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Abstract

This thesis concerns how symmetries impinge on quantum mechanical measure-

ments, and preclude certain self adjoint operators from representing observable

quantities. After developing the requisite mathematical machinery and aspects

of quantum measurement theory necessary for our analysis, we proceed to crit-

ically review the literature surrounding the remarkable theorem of Wigner,

Araki and Yanase (WAY) that prohibits accurate and repeatable measurements

of any observable not commuting with an additive conserved quantity, as well

as discussing the conditions under which approximate measurements with ap-

proximate degrees of repeatability can be achieved. We strengthen the original

statement of the WAY theorem and generalise it to the case of position measure-

ments obeying momentum conservation, leading to a solution of a long-standing

problem of Stein and Shimony. A superselection rule appearing as the exis-

tence of an observable which commutes with all others gives rise to a stronger

restriction than the WAY theorem, yielding self adjoint operators which do not

represent observable quantities. We analyse various perspectives on superse-

lection rules, aiming to clarify different viewpoints appearing in the literature

since the inception of the topic in 1952. We exploit an explicit description

of relative phase observables which have been lacking in other contributions,

delineating conditions under which relative and (prohibited) absolute phases

become statistically close. By providing simple models we are able to mimic a

number of attempts to overcome superselection rules, in order to highlight the

generic features of such attempts. We show that the statistical proximity of ab-

solute and relative quantities arises only when there is a highly localised phase

reference, and that the superselection rule compatible relative phase factors

between certain superpositions takes on the appearence of a forbidden relative

phase factor in this limit. However, we argue that these relative phase factors

can be determined fully within the confines of a superselection rule.
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Chapter 1

Introduction

Quantum theory has been present in its modern form for the best part of

90 years. Through the pioneering work of Einstein, de Broglie, Heisenberg,

Schrödinger, Bohr, Born and many others, along with the insight provided by

Dirac and mathematical rigour and clarity of von Neumann, it has been made

possible to understand a considerable proportion of the quantum world to which

we have only indirect access. Quantum mechanics, in one form or another, has

enjoyed widespread success and is in full agreement with a rich and varied class

of experimental testing. There are, of course, still philosophical difficulties

with the theory, controversy over preferred interpretations, and “shut up and

calculate” being the approach adopted by many practitioners.

It is not the purpose of this thesis to rehearse debates surrounding the issues

of measurement and interpretations of quantum theory; for this there are many

excellent works (a nice introduction can be found in [1.3], for more advanced

contributions [1.2] and [1.4], selected papers in [1.1]). Instead, we follow an

approach in which the probability measures over measurement outcomes take a

primary role, and the objects in the theory are sought to be operational in the

sense that they are derived from these basic probabilities (although there are

a few exceptions). This is not an ideological position, rather a practical one,

allowing the reader the freedom to interpret the results in relation to their own

inclinations about the subject.

The thesis is concerned with two primary matters. The first is the extent to

which (additive) conservation laws limit the accuracy and repeatability proper-

ties of quantum measurements. The collection of work on this topic constitute

the so-called Wigner–Araki–Yanase (WAY) theorem. We present additional
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Chapter 1 Introduction

results that significantly generalise the WAY theorem to include position and

momentum which, as unbounded continuous observables, were not covered in

the original proofs.

The second is to investigate and discuss the usual assumption that all self ad-

joint operators represent observable quantities; there are numerous examples

of scenarios in which this may not be the case. This limitation to the algebra

of observables, or equivalently the set of pure states, is called a superselection

rule. We scrutinize the literature, highlighting some errors, and by introduc-

ing a number of simple models show that attempts purporting to circumvent

superselection rules are untenable. We seek to clarify ambiguous language and

introduce to the subject a rigorous means of discussing relative quantities which

are to play a crucial role.

In chapter 2 we introduce some of the mathematical preliminaries which will

be used freely throughout the rest of the thesis. This includes basic ideas

from functional analysis and Hilbert space theory, important classes of bounded

linear operators, operator algebras and Stone’s theorem. Then by introducing

a minimal amount of elementary topology and measure theory, we are able to

construct positive operator valued measures (POVMs) of which the projection

valued measures PVMs arise as a special case. The correspondence between

PVMs on the real line and self adjoint operators due to the spectral theorem is

then given, before proceeding to outlining the relationship between POVMs and

PVMs acting in a larger Hilbert space by virtue of Naimark’s dilation theorem.

A means for constructing POVMs from PVMs by a process called smearing is

then given, before finishing with a brief discussion of unbounded operators.

In chapter 3 we seek to incorporate some of the mathematical features of the

previous chapter into a discussion of quantum theory, and specifically quantum

measurements. The statistical framework of probabilistic theories is developed

in terms of basic notions of states, observables and measurements, which we

then give in terms of quantum mechanical states and observables provided by

trace one positive operators acting in a complex Hilbert space, and POVMs on

a suitable space of experimental outcomes, respectively. The definition and

various features of quantum measurements are developed; Naimark’s theorem

and its generalisations allow a measurement for every observable, the sharp

observables corresponding to the ordinary description in terms of self adjoint

operators. The role of repeatable measurements is discussed in some detail,
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Chapter 1 Introduction

before concluding with some paradigmatic examples of quantum measurement

models.

Chapters 4 and 5 comprise two research papers concerning limitations to quan-

tum measurements which arise when there is an additive conserved quantity

over the Hilbert space of the system and measuring apparatus combined. Dis-

covered by Wigner in 1952, there have been a large number of contributions on

the subject including a general proof due to Araki and Yanse in 1960 covering

a fairly large class of observables and conserved quantities. The importance of

this limitation was felt strongly by Wigner years after his discovery, and was

summarised by Rudolph Haag in a talk in 1995 at the Wigner conference in

Goslar (as reported in [1.5], p.94), where he quoted Wigner as having said “Some

of us believe that there are no points”, in reference to his thoughts regarding

accurate position measurements being impaired in the presence of momentum

conservation.

In the first paper (chapter 4) we analyse in detail Wigner’s paper of 1952,

which demonstrated an incompatibility between accurate and repeatable mea-

surements of a spin component, and the conservation of the angular momentum

of an orthogonal component. Wigner was also able to demonstrate that good

measurements come at the price of having a large spread of the conserved

quantity in the initial state of the measuring apparatus. We reconstruct his ar-

gument and fill in details which were omitted in his somewhat compact paper,

highlighting the role played by repeatable measurements.

We provide a stronger form of the WAY theorem than that which appeared in

the paper of Araki and Yanase in 1960, taking care to highlight the role of an-

other important condition; the so called Yanase condition, which stipulates the

commutativity of the apparatus’ pointer observable with the conserved quan-

tity. The importance of this condition is manifest in our analysis of Wigner’s

paper, and the lack of attention to the role of the Yanase condition and to the

repeatability criterion in the ensuing literature surrounding the WAY theorem

is briefly discussed in order to highlight these necessary components.

We discuss the evolution of the WAY theorem from a no-go result to a quantita-

tive trade-off between good accuracy and repeatability properties on one hand

and the necessary size of the apparatus (in the sense of spread of the conserved

quantity in the apparatus) on the other. We review and generalise some of the

major contributions to the subject, in particular due to Ozawa. The chapter
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concludes with a solution to a long standing open problem posed by Stein and

Shimony in 1979 concerning the possibility of a two valued (left or right of the

origin) position measurement subject to momentum conservation.

In chapter 5 we present a paper on the WAY theorem relating to Wigner’s

concern about spacetime points: the physically important case of WAY type

limitations to position measurements that respect the conservation of linear

momentum. Although many people have referred to such a limitation, until

the work presented in chapter 5 there had never been anything like a proof.

We scrutinize a paper by Ozawa which appeared in 1991 purporting to dis-

prove the existence of such a limitation and show that it is flawed. We discuss

the conditions under which good accuracy and repeatability can be achieved;

namely where there is a large momentum spread in the initial state of the

probe system. Noticing that such a large spread corresponds to good position-

space probe localisation hints at the possible relation to the subject of so-called

quantum reference frames. Furthermore, if only relative positions (between two

quantum systems) are measured, the WAY limitation vanishes.

The issue of relative versus absolute operators also appears in chapter 6, which

concerns superselection rules. We return to some of the earliest contributions

to the subject, most notably by Wick, Wightman and Wigner, who argue that

the electric charge is a superselected quantity and therefore relative phase fac-

tors between states of different charge are unobservable, and Aharonov and

Susskind, who present a thought experiment with the purpose of creating and

measuring coherent superpositions of different charge eigenstates. The existence

of relative phases between two cavities containing charged mesons is central to

the argument of Aharonov and Susskind, and the same line of reasoning has

reappeared in more modern contributions of, for example, Bartlett, Spekkens

and Rudolph. We present a number of simple models with which we are able

to mimic the generic behaviour of all attempts to avoid or circumvent super-

selection rules. These models all have the same structure: producing states

of a system which appear to be in contradiction with a superselection rule al-

ways comes at the price of having a second system which is highly localised in

the relevant phase-like quantity. By bringing to the superselection rule debate

a rigorous notion of relative phases (which have been introduced by P. Lahti

and J.P. Pellonpää and others) and a means of relativising any given opera-

tor, we are able to show that all the proposed experiments which are supposed

to evade a superselection rule, are in fact fully in line with one. The relative
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phase factor appearing between states of the system alone appears only when

system-reference entanglement has been ignored, and the true state of affairs

is a system-reference state that is superselection rule compatible, with the rel-

ative phase factor pertaining to a relative phase of the system and reference

combined. We draw comparisons between this situation and realistic interfer-

ometry experiments where there is a conservation law present, and conclude

that there, too, it is only relative phases (pertaining to the system under in-

vestigation and a reference provided by the states of the apparatus) that are

ever observed. Finally we compare the limitation to the notion of observable

caused by superselection rules and the limitation to measurements arising from

the WAY constraint.

The thesis concludes with a brief summary of the work presented and proposed

further research.
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Chapter 2

Mathematical Background

In this chapter we introduce some of the mathematics required for subsequent

chapters, and fix some notation that will be employed throughout the thesis.

2.1 Basic Structures

We will consider both finite and infinite dimensional complex Hilbert spaces,

often to be denoted H. We will always assume that H be separable, and adopt

the convention that the inner product h�j�i :H�H! C be linear in the second

argument (and therefore conjugate linear in the first).1 Typical examples we

will encounter are CN – the N -dimensional complex vector space and L2(RN)

– the space of (equivalence classes of) square integrable functions on RN (both

with appropriately defined inner products). We denote the set of bounded

(therefore continuous) linear maps between two normed spaces V1 and V2 by

B(V1;V2). In the special case where V1 = V2 � V, this will be abbreviated to

B(V).
A normalized (or unit) vector ' 2 H satisfies k'k = 1. The norm is invariant

under the transformation ' 7! ei�'; � 2 R. The space of equivalence classes

[�] defined via ' s '0 () '0 = z' (' 2 H) for some z 2 Cnf0g is denoted

P(H) and known as the projective (Hilbert) space, and the classes fz' : z 2
Cnf0g; ' 2 Hg as the (projective) rays. The unit rays are thus defined by

['] = fei� : 0� � < 2�g where k'k= 1.

The set of all bounded linear functionals B(H;C) forms a vector space (with

1This is the convention most commonly encountered in physics and its convenience is par-
ticularly evident when utilising Dirac’s notation.
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Chapter 2 Mathematical Background

addition defined pointwise) called the (continuous/topological) dual of H, and

is denoted H�. An important theorem due to F. Riesz (often called the Riesz

representation theorem) demonstrates that every bounded linear functional �

on H is of the form ��(') = h�j'i for all ' 2 H and some fixed vector � 2 H
(and k�k = k�k) (see, e.g., [2.5] p.13, for a proof). This establishes the anti-

isomorphism H'H�, and thus the self-duality (or reflexivity) of Hilbert space.

We may combine two or more Hilbert spaces to form a new Hilbert space via

the tensor product. For example the tensor product of H1 and H2 is written

H1
H2, with vectors in H1
H2 written as  1
 2 for  1;2 2 H1;2. The

inner product is defined as h'1
'2j�1
�2i = h'1j�1iH1h'2j�2iH2. For a full

construction, see [2.17] (p.49) or [2.9] (p.175).

The space B(H) of all bounded linear operators on H (i.e., those A : H!H
for which kA'k � ak'k ;0 � a <1 for all ' 2 H) is a Banach algebra un-

der the (operator) norm kAk := supfA' : k'k= 1g (since kABk � kAkkBk
and B(H) is complete with respect to this norm). The operator adjoint � :

B(H)! B(H) defines an involution which satisfies kAk = kA�k and kA�Ak =
kAk2 (the second equality is called the C� identity), thus making B(H) a

C�-algebra. The commutant R0 of a set R � B(H) is defined as the set

R0 = fB 2B(H) : [A;B] = 0 for all A 2Rg. A subalgebra A� B(H) for which

A00 =A is called a von Neumann algebra. If 1 2 A, A=A00 if and only if A is

weakly closed, which in this case is true if and only if A is strongly closed (see

p.18 for discussion of these topological notions). B(H) is itself a von Neumann

algebra.

The self adjoint elements of a C� algebra are those A which satisfy A=A�. In

B(H) these are exactly those A for which h'jA�i= hA'j�i for all '; �2H. It is

a fundamental result (called the Gelfand–Naimark–Segal (GNS) construction;

see [2.5] pp.250-252 or [2.7], pp.122-124 for details) that any abstract C� algebra

can be represented as some norm-closed �-subalgebra of B(H) for some H, and

henceforth we shall always consider any C�-algebra to be an operator algebra

in B(H).

The spectrum �(A) of A 2 B(H) is given as the set of � 2 C such that

A��1 does not have an inverse in B(H). The spectrum is non-empty, closed

and bounded as a subset of C. If A is self adjoint �(A) � R. In this case

kAk= supfj�j : � 2 �(A)g, and the quantity on the right hand side is called the

spectral radius of A. The spectrum of eigenvalues is called the point spectrum.
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Chapter 2 Mathematical Background

Operators with pure point spectrum (i.e., the spectrum consists only of eigen-

values) will be called discrete. The only other operators we shall encounter

have continuous spectrum.

The positive elements/operators in B(H) are defined as those A for which

h'jA'i � 0 for all '2H; we write A� 0. Positive operators are self adjoint and

satisfy �(A)� R+[f0g; we write B+(H) for the set of all such operators. The

relation �, defined by A�B if A�B � 0, induces a partial order on the vector

space Bs(H) of self adjoint operators. For any A � 0, there is a unique posi-

tive operator B for which B2 = A (see [2.17], p.196 for a proof), and we write

B =
p
A. For any A 2 B(H), a positive operator denoted jAj can be obtained

from A by defining jAj :=p
A�A. A map M : B(H)! B(K) is called positive

if M(A) 2B+(K) for all A 2B+(H).

An operator P 2 B(H) is said to be an orthogonal projection (or just pro-

jection) if P 2 = P = P �. To each projection P there is a closed subspace of

H denoted PH � H, and conversely to each closed subspace H0 � H there is

a projection PH0 such that PH0H =H0. P? := 1�P is a projection satisfying

PP?= 0 and the direct sum of the ranges of P and P? is H=PHLP?H. Any

vector ' 2 H can be written uniquely as ' = '1+'2 where '1;2 2 PH;P?H
respectively. Defining P'� := h'j�i' for some (unit) ' 2 H and all � 2 H, P'
is a rank-1 projection. Furthermore every rank-1 projection is of the form P';

occasionally we use the notation P' � j'ih'j � P [']. Notice that Pei�' = P'

and so any representative unit vector in the unit ray determines the same rank-

1 projection. The projections can be seen to represent propositions, and the

set of all projections P(H) in H form a lattice under the partial order �, and
along with ? it is an orthocomplemented lattice (see, e.g. [2.9], p.77).

The isomorphisms of H are furnished by the unitary operators U . These are

(surjective) isometries, i.e., jjU'jj = jj'jj for all ' 2 H (and so U is automat-

ically bounded, with kUk = 1), or equivalently, those operators that satisfy

UU� = U�U = 1.2 The set of all unitary operators U(H) form a group under

multiplication. We shall also encounter antiunitary operators; they are con-

jugate linear isometries U 0 for which hU 0'jU 0�i = h'j�i. The identity is not

antiunitary, and so the set of antiunitary operators is not a group.
2If the dimension of H is finite UU� = 1 if and only if U�U = 1.
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The trace of A 2B+(H) is the number

tr[A] :=
1X
i=1

hei;Aeii (2.1)

with feig some orthonormal basis in H. If the sum converges, tr[A] does not

depend on the choice of orthonormal basis.

The trace class is T1(H) := fA : tr[jAj]<1g. If A 2 T1(H), then tr[A] =PheijAeii is finite and independent of the orthonormal basis. The set of trace

class operators is a Banach space under kAk1 := tr[jAj] (trace norm). We will

write S(H) to denoted the positive trace class operators with trace one.

The partial trace (over K) generalises the trace. It is a bounded, linear map

trK : T1(H
K)!T1(H) satisfying

tr[trK[A]B] = tr[AB
1] for all B 2B(H); A 2 T1(H
K) (2.2)

and T := trK[A] 2 T1(H) is unique. The partial trace is compatible with the

trace, in that for A 2 T1(H
K) we have tr [trH[A]] = tr [trK[A]] = tr[A]. The

partial trace over H is defined analogously. In practice the partial trace is

computed by fixing orthonormal bases f'ig and f�jg in H and K respectively,

and with A 2 T1(H
K) the formula trK[A] =
P
i;j;kh'i
�j jA'k
�ji j'iih'kj

is readily seen to fulfill the definition.

The Hilbert-Schmidt inner product is defined as hA;Bi2 = tr(A�B) which in-

duces the (Hilbert-Schmidt) norm kAk2 = [tr(A�A)]
1
2 under which T2(H) :=

fA : kAk2 <1g (called the Hilbert-Schmidt class) is a Hilbert space (and is

the completion of the trace class in the Hilbert-Schmidt norm). Two trace-

one positive operators A1, A2 are (Hilbert-Schmidt) orthogonal if and only if

supp(A1)? supp(A2) (with supp(A) := ker(A)?: the orthogonal complement of

the kernel of A.) We have the following hierarchy of norms: kAk� kAk2�kAk1.
There are thus various non-equivalent topologies on B(H) (though all are equiv-

alent if the dimension of H is finite). The ones we shall encounter in this thesis

are the uniform, the strong the weak and the ultraweak (or �-weak) topolo-

gies. In decreasing order of strength, A sequence (An) converges to A uni-

formly if kAn�Ak! 0, strongly if k(An�A)'k! 0 for all ' 2H, and weakly

if h'jAn�i ! h'jA�i for all ';� 2 H. The ultraweak topology is weaker than

the uniform topology, stronger than the weak topology and cannot be com-

pared with the strong topology. A sequence (An) converges to A ultraweakly
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if tr[(An�A)T ]! 0 for all T 2 T1(H).

The trace class operators T1(H) form a 2-sided �-ideal in B(H).3 Furthermore

one can define a (bounded) linear functional �B 2 B(T1(H);C) via �B(A) =

tr[BA] = tr[AB] for B 2B(H). Every bounded linear functional on T1(H) is of

this form, and we have the duality B(H)' T1(H)�.

A positive linear map Q :Bs(H2)!:Bs(H1) is said to be normal (or sometimes

normal positive) if, for an increasing sequence An converging strongly/weakly/

ultraweakly to A (the three notions coincide here), which is the least upper

bound of the sequence, Q(An) converges strongly/weakly/ultraweakly to Q(A).

Any positive mapping N : S(H1)! S(H2) has a unique dual mapping N � :

Bs(H2)!:Bs(H1) defined by tr[N (T )A] = tr[TN �(A)] holding for all T 2S(H1)

and A 2 Bs(H2); moreover, N� is normal. Furthermore, every normal linear

map arises as the dual of some positive linear map, in that for every normal

Q : Bs(H2)!: Bs(H1) there is a unique positive map N : S(H1)! S(H2) for

which tr [Q(A)T ] = tr [AN (T )] for all A2Bs(H2)
+, T 2S(H1). We thus identify

Q� =N , and say that N is the predual of Q. See [2.6], p. 18, Lemma 2.2 for a

proof of the above. A map Q : Bs(H2)!: Bs(H1) is normal if and only if it is

ultraweakly continuous.

The operators eitA (t 2 R); A 2 Bs(H) may be defined via the (uniformly con-

vergent) Taylor series eitA =
P1
n=0

(it)nAn

n! . It can be verified that Ut := eitA is

unitary for each t2 R. Furthermore, UtUt0 =Ut+t0 ; U�t = (Ut)
�1 (and obviously

U0 = 1), and so fUtg is a group. Also, we have that k(Ut�Ut0)'k! 0 as t! t0

for all ' 2 H. Such a group is called a strongly continuous one-parameter

unitary group. There is a deep correspondence between such objects and self

adjoint operators due to Stone (for the original work, see [2.22, 2.23]).

Theorem 1. (Stone)

Given a one parameter unitary group on H such that t 7! Ut is (strongly)

continuous there exists a unique self adjoint operator A such that

Ut = eitA: (2.3)

This will prove to be a useful correspondence when considering (unitary) time

evolution arising from measurement interactions in quantum theory.
3This means that for A 2 T1(H), AB, BA 2 T1(H) for any B 2B(H).
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2.2 Further Topics

2.2.1 Measure theory

We use frequently (though often implicitly) properties of measurable spaces.

Here we give a cursory overview before developing the mathematical machinery

required for the following sections. For a detailed account, see e.g. [2.20] or

[2.19].

A topological space is a pair (X;� ) where X is a set and � a distinguished class

of subsets of X, called the open sets, for which i) X; ; 2 � , ii) arbitrary unions

of subsets �i 2 � are contained in � iii) finite intersections of subsets �i 2 � are

contained in � . We shall not need more than this definition.

A �-algebra F of subsets of some set 
 satisfies i) 
 2 F , ii) Xc 2 F if X 2 F
(“c” denoting complementation) , iii)

S1
i=1Xi 2 F if Xi 2 F for all i 2 N.

The elements of F are called measurable sets, and a set 
 equipped with such

an algebra F of subsets gives rise to the pair (
;F) which will be called a mea-

surable space. A function f mapping one measurable space (
;F) to another,

(
0;F 0), is said to be measurable if f�1(X) 2F for any X 2F 0. In future chap-

ters, the measurable sets will represent measurement outcomes in some physical

measuring process, and measurable functions will have a natural interpretation

as scalings between different outcome spaces.

Given any collection G of sets in 
, there exists a smallest �-algebra F such

that G � F . If 
 is a topological space, one can choose F � B(
) to be the

smallest �-algebra containing all open sets, in which case B(
) is called the

Borel �-algebra and the elements of B(
) the Borel sets.4 Very often (
;B(
))
will be given as (R;B(R)) (and Cartesian products thereof).

A (real, positive) measure � on (
;F) is a function � : F ! R for which i)

�(X) � 0 for all X 2 F , ii) �(
S1
n=1Xi) =

P1
n=1�(Xi) for any pairwise disjoint

sequence Xi for which Xi 2F for each i 2N. Condition ii) is called countable–

additivity or �–additivity. If iii) �(
) = 1, � is called a probability measure.

A complex measure �0 is a �-additive map �0 : F ! C.

Finally, the convolution of two (complex, Borel) measures �; �0 on B(R) is

given by ���0(X) = (���0)f(x;x0 : x+x0 2X)g for all X 2 B(R), where ���0
4Notice that the definition of a �-algebra entails that therefore all of the closed sets are also

Borel sets.
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is the product measure on B(R2).

2.2.2 Operator measures

One may generalise the previous subsection to allow for spaces other than R

to be in the range of the measure. We consider the case where the range is

B(H). This allows us to relate some aspects of the Hilbert space discussion to

that of measurable and topological spaces, and paves the way for a mathemat-

ical framework capable of dealing with the probabilistic structure of quantum

theory. Excellent presentations of operator valued integration, spectral theory

and operator measures can be found in [2.3], [2.6].

2.2.3 Positive operator valued measures

Definition. Let (
;F) be a measurable space and (Xi), i 2 N be a pairwise

disjoint sequence for which Xi 2 F for each i 2 N. A Positive Operator

Valued Measure (POVM) is the triple (
;F ;E), where E is a mapping E :

F !B(H) satisfying:

1. E(X)� 0 for all X 2 F (positivity)

2. E(
) = 1 (normalization)

3. E(
S
Xi) =

P
E(Xi) (�–additivity)

The sum
P
E(Xi) is understood in the sense of weak convergence. Often we

will refer to E as a POVM or a POVM on 
 (or sometimes even on F or on H
if the Hilbert space on which the operators in the range of E act is the subject

of interest) to avoid cumbersome notation and language. The underlying set

and �-algebra should always be clear from the context. Occasionally a POVM

is defined by 1: and 3:, (see, e.g., [2.3]), and with 2: included referred to as a

normalised POVM, or semispectral measure (although this term is sometimes

reserved for normalised POVMs on the Borel sets of R), or even generalised

spectral family ; see, e.g., [2.18], Appendix “Extensions of linear transformations

on Hilbert space which extend beyond this space”. Also, the weak convergence ofP
E(Xi) is equivalent to strong convergence since the family of operators E(Xi)

is bounded (see[2.3], theorem 5, pp. 13). If there exists a countable 
0 2 F for

which E(
0) = 1 then E is said to be discrete. If F = B(R), E : B(R)! B(H)
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is called real POVM. The deep correspondence between projection valued real

POVMs and self adjoint operators will be given in subsection 2.2.4.

The following lemma demonstrates the motivation and utility of the definition

of a POVM.

Lemma 1. Let (
;F ;E) be set algebra F of subsets of 
 and E : F !B(H)

be a positive operator valued map. The mapping �' : F ! R defined by

�'(X) = h'jE(X)'i is a (probability) measure for all (normalised) ' 2H if

and only if E : F !B(H) is a POVM.

In anticipation of subsequent chapters, we shall refer to the operators E(X) as

effect operators or simply effects ([2.12], [2.13], [2.14]).5 In physics literature,

E(X) are often called POVM elements.

As a direct consequence of the definition of a POVM, the effects are thus

bounded in the unit (operator) interval; E(X)2 [0;1] for allX 2F and
P
iE(Xi)=

1 (converging strongly).

2.2.4 Projection valued measures and spectral measures

A projection valued measure (PVM) is a (not necessarily normalised) POVM

for which E(X)2 = E(X) for all X 2 F . Equivalently, a POVM is a PVM exactly

when it is multiplicative, i.e., E(X1\X2) = E(X1)E(X2) for all X1;X2 2 F . A

normalised PVM (i.e., one for which E(
) = 1) is called a spectral measure. If

E is a real PVM, we may integrate with respect to the real measure given by

dh'jE(�)'i which gives rise to a unique bounded self adjoint operator A via the

formula Z
R
�h'jdEA(�)'i=: h'jA'i: (2.4)

The following theorem establishes the converse result.

Theorem 2. (Spectral Theorem for bounded self adjoint operators)

Given a bounded self adjoint operator A there is a unique PVM E : B(R)!
B(H) satisfying (2.4).

Sometimes we will write EA� E to emphasise that E is defined by the self adjoint

operator A. Often we will write A=
R
�dEA(�) where this is understood in the

5For this reason, one might like to call a POVM an effect valued measure, but unfortunately
history has not favoured this.
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sense of (2.4). For a pedagogical discussion of the meaning of the spectral

theorem, see [2.8].

One may also use (2.4) to construct new self adjoint operators from A. Let

EA be the PVM corresponding to A, and let f be a real-valued bounded Borel

measurable function on supp(EA).6 Then there is a unique Af 2 B(H) such

that

Af =
Z

R
f(�)dEA(�) (2.5)

and Af is self adjoint.

If A is discrete (i.e., has pure point spectrum, or if 
 is countable), (2.4) takes

on the familiar form A=
P
iaiPi, where ai are eigenvalues of A and P : i! Pi

the PVM, where we have moved from E to P to emphasise the connection with

projection operators defined in section 2.1.

For any spectral measure ES (S standing for “spectral”) we have a localisabil-

ity property in the sense that for any X 2 B(R) there is a ' 2 H for which

h'jES(X)'i = 1. We will encounter POVMs with a weaker form of this prop-

erty in the following sense. A POVM E is said to satisfy the norm-1 property

if kE(X)k= 1 whenever E(X) 6= 0. For any E(X) 6= 0 with the norm-1 property,

there exists a sequence ('n) in H for which limn!1h'njE(X)'ni= 1

Finally, we encounter integrals of the form we have discussed above, but with

the spectral measures EA replaced with a POVM E. One of course then requires

a theory of operator integrals to this level of generality. However, as a result

of lemma 1 replacing the spectral measures with POVMs does not cause undue

difficulty. See [2.3] for details.

2.2.5 Dilation of POV measures - Naimark’s theorem

As will be discussed in detail, POVMs arise naturally when considering mea-

surements in quantum theory. A crucial ingredient in formulating the theory

of quantum measurements stems from a theorem due to Naimark [2.15], which

relates POVMs with range acting in H to PVMs in H0 �H. First we state the

theorem,7 and then we discuss a corollary due to Ozawa [2.16] which, as will

6The support of EA is defined to be the complement of the largest open set X on which
EA(X) = 0. It is the case that supp(EA)� �(A). Thus, in (2.4) for example, it is equivalent to
integrate over R or �(A) or supp(EA).

7In modern approaches this is usually proved as a corollary to Stinespring’s dilation theorem
(also called Stinespring’s factorization theorem) on positive maps on C� algebras; see [2.21]
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be discussed later, proves that any quantum observable can be measured.

It is not difficult to show that given a spectral measure ES : F ! H0 and an

isometry V :H!H0 then the relation

E(X) = V �ES(X)V for all X 2 F (2.6)

defines a POVM E : F !B(H)

The converse result is far less trivial and was proved by Naimark in 1943.

Theorem 3. (Naimark’s dilation theorem)

Given a POVM E :F !B(H) there exists a Hilbert space H0, a linear isom-

etry V :H!H0 and a spectral measure ES : F !H0 that satisfies (2.6).

The triple (V;H0;ES) is called a Naimark Dilation of E, and ES the spectral

dilation (for a thorough account of this theorem and its consequences in quan-

tum theory see [2.11]). The projection V V � effects V V �H0 ' H and is called

the Naimark projection.

In the quantum theory of measurement, generically H0 takes the form H0 =

H
K with K the Hilbert space representing an apparatus and ES � E1
Z

with Z a self adjoint operator on K.8 Also V takes the form of a composition

V =UW� with U a unitary operator onH
K andW� :H!H
K the isometric

embedding defined by W�(') = '
� for all unit vectors ' 2H and some fixed

unit vector � 2 K.
The PVM F !H
K defined by E1
Z(X) � 1
EZ(X) with EZ the spectral

measure of Z allows (2.6) to be written in the form

E(X) = (UW�)
�1
EZ(X)(UW�); (2.7)

or equivalently

h'jE(X)'i= h'
�jU�1
EZ(X)U'
�i (2.8)

for all ' 2H.

for the original work. However, Naimark’s theorem is discussed in detail in the appendix of
[2.18] (“Extensions of linear transformations in Hilbert space which extend beyond this space”,
specifically pp. 460 - 462, and a direct proof is given on pp. 481 - 483).

8In the quantum theory of open systems and much of the quantum information literature
K represents an “ancilla” whose states are initially uncorrelated to those of the system.
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We will see that (2.8) has a natural interpretation in terms of quantum mea-

surements. For this reason the 4-tuple hK;U;�;Zi is called a measurement

dilation of E.

2.2.6 Smearings of spectral measures

We have seen in the previous section that POVMs can arise from PVMs via pro-

jecting to a smaller Hilbert space. This is not the only way in which a POVM

may arise from a PVM. Here we sketch another example — smearing — which

will occur in the context of quantum measurements. We do not go into detail;

for a full account consult, e.g., [2.10], [2.4]. The generic form of a smearing of a

spectral measure into a POVM is F(X) =
R
Rk(�;X)dE(�), where E is the famil-

iar spectral measure from previous section. The function k : R�B(R)! [0;1]

is such that k(�; �) is a (probability) measure and k(�;X) a measurable func-

tion. Such a k is called a Markov kernel, and is responsible for introducing

some inaccuracy/uncertainty in E (see [2.2]). Within this thesis we shall only

encounter Markov kernels of the form k(x;x0) = e(x�x0), and the function e

(which is a probability measure) will be called a confidence function. In this

case F(X) takes the form of a convolution of the measures E and e. An illus-

trative example of how this may arise in the case of quantum measurements is

furnished by the von Neumann model of a position measurement (which will be

discussed in section 3.5.2), where F(X) = �X ?e(Q), where Q is multiplication

on L2(R) representing position, and �X is the characteristic function defined

by �X(x) = 1 for x 2X and zero otherwise. Since e is not a delta function, F

appears as a “smeared out” or fuzzy version of E� EQ. Further examples along

these lines appear in chapters 4, 5 and 6.

2.2.7 Unbounded operators

Before moving on to the quantum formalism, some comments are in order con-

cerning unbounded operators. We do not aim for a thorough account; for this

the reader should consult e.g. [2.17] (chapter 8), [2.1], [2.5]. Consider, for ex-

ample, the multiplication operator Q on L2(R); for all 	2H, (Q	)(x) = x	(x).

Clearly there exists no a for which k(Q	)k� ak	k; therefore Q is not bounded.

Since this operator represents the traditional observable corresponding to the

position of a particle in one spatial dimension in quantum mechanics, it is
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evident that one must consider carefully the properties of such operators. Fur-

thermore, the momentum observable (with �h = 1) given by P = �i ddx , as well

as the angular momentum L=�i dd� on L2([0;2�)) also fail to be bounded.

Dealing with these operators in full rigour is beyond the scope of this the-

sis. However, we shall sketch for the sake of consistency some of the important

features/pitfalls that occur when dealing with unbounded operators since some-

times delicacy and caution are required. Nonetheless, many of the results of the

previous sections can be appropriately modified to the case where the operators

are unbounded. For example, even though the Taylor series for the right hand

side of (2.3) fails to converge if A is self adjoint but unbounded, one is able

to use other techniques (the so-called functional calculus - see [2.17], pp. 262,

265) to still make sense of Ut = eitA (with suitable modifications; see the above

references and [2.5] pp. 330 - 333).

The Hellinger-Toeplitz theorem (which is a corollary of the closed graph the-

orem - see [2.17], pp. 83 - 84 for details) states that any operator satisfying

h'jA�i = hA'j�i 8 '; � 2 H is necessarily bounded. Thus if A is unbounded,

one must consider instead a dense subspace D(A) (called the domain of A)

and A : D(A)!H. Then A is called symmetric (sometimes Hermitian) if

h'jA�i= hA'j�i 8 '; � 2 D(A), and self adjoint if D(A) =D(A�) and A= A�

on their common domain.

Once these caveats have been stated, one may also generalise the spectral theo-

rem to unbounded self adjoint operators. Given a self adjoint operator A with

domain D(A), there exists a unique PVM EA such that

h'jA'i=
Z

R
�h'jdEA(�)'i (2.9)

for all '2D(A).9 One may also extend the discussion following (2.4) to include

unbounded real-valued Borel measurable functions f ; indeed such an f defines a

unique Af which is also unbounded and self adjoint (on a domain that depends

on f).

Other forms of the spectral theorem (the functional calculus form and the

multiplication operator form) will be used freely; see [2.17] pp. 259 for details.

The mapping defined by A 7! ei�A (� 2 R) yields a unitary (and thus bounded

and everywhere defined) operator for each �, even when A is unbounded. In
9Replacing EA with a POVM in (2.9) leads to a symmetric operator which is, in general, not

self adjoint. See [2.1], volume II, appendix 1 for details.
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certain situations it is easier to work with the exponentiated form of the un-

bounded operators since one does not have to specify a domain. For example,

the exponential form (or Weyl form) of the canonical commutation relations

is given by specifying the continuous one parameter unitary groups Ut := eitP

and Vs = eisQ which satisfy UtVs = eitsVsUt.10
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Chapter 3

Quantum Mechanics and the
Theory of Measurement

3.1 Introduction

One of the most pronounced points of departure of quantum mechanics from

its classical counterpart is the importance attached to the process of measure-

ment. The representations of states and observables in classical mechanics are

given as points in phase space (or as probability measures on phase space in

statistical mechanics) and real valued Borel functions.1 Under pointwise mul-

tiplication the algebra of observables is commutative, and all observables have

simultaneously well defined values in any state.

The move from a commutative algebra of real valued functions on a manifold to

a non-commutative algebra of (bounded) linear operators (with the self-adjoint

elements to represent observables) in a complex Hilbert space lies at the heart of

some of the fundamentally “quantum” features of quantum theory (for an excel-

lent treatment of the structure of classical and quantum theory, see [3.19]). In

the ordinary description, only commuting observables can simultaneously have

well defined values/properties in a given state – namely in a joint eigenstate.

The incompatibility of observables represented by non-commuting operators is

one reason why the non-negligible effects of any microscopic probe interacting

with the system under investigation, as well as the entanglement that might

occur, must be considered. Indeed, it is a remarkable fact that both disturbance

(of the system under investigation) and entanglement (between system and

1Sometimes classical observables are represented by real valued smooth functions for conve-
nience.

29



Chapter 3 Quantum Mechanics and the Theory of Measurement

probe) are necessary for quantum measurements to take place [3.2], [3.3]. With

the measuring apparatus being described by quantum theory, it is precisely

the correlations arising from the system-apparatus entanglement that allow an

experimenter to indirectly study a quantum system.

In this chapter we will motivate and formalize some aspects of what we will

call the quantum theory of measurement (see e.g. [3.5], [3.8]), incorporating

and building upon the mathematical ideas formulated in the previous chapter.

We begin by analysing general physical measurements and measuring processes,

and extract certain generic features of the theory of measurements. We then

outline how such a framework is fulfilled in quantum theory.

We proceed to give some general, minimal conditions that give us a rigorous

description of quantum measurements, culminating in the viewpoint that ob-

servables should be viewed as being represented by POVMs. The existence

and role of repeatable measurements is carefully discussed; this (commonly as-

sumed, but often not satisfied) condition will play an important part in the

Wigner-Araki-Yanase theorem in chapters 4 and 5. We conclude with a canoni-

cal example of a von Neumann/Lüders measurement, which serves as the proto-

type for many idealized measurements arising in textbooks. We conclude with

the von Neumann model of a position measurement; this introduces some gen-

eral features of measurements of operators with continuous spectra, as well as

providing a point of comparison for other position measurement models arising

in chapters 4 and 5, which are hampered by limitations imposed by momentum

conservation.

3.2 Statistical Analysis of an Experiment

The fact that physical investigations and the eventual extraction of physical

laws from these investigations is possible relies ultimately on the existence of

patterns of regularity within certain well chosen collections of data. At the

very least, then, one should like to describe and analyse these patterns without

reference to any particulars of some experimental set-up or even any preferred

physical theory. In light of the accepted view that quantum theory is irreducibly

statistical, we begin by depicting the basic statistical framework under which

the measurement outcome probabilities take a central role. Such an approach

features in attempts to axiomatise quantum theory, for instance in the works of
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Mackey [3.22] or Ludwig [3.20], [3.21]. An excellent introduction can be found

in the book of Kraus [3.15]. We will refer to this as the operational viewpoint

(extensive discussion of the mathematical side of the operational approach can

be found in [3.11], mathematical and conceptual analyses in [3.5] and [3.13],

extensive discussion of statistical models in [3.14]). The basic framework con-

sisting of states and observables, when taken as a pair, are seen to describe

the measurement outcome distribution.

All experiments must yield an outcome from a set of possible outcome values

that can be recorded. The realisation of an experimental outcome will be called

a registration. In an experimental scenario we call the preparation stage a

specification of initial conditions under which an experiment can be undertaken.

Between preparation and registration, a measurement can take place. This

usually consists of an interaction between the system under investigation and

an apparatus on which the final registration occurs.

The task of a physicist is then to examine possible correlations between prepa-

rations and registrations, subject to a specification of what measurement was

performed. Of course, superficially different preparations might be statisti-

cally indistinguishable; they have the same statistics for all measurements and

registrations. The equivalence class of statistically indistinguishable prepara-

tions is called a state. It is possible to mix two preparation procedures, and

thus states %1 and %2, to give a new state % by taking � 2 [0;1] and defining

% = �%1+(1��)%2. The states therefore form a convex set, and the numbers

� and 1�� can be interpreted as the probability of producing the state %1 or

%2 respectively. If % = �%1+(1��)%2 entails that %1 = %2 = %, we say that %

is an extreme element of the set, and as a state is called pure. Otherwise it

is mixed. The mixing procedure can be generalised to incorporate any finite

convex combination of states to produce another state.

Given a measurement M , with outcomes !i, the central objects of the descrip-

tion are the numbers2 p(!ij%;M), which are expected to be approximated, in

N runs of an experimental procedure, by the frequencies N(!i)
N (where N(!i) is

the number of outcomes recorded as !i). p(!ij%;M) is interpreted as the prob-

ability of registering the outcome !i given that the system was prepared in the

state % and the measurement M was performed. Thus the mapping (!i;%)M 7!
p(!ij%;M) is fixed by defining the affine functional E(M)

i : % 7! p(!ij%;M)2 [0;1]

2We will assume for simplicity that the set of possible outcomes is discrete. In this case the
�-algebra of measurable subsets of the space of outcomes 
 is 2
: the power set of 
 .
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(i.e., Ei(�%1+�0%2) = �Ei(%1)+�
0Ei(%2) 2 [0;1] for any i). E(M)

i is called the

(measurement) effect. Often we drop the superscript M and call Ei the effects.

The identity effect E1 is defined by E1(%) = 1 for any state % and the null effect

by E0(%) = 0 for all %. Effects of the form E(%) = � for all % (� 2 [0;1]) are

called trivial effects ; they provide no means by which to distinguish between

different states.

One could also view the probability map by starting with the effects; given a

state % we can define �% : E
(M)
i 7! �%

�
E

(M)
i

�
= p(!ij%;M). The essence of this

structure is that once the measurement M has been performed and outcomes

registered for all possible states, the totality of the statistics have been obtained,

and all that is left is to analyse the data. The fact that the effects can be viewed

as affine functionals on the state space, or states as positive linear functionals on

the effects, demonstrates the so-called satistical duality of states and effects.

The assignment j!E
(M)
j is called an observable, which is therefore the equiv-

alence class of statistically indistinguishable measurements.

3.3 Hilbert Space Realisation of the Statistical

Structure

We have fixed the probabilistic structure and terminology. We now discuss how

states, observables and measurements are described within the Hilbert space

setting of quantum theory, and discuss how quantum theory is compatible with

the basic requirements delineated in the previous section.

3.3.1 States and effects

We have seen that states can be viewed as probability functionals on the set of

effects. In quantum mechanics, states (or density matrices) are represented by

positive operators � 2 T1(H) with tr[�] = 1. The set of states will be written

S(H), which is a convex subset of T1(H). It can be shown that S(H) is actually

�-convex, meaning that for f�i : �i� 0;
P
i�i=1g, and (�i) a sequence in S(H),

the sum
P
i�i�i is trace-norm convergent, with limit in S(H).

A state is an extremal element of T1(H) (and thus pure) if and only if it is

a rank-1 projection (see e.g. [3.13], pp.53 - 54). Where unambiguous we will
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commit the fairly common minor sin of associating pure states with unit vectors

in H (which are also referred to as vector states).

The superposition of pure states given as rank 1 projections follows from the

lattice structure of P(H). However for our purposes we refer to superpositions

as normalised linear combinations of unit vectors; for instance  1 and  2 can

be superposed with coefficients �;� 2 C to yield � 1+� 2
k� 1+� 2k .

In quantum theory two or more systems can be combined into a composite

system, and it is assumed that the space of vector states of the composite

system is given by the tensor product of the Hilbert spaces of the individual

components. We illustrate some features of states of compound systems by

considering a bipartite split; H=H1
H2 and a general state � 2 S(H1
H2).

The state �1 2 S(H1) of the first component, when considered in isolation, is

obtained from the partial trace; �1 = trH2[�], and likewise for �2 2 S(H2). Such

states are called reduced states. It is well known that any non-extremal state

admits uncountably many different convex decompositions. For this reason

such (generally) mixed states obtained via the partial trace do not admit an

“ignorance” interpretation (and are often called improper mixtures ([3.12])),

in contrast to states prepared via a known mixing procedure (which are called

proper mixtures).

Contained in S(H1
H2) are the entangled states. A vector state  2H1
H2 is

separable if there exist '1 2H1 and '2 2H2 such that  = '1
'2. Otherwise

it is entangled. In general a state � 2 S(H1
H2) is entangled if it cannot

be written as a convex sum of separable states. A pure state  2 H1
H2 is

separable if and only if the reduced states �1 and �2 of �= P are pure.

We have seen that the effects take the form of affine functionals (to the closed

unit interval) on the state space. The effects are realised as effect operators (or

just “effects”). It can be shown (e.g. [3.13] pp.68 - 70) that for each E there is a

unique eE 2B(H) for which E(�) = tr[ eE�] for all � 2 S(H). The identity effect

E1 becomes the identity operator 1 on H, the null effect E0 the zero operator

0 and the trivial effects are those that are proportional to the identity; eE = �1.

The trivial effects contain no information as tr[ eE�] does not depend on �. Any

effect satisfies eE 2 [0;1]. The set of all effects E(H) is also convex, and the set

of extreme effects coincides with P(H). Now that the effects have been realised

as effect operators have been introduced, we will abandon the above notation

in favour of labelling the effects according to the experimental outcomes.
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3.3.2 Observables

Having constructed the effect operators, we now consider the problem of con-

structing observables from the effects. We have in mind an experiment with

outcome space (
;F). Recalling that observables assign an effect to each out-

come set, we consider a mapping F 3X 7! E(X); E is an observable with effects

E(X). Requiring that for each ' 2H the map X 7! h'jE(X)'i is a probability

measure, we conclude from lemma 1 (chapter 2) that the assignment X 7! E(X)

be a normalised POVM, and finally therefore that observables are represented by

normalised POVMs. Note that we have been primarily considering vector states

' in the analysis; this is for convenience and the discussion extends to mixed

states � with the probability measures defined by X 7! tr[E(X)�] := pE�(X).

This fixes the notation that we shall now use throughout; the numbers pE�(X)

are interpreted as the probability of obtaining an outcome X in an experiment

when preparing the system in a state � and measuring the observable E.

The so-called sharp observables are those E that are projection valued (which

we have seen are precisely those E for which E(X1\X2) = E(X1)E(X2) for all

X1;X2 2F ([3.5] p.23). If F =B(R), by virtue of (the projection valued measure

form of) the spectral theorem (theorem 2), there is a unique self adjoint operator

A for which E = EA. Thus, the usual textbook description of observables as

self adjoint operators occurs as the special case of the POVM being projection

valued.

It is sometimes tempting to refer to the POVMs which are not projection valued

as “unsharp”. However, we reserve this for POVMs which (in a sense to be

discussed below) retain some of the structure of the self-adjoint version. The

observables also admit a convex structure, although the extremal elements do

not coincide with the sharp observables.

It is instructive (and sometimes necessary) to characterise quantum observ-

ables by their covariance properties. The benefit of this approach is that

one is able to define certain observables directly from their transformation

properties (under some group), without reference to any quantisation proce-

dure. Furthermore, it allows for the interpretation of some covariant POVMs

as unsharp versions of a sharp covariant observable; for example some smeared

POVMs (see section 2.2.6) have this property. A typical example of the co-

variant approach would be characterising the (sharp) position observable (of a

quantum particle in one space dimension) as the (unique) PVM EQ for which
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e�i�PEQ(X)ei�P = EQ(X��) (where P =�i ddx is interpreted as the momentum

of the particle).

We shall not go into detail here; for a thorough account see [3.25] (chapter

6) or [3.5] (chapter 3); for covariant POVMs (referred to as “measurements”

there), focussing on parameter estimation and optimality, [3.14] (chapter 4) is

recommendable. Consider (
;F) equipped with a group action G�
! 
 (G

is usually taken to be a locally compact second countable3 topological group)

under which 
 is a G-space. A system of imprimitivity/covariance acting

in H, is the pair (E;U) with E : F ! B(K) a PVM/POVM acting in H and

U :G!B(K) a (unitary) representation of G in H under which

UgE(Y ) := UgE(Y )U
�1
g = E(g �Y )

for all g 2G; Y 2 F .

The utility of such an approach is that it allows for the definition of covariant

POVMs even when no sharp version exists. Such an approach has been central

in constructing covariant phase observables as phase-shift covariant POVMs

(see, e.g., [3.16], [3.17], [3.9], [3.18], [3.24] for characterisations and extensive

discussion of such observables). Another example arises in the construction of

covariant time observables, conjugate to the Hamiltonian (see e.g. [3.4] ,[3.5],

pp.77 - 79). In both cases there is an infinite family of such observables. We

will encounter covariant phase observables in chapter 6.

3.4 Measurement Schemes and Measurement

In his classic book [3.26], von Neumann formulated a description of quantum

measurements that has become a standard approach to both building simple,

idealised models and for proving general theorems. This approach will provide

the setting for much of the upcoming discussion.

Following von Neumann, we take the (quantum) system or “object” S repre-

sented by H which we wish to measure and couple it to an apparatus or “probe”,

A represented by K on which the measurement outcomes can be recorded. We

will use the words “apparatus” and “probe” as synonyms, though we acknowl-

edge that it may be only a small part of a macroscopic measuring device that
3A second countable topological space is sometimes called separable.
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interacts with the system under investigation. We will not discuss the process

of amplification by which classical pointers are able to evolve and record out-

comes. The apparatus shall be described fully within the quantum mechanical

formalism, and the composite system comprising object and probe is given as

H
K.
The measurement procedure consists of preparing the apparatus in a fixed initial

state �A and bringing together system and apparatus. The compound system

is then unitarily evolved under U and eventually separated, whence the pointer

probabilities can be viewed on the apparatus. We shall assume for simplicity

that the initial states of the system are pure. We choose a self adjoint operator

Z on K with spectral measure EZ : FA!B(K) (on 
A) to represent a pointer

observable.

3.4.1 Calibration and probability reproducibility

An aspect of measurement which might be considered indispensable is that, if

a system possesses some property, a measurement of that property should show

this with probability 1. Writing �A' = trH [U(P'
�A)U�] for the reduced state

of the apparatus after the measurement interaction, and the observable being

measured as E, this may be stated symbolically as

pE'(X) = 1) pE
Z

�A'
(f�1(X)) = 1 (3.1)

where f : 
A ! 
 is a measurable bijective function which accounts for the

system and the apparatus having different “scales” or labelling of values. We

will sometimes call f a pointer function. Equation (3.1) is called the cali-

bration condition ([3.1]). This, however, is too stringent to be postulated as

a criterion for most measurements (or most observables). Indeed if the mea-

sured observable is not sharp this equation cannot be satisfied in general when

E(X) 6= 1.

A more general condition is then needed to encapsulate the minimal require-

ments of a measurement without imposing additional, unnecessary assumptions.

Such a condition was provided by Beltrametti, Cassinelli, and Lahti [3.1]. They

showed that the statistics of the pointer observable in the reduced state of the

apparatus after the interaction can be recovered from the statistics of the system

observable in its initial state. Then one can regard the information extracted
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from the pointer as having been transcribed from the system, and one could

claim to have indirectly studied the statistics of the system.

In symbols, this condition takes the form (assuming the initial state of the

system is pure) pE'(X) = pE
Z

�A'
(f�1(X)) for all ' 2 H and X. In other words,

h'jE(X)'i = tr[EZ(f�1(X))�A' ] = tr[1
EZ(f�1(X))PU('
�)]. Finally, if �A =

P�, we have

h'jE(X)'i= hU('
�)j1
EZ(f�1(X))U('
�)i for all ' 2H; X 2 B(R):
(3.2)

We call the 5-tuple hK;U;�;Z;fi :=M a measurement scheme for E, and (3.2)

(and its more general versions) the probability reproducibility condition (the

term was introduced in [3.1]). Clearly the probability reproducibility condition

implies the calibration condition; the converse is true if the measured observ-

able is sharp [3.8] (p.25). So far the discussion has been from a fairly physical

perspective. However, the existence of a measurement scheme for every observ-

able is guaranteed; M is simply the measurement dilation of the observable E

(cf. section 2.6). In fact there are infinitely many E–compatible measurement

dilations.

Equation (3.2) has an alternative reading. Often, and in particular in this

thesis, we are concerned with building prototypical models whose purpose is to

measure some observable of the system. This involves choosing an apparatus

Hilbert space and unitary mapping on the compound system to represent an

interaction/coupling, along with a suitable pointer observable and initial state

of the apparatus (and possibly a scaling function f). Then we have fixed M,

and (3.2) defines the unique POVM E= E(M) measured by M.

For instance we may set out to measure some self adjoint operator M , by

choosing appropriate elements of M, only to find that the actually measured

observable dictated by (3.2) is not M but an unsharp version of it. Since

tractable models are not always easy to construct, this is very often the case in

practice. One may then have to adjust the model, for example by choosing a

different initial apparatus state, in order for the measured observable E to be

a good approximation of (or equal to) EM . We shall see this in action when

discussing the von Neumann model of an unsharp position measurement.
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3.4.2 State changes caused by measurement

It is useful to describe the change in the state of a system that arises as a

consequence of a measurement. We sketch the form of such mappings, and

refer the reader to [3.13] (pp.226 - 232) and [3.5] (pp.37 - 39) for details.

A (normalised) state transformation valued measure, otherwise called an in-

strument, is a mapping I : F !B(T1(H)) for which for all � 2 T1(H),

1. IX(�)� 0 for all X 2 F , � 2 S(H);

2. I[Xi(�) =
P1
i=1IXi(�) for any disjoint sequence Xi �F ;

3. tr[I
(�)] = 1 if � 2 S(H),

where the convergence in 2. is to be understood in the sense of the trace norm.

Therefore each IX defines a positive linear mapping T1(H)! T1(H). Any I

defines a unique POVM E(I) :F !B(H) via the formula tr[E(I)(X)�] = tr[IX(�)]

for all �; X. We can find the dual instrument via tr[IX(�)A] = tr[�I�X(A)]

to hold for all � 2 T1(H) and A 2 B(H). Writing tr[IX(�)] � tr[IX(�)1], we

then have I�X(1) = EI(X). Furthermore, any measurement scheme M defines

a unique I(M). Hence we see, again, that any measurement scheme defines a

unique measured POVM.

The instrument I can be used to find the final state �̂X of a system conditioned

on the fact that the measurement yielded an outcome in the set X 2 F . This

takes the simple form

�̂X =
IX(�)

tr[IX(�)]
: (3.3)

Thus if I = I(M), we can find the final conditional states �̂X of the quantum

system under investigation subject to the measurement M. Writing IX(�) �
�X , the relevant measurement probabilities in the sense of (3.2) are tr[�X ] =

h'jE(X)'i. The probability of measuring an outcome in a set X again in an

immediate subsequent E–measurement is then pE�̂X (X) = tr[�̂XE(X)]. Notice

that there is no reason to expect this to be unity.

3.4.3 Repeatable measurements

The term “measurement” in the standard textbook treatment is often used to

refer to measurements that are repeatable, in the sense that the probability of

38



Chapter 3 Quantum Mechanics and the Theory of Measurement

obtaining the previously measured value upon immediate repetition is equal to

unity. This is often given in the context of the “eigenvalue-eigenvector link”,

or something similar. For a thorough discussion of repeatable measurements,

see [3.6]. Indeed many practitioners of quantum mechanics, and certainly most

lecture courses on this subject, rarely consider the possibility of non-repeatable

measurements. However, there is no compelling reason to be so restrictive;

the general description of measurements given above certainly does not entail

that measurements be repeatable, and it must be realised that such a condi-

tion captures only a very narrow class of possible measurements. Furthermore,

there simply are no repeatable measurements of observables with continuous

spectrum [3.23].

There are numerous examples of quantum mechanical experiments in which it

would be inconceivable to expect repeatability; for instance in photon counting

measurements, where the photon is destroyed. Nevertheless, the question of

repeatability features throughout the work in this thesis, playing a prominent

role in the WAY theorem (chapters 4 and 5). We will encounter measurements

ranging from perfectly repeatable measurements to “completely non-repeatable”

ones, in the sense that the final state of the system is an eigenstate of an

observable complementary to the observable to be measured, for all possible

input states.

We define formally what is meant by repeatability, and discuss various forms of

approximate repeatability which are well suited to analysis of observables with

continuous spectrum.

A measurement is repeatable if for all X 2 F (countable)

pE'(X) 6= 0 =) pE�̂X (X) = 1: (3.4)

Writing 	� � U('
�), and using (3.2) this can be equivalently stated as

D
	� jE(X)
EZ(f�1(X))	�

E
= h'jE(X)'i : (3.5)

This condition can be read as the conditional probability of obtaining an out-

come in the set X given that the pointer has just recorded an outcome in the

same set being equal to unity. A discrete observable E admits a repeatable

measurement if and only if for all Ei 6= 0, 1 2 �(Ei).
Written purely in terms of instruments, there are equivalent but perhaps more
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illuminating ways of writing this criterion. We say that an instrument I is

repeatable if tr[IXIX(�)] = tr[IX(�)] for all �2S andX 2F , which is equivalent

to (3.4).

3.4.4 Approximately repeatable measurements

We will require for the analysis of a number of models a precise formulation of

approximate repeatability (discussed in [3.10] and [3.5], p.98) as a weakening

of repeatability. The formulation can be made quite general, but we focus here

on position measurements which we now know cannot be repeatable.

The �–neighbourhood of a set X 2 B(R) is

X� :=
n
x 2 R :

���x�x0���� � for some x0 2X, � > 0
o
: (3.6)

We call a measurement �–repeatable if, for all ' 2H and for all X 2 B(R),

pE' (X) 6= 0 =) pE�̂X (X�) = 1: (3.7)

Using the tools of measurement theory that have been delineated in previous

sections, we may write this as

D
	� jE(X�)
EZ(f�1(X))	�

E
= h'jE(X)'i : (3.8)

We call a measurement "–preparatory if, for " 2 (0;1)

pE'(X) 6= 0 =) pE�̂X (X)� 1�"; (3.9)

or D
	� jE(X)
EZ(f�1(X))	�

E
� (1�")h'jE(X)'i : (3.10)

We may combine (3.8) and (3.10) to establish the following useful concept: a

measurement is ("-�)–repeatable if

pE'(X) 6= 0 =) pE�̂X (X�)� 1�"; (3.11)

or D
	� jE(X�)
EZ(f�1(X))	�

E
� (1�")h'jE(X)'i : (3.12)

It will sometimes be useful to quantify the degree of approximate repeatability
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of a measurement. For example, the smallest � satisfying equation (3.8) would

be a suitable candidate. There are other, more tractable measures of approx-

imate repeatability; these will be introduced within the thesis where they are

needed.

3.5 Examples of Measurement Schemes

3.5.1 Von Neumann–Lüders measurements

We consider the prototypical example of an accurate measurement of a discrete,

bounded, non-degenerate self adjoint operator A=
P
iaiP

A
i 2B(H), with a self

adjoint pointer observable Z =
P
i ziP

Z
i 2 B(K). The apparatus is prepared in

the vector state � and the initial system-apparatus state is '
�.
To satisfy the calibration condition it is reasonable to propose a coupling of the

form

U : 'i
�! 'i
�i; (3.13)

with f'ig and f�ig orthonormal bases of eigenstates of A and Z respectively.

U can be extended by linearity to H
 [�] ([�] denoting linear span):

U('
�) =X
ci'i
�i; (3.14)

with '=
P
ci' 2H and ci = h'i;'i. The post-interaction reduced states of the

apparatus �(A)' are easily obtained:

trH(P [U('
�)]) =
Xh'i;P [U('
�)]'ii := �

(A)
' : (3.15)

Notice that for i 6= j, �(A)'i and �(A)'j satisfy

h�(A)'i j�(A)'j i2 = 0;

and so the final states of the apparatus are unambiguously distinguishable and

uniquely identify the eigenstates of A. Furthermore, (3.2) gives

pA'(ai) = pZ
�
(A)
'i

(zi) for all i: (3.16)

Therefore this scheme measures the (intended) sharp observable A.

Finally, we notice that (3.4) is satisfied, and the associated instrument I is
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repeatable and determined by

Ii : P ['] 7! PAi P [']P
A
i : (3.17)

Such an instrument is called a Lüders instrument.

3.5.2 Von Neumann model of a position measurement

In the final few pages of his book [3.26] (pp.442 - 445), von Neumann wrote

down a unitary coupling that was to serve as a measurement of the position

Q =
R
xdEQ(x) of a quantum particle moving in one space dimension. We

sketch this model here, both as an exercise in applying the tools developed

in the previous section to extract the measured observable, and as a point of

comparison for later discussions of other position measurement schemes.

The system to be measured is represented by the Hilbert space H= L2(R), and

likewise for the apparatus A (see, e.g., [3.5, Sec. II.3.4]). The unitary coupling

U = exp[�i�Q
PA] acts on H
K, where PA denotes the momentum of A
and � a coupling or scaling parameter.4 Taking the position QA as the pointer

observable and denoting the initial pointer state as �, the measured observable

E is easily obtained from (3.2). Noticing that in the position representation

U'(x)�(x0) = '(x)�(x0��x), we evaluate

hU('
�)j1
EQA(f�1X)U('
�)i= h'jE(X)'i:

Using the functional calculus to write this in integral form, with 1 =
R
dEQ(x)

and EQA(X) = �X(QA) =
R
�X(x)dE

QA(x) (where �X is the characteristic set

function) we see

E(X) =
Z

R2
��X

����(x0��x)���2dx0dEQ(x): (3.18)

Writing e(�)(x) = � j�(��x)j2, we may write the measured observable E in the

form

E(X) = (�X �e(�))(Q)

provided that the scaling function f is chosen such that f�1(X) = �X. There-

4Measurement schemes with unitary interactions of the form U = ei�A
B , where A is the
observable to be measured and B a self adjoint operator generating shifts in the values of the
pointer Z, form what is known as the “standard model” of quantum measurements. For a
thorough review of the standard model and some applications, see [3.7].
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fore the measured observable is not the projection valued �X(Q), but rather a

smearing of it, and can therefore be interpreted as an unsharp or approximate

position observable, the probability density e(�) representing the inaccuracy or

unsharpness in E (with respect to EQ).

The normalization of e(�) entails that the inaccuracy of the measurement, quan-

tified as the standard deviation of e, scales linearly with 1=�. For a more useful

measure of inaccuracy than standard deviation we use the overall width. The

overall width W (p;1� ") of a probability measure p on R at a confidence level

1�" is: for any given " 2 (0;1) and interval I � R with Lebesgue measure jIj,

W (p;1�") := inf
I
fjIj : p(I)� 1�"g : (3.19)

Thus the overall width is the smallest size of an interval I for which the prob-

ability p(I) is at least 1� ". With this in mind, we find W (e(�);1� ") =
(1=�)W (j�j2;1�"). Thus, with this distinct measure, the inaccuracy still scales

with 1=�. This gives some indication that this result is robust against different

choices of inaccuracy measures. We will employ this measure in the analysis of

other position measurement schemes.

References

[3.1] E. G. Beltrametti, G. Cassinelli, and P. Lahti. Unitary measurements of

discrete quantities in quantum mechanics. J. Math. Phys., 31(1):91, Jan

1990.

[3.2] P. Busch. The role of entanglement in quantum measurement and infor-

mation processing. Int. J. Theor. Phys., 42(5):937–941, 2003.

[3.3] P. Busch. No Information Without Disturbance: Quantum Limita-

tions of Measurement, volume 73 of The Western Ontario Series in

Philosophy of Science, chapter IV, pages 229–256. Springer, 2009.

[3.4] P. Busch, M. Grabowski, and P. Lahti. Time observables in quantum

theory. Phys. Lett. A, 191(5-6):357–361, Aug 1994.

[3.5] P. Busch, M. Grabowski, and P. Lahti. Operational Quantum Physics,

volume 31 of Lecture Notes in Physics. Springer, 1995. corr. printing

1997.

43



Chapter 3 Quantum Mechanics and the Theory of Measurement

[3.6] P. Busch, M. Grabowski, and P. Lahti. Repeatable measurements in quan-

tum theory: Their role and feasibility. Found. Phys., 25(9):1239–1266,

1995.

[3.7] P. Busch and P. Lahti. The standard model of quantum measurement

theory: History and applications. Found. Phys., 26(7):875–893, 1996.

Part IV. Invited Papers Dedicated to Max Jammer.

[3.8] P. Busch, P. Lahti, and P. Mittelstaedt. The Quantum Theory of Mea-

surement. Volume 2 of Lecture Notes in Physics: Monographs. Springer,

2nd rev. edition, Jul 1996.

[3.9] P. Busch, P. Lahti, J.-P. Pellonpää, and K. Ylinen. Are number and phase

complementary observables? J. Phys. A: Math. Theor., 34:5923–5935,

2001.

[3.10] E. B. Davies. On the repeated measurement of continuous observables

in quantum mechanics. J. Funct. Anal., 6(2):318–346, Oct 1970.

[3.11] E. B. Davies. Quantum Theory of Open Systems. Academic Press,

London, Nov 1976.

[3.12] B. d’Espagnat. Conceptual Foundations of Quantum Mechanics. Ad-

dison Wesley, 2nd edition, 1976.

[3.13] T. Heinosaari and M. Ziman. The Mathematical Language of Quantum

Theory: From Uncertainty to Entanglement. Cambridge University

Press, Dec 2011.

[3.14] A. S. Holevo. Probabilistic and Statistical Aspects of Quantum The-

ory, volume 1 of Volume 1 of Publications of the Scuola Normale Su-

periore / Monographs. Springer, 1st edition, Mar 2011.

[3.15] K. Kraus. States, Effects, and Operations: Fundamental Notions of

Quantum Theory, volume 190 of Lectures in Mathematical Physics at

the University of Texas at Austin. Springer, Nov 1983.

[3.16] P. Lahti and J.-P. Pellonpää. Covariant phase observables in quantum

mechanics. J. Math. Phys., 40(10):4688, Jul 1999.

[3.17] P. Lahti and J.-P. Pellonpää. Characterizations of the canonical phase

observable. J. Math. Phys., 41(11):7352, Aug 2000.

44



Chapter 3 Quantum Mechanics and the Theory of Measurement

[3.18] P. Lahti and J.-P. Pellonpää. The Pegg-Barnett formalism and covariant

phase observables. Phys. Scr., 66(1):66–70, 2002.

[3.19] N. P. Landsman. Mathematical Topics Between Classical and Quan-

tum Mechanics. Springer Monographs in Mathematics. Springer, illus-

trated edition, Dec 1998.

[3.20] G. Ludwig. Foundations of quantum mechanics, Volume 1. Texts and

monographs in Physics. Springer, Aug 1983.

[3.21] G. Ludwig. Foundations of quantum mechanics, Volume 2. Texts and

monographs in Physics. Springer, May 1985.

[3.22] G. W. Mackey. Mathematical Foundations of Quantum Mechanics.

Dover Books on Physics Series. Courier Dover Publications, Feb 2004.

[3.23] M. Ozawa. Quantum measuring processes of continuous observables. J.

Math. Phys., 25(1):79–87, Jun 1984.

[3.24] J.-P. Pellonpää. On the structure of covariant phase observables. J.

Math. Phys., 43(3):1299, Jan 2002.

[3.25] V. S. Varadarajan. Geometry of Quantum Theory. Springer, 2nd edi-

tion, 1985. 2nd printing (Dec 2006).

[3.26] J. von Neumann. Mathematical Foundations of Quantum Mechanics.

Princeton University Press, 1996 translation from german edition, 1933.

45



Foreword to chapters 4 and 5

The following two chapters constitute two papers: P. Busch and L. Loveridge,

Position Measurements Obeying Momentum Conservation, Phys. Rev. Lett.

106, 110406 (2011) and L. Loveridge, P. Busch, ‘Measurement of Quantum

Mechanical Operators’ Revisited, Eur. Phys. J. D 62, 297-307 (2011). The

latter contains substantially more review material and appears first for this

reason. The content is essentially unaltered; some preliminary material already

covered in previous chapters has been removed to avoid redundancy and re-

placed with a more succinct review, notation has been changed for consistency,

the lists of references updated to include published versions of papers which

were only in preprint form at the time of writing, and section numbering has

been adjusted to fit with the style of the rest of the thesis. There is still some

overlap of content in chapters 4 and 5; this has been left in order to stay true

to the published contributions.

An appendix has been added to chapter 5 (the appendix to chapter 4 appeared

as an appendix to the paper) to illustrate some details of proofs and calculations

which were omitted from the published version due to length restrictions. It

also highlights the utility of the POVM approach which was removed from the

published version after being deemed too niche for the wider community.
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Chapter 4

‘Measurement of Quantum
Mechanical Operators’ Revisited

4.1 Introduction

The Wigner-Araki-Yanase (WAY) theorem states a remarkable limitation to

quantum mechanical measurements in the presence of additive conserved quan-

tities. Discovered by Wigner in 1952, this limitation is known to induce con-

straints on the control of individual quantum systems in the context of informa-

tion processing. It is therefore important to understand the precise conditions

and scope of the WAY theorem. Here we elucidate its crucial assumptions,

briefly review some generalizations, and show how a particular extension can

be obtained by a simple modification of the original proofs. We also describe

the evolution of the WAY theorem from a strict no-go verdict for certain, highly

idealized, precise measurements into a quantitative constraint on the accuracy

and approximate repeatability of imprecise measurements.

Quantum mechanical experiments involving the manipulation of individual

quantum objects no longer reside only in the minds of a few theoretical physi-

cists, but are a routine occurrence across many physical disciplines such as

quantum optics and quantum information. This not only provides new and

exciting opportunities for future technologies such as quantum computing, but

necessitates a fundamental re-examination of the quantum mechanical formal-

ism itself, and a new understanding of its role in modern applications. With

the ever-decreasing size of the components involved in these technologies, it is

both interesting from a foundational viewpoint and important in more practical

respects to understand any fundamental limitations on the possible size of such
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microscopic instruments.

One such limitation arises as a consequence of conservation laws for additive

quantities that do not commute with the observable to be measured. Whilst

considering spin-12 measurements, Wigner [4.20] discovered that the total angu-

lar momentum of the object plus apparatus cannot be conserved in an accurate

and repeatable measurement of a particular component. This observation was

soon stated in greater generality as a theorem by Araki and Yanase [4.3] that has

become known as the Wigner-Araki-Yanase (WAY) theorem. Despite the fact

that the original papers [4.20] and [4.3] have been widely noted and the WAY

theorem has been extended in various respects, its full scope is still unknown.

It is the purpose of this chapter to survey the evolution of formulations of WAY-

type theorems, elucidate the significance of the underlying assumptions, and

clarify the general structure and extent of such theorems. We will also provide

some new extensions of known results and propose an answer to a long-standing

question concerning the possibility of momentum-conserving measurements of

the position of a quantum particle.

In section 4.3 we revisit Wigner’s 1952 paper [4.20]. In particular we scruti-

nize the final page where Wigner examines the consequences of dropping the

assumption that the measurement be repeatable. This is a relaxation which

is physically relevant, but is still not appreciated by many practitioners of

quantum theory. Wigner notes that in this case the issue arises of the distin-

guishability of the states of the measuring apparatus, given that the limitation

imposed by the conservation law also applies to a measurement of the pointer.

The paper [4.20] is written (in German) with the simplicity and elegance char-

acteristic of Wigner; in order to make it more widely accessible, a translation

into English by Paul Busch is provided in [4.1].

In section 4.4 we proceed to give a modification of the proof of Araki and

Yanase [4.3] leading to a sharpening and extension of the WAY theorem. They

prove for certain classes of observables and conserved quantities that under the

assumption of accuracy and repeatability, the observable to be measured must

commute with the (object part of) the conserved quantity. Here we show that

the same conclusion follows if the repeatability of the measurement is replaced

by the assumption that the pointer observable commutes with the conserved

quantity. This condition, which following Ozawa [4.17] we shall call Yanase

condition, was already alluded to in [4.20] and [4.21]. In fact, the WAY theorem
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also precludes accurate and repeatable measurements of the pointer observable

(given the conservation law) unless the Yanase condition is fulfilled.

In section 4.5 we review formulations of WAY-type limitations for approximate

measurements. In particular we present and develop an inequality first formu-

lated by Ozawa [4.17] that demonstrates trade-off relations between a measure

of error and the “size" of the apparatus (suitably defined). In section 4.6 we

revisit some model measurement schemes, notably by Ohira and Pearle [4.15],

and observe that the “ways out" of the WAY limitation sought there always

come at the expense of violating the repeatability and Yanase conditions. This

helps to highlight the fact that the WAY theorem is often paraphrased in a

superficial way, ignoring the repeatability property and the relevance of the

Yanase condition.

Section 4.7 contains a description of the largely unexplored question of whether

position measurements that respect momentum conservation are subject to a

WAY-type limitation. Here we adapt Ozawa’s inequality to establish the neces-

sity of a large apparatus for good measurements, provided that the Yanase con-

dition is satisfied. We also formulate a trade-off inequality analogous to Ozawa’s

inequality with which one can quantify the degree of repeatability achievable

given the size of the apparatus. Finally we provide an affirmative answer, in a

certain approximate sense, to a problem posed by Stein and Shimony in 1979

[4.19] concerning the feasibility of repeatable position measurements obeying

momentum conservation.

The paper concludes with some remarks on the relevance of the WAY theorem

in contemporary quantum physics and quantum information.

We begin with a brief summary of some of the material from chapter 3 which

is relevant to our investigation.

4.2 Preliminaries

We apply the standard formulation of quantum mechanics already discussed;

observables are given as POVMs E :X 7! E(X), and for normalised vectors  2H
the numbers h jE(X) i are interpreted as the measurement outcome probabil-

ities of finding a result in the set X when measuring the observable E.

The composite system-measuring apparatus Hilbert space is described by the
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tensor product HT :=H
K; time evolution of the composite system is given

by a unitary operator on HT which acts for an interaction period � . There is

a self adjoint pointer observable Z on K with spectral measure EZ , and fixing

the initial state of the apparatus �, along with the scaling function f we fix

the measurement scheme M as the 5-tuple hK;U;�;Z;fi which must satisfy

the probability reproducibility condition (3.2). With 	� = U('
�) 2 HT , we

recall that this takes the form

D
	� j1
EZ(f�1(X))	�

E
� h'jE(X)'i ; (4.1)

to hold for all ' and X.

We shall also be concerned with the repeatability of measurements; see subsec-

tion 3.4.3. We recall that a measurement is repeatable if

D
	� jE(X)
EZ(f�1(X))	�

E
= h'jE(X)'i ; (4.2)

to hold for all '; X. We will see below that even as early as 1952 Wigner

was working with more general measurement models that do not satisfy the

repeatability criterion and whose associated observable is a POVM.

4.3 Wigner 1952

4.3.1 Wigner’s example

Wigner first noticed that repeatable measurements of the x-component of the

spin of a spin-12 particle necessarily violate the conservation of the z-component

of the total angular momentum of the system plus apparatus, written Sz
1+

1
Jz.1 He also demonstrated the feasibility of recovering arbitrarily accurate

and repeatable measurements if the apparatus becomes “large”. This is a signif-

icant feature in much of the work following Wigner’s discovery, and we sketch

the argument here. We continue with the notation that � 2 K represents the

initial (normalized) apparatus state, and �� 2 K orthonormal pointer states,

and throughout we shall continue to choose units where �h = 1. The unitary
1In this simplified model, Jz is assumed to be nondegenerate.
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evolution takes the form (with '� representing Sx eigenstates):

'+
� �! '+
�+; (4.3)

'�
� �! '�
��; (4.4)

the evolution for the eigenstates  � = ('+�'�)=
p
2 of Sz is then

 +
� �! 1

2
[ +
 (�++��)+ �
 (�+���)] ; (4.5)

 �
� �! 1

2
[ +
 (�+���)+ �
 (�++��)] : (4.6)

This violates angular momentum conservation, since the expectations hSz+Jzi
agree on the right hand sides of (4.5) and (4.6) but differ by one unit on the

left hand sides. Since, as Wigner argues, spin component measurements are

“practically possible”, he introduces the following modification in order to model

an approximate realization of the measurement:

'+
� �! '+
�++'�
�; (4.7)

'�
� �! '�
���'+
�; (4.8)

with h�;��i = 0. There are now three (un-normalized) pointer states, repre-

senting a three-outcome measurement, the third (labelled by �) corresponding

to an undetermined spin, representing a situation where the apparatus cannot

identify a definite spin. The two definite outcomes are represented by effects

E�= (1�k�k2)P ['�], and the third is represented by a trivial effect E0 = k�k21

(with probability given by k�k2). Wigner shows that k�k2 can be made arbi-

trarily small given a “large” apparatus. Specifically he shows that if the state

� has a very large number of components in its expansion in terms of Jz-

eigenvectors �� , so that � =
nP
�=1

�� , then with some suitable assumptions and

conditions, k�k2 = 1=(2n�1). Thus in the large-n limit, k�k! 0 and accurate

and repeatable measurements are, to a very good approximation, recovered.

We note that the large size of the apparatus is used here only as a sufficient

condition to achieve good measurement accuracy; the argument does not yield

it as a necessary one.
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4.3.2 Implications of dropping repeatability

Wigner’s consideration in his final page is intriguing although very sketchy and

somewhat open-ended; there he discusses a more general measurement scheme

in which the repeatability restriction is dropped. We carefully reconstruct his

argument in the Appendix; here we provide a more concise and more general

calculation, which contains Wigner’s conclusion as a special case. This approach

has considerably less cumbersome algebra, and relies on exploiting the condition

that the interaction must be a measurement from the beginning. We make no

assumption on the product form of the final states, and allow the most general

(entangled) final state in the system-apparatus Hilbert space.

For notational convenience and following Wigner, when required we shift the

spectral values of the observables concerned in order that they are integers;

for example the eigenvalues of the object part of the conserved quantity are

now 0 and 1. In contrast to Wigner, we do not make the assumption that the

spectrum of the apparatus’ conserved quantity is bounded below by zero. With

�0k, �
00
k, �

0
k and �00k representing (un-normalized) eigenstates of Jz and  0,  1

(normalized) Sz eigenstates, the unitary evolution U gives:

( 0+ 1)

X
�k

U�!  0

X
�0k+ 1


X
�0k; (4.9)

( 0� 1)

X
�k

U�!  0

X
�00k+ 1


X
�00k: (4.10)

In order to exploit the conservation law we take sums and differences of (4.9)

and (4.10), and obtain

2 0

X
�k �!  0


X
(�0k+�

00
k)+ 1


X
(�0k+�

00
k); (4.11)

2 1

X
�k �!  0


X
(�0k��00k)+ 1


X
(�0k��00k): (4.12)

The conservation law now entails that for any k:

2 0
�k �!  0
 (�0k+�
00
k)+ 1
 (�0k�1+�

00
k�1); (4.13)

2 1
�k �!  0
 (�0k+1��00k+1)+ 1
 (�0k��00k): (4.14)

At this point we wish to make contact with Wigner’s work, and so specify that

the apparatus carries no units of the conserved quantity. This is implemented by

setting k=0, and so �=�0. With this stipulation and allowing for the fact that,

in general, the final apparatus states may have negative angular momentum
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values, we combine (4.13) and (4.14) to obtain:

( 0+ 1)
�0 �! 1

2
 0
 (�00+�

0
1+�

00
0��001)+

1

2
 1
 (�0�1+�

00
�1+�

0
0��000);

(4.15)

( 0� 1)
�0 �! 1

2
 0
 (�00��01+�000+�001)+

1

2
 1
 (�0�1+�

00
�1��00+�000):

(4.16)

From here it follows, by comparison with (4.9) and (4.10), that �000 = �00, �001 =

��01, �00�1 = �0�1, �000 =��00: Thus

( 0+ 1)
�0 �! 0
 (�00+�
0
1)+ 1
 (�00+�

0
�1); (4.17)

( 0� 1)
�0 �! 0
 (�00��01)+ 1
 (��00+�0�1): (4.18)

Taking the partial trace over the system’s Hilbert space in (4.17) and (4.18)

yields (mixed) reduced probe states �+ and �� respectively. With feig an

arbitrary orthonormal basis in K,

�� := trH(P [U('�
�0)]) =
X
i

D
eijP [U('�
�0)]ei

E
; (4.19)

where P [U('�
�0)] are the orthogonal projections onto the final states, and

'� = 1p
2
( 0� 1). For U to yield a measurement in the sense of (3.1), it is

required that the reduced states corresponding to two orthogonal initial states

are unambiguously distinguishable; that is that they are supported on orthog-

onal subspaces of K. This is equivalent to the statement that tr(�+��) must

vanish, and it readily emerges that

0 = tr(�+��) = (



�00


2�


�01


2)2+(




�0�1


2�


�00


2)2+2
���D�00j�00E���2 : (4.20)

Since each term in this sum is non-negative, it follows that they must each

vanish individually, and so k�00k2 = k�01k2,



�0�1


2 = k�00k2 and h�00j�00i = 0.

Hence (4.20) is only satisfied if either �00 = �01 = 0 or �0�1 = �00 = 0, since �00 and

�00 are collinear. There are two scenarios to consider: first, where �0�1 =�00 = 0

and the measurement takes the form

( 0+ 1)
�0 �!  0
 (�00+�
0
1); (4.21)

( 0� 1)
�0 �!  0
 (�00��01): (4.22)

This is the form that Wigner arrives at on his final page (see our Appendix).
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The second scenario is given by �00 = �01 = 0 where

( 0+ 1)
�0 �!  1
 (�00+�
0
�1); (4.23)

( 0� 1)
�0 �!  1
 (��00+�0�1): (4.24)

It is now easy to verify the unitarity of the interaction. The measurement

property guarantees that �00 and �01 have equal (squared) norm, as do �00 and

�0�1, leaving the right hand sides of (4.21) and (4.22) orthogonal, and so too

(4.23) and (4.24). For both scenarios, the final system state is independent of

the initial one, and repeatability is clearly violated.

It seems that dropping the requirement of repeatability has allowed for the

possibility of an accurate measurement, whereas before this was ruled out by

the non-commutativity of Sx with Jz. Furthermore, here Wigner has chosen �

to be an eigenstate of the conserved quantity with eigenvalue zero, whereas we

saw in the previous subsection that he chose � to have very many components in

order to overcome the limitation imposed by the conservation law. Hence giving

up repeatability also seems to take away the size constraint for the apparatus.

However, Wigner points out (and this has also been noted in [4.21]) that the

issue of a measurement limitation due to the conservation law has been trans-

ferred from the system to the apparatus, since (as is made evident above) the

final apparatus states must be eigenstates of the x-component of the apparatus’

angular momentum yielding a pointer observable that does not commute with

Jz. It is natural to consider a pointer reading to be an instance of a repeatable

measurement, since otherwise there would be no stable record of the measure-

ment (see also [4.17]). Here the WAY-type limitation reappears at the level of

the pointer observable, which turns out not to commute with the apparatus’

conserved quantity. Hence the Yanase condition appears to be violated neces-

sarily. Wigner, it seems, was moving toward a general no-go result: that if one

wishes to have an accurate measurement, both repeatability and the Yanase

condition must be abandoned. Indeed this is the case, as shall be proved in the

next section.
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4.4 The WAY Theorem

4.4.1 The work of Araki and Yanase extended

Araki and Yanase [4.3] took up the work of Wigner and proved a general theorem

which we state and prove in a somewhat extended and sharpened form. We

show that for the same conclusion to be drawn the assumption of repeatability

can be replaced by the Yanase condition.

Let L= L1
1+1
L2 denote the conserved quantity and M the operator we

wish to measure. In the following theorem the Yanase condition is given as

[Z;L2] = 0.

Theorem 4. LetM := hK;U;�;Z;fi be a measurement of a discrete-spectrum

self-adjoint operator M on H, and let L1 and L2 be bounded self-adjoint op-

erators on H and K, respectively, such that [U;L1
1+1
L2] = 0. Assume

that M is repeatable or satisfies the Yanase condition. Then [L1;M ] = 0.

Proof. We choose orthonormal bases f'��g and f���g of eigenstates of M and

Z, respectively (with �,� as degeneracy parameters). The most general unitary

coupling U that constitutes a measurement of M then takes the form

'��
� U�!X
�
'0���
���; (4.25)

where f'0���g in H is an arbitrary set of states such that
P
�




'0���


2 = 1. Im-

plementing the conservation law (given by [U;L] = 0) we may now write the

matrix elements of L in the following way:

D
'�0�0
�jL'��
�

E
=
X
�;�0

D
'0�0�0�0
��0�0jL'0���
���

E
; (4.26)

to hold for each �;�0;�;�0. The additivity of L and the assumption that � is

normalized entails that (4.26) can be written

D
'�0�0jL1'��

E
+
D
'�0�0 j'��

E
h�jL2�i

=
X
�;�0

hD
'0�0�0�0 jL1'

0
���

ED
�0�0�0 j�0��

E
+
D
'0�0�0�0 j'0���

ED
��0�0jL2���

Ei
: (4.27)

By the orthogonality of pointer eigenstates,
D
�0�0�0 j�0��

E
= 0 for � 6= �0; exami-

nation of each of the remaining terms in the sum in the above expression tells
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us that these vanish if one of the following conditions holds:

(a)
D
'0�0�0�0 j'0���

E
= 0 for � 6= �0;

(b)
D
��0�0jL2���

E
= 0 for � 6= �0.

Condition (a) is satisfied whenever the measurement is repeatable. Condition

(b) is satisfied exactly when the eigenspaces of the pointer observable are invari-

ant under the action of L2, i.e when [L2;Z] = 0, so that the measurement satisfies

the Yanase condition. If either of these are satisfied, then the right hand side of

(4.27) is zero, and thus the left hand side must vanish also. Clearly the second

term on the left hand side vanishes for � 6= �0 due to the orthogonality of the

eigenstates of M , and the first vanishes if and only if L1 leaves M–eigenspaces

invariant, i.e. if and only if [L1;M ] = 0.

We interpret the theorem as follows: ifM is a measurement ofM and [L1;M ] 6=
0, then the conservation of L entails that M must violate both repeatability

and the Yanase condition, in accordance with the expectation that emerged in

the previous section.

As the proof shows, the commutativity ofM with L1 follows from the condition

(a), which is in fact a weakening of the repeatability requirement as it merely

requires the distinguishability of the post-measurement states of the system.

Repeatability is obtained by assuming that the '0��� are eigenvectors of M . In

[4.14] it has been shown that the distinguishability of the post measurement

object states on one hand and of the post measurement apparatus states on the

other are subject to a WAY-type trade-off relation. There the distinguishabil-

ity is quantified by a measure of fidelity, and the measurement inaccuracy is

manifested by final pointer states having non-maximal fidelity.

We note that a result of the form of the above theorem (i.e. using the weakened

form of repeatability or the Yanase condition to derive the commutativity of

the observable to be measured with the conserved quantity) has been proved

by Beltrametti et al in 1990 [4.5] for the special case of minimal unitary mea-

surements, for which the spectra of both the measured observable and pointer

are nondegenerate.

As noted above, the violation of the Yanase condition can be understood as

disallowing accurate and repeatable measurements of the apparatus observable

(since this observable is now subject to the same limitations as prescribed by the

WAY theorem). We also observed that the repeatability of pointer measure-

ments is required for ensuring stable and reproducible measurement records.
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Hence, even if repeatability is sacrificed at the object level, it would seem indis-

pensable at the level of the pointer measurement, thereby enforcing fulfillment

of the Yanase condition. Thus we argue that no “measurement” violating the

Yanase condition may be called a measurement in the sense we have discussed.2

One may talk only of information transfer between system and apparatus and

must also consider how this information can be finally extracted. This conclu-

sion applies to the class of pointer observables that are subject to the WAY

theorem.

4.4.2 Technical developments

As demonstrated in a footnote in [4.3], the case of L2 being unbounded can

be incorporated into the proof in a natural way. This is achieved by using the

unitary operators V (t) = exp(itL) and Vi(t) = exp(itLi) (with i = 1;2, t 2 R)

and noting that V (t) = V1(t)
 V2(t). Then one can follow the previous line

of proof, replacing the original operators with their exponentiated forms, and

exploiting the boundedness of L1.

Ghirardi et al [4.12] have extended the WAY theorem to the case where L1

may be unbounded, but all eigenvectors of M are contained in the domain of

L1. The measurement is still stipulated to be repeatable. They note that their

theorem constrains the feasibility of repeatable measurements of a component

of the orbital angular momentum observable in the presence of the conservation

of another angular momentum component for the system plus apparatus. Yet

their extension still does not cover some physically important cases, namely,

those involving observables with continuous spectra.

4.5 WAY-type Limitation for Approximate Mea-

surements

Wigner’s paper [4.20] not only demonstrated the strict impossibility of accurate

and repeatable measurements given the conservation law, but also delineated

a means by which approximate measurements with approximate repeatability

could be recovered. It is also the case, as demonstrated by Araki and Yanase,
2Although there is still the possibility of approximately accurate measurements of the

pointer, with approximate repeatability properties.
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that this positive part of Wigner’s example can be extended to a much more

general class of observables and conserved quantities. Here we describe further

developments in this area, examine WAY-type limitations for approximate mea-

surements, and discuss how approximate repeatability also follows a trade-off

relation with the size of the apparatus in certain circumstances. This helps

to elucidate further the crucial role of the Yanase condition in discussions of

WAY-type limitations to quantum measurements.

In the case where [L1;M ] 6= 0, the limitation given by the WAY theorem can

thus be re-expressed more quantitatively: There are approximate measurements

of M , with some degree of approximate repeatability, which satisfy the Yanase

condition, but where good approximations are achieved at the price of requiring

a large apparatus, quantified by the magnitude of h�j(L2)
2�i.

4.5.1 Overview of results

Yanase [4.21] derives an “optimal” lower bound for the probability of the mea-

surement failing to be accurate and repeatable; he considers measurements of

a spin component Sx of the system, where the conserved quantity is Sz +Jz,

with Jz the z-component of the apparatus’ (unbounded) angular momentum

. The pointer observable is chosen so that it commutes with Jz. In this case,

the lower bound for the probability of the apparatus malfunctioning is given by

[8h�j(Jz)2�i]�1. This bound was also illustrated by Ghirardi et. al. [4.10, 4.11]

for rotationally invariant Hamiltonians. Yanase’s result, though claimed to be

“optimal”, still only considered terms up to second moments in (Jz), and thus

optimality was not proven rigorously. This was pointed out by Ozawa [4.17]

who obtained a sharper, tight bound without approximations.

Ghirardi et al. [4.12] have considered the case where measurement errors arise

from the non-orthogonality of the final apparatus states. They consider both

“distorting” and “non-distorting” (yet still repeatable) measurements. They de-

rive lower bounds on the probability of the “malfunctioning” of the apparatus,

and even consider the role that large apparatus size has in reducing these prob-

abilities. However, since their result relies on an assumption that some error

probabilities can be made small by increasing the expectation of the square of

the apparatus part of the conserved quantity, they do not establish the necessity

of a large apparatus for good measurements.
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4.5.2 Ozawa’s trade-off inequality

Ozawa [4.17] develops an alternative formulation of the WAY theorem. He

introduces a measure of noise to quantify measurement inaccuracy, and shows

that this has a lower bound that can be decreased provided the variance of the

apparatus’ conserved quantity is increased. This trade-off inequality follows as

an application of the Cauchy–Schwarz inequality.

Given a measurementM that is to serve as an approximate determination of an

observable M , the noise operator is defined as the difference N := Z(� )�M ,

where Z(� ) represents the Heisenberg-evolved pointer observable after the inter-

action period � . A measure of noise is then given as �(')2 :=
D
'
�jN2'
�

E
�

hN2i. Clearly �(')2 � (�N)2. A global measure of error can be provided by

taking the supremum over all (normalized) input states ' of the quantity �(')2,

i.e. �2 := sup' �(')
2. This quantity should be finite for any measurement that

would qualify as an approximate determination of M . Then the uncertainty

relation entails

�2 � �(')2 � 1

4

jh[Z(� )�M;L1+L2]ij2
(�L)2

; (4.28)

where it is found that (�L)2 = (� L1)
2+(��L2)

2. The measurement is accu-

rate if and only if �= 0.

Thus, if the Yanase condition ([Z;L2] = 0) is satisfied and the interaction obeys

the conservation law, then all that remains in the numerator is jh[M;L1]ij2.
If this is zero then there is no lower bound on the measurement accuracy, in

accordance with the findings of WAY.

In the case that jh[M;L1]ij2 is non-zero but finite, then clearly if (�L)2 becomes

large the lower bound on the inaccuracy decreases. Furthermore, since the

initial system state is arbitrary, only by fixing � such that (��L2)
2 is large may

one increase the accuracy of the measurement, thus establishing the necessity

of a large apparatus variance for good measurements.

It is also worthwhile investigating the case of a measurement scheme M that

satisfies neither the Yanase condition nor the commutativity condition [M;L1] =

0 but is such that the bound on the right hand side of (4.28) vanishes; thus,

[Z(� );L1+L2] = [M;L1] = U� [Z;L2]U , by the conservation law. This is clearly

satisfied if M happens to be accurate, � = 0. Such a measurement scheme

allows for perfectly accurate transfer of information from system to apparatus,

and demonstrates the necessary failure of the Yanase condition for this to be
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achieved.

4.5.3 Trade-off relation for repeatability

Ozawa’s proof [4.16] that observables with a continuous spectrum do not admit

any repeatable measurements holds regardless of whether there are additive

conserved quantities or not. In order to describe repeatability properties of

measurements of such observables, it is therefore necessary to have notions

of approximate repeatability, and methods for quantifying how repeatable a

measurement is. As has been discussed in subsection 3.4.3, one approach to is

weaken condition (4.2) [4.9, 4.7]. We will explain and use this in section 4.7.2

in the context of a measurement model.

Here we introduce a different intuitive quantification of repeatability that is

somewhat similar to the construction of the noise operator. With this we can

generically describe how repeatable a measurement is by utilizing a commuta-

tion relation with the conserved quantity. We define:

�(')2 := h'
�j(M(� )�Z(� ))2'
�i; (4.29)

intuitively if this expectation is small, then the difference between the measured

observable and the time-evolved system observable is small, and hence the

measurement should display some level of repeatability. A state independent

measure of repeatability may thus be defined as �2 := sup�(')2, yielding

�2 � sup
'

1

4

jh[M(� )�Z(� );L1+L2]ij2
(�'L1)2+(��L2)2

: (4.30)

If the Yanase condition is satisfied, then [Z(� );L1+L2] = 0 and so

�2 � sup
'

1

4

jh[M(� );L1+L2]ij2
(�'L1)2+(��L2)2

; (4.31)

which demonstrates that good repeatability may also be achieved when (��L2)
2

is large. This condition becomes a necessity when [M;L1] is non-zero.
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4.6 “WAYs Out"

If an observable we wish to measure does not commute with an additive con-

served quantity, we have seen that one may still obtain perfectly accurate in-

formation transfer between system and apparatus despite the WAY theorem.

Here we note some realizations in which this is achieved, and show explicitly

that these models violate both repeatability and the Yanase condition.

4.6.1 Ohira and Pearle

Ohira and Pearle [4.15] provide a “WAY-out” of the limitation arising from the

WAY theorem via a model in which both the object and the probe are given

as spin-12 systems. The measurement coupling is generated by a rotationally

invariant Hamiltonian of the form H = (S+J) � (S+J).

We proceed under the notation that  � represent both Sz and Jz eigenstates,

and �= +. The evolution takes the form (with the interaction period � =�=2):

( ++ �)
��! (� +)
 ( ++ �);

( +� �)
��! (� +)
 ( +� �):
(4.32)

Here the appropriate pointer observable is Z = Jx. This model is not repeatable,

and also violates the Yanase condition.

Recalling equations (4.21) and (4.22) which appeared on Wigner’s final page,

we see that these have precisely the same form as (4.32), apart from an incon-

sequential difference of initial pointer states.

Our analysis of this model of Ohira and Pearle coincides with that of Wigner’s

last page (section 4.3.2). They point out that this model has demonstrated

that if repeatability is not insisted upon, one may achieve an accurate measure-

ment despite the restrictions of the WAY theorem. However, as we have seen,

the theorem does not stipulate any limitation to the accuracy (of information

transfer) when both the repeatability and Yanase conditions are violated, as is

the case here. This is precisely the setting in which perfect accuracy is achiev-

able, and this model of Ohira and Pearle is therefore fully in accordance with

the WAY theorem as we have given it.

Ohira and Pearle’s aim was to expose and correct a common misreading of

the WAY theorem as prohibiting accurate measurements in the presence of an
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additive conserved quantity. This prohibition, they show, is removed at the

expense of giving up the repeatability of the measurement. We know now that

in addition the Yanase condition has to be violated as well.

Ozawa’s inequality (4.28) shows how the zero-error measurement can be achieved;

the condition for vanishing lower bound for the error takes the form U� [Z;L2]U =

[M;L1]. In this model, it is easily verified that U�1
SyU = Sy
1, which in-

deed entails that the expectation value in the numerator of Ozawa’s inequality

vanishes.

4.6.2 The SWAP Map Example

Following the work of Wigner and Ohira and Pearle, we note that these “WAYs

out” are both examples of a remarkably simple structure. They violate both

repeatability and the Yanase condition, and whenever the initial system state

is an eigenstate of the observable to be measured, both take the form of an

unentangled (product) state after the unitary interaction. It is known [4.6]

that the only non-entangling unitary operators U on H1
H2 are either of

the form: (i) U('
 �) = (V ')
 (W�) (with V and W unitary on H1 and

H2 respectively), or (ii) U('
�) = (V21�)
 (W12') with V21 : H2 !H1 and

W12 : H1 ! H2 surjective isometries. This latter scenario is only possible if

dimH1 = dimH2 (with the dimension possibly infinite).

One of the simplest examples of a non-entangling unitary map (which is of

type (ii), see above) is provided by the SWAP map US on H
H, defined

by US('
�) = �
'. If this unitary map is to be used in the context of a

measurement, we see that (4.1) takes the form h'jE(X)'i=
D
'jEZ(f�1(X))'

E
(for all ' 2 H), which can be satisfied if E = EM = EZ , and hence Z = M .

This also respects any conservation law that is additive and where each non-

trivial operator in the sum takes the same form. The noise operator is given as

N = U�(1
Z)U �M 
1 = Z
1�M 
1. Thus, since we have chosen Z =M ,

the noise operator N vanishes and we have a perfectly accurate information

transfer between system and apparatus. However, as the SWAP map violates

the Yanase condition, there remains the problem of recovering this information

from the pointer observable.

62



Chapter 4 ‘Measurement of Quantum Mechanical Operators’ Revisited

4.7 Position Measurements Obeying Momentum

Conservation

Many of the observables that make up a coherent and complete view of (quan-

tum) physical reality are not of the class that have been discussed thus far.

Technical difficulties arise in the context of unbounded operators with continu-

ous spectrum, position and (linear) momentum being two noteworthy examples.

However if one wishes for a comprehensive understanding of WAY-type limi-

tations to the measurability of physical quantities, it is critical to understand

the fundamental case of position measurements that obey momentum conser-

vation. In this section we discuss some results that have been obtained in

this context. Any WAY-type theorem for these observables will have to take

into account Ozawa’s result that as a continuous quantity, position cannot be

measured repeatably.

In [4.8] (which makes up chapter (5)) we provide strong evidence for the exis-

tence of such a theorem in the position–momentum case. We demonstrate that

a model put forward by Ozawa claiming to demonstrate no WAY-type restric-

tion is flawed. The model of Ozawa satisfies the Yanase condition, and one can

show that only in the limit of the pointer preparation becoming a delta-function

may the inaccuracy tend to zero, which comes at the expense of the apparatus’

momentum distribution having a large width (suitably defined). Furthermore

[4.8] provides a model that explicitly violates the Yanase condition, where ar-

bitrarily accurate and repeatable measurements may still be achieved without

resorting to a size constraint on the apparatus. Here we discuss a general ar-

gument pertaining to the position/momentum case, which will be revisited in

chapter 5.

4.7.1 A General Argument

It is again possible to implement the Ozawa inequality (4.28) to obtain a gen-

eral argument in favour of WAY-limitations in the continuous unbounded case

when the Yanase condition is satisfied. The form of the position–momentum

commutator allows the supremum on the right-hand side of (4.28) to be taken

in the following way:

�2 � 1

4

1

inf'(�'P )2+(��PA)2
=

1

4(��PA)2
: (4.33)
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with (�'P )
2 and (��PA)2 the variance of the momentum in the system and

apparatus respectively. This bound allows for an increase in accuracy only

when (��PA)2 is large, establishing the necessity of large apparatus size for

good measurements.

Precisely the same bound arises when one considers the repeatability (defined

in (4.30));

�2 � 1

4(��PA)2
: (4.34)

This provides an indication that good repeatability can indeed be achieved if

(and only if) there is a large momentum variance in the probe.

Notice that the non-zero lower bounds to both accuracy and repeatability arise

after explicit implementation of the Yanase condition, [Z;PA] = 0. If we relin-

quish this condition, there is nothing that would prevent [Z(� )�Q;P +PA]

from vanishing. Indeed this would be the case in any model where one could

choose the pointer observable as the apparatus’ position, QA.

In the position–momentum case, the role of the Yanase condition must be con-

sidered very carefully. Previously (in the case where the WAY theorem certainly

applied) we argued for the Yanase condition by applying the WAY theorem to

the measurement of the pointer, of which we demanded accurate and repeat-

able measurements. However, since no such theorem has been proven in the

continuous/unbounded case, one must be more tentative when stipulating this

condition, and it may be considered as a precautionary manoeuvre. The models

discussed in [4.8], as well as the above model-independent relations point in the

direction of a WAY-type limitation if the Yanase condition is satisfied and no

such obstruction if it is not.

The last conclusion (of “no obstruction") contrasts, perhaps somewhat surpris-

ingly, the WAY theorem for accurate measurements: Within the realm of that

theorem, it is not sufficient to violate the Yanase condition in order to lift the

obstruction against perfect accuracy and repeatability. The fact that no size

constraint is required for good measurements of position if the pointer observ-

able is a position itself can be understood by considering the lower bounds in

equations (4.28) and (4.30): If the object position does not change during the in-

teraction, M(t) =M =Q, and the pointer is Z =QA, the lower bounds become

zero in both cases since the commutator of the noise operator N = QA(t)�Q
with the conserved quantity L1+L2 = P +PA vanishes identically. This is a

consequence of the fact that [QA(t);P +PA] = i1 = [Q;P ]. Such cancellation
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of commutators living on different Hilbert spaces can only arise for pairs of

observables with constant commutators.

It is not known whether, under violation of the Yanase condition, there ex-

ist measurements of position that are fully accurate, and repeatable to a good

approximation. It is also an open problem whether, again with giving up the

Yanase condition, approximate spin measurements obeying angular momen-

tum conservation are possible with good repeatability properties, without any

constraint on the size of the apparatus.

4.7.2 The Problem of Stein and Shimony

In 1979 Stein and Shimony [4.19] posed a problem concerning the possibility of

realizing a two-valued (and hence coarse-grained) position measurement that

respects the conservation of momentum.

This problem takes the form of whether there exists a non-zero function � 2
L2(R) and unitary operator U : L2(R2)! L2(R2) that commutes with the shift

operators (defined by Tt(g)(x;y) = g(x+ t;y+ t) for g 2 L2(R2), (x;y) 2 R2 and

t 2 R) and satisfy:

supp[U('
�)]� R+�R+ if supp'� R+;

supp[U('
�)]� R��R� if supp'� R�;

where ' 2 L2(R). With the pointer being a two-valued, discretized position

observable, this coupling necessarily violates the Yanase condition. The condi-

tion that the unitary U commutes with Tt is a mathematical expression of the

conservation of the total momentum P +PA.

Here we provide a position measurement scheme [4.7] that approximately sat-

isfies the above requirements with the quality of the approximation becoming

arbitrarily good as the value of the coupling parameter � becomes large. The

momentum–conserving unitary operator U which describes the interaction is

given by

U = exp

"
�i�

2

�
(Q�QA)PA+PA(Q�QA)

�#
; (4.35)

where for example we have written (Q�QA)PA as shorthand for (Q
1�1

QA)1
PA. The pointer observable is given as QA, and the measured observable

E (eq. (4.1)) is of the form E(X) = �X ? e(Q), if the scaling function f is
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chosen such that f�1(X) = (1� e��)X. Here �X represents the characteristic

set function. The probability density e = e(�) depends on � in the following

way:

e(�)(q) = (e��1)
����(�q(e��1))

���2 : (4.36)

In order to answer the question of Stein and Shimony, we first recast the condi-

tions that need to be satisfied as follows. Firstly, the measurement must satisfy

a stronger form of the probability reproducibility condition: the calibration

condition (as discussed in subsection 3.4.1), which requires that if the initial

state is localized in the positive (or negative) half line, then this result is shown

on the pointer with certainty. We shall denote the spectral measures of Q and

QA by Q and QA respectively. Allowing for some error, this may be written

(for � > 0)

h	� j1
QA[��;1)	� i= 1 (4.37)

if supp' � [0;1), and we show that [��;1) can become arbitrarily close to

[0;1) if � is made suitably large.

The second requirement is that of repeatability, which we give as a slightly

modified version of (4.2) whereby the immediate subsequent measurement is of

the observable Q. This takes the form (with � > 0)

D
	� jQ[��;1)
QA(R+)	�

E
=
D
	� j1
QA(R+)	�

E
=
D
'jE(R+)'

E
; (4.38)

where the last equality results from the probability reproducibility condition.

We shall show that this may be satisfied for all ' and that � can be made

arbitrarily small.

We shall make the immediate specification that the initial state wave function

� of the apparatus be supported on a fixed finite interval of width 2` around

the origin; supp�= [�`;`]. Therefore the distribution e(�) is supported on the

�-scaled interval [��;�], with � = `=(e��1).

After some manipulation the calibration requirement (4.37) takes the form

Z 1
0
j'(q)j2�[��0;1) �e(�)(q)dq = 1 (4.39)
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with �0 = f(�). Thus we require �[��0;1) �e(�)(q) = 1 for all q � 0 and so

Z �0+q

�1
e(�)(y)dy = 1; (4.40)

which is satisfied if q � ���0. The smallest �0 consistent with this constraint

occurs when �0 = �, and so � = `e��. Therefore we see that indeed �! 0 as

�!1. It must also be shown that the same behaviour emerges in the case

when supp'� (�1;0] but we omit this essentially identical calculation, and

this completes the proof.

We now address the repeatability requirement. Writing (4.38) in integral form

and rearranging, we see that

Z
j'(q)j2 (�[��;1)(q)�1)�[0;1) �e(q)dq = 0; (4.41)

and so

�(�1;��)(q)
Z q

�1
e(�)(y)dy = 0: (4.42)

This expression certainly vanishes if q � ��. When q < ��, recalling that

suppe(�) = [��;�], we see that if �� � �� (and thus � � �) then the integral

vanishes. Since we are looking for the smallest � for which this may be satisfied,

we choose � = � = `=(e�� 1). Therefore in the large � limit, � is arbitrarily

small, showing that arbitrarily good repeatability may be achieved. Due to the

symmetry of the support of e(�), it follows that arbitrarily good repeatability

holds also for the R� outcome on the pointer.

Although this model provides only an approximate solution to the problem of

Stein and Shimony, we note that from an operational perspective this does not

differ from an exact solution. Since the accuracy and approximate repeatability

can be made arbitrarily good by simply tuning the coupling parameter, in any

experimental realization this could not be distinguished from a measurement

in which perfect accuracy and repeatability can be achieved. This does not

require a large momentum spread in the probe, and it has been shown that

the present model indeed presents an approximate measurement scheme for

the full position observable Q, with arbitrarily good accuracy and repeatability

properties [4.8].
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4.8 Concluding Remarks

The WAY theorem, with its generalizations, is applicable to a large class of

physically important scenarios. In any situation in which, for example, spin

or angular momentum is the relevant observable, the measurement accuracy

is likely to be hampered by a WAY-type constraint. When considering the

manipulation of individual quantum objects using other small objects as ‘appa-

ratus’, it may not be possible to fulfill the requirement of large variance of the

apparatus part of the conserved quantity. Such scenarios do occur in quantum

information processing and quantum control. Ozawa and coworkers [4.18, 4.13]

have in fact demonstrated a limitation to the realizability of quantum logic

gates insofar as the observables involved are subject to the WAY theorem. This

has led to an increased awareness that attention has to be paid to the presence

of conserved quantities in the design of quantum gates.

In the case of position measurements that obey momentum conservation, no

WAY-type obstruction exists if one asks only for a measurement of the relative

distance between the object and a “reference system”. In this case, when the

reference system is provided by part of the apparatus, the measured observable

can be given as the relative position. As is alluded to in [4.2], it appears that

there is a link to the theory of superselection rules and quantum reference frames

(see, e.g. [4.4]), which has been the subject of much interest and investigation

recently. This possible link opens up an avenue that requires further systematic

study; some steps in this direction are presented in chapter 6.

Appendix: Reconstructing Wigner’s last page

In this appendix we shall carefully reconstruct the argument that appears on

the final page of Wigner’s 1952 paper [4.20]. Although Wigner’s work is succinct

and simple, the lack of detailed calculations makes reproducing his conclusions

somewhat harder work than one might imagine. We also present some subtly

different arguments from those found in the original work.

Wigner restricts his consideration to the case where the post-interaction states

are of product form (unentangled) in the system–apparatus Hilbert space, and

he makes the choice that the initial apparatus state � be an eigenstate of Sz
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with eigenvalue zero. He writes

( 0+ 1)
� �!
1X
i=0

 0i

X
�0j ; (4.43)

( 0� 1)
� �!
1X
i=0

 00i 

X
�00j ; (4.44)

with  0i and  
00

i representing un-normalized Sz eigenstates. In order that Wigner’s

analysis be compelling, we must assume �0j and �
00

j to be eigenstates of the ap-

paratus’ angular momentum, Jz. The reason for this choice will become clear

shortly; this is the only way in which consistency with the conservation law

can be maintained. We omit summation indices on the apparatus Hilbert space

since it is assumed to run to infinity. However, the number of non-zero terms

in this expansion is dramatically reduced due to the choice of initial apparatus

state and the conservation law; the left hand side of (4.43) contains a superpo-

sition of Sz eigenstates, and thus a superposition of states containing zero and

one “unit” of the conserved quantity. The right hand side cannot, then, contain

more than one such unit.

In order to correspond to Wigner’s analysis, we proceed under the restriction

that 0 be the lowest eigenvalue for the apparatus’ conserved quantity, and from

here it follows that (4.43) and (4.44) take on a much simpler forms. With �= �0
and dropping all terms with the apparatus containing two or more units of the

conserved quantity, we have

( 0 +  1) 
 �0 �!  00 
 �00 +  00 
 �01 +  01 
 �00 +  01 
 �01; (4.45)

( 0 �  1) 
 �0 �!  000 
 �000 +  000 
 �001 +  001 
 �000 +  001 
 �001: (4.46)

Indeed, the conservation law provides an even stronger restriction, and the last

term on the right hand side of (4.45) must in fact be zero, and thus at least one

of  01 and �01 must always vanish. The same argument applies to (4.46) and so

(independently), at least one of  001 and �001 must vanish too.

It follows from (4.45) and consistency with the conservation law that  00 and

�00 are necessarily non-zero. For if either did vanish, the right hand side would

contain one unit of the conserved quantity with certainty, and the left hand

side only with probability 1
2 . The same argument runs in clear analogy for the
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double-primed quantities. There are then four scenarios that require consider-

ation:

Case 1:  01 6= 0, �01 = 0,  001 6= 0, �001 = 0;

Case 2:  01 6= 0, �01 = 0, �001 6= 0,  001 = 0;

Case 3: �01 6= 0,  01 = 0,  001 6= 0, �001 = 0;

Case 4: �01 6= 0,  01 = 0, �001 6= 0,  001 = 0.

With this in mind, one can add (4.45) and (4.46) to give the evolution of  0
�0:

2 0
�0 �!  00
�00+ 00
�01+ 01
�00+ 000 
�000+ 000 
�001+ 001 
�000; (4.47)

and for the evolution of  1
� we subtract:

2 1
�0 �!  00
�00+ 00
�01+ 01
�00� 000 
�000� 000 
�001� 001 
�000: (4.48)

We first consider Case 1 where (4.47) and (4.48) reduce to

2 0
�0 �!  00
�00+ 01
�00+ 000 
�000+ 
00

1 
�000; (4.49)

and

2 1
�0 �!  00
�00+ 01
�00� 000 
�000� 001 
�000: (4.50)

Since the left hand side of (4.49) contains no units of the conserved quantity,

so must the right, and therefore  01
�00 =� 
00

1
�
00

0. Similarly in (4.50) the left

hand side contains one unit, and if the right hand side is to agree, we require

that  00
�00 =  000 
�000.
With  01
�00 =� 

00

1 
�
00

0 we get:

2 0
�0 �!  00
�00+ 000 
�000; (4.51)

and thus, with  00
�00 =  000 
�000,

 0
�0 �!  00
�00: (4.52)

Also,

2 1
�0 �!  01
�00� 001 
�000; (4.53)
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and finally, exploiting the condition  01
�00 =� 001 
�000, we arrive at

 1
�0 �!  01
�00: (4.54)

We now consider Case 2 which, with (4.47) gives

2 0
�0 �!  00
�00+ 01
�00+ 000 
�000+ 000 
�001; (4.55)

and thus one might wish to conclude that  01
�00 = � 000 
�001. However, this

can never be satisfied; these vectors must be distinct unless they are both zero

(which is excluded, by assumption), since the unit of conserved quantity resides

in different Hilbert spaces.

Case 3 gives

2 0
�0 �!  00
�00+ 00
�01+ 000 
�000+ 001 
�000 (4.56)

and we conclude that it must be the case that  00
�01 =� 001
�000 which, again,

cannot be fulfilled for both non-zero. We therefore must also reject Case 3.

Finally Case 4 gives

2 0
�0 �!  00
�00+ 00
�01+ 000 
�000+ 000 
�001 (4.57)

and

2 1
�0 �!  00
�00+ 00
�01� 000 
�000� 000 
�001; (4.58)

and so  00
�01 =� 000 
�001 and  00
�00 =  000 
�000.
It is now evident that each of the permissible cases gives the same state evolution

for  0
�; Case 4 yields

2 0
�0 �!  00
�00+ 000 
�000; (4.59)

and with  00
�00 =  000 
�000, we arrive at

 0
�0 �!  00
�00: (4.60)

However, for the evolution of  1
�, using  00
�01 = � 000 
�001, we see that a

different form emerges than from Case 1:

 1
�0 �!  00
�01: (4.61)
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With these considerations, we now summarise the possible forms of the evo-

lution of ( 0+ 1)
�0 and ( 0� 1)
�0. Remembering that the only cases

which contain, a priori, no contradiction, are Cases 1 and 4, the first scenario

is that Case 1 is satisfied, and we have:

( 0+ 1)
�0 �! ( 00+ 
0
1)
�00; (4.62)

and

( 0� 1)
�0 �! ( 00� 01)
�00: (4.63)

This cannot represent a measurement in any ordinary or physically meaningful

sense, since the final states of the apparatus coincide on the right hand side of

(4.62) and (4.63), leaving us in the position that there is no way of distinguishing

which eigenstate of Sx had been present on the left hand side. Furthermore,

this product form does not correspond to a modification of equations (4.3) and

(4.4) (as is claimed by Wigner).

The second scenario is that Case 4 is satisfied, and we see that summing (4.54)

with (4.60) gives:

( 0+ 1)
�0 �!  00
 (�00+�
0
1) (4.64)

and subtracting:

( 0� 1)
�0 �!  00
 (�00��01) (4.65)

This coincides with (4.21) and (4.22) (section 4.3.2), and is the same result as

Wigner obtained on his final page.
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Chapter 5

Position Measurements Obeying
Momentum Conservation

5.1 Introduction

In this chapter we present a hitherto unknown fundamental limitation to a

basic measurement: that of the position of a quantum object when the total

momentum of the object and apparatus is conserved. This result extends the

famous Wigner-Araki-Yanase (WAY) theorem, and shows that accurate posi-

tion measurements are only practically feasible if there is a large momentum

uncertainty in the apparatus.

The extent to which the elements of the quantum mechanical formalism relate

to physically measurable quantities has been the subject of many investigations

in the history of quantum mechanics. It is well known, for example, that not

all self-adjoint operators represent observables in the presence of superselection

rules. As discussed in chapter 4, Wigner [5.20] showed that a different type

of measurement limitation arises due to conservation laws for quantities that

are additive over the system plus apparatus. We recall that he, and subse-

quently Araki and Yanase [5.2] proved that a discrete self-adjoint operator not

commuting with such a conserved quantity does not admit perfectly accurate

and repeatable measurements. The original proofs of the WAY theorem are

restricted to cases where the object part of the conserved quantity is bounded.

If that quantity is assumed to be discrete, the second, positive part of the WAY

theorem asserts that a repeatable measurement can be approximately realized,

but this comes at a price: high accuracy requires a large size of the apparatus

[5.2, 5.21].
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The most comprehensive extensions of the WAY theorem obtained so far [5.19,

5.8] do not encompass more general cases including continuous-spectrum and

unbounded observables. In fact, it is a fundamental result established by Ozawa

[5.14] that continuous observables do not admit any repeatable measurements,

irrespective of whether there are additive conserved quantities.

Nevertheless, our analysis of a model presented by Ozawa [5.16] leads us to

conclude that WAY-type limitations do exist for measurements of continuous

quantities, contrary to the view expressed there. We show for the prototypical

example of position measurements obeying momentum conservation that the

accuracy and approximate repeatability of such measurements are limited by

the finite size of the apparatus if it is assumed that the pointer observable

commutes with the momentum. This condition, which we call the Yanase

condition (see section 4.1), is certainly significant but often neglected: In order

to secure reproducible measurement records, it is necessary that the pointer

observable itself can be measured repeatably and accurately. Insofar as the

WAY theorem applies to the pointer observable being measured, this may only

be achieved if that observable commutes with the conserved quantity.

We also consider an alternative model which shows, perhaps surprisingly, that

if one relinquishes the Yanase condition, position measurements obeying mo-

mentum conservation may be possible with arbitrary accuracy and good re-

peatability properties, without any constraint on the size of the apparatus.

This stands in contrast to the discrete-bounded case where a measurement of

a quantity not commuting with an additive conserved quantity can neither be

repeatable nor satisfy the Yanase condition [5.13]. We also provide a general,

model-independent argument corroborating these findings.

A thorough understanding of such quantum limitations to measurements is cru-

cial; from a foundational perspective it provides a more complete description

of physical reality as it manifests itself through observation, and from a prag-

matic viewpoint it delineates the possible fundamental obstacles that must be

accounted for in technological applications. Ozawa and coworkers [5.18, 5.11]

have demonstrated a limitation to the realizability of quantum logic gates in-

sofar as the observables involved are subject to the WAY theorem. Similarly it

must now be expected that operations for continuous-variable quantum infor-

mation processing tasks are only realizable to a limited accuracy in the presence

of an additive conservation law, given that there will typically be a need to limit
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the size of the component systems. For accurate position measurements sub-

ject to a WAY-type limitation, a large momentum spread—and thus kinetic

energy—is required in the apparatus, which could conflict with the low tem-

peratures necessary for the control of a quantum system.

In the models discussed below, the system and the apparatus are particles

in one space dimension, represented by the Hilbert space of square-integrable

functions on R.

5.2 Ozawa’s model

In [5.16], Ozawa claimed that there is no WAY-type limitation to position mea-

surements in the presence of momentum conservation (see Appendix, 5.6.1 for

details and analysis not included in the following discussion). He introduced

a model involving four particles with position operators Q;QA;QB;QC . The

interaction Hamiltonian is translation invariant and thus conserves total mo-

mentum; the resulting unitary time evolution operator for a time interval �

is

U = exp
�
�iK

2
� (Q�QA)(QB�QC)

�
: (5.1)

U acts onHtotal :=H
HA
HB
HC and we adopt the obvious shorthand (e.g.,

Q=Q
1A
1B
1C) for simplicity of notation. The constant K describes the

coupling strength; we will use the abbreviation K� = �.

The aim is to use this interaction to measure a particle’s position, Q, by tran-

scribing the Q-distribution to a pointer observable Z on an apparatus that is

accessible to an experimenter. Here the pointer is taken to be the relative mo-

mentum Z = PC �PB. With this choice, particle A appears as an auxiliary

“reference” system by which information about Q can be recovered. It is also

clear that [Z;Ptotal] = 0 where Ptotal is sum of the momenta of the system and

apparatus. Thus the Yanase condition is satisfied in this model.

Ozawa chooses K� = 1 (which makes position and momentum dimensionless)

and the initial apparatus state � = jQA = yi
 jPC�PB = yi for y constant. He

omits the state representing the final degree of freedom pertaining to PB+PC ,

which does not alter the outcome. By the uncertainty relation, this choice of

(unnormalizable) initial state � cannot have finite momentum spread.

The observable-to-be-measured Q is preserved by the interaction: Q = Q(� ).
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The characteristic function, which arises as the Fourier transform of the joint

probability density ofQ=Q(� ) with the time-evolved pointer observable Z(� )=

(PC�PB)+(Q�QA), is given by the expression

R2 3 (�;�0) 7!
D
'
 �jexp(i(�Q(� )+�0Z(� )))'
 �

E
:

Ozawa gives this in integral form as

ZZ
ei(�x+�

0z) j'(z)j2 �(x�z)dxdz; (5.2)

where z denotes a spectral value of Z and ' is the preparation of the system.

However, this follows only by ignoring the two-fold infinity generated by the

term hyjyihyjyi that would appear in the original expression for the character-

istic function. Thus the distribution j'(z)j2 �(x� z)dxdz following from (5.2)

is not the the joint distribution of Q(� ) and Z(� ), and hence it does not follow

that this model realizes an accurate and repeatable measurement of position.

This conclusion is in line with Ozawa’s result that continuous observables do

not admit repeatable measurements [5.14].

We shall now calculate the relevant measurement probabilities directly in the

Schrödinger picture, using normalizable states only.1 It follows that the mea-

surement accuracy—and degree of repeatability (see section 5.4)—are limited

by the “size" of the apparatus, in close analogy to what we referred to as the

positive part of the WAY theorem in the case of discrete quantities. Here we

use the position and momentum representations for the initial (product) state,

	0(x;y;u;v) = '(x)�1(y)�2(u)�(v) with u and v denoting spectral values of

PC�PB and PB+PC , respectively. After a time � (which we will also write as

�=K), the state has evolved into

	� (x;y;u;v) = '(x)�1(y)�2

�
u+

1

2
�(x�y)

�
�(v): (5.3)

The probability density for u is obtained as a marginal from the joint density

for the time-evolved state 	� ;

p	� (u) =
ZZZ ���	� (x;y;u;v)

���2dxdydv: (5.4)

1K. Kakazu et al. ([5.10]) do address the issue of unnormalizable pointer states and agree
with Ozawa’s conclusion, but they do not consider any trade-off between apparatus size and
measurement accuracy.
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The probability for the pointer to assume a value in a set S is:

P	� (u 2 S) =
Z
S
du
Z
dx
Z
dy j'(x)j2 j�1(y)j2

����2

�
u+

1

2
�(x�y)

����2 Z dvj�(v)j2:
(5.5)

We again introduce a scaling function f : R ! R to allow for the measured

observable and the pointer observable to have different scales. With f(u) =

�(2=�)u and putting S = f�1(X) =�(�=2)X (the set of all u with f(u) 2X),

the right hand side of (5.5) can be written as:

Z
dx j'(x)j2�X ?e(�)(x) =

Z
X
dx
Z
dx0

���'(x+x0)���2 e(�)(x0)� P'(x 2X); (5.6)

with ? denoting the convolution and �X the set indicator function. The func-

tion e(�) is a density and takes the form e(�)(x) = (j�1j2 ? j�(�)
2 j2)(x), where

�
(�)
2 (s) =

p
��2(�s). This density function e(�) represents the inaccuracy of

the measurement, in the sense that the actual probability density appearing in

(5.6) is a smearing of the ideal position probability density j'(x)j2; we see that

the narrower the width of e(�), the more accurate the measurement. In the

extreme case that e(�) tends to a delta-function, the probabilities (5.6) become

those of an accurate position measurement.

We compute Var(e(�)) = Var j�1j2+ 4
�2
Var j�2j2. Thus the variance of e(�) does

not vanish in the limit �!1 but is given by the variance of the QA distribution

in the “reference system" state �1; by virtue of the uncertainty relation for QA
and PA, this can only be made small at the expense of making the width of

the PA distribution large. We see that in order to recover accurate information

about the particle’s position Q, it is the reference position QA that needs to be

highly localized, independently of the momentum spread of the pointer.

In accordance with the findings of Yanase [5.21] for the case where the object

part of the conserved quantity was bounded and discrete, we see here that the

size of the apparatus limits the position measurement accuracy.

A more useful measure of inaccuracy than the variance of a distribution e is

given by the overall width (as in subsection 3.5.1)W (e;1�") of e at confidence
level 1� ", defined as the smallest possible size of a suitably located interval

J such that the probability
R
J e(q)dq � 1� ". In contrast to the variance, the

overall width is finite whenever " > 0.

It is straightforward to show that the overall width of a convolution of two

probability distributions is bounded below by the width of the largest. In
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the case of the Ozawa model, we thus see that the overall width of e(�) is

always bounded below by the overall width of the distribution j�1j2, which is

independent of �. This generalizes the above argument which used variances.

5.3 An alternative model

Next we revisit a position measurement model [5.4, section IV.3.3] that violates

the Yanase condition (see Appendix, 5.6.2 for further analysis of this model

which we omit here). Momentum conservation is implemented via the unitary

coupling

U = exp

"
�i�

2

�
(Q�QA)PA+PA(Q�QA)

�#
; (5.7)

which acts on H
HA. As before, � is a shorthand for K� where K is the

coupling strength and � the duration of the interaction. Here � is naturally

dimensionless. The pointer observable is QA, which of course does not commute

with the total momentum.

We can again extract the probability density for the pointer after time � , with

	� = U('
�):
p	� (y) =

Z
j	� (x;y)j2dx: (5.8)

The form of the final state 	� (x;y) gives the pointer probabilities

P	� (y 2 f�1(X)) =
Z
f�1(X)

dy
Z
dx j'(x)j2�e�

����(ye��x(e��1)
���2 ; (5.9)

which, with f�1(X) := (1�e��)X, we write in the form

Z
dx j'(x)j2�X ?e(�)(x)� P'(x 2X): (5.10)

The probability density e= e(�) now takes the form

e(�)(x) = (e��1)
����(�x(e��1))

���2 :
The scaling behavior is thus exponential in �; the inaccuracy width scales

with e�� and an arbitrarily accurate measurement of Q is feasible without any

constraint on the size of the apparatus.
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5.4 Repeatability

It is worth elucidating further the differences between the two models studied

here. The first, which satisfied the Yanase condition, displayed limitations

to the accuracy of a position measurement that could be overcome only by

allowing the reference system to have large momentum spread. The second,

which manifestly violated the Yanase condition, imposed no such constraint and

arbitrary accuracy could be achieved by a tuning of the interaction strength.

However, as in the original work [5.20], [5.2], it is not only the measurement

accuracy that plays a prominent role, but also the repeatability properties,

which we discuss now.

We shall confine the probe’s initial state wavefunctions to a bounded subset of

the real line. This is not an overly stringent requirement from a physical per-

spective. In the Ozawa model this simply amounts to the initial state functions

�1(y) and �2(u) having finite extent in the relevant variables; in the second

model it means that the probe state function �(y) is concentrated in a finite

interval. Thus we can think of the density e(�) as being concentrated on the

interval [�d;d] in either model.

One way of quantifying the degree of approximate repeatability ([5.7], [5.5], see

subsection 3.4.3) in the case of a position measurement is as follows: A mea-

surement is said to be approximately repeatable, or �-repeatable if given an

outcome in a set X, the outcome of an immediate subsequent control measure-

ment will be found, with probability 1, in a suitably enlarged set X� (where

X� is the set of points not more than a distance � > 0 away from X). This can

be written symbolically as a conditional probability of finding the particle’s

position x 2X� given that the pointer was found to have a value u 2 f�1(X):

P	�

�
x 2X�ju 2 f�1(X)

�
= 1 (5.11)

for all sets X. Considering the control measurement to be accurate, for this

to be satisfied in the Ozawa model we must have �X ? e(�)(x) = 0 whenever x

is outside X�, and this follows if � � d. If the initial apparatus states �1 and

�2 are concentrated on intervals [�`;`] and [�m;m] respectively, we have that

d = `+m=�. Therefore even as the coupling strength � becomes large, � is

bounded below by the width of the reference system state �1, and in order to

recover good repeatability properties (i.e. a small �), the state �1 must carry
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a large spread of momentum.

In the alternative model we see similar behavior, with a fundamental difference;

we again have that � � d enables approximate repeatability in the sense of

(5.11). However, in contrast to the Ozawa model, simply letting � be large

allows for arbitrarily good repeatability; if � is concentrated on [�n;n], then
d= n=(e��1).

Thus under violation of the Yanase condition, arbitrarily accurate and repeat-

able information transfer from the system to a quantum probe is feasible with-

out any size constraint (n can be arbitrarily large, allowing the spread of the

probe momentum to be small).

5.5 General argument

Finally we adapt an approach due to Ozawa ([5.17], see also subsection 4.5.2)

to obtain a generic, model-independent trade-off between the qualities of accu-

racy and repeatability on one hand and the necessary “size" of the apparatus

on the other. The noise operator N is defined as N := Z(� )�Q, where Z(� )
represents the Heisenberg-evolved pointer observable after the interaction pe-

riod � . One then defines the noise �(')2 :=
D
'
�jN2'
�

E
� hN2i. Clearly

�(')2 � (�N)2. For a measurement scheme to represent an approximation to a

position measurement, it is reasonable to require that the noise is finite across

all input object states. Thus the supremum � := sup�(') should be finite and

would then give a global measure of error. The uncertainty relation then gives

�2 � �(')2 � 1

4

jh[Z(� )�Q;P +PA]ij2
(�Ptotal)2

; (5.12)

where (�Ptotal)
2 = (�'P )

2+(��PA)2. This inequality entails a measurement

limitation whenever the right hand side is nonzero for some object states. It is

also evident that if the numerator is nonzero, the only way of making this lower

bound to the error small independently of the object properties is by making

the momentum variance (��PA)2 of the apparatus large.

The vanishing of the numerator for all object states ' follows when the commu-

tator is zero, which happens just when the pointer at time 0 satisfies [Z;PA] = i.

This is the case in the second model discussed above where a WAY-type limi-

tation was found to be absent.
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If the Yanase condition is stipulated, one obtains [Z(� )�Q;P +PA] = i, and

(5.12) yields

�2 � [2��PA]�2: (5.13)

This bound only allows for an increase in accuracy when (��PA)2 is large, thus

establishing necessity of the large apparatus size for good measurements.

An attempt at capturing (approximate) repeatability in the generic case follows

from considering the quantity �(')2 := h'
�j(Q(� )�Z(� ))2'
�i; intuitively
if this expectation is small, then the difference between the measured observable

and the time-evolved system observable is small, and hence the measurement

should display some level of repeatability. An argument analogous to that above

gives, for �2 := sup�(')2

�2 � [2��PA]�2: (5.14)

This provides an indication that under the Yanase condition, good repeata-

bility is achieved, again, only when there is a large momentum variance in the

apparatus. It remains to be shown that these conclusions persist when more op-

erationally significant measures of inaccuracy and repeatability are used, such as

those in [5.9]. For example, a new measure of repeatability may be formulated

via the repeatability width, defined as the smallest � such that a repeatability

condition like (5.11) is satisfied, possibly only up to probabilities no less than

a threshold 1�".
In conclusion, evidence for a WAY-type theorem for continuous unbounded

quantities has been provided through two models of momentum-conserving po-

sition measurements and two model-independent inequalities. The analysis en-

tails also that no such limitation arises if only relative distances are measured,

that is the distance between the object and the “reference system”, which is pro-

vided by the measuring apparatus. When this is incorporated into the quantum

description, the conservation law can be manifestly satisfied for the combined

object-apparatus system, with the measured observable as the relative posi-

tion. In this case, the Yanase condition must be satisfied for good accuracy to

be achieved. This points to a possible connection, hinted at by Aharonov and

Rohrlich [5.1], with the theory of superselection rules and quantum frames of

reference, a subject of renewed interest in the past decade [5.3], which deserves

further systematic study; see chapter 6.
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5.6 Appendix

The purpose of this appendix is to provide some extra details to parts of the

chapter which were not included in the published paper, showing some extra

steps in calculations and discussing a few additional features of the models.

The demonstration that the measured observables arising from the models are

POVMs with the structure of a smeared position observable highlights impor-

tant features of the measurement schemes we consider, and enables a clearer

comparison between the models covered in this chapter and the von Neumann

model covered in chapter 2. Some of the POVM description can also be found

in [5.12].

5.6.1 Ozawa’s model - further analysis

5.6.1.1 Calculation of the effects

Given that U = exp
h
�iK2 � (Q�QA)(QB�QC)

i
, with � = K� , a natural trial

solution for 	t is

	t(x;y;u;v) = '(x)�1(y)�2(u+
1

2
Kt(x�y))�(v);

which is easily seen to satisfy the Schrödinger equation given by:

H	t(x;y;u;v) =
K

2
(Q�QA)(QB�QC)	t(x;y;u;v) = i

@

@t
	t(x;y;u;v): (5.15)

The left hand side of (5.15) is

(Q�QA)(QB�QC)	t = (x�y)'(x)�1(y)(i@u�2(u+
1

2
Kt(x�y)))�(v)

= i(x�y)'(x)�1(y)(�
0
2(u+

1

2
Kt(x�y)))�(v): (5.16)

Suppressing the coordinate dependence in 	t(x;y;u;v), the right hand side

gives

i@t	t = iK'(x)�1(y)�
0
2(u+

1

2
Kt(x�y))1

2
(x�y)�(v); (5.17)

and with t= � = �=K, we have

	� (x;y;u;v) = '(x)�1(y)�2(u+
1

2
�(x�y))�(v);
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We may now find the observable E measured by this scheme:

h'jE(X)'i=
Z

R
du�f�1(X)(u)

Z
R
dxdy j'(x)j2 j�1(y)j2

�����2(u+
1

2
�(x�y))

����2 :
(5.18)

Noticing that the v integral makes no contribution, we may write this as

h'jE(X)'i :=
Z

R
dx j'(x)j2FX(x) (5.19)

whence

FX(x) =
Z

R
du�f�1(X)(u)

Z
R
dy j�1(y)j2

�����2(u+
1

2
�(x�y))

����2 : (5.20)

After performing the rescaling; �2u
0 =�u, we have that

FX(x) =
Z

R
du0�� 2

�f
�1(X)(u

0)
Z

R
dy j�1(y)j2 ��

2

�����2(
1

2
�((x�u0)�y))

����2(5.21)
=

Z
R
du0�� 2

�f
�1(X)(u

0)
Z

R
dy j�1(y)j2

�����(�)
2 ((x�u0)�y)

����2 (5.22)

=
Z

R
du0�� 2

�f
�1(X)(u

0) j�1j2 �
�����(�)

2

����2 (x�u0) (5.23)

= �� 2
�f

�1(X) �e(�)(x) (5.24)

with e(�)(x) = j�1j2 �
�����(�)

2

����2 (x) and also �
(�)
2 (s) =

p
��2(�s).

Therefore we conclude that

h'jE(X)'i=
Z

R
dx j'(x)j2FX(x) =

�
';�� 2

�f
�1(X) �e(�)(Q)'

�
: (5.25)

One sees that the effects E(X) again take the form of a convolution:

E(X) = (�� 2
�f

�1(X) �e)(Q)� (�X �e)(Q); (5.26)

where the last equality results from the choice of the pointer scale function as

f�1(X) =�(�=2)X, or f(x) =�(2=�)x.

5.6.1.2 Approximate repeatability

There are various approaches to quantifying the degree of approximate repeata-

bility of a model such as the Ozawa model, even from the point of view of

�–repeatability. The one taken in [5.6] is to assume the immediate subsequent

measurement to be of the sharp position Q (which we call accurate in [5.6]).
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Measurement models where the measured position is sharp are known to exist

(see e.g. [5.15], however this does not respect the conservation of momentum,

of course). Generally speaking this allows for a smaller lower bound on �, and

in this case it is a matter of a factor of two. Here we illustrate how such a cal-

culation proceeds. Allowing the second measurement to be sharp, and writing

the spectral measure for Q as Q, the task amounts to finding � for which

h	� jQ(X�)
EZ(f�1)	� i= h'jE(X)'i: (5.27)

In integral form this reads

Z
j'(x)j2�X��X �e(�)(x)dx=

Z
j'(x)j2�X �e(�)(x)dx: (5.28)

Rearranging: Z
j'(x)j2�X �e(�)(x)(�X� �1)dx= 0: (5.29)

Now let suppe� = [�d;d] and define Xd analogously to X�. We require that

the following implication holds: �X�(x) = 0 =) �X �e(�)(x) = 0. Writing the

convolution in the form

�X �e(�)(x) =
Z
x�X

e(�)(y)dy;

we therefore require that

x =2X� =)
Z
x�X

e(�)(y)dy = 0: (5.30)

Writing the right hand side of (5.30) as

Z
x�X

e(�)(y)dy =
Z
(x�X)\[�d;d]

e(�)(y)dy =
Z
Xd

e(�)(y)dy: (5.31)

We have that x =2Xd =) @y 2X for which jy�xj � d. Thus [�d;d]\ [x�X] = ;
and so j[�d;d]\ [x�X]j= 0 (j � j denoting the Lebesgue measure of the set) and

the integral
R
Xd
e(�)(y)dy vanishes. Therefore we require that x =2X� =) x =2

Xd. This is true if � > d.
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5.6.2 Alternative model - further analysis

5.6.2.1 Calculation of the effects

Recall that the unitary evolution U in the alternative model of section 5.3 takes

the form

U = exp

"
�i�

2

�
(Q�QA)PA+PA(Q�QA)

�#
;

with �=K� . Seeking the form of a general time-evolved state under this uni-

tary map, with the initial state being separable, we make the Ansatz that the

general solution takes the form	t(q;q
0)='(q)�(�(q;q0; t))e�(t). The Schrödinger

equation H	t(q;q
0) = i@t	t(q;q

0) is then

�K(q� q0)@q0	t+
K

2
	 = @t	: (5.32)

Calculating the evolution of the probe position observable in the Heisenberg

picture motivates �(q;q0; t) = q0eKt�q(eKt�1). This is easily shown to provide

a solution to (5.32), provided �(t) = Kt
2 . Then with t= � = �=K, we have

	� (q;q
0) = e�=2'(q)�(q0e�� q(e��1)): (5.33)

The measured observable E again follows directly from the definining equation

h'jE(X)'i=
D
	� j1
E(f�1(X))	�

E
: (5.34)

The effects E(X) may be written

E(X) =
Z Z

R
dq0EQdqe�

����(q0e�� q(e��1))
���2�f�1(X)(q

0): (5.35)

Letting e�q0 = (e��1)y, we write

����(q0e�� q(e��1))
���2 = ����((y� q)(e��1))

���2 � e(q�y): (5.36)

The measured observable E again takes the form of a convolution, and thus of

a smeared position if the scaling function f is chosen as f�1(X) = (1�e��)X:

E(X) = Ee(X) = �X �e(Q), and the confidence function e now depends on � in

the following way:

e(�)(q) = (e��1)
����(�q(e��1))

���2 : (5.37)
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5.6.2.2 Overall width

The overall width W (e(�);1�"), is given by

W (e(�);1�") := inf
�
jJ j :

Z
J
e(�)(q)dq � 1�"

�
;

which takes the form

W (e(�);1�") = inf
�
jJ j :

Z
J
(e��1)

����(�q(e��1))
���2dq � 1�"

�
: (5.38)

This can be recast as

W (e(�);1�") = inf

(
jJ j :

Z
(1�e�)J

j�(q)j2dq � 1�"
)
: (5.39)

Comparing this with the overall width of j�j2 (without scaling), given by

W (e(�);1�")(j�j2) = inf
�
jJ j :

Z
J
j�(q)j2dq � 1�"

�
; (5.40)

it is clear that W (e(�);1�") = W (j�j2;1�")
(e��1) .

Determining the approximate repeatability properties of this model follows a

similar argument to that of the Ozawa model, and we omit the calculations.

5.6.2.3 Further discussion

It is interesting to calculate the time evolution of relative position coordinate

(Q�QA)(t) in the Heisenberg picture. Since d
dt(Q)(t) = 0 and Z = QA, the

quantity (Q�QA)(t) compares the observable to be measured to the time

evolved pointer. This yields d
dt(QA�Q)(t) = ��(QA�Q)(t): Writing (QA�

Q)(0) := (QA�Q) we arrive at QA(t)�Q= e��t(QA�Q) and so with � large,

the decaying exponential prefactor becomes small. Thus we see how arbitrary

accuracy is actually achieved dynamically in this model.

It is also interesting to briefly consider the dynamics of the object-apparatus

momentum exchange. It is simple to calculate PA(t); d
dtPA(t) = i[H;PA(t)] =

U�i[H;PA]U . After evaluating the relevant commutators we have d
dtPA(t) =

�PA(t) and with the notation PA(0)� PA, we see PA(t) = e�tPA. Similarly the

momentum of the system satisfies d
dtP (t) =��PA(t) and so d

dtP (t) =��e�tPA
from which we see P (t) = �e�tPA+K. The constant K is therefore (with
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P (0)� P ) given by K = P +PA, and finally

P (t) = P +PA�e�tPA; (5.41)

ensuring that the total momentum is conserved; P (t)+PA(t) = P +PA.
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Chapter 6

Superselection Rules

6.1 Introduction

In this chapter we explore further senses in which symmetries impose restric-

tions on quantum mechanics. In the previous two chapters we delineated con-

ditions under which accurate and repeatable measurements of observables not

commuting with an additive conserved quantity are precluded. However, we

saw that approximate measurements with approximate repeatability properties

were feasible, and that if repeatability and the Yanase condition were discarded,

fully accurate measurements (of a therefore projection valued measure) were

possible.

The type of symmetry constraints we will be concerned with here are stronger

than those imposed by the WAY theorem. In certain formulations, these sym-

metries are manifested as the existence of an observable (represented by a self

adjoint operator A) which commutes with all others. Put another way, no self

adjoint operator which does not commute with A can be called an observable at

all. This is, therefore, not a limitation to the accuracy of quantum mechanical

measurements, but rather a restriction on what is observable in the theory.

Such a restriction is called a superselection rule.

We will briefly review some of the major contributions to the subject of su-

perselection rules, highlighting aspects of some of the contrasting views that

have befallen the subject since its inception 60 years ago. We challenge some

modern assertions that superselection rules impose no fundamental limitations

to quantum theory. To this end we offer simplified models similar to those

that appear in the literature purporting to demonstrate observability of phase
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factors between superpositions that should be precluded by a superselection

rule. The models we present allow us to extract the salient features of these

attempts, and highlight the generic mathematical structure underlying all of

the physical scenarios in which it may be tempting to believe that a superselec-

tion rule has been overcome. By introducing a rigorous means of constructing

relevant relative quantities, we are able to show that one is able, fully within

the confines of a superselection rule, to mimic forbidden expectation values to

arbitrary proximity. However, there is no reason to believe that a superselection

rule has been violated in any sense.

6.2 Historical Survey and Objectives

The original paper on superselection rules appeared in 1952 and was written

by Wick, Wightman and Wigner (W 3) ([6.37]) – the same year as Wigner’s

paper on spin measurements constrained by angular momentum conservation

that we discussed at length in chapter 4. Wick et al. considered an assumption

of von Neumann in his classic book [6.36] (p.313): that “There corresponds to

each physical quantity of a quantum mechanical system, a unique hypermax-

imal Hermitian operator, as we know..., and it is convenient to assume that

this correspondence is one-to-one – that is, that actually each hypermaximal

Hermitian operator corresponds to a physical quantity”.

The idea of W 3 was that in order to maintain relativistic symmetry (their ar-

gument will be discussed in section 6.3.1), relative phase factors between states

in certain superpositions (of bosons and fermions in this case) cannot show

up in measurement statistics. Alternatively, one can say that there is an in-

compatibility between certain symmetries and certain observable quantities.

This leads to the immediate realisation that it is necessary to abandon the con-

venient hypothesis of von Neumann: that all (what we now call) self adjoint

operators represent observables. There was little activity surrounding Wigner’s

idea in the years after his contribution, and it remained unchallenged for quite

some time. In 1961 Jauch and Misra ([6.17]) developed the algebraic language

with which to discuss superselection, and introduced the term supersymmetry,

to represent the existence of a unitary operator which commutes with all ob-

servables. The term was devised in order to distinguish supersymmetries from

ordinary symmetries, represented by unitary operators that commute with the
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Hamiltonian. They also provide a proof of a superselection rule for electric

charge within the framework of quantum electrodynamics, which again seems

to have gone largely unnoticed. These superselection rules, along with per-

haps the proposed baryon number superselection rule, stem from fundamental

symmetries of nature and thus have an immutable and structural quality.

The first to argue in favour of observability of interference between states of

different electric charge were Aharonov and Susskind, in their contribution of

1967 ([6.2]) (and in the same year they argued in favour of the observability of

the minus sign appearing when a spinor field is rotated through 2� – see [6.3]).

The essence of their approach in the charge case was to allow a proton to interact

with a pair of cavities, prepared in coherent states of negatively charged mesons,

in such a way that the interaction conserves the total charge. They use the

cavity states as a certain kind of relative quantity or reference system (though

they have no explicit means by which to discuss relative observables), and

attempt to show that when this reference system becomes large (in a sense to

be discussed), coherent superpositions of protons and neutrons can be prepared

and measured.

The largeness of the reference system is a feature of all subsequent attempts

by other authors to “lift” ([6.6]) superselection rules and endow meaning to

forbidden superpositions. We will return to this essential point in section 6.7.

Three years after the papers of Aharonov and Susskind (in 1970), W 3 defended

the charge superselection rule [6.38]. They demonstrate that any density matrix

initially showing no coherence across states of different charge, if stipulated to

time-evolve under only charge conserving unitary interactions, will never evolve

into a state in which relative phase factors between states of different charge are

visible. Furthermore they prove that in order to observe relative phase factors

between states of different charge at the level of the system, superpositions

across states of different charge at the level of the apparatus are necessary.

In the intervening years, superselection rules have been a fundamental struc-

tural feature of quantum field theories, with a rigorous proof of the charge

superselection rule in local relativistic quantum field theory given by Strocchi

and Wightman [6.33] in 1974. Such rules are particularly visible within the

algebraic framework (see, for example [6.15]).

These structural superselection rules stand in contrast to so called “soft” su-

perselection rules (the term coined by Earman in [6.14]) which are dynamically
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induced and have been argued to account for the emergence or appearance

of classicality from quantum theory as part of a process known as decoher-

ence. This programme was conceived, at least in part, as a way of explaining

the existence of definite measurement outcomes observed in experiments. The

first paper on environmentally induced superselection rules goes back to 1970

([6.40]) (see also [6.42]; for comprehensive discussion, see [6.43] and [6.18]).

Landsman has given his own interpretation of superselection rules as arising

from observers not being able to “monitor all conceivable correlations in the

universe” ([6.24], p.49). There he argues that the algebra of “beables” in the

language of Bell is accordingly replaced by a (usually much smaller) algebra of

observables, yielding superselected quantities. In this approach, whether or not

there are superselection rules (and also which observables are superselected) is

highly context or situation dependent and not a fundamental restriction.

There is still controversy surrounding the fundamental nature of such rules.

The most modern context of the debate has been called the “optical coherence

controversy” (see [6.5] for a dialectic aiming to clarify and unify two seemingly

opposing views on optical coherence). For example, via analysis of how a laser

actually produces an output field, Mølmer ([6.27]) argued that quantum co-

herence is “a convenient fiction” rather than something of deeper ontological

significance, and that the output of a laser is correctly described as a mixture

over number states with Poissonian distribution. Mølmer’s argument that the

coherence is fictional leads directly to a superselection rule for photon number.

In the spirit of the Aharonov–Susskind point of view, it has been argued that

the empirical superselection rule for photon number arises (in quantum optical

experiments) as a consequence of there being no absolute notion of the phase of

an electromagentic field. This has led to the perspective that “lacking a phase

reference” implies a superselection rule (for photon number). Such a viewpoint

has led other groups of researchers to refer to photon number superselection

rules as “empirical” (such language is used in e.g.[6.32]), pointing to a rather

more practical limitation than a fundamental one. Conversely, it is argued that

by incorporating a phase reference into the quantum mechanical description (in

which one can speak of relative phases) one is able to “lift” (or “effectively lift”,

in the language of [6.6]) the superselection rule. Whether to incorporate a phase

reference into the dynamical description is the choice of the physicist, and in

some sense (it is argued) superselection rules can be “switched off” by making

such a choice, and that therefore superselection rules impose no (significant)

94



Chapter 6 Superselection Rules

restriction to quantum theory. Furthermore, by using an appropriate reference

system, the statistics of “forbidden” superposition states can be arbitrarily well

approximated; we will show that this can be done exactly when the phase

reference is highly localised.

By pursuing the phase reference point of view, it has been argued in [6.13]

that by following the prescription for relativising phases and taking suitable

limits in the reference system states, one can produce superpositions of atoms

and molecules (against baryon number superselection) and even bosons and

fermions (against univalence superselection). Furthermore, by reference to ac-

tual experiments such as Ramsey and Mach-Zehnder interferometry, and by

outlining formal similarities between those scenarios and the more exotic cases

(e.g. atom-molecule), the authors of [6.13] argue that if one interference exper-

iment is acceptable, so must be the other.

We make a first attempt at clarifying the arguments appearing in the literature,

as well as the general relationship between the presence of interference and the

existence of coherent superpositions. Whilst we accept that if relative phase

factors between superposition states of a system are observable, then they can

be measured in an interference experiment, we deny that simply by measur-

ing interference one is able to infer the observability of relative phase factors

between certain superpositions. We argue that even in the accepted and ex-

perimentally verified interferometry experiments, it is a relative phase between

the system and a reference that is detected in the observed interference, and so

too for the cases pertaining to superselection rules.

Many of the previous discussions have lacked a description of phases and rel-

ative phases as objects fully within the quantum mechanical formalism. The

approach of constructing families of covariant POVMs which give precise mean-

ing to such objects has been introduced and extensively characterised by P.

Lahti, J.P. Pellonpää and others (see references arising in section 6.4). By

bringing such objects into the subject of superselection rules, we show precisely

how, and in what situations, relative operators take on the appearance of abso-

lute ones. We demonstrate that this happens exactly when the reference phase

is highly localised. Although much of the literature includes high amplitude

coherent states in order to apparently obviate a superselection rule, it is not

pointed out that this is precisely the scenario in which the phase has a high de-

gree of localisation. We provide a number of simple models which demonstrate
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the generic behaviour under high reference localisation and of attempts to cir-

cumvent superselection rules. By considering different scenarios, for instance

sharp and unsharp covariant phases, we give a degree of robustness to our find-

ings as well as pointing out precisely how the statistics of absolute and relative

phases become close. Since the models mimic what might be found in realistic

experiments, they also highlight the physical relevance of our arguments.

6.3 Origins and Technical Aspects

of Superselection Rules

6.3.1 Introduction

The original argument in favour of unobservable quantities in quantum mechan-

ics due to Wick et al. [6.37] was against the measurability of a relative phase

factor in superpositions of bosonic and fermionic states. It was argued that the

observability of such phase factors would violate a symmetry of nature; in that

case the operation of double time-reversal (which acts as the identity on bosonic

states, and as minus the identity on fermionic states). W 3 thus essentially ar-

gued that for states of the form 	� := 1p
2
( b� f ) (with the subscripts having

obvious meanings), there can be no observable that is sensitive to the relative

minus sign between  b and  f ; and similarly in the state 	0� := 1p
2
( b� i f ).

Equating h	+jA	+i= h	�jA	�i and h	0+jA	0+i= h	0�jA	0�i, we must even-

tually have that h bjA f i = 0 and for any operator A that is to represent an

observable. Furthermore, the states j	+ih	+j and j�j2 j bih bj+ j�j2 j f ih f j
cannot be distinguished between by any observable (with an analogous state-

ment for 	�).

The Hilbert space H therefore splits into a direct sum of the form H=Hb�Hf

such that each observable maps states in Hb to states in Hb, and likewise for

Hf . In other words, Hb; Hf are invariant subspaces of the (algebra of all)

observables, which acts reducibly in H.

6.3.2 Algebraic theory and superselection sectors

In the algebraic approach to quantum mechanics one starts out with a set of

operators O which are to represent observables. If O is self adjoint (i.e., closed
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under �), the commutant O0 is a von Neumann algebra and O00 � (O0)0 is a von

Neumann algebra containing O, and it is the smallest such algebra. O00 � A
is called the (von Neumann) algebra generated by O and is often called the

algebra of observables.1 We refer the reader to [6.12], [6.8], [6.19] for extensive

treatments of C� and von Neumann algebras, and [6.15], [6.17], [6.39], [6.4]

(chapter 6) for details in the context of quantum theory and superselection.

The centre Z(A) of A is Z(A) = fA 2 A : [A;B] = 0 8 B 2 Ag = A\A0. The

centre is said to be trivial if it consists only of multiples of the identity. A

superselection rule is said to be present if Z(A) is non-trivial. Any operator N 2
Z(A) will be called a classical (or superselection) observable.2 For simplicity

we always assume Z(A) to be commutative/abelian; this is often referred to as

an abelian superselection rule. If N 2 Z(A) has discrete spectrum, we refer to

a discrete superselection rule for N . Writing N in spectral form N =
P
nanPn,

we see that the Hilbert space H =
L
nPnH �L

nHn, and each A 2 A satisfies

[A;Pn] = 0 for all n and we have AHn � Hn for all n. The PnH are called

superselection sectors (or coherent subspaces), and the observable algebra A
reduces each sector.

The requirement that [A;Pn] = 0 for each A2A motivates defining the mapping

� :B(H)!B(H) given by

� (A) =
X
n
PnAPn � eA: (6.1)

Then � (A) = A if and only if [A;N ] = 0. The map � is positive and surjective

onto A. � induces an equivalence class on the set of self adjoint operators, with

A � B if � (A) = � (B), and observables are precisely the equivalence classes of

�–equivalent operators. We have, then, that all observables are �–invariant,

and any non-observable3 is observable after � (since � 2(A)� � (� (A)) = � (A)).

Two operators A and B are equivalent precisely when tr[�� (A)] = tr[�� (B)] for

all � 2 T1(H). Therefore two operators are equivalent when there is no state �

that is able to statistically distinguish between them.
1In the algebraic setting states are represented by positive normalised linear functionals on

the observable algebra.
2As pointed out in [6.17], unbounded sharp observables are not contained in A. However,

their spectral projections always are, and A is the smallest algebra for which this is the case.
3We use the term non-observable as shorthand for “not necessarily observable”. The some-

what unusual meaning of this term was first brought to the attention of the author (though in
a different context) in a seminar by R. Brunetti.
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The predual �� : T1(H)!T1(H) of � acts on states and is given by

tr[�� (A)] = tr[��(�)A]

for any � 2 T1(H) and all A 2 B(H). The form of � allows one to immediately

write down the form of ��, which is given by ��(�) =
P
Pn�Pn � e� for all � 2

T1(H). Since �� takes exactly the same form as � (acting on T1(H) � B(H)),

this justifies writing

e�� ��(�) = � (�) =
X
n
Pn�Pn: (6.2)

On the state space S(H) it can be seen that � is trace preserving, from which

the boundedness and trace-norm continuity follow.

Therefore on the level of states a discrete superselection rule persists if there

exists a countable family of orthogonal projections (not necessarily rank 1)

fPng with
P
nPn = 1 (converging strongly) such that for any 'i;'j (i 6= j), i; j

labelling sectors, the phase �ij in 'i+ei�ij'j cannot be detected in measurement

statistics. Recalling that H=
L
nPnH, any state in  2H can be decomposed

as  =
P
nPn , which shall be referred to as a sector decomposition.

Two density matrices � and �0 are said to be equivalent if tr[�A] = tr[�0A] for

all A 2A (clearly if A=B(H); �= �0). The true “physical states” of the theory

are then the equivalence classes [�] of equivalent density matrices. Notice that

any density matrix can be represented by an element � of the equivalence class

� that satisfies [�;Pn] = 0 for all n, or equivalently � =
P
nPn�Pn. Therefore,

as we shall see, rank-1 projections and non-extremal density matrices are often

in the same class. It is this feature which occasionally prompts authors to say

that “pure states are actually mixed” or something similar; the description of

states as equivalence classes avoids this kind of confusing language. However,

it is difficult to avoid sometimes referring to representative elements of the

equivalence classes of equivalent density matrices as states themselves (and

analogously for observables); we hope that it is clear what is meant.

We thus have observables as classes of indistinguishable self adjoint operators,

and states as classes of indistinguishable density matrices. For example, for an

observable A (which must satisfy [A;Pn] = 0 for all n), the states P' (repre-

senting the rank one projection onto the normalised vector ') and � (P') are

indistinguishable, since tr[AP'] = h'jA'i= tr[� (P')A].
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6.3.2.1 Further discussion of sector structure

It is worth dwelling further on the sector structure of states and observables,

and considering some simple examples of cases in which relative phase factor

sensitivity of measurements statistics can be achieved within the confines of a

superselection rule. The definition of � entails that

tr[Ae�] = tr[ eA�] = tr[ eAe�]: (6.3)

Consider a superselection rule for some observable N = N1
 1+ 1
N2. For

normalised ' 2H and � 2 K, we have

� (P'
P�) = � (P')
 � (P�) (6.4)

if ' is an eigenstate of N1 or � of N2.4 Even if � is not an N2 eigenstate, we

have

� (P'
 � (P�)) = � (P')
 � (P�): (6.5)

For example, consider states in C2
C2 with basis fjii 
 jjig; i; j = 0;1 and

'= 1p
2
(j0i+ei� j1i) and �= j0i. Then

� (P'
P�) = 1

2
(j0ih0j+ j1ih1j)
j0ih0j : (6.6)

Thus all � dependence is lost. We see that (6.5) demonstrates the ill definedness

of class composition; consider �0 = 1p
2
(j0i+ei�0 j1i). Then

e�0 := �
�
P'
 � (P�0)

�
= � (P')
 � (P�0) = 1

2
(j0ih0j+ j1ih1j)
 1

2
(j0ih0j+ j1ih1j) ;

(6.7)

and clearly all dependence on � and �0 has been removed. On the other hand,

if we look for e� := �
�
P'
P�0

�
, and writing j0i
 j0i � j0;0i etc, we see that

e�= 1

4
[j0;0ih0;0j+ j1;1ih1;1j]

+
1

4

h
j1;0ih1;0j+ j0;1ih0;1j+(e�i(���

0) j0;1ih1;0j+h:c:)
i
: (6.8)

The degeneracy of the N–eigenspaces leaves (���0) dependent terms even after

4Technically (6.4) should be � (P'
P�) = �1(P')
 �2(P�), with �1 and �2 defined in B(H)

and B(K) respectively, according to (6.2). However, in order to keep the notation simple,
we will drop the subscripts and understand that � acts in the relevant Hilbert space, with
appropriate definitions of the projections in (6.2).
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acting with � . Notice also that we can choose to measure the operator A =

j0ih1j 
 j1ih0j+ h:c:. By (6.3), this is permissible under the superselection

rule since we have already acted with � on P'
P�0 yielding e�. We calculate

tr[Ae�]. Finding Ae�= 1
4

h
j0;1ih1;0j+ei(���0) j0;1ih0;1j+h:c:

i
, the number tr[e�A]

is readily computed, yielding

tr [e�A] = 1

4
(ei(���

0)+h:c:) =
1

2
cos(���0)): (6.9)

Therefore, within the confines of a sector, we have extracted a ���0 dependent
expectation value for A, and this does not differ from the expectation value foreA in that state. It is worth pointing out here that if �0 = 0, then the above

expectation value depends on � alone. However, it is important to take care to

note that this does not entail that our measurement is sensitive to the relative

phase factor appearing in '; it is still a relative phase factor between states

within an A–eigenspace, but the relative nature is only implicit after setting

�0 = 0.

6.3.3 Superselection rules from “gauge invariance”

Superselection rules can also be seen to emerge from a statement regarding the

invariance of the observables under some symmetry transformation effected by

a group acting in the observable algebra. In general we would consider some

(locally compact) group G acting on the von Neumann algebra of observables

A, (according to the usual notion of a group action); typically here G= U(1).

An example of such an invariance would be that the observables of the theory are

unchanged by the transformation A 7! eiN�Ae�iN� for some self adjoint operator

N , and � 2 R or otherwise � 2 [0;2�) . This is an example of a supersymmetry

in the language of Jauch and Misra [6.17]. A typical example would be a

supersymmetry generated by the electric charge, Qc.

More precisely, let 
� :B(H)!B(H); � 2 [0;2�) be defined by


�(A) = eiQ
c�Ae�iQ

c�:


(�) is often called a gauge group. At the underlying Hilbert space level each

sector Hq (q the charge eigenvalue labelling the sectors) picks up a different

phase under the action of the group; here each sector picks up a phase eiq�.

The unobservability of the eiq� represents a superselection rule for charge. The
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observables are those (self adjoint) A for which 
�(A) = A. Therefore the ob-

servables live in the commutant of the gauge group. From this perspective,

the sectors are the carrier spaces of the irreducible representations of the gauge

group. Viewing (real) observables as POVMs E : B(R)!B(H), we call E invari-

ant under 
� if 
�(E(X)) = E(X) for all X 2 B(R); � 2 R.

An example of such an invariance is that all observables must be translation

invariant, and consequentially the position operator Q on H (and Q0 on K),
cannot be called observables but the relative position Q
1�1
Q1 can be. A

similar argument holds for phase and relative phase (the relative phase being

phase shift invariant), or angle and relative angle (the latter being rotation

invariant).

6.3.4 Superselection rules and relative quantities

It has been argued (see, e.g. [6.1], [6.6]) that the theory of superselection rules

is essentially and fundamentally tied to the issue of whether certain physical

quantities are only physically meaningful as relative quantities and any at-

tachment of physical reality to related absolute quantities is meaningless. For

example, the notion of the position of an object must (classically or quantum

mechanically) be interpreted as the position relative to some reference system

that can be implicitly or explicitly included in the description. Whenever only

implicit, one must then interpret a coordinate appearing in an expression as a

relative coordinate relating to some external reference.

Therefore in quantum mechanics, one should not assign meaning in an absolute

sense to the position operator Q, and only to Q
1�1
Q0 with Q0 representing
a reference system. Along these lines one is lead to the conclusion that absolute

phases are not observable, but relative ones are. Typical examples are the

phase conjugate to number, and angle conjugate to angular momentum. This

agrees with the notion of gauge invariance of the previous section; it is clear

that absolute positions are not compatible with shift invariance (the gauge

group being generated by the momentum), but relative positions commute with

the total momentum and are shift invariant. If the group comprises phase

shifts generated by the number operator, the phase conjugate to number is not

invariant but the relative phase is (i.e., the relative phase observable commutes

with the total number).
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One can see that if such a rule is postulated (i.e., that only relative phase

observables are physically meaningful), this does indeed lead to a restriction to

the algebra of observables and therefore constitutes a superselection rule. Only

by moving to a larger algebra on a tensor product Hilbert space is one able to

incorporate the relevant relativised observables.

Another discussion of reference systems under which the same sector structure

of the state space arises is by arguing, as in [6.6], that if one “lacks a phase

reference”, the density matrix � should be averaged over all phases in order to

obtain the true state. This yields

�0 :=
1

2�

Z 2�

0
eiN��e�iN�d� = � (�)� e�: (6.10)

Nemoto and Braunstein ([6.28]) argue that one should go further; that any prior

distribution p(�) should also be unobservable, and that one should replace the

integral in (6.10) with
R
� p(�)e

iN��e�iN�d� � �00. However, one can verify that

� (�00) = � (�) = �0, and so the alternative averagings yield equivalent density

matrices, and so in our description represent the same state.

6.3.4.1 Ozawa model revisited

It is worth considering again the momentum–conserving position measurement

scheme of Ozawa, described in section 5.2. As shown there, good position

measurements are achievable at the price of a highly position–localised refer-

ence system. However, one can also use the same unitary map and pointer

observable to measure the relative position Q
1�1
Q1. Comparing these

measurement schemes gives insight into the role of relative quantities in the

WAY theorem, and exposes a generic feature of much of the upcoming super-

selection considerations: That in the case of high reference system localisation,

statistics for the relative coordinate become close to those of the absolute one.

However, in light of the argument that the absolute position does not represent

an observable, it is incorrect to regard the statistical proximity as pertaining to

information regarding the absolute position Q.

Recall from section 5.2 that the unitary measurement coupling is given by

U = ei
�
2 (Q�Q1)(Q2�Q3) (employing the obvious shorthand, acting on H
H1


H2
H3). We consider the initial state 	0(x;y;u;v) = '(x)�1(y)�2(u)�(v),

with the object system represented by H
H1, and thus by allowing �1 to vary
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we may extract the unique measured POVM eE(X) :B(R)!H
H1�B(L2(R2))

from

D
	� j1
1
EZ(f�1(X))
1	�

E
=
D
'
�1jeE(X)'
�1

E
(6.11)

to hold for all '; �1. It then follows that

eE(X) = �X � ee(�)(Q�Q1) (6.12)

with ee(�)(x) = �����(�)
2

����2 (x).
We therefore see eE(X) as a smeared or unsharp version of Q�Q1, with the

degree of unsharpness or inaccuracy governed by the function ee(�). Recall-

ing that we can quantify the inaccuracy via the variance of ee(�), we have

var(ee(�)) = 4
�2
var j�2j2. Therefore by tuning � to be large, arbitrarily accurate

measurements of Q�Q1 can be achieved.

Given the argument that only relative positions are physically meaningful, and

that attributing any ontological status to the absolute position Q is misplaced,

it is tempting to complete the analysis there. However, as we know from chapter

5, the same model can be used to formally measure Q by fixing �1 in the initial

state 	0. The resulting POVM is of the form E(X) = �X � e(�)(Q) with e(�)

given by e(�)(x) = j�1j2 �
�����(�)

2 (x)
����2 again dictating the inaccuracy. We then

have �
(�)
2 (s) =

p
��2(�s) and var(e(�)) = var j�1j2+ 4

�2
var j�2j2.

The probability distribution corresponding to the relative coordinate becomes

indistinguishable from those of the absolute coordinate Q in the limit that the

localisation of the reference system Q1 becomes sharp. By fixing �1, with the

first moment of Q1 in the state �1 equal to zero, and defining

h'
�1jeE(X)'
�1i := h'jG(X)'i;

i.e., as a bilinear form on H�H only, we see that

G(X) = j�1j2 � (�X � ee(�))(Q) = E(X);

where we have used the commutativity of the convolution. The probability

distribution for the relative position has therefore been re-expressed in terms

of the distribution for the absolute position by fixing the reference state �1.

However, given that no absolute physical meaning has been endowed to the
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absolute position Q, the numerical statistical equality of the relative position to

the absolute one must here be seen as a mathematical artifact of the description,

and not as information pertaining to the absolute position. Alternatively, the

closeness of the statistics of the relative versus absolute positions hints that

the usual position operator Q should be viewed as a relative position itself,

where the reference coordinate has already been made classical, or has been

“externalised”.

In forthcoming sections we will see more instances of the kind of behaviour

seen above. We will argue that attempts to impose absolute meaning to vari-

ous quantities is flawed in the same way as assigning absolute meaning to the

position in the Ozawa model is. Instead, the measurement statistics should be

read as pertaining to relative quantities, and whenever an absolute observable

is discussed it must be interpreted as an effective description of the relative one

in the limit of the inaccuracy in the reference system becoming negligible, or

alternatively, as the localisation of the reference system becoming sharp.

6.4 Covariant Phase and Relative Phase Observ-

ables

The notion of “phase” has not always been understood as an observable within

the formalism of quantum theory. We refer to such objects as observables, whilst

keeping in mind that we understand this in the sense of relative phase, relative

to a classical reference phase, in direct analogy to the position case discussed

above. The role of the unobservability of the absolute phase continues to be a

central consideration. The approach afforded by viewing observables as POVMs,

and when considering observables in terms of their transformation/covariance

properties (referred to in subsection 3.3.2; see [6.9] pp. 50-53), a satisfactory,

and mathematically sound approach to defining phase observables has now been

reached (see, for example, [6.29], [6.20], [6.21], [6.10], [6.22], [6.30]), and many

of their properties have been studied extensively (see e.g. [6.30]).

The number operator N acting in an infinite dimensional Hilbert space H is

defined by fixing an orthonormal basis fjni 2 H : n 2 Ng of H and defining

N jni= n jni; in spectral form N =
P
n�0n jnihnj.5 The phase conjugate (in the

sense of covariance) to number is defined to be a POVM E : B ([0;2�))!B(H)

5ClearlyN is unbounded, and technically is defined onD(N)= f'2H :
P

nn
2 jhnj'ij

2
<1g.
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which satisfies eiN�E(X)e�iN� = E(X _+�) where _+ represents addition modulo

2�. Such a condition does not single out a unique phase POVM, but rather an

infinite family of them. However, it can be shown that any phase observable

takes the form

E(X) =
1X

n;m=0

cn;m

Z
X
e(i(n�m)�)d� jnihmj (6.13)

where cn;m is a so-called phase matrix ; a positive matrix for which cn;n = 1 for

all n 2 N. E is never projection valued (see proposition 3 in [6.11] and propo-

sition 1 in [6.29]). If cn;m = 1 for all n;m 2 N, E� Ecan is called the canonical

covariant phase observable, which is characterised by various optimality prop-

erties [6.21].

We may extend the previous discussion to the case where the spectrum is not

bounded below by zero (but still has equidistant eigenvalues). We thus consider

the z-component of angular momentum Lz :L
2([0;2�))!L2([0;2�)) defined by

Lz'(�) = �i @@�'(�). We have that �(Lz) = Z with associated eigenfunctions

'k(�) = eik� for k 2 Z. Taking Lz to be the spectral measure corresponding to

Lz, it turns out that the conjugate phase observable E� is actually projection

valued. The corresponding self-adjoint operator shall be denoted �, which has

a natural interpretation as an angle observable. Projecting E� to the non-

negative eigenspaces of Lz yields a POVM which is not projection valued, and

coincides with the canonical phase POVM.

It is also crucial to have a notion of a relative phase observable (see eg. [6.29]),

which arises as the phase difference observable Er of two phase POVMs EA

and EB. Er is called a covariant relative phase observable if Er : B ([0;2�))!
B(H
H) satisfies

ei(�N1
1+�1
N2)Er(X)e�i(�N1
1+�1
N2) = Er(X _+(���)): (6.14)

Clearly then the relative phase Er is invariant under phase shifts generated by

the total number (i.e., when �= �);

ei�(N1
1+1
N2)Er(X)e�i�(N1
1+1
N2) = Er(X) for all X 2 B([0;2�)): (6.15)

As shown in [6.16], Er takes the form

Er(X) =
1

2�

X
n;m;k;l

ecn;m;k;l�n�m;k�l Z
X
jn;kihm;ljei(n�m)�d�; (6.16)
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where ecn;m;k;l = 0 if n�m 6= k� l and cn;n;k;k = 1 for all n;k 2 N.

6.5 General Scheme for Relativising Observables

Here we give a general approach for constructing relativised observables, which

has already been discussed but only in an ad hoc manner. In particular this

construction makes precise the approach found in [6.6]. We will see that the

relativising map (which we shall call ¥) gives relative observables which agree

with our intuition for operators representing, for example, position and an-

gle, but its utility will be most prominent when there is no “obvious” relative

observable to which one could appeal.6

The operation of relativisation provides a means by which an operator on the

Hilbert space HS of the system can be mapped to a “corresponding” operator

on the tensor product H=HS
HR of the system with an additional reference

system HR.

Consider group actions (in the sense described in 6.3.3) 
� and 
0� acting on

operators on B(HS) and B(HR) respectively. Let �� = 
�

0�. Then we may

define a map ¥ : B(HS)! B(HS)
B(HR),7 yielding A 7! ¥(A) which is ��

invariant:

¥(A) :=
Z 2�

0

�(A)
dE0(�)� eA (6.17)

where E0 :B([0;2�)) 7!B(HR) is covariant under 
0�. We shall sometimes include

a lower index on ¥ in order to highlight the self adjoint generator of 
. ThateA is �� invariant follows from the simple calculation:

��0[¥(A)] =
Z

�0(
�(A))
 e
�0(dE0(�)) = Z


�00(A)
dE0(�00) = ¥(A): (6.18)

Therefore to each self adjoint operator A of the system one can assign a coun-

terpart observable ¥(A) 2 A�B(H). Notice also that � (¥(A)) = ¥(A), and if


�(A) = A, then ¥(A) = A
1.

The predual ¥� : T1(HS
HR)!T1(HS) is defined by tr [R¥(A)] = tr [¥�(R)A]

for all A2B(HS); R2T1(H); ¥� exists since ¥ is normal (see below for a sketch

6The map (denoted $) supposed to provide the same purpose as ¥ in [6.6] was not defined
in a rigorous way, and was mistakenly also used on states. However, in that case it will need
to be replaced by the predual of ¥.

7The map ¥ was introduced by Takayuki Miyadera who joined the collaboration on this
topic during his visit to York in September 2011. The author would like to thank him for
extremely useful and enlightening subsequent discussions.
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of the proof). With R= �
�, we have ¥�(�
�) = R
(
�)�(�)tr[�dE0(�)] where

if, for instance 
�(A) = eiN�Ae�iN�, (
�)� is given by (
�)�(�) = e�iN��eiN�.

We first prove that ¥ is positive by considering h j¥(A) i for  2 B(H). As-

sume that A is positive and therefore A= B�B for some B � 0. Let f'i
�jg
be an orthonormal basis in HS
HR, and  =

P
i;j ci;j'i
�j . We then have

h j¥(A) i= X
i;j;k;l

�cijckl

Z 2�

0
h'ij
�(A)'kih�j jdE0(�)�li: (6.19)

With 
�(A) = U�AU
�
� , and U� � eiN�, we have 
�(A) = U�B

�BU�� . Writing

B�B =
P
mB

� j'mih'mjB, the expression for h j¥(A) i becomes

h j¥(A) i=X
m

Z 2�

0
h�m(�)jdE0(�)�m(�)i; (6.20)

where we have defined �m(�) :=
P
k;l ck;lh'mjBU��'ki�l. Finally, the right hand

side of (6.20) can be written

tr

"Z 2�

0

X
m
j�m(�)ih�m(�)jdE0(�)

#
; (6.21)

which is manifestly positive. The normality of ¥ follows from considering a

norm-bounded increasing sequence (An) in BS(HS) converging weakly to A 2
BS(HS). The norm-boundedness means that weak convergence of An ! A

is equivalent to ultraweak convergence. The positivity of ¥ entails that the

sequence ¥(An) is increasing and bounded above by ¥(A); thus we need only

show that ¥(An)!¥(A) weakly, i.e., limn!1h j¥(A�An) i=0 for all  2H.

This follows from showing the convergence on vectors of the form jni
� where

� is arbitrary. Using that eiN� jni= ein�, we see that

h j¥(A�An) i= hn
�j¥(A�An)n
�i

=
Z 2�

0
hnj(An�A)nih jdE0(�) i

= hnj((An�A))nik k2 ; (6.22)

where in the final equality we have used the normalisation of E0. The right

hand side of (6.22) then converges to 0 as n!1 due to the weak convergence

An! A and the finiteness of k k2.
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6.5.1 Relative phase

We may use ¥ to construct a relative phase observable. Let E(X) be a covariant

phase POVM in the sense of (6.13):

E(X) =
1X

n;m=0

cn;m
1

2�

Z
X
ei(n�m)�0 jnihmjd�0: (6.23)

Then ¥[E(X)] is given by:

¥[E(X)] =
Z 2�

0
E(Xu�)
dE0(�); (6.24)

and

¥[E(X)] =
1

(2�)2
X

n;m;k;l

ecn;m;k;l Z
X
d�
Z
Xu�

ei(n�m)�0 jnihmj
 jkihljei(k�l)�d�0;
(6.25)

where ecn;m;k;l � cn;mc0k;l. With, for example, jn;ki � jni
 jki, we have

¥N [E(X)] =
1

2�

X
n;m;k;l

ecn;m;k;l�n�m;k�l Z
X
jn;kihm;ljei(n�m)�d�; (6.26)

which is a shift covariant phase difference observable identical to that given in

equation (6.16).

6.5.2 Relative position and relative angle

It is worth noting that when the phase conjugate to some observable is sharp,

for instance position or angle, ¥ does indeed give the intuitively correct answers.

Furthermore, evaluating the action of ¥ is a matter of a few lines. For position,

we see that ¥P (Q) =
R

x(Q)
 dEQ0(x) where EQ

0

is the spectral measure of

Q0 : L2(R)! L2(R) representing a reference system position observable, and


x(Q) = eixPQe�ixP . Writing Q in spectral form allows the extraction of the

expected result that ¥P (Q) =Q
1�1
Q0. Similarly we find that ¥Lz(�) =

�
1�1
�0.
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6.5.3 Relative spin

Here we relativise an operator which is not phase-like. Choosing Sx as the

operator-to-be-relativised, we have

¥Sz(Sx) =
Z 2�

0

�(Sx)
dE0(�) =

Z 2�

0
ei�SzSxe

�i�Sz 
dE0(�): (6.27)

Direct computations then yield

¥Sz(Sx) =
Z 2�

0
cos�Sx
dE0(�)�

Z 2�

0
sin�Sy
dE0(�)

= Sx
 cos��Sy
 sin� = S �n(�) (6.28)

where n(�) = (cos(�);�sin(�);0) and �� RS1 �dE(�), and the rest follows from

the functional calculus. Taking E0 as projection valued, the self adjoint operator

� is the angle conjugate to angular momentum. We then see that if ��0 is well

localised at �0 with respect to the angle � so that h��0j���0i ' �0, and the

width of the � distribution approaches 0, we have

h'
��0j¥Sz(Sx)'
��0i ! h'jSx'icos(�0)�h'jSy'isin(�0) = h'jS �n0'i
(6.29)

with n0 � (cos�0;�sin�0;0).

6.5.4 Generic example

We now consider an arbitrary operator A on HS = C2, and seek the relativised

version acting on HS
HR, where HR is infinite dimensional. Firstly consider

A0 2B(HS) defined by A0 = j0ih1j+ j1ih0j. Then

¥N (A0) =
X
m�0

(j0ih1j
 jm+1ihmj+ j1ih0j
 jmihm+1j) ; (6.30)

where we have used the canonical phase Ecan in the definition of ¥N . It is clear

that ¥N (A0) commutes with the appropriately defined number operator acting

in HS
HR.

Indeed we can see how ¥N acts on a general A 2 B(C2) by noticing that we

may identify A0 = �x in the computational basis, and completing the Hermitian

basis of B(C2) with the remaining Pauli matrices and the identity, we have the
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following. Clearly ¥N (1) = 1
1 and ¥N (�z) = �z
1, and for �y we have

¥N (�y) = i
X
m�0

(�j0ih1j
 jm+1ihmj+ j1ih0j
 jmihm+1j) : (6.31)

The image under ¥N of any element of the basis (of B(C2)) is � invariant, and

therefore by linearity of � , any linear combination is also � invariant.

6.6 Relative Phase Sensitive Measurements I:

Simple Models

In this section we discuss a number of paradigmatic models under which we

consider the problem of relative phase factor sensitivity. The discussion in

6.3.2.1 provided a means by which certain relative phase factor information

could be obtained within the confines of a superselection rule. The state e� =
� (�) was given as

� (�) =
1

4
[j0;0ih0;0j+ j1;1ih1;1j]

+
1

4

h
j1;0ih1;0j+ j0;1ih0;1j+(e�i(���

0) j0;1ih1;0j+h:c:)
i
: (6.32)

The second term in square parentheses (which we will call P (N)
1 ) is supported

on an N -eigenspace (with eigenvalue 1), and as we have seen we may extract

(���0)–sensitive expectation values even with a superselection rule for N . How-

ever, the phase factors � and �0 were inserted into the expression by hand. In

this section we will see how, dynamically, and within the constraints of a super-

selection rule, to endow relative phase factors to states within an N eigenspace,

leading to states similar to P (N)
1 as above.

We begin with a model in a finite dimensional Hilbert space, and show that

this does not admit an interpretation that a relative phase factor between states

in different sectors has been measured or estimated. We then consider three

infinite dimensional examples, and again demonstrate that it is only relative

phase factors between states within a sector that can show up in the statistics of

an experiment. This will set up the discussion (in section 6.7) of the behaviour

of the models when the reference system is highly localised.
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6.6.1 Model 1 : two–level system

By initially considering a model in low dimension (a 4–dimensional space) we

are able to show how to dynamically introduce and measure a relative phase

factor between certain states, whilst being in full compliance with a superselec-

tion rule. By confining our attention to low dimensions, we are able to rule out

any possibility of attribution of the relevant relative phase factor to one subsys-

tem or another. The generic structure of this model can then be applied to the

scenario where the second system has infinite dimension, which resembles the

situation in which there are arguments purporting to lift or evade superselec-

tion rules. However, we argue that there is no reason to believe in the infinite

dimensional setting that the interpretation of measurement statistics should be

different from the model discussed below.

Let N1 : C2! C2 be a self adjoint operator such that N j0i= 0; N j1i= j1i, and
let N2 : C2 ! C2 have the same action. Let N := N1
1+1
N2 be such that

[N;A] = 0 for all observables A. The operators U1 and U2 which represent two

stages of time evolution are defined as

j0i j0i U1�! j0i j0i U2�! j0i j0i ;

j0i j1i U1�! e�i
�
2p
2

�
j0i j1i+ei� j1i j0i

�
U2�!

 
cos

�

2
j0i j1i� isin �

2
j1i j0i

!
;

j1i j0i U1�! e�i
�
2p
2

�
j0i j1i�ei� j1i j0i

�
U2�!

 
�isin �

2
j0i j1i+cos

�

2
j1i j0i

!
;

j1i j1i U1�! j1i j1i U2�! j1i j1i ;

and it can be seen that [U1;N ] = [U2;N ] = 0. Furthermore, it is important to

notice that U2 does not depend on �, which can be seen by the action of U2 on

the initial product states given by U2 j0i j1i= 1p
2
(j0i j1i+ j1i j0i) and U2 j1i j0i=

1p
2
(j0i j1i�j1i j0i). The purpose of applying U2 is to allow a measurement of an

observable which commutes with N1 and which still gives rise to relative phase

factor sensitive measurement statistics.

Considering the states arising after application of U1, computing trHR [PU1jiijji]

(i; j = 0;1) shows that the states of the system alone have no dependence on
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�. The same is true for trH[PU1jiijji]. Since the post U1 states are those with

a relative phase factor between states in a superposition, we therefore see that

any attribution of the relative phase factor � to a subsystem is meaningless,

and � pertains only to combinations of states that lie within the sector labelled

by n.

Writing �0 := j0ih0j, and  = j0i j1i, noticing that � (�0) = �0, we compute

tr [�0
1� (PU2U1 )] = tr [�0 trKPU2U1 ] ; (6.33)

yielding the probability p�0U2U1 (0) = cos2 �2 . The probability of measuring the

outcome 0 then depends explicitly on the phase �.

Notice that applying � at every stage does not alter the probabilities. We have,

for example

� (P )! U1� (P )U
�
1 = � (U1P U

�
1 )! U2(� (U1P U

�
1 ))U

�
2

= � (U2U1P U
�
1U

�
2 ) = � (PU2U1 ): (6.34)

Then tr[�0
1� (PU2U1 )] coincides with the expression in (6.33). The unitary

maps U1 followed by U2 mimic what might occur in a realistic interference

experiment, where the reference system is confined to a low dimensional Hilbert

space. The interference fringes dictated by � are measurable. However, it is

worth stressing again that at no stage have relative phase factors between N–

eigenspaces been measured; the relative phase factor sensitive statistics show up

as phase factors within a single eigenspace of N . This highlights a crucial point:

Although superpositions between sectors would yield observable interference

effects, the converse implication is generally false. The experimental verification

of interference fringes, although validating the existence of some superposition,

certainly does not imply the coherence of superpositions across sectors. We

now analyse a variety of infinite dimensional examples, and show that we must

draw the same conclusion: relative phase factor sensitivity does not entail the

measurability of a relative phase factor between sectors.

6.6.2 Model 2 - Angular momentum and angle

We now adapt the previous model, replacing the space C2 of the reference system

with an infinite dimensional space, and construct a new unitary mapping (and
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abusing notation still call it U1):

j0i jni U1�! e�i
�
2p
2

�
j0i jni+ei� j1i jn�1i

�
; (6.35)

j1i jn�1i U1�! e�i
�
2p
2

�
j0i jni�ei� j1i jn�1i

�
: (6.36)

Linearity entails (sums taken from �1 to 1)

U1 : 	0 � j0i j�i � j0i
X
cn jni ! e�i

�
2p
2

X
cn(j0i jni+ei� j1i jn�1i): (6.37)

The initial state 	0 under � takes the form

� (P	0) =
X
n
PnP	0Pn = j0ih0j

X jcnj2 jnihnj ;

where Pn are (infinite rank) projectors onto eigenspaces of N =N1+N2 (with

Ni =
P1
n=�1n(i)P

(i)
n for i= 1;2) given as

Pn =
X

l+m=n

P
(1)
l 
P (2)

m =
X
l

P
(1)
l 
P (2)

n�l: (6.38)

We consider what information about � can be obtained from the state � (P f )

with 	f � e�i
�
2
P
c0n(j0i jni+ei� j1i jn�1i) (with c0n � cn=

p
2) and

�=
P
nPn j	f ih	f jPn. We have

�=
X
n

1

2
jcnj2 (j0;nih0;nj+ j1;n�1ih1;n�1j)

+
1

2
jcnj2

�
j0;nih1;n�1je�i�+ j1;n�1ih0;njei�

�
: (6.39)

We see that � is a mixture of sector states, and within each sector labelled by n

there is a relative phase factor between the “cross terms”. Once again, although

determining the relative phase factor is compatible with the sector structure

and superselection rule (one could use an analogous operator to ¥(A) from

section 6.5.4, but with the number states on the reference extending to positive

and negative infinity), this factor can be attributed to neither the system nor

the reference system.

We may extend the discussion and, in the spirit of the finite dimensional ex-

ample, introduce a second unitary U2 (which is independent of �), which with
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U � U2U1 yields

j0i jni U�! cos

 
�

2

!
j0i jni� isin

 
�

2

!
j1i jn�1i ; (6.40)

j1i jn�1i U�!�isin
 
�

2

!
j0i jni+cos

 
�

2

!
j1i jn�1i : (6.41)

In analogy to the 2x2 case, we see that for example tr
h
j0ih0jtrK[PU j0ijni]

i
=

cos2(�=2), and again, since we have measured a relative observable (i.e., j0ih0j

1), applying � at all stages does not alter the result.

6.6.3 Model 3 - Number and phase

We consider the number-phase case as another typical example. In this case, we

have N1
1 and 1
N2 acting on HS
HR and N =N1
1+1
N2 =
P
nnPn

with Pn =
P
i+j=nP

(1)
i 
P (2)

j . Another simple unitary mapping is given by:

U1 : j0i jni !
8><>:

e�i
�
2p
2
(j0i jni+ei� j1i jn�1i) n > 0

j0i j0i n= 0
(6.42)

U1 : j1i jn�1i ! e�i
�
2p
2
(�e�i� j0i jni+ j1i jn�1i) n > 0:

The problem of measuring an observable which is sensitive to � is considered

in section 6.7.3. It is worth reiterating that � pertains only to the system and

reference as a composite system, and not to either component separately.

Following the same approach that we have now employed a number of times,

we introduce a second unitary map U2, under which U � U2U1 implements

U : j0i jni !
8<: (cos(�=2) j0i jni� isin(�=2) j1i jn�1i) n > 0

j0i j0i n= 0
(6.43)

U : j1i jn�1i ! �isin(�=2) j0i jni+cos(�=2) j1i jn�1i) n > 0

Then tr
h
j0ih0jtrKPU j0ijni

i
= cos2

�
�
2

�
and once again we have a � dependent

probability distribution.
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6.7 Role of High Phase Localisation

We are now able to give meaning to the “largeness” of reference systems that

has been alluded to many times. As we shall see, the crucial aspect is the

approximate localisation of the conjugate phases. For example, in the angular

momentum case, in order to have a state highly localised with respect to the

conjugate angle, it is necessary that this state be a superposition of many

angular momentum states with different eigenvalue. Here we discuss the effects

of having high reference system localisation and the bearing this has on the

superselection rules debate.

6.7.1 Introduction

Let '= c0 j0i+ c1 j1i 2 HS with j0i ; j1i eigenstates of N1 and consider coupling

HS to another space HR. Let  = 1p
2
(j0i+ j1i) 2 HR with j0i ; j1i eigenstates

of N2, and let N =N1
1+1
N2 such that there is a superselection rule for

N . Taking the product of states and acting with � we see that

� (P ['
 ]) = 1

2

�
jc0j2P [j0i j0i]+ jc1j2P [j1i j1i]

�
+

1

2
P [c0 j0i j1i+ c1 j1i j0i] =: �: (6.44)

With A1 := j0ih1j+h:c: we see that h'jA1'i= 2Re( �c0c1). With ¥(A1) = eA1 =P
m�0 j0ih1j
 jm+1ihmj+h:c:, we find that

h'
 eA1j'
 i= 1

2
Re( �c0c1) =

1

2
h'jA1'i: (6.45)

Therefore we have agreement up to a factor of 1
2 in the statistics of A1 in the

state ' and eA1 in the state '
 .
Recall from section 6.3.2.1 that if we had first acted with � and taken the

product, the relative phase factor Re( �c0c1) would not have shown up in the

statistics at the subsystem level. The superselection rule has been applied at

the composite level, and this allows for these relative phase factors to show

up within the restriction of a superselection rule. The factor of 1
2 appears

from the definition of  as an equally weighted superposition. We will soon see

that if we allow superpositions across a large number of sectors for the reference

system state, we are able to achieve approximate equality, with arbitrarily good

115



Chapter 6 Superselection Rules

approximation, between the composite and subsystem statistics.

We revisit the models of the previous section, in which we demonstrated the

sensitivity of relative observables (which satisfy the superselection rule) to rel-

ative phase factors between states within a sector. We show that if one allows

for large reference systems, the entangled state of the system/reference system

is arbitrarily close to a product state. By ignoring an “error” term, relative

phase factors between states within a sector at the compound level take on the

appearance of a relative phase factor between states from different sectors at

the level of the system. However, if correctly interpreted as a representative of

a sector state, we see that the superselection rule is upheld.

Furthermore, all of the models exhibit the same behaviour: it is only by resort-

ing to large reference systems, in the sense of high reference phase localisation,

that such an interpretation (that a superselection rule has been violated) is

tempting.

6.7.2 Angular momentum and angle revisited

Consider the following. Let cn = ein�p
2j+1

for �j � n� j and 0 otherwise, and let

j�ji=Pj
�j cn jni. This state is approximately localised around the value � (i.e.,

an approximate eigenstate of the self adjoint angle � with eigenvalue �), with

the quality of approximation increasingly good as j becomes large. Indeed, the

sequence (j�ij) is an approximate eigenstate of �, in the sense that h�j j��ji= �

and var(�)�j ! 0 as j !1. Recalling the form of U1 from section 6.6.2, we

have

	f � U1 j0i j�ji= e�i
�
2p
2

�
j0i+ei(�+�) j1i

�
j�ji+ jerrorij (6.46)

where the state

jerrorij =
ei

�
2 ei�p

2
p
2j+1

�
�e�ij� j1i j�ji+ei(j+1)� j1i jj+1i

�
: (6.47)

Clearly



jerrorij


2 = 1

(2j+1) . As



jerrorij


2 becomes arbitrarily small, 	f is

arbitrarily norm–close (modulo an overall phase) to the product state
1p
2

�
j0i+ei(�+�) j1i j�ji

�
.

However, thinking in terms of the sector structure, correctly interpreted this is

simply a representative of a sector state and the factor ei(�+�) still pertains to

a relative phase between system and reference.
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6.7.3 Generic example revisited

We may also consider an analogous situation to the above, but with the num-

ber operator rather than angular momentum. Let j�ij = 1p
j+1

Pj
n�0 jni, repre-

senting a well localised phase around zero, with good approximation resulting

from j being large. As a simple example let A0 = j0ih1j+ j1ih0j � �x and

'= 1p
2
(j0i+ j1i); and so h'jA0'i= 1=2. Recalling from section 6.5.4 that when

¥n is defined with respect to Ecan, we have

¥N (A0) =
X
m�0

j0ih1j
 jm+1ihmj+ j1ih0j
 jmihm+1j ;

we look for h'
 �j¥(A0)'
 �i. We compute h'
 �j¥(A0)'
 �i = j
2(j+1) and

as j becomes large, this approaches 1=2 = h'jA0'i.
We can reproduce the entire qubit algebra B(HS)�B(C2). We have ¥N (�z) =

�z 
 1, and so h'j�z'i = h'
 �j¥N (�z)'
 �i trivially. Also ¥N (1) = 1
 1,

yielding h'j1'i = h'
 �j¥N (1)'
 �i trivially. Finally it can be shown that

h'
 �j¥N (�y)'
 �i= 0, which agrees with h'j�y'i= 0.

As one would expect, the result (that the qubit algebra is reproduced as j

becomes large) holds for arbitrary ' = c0 j0i+ c1 j1i and A = a11+ a ��. We

have h'jA'i = a1+2axRe(�c0c1)+ 2iayIm(c0�c1)+ az(jc0j2� jc1j2). Evaluating

h'
 �j¥N (�y)'
 �i = 2ij
j+1Im(c0�c1), h'
 �j¥N (�x)'
 �i = j

j+1(Re(�c0)c1) and

h'
 �j¥N (�z)'
 �i = h'j�z'i, we see that as j becomes large, we indeed re-

produce h'
 �j¥N (A)'
 �i ! h'jA'i.
In a separate publication we will show (in collaboration with Paul Busch and

Takayuki Miyadera) that this is quite general and works also for infinite object

systems whenever the covariant phase observable E satisfies the norm-1 property

(see section 2.2.4). In this case ¥ is injective and the image of ¥� is trace-norm

dense in S(H).

6.8 Relative Phase Sensitive Measurements II:

Realistic Experiments

In light of the discussions concerning relative phase factor sensitive measure-

ments, and particularly the consequences of good reference phase localisation,

it is worth considering the relationship between the theoretical and easily
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tractable models that we have thus far considered, and physical experiments

that have been performed in a laboratory. For instance, there is a whole host

of quantum interferometry experiments that demonstrate interference effects,

from which the existence of relative phase factors between certain superposi-

tions can be inferred. The experimental realisation of such interference patterns

not only makes full understanding of the toy models crucial, but necessitates

a thorough examination of precisely which relative phase factors have been

measured experimentally.

The close analogy between the toy models and the realistic Hamiltonians arising

in physical experiments makes it difficult to accept, say, observability of relative

phase factors between an atom in a ground/excited state, but reject the observ-

ability of relative phase factors between states of different electric charge. This

is one argument against superselection rules imposing fundamental limitations

to quantum theory: Since interferometry experiments have been performed in

practice, and since the thought experiments pertaining to interference experi-

ments involving superselected quantities are analogous, if one accepts the real

experiments one must also accept the thought experiments.

On close inspection, there is indeed much similarity between the two situa-

tions. However, on analysis of some of the paradigmatic quantum interference

experiments such as Mach-Zehnder or Ramsey interferometry, one must con-

clude again that it is only relative phases that have shown up in measurement

statistics, and an apparent possibility of attributing a relative phase factor be-

tween states in a superposition at the level of the system alone comes at the

price of a highly localised reference system and by ignoring system–reference

entanglement.

We briefly review the above situation in reference to Ramsey and Mach-Zehnder

interferometry. Mach-Zehnder interferometry is an optical scheme which com-

prises beam splitters and phase shifters (see [6.41] and [6.26] for original work,

[6.35] pp. 10 for a description and diagrams, or [6.13] for the relation to su-

perselection rules). The Ramsey interferometer is a system of optical cavities

through which a two level atom is able to traverse, with free evolution of the

excitation degrees of freedom in one arm between the cavities. The analogy

between Mach-Zehnder and Ramsey interferometry is apparent when the free

evolution is replaced by a Mach-Zehnder phase shifter, and “ �2–pulses” by beam

splitters (see, e.g., [6.25] for a precise discussion). We consider the Ramsey
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scheme; the form of state evolutions arising are more reminiscent of those we

have discussed.

Although the interferometry schemes mentioned above contain many compo-

nents which necessarily interact with the quantum system under investigation,

the state changes of these components and the resulting entanglement with the

system are often ignored. If this is the case, it is tempting to view the interfer-

ence as pertaining to relative phase factors between superpositions of states of

the system alone.

In the Ramsey scheme for example, an atom in its ground state jgi enters an

optical cavity with which it interacts. If the description is given only at the level

of the atom, the following sequence (or similar) of state evolutions is effected:

 i � jgi ! 1p
2
(jgi� i jei)! 1p

2
(jgi� ie�i� jei) (6.48)

! sin(�=2) jgi� cos(�=2) jei �	f ; (6.49)

where jei represents an excited state of the atom. If the observable Pg � jgihgj
is measured in the final state, we see h	f jPg	f i= sin2(�=2). It is often stated

that this � dependent probability distribution has demonstrated measurement

sensitivity to the relative phase factor between an atom in its ground state and

excited state. However, the effective system Hamiltonian generating such an

evolution certainly does not commute with Pg; Pe. At the level of system plus

cavities, the full interaction Hamiltonian does commute with the total energy.

A common approximation yields, again, an atom–cavity state that is almost

separable, when the cavities are prepared in large amplitude coherent states

of light. In light of the discussions of the models we have introduced, along

with the role of large reference systems discussed in section 6.7, it must be

realised that the phase factor � arising in the probability distribution pertains

to a relative phase between atom and cavities, and not to a relative phase factor

between ground/excited atomic states.

Finally it is worth briefly discussing theoretical experiments whereby a phase

POVM is reconstructed from photon counting statistics. For instance, it is

proved in [6.31] that an eight port homodyne detection scheme allows a phase

POVM to be extracted as an angle margin from a covariant phase space ob-

servable in the limit that the mean photon number in the coherent state of a

local oscillator becomes infinite. Again this limit corresponds to high phase
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localisation, and the local oscillator then provides the reference system under

which a relative phase POVM is well approximated by a POVM acting in the

system Hilbert space alone, thus taking on the appearance of an absolute phase

observable.

6.9 On proposed violations of superselection rules

6.9.1 Aharonov and Susskind: electric charge superselction

rule

In 1967 Aharonov and Susskind wrote a paper entitled “Charge Superselection

Rule” ([6.2]) in which they proposed experiments purporting to demonstrate

that “interference may be possible between states with different charges”. Here

we briefly discuss their proposal.

Aharonov and Susskind imagine preparing two cavities (C1, C2) in charge-

coherent states jq1;�i =P
n
q
n=2
1p
n!
exp(in�)jni and jq2;�0i =P

n
q
n=2
2p
n!
exp(in�0)jni

respectively (where the normalisation factors have been omitted). The states

jni represent a charge eigenstate corresponding to n negatively charged mesons,

and the parameters q1 and q2 represent the respective mean charge values in

the coherent states. The initial state of a nucleon is a proton jP i (we will

use jNi to represent a neutron), and the dynamics, which take place in two

stages, are governed by a Jaynes-Cummings type Hamiltonian (which commutes

with charge) H = g(t)(�+a�+ ��a+) where �+ = jNihP j, �� = jP ihN j (��
are sometimes referred to as isospin operators). a� are meson creation and

annihilation operators which act on the states of the cavities, and g(t) = g for

0� t� T and g(t) = 0 otherwise.8

The nucleon interacts first with cavity C1 according to the Hamiltonian given

(which acts as the identity on C2), followed by another Hamiltonian of the same

form, now coupling the nucleon to cavity C2 (and acting as the identity on C1).

They then extract a proton probability distribution that depends on the phase

difference (�� �0), and conclude that therefore they have a phase-sensitive

proton-neutron probability distribution, and thus have escaped the superse-

lection rule. This approach employed an approximation that will be discussed
8This notation is of course a simplification. To be more correct the dynamics are governed

by H1 = g(t)(�+
 a�
1+��
 a+
1) for 0 � t � T , followed by H2 = g(t)(�+
1
 a�+

��
1
a+) for T � t� 2T .
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in detail in the following section; that if coherent states are used and their am-

plitude allowed to be arbitrarily large, the final atom - reference state is arbitrar-

ily norm-close to a product state of the form (cN jNi+cP jP i)
jq1;�i
jq2;�0i.
This expression is extremely similar to those encountered in section 6.7, and

is indeed another example of such behaviour: high reference localisation allows

for entangled states to become close to products.

However, it is clear that the use of charge coherent states is permissible only

inasmuch as they are representative of the class of indistinguishable states under

a superselection rule for charge. In the final part of their paper Aharonov and

Susskind therefore attempt to construct a charge eigenstate out of the two

charge coherent states, in order to respect the charge superselection rule! This

takes the form of an integral ([6.2], final page)

jii=
Z
jq�1i

���q0�2E� ��1��2� (�0��)
�
e�i(q+q

0)�1d�1d�2; (6.50)

where the initial state jii is then jq+ q0;�0��i; a simultaneous eigenstate of

charge and (improperly) phase.9 They claim that the proton probability dis-

tribution is unchanged even when the cavities are prepared in a charge eigen-

state. However, the following calculation demonstrates that their proposal is

flawed: Suppose under unitary evolution (given by U) satisfying [U;Qc] = 0

(with Qc =Qc1+Q
c
2) we have

jP i
 jii U�! �i+1

where Qc�i+1 = (i+1)�i+1. Then for arbitrary  =� jP i+
 jNi, j�j2+ j
j2 =1,

we have the following result: k�i+1� 
jiik = 0 if and only if 
 = 0. Proof:

k�i+1� 
jiik2 = 0 if and only if �i+1 =  
jii= (� jP i+
 jNi)
jii. This is
clearly satisfied if and only if 
 = 0. In the example where �= 
 = 1=

p
2, we see

that k�i+1� 
jiik2 � 2�p2. Thus the resulting state is a finite (norm) dis-

tance from an eigenstate, independent of the “size” of the reference system. The

approximation based on high amplitude coherent states was mathematically

valid and resulting in states close to a product state containing proton–neutron

superpositions in the system Hilbert space. The above result demonstrates that

if the coherent states are replaced with a charge eigenstate, no such approxi-
9The numbers q and q0 pertain to the amplitude of the coherent states jq;�1i and jq0;�2i

and, as such, are continuous. However, for the expression in equation (6.50) to represent an
eigenstate of the total charge, q and q0 must be restricted to taking integer values.
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mation can occur.

As we have seen in section 6.7, even if the cavity coherent states do provide a

permissible description under a superselection rule, with the rule being applied

only at the system-cavity level, it is still the case that there is no reason to

believe that the presence of the phases (���0) in measurement statistics entail

a superselection rule violation. When interpreted as relative phase factors be-

tween states within a sector, as is clear before the approximations have been

made, the measurement has therefore given rise to statistics pertaining to a

relative phase between system and cavities.

6.9.2 Dowling et al: baryon number superselection rule

In the spirit of the 1967 contribution by Aharonov and Susskind, Dowling et al

[6.13] attempt to observe a coherent superposition of an atom and a (diatomic)

molecule, in order to raise the possibility of observing coherent superpositions

of states of differing baryon number. In order to avoid the error of Aharonov

and Susskind in preparing the cavities in an eigenstate of the conserved quan-

tity, they instead utilise the coherent state, but acknowledge that appropriate

“sectorising” is necessary in order to respect the superselection rule for the

composite system. However, this sector structure is only ever applied to the

composite arrangement on the tensor product.

The reference system is provided by a Bose–Einstein condensate (BEC), coher-

ent states of which are written j�i=P1
n=0 cn jni (jni representing a state of n

atoms) with cn = exp(�j�j2 =2)�n=pn!. We write � =
p
mei�, and have that

hNi� = j�j2 =m and (�N)� =
p
m, and as m becomes large, coherent states

become arbitrarily highly localised in phase. Therefore the coherent state looks

increasingly like a phase “eigenstate”, and so analysis of models involving large

amplitude coherent states are extremely similar to those using approximate

phase eigenstates of the form found in section 6.7.3. It is also useful to note

that � (P�) =
P1
n=0Pn j�ih�jPn =

P1
n=0 jcnj2 jnihnj.

Without going into excessive detail, Dowling et al. outline an experiment,

again with a multistage unitary along the lines of the models we have outlined,

which goes as follows: The initial state is PjAi
j�i (� jAihAj 
 � (P�)), where
the state jAi is to represent an atom; accordingly molecule states are written

jMi (although both of these are to be understood as shorthand: jAi � j0iM j1iA
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and jMi � j1iM j0iA). Defining the cavity states

j�1Ai=
X
n=0

cn cos(
�

4

s
n

m
)jni=

1X
n=0

e�m=2mn=2

p
n!

ein� cos(
�

4

s
n

m
)jni (6.51)

and ����1ME=�iXcn sin

 
�

4

s
n

m

!
jn�1i ; (6.52)

they give the following sequence of unitary maps (we omit the specific form of

the Hamiltonians; see [6.13] for details):

	0 � U1jAi
 j�i= jAi

����1AE+ jMi


����1ME (6.53)

followed by free evolution under a Hamiltonian of the form K jMihM j (with K
a constant)

	0!	00 � U2	
0 = jAi


����1AE+ei� jMi

����1ME ; (6.54)

where � = TK and T is the duration of free evolution. Thus U2 explicitly

depends on �. Finally,

U3	
00 = jAi


����3AE+ jMi

����3ME ; (6.55)

with ����3AE= sin(�=2) j�i� icos(�=2)Xcn cos

s
n

m

�

2
jni

and ����3ME=�cos(�=2)
X
cn sin

s
n

m

�

2
jn�1i

again representing cavity states. The purpose of U2U1 is to introduce the rel-

ative phase factor �; U3 then allows a measurement in a convenient basis (i.e.

jMihM j ; jAihAj) for realistic experiments, but also to measure �–invariant ob-

servables. For the purposes of discussion of relative phase factor observabil-

ity it is sufficient to discuss the state following the application of U1 or U2,

along with with the asymptotic behaviour outlined in [6.13] (for example, that


����1AE� 1p
2
j�i



! 0 as m!1; see appendix at the end of this chapter for a

proof) we arrive at

U1jAi
 j�i=
 

1p
2
jAi� iei�p

2
jMi

!

j�i+ jerrorim (6.56)
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where

�jerrorim = jAi
 (
1p
2
j�i�

����1AE)+ jMi
 (
�iei�p

2
j�i�

����1ME) (6.57)

with � � arg�.

It is clear that kjerrorimk! 0 iff



( 1p

2
j�i�

����1AE)


! 0 and



(�iei�p
2
j�i�

����1ME)



! 0 individually, using the fact that hAjMi=0 and kjAik=
kjMik= 1.

However, one can also consider the post U3 state in order to extract phase

information. Again, asymptotically and ignoring the error term we have (as

given in [6.13])

U3U2U1 jAi
 j�i �=
"
sin

 
�

2

!
jAi�ei� cos

 
�

2

!
jMi

#

j�i : (6.58)

The interpretation is that since one can apply � at every stage (under the

approximation) and still achieve atom/molecule probabilities of sin2(�=2) and

cos2(�=2) respectively, a coherent superposition of an atom and a molecule has

been observed.

However, in view of the examples we have discussed, the observability of the

interference effects as given by (for example) sin2(�=2) only demonstrates the

feasibility of measuring relative phase factors within a sector, and the phase

�=2 should be viewed as precisely this. The large reference system, which

provides high reference phase localisation, again provides the appearance of a

relative phase factor at the level of the system only. This is in precise analogy

to the Ozawa position measurement model: there we would not claim to have

measured an absolute position, and so here we should not claim absolute phase

sensitivity either.

6.9.3 Conflict of large reference systems with a conserva-

tion law

It is important to consider carefully the effect of ignoring the “error” state of

the previous sections. For example the action of the unbounded (and therefore

not continuous) number operator on this state must be taken into account

when considering whether the number is conserved. Also, given that when

the large m limit is taken in the atom-molecule case, the state of the BEC is
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unchanged throughout the experiment (it should be pointed out here that the

limit as m!1 in a coherent state does not yield a Hilbert space vector). The

pathological behaviour of such limits reveals itself most acutely in the following

example. Taking the argument in [6.13] one step further, and by tuning their

Ramsey pulse (of duration T = �
2�
p
m
), to a duration of T 0 = 2T , the overall

state transition of the compound system is simply jAi
 j�i ! jMi
 j�i.
If viewed as evolving under an effective unitary Ue� , we have Ue� = eU
1 taking

a non-trivial form only on HS � C2 via eU =

0@0 ei�

1 0

1A where � is undetermined

(although could be found by considering the action of U on jMi
 j�i). The

effective unitary Ue� does not commute with N , and so the effective dynamics

are manifestly not number conserving. Indeed, it looks as though an atom has

been “manufactured” at no cost.

It is worth pointing out that even for “intermediate” states of the sort encoun-

tered in for example (6.56) or (6.58) the conservation law is not upheld when

the error term is ignored.

6.9.4 “Lifting” and asymmetry

We have seen that the non-multiplicative nature of � makes it crucial whether

the sector structure is enforced subsystem-wise before combination, or at the

level of the compound system after the system-reference product has been taken.

If the latter, we may regard the superselection rule to have been lifted (in the

language of [6.6]). It is by lifting the superselection rule that a relative phase

POVM on the compound system commutes with the superselected quantity, and

so the relative phase may be called an observable. As argued in [6.6], whether

the lifting of a superselection rule is possible is fundamentally tied to whether

there is a meaningful notion of relative phase at the compound level.

For concreteness we discuss the number-phase example. We have discussed a

superselection rule for number NS on the basis that the conjugate phase ES is

unobservable and [NS ;ES(X)] 6= 0. However, by considering N = NS
1+1

NR acting inH=HS
HR, we may define Er as in section 6.4 as a relative phase

POVM acting in H. Applying the superselection rule at the level of H, we have

seen that with high phase localisation in the reference system state �, there

is a numerical closeness between the numbers h'jA'i and h'
 �j¥(A)'
 �i
(see section 6.7.3). One may still talk of a superselection rule for N , since the
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(absolute) phase conjugate to N is still unobservable.

As pointed out by Wick, Wightman and Wigner in [6.37], the superposition

across sectors on the reference state is necessary for any phase information that

could be attributed to a state of the system alone to show up in measurement

statistics. This is also evident from equation (6.4) for example; if the reference

is prepared in an NR eigenstate, all phase information is lost.

The model examples discussed above all follow the prescription of applying the

superselection rule at the system-reference level. In this way the degeneracy of

the N–eigenspaces allows relative phase factors to exist within a single sector,

and to be measured, fully in line with a superselection rule.

We now know that the appearance of a relative phase factor at the level of

the system comes at the expense of ignoring system-reference entanglement

and conflicts with the conservation law, and that the relative phase factor is

correctly interpreted as pertaining to a relative phase between the system and

reference. Therefore it seems inappropriate to consider “lifting” as violation

of a superselection rule in any sense. It is not the case that superselection

rule impermissible statistics have been recovered via the procedure of lifting.

For this reason we disagree with the view expressed in [6.6] that “including

an unbounded quantum reference frame reproduces a quantum theory that is

equivalent to one in which the superselection rule does not apply”. Indeed, by

making explicit that when a reference system is unbounded there is statistical

agreement between relative and absolute quantities demonstrates that the usual

formulation of quantum theory provides a simplified description of relative ob-

servables in terms of apparently absolute quantities. Since the limit states that

we have considered are properly thought of as representative sector states, the

true situation remains one in which a superselection rule is present. The state-

ment “superselection rules cannot provide any limitations on quantum theory”

([6.6], p.579) then also seems an invalid conclusion; at the lifted level it is an

entirely different physical situation that is being discussed, with a different al-

gebra of observables, containing the explicitly relative ones, and a different set

of states.
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6.10 Alternative Tensor Product Structures

As has been considered in [6.6], there are scenarios in which it is possible to

decompose a Hilbert space with respect to a different tensor product. The

benefit of this is that it allows a decomposition into relative (or “relational” -

see [6.6]) and “global” (or sometimes “total”) Hilbert spaces. Although the case

corresponding to the number operator in [6.6] is flawed (we shall see how), there

are scenarios where it is indeed feasible. Here we discuss two cases.

Consider the Hilbert space H1
H2 =L2(R1)
L2(R2). Consider each “particle”

to have equal mass and coordinates x and y respectively, and define Xr := x�y
and Xcm = 1

2(x+y). Then:

	(x;y) = 	(Xcm+
1

2
Xr;Xcm� 1

2
Xr) := �(Xcm;Xr); (6.59)

and the one-to-one correspondence between the original coordinates, and the

relative and centre of mass coordinates, allows for an isometric bijection H1

H2!Hr
Hcm. In other words, L2(R1)
L2(R2)�= L2(Rr)
L2(Rcm).

We now consider the case of angular momentum operators, writing them here

as NS and NA. There is a corresponding orthonormal basis for HS 
HA of

eigenvectors of NS and NA written f'i
�jg.
We have NS =

P1
n=�1nPn and NA =

P1
n=�1nQn; Pn and Qn are rank 1

projections, and the eigenvalues n are nondegenerate. We occasionally omit

summation indices when there is no risk of ambiguity. Let

NT =NS
1+1
NA =
X
j

tjTj ; (6.60)

the spectral projections Tj take the form

Tj =
X

n+m=j

Pn
Qm =
X
n
Pn
Qj�n: (6.61)

Also let

Nr =NS
1�1
NA =
X
l

rlRl; (6.62)

and we have

Rl =
X

n�m=l

Pn
Qm =
X
n
Pn
Qn�l: (6.63)
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Therefore

TjRl =
X
n;m

(PnPm)
 (Qj�nQm�l) =
X
n
Pn
Qj�nQn�l: (6.64)

Since Qj�nQn�l = �j�n;n�lQj�n, we finally have

TjRl = P j+l
2

Q j�l

2
� eTj
 eRl; j; l 2 Z;

j+ l

2
2 Z; (6.65)

and TjRl is a rank-1 projection for any pair (j; l). Therefore we may construct

a basis of J �= HT 
HR given by f e' j+l
2

 e� j�l

2
g, with P j+l

2
e' j+l

2
= e' j+l

2
and

Q j�l
2

e� j�l
2

= e� j�l
2
. It is now clear why the analogous procedure fails for the

ordinary number operator; the multiplicities of the eigenspaces of N1+N2 and

N1�N2 are not uniform across each eigenvalue.

It is also possible to construct (in an improper sense) a basis of simultaneous

eigenstates of total angular momentum and relative angle. These take the form,

for a relative angle # and total angular momentum `,

	`;# =
X
m
e�i(`�m)#ei`

#
2 jmi1 j`�mi2 =: j`;#i � j`i
 j#i : (6.66)

As discussed in [6.6], the relative and “total” decompositions of the Hilbert space

give a means by which to exclude the reference system from the dynamical de-

scription (i.e., treat it as classical). A full understanding of the correspondence

between this description and the original one in which the reference system was

treated as large, as well as the relationship between the algebraic structures of

the observables, is work in progress.

6.11 Comparison between Superselection Rules and

WAY-type measurement constraints

It is worth dwelling further on similarities and differences between the mea-

surement limitations that arise as a consequence of the WAY theorem, and the

restriction to the observable algebra arising when considering superselection

rules.

Firstly we reiterate the measurement restrictions imposed by the WAY the-

orem. We have seen that measurement of a sharp, discrete observable not

commuting with an additive conserved quantity (subject to certain bounded-
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ness/discreteness constraints) must be a) non-repeatable and b) violate the

Yanase condition. However, if the measured observable is unsharp, approxi-

mately accurate measurements with approximate repeatability properties are

feasible, even when the Yanase condition is satisfied, if one allows the apparatus

to have a large spread in the conserved quantity (see section 4.5). Via relativi-

sation (under which the relative observable commutes with the conserved quan-

tity) the WAY limitation vanishes, and the statistics of the relative observable

approach those of the absolute one if the apparatus contains a large spread of the

conserved quantity. Similar behaviour also arises in the continuous/unbounded

case of position measurements obeying momentum conservation. It is likely

that the “get out” via high apparatus localisation, and by relativisation and

then high reference localisation, are two facets of the same behaviour.

In the superselection discussion, relative phase factors between states from dif-

ferent sectors are unobservable, rendering any phase factor sensitive POVM

unobservable. In this way, we see the superselection rule constraint as logically

stronger than the WAY constraint. However, it is worth trying to understand

better the relation between the two types of limitation.

It has been shown in [6.34] that the WAY theorem, along with the condition

that the conserved quantity be “individually” conserved (or there existing an

“isolated conservation law” in the language used there) at the level of the system

(i.e., [H;L1] = 0 in the notation from chapter 4) entails a superselection rule for

that observable, in that [L1;A] = 0 for all A 2 A. We offer a different proof of

this in a forthcoming publication. Although formally correct, it is not clear to

the author whether these isolated conservation laws are physically meaningful,

as such a law would preclude any exchange of conserved quantity between sys-

tem and apparatus. Even for traditionally posited superselection rules such as

electric charge, it still seems reasonable that some charge is transferred between

systems during a measurement process.

Under a “lifted” superselection rule the statistics of the relative observable on a

tensor product approach those of the operator of the system, which is achieved

by high localisation of the reference system in an appropriate conjugate quan-

tity. This is extremely similar to what is observed under the constraints of the

WAY theorem. Indeed there seems to be nothing prohibiting adapting the ap-

proach due to Ozawa discussed in 4.5.2 to the superselection rule case. Rather

than looking for good measurements, one instead looks for statistical close-
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ness of the relative and absolute operators via defining a new “noise” operator

N 0 :HS 
HR!HS 
HR by N 0 := ¥(A)�A
1. Then the argument goes as

in 4.5.2 essentially unchanged; we consider a superselection rule for observable

N =N1+N2. With �0(')2 := h'
 �jN 02'
 �i, and all other quantities defined

analogously, we arrive at

�2 � �(')2 � 1

4

jh[¥(A)�A;N1+N2]ij2
(�N)2

: (6.67)

Of course [¥(A);N1+N2] = 0, and with (�N)2 = (�'N1)
2+(��N2)

2 we have

�2 � 1

4

jh[A;N1]ij2
(�'N1)2+(��N2)2

: (6.68)

Again, since ' is arbitrary, the only means by which A and ¥(A) can become

close is by making (��N2)
2 large. This would be fulfilled by choosing � to be

highly phase localised.

The above discussion indicates again the similarity in structure between the

WAY theorem and superselection rules as they occur in the absolute versus

relative viewpoint.

6.12 Summary and Open Questions

We have outlined in this chapter various facets of the superselection rule issue in

quantum mechanics, discussing the algebraic structure of a theory in which su-

perselection rules are present. We have provided mathematically simple models

which demonstrate precisely when relative phase factor sensitivity of measure-

ment statistics can arise, and concluded that these observable relative phase

factors are only ever between states within a single superselection sector.

There are of course still conceptual difficulties that remain unanswered. Though

the algebraic approach is probably the cleanest mathematically, it is not a priori

obvious to the author exactly which (von Neumann) subalgebra of B(H) is to

represent the observable algebra in any given experimental context. However,

the hypothetical case of a reduced algebra is worth studying and is in its own

right mathematically interesting.

The question of whether absolute operators represent observables provides an

immediate restriction to the observable algebra (from B(H)) if answered in the
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negative. By introducing to the subject an explicit approach for dealing with

phases as POVMs, and similarly for relative phases, one has an automatic reason

to exclude certain operators from B(H) and thus a superselection rule emerges

naturally. There is much confusing language in the literature surrounding this.

For example, the opening line of [6.13] states that “Part of the dogma of ortho-

dox quantum mechanics is the presumed existence of superselection rules for

certain quantities”. Their aim, which we have discussed in detail, is to show

that traditionally posited superselection rules can be overcome by including

an appropriate reference system in the dynamical description. However, as we

have seen, by including such a system and considering relative phases, one is

providing a description that is fully in line with a superselection rule arising

from the non-observability of absolute phases.

However, within the “observables must be thought of as relative” perspective,

a problem still arises concerning which observables must be thought of in this

way. It seems natural and intuitive that positions and angles, for example,

only make sense as relative objects, but not so for number, or charge. We have

no systematic means by which to know which observables must be thought of

as relative. One answer may be along the lines of the “gauge invariance” dis-

cussed in section 6.3.3. There we posit some symmetry that we believe holds

universally, and then dictate that any operator not invariant under this trans-

formation violates a symmetry of nature, and therefore cannot be observable.

Again, this seems sensible for relative positions (which are translation invariant)

and relative angles (rotation invariant).

Ordinary quantum mechanics provides an arena in which to discuss certain su-

perselection rules and their consequences, for instance those arising due to the

relative nature of observables. However it does not have the richness of struc-

ture arising in relativistic quantum field theory to deal with, for instance, the

univalence superselection rule (or at least the structure within which such a rule

can be derived). Furthermore, within the ordinary quantum formalism, there is

essentially no distinction between, for example, number and charge (or angular

momentum and charge if positive and negative charges are included). The num-

ber superselection rule and the charge superselection rule are therefore placed

on an equal footing, and both are seen as arising from the relative nature of

the conjugate phases. However, it is certainly possible that there are additional

reasons to believe in a (possibly different kind of) superselection rule for charge

(particularly from a field-theoretic perspective). For instance, there seems noth-
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ing prohibiting following the approach of Aharonov and Susskind and Dowling

et al. to formally produce (in the way that Aharonov and Susskind claim) states

that are superpositions of different species of particle. The differences between

the latter scenario and, for example, the photon number scenario, seem to be

lost when only considering relative versus absolute conjugate phases. These

difficulties highlight the different points of origin of superselection rules, and

hint that the different paths may contain fundamentally different physics.

It must also be carefully considered in the future the extent to which the tech-

niques and ideas presented in this chapter carry over to the theory of superse-

lection rules in (algebraic) quantum field theory. For instance, it will be crucial

to see whether highly localised reference systems can be used to the same effect

there.

As addressed on the final line of the Wick et al. paper [6.37], the question

still remains how “asymmetric” states (i.e., localised phase states, for example)

for the reference system arise. For instance, it may just be that for angular

momentum for example, such states are common. In that case the statistics

of the relative angle observable come close to those of an absolute angle ob-

servable in the case of high reference localisation, leading sometimes to the

erroneous conclusion that a relative phase factor between states of different an-

gular momentum has been observed. It is possible that, in the case of charge or

boson/fermion, there simply are no states that could serve as reference systems.

Why that might be so is mysterious.

The necessity of high localisation of a reference system corresponds, in a sense,

to a classicality requirement for the reference. Indeed, optical cavities in inter-

ferometry experiments are often treated in this way, which is the reason that

it is often tempting to conclude that a relative phase factor between, say, the

ground and excited states of an atom have been measured, corresponding to

determination of an absolute phase observable, rather than a relative one. It

would be interesting to know whether it is possible to treat this classical limit in

other ways; for instance in the approach considered in [6.23]. The investigation

of taking unequal masses in section 6.10 and allowing the mass of the reference

system to become large might shed light on alternative notions of “large”, other

than large spread in superselected quantity.

Another possible connection of this work to other ideas is how the description

with reference systems that we have discussed relates to the “perspectival” ap-
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proach to quantum mechanics of Dieks and others (see, e.g. [6.7]). They argue

for a fully “relational” description, and as such all states are to be described in

a relative way, i.e., as pertaining to relations between quantum systems, and

quantum mechanical properties are also to be understood as having a relational

character.

Appendix

Here we provide a proof of convergence in the coherent state reference system

example of section 6.9.2.

Let !m(n) = jcnj2 = mne�m

n! and fm(n) = jcos [
q

n
m
�
4 ]� 1p

2
j2 and

am =
P
n!m(n)fm(n) = jjj�1Ai� 1p

2
j�ijj2. Firstly note that jfm(n)j � 3.

Let Im;k := [m�kpm;m+k
p
m] with k 2 N:

X
n
wm(n)fm(n) =

X
n2Ik

wm(n)fm(n)+
X
n=2Ik

wm(n)fm(n) (6.69)

Using Chebyshev’s inequality: p(jn�mj � k�) � 1
k2

(p any probability distri-

bution, � =
p
m;k 2 N), we therefore know thatP

n=2Ikwm(n)fm(n)� 3
P
n=2Ikwm(n)� 3

k2
.

We now exploit the continuity of the cosine function. For each k 2 N define �k
such that j nm�1j<�k =) jcos [

q
n
m
�
4 ]�cos(�4 )j< 1

k (and therefore fm(n)< 1
k2
).

For each k 2N, let M = k2

�2k
, and so for m>M , �k > kp

m
. In (6.69), we therefore

have that

X
n
wm(n)fm(n)<

0@X
n2Ik

!m(n)+3

1A 1

k2
<

4

k2
: (6.70)

Since k is arbitrary, this proves the result. �
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Chapter 7

Summary and Outlook

It is worth briefly summarising the main results of the thesis, and lay out some

broad future considerations that deserve attention (without wishing to go too

far in repeating the conclusions of previous chapters).

We began by hypothetically assuming that all self adjoint operators represent

observable quantities. Through close inspection and reconstruction of Wigner’s

original (1952) contribution, and a modification of the proof of Araki and Yanase

(1960), we saw that accurate and repeatable measurements of an operator not

commuting with an additive conserved quantity (subject to certain conditions

on the spectra of the observables involved) are precluded. This generalised

to position measurements that respect the conservation of linear momentum;

through analysis of two models and model independent inequalities the general

behaviour of the constraints encountered was presented. We demonstrated

scenarios in which good measurements of unsharp quantities are possible; the

larger the spread in the apparatus’ conserved quantity, the better the possibility

of precise measurements.

A reconsideration of the model of Ozawa, adjusted in order to measure a relative

position rather than absolute position, showed that the statistics of the relative

and absolute operators become indistinguishable in precisely the same limit as

that in which good measurements were achievable under the WAY theorem. It

is a compelling argument that the absolute position is not a meaningful (and

certainly not observable) quantity, and that one should only discuss measure-

ments of relative positions. The same argument goes for quantities such as

phase and angle not being observable, and should be accordingly replaced with

relative phase and relative angle. As the models we presented demonstrate,
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the localisation of an appropriate reference position/phase/angle allows for the

statistics of relative and absolute operators to be indistinguishable. With this

in mind, it seems that whenever an operator such as Q appears in the quan-

tum formalism, this should be interpreted as a relative position with a highly

localised reference position.

The large reference systems appear as a necessity for accurate measurements

in the WAY theorem, and as a necessity for interpreting operators such as

Q as relative quantities. In both cases, the highly localised reference system

appears to represent a classical background or reference with respect to which

quantum measurements/observables can be done/defined. In the superselection

scenario, whether to explicitly incorporate a reference system and localise its

preparation, or proceed as if the localisation has already taken place, is a choice

of whether to include the reference as a dynamical entity within the theory, or

as a classical system frozen out of the description. It must always be kept in

mind, however, that in the latter case, the true state of affairs is that certain

observables must be thought of as relative, and if appearing in an absolute

form this must be viewed as a convenient description. Otherwise it is tempting

to draw incorrect conclusions regarding, for example, the states of the system

alone and the observability of relative phase factors in certain superpositions.

The possibility of high localisation of the reference system in both the WAY

theorem and the topic of superselection rules connotes a connection to a general

and fundamental aspect of theoretical physics: that of symmetry breaking.

The existence of such highly localised states, although fully in accordance with

a superselection rule if applied at the system–reference level, still constitutes

an asymmetry if thought of as being in isolation. From within the quantum

mechanical description, it seems impossible to differentiate between quantities

such as angle (conjugate to angular momentum) where such asymmetric states

appear to be common, and phase conjugate to charge. The quantum field

theoretic approach may hold the answer to why such localised phases are (or

seem to be) nonexistent in the charge case.

The possibility of preparing such localised states may require recourse to an ad-

equate theory of quantum preparation. Whilst much has been achieved in the

quantum theory of measurement, and also the extent to which measurements

are capable of state preparation, the problem of preparation itself has received

little attention. For example, it seems worth considering how state preparations
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might be limited by conservation laws.

Finally, in light of the observation that under a superselection rule there is

an equivalence class structure on the set of density matrices, with two density

matrices being equivalent if they are statistically indistinguishable, one must

consider carefully which superpositions may be thought of as “real” in any sense.

The extent to which superselection rules allow for an adequate description and

verifiable experimental predictions by replacing a large class of rank one pro-

jections as incoherent mixtures is still unknown, and forces an examination of

the notion of quantum coherence in general.
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