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Abstract

The evolution of driving technology has recently progressed from active safety fea-
tures and advanced driver assistance system (ADAS) to fully sensor-guided Au-
tonomous Vehicle (AV). Bringing such robotic vehicles to roads requires not only
simulation and testing but formal verification to account for all possible traffic sce-

narios.

It is important to guarantee safety for all agents moving in the same environ-
ment (in our case study; people, vehicles and our AV) while the AV is exploring
the surroundings. Comparing with static or controlled environments, high dynamic
environments present many other difficulties: the detection and tracking of the
moving objects, the prediction of their future state in the world, and the run-time

planning and navigation.

To demonstrate the feasibility of our safety system and to contribute to the
field of self-driving vehicles, we have designed our open-source AV software using
the Robot Operating System (ROS) and Gazebo simulator. The overall structure
of our AV system framework consists of (i) A perception system of sensors that
feeds data into (ii) a Rational Agent (RA) based on a Belief-Desire-Intention (BDI)
architecture and designed using sEnglish based Natural Language Programming
(NLP). The RA used for decision-making is connected to (iii) a verification system,

and (iv) a feedback control system for following a self-planned path.

A new hybrid verification approach, which combines the use of two well-known
model checkers: a Model Checker for Multi-Agent Systems (MCMAS) and Prism,
is presented for this purpose. MCMAS is used to check the consistency and stability
of the agent logic during design-time. PRISM is used to provide the RA with the
probability of success while it decides which action to take during run-time oper-
ation. This then allows the RA to select movements of the highest probability of

success from several alternatives.

The AV system as mentioned above has been implemented on a prototype
electric vehicle as a fully functional AV (level-4 autonomy) in collaboration with
Tata Motors European Technical Centre (TMETC) to test the feasibility of our AV
system. Both the simulation and practical implementation considers a parking lot
environment to check the feasibility of this approach. A demonstration of our AV

system is shown in a video link below. !

lhttps://tiny.cc/mohammed-av-2019
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Chapter 1

Introduction

1.1 Background

Autonomous robots are now widely used in various industries, and their operational
space is well protected to prevent harm from direct interaction with them. In
order to introduce robots into our daily life, we need to create safe systems of
robot navigation in their dynamic and crowded environments. Recently, different
mobile robots such as the ones shown in figure 1.1 have been developed to work
autonomously among humans. These robots have been used in department stores,

hospitals, museums, office buildings and other public places.

Current robots are capable of serving various purposes such as the delivery
of goods, guidance, assistance in workshops and homes, providing telepresence,
entertainment, and cleaning. With regards to transport vehicles, both industry and
governments are interested in the development of assisted driving for safety. They
are working towards the ultimate goal of the creation of fully autonomous vehicles
that could move freely and safely on roads among different objects and other road
users. Roads are considered dangerous environments where road accidents show a
high rate of deaths in many countries [13] where studies show that more than 90% of
all car accidents are caused by human errors and only 2% by vehicle failures [14]. In

urban environments, pedestrians and cyclists are the victims in a high percentage
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of accidents. Recently, technologies pertinent to safety, have been increasingly
added to cars to reduce accidents, courtesy to the ongoing research towards safe
autonomy. In reality, only a few examples of fully autonomous driving systems exist
under constrained infrastructures, such as autonomously driven metros and some
prototypes of autonomous lorries and cars on instrumented streets and motorways.
For safety limitations, most of these prototypes are still restricted to tests or under

the condition that the driver has to be behind the driving wheel at all times.

Robot navigation in a static and controlled environment is different from dy-
namic and changing environments where it still represents a significant challenge
for robotics research. In a static environment, global path planning is sufficient. In
contrast, in highly dynamic environments, difficulties arise which necessitate run-
time motion planning and navigation, the detection and tracking of moving objects

and their prediction and influence on the future state of the world.

GPS navigation can be complemented by the run-time perception of the vehicle
environment, which takes into account possible sources of uncertainty involved in
the sensing process. In the past decade, the problem of uncertain, incomplete, and
changing information in the field of navigation has obtained further attention in the
robotics community; the aim is to develop and include probabilistic frameworks for

integration and precise elaboration of the available information.

Figure 1.1: Three different kinds of autonomous robots.
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1.2 Motivation

Autonomous Vehicles (AVs) are capable of driving without human intervention or
supervision in an unpredictable, uncertain, and complex driving environments. It
represents the highest level of autonomy and thus the ideal, future end state of

these vehicles.

In 2004-2007 Defence Advanced Research Projects Agency (DARPA) spon-
sored competitions [15, 16] have made a big impact on the development of au-
tonomous ground vehicles [17, 18]. However, results remain limited to non-complex
driving environments [19]. AVs which operate in complex active environments re-
quire methods that generalise to unpredictable circumstances and for reasoning
promptly in order to reach human-like ability and react safely even in complex ur-
ban situations, where informed decisions require accurate perception. Some of the
DARPA Grand and Urban winning teams vehicles with their perception system

onboard are shown in figure 1.2.

The development and deployment of AVs on some of our roads in the near future
is realistic and can also bring significant benefits. In particular, it can solve problems
related to (i) improvement of traffic congestion, (ii) reduction of the number of
accidents, (iii) help in the parking process, and reduction in traveller’s time by
identifying a free parking space, (iv) encouraging shared use of AVs to reduce overall

fuel consumption [20].

Significant efforts are undertaken in industry and academia on hardware and
algorithmic research. AVs have to cope with different challenges such as perception,
planning and control. Decision-making while driving is a vital process that also
needs attention [21]. The primary cause of human accidents comes from wrong
decision-making, and there will be no point in developing an AV if those wrong
decisions continue to be made at a similar rate as by humans. In [22, 23, 24]
we can have a glance at some of the accidents that the self-driving cars have been

involved in so far, there are different reasons for those accidents, a common reason
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is the misinterpretation of the vehicle’s environment, also the wrong decisions to
deal with the driving scenario at that particular moment. Hence we focused on
making sure that the decision process of our vehicle has been thoroughly verified

according to various criteria of safety that has been mentioned in chapter 3.

There are already several AV tests that are being undertaken. Some of them
will lead to practical vehicles on our streets quite soon, a few examples are: in
Phoenix (USA) the use of a fully driverless taxi service is expected to commence
soon [25]; in Singapore’s university district there is the world’s first self-driving taxi
service, which has been operated by NuTonomy since August 2016 [26]; while there
are a large number of cars equipped with autonomous driving technology that are

expected to see on the streets of South Korea in 2020 [26].

a ‘
CATERPILLAR [

-

Figure 1.2: Four self-driving vehicles represent top-ranked teams participated in
DARPA Urban (top two figures) and Grand (Bottom two figures) challenges.

Software agents have been rapidly developed during the past two decades.
Some well-known agent types are reactive, deliberative, multi-layered, and Belief-
Desire-Intention (BDI) rational agents [27]. Limited Instruction Set Agent (LISA)
[4] which we used in this work is a new multi-layered implementation to Rational

Agents (RAs) based on the BDI agent architecture, which is particularly suitable for
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achieving goals by autonomous systems. Most approaches to agents of autonomous
robotic depend on logic-based reasoning cycles to keep the robot safe and within
acceptable behaviour limits [28]. Within the pre-programmed set of rules, it is es-
sential that the robot can establish consistency between its perception-based beliefs,

its rules, its planned actions and their consequences.

Despite the increased research activity in machine learning techniques and ad-
vanced planning and decision-making methods, verification and guaranteed perfor-
mance of the autonomous driving process remain challenging problems [29]. Recon-
figurable and adaptive RA based control systems have proved capable of robustly
progressing a vehicle in space and time to avoid other vehicles and people [30]. Nev-
ertheless, to make decisions with foresight, and consideration to other traffic par-
ticipants in a social context, integration is essential within overall decision-making
based on behaviour rules and experience. Rational agents, which could also be re-
ferred to as Cognitive or Autonomous agents, have exhibited significant robustness
in their implementation of various applications. However, for real-world critical
applications, some safety concerns remain after extensive testing, creating the need

for an appropriate verification framework.

The gap for a level 4 AVs is the lack of a simple yet efficient platform for
decision-making operation that could be connected to a verification platform to
make sure that all the decisions are safe and feasible for run-time vehicle operation.
This is what our new rational agent is made for, where we tried to fill the gap for

the lack of such a system.

Testing of these systems through prototype development is one approach that
attempts to partially answer operational safety questions. The best that can be
done in testing is a representative set of scenarios on real vehicles. Simulations
can provide validation and illustrations of correct social behaviour of the AV, but
they cannot take into account rare combinations of events that may arise during
real deployment of the AV. Hence the gap here is the lack of verification meth-
ods which are needed to account for low probability scenarios. If good dynamical

models are available to represent robotic skills of sensing and action, then formal
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verification can rely on a finite interaction model of the vehicle with the dynamics

of the environment [31, 32].

We filled this gap by providing a new verification methodology for safe decision-
making onboard a Tata Ace vehicle (Ace-EV). Safety aspects are also developed for
a prototype system designed for an autonomous parking scenario with the ability
to deal with the two most vulnerable type of traffic participants: vehicles and
pedestrians. The prototype autonomy level is 4, in that our system can work
autonomously in a specific environment until it is interrupted for the task of parking.
Here the Society of Automotive Engineering (SAE) levels [33] of autonomy have
been used, which can vary from a human-control (level 0) to a fully autonomous

system (level 5).

The car manufacturers nowadays depend on their closed-source software tools
and platforms to design their autonomous vehicle systems. This considered as
a barrier for researchers who want to design an open-source AV system. We have
tackled this gap by using the open-source robot operating system (ROS) to design a
comprehensive open-source platform for a realistic self-driving vehicle. Autonomous
vehicle and self-driving vehicle are used interchangeably in this thesis, and both refer

to the same meaning.

In our work, we first designed an AV system and its environment, which are
programmed and modelled in ROS [34] and Gazebo simulator [35]. Second, we
investigate how a robotic software agent can use model checking through MCMAS
[36] to examine the consistency and stability of its rules set during design-time,
which involves beliefs and actions specified in Computational Tree Logic (CTL) for
a RA that has been implemented within the LISA agent architecture [3, 4]. Third,
some of the required RA properties are formally specified through Probabilistic
Timed Programs (PTPs) and Probabilistic Computation Tree Logic (PCTL) for-
mulae then formally verified with the PRISM model checker [37] in onboard vehicle

operations which also referred to as run-time verification process.
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1.3 Research questions and methodology

Abstractly, the design of an AV can be divided into two main parts: the high-
level and the low-levels [38]. The latter is responsible for the sensors, planners,
actuators, and their related devices and algorithms. The former, however, captures
the critical decision-making capability that the AV must exhibit while there is no
responsible human ‘driver’. This high-level decision-making is software responsible
(called Rational Agent) for clearly determining the actions that will be invoked at
the low-level (referred to in this thesis as Agent Skills).

There are three main research questions that we focus on in this thesis; those

are:

1. How we can ensure the safety and feasibility of decisions made by the au-
tonomous vehicle while driving, by using three different approaches: verifica-

tion, validation and testing?

2. How we can design a simple, feasible, realistic and reconfigurable autonomous

vehicle system using the Robot Operating System (ROS)?

3. How to use the ROS-based system to drive a real vehicle in real life driving

scenario in a parking lot environment?

The main question and theoretical contribution we have answered in this work
is the safety and feasibility of decisions made by a decision-maker onboard the AV.
To explain this in details, we have presented in this section the reasons behind the
complexity and the sources of possible errors of decision-making operation. This

point is also fully covered in chapter 3.

The two other questions or problems that we tackled in this thesis are the
simulation and hardware implementation of the AV system, and both are explained

in details in chapter 4 and 5.
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1.3.1 Autonomous control in a dynamic environment

We designed a new AV in simulation (using ROS) and hardware implementation (on
a Tata Ace electric vehicle) that can navigate in an uncertain dynamic and restricted
environment represented by a parking lot. This example of a level 4 autonomy in
a parking lot environment is mentioned in [9, 39]. We have also designed a new
Rational Agent (RA) to drive the vehicle, and we developed techniques to allow the
RA to check its decisions while driving in a priori unknown parking lot environment
among static and moving objects. The AV’s task is to generate and perform a
continuous sequence of steering, accelerating and braking actions that lead to its
intended destination while avoiding collisions with the other objects around it. Our
novel autonomous vehicle system in both simulation and implementation involves
perception, prediction and planned action taking while constrained by rules, and is

briefly summarised as follows:

e Perception: The AV is equipped with sensors; the odometry data coming from
the LiDAR laser scanner gives the vehicle the knowledge about its position
relative to the world (heading and position) while the mono cameras and a

stereo camera (visual sensors) are used for recognition.

e Prediction: In order for the AV to make decisions, it should make predictions
of the immediate future. A dynamic model of the AV’s environment is con-
tinuously updated, and real-time re-planning is applied to avoid any collisions
whiles reaching the desired destination within reasonable time duration and

on the shortest path.

e Action: When a movement decision is taken, the sequence of operations ob-
tained by the planner is sent to the vehicle’s actuators for steering, movement

and braking.
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1.3.2 AV perception system

AVs depend on many sensors to find their way among static and dynamic objects;
each of those sensors has its strengths and deficiencies. Both cameras and LiDAR
are usually used together. LiDAR provides excellent odometry, localisation, map-
ping and range information but with limits to object identification; on the other
hand, cameras provide better recognition but with limits to spatial information
obtained [40]. A multi-sensor system can provide reliable information for percep-
tion when it performs computations in parallel to provide timely processing of the

sensory data [41].

In this thesis, the proposed perception system is used for localisation and map-
ping, also for calculating the positions of objects around the AV. The architecture
of our AV’s perception system is divided into three subsystems: The LiDAR sub-
system, vision pre-processing, and tracking-classification system with coordinate
transformation. The cameras take images for object recognition and aid free park-
ing space detection that the LIDAR complements by checking distances to obtain a
more precise occupancy grid than it would be possible by camera-based vision only.
The position of the objects found by perception is converted into data in the global
coordinate system. In vision pre-processing, a region of interest (ROI) is identified
in the image space that is processed further with classification, depth information

by LiDAR and object tracking.

1.3.3 Dynamic environment modelling

The AV needs to generate a map for its dynamic environment to enable it to navi-
gate safely in the current and future time. This takes the form of a Spatio-temporal
model that takes into account the position, direction as well as the shape of moving
objects around it. The initial position and predicted trajectory of these objects can
be estimated based on a probability distribution model. To counter the issues of
prediction, the perception system needs to make some hypotheses, such as the rep-

resentation of the surrounding objects in the sensor data, including their behaviour
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and motion model. With these hypotheses, the mapping system will be able to
distinguish the occupied and free spaces in the surroundings, decide which objects
are static and which are dynamic, register the entry of new objects, follow them

and stop monitoring the objects that are beyond a defined distance.

1.3.4 Dealing with consistency and stability

In order for the AV to keep itself within a safe and permitted behaviour, the rea-
soning cycle of its rational agent uses logic inference with a set of rules that the
AV should follow. The agent should also be responsible for maintaining the con-
sistency between its rules, perception-based beliefs, the planned actions and their
consequences. In this project, we investigate how the RA for the AV can use model
checking techniques to check the consistency and stability of its different predi-
cates. A set of rules has been modelled using a Boolean Evolution System (BES)
with synchronous semantics that can be interpreted as a Labelled Transition Sys-
tem (LTS). The consistency and stability of the logic system have been formulated
in Computation Tree Logic (CTL). In this project, the RA of our AV has a set
of rules, beliefs, and actions, and hundreds of logic statements to be programmed
during design-time. In our approach, the MCMAS model checker is used to check
the consistency and stability of the logic statements during design-time, by going
through all possible combinations of logic states and making sure that all states
are stable and consistent. In case of inconsistency, the MCMAS model checker will
generate a counterexample to show a possible conflict between the predicates for

sensing, consequences and actions.

1.3.5 Dealing with uncertainty

The navigation problem of the AV traditionally assumes that the geometry, po-
sition and motion of the AV and the other objects are accurately known. Also,
it proposes that the AV can perform the desired actions without any errors. In

the real world, the AV and its environment cannot satisfy those assumptions: the

10
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known information is at best imperfect, actions taken have an error bound, the fu-
ture trajectory of the moving objects is unknown. Furthermore, the AV could have
little or no knowledge about its environment, so it needs to rely on its perception
system (sensor observation) to build or refine different models. To deal with the
uncertainty of the environment, we adopted a probabilistic approach by generating
Probabilistic Timed Program (PTP) models which were regularly updated during
run-time to reflect the changes in the environment. Those will be verified online
using the PR1SM model checker to provide the RA with the sequence of actions that

will lead to the highest probability of success.

11
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1.4 Contributions

The contribution of this thesis is divided into four categories, which together rep-
resent a new safety approach for the decision-making of the designed AV system
presented in simulation and hardware implementation:

1. Development and implementation of a Rational Agent (RA) in Limited In-
struction Set Agent (LISA) based on Belief-Desire-Intention (BDI) principles
in order to control the Autonomous Vehicle (AV) and make decisions in real-
time based on feedback control and perception systems. This agent is applied
to both the simulated and the real vehicle to guide vehicle movements un-
der physical and rule-based constraints of vehicle movements and the state of
the environment. This is the first time a RA is designed in LISA to drive a
full-size ground vehicle in a complex environment. This work is presented in
chapter 3.

2. A novel theoretical framework, called ‘hybrid’ for it merges both the design-
time verification by the MCMAS model checker and the run-time verification
by the PrisM model checker. This verification theory provides a compre-
hensive approach to the verification of AV decisions. These results present a
new and efficient way to design a safety system for a real AV. This work is
presented in chapter 3.

3. Design, development and implementation of a new open-source physics-based
model of an AV system for the Tata Ace electric vehicle and the intended
environment based on Robot Operating System (ROS) and Gazebo simulator.
This includes design, modelling, and simulation of the installed sensors and
the vehicle body and dynamics with error bounds. This model represents a
new and complete platform in the simulation of an AV that could be used
by vehicle developers and researchers for further developments or to check
different algorithms related to autonomous driving. This work is presented in
chapter 4.

4. The engineering development and implementation work of the vehicle percep-
tion and actuation systems on the Tata Ace electric vehicle to test the fea-
sibility of the above ROS-based control system for future use on self-driving
cars. This real AV implementation and its simulation model share the same
rational agent and associated planning and control abilities designed for a
parking lot environment. This work is to satisfy the testing requirements of
the industry and to check the feasibility of the above-described system on a
real testbed. This work is presented in chapter 5.

12
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1.5 List of publications

A number of papers and poster presentations were published during the course of
the work described in this thesis, which are listed below. Those are mainly my work
and written by myself, the other names mentioned apart from my supervisor have

reviewed the papers and gave their comments.
Papers:

1) Mohammed Al-Nuaimi, and Sandor M. Veres. "ROS-based hardware imple-
mentation of a self-driving vehicle", this journal paper is still under prepara-
tion for future publication.

This paper is presented in chapter 4 and 5 of this thesis.

2) Mohammed Al-Nuaimi, Sapto Wibowo, Hongyang Qu, Jonathan M. Aitken,
and Sandor M. Veres. "Hybrid verification technique for decision-making of
self-driving vehicles', submitted to IEEE transaction on intelligent vehicles.
2019.

This paper is presented in chapter 3, 4 and 6 of this thesis.

3) Mohammed Al-Nuaimi, Hongyang Qu, and Sandor M. Veres. '"Towards a
verifiable decision making framework for self-driving vehicles." In FLOC: Fed-
erated Logic Conference. Verification and Validation of Autonomous Systems
(VaVAS) 2018.

This paper is presented in chapter 3 of this thesis.

4) Mohammed Al-Nuaimi, Hongyang Qu, and Sandor M. Veres. "A stochasti-
cally verifiable decision making framework for autonomous ground vehicles."
In TEEE International Conference on Intelligence and Safety for Robotics
(ISR). IEEE, 2018.

This paper is presented in chapter 3, 4 and 6 of this thesis.

5) Mohammed Al-Nuaimi, Hongyang Qu, and Sandor M. Veres. "Computational
Framework for Verifiable Decisions of Self-Driving Vehicles." In IEEE Confer-
ence on Control Technology and Applications (CCTA). IEEE, 2018.

This paper is presented in chapter 3, 4 and 6 of this thesis.

6) Mohammed Al-Nuaimi, Hongyang Qu, and Sandor M. Veres. "Testing, Veri-
fication and Improvements of Timeliness in ROS processes." In Annual Con-
ference Towards Autonomous Robotic Systems (TAROS). Springer, Cham,
2016.

This paper is presented in chapter 2 and 3 of this thesis.
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Poster presentations:

1) Mohammed Al-Nuaimi, and Sandor M. Veres. "Verification-driven design,
simulation and implementation of a self-driving vehicle." Talk and Poster Pre-
sentation in UKACC showcase day. 2019.

2) Mohammed Al-Nuaimi, and Sandor M. Veres. 'Verifiable decision-making
framework for Autonomous Ground Vehicles." Poster Presentation in Mid-
lands Intelligent Mobility Conference. 2018.

3) Mohammed Al-Nuaimi, and Sandor M. Veres. "Formal analysis and verifica-
tion of Autonomous Vehicles." Poster Presentation in ACSE PGR symposium.
2016.
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Chapter 2

Background

2.1 Autonomous control systems

In systems engineering, continuous research on feedback control over the past decade
has led to the development of autonomous or semi-autonomous ‘intelligent’ con-
trollers. These controllers have the ability of making decisions and executing those
decisions in terms of actions, parameters and performance at a certain level of au-
tonomy. The term ‘intelligence’ is considered as one of the hardest concepts to
define, and apply. A general definition of intelligence can however be stated as

1, 42):

“An Intelligence is the ability of a system to act appropriately in an
uncertain environment, where a proper action is that which increases the
probability of success, and success is the behavioural sub-goals achieve-

ment that supports the system’s final goal”.

A key feature of an autonomous control system is the ability to behave ap-
propriately under significant uncertainty in both the system and its environment
for extended periods of time, and it must have the capability of compensating for
system failure without external intervention. Such control systems are evolved from

conventional control systems by adding intelligent components. Those autonomous
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control systems consist of software and hardware, which can perform the necessary
control functions, without external intervention, over extended periods. There are
several degrees of autonomy; a fully autonomous controller should perhaps have the
ability even to perform hardware repair to its own system when needed; this could
be particularly important for autonomous systems to work in extreme terrains such
as space and in-depth oceans explorations. Note that conventional (automatic)
controllers have a low degree of autonomy since they can only tolerate and con-
trol a few plant parameters. To achieve a high degree of autonomy, the controller
must be able to perform some functions in addition to conventional control func-
tions such as tracking and regulation. Autonomous controllers can be used in a
variety of systems; hence, they enable the host machine to work autonomously in
different terrains without the need for observation or supervision [43]. The general

architecture of an autonomous system is shown in figure 2.1.

In this chapter, a description of the architecture of our autonomous controller is
presented through a rational agent for an autonomous ground vehicle. The control
system processes the data coming from the perception system and interacts with
the environment through system actuators. The goal of the autonomous controller
is to provide a high level of adaptation to changes in vehicle dynamics and the en-
vironment and to provide a high level of tolerance to faults to deal with unexpected

situations.

An example of an automatic controller is the autopilot of an aircraft that can
maintain the desired flight trajectory of the plane. This could be considered easier to
implement compared with the autopilot control system for an autonomous ground
vehicle that can take most of the driver responsibilities while driving, and this is

due to the nature of the environment for both of the controllers.

Techniques for the autonomous system are still under development, and in
many cases, they still need human supervision for adequate safety. Furthermore,
autonomous systems are becoming more popular as they can sometimes be much
cheaper to develop and deploy than human-operated systems [30]. Despite that

the idea of giving a machine the freedom to think and make decisions might seem
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Autonomous System

Decision
I Making I
Sensor_y World Model Behavpur
Processing Generation
Sensors Actuators

Environment

Figure 2.1: General architecture of an autonomous system [1].

dangerous. It is obvious, however, that we require such systems, especially [42]:

e when the robots work in unsafe or difficult environments for humans, such as

contaminated areas or deep-sea explorations.

e when the system operates in extremely remote areas such as spaceships, where
the signals need a very long time to travel in space, hence a fully autonomous

system is needed.

e when the speed of the environment beyond human capabilities to deal with,
such as high-speed manufacturing or minute and second trading on the stock

exchange.

Another critical issue for the autonomous controller is reliability. The au-
tonomous system should do well in situations that involve uncertainty in dynamics
and the environment for a considerable amount of time, and they should be able to
learn from system failure without external intervention. Behaviour of this kind is

very desirable for developed systems.
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The following methods of control system design could be adapted to acquire

autonomy [44]:

1. Algorithmic-numerical methods, based on state-of-the-art conventional con-

trol, estimation, identification, and communication theory.

2. Symbolic methods of decision-making, for instance, those used in the field of

Artificial Intelligence (AI).

A high degree of tolerance to failures should be part of the autonomous con-
troller’s characteristics along with the ability to supervise and tune the control
algorithm where failures should be detected and isolated to ensure system reliabil-
ity. The autonomous controller should be able to plan the sequence of procedures
necessary to complete a complicated task while having the ability to learn to en-
hance the performance of the system. Several developed techniques should work
together to acquire autonomy such as sensing, learning, and planning, along with

conventional control systems [44].

In the next section, we have presented some background information about
the autonomous vehicles, including a brief history and current progress, also their

autonomy levels based on the society of automotive engineering (SAE).

2.2 Autonomous Vehicles (AVs)

The story of the driverless car is almost as old as the car itself. Probably the first
presentation of the idea that captured the attention and opened the people vision
to this futuristic concept came in 1939 as a part of the Futurama at the General
Motors highways and horizons exhibition at the New York world’s fair [45]. At that
time, people thought that soon it would be possible to implement this concept on

the ground - at least that was the vision.

This idea comes to light again after the vast development within a few decades

in computer and communications systems which moved from big, expensive and
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limited systems to those that were small, cheap and widely available. In 2004,
the U.S. military DARPA department launched several competitions for driverless
vehicles. While no vehicle managed to finish the 240 km path through the desert in
the first run of the grand competition, in the second run which came the year after,
five vehicles managed to reach the final destination, the fastest at an average speed of
30.7 km/h. In the third run, which happened two years later, and called the Urban
challenge; four cars were able to finish a 96 km urban area road while following
traffic rules. These successes not only attracted attention from different research
groups from around the globe, e.g. [46, 47, 48], but also from the automotive
industry, as can be seen in the huge investment from the car manufacturers and

tech companies into the autonomous driving technologies.

Legally, self-driving cars are still in a Gray area. For example, at the time of
writing this thesis, self-driving in highways and general driving scenarios are allowed
as long as the driver agrees to supervise the vehicle at all times. Since a self-driving
system tempts the driver to other tasks and since continuous observation over a
prolonged time without involvement is physiologically very difficult to impossible,
hence it still unclear if this shifting of responsibility by the car manufacturers will

be successful.

In the past years, several proposals for the autonomy classification of vehicles
were made, e.g. among the most notable ones: National Highway Traffic Safety
Administration (NHTSA), 2013 [49]; Society of Automotive Engineering (SAE)
International, 2014 [50]; SAE International, 2016 [39]; SAE International, 2018 [9].
These days, the latest categorisation by SAE International is usually the dominant
standard. It differentiates six levels (0 to 5) of autonomy based on how much
human intervention and monitoring is required and in what situations, see table
2.1 for further details. Following this categorisation, the above definition of AV is
applied to any vehicle of SAE International (2018) level 4 for predefined areas and

level 5 for all domains.
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Execution of Fallback System
- " 8 " P
£ steering and Monitoring performance capability
ci acceleration/ of driving of dynamic (driving
Name Definition deceleration | environment | driving task modes)
Human driver monitors the driving environment
No The full-time performance by the human driver of all
0 . aspects of the dynamic driving task, even when Human driver | Human driver | Human driver N/A
Automation - . "
enhanced by warning or intervention systems
The driving mode-specific execution by a driver
assistance system of either steering or
Driver acceleration/deceleration using information about Human driver . . Some driving
1 ) - : < ; Human driver | Human driver
Assistance | the driving environment and with the expectation and system modes
that the human driver perform all remaining aspects
of the dynamic driving task
The driving mode-specific execution by one or more
driver assistance systems of both steering and
Partial acceleration/deceleration using information about . . Some driving
2 . - ; < ! System Human driver | Human driver
Automation | the driving environment and with the expectation modes
that the human driver perform all remaining aspects
of the dynamic driving task
Automated driving ("system") monitors the driving environment
The driving mode-specific performance by an
Conditional automated driving system of all aspects of the Some drivin
3 . dynamic driving task with the expectation that the System System Human driver 9
Automation . g . modes
human driver will respond appropriately to a request
to intervene
The driving mode-specific performance by an
High automated driving system of all aspects of the Some driving
4 Automation | dynamic driving task, even if a human driver does System System System modes
not respond appropriately to a request to intervene
The full-time performance by an automated driving
Full system of all aspects of the dynamic driving task All driving
5 Automation | under all roadway and environmental conditions that SySien SySien SySien modes
can be managed by a human driver

Table 2.1: Levels of driving automation definitions [9].

2.2.1 Levels of autonomy

A system that behaves by itself is known as: automatic or autonomous. An auto-
matic system works by following an input given by an operator. The steam engine
is an example of an automatic system; it can regulate the amount of torque using
a mechanical speed sensor. An autonomous system goes beyond automatic, it can
regulate its input without any external intervention, depending on the perception
of the environment. In general, autonomous systems show different levels of auton-
omy. For instance, a complex air conditioning system can have many actuators and
sensors and can make many decisions about its operation, but it is obviously “less”
autonomous than an AV capable of driving autonomously. SAE standards describe
six levels in total for ground vehicles, five with different levels of autonomy and one

with none. A similar description can be found in [51]:

e (Level 0 - No Automation): At this level, the driver is in complete control

of the vehicle driving operation with no warnings, assistance, or interventions
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from any assistance system nether onboard nor remotely operated at all times.

(Level 1 - Driver Assistance): The driving automation system will help the
driver by performing part of the dynamic driving task such as stability control
and pre-charged brakes while the primary driving task will be the responsibil-
ity of the driver who will exist behind the steering wheel at all times to drive
the vehicle and maintain safe operation and also responsible for engage/dis-

engage the driving automation system when needed.

(Level 2 - Partial Driving Automation): The driving automation system/s will
be capable of further assisting the driver using information about the driving
environment in certain driving conditions such as some autopilot capabilities
and the adaptive cruise control in certain locations and roadways. Again, the
primary driving responsibility will be on the driver to maintain safe operation,
engage/disengage the assistance systems, and take full responsibility when

needed.

(Level 3 - Conditional Driving Automation): The driving automation systems
will further control the vehicle up to the limit of autopilot capabilities for
driving the vehicle in certain conditions (for all dynamic aspects of the driving
task) while there is no need for the driver to monitor the system, but must be
available and conscious to respond immediately and appropriately to a request
to intervene when needed. The assistance systems are capable of performing
lane changing and holding in some cases; the system asks the driver to take
over with sufficient warning when it detects some limits that the system cannot

deal with.

(Level 4 - High Driving Automation): At this level, the automated driving
systems are capable of entirely driving the vehicle at all times in specific
environments or for extended times for all environments up to the purpose of
the vehicle, in specific driving applications there is no need for a driver. This
means that all situations in the specific predefined driving application should

be handled by the automated systems onboard. An example of this level is the
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autonomous parking valet, and the geographically prescribed central business
district where it is used to deliver supplies such as in the industrial or factory

area.

e (Level 5 - Full Driving Automation): This is the upper limit of an autonomous
driving system where it is possible to design the vehicle with no steering
wheel. Also, there is no need to monitor or control the vehicle at any time.
This system should be able to drive the vehicle at all times, in all driving
environments and in all environmental conditions that can be managed by a
human driver. At this level, there is no need for the driver (at any time) to take
control of the vehicle. The vehicle is capable of monitoring roadway conditions
for an entire trip while performing all safety-critical driving functions (for both

unoccupied and occupied vehicles).

The above mentioned levels of autonomy are the main terminologies used to
describe the vehicle. However it is also common in the automotive community to

divide the levels of autonomy into 3 categories as below:

e Safe-driving: This level is also known as "partial autonomy" represented in
SAE International (2018) as level 1 and 2. It represents vehicles which are
still driven by a human driver in all situations, but which have several (com-
bined) advanced assistance systems (e.g. adaptive cruise control, lane assis-
tant). These systems provide an easier, more comfortable, and most of all,
safer driving experience compared to non-assisted driving (SAE International

(2018) level 0).

e Self-driving: In certain, predefined situations (e.g. highways or in conges-
tion), the vehicle drives autonomously and handles all situations. In these
situations, the vehicle can autonomously come to a safe emergency stop. A
clear protocol is followed when control transitions from or to the human driver
(e.g. before leaving the highway), allowing for enough transition time. This
is an equivalent of the "high autonomy" category by SAE International (2018)
levels 3 and 4.
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e Driver-less vehicle: The vehicle can drive autonomously in all situations on
every road (SAE International (2018) level 5) which is also called "full auton-
omy". This category represents the vision as defined at the beginning of this

section.

From the definitions mentioned above, and up to the time of writing this thesis,
the law forbids driverless vehicles on the public roads. Even those that are fully
equipped with the necessary hardware and software are still considered within level
4 because of the need for a person who can take the driving responsibility in case

of emergency.

Although autonomous driving has been an area of research interest for a long
time, the DARPA Grand and Urban challenges inspired research community to
develop a number of autonomous vehicle testbeds across the academia and the
automotive industry. Stanford’s Junior [52] provides a testbed with multiple sensors
for recognition and planning. It is capable of dynamic object detection and tracking
and precision localisation. Other few notable testbed vehicles born as a result of
DARPA challenge are Talos from MIT [18], NavLabll and Boss from CMU [17].
Costley et al. [53] discuss a testbed for automated vehicle research available at Utah
State University. Researchers at the University of California have also developed a
testbed named LISA-Q [54] (Different from LISA agent implementation presented

in chapter 3 of this thesis) for autonomous and safe driving.

The main method used for the implementation of the different AVs during
the DARPA Urban challenge is based on a three-layer planning system combines
mission, behavioural and motion planning to drive in urban environments. The
mission planning layer considers which street to take to achieve a mission goal. The
behavioural layer determines when to change lanes, precedence at intersections and
performs error recovery manoeuvres. The motion planning layer selects actions to
avoid obstacles while making progress towards local goals. Mostly, those systems
were developed from the ground up to address the requirements of the DARPA
Urban challenge using a spiral system development process with a heavy emphasis

on regular, regressive system testing.
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An example of this approach is the DARPA winning vehicle (Boss) [17], where
the motion planning subsystem consists of two planners, each capable of avoiding
static and dynamic obstacles while achieving the desired goal. Two broad scenar-
ios are considered: structured driving (road following) and unstructured driving
(manoeuvrings in parking lots). For structured driving, a local planner generates
trajectories to avoid obstacles while remaining in its lane. For unstructured driv-
ing, such as entering/exiting a parking lot, a planner with a four-dimensional search
space (position, orientation, and the direction of travel) is used. Regardless of which
planner is currently active, the result is a trajectory that, when executed by the ve-
hicle controller, will safely drive toward a goal. The perception subsystem processes
and fuses data from multiple sensors onboard the vehicle to provide a composite
model of the world to the rest of the system. The model consists of three main
parts: a static obstacle map, a list of the moving vehicles in the world, and the

location of the vehicle relative to the road.

The mission planner computes the cost of all possible routes to the next mission
checkpoint given knowledge of the road network. The mission planner reasons about
the optimal path to a particular checkpoint, much like a human would plan a route
from their current position to a destination. The mission planner compares routes
based on knowledge of road blockages, the maximum legal speed limit, and the

nominal time required to make one manoeuvre versus another.

The behavioural system formulates a problem definition for the motion planner
to solve based on the strategic information provided by the mission planner. The
behavioural subsystem makes tactical decisions to execute the mission plan and
handles error recovery when there are problems. The behavioural system is roughly
divided into three sub-components: Lane Driving, Intersection Handling, and Goal
Selection. The roles of the first two sub-components are self-explanatory. Goal
Selection is responsible for distributing execution tasks to the other behavioural

components or the motion layer, and for selecting actions to handle error recovery.

The nearest AV design approach to the work presented in this thesis is the
Cognitive and Autonomous Test vehicle (CAT) testbed (which is a model of a Ford
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Escape vehicle). The simulation is based on ROS developed by a research group
from the University of Arizona [55]. It provides packages for some sensor simulations
(2D SICK laser scanner and a mono camera), and it also supports Hardware in Loop

(HIL) to connect the system to a physical platform.

Availability of testbeds for vehicle research is not limited to ones mentioned
above, but those (apart from the CAT vehicle) lack extensive support for HIL
simulation. Also, those testbeds are mainly the result of a collaboration between the

academia and the automotive industry providing their own closed source systems.

Most of the approaches presented above has been proposed and demonstrated
to work within a particular environment. These approaches cover level 4 of auton-
omy, the same level that the work in this thesis presented. However, this thesis
mostly focuses on the problem of safe decision-making, although it still present-
ing a new design of level 4 of autonomy based on ROS for an easy and low-cost

development system.

It is still important to mention here that the new commercial approach to the
design of fully autonomous vehicles (level 5 of autonomy according to SAE levels)
is to adapt the deep learning approaches for an end-to-end vehicle controller, this
topic is beyond the scope of this thesis and the interested reader could have a look

at, for example [56, 57, 58|.

In the next section, we have presented some background information about the
software that we used to control the vehicle while driving, which is called a rational
agent. We also mentioned its different implementations and related structures.
Then we covered its formal definition with a simple example to clarify its different
aspects. Then we went through the language that we used to define the reasoning
cycle of our rational agent, which is called the Natural Language Programming

(NLP).
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2.3 Rational Agent (RA)

The representation of autonomy can be described by the decision-making ability
that includes the generation of data abstractions for logic-based reasoning and
symbolic processing along with cognitive modelling for the environment. Other
features such as navigation, tracking, path planning, communications and control
are considered to be necessary skills for Rational Agents (RAs) [1, 42]. Skills can
be defined as sub-programs that are managed and controlled by the RA, these skills
are usually connected to sensors as input devices or actuators as output devices to

perform different tasks such as perception, planning or motion control of the AV.

An exhaustive common definition for an agent is given in [59], where the term

is defined as follows:

“An agent is a computer system that is situated in some environment,
and capable of autonomous action in this environment to meet its design
goals. The environment is the set of objects not part of the agent body,

with which the agent interacts by sensing and acting”.

In this work, we used the term ‘rational agent’ which could also be referred to as
Cognitive or Autonomous agent. Rational means rule-based system that can do
reasoning based on logic. The RA definition provided in many references including
[1, 29, 42, 59, 60, 61], where the characteristics of this agent could be summarised

as follows:

e Re-activeness: Agents are provided with sensory systems that allow them to
perceive their environment and respond to expected or unexpected changes

in order to meet their final goal.

e Pro-activeness: Agents are capable of carrying on goal-directed behaviour.
This means that the agent does not need to wait until there is a change in
the environment, but instead, it could take the initiative of action in order to

meet their final objective.
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e Autonomy: Agents are capable of running without external assistance or in-
tervention. The level of autonomy depends on the type of objectives and the
environment where the agent is supposed to work in. In general, we specify
goals to the agent; therefore, the generation of plans and sub-goals is ulti-

mately bounded by the goal that we specify.

e Social Ability: Agents can communicate with each other, or possibly with
humans, and cooperate with them to increase the efficacy of their specific

task.

The two main pillars for an agent-based system are the agent program and
the agent architecture [62]. The agent program is the actual code that built to
communicate with a set of skills in order to drive the vehicle. The skills are peace
of software and hardware working together to provide the necessary data to the
agent in order to make a decision or to receive a decision from the agent and
control the vehicle based on it. For example, the perception subsystem is a skill
that perceives the environment, analyse the information and produce useful data
for the agent to make decisions. Another example is the planning subsystem that
receives the information from both the perception subsystem and the agent then

plans a route for the AV to move safely and meaningfully in the environment.

The agent architecture describes the outlines or structure of the agent program
and the interface with the different levels of skills. In [63] the authors describe the
agent architecture as “the backbone of robotic systems”. Different applications have
different needs, hence choosing the right architecture is vital to reflect the agent
program in a correct way. A systematic overview of those architectures have been
given in [42, 64] including: purely logic-based [65, 66, 67, situated [68] or behaviour-
based [69, 70|, situation calculus [71, 72, 73|, Belief-Desire-Intention (BDI) [74, 75,
76]. These different architectures are not completely distinct. Usually, modern
architectures are structured in a layered way, those layers represent different levels

of abstraction, as explained in [77, 78], and in few implementations in [79, 80, 81].

Figure 2.2 represents the general architecture of an agent-based system. The
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Figure 2.2: General structure for agent-based control system.

agent reasoning represents the top-level part of the overall system (with a higher
level of abstraction), which is connected to the lower levels of the system (with a
lower level of abstraction), and are referred to as skills as mentioned above. The
agent controls the vehicle by making decisions represented by issuing action com-
mands to the lower level skills, before that, the agent collects information from the
environment using the sensors through the perception skill to update the necessary

abstracted data called symbolic Boolean variables.

The formal definition of an agent system is described in the following sub-
section. The RA presented in chapter 3 is based on the BDI architecture, which
is the most popular and trusted model [38] for agent reasoning. This agent im-
plementation can be described by three symbolic sets of data: Beliefs, Desires and
Intentions. The Beliefs set represents the knowledge derived from sensors to provide
an observation of the current state of the environment (the information that the
agent has about the world). The Desires set to correspond to the long-term goals
that the agent wants to accomplish using predefined sets of actions that the agent
might perform to accomplish the task. The Intentions set represents the short-term

goals the agent is committed to working towards.

There are different agent implementations along with their agent programming
languages, based on the BDI paradigm. The main implementations developed in
a BDI approach for programming rational agents include: Logic-based Procedural
Reasoning System (PRS), Jason [82, 83|, 3APL [84, 85], Brahms [86], Jadex [87],
Gwendolen [88], and GOAL [89, 90]. Rational agents belong to one of these imple-

mentations usually have a set of beliefs, a set of plans, and a set of goals. Plans
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determine how an agent can act based on its current beliefs and pre-programmed
goals. This method forms the basis of practical reasoning in such agents. Executing
a plan will be reflected on the current beliefs, and the short term goals of an agent
may change while the agent performs actions in its environment. In [91, 92], the

authors have mentioned the role of plans in the reasoning process in more details.

A new agent implementation of the BDI architecture (which is a modified
version of Jason) is called Limited Instruction Set Agent (LISA) [4], which has
been used in this work. We have described LISA in details in chapter 3 of this

thesis.

2.3.1 Formal definition of a rational agent

The Rational Agent (RA) definition of our autonomous vehicle follows [42, 59, 93]
and is based on BDI architecture for robotic agents. The basic principles of this

agent design are defined as:

Definition 2.1 (Rational BDI agent). A rational agent in the BDI architecture

can be fully defined and implemented by listing the following characteristics:

A = {B7BO7L7H7A7A0}

where:

e B is the atomic belief set, the set of all possible beliefs that the agent may
encounter during operation. The current belief base at time ¢ is defined as
B; € B. During operation, beliefs may be changed. This occurs through
events so that at time ¢, beliefs may be added, deleted or modified. These
events are represented in the set £, C B, which is called the Fvent set. Events
are divided into internal or external events. Internal events are described as
“mental notes” if they are generated by internal actions. External inputs will
appear through input from a sensor hence called “percepts” as they represent

a measurement of the environment.
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e By is the Initial Beliefs set, the information about the world that is available
to the agent at the first iteration. Initially, once the agent is initialised, it will

have a set of beliefs about the environment.

o L = RPURP = {i},ly,... 1,,} is a set of implication rules and it consists
of both the Physics based Rules R¥ and the Belief Rules RZ. These are
logic-based and represent a description of how the beliefs B can be linked
together and interpreted. It describes theoretical reasoning about physics and
behaviour rules to enable the agent to adjust its current knowledge about the

world and influence its decision on actions to be taken.

o IT = {m,m,...,m,, } is the set of ezecutable plans which formulate the plans
library. At any given time ¢, there will be a collection of plans m; which
could be activated. These are subsets of the complete plan library, II, C II,
which is commonly named the Desire set. A set I C II; C II of intentions is
also defined. This set contains plans that the agent is committed to execute.
Each plan is built up as a sequence 7;(\;) of actions where 7; is a triggering
condition for the plan, and A; provides a single or set of actions belong to

that plan that will be carried out.

o A={aj,as,...,a,,} is a set of all available actions. Actions may be either
internal, when they either modify the knowledge base (current beliefs) or gen-
erate internal events, or external, when they are linked to external functions

that operate in the environment.

o Ay € A is the set of initial actions. The initial actions Ay C A are a set
of actions that are executed when the agent is first to run. Typically these
actions are general goals that activate specific initial plans set up by the

programmer. O

Each triggering condition for the plans in II is composed of two parts: a trig-
gering event ‘€’ and a context ‘c’, and it is usually expressed in the form ‘e : ¢. An

event is a belief paired with either a ‘+’ or ‘—’ operator to indicate that the belief
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is either added or removed. By defining the plan library, a set

ECBx{+, -} (2.1)

of events is implicitly defined by the set of all triggering events. The context is a
logic condition that the agent verifies against the current Beliefs when a plan is
triggered. The expression

BEc (2.2)

signifies that the Beliefs set B “satisfies” a logic expression ‘c’, or in other words

when the conditions expressed by ‘c’ are true on B.

The reasoning cycles of a Belief-Desire-Intention (BDI) agent are usually op-
erated on indefinite bases (continuously from the time the system start until its
shutdown). The following definition introduces the operational sets of a rational

BDI agent that are regularly updated throughout the agent operation.

Definition 2.2 (Operational sets of a rational BDI agent). Given a rational

BDI agent A, if ‘time’ ¢ € N5, is the integer count of reasoning cycles:

e B[t] C B is the Current Beliefs set, the set of beliefs available at time t.

Beliefs in BJ[t] can be negated (usually with a ‘\’ symbol).

e E[t] C E is the Current Events set, which contains events that are active at

time t.

e D[t] C 1T is the Applicable Plans or Desires, which contains all plans 7; such
that Blt] = 7;(0).

e [[t] C II is the Intentions set, which contains plans w; that the agent is
committed to execute. Any plan stays in the Intentions set until all the
actions listed in it have been executed, unless a plan withdrawal action is

issued to cancel the plan. O

For most BDI agent implementations the reasoning cycle is operated as follows:

At the beginning of every cycle, B[t] is updated by checking for external inputs
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and internal actions; from the changes that happen at each reasoning cycle to the
current beliefs, a set of events is generated and added to E[t]. The plan library is
then search for plans that feature a triggering condition that satisfies the current
beliefs set (B]t] = w(0)). These plans are then copied to D[t]. A single plan from
the Desires set is then selected for execution and added to I[t]. Then the agent
takes applicable actions from the active plans in /[t] and executes one (or more) of

them. At this point the cycle is complete and Bt 4 1] is generated.

To illustrate the above definitions, we have provided the example below for an

AV in a parking lot scenario.

Example 2.1. An AV is left in a parking lot, so the initial belief is that the AV is
in a parking lot and it should start looking for a free parking space. The AV starts
moving, and in the meantime, a pedestrian is moving nearby, the agent will get
this information from the perception system as an external event occurred at time
t, and this will trigger the associated belief. Based on the current beliefs set and
the set of rules (R” and RP) the agent will choose a plan, the external event also
called the trigger event of a plan that is available to the agent in order to proceed
to the target, a plan has an action or a set of actions, such as mowve forward for 2m
then turn right for 90° and so on. The beliefs set will keep updating based on the
information coming from the perception system as an external events or from an
internal events such as the battery level of the AV. The agent will keep monitoring
those beliefs and compare it with the AV rules then choose a plan from the set of
plans available to the agent where each plan consist of a single action or a sequence

of actions to execute and keep proceed until reaching the final destination.

2.3.2 Decision making in rational agents

The approach of agent-based decision-making, which is also called Agent-Oriented
Programming (AOP), is originally evolved from Object-Oriented Programming (OOP).
The first example of OOP, designed with decision-making capabilities, is probably

given in [94]. A more recent example of this kind of decision-making can be found
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in [95], where it presents a layered control architecture of OOP, consisting of de-
liberative, control execution and reactive layers. Usually, the OOP framework is
linked to Hybrid Systems (HSs) modelling software. Some example applications of
this kind can be found in [96, 97, 98].

A vital feature of an AV is the ability to process multiple objectives at the
same time, such as planning, collision avoidance, and decision-making to choose
the best action to execute. On the other hand, the AV should behave in ways that
are robust to kinds of uncertainties, such as sensors affected by noise, unpredictable
obstacle movement, wheel slip, etc. To process a specific task successfully, the AV
must be able to make a plan, proceed through the steps of the plan, and decide
when to reinitialise the plan. A critical plan in almost any AV is to find a collision-
free path. During execution, other sub-goals are involved in processing unexpected
changes in the environment. In general, rational agents have to deal robustly with
uncertainties. To overcome uncertainty, several approaches have been presented.
In [99], an example is presented using an extension of Markov Decision Processes
- Partially Observable Markov Decision Processes (POMDP). A POMDP model
the uncertainty in navigation, including actuators and sensor uncertainties and
approximates the current configuration knowledge. Related work in this field [100,

101] is aimed to find the best sequence of actions to reduce localisation uncertainty.

Model Predictive Control (MPC) is considered to be an alternative approach
to model uncertainty within a planning framework [102]. The representation of
uncertainty is estimated in the frame of the Extended Kalman Filter (EKF) [103].
MPC also used for lane-keeping and obstacle avoidance [104], also as a steering wheel
controller [105]. Note however that the MPC approach does not accommodate a
reasoning system with memory which agents do. MPC also cannot handle advance
conceptual perceptions, long term goals and plan execution. It also does not have a
computational framework that combines both discrete and continuous states. Hence
agents represent a higher-level framework that is suitable to apply for AVs reasoning
system while the MPC approach could only be used to control individual subsystem

as mentioned above.
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2.3.3 Natural Language Programming (NLP)

Natural Language Programming (NLP) is an ontology-assisted way of programming
in terms of natural language sentences, e.g. English. A structured document with
content, sections and subsections for explanations of sentences forms a NLP docu-
ment, which is actually a computer program. The smallest unit of a statement in
NLP is a sentence. Each sentence is stated in terms of concepts from the underlying

ontology [106].

An AV’s decision-programming is complicated, time-consuming and error-prone,
and requires expertise in both the AV platform and the intended tasks. Within the
automotive industry, there are many vendor-specific tools and programming lan-

guages, which require specific proficiency.

In this work, we aim to provide an AV decision system that could be readable
and understandable by any driver interested. We are also looking to extend the
driver’s understanding of how the decision-making is performed for vehicle choices
it makes. This also enables to check the system by law enforcement authorities,
insurance companies and lawyers (before a lawful use of the system and after an in-
cident to investigate). We used the system-English (SENGLISH) meaning-definition-
system as a Natural Language Programming (NLP) [107], where English sentences

are used in high level programming of agent decisions.

An ontology encompasses a representation, formal naming and definition of
the categories, properties and relations between the concepts, data and entities
that substantiate one, many or all domains of discourse. More simply, an ontology
is a way of showing the properties of a subject area and how they are related, by

defining a set of concepts and categories that represent the subject [108].

In SENGLISH, an ontology is defined as a formal data framework that matches
a set of concepts within a domain; in other words, a vocabulary that the agent
uses for reasoning in a specific domain and can be understood by non-experts such
as drivers of vehicles. An example of such kind of description is in [93, 107] for

autonomy in space missions. SENGLISH has been used to build both the agent code
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Figure 2.3: SENGLISH editor with an ontology segment in the Machine Ontol-
ogy Language (MOL) expressing the concepts and related data structures used.
Classes are indicated by a single ‘>’ symbol, subclasses by multiple ‘>’ symbols and
attributes by the ‘@’ symbol.

and external functions that could be used to deal with different skills in the system.

The SENGLISH agent description language has been developed to simplify the
programming of agents and make their reasoning transparent to people who interact
with robots. Figure 2.3 shows a code fragment of Machine Ontology Language
(MOL) that has been used in SENGLISH documents. The sentences of the program
divided into classes and subclasses, where the classes are indicated by single ‘>’
character and subclasses indicated by two or more ‘>’ characters, according to the
programming hierarchy. Every class features attributes indicated by ‘@Q’ character

that is specified a colon ‘:” followed by a standard data type or another class type.

The programming environment for SENGLISH is called the SENGLISH Publisher.

35



2. BACKGROUND

A suitably written, structured script in an SENGLISH document can contain the
high-level code of the complete reasoning of a LISA agent in English sentences.
The agent can then control either a simulated or real environment containing the

vehicle and other traffic participants.

Two types of SENGLISH statements can be used: sentences and mental notes.
The first is defined within a square bracket, [...], an associated SENGLISH docu-
ment, and the latter is defined within square brackets preceded by a ‘hat’ operand
“[...]. BDI agent implementations, such as Jason and LISA, can be fully defined and
implemented by specifying the Initial Beliefs and Goals, Initial Actions, Perception

Process, Reasoning and Executable Plans, see [109].

One of the well described frameworks for AOP is the Cognitive Agent Toolbox
(CAT) [110], which supports the development of agent reasoning with NLP in SEN-
GLISH and is also used to link multiple external software suites such as MATLAB and
PRISM creating a unified agent framework that supports the verification process.
An sENGLISH document is represented by a reasoning file and multiple action files.
An SENGLISH reasoning file is structured in multiple sections as follows: INITIAL
BELIEFS AND GOALS, INITIAL ACTIONS, and PERCEPTION PROCESS, these sections
are used to describe and configure the model of the world, REASONING represents
a list of the logic-based implication rules, while EXECUTABLE PLANS represents the

sets of Plans or Plan Library.

The action files list and describes the available actions; those actions could
be implemented in different programming languages as a sequence of SENGLISH

sentences associated with predicates that can be used by the reasoning file.

In the next section, we have defined and presented the three different aspects
that we used to check our autonomous vehicle system and those are: validation,
verification and testing. Then we went into the details of the formal verification
method that is the topic of the next chapter. We mentioned how we verified the
logic and decisions of our rational agent during both design-time and run-time
operation and the two verification tools used in this work: MCMAS and PRIiSM

model checkers and their related algorithms.
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2.4 Verification

2.4.1 Verification of dynamic systems

Safety and reliability of autonomous systems need thorough assessment, especially
the safety-critical systems. System checking can be divided into three main cate-

gories:

1. Validation (usually through simulation);
2. Formal verification;

3. Testing (usually through hardware implementation).

Validation through simulation is a close imitation of the studied system or op-
eration of its process; developing a model is the first act required for simulation.
This model should be a well-defined description of the simulated subject and de-
scribe its key characteristics, such as its abstract, functions, behaviour or physical
properties. Here the model represents the system itself, while the simulation rep-
resents its operation over time. The simulation can then be used for validation to
check the correctness of the system and its individual components based on pro-
posed scenarios [111, 112]. The simulation might point out to unsafe states during
its iterations. In this case, one can show that a system is unsafe. However, one
cannot prove that the system is safe if the simulation did not discover an unsafe
state since there exist infinitely many possible trajectories due to uncertain initial
states, inputs, and parameters. Thus, simulation is not sufficient alone since the

trajectory that hits the unsafe set may have been missed.

Testing is usually a practical approach to check if a given system consisting of
software and hardware matches an abstract specification of that system. Testing
can only be applied to an existing prototype of the system [113, 114]. The same
thing mentioned above on simulation is applied here on testing. This approach

alone cannot prove that the system is safe. However, testing is necessary as a final

37



2. BACKGROUND

step to check other aspects that simulation and verification cannot go through, such

as the behaviour of the system under real-life circumstances.

Formal verification, on the other hand, works on a model of the system (rather
than a prototype) and is based on a mathematical proof of the correctness of the

model.

In the field of testing, there is an increasing demand in the tools and algorithms
development, starting from a formal system specification for the automatic selection
and generation of tests. In the simulation approach, there are different simulators
for different systems and purposes. Formal verification has been presented to be an

essential support for the certification of safety-critical systems [115, 116].

We can divide approaches to the formal verification of systems into two broad

classes [59, 60]:

1. Axiomatic (theorem proving);

2. Semantic (model checking).

Axiomatic verification means to derive a systematical logical theory from the
system program that represents the behaviour of that system. This is usually re-
ferred to as Automated Theorem Proving (ATP) and uses tools called theorem
provers, which deal with the development of computer programs capable of show-
ing some statement (the conjecture) as a logical consequence of other statements
(the axioms). ATP is used to establish a logical consequence of a program, using a
computer. The ATP system inputs are the theorem statement and a set of axioms
(including hypotheses), while the output is a proof that the conjecture is a logical
consequence of the axioms. Computers cannot understand the meaning of a state-
ment in any spoken language because the logical consequence is independent of the
meaning. In the same way, a computer is just a tool for establishing logical conse-
quence where an ATP system is not capable of ‘proving’ non-logical consequences

[117).

It is possible to reduce axiomatic verification to a proof problem. The difficulty
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of this proof problem restricts axiomatic approaches. Proofs are hard enough, even
in classical logic; the addition of modal and temporal connectives to logic makes
the problem considerably harder. Hence, more efficient verification approaches have
been developed. Model checking [118] as the name suggests is based on the seman-
tics of the specification language, while the axiomatic approaches generally rely on

a syntactic proof.

The other difference is that the theorem proving method can only be used
during design-time. In contrast, model checking can be used during both design-
time and run-time verification (both of these approaches have been used in this

thesis). Model checking is defined as [2]:

“A formal verification technique which allows for desired behavioural properties
of a given system to be verified based on a suitable model of the system through

systematic inspection of all states of the model”.

The power of this approach comes from its capabilities to be performed auto-
matically with the ability to provide counterexamples in case of failure (a model
fails to satisfy a given property) which provides necessary debugging information.
Besides, the model checking tools have proved to be mature enough to be used by

a large number of successful industrial applications [2].

System verification is used to prove that the product or the designed model
has specific properties. For instance, a system should never reach a state where it
cannot go any further (a deadlock case); this can be obtained from the specification
of the system. In case of no matching between the model of the system and one
or more of its properties, then the model is considered to be “wrong”. Otherwise,
the model is “correct”. The diagram of the model checking verification approach is

shown in figure 2.4.

2.4.2 Verification of autonomous agent

Recently, autonomous transportation systems have entered the public domain (e.g.

transportation drones, autonomous cars). The concern arises whether those systems
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Figure 2.4: Schematic diagram of the model checking method [2]

are efficient, reliable, and most importantly whether they are safe or not. AVs
systems can cause accidents with severe damage to property and human life, and
such systems are considered as safety-critical. These systems must be certified

according to applicable standards as adequately safe before they can be used [1].

While testing is still a necessary part of the verification process, validation
through simulation and formal verification are considered vital tools in this domain,
mainly at the early stages of design where experimental testing can be considered to
be dangerous and infeasible. Simulation is similar to an implementation; simulation
runs are usually incomplete, and it used to show the continuous dynamics and allows
to check the behaviour of a system. On the other hand, verification through model
checking allows us to formally verify the properties of a finite representation (model)
of the system. Formal verification of system behaviour is a growing area due to the
wide-spread of agents with a decision-making ability in the field of autonomous

systems, and those agents have to be proven safe [31].

The precision of verification models mainly depends on the accuracy of the
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abstraction operation. Probabilistic model checking can deal with the uncertainty
of the state of the environment, and it needs to be taken into consideration as it
can affect decisions made by the agent [31]. Formal verification tools use temporal
logic statements to model transitions between discrete states of the environment

that are triggered by internal states, actions, and logic-based reasoning of agents.

All three concepts of system checking have been implemented in this work
for the ultimate goal of designing a safe and reliable self-driving vehicle. Formal
verification is proposed and demonstrated in chapter 3, simulation which is also used
to validate the system is developed and presented in chapter 4, testing is deployed
through the hardware implementation of the AV system and clarified in chapter 5.
A detailed case study is presented in chapter 6.

2.4.3 Verification through model checking

Verification by model checking is inseparable from temporal logic [119, 120]. The
model checking problem relies upon the close relationship between models for tem-
poral logic and finite-state machines. The first probabilistic model checkers were
proposed in the 1980s and 90s [121, 122, 123]. However, the first industrial-strength
algorithms were developed in the early 2000s [124, 125]. It can be represented sim-
ply as: given a formula ¢ of language L, and a model M for L, determine whether

or not ¢ is valid in M, i.e., whether or not M =1 ¢.

Suppose that ¢ is the specification for some system, and 7 is a program that
claims to implement . Then, to determine whether or not 7 truly implements ¢,

we proceed as follows [60]:
1. Take 7, and from it generate a model M, that corresponds to 7, in the sense
that M, encodes all the possible computations of 7;

2. Determine whether or not M, = ¢, i.e., whether the specification formula
@ is valid in M; the program 7 satisfies the specification ¢ just in case the

answer is "yes."
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Usually, the generated model is independent of the given specifications; this
means the given model could be used with different specifications without the need
to rebuild the model again. However, it is still possible in some applications, to tailor
the generated model to given specifications to reduce the size of the model with the
cost of generalisation. In case the model does not satisfy the given specification, then
the verification software will generate a counterezample [126]. The counterexample
shows the first state or the set of states and its transitions in the state space that

does not satisfy the given specifications.

For the above two steps of verification, the difficulties come in the first step: it
is not a trivial task to automate the process of generating a model for the system
under investigation, assuming that the second step of verification could be easier
to perform with the help of the model checker tool. We have discussed a possible
method to alleviate this problem in chapter 3. In the next two sections, we covered
the two model checkers used in this work. The first is the MCMAS model checker
which is used during the design-time phase to check the beliefs, rules, and actions
for stability and consistency. The second is the PRISM model checker which is used
during the run-time operation to check the probability of success for the intended
action before execution. The detailed process for both model checkers is given in

chapter 3.

It is essential to mention here that our interest is to verify the logic-based rules
and decisions of a rational agent. There is another approach in model checking
that has been used by others to assess the safety of autonomous vehicle movements
through geometric and mathematical models of both the AV and other static or
dynamic objects around. This method called Reachability analysis [127] and it is
used to determine the set of states that a system can reach, starting from a set
of initial states under the influence of a set of input trajectories and parameter
values. Reachability analysis depends on mathematical models of the trajectories
for nearby objects, an example of this approach [128, 129, 130] is to calculate the
reachable positions of other traffic participants and verify that it does not intersect

with the trajectory of the AV for a short prediction horizon, then safety can be guar-
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anteed for that time horizon. This method is similar to our run-time verification;
however, in reachability analysis, there is no guarantee that the other objects will
behave as predicted. Hence we supported our verification method with a design-
time rule-based verification of the AV’s actions that prevent collision with other

objects around, adding another layer of protection.

2.4.4 MCMAS model checker

MCMAS is a symbolic model checker for multi-agent systems. It enables the auto-
matic verification of specifications that use standard temporal modalities as well as
the correctness, epistemic, and cooperation modalities. These additional modalities

are used to capture the properties of various scenarios.

MCMAS [36, 131] is specifically developed for agent-based specifications and
scenarios. It supports specifications based on Computation Tree Logic (CTL)
among others as described in [132, 133, 134]. The model input language includes
variables and basic types, and it implements the semantics of interpreted systems,
thereby naturally supporting the modularity presented in agent-based systems. MC-
MAS implements Ordered Binary Decision Diagrams (OBDD) based algorithms op-
timised for interpreted systems and supports fairness, interactive execution (both

in explicit and symbolic mode) and counterexample generation.

Agents can be described in MCMAS by the Interpreted Systems Programming
Language (ISPL). The approach is symbolic and uses OBDDs, thereby extending

standard techniques for temporal logic to other modalities distinctive of agents.

Interpreted systems [133] provide the formal semantics for MCMAS programs.
In this formalism, each agent is characterised by a set of local states and local actions
that are performed based on a local protocol and the situation of its environment.
The system evolves based on an evolution function starting from the initial states
and determines the changes of the local states of an agent as a result of its local
actions and the actions of other agents around. The evolution of all the agent’s

local states can be expressed as a set of runs to a set of reachable states. These
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can be used to interpret formulae involving epistemic and temporal operators for
reasoning about the correct behaviour of the agents, and the CTL operators to

expressing states of affairs that agents can enforce.

Computational Tree Logic (CTL)

Computation Tree Logic (CTL) and Linear-time Temporal Logic (LTL) [135] are
popular logic for verification of transition systems. They are used to specify proper-
ties of a system under investigation. LTL deals with one possible future behaviour,
while CTL accounts for all possibilities of future behaviours. In this project, we use

CTL to ensure stability and consistency using efficient implementation techniques

of CTL model checking.

Definition 2.3 (Computational Tree Logic (CTL)). Given a countable set P of
atomic formulae, the language Loty of Computational Tree Logic CTL [136, 137],
is given by the following grammar [138]:

pu=plop|e1 Ve | EXp | EGe | E(p1 Ups) |
EFp | AFp | AX ¢ | AGp | A(p1 Ups)

(2.3)

In this definition, p € P is an atomic formula; E Xy means “a path exists
such that at the next state ¢ holds”; EGy means “a path exists such that ¢ holds
globally along the path”; Efp;Ups] means “a path exists such that ¢; holds until
w9 holds”. Notice that CTL operators are composed of a pair of symbols: the first
symbol (A) is a quantifier over paths, while the second symbol (E) expresses some
constraint over paths. Also, notice that EU is a binary operator, that could be

written as EU (@1, ©2).

The second line of the above equation means, respectively: “a path exists such
that ¢ holds at some future point”; “for all paths, ¢ holds at some point in the
future”; “for all paths, in the next state ¢ holds”; “for all paths, ¢ holds globally”;
“for all paths, ¢y holds until ¢, holds”. These additional CTL operators could be
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used to simplify the specification process of various requirements.

The semantics of CTL is given in terms of transition systems: a transition
system M = (S, Sy, T, H) is a tuple in which S is a set of states, Sy is the initial
state, T C S x S is a transition relation, and H : S — 2% is an evaluation function.
The transition relation 7" models temporal transitions between states: given two
states s and s’ of S, s T s’ means that s’ is an immediate successor of s. It is
usually assumed that every state has a successor, i.e., the transition relation 7' is
serial. the satisfaction for a CTL formula ¢ at state s in M, denoted by s = ¢, is

recursively defined as follows [139]:

s Epiff pe H(s);

s E —p iff it is not the case that s = ¢;

sE @1 ANpgiff s = ¢ and s = o

s E EX ¢ iff there exists a path 7 starting at s such that 7 (1) | ¢.

s = EGyp iff there exists a path 7 starting at s such that 7 = ¢ for all i > 0;

s | EFyp iff there exists a path 7 starting at s such that for some i > 0,

(i) = 5

s = E(p1Ups) iff there exists a path 7 starting at s such that for some ¢ > 0,
7(i) = @2 and 7(j) |= ¢y for all 0 < j < 3;

s = AXy iff for all paths 7 starting at s, we have 7(1) = ¢.

s = AGy iff for all paths 7 starting at s, we have (i) = ¢ for all i > 0;

s = AFy iff for all paths 7 starting at s, there exists ¢ > 0 such that 7 (i) = ¢;

s | A(p1Ugpso) iff for all paths 7 starting at s, there exists ¢ > 0 such that
(i) = @2 and 7(j) |= ¢y for all 0 < j < 3;
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2.4.5 PRISM model checker

Computerised systems entered many aspects of our life, including safety-critical
systems such as avionics and automotive applications. Also taking into consider-
ation the increasing complexity of such systems necessitates the development of
rigorous techniques to verify their correctness. Moreover, this analysis should also
consider the quantitative aspects of the systems for verification. This includes both
probabilistic behaviour and real-time characteristics; for example, strict timing re-

quirements [140].

Quantitative verification techniques have received a lot of attention and progress
in recent years. An important modelling formalism for real-time systems is timed
automata, where well-known verification tools such as UPPAAL [141] exist. For
probabilistic systems, the most commonly used models are Markov Decision Pro-
cesses (MDPs) [142, 143] and Markov chains [144]. Probabilistic model checking
tools such as MRMC [145] and PRIsM are widely used and have been successfully
applied to the verification of different systems. A general weakness of these tools
is that they require the user to develop a model of the system in that tool’s cus-
tom modelling language. To solve this issue and to encourage the use of these
tools, it is important to generate the model of the system for the quantitative ver-
ification techniques in the languages used by real system designers. The case for
non-probabilistic verification has been progressed in this direction where the model
of the system to be used by the model checking tools can now be developed directly

from mainstream programming languages such as C and Java [140].

PRIsM is a probabilistic model checker [37, 146], a verification tool for modelling
and formal analysis of systems that present probabilistic behaviour. PRiSM has been
used to analyse different kind of systems from different domains, such as planning
and synthesis, communication, game theory, performance and reliability, security
protocols, etc. PRISM can build and analyse several probabilistic models as listed

below, plus extensions of these models with costs and rewards [146]:
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1. Markov Decision Processes (MDPs).

2. Continuous-Time Markov Chains (CTMCs).

3. Discrete-Time Markov Chains (DTMCs).

4. Probabilistic Automata (PA).

5. Probabilistic Timed Automata (PTA).

PRisM can be used to build a probabilistic model of a system. It also provides
support for automated analysis for a wide range of quantitative properties of these
models for querying mainly about probabilities and timing properties, such as,
“what is the probability of an airbag failing to deploy on-demand” or “what is the
probability that the system will turn off within 3 hours because of failure?”, or “what
is the worst-case expected time taken for the algorithm to terminate?”. PRISM
combines both state-of-the-art symbolic data algorithms and structures based on
the Binary Decision Diagrams (BDDs). It also includes a simulation engine for
discrete events, providing support for approximate/statistical model checking, and

implementations of various analysis techniques [147, 148, 149].

In this thesis, we describe a framework for the quantitative verification of soft-
ware that exhibits real-time, probabilistic and non-deterministic behaviour. In ad-
dition to the list of some application domains mentioned above that PRISM can
deal with, there are other areas where PRISM could be used to play a critical role
in developing a safe system such as [31] where the authors used PRISM to verify the
behaviour of an autonomous agent for an unmanned aerial vehicle (UAV). PRISM is
a probabilistic model checker that can return answers about probabilities and tim-
ing properties based on the described models of the real-time probabilistic system,
and the set of queries asked. With this been said, we took a forward step of utilising
Priswm for a safety check of decisions made by decision-making system onboard an

AV as illustrated in chapter 3.
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Markov decision processes (MDPs)

MDPs [148], can describe both probabilistic and non-deterministic behaviour. Non-
determinism could be used as a valuable tool for modelling concurrency; for this
reason, an MDP is used to describe the behaviour of several parallel probabilistic
systems. Another advantage for non-determinism is when the exact probability of
a transition is unknown, or when it is known but not considered relevant. A formal

definition of an MDP is as below.

Definition 2.4 (Markov Decision Processes (MDPs)). An MDP can be de-
scribed as a tuple (S, s, Steps, L) where:

S is the finite set of states

e 5 € S is the initial state
o L:S — 247 is the labelling function

Steps : S — 2P is the transition function

[]

The transition function Steps for MDP is used to map each state s € S to
a non-empty, finite subset of Dist(S), the set of all probability distributions over
S (i.e. the set of all functions of the form p : S — [0,1] where > cqu(s) = 1).
For a given state s € S, the elements of the transition function Steps(s) represent

non-deterministic choices available in that state.

A path is a non-empty sequence in the MDP of the form sy 25 s 25 sy ...
where s; € S, w1 € Steps(s;) and piy1(Si41) > 0 for all & > 0. Path, is the
set of all infinite paths starting in state s. It is important to resolve both the
non-deterministic and probabilistic choices to trace a path through an MDP. It is
supposed that an adversary makes the non-deterministic choices (also known as a
‘policy’ or ‘scheduler’), which selects a choice based on the history of choices made

so far. An adversary A can be defined formally as a function mapping every finite
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path wy;, of the MDP onto a distribution A(wy;,) € Steps(last(wyi,)). We denote

by Path?, the subset of Path, which corresponds to adversary A.

To make the most of MDP verification, it is not enough to only verify the prob-
abilistic behaviour of a single adversary of MDP, but we must also verify meaningful
properties by computing the mazimum or minimum probability that some specified

behaviour is observed over all possible adversaries.

Probabilistic Timed Programs (PTP)

PTPs can be considered as an extension of MDPs with real-valued clocks and state
variables, or as an extension of PTAs [149, 150, 151] with state variables [140, 152].
For timed automata formalisms, discrete variables are typically considered to be a

straightforward syntactic extension since their values can be encoded into locations.

Given a set V of variables, let Asrt(V), Val(V) and Assn(V) be a set of asser-
tions, valuations and assignments over V respectively. Given a set S, let P(S) be
the set of subsets of S and D(S) the set of discrete probability distributions over S.
A set X of clock variables represents the time elapsed since the occurrence of various
events. The set of clock valuations is RE, = {t : X — R>¢}. For any clock valuation
t and any 0 > 0, the delayed valuation t + § is defined by (¢ + 0)(z) = t(x) + 0 for
all x € X. For a subset Y C X, the valuation ¢[Y := 0] is obtained by setting all
clocks in Y to 0: ¢[Y :=0](x) is 0 if x € Y and ¢(x) otherwise.

A (convex) zone is the set of clock valuations satisfying a number of clock
difference constraints, i.e. a set of the form: p = {t € RY) | t; —t; < b;;}. The set

of all zones is Zones(X).

Definition 2.5 (Probabilistic Timed Program (PTP) [140]). A PTP is a tuple
of the form: P = (L,ly, X,V,v;,Z,T) where:

e [ is a finite set of locations;
e [y € L is the initial location;

e )V is a finite set of state variables;
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vo € Val(V) is the initial valuation;

X is a finite set of clocks:;

Z:(L,V)— Zones(X) is the invariant condition;

T :(L,V) = P(Trans(L,V, X)) is the probabilistic transition relation, where:

Trans(L,V,X) = Asrt(V)x Zones(X)xD(Assn(V)xP(X)x L)

]

A state of a PTP contains the valuation of L, V and X, and written as (I, v, t).
A new state can be reached by either an elapse of some time § € R> or a transition
T=1(G,E,A) € T(l) where G € Asrt(V) is the guard, £ € Zones(X) is the enabling
condition, and A = A\ (f1,7r1,l) + -+ + M(fx, 7k, lx)) is a probability distribution

over an update f; € Assn(V), clock resets r; C X and a target location l; € L.

The delay 6 must be chosen such that the invariant Z(l) remains continuously
satisfied; since Z(l) is a (convex) zone, this is equivalent to requiring that both ¢
and t + ¢ satisfy Z(l). The chosen transition 7 must be enabled, i.e., the guard G
and the enabling condition £ in 7 must be satisfied by v and t + 9, respectively.
Once 7 is chosen, an assignment, set of clocks to reset, and successor location are

selected at random, according to the distribution A in 7.

When the agent starts a reasoning cycle, it will obtain a set of actions that
can be safely applied. If the set contains more than one action, then we use PTP
to find the most suitable action for the self-driving vehicle to take. PTP models
the dynamic and uncertain physical environment containing the self-driving vehicle

itself and other static or moving objects, such as pedestrians and other vehicles.

Probabilistic Computational Tree Logic (PCTL)

PCTL [153] is an extension of the temporal logic CTL with the addition of probabil-
ity. It is the same as the pCTL logic of [154]. PCTL is used to write specifications
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for MDPs. A formal definition of PCTL is as below.

Definition 2.6 (Syntax of PCTL).

¢ u= true | a| g1 N gy | 2 ¢ | Puy [¥] (2.4)

V=X | 1 U ¢o| ¢1 U oy (2.5)

where a is an atomic proposition, <1 € {<, <, > >} p € [0,1] and k € N.

A property of a model will be expressed as a state formula while the Path for-
mulas occur as the parameter of the probabilistic path operator Py , [¢]. Intuitively,
a state s satisfies P, , [¢] if the probability of taking a path from s satisfying ¢ in
the interval specified by > p.

Path formulas use the operators X (next), U (until) and U=F (bounded until)
which are standard in temporal logic. Intuitively, X ¢ is true if ¢ is satisfied in the
next state; ¢ Ugs is true if ¢o is satisfied at some point in the future and ¢ is true
up until then; and ¢; USF@, is true if ¢, is satisfied within k time-steps and ¢, is
true up until that point. O

The use of MDP-based architecture and PCTL is reported in chapter 3 in more
detail. We refer the reader to [155, 156, 157] for more details on MDPs and PCTL.

Performance queries
Given a PTP, we can use the following PCTL queries to check its properties:
® P2 [F a’]a

[ ] P‘X]:? [FST (Z],

where <€ {mazx, min}, a is a Boolean expression that does not refer to any clocks
and T is an integer expression. The first query asks what is the maximum /min-

imum probability that a is eventually satisfied, and the second one inquires the
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probability that a can be satisfied within a time-bound T'. Based on these queries,
we can compute the maximum /minimum probability of all target states that satisfy
a without time limit or within a bound 7. For example, we can ask what is the
minimum probability for the AV to move to a specific location within a certain

time. A concrete example is presented in chapter 6.

Agent reasoning in a most BDI agent-based system is intrinsically probabilistic
in its nature, though often not described as such. Perception beliefs occur with
some probability and so do events at time intervals in a stochastic fashion. One can
reliably say that the environment can be modelled as a stochastic process against
which the success of the agent, with its own decision-making, can be verified using

a probabilistic model checker.

A BDI agent of this type is completely defined, in definition 2.1, by listing all
beliefs and actions, a set of rules and a set of plans that operate on these beliefs by
sequentially executing actions. This is in principle a system with well-defined states

and transitions, assuming probability distributions of random inputs are known.

Here the PTP models represent the next possible actions of the AV, (the next
steps of the AV), it also generates probabilistic steps of the other agents in the
same environment. The model checker will check and compare all the PTPs using
PCTL properties to check whether the proposed path or action of the vehicle has
any negative consequences on the other agents moving around or on the AV and its

passengers.

In the next section, we covered in some details the middleware we used to
design our autonomous vehicle system which is called the Robot Operating System

(ROS) and the Gazebo simulator where those are fully covered in chapter 4.

2.5 Robot Operating System (ROS)

ROS [34] is a powerful and flexible framework for writing robot software. It is

a collection of libraries and tools that have been designed to simplify the task of
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developing a robust and complex robotic system behaviour for a wide variety of
robotic platforms. A significant advantage of this framework is the fact that it

provides an extensive set of implemented algorithms and drivers used in robotics.

The ROS framework is based on a set of nodes that use messages, topics and
services to communicate. Figure 2.5 illustrates the connection between the different
ROS nodes and the ROS master node (roscore), which is the interior design of each
ROS-based system. The ROS core master node is the first node to run in order for
other ROS nodes to communicate. When the ROS core node is active and running,
other nodes can exchange messages by subscribing and publishing to specific topics
or by directly invoking the services and actions of the other nodes as shown in figure

2.6. The ROS-based system structure consists of the following [158]:

e Master node (roscore): The ROS master node works as an intermediate node
that supports connections between different ROS nodes. The master has all
the information about all nodes running in the ROS platform. It will exchange
information of a node with another to establish a connection between them.
After exchanging the information between those nodes, the communication

will start between the two ROS nodes directly.

e Nodes: A base system unit in ROS middleware is called (Node). Nodes are
used for different tasks such as device handling, data processing, or algorithm
execution, and they use topics or services to communicate between them. ROS
software is distributed into multiple packages. A package can contain one or
multiple nodes, and it is usually developed for performing one type of task. A
robotic system may have many nodes to perform its different computations:
for example, an AV may have nodes for hardware interfacing, processing data
from cameras or laser scans, localisation and mapping and other objectives.

ROS nodes could be created using ROS client libraries such as roscpp and

rospy.

e Topics: A stream of data used to exchange information between different

nodes. It could be used to send a single message or sequence of messages of
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one type. These messages could be a system input such as sensor readings or
system outputs such as commands for the motor to change the speed. Each
topic has a specific message type and a unique name. A node cannot publish
and subscribe at the same time with a specific topic; however, there are no

restrictions on the number of different nodes publishing or subscribing.

e Services: In this mode, one node (the server) registers service in the system.
Later, any other node in the same system can ask for that service and get a
response in a way similar to the client-server model. Compared with topics,
services allow for two-way communication, where the request can also contain

some data.

The main intention behind the building of the ROS framework was to become
a generic software framework for robots. Even though robotics research was hap-
pening before ROS, most of the software was exclusive to their own robots. Their

software may be open source, but it is challenging to reuse.

Access to a first-generation ROS network is not secured, which is a significant
security threat for autonomous cars when using ROS. The communication among
ROS nodes is not secured; thus, the whole system is vulnerable. Someone who gains
access to the car’s ROS network can access and alter the car’s behaviour. However,
this drawback has been addressed in the newest version of ROS (ROS version 2).
Even with the present drawback, it can be argued that ROS is the right solution
for developing autonomous driving prototypes [159, 160].

ROS has been used in this work to design the AV model and its skills such
as perception, planning, and control. It is also possible to connect the AV system
designed in ROS to a testbed vehicle through Hardware-In-Loop (HIL) process, as

shown in chapter 4 and 5.
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Figure 2.6: Visualisation of ROS concepts
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2.5.1 Mathematical model of a ROS package

One way to describe a ROS based system is a tri-partite graph with vertices for
nodes, topics and services. New topics and services can be easily introduced that
can allow reconfiguration of the system to provide agents with the information they
required, albeit sourced from different locations. All node communication must
occur through topics or services [161]. A semi-formal definition of the ROS graph

is:

Definition 2.7 (ROS-graph). A ROS-graphis G = (N, T, S, E,D,C, X, \), where
N is the set of vertices representing ROS nodes, T' is the set of topics, and S is
the set of services, C' is a partially ordered set of object classes and X is a set of
labels on vertices. E C (N xT)U(T x N)U(N x S)U (S x N) is a set of directed
edges to represent publishing of, and subscription to, topics and provision of, and
subscription to, services, respectively. D : E- — C*, E- =TU(N x S)U (S x N),
is a data descriptor function where C* is a notation for finite sequences of entries
from the set of a data object classes C', which are used in services and topics to send
information between nodes. Each of N, T, S are labelled by a surjective labelling

function A\: NUTUS — X.

A ROS system enables the nodes to advertise or use services and to publish
or subscribe to topics. G represents the maximum ability of the robot when the
system has all nodes, topics and services nominally functioning. If some nodes are
not available due to sensor, actuator or computational hardware breakdown, then
G needs sufficient redundancy to enable continued functioning of the robot or at
least some of its functionality. The ROS graph G defines all the possible data flows

for sensor readings, signal processing and control activities in the environment.
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2.5.2 Gazebo Simulator

Simulation of a robot is an essential tool for developing a robotics system. A well-
designed simulator makes it possible to accurately test different algorithms, design
robot parts, train an Artificial Intelligence (AI) system using realistic scenarios,
and perform regression testing. Gazebo [35, 162] is a physics-based 3D simulator
compatible with ROS which offers the ability to accurately and efficiently simulate

complex robot systems along with their environments.

Gazebo provides capabilities to build three-dimensional worlds with robots,
terrain, and other objects. All are powered by a physics engine for modelling differ-
ent kinds of characteristics such as illumination, gravity, and other forces. Gazebo
could be used to test and evaluate robots in different scenarios, usually quicker than
using physical robots in the real world. Gazebo also makes it easier to test other
aspects of the robot, such as battery life, error handling, navigation, and different

machine learning algorithms [162, 163].

Gazebo has been used in this work to simulate the AV system and it’s parking

lot environment as shown in chapter 4.

2.6 Conclusion

In this chapter, we mainly presented the techniques, methods and algorithms that
we used to design our self-driving vehicle. We mentioned how those could be used
together to design the system, and we covered some of their different types. We
also presented some other approaches and progress made by others for the design

of a self-driving vehicle.

As mentioned in chapter 1, we covered and provided solutions for three impor-

tant gaps in the field of research.

1. Design, a simple yet efficient software agent, to control and drive the vehicle

in a restricted environment.
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2. Develop new methods to check the safety and feasibility of the decision-making

process of the self-driving vehicle.

3. Provide an open-source based reconfigurable autonomous vehicle system that
supports hardware-in-loop by engaging a real vehicle platform, which could

be used to validate the design and test different related algorithms.

Here we presented how different techniques are connected and fitted together
as one platform simply and efficiently for the ultimate goal of presenting a fully
working AV with a novel safety system. The schematic diagram of our AV system
is clarified in figure 2.7 that cover the work done in chapter 3 and 4, and partially
in chapter 5.
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Figure 2.7: Overall system diagram.
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Chapter 3

Rational Agent Design and

Formal Verification

3.1 Introduction

An agent system can be described as a hybrid agent architecture [38]. Here the
term ‘hybrid’ indicates systems with logical discrete decision-making separated from
continuous control in a complete framework [164, 165]. This kind of system utilises
logical decision processes to control physical system dynamics. This is usually the
primary approach to the design of autonomous control systems where the decision-
making process should make appropriate choices to control a system with well-
defined functions; see figure 3.1. We can see some examples of such system in
[96, 97, 98, 166, 167]. The general definition of a hybrid system is not specific to the
logical decision-making; in its broader context it includes a variety of systems that
combine both discrete and continuous subsystems working side by side; obviously,
most robotic systems represent this kind of Hybrid System (HS) models. In this
work, this discrete decision-making process represents a rational agent, able to make
justifiable decisions, reason about them, and dynamically modify its strategy when
needed [30, 168]. This architecture is operable for agents deployed in a variety of

scenarios such as handling nuclear waste [169, 170] or coordinating driverless cars
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on motorways [171]. This software agent is responsible for the behaviour of the
system, receiving information and taking decisions, thus defining its response to

changes in the environment.

The AV should make a ‘correct’ decisions, quickly and reliably. Consequently,
we focused in this chapter on the high-level decision-making process, where an AV
decision-maker is modelled as a rational agent. Using this agent-based approach we
may write high-level plans for describing the AV decisions and actions and, since
these plans are transparent and explicit, we can formally verify some properties
related to this agent’s behaviour [30], such as “it is always true the AV will stop in
the event of an unexpected emergency” or " it is always true that the AV will not

break the rules of driving".

The agent systems, in general, are structured in two parts: an agent reasoning
and a set of skills. The agent reasoning responsible for applying decisions through
actions, and the skills are responsible for gathering the necessary information from
the environment and execute those actions on the ground. Verifying those actions
before preceding with them represents a significant step to check the safety of the

overall robotic system and other objects in the environment.

The Rational Agent (RA) uses cues from the environment in order to make a
decision. These decisions are based around a set of beliefs, desires and intentions
that define its behaviour [27, 61] as explained in section 2.3.1. Desires correspond
to the long-term goals of the agent; for example, a desire for an AV might be to
reach a free parking space. Beliefs represent the distillation of information derived
from sensors to provide an observation on the current state of the environment, for
example, if the sensors of an AV detect a person, the agent will hold the belief that
a human is nearby. Intentions, contrasting with desires, represent short-term goals
of the agent, for example, once a person is detected, the autonomous agent will have
the intention to avoid that person while they are nearby. The agent can satisfy its
intentions by having some knowledge and prediction of the state and intentions of

the other nearby objects in the environment.

In the second half of the chapter, we will see how the agent decision can be
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verified. The verification can be divided into two parts. The first of them is the
design-time verification of the agent’s predicates (beliefs, rules, and actions), this
operation is needed once during the development stage of the agent using the MC-
MAS model checker. This process is to check the consistency and stability of the
agent code and, if appropriate, generate a counterexample showing where the sys-
tem model does not meet its specifications. The programmer could then correct
this repetitively during the design-time stage. The second part of the verification
process involves the run-time operation of the agent. It involves finding the most
reliable action and checking the probability of its success using the PRisSM model

checker.

The first step in the run-time verification is to generate models that represent
the agent behaviour and other objects’ possible behaviour and can be understood
by the model checker. The agent model represents the set of rule-based actions the
agent is intended to perform, also a set of probabilities representing the probability
distribution over the other agents’ actions. For this work we have chosen the Prob-
abilistic Timed Program (PTP) that has the same characteristics of Probabilistic
Timed Automata (PTA) such as the ability to represent the continuous-time op-
eration of the AV and the nondeterminism, with the addition of discrete-valued
variables [140] to represent the path of the AV as a set of points. This is the most
suitable model to use because the other models do not satisfy the system needs
(probabilistic and non-deterministic). Once these models are generated, the model
checker can offer many options to explore the agent possible and safe actions, then
return the result to the agent for safe operation. A key point for run-time verifica-

tion is the ability to introduce probabilistic information about the environment.

This chapter is dedicated to the first research question of ‘How we can ensure
the safety and feasibility of decisions made by the autonomous vehicle while driving

by using the formal verification as the main approach?’.
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Figure 3.1: Hierarchical structure for LISA-based BDI agent architecture showing
the different levels of skills which can interact with each other. The agent reasoning
activates and controls each skill.
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3.2 Rational agent design

Here we use the notion of a rational agent introduced by Bratman [172] and de-
scribed in detail by Rao and Wooldridge [168]. Rational Agents (RA) are software
entities that perceive their environment through sensing, generate beliefs about this
environment, then use these beliefs in a reasoning process. Based on its own mental
state, such as its intentions, a rational agent can take actions that may change the
environment [168]. A rational agent can be implemented in several ways, but we

choose to utilise the popular BDI (Belief, Desire and Intention) architecture [61].

We designed a unified framework which is necessary for developers and pro-
grammers to describe the agent reasoning and a model of its environment and to
automate the process of generating a verifiable model describing both the agent

reasoning and the surrounding environment.

The system presented in this work has a unified framework to model and verify
the reasoning process of the LISA agent implementation [4, 173] (based on the BDI
agent architecture) that has been designed to facilitate both the design-time and
the run-time verification and to support automatic generation of verifiable models
for the run-time verification process. It is essential to mention that LISA is not a
contribution of this thesis. LISA has been used to facilitate the design of a RA that

could be connected to a verification system.

Similar to other implementations of AgentSpeck based BDI architecture, the
LISA system has been structured in a layered way with the reasoning layer in the
top then subsystems represented by a set of skills in different abstraction layers.
Those skills have been developed for the AV to perform specific tasks such as per-
ception, localisation, mapping, and planning, and those tasks are controlled by the
agent reasoning processes. Because the agent reasoning can only process symbolic
data, we developed an abstraction/sequencing skills that situated between the agent
reasoning and the other set of skills as shown in figure 3.1, which are used to con-

vert the numeric data coming from the RA skills to symbolic data used by the RA
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reasoning and vice versa.

Although Jason [83] is a suitable, popular and efficient agent implementation
for Agent-Oriented Programming (AOP) to develop rational agents, there was a
need for developing LISA agent implementation based on Jason. The reason is that
Jason was developed with no automatic verification process in mind, means that
adding a verification process to Jason implementation is difficult. An alternative
and feasible option were to develop a new agent implementation based on Jason
that would ease the verification operation. The result is called the Limited Instruc-
tion Set Agent (LISA), that we used in this thesis with some modifications (initially
it is developed for an autonomous water surface vehicle) to make it suitable for our
self-driving ground vehicle system. This agent implementation provides a reasoning
operation that was developed to facilitate the modelling process by automatically
generate probabilistic models represent the behaviour of the AV and the proba-
bilistic behaviour expected from different objects in the environment that can be
verified with a probabilistic model checker. The agent code is developed in a Natu-
ral Language Programming (NLP) based software called SENGLISH [107] to provide
an easy to read the document by both the developer and end-user without much

advanced prior knowledge.

It is essential to mention here that the BDI architecture used in this work has
both advantages and disadvantages. Starting with its advantages, it uniquely solves
the problem of creating a computational framework where decisions about predicted
continuous physical phenomena are combined with the application of traffic rules
and social behaviours of the convention, which varies country by country. How
to drive in a parking lot can be formulated in rules, and there is no need for a
more complex paradigm. The verification challenge is to create decision rules which
apply in most likely traffic situations. The essence of verification is that we need
to account for all eventualities (which are physically much limited for vehicles)
in a non-deterministic or probabilistic manner. Hence this paradigm making the
verification process much easier compared with a more complex decision-making

approach such as deep-learning.
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The disadvantage of this architecture is that in its core, it is still a rule-based
approach that provides a significant advantage of verification but with the price
of generalisation of driving scenarios as it is limited by the number of rules that
describe the intended driving scenario. This means poor scalability and iterative
design where it needs the developers to start from the beginning if they want to
provide an AV that can drive in another environment apart from the intended
one. Another disadvantage is that agent-based systems in its current form do not
accommodate a learning-based approach, means that the agent cannot learn from
its previous mistakes compared with the Artificial Intelligent (AI) based systems
that can have such important feature. However, we are not aiming in this work to
provide an AV that can drive in general driving scenarios. We are also not providing
a general verification framework that can be used with other approaches such as
artificial intelligence. Our verification system could only be used with a rule-based

system such as BDI architecture.

This AV system, in general, could be referred to as an Intelligent system because
it looks forward in time and based on run-time calculation, it can make decisions.
Those decisions are not pre-calculated; they actually calculated during run-time of

the vehicle making the AV have the ability to predict and see the future.

In this thesis, we will go through the steps of how we designed a LISA based
RA that is capable of guiding and driving our AV safely in a restricted environment

represented by a parking lot.

3.2.1 Agent architecture

Our AV system is consists of two interacting elements: the rational agent logic
(reasoning cycle) and the system skills that the agent needs to use to access the
environment. Functionally, it should be possible to abstract properties from the
dynamic system to provide the necessary abstractions for the agent logic to operate

and reason over in a sense-reason-act loop.

This hybrid system design deals with two types of data. The higher-level part
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of the system represented by the agent reasoning processes that can only deal with
symbolic, discrete and highly abstracted data while the lower-level part represented
by the skills of the agent can deal with numeric, continuous or discrete data at a
lower form of abstraction. Middle layer skills do perform this conversion between
the two forms of data types called the abstraction and the sequencer. The agent
then will be able to understand the situation of the environment and compare it
with the sets of beliefs, rules and objectives to decide what action to choose for
the next step. After choosing a suitable action from the actions list, the agent
then sends the commands to the sequencer skill to translate those commands to a
sequence of data that could be understood by the planning and control subsystems

of the AV to apply the selected actions on the ground.

The agent skills can operate in a single execution or a continuous execution
mode. Single execution is when the program is only required to run once then to
stop, send the generated result and wait for another request from the agent reasoning
to run again. Examples include the startup check of the system components and the
battery level check of the AV. The run repeated skills are more involved with the
autonomous driving operation such as the perception, localisation, planning and
control, where those need to keep monitor, process and send/receive data to/from
the agent continuously. The agent program offers the possibility to define such sets
of skills and actions that can be used for such purpose. Here we have examined the

six categories of agent skills in more details:

1. Sensing: Sensing or state determination represents a fundamental skill which
is the ability to determine the dynamic and kinematic state for the AV and
other moving objects in the environment. The information on the state of the
environment comes continuously from the physical sensors onboard the AV.
A sensor is amenable to some noise; hence, this agent skill is also responsible
for translating the noisy environmental data coming from sensors into a form

of data that next skill (subsystem) can deal with.

An example of sensing skill for the AV is the detection and recognition of dif-

ferent objects. Sensor fusion is also part of the sensing operation that produces
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more accurate, more complete information based on the data received from
the different sensors onboard the AV. The data generated from the sensing
skill is continuously transferred to the other skills for further processing based
on the autonomous driving operation requirements until reaching the final
stage of conversion to a form of understandable data by the agent reasoning

operation.

. Detection and Simultaneous Localisation And Mapping (SLAM):
These primary skills, among others (Path Planning and Motion Planning) are
the backbone of the autonomous driving operation. They work by processing
the data coming from the sensing subsystem in order to establish a clear idea
about the state of the AV in its environment and the states of other objects
around. This operation includes the detection of different objects around
the AV (this include classification and localisation of those objects), also the
SLAM [174, 175, 176] to build a map for the environment and to find the
position of the AV inside that environment at the same time. More detailed

information is presented in chapter 4.

. Abstraction: This intermediate subsystem situated between the previously
mentioned subsystem and the agent reasoning. The abstraction skill converts
streams of numerical input variables into a higher-level pre-defined set of
Boolean variables that the agent reasoning can process. An example is when
the perception system detects that the AV has reached the destination. It
will send numeric data to the abstraction skill to translate it to symbolic
representation such as ‘I am near the destination’ or ‘I am at the destination’
It is also responsible for translating the external messages coming from the
other agents or the system operator into belief commands in the current belief

set.

. Sequencing: This skill is doing the opposite work from the abstraction skill.
Once the agent reasoning makes a deliberation and issues a command in sym-
bolic form, the sequencer will translate this command into a numerical data-

type for the control system to understand. For example, if the agent reasoning
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of the AV issues a command such as ‘Go to point X', Sequencing skill would
retrieve the numerical counterpart value of the variable ‘X’, then send these
data to the next planning algorithm to generate a sequence of safe waypoints,

and finally pass this information on to navigation or control subsystems.

5. Planning, and exploration: The agent is responsible for high-level com-
mands, such as: ‘Explore the parking lot’or ‘Go to point Y’, but it does
not know precisely how to perform the continuous sequence of steps in order

to reach ‘Y’

Planning a route between two points represents the invocation and execution
of the relative code as planning routines exist external to the feedback control
mechanisms operating on hardware. Here is an example of a simple tasking
process that may get triggered on a discrete instance to provide a feedback con-
trol with the required information. For planning a routine in a high-level agent
implementation, a proper NLP sentence is ‘Generate timed path TPO from
current state vector Xnow to desired state vector Xdes’. In order
to generate a sequence of safe waypoints, this sentence is then translated
in the sequencing skill then passed to the Planning algorithm to retrieve an

updated map from the SLAM skill, and so on.

6. Control: This subsystem used to control the AV actions in the environment.
They start when the command issued in the agent reasoning is translated to
some understandable numeric data form and then sent to the control skill for
actions execution. The effect of this skill is monitored by the sensing operation
and reported back to the agent for possible correction if necessary. The control
skill represents the interface of the agent with physical actuators and hardware
that influences the environment, for example, the vehicle motors. An example
would be a ‘waypoint following’ that makes sure that the vehicle is heading

towards the next waypoint defined by the path planning algorithm.
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3.2.2 Agent reasoning

The agent reasoning block shown in figure 3.1 represents the core of the decision-
making process for the agent-based system. It links the information available to
the agent from different resources with the set of available actions in order to act
and affect the surrounding environment to bring the agent to the desired state pre-
programmed in the agent core knowledge [62]. The agent reasoning is operated in
iterations called reasoning cycles. The agent code is developed with the NLP called

system-English (sEnglish) [107].

The main reason behind the development of the LISA system was to provide
automatic modelling, and probabilistic verification of agent actions by the inclusion
of pre-programmed probabilistic distributions of the possible behaviour of other
agents in the agent code based on prior observations or knowledge. The agent will
then include this information within the generated probabilistic models to be used

by the probabilistic model checker.

Figure 3.2 shows a schematic representation of the reasoning cycle of the agent,

the reasoning cycle R can be summarised in the following 5 steps [3, 173]:

1. Current Beliefs update: The reasoning cycle starts by updating the current
beliefs set from the recent data available. This step is done by the belief update
function denoted fgy in figure 3.2, as a result, the current beliefs set is updated
from B[t—1] to B[t]. The fpy receives the updated set of beliefs then compares
it with the pre-programmed instructions to check what it should do with each
belief; i.e. either add them or delete them from the current beliefs set. The
information comes from either the incoming messages, sensory perception, and
action feedbacks of external actions, or from the internal actions generating

mental notes.

2. Current Beliefs review: The generated events from the update of the cur-
rent beliefs set will trigger plans for the agent to execute. These events are

beliefs that are copied from the current beliefs set Bl[t] to the current events
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Figure 3.2: The Internal structure of the LISA reasoning cycle. Functions are
represented by blocks with rounded corners, external functions represented as dia-
mond shaped blocks, static sets with white square blocks, and dynamic sets with
grey blocks. Numbers represent the order of executions for the functions in the
reasoning cycle [3, 4].

set E[t]. This process is done by a function called the belief review function
denoted fpp in figure 3.2, which maps B[t — 1] and Blt] to a new current

events set E|t].

3. Retrieving applicable plans: This is the stage where the agent starts
to make decisions by choosing a plan for each event. The plan library II
contains a set of plans, each plan indicated by its contents 7;(\;), where 7 is
the plan, and A is the contents of the plan, with A € [0, n,\j], starting with the
triggering conditions 7(0) and a context. The plan is triggered when there
are two conditions satisfied: a match between its triggering condition and a
current triggering event, and when the B[t] satisfies the context (B[t] F ¢;).
All the plans satisfy the two mentioned conditions are copied into a subset of
the Desires set D[t]. This operation is performed on all events of E[t], and

then it resets to an empty set while the Desires set becomes:
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DIt] = {Dut], Dalt], ..., Dy [t]} (3.1)

where each D;[t] is the set of plans triggered by an event e; € E[t] and
n. = |E[t]| is the number of events at time ¢. This process performed by the

function fp shown in figure 3.2.

. Plan selection: If the agent finds that more than one plan is applicable for
an intended event, then it should make a choice on which plan to choose for
that particular event. This process is performed by a function called Option

Selection Function denoted Fp.

Fo:p(l)—>m7 (3.2)

that maps a set of plans p(II) to a single plan 7. Since the Desires set contain
sets of plans relative to different events, the option selection function must be
applied to each of them. The result of this selection process is a set of plans

called Intentions that are copied into the Intentions Set I[t].

. Actions execution: Once a plan is part of the Intentions set, the agent
is committed to executing it as a final step of the current reasoning cycle.
At the end of the reasoning cycle, the agent takes the next available action
from each plan, and it calls an external function if the action is external, or
passes instructions to the fpy to update (add or remove) mental notes from
the current beliefs set in the next reasoning cycle. Otherwise once an action
is issued, it will be removed from the associated plan. T