equipped the agent with such capability in

case of future development, or more complex driving scenario needed that results in

larger size and number of PTP models. The developer sets the maximum collision

probability threshold, and in this case, we have set it to be (0.5) for demonstration

purposes means that if the collision probability is higher than (0.5), then the RA

will reject the proposed action and look for a safer alternative; otherwise, the RA

will execute the proposed action. Even if the chosen action may lead to an acci-

dent, the rule-based system will try to prevent it by slowing or stopping the AV

when necessary based on pre-defined driving rules. This, however, will produce less

smooth driving experience.

All the computations in this case study carried out using two computers running

on Ubuntu OS version 16.04, first is equipped with (Intel core i7 CPU, 16 GB of

RAM and GTX 1070 GPU) for simulation, perception, planning and control systems
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and the second with (Intel core i7, 16 GB of RAM and GTX 860 GPU) to run the

agent code and the verification system. Both of the computers are using solid-state

drives for faster handling of data with the main memory unit. With the hardware

implementation of the vehicle platform, we also used the Nvidia Jetson TX2 and

eight raspberry Pi devices in addition to the computers as mentioned above and as

explained in chapter 5.

6.4 Conclusion

In this chapter, we have presented a detailed case study for the design-time and run-

time verification of the rational agent. The RA is guiding the AV through a parking

lot environment to look for a free parking space and park the AV. The MCMAS is

only used during the development stage while the Prism is supporting the agent to

choose suitable actions while the AV is moving. The AV and its environment have

been designed in 3D virtual reality simulation with realistic physics-based dynamic

models using the Gazebo simulator. The results of verification for both the MCMAS

and the Prism model checkers are presented in this chapter.
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Chapter 7

Conclusions and Future Research

Directions

It is essential to make it clear to the reader that both the rational agent and the

verification system are built from the ground to satisfy the requirement of our new

AV system. We also wanted to make it clear that apart from the new and novel

systems mentioned above, we also designed an AV system in simulation that could

be easily connected to a real vehicle platform. This AV system is introduced based

on the reliable open-source platform represented by the Robot Operating System

(ROS). The developed platform will be available for other researchers in the future

as open-source, which could be helpful to test different algorithms on a 3D physics-

based simulated vehicle and environment rather than on a real platform which could

be difficult for some to put hands on.

7.1 Conclusions

In this thesis, we present a novel method for the verification of decisions made by

software agent onboard the AV as well as the design and implementation of the AV

system (with Level-4 of autonomy) in simulation and hardware implementation.

The AV is controlled by a RA through several skills necessary for autonomous
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driving operation. We have focused on a design approach to verifiable decision-

making process onboard the vehicle. The novel verification method comprises two

stages of formal verification, which work separately for the ultimate goal of providing

a safe driving experience. A simulation model of an AV in a parking lot was designed

to validate the vehicle design and its sensors, also to check the quality and practical

feasibility of our system. This was then followed by the implementation of the

system on a real industrial vehicle (Tata Ace EV model).

In this chapter we present the summary notes and conclusions of each chapter

presented in this thesis, followed by the future work section to give some possible

ideas about how this system could be further developed or enhanced in the future.

In chapter 1

This chapter contains a quick overview on the history of autonomous systems and

autonomous vehicles, including initiatives in self-driving vehicles during the DARPA

challenges, followed by efforts from both academia and industry to take this further

to a whole new level. A quick overview of our design of the vehicle system was

presented with a focus on the safe operation of the system in its environment.

Then the main challenges were presented on how to design such complicated control

systems. The chapter concluded with a list of our contributions to the field that we

hope will be useful to others with a list of publications during the four years period

of this project.

In chapter 2

A background about most of the used methods and techniques are presented through

this chapter. Different levels of autonomy have been defined in detail, including

the differences between the primary three levels of technologies used in cars: safe

driving, self-driving, and driverless. Then the methods and techniques for designing

a rational agent, followed by the role of verification in control systems, then the two

model checking techniques used in this work were presented. The chapter ends with
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an overview of the internal structure of the ROS platform and Gazebo simulator and

a semi-formal definition of the ROS graph. In the conclusion section, we presented

an overall system diagram that shows how the different system components connect

and interact together.

In chapter 3

This is the first contribution chapter. A new approach is presented for the veri-

fication of an agent-based decision-making system for a self-driving vehicle. The

approach considers both design-time and run-time verification where this approach

is introduced here for the first time for the verification of decisions made by a ratio-

nal agent for a self-driving vehicle. The proposed system is also validated through

simulation and tests to prevent the developer from accidentally equipped the vehicle

with unsafe or unstable rules or actions, also to prevent the vehicle from choosing

unsafe action while driving. A solution is introduced for safe agent design and safe

navigation in a dynamic environment based on formal verification. The critical

point addressed in this work is to guarantee the safety for both the AV and the

other agents moving in the same environment, which are vehicles and pedestrians

in our case study. While the AV is exploring the parking lot environment looking

for a free parking space, it needs to move safely and purposefully. The problem of

navigation in a dynamic environment is harder than the one in static or controlled

environments, due to several problems that can be summarised as: (i) the need for

the detection and tracking of moving objects, (ii) the prediction of their future state

in the environment, (iii) and the run-time planning and navigation.

It has been clarified that AV decisions in its environment must take into con-

sideration the limitation of the vehicle perception system, including the uncertain

future trajectory and velocity of the moving objects. The run-time decision-making

proposed is based on a probabilistic framework to represent the uncertainty in the

environment.

The agent code has been written in sEnglish software using natural language
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programming. The code structure allows to include probabilistic patterns of the

other agents in the environment. This permits to automatically generate proba-

bilistic models of those agents for formal verification. However, this still means

that those probabilistic patterns that describe the environmental events should be

defined by the developer to allow the run-time verification work appropriately.

A rational agent in a real traffic scenario usually faces a vast amount of situa-

tions and related behaviour rules. Many of these can be identified during the design

stage. Remaining scenarios, with a possible probabilistic event in the environment,

can then be handled by machine-learning-based evaluations.

Chapter 3 covers two important gaps, and those are:

1. Design a simple yet efficient software agent to control and drive the vehicle in

a restricted environment.

2. Develop new methods to check the safety and feasibility of the decision-making

process of the self-driving vehicle.

We would like to mention again that in this chapter we answered the first

research question of ‘How we can ensure the safety and feasibility of decisions made

by the autonomous vehicle while driving by using the formal verification as the

main approach?’.

In chapter 4

We started this chapter with a simple yet useful demonstration in Matlab/Simulink

of an AV model to clarify some important aspects of the AV design that need to

be known by the reader before going through the design in more details. We went

through the implementation of this system with some necessary information that a

development engineer would need to understand and be familiar with. Presented a

simple self-parking operation to test the dynamics of the vehicle and to study the

different aspects of the parking operation in a parking lot that we modelled through

Simulink controls.
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In the second part of this chapter, we have presented a method to design an

AV using ROS, which is compatible with Virtual Reality (VR) Gazebo simulator.

ROS is known for its high flexibility, efficiency, and capabilities for robotic systems

design, which could be connected either to a simulator or to a physical platform.

There is a lack of such customisable and easy to use AV platform for researchers

which could be used to test their perception, planning, and control algorithms.

Hence this is a contribution in the form of a new open-source implementation code

(of the Tata Ace vehicle) that will be publicly available for free for the interested re-

searchers in the field to use and develop further. The current rare publicly available

open-sources ROS-based vehicle platforms mostly belong to small size robots.

The car manufacturers are developing their own closed-source platforms as

opposed to open-source platforms for designing self-driving cars means only that

company has access to their software. In contrast, our implementation is open-

source that will be available with easy access and well documented for all the aspects

of design and implementation that could also be easily connected to a physical

platform as discussed in chapter 5 for hardware implementation research purposes.

Chapter 4 cover an important gap in the research field which is to provide an

open-source based reconfigurable autonomous vehicle system that supports hard-

ware in the loop by engaging a real vehicle platform, which could be used to validate

the design and test different related algorithms.

In this chapter, we answered the second research question of ‘How we can design

a simple, feasible, realistic and reconfigurable autonomous vehicle system using the

robot operating system?’.

In chapter 5

The work demonstrated in this chapter is to fulfil our industrial partner needs

to demonstrate that the system presented in chapter 4 is capable of handling the

autonomous driving operation based on the set of sensors suggested by Tata motors.

Hence this work could be considered as an engineering or technical contribution to
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support some requirements of the industry.

The model of the AV developed in the previous chapter can be easily connected

to a physical platform (Experimental vehicle) through the CAN bus system. This

chapter demonstrates this connection with a testbed platform of a Tata Ace EV

provided by the Tata Motors European Technical Centre (TMETC). All the hard-

ware used has been described to implement the perception and control systems.

Implementation of all the methods and algorithms are included in chapter 5 for the

perception system with associated technical data of sensors.

It is essential to mention that ROS proved to be capable of handling such

complicated robotic system with nearly real-time control of the physical platform.

The ROS framework is easy to implement in any modern programming language,

including C++ and Python. A ROS system is made up of a series of independent

nodes which communicate with each other using a publish/subscribe messaging

model. We can use different computers with different operating systems, even

different architectures in our vehicle system. However, the first generation of ROS

used in this projects still has its weak points such as it is not an actual real-time

system, and it suffers from security-related issues that have been solved in the

second generation of ROS.

In this chapter, we answered the third research question of ‘How to use the

ROS-based autonomous vehicle system to drive a real vehicle in a real-life driving

scenario in a parking lot environment?’.

In chapter 6

Our verification system and AV simulation are presented through a case study in this

chapter. The AV is moving among different objects in a simulation environment,

in which a parking lot is being considered as a scenario where the software agent

needs to guide the AV from the entrance to a free parking bay safely.

The power of the combination of the two verification tools helps the designer to

eliminate any redundancy in the agent predicates. These tools also check the agent
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rules for any possible instability or inconsistency in the system. A counterexample

is generated when a faulty state is reached. In the run-time operation, verification

deals with possible predicted movements of the traffic participants to determine the

probability of success for the intended AV action. A limited set of beliefs, rules

and actions have been presented as a proof of concept. The perception system will

trigger different beliefs while the AV is moving, and the agent will try to satisfy its

desires and intentions until reaching its goal.

7.2 Future work

The autonomous system presented in this thesis shows great potentials for the

development of self-driving vehicles, with a focus on safety. In future, however, some

points could improve reliability and productivity, as summarised in the following

points:

1. For higher-levels of rationality, the agent could yet be equipped, during design-

time, with a methodology for rules and other predicates generation. Such a

system would be able to learn new driving scenarios for run-time verification

by implementing a machine learning approach.

2. The real-time verification system presented in this thesis is only implemented

on the vehicle in simulation; this could be implemented on the physical plat-

form later with only minor changes.

3. Despite that the navigation system presented can work well with small size

parking lots, it would struggle with bigger ones as we did not implement an

exploration system. The system implemented has general planning (motion

planning and path planning) system that deliberates information with the

agent for path generation. For a more complex scenario, it would be necessary

to implement an exploration algorithm in ROS that could be connected to the

rational agent in a similar way.
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4. The camera perception system implemented on the experimental vehicle con-

sists of two parts: first, a single stereo camera which is connected to a deep-

learning algorithm to recognise people and vehicles in the area in front of

the AV, and the second part is using multiple Raspberry Pi cameras with an

Aggregated Channel Features (ACFs) object detector. This latter has limited

accuracy compared to the first method, but it is also less expensive and easier

to implement. With considerable resources, we would propose to use the first

method on all the sides of the AV for higher accuracy and to provide a re-

dundant source of accurate depth information, which will support the depth

data provided by the LiDAR.

5. In all the driving environments, the vehicle needs a method to be aware of

the existence, position, and velocity, of the moving objects in order to predict

their movements. The medium-term prediction method used in this project

can give a decent prediction period. However, it only works in a particular

environment and cannot be easily generalised to other ones. However, it is not

always the case that the objects follow a pre-learned pattern during movement.

Hence we would suggest a fusion of both short-term predictions represented

by target tracking and medium-term prediction based on saved patterns. The

new approach would need either the modification of the agent architecture

to add a subsystem for running such prediction algorithms or to connect the

agent with an external skill algorithm that can produce such knowledge for

the agent within a short time.

6. The last point, we would suggest here for future work, could be implemented

in smart parking lots through communication with an off-board perception

system place into the parking lot. In case of such smart parking lot, there

would be a sensor to check the occupancy of every parking space. This vital

information could be delivered to oncoming vehicles entering, to inform them

about the position of the free parking spaces and the best trajectory to take

to reach them, also about the nearest exits, when needed. This would help to

reduce the vehicle search time and overall congestion inside the parking lot.
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Appendix A

Agent code for the presented case

study

1 INITIAL BELIEFS AND GOALS

3 System is operational .
4 ~AV parked .
5 ~Slow mode.
6 ~ Normal mode.
7 ~ Reverse mode.
8 Stopped mode.
9 ~ Mission in progress .

10 ~ Parking space located .
11 ~Space search started .
12 ~ Started parking operation .
13 Parking requested .
14 ~ Commencing parking operation .
15 ~AV in parking space.
16 ~ Pedestrian detected .
17 ~ Moving vehicle detected .
18 ~ Continue parking .
19 ~Abort parking .
20 Need to explore parking lot.
21 ~ Parking space not available .
22 ~ Parking lot fully explored .
23 ~ Parking lot not fully explored .
24 ~ Collision occured .
25 ~Send alert to owner.

28 INITIAL ACTIONS

30 Read connected sensors sensor_configuration from file ’config .
knb ’.

31 +! take_initial_actions <-
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32 invoke ( perception_subsystem , runRepeated ,
initial_parameter_for_perception ,[],[""]);

33 invoke ( control_subsystem ,runOnce , initial_parameter_for_agent ,[
],["Force"]);

34 invoke ( planning_subsystem , runRepeated , plan_trajectory ,["
AV_position "," AV_heading "," Target_position ","
Finaltarget_direction "," Option "],[" PathPoints "]);

35 invoke ( guidance_subsystem , runRepeated , apply_guidance_control ,[
"P","V"," Option "],["Input"]);

37 PERCEPTION PROCESSES

39 Monitor the following Booleans :
40 +! configureSystem :true <- linkSystems ( perception_subsystem ,

planning_subsystem , guidance_subsystem , triggering_subsystem )
;

41 ! take_initial_actions .

45 UPDATING PERCEPTION

47 Monitor the following objects :
48 Update the environmental model Eb from sensors

sensor_configuration .

50 +! linkSystems ( complete ):true <- checkPercepts .
51 ! checkPercepts <-
52 updateSystems ( perception_subsystem , control_subsystem ,

planning_subsystem , guidance_subsystem , triggering_subsystem )
;

53 ! checkPercepts .

56 REASONING

58 If ^[ Configure system ] and ~^[ Mission in progress ] and ~^[
Parking lot fully explored ] then ^[ Start mission ]

59 If ~^[ Pedestrian detected ] or ~^[ Moving vehicle detected ] or ~
^[ Collision occured ] or ~^[ Parking lot fully explored ] then

^[ Forward mode]
60 If ^[ Collision occured ] then ^[ Send alert to owner]
61 If ^[ Parking space not available ] then ^[ Abort parking ]

64 EXECUTABLE PLANS
65 + configureSystem :true <- linkSystems ( perception_subsystem ,

planning_subsystem , guidance_subsystem , triggering_subsystem )
;

66 invoke ( perception_subsystem , runRepeated ,
initial_parameter_for_perception ,[],[""]);

67 invoke ( control_subsystem ,runOnce , initial_parameter_for_agent ,[
],["Force"]);

68 invoke ( planning_subsystem , runRepeated , plan_trajectory ,["
AV_position "," AV_heading "," Target_position ","
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Finaltarget_direction "," Option "],[" PathPoints "]);
69 invoke ( guidance_subsystem , runRepeated , apply_guidance_control ,[

"P","V"," Option "],["Input"]);

72 // Plan 1
73 If ^~[AV parked ] and ^[ Parking requested ] then
74 +^[ Need to explore parking lot.].

76 // Plan 2
77 If ^[ Need to explore parking lot] and ^~[Space search started ]

then
78 [ Generate exploration waypoints wp_exp .]
79 [ Update drive mode with waypoints wp_exp .]
80 +^[ Normal mode.]
81 +^[ Space search started .].

83 // Plan 3
84 If ^[ Parking space located at Position P_ in environmental

model Eb] then
85 -^[ Need to explore parking lot.]
86 +^[ Commencing parking operation .].

88 // Plan 4
89 If ^[ Commencing parking operation ] and ^~[ Started parking

operation ] then
90 [ Generate parking waypoints wp_park for space at position P_

in environmental model Eb.]
91 [ Update drive mode md with waypoints wp_park .]
92 +^[ Started parking operation .].

94 // Plan 5
95 If ^[ pedestrian p_ detected in environmental model Eb at

distance d_] and
96 ^[ pedestrian p_ at distance d_ more than 3m and less than 6m

in environmental model Eb] and
97 ^[ pedestrian p_ getting closer ] and ^[ Parking requested ] then

[ Activate slow mode.]
98 +^~[ Normal mode.]
99 +^[ Slow mode.]

100 [ Generate object avoidance waypoints wp_avoid .]
101 [ Update drive mode md with waypoints wp_avoid .].

103 // Plan 6
104 If ^[ pedestrian p_ detected in environmental model Eb] and
105 ^[ pedestrian p_ at distance d_ less than 3m in environmental

model Eb] and ^[ Parking requested ] then [ Activate stop mode
.]

106 +^~[Slow mode.]
107 +^[ Stopped mode.]
108 [ Update drive mode md.].

110 // Plan 7
111 If ^[ moving vehicle mv detected in environmental model Eb] and
112 ^[ Parking requested ] while

191



A. AGENT CODE FOR THE PRESENTED CASE STUDY

113 ^ distance d_ to moving vehicle mv more than 3m and less than 6
m in environmental model Eb] and

114 ^[ moving vehicle mv getting closer ] then
115 +^[ Slow mode.]
116 +^~[ Normal mode.]
117 [ Activate slow mode.]
118 [ Generate object avoidance waypoints wp_avoid .]
119 [ Update drive mode md with waypoints wp_avoid .].

121 // Plan 8
122 If ^[ moving vehicle mv detected in environmental model Eb] and
123 ^[ Parking requested ] while
124 ^[ distance d_ to moving vehicle mv less than 3m] then [

Activate stop mode.]
125 +^~[Slow mode.]
126 +~[ Stopped mode.]
127 [ Update drive mode md.].

129 // Plan 9
130 If ^[AV in parking space] and ^[ Parking requested ] then [

Activate stop mode.]
131 +^~[Slow mode.]
132 +^~[ Normal mode.]
133 +^[ Stopped mode.]
134 [ Update drive mode md.]
135 +[AV parked .]
136 +~[ Parking requested .].
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Appendix B

Tata Ace vehicle / operational

modes

It is important to mention that this is not a standalone section, it is complemented

by both the Topcon AES-25 user manual [8], and the Curtis 1236E user manual

[250] and their related programming code.

Curtis 1236E AC induction motor controller provides unprecedented flexibility

and power through the inclusion of a field-programmable logic controller embed-

ded in a motor controller. The embedded logic controller runs a fully functional

field-oriented AC motor control Operating System (OS) that can be user-tailored

via parameter modification. The OS also contains logic to execute Original Equip-

ment Manufacturer (OEM) developed software, called Vehicle Control Language

(VCL), that can be used to enhance the controller capabilities beyond the basics.

VCL is a software programming language developed by Curtis. Many electric ve-

hicle functions are uniquely built into the VCL code, and additional functions can

be OEM-controlled using VCL code. The CAN bus communications included in

the 1236E, allow these AC induction motor controllers to be part of an efficient

distributed system. Inputs and outputs can be optimally shared throughout the

system, minimising the wiring and creating integrated functions that often reduce

the cost of the system. For further information, please have a look at the Curtis
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1236E user manual [250].

The testbed vehicle could be used in one of the following two modes:

1. Manual

• For driving the vehicle manually.

• 1236E controls drive in response to driver inputs.

• Only the 1236E controller and manual controls are required.

2. Autonomous

• For testing autonomous steering and/or driving functions under human

driver supervision.

• Vehicle may operate with both steering and drive under autonomous

control or with only one of theses functions under autonomous control

and the other under human driver control.

• Auto Master Controller (AMC) controls steering and/or drive demand(s).

• 1236E controls drive.

• Topcon steering controller actuates steering (when required).

Safety “Interlocks” provided to:

• Prevent unintended motion.

• Ensure human supervisor is present (when driving autonomously).

• Disable autonomous controls upon human driver intervention.

Throttle Start Switch / Interlock: used as “dead-man’s handle” to enable/dis-

able drive (and steering actuation during autonomous driving). The human driver

has to press the throttle pedal far enough for the switch to close, to enable the drive

(and steering) – removing the driver foot from the pedal, in order to brake, will

disable the drive (and steering) actuation.

194



1236E Motor
Controller

Drive Mode
Selector
Switches

Potentiometric
Throttle Sensor

Start Switch

Temperature
Sensor

Key Switch

Encoder

Motor Brake

Traction
Motor

Health & Status
Indicator Lamps

Main Contactor

Auto Master Controller Topcon Steering
Controller

Steering
Motor

CAN Network (250 kbit/s)

Mode demand
(Auto / Forward / Reverse)

Manual Speed Demand

Interlock

Motor Temperature

80V

Motor Position

Motor Current

Brake Release

Contractor Control

Figure B.1: Schematic of the 1236E related vehicle controls.

Emergency switch: the vehicle has been fitted with red, latching Emergency

Stop button on dashboard used to disable traction drive and steering actuation

from both inside and outside the vehicle. The schematic diagram for connecting

the Curtis 1236E with the other system components is shown in Fig. B.1, while the

Topcon system connection diagram is shown in Fig. B.2.

In Manual Mode

Drive mode: manual forward or manual reverse. Systems operation is as below:

• Direction control

– Vehicle driving direction is set by the driver using the manual drive mode

selector switch. Reverse (Sw_8) or Forward (Sw_7) may be selected.

• Speed control

– Vehicle speed demand is controlled by the driver using a potentiometric
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throttle input to the Curtis 1236E: VCL_Throttle = Throttle_Pot.

– The 1236E interprets the VCL_Throttle input as a speed demand.

– Max_Speed parameter is set according to drive direction: 4600 rpm

forward and 1000 rpm reverse.

• Steering control

– Steering Angle is manually controlled by the driver using the steering

wheel.

– Topcon Steering Actuator is disabled, but the index position acquisition

is possible.

• EM brake control

– EM brake is controlled by the 1236E in response to Drive Mode Selection,

Start Switch (Interlock) and Speed: It will be released when a non-

neutral state is selected, and the throttle pedal is pressed. It will be

engaged when the throttle is released and speed falls below the threshold

value or Neutral is selected. The EM brake will also be engaged when

1236E controller faults are detected.

In Autonomous Mode

Drive mode: with drive mode set to Autonomous, the Systems operation is as below

with three sub-modes complete: both autonomous, only steering autonomous, and

only vehicle speed autonomous. In our work, the AV was always working in complete

Autonomous, means both steering and vehicle speed are master controlled. This

mode applies the following:

• Direction control

– Vehicle driving direction is set by the Auto Master Controller.

• Speed control
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– Motor Speed and Direction demand is set by the Master Controller and

sent to the Curtis 1236E via CAN.

– AMC enables/disables Speed control in response to 1236E Interlock (Throt-

tle Start Switch input) signal received via CAN.

– Max_Speed parameter is set according to drive direction: 3000 rpm

forward and 500 rpm reverse.

• Steering control

– Steering Actuation is supervised and enabled/disabled by AMC.

– AMC enables/disables Steering Actuation in response to 1236E Interlock

(Throttle Start Switch input) signal received via CAN.

– Topcon AES Steering Actuator controls Steering Angle in response to

AMC Steering Angle Demand.

• EM brake control

– The EM brake demand is set by the Master Controller and sent to the

1236E via CAN.

When operational the 1236E transmits the following data (to the AMC):

• Motor Speed

• Battery Voltage

• Motor Torque

• Motor Current

• Contactor Status

• EM Brake Status

• Throttle Sensor Position

• Throttle Start Switch Status
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• Drive Mode Status

• Emergency Rev Status

• 1236E Fault Status

The 1236E receives the following data (from the AMC):

• Motor Direction Demand (Forward/Reverse/Neutral)

• Auto Speed Enable Demand

• Motor Speed Demand

• EM Brake Demand

Manual Mode operation shall be possible when the 1236E is the only node

connected to the CAN bus. The AMC should transmit the following data to the

Topcon AES-25 controller:

• Max Steering Speed Limit

• Steering Angle Demand

• Steering Controller State Command (CAN Comms Enable, Steering Motor

Enable, Precharge Enable, Steering Contactor Close, Alarm)

• Max Steering Torque Limit

The AMC should receive the following data from the AES-25 controller:

• Steering Motor Speed

• Steering Motor Torque

• Encoder Steering Angle

• Steering Controller Status
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• Steering Controller Alarm

• Steering Motor Temperature

• Steering Inverter Temperature

• Steering Inverter Voltage

• Potentiometer Steering Angle

CAN Watchdog Behaviour

When Auto Speed Mode is selected:

• 1236E shall implement a CAN watchdog timer function.

• The function shall countdown the interval between correct reception of CAN

messages from the AMC.

• In the event that the specified interval length is exceeded the 1236E shall

indicate a fault, apply the EM brake and open the main contactor.

• Reset from this condition shall require a power off and back on of the 1236E.

When Auto Steer Mode is selected:

• Topcon AES controller shall implement a CAN watchdog timer function.

• The function shall countdown the interval between correct reception of CAN

messages from the AMC.

• In the event that the specified interval length is exceeded the Topcon AES

shall indicate a fault, disable steering torque and open the steering contactor.

• Reset from this condition shall require a power off and back on of the 1236E.

When Auto Steer Mode is selected:
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• AMC shall implement a CAN watchdog timer function.

• The function shall countdown the interval between correct reception of CAN

messages from the Topcon AES.

• In the event that the specified interval length is exceeded the AMC shall

indicate a fault, demand zero speed and command EM brake application.

• Reset from this condition shall require user input.

When Auto Speed Mode is selected:

• AMC shall implement a CAN watchdog timer function.

• The function shall countdown the interval between correct reception of CAN

messages from the 1236E.

• In the event that the specified interval length is exceeded the AMC shall

indicate a fault, demand zero speed and command EM brake application.

• Reset from this condition shall require user input.
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Figure B.2: Topcon AES-25 basic system connection diagram [8].
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