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Abstract

The heart is a complex biological system in which electrical activation signals ini-
tiate at the pacemaker cells, propagate through the heart tissue to both trigger
and synchronise the mechanical contractions. Abnormalities in the cardiac electri-
cal signals lead to dangerous cardiac arrhythmias. Therefore, understanding the
functionalities of the cardiac electrical activity is essential for the development of

novel techniques to facilitate advanced diagnosis and treatment for arrhythmia.

By combining experimental or clinical electrophysiology data with mathemat-
ical models, system theoretic approaches can be used to provide quantitative in-
sights into the normal and pathological mechanisms of the cardiac electrical ac-
tivity. This thesis proposes model-based estimation methods to reconstruct and
quantify the underlying spatiotemporal cardiac electrical dynamics from the car-

diac electrogram measurements.

Firstly, a statistical model-based estimation framework is proposed to recon-
struct the tissue dynamics from the cardiac electrogram measurements. The re-
construction of the tissue dynamics is based on an integrated model of cardiac
electrical activity, which incorporates the cardiac action potential dynamics at the
cell-level, tissue-level and extracellular-level. The dynamics of the cardiac tissue
is described using the monodomain tissue model, which is coupled with the con-
tinuous version of modified Mitchell-Schaeffer model. The resulting model equa-
tions are of infinite-dimensional form, which is converted into a finite-dimensional
state-space representation via a model reduction method. In order to estimate
the hidden state variables of the tissue dynamics from the cardiac electrogram
measurements, a combined detection-estimation framework using a single filter
unscented-transform based smoothing algorithm is proposed. The detection step
in the proposed method enables the inclusion of localised stimulus events into the
model-based estimation framework. The performance of the proposed algorithms
are demonstrated using the modelled cardiac activation patterns of normal and
reentrant conditions, in both one-dimensional and two-dimensional tissue field.
The findings from this proposed study illustrate that the hidden state variables
of the tissue model can be estimated from the electrogram measurements, simul-
taneously by detecting the stimulus events. Therefore, this method shows that
the complex spatiotemporal cardiac activity can be reconstructed from the coarse
electrograms using the state estimation methods.

Secondly, a complex network modelling approach is proposed to quantify
the spatiotemporal organisation of electrical activation during human ventricular
fibrillation. The proposed network modelling approach includes three different
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methods based on correlation analysis, graph theoretical measures and hierarchi-
cal clustering. Using the proposed approach, the level of spatiotemporal organ-
isation is quantified during three episodes of VF in ten patients, recorded using
multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global
myocardial ischaemia and 30 s reflow. The findings show a steady decline in spa-
tiotemporal organisation from the onset of VF with coronary perfusion. Follow-
ing this, a transient increases in spatiotemporal organisation is observed during
global myocardial ischaemia. However, the decline in spatiotemporal organisation
continued during reflow. The results are consistent across all patients, and are
consistent with the numbers of phase singularities. The findings show that the

complex spatiotemporal patterns can be studied using complex network analysis.
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Chapter 1
Introduction

Cardiac arrhythmias are a major public health problem in the world [10, 88, 114].
There are more than 2 million people affected by cardiac arrhythmia in the United
Kingdom annually [146]. Cardiac arrhythmia can occur either in atria or ventricle
chambers of the heart. Atrial fibrillation (AF) is the most common cardiac arrhyth-
mia associated with cardiovascular diseases and increased risks of stroke [10]. On
the other hand, the most critical cardiac arrhythmias are ventricular fibrillation
(VF) and ventricular tachycardia (VT), which cause dangerous sudden cardiac
death (SCD) [28, 123]. SCD resulting from ventricular arrhythmia is accounted
for approximately 4-5 millions deaths per year in the world [10].

Cardiac rhythms are regulated by electrical activation waves of the heart. Dur-
ing each normal heartbeat, an electrical wave of activation is initiated by the heart’s
natural pacemaker and spreads through the entire heart to both trigger and syn-
chronise mechanical contraction. Any disturbance to the normal pattern of gen-
eration and propagation of these electrical activation waves result in an abnormal
cardiac rhythm or cardiac arrhythmia. During ventricular arrhythmia, the syn-
chronised and regular contractions of the heart are suppressed by rapid and self-
sustaining waves of electrical activation in the ventricles. As a consequence, the
heart is not able to pump blood effectively, so VF and VT are quickly lethal unless
halted by defibrillation [74].

The mechanisms underlying cardiac arrhythmias, in particular, ventricular ar-
rhythmias are multiple and complex. Studies have demonstrated that both VT
and VF are sustained by re-entrant activation patterns [122], where the activa-
tion wavefronts repeatedly propagate in a circular path, continuously spreading
into the recovering tissue instead of following the normal pathways. Moreover,
an unavoidable consequence of spontaneous VF is global myocardial ischaemia,
resulting from ineffective mechanical function and reduced myocardial perfusion.



Several studies in both animal [24, 72] and human hearts [18, 86] have established
that as a result of progressive global myocardial ischaemia, VF exhibits a series of
stages where the frequency and the complexity of electrical activation waves vary.
Understanding the dynamics of electrical activation waves during episodes of VF
with global myocardial ischaemia is of great importance because this knowledge
could be used to develop novel therapeutic strategies that could be optimised for
each stage of VF [12, 125].

In clinical practice, the most effective treatment for patients at high-risk of ven-
tricular arrhythmias is the implantable cardioverter defibrillator (ICD) [51], where
external electrical signals are applied during abnormal conditions to regulate the
cardiac electrical activity. Another preventative clinical method is to ablate the
pathways of re-entrant activation patterns using radio-frequency energy [31, 122].
This treatment is especially effective for VT as it is driven by one re-entrant circuit
[31]. On the other hand, VF is sustained by many re-entry circuits with complex
patterns of electrical activation wavefronts [31]. Despite the extensive use of ICD
and ablation therapies, mechanisms underlying the initiation and maintenance of
ventricular arrhythmic conditions in the human heart are still a subject of extensive
research.

Recent technological advances in recording techniques such as electrical and
optical mapping of cardiac arrhythmia [57, 116] along with increasingly detailed
models of cardiac electrophysiology [31], have greatly added to our knowledge of
the mechanisms that initiate and sustain cardiac arrhythmias in the human heart.
However, a detailed understanding of these mechanisms is important for further
advancements in developing medical interventions. In recent years, researchers
have been developing methods by combining cardiac modelling concepts with the
electrophysiology data. Some of the important active research objectives in the
cardiac modelling domain are the following [31, 135]:

¢ To predict the effects of anti-arrhythmic drugs on the cellular and tissue level
cardiac activity [105, 113],

e To improve ablation procedures by using the personalised patient-specific
models [17, 22],

e To improve the use of defibrillation shock level optimised for each stage of
VF [12, 125],

e To develop patient-specific modelling with detailed electrical and mechanical
cardiac dynamics [39, 60],

e To quantify the variability and uncertainty in the cardiac models [106],
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e To reconstruct the underlying normal and abnormal tissue dynamics from
the electrophysiology data such as surface measurements [66, 69].

The rest of this chapter is organised as follows: Section 1.1 provides the mo-
tivations of this thesis followed by the aims and objectives in Section 1.2. Finally,
thesis structure and original contributions are summarised in Section 1.3 and Sec-

tion 1.4, respectively.

1.1 Motivation

The development of quantitative techniques to provide better understanding of
complex cardiac electrical activity is the key motivation of this thesis. In partic-
ular, this thesis aims to develop systems theoretic approaches to reconstruct and
quantify the underlying cardiac electrical dynamics from cardiac electrograms.

A quantitative description of the system behaviour can be represented as a
model through which the underlying system properties can be elucidated. Mod-
els are generally used to provide a better understanding of the underlying sys-
tem behaviours, and also to make the best possible predictions of the dynamics.
From the systems engineering perceptive, complex system behaviours are pre-
dominantly studied using model-based estimation problems, where the system
dynamics is determined from the available measurements of the underlying pro-
cess. The integral components in this approach are measurements, system model
and the estimation method.

Data acquisition techniques for cardiac arrhythmia research enable patient-
specific measurements of electrical activation from different spatial locations across
the heart. By acquiring these observations over time, they can be treated as spa-
tiotemporal data where the dynamics change over time and through space. Com-
plex spatiotemporal patterns are thus formed from the spatial interactions with
the dependency of temporal dynamics [15]. However, data acquisition techniques
used to measure electrical activation sequences, especially during cardiac arrhyth-
mia, are clinically challenging and are restricted to endocardium and epicardial
measurements [31].

The limitations of experimental techniques are greatly mitigated by compu-
tational cardiac models, as they can provide quantitative descriptions of cardiac
electrical dynamics at different spatial scales such as cell, tissue and surface [31].
As a result, cardiac-model based studies complemented with experimental mea-
surements are considered as an effective tool to study the multi-scale characteris-
tics and interactions of cardiac electrical activity through forward or inverse prob-

lems [130]. In particular, inverse problems of cardiac-electrophysiology aims to
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reconstruct the unobserved tissue dynamics from the observed electrogram mea-
surements. The reconstruction of unobserved tissue field is important as it may
elucidates the underlying spatiotemporal electrical dynamics during both normal
and pathological conditions. Hence the motivation towards the work presented in
this thesis.

Cardiac model equations are generally developed based on theoretical knowl-
edge from different fields such as physiology, electrophysiology, numerical math-
ematics, etc. This stage is followed or generally combined with rigorous validation
process using the data from clinical experiments and computational simulations.
The cardiac models are generally nonlinear equations, which may take coupled
partial differential equations and integral forms [32]. The key advantages of car-

diac electrophysiological models are the following;:

1. Cardiac models provide quantitative descriptions of state variables, which

may not be directly measured using the experimental techniques,

2. Cardiac models consist of electrophysiologically meaningful parameters that

provide better interpretation of the cardiac electrical activity.

In order to reconstruct the system dynamics from the surface measurements,
systems engineering provides various estimation methods depending on the na-
ture of the inverse problem. For instance, the above estimation problems can
be solved using state estimation and parameter estimation methods, respectively.
Spatiotemporal estimation methods are widely used in a range of disciplines such
as neuroscience [53], cell chemotaxis [83], weather forecasting [71], epidemiology
[8], and wind energy [103]. This provide an opportunity to develop a nonlinear
estimation method based on computational cardiac models of electrophysiology,
for reconstructing the underlying tissue dynamics from the surface measurements.

Another approach to study the cardiac electrical activity is by quantifying the
organisation of spatiotemporal patterns and hence investigating the patterns of
connectivity underlying electrical activation recorded at different spatial locations.
This is particularly important for studying the heterogeneous system characteris-
tics in the clinical recordings of VE. Moreover, one aspect that is poorly understood
is whether the spatiotemporal patterns of electrical activation during VF arise from
random or organised processes [85]. Early studies of VF emphasised the observa-
tion of turbulent electrical activation waves [110, 160]. In contrast, other studies
have found spatial and temporal organisation in the pattern of electrical activa-
tion [30, 61, 151]. Spatial organisation is of particular interest because it could
arise from an underlying connectivity structure that drives the complex activation

patterns that are observed on the heart surface. The spatiotemporal interactions
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can be quantified by applying complex network modelling techniques to different
clinical measurements.

The above described considerations in this section form the main research aims
of the work presented in this thesis, and the following section highlights these and
the respective objectives.

1.2 Research Aims and Objectives

The overall aim of this thesis is to develop model-based estimation methods for
quantifying the cardiac electrical dynamics from cardiac electrograms. It includes
the following:

e Develop a computational cardiac model-based estimation approach to recon-
struct the dynamics at different spatial scales of heart.
The key objectives of this part are summarised as follows:
— Derive a generalised cardiac model by integrating existing models of
cardiac electrophysiology.

— Perform a simulation-based study using integrated cardiac models to
study the initiation and propagation of complex activation patterns at
different spatial levels.

— Develop a detection-estimation methodology to reconstruct the tissue
dynamics from the electrogram measurements in a one-dimensional

and two-dimensional cardiac field.

e Develop a complex network modelling-based estimation approach to quan-
tify the spatiotemporal organisation in the clinical recordings of VF.
The key objectives of this part are summarised as follows:
— Characterise the underlying network structures of electrical activation
with functional association.

— Quantify the level of spatiotemporal organisation during the different
stages of VF.

1.3 Thesis Structure

The rest of the thesis is structured as follows:



1.3. Thesis Structure

o Chapter 2

This chapter provides a foundation to the dominant concepts required for the
modelling and estimation framework proposed in this thesis. This involves
foundation to the cardiac electrophysiology concepts essential for develop-
ing the methods and interpreting the results. A literature review of existing
cardiac models at the cell, tissue and the extracellular spatial fields is then
provided. The review of different models contribute to a better understand-
ing of the state variables and parameters at different spatial scales. This is
followed by a brief description of different state estimation methods from
systems theory. Finally, the state of art in the state estimation of cardiac
models is provided. This review highlights the gaps in the literature, which
forms the foundation for the proposed detection-estimation framework in
this thesis.

o Chapter 3

This chapter presents the derivation of an integrated cardiac model of elec-
trophysiology that can be used for identification frameworks of cardiac ac-
tivation patterns. The proposed model comprises of a novel continuous
version of modified Mitchell-Schaeffer ionic model, coupled with the mon-
odomain tissue model and an extracellular electrogram model. A simulation-
based study on the proposed model is then presented to characterise the
initiation and propagation of cardiac electrical activation waves during nor-
mal and abnormal cardiac conditions. Finally, qualitative and quantitative
comparisons with the modified Mitchell-Schaeffer model are presented to
validate the performance of the proposed model.

o Chapter 4

This chapter introduces a novel methodology to reconstruct the tissue dy-
namics from the extracellular electrogram measurements. This chapter par-
ticularly focuses on estimating the state variables of the monodomain tis-
sue equations in a one-dimensional cardiac field, by using the ionic model
proposed in Chapter 3. After representing the model equations as a finite
dimensional state space model, a state estimation methodology is applied
using the Unscented Rauch-Tung-Striebel Smoother algorithm. The impor-
tant contribution in this framework is the model-based detection and es-
timation of stimulus variables, which has not been reported before in the
literature of cardiac modelling. This estimation of the stimulus variables is
integrated into the framework via state-augmentation. The performance of

the proposed methodology is demonstrated during normal and re-entrant
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activation patterns in a one-dimensional cable and ring field,respectively.
Several experiments are then performed to illustrate the effectiveness of the
proposed framework.

Chapter 5

The proposed detection-estimation framework presented in Chapter 4 is ex-
tended to the two-dimensional cardiac tissue field. By addressing the im-
portant challenges resulted from the high-dimensional state-space model,
this chapter introduces a detection-estimation framework tailored for high-
dimensional systems. The methodology involves Reduced Rank fixed-lag
URTS smoother to obtain the smoothed estimates of the state variables. The
performance of the proposed detection-estimation approach is evaluated us-

ing the complex spiral re-entrant activation patterns.

Chapter 6

This chapter presents a novel complex network modelling approach to quan-
tify the spatiotemporal organisation in the clinical recordings of VF. The
proposed network modelling approach comprises of correlation analysis,
graph theoretical measures and hierarchical clustering method. Using the
proposed approach, the level of spatiotemporal organisation was quantified
during three episodes of VF in ten patients, recorded using multi-electrode
epicardial recordings with 30 s coronary perfusion, 150 s global myocardial
ischaemia and 30 s reflow. The results using the clinical data are presented,
along with a detailed discussion on the proposed complexity measures and
a comparison with the traditional methods.

Chapter 7

Finally, a summary of the work achieved in this thesis is presented, followed
by a discussion on the potential future research areas.

Contributions

Published journal article based on the results from Chapter 6

Robson, J., Aram, P., Nash, M.P, Bradley, C.P., Hayward, M., Paterson, D.J.,
Taggart, P., Clayton, R.H. and Kadirkamanathan, V., 2018. Spatio-temporal
organization during ventricular fibrillation in the human heart. Annals of
biomedical engineering, 46(6), pp.864-876.



Chapter 2

Background to Model-based
Estimation of Cardiac
Electrophysiology

This chapter aims to introduce the key concepts that are essential for developing
the model-based estimation methodology presented in later chapters. This chap-
ter is focussed on the integral components of model-based estimation approaches,
described in Section 1.1. They are : (1) Measurements. (2) System model. (3)
Estimation method. For this purpose, this chapter is broadly classified into three
sections. The first section, Section 2.1, provides a background to the cardiac elec-
trical activation patterns at the different spatial scale of the heart. This section also
highlights the limitations of the experimental techniques, which are mitigated by
cardiac models of electrophysiology. As a result, Section 2.2 reviews the existing
models in the literature of cardiac electrophysiology. Finally, Section 2.3 details the
estimation methods for cardiac electrical dynamics, which include the stochastic

state-space models and the state estimations methods.

2.1 Cardiac Electrical Dynamics

The heart is the primary organ of the cardiovascular system, situated between the
lungs and surrounded by the pericardium membrane. It acts as an electrome-
chanical pump to provide adequate blood flow throughout the body. A simplified
anatomy shown in Figure 2.1 illustrates the four major pumping chambers in the
heart. These chambers are separated into right and left halves by a muscular sep-
tum wall to prevent the blood flow between opposing chambers. Each side has
an atrium (upper chamber) and a ventricle (lower chamber) that are connected by

8
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Figure 2.1. A simplified diagram of the human heart [131].

valves to direct the blood flow upon contraction. The mechanical contraction and
relaxation of the pumping chambers is the cardiac rhythm, initiated and cordi-
nated by the electrical activity in cardiac muscle cells.

The heart muscle can be considered as a composite tissue with various types
of cells. The important type of cardiac cells that produce mechanical contraction
is the excitable myocytes. Myocytes are encapsulated within a lipid membrane
called sarcolemma, which separates the cell interior (intracellular space) from its
exterior (extracellular space). Sarcolemma consists of ions such as Na*, Ca%*, K+,
which creates potential difference across its intracellular and extracellular spaces.

This potential difference is also known as transmembrane potential given by
v =" — v, (2.1)

where 9" and v°* are the potential in intracellular and extracellular space, respec-
tively.

Cardiac myocytes are excitable above a threshold voltage to give an active
response. Myocytes can respond to the external stimuli actively or passively. For
instance, when an external electrical stimulus current from a stimulating electrode
or an internal current from neighbouring myocytes, is above a threshold value,
the cardiac myocytes respond actively. On the other hand, myocytes are at resting
potentials without external stimulus, implying a passive response. The ability of
cardiac myocytes to respond actively or passively to an electrical stimulus forms
the basis of cardiac conduction system.

For a single cell membrane, the evolution of transmembrane potential over
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Figure 2.2. An example of cardiac action potential from a heart muscle cell,
simulated from Luo-Rudy cardiac cell model. Each number indicates the phase
within cardiac action potential.

time initiated by the stimulus is represented as action potential. Figure 2 shows
a schematic representation of a cardiac action potential consisting of four major
phases. When the transmembrane voltage is above a threshold potential, the rapid
inward flow of Na* creates sodium current and depolarises the cell membrane at
a very fast rate. This fast upstroke is Phase 0 of the action potential. Subsequently
sodium current reaches the peak magnitude from where the transmembrane po-
tential quickly decreases due to the outward flow of K*. This is Phase 1 of the
action potential as shown in Figure 2.2. However once the transmembrane poten-
tial reaches approximately -25 mV, the Ca®* channels open and current flows to
cell interior space. This reduced rate of repolarisation in Phase 2 causes a plateau
state in the action potential against the outward flow of K* ions. Following this,
the increased outward flow of K* causes repolarisation in Phase 3. Finally, cell
membrane returns to its resting transmembrane potential in Phase 4 [126, 130].
This forms one cycle of action potential in a cell consisting of depolarisation, re-
polarisation stages followed by returning to resting potential condition.

The electrophysiological characteristics of the action potential are important
aspects for studying the wavebreaks and dynamics during the initiation and evo-
lution of arrhythmia [130]. Some of the key characteristics are illustrated in Figure
2.3 and detailed below.

e Action potential duration (APD): APD is defined as the amount of time when
transmembrane voltage is higher than the threshold potential [23]. The mag-
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Figure 2.3. Some of the key characteristics of cardiac action potential. The
abbreviations are detailed in the text. Here, the action potential is obtained from
the Mitchell-Schaeffer model.

nitude of APD reduces when the cell is excited at a higher rate, and this
condition is called as APD restitution. The slope of APD restitution curve is
an important parameter used to predict the stability of electrical activation
patterns [163].

e Conduction velocity (CV): It is defined as the speed at which the action po-
tential propagates across the tissue. Together with APD the magnitude of
CV decreases when the cell is excited at higher rate, and called as CV resti-
tution. The slope of CV restitution curve is also considered to be influencing

the initiation of wavebreak dynamics [107].

e Refractory Period (RP): After the initial excitation of cell membrane, the pe-
riod in action potential during which the membrane cannot be re-excited
by an external stimulus is called absolute refractory period (ARP). However
after an interval, the cell membrane can be excited during the relative re-
fractory period (RRP) with a higher stimulus magnitude [126]. These time
measures also play an important role in initiation and dynamics of abnormal

cardiac activation patterns [26].

The fast depolarisation of a myocyte in Phase 0 of the action potential triggers and
opens the Na* channels of neighbouring myocytes connected through intercellu-
lar gap junctions. As a result, the action potential is propagated to the adjacent

myocytes in the cardiac tissue.
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Figure 2.4. Simplified representation of the cardiac electric conduction system
[131].

There are specialised myocytes located at various regions of heart that can
produce the electrical impulses at a regular interval, which are collectively known
as pacemaker cells. The action potentials generated at heart’s major pacemaker
cells known as sinoatrial (SA) node initiate and coordinate the heart rhythm. It
should be noted that SA node is situated in the right atrium as shown in Figure
2.1(b), where the rate at which action potentials are generated ranges between 60
to 100 per minute[131]. The action potentials from SA node propagate through
atrial myocytes causing the mechanical contraction of atria that results in blood
flow to ventricles. These action potentials are then collected by atrioventricular
(AV) node, which conducts the action potentials to the ventricles at a slower rate,
approximately 40 to 55 beats per minute [131]. This ensures that the atria have
adequate time to contract before the contraction of ventricles occurs. From the AV
node, action potentials are then propagated to common Bundle of His located at
the upper portion of the ventricle. The action potentials propagate along the left
and right bundle branches and then subdivide into extensive networks of Purk-
inje fibers spreading throughout the ventricular muscles. This action potential
propagation sequences through Purkinje allows the contraction of ventricles and
pumping of the de-oxygenated blood to the lungs and oxygenated blood to the
body tissues. This constitutes one complete cycle of cardiac heart rhythm [130].
Since normally, the heart is initially excited by the activation sequences at SA
node, the normal heart rhythm is also known as normal sinus rhythm (NSR). The
electrical activation sequences must be in an organised manner to synchronise the

mechanical activity of heart and thereby to coordinate the blood flow to the rest of
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Figure 2.5. Schematic representation of the extracellular potential field. Here, a
stimulus current is applied at the left end of the fibre, which propagates through
the fibre. Each alphabet denotes a sensor location associated with electrogram
measurements.

the body parts. However, unexpected interruptions in the excitation of electrical
activation sequences at SA node or the during the propagation of electrical activa-
tion waves through the normal pathways, affect the NSR and result in dangerous
abnormal heart rhythm or cardiac arrhythmia [90].

The depolarisation of cardiac cells also creates current flow into the extracellu-
lar medium [147]. The underlying electrophysiology of generation of extracellular
potentials can be illustrated using the example in Figure 2.5. For this, cardiac tis-
sue is considered to be a cylindrical fibre in which the cells are tightly arranged
and located in an infinite volume conductor [126]. A stimulus current is then ap-
plied at the left end of the fibre, which causes the action potentials to propagate
from the left side to right side. At any point along the propagation of activation
wave, potential difference is created in axial direction between the active and inac-
tive sites. This potential gradient is maximum at the front of activation wave and

causes axial current flow from activated to inactivated sites. Moreover, to preserve
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the conservation of charges, some currents also propagate into extracellular and
intracellular spaces at the front and back of activation wave front. This implies
that the activation wave front acts as a current dipole as shown in Figure 2.5. The
resulting extracellular potential created from current flow is positive in front of
activation wave front and negative at the back of activation wave front [43]. At
the sensor location denoted as A and C in Figure 2.5, the resulting electrograms
are monophasic with negative and positive deflections. On the other hand, the
resulting electrogram is biphasic at any sensor location in the middle of the fibre
(see Figure 2.5, location B).

The extracellular potentials can be measured using electrodes placed at body
surface [95] or directly at the surface of heart [57, 116]. These measurements enable
to monitor the function of heart and are widely used for diagnosis and treatment
of arrhythmia. The electrocardiogram (ECG) is an important example of body
surface measurements of cardiac activity [95]. A cardiac cycle observed in ECG
during NSR is shown in Figure 2.6.

It can be seen that ECG during NSR has important characteristics. The ini-
tial stage of cardiac cycle is represented as P wave. This stage corresponds to
the atrial depolarisation, which is followed by QRS complex reflecting the depo-
larisation of ventricles. QRS complex also masks the repolarisation of atria. The
final stage of cardiac cycle is ventricular repolarisation which is denoted as T wave

in ECG. During ventricular arrhythmia, the rate of heart rhythm in ventricles is

QRS-Complex

N ——
R
Ventricular

N depolarisation

Ventricular
repolarisation

| '

Electrical potential (mV)
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N N S S N N —— —" —y

0
Time (s)

Figure 2.6. Example of one cardiac cycle in sinus rhythm represented by elec-
trocardiogram.
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higher compared to that of atrial rate. The heart rate during VT is typically 100
to 200 beats per minute and this is reflected in ECG with higher number of QRS
complexes [89]. On the other hand, heart rate during VF is around 550 beats per

minute [74] with zero cardiac output.

Electrical activation sequences that are recorded directly from cardiac muscle
walls are known as intracardiac electrograms. Cardiac activity can be mapped
from endocardium or epicardium surface of the heart using electrical or optical
mapping techniques [31]. In electrical mapping method, electrograms are mea-
sured either as unipolar or bipolar electrograms. A bipolar electrogram is gen-
erated by connecting both cathode (positive) and anode (negative) electrodes to
the cardiac tissue region. The resulting electrogram is obtained by subtracting the
voltages in two electrograms. On the other hand, a unipolar electrogram is gen-
erated by connecting the cathode to tissue region whereas negative electrode is
placed outside the heart. This is to ensure that the negative electrode gives zero
potential and as a result, unipolar electrograms provide the information from one

particular spatial location [44].

An example of electrical mapping during human VF is given in [116]. In-
tracardiac electrograms during human VF are measured from epicardial surface
of heart using an elasticated sock consisting of an array with 256 unipolar elec-
trodes. A complete mapping of both epicardium and endocardium during VF is
detailed in [100]. The epicardial electrograms were acquired using 112 electrodes
attached to elasticated sock. In order to map endocardial electrograms an exten-
sible balloon catheter with an array of 112 electrodes is used. This balloons were
then inflated after the insertion to endocardium for collecting the electrograms.
Generally spatial resolution of the electrodes arrangement in electrical mapping is
lower. On the other hand, optical mapping techniques generate transmembrane
voltage measurements with high spatiotemporal resolution [57]. This mapping
technique is based on fluorescence phenomenon, and uses voltage-sensitive dyes
to capture the changes in transmembrane voltage across the cell membrane [93].
However, clinical practice of the optical mapping techniques is restricted as the
voltage-sensitive dyes may be toxic, and potentially alter the underlying tissue
properties [155].

As described in Section 1.1, all the experimental techniques described above
acquire electrical activation sequences, especially during cardiac arrhythmia have
following limitations: (1) Clinically challenging [18]. (2) Restricted to the surface
of the heart [31]. (3) Unable to provide the electrophysiological interpretations at
the tissue-level and cell-level [69]. Therefore, the underlying mechanisms of the

cardiac electrical dynamics at the different spatial scales remain unidentified.
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2.2 Models of Cardiac Electrophysiology

Mathematical models of cardiac electrophysiology provide a quantitative descrip-
tion of the cardiac activation and recovery patterns on spatial scale from cell level
to the body surface [32, 33, 162]. In order to better understand the cardiac electri-
cal dynamics at various spatial scales, an integrated model of electrophysiology is
considered in this thesis. The integrated model equations are formulated to incor-
porate the action potential dynamics at the cell-level, tissue-level and extracellular-
level. In order to identify a suitable cardiac model structure that can be employed
for estimation methodology, this section reviews the existing models of the cell-
level, tissue-level, and extracellular electrogram-level from the literature of cardiac

electrophysiology.

2.2.1 Cell-level Modelling

Cell-level models aim to quantitatively describe the action potential in a single cell
resulting from the ionic flow across the membrane. This ionic flow consequently
creates the change in transmembrane potential. The mathematical description of
this process can be derived by representing the small area of cell membrane as an
equivalent electrical circuit. Figure 2.7 shows a schematic diagram of the electri-
cal circuit. This model is often referred to as parallel conductance model since it
consists of a capacitor connected in parallel with series of variable resistors and
batteries [126]. Here, the membrane is represented as a capacitor whereas con-
ductance and the Nernst potential of ion channels are represented using variable
resistors and batteries [33].
In this model, the rate of change of transmembrane voltage from a single cell
triggered by an external stimulus is given as
ion | st
37: _ () Km“ ), 2.2)
where &, is the cell membrane capacitance per unit area (F m?2), i* is the external
stimulus current per unit area (A m™2). The negative sign is used to denote the
inward flow of positive ions into the cell depolarises the transmembrane voltage.

Also, i®" is the total ionic current per unit area (A m?) given by
i =Y "y, (2.3)
n

where i, is the current per unit area of an ion n. This is generally divided into

inward and outward ionic currents depending on whether the ion depolarises or
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Figure 2.7. Simplified diagram of an equivalent electrical circuit that represents
ionic flow across the cell membrane.

repolarises the cell membrane.

To reproduce the key characteristics of action potentials, the parameters in
(2.2) should be incorporated accurately into the modelling framework. The stim-
ulus current is generally modelled as pulses with a magnitude (v*') and duration
(T*"). The total ionic current is normally modified depending on the type of ions
selected for the model. However, a general form of individual ionic current can be
described using Ohm’s law. By this, individual current component is proportional
to the deviation of transmembrane potential from its equilibrium potential. This

is mathematically described as
in=gn(v—Ey), (2.4)

where g, is the proportionality constant representing the conductance of ion chan-
nel and E, is the Nernst potential or equilibrium potential of an ion n.

An important example of parallel conductance model is Hodgkin and Huxley
model of action potential generation of nerve cell [67]. Sir Alan Llyod Hodgkin
and Sir Andrew Fielding Huxley formulated the quantitative description of ionic
current mechanisms using the measurements collected from squid giant axon.
The total ionic current in Hodgkin and Huxley model is separated into sodium,
potassium and leakage currents. This can be rewritten using (2.4) to an alternate

form as
iion — gK(v _ EK) + gNa(v — ENa) + gL(U — EL), (25)

where gk, gns and g; are the conductance associated with each ion. These are

nonlinear functions and for an arbitrary ion, the formulation of conductance in
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Hodgkin and Huxley model can be written as

gn = Snh, (2.6)

where g, is the maximal conductance and / is the gating variable, which enables
to characterise the opening and closing of ion channels, ranges between 0 and 1.
The gating mechanism is an important property as it describes the probability that
a specific ion channel is opened to allow the ionic flow into membrane. The time
evolution of a gating variable is governed by first order differential equation

o _ ap(1—h) — byh, (2.7)
ot

where a;, and by, are the rate constants of the gating variable h.

Hodgkin and Huxley model provides the basis to describe electrical properties
of action potential from wide range of excitable cells. In the early 1960s, Denis
Noble formulated the first electro-physiological model of a cardiac cell based on
Hodgkin and Huxley model [118]. This model was developed based on the mea-
surements from Purkinje fibre cells. This model is similar to Hodgkin and Huxley
model consisting of sodium, potassium, and leakage currents. However, the car-
diac action potential characteristics is obtained in Noble model by separating the
conductance of potassium ions into inward and outward components, and identi-
fying the model parameters from the experimental data. [119]. Since then, several
cardiac cell models have been developed to study the underlying mechanisms of
action potentials generation. Currently, over two hundred and fifty cardiac cell
models exist differing in both level of complexity and the ability to describe the
electrophysiological properties. The detailed description of these models is given
in CellML physiome repository [1]. Briefly, the ventricular cell models are broadly

classified into following groups:

First Generation Models

First generation models aim to reproduce the action potential characteristics using
the underlying electrophysiological cell level dynamics. These models utilise the
biophysically detailed description of ion channel, pump and exchanger currents
[32]. The model formulation is similar to that of Hodgkin and Huxley model,
where subset of relevant ionic currents is described as a function of maximal con-
ductance and gating variables given in (2.6) and (2.7) respectively. Although these
models are considered to be biophysically detailed, the level of complexity causes
higher computational load for large-scale simulation studies [32]. Examples of first
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generation models include Beeler-Reuter model (8 variables) [13] and Luo-Rudy-1
model (8 variables) [96].

Second Generation Models

Similar to first generation models, second generation models are biophysically
detailed and incorporate the ionic current properties in the model formulation [5].
In addition to this, these models also incorporate the intercellular concentration of
each ion. As a result, second generation models contain more variables and higher
level of complexity than the first generation models, which inherently increases
the computational load [32]. Some of the examples are Luo-Rudy-2 model (15
variables) [97], Priebe-Beukelmann model (17 variables) [129] and Ten Tusscher-
Noble-Noble-Panfilov model (17 variables) [150].

Simplified Two-Variable Models

Simplified models reproduce the macroscopic behaviour of cellular activity by mit-
igating the level of complexity in biophysically detailed models. This is achieved
by replacing the large number of ionic currents as two state variables, which de-
scribe the depolarisation and repolarisation characteristics [130]. These models
are computationally inexpensive to solve and are generally used for large-scale
simulation of excitable systems [32]. An important example is FitzHugh-Nagumo
(FHN) model with its two variables for excitation and recovery dynamics in a
cell [48]. Several variants of FHN model equations exist in the literature [161].

However, a general model structure can be written as

da,
dat - l,bl(aer ai‘)/ (2'8)
day
dat - lIJZ(ﬂez ul’)r (29)

where 4, and 4, are the excitation and recovery variables, ¢ (4., a,) is a cubic poly-
nomial function and ¥, (a,, a,) is a linear function of its variable. The behaviour
of FHN model is typically studied using phase plane analysis — technique used
to analyse two-equation systems by plotting the respective trajectories on a two-
dimensional plane with axes as the two dependant variables [87].

Although simplified representation guarantees minimal computational com-
plexity, model equations are described in generic form that can be applied for
several excitable systems. As a result these models fail to capture some of the

important quantitative properties of the cardiac action potential, such as shape
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and restitution properties. Several variants of FHN model have been developed to
reproduce cardiac action potential with these properties [6, 92].

Phenomenological Models

Phenomenological models resolve the limitations of two-variable models by cap-
turing the important features of cardiac cell dynamics by including the restitution
properties. The simplified electrophysiological properties are incorporated using
a minimum set of ionic currents and gating variables that are computationally
easier to solve. Examples are Fenton-Karma model [47] and Mitchell-Schaeffer
model [108]. Fenton-Karma model consists of three state variables and thirteen
parameters. This model is obtained from the simplification of Luo-Rudy I model.
On the other hand, Mitchell-Schaeffer model is simplified from the Fenton-Karma
model, which consists of two state variables and five parameters. In both models,
state variables are dynamic in nature and represented using a system of ODEs.
The primary state variable is the transmembrane voltage v, formed by the total

flow of ionic current across the cell membrane and is described by

do

= i"(v,h) + " (v, h) + i, (2.10)

where i"(v,h) and (v, ) represents the inward and outward ionic currents
to the cell that contributes to increase and decrease the transmembrane potential
respectively. The other state variables are primarily used to represent the gating
properties of ionic channels. In (2.10), gating variable is denoted by / . Moreover,
the model also includes time constants as parameters to characterise the opening

and closing of ionic channels.

2.2.2 Tissue-level Modelling

The fundamental aim of modelling the electrical activity at tissue level is to de-
scribe the action potential propagation by integrating the informations from cel-
lular models. Cardiac tissue can be modelled using either discrete or continuum-
based approaches. The discrete modelling approach involves representing the
characteristics of individual cells and utilises separate variables to describe cell-
to-cell connections. These variables of individual cell properties include cell size,
regional characteristics, capacitance and conductance at gap junctions [130]. As
a result discrete models of tissue level are computationally expensive, especially
for the large scale simulation studies. On the other hand, continuum-based mod-

elling approach considers cardiac tissue as a functional syncytium in which the cell
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functions as a unit to allow smooth action potential propagation [33]. Majority of
the theoretical and computational studies to quantify the complex spatiotemporal
cardiac activity use continuum-based mathematical models. These models are de-
scribed using PDEs to incorporate the spatial diffusion of action potentials across

the tissue. They are briefly introduced in this section below.

Bidomain Tissue Model

In bidomain modelling approach, cardiac tissue is considered as functional syn-
cytium that consists of intracellular and extracellular domains [65]. The trans-
membrane potential can be determined using (2.1). The bidomain model has two
equations [130]. The first equation describes the extracellular potential integrated

(Vo) when the transmembrane voltage distribution (V) is known
V- (Gi,Vv) = =V - ((Gjy + Gex) VO¥), (2.11)

where G;, and G, are the conductivity tensors are intracellular and extracellular
spaces, respectively.
The second equation of the bidomain model is used to calculate the transmem-

brane potential at each step

V-Gy(Vo+ Vo) = —qm(KmLZ + 0" 4 51, (2.12)
where gy, is the surface-to-volume ratio (cm~!) of the membrane. The values of
surface to volume ratio and specific capacitance used in simulation studies ranges
between 1000 to 5000 Cm™ and 1 u F cm™ [33], respectively.

The intracellular and extracellular conductivity tensors in (2.11) and (2.12), are
generally determined based on the anisotropic properties along the microstruc-
tural directions in the cardiac tissue [34, 131]. The microstructural directions are
represented using a orthogonal coordinate system in three main axes along the
cardiac tissue. The orientation and end-to-end coupling of cardiac cells are de-
fined to follow along the first principal axis called fibre axis. These fibres are then
arranged into laminar structures called as sheets. The plane perpendicular to both
sheet and fibre is the cross-sheet plane [131]. Typical range for the magnitude of
intracellular conductivity is 0.17 - 0.45 Sm™! in longitudinal direction (along the
fibre axis) and 0.019 - 0.06 Sm™! in traverse direction (along the sheet axis). The ex-
tracellular conductivity lies between 0.12 - 0.62 Sm™ in longitudinal direction and
0.08 - 1.74 Sm™! in traverse direction. Moreover, it should be noted that the external

stimulus current #* is applied at both intracellular and extracellular domains [32].
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Monodomain Tissue Model

Monodomain model formulation is based on the assumption that conductivity
tensor in extracellular space is proportional to the conductivity tensor in intra-
cellular space (Gj;, = bGey) [33]. This assumption results in a simplified model
in which the anisotropy of both domains are same and deduce to a simplified

representation of bidomain models [32]. The monodomain equation is given by

o _
ot

jion st
V- (@,V0) - (l ti ) (2.13)
K
where @, (cm?ms~!) is the diffusion tensor and depends on the anisotropy in fibre,
sheet and cross-sheet directions [33]. For an isotropic tissue, diffusion is assumed
to be same in all directions and is given by [34]

G;

6, = . (2.14)

where the typical value of isotropic longitudinal diffusion coefficient is 0.001 cm?
ms! and 0.0005 cm? ms™ and transverse diffusion coefficient is 0.001 cm? ms™! and
0.00025 cm? ms™ [32, 34].

2.2.3 Extracellular Electrograms Modelling

The modelling of cardiac electrograms involves quantifying the extracellular po-
tentials generated from the currents at discrete cell positions and emerges to extra-
cellular space. Thus the cell positions are considered to be point sources located
in a conducting medium. The derivations of extracellular potentials for different
types of point source conditions are given in [126]. One expression for unipolar
extracellular electrogram is derived using the dipole source density of the trans-
membrane potential at locations in a spatial field. This approach has been im-
plemented in simulation studies for understanding the dynamics of normal and
arrhythmic cardiac activity [22, 35, 56, 126].

For a spatial field s = (sy, Sy, s;) with varying transmembrane voltage, the

/

4, 5z) can be modelled as

electrogram recorded at time t at a point sensor s’ = (s, s

follows

v (s, t) = ;%///(—Vvt(s)) -V [H dsyds,ds., (2.15)

where & is a constant that relates the cross-sectional area of the fiber and ratio of in-

tracellular and extracellular conductivities. The Euclidean distance r is calculated
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between each location in the spatial field and the point sensor by

r= \/(sx —5¢/)2 4 (sy —5,)2 + (s: —55')%. (2.16)

2.3 Estimation of the Cardiac Electrical Dynamics

Section 2.1 illustrated the limitations of available experimental techniques that
hinders the dynamics at cellular and tissue levels during normal and arrhythmic
conditions. Therefore, reconstruction of the underlying electrical dynamics of the
tissue from the observed measurements is crucial, as it enables to elucidate the
unobserved spatiotemporal behaviour of the complex electric dynamics. As de-
scribed in Section 1.1, estimation methods can be used to infer the required quan-
tities from the indirect, inaccurate and noisy measurements [11]. The estimation
methodology based on the physiologically relevant cardiac models is important,
as the models provide meaningful descriptions of state variables and parameters
of the cardiac electrical dynamics at unobserved spatial scales. Systems theory
provides model-based estimations, which can be used to infer the state variables

or parameters from the electrophysiology data.

In statistical estimation theory, standard estimation techniques are generally
based on finite-dimensional model representations. Stochastic state-space model
are a class of widely used finite dimensional model structures, instrumental in
the field of modelling and estimating of complex biological systems [9, 82]. In
particular to cardiac modelling, a recent study [141] has demonstrated that the
stochastic state-space representation of biophysically-detailed cell-level model can
be used to investigate the repolarisation variability. The additive state disturbances
are incorporated to account for the intrinsic or beat-to-beat variability within a cell.
In this thesis, model-based estimation of cardiac electrical dynamics is presented
in a state-space modelling framework, where the state variables and parameters of

the cardiac models describe the spatiotemporal characteristics of electrical activity.

This thesis focusses on the estimation of dynamically changing state-variables
described in the cardiac models, which is a state estimation problem. In or-
der to provide better understanding of the model-based estimation methodology,
the following subsections details the fundamental concepts of state-space models
and briefly review the state estimation methods, which are more relevant to the
methodologies proposed in Chapter 4 and Chapter 5.
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2.3.1 State-space Models

In systems that are dynamic in nature, the states are defined as a collection of
dynamic variables that enable to capture the important properties of a system.
The evolution of changes in the dynamics of states is mathematically described
using state evolution equation, which is coupled with a certain level of state dis-
turbances. This disturbance is usually included to accommodate the uncertainties
and errors in the modelling of system dynamics. The state evolution equation of
a discrete time system can be written as

X1 = fr(xi, €f), (2.17)

where x; € R"™ and € € R"* are the vectors of 7, state variables and the state
disturbances, respectively. System model dynamics is given by fi(.) that maps
the system state dynamics from the current time instant (k) to the next time in-
stant (k 4+ 1). Depending on the nature of system, the fi(.) linear or non-linear,
time-varying or time-invariant. It is noteworthy that the state evolution equation
follows the Markovian property. This implies that the future state of the state-
space model only depends on the present state and conditionally independent of
all the other past states.

States are generally hidden variables and observed through the noisy measure-
ments. The dynamics of measurement process is mathematically described using

observation equation, coupled with noise sequences is given by

Yi = mk(xk, 6%), (218)

where y; € R and GZ € R are the observation vector from 7, measurements
and the measurement noise respectively. my(.) is the measurement model used to
describe the relationship between the states of system to the measurements.

The inclusion of both state disturbances and measurement noises into the
model equations forms the stochastic state-space models. More specifically, the
disturbances can be assumed as random sequences sampled from a distribution
with mean and covariance. In this thesis, they are considered to be N(0,%), im-

plying independent Gaussian distribution with zero mean and known covariance
).

2.3.2 State Estimation Methods

One of the important problems in state-space modelling framework is to esti-
mate the hidden states of the system. In systems theory, the process of com-
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puting the optimal estimate of states from the noisy observations is known as
state estimation. The state estimation methods can be broadly classified into op-
timal filtering and smoothing. Filtering is the process of estimating the current
states of system 9({ given all the previous and current measurement sequences as
yix = {¥1,¥2 -, Vx}. In Bayesian filtering context, it is the process of computing
the filtering distributions p(f(£|y1;k) with y1x = {y1,y2 .. Vk}- The second state
estimation method is the optimal smoothing, concerned with computing the esti-
mate of states at time instant k as &}, given the measurements up to a time instant
T as yi1.r = {y1,y¥2,-.yr},T > k. In a similar way, bayesian smoothing computes
the smoothing distributions p(&;|y1.r), with y1.r = {y1,y2,..,yr} [145].

Filtering Methods for State Estimation

In 1960, R.E.Kalman developed the well known Kalman filter to obtain the closed
form solution for the linear Guassian filtering problem [84]. The derivation and
algorithm of the Kalman Filter is presented in Appendix A. However, most of
the real world systems are nonlinear in nature, where the state evolution and
measurement models are nonlinear and the resulting distributions of the unknown
states are non-Gaussian. Non-Gaussian models are not considered in this thesis.
Since the Kalman Filter (KF) is tailored for specifically linear models, it cannot
be applied directly to nonlinear filtering problems. Moreover, the state variables
in the models of tissue and cell follow nonlinear characteristics. This illustrates
the importance of nonlinear state estimation problem in the cardiac modelling
domain.

The general form of a nonlinear state-space model is given by

Xk+1 = fk(Xk) + 6315, (219)
Y = mi(x¢) + €, (2.20)

where fi(.) and my(.) are nonlinear functions. The state disturbances e; and
measurement noise ez follows Gaussian distribution with covariance described as
above.

Over the years, several extensions of the Kalman Filter have been developed
to solve the nonlinear filtering problem. The state estimation in a nonlinear state
space model form requires the implementation of Gaussian approximation meth-
ods to the filtering distribution. One of the commonly used approximation meth-
ods is the linearisation of nonlinear model functions at the most recent state esti-
mate value. This forms the fundamental basis of Extended Kalman Filter (EKF),

where the linearisation is employed based on first order Taylor series expansion.
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Due to the local linearisation procedure, the implementation of EKF effects the
estimation accuracy in systems with higher order nonlinearities. Other disadvan-
tages of EKF are the actual computation involved in the calculation of Jacobian
matrix especially for higher order partial derivatives, and the requirement of state
evolution and measurement models to be differentiable functions [145]. Another
well-known approximation method used in nonlinear filtering is Unscented Trans-
form (UT), which is based on a deterministic sampling method. In this method, a
finite number of sampling points also known as sigma points, are selected to cap-
ture the mean and covariance of the original state distribution. The sigma points
are then propagated through the nonlinear model functions, after which the mean

and covariance of the posterior distributions are computed.

To illustrate the UT method, consider an example where a random variable
x ~ N (x, P) following a nonlinear model function f(x) [145]. Instead of linearising
the nonlinear model function, UT directly approximate the mean and covariance
of the target state density by a Gaussian distribution. For this sigma points are
computed using mean and covariance estimates are computed as

Xo =X, (2.21)
Xj =X+ <\/ (ny + A)P) , j=1,., 0y (2.22)
j
Xj=%x+ < (ny + A)P) , J=ny+1,..,2n, (2.23)

]

where ( (ny + /\)P) _is defined to be jth a column in the scaled matrix square
]

root of covariance matrix P. It can be seen that UT method generates 21, + 1 sigma

points in the approximation with a scaling parameter A given by
A = a?(ny 4+ 1) — ny, (2.24)

where « and « are the algorithm parameters used to regulate the spread of the
sigma points around the mean x. In this thesis, the magnitude of « is set to 1073
and x to be 3 —n, [9, 77]. The sigma points are then propagated through the

nonlinear model function to calculate the transformed sigma points as

The mean and covariance estimates of the transformed nonlinear points are then
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21y
E [f(x)] = X5 = Wj('”)yej, (2.26)
j=0
SN
Cov[f(x)] = Ss = ), W;” (%, — %) (R} — xs) ', (2.27)
j=0

where Wl.(m) and Wl.(c) are the constant weights of the mean and covariance, calcu-

lated using

(my _ A
wy™ = Y (2.28)
W — A L 1—a21p) (2.29)
Ny + A !
(m) _ o) _ 1 .
W]- = W]- = 2+ A) j=1,.., 1y (2.30)

where the additional parameter f is used to include the prior information of the
distribution of the random variable x. For Gaussian random variables,  is set to
two [64].

The unscented transform approach above described is used in UKF algorithm
to approximate the filtering distribution of nonlinear model functions, which en-
ables to estimate the state variables [77, 159]. This can be described in terms of

conditional densities as following

p(xelyr) = N (x[&], PY), (2.31)

where f({ and P/ are the mean and covariance estimates calculated using the algo-

rithm.

A recent study in [142] has employed UKF based joint estimation approach
for studying the intrinsic variability in a single cardiac cell. To reconstruct the
cellular dynamics, the study used the noise corrupted versions of transmembrane
voltage as measurements. The augmented UKF algorithm was then employed to
infer the state variables (filtered transmembrane voltage and gating variables) and
model parameters (maximal ionic conductances) using a stochastic ionic model.
This study highlights the importance to extend the estimation algorithm for re-
constructing the tissue dynamics, where the resulting estimation problem is for
the high-dimensional state-space models. The UKF algorithm that can be used to
compute the filtered state estimates are given in Algorithm 2.1. As it can be seen
that the UKF based filtering does not require the model functions to be differen-
tiable. Also, the state estimation using UKF demonstrated superior performance

over EKF as it can capture higher order moments by using several sampling points
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in the approximation [78].

Algorithm 2.1: State Estimation using the Unscented Kalman filter.

1. Initialise states )?{,( and covariance matrix P{,( .

2. Recursive estimation for k € {0,1,2,..T —1}.

Prediction:
(a) Compute the sigma points for X f
Xkj = ’A‘{:f
xi =%+ (VA NP}, j=1,.,m,
ki = Tk k) e (2.32)

where A is given in (2.24).

(b) Propagate the sigma points through state evolution equation
R, = £(x0)- (2.33)

of =

X111 and covariance

(c) Compute the predicted mean and covariance estimates %

matrix Pf 41 as

2ny
Xk+1 ZW Xii1j (2.34)
21y
f— of of of
Piq = ZW (K1, — Kerr) (Rign) — %)+ Ze, (2.35)

where Wi(m) and Wl-(c) are the weights given in equations (2.28), (2.29) and
(2.30).

Correction:

(a) Compute the sigma points

_¢f-
Xk1,j = Xeq1
- ef- f P
Xy = X1 T < (nx + )‘)Pk+1>] p ] =1 (2.36)

Xky1j = ’A‘L; - < (nx +A) £+1> j=nx+1,..,2ny
j
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(b) Propagate the sigma points through nonlinear observation model equation

X1, = g(xx), j=0,..2n; (2.37)

(c) Compute the predicted mean and covariance estimates as

21y
XD () o
Vi = ;)ij Xeivyr (2.39)
]:
Lo f- -\t
P, = Zé Wi (R — Vi) Rirj — Fipr) + Zers (2.39)
]:
v _ 35 (o /- -\
I)k-i-l = Z(:) Wj (ij]’ - ﬁk+1)(?z]?+1,]‘ - yk-&-l) ’ (2-40)
]:
where Wl.(m) and Wl.(c) are the weights given in equations (2.28), (2.29) and
(2.30).
(d) Compute filter gain, K{ = Pz_yH [PZ_yH] -1

(e) Correct the state estimate : ﬁ{ = x{:;l + K{: 1 (V1 — y{;l).

(f) Correct the error covariance matrix, P{ 1= P;;:l — K{ +1PZKIKI—<F+1'

Smoothing Methods for State Estimation

The main difference between filtering and smoothing is that the later method in-
corporates the future information within the measurement sequence. This allows
to compute more accurate and less noisy state estimates. Smoothing methods are
broadly classified into the following three categories

e Fixed-point smoothing: At every iteration of time instants, the goal is to
estimate the smoothed state at a fixed time instant in the past with respect to
the current measurement. This can be expressed as )?Jff‘ » where j is fixed value

with measurements are added at the time instants of k = {j + 1,7+ 2,..} [19].

e Fixed-lag smoothing: At every iteration of time instants, the goal is to esti-
mate the smoothed state at a fixed lag in the past with respect to the current
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measurement. This can be expressed as %X} , " where k; is fixed positive lag
T

value with measurements are added as k = {0,1,2,..}. This smoothing can

be applied online but with a delayed value [19].

e Fixed-interval smoothing : At every iteration of time instants, the goal is to

estimate the smoothed state in a fixed time interval given all the measure-

S

kT where

ments within the observation interval. This can be expressed as %

measurements are given in the time interval k = {0, 1,.., T}.

Similar to the linear filtering problem, one of the commonly used closed form
solution for linear Gaussian state-space models is Rauch Tung Streibel (RTS) smoother
developed in 1965 [133]. This is a fixed-interval smoother consisting of forward
and backward iterations through the datasets. In the forward iteration, the Kalman
filtering algorithm is implemented to estimate the filtered states which is then fol-
lowed by a backward iteration to compute the smoothed state estimates. The
nonlinear smoothing algorithms include Extended Rauch Tung Streibel Smoother
(ERTSS) [145], Unscented Rauch Tung Streibel Smoother (URTSS) [144], etc.

To illustrate the smoothing method, the UKF algorithm shown in Algorithm 2.1
can be extended to URTSS algorithm. Similar to the RTS algorithm, the forward
iterations employs UKF algorithm to compute the filtered states and covariance
matrix. This is followed by backward iteration of prediction and correction recur-
sions to compute the smoothed state estimates is given in Algorithm 2.3. Here,
the main objective is to estimate the smoothed state estimates X} for time instants
k € {T—1,..,0}. For this states and covariances are initialised using the filter
estimates X7 = )“(4 and P% = Pj;. It should be noted that the approximation of non-
linearity is obtained using unscented transform, where sigma points of smoother

is calculated using filtered states.

Algorithm 2.2: Backward iteration in the Unscented Rauch-Tung Stribel Smoother Esti-

mation
1. Initialise backward state estimate X7 = )“(4 and error covariance matrix P% =
f
P

2. Recursive estimation for k € {T —1,..,2,1,0}:
Prediction:

(a) Compute the sigma points of the smoother using filtered state and covari-

ance estimates as
XL =%l (2.41)
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Xkj = %+ ( (nx + A)P{> o j =1y (2.42)

j
Xij = &l — < (nx + A)P{:> , j=ne+ 1,20, (2.43)

]

where A is same as in the filtering step given in (2.24).

(b) Propagate the sigma points through the nonlinear state evolution equation
iy = f(xh)- (2.44)

(c) Estimate the predicted states, f(ijrl,

covariance matrix Sy as follows

covariance matrix Pi;l and the cross-

21y

os— (1) ps—
K= Z(;) ij XiJrl,j’ (2.45)
]:

2ny

Py =Y WO R, — %) R’ %) +Ze,  (246)
j:0

21y

Skt = YW ) — %50) (R, — %) (247)
j=0

where Wl-(m) and Wi(c) are the constant mean and covariance weights defined
in filtering step given in (2.28), (2.29) and (2.30).

Correction:

(d) Compute the smoother gain Dy

Dy = S (P,) " (2.48)

(e) Compute the smoothed estimates of state Xi and covariance P}

% = & + Dp(Ry —%551), (2.49)

P; = P/ + Dy(P},, — P{7,)D{. (2.50)
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2.4 Conclusion

This chapter has provided a background to the integral components of the model-
based estimation, which are essential for the proposed modelling and estimation
framework of cardiac electrical activity presented in the later chapters. The key
observations from this background chapter are the following:

e The heart is an electromechanical pump, where the synchronised patterns
of cardiac action potentials are important to obtain normal cardiac rhythmic
conditions. The cardiac electrical activity demonstrates multiscale character-
istics as the action potentials initiated at pacemaker cell propagates through
the tissue to form complex spatio-temporal activation patterns. Experimental
techniques such as electrical mapping and optical mapping enable to mea-
sure the cardiac activity at the surface of the heart. The electrical activation
within the heart muscles cannot be measured from experimental techniques

resulting the advantage of computational models of cardiac electrophysiol-
ogy.

e Cardiac models of electrophysiology offers a wide range of quantitative de-
scriptions of the initiation and propagation of the cardiac electrical activity.
An important advantage of the multi-scale cardiac models is their ability to
provide quantitative descriptions of the state variables and electrophysiolog-
ical parameters, which cannot be measured using the data acquisition tech-
niques. This illustrates that an integrated model of cardiac-electrophysiology
can be derived by carefully assembling the model equations at the spatial

scales of the heart.

e To infer the hidden state variables in the cardiac models, suboptimal filtering
or smoothing methods in the statistical estimation frameworks can be em-
ployed. The review of cardiac models have demonstrated that quantitative
descriptions of action potential are described by nonlinear equations, which
include both differential and integral terms. Therefore, prevalent nonlinear
state estimation methods were briefly reviewed. However, particular em-
phasis was given for the UKF and URTSS methodologies, as they have been
considered as the fundamental state estimation method in the later chapters.



Chapter 3

Modelling and Simulation of
Cardiac Electrophysiology

As described in Introduction of Chapter 1, cardiac models are considered as an
effective tool for studying the underlying mechanisms during normal and patho-
logical cardiac conditions. Data driven modelling and estimation based on the
cardiac models allow inferring the electrophysiological state variables and param-
eters that can be directly interpreted by computational scientists [39]. Thus, it
is important to develop a physiologically meaningful model that can be used to
understand the underlying mechanisms of complex cardiac electrical activity pat-
terns [31].

The overall aim of this chapter is to describe an integrated model of cardiac
electrophysiology, which can be used as a mathematical model for inverse prob-
lems of cardiac electrical activity. Here, the integrated model is derived by com-

bining model equations at following spatial levels:

o Cell-level model to describe the initiation of action potential at the cardiac

myocytes,

o Tissue-level model to describe the action potential propagation through the

cardiac tissue,

e Extracellular electrogram model to describe the measured cardiac electrical

activity at a particular spatial distance from the tissue.

The review of cardiac cell models given in Section 2.2.1 demonstrates that the
cardiac activity at the cell level can be described using simplified two-variables
model, the complex biophysically detailed model and phenomenological model.
Among the available cell models, phenomenological models with two variables are

33
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widely used for the simulation studies of cardiac arrhythmia [22, 47] and patient-
specific modelling [39, 41, 79]. This is because, these models have simplified struc-
ture to reproduce the action potential characteristics at different conditions [33].
Also these models are computationally inexpensive and easier to solve numeri-
cally. In this thesis, Mitchell-Schaeffer model is considered as a suitable candidate
cell model as it has fewer number of parameters compared to the Fenton-Karma
model. However, classical MS model exhibits unstable pacemaker cell behaviour
for some sets of parameters. The pacemaker behaviour is defined as a condition
when transmembrane potential depolarises and repolarises in a cyclic manner,
even when no external stimulus current is applied [38]. To resolve the instability
problems, a modified version of Mitchell-Schaeffer (mMS) model is presented in
[38]. Similar to MS model, modified version of Mitchell-Schaeffer model consists
of two state variables and five parameters (four time constants and a threshold
voltage). However, this model guarantees no pacemaker behaviour and is con-
sidered to be suitable for parameter fitting [22, 39]. In recent years, this model
has been used in patient-specific electrophysiology simulation studies for both
forward and inverse problems [22, 37, 39—-41].

The state variables of mMS model are transmembrane voltage and gating vari-
able, where the dynamic behaviour of transmembrane voltage is a nonlinear func-
tion generated as a result of total ionic current. On the other hand, dynamic
behaviour of the gating variable in both models is described using a discontinu-
ous function. This allows to describe the abrupt switching between the activation
and inactivation (gate-open and gate-close) of ion channels. However, this abrupt
value change in the gating variable due to the discontinuous nonlinear function
may lead to divergence in the estimation of nonlinear systems, especially in case
for the parameter estimation [9]. Moreover, discontinuous estimations methodolo-
gies can be computationally expensive [54]. To avoid this, a continuous version
of gating variable function can be adopted using commonly used activation func-
tions such as sigmoid functions, radial basis functions, etc. In particular for sig-
moid functions, the slope parameter can be used to regulate the level of steepness
in the continuous function depending on the type of inference problem.

Therefore, in this chapter, a continuous version of modified Mitchell-Schaeffer
model is derived, where sigmoid function is used to approximate the abrupt
change from activation to inactivation of the ionic channels. The derived ionic
model is then coupled with the monodomain model equations to describe the
activation patterns in a cardiac tissue. A simulation-based analysis is then con-
ducted based on the developed integrated model to demonstrate the initiation

and propagation of activation patterns.
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The rest of this chapter is structured as follows. Section 3.1 details the deriva-
tion of the integrated model of cardiac electrophysiology. In Section 3.2, a detailed
simulation study of the integrated cardiac model in one-dimensional and two-
dimensional spatial fields are presented. Finally, a comparison between the mMS

and proposed continuous version of the mMS model is presented in Section 3.3 .

3.1 An Integrated Model of Cardiac Electrophysiology

This section details the derivation of integrated model of cardiac electrophysiology
used in this thesis.

3.1.1 Continuous Version of Modified Mitchell-Schaeffer Model

As described earlier, the primary state variable in the mMS ionic model is trans-
membrane voltage produced as a result of total ionic current flow across the cell
membrane and modelled using (2.10). The total ionic current comprises inward
and outward currents along with the external stimulus current. The fast inward
current to the cell is primarily from the sodium and calcium ionic currents, given
by

(v—1g)(1-0)

in

(3.1)

The outward current is produced from the potassium current i, (v, 1), given
as

0

i(v,h) = —(1 —h) (3.2)

Tout

Finally, the external stimulus current i*, can be applied as a series of pulses
with a magnitude (v*") and duration (T%!). Substituting (3.1) and (3.2) into (2.10),
the transmembrane voltage across the cell membrane is described as

dv  v(v—10g)(1-0) U g

where T;, and T, are time constants of depolarisation and repolarisation phases.
The activation threshold potential vy, controls the flow of ions across the cell-

membrane using a gating variable described by

=

dh %a;n ifv<wg

dat ) —n - !
1fv>vg

Telose
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Figure 3.1. State variables modelled using modified Mitchell-Schaeffer model.
An external stimulus is applied at every 500 ms with electrophysiology parame-
ters: Ty = 0.3, Tout = 6, Topen = 120, Tjpse = 150, v, = 0.13,v% = 0.15, T*" = 2ms. (a)
Normalised transmembrane voltage. (b) Gating variable.

where T,pen and Tgjos. are time constants of gate opening and closure.

An example of transmembrane voltage and gating variable simulated using
(3.3) and (3.4) is given in Figure 3.1. The figure illustrates four major phases of
the action potential within a cardiac cycle, where each phase is influenced by a
time constant. At first, the cardiac myocyte is at rest (v = 0, h = 1). When
an *" of sufficient v* and T* is applied, the fast inward flow of sodium and
calcium ions causes depolarisation phase (v = 1, h = 1), where i" dominates the
! with a rate of T;,. It should be noted that the change in h during this phase is
negligible [109]. Once the cell is fully depolarised, the ionic gates closes, balancing
the inward and outward current at a time constant of 7. This is followed by
repolarisation phase where v drops towards to zero with time constant of Ty,
when the gate variable h = h,,;,, [38]. Finally, the action potential goes to recovery
phase where the gate reopens with time scale of 7., and transmembrane voltage
rapidly becomes zero and remains at this level until the next external stimulus
current is applied.

It should be noted that both in classical and modified Mitchell-Schaeffer mod-
els time constant holds the assumption of T;;, << Tout << Topen, Telose- This is
because, action potential undergoes a much shorter depolarisation phase than the
repolarisation phase, which also enables to describe the fast dynamics in the volt-
age compared to that of gating variable [38, 109].

As described earlier, the gating variable represents the activation, inactivation
and recovery of the ionic channels. This switching between the activation (gate-
open) and inactivation (gate-close) is based on the activation threshold potential
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and the transmembrane voltage. However, it can be seen that the dynamic be-

haviour of the gating variable in (3.4) is a discontinuous function.

To derive a continuous version of gating variable model, gating variable in (3.4)

of the mMS model equations is first reformulated into a general form as given in

[99, 109] as
he(@) =) < )
dh _ { 7(v) -8 (3.5)

dt 71102(8)7]1 v > vy '

where l1,(v) is a transmembrane potential dependent function denoting the steady
state conditions of a single gating variable with time constant 7(v) [109]. By com-
paring (3.4) and (3.5), steady state function e (v) can be approximated as

1 v< (%
heo(0) = . (3.6)
0 v>uvg

Equation (3.6) illustrates that the dynamic change is essentially a step function
that depends on both v and v,. A continuous approximation of e (v) can be con-
sidered as a variant of unipolar sigmoid function that changes with (v — vg). This
allows to incorporate both negative and positive changes during the transmem-
brane voltage v crosses the activation threshold potential v,

1

hoo(v) - 1 - m,

(3.7)
where 7 is the slope of the sigmoid that quantifies the rate of change between the

gate-open and gate-close condition.

To obtain a simplified analytical representation, the time constants of gating
variable are further replaced as T = max{Topen, Teiose }- This assumption is simi-
lar to that in [109], which was used to obtain simplified representation of gating
variable for easier implementation of the asymptotic methods to capture the mor-
phology of action potential and gating variable. Therefore, the continuous version

of gating variable can be described as

dh heo(0) —h
PR (38)

where h () is simplified as

o) = — 0 (3.9)
ol\0) = 1 _l_e—'Y(U—Ug) . .
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Figure 3.2. State variables simulated using the continuous version of modified
Mitchell-Schaeffer model. An external stimulus is applied at every 500ms with
the electrophysiology parameters: T, = 0.3, Tout = 6, Topen = 120, Tejo5e = 150,04 =
0.13,7° = 0.15, T = 2ms,y = 25. (a) Normalised transmembrane voltage. (b)
Gating variable.

Figure 3.2 illustrates the evolution of state variables simulated using the con-
tinuous version of mMS model proposed in this chapter. It can be seen that the
continuous model is able to capture the action potential characteristics with a sim-
plified description of gating variable. A detailed comparison of activation patterns

modelled by both models is presented in Section 3.3.

3.1.2 Monodomain Tissue Model

The generation of action potential at a cell level is modelled using a system of
ODEs. This model can be coupled with PDEs to model the propagation of action
potential across the tissue. Although bidomain model equations provide detailed
descriptions of cardiac tissue electrophysiology, monodomain models are com-
putationally easier to solve and thus widely used to study the cardiac electrical
activity. Simulation studies have compared these models and shown that the pat-
terns from both models result in similar dynamics. These include action potential
propagation in the absence of external stimulus current [128] and trajectories of
spiral wave tip in re-entrant waves [138]. Thus, propagation of the action po-
tential through cardiac tissue is described using monodomain model equations
given in (2.13). The monodomain model in (2.13) is essentially a reaction-diffusion

equation, where the propagation of transmembrane voltage through the excitable
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cardiac tissue medium is described using the diffusion term gradient operator V

0 v

where s denotes space.

The reaction term in (2.13) represents the electrophysiological properties of a
single cell, which is the sum of ionic currents and the external stimulus current.
The relationship between transmembrane voltage from a single cell and the total
ionic current is given by (2.2) [91]. By substituting continuous version of Mitchell-
Schaeffer model equations given in (3.3) and (3.4), the monodomain tissue model

can be written as

v v(v—vg)(1—0) v
= = V- -0,Vo+h - —(1—h) — + ist, (3.11)
dh he(v) —h
E _— f, (3-12)
where he(v) is simplified as
377(U77]g)

In this thesis, the cardiac electrical activity in an isotropic tissue pattern is stud-
ied. For an isotropic tissue, spatial diffusion is assumed to be constant across the
cardiac tissue, implying a scalar value @, = 0,. The numerical value of diffusion
coefficient is generally calculated using (2.14). Analytically, this enables to de-
scribe the diffusion term in a three-dimensional coordinate system (s = s, sy, s;)
as

O %09 (6.%%, +0.%%4, +0,%%4. | =
dsxy ~ 0sy U 9sy )\ %osy © 7 fo9s, o fos, )

(3.14)
0 a.Zl_FaZJ—i_aZl
8§\ 9s2 ds7  0s2 )’

where (ay, ay,a,) is the unit vector.
Thus, monodomain model equation of transmembrane voltage for an isotropic

tissue can be written in an alternate form as
dv v

v(v—v,)(1—0)
— =0,V +h & —(1—h)—
ot 8 Tin ( )Tout

+it, (3.15)



40 3.2. Simulation-based Study of Integrated Cardiac Model

3.1.3 Extracellular Electrogram Model

The action potentials from the tissue level can be then used to determine the ex-
tracellular unipolar electrograms. By placing the point sensors at s’ = (s}, s}, s?)
and at a particular distance from the tissue level, the electrogram measurements
are described using the model given in (2.15). This is restated in this section for

completeness.

v (s',t) = k///(—Vvt(s)) -V [H dsyds,ds., (3.16)

The above equation can be further simplified depending on the dimension and
geometry of the spatial field [126]. For instance, the gradient measure for a three-

dimensional spatial field can be expressed as

1 J [1]_ 0 [1]_ 0o [1]._
\V4 |:1’:| = E |:T:| ay + E |:1’:| ay + aisz |:1’:| az, (3-17)

vm -~ [_(s"gs’“/)} i+ [W} a, + [_(Szrs_sg)} 7. (3.18)

Therefore, model equations given in (3.11), (3.12) and (3.16) constitute the gener-
alised integrated model of cardiac electrical activity.

3.2 Simulation-based Study of Integrated Cardiac Model

In this section, evolutions of action potential propagation and the electrogram
measurements are simulated using the integrated cardiac model.

As detailed in previous section, the tissue dynamics is described using the
monodomain tissue equations coupled with the proposed continuous version of
mMS model while the electrogram measurements are modelled using (3.16). A
simulation-based study enables to study the formation and evolution of spatiotem-
poral cardiac activation patterns as an example of forward problem of cardiac
electrophysiology [130].

Developing the simulations mainly involves obtaining the solutions of inte-
grated cardiac model equations. These model equations are of continuum-based
representations that consist of both differential and integral terms. To obtain the
solutions, numerical techniques such as finite difference, finite element and fi-
nite volume methods are generally used in simulation studies [130]. Although fi-
nite element and volume approaches can be performed for irregular and complex
spatial domains, these methods demand higher computational costs. Generally,

cardiac modelling studies aimed to understand the cardiac electrical patterns are
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conducted on more regular spatial domains such as one-dimensional cable, two-
dimensional and three-dimensional slabs, etc. These provide a low-dimensional
representation which can also be used to simulate and quantify the complex acti-
vation patterns. In these studies, explicit finite difference methods are extensively
used because of straightforward implementation [33]. However, it is important
to perform the stability analysis for the chosen simulation parameters. For the
explicit finite difference solution of the monodomain tissue model equations with
isotropic diffusion, stability criterion is given by [32]
0o A 1

— A
As < 21’ld, (3 9)

where n; is the dimension of the spatial field of the tissue model used in simula-

tion. For instance, n; = 2 in case of two-dimensional spatial field.

Therefore, in this section, normal and abnormal patterns of cardiac electrical
activity in one-dimensional and two-dimensional space are developed using ex-

plicit finite difference methods.

3.2.1 One-dimensional Spatial Field

For an isotropic tissue in a one-dimensional space, monodomain equations can be

written as 5 22 ( i )
v v v(v—vg)(1 -0 v ot

— =0,— —(1—h)— 2
ot Bg asazc o Tin ( h) Tout R (3:20)

where 0, is the diffusion coefficient, assumed to be same in all directions.

The gradient operator of the diffusion term in (3.15) is simplified using the
relationship given in (3.14). Additionally, it should be noted that the expression
for gating variable in (3.12) and (3.13) remains unchanged for each cell in the
spatial field.

Explicit finite difference approach is then employed to compute the state vari-
ables across space and time. In this method, the first step is to construct a gridded

. n
domain [s, = sk, 82, ..., 5™

| with nodes separated at a distance. Here the nodes
are placed at equidistant with an increment A in space, A; in time. The next step
is to approximate the differential operators (V and V?) as finite differences ex-
pressions based on Taylor series expansions. Thus, Laplacian operator in (3.20) is
approximated using a second order central difference operator. This finite differ-
ence operator determines the transmembrane potential at each point as difference

in magnitude between its immediate left and right neighbouring points.

For a general point si, the second order central difference equation can be
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written as
0%v

2
ds2

_ 9
JSy

1 ( dv
~ | 2 , (3.21)
sy=sl As < 0 sxsg—A;)

where the first-order derivative term for the neighbouring points in (3.21) is then

Al
Sx=s4+ 5

approximated using central difference operators as following

05 sy=si+5 As
ﬁ ~ ’U(S;) B U(Séc B AS) ) (323)
an SXZSSI(*ATS As

The Laplacian operator can then be obtained by substituting (3.23) and (3.22)
into (3.21)

Po| 1 (ot A) vl w0k =AY o
aS% SX:Sl;( As As AS
o%v - o(sh + As) — 20(s) + v(sh — As). (3.25)
aS% sy=sk Ag

Equation (3.25) illustrates that the weights associated with the node v(s,) in
the explicit finite difference approach are related by (1/A2, —2/A2,1/A?). By con-
sidering only the magnitude of weights, the finite difference matrix can be pre-
computed and stored to reduce computational costs. For a gridded domain with
ns, number of nodes, finite difference matrix A of the central difference method

can be written as

2 1
1 2 1
1 2 1
A= (3.26)
1 -2 1
1 2 1
1 -2

[”Sx X nsx]

where the magnitude of empty matrix entries is zero. It should be noted that
the matrix comprises tridiagonal bands and could become highly sparse for larger
number of nodes.

The final step is to incorporate the boundary conditions into the finite differ-

ence matrix. This process depends on the nature of spatial domain and is detailed
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in the next section. Similarly, transmembrane potential can be evaluated across

time instants using first order forward difference equation given by

U Upip, (Si) - Z’t(si)

= = A (3.27)

The above approach is then repeated for gating state variable as it is repre-
sented by ODE with dependency described over time. On the other hand, electro-

gram measurements in a one-dimensional field equation can be written as

v (s',t) = 1%/

 (ZVoi(se)) -V m dsy. (3.28)

Similar to the Laplcian operator, a finite difference matrix can be precomputed
for the derivative operator in (3.28) as follows

[”Sx X nsx]

Normal Activation Patterns

In this example, the simulation of normal activation patterns in a one dimensional
spatial domain is presented.

A one-dimensional cable with a length of 2 cm (L) is considered to represent
both the tissue and electrodes field. A schematic illustration of the simulation
setup is shown in Figure 3.3. It shows that the tissue field is placed at (sy,0) axis
while the electrograms are placed at an (s, s)) axis parallel to this field.

The tissue field is assumed to be homogenous with the electrophysiology pa-
rameters given in Table 3.1, and isotropic with diffusion co-efficient of 0.001 cm?ms™.
Simulation studies based on explicit finite difference approach generally use space
step value of 0.25 mm while time step size ranges between 0.05 ms and 0.1 ms [32].
Here, a space step is chosen to be 0.25 mm that results in a total of 81 cells in the
tissue field. The model equations are then solved using the explicit finite difference
method detailed in the previous section. However, no-flux boundary conditions
are applied to calculate the transmembrane potential at the right and left bound-

ary nodes in the tissue field. No-flux boundary conditions impose the assumption
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Table 3.1. Electrophysiological parameters used in the simulations [38, 109].

Parameters | Values
Ag 0.025 cm
A¢ 0.05 ms
Tin 0.3 ms
Tout 6 ms
Topen 120 ms
Telose 150 ms
T 150 ms
slope, 7y 25
vg 0.13

that there is no current flow into or out of the membrane by assigning the gradient

of transmembrane potential to be zero [32]. As a result, the node at the right end

of the cable only considers the potential from its left neighbouring node, given by
Pol (v(s; + ) —v(s;>>, 530
ds X lsy=sl

A3

Similarly, the node at the left boundary only considers the potential from its

right neighbouring point given by

v(sk) —v(sh — As)
~ | — . 3.31
e < A2 (3.31)

The finite difference matrix A for the numerical integration of tissue model is

o
0s2

Sensor Field

Figure 3.3. Schematic diagram of simulation setup for normal activation pat-
terns in one-dimensional cable field model.



Chapter 3. Modelling and Simulation of Cardiac Electrophysiology 45

computed by including the dependency of nodes given in (3.30) and (3.31). The
corresponding electrograms are measured at sensors placed at 1 mm from the
tissue field. On the sensor field, the electrograms are placed 1 mm apart, resulting
a total number of sensors to be 20. Similar to the tissue field, no-flux boundary
condition is applied at the boundary nodes to obtain the corresponding difference
matrix M;_ . The corresponding finite difference matrices from both tissue and

sensor field are given by

-1 1 -1 1
1 -2 1 -1 1
1 -2 1 -1 1
A= M, =
1 -2 1 -1
1 -1 [81x81] 0 [81x81]

(3.32)
Another important measure required in simulating the electrogram measurements
is the distance between the tissue and sensor fields. The assumption that the
sensors are placed on axis parallel to the tissue field implies s,” = 0 and s,’ to be

a constant value (see Figure 3.3). Thus, Euclidean distance can be calculated as

r= \/(sx —5¢/)2 4 (s,/)2 (3.33)

The gradient measure can be calculated as

/
v m - [_(S"r;s")] iy (3.34)

In order to initiate the normal action potential, an external stimulus current is
applied at left edge of the tissue field from s, = 0 mm to s, = 0.05 cm, and at two
different time instants, t = 0.05 ms and t = 500.05 ms. Simulation is performed
for a total of 1000 ms with a time step of 0.05 ms. The resulting spatiotemporal
activation patterns of the state variables at tissue level are depicted in Figure 3.4.
Figure 3.4 (a) illustrates that the action potentials generated at external stimulus
locations propagate along the cable over time. At every cell position, the action
potential undergo depolarisation and repolarisation stages, followed by returning
to the resting states. This forms one complete cycle of the action potential. The
second stimulus applied at t = 500.05 ms creates another normal cycle of action
potential propagation. The dynamics of state variables from individual cells are
shown in Figure 3.5 under the normal cycles of action potential propagation. The

electrograms measured at the electrodes are shown in Figure 3.6. The results
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Figure 3.4. Example of the simulated spatiotemporal patterns during normal
cardiac conditions in a one-dimensional cable field. The electrophysiology pa-
rameters are 6, = 0.001 cm?ms™, v* = 0.6, T*" = 2ms,y = 25. (a) Transmembrane
voltage. (b) Gating variable.
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Figure 3.5. Examples of state variables from two different spatial locations along
the cable tissue field. (a) At the stimulus location, s, = 0.025 cm. (b) Ats, =1 cm.
State variables are transmembrane voltage (—), gating variable (—).

illustrate the monophasic characteristics of the electrograms at stimulus location
and at the end of cable field, as detailed in Section 2.2.3. The biphasic electrogram
characteristics is observed at the other electrodes. To illustrate this, an example
of electrogram at 1.325 cm on cable is shown in Figure 3.6(b). The simulated

electrograms follow a similar trend as that of clinical readings presented in [22].

Re-entrant Activation Patterns

In this example, re-entrant activation patterns in a one-dimensional spatial field
are presented.
For the simulation, both the cardiac tissue and the sensor field are represented

by a one-dimensional ring model. Similar to the studies based on re-entrant exci-
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Figure 3.6. Examples of electrogram measurements at different spatial locations
along the sensor field. (a) Monophasic at s, = 0 cm. (b) Biphasic at s, = 1.325 cm.
(c) Monophasic at s, = 2 cm.

tations in [73, 132, 156], the ring models here are constructed as a closed loop of
cable field shown in the previous section. This allows to reproduce the complex
dynamics of re-entrant patterns in a simplified manner. A schematic representa-
tion of the ring models used for simulation is shown in Figure 3.7. The electro-
physiological properties used here are same as for the normal activation patterns,
that are given in Table 3.3. To compute the transmembrane voltage and gating
variable over space and time, explicit finite difference method is then employed.
In contrast to the cable fields, the finite difference matrices are formed here by in-
corporating the periodic boundary conditions. Thus, the finite difference matrices

can be written as

-2 1 1 -1 1
1 -2 1 -1 1
1 -2 1 -1 1
A = Msx =
1 -2 1 -1 1
1 1 -2 [80%80] 1 -1 [80%80]

(3.35)

For the simulation of electrogram measurements, the distances between spatial
locations in both tissue and sensor fields are then calculated. Here, a different
approach is employed such that the symmetrical distance properties along the ring
model are incorporated in the calculation. As shown in Figure 3.7, the distance
from a spatial location in tissue field (sy) to the sensor location (s, s{/) is calculated

r=/c?+ s/yz, (3.36)

as
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Sensor Field

Figure 3.7. Schematic diagram of the simulation setup for modelling the re-
entrant activation patterns in a one-dimensional ring domain.
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Figure 3.8. Example of the simulated spatiotemporal patterns of transmem-
brane voltage during re-entrant activity in an one-dimensional ring model. The
electrophysiology parameters are 6, = 0.001 cm?ms™, v = 0.6, T* = 2ms, v = 25.
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where ¢, is the chord length between a reference point (s}) and spatial location in
tissue field (sy) given by

¢y = 2¢,sin <529) , (3.37)

where ¢, is radius of the spatial fields and sy is the angle between s, and sy. The

corresponding gradient measure can be calculated as

VE] = {cr cos (E};)]ﬁx. (3.38)

To simulate re-entry, S1-S2 stimulation protocol is applied to one-dimensional
ring [38]. Using this method, normal activation patterns are first generated by
applying first stimulus (S1) from s, = 0 cm to s, = 0.05 cm (see Figure 3.8 A).
Due to the closed loop structure of the ring, action potentials propagate in both
directions as shown in Figure 3.8 B and 3.8 C. The patterns returns to its resting
state and cancels out at the common point (see Figure 3.8 D). To generate the re-
entrant circuit, the second stimulus (S2) is then applied during vulnerable window,
when the tissue is partially refractory. As illustrated in Section 2.1, this time
interval is within the action potential duration but after the absolute refractory
period. Also, an external stimulus with a sufficient magnitude and duration can
initiate the re-entrant wave. Here, S2 is applied from s, = 0.475 cm to s, = 0.525
cm at 350 ms, which initiates the re-entrant activation waves (see Figure 3.8 F). This
activation wave travels along the direction, where the cells are recovered and can
be re-excited (see Figure 3.8 (F-H)). As a result the symmetry of normal activation
pathways is broken and creates a re-entry circuit by re-exciting the same tissue

regions.

It should be noted that if S2 is applied before the vulnerable window, re-entrant
waves cannot be generated as the cells are still refractory to external disturbance.
On the other hand normal action potentials are generated and propagate along
the tissue, when S2 is stimulated after the vulnerable window. Along with the
stimulus parameters, the time at which S2 is applied plays a crucial part in the

initiation of re-entrant activation wave.

Figures 3.9 and 3.10 show the evolution of state variables and electrogram
measurements associated with the re-entrant excitation in one-dimensional ring.
In Figure 3.9 (a) the normal action potential characteristics are observed followed
by the first stimulus S1, which corresponds to monophasic electrogram in Figure
3.10 (a). This is similar to the trend shown in the previous section. The initiation
of action potentials when the stimulus S2 is applied during vulnerable window
is shown in Figure 3.9 (b). This causes an abrupt and negative deflection in elec-
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Figure 3.9. Examples of state variables from two different spatial locations along
the tissue field. (a) At the first stimulus location, s, = 0.025 cm. (b) At the second
stimulus location s, = 0.5 cm. State variables are transmembrane voltage (—),
gating variable (—).

2 2 2
)
a0
3
S
- 0
5 04
g 0
: [
+~
3
= -3.5 -3.5 -1.5

0 500 1000 0 500 1000 0 500 1000
Time (ms) Time (ms) Time (ms)
(a) (b) ()

Figure 3.10. Examples of electrogram measurements at different spatial loca-

tions along the sensor field. (a) At first stimulus, s, = 0 cm . (b) At second

stimulus, s/ = 0.525 cm. (c) Ats), =2 cm.

trogram as illustrated in Figure 3.10 (b). The characteristics of activation patterns
and electrogram caused by the re-excitation of cells can also be seen in Figure 3.10
(c). Moreover, the stability analysis shown in Table 3.2 shows that the selected

simulation parameters in the one-dimensional spatial field are stable.

Table 3.2. Stability analysis for explicit finite difference method.

Diffusion Dimension of =~ Calculated stability Stability Stability
value(cm?ms™)  simulation (1) criterion value Criterion limit ~ Check
0.001 1 0.08 0.5 Yes

0.0001 2 0.008 0.25 Yes
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3.2.2 Two-dimensional Spatial Field

In this section, simulation of normal and re-entrant activation patterns in a two-
dimensional isotropic tissue slab is presented.
For a two-dimensional isotropic tissue field, the transmembrane voltage in

monodomain equations can be described as

w 9<32+820>+h( —0)(1=0) g

ot d 2 a y Tin Tout

+ i, (3.39)

where the spatial field is expressed as (s = sy, s,) and the simplification of diffu-

sion term is obtained from

V.(6,V0) = aa (9ggz>, (3.40)

2 2
(aiaﬁiyay).(gggv iy + b, g ) = 9g<g£+gsg>. (3.41)
Similar to the one-dimensional field, an explicit finite difference method is
used to obtain the solutions of the model equations. To begin with, a regular
gridded domain with [ns, X ns,] nodes with a uniform space step of A; (Ay =
Ay = A) is considered. The Laplacian operator can be then computed using the
finite difference equations at each node as

o%*v L1 o(sh + As,sé) —o(st, s]y) B o(st, s]y) —o(s As,sy (3.42)
asjzc Sx=55( AS AS
%0 1 o(st, s]? + As) — (st S{J) B o(st, s]y) — 0 sx, sy + As) (3.43)
asﬁ j As AS '
Sy:Sy

%0 9% - o(sk + As,s)) — v(sl, s}) B v(s;,sé) —0(sl, — As, s}) N
ds2  0s? A2

(3.44)

(v(sﬁc, sé + Ag) — v(si,s]?) B v(sx,s]) — v(sx,sy + As)>
A3

The association of each node in the spatial field is then described using the
finite difference matrix. Similar to one-dimensional scenario, this matrix is pre-
computed and stored to reduce computational cost. However, coordinate system

approach using (3.44) can lead to highly sparse three-dimensional matrix. To miti-
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gate the use of high-dimensional matrix, the cartesian co-ordinate representations
are converted to indices such that s; = [s,l,slz, ...,s?s], with total number of nodes
given by n;. The index of each node is calculated using si = (j — 1)ns, +i. As a

result, the approximation of derivative operator in (3.44) can be rewritten as

(820 8%) N <v(sf+1) —o(st) v(sf)—v(s§1)>+

0s2 ' 0s A2 B A2

(3.45)

A3 A

(v@f“)—v@ﬂ W#)—UGT“)>.

Similar to the one-dimensional cable field, no-flux boundary conditions is then
applied. Using this method, the nodes at the left boundary of the tissue slab
(where sy = 0) do not consider the voltage from its left neighbouring points

Po | Fo) (o) —ols) | ol ™) ols)) _ olsh) — ol ™)
ds2 855 ~ A2 A2 2 .

Similarly, the nodes at the right boundary of the tissue slab (i = ns,) do not
consider the current from its right neighbouring points

Po 0\ (el o) | els™) — o) o(s) —o(s ™)
as§ 655 ~ Ag Ag 7 )

(3.47)

The above boundary conditions are repeated for all the nodes at both j = ns,
(top) and j = O (bottom) of the tissue slab so that results in Laplacian operator

approximation as

Po 3%\ v(sith) — o(si) B o(sh) —o(si) B o(sh) — v(s;;nsy) (3.48)
0s2 ' 92 | A A3 A7 o

A? A? A2

S

S

<820 827)) - (U(S§+1) _ U(S;) U(Sf) — U(S;‘*l) N U(s;+n5y) — U(S;)> (3.49)

In this approach, the resultant three-dimensional finite difference matrix can

be approximated as two-dimensional matrix. For instance, the finite difference
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matrix for a 3 x 3 regular gridded domain can be written as

-2 1 0 1 0 0 0 0 O
1 -3 1.0 1 0 0 0 O
o 1-2 0 0 1 0 0 O
10 0 -3 1.0 1 0 O

A=]10 1 0 1 -4 1 0 1 0 (3.50)

o 0 1.0 1 -3 0 0 1
0o 0 0 1 0 0 -2 1 0
o 0 0 0 1 0 1 -3 1
0O 0o 0 0 0 1 0 1 -2

[9x9]

It should be also noted that corner node points of the tissue slab have two-node
stencil point dependency. The time dependencies in the gating and transmem-

brane voltage variable is then approximated using the relationship given in (3.27).

The next step is to approximate the derivative operator in the extracellular

electrogram model equation

ouls' 1) = [[(—Vou(s)) - ¥ m dsyds,. (3.51)

Here, the tissue field is placed at plane with varying sy, s, and s, = 0. The
sensors are then placed on the axis parallel to the tissue field implying s, is a
constant value (height). Thus, Euclidean distance and the gradient measure can

be calculated as

r= \/(sx —5y")2 4 (sy —s,/)% + (s:)?, (3.52)
v m = [_(ers_ le)}ax + |:_(Syr3_ Sy/)]ay. (3.53)

Substituting the constituent gradient terms yields to

. . 90 (sy —sy') . 9v (sy —5y)

73

To preserve the spatial information required in the above formulation, the fi-
nite difference matrix of the derivative operator is constructed for both s, and s,
directions. By incorporating the no-flux boundary conditions, the forward finite
difference matrices for s, and s, co-ordinates are formulated. Using the same
example of 3 x 3 system, finite difference matrix for s, direction can be written as
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-1 0 0 00 0 00
0 -1 0 0 1.0 0 0 0
00 -10 0 1000
00 0 -10 0 100
M,=[0 0 0 0 -1 0 0 1 0 (3.55)
00 0 0 0 -10 0 1
00 0 0 0 0 0 0O
00 0 0 0 00 0O
00 0 0 0 0 00O

[9x9]

On the other hand, the finite difference matrix M;_ (s, direction) follows a sim-
ilar matrix structure as Mg, in (3.32), which can be extended to two-dimensional

field depending on the number of nodes.

Normal Activation Patterns

In this example, normal activation patterns in two-dimensional tissue slab of 1 x 1
cm are presented.

Similar to the one dimensional examples, discretisation is performed here us-
ing space and time steps of 0.025 cm and 0.05 ms respectively. This results in a
41x41 gridded domain and giving total number of cells as 1681. The electrodes
are placed at a height of 1 mm on the plane parallel to the tissue field to mea-

sure the electrograms using model equation in (3.54). This gives the total number
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Figure 3.11. Example of the simulated spatiotemporal patterns of transmem-
brane voltage as plane wave in a two-dimensional domain. The electrophysiol-
ogy parameters are 0, = 0.0001 cm?ms™, v* = 0.7, T*! = 2ms, v = 25.
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Figure 3.12. Example of the simulated spatiotemporal patterns of transmem-
brane voltage as circular wave in a two-dimensional domain. Here, the exter-
nal stimulus is applied at the centre of the tissue field that resulted in circular
activation patterns. The electrophysiology parameters are 6, = 0.0001 cm?ms™,
vt = 0.7, T = 2ms,y = 25.

of electrodes to be 100. Simulation is performed for a total of 900 ms using the

electrophysiology parameters given in Table 3.1.
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Figure 3.13. Examples of state variables and electrogram measurements. (a)
State variable, s, = 0.025 cm. (b) Electrogram measurements. State variables are
transmembrane voltage (—), gating variable (—).

To illustrate the action potential propagation under normal cardiac conditions,
two types of stimulations are considered. In the first example, external stimulus
is applied from sy, = 0.025 cm to s, = 0.075 cm (left edge of the slab) at two
different times (0 ms and 500 ms). This results in two action potential cycles, and
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Figure 3.14. Examples of state variables and electrogram measurements. (a)
State variable, s, = 0.025 cm. (b) Electrogram measurements. State variables are
transmembrane voltage (—), gating variable (—).

the activation patterns during first cycle are shown in Figure 3.11. Within a cycle,
action potentials are initiated at the left edge of the slab, travel along the space and
terminate at the right boundary of the slab. This type of activation wave patterns
is also known as planar wave [3].

In the second example, external stimulus is applied between sy,s, = 0.475 cm
and sy, sy = 0.525 cm (3 x 3 grid), at two different times similar to that of plane
wave simulation. As shown in Figure 3.12, action potentials are initiated from
the stimuli location and propagate at all directions as a circular activation wave
pattern [32]. After the repolarisation stage, cells return to their resting potential,
beginning from the stimulus locations to the edges of tissue slab (See Figure 3.12).
Examples of action potential and electrogram measurement from both simulations

are shown in Figures 3.13 and 3.14, respectively.

Re-entrant Activation Patterns

In this example, re-entrant activation patterns in two-dimensional spatial field are
presented.

To simulate the re-entrant activity, the cross-field stimulation protocol detailed
in Section 3.2.1 is employed. Here, simulation is performed for a total of 2000 ms.
Briefly, re-entry is generated by applying disturbance to the propagation of normal
activation wave. Thus, the first stimulus S1 is applied to generate a planar wave
that propagates along the tissue slab (see Figure 3.11). Once the wave-tail of this
planar activation wave reaches the middle area of tissue slab, the second stimulus
S2 is applied at the left bottom corner of slab ( 5 mm high x 2.5 mm wide) from
324 ms to 326 ms. Figure 3.16 illustrates the activation patterns corresponding to
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Figure 3.15. Examples of state variables and electrogram measurements from the
continuous version of mMS model. (a) State variable, sy, s, = 0.025 cm. (b) Elec-
trogram measurements. State variables are transmembrane voltage (—), gating
variable (—).

the second stimulus S2 applied during the vulnerable window. As the symmetry
of propagation is broken, the activation wave travels along the direction where the
cells are being excitable. For instance at first activation waves travel towards the
top edge of tissue slab due to the presence of travelling planar wave at the right
side (see Figure 3.16 E-H). Once the planar wave has terminated and cells at the
right side of tissue are excitable, activation wave propagates towards the right.
This activity is then repeated and activation wave travels toward left side, where
the tissue region has recovered. Thus, activation waves rotate by propagating into
the recovering tissue and forms the spiral re-entrant activation patterns in a two-
dimensional spatial field. The spiral re-entry patterns are persisted throughout
the simulation as shown in Figure 3.16. Example of action potential in Figure 3.15
(a) shows the persisted excitation of action potential even without applying the
external stimuli at a time interval. On the other hand, Figure 3.15(b) illustrates the
characteristic difference in the electrogram during the spiral re-entry. Similar to
the one-dimensional spatial field, the stability analysis shown in Table 3.2 shows

that the selected simulation parameters satisfy the stability criterion.

3.3 Comparison with Modified Mitchell Schaeffer Model

In this section, the simulation results from the original Mitchell-Schaeffer model
and the developed continuous version of modified Mitchell-Schaeffer models are

compared.
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Figure 3.16. Example of the simulated spatiotemporal patterns of transmem-
brane voltage during spiral re-entrant activity in an two-dimensional tissue
model coupled with continuous version of mMS model. The electrophysiology
parameters are 6 = 0.0001 cm’*ms™, v = 0.7, T = 2ms, v = 25.
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Figure 3.17. Example of the simulated spatiotemporal patterns of transmem-
brane voltage during spiral re-entrant activity in an two-dimensional tissue
model coupled with the modified Mitchell Schaeffer model. The electrophys-
iology parameters are 6, = 0.0001 cm’ms™, v = 0.7, T = 2ms.
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Figure 3.18. State variables simulated using modified Mitchell-Schaeffer model
(—) and the continuous version of mMS model (—). An external stimulus
is applied at every 500ms with electrophysiology parameters: T, = 0.3, Tout =
6, Topen = 120, Tejpse = 150, v = 0.13,0 = 0.15, T* = 2ms,y = 25. (a) Normalised
transmembrane voltage. (b) Gating variable.

First the state variables simulated using the proposed continuous version of
cell model given in equations (3.3) and (3.8) are compared with modified Mitchell-
Schaeffer model (given in (3.3) and (3.4)). Here,the result from a single cell model
using a slope value of 25 is shown in Figure 3.18. As described in section 3.1, action
potential simulated from the proposed model follows the signal morphology of
the modified Mitchell-Schaeffer model. It should be noted that the difference
in the characteristics of action potential and gating variable can be decreased by
increasing the slope value. However, the observed difference during repolarisation
is the result of the approximation used to obtain a simplified representation of the

time constants (T = max {Topen, Tclose})-

To examine the performance of the proposed continuous model, state variables
are computed from both models using three sets of electrophysiology parameters
given in Table 3.3. These values are taken from the previous study [38] in which
modified Mitchell-Schaeffer model was derived and compared with the classical
Mitchell- Schaeffer model to test the pacemaker stability. The Root Mean Squared
Error (RMSE) between the modified Mitchell- Schaeffer model and the proposed
continuous version is calculated for corresponding values of slopes. For instance,

RMSE of transmembrane voltage can be calculated as follows

T

RMSE(v) = J % y (vk - @k)z (3.56)

k=1

where v and 9y are the transmembrane voltages from modified Mitchell-Schaeffer

and continuous version of Mitchell-Schaeffer models.
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The results from this analysis is shown in Figure 3.19 demonstrate that the
RMSE measure is higher for smaller slope values. This is because, switching dy-
namics in gating variable requires higher rate of change that can be achieved by
increasing the slope measure. Consequently, the RMSE measure decreases with
increase in slope value. Moreover, the smaller value of RMSE observed for higher

slope values is due to the approximation used in the time constants.

Table 3.3. Time constant values used for comparing the state variables.

Tin Tout Topen Tclose
1 0.3 6.0 120 150

0.1 9.0 100 120

0.15 6.5 90 85

0.8

RMSE (v)
RMSE (h)

0 50 100
Slope

(b)

Figure 3.19. Error bar shows the averaged trend across three sets of electrophys-
iology parameters given in Table 3.3.

Finally, the differences in the tissue level characteristics were compared qual-
itatively by analysing the simulated activation patterns from both models. Here,
spiral activations from the mMS model were simulated with the same simulation
setup and electrophysiology parameters. The corresponding results are shown
in Figure 3.17. It can be seen that the activation patterns follow similar trajec-
tory and capture the basic structure of the activation patterns at the selected slope
value (y = 25). However, the above described approximations and the smaller
slope value may cause a delay in the initiation of action potentials. This can be
observed by comparing Figure 3.16 and Figure 3.17). This translational difference
in the action potential morphology at the same node in the spatial field (I = 43)
is then analysed for two slope values of 25 and 100, shown in Figure 3.20. The
results show that increasing the slope value allows to capture the gating variable
morphology more accurately, which reduces the differences in the transmembrane

voltage.
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Figure 3.20. Example of state variables from the spiral re-entrant activation pat-
terns from mMS model and continuous version of mMS model with two slope
values. (a)-(b) are modelled with a slope value of v = 25, (c)-(d) are modelled
with a slope value of v = 100. Modified Mitchell-Schaeffer model (—) and the
continuous version of modified Mitchell-Schaeffer model (—).

It should be noted that the proposed continuous version of mMS model has
smaller approximation errors, which may lead to progressive delay and differ-
ences in the action potentials. However, this model allows the implementation of
estimation frameworks, where state estimates and parameters are inferred from
the measurements. The estimation frameworks include predictions and correc-
tions steps, which are based on the observed measurements. Thus, the observed
drifts are not of an issue in the estimation method as it can tackle with the small

modelling errors.

3.4 Conclusion

This chapter has presented a modelling and simulation study of cardiac electri-
cal activity patterns. From the literature of cardiac models, modified Mitchell-
Schaeffer model is considered as a suitable candidate cell model as it has fewer
number of parameters and two state variables. The nominal state variables are
transmembrane voltage and gating variable.

The key contributions of this chapter are the following:

e A continuous version of modified Mitchell-Schaeffer model has been de-
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rived, by approximating the discontinuous gating variable formulation us-
ing a sigmoid function. By doing so, a slope parameter can be used to alter
the rate of steepness in the gating variable dynamics. The proposed model
allows straightforward implementation of state and parameter estimation
frameworks, for otherwise abrupt changes in the gating variables may cause

divergence in the estimation of nonlinear systems.

¢ An integrated model of cardiac electrophysiology has been derived by using
incorporating the proposed cell model into the monodomain tissue equa-
tions. The resulting tissue level model is a coupled partial differential equa-
tion with spatial and temporal dynamics. An extracellular electrogram model
equation was then added to the integrative model to capture the observed
surface measurement characteristics. The derived integrated model equa-
tions can be used for inference framework to reconstruct the tissue dynamics
from the electrogram measurements, proposed in Chapter 4 and Chapter 5.

e The cardiac electrical activity was further studied as a forward problem, by
generating the normal and abnormal cardiac patterns in one and two dimen-
sional spatial fields. The stimulation protocols that were used to generate the
re-entrant activity aided to identify the spatiotemporal dynamics of stimu-
lus variable in the tissue model equations. As a result, inference framework
of tissue dynamics should incorporate an additional step for detecting and
estimating the stimulus variable, along with estimation of the nominal state

variables.

e The comparison of the action potentials modelled using mMS and continu-
ous version of the mMS shows that the proposed model can reproduce the
overall characteristics of the electrical activity patterns, especially the com-
plex spiral dynamics. However, the proposed continuous version of mMS
models illustrated differences in the action potentials, when using a smaller
slope value in the sigmoid approximations of the gating variable. As the
estimation frameworks include recursive predictions and corrections proce-
dures, the modelling errors can be tackled by learning from the observations.



Chapter 4

Detection and Estimation

Framework For One-dimensional
Cardiac Model

As stated in Section 1.4, one of the important aims of this thesis is to develop a
combined detection-estimation framework for reconstructing the tissue dynamics
from electrogram measurements. This chapter establishes the proposed detection-
estimation methodology for a one-dimension cardiac tissue model.

The proposed detection-estimation framework builds upon the integrated car-
diac model derived in the previous chapter. However, the cardiac model equa-
tions with the continuous version of mMS ionic model given in (3.20), (3.12) and
(3.28) are of deterministic nature. There are situations where uncertainties caused
by un-modelled dynamics and inherent approximations should be considered in
the modelling frameworks. This is mainly addressed by using stochastic models,
which are derived after coupling the deterministic model equations with random
forcing signals [75]. Stochastic models are of particular interest in cardiac mod-
elling studies as they allow to incorporate the intrinsic and extrinsic variabilities
observed in action potentials [106, 157, 158]. The intrinsic variability is associated
with the temporal differences in action potentials within a cell. On the other hand,
extrinsic variability characterises the differences in action potentials between cells
at different spatial locations [158]. In order to account for the effects of above men-
tioned factors in the estimation framework, stochastic cardiac model equations are
derived in this chapter.

The resulting stochastic version of the cardiac model can be represented as
a finite-dimensional state space model, which allow the estimation of the state

variables to be formulated as an filtering or smoothing problem. The resulting

64
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estimation problem can be solved using one of the nonlinear state estimation
methods. Some studies have demonstrated the ability to infer the hidden gating
variables, filtered transmembrane voltage variable, using the Kalman filter based
estimation methods [69, 140]. However, the state of art highlights two important
gaps in the current estimation approaches. Firstly, the estimation methods have
been applied to optical mapping surface measurements, where the observations
are predominantly noise corrupted versions of transmembrane voltage [69, 140].
However, the dynamics of extracellular electrograms detailed in Section 2.2.3 can
be incorporated into estimation framework for reconstructing the tissue dynam-
ics from unipolar cardiac electrograms, obtained from the electric mapping tech-
niques [18, 22]. The inclusion of electrogram dynamics introduces an additional
layer of latency into the modelling and estimation framework, where both trans-
membrane voltage and gating variable required to be estimated from the electro-
gram measurements. Secondly, the detection and estimation of stimulus variable
can be incorporated into the estimation framework to improve the accuracy of the
state estimates. This is also important as the stimulus variables can be considered
as potential re-entrant activation sites within the tissue field, as evidenced by the
simulation results in Chapter 3. For instance, it can be seen in Section 3.2.1 and
Section 3.2.2 that the propagation of re-entrant activation patterns was initiated
by stimulus current applied at particular spatial locations and time-instants. More
specifically, re-entrant activity was caused from stimulus activation signals applied
at recovering cell locations within the vulnerable window. Therefore, identifying
the spatial locations and time instants that correspond to the initiation of the acti-
vation patterns, especially for the re-entrant activation patterns is important. In a
clinical setting, detection of the re-entrant activation sites is particularly important,
as it can be considered as the potential ablation targets for the treatment of the ar-
rhythmic conditions. Moreover, the estimation of the stimulus variables can also
be considered as a factor to obtain the accurate reconstruction of the underlying

tissue dynamics field.

In signal estimation and detection theory, the class of estimation approaches
that are used to infer the abrupt changes in the system dynamics are referred as
detection-estimation approaches [154]. In general, detection-estimation problems
play a vital role in signal estimation and detection theory [62] , which have been
applied in several fields including cyber-physical systems [50] and biochemical
systems [76] and radar systems [127], etc. However this type of model-based in-
ference problems have not yet been reported in the literature of cardiac modelling.

Hence, in this chapter, a novel approach is proposed to estimate the state vari-

ables of tissue dynamics from electrogram measurements by incorporating the de-
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tection and estimation of stimulus variables. The estimation algorithm proposed
includes the following steps:

e A model-based detection scheme is performed to determine if the cardiac ac-
tivity is occurring with or without stimulus, where the model is formulated

based on the nominal system behaviour.

e When a stimulus is detected and isolated, an augmented state space model
is formed by incorporating the stimulus variables that corresponding to the

sensor locations.

— To capture the local support and interpolation properties introduced by
the detected stimulus locations in the tissue field, linear combination of
basis functions are used to represent the dynamics of stimulus variables.
The basis functions are centered on the corresponding sensor locations

in tissue field, which detected the presence of the stimulus.

— The resulting basis functions are then incorporated into the augmented
state-space model to estimate the stimulus variables at the detected sen-
sor locations, and also to obtain accurate estimates of transmembrane

voltage and gating variable across the tissue field.

e A nonlinear state estimation via URTS smoothing algorithm is employed
for computing the state variables of the nominal or augmented state-space
model.

To illustrate the performance of the proposed methodology, data of cardiac electri-
cal activation patterns during normal and re-entrant cardiac conditions are mod-
elled using the integrated model with mMS ionic model. This can also demon-
strate the ability of the proposed model to capture the tissue dynamics.

The remainder of this chapter is organised as follows. Section 4.1 presents
the derivation of stochastic models of cardiac electrophysiology. This is followed
by the description of proposed detection-estimation methodology in Section 4.3.
The simulation setup and data generation are then detailed in Section 4.4, and the
results are presented and discussed in Section 4.5. Finally, important conclusions
are summarised in Section 4.6.

4.1 Nonlinear State-space Representation of Stochastic
Cardiac Models

In this section, the derivation of the stochastic cardiac model is presented. This

is achieved by incorporating additive random disturbances into the deterministic
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model equations given in (3.20), (3.12) and (3.28).

The stochastic tissue model equations in one-dimensional tissue field can be

written as
2 Xr t Xr t) — 1 - Xs t

aU(SX/ t) — an U(SX/ t) 4 h(Sx, t) U(S )(U(S ) Ug)( U(S ))
ot ds2 Tin @1

—(1 = h(sy ) (sy, 1) i iSt(Sx, t) + %M,

Tout ot
=7 (0(sx,t)—vg) h
oh(sy,t) _ e g  h(sx t) +Uhag (sx,t), 42)
ot T (1 + ef'y(v(sx,t)fvg)> T ot

where the additive disturbance term in each state variable ({(sy,t)) is a space-
time white noise, defined as a formal derivative of stochastic Weiner process or
Brownian motion [75]. The additive disturbance term is further approximated to
be spatially uncorrelated Weiner process.

The resulting tissue model is a system of nonlinear coupled stochastic par-
tial differential equations (SPDE), which constitutes an infinite-dimensional spa-
tiotemporal model. However, the standard signal processing and estimation tech-
niques are generally developed for finite-dimensional model structures. Thus, a
model reduction method is employed to convert the infinite-dimensional model to
a finite-dimensional model structure. Similar to the simulation studies in Chap-
ter 3, the method of finite difference is employed to form the finite dimensional
state-space model. The resulting state-space formulation allows to describe the
observed measurements and hidden state variables within a compact model struc-
ture for estimation.

To obtain the finite-dimensional state-space model, evolution of transmem-

brane voltage given in (4.1) is first rewritten as

0%0(sy, t)

Ot — 04 0(sy, )0t + 0y h(sy,t) v(sy, t)0t + Oc h(sy,t) V*(sy,t)0t

—0, h(sy, t) 03 (s, 1)0t + (s, 1)0t + 0007 (5¢, 1),
(4.3)

where the constant parameters are given by

1 1
Bo=—, Oy = [0 —0,0], 0c= [0+ 0105], 5= —.
Tin Tout

Spatial discretisation is then implemented using finite difference method de-
tailed in Section 3.2.1. It can be seen from (4.3) that the spatial dependency of
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nodes on their neighbouring nodes is described in the Laplacian operator of diffu-
sion term. On the other hand, the spatial dependency of nodes in reaction terms
is on the node itself. Therefore, Laplacian operator is approximated using finite
difference approach to obtain the discrete representation of the spatial field. This
approach also allows straightforward implementation compared to other model
reduction techniques such as method of moments [63], basis function decompo-
sitions [102], spatial filters [124], etc. The finite difference matrix, .4, comprises
difference quotients, that reflect the spatial dependency of each nodes on its neigh-
bouring nodes. The resulting matrix 4 for one dimensional cable field and ring
field domains is given in (3.32) and (3.35), respectively. Substituting the finite dif-
ference matrix A into (4.3) enables the formulation of the temporal evolution of
transmembrane voltage as a Stochastic Differential Equation (SDE) given as

dv(t) = Zngv(t)dt — 0y v(t)dt+6, (h(t)Ov(t))dt+0, (h(t)Ov(t) ®v(t))dt—
6, (h(t) o v(t) Ov(t) ©v(t))dt+i%(t)dt + odl°(t),

(4.4)

where,

h(t) = (h(t) ha(t) ... hu(t)) ,
OB OO A I
) = (i) B0 . i)

The above expression also allows to represent the additive disturbance term
as a function of time [21, 75]. Following the spatial discretisation, the temporal
discretisation of transmembrane potential is then implemented using first order
forward difference equation given in (3.27). To simplify the notations and for
better clarity, descritised values are defined as vs i := v(syAs, kA;) and hy o =
h(syAs, kA¢) and the future time instant (k + A;) is written as (k + 1). The first
order forward difference in the time domain yields the following transmembrane
voltage equation

0,A;
Vitl — Vg = 22 .AVk — 0viAr + O Hpvi Ay + 0. Hi Vi Ay — QQHk\_’kg,At
s

(4.5)
+AHY 4+ 00 (Tiq — T7)
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where v, € R, H, € R"*", and stimulus variable i§ € R",

Hk:diag(hllk hog .. hns/k)’

Vi = (01p U2k e Uns,k)T ,

Vi = (Uik U%,k U%s,k)T ’

Vis = (U?,k U%,k Uis,k)T ’
i = (i B . i)

The discretised form of additive disturbance term ({},; — {}) € R™ is the vec-
tor of stationary independent Weiner increment. A Weiner process is a stochastic
process that follows a normal distribution with mean of 0 and covariance of 02A;
within the time interval [k, k + 1] [75]. Thus the additive disturbance follows a zero
mean Gaussian noise process with covariance given by

Lo = o7E [AZIAL |, (46)
Y, = 02A;. (4.7)
Simplifying the state evolution equation of transmembrane voltage gives
Vigr = O Avi + ¥.0' + i A+ €l (4.8)
where
0. A

0. = AT 0= [0uAr 0N 040, ¥k = [vi Hpvy Hi¥po HiVgs),
S

€l ~ N(0,02A:1).

Similarly, the stochastic model equation of the gating variable is descritised
using first order forward difference temporal discretisation scheme. The resulting
state evolution equation for the gating variable can be written as

hi 1 = Oy + 0B, + €, (4.9)
where A
@:ﬁ, el ~ N(0,02A:1),

e*’Y(”ns,k*Ug)

- 1 + e_'Y(Uns,k_Ug) )

Bk = (,Bl,k/,gz,k/ an,k)T/ an,k
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By combing the model equation of two state variables, evolution equation of

the nonlinear state-space model can be summarised as
xpr1 = f(x, i) + €f, (4.10)

where x; € IR~ is the vector of state variables that includes transmembrane volt-
age and gating variable [vy h]T, ny is the number of states, €f = [e}, €!]T are
Gaussian noise processes with zero mean and covariance X, and X, respectively.

The nonlinear model function of state variables is given as

BeAvi +F,0' + i A
f(x, it ) =
0 fhk + Bké 7
The mapping of state variables to the extracellular electrograms measured at

/
Y

(3.28). The stochastic model equation for extracellular electrogram is given by

the discrete spatial locations in sensor field (s’ = s/,s;) can be modelled using

i (s') = k/LVv(sx,t)V(l/r)dsx +€(s'), (4.11)

where €] (s') is the independent Gaussian white noise sequences.

Equation (4.11) is temporally discrete and only the discretisation of differen-
tial operator in the temporal domain needs to be employed. The resulting finite
dimensional matrix M;, derived in (3.32) and (3.35) can be chosen based on the
type of sensor field. The gradient measure of distance between the tissue and sen-
sor fields can be precomputed from the analytical expression given in (3.34). This
allows to describe the observation equation of the state-space model as

Vi = Cxx + €, (4.12)

n
where y, € R is the extracellular potentials given by {v]e’,‘(} .yl, ny is the num-
ki

ber of sensors, €] € R™ is vector of normally distributed Gaussian white noise
sequences with zero mean and covariance given by O'yzl. It can be seen that the
mapping between elctrograms and state variables is quantified using a linear ob-
servation equation, where mapping is given by observation matrix C € R"*"~, It
is constructed as C = [C 0] such that current electrograms are mapped through
the function of transmembrane voltage and corrupted by white noise. Thus each
jhrow in C matrix represents the dynamics of sensor at s} described by

Cj =& (V1/1(s},5x)) M. (4.13)
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By combining the dynamics described for all the 7, sensors, the observation matrix

for transmembrane voltage can be written as

C =« R, M. (4.14)

Hence, the final nonlinear state-space model equations of the stochastic cardiac
model are given by (4.10) and (4.12).

4.2 Problem Statement

The overall aim is to reconstruct the tissue dynamics in the one-dimensional spa-
tial field from the electrogram measurements. However, the tissue dynamics de-

scribed in state evolution equation can take the following conditions as

f(x;) + €, under no stimulus condition
X1 = ) _ N (4.15)
f(xk, 1,sf) +€;, under stimulus condition
Therefore, the aim is to estimate the state variables via nonlinear smoothing

algorithm using one of the conditional models in (4.15).

4.3 Combined Detection-Estimation Framework

In this section, the methodology to estimate the states variables of the stochastic
tissue model from the unipolar electrograms is established even in the presence or
absence of the stimuli.

As described earlier, the URTS smoothing algorithm presented in Section 2.3.2
can be employed to infer the hidden states X, = [vy, hy], from noisy observations
based on the underlying stochastic cardiac model. However, changes in the car-
diac electrical dynamics that are induced by the abrupt changes of stimuli need
to be incorporated into the estimation framework. Although, stimulus drives the
process as an input but it is not observed directly, and according to (4.15) the
stimulus information can be considered as a system state in the stochastic cardiac
model. It should be noted that when the stimulus is present, the unknown level
of stimulus variable must also be estimated. This estimation problem can be tack-
led using state-augmentation approach. To solve this estimation problem by the
augmentation of the full stimulus variables as an augmented vector i, in the state
vector xi, the estimation problem becomes high-dimensional in nature. This is
because, the full state vector will be X¢ = [v, hy, i{] of size 3n,, which increases

the computational load.
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The simulation studies presented in Chapter 2 demonstrated that the occur-
rence of stimulus is a localised event in both spatial and temporal domains, and
therefore a sparse event. It is not pragmatic to perform the full estimation of the
sparse stimulus variable. Hence, the estimation problem can be modified into a
detection-estimation problem by considering the hypothesis whether a stimulus is
present at particular location or not, at a particular time instant. Although, this
approach allows to reduce the high-dimensionality, it leads to a branching pro-
cess with an hypotheses-tree structure, which is exponentially growing with time
[68, 164]. The true electrical field sequence can only be one of the sequences associ-
ated with a stimulus sequence branch of the full hypothesis tree. Since the correct
stimulus sequence is unknown, it becomes important to store the trajectories of
all the possible stimulus sequences, and their associated probability of being the
correct one. This is computationally prohibitive even after a few time instants,
as the full-hypotheses estimation requires exponentially increasing memory and
computations to incorporate every possible stimulus conditions [68].

In order to address this exponential growth of the state trajectories, suboptimal
estimation methods consider one of the following approaches [164]: (1) By elimi-
nating the insignificant state-trajectories (also known as pruning); (2) By merging
different state trajectories. In the literature of statistical estimation theory, the most
widely used such adaptive estimation approaches are the multiple-model (MM)
algorithms, in which a finite number of possible system hypotheses (also known as
system modes) are considered [11]. For this, a set of Kalman filters are employed
in parallel, where each filter is based on a specific system mode. The suboptimal
state estimates are then computed by combining the mode-conditioned state es-
timates from different filters, which are also assigned with probabilistic weights
(specific to the MM-algorithm). Some of the MM-based estimation approaches
include detection-estimation method [153, 154], interacting multiple model al-
gorithm (IMM) [16], generalised pseudo-bayesian algorithm [11], autonomous
multiple-model algorithm [11], etc.

In the estimation of cardiac field, the state-space models are of high dimen-
sional in terms of both the spatial locations and time instants. Therefore, consider-
ation beyond a single filter can be computationally costly. Therefore, the proposed
approach in this thesis is confined to a single filter detection-estimation approach.
This implies, state trajectories that do not satisfy the decision scheme are elim-
inated at every time instant. The system states of the selected model are then
estimated via state-augmentation method. Therefore, a unified detection and esti-
mation algorithm is proposed within the state-space modelling framework, using
the following steps:
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e Detect and isolate the locations of presence of stimuli using a filter-based
detection method using the nominal systems model.

— If not detected
« Estimate the state variables xx, from the measurements yy.
- else

* Estimate the augmented state variables X, from the measurements

yi Vvia a state-augmentation method.

- end

The following subsections detail the methods and formulations used within
each step of the proposed estimation framework. It should be noted that the
nonlinear state estimation procedure for computing the states of the nominal or
augmented state-space model is formulated within URTSS algorithm detailed in
Chapter 2.3.2.

4.3.1 Stimulus Detection

The state-space formulation proposed in (4.10) and (4.11) allows to implement a
model-based detection approach. In this method, changes in system dynamics are
detected by comparing actual system behaviour with a reconstructed behaviour
under nominal conditions. The resulting differences in system behaviours are
quantified using distance measure referred as residuals in literature [62]. A de-
cision scheme based on this metric is then employed to identify if there is an
anomalous behaviour.

Filter-based detection approaches enable to include the detection procedure
in the state estimation process. In filter-based detection approach, the residual
measure is derived from the innovation sequence, which is the difference between
predicted output and actual measurement. This is because, when the system dy-
namics is accurately described by a model, innovation follows a Gaussian white
noise characteristics. On the other hand, when there are changes in system dynam-
ics that are not captured by the underlying system model, the resulting statistical
characteristics of Gaussian white noise will be altered [62].

To detect the presence of stimulus behaviour, a similar filter-based detected ap-
proach is employed. By using the state-space model with state evolution equation
without the stimulus variable and observation equation, the states are predicted
using UKF as

21y

’A‘f;:l = ;)Wi(m)xi—&-l,i’ (4.16)
1=
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21y

Pi—?—l = Z Wi(C) (X{c[;l,i - f({—:l)(?e{-‘:lz B ’A‘{J:l)T + Xy (4.17)
i=0

where superscript f denotes the filtered estimates and minus (-) denotes the pre-
diction step of the filter, respectively.
As described earlier, the measurement process is linear relationship in states

and predicted model output can be calculated as
v =CR,. (4.18)

The innovation vector are then constructed as the differences between actual

measurement and the predicted model output in (4.17) as
e = Vi~ Yioy- (4.19)
The corresponding covariance of the innovation vector is given by

o/, =cp/ C" +%, (4.20)

To quantify the whiteness of the signal, a distance measure can be then com-
puted based on the innovation vector. In literature several metrics have been pro-
posed such as squared-residual [62, 101], normalised squared-residual [14, 42, 62],
etc. It should be noted that the innovation constructed from a filter also capture
the inherent statistics of disturbance, which may generate false alarm rates [14].
Hence a robust distance metric should be used as the distance measure to accu-
rately identify the presence of stimulus. The detection performance is important
for accurate initiation of activation patterns in tissue field. Here a distance mea-
sure based on the likelihood function presented in [80] is employed. Similar to
[80], a distance metric is derived based on the likelihood function.

For this, consider the negative log-likelihood function of the model at the pre-

diction step as
Liyr=—In P(Yk+1|*{;1)/ (4.21)

where p(yri1 |>A({;1) ~N (e{ll, Q{;l) given by

Na 1 1/ ¢ N
p(yenl’ ) = ———exp (—z(e{+1) ol (ef) ) (4.22)
(271)™[Qy 44

Equation (4.21) is expanded by substituting (4.22) to give

) 1 . NN
Lia = [ny In(27r) +In QL + (1) L2, (ef1) } . (4.23)
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The above expression generates a scalar value at every time instant. This im-
plies that it can only be used to detect the if a stimulus is present in the entire
sensor field at a given time instant. However, the sensor locations corresponding
to stimulus are required in state estimation to accurately map the stimulus vari-
able along the tissue field. Thus a distance measure tailored to individual sensors
needs to be determined. For this, let the sensor positions along the spatial field
are represented by {5, Zy: ;- A distance measure based on negative log-likelihood
of individual sensor is employed. For an arbitrary sensor 7, (4.22) can be written
as

2
o= 1 Léa
X = ex — , 4.24

where ey, is the innovation at the sensor location 3, gxy1 is the n'" diagonal
element in covariance matrix Qf;:l that quantifies the variance of innovation at 3.

Subsequently, negative logarithm of this measure can be calculated as

Lo .. = 1 In(277) + In(grs1) + (6%7“) (4.25)
nk+1 — 2 dk+1 Qe . .

Once the distance measures for all sensor locations are calculated the stimu-
lus detection is proceeded using a decision scheme. The sensors which detected
the presence of stimuli are defined to be the sensors with negative log-likelihood
values of individual component distribution greater than a predefined threshold

value. The positions of these sensors can be described by

fig,, = {gn L > w} (4.26)
where @ is the threshold value, which is selected such that required detection per-
formance is achieved. The summary of the above proposed diagnosis approach is
as follows : The predicted behaviour is calculated using nominal state-space model
that does not include the stimulus characteristics. Under stimulus conditions, the
inherent uncertainty from un-modelled dynamics is expected to cause relatively
higher prediction error at the sensors around the stimulus. This also indicates that
the negative log-likelihood measure at these sensors will be higher compared to
the other sensor locations. On the other hand, when there is no stimulus present
in the tissue field, the system dynamics is accurately modelled using the nominal
state-space model. This results in the negative log-likelihood measure to be of
smaller magnitude. Thus a decision scheme can be then employed to identify the
the presence of stimuli.



76 4.3. Combined Detection-Estimation Framework

4.3.2 State Augmentation

The stimulus detection scheme presented in the previous section returns the sen-
sor locations where the presence of stimulus at the sensors has been detected.
However, the sensors are placed at sparse locations in the sensor field. This means
that there could be multiple stimuli present at the neighbouring locations of the
sensor where stimulus has been detected, or also between the nearby detected sen-
sor locations in the tissue field. For instance, if there is only one sensor location
has detected the presence of stimulus, there could be multiple stimuli locations
in the neighbourhood of this sensor. On the other hand, if the spatial regime of
stimulus is wider, the two nearby sensor locations will be detected. In order to
create a smooth stimulus function and estimate it from the sensor measurements,
the dynamics of stimulus variables are represented the as a weighted sum of basis
functions. The basis functions are selected so that they are centered at the detected

sensor locations. The stimulus function can be thus decomposed as follows
i,s(t = Bka, (427)

where By, € R™*": are the set of linear B-spline functions(order of 2) [70], centered
at the detected sensor locations. z; € R™*! is the associated estimates of the
stimulus variables at sensor locations.

Based on the above described factors, the properties associated with the basis

functions are the following:

o Local support property: If only one sensor is detected, stimulus is assumed
not to be present at the locations of other sensors. Therefore, basis function
should not span into the areas beyond the neighbourhood defined by the

detected sensor (see Figure 4.1(a)).

e Interpolation property: If two nearby sensors detect the presence of stimulus,
then the stimulus value is assumed to be the same at all the locations between
the two sensors (see Figure 4.1(b)).

Subsequently, an augmented state-space model is formed by incorporating, a
new state variable z; € R" is added to the state vector x;. This results in

X1 = f(x, zi) + €5, (4.28)

where X;,1 € R" is the vector of state variables that consists of transmembrane

voltage, gating variable and the stimulus variables detected as [v; hy z]'. 1) is

the number of states in the augmented state-space model, € = [e;j, eZ,ei]T are
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Gaussian noise process with zero mean and covariance matrices as X,, I, and X,
respectively. The number of stimulus locations in the sensor field is given by #..
The stimulus variable is formulated using Markovian property such that it is
conditionally dependent only on the previous estimate of the stimulus variable.
This is a reasonable assumption especially when the stimulus may persists from
previous time instant to current time. Thus augmented model function f(xk) is
given by
[0, Av, + ¥:0' + Brzg Af]

f(Xk, Zk) = éfhk + QO éf ’ (4.29)
L Zi i
Vi = Cx + €7, (4.30)

~ . . .
where C € R *"x is formed such that the current measurement is the noise cor-

rupted signal of the transmembrane voltage vy.

Structure in Augmented State Vector and Covariance Matrix

As described in the previous section, stimulus behaviour may persists over a time

interval, where changes in the same stimulus may continue from previous time

1 1
0.8 0.8
o 0.6 1o 0.6
2 2
1€
50.4 Eoas
0.2 0.2
0 “0—0—0—@8-O—0—0—0—0-0—0—0—0—0-0—0—0—0—0- 0leoooeeooooeooeooooeoeooo
0 20 40 60 80 0 20 40 60 80
Spatial index Spatial index
(a) (b)

Figure 4.1. Examples of linear B-spline functions. (a) A single b-spline function
to estimate the stimulus variables around the detected sensor. (b) Two overlapping
b-spline functions to estimate the stimulus variables around the detected sensors.
Here, red circles denote the sensors and the blue circles denote the sensors resulted
from the detection scheme.
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instant to the current instant. This dynamics of stimulus variables is quantified
using Markovian property given in (4.28). On the other hand, there may be cases
when new stimulus are detected at a time instant and required to be added to the
augmented state vector. This requires initialisation of both prior state vector and
prior covariance matrix associated with stimulus variables in the augmented state

vector. Therefore, the dynamics of stimulus states are modelled as

z; + €}, when same stimulii detected
Zpy = (4.31)
z2 + €}, when new stimulii detected
where z{ is initialised as N (0, 03,I) [81]. The inclusion of above mentioned prop-
erty introduces dynamic structure in both prior values of state vector and covari-
ance matrix, which is then required for the prediction and correction steps based
on the augmented state-space model. This can be explained as: At a time instant,
the stimulus state variables in the prediction step may either depend on the previ-
ous time instant (same stimulus) or initialised to zero. This procedure is repeated
for the covariance matrix, where a higher value of variance is assigned for the new
stimulus. The state vector and covariance matrix are then updated in the correc-
tion step of the Kalman Filter. A similar estimation problem is presented in [81] for
the sequential learning of neural network, where both state vector and covariance
matrix were required to be initialised, when a new hidden unit was added into
the neural network. To include the dynamic structure in both measures, a general
mapping algorithm that can be applied for both forward and backward iterations
in the URTS smoother is derived. Here, the implementation for the filtering states
are shown below:
By following the filter-based formulations, the mapping in the stimulus state
estimates is given by
8 = &7, (4.32)

ny, x1 _
where i{ € {O, 2{: } " and @, € {01}, i{: is the vector of posterior states
estimates positioned according to the stimulus sensor locations fix. The entry of

sensors those are not detected is assigned to zero. This can also be described as

= j (4.33)
0, otherwise

[l R =,

4], =
where (n =1,2, ..ny) and j is the iteration variable that changes from (1,2,.., 1)
for every n value.

Subsequently, the stimulus state mapping matrix is constructed based on the
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- T
stimulus detection from the prediction step, such that ®;,; = (4)1, Py ey gan) ,
where ¢; is a row vector used to represent a stimulus map vector. The element
associated with the sensor location in stimulus map vector ¢; is assigned to 1 and

zero otherwise. This can also be described as

1 [agal, =8,

0, otherwise

(9], = (4.34)

To explain the above mentioned mapping, consider an example of sensor field
with 4 sensors located at § = (0,0.1,0.2,0.3). The results of the posterior estimate
are n,, = 0 and z{: = z{’k. The detection scheme at the prediction step using the
nominal model returned Mg = (0,0.1). Subsequently, the augmented state vector
needs to be formed with the prior state estimate of stimulus variable. This newly
formed augmented state-vector is then undergo prediction and correction steps.
For this particular example, prior state estimate of stimulus variable in (4.31), is

given by

The processing requires approximate set of states to be included in the es-
timation stages. In a similar way, this reflects in the dynamic structure of the
augmented state covariance matrix p/ , which is formulated based on the stimuli
locations obtained from (4.26). The augmented covariance matrix can be expressed
as

P(vv) P(vh) P(vz)

k k k
Pl = | pl™ pl | pliz) (4.35)

!/ U
L - nlexnl,

In the augmented state-covariance matrix, the covariance elements associated
with (v and h) is same as the posterior estimates at k. On the other hand, covari-
ances associated with stimulus variables require initialisation or mapping based
on the results from the detection step. The covariance elements between the stim-
ulus and transmembrane voltage in (4.35) can be obtained as

P = &, P, (4.36)
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where P,EZU) € R"™=*", &, ; € R™*" and IV’,({ZU) € R™*" constructed similar to
(4.34) and (4.33), based on the sensor positions in the tissue field. Similarly, the
covariance elements between the stimulus and gating variable in (4.35) can be
constructed using

P — &, B, (4.37)

where P,EZh) € R"=*", &, ; € R™=*" and f’,((Zh) € R™*". Similarly, the covariance

between the stimulus variables is achieved by
P = &, P (@), 4]" (4.38)
k k+15k k+1l - -

where P,EZZ) € R"="", & ; € R"="" and f’,((zz) € R™*". It should be noted that
the variance value associated with the new stimulus is assumed to be 1, which is

initialised as o;, explicitly in Iv’,((zz).

4.3.3 The Proposed Algorithm

The detection and estimation algorithm formulated using the above detailed meth-
ods is presented in this Algorithm 4.1. The nonlinear state estimation procedure
for computing the states of the nominal or augmented state-space model is for-
mulated within URTSS algorithm detailed in Chapter 2.5.

Algorithm 4.1: The detection-estimation algorithm using Unscented Rauch-Tung Stribel
Smoother.

Forward Iteration

f

1. Initialise forward states X; and covariance matrix Pfoc .

2. The recursive estimation procedure for time instants, k € {0,1,..., T — 1} :

Prediction using nominal state-space model :

f

(a) Compute the sigma points for %,

(4.39)

where A is defined in (2.24).
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(b) The sigma points are then propagated through the nonlinear state evolution
equation
Xy = £xD)- (4.40)

(c) Compute the predicted states x£ 1 and covariance matrix Pf L as

21y
%= Zw R (441)
- - pof—of
P = ZW Xk+1] K1) (Rigr — fq) "+ Z, (4.42)

where Wi(m) and Wl-(c) are the constant mean and covariance weights defined
in (2.28), (2.29) and (2.30).

Detection using nominal state-space model:

(a) Compute the innovation and the corresponding covariance of innovation

i1 = Yiet ~ Vi (4.43)
where y{;l is computed using (4.18)
Ql, =CP[,C" +%, (4.44)

(b) Calculate the distance measure, which is negative likelihood measure tai-
lored for single sensor

1(ef
L1 = 1n(27r)—|—1n(qk+1) +,M . (4.45)
2 i1
(¢) Perform the detection scheme as
fig = {gn Ly, > w} (4.46)

where @ is the threshold value.

if stimulus sensors are not detected:

Correction using the nominal state-space model:

(a) Compute the Kalman gain, the corrected state estimates and covariance ma-
trix
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Kiy1 = P£+1CT(CP£+1CkT+1 + Z}/)_ll (4.47)
& =%+ Keel oy, (4.48)
Pi—&-l - P;:-H P£+1C(CP£+1CT )71C- (4.49)

else

Prediction using augmented state-space model:

(a) Form the augmented state vector §£ =& 2{: ], where stimulus state vari-
ables are computed using (4.32), and covariance matrix IN’fz of structure in
(4.35) are computed using (4.36), (4.37) and (4.38).

(b) Compute the sigma points x; using (4.39) for the augmented state vector %: .

For this, f({ , Pf A and n, are replaced by xf , P A" and n,, respectively.

(c) Calculate the unscented transform values )Ad:; by propagating jhe sigma
points through the augmented non-linear state evolution equation f(x; ). The
nonlinear state evolution equation is given in (5.16), which includes the lin-

ear B-spline functions By at the detected sensor locations.

p/

(d) Compute the predicted states §£;1 and covariance matrix Py,

Xk+1 Z W Xk+1,j/ (450)

- ~f* af af— af—
P£+1 Z W ?Ck+1] Xier1) (X1, — X)) | + S (4.51)

Correction using augmented state-space model:

(e) Compute the corrected state estimates 3%{ 41 and covariance matrix Pi ki1 by

recomputing Kalman gain Kk+1usmg augmented observation matrix C

Ky =P/ ,CT(CP[,CT +£,)7, (4.52)
X{H ’(Ifll + Ky (yr — Eﬁ/klﬂz (4.53)

B B B @D T 5 1E
P/, =P, P CCPC" +x,)'C. (4.54)

end
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Backward Iteration

1. Initialise backward states and covariances using the filter estimates & = X7
and P = P{;.

2. Recursive backward iteration to estimate the smoothed state estimates Xj for
time instants k € {T —1,...,0} :

if stimulus sensors are not detected in the filtering step:

Prediction using nominal state-space model :

(a) Compute the sigma points of the smoother Xi,j are computed using filtered
state and covariance estimates as

X =%, (4.55)

Xij = ’[+ ( (nx +A)P{> , j=1,ny (4.56)

]

Xi,] f— ﬁ'lf — <\/ (nx + A)P{) ., j = nx + ]., veey an (4.57)

J
where A is defined in (2.24).

(b) The sigma points are then propagated through the nonlinear state evolution
equation
Ry = £(x). (4.58)

AS—

(c) The estimates of the predicted states, X;/; and covariance matrix P, are

computed as

21y
oS— (m) as—
xiH = Zé W]. Xi+1,j' (4.59)
]:
() T
P = Z(Z) Wi (R — Xeed) (R — K1) + 2 (4.60)
j=
() T
Skp1 = ZW]- Xk — %) (Ria — %) (4.61)
=0

where Wl.(m) and Wi(c) are the constant mean and covariance weights defined
in (2.28), (2.29) and (2.30).
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Correction using nominal state-space model :

(a) Calculate the smoother gain to correct the state estimates and covariance

matrix upon the measurements by

Dy = S (P )7 (4.62)

(b) Compute the resulting smoothed state X; and covariance P} using
=&+ D&, — XTy), (4.63)

P; = P/ + Dy(P},, — P{;,)D], (4.64)
else

Prediction using augmented state-space model:

(a) Compute the sigma points ), using (4.39) by replacing f({ , P{, A and ny are

replaced by ﬁ{ , §£ , A and n,, respectively.

(b) Calculate the unscented transform values i;;l by propagating the sigma
points through the augmented non-linear state evolution equation 1(X0),

with the linear B-spline functions By at the detected sensor locations.

(c) Compute the predicted states 3?;;1 and covariance matrix P

k+1
s 21’y /( )
AS5— m) —g—
X1 = X;}Wj Xt (4.65)
]:
21, "0 ; s
DS— C)/ —g— AS— o AS—
Pi+1 = Z Wj (Xi+1,]‘ — Xjt1) (X2+1,]' - xk+1)T + Xz (4.66)
j=0
& O as A e AT
Sk =) W, (X — X)) (RR1) — Xer1) - (4.67)
j=0

Correction using augmented state-space model:

25 __[&s 55 T .
(d) Form the augmented state vector X, = [X},; 2j,,] ', where stimulus state
variables Z; " and covariance matrix P} 4 are re-evaluated to include the

dynamic structure in the augmented form.

. AS . =
(e) Compute the corrected state estimates x; and covariance matrix P} as

Dy = Sk (Pi,) Y (4.68)
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% =%+ DK — %), (4.69)
P, = B/ + Dy(P},, - P},,)D/. (4.70)

end

4.3.4 Performance Metrics

In this section, the performance metrics used to quantify the accuracy of the results
in both detection and state estimation stages are briefly explained.

Detection Accuracy

To analyse the detection performance, a set of performance metrics can be com-
puted by comparing with the ground truth given in the simulation datasets. Here
the detection performance metrics considered are detection rate and false alarm

rate at a particular threshold. They are defined as follows:

e Detection Rate: This measure can be used to determine the proportion of
stimulus locations that are correctly identified by the algorithm. It is also
known as the True Positive Rate (TPR) in the literature, and can be computed

as
TP

TP+ FN’
where TP and FN denote the number of true positives and false negatives

Detection Rate = (4.71)

respectively.

e False Alarm Rate: This measure quantifies the proportion of normal loca-
tions that were incorrectly identified as stimulus locations, and calculated
as

FP

False Alarm Rate = TN EP’ (4.72)

where FP and TN are the number of false positives and true negatives re-

spectively.

Estimation Accuracy

The state estimation accuracy can be evaluated by comparing the estimated state
variables using the simulated state variables. For a single realisation the accuracy

is quantified using RMSE measure. RMSE measure for a particular time instant k
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can be given as

1 2
RMSE(v) = | — ) (vk,]- - ﬁk,j) ) k=0,1,2,..1 (4.73)

where vy ; and 9y, are the true transmembrane voltage from modified Mitchell-
Schaeffer model and the estimated variable at spatial location j. It should be noted
that the above equation is also given in (3.19), and restated here for completeness.
To compare estimation accuracy over several realisations, a global measure can be
computed as

1§ (L0

MRMSE; (0) = — o L PO 474
K\0) = Tlo; Tlvj_21<vk’j Uk'j) ( ) )

(0)

where n, is the number of realisations and Uy j denotes the actual transmembrane

voltage at o realisation.

4.4 Data Generation

A detailed description of the simulation setup and data generation is provided
in Chapter 3. Briefly, activation patterns in an one dimensional tissue field of
2 cm were modelled using stochastic monodomain equations, coupled with the
modified Mitchell-Schaeffer cell model from the literature [38]. The unipolar elec-
trograms were then acquired from sensors located at a distance of 1 mm from the
tissue field. Both models were solved using explicit finite differences methods with
a no-flux boundary conditions. Both patterns were simulated for total duration of
1000 ms, which results in 20001 time instants to be estimated. The electrophysiol-
ogy parameters used for data generation are shown in Table 3.1, unless explicitly
stated otherwise.

Two action potential cycles of normal activation patterns were simulated by ap-
plying external stimulus from s, = 0.025 cm to s, = 0.075 cm in one-dimensional
cable field, at time instants k = 0.05 ms and k = 500.05 ms. In addition to this,
the state disturbance variances were set to 02 = 10~* and 07 = 107>, along with
observation noise variance was assigned to (75 = 10~*. The total number of spa-
tial points in the tissue field denoted by s is 81, while the number of sensors
ny is 20. An example of noise corrupted true state variables and an electrogram
measurement obtained at a specific location are shown in Figure 4.2.

In a similar way, the re-entrant activation patterns were generated in an one-

dimensional ring model. The first stimulus (S1) was applied from s, = 0 cm
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Figure 4.2. Examples of state variables and electrogram measurements in a one-
dimensional cable field. (a) State variables at spatial location, sy = 0.025 cm. (b)
Electrogram measurements at spatial location, s, = 1.325 cm. State variables are
transmembrane voltage (—), gating variable (—).

to sy = 0.05 cm at k = 0.05 ms to generate the normal activation pattern. To
simulate the re-entry, the second stimulus S2 was then applied from s, = 0.475
cm to sy = 0.525 cm at k = 350 ms (during the vulnerable window). The closed
loop structure of the ring model gives ns and 7, to be 80 and 20 respectively. The
same values of state disturbance variances and the observation noises from normal
activation patterns were used. Figure 4.3 shows the examples of noise corrupted

true state variables and electrogram measurement.

4.5 Results and Discussion

This section presents the results obtained from the proposed combined detection-
estimation algorithm, which allows to reconstruct the tissue level dynamics from
the sparse electrogram measurements. It should be noted that the state-space
model for the estimation is employed using the proposed continuous version of
mMS model, where the gating variable approximation using the slope value of
25. Several experiments were employed to demonstrate the performance of the
proposed framework. Experiment I illustrates the approach used to obtain the
threshold value in the detection scheme, along with the estimation procedures and
results from normal and re-entrant activation patterns. Experiment II illustrates
the model mismatch by considering the effects of slope parameter on the estima-
tion performance. Experiment III details the effectiveness of estimation algorithm
in estimating transmembrane voltage and gating variable using the nominal state-

space model, along with the importance of incorporating the stimulus detection.
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Figure 4.3. Examples of state variables and electrogram measurements in a
one-dimensional ring field. (a) State variables at spatial location, s, = 0.50 cm. (b)
Electrogram measurements at spatial location, s, = 0.525 cm. State variables are
transmembrane voltage (—), gating variable (—).

This is followed by analysing the sensitivity of the proposed detection-estimation
algorithm with respect to the observation noise variances, presented in Experi-
ment IV. Finally, an analysis on different stimulus locations with respect to the

sensor locations is presented in Experiment V.

4.5.1 Experiment I: Detection and Estimation Performance using Monte
Carlo Simulations

The combined detection-estimation methodology given in Algorithm 4.1 was em-
ployed to estimate the hidden state variables from the electrogram measurements.
Throughout the estimation, it was assumed that the disturbance covariances were
known to the estimator. The initial states of vy and hy were drawn from the
N (0,107%) and N (1,107*), where the mean value corresponds to the resting
conditions of the state variables given in [38, 108].

In order to implement the detection scheme within the filtering step, a suit-
able threshold value needed to be determined. This step ensures that stimulus
locations are accurately detected and incorporated into the state estimation frame-
work. It can be seen from the state-space model formulation in (4.10) that the
stimulus information is incorporated into the tissue level dynamics. This implies
that the detection analysis needs to be employed based on the stimulus locations
in the tissue field. In the proposed algorithm, detected stimulus locations are
estimated in the tissue field using B-spline weighting functions.

To determine a suitable threshold value, detection performance metrics were
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Figure 4.4. ROC graphs from the detection scheme calculated using threshold
values ranges between -5 to 20. (a) Normal activation pattern. (b) Re-entrant
activation pattern. Red box within each sub-figure illustrates the ROC segment of
optimal detection performance.

Table 4.1. Averaged detection metrics from 20 Monte Carlo realisations.

Normal Pattern Reentrant Pattern
Threshold TPR FPR Threshold TPR FPR
6 0985 1.22x10°* 2 0.982 2.00x 1073
7 0.984 1.06 x 1074 3 0.980 8.36 x 10~*
8 0.983 1.04x10* 4 0973 4.18 x10*
9 0.981 1.00 x 1074 5 0945 2.70 x 1074

first evaluated over a set of threshold values ranging from —5 to 20, in a single
realisation of the activation patterns. Following Section 4.3.4, detection rate (also
TPR) and the false alarm rate (also FPR) were calculated across the entire dataset.
To analyse the detection performance, Receiver Operating Characteristics (ROC)
curves for normal and re-entrant activation patterns were then plotted as shown
in Figure 4.4. The ROC curves illustrate that a subset of threshold values is present
within the selected range, where high level stimulus detection rate with low level
false alarm rate is observed. In order to validate the consistency of the detection
performance, Monte Carlo simulations-based analysis was then performed across
selected values (see Table 4.1). The averaged detection metrics were computed
across the 20 Monte Carlo realisations of the cardiac field and summarised in
Table 4.1. Therefore, the threshold values for normal and re-entrant activation
patterns were assigned to be 9 and 5 as the values give higher detection rate with
minimum false alarm rate.
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Figure 4.6. Detection results from the normal activation patterns in the tissue
field for the first stimulus applied at k = 0.05 for a time interval of 2 ms. (a)
Actual stimulus field. (b) Temporal evolution of the B-splines weighting function
obtained from the detection step using a threshold value of 9.

State estimation results

In this subsection, the state estimation results during normal and re-entrant car-

diac conditions are illustrated.

Firstly, the state estimation results of normal activation patterns in the cable
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Figure 4.7. Estimation results from one-dimensional cable field. (A) Transmem-
brane voltage. (B) Gating variable. The sub-figures in each row are: (a) Actual
pattern of state variable. (b) Estimated pattern of state variable. (c) Absolute
difference in the actual and estimated patterns.
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Figure 4.8. The state estimation results for normal activation patterns at spatial
location, s, = 0.525 cm. (a) Transmembrane voltage. (b) Gating variable. (c) First
stimulus variable. (d) Second stimulus variable. Actual signal (—), estimated
signal (—).

field are presented. As described in the previous analysis, the threshold value of 9
was used in the detection scheme to identify the stimulus locations. The distance
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Figure 4.9. Patterns of transmembrane voltage nearby the stimulus locations
during normal conditions. (A) Transmembrane voltage. (B) Gating variable. The
sub-figures in each row are: (a) Actual pattern of state variable. (b) Estimated pat-
tern of state variable. (c) Absolute difference in the actual and estimated patterns.

measure calculated using the nominal model is shown in Figure 4.5. The figure
illustrates peak values in the model uncertainty during stimulus intervals at the
sensor locations correspond to the stimulus locations. This also emphasises the
need of incorporating the stimulus estimation, which is implemented using state-
augmentation method. In Figure 4.6(a), actual stimulus pattern during the first
stimulus interval is presented. On the other hand, the temporal evolution of B-
spline functions constructed using the results from the detection step is shown in
Figure 4.6(b). It can be seen that the detection scheme identified all the stimulus
sensor locations except at the first time instant. By using the generated B-spline
functions, state variables across the neighbourhood locations of detected sensor
locations in the tissue field were then estimated.

The accuracy of the estimation algorithm was then evaluated by comparing
the estimated patterns of state variables with the actual patterns. The modelled
cardiac patterns and the estimated state variables from s, = 0.025 cm, from the
URTSS smoother are shown in Figure 4.7 and Figure 4.8, respectively. The differ-
ences in the activation patterns shown in Figure 4.7(c) indicate that the estimated
state variables are in good agreement with that of actual cardiac activation pat-
terns. In particular, the proposed continuous version of mMS model was able to
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Figure 4.10. Estimation results from one-dimensional ring field. (A) Transmem-
brane voltage. (B) Gating variable. The sub-figures in each row are: (a) Actual
pattern of state variable. (b) Estimated pattern of state variable. (c) Absolute
difference in the actual and estimated patterns.

capture the dynamics of the gating variable by using a smaller slope value of 25.
The estimated stimulus variable at the sensor location is shown Figure 4.8 (c)-(d).
For completeness, transmembrane voltage around the stimulus (time instant and
spatial location) in the tissue field is shown in Figure 4.9. The results show that B-
spline functions enable to estimate the transmembrane voltage around the neigh-
bourhood stimulus locations. However, it also illustrates the error contributed
from the edges of the weighting function to neighbourhood locations.

In a similar way, the estimation algorithm was implemented for the re-entrant
activation patterns in one-dimensional ring model. Here, the threshold value was
then set to 5, based on the detection performance statistics summarised in Table
4.1. B-spline functions were then constructed by including the periodic boundary
characteristics of the ring field. The estimation algorithm was then implemented
to estimate the state variables from the electrogram measurements. The actual
and estimated patterns of state variables are shown in Figure 4.10, along with the
absolute error between the actual and estimated state variables. It can be seen that

the estimation results are consistent with that in the normal activation patterns. An
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Figure 4.11. The state estimation results of re-entrant activation patterns.
(a-c) Transmembrane voltage. (d-f) Gating variable. Actual signal (—), estimated
signal (—).
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Figure 4.12. The stimulus state estimation results of re-entrant activation pat-
terns. (a) First stimulus variable. (b) Second stimulus variable. Actual signal (—),
estimated signal (—).

example of transmembrane voltage and gating variable estimates from the second
stimulus (S2) locations are shown in Figure 4.11, while stimulus estimates at the

(51 and S2) sensor locations are shown in Figure 4.12. It can be seen that the state
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Figure 4.13. MRMSE measure calculated over 50 realisations for the normal
activation patterns. The mean value is shown in blue colour along with 95% con-
fidence interval (shaded region). (a) Transmembrane voltage. (b) Gating variable.

estimates at the sensor locations are corrected through the sensor measurement
at the specific location. Since the detection step identifies a point stimulus in
sensor field, the weights associated to the b-spline function at the neighbouring
locations are smaller. This causes the discrepancies in the voltage estimates at
those neighbourhood locations. Moreover, the results in Figure 4.12 also illustrate
the effects of detection performance on the stimulus estimation. For instance, state
estimation at the missed instants is based on the nominal state-space model, which
caused higher magnitude of error at the particular time instants.

In order to validate the consistency of the estimation performance, a Monte-
carlo based approach was then employed. Here, 50 realisations of the activation
patterns in both one-dimensional tissue fields were first generated. Within each
realisation of the activation pattern, the RMSE value (across space) were com-
puted by comparing the actual and estimated state variables. The mean RMSE
values (over realisations) were then computed for transmembrane voltage and
gating variable using (4.74). The resulting MRMSE statistics from the normal
and re-entrant activation patterns are shown in Figures 4.13 and 4.14, along with
95% confidence interval. Although the estimation algorithm can capture the tis-
sue dynamics, state estimation error is observed during stimulus intervals in the
transmembrane voltage estimates, especially in the re-entrant activation patterns
(see Figure 4.14). As described in the simulation setup, the initial spatial location
of the first stimulus (S1) was sy = 0 cm, which coincided directly with the first

sensor location. The inclusion of periodic weighting function at the closed curve
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Figure 4.14. MRMSE measure calculated over 50 realisations of the re-entrant
activation patterns. The mean value is shown in blue colour along with 95% con-
fidence interval (shaded region). (a) Transmembrane voltage. (b) Gating variable.

Table 4.2. MSE measure to analyse the effects of weighting function

Spatial Weights for =~ Mean squared Stimulus
location (cm) states mapping error condition
0.450 0.5 0.0473 No
0.475 0.75 0.0144 Yes
0.5 1 0.0012 Yes
0.525 0.75 0.0120 Yes
0.550 0.5 0.0430 No

boundaries of the ring model caused initial state estimation error. This is illus-
trated in Figure 4.15 A, where the weights at non-stimulus locations caused state
estimation error at the prior spatial locations. For instance, the estimation error
at the second stimulus interval is examined using the mean squared errors at the
stimulus and neighbouring locations during second interval (see Table 4.2). The
MSE values and Figure 4.15 B show that estimation errors are caused from the
weights, which were assigned to interpolate the state estimates into the neighbour
locations. In addition to this, the model mismatch between proposed continu-
ous version and modified Mitchell-Schaeffer model also contributed in the gating
variable estimation error, illustrated in Section 3.3.

In summary, the results of this experiment shows that the proposed estima-
tion algorithm can be employed to reconstruct the tissue dynamics during normal
and abnormal activation patterns, by simultaneously detecting the stimuli loca-
tions. The estimation errors are predominantly caused from number of sources:
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Figure 4.15. Patterns of transmembrane voltage nearby the stimulus locations
during re-entrant conditions. (A) First stimulus interval. (B) Second stimulus
interval. The sub-figures in each row are: (a) Actual pattern. (b) Estimated pattern.
(c) Absolute difference in the actual and estimated patterns.

(a) model mismatch in the gating variable formulation, (b) missed stimulus in de-
tection algorithm, (c) the edge effects and the weightings caused from mapping
of the stimulus state variables using the weighting function, (d) the use of sparse
measurements to estimate the tissue field dynamics. It must be also noted that
the Gaussian approximation of the non-linear model used in the URTSS algorithm

may also be a significant factor [104] .

4.5.2 Experiment II: Effects of Slope Value in Gating Variable Formula-
tion

The previous analysis illustrated the error in gating variable state estimation,
which caused from the inherent approximation of slope value in the gating model
formulation. In this experiment, the effects of slope parameter on the estimation
performance are examined. Recall the state-space model for the estimation is em-
ployed using the proposed continuous version of mMS model, where the gating
variable approximation using the slope value of 25.

To examine the effects of slope parameter, the detection metrics and RMSE
statistic of the transmembrane voltage and gating variable were calculated by
varying the slope 7 in (4.2). It should be noted that the other electrophysiological
parameters were kept the same to that in Table 3.1. The results from this analy-

sis are shown for the re-entrant activation patterns in Figure 4.16. Figure 4.16(a)
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Figure 4.16. Detection metrics and RMSE measures for different slope values.
(a) False positive rate. (b)-(d) RMSE measure of transmembrane voltage. (c)-(e)
RMSE measure of gating variable.

shows that for selected slope values the false positives are higher for smaller slope
values () from 1 to 5 and remains constant. The increased false positives for
the smaller slope values are reflected on the accuracy of the state estimation (see
Figure 4.16 (b)-(c). Consequently, the RMSE measure of state estimates from the
URTSS smoother decreases with increase in slope value. This is particularly evi-
dent in the RMSE measure of the gating variable shown in Figure 4.16 (b). This
is because, as the slope value increases the underlying model approximation is
becoming more accurate to the mMS model, which reduces the smoothing error.

In the previous analysis, the slope measure was kept to be a lower value of 25
for obtaining a crude representation of the real world situations, where the models
are of imperfect nature. As a result, a lower value of slope may have to be used
for reconstructing the tissue dynamics as a compromise between model accuracy
and potential real life imperfections. It should be noted a higher slope value could
also cause problems in the parameter estimation (beyond a particular value), due
to the increased non-linearity from the sigmoid approximations [9].

4.5.3 Experiment III: Comparison with the Nominal Model

In this experiment the importance of the proposed combined detection-estimation
algorithm is analysed. For this state estimates x; = [vg, hk]T determined from the



Chapter 4. Detection and Estimation Framework For One-dimensional Cardiac

Model 99
A
0 0
) =
= =
g ! g !
g <
a a
1.95 1.95 1.95
0 350 1000 0 350 1000 0 350 1000
Time (ms) Time (ms)
(a) (c)
B 0 0
f] 3
S L
g ! g1
= g,
c% 0
1.95 1.95
0 350 1000 0 350 1000 77 0 350 1000
Time (ms) Time (ms) Time (ms)
(a) (b) (c)
I | |
o 06 1o 0 0.25 05

Figure 4.17. Estimation results for re-entrant activation patterns using the nom-
inal model conditions. (A) Transmembrane voltage. (B) Gating variable. The
sub-figures in each row are: (a) Actual pattern of state variable. (b) Estimated pat-
tern of state variable. (c) Absolute difference in the actual and estimated patterns.

proposed method in Algorithm 4.1 were compared with the nominal state-space
model estimates. The nominal state-space model can be defined by the following

nominal state-evolution equation

X1 = £(x;) + €, (4.75)
where f(x,) is given by
ég.AVk + ‘i’kéT
f(Xk) - ’

where the observation equation remains the same as in (4.12).

The nominal state estimation was then employed with using the URTSS smoother
without the detection and estimation of the stimulus variables. In this section, es-
timation results from the re-entrant activation patterns in one-dimensional ring
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Figure 4.18. The state estimation results for re-entrant activation patterns us-
ing the nominal model conditions. (a-c) Transmembrane voltage. (d-f) Gating
variable. Actual signal (—), estimated signal (—).

field are shown in Figure 4.17. The figure shows that the estimation using the
nominal model of one-dimensional ring field can be used to reconstruct the basic
structure of the tissue field by inferring from the sparse electrogram measure-
ments. However the differences in the activation patterns at the stimulus locations
(see Figure 4.17 A:(c)) are observed due to the absence of stimulus estimation.
This can be further examined by analysing the state estimates at the second stim-
ulus locations plotted in Figure 4.18. The transmembrane voltage estimate at the
sensor location was corrected through the sensor measurement at the particular
location. However, the characteristics of re-entrant activation were not estimated
at neighbouring stimulus locations. Although the state estimates were then recon-
structed in the following cardiac cycle from the sensor measurements, identifying
the re-entrant drivers are important in the accurate reconstruction of the tissue
field dynamics. The results from the proposed detection-estimation algorithm is
shown in Figure 4.11 state estimates at all the stimulus locations were estimated

accurately, after detecting the re-entrant drivers.

Although nominal estimation can capture the tissue dynamics by learning from
the electrogram measurements, detection of the re-entrant drivers is important in
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Figure 4.19. Electrogram measurements with different SNR values. (a) SNR =
21.61 dB (b) SNR = 31.64 dB (c) SNR = 41.53 dB

quantifying the spatio-temporal patterns. This is particularly significant in the
complex abnormal conditions, where multiple stimulii are driving the re-entrant

activity.

4.54 Experiment IV: Results for Different Observation Noise Levels

In this experiment, sensitivity of the proposed estimation algorithm with respect
to the observation noise variance is analysed.

To demonstrate this, re-entrant activation patterns were generated with three
different magnitude of observation noise variances. To calculate the corresponding
Signal to Noise Ratio (SNR), the mean squared amplitude of a sensor measurement

is first defined as
1 . .
Fi= Y0k~ ) 76)

Table 4.3. Performance metrics for different level of observation noises.

Performance ay2 =103 0y2 =10+% ay2 =10"°

Measure =2 @=5 @=10
SNR (dB) 21.61 31.64 41.53
TPR (%) 65.02 96.35 98.6
FPR (%) 0.56 0.029 0.020
MRMSE (v) (%) 1.63 1.54 1.52
MRMSE (h) (%) 3.47 3.37 3.46
RMSE (z1) (%) 77.04 34.11 23.65

RMSE (25) (%) 70.56 7.47 7.58
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This measure can be then averaged across the sensor measurements as
E= — Y Ei (4.77)

By using (4.76) and (4.77), SNR measure across the sensor measurements can

be calculated as

SNR = 101log,, (4.78)

<qm‘ ap!

where U'yz is the measurement noise variance.

Similar to the previous analysis, the estimation performance is quantified us-
ing Monte-Carlo based approach. Here 20 realisations of the re-entrant activation
patterns were simulated. Examples of electrogram measurements used for this
experiment are shown in Figure 4.19. The proposed detection-estimation method-
ology in Algorithm 4.1 was then implemented to estimate the state variables.

Table 4.3 summarises the detection performance metrics and average MRMSE

g E) g
= = =
Q Q Q
3 3 3
[o o (o))
N n N
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Figure 4.20. Estimation results from one-dimensional ring field with SNR =
21.61 dB. (A) Transmembrane voltage. (B) Gating variable. The sub-figures in
each row are: (a) Actual pattern of state variable. (b) Estimated pattern of state
variable. (c) Absolute difference in the actual and estimated patterns.
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Figure 4.21. Patterns of transmembrane voltage nearby the stimulus locations
during normal conditions. (A) First stimulus condition, where one of the stimulus
coincide with the sensor. (B) Second stimulus condition, where the stimulus loca-
tions are between the sensors. The sub-figures in each row are: (a) Actual pattern
of state variable. (b) Estimated pattern of state variable. (c) Absolute difference in
the actual and estimated patterns.

calculated across the 20 realisations. It can be seen in Figure 4.20 that the un-
derlying tissue variables can be reconstructed for all the three measurement noise
variance conditions, especially for (75 = 1073. However, the detection and esti-
mation of the stimulus variables are significantly affected by the increased noise
statistic, as shown in Table 4.3. This is because, filter-based detection approaches
incorporates the noise statistics into the formulation as given in (4.25). The detec-
tion performance is affected when the contribution of the changes in disturbances
are significant compared to the abnormality quantified by the distance measure
[14]. One approach to improve the detection scheme is by employing adaptive
thresholding mechanisms [27].

4.5.5 Experiment V: Results for different Stimulus Locations with re-
spect to the Sensor Locations

The previous analyses demonstrated the effectiveness of the proposed detection-

estimation algorithm in reconstructing the tissue dynamics, along with the ex-
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ternal stimulus variables. However it is particularly important to examine the
limitations of the proposed algorithm, especially with the detection of the external
stimulus in the tissue field from the sparse electrogram measurements.

In this experiment, the estimation performance is evaluated by varying the
stimulus locations of re-entrant activity. For this two possible re-entrant stimulus
conditions were considered other than in the previous analyses. They are : 1) The
edge of stimuli coincide with one of the sensor location as shown in Figure 4.21
A:(a) 2) Stimulus locations are between two the sensors as shown in Figure 4.21
B:(a). The results from this analysis are shown in Figure 4.21, where the detection
and estimation of stimulus variables are captured in the first stimulus condition
but not in the second stimulus condition. This indicate that the detection scheme
can be further improved to incorporate the information of tissue locations between

the sensor locations.

4.6 Conclusion

This chapter presents a model-based statistical inference framework to reconstruct
the tissue dynamics from cardiac electrogram measurements. More importantly,
this chapter focussed on the estimation of both normal and the re-entrant cardiac

activity generated in one-dimensional cable and ring fields, respectively.

The key contributions of this chapter are the following:

e A stochastic version of the integrated model of cardiac electrophysiology
is presented by adding random disturbances into the deterministic model
equations. Based on these model equations, finite-dimensional state-space
model of the cardiac models are then derived to employ standard statistical
inference frameworks.

e To obtain a computationally efficient algorithm for discrete-space and discrete-
time state-space model, a single stage detection-estimation approach is pro-
posed in this chapter. At every time instant, a filter-based detection ap-
proach is implemented to identify the stimulus conditions. Based on the
results from the diagnosis scheme, the state variables of the corresponding
state-space models are then estimated accordingly.

e The performances of the proposed method are evaluated using Monte-Carlo
simulations and experiments with different slope values, noise conditions

and stimulus locations, etc.
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e The findings from this chapter demonstrate that the proposed detection-
estimation algorithm can be used to estimate the state variables in a one-
dimensional spatial field, by simultaneously detecting the external stimulus

events.

e An important extension of the proposed approach is to employ the infer-
ence framework for quantifying the complex spiral wave dynamics. This is

illustrated in the next chapter.



Chapter 5

Detection and Estimation

Framework For Two-dimensional
Cardiac Model

In the previous chapter, reconstruction of the one-dimensional cardiac tissue dy-
namics from the cardiac electrogram measurements was presented. The method-
ology used to reconstruct the tissue dynamics was established by estimating the
state variables of the monodomain tissue model, along with the detection and

estimation of stimulus variables.

A natural extension of the proposed inference problem is the reconstruction
of electrical dynamics in a two-dimensional tissue field. By introducing another
spatial dimension, the underlying cardiac electrical activity may exhibit more com-
plex dynamics. This is because, the complex spatiotemporal patterns are formed
because of the multiple interactions between the different spatial regimes in the
two-dimensional tissue field with temporal dependencies.

The overall aim of this chapter is to establish a model-based inference frame-
work for the reconstruction of the two-dimensional tissue dynamics, including the
detection and estimation of stimulus variables. The chapter proceeds by detailing
the stochastic integrated cardiac model in the two-dimensional cardiac field. The
next stage is to represent the infinite-dimensional model as a finite-dimensional
state space model to implement the standard signal processing and estimation
techniques. The inference methodology is then proposed, which follows simi-
lar procedures to that of one-dimensional cardiac field. However, the inference
methodology of two-dimensional cardiac field is essentially a detection and esti-
mation for high-dimensional systems, because of the higher number of state vari-

ables (spatial nodes). This restricts the direct implementation of the proposed

106



Chapter 5. Detection and Estimation Framework For Two-dimensional Cardiac
Model 107

detection-estimation framework presented in Algorithm 4.1. The additional chal-
lenges caused by the high-dimensionality and the corresponding proposed solu-

tions are given below.

1. For a state-space model with 7, states, the unscented transform in the pro-
posed estimation algorithm requires the number of sigma points to be 21, +
1 at every time instant [78]. These sigma points are then propagated through
the nonlinear model to compute the state estimates and error covariance
matrix. For a high-dimensional system of two-dimensional tissue field with
ny =~ 3362, this requirement is computationally infeasible to employ the state
estimation approach [7, 29, 45].

e To address this, Reduced-Rank Unscented Kalman Filter (RRUKF) pre-
sented in [98, 149] is incorporated into the detection-estimation frame-
work in Algorithm 4.1. The principle idea of this approach is to choose
the reduced number of most significant sigma points, which captures
the statistical properties of the actual sigma points. For this, a Truncated
Singular Value Decomposition (TSVD) on the error-covariance matrix is
first performed with a truncation index of n,. The resulting reduced
number of sigma points (2n, + 1; n, << ny) is then used to compute
the state and covariance estimates. This method is explained in Section
5.3.1.

2. For the implementation of fixed-interval smoothing algorithm, the error co-
variance matrices from the filtering step (forward iteration) are stored during
the entire time interval. The stored estimates are then used to compute the
smoothed error covariance matrix (2.50) and the smoothed state estimates
in the smoothing step (backward recursion). For high-dimensional systems,
storage and manipulation of error covariance matrices for higher values of
n, are computationally prohibitive [98]. For instance, in the forward recur-
sion of URTS smoothing algorithm for two-dimensional spatial field, filtering
error-covariance matrices are of size (3362 x 3362) which needs to be stored
for T = 20001 time instants. In the backward recursion, the smoothed esti-
mates are then computed based on these stored values. This recursive esti-
mation process with both forward and backward recursions using a fixed in-
terval setting imposes higher computational storage and time requirements

for the estimation.

o To address this, a fixed lag URTS smoother [148] is implemented, where
the smoothing step is embedded into the filtering step [4? ]. This
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enables to obtain the smoothed estimates without storing the error-
covariance matrices during the entire time interval in the filtering re-

cursion. This method is briefly explained in Section 5.3.3.

To illustrate the performance of the proposed algorithm, complex spiral wave
patterns presented in Section 3.2.2 are considered. This is because, the re-entrant
arrhythmic conditions are widely studied by quantifying the spiral wave dynamics
using cardiac models [25, 47] and experimental techniques [18, 55]. The important
components of spiral wave dynamics include initiation process within the vulner-
able window, the core around which the spiral waves rotate, and the spiral waves
trajectories. It should be noted that the propagation of spiral wave is formed as
a result of initiation process, during which the stimuli is applied at a particu-
lar locations and time instants within the vulnerable window. Since the stimulus
conditions are unobserved, it is important to include the detection and estima-
tion of stimulus events into the framework. Therefore, reconstruction of the tissue
dynamics from the cardiac electrograms can be used to quantify the spiral wave
dynamics.

The rest of this chapter is organised as follows. Section 5.1 presents the stochas-
tic models of cardiac electrophysiology in two-dimensional spatial field. Section
5.2 provides the problem statement of this chapter. This is followed by the descrip-
tion of proposed detection-estimation methodology in Section 5.3. Following this,
the simulation setup and data generation of spiral waves are detailed in Section
5.4. The results are presented in Section 5.5. Finally, conclusions are provided in
Section 5.6.

5.1 Nonlinear State-space Model Representation

The stochastic tissue model in a one-dimensional tissue field given in (4.1) can be
extended to the two-dimensional field as follows

9v(s, t) 6, (aZU(s,t) N aZU(S,t)> . h(s’t)v(s,t)(v(s,t) —vg)(1—0(s,t))

ds2 asﬁ Tin

—(1- h(s,t))v(;;tt) + % (s, t) + %ac’;ts,t)l
(5.1)

al’l(S, t) . E_V(D(S/t)_vg) agh(s, t)
o 1 + e~ (0(s,t)—7g) 9f —h(s, t)ef + oy T

(5.2)

where tissue spatial field is represented by s = (s, sy ).
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Similarly, stochastic model of extracellular electrogram measurements at dis-

!
y’

_ v (sy—sy') . 9v (sy—s,)
N x x Yo
yr(s') = K// (an 5+ 3, 7 dsyds, + €, (s"). (5.3)

r

crete spatial locations in sensor field (s’ = s/, s/,s.) is given by

It should be noted that additive disturbance terms in above model equations
are approximated to be spatially uncorrelated white noise processes [75]. The
infinite-dimensional model equations are then converted to finite-dimensional state-
space model using the procedures similar to that in Section 4.1. For completeness,
the procedures are briefly explained in this section. To derive a discrete-space
and discrete-time state evolution equation, spatial discretisation of the Laplacian
operator in the diffusion term is first performed using finite difference method.
The spatial discretisation of the Laplacian operator yields two-dimensional finite
difference matrix after incorporating the no-flux boundary conditions. The result-
ing difference matrix A is given in (3.50). This procedure is followed by temporal
discretisation of the model equations using explicit finite difference method. The
resulting state evolution equation is given by

Xk+1 = f(xk/ iit) + e;(c/ (54)

where f(x,) denotes the nonlinear model function of state variables given by

B Avi + 7,0 +is'A,

f(xk, izt) = s
0 fhk + B0 i
where x; € R"* is the vector of state variables that comprises of transmembrane
voltage and gating variable [vy hy]', ny is the number of states, €} = [e!, €]"

are the Gaussian noise sequences with zero mean and covariance X, and X, re-
spectively. It should be noted that the state variables and the explicit finite dif-
ference matrix are arranged with respect to the vectorised spatial index number
I =[1,..., n,] as described in Section 3.2.2. The other electrophysiological parame-
ters and the variables in (5.4) remain the same as in Section 4.1.

In a similar way, spatial discretisation of the gradient operator is employed
for the extracellular electrograms model equation as it is temporally discrete. The

linear observation equation is given by
yr = Cxi + ez, (5.5)

where y, € R is the vector of n, electrogram recordings, €; € R™ is vector of
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normally distributed Gaussian white noise sequences with zero mean and covari-
ance given by (751.

The observation matrix C = [C 0] maps the transmembrane voltage and gat-
ing variables to the electrogram measurements, where C = kRM. Following (3.53)
and (3.54), the finite difference matrices M = [M;, Msy];lrxxns are derived to pre-
serve the spatial locations, and given in (3.55). In a similar way, the gradient of
distance measures between the tissue and sensor fields in s, and s, directions, are

constructed as R = [Rs, R, ]n,xn, -

5.2 Problem statement

The overall aim is to reconstruct the tissue dynamics in the two-dimensional spa-
tial field from the extracellular electrogram measurements. The tissue dynamics
is described using monodomain equation with continuous version of mMS ionic
model. However, the tissue dynamics described in state evolution equation may
take the following model structure as

f(x;) + €5, under no stimulus condition
Xk+1 = . . . (5.6)
f(x, 1;“’:) + €}, under stimulus condition

5.3 Combined Detection-Estimation Framework

In this section, the detection and estimation algorithm tailored for the high-dimensional
systems is presented.

The detection-estimation problem is formulated within the state-space mod-
elling framework consisting of the following steps:

e Detect and isolate the locations of stimulus in the sensor field using a filter-

based detection-scheme.

— If not detected
* Estimate the state variables as x; = [vy, hi] from measurements y;
via RRUKEF state estimation method.
— else
* Estimate the state variables and the stimulus variables X; = [x, zk]
from measurements yj via state-augmentation method.
— Similar to the one-dimensional model, the new state vector z; is

used to denote the stimulus variables, at the sensors locations
where the presence of stimulus has been detected.
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— Form a linear combination of basis functions to represent the
dynamics of stimulus variables, where the basis function them-
selves are centered at the locations of sensors that detected the

presence of the stimulus.

- end

The fundamental structure of the proposed solution to the above inference
problem remains the same as that of Algorithm 4.1. However, the high-dimensional
state estimation requires amendments to this framework as explained earlier. The
following subsections are structured to introduce the additional methods, which

are incorporated in the proposed methodology as discussed earlier.

5.3.1 Reduced-Rank Unscented Kalman Filter

f

In order to compute the filtering state estimates %X with smaller number of sigma
points, RRUKF method first decomposes the P{ using the Singular Value Decom-
position (SVD) method as follows [98]

P/ = Uy, U}, (5.7)

where the diagonal matrix 7y comprises eigenvalues o7 j» Which are arranged in
: Ny 2 2 2 : 2 2 s T

the descending order 7ty = diag ([akll,aklz,..., ak,nxD with Oka > Oy Vi,b. The

matrix Uy = [ug1, k2, ..Uk, | consists of the eigenvectors uy ;, corresponds to 7.

A truncation index number, #,, is then used to determine a smaller number of
sigma points, which captures the statistical properties of the original sigma points.

The sigma points are computed as

—  _ of
Xkj = X

Xkj = ’A‘i +4/ (1 +A) Ok jUkj, =11 (5.8)

Xkj = ’A‘{: - \/m Okjukj j=mny+1,..,2n,

where A is given by a?(n, + ) — n, with x = 3 — n,.
Subsequently the computed sigma points are propagated through the nonlin-
ear state evolution equation from which the states and error covariance matrix can

be calculated as
R, = £)- (59)
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The predicted states {: 1 and covariance matrix P{ 1 are estimated as
2n,
&, = Z W Rl ; (5.10)
- _ 3" P\ (of~ _of
Pk+1 E Xk+1] s\(k+1) (Xt.g_l] Xk+1) + 2y (5.11)

where the corresponding weights for the estimation are W](m) and W]<C) calculated
in the RRUKF as

(m) A

w4 512
O Tt (-12)

—(0) A >
Wa' = — + (1 —a"+ 5.13
Y = s 1-a ) 613)

(m) _ —(0) 1

4% =W"=—, i=1,..,2n, 5.14
BT T oAy 614

5.3.2 State Augmentation Method

Similar to the one-dimensional tissue field scenario given in Section 4.3.1, the stim-
ulus detection is performed using the filter-based approach. Briefly, the distance
measure is calculated as the negative log-likelihood measure associated with a
single sensor measurements as given in (4.25). Following this, a suitable threshold
value can be used to detect the sensors locations corresponding to the presence of
stimulus. Subsequently, a new vector of stimulus variable z; € R" is added to the
state vector x; to form the augmented state-space model as

X1 = £(x, zx) + €7 (5.15)
The augmented model function f(x; ) is given by

_ggAVk + ‘?ké—r + Bz At_

f(xk, zr) = Q_fhk + éf ’ (5.16)

Z

The corresponding linear observation equation is given by

Vi = CX + €, (5.17)
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Figure 5.1. Examples of tensor-field B-spline basis functions, order of 2. (a) A
single b-spline function to estimate the stimulus variables around the detected sen-
sor. (b) Overlapping B-spline functions to estimate the stimulus variables around
the detected sensors, illustrating the interpolation property.

where the X; is the augmented state vector comprises of the stimulii variables
gl

Since the sensors are located at sparse locations in the sensor field, the linear
combination of basis functions By are used to smoothly approximate the stimu-
lus function. The basis functions themselves are centered at the sensor locations,
and interpolate the stimulus variables for accurate estimation of transmembrane
voltage v, and gating variable /i in the neighbourhood locations. The properties
associated with the basis functions are similar to that in Section 4.3.2, including
the local support and interpolation properties. Here, tensor-field B-spline basis
functions were constructed, with order of 2 [70]. Examples of the resulting tensor
product B-spline functions are shown in Figure 5.1. It is noteworthy that the in-
clusion of basis function method enables to reduce the number of additional state
variables added to the augmented state vector, especially in the high-dimensional

systems.

5.3.3 Fixed Lag URTS Smoother

As described in Section 2.3.2 fixed lag smoother enables to obtain the smoothed
state estimates at k — k, given the measurements and filtered estimates upto the
current time instant k. Here, the fixed-lag URTS smoothing is employed by modi-
fying the fixed interval URTS smoothing method presented in Algorithm 5.1. This
also implies that the smoothing step is embedded into filtering step instead of
forward and backward recursions as a separate process [145? ]. The smoother
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estimates at current time instant k are first initialised using the filtered estimates
as X} = 9({ and error covariance matrix P} = Pi . This is followed by perform-
ing the backward recursions given {k — 1,k —2, ...,k — k. } as same in Algorithm

5.1-Backward iterations.

5.3.4 The Proposed Algorithm

The detection and estimation algorithm tailored for the high-dimensional systems
is presented in this section. It should be noted that the basic structure of the pro-
posed method is similar to Algorithm 4.1. However, it is restated in Algorithm 5.1
along with the further changes for completeness. It can be seen that the detection
and followed by the reduced-rank UKF state estimation. In order to obtain a com-
putationally efficient smoothing algorithm for high dimensional systems, a prag-
matic approach is to regulate the implementation of smoothing method to limited
time frames. For instance, more accurate estimates of state variables are essential
followed by the stimulus detection for a fixed length, where the filtered estimates
can be considered as optimal afterwards. This approximation is significant to ob-
tain a computationally efficient combined detection-estimation algorithm. Thus
the fixed lag URTS smoother algorithm is employed only for a fixed time length
after the stimuli are detected. The filtered estimates are considered as optimal

state estimates at other time instants.

Algorithm 5.1: The proposed detection-estimation algorithm using Reduced-order Un-
scented Rauch-Tung Stribel Smoother.

Forward Iteration

f

1. Initialise forward states &, and covariance matrix P{,[ .

2. The recursive estimation procedure for time instants, k € {0,1,..., T —1} :

Prediction using nominal state-space model :

(a) Perform truncated singular value decomposition of the P{: using (5.7) and

reduced rank of n,.
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f

(b) Form the sigma points x; for &, as

>~ _of
Xkj = Xk

Xej =% +\ (e +A) opjugj, j=1,.m (5.18)
Xkj = ’A‘i - \/m Okjukj j=nr+1,..,2n,

where A is given by az(nr +x) —n, with x =3 —n,.

(c) Propagate the sigma-points through the nominal state evolution equation

o, = £Re)- (5.19)

(d) Compute the predicted states %, ; and covariance matrix P{;l as follows

2n,

Af_ o 7(”’1) Af_
R, = Z(;)w]. R (5.20)
]:

2n,

_ —(c) Af— Af— Af— Af—
P{H = Z(;) W; (X£+1,j - X{—O—l) (X{c(-i-l,j - x£+1)T + 2y, (5.21)
]:

where Wl(m) and WZ(C) are the constant mean and covariance weights defined
in (5.12), (5.13) and (5.14).

Detection using nominal state-space model:

(a) Form the innovation sequences and the covariance of innovation sequences

€1 = Vi1 ~ Vi 522)
where y{z;l is computed using (4.18)
o/, =cp/ C"+x, (5.23)

(b) Calculate the distance measure, which is negative likelihood measure tai-

lored to single sensor measurements

L .. .= E In(27t) + In(ggs1) + 1@ (5.24)
nk+1 — 2 qk+1 > et . .
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(c) Perform the detection scheme as

Ay = {én tLr > a)}, (5.25)
where @ is the threshold value.

if stimulus sensors are not detected:

Correction using the nominal state-space model:

(a) Compute the Kalman gain, the corrected state estimates and covariance ma-

trix

Kiy1 = P£+1CT(CP£+1CI—;+1 + Zy)ilz (5.26)
%L1 =+ Kl (5.27)
P/, =P/ —P c(cp/ cT+z)'C (5.28)

else

Prediction using augmented state-space model:

(a) Form the augmented state vector ?{ =& 2 217 71", where stimulus state vari-
ables are computed using (4.32), and covariance matrix IN’f(c of structure in
(4.35) are computed using (4.36), (4.37) and (4.38).

(b) Compute the sigma points jx; using (4.39) for the augmented state vector

i{, using the truncated SVD results of I:’;: with an order n,, §£, A and 7,

respectively.

(c) Calculate the unscented transform values )A(Zl by propagating Ehe sigma
points through the augmented non-linear state evolution equation f(x; ). The
nonlinear state evolution equation is given in (5.16), which includes the lin-

ear tensor field B-spline functions By at the detected sensor locations.
(d) Compute the predicted states x£ 41 and covariance matrix P;: 1

2n,

k+1 Z W Xk+1 Jj’ (529)

2n
- N
Pf;l ZW Xk+1 = %) Ky — X)) T+ Zx (5.30)
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(e) Compute the corrected state estimates and covariance matrix as

Ky =B/, ,CT(CP[,CT +£,), (5.31)
§£+1 = Qi—;l + I~<k+1(Yk+1 - 6?{;1), (5.32)
Pl =P[ —P[ C(CP[ C"+x,)'C (5.33)

end

Backward Iteration

Perform backward iterations with a fixed lag of k;, for a time sample length T;

after stimulus locations are detected.
1. Initialise backward states and covariances using the filter estimates &; = ﬁ{:
and P} = P{ .
2. Recursive backward iteration to estimate the smoothed state estimates X for
time instants k € {k — 1, ...,k — k. }:

if stimulus sensors are not detected in the filtering step:

Prediction using nominal state-space model:

(a) Form the sigma points of the smoother x; j using filtered state and covariance
estimates using the filtered values of o and uy

—s __ of
Xkj = Xir

Xi,j = ’A‘i +/(n +A) Okjukj, J=1,.,n (5.34)
Xkj = ’A‘{: - \/m Okjukj j=mn,+1,..,2n,

where A is given by a?(n, + ) — n, with x = 3 — n,.

(b) Propagate the sigma points through the nonlinear state evolution equation

R, = E(TD)- (5.35)

AS—

(c) Compute the estimates of the predicted states, X, ; and covariance matrix

P}’ ;, and the cross-covariance Sy as

2n,

AG —=(m) . g_
xiﬂ = Z(:)W]- X2+1,]’/ (5.36)
]:
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2n,

_ =€) / As— o g g
Py = Z(:) W;j (Xi+l,j — %) (Xi+1,j - "iﬂ)T + 2, (5.37)
]:
(o) T
Sk =) W (xi;— %7 01) (Rein — X)) (5.38)
j=0

Correction using nominal state-space model:

(@) The state estimates and covariance matrix are then corrected upon the mea-

surements by calculating the Smoother gain

Dy = it (Py) (5.39)

(b) The resulting smoothed state X; is calculated as
% = &L + D&, — X10)- (5.40)

(c) The smoothed covariance P; is then given by

P; = P/ + Dy(P,, — P{;,)D/. (5.41)

Note: The storage of filtered covariance matrix for high-dimensional may result in
high computational load. When using higher fixed-lag order, P{ can be approxi-

mated by reconstructed covariance matrix,
Pf = U, 7 U 5.42
k — Ckn "t kCkm, - (5.42)

where Uy, and 7T) consists of stored Eigen vectors and values, respectively.

else
Prediction using augmented state-space model:

(a) Form the sigma points x; using (4.39) with %:, Ok, Ui and n,.

(b) Calculate the unscented transform values )4(;11 by propagating the sigma
points through the augmented non-linear state evolution equation ?(Xk),

with the tensor field B-spline functions By at the detected sensor locations.
(c) Compute the predicted states ?(,:1 and covariance matrix E: +1

2n

AS— A 7( ) —5—

Xp+1 = Z ij X;H,j/ (5.43)
j=0
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=~ 2n, —=(c) , _g_ AS— _ AS— \T
Pi+1 = Z Wj (Xi+1,]' - Xk+1) (Xi.u,]' - xk+1) + Zf/ (5-44)
j=0
= 2n, —=(c) As— AS— \T
Skp1 =Y W (Xij — Xer1) (Rig1; — Xe1) - (5.45)
=0

25 __[&s 55 T .
(d) Form the augmented state vector Xx; ,; = [Xi.1 2i,4]', where stimulus state
variables Zj " and covariance matrix P} 4 are re-evaluated to include the

dynamic structure in the augmented form.

Correction using augmented state-space model:

. 25 . .=
(e) Compute the corrected state estimates x; and covariance matrix P} as

Dy = Sia(Py,,) 7 (5.46)
%=X+ De(Rar —Xop), (5.47)
P; = B/ + Dy(P},, — P} ,)D{. (5.48)

end

5.4 Data Generation

The performance of algorithm is demonstrated using the complex spiral re-entrant
activation patterns, which involves both normal (plane wave) and re-entrant prop-
agation of cardiac electrical activity. The detailed descriptions of the simulation
setup and procedures of activation patterns generation are given in Section 3.2.2.
Briefly, data was generated in a two-dimensional tissue slab of 1 x 1 cm using
the monodomain tissue equations with modified Mitchell-Schaeffer ionic model.
Similar to the one-dimensional simulations, the unipolar electrograms were then
calculated by placing the sensors along a at distance of 1 mm from the tissue field.
Simulation was performed for total duration of 1000 ms, solved using explicit fi-
nite differences methods with no-flux boundary conditions. The spiral re-entry
was simulated by applying the first stimulus (S1) at the left edge of the tissue
field, s, = 0.025 cm to s, = 0.075 cm in tissue field at time instants k = 0.05 ms,
followed by second stimulus (S2) at the left-bottom edge of the slab at k = 324
ms (see Figure 5.2(A). The stochasticity was added into the simulation using the
state disturbance variances 02 = 107* and 07 = 10°. For the results shown in

Section 5.5, observation noise variance was assigned to 05 = 10—, where the SNR
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value was obtained as 42.61 dB using (4.78). The tissue field was descritised to
a gridded domain with dimension of 41 x 41 while sensors are placed in a grid-
ded domain of 10 x 10. An example of the electrogram is shown in Figure 5.2(B).
The electrophysiology parameters used for data generation are shown in Table3.1
unless explicitly stated. The resulting spatiotemporal patterns of transmembrane
voltage in tissue field are shown in Figure 5.6(a). The figure illustrates that the
planar wave resulting from normal activation was disrupted and formed into a

spiral re-entry, that was persistent throughout the simulation period.

A 1.2

C *

0.1 *
*

0 324 500 1000

Space (cm)

w
Electrogram voltage State variables
V]
Space (cm)

: m
0 324 500 1000 Space (cm)

Time (ms) 0 o

Figure 5.2. Examples of spiral re-entrant data in two-dimensional cable field.
The subfigures are : (A) State variables at spatial index I = 43. (B) Electrogram
measurements with SNR = 42.61 dB. (C) Snapshot of transmembrane voltage pat-
terns at 500 ms, where the sensors as shown in red asterisks. State variables are
transmembrane voltage (—), gating variable (—).

5.5 Results and Discussion

In this section, results of the proposed detection-estimation algorithm to the sim-
ulated spiral wave data is presented.

The combined detection-state estimation method presented in Algorithm 5.1
was employed to estimate the state variables from the electrogram measurements.
The procedures used for the estimation is similar to that in Section 4.5. It is re-
stated in this section for completeness. The initial state vector, vp and hg, were
drawn from the normal distributions of A" (0,107°T) and A (1,107°I), where the
mean values are selected as the resting conditions given in [38, 108]. It was as-
sumed that the disturbance covariances were known to the estimator. By using

the simulation setup presented in previous section, at every time instant, the to-
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Figure 5.3. Negative log-likelihood measure for spiral activation patterns in
two-dimensional cable field. The distance measure from first 50 sensors are
shown. The stimulus intervals are illustrated within boxes for clarity, where the
dashed lines denote the sensors correspond to stimulus locations.

tal number of states variables (1,) to be estimated from the nominal state-space
model is 3362 (n, = n, = 1681). The total simulation interval is 1000 ms, which
results in the total number of time instants (r1;) with Ay = 0.05 ms to be 20001. The
algorithm was implemented on MATLAB R2019a, installed on a computer with
Intel Xeon (R) CPU E5-2623 v3@ 3.00 GHz and 32 GB RAM.

In order to implement the algorithm presented in Algorithm 5.1, truncation
index (n,), threshold value (@) and a fixed-lag order (k;) need to be assigned.
However, computational complexities caused from the large number of state vari-
ables, and the storage and manipulation of resulting high-dimensional covariance
matrices, restrict the implementation of rigorous analysis to determine the optimal
number of 7,, @ and k;. A pragmatic approach is to use a truncation index with
considerable level of computational complexity and estimation accuracy. In the

LETKF based cardiac-field estimation algorithm presented in [69], an ensemble

Table 5.1. Averaged detection performance metrics

TPR TPR
Threshold (S1) (S2) FPR
100 0.995 0946 0.076
150 0.990 0.941 0.059
180 0.977 0.923 0.056

200 0946 0.891 0.049
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size of 20 was used to estimate the state variables in three-dimensional scroll-
waves. This study has also shown that the ensemble sizes of 10 and 20 yield a
similar result, where the latter value was selected in estimation for extra dimen-
sionality. In order to determine a suitable threshold value, the truncation index
number was assigned to 10 in the initial analysis. Subsequently, the detection
performance metrics detailed in Section 4.3.4 were then computed over a selected
range of threshold values, in a single realisation of the simulated data. Contrary
to the estimation of one-dimensional cardiac field, the detection metrics were com-
puted in two-dimensional tissue field at every time instant, by comparing with the
ground truth. The averaged detection rates during the first and second stimulus
intervals (over number of time instants in each interval) and averaged false posi-
tive rate (over total number of false positives) are shown in Table 5.1 respectively.
Based on this analysis, the threshold value for detection scheme was set to 180, as
it yields higher detection rate with minimum false alarm rate. The distance mea-
sure calculated using the nominal state-space model is shown in Figure 5.3, which
illustrates a clear distinction of the model uncertainty between the sensors, nearby
the stimulus and non-stimulus locations. The results show that the estimation of
stimulus variable should be incorporated, and also illustrate that a threshold value

can be selected across a range of values.

Table 5.2. Averaged computational complexity measure expressed in seconds

Forward and backward recursions  Forward iterations
(Stimulus detected conditions) (Normal conditions)

(n:) (5) (5)

Truncation index

500 2414 196.6
30 28.5 4.37
20 28.2 2.80
10 28.0 2.20

In order to further validate the effectiveness of the selected truncation index
number, performance metrics were computed over a range of values with the
threshold value of 180. Firstly, the computational complexities during the normal
and stimulus time intervals are calculated as the average time of iterations in a first
200 time points, where total samples for estimation was 20001. As demonstrated
in Section 5.3.4, computational complexity was further reduced by tailoring the
implementation of fixed lag backward iterations. For this, fixed lag smoother with
a lag of 2 was employed for a 100 samples time-frame, following the the pres-
ence of stimulus locations have been detected. The result from this analysis is
summarised in Table 5.2. Although computational complexity increases with the
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Figure 5.4. RMSE measure calculated for different values of reduced-rank val-
ues. 1, = 10 (—), n, = 20 (—), 1, = 30 (—).

truncation index, time complexity measure for n, of 10 and 20 produce similar
results. Secondly, the estimation accuracy was analysed for a set of n, values, by
computing the RMSE measure between the actual and estimated field of trans-
membrane voltage. The results from this analysis is shown in Figure 5.4, illustrate
that accuracy measure are comparable from the three n, values. Hence, this anal-
ysis demonstrates that the choice of n, = 10 provide acceptable level of computa-
tional complexity and estimation accuracy, where estimation results are explained

in detail below.

The threshold value of 180 and truncation index of 10 were then selected for
the detection and state estimation, respectively. Algorithm 5.1 was implemented
to detect the stimulus locations and followed by estimating the state variables,
which are transmembrane voltage, gating variable and stimulus variable. The true
and estimated patterns of transmembrane voltage and gating variables at selected
time instants are shown in Figure 5.5, while the evolutions of actual and estimated
state variables at I = 84,85,86 are shown in Figure 5.6. Both results show that
the proposed method can capture the underlying tissue dynamics, by accurately
estimating the state variables from the electrogram measurements. However, dif-
ferences in the actual and estimated patterns are observed along the trajectory of
the spiral wave as shown in Figure 5.5B-(c). Recall, the simulated data is based on
the mMS model where the estimation was employed using the proposed continu-
ous version of mMs model, with a slope value of 25 . Therefore, the errors along
the trajectory may be contributed from the sigmoid approximation of the gating
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Figure 5.5. Estimation results of state variables during spiral re-entry in two-
dimensional tissue field. (A) Electrogram measurements; Here, the electrogram
potential at a sensor is shown in coloured circles, while the asterisks shows the
sensor location. (B) Transmembrane voltage. (C) Gating variable. The sub-figures
in (A) and (B) are: (a) Actual pattern of state variable. (b) Estimated pattern of
state variable. (c) Difference in the actual and estimated patterns.
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Figure 5.6. The state estimation results for re-entrant activation patterns. (a-
c) Transmembrane voltage. (d-f) Gating variable. Actual signal (—), estimated

signal(—).

variable using a smaller value of 25.

The state estimation results of transmembrane voltage during the S1 and S2
stimulus intervals are shown in Figure 5.7. The errors shown in both Figure 5.7 A
and B -(c) indicate that the proposed method allows to improve the estimates of the
transmembrane voltage across the stimulus regime, by interpolating the stimulus
variables between the detected sensor locations. However, it also introduced error
along the edges for this particular stimulus configurations as shown in Figure 5.7
A and B - (c).

The results can be further explained as follows: At every time instant during
stimulus intervals, the detection scheme returned the sensors with distance mea-
sure above the pre-defined threshold value. State estimation was then employed
using the augmented state-space model, with additional stimulus states (z) at
detected sensors locations and the corresponding basis functions (Bj) centered at
the stimulus locations. For example, the actual pattern of the stimulus variables
at a particular time instant in S1 and S2 intervals are shown in Figure 5.8A-(a)
and Figure 5.8B-(a), respectively. In this figure, red asterisks denote the sensor
configurations, while the black circles denote the sensor locations returned by the
detection-scheme. Based on the results from the detection-scheme, a set of linear
tensor field B-spline functions are then constructed, centered at the detected sen-
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Figure 5.7. Estimation results of transmembrane voltage during stimulus inter-
vals of spiral re-entry in two-dimensional tissue field. (A) First stimulus interval.
(B). Second stimuls interval. The sub-figures are shown as: (a) Actual pattern. (b)
Estimated pattern. (c) Error between the actual and estimated patterns
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sor locations. Examples of basis functions are shown in Figure 5.8A-(b) and Figure
5.8B-(b). The resulting weighted sum of the basis functions during these intervals
are shown in Figure 5.8A-(c) and Figure 5.8B-(c). It can be seen that the weighted
sum of B-spline functions allow to create a smooth function of stimulus variables

between the sensors. However, it causes errors due to the edge effects of basis

functions as shown in Figure 5.7(c) and (f).

1 sy (cm)

(b)

Figure 5.8. Examples of the decomposition using B-spline functions. (A) First
stimulus interval (S1). (B) Second stimulus interval (S2). The subfigures in each
row are: (a)The actual pattern of stimulus variable . (b) The overlapping B-spline
functions centered at the sensors, which detected the presence of stimuli. (c) The
resulting linear weighting in the tissue field. Here, red asterisks show the sensor
locations while black circles show the sensors that detected the presence of stimuli.

In order to further validate the performance of the proposed detection and
state estimation algorithm, a Monte-carlo based approach was then employed.
For this, 5 realisations of the spiral activation patterns were first generated. The
accuracies of the detection and state estimation results were then quantified by
computing mean detection metrics and MRMSE measure, respectively. The result-
ing mean detection metrics are shown in Table 5.3, whereas the MRMSE statistics
are shown in Figure 5.9, along with 95% confidence interval. Although the estima-
tion algorithm can capture the tissue dynamics, state estimation error is observed
during stimulus intervals in the transmembrane voltage estimates. This can be
contributed from the edge effects. To investigate the source of error during the

stimulus intervals, RMSE measures across the spatial locations were then com-
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Figure 5.9. MRMSE measure calculated over 5 realisations of the re-entrant
activation patterns. The mean value is shown in blue colour along with 95% con-
fidence interval (shaded region). (a) Transmembrane voltage. (b) Gating variable.

Table 5.3. Averaged detection performance metrics over 5 realisations

TPR TPR
Threshold (S1) (S2) FPR

180 0966 0.919 0.054

puted, by averaging across 1 ms duration of stimulus intervals. The results across
the two stimulus intervals are shown in Figure 5.10. By comparing Figure 5.8 with
Figure 5.9, the results show that the error in the state-estimation is predominantly
contributed from the edges of B-spline functions. On the other hand, the error
in gating variable is caused from the employed approximation in the continuous

version of mMS model as illustrated in Section 4.5.2.

5.6 Conclusion

This chapter presents a model-based statistical inference framework to reconstruct
the tissue dynamics from cardiac electrogram measurements. More specifically,
the proposed framework provides a suboptimal solution for detection-estimation
problems in high-dimensional state-space models of cardiac electrical activity.

The key contributions of this chapter are the following:

e Similar to the one-dimensional spatial field, finite dimensional stochastic

state-space model in the two-dimensional spatial field has been derived
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Figure 5.10. RMSE measure computed across the two-dimensional tissue field.
(a) First stimulus interval (S1). (b) Second stimulus interval (52).

based on the infinite-dimensional cardiac model.

e Although the proposed detection algorithm follows similar procedures to
that in Chapter 4, the state estimation procedure is tailored for the high-
dimensional state-space models, by using fixed lag, reduced rank UKF algo-

rithm.

e The performance of the proposed algorithm has been illustrated using the
complex spiral wave dynamics, where multiple stimuli initiate the spiral re-
entry within the vulnerable window.

e The findings from this chapter illustrate that the proposed algorithm can be
used for model-based inference of tissue dynamics from electrogram record-
ings in the simulation datasets of cardiac field.



Chapter 6

Complex Network Modelling of
Spatiotemporal Organisation
during Human Ventricular
Fibrillation

As detailed in Section 1.2, the second aim of this project is to develop an approach
to quantify the level of organisation in spatiotemporal activation patterns of hu-
man VF. This chapter presents a complex network modelling approach to quantify
the spatiotemporal organisation in the clinical electrograms of VF.

A key tool in the analysis of activation patterns on the surface of the heart
during VF has been phase analysis, which can identify both activation wavefronts
and the phase singularities around which they rotate [36]. Although the com-
plexity of re-entrant activation patterns can be assessed from the numbers and
lifetimes of phase singularities [151], this approach does not allow any underlying
connectivity structure to be identified.

The spatial characteristic length based on coherence and correlation functions
has been used to quantify the extent of spatial organisation in both animal and
human VF [46]. Correlation and coherence functions quantify the degree of func-
tional association between electrical activation waves at different spatial locations
in time and frequency domain respectively. These algorithms have shown promise
in characterizing the extent of spatial organisation in both atrial and ventricular
activation sequences particularly in differentiating between normal sinus rhythm
and cardiac arrhythmias [46, 137]. However, quantifying and monitoring the level
of organisation during different stages of ischaemic VF in the human heart has not

to our knowledge been reported in the literature.

130
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The level of spatial organisation within each episode of VF is quantified by
determining patterns of connectivity underlying electrical activation recorded at
different spatial locations. In theoretical neuroscience, analysis of cortical connec-
tivity network, structural, functional and effective, has a long and rich history.
Structural connectivity is built upon the anatomy of the brain while the functional
and effective connectivity are based on analysing neuroimaging data [52, 139]. In
functional connectivity networks, network connections are derived based on cor-
relation or coherence between different regions, whereas network connections in
effective connectivity are obtained via causal modelling such as Granger causal-
ity [59], partial directed coherence (PDC) [134] and more recently model-based
frameworks which integrate anatomical information with multi-electrode electro-
physiological recordings [9]. Another important approach is graph theory analysis
which explores properties of complex networks and has been extensively applied

to brain connectivity data [139].

Clustering techniques have been also applied to time series data or its corre-
sponding functional network to group regions with similar functional activities
[94]. These techniques can be adopted to study the spatial and temporal activa-
tion patterns in the human heart. For example, the effective connectivity network
based on the PDC approach has been used to analyse intracardiac signals recorded
during atrial fibrillation [134]. However, many of these methods have not yet been
applied to human VE and there is a sufficient volume of interesting results from
theoretical neuroscience studies that warrants further investigation in this domain.

Therefore, the overall aim of this chapter is to evaluate techniques to quantify
the level of spatial and temporal organisation in electrical activation sequences
during human VE. First, a cross-correlation function based method is proposed
for quantifying functional association between recordings from each epicardial
electrode and hence to compute the global level of spatio-temporal organisation.
Second, the spatiotemporal network structure obtained based on cross-correlation
coefficients was then exploited to study the organisation of electrical activation se-
quences as spatio-temporal functional networks. Graph-theoretical measures were
then applied to further quantify the properties of network-based representation.
To examine and visualise the spatio-temporal patterns of similar functional asso-
ciation over different regions of the epicardial surface, a hierarchical clustering
method based on the cross-correlation matrix was also employed. Temporal pro-
gressions of the underlying connectivity structures obtained from these methods
were then quantified and monitored using a sliding window-based analysis.

The rest of this chapter is organised as follows. Section 6.1 presents the data

acquisition techniques and preprocessing steps of epicardial electrograms. Section



132 6.1. Mapping of Epicardial VF Electrograms

6.2 explains the spatiotemporal organisation observed in the VF electrograms. Sec-
tion 6.3 details the complex network modelling methods. The results are presented
and discussed in Section 6.4. Following this, conclusions are provided in Section
6.5.

6.1 Mapping of Epicardial VF Electrograms

In this section, the data acquisition techniques and preprocessing steps of epicar-

dial electrograms are detailed.

6.1.1 Data Acquisition

The clinical recordings used in this chapter are from a previous study of human
VF [18], where the patient details and the methods used for data acquisition are
covered in detail. The VF electrograms were collected from a group of ten patients
(labelled as H055, H057-H060, H062-H066) undergoing routine cardiac surgery.
This study was approved by the local hospital ethics committee (REC 01/0130).
Briefly, epicardial unipolar electrograms were recorded using an elasticated
sock consisting of 256 electrodes with an electrode spacing of approximately 10 mm
(see Figure 6.1 (a)). This sock was placed over the epicardial surface of the ventri-
cles following cannulation for cardiopulmonary bypass (CPB). CPB is a commonly
used technique in cardiac surgeries to replace functions of the circulatory and res-
piratory system. The CPB circuit comprises of pump and oxygenator to act as
artificial heart and lungs, which allow to maintain the smooth blood and oxygen
circulations in the body [143]. This technique ensures that the data acquisition pro-

cedures are conducted in a safe and controlled environment [111]. The unipolar

Figure 6.1. Materials used for epicardial mapping of VF electrograms. (a) Elas-
ticated electrode sock. (b) UnEmap system.
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Figure 6.2. Example of experimental procedure used to record the electrograms
during the three episodes of VF.

electrograms were collected at a sampling rate of 1 kHz using a UnEmap system
(Auckland UniServices Ltd, New Zealand) with the reference electrode placed on
the chest retractors (see Figure 6.1 (b)).

Following the institution of CPB, VF was induced by 50 Hz AC burst pacing
and the recordings were continuously recorded for a total duration of 3.5 minutes.
There are three main episodes in this process along which the electrograms were
continuously recorded as shown in Figure 6.2. The first 30 s phase is controlled VF
(referred to as control VF), where the coronary perfusion was maintained. Subse-
quently, aorta was cross-clamped between the coronary sinus and the CPB cannula
interrupting the coronary perfusion and induces global myocardial ischaemia. The
ischaemic recordings were collected for 150 s (referred to as ischaemic VF). The
cross-clamp was then removed to enable coronary reperfusion (referred to as re-
flow VF), and a further 30 s of VF electrograms were recorded. Finally, ventricular

defibrillation was applied after removing the electrode sock.

6.1.2 Electrogram Preprocessing

Epicardial electrograms are preprocessed using two major steps performed as a
part of epicardial mapping procedure [18, 117]. First, slow variations due to
respiratory artefacts are removed from each electrogram using piecewise linear
trending. This step also ensured that the mean of each preprocessed electrogram
was approximately zero. The second step is to identify and exclude electrodes
with electrogram amplitude close to zero. This could be caused due to the poor
contacts of channels with ventricular tissue and electrical interferences. Conse-
quently, these electrograms can act as outliers and affect the accuracy of analyses
based on the activation sequences. To avoid this, only electrograms with dominant
frequency (DF) between 2 and 20 Hz is included in the analysis [18]. Following
this, a visual examination is performed to exclude electrograms with amplitudes
close to zero. As a result, an average of 219 electrodes (range 186 — 240) are used

for the analysis.
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Figure 6.3. Representation of epicardial sock with the spatial coordinates of the
epicardial electrodes (black circles) with respect to left and right ventricles (LV
and RV). (a) Three-dimensional view of electrodes. (b) Projection of electrodes
onto flat two-dimensional surface.

6.1.3 Mapping of Electrode Positions

Prior to the data acquisition, the positions of epicardial electrodes in three-dimensional
space are obtained by fitting the electrode sock over a heart model. The three-
dimensional epicardial electrode positions are shown in Figure 6.3 (a). To obtain
the two-dimensional coordinates used for the analysis, three-dimensional elec-
trode positions are first projected onto a cone-shaped surface enclosing both ven-
tricles. This is then projected onto a two-dimensional flat disc and the resulting

two-dimensional coordinates of the electrodes are shown in Figure 6.3 (b).

6.2 Spatiotemporal Organisation of VF Electrograms

In this section, spatiotemporal activation patterns during three VF episodes (con-
trol VE ischaemic and reflow VF) from a single patient (H055) are presented.

The changes in VF complexity can be qualitatively analysed by visualising the
spatiotemporal patterns during different VF episodes. Firstly, the VF electrograms
from control, ischaemic and relow VF is plotted in Figure 6.4 (a-c). It illustrates
the temporal changes of cardiac activity in the electrograms of different episodes.
For example, electrograms are more temporally organised with less changes dur-
ing ischaemic VF compared to other two VF episodes. However, it is difficult to
generalise here since this measurement is only from one single electrode.

To analyse the spatial organisation in the electrograms, spatial patterns are

then obtained by interpolating the electrogram potentials on to two dimensional
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Figure 6.4. Examples of fibrillation electrograms obtained from an electrode
during VF episodes. (a) Control VFE. (b) First episode of ischaemic VF (ischl). (c)
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Figure 6.5. Examples of spatial fields across the epicardium surface at a time
instant in VF episodes. (a) Control VF. (b) Fourth episode of ischaemic VF (isch4).

(c) Reflow VE.
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projection of epicardial surface. For this, a fine uniform grid of 150 x 150 points
is first created based on the electrode positions (see Figure 6.3 (b)). The prepro-
cessed electrogram potentials are then interpolated on this gridded domain at a
particular time instant. The spatial fields shown in Figure 6.5 also indicate the
difference in inherent complexity of the activation patterns at different regions of
epicardium across VF episodes. At the given time instant, activation patterns of
reflow VF is disorganised compared to the other two VF episodes. However, a sys-
tematic method to quantify the spatiotemporal organisation in activation patterns

is important to characterise the level of complexity in VF episodes.

6.3 Complex Network Modelling

In this section, the complex network modelling methodology used to quantify
the level of spatial and temporal organisation in electrical activation patterns of

human VF are described.

6.3.1 Linear Coupling Measure

In order to quantify the level of functional association between fibrillation elec-
trograms, a linear coupling measure based on cross-correlation functions is em-
ployed. Cross-correlation coefficients are calculated from a pre-defined set of time
lags and used to determine the peak magnitude of linear dependency. The range
of time lags is derived from the average of local activation cycle lengths over all
electrodes. The normalised cross-correlation coefficient between a pair of prepro-
cessed electrograms y; (k) and y;(k) can be calculated by

Zk 1 yl( )]/](k+w>

Pt _\/Zk 1i( Z\/Zk 1Yk

where T is the number of samples and w € {—wj,..0..,w;} is the time lag. The

(6.1)

total time lag is set to the maximum value of the average activation cycle which
is estimated from the average DF of epicardial recordings. The DF of an electrode
is defined as the modal frequency in its spectrum and calculated using Welch’s
power spectral density method with a window length of 3000 samples and 1500
samples overlap.

In order to characterise the overall linear organisation a correlation matrix, A,
is defined such that

Aj = prj(argmax|py;(w)]), 6.2)
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A single measure of linear organisation is then obtained to quantify the overall

level of organisation using

IR
= 6.3
=" ©3)
where 1, was the total number of sensors or electrodes and || - |[r denotes the

Frobenius norm.

6.3.2 Functional Network Structures

In complex network analysis, a network is defined as a collection of interrelated
elements that can be represented by a graph. The abstract mathematical formu-
lation of a graph is defined as G = (v,,v.) where v, = {v}} is a set of nodes

or vertices and v, = Vf,, ]

is a set of edges representing the connections be-
tween the nodes. The edges of a graph structure can be undirected or directed
and binary or weighted.

To represent the functional network structure, a weighted undirected graph
with no self or multiple connections is used. The nodes of the network are defined
as epicardial electrodes and the weighted edges are the pairwise correlations ob-
tained from the correlation matrix defined in (6.2). The edges can be interpreted as
functional connectivity, i.e., a symmetrical association between regions of epicar-
dial surface. For further analysis, the network structure of weighted graph is then
represented by its connectivity matrix where rows and columns indicate nodes
and matrix elements indicate weights. This is equivalent to the correlation matrix,
A, with its main diagonal set to zero to exclude self-connections.

In order to explore the connectivity matrix quantitatively, a set of graph the-
oretical measures is calculated for all nodes (electrodes) using adjacency and
weights matrices. The weights matrix is obtained by thresholding the connectivity
matrix where entries under a certain value were set to zero. The adjacency matrix
is then obtained by replacing non-zero values with one in the weights matrix. It
should be noted that thresholding is performed based on the absolute value of
correlation coefficient.

Graph theoretical measures provide a powerful tool for a systematic study of
the epicardial functional network, providing a quantitative connectivity structure
which characterises the level of organisation of fibrillation electrograms over VF
episodes. There are several graph-theoretical measures for analysis of complex
networks in the literature. In this chapter connection density, node strength and
strength distribution, and mean clustering coefficient are chosen and calculated
using the Brain Connectivity toolbox in Matlab[139]. A brief description of each
measure based on adjacency and weights matrices (undirected and weighted) is
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provided below.

Connection Density

Connection density is defined as the ratio of total number of edges in a network
(non-zero entries of adjacency matrix) to the maximum possible number of con-
nections [139]

but = n(i”_l) 0<by<1 (6.4)
where n,, is the total number of nodes and n,, is the total number of edges in the
network.

Connection density can be calculated for a set of adjacency matrices obtained
from different threshold values ranging from 0 and 1. A plot of connection den-
sity versus threshold values can be then produced. To calculate the overall level
of sparseness or interconnectedness in a network, area under the curve (AUC)
measure is computed which is independent of correlation-threshold value. This
measure can be then used to monitor the changes in the overall level of organisa-

tion across different VF episodes.

Node Strength

In a weighted graph, node strength incorporates information about the total num-
ber of connections (degree) and the magnitude of functional association of indi-
vidual nodes[139]. The node strength is defined as the sum of weights of all edges
incident on a node which can be calculated by

so=Y uty, (6.5)

jENY,

where (; and ¢); are elements of adjacency and weights matrices respectively.

Clustering Coefficient

Clustering coefficient can be used to examine densely interconnected groups or
clusters with similar functional association. For an undirected and binary graph,
the local clustering coefficient of a node was defined as the number of triangles
within its neighbourhood (its immediately connected neighbours) to the maxi-
mum possible number of edges between them [139].

In this work, the algorithm in [120] is used, which generalises the clustering

coefficient for weighted networks by replacing the number of triangles with the
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sum of triangle intensities in the neighbourhood of a node. In this method, the
local clustering coefficient of a node, I, is calculated by

51 _ 25%

cc 7 (6.6)
sh(sh —1)

where 0!, is the degree of node, | and 4, is the total intensity of triangles attached
to node, .

The intensity of each triangle is defined as geometric mean of its connection
weights giving

@I

8t = 0 (9010513, (6.7)

Note that weights are normalised by the largest weight in the network. The
local clustering coefficients, d!. , can be then averaged across all nodes to quantify

the average clustering coefficient of the whole network, i.e.,

5C - — 25CC O S 5C S 1. (6-8)

Similar to connection density, the average clustering coefficients can be calcu-
lated for different threshold values. In a plot of average clustering coefficients
against threshold values, the AUC measure can be used to quantify the overall
interconnectedness in the network.

6.3.3 Hierarchical Clustering based on Correlation Matrix

In order to characterise patterns with similar functional association and to quan-
tify the level of spatial organisation over the epicardium surface, a hierarchical
clustering method based on the correlation coefficients is implemented [94].
Hierarchical clustering is an agglomerative clustering approach which is ini-
tialized by considering each epicardial electrode as a cluster of its own. The first
step is to quantify a measure of similarity or dissimilarity based on which clus-
ters of closest functional association are merged to form larger clusters. Here, a
distance or dissimilarity matrix calculated using the correlation matrix, A given in
(6.2) as
Ip=1—A0. (6.9)

From (6.9), it can be seen that a pair of electrodes with highest correlation coef-
ficient forms a cluster with a distance or dissimilarity close to zero. Once larger
clusters are formed the distance matrix should be updated using inter-cluster dis-
tances or linkage matrix as newly formed clusters consist of more than one elec-

trode. The most commonly used linkage methods are single, complete and average
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Algorithm 6.1 Algorithm to perform hierarchical clustering

1. Assign each electrode to a cluster,
2. Compute the distance matrix using (6.9),
3. Set n. to the number of clusters,
4. while n, > 1
- From the distance matrix find the closest pair of clusters and merge them
to a single cluster,
-Compute the inter-cluster distance using (6.10),
-Update the distance matrix,
-Update n..
end

linkage. Single and complete linkage methods respectively adopt the distance be-
tween the closest and farthest neighbouring electrodes to evaluate the inter-cluster
distances. These methods do not account for the cluster structure and could be
sensitive to outliers. On the other hand, average linkage method calculates the av-
erage distance between all electrode pairs which makes the method more robust to
outliers and hence more accurate compared with single and complete approaches

[2]. Here, hierarchical clustering based on average linkage is used that follows

ne, ngb .
Lice, Ljeg, L1

6.10
ne g, (6.10)

rfgmgb =
where ng, and ng, are the total number of electrodes in cluster &, and cluster &,

respectively.

The hierarchical clustering algorithm based on the correlation matrix is given
in Algorithm 6.1. The result of hierarchical classification can be then represented
as a dendrogram. In order to divide the dendrogram into different sub-clusters,
a cut-off distance measure should be chosen. The resulting clusters below the se-
lected cut-off distance represent spatial regions with similar functional properties.
The total number of clusters at different cut-off distances are measured and then
normalised with respect to the total number of electrodes. A plot of normalised
number of clusters against cut-off distance can be then produced. From this, AUC
measure is then calculated and used to monitor the changes in number of clus-
ters over different VF episodes. This measure is closely related to the average
clustering coefficient. Both methods can illustrate the presence of spatial organ-
isation on the epicardium surface through different procedures. Therefore, the
result from one method can be used to examine and validate the results obtained
from the other approach. The advantage of the hierarchical clustering approach is

its ability to detect and visualise the clusters of electrodes which share functional
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properties.

6.4 Results

6.4.1 Linear Coupling Measure

In order to define the total number of lags in correlation analysis, the maximum
activation cycle length for control VF, global myocardial ischaemic VF and reflow
VF was calculated separately. Within each VF episode the average value of acti-
vation cycle length was estimated as the inverse of mean DF across all electrodes.
For each patient this gave a mean activation cycle length for each segment of the
time series. The calculated mean activation cycle lengths for ten patients were then
averaged for each VF episode. The resultant cycle length during control VF was
180 £+ 19.9 ms (mean + 99% confidence interval (CI)). For ischaemic VF, this in-
creased from 165 + 14.7 ms to 207 & 24.9 ms and reduced rapidly to 161 £22.3 ms
during reflow. Based on the maximum value of activation cycle length, the range
of time delays was set to —116 to 116 ms, giving a cycle length of 232 ms. Us-
ing the calculated cycle length the correlation matrix for each 30 s VF epoch was
computed.

Correlation matrices from the clinical recording of Patient H055 (Figure 6.6 (a))
show the presence of functional organisation among electrograms in different re-
gions, which changes over the time-course of VF. To monitor temporal changes in
the overall level of organisation a sliding window-based analysis was performed.
The window size was set to 1000 samples (1 s) with an overlap of 500 samples.
The overlap was used to reduce the losses in temporal resolution between the
window segments. This resulted in 420 window segments for each patient. The
overall organisation was then quantified by calculating the normalised Frobenius
norm of the correlation matrix in each window segment using (6.3). The computed
Frobenius norms for the clinical recordings are shown in Figure 6.7 (a).

In order to quantify the changes within each VF epoch, a piecewise linear
model is fitted to the computed Frobenius norm from each recording. The break
points between linear segments in the model were set as the onset time of 30 s VF
epochs. For each patient the parameters of the model were given by an intercept
and the change in slope between each VF epoch. Figure 6.7 (b) shows the piece-
wise linear fit to the norm in each of the ten patients where black line shows the
average fit over ten patients. The corresponding parameters of the mean regression
model are given in Table 1. The results from this analysis shows that the mean
of Frobenius norm decreases over time-course of VF episodes. During control
VE, the mean intercept of Frobenius norm fit was decreased from 0.667 + 0.068
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Figure 6.6. Results from complex network analysis for Patient H055. Each row
shows a VF epoch of 30 seconds duration. (A) Controlled VF (Control). (B)-
(F) Global myocardial ischaemia (Isch1-5). (G) Reflow. (a) Correlation matrices. (b)
Network structure representation with network connections thresholded at value
of 0.7. (c) Highly correlated nodes from node centrality measure (red circles). (d)
Clusters from hierarchical clustering; electrodes in same clusters are shown with
same colour. Electrodes which do not form a cluster are shown by white circles.



Chapter 6. Complex Network Modelling of Spatiotemporal Organisation
during Human Ventricular Fibrillation 143

Control Isch1 Isch2 Isch3 Isch4 Isch5 Reflow Control Isch1  Isch2 Isch3 Isch4 Isch5 Reflow
1

09 r

0.8 |

0.6

05 r i

l
I
I
I
I
|
I
\
\
|
|
I
I

Normalized Frobenius Norm

T
!

!

!

!

\

0.7 |
\

\

\

!

!

04 f !
1

l l
I I
I I
I |
[ I
| [
I [
| |
\ |
\ I
| \
| |
I I
| |

|
\
\
|

\ \
* \ \
1 1 1 x x x x x |
05 30 60 90 120 150 180 209505 30 60 90 120 150 180 209.5

Average time instants of sliding window edges (s) Average time instants of sliding window edges (s)

(a) (b)

Figure 6.7. Results from correlation analysis. (a) Temporal changes in the quan-
titative measure of overall organisation in correlation matrices during controlled
ventricular fibrillation (Control), global myocardial ischaemia (Isch1-5) and reflow
across recordings. (b) Piece-wise linear fit for the normalised Frobenius norm
during VF episodes.

to 0.626 £ 0.069 (mean + SD). During global ischaemia, this measure gradually
decreased to 0.529 4 0.050. However, there are distinct episodes during global is-
chaemia in each of the clinical recordings with higher level of organisation. In
particular, Patient H057 shows a significant jump during the third and the fourth
episodes of ischaemia. Highly organized ischaemic VF can be also observed in
the second episode for Patient H063 and the beginning of the forth episode for
Patient H058. After an increase in the level of organisation, VF follows a pro-
gressive decrease in the level of organisation, showing transition to an irregular
activation sequence with increased complexity. This transition from higher level of
organisation to the increased complexity during global ischaemia was observed in
all the patients. Subsequently, the mean intercept of Frobenius norm significantly
decreased to 0.477 £ 0.056 in reflow episode. In all the patients, Frobenius norm
is lower during reflow compared to control, indicating that VF in the reperfused
heart remains disorganised. The window based analysis is capable of capturing
the fine changes at different VF epochs compared to correlation analysis. This is
evident in Isch 5 and reflow as shown in Figure 6.6 (F) and (G).

6.4.2 Functional Network Analysis

Functional interactions between different regions of the epicardial surface can be
represented as a network structure by calculating a measure of functional depen-
dency between multi-electrode electrograms. The underlying functional network
was constructed on the two dimensional projection of epicardial surface. The con-
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Table 6.1. Piecewise linear fit of organisation measures. Presented are mean+ SD.

Mean Mean
Measures Intercept Change in Slope (%)
Control Ischl Isch2 Isch3 Isch4 Ischb Reflow
Emwmﬂsm 0667+ | 0144013 0051£027 0166022 —0.086+040 —0171+061 0058+022  —053+020
_ 0BeE | 0154014 00582030 0184025 —0.097+044 —0182+067 0065023  —0.035+021
Connection :
density
o 0LE | 0164014 0069033 01844026 00994045 0203069 00720261 —0.068+0.21
Clustering :
Coeff
0133+ | 1084008 —0029+015 —0090+012 0037+014 00674023 —0006+011  0.068 % 0.09

Number 0.04
of
clusters

144
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Figure 6.8. Temporal changes in the quantitative measures from network anal-
ysis during controlled ventricular fibrillation (Control), global myocardial is-
chaemia (Isch1-5) and reflow across recordings. (a) AUC measure of connection
density. (b) AUC measure of average clustering coefficient. Error bar shows the
averaged trend from piece-wise linear fit across patients.

nectivity matrix can be obtained by thresholding the correlation matrix using a
threshold value between 0 and 1. In this section, a threshold value of 0.7 is used
to examine the connectivity structures with higher level of functional association.
For each VF epoch, the constructed connectivity network based on the connectiv-
ity matrix was then represented as a weighted undirected graph. This is shown for
Patient HO55 in Figure 6.6 (b). These graphs show the presence of both long and
short range connectivities with a high level of organisation over the time-course
of VE. There are a higher number of connections with a higher level of functional
association in ischaemic VF episodes. Moreover, the number of connections in
reflow is lower compared to control episode implying the irregular activation pat-
terns in the reperfused heart. The network structures shown in Figure 6.6 (b) also
highlight the presence of nodes with a high number of connectivities across the
epicardium. These nodes can be identified using centrality measures such as node
strength. Here the highly correlated nodes are defined as those with strength
greater than the mean strength of the network. From Figure 6.6 (c), it can be seen
that a relatively consistent spatial regions (across right ventricles) is observed that
exhibit highly organised VF across epicardium.

The properties of functional network was further studied using a window-
based graph-theoretical analysis. The window size and the overlap were chosen
similar to the previous analysis. Within each window the connection density given
in (6.4) and the average clustering coefficient in equations. (6.6)-(6.8) were calcu-
lated using different threshold values ranging from 0 to 1 with an increment of

0.05. It should be noted that connection density and average clustering co-efficient
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provide measures of the total number of connections and spatial connectivities
in a network respectively. To quantify the overall level of organisation at all the
threshold values, the AUC of connection density and average clustering coefficient
versus threshold values was then computed. The temporal changes in the AUC
of these measures over different VF episodes are shown in Figure 6.8. Similar to
the correlation analysis, a piecewise linear model was then fitted to quantify the
trend within each episode and the results from piecewise linear model are shown
in Figure 6.8 and Table 6.1. These findings show that both connection density and
average clustering coefficient show similar behaviour across VF epochs. During
control VF, the mean intercept of connection density decreased from 0.646 + 0.072
to 0.599 £ 0.074 whereas the mean of average clustering coefficient decreased from
0.571 +0.081 to 0.522 £ 0.080. In global ischaemia, the mean intercepts of the
measures decreased to 0.494 £ 0.050 and 0.412 & 0.64 respectively which was then
significantly decreased to 0.44 £ 0.05 and 0.36 £ 0.06 during reflow. This shows
that the level of organisation quantified using these two measures was low during
reflow compared to control VF. This is in accordance with results based on corre-
lation matrix analysis shown in Figure 6.7, indicating that both measures can be

used to characterise the global level of organisation in VF episodes.

6.4.3 Hierarchical Clustering based on Correlation Matrix

In the previous sections, nodes with a similar level of functional organisation were
identified at different locations on the epicardium. The hierarchical clustering ap-
proach based on cross-correlation matrix to group nodes into different clusters,
to define regions that share similar characteristics. The hierarchical clustering in
Algorithm 6.1 was applied to each of the seven segments VF recording. A cut-off
distance of 0.3 was then used to split the parent cluster into different sub-clusters.
The resulting clusters with 70% similarity in cross-correlation coefficients were
mapped onto the two-dimensional epicardium surface shown in Figure 6.6 (d).
This value was chosen to identify the clusters with higher level of functional organ-
isation and also to compare with the network structures shown in Figure 6.6 (c).
In Figure 6.6 (d) a high level of localised spatio-temporal organisation can be ob-
served in different regions across VF epochs. As ischaemic VF progresses, larger
clusters with a high level of spatial organisation were formed (Isch 2, 3 and 4).
These clusters were then divided into smaller ones towards the end of the episode
(Isch 5). One important observation is the higher number of electrodes which do
not form a cluster (white circles) during reflow compared to control.

In order to monitor the changes in the number of clusters over space and time,

sliding window-based approach was then employed. The quantity to calculate
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Figure 6.9. Temporal changes in the AUC of normalised number of clusters
during controlled ventricular fibrillation (Control), global myocardial ischaemia
(Isch1-5) and reflow across recordings. Error bar shows the averaged trend from
piece-wise linear fit across patients.

over each window was the AUC of normalised number of clusters versus cut-off
distances. Similarly, piecewise linear fit to this measure was applied for quanti-
fying the trend within each VF epoch. The results from this analyses are shown
in Figure 6.9 and Table 6.1, demonstrating a higher number of clusters in the re-
flow episode compared to the perfused one. This is consistent with our findings
in previous sections as well as with a previous study, [18] which showed that the
level of organisation during reflow did not recover to that observed during control.
Hence, AUC measure of normalised number of clusters can be used to compare
the level of complexity over different VF episodes. Notice, the expected opposite
trend of this curve to the average clustering coefficient in Figure 6.8.

6.4.4 Comparison of Organisation Metrics

In this section, the organisation metrics obtained from correlation analysis, graph-
theoretical method and hierarchical clustering are compared. This can be achieved
by comparing the mean change in slope value shown in Table 6.1, computed from
the piecewise linear fit to the organisation metrics. It should be noted that nor-
malised AUC measure of number of clusters determined from hierarchical clus-
tering is indeed a measure of disorganisation. To obtain the corresponding or-
ganisation metric for comparison, this measure was subtracted from 1, before the

piecewise linear fit. It can be seen that the calculated mean change in slope val-
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Figure 6.10. Temporal changes in the average number of phase singularities
during controlled ventricular fibrillation (Control), global myocardial ischaemia
(Isch1-5) and reflow across recordings. Error bar shows the averaged trend from
piece-wise linear fit across patients.

ues across VF episodes follows a similar trend. This illustrates that the proposed
methods provide consistent changes in the organisation across VF episodes.
Although the normalised Frobenius norm is an easier approach to estimate the
global organisation level, an advantage of hierarchical clustering is its ability to
detect and visualise clusters of electrodes which share functional properties (Fig-
ure 6.6 (d)) and to characterise the global complexity level in VF episodes. More-
over, the patterns obtained using clustering approach are more robust to outliers
as it uses the average linkage method to calculate the inter-cluster distances [2]. It
should be noted that the temporal information, i.e., time delays, between nodes
were not investigated in correlation analysis. This is because, cross-correlation
function can be sensitive to the inherent noise in the recordings, which signifi-

cantly affect the estimation of time delays.

6.4.5 Comparison with Phase Analysis

Here, the AUC measure of normalised number of clusters is compared with the
number of phase singularities obtained from phase analysis [18]. Both methods
provide measures of the inherent complexity of electrical activation and so should
provide consistent results. The temporal changes in the number of phase singu-

larities are shown in Figure 6.10. The detailed description of the phase analy-
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Table 6.2. Comparison of number of clusters and phase singularities

Patient Index ]ggteefﬁ:;r:ﬁgi
H055 0.60
H057 0.89
HO058 0.54
HO59 0.62
HO060 0.60
H062 053
HO63 0.67
H064 0.76
HO065 0.80
HO066 0.60

sis approach used to compute the phase singularities is presented in a previous
study [18]. Briefly, phase singularities are identified from the spatial distribu-
tion of phase, which requires robust estimation of phase angle from the phase
plane trajectory of two state variables. For example, phase plane trajectory can be
constructed using voltage and time-delayed voltage as state variables, where an
appropriate delay parameter and a stable centre of rotation should be specified
[61]. This method was extended by reconstructing the phase plane trajectory us-
ing voltage and its rate of change as state variables [121]. Although this method
does not involve any additional parameters, the inherent differentiation of voltage
has the tendency to amplify the noise in the signal. This can be addressed by
considering the integral of voltage [136] or its Hilbert transform [116] as second
state variable. However these approaches involve various pre-processing steps to
obtain a stable center of rotation for the robust estimation of phase angle [36].
For each patient, a bivariate scatter plot of AUC measure of number of clusters
versus number of phase singularities is first constructed as shown in Figure 6.11.
In order to quantify the relationship between the two measures, linear correlation
between the two was calculated using coefficient of determination, R-squared,

from a linear regression model of this data using

Vi (nps(k) — fips(k))?
2

R*=1-=£ &
Y1, (nps(k) — fips)

) (6.11)

where np; is the average number of phase singularities, fips is the correspond-
ing mean value across time instants and 7ips are the predicted value using linear
regression model.

The resulting R-squared values shown in Table 6.2 illustrate that the results
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Figure 6.11. Bivariate scatter plots of AUC measure of number of clusters versus
number of phase singularities. (a) Patient H055. (b) Patient H057. (c) Patient
HO065.

obtained from clustering approach is consistent with the phase analysis.

Temporal changes of the number of clusters and the average number of phase
singularities shown in Figure 6.9 and Figure 6.10 also suggest that there are pat-
terns of patients with similar and different complexity levels. The two complex-
ity measures were compared by examining the clusters of patients determined
from principal component analysis (PCA) [115]. PCA is a dimensionality reduc-
tion method that can used to identify the hidden patterns within complex dataset
and enables analysis in low-dimensional feature space. The algebraic solution of
PCA is commonly determined using eigen value or singular value decomposi-
tion. Within each 30s VF epoch PCA was applied to AUC measure of normalised
number of clusters (Figure 6.9) and the average number of phase singularities (Fig-
ure 6.10). Here, the later method is used to identify the low-dimensional feature
space. For instance, by using the first two principal components, PCA projects the
time-varying complexity measures with a dimension of 30 x 10 samples to 2 x 10
components in each VF epoch. The resulting PCA feature spaces of the two com-
plexity measures are shown in Figure 6.12. It can be seen from the result that the
two quantities give identical groups of patients based on level of complexity, while

preserving the spatial order.
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Figure 6.12. Principal component feature space of complexity measures during
controlled VF (control),global myocardial ischaemia (Isch1-5) and reflow. Num-
ber of phase singularities (x), number of clusters (o) and difference between the
principal components of two quantities are shown in dashed lines.

6.5 Conclusion

This chapter demonstrates that it is possible to quantify trends in spatiotemporal
organisation of epicardial electrograms during human VF that could be attributed
to coronary perfusion, global myocardial ischaemia and reflow. The key findings
from this study can be summarised as follows: 1) During control VE, there is a
steady decrease in the level of organisation. 2) During global ischaemia, there
were transient increases within distinct epochs followed by a progressive decrease
in the level of organisation. 3) During reflow, the level of organisation was lower
compared to that during perfusion. The results are in agreement with the find-
ings presented in a previous study [18], where the changes in dynamics of com-
plex electrical activation patterns were studied using traditional measures such as
phase singularities and dominant frequency. It is also demonstrated that the pro-
posed measures of organisation are consistent with the number of phase singulari-
ties from phase analysis. The proposed methods in this study do not require these
additional pre-processing steps which makes it algorithmically straightforward to
implement compared to the phase analysis. Therefore, the key contributions of
this chapter can be summarised as following:

e The findings show that the complex spatiotemporal patterns can be studied

using complex network modelling and hierarchical clustering.
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e These analyses yield results that are consistent with more traditional mea-
sures such as the number of phase singularities and dominant frequency,
and so provide new tools for quantifying and understanding the dynamics
of complex electrical activation patterns in cardiac arrhythmias. One distinct
advantage is their simple implementation which do not require additional

pre-processing steps.

e This chapter also establishes that epicardial activity during human VF be-
comes progressively more disorganised and complex during a period of
global myocardial ischaemia, and that a 30 s period of reperfusion does not
reverse this decline.



Chapter 7

Conclusions and Future Work

Understanding the dynamics of complex cardiac electrical activity is important to
advance the diagnosis and treatments for arrhythmia. By combining the cardiac
electrophysiology concepts with the systems theoretic approaches, this thesis has
presented the model-based estimation methods for quantifying the spatiotemporal
cardiac electrical activity. Briefly, the proposed methods are the following:

o A statistical detection-estimation framework to reconstruct the underlying
tissue dynamics in the simulated datasets of cardiac electrograms.

The contributions of the proposed approach are the following:

— The method introduces a modelling and estimation framework for car-
diac surface measurements, which are acquired using electrical map-
ping techniques.

— The method includes the stimulus dynamics into the estimation frame-
work, which is particularly important for complex cardiac patterns that

are formed from the multiple re-entrant stimuli.

e A complex network modelling approach to quantify the spatiotemporal or-

ganisation in the clinical electrograms of VF.

The contributions of the proposed approach are the following:

— The method proposes different complexity measures based on the cor-
relation analysis, network analysis and hierarchical clustering algorithm.

— The method quantifies the evolution of spatiotemporal organisation
during different stages of VF.

153
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The rest of this chapter is structured as follows. Section 7.1 summarises the im-
portant conclusions from each chapter in this thesis. Finally, some of the possible
directions for further work are presented in Section 7.2.

71 Summary

The work presented in this thesis started by introducing the three integral com-
ponents of model-based estimation approaches. As a result, Chapter 2 was sub-
divided into three major parts. The first part introduced the fundamental elec-
trophysiology concepts of the cardiac electrical activity at the cell-level, tissue-
level and the surface level. Most importantly, this part demonstrated that the
electrical activation within the heart muscles cannot be measured from experi-
mental techniques. Hence, the advantage of computational models of cardiac
electrophysiology-based estimation method, which allows to reconstruct the un-
derlying unobserved electrical dynamics of the tissue field from the cardiac elec-
trograms. In order to obtain an integrated cardiac model, the following section re-
viewed some of the important classifications of the cardiac models at each spatial
scale. This section illustrated that the cardiac modelling literature offers several
candidate model structures with varying complexities and detailed descriptions.
Based on the type of forward and inverse problem, a suitable model structure can
be employed. Finally, stochastic state-space models and nonlinear state estima-
tions were briefly introduced to provide a foundation to the estimation framework
employed in this thesis.

In chapter 3, an integrated model of cardiac electrophysiology was derived
based on the phenomenological models of cardiac action potential initiation and
propagation. The phenomenological models are particularly suitable for the esti-
mation frameworks because of their ability to reproduce the key features of the
cardiac electrical activity, without describing the intricate electrophysiology rela-
tionships, such as ionic conductance, gating variables. The action potential char-
acteristics are quantified using smaller number of parameters and state variables,
and hence, phenomenological models are computationally less expensive to solve
compared to the biophysical models. An important contribution of this chapter is
the proposed continuous version of mMS model, which enables a straightforward
implementation of statistical estimation methods. The continuous version of mMS
model was then coupled with monodomain tissue model equation, which was
extended to model the extracellular electrograms. The detailed simulation-based
study of the proposed integrated model in one-dimensional and two-dimensional

spatial fields enabled to identify the importance of state variables, the pattern
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formation and mechanisms of the re-entrant activity.

The reconstruction of the tissue dynamics from cardiac electrograms was pre-
sented in Chapter 4 and Chapter 5, for one-dimensional and two-dimensional
tissue fields, respectively. The estimation problem was viewed as a statistical infer-
ence of the spatiotemporal data, which consists of the following important steps:
(1) Deriving a stochastic versions of the cardiac models, (2) Model reduction step
to form a finite dimensional state space model, (3) A single stage detection-state
estimation step for simultaneously detecting the stimulus and estimating the state
variables via URTS smoothing method. In the estimation framework, model-based
detection scheme was employed to detect and isolate the sensor locations, nearby
or at the stimulus conditions. The stimulus variables at the detected sensor loca-
tions were then augmented to the nominal state-space model, for improving the
accuracy of the state estimates of the transmembrane voltage and gating variable.
The dynamics of stimulus variables were further incorporated by representing as
a weighted sum of b-splines functions in the spatial domain, followed by a tem-
poral mapping scheme to capture the dynamic structure in the state estimates and
covariance matrices. Although the above described procedures were similar for
both one-dimensional and two-dimensional spatial field, the later spatial field in-
troduced high-dimensional state estimation problems. In order to obtain a compu-
tationally efficient algorithm, a fixed lag-reduced rank URTS smoothing algorithm
was then proposed. Therefore, the algorithm presented in Chapter 5 was tailored
for high-dimensional state-space models. The performance of the proposed algo-
rithms were evaluated for the normal and re-entrant conditions, where the data
was modelled using mMS model. By doing so, certain level of model mismatch
was incorporated into the estimation framework. The results from Chapter 4 and
Chapter 5 show that the proposed method can be used to estimate the hidden
state variables from the electrogram measurements, simultaneously by detecting

the stimulus variables.

In Chapter 6, a complex network modelling approach was presented to study
the spatiotemporal organisation in the complex spatiotemporal patterns of hu-
man VE. To quantify the level of organisation, different metrics from correlation-
analysis, network analysis and hierarchical clustering are proposed. Correlation
analysis quantified the linear coupling between the epicardial recordings, where
the global level of organisation within VF episodes was characterised using the
Frobenius norm. By representing the functional associations as network connec-
tions between the electrodes, the information extracted from network analysis can
be used to identify the underlying network of highly interconnected fibrillation re-

gions which drives complex spatiotemporal patterns of electrical activation. Sim-
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ilar to the Frobenius norm measure, connection density provided an overall mea-
sure of organisation while the spatial organisation within a network was charac-
terised using average clustering coefficient. It can be seen that the degree of global
clustering is dependent on the global functional organisation in electrograms, as
the episodes with higher levels of organisation show higher levels of clustering
and vice versa. On the other hand, the number of clusters measure from hier-
archical analysis characterises the inherent complexity within VF episodes. Both
clustering coefficient and the number of clusters illustrate the presence of localised
spatial organisation on the epicardial surface through different procedures. Hence,
the result from one method can be used to examine and validate results obtained
from the other approach. The mean change in slope parameters obtained from the
piecewise linear fit to proposed metrics show that the changes in organisation are
consistent throughout the VF episodes. This illustrates that the proposed methods

can be used to study the level of organisation in human VE

7.2 Future Work

In this section, some of the further extensions from the work presented in this
thesis are outlined.

Robust measures in network modelling

In the case of complex network modelling, the functional networks of the un-
derlying spatiotemporal patterns were quantified using a correlation, which is a
linear coupling measure. A natural extension of the proposed network modelling
approach is to capture the nonlinear dependencies between the different spatial
locations. For instance, information theory measures such as mutual information
can be used [58]. In this way, weighted networks with nodes as the electrode posi-
tions and edges as the nonlinear dependencies can be constructed. Following this,
the underlying properties of the functional networks with nonlinear dependencies
can also be studied using different graph-theoretical measures from the literature
[49].

Observability Analysis

The proposed detection-estimation framework has demonstrated that it is possible
to reconstruct the tissue dynamics from the sensor configurations. However, an
observability analysis can be performed to investigate the detection and estima-

tion performance with different sensor configuration. A thorough observability
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analysis may also help to determine the minimum number of sensors, which are
required for the accurate reconstruction of the tissue dynamics from the electro-

grams.

Joint estimation and identification problem

The proposed detection-estimation framework in Chapter 4 and Chapter 5 has
shown the evidence for reconstructing the state variables of tissue dynamics. In
addition to the state-estimation, other interesting extension is to include estima-
tion of electrophysiology parameters described in the tissue model. The param-
eters such as diffusion coefficient, time constants within the cell-model can be
considered into the estimation framework. The state and parameter estimation
are collectively known as joint estimation in the literature, which has been re-
cently implemented for estimating the both state variables and time constants of
a single cardiac cell [140]. In this paper, the parameters were augmented into the
state vector along with the state variables, and estimated using UKF algorithm.
However, the development of a detection-joint estimation method can be used to
fully reconstruct the spatial and temporal characteristics of the tissue dynamics
from the observations.In particular to the reconstruction of tissue dynamics, one
of the important parameter to be estimated is the diffusion co-efficient, which can
be considered with homogenous or hetrogenous characteristics. In order to esti-
mate this diffusion co-efficient, methods such as Expectation-Maximisation (EM)
algorithm [112], variational inference [165] could be employed.

Implementation of the proposed detection-estimation algorithm on clin-
ical recordings

In this thesis, the performance of the proposed algorithm was evaluated on the
simulation data of cardiac electrical activity. An interesting and natural extension
stems from this thesis is the implementation of algorithm in the clinical recordings
of normal and arrhythmic conditions. By re-constructing the state variable dynam-
ics in the clinical recordings, the underlying mechanisms of the cardiac activity can
be elucidated. To achieve this, certain amendments should be incorporated among
which some of them are the following: (1) The heart is essentially a heterogeneous
tissue, where the dynamics changes from cell to cell. The variations can be ob-
served with the thickness of muscles, ion channel densities and fiber orientations.
Studies have shown that the tissue heterogeneities have played an important role
in the breakups of activation wavefronts [152]. This implies that the assumptions

of homogeneous and isotropic diffusion need to be changed for incorporating the
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heterogeneous and anisotropic dynamics. (2) Here, the integrated cardiac models
were discretised using explicit finite difference method, which requires smaller
value of sampling time to obtain stable and accurate patterns. However, this may
not be the case in clinical recordings, especially in the electrical mapping. De-
pending on the type of data acquisition, an efficient discretisation method may be

incorporated.



Appendix A

The Kalman Filter

In this section, the derivation of Kalman filter for linear Gaussian state-space mod-
els is presented [20]. For this consider a stationary linear state-space model form
of (2.17) and (2.18) given by

Xp+1 = Axy + €5, (A.1a)
vk = Cx¢ + €}, (A.1b)

where A € R"*" is the state transition matrix and C € R"v*"* is the observation
matrix. As described earlier, both state disturbance and measurement noise are
considered to be white noise sequences sampled from zero mean with covariance
matrices given by X and X, respectively.

By assuming that initial state estimate and error covariance matrix are known,

the estimation error can be defined as
€1 = Xkt1 — Xy (A-2)

where & ; is the prior filtered state estimate, which is computed based on the
observations.

The prior error covariance matrix associated with this prior state estimate is

k1= E {ék_ﬂék_ﬂ} =E [(Xkﬂ — %) (X1 — f(,;l)q : (A.3)

Now the objective is to correct the prior estimates by incorporating the obser-

vations. The expression for posterior state estimate is given by
ik+1 = ﬁk_+1 + Kk+1 (YkJrl - Cﬁk_+1)/ (A4)
where Kj; is the Kalman gain, which needs to be calculated for obtaining an
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optimal state estimate. One important measure in this formulation is the difference
between measurement and predicted state estimate, which is often referred as

residuals or innovation

€1 = Yir1 — CX - (A.5)

Similar to (A.3), the posterior state covariance can be written as

P;:H =E {ekJrlél—chrl} =E [(XkJrl — i) (Xer1 — >A<k+1)T] (A.6)

Substituting (A.4) and (A.1b) in (A.6) gives

Pyy1 =E [[(XkH - X;;H) - Kk+1<ka + 6% - CX;:H)]
(A7)

- N
[(%k1 = Xy1) — Kiyr (Cxic + €] — €, )] ]

The above expression is then simplified to represent in terms of prior state covari-

ance matrix as
Py = (1 - KO Py (I- K 1C) |+ Ky Zer Ky (A.8)

The diagonal elements of Py, represent the estimation error variance of each
state. The Kalman gain is computed such that it minimises the estimation error
variance of states following minimum mean-square error performance criterion.
This can be calculated by evaluating the trace of Py, and then setting to zero.
The resulting expression for Kalman gain is given by

K11 =P, ,C"(CP,,C" +Za)! (A9)

The expression for posterior state covariance P;, 1 can expressed in few ways. For
instance, (A.8) is often referred as "Joseph" form of covariance update equation
while Ky can be substituted into (A.7) and re-arranged to give

P =P, - P, ,C(CP,,C" +Za) 'CP, (A.10)

The final step is to formulate the update equations for prior state estimate and
error covariance matrix. By using the state transition matrix and the previous

state estimate, the prior state estimate is updated as
X = AXg (A.11)

To find the updated prior error covariance matrix, the estimation error is first
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Algorithm A.1 Linear Kalman filter

1. Initialisation: Prior state estimate Xy and error covariance matric Py
2. Recursive estimation for k € {0,1,..., T — 1}
Prediction :

Compute the predicted state estimate : X, ; = A%
State estimate : X, ; = A%

Error covariance matrix, ijrl = APkAT + X,
Correction :
Compute Kalman gain, Kiq = P, ,C"(CP,,C" +Z,) "

State estimate : X1 = X 1 + Kip1(yrr1 — CX )

Error covariance matrix, Py = P, ; — P, ,C(CP_,C" +L,)"'C

reformulated by substituting (A.1b)and (A.11) into (A.2)

e 1 = A(g — %) +ep = Aey + Lex (A.12)
Equation (A.12) is then substituted into (A.6)

P, —F [(Aek +el) (Aeg + e,’;)T] , (A.13)

The above equation is expanded and then expectation is taken with respect to the
e; and €5 to obtain
P =APA" +Z (A.14)

This completes the derivation of Kalman Filter. In summary, the recursive esti-
mation procedure of Kalman Filter is given in Algorithm A.1, which comprises of
two major steps : 1) prediction and 2) correction.
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