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Abstract 

 

Timber is widely used both in modern and historic construction, with ageing being the most 

serious risk in the structural mechanical strength. A non-destructive test to predict timber 

mechanical properties is urgently needed and many studies indicated that chemical 

compositions have close relationships to the mechanical properties. Hence, this study 

focusses on the relationships between timber chemical composition and the corresponding 

mechanical strength, providing contributions to the non-destructive testing of timber 

mechanical properties. Non-destructive testing has a wide prospect both in evaluation of 

modern timber construction and historic timber framed building conservation. Heat 

treatment is a method to cause changes in timber, whilst FTIR is the technique for analysing 

its chemical compositions. Static and dynamic mechanical properties were tested by a 3-

point bending and a dynamic thermal mechanical analysis (DMTA) facility, respectively.  

The changes of timber mechanical properties are the results of various combined chemical 

compositions. In general, condensation and cross-linking reactions play an essential role in 

timber strength improvement. The static bending mechanical properties, modulus of 

rupture (MOR) and modulus of elasticity (MOE) increase, whilst in the dynamic 

mechanical properties and Tan δ decrease, which indicates an increase in elasticity and/or 

decrease of viscosity. Pyrolysis reactions in hemicellulose and lignin, lead to a decrease in 

the timber static mechanical properties and increase in Tan δ of the dynamic ones. Both 

static bending mechanical properties (MOR and MOE) and dynamic bending mechanical 

properties (storage modulus, loss modulus and Tan δ) can be predicted by the peak areas 

of the normalised FTIR spectrum. The coefficients of determination (R-square) of all the 

regression models are between 0.62 and 0.9, which indicates that the models are functional.  

In studies of timber accelerated ageing, the changes of each peak area during heat treatment 

are regressed by a model where temperature and treatment period as independent variables. 

The model shows that new pine can be treated in a two-steps heat treatment, which involves 

an air and a vacuum step to obtain similar chemical compositions of 580 years old real 

timber by heat treatment. The R-square of the model is more than 0.7 and thus, shows 

effective regression.  
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Chapter 1  Introduction 

1.1 Background and Motivation 

Timber ageing causes a series of problems in all historic timber buildings, which affect the 

mechanical properties significantly and slowly reduce structural stability. Historic timber 

buildings are distributed across all nations, because timber was the earliest material used in 

architecture in human civilisation. In china, historic timber buildings can be found in all 

human activity areas (Figure 1-1). Chinse architects have 4,000 years’ experience of timber 

construction, but the oldest existing timber structure is the Nan-Chan temple approximately 

1,200 years old. Most buildings collapsed due to the ageing effects, which cause 

construction failure during natural disasters such as earthquakes, typhoons and flooding. 

Timber is still an important building material in modern construction. Owing to deep 

understanding with regards to timber material and easy assembly, tall frame constructions 

can be built by cross laminated timber (CLT) and more such buildings are planned (Figure 

1-2). It is can be foreseen that ageing will cause structural problems in all these proposed 

timber buildings as well. As a result of the ageing process, in particular the effects on 

mechanical properties, it is an important to study timber structures. However, the 

mechanical strength of each member of a timber structure cannot be evaluated easily and 

quickly due to the fact that they cannot be disassembled. Hence, non-destructive or less-

destructive testing methods are needed. In fact, many studies have reported good 

relationships between timber mechanical properties and wood colour (Matsuo et al., 2010; 

Matsuo et al., 2011; Bekhta and Niemz, 2003) or stress waves (Dackermann et al., 2014; 

Wang et al., 2004; Ross et al., 1999). However, the former is also affected by timber 

extractives (Burtin et al., 1998; Gierlinger et al., 2004), while the latter sometimes conflict 
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with the properties evaluated by real mechanical testing (Attar-Hassan, 1976). Hence, a 

more effective non-destructive method needs to be developed. 

 

Figure 1-1 Historic Timber Building Distribution in China (National Cultural Heritage Administration) 

 

 

Figure 1-2 Wooden High-Rise Buildings (Confederation of Timber Industries)  
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Fengel (1991) pointed out that the chemical compositions of timber during ageing has 

different changes in different environments. Cavalli et al. (2016) also reported that 

mechanical properties vary during the natural ageing process and the changes are based on 

distinctive environments. The findings of these two comprehensive studies imply that 

timber’s chemical composition has close relationships with its mechanical properties. 

These relationships have been uncovered through experiments, which involved rupturing 

covalent bonds and detecting the corresponding mechanical strength (Illston et al., 1979; 

Winandy and Rowell, 1984), but the regression mathematic models were not discussed in 

these studies. Hence, timber chemical composition analysis can be a non-destructive testing 

method to predict mechanical properties. However, due to conservation philosophies, 

natural aged timber samples are restricted for destructive testing. Another method that can 

cause changes both in the chemical composition and mechanical properties of timber is 

needed for research purposes. Donetzhuber and Swan (1965) reported that timber ageing 

can be accelerated by temperature, which led to an important timber industry: heat 

treatment.  

Nowadays, timber heat treatment is a mature industry and various treatment methods are 

implemented. Esteves and Pereira (2008) identified several common heat-treatment 

methods, including Thermowood in Finland, Plato Wood in the Netherlands, OHT-Oil 

treatment wood in Germany, the Bois Perdure and Rectification method in France, WTT 

in Denmark and Huber Holz in Austria. All the treatments can cause distinctive changes in 

timber molecules’ chemical composition and mechanical strength. Specifically, heat 

treatments at certain temperatures, for particular periods and in distinct atmospheres can 

lead to changes in both timber molecule composition and mechanical strength. Hence, this 
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makes them a suitable method for studying the relationships between chemical composition 

and mechanical properties of timber. 

In sum, timber’s chemical composition is highly related to its mechanical properties and 

non-destructive testing of the latter can provide valuable data about this relationship. In this 

study, the overall aim is to simulate timber mechanical properties by chemical composition 

and to accelerate ageing of timber by modifying chemical compositions. Both are 

investigated by heat treatment. The objectives of the research are provided in the following 

section. 

1.2 Objectives 

As above mentioned, this research is focused on the relationship between the chemical 

composition of timber and its mechanical properties. Changes in timber are accelerated by 

temperature and detected by specific testing facilities, both chemical and mechanical. The 

objectives of the research are as follows:  

• Find the relationship between the chemical composition of timber and the 

corresponding mechanical properties during heat treatment. The chemical 

composition is detected by the FTIR technique, which illustrates the functional 

groups of timber molecules by their corresponding peaks on the FTIR spectrum. 

The mechanical properties are detected by static 3-point bending and dynamic 

mechanical thermal analysis (DMTA) facilities.  

• Create regression models to predict mechanical properties by the peaks of the FTIR 

spectrum, which provide fundamental data for the non-destructive testing of timber 

mechanical properties. Non-destructive testing can be exploited in mechanical 

evaluation both for historic timber structure conservation and new timber 

structures.   
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• Define the chemical composition changes during different heat treatments. 

Theoretically, the changes of the FTIR peaks, corresponding to functional groups 

of timber molecule can be predicted by these three independent variables. The aim 

is to provide a regression model for controlling chemical changes in timber 

molecules during heat treatment.  

• Produce a mathematic regression model to accelerate chemical changes of timber 

molecule by heat treatment to a certain composition. A piece of 580 year old pine 

is utilised in this study, such that the regression model could provide a method for 

changing the chemical compositions of new timber to old.    

1.3 Outline of the thesis 

The literature is reviewed in chapter 2. Timber cell structure, the chemical composition of 

cell walls, the changes in molecule composition as well as the mechanical properties during 

natural ageing and artificial modifications are discussed in the chapter. A detailed 

experiment plan is provided in chapter 3, which introduces the experimental materials used, 

heat treatments applied, detecting method for the timber chemical and mechanical 

properties, and the data analysis methods. Timber chemical composition and mechanical 

properties changes are analysed in detail in chapter 4 and chapter 5, respectively. The 

effects of moisture content on these phenomena are also discussed in the two chapters. 

Mathematic models are regressed in chapter 6 and chapter 7. Chapter 6 considers timber 

mechanical properties according to the function groups of its molecules, which are detected 

by FTIR techniques. Chapter 7 simulates the changes in the FTIR peaks during heat 

treatment and builds a method for accelerating pine samples to 580 years old by specific 

temperatures, time periods and specific treatment atmospheres. A comprehensive 
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presentation of the contributions of the study and a conclusion is provided in chapter 8.  

Figure 1-3 shows the structure of this thesis.  

 

Figure 1-3 Outline of The Thesis 
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Chapter 2 Literature Review 
 

Illston et al. (1979) described timber as a kind of “low-density, cellular, polymeric” 

composite, which could be treated as a new material category.  Timber mechanical 

performance is the same as an elastic material under low stress and short periods, but it can 

be treated as a linear orthotropic viscoelastic material under high level stress and long 

periods. Hence, timber’s distinctive composition structure is worthy of study. In addition, 

many studies focusing on timber ageing, hold that mechanical improvements or durability 

can cause a few changes chemically and mechanically and these are reviewed in this 

chapter. Moreover, several mechanical and chemical composition test methods are also 

discussed.  

In this chapter, timber composition from cell level to molecular level and the relationship 

between chemical composition and mechanical property are introduced in section 2.1.  The 

changes of chemical composition and mechanical properties in different atmospheres are 

discussed in the following two sections, 2.2 and 2.3. This chapter is divided into the 

following four sections: 

• Timber composition and its relationship to its mechanical properties 

• Natural and artificial timber chemical composition change  

• Natural and artificial timber mechanical change 

• Conclusions. 
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2.1 Timber composition 

Timber structure is complex, and in each level, from the trunk to the molecular, is has its 

own distinctive features (Figure 2-1). Trees need to resist gravity and lateral force, such as 

wind, during their entire growing life, which is achieved by timber cell division. On a 

section of a tree trunk, differentiated areas due to cell division are easily observed by the 

colour (Figure 2-2). From spring to late summer, with appropriate temperature, cells divide 

quickly to expand the trunk and produce a layer with a light colour. In the colder seasons, 

the tree goes dormant, but the cells still grow, showing a dark layer. The light layer is 

named as earlywood or springwood, while the dark one is latewood or autumnwood. The 

cell walls of latewood are thick and strong, providing most of the mechanical strength. The 

earlywood is porous and has the function of delivering moisture and nutrients to keep the 

tree alive. Cell wall composition has a strong relationship with mechanical behaviour, 

which will be discussed in detail in the following subsection 2.1.1. 

 

Figure 2-1 Structures of Timber in Different Scale (Hoffmann and Jones, 1990b) 
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Figure 2-2 Structure of Tree Trunk 

With a tree trunk widening layer by layer, cells differentiate into phloem and xylem parts. 

Phloem is a layer of living cells with the function of cell division, delivering polysaccharide 

produced by photosynthesis and storage. Moreover, phloem is a thin layer with low 

mechanical strength, which will be removed when the timber is used for construction. 

Hence, in this part of the literature review, phloem is not studied further, and the following 

reviews of the literature are focused on xylem.  

Xylem contains three layers, these being active xylem, the cambial zone and dead xylem, 

from outside to inside (Bertaud and Holmbom, 2004) (Figure 2-2). Active xylem, also 

named sapwood, is living cells including tracheids, vessels and fibres with the function of 

storage and delivery. When trees widen to a certain size, active xylem cells undergo a series 

of changes, turning into a strength enhanced status though the following steps: cell 

expansion → thickening of the secondary cell wall → lignification → death and becoming 

heartwood. The cell wall is thickened by producing cellulose, hemicellulose and a small 

active 

Cambial 
Dead 
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amount of lignin after cell expansion. It becomes strengthened in the lignification period 

by an ill-defined phenolic polymer of lignin depositing on an extracellular polysaccharidic 

matrix (Barceló, 1997). Finally, the cells die and turn into heartwood, which is the strongest 

part of a trees providing mechanical performance for timber structures. 

The general situation regarding timber is that the cell walls of sapwood are responsible for 

growth, while heartwood supports the tree. Sapwood turns into heartwood at a certain trunk 

width. However, a tree is able to adjust size ratio of heartwood and sapwood by itself due 

to external factors, according to Berthier et al. (2001), who studied the trunk of the maritime 

pine (Pinus pinaster Ait). They found that the heartwood area develops radially and 

longitudinally more on the compressed side of the tree, which is caused by wind or 

obliqueness to resist external force. In addition, 12 52-year old trees with obliqueness of 0° 

to 22° were investigated to prove that a tree can maintain the optimal proportion of sapwood 

in the trunk to help its growth. Similar results on heartwood were elicited by Bamber 

(1976).  

2.1.1 Timber Cell Composition  

The cell is the fundamental unit for understanding timber. There are four types of cell in 

xylem, which are parenchyma, tracheids, fibres and vessels with the functions of storage, 

support and conduction, respectively (Table 2-1) (Huang et al., 2003). Trees have various 

species, but generally divide into softwood and hardwood, as distinguished by cell type. 

Softwoods do not have vessel and fibre cells such as gymnosperms. Hardwoods (normally 

dicotyledon) contain all four kinds of cells (Pandey, 1999).  
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Table 2-1 Cell Types of Timber (Dinwoodie, 1975) 

Cell Softwood Hardwood Function Wall thickness 

Parenchyma √ √ Storage 
 

Trocheilds √ √ 
Support 

conduction  

Fibres  √ Support 
 

Vessels (pores)  √ Conduction 

 

 

 

Figure 2-3 Structure of Timber Cell (Huang et al., 2003) 

 

Figure 2-4 SEM Imagine of Timber Cells (Higuchi, 2012) 
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Polysaccharides (cellulose and hemicellulose) and lignin with other substances, including 

minor solubles (stilbenes, flavonoids tannins and terpenoids) insolubles (pectin and cell 

wall proteins) and Trace elements comprise the chemical composition in the cell wall. 

However, polysaccharides and lignin only appear on the cell wall starting from its 

secondary formation (Higuchi, 2012).  

A wood cell wall consists of several layers, which appear in different periods of growing 

(Figure 2-3 and Figure 2-4). The middle lamella contains abundant pectic substances and 

differentiate to primary wall as the first step of cell wall division. When new the cell reaches 

a mature size, a new secondary cell wall with three layers, S1, S2 and S3, is composed 

inside the primary wall. The secondary cell wall is composed of cellulose microfibrils with 

a certain direction, with their direction in S1, S2 and S3 being different. Lignin and 

hemicellulose are produced later in the three layers. S1 is the thinnest layer, which only 

contributes 5% to 10% to the cell wall thickness and the cellulose microfibrils angle is 60° 

to 80° to the cell axis. S2 is the thickest layer and occupies 75% to 85 % of the total 

thickness, thus contributing much of the cell’s mechanical strength. Its cellulose 

microfibrils’ angle is between 5° and 30° to the cell axis. This angel of S2 plays a decisive 

role in physical and mechanical performance. Timber rigid and modulus of elasticity in the 

longitudinal direction is affected by the S2 cellulose microfibrils’ angles to cell axis, 

(Plomion et al., 2001). The cellulose microfibrils in S3 are 60° to 90° to the cell axis, but 

the arrangement is not strict as for the S1 and S2 layers. According to Dinwoodie (2000),  

the S2 layer is mainly responsible for the mechanical property of timber cell wall, while S1 

and S3 have significant influence on the mechanical property of the transverse direction.  
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Chemical and ultrastructure 

Table 2-2 shows that cellulose, hemicellulose, lignin and extractives are the main molecule 

forming cell walls (Dinwoodie, 1975). In fact, 45-50% of cell wall composition is cellulose 

(Figure 2-5), which  is a long slender chain including 8000-10,000 cellobiose units, 

(C6H10O5)n, bonded by β-1-4 linkage (Goring and Timell, 1962). Cellulose molecules in 

the cell wall are arranged in a certain order and create a relatively stable structure, which 

is crystalline (Figure 2-8). According to Thygesen et al. (2005), who studied the 

crystallinity of cellulose by chromatographic measurement of monomers after hydrolysing 

samples, plant-based materials contain 90% to 100% cellulose crystallinity, whilst wood-

based ones have 60% to 70%. Hemicellulose is soluble non-cellulosic polysaccharides that 

occupy approximately 25% of the content of dry wood (Figure 2-6). They have a shorter 

chain than cellulose and take various forms. Heteropolymers (glucomannan, 

galactoglucomannan, arabinogalactan and xylan) and homopolymers (glalctan, arabinan 

and β-1, 3-glucan) are two typical kinds of hemicellulose (Keegstra and Raikhel, 2001). 

Hemicellulose content is different across wood species, with softwoods containing more 

glucomannans than hardwoods, whilst the latter contain more xylans. Lignin, comprising 

25% to 35% cell wall content, is a kind of phenolic polymer developed from 

hydroxycinnamoyl alcohols (a kind of monolignol) including ρ-coumaryl, coniferyl and 

sinapyl alcohols. Lignin has three types, namely Hydroxyphenyl, Guaiacyl and Syringyl, 

the difference between them being the level of methoxylation. Structurally, the lignin 

molecule is much shorter than that of cellulose and it contains many branch chains (Figure 

2-7).  

 

 



14 

 

Table 2-2 Molecule Content of Timber Cell Walls (Dinwoodie, 1975) 

Molecule 

Content 

(%) 

Polymeric state Molecular derivatives Function 

Cellulose 45-50 

Crystalline, highly orientated 

large molecules 

Glucose Fibre 

Hemicellulose 20-25 

Semi-crystalline, small 

molecules 

Non-cellulosic 

polysaccharides 

Phenol propane 

Matrix 

Lignin 25-30 Amorphous, large 3D molecules 

Extractives 0-10 Non-polymeric  Extraneous 

 

 

Figure 2-5 Structure of Cellulose (Goring and Timell, 1962) 

 

Figure 2-6 Structure of Hemicellulose (Ramage et al., 2017) 

Hemicellulose 
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Figure 2-7 Structure of Lignin (Yang et al., 2007) 

 

Figure 2-8 Crystalline Structure of Cellulose (Thygesen et al., 2005) 

All the three molecules, cellulose, hemicellulose and lignin consist of carbon, oxygen, 

hydrogen and nitrogen, which are 49-50%, 45-50%, 6% and 0.1-1% content, respectively, 

in timber molecule composition. In addition, there are a few trace elements such as calcium, 

potassium, magnesium, sodium, manganese, iron, phosphorus, sulphur and silica in timber, 

but the total content is less than 0.1%. Timber molecules contain many repeated specific 
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group, called functional groups (Table 2-3) and timber molecule chemical compositions 

changes are based on the activity of these groups.  

To sum up, timber cells as fundamental units provide mechanical properties for the tree to 

resist external force, while the mechanical strength of cell wall is obtained by the distinctive 

function of cellulose, hemicellulose and lignin. Cellulose with a crystalline structure 

supports the wall, while hemicellulose and lignin, with many branch chains, compact all 

the molecules of cell wall closely. Hence, theoretically, the status of the timber molecule 

has a close relationship to its mechanical property, which is discussed in the following 

subsection. 

Table 2-3 Chemical Functional Group in Timber Molecule 

Functional groups name Chemical composition Location 

Microfibrils 

 

Cellulose 

Hydroxyl  

Cellulose, hemicellulose and 

lignin 

Methylene groups 

 

Cellulose, hemicellulose and 

lignin 

Carbonyl group  

Cellulose, hemicellulose and 

lignin 

Ether linkage   

Cellulose, hemicellulose and 

lignin 

Aromatic skeletal 
 

Lignin 

Hydroxyphenyl ring 

 

Lignin 

Guaiacyl ring 

 

Lignin 
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Syringyl ring 

 

Lignin 

 

2.1.2 Relationship between Chemical composition and Mechanical Bonding 

Atoms may share elections with one another to form an attractive force, which gives 

fundamental strength to single molecules. Different lengths or matrices lead to distinctive 

mechanical behaviours of high weight molecules, such that in polymer materials, molecule 

status has a close relationship with mechanical properties. Generally, the molecules of high 

weight solid polymers have two types of  arrangement (Ward and Sweeney, 2012): 

1. Single chain with a rotational isomerism structure without connection to its 

neighbour; 

2. Molecular bundle neighbouring molecules. 

A timber molecular arrangement may contain both of these (Ramage et al., 2017). Cellulose 

is arranged parallel to the cell axis while and hemicellulose bundle cellulose to enhance 

connections of cellulose microfibrils (Figure 2-9). Lignin, with many branch chains, binds 

all cellulose and hemicellulose in the cell wall. Hence, cellulose with the supporting 

function, hemicellulose and lignin with a connection function create the structure system 

to provide mechanical strength. However, whilst the arrangement of the timber molecule 

is the same, different molecule content and density contribute to variant mechanical 

properties of timber. Generally, as a polymer, the mechanical properties of timber are 

affected by the following aspects (Landel and Nielsen, 1993; Tobolsky and Eyring, 1943): 

1. Molecular weight (length); 

2. Crossing link and branch chain; 
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3. Molecular orientation; 

4. Crystallinity; 

5. Copolymerisation; 

6. Plasticisation; 

7. Fillers; 

8. Blending; 

9. Phase separation and orientation in blocks, grafts and blends. 

Moreover, polymer molecular structure stability is affected by environmental effects 

significantly, including: 

• Temperature; 

• Time, frequency, rate of straining or stressing; 

• Pressure; 

• Type of deformation (shear, tensile); 

• Heat treatment; 

• Moisture content. 
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Figure 2-9 Connection of Cellulose, Hemicellulose and Lignin (Ramage et al., 2017) 

Not just theoretically, for many studies have proven empirically that the chemical 

composition of wood has a close relationship with its mechanical properties. Illston et al. 

(1979)  ruptured the covalent bonding of the timber molecule by gamma irradiation, which 

led to bond quantity reducing from 5000 to 200, i.e. the tensile strength decreased 

significantly. A similar result was reported by Winandy and Rowell (1984) who 

demonstrated that the mechanical properties of timber comprise covalent and hydrogen 

interpolymer bonds of cellulose, hemicellulose and lignin. Boonstra et al. (2007b) 

compared previous literature with his results and claimed that tensile strength is affected 

by amorphous cellulose and that hemicellulose and lignin might be involved also. 

Longitudinal compressive strength and shear strength are affected by crystallisation and 

lignin cross-linking, respectively (Boonstra et al., 2007b). Timber bending strength 

decreases due to degradation of hemicellulose, but it is enhanced by lignin cross-linking. 

In fact, cellulose and glucomannan play an important role in the strength parallel to cell 

axis (Åkerholm and Salmén, 2001). Lignin plays a mechanical role in all directions and it 

also affects viscoelastic behaviour (Åkerholm and Salmén, 2003). Winandy and Lebow 

(2001) created a three-parameter model and link chemical composition to bending strength 
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though Klason lignin, glucose, mannose, xylose, arabinose and galactose of timber 

molecule by a previous published report (Winandy and Lebow, 1996). Even though this 

research only provided a preliminary model, it predicted bending strength well with, R2 ≥ 

0.75 on a straight-grained pine. Brittleness also has a high relationship with the degradation 

of amorphous polysaccharides, according to Shida and Saito (2007). 

In addition, timber molecules have thermoplastic features especially on hemicellulose and 

lignin. In a specific temperature range, hemicellulose (127℃ to 235℃) and lignin (167℃ 

to 217℃) change into softened status and then connect to cellulose by secondary 

intermolecular bonding. The molecules become rigid again after heat treatment, which led 

to two converse results on the timber strength properties, enhancing and decreasing. (Hillis 

and Rozsa, 1978; Hillis, 1984).  

In conclusion to this subsection, the changes in the timber molecule, especially 

hemicellulose and lignin, can have positive or negative influence on mechanical 

behaviours. Hence, the relationships need to be studied in more depth.  

2.1.3 Moisture Content and Environment Temperature 

Not only does the chemical composition of timber affect mechanical behaviour, for 

moisture content and temperature also play significant roles (Gerhards, 2007).  

Moisture content 

Water is from the environment and trees use it well for growing and improving mechanical 

strength. Free water and bond water are two existing types in the cell wall. Free water exists 

in cell lumen, whereas bonding water penetrates between the timber molecular chain and 

connects to the timber molecules by hydrogen bonding. The moisture content at the point 

where there is only bond water in the cell wall, i.e. no free water, is named the fibre 
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saturation point (FSP). Figure 2-10 shows the relationship between compression strength 

and moisture content (Dinwoodie, 1975). Timber loses strength when the moisture content 

increases but is not affected by this when the content is beyond the FSP. Moreover, tensile 

stress parallel- and perpendicular to the grain are stronger at a moisture content of between 

7% and 13% (Kretschmann and Green, 2007). Becker and Noack (1968) explained 

moisture behaviour (more than 12%) in wood molecules by a torsional viscoelasticity 

experiment. High moisture content leads to relaxation of timber molecules. Bond water is 

attracted by timber molecular chains by hydrogen bonding. The hydrogen bond is 

secondary bond as it exists between water and timber molecules. Hence, hydrogen atoms 

of bond water bonding to timber molecules (cellulose, hemicellulose and lignin) provides 

extra elasticity between the molecules (Steiner, 2002).  

 

Figure 2-10 Relationship Between Compression Strength and Moisture Content (Dinwoodie, 1975) 
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If a large members of water molecules penetrate the gaps between timber molecules, the 

timber will swell, but if none exists, it will shrink. Figure 2-11 shows different amounts of 

water molecules existing between timber. Moisture content is changeable, being affected 

by different humidity and temperature (Dinwoodie, 1975; Dinwoodie, 2002). In many 

studies, equilibrium moisture content (EMC) is usually measured at 20℃ with 65% 

humidity.  

 

Figure 2-11 Moisture Between Timber Molecules (Dinwoodie, 2002) 

For many studies, a close relationship between moisture content and the mechanical 

strength of timber has been found. As early as Lavers (1967), was discovered that a 

moisture content above 20% can reduce the mechanical properties in all respects. Gerhards 

(2007) reviewed more than 10 previous works and produced a table about the mechanical 

properties relating to moisture content at 20℃ (Table 2-4, Figure 2-11 and Figure 2-13), 

finding that timber with 6% moisture content has the best strength in all directions. That is, 

this decreases when moisture content increase to 12% and drops significantly with 20% 

moisture content. The moisture content is affected by the quantity of hydroxyl groups in 

same environment humidity according to Jämsä and Viitaniemi (2001), who demonstrated 

that moisture content reducing is accompanied by hydroxyl groups decreasing. Boonstra 

and Tjeerdsma (2006) also reported that hydroxyl groups decrease due to cellulose 
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crystallisation and lignin polycondensation during heat treatment, leading to a reduction of 

moisture content.  

Table 2-4 Relationship between Timber Mechanical Property and Moisture Content (Gerhards, 2007) 

Timber property 

Relative change in property from 12% MC 

At 6% MC (%) At 20% MC (%) 

Modulus of elasticity, parallel to the grain +9 -13 

Modulus of rupture, perpendicular to the grain +20 -23 

Shear modulus +20 -20 

Bending strength +30 -25 

Tension strength, parallel to the grain +8 -15 

Compression strength, parallel to the grain +35 -35 

Shear strength, parallel to the grain +18 -18 

Tension strength, perpendicular to the grain +12 -20 

Compression strength, perpendicular to the grain at 

the proportional limit 

+30 -30 

 

 

Figure 2-12 Relationship between Modulus of Elasticity and Moisture Content (Gerhards, 2007) 
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Figure 2-13 Relationship between Shear Modulus and Moisture Content (Gerhards, 2007) 

Temperature  

Long term temperature causes many changes to the chemical composition of timber and, 

affect the mechanical properties. Short term temperature can affect the latter due to 

molecular activity. High temperatures improve molecules relative motion, thereby 

impacting on the mechanical properties of polymers (Tager, 1972).  

The mechanical properties of timber can be tested by various methods in a lab, according 

to a review by Gerhards (2007) (Table 2-5), who studied timber mechanical properties from 

-50℃, 20℃ and 50℃, timber is strong at a low temperature but loses strength as 

temperature rises.  

Table 2-5 Relationship between Timber Mechanical Property and Testing Temperature (Gerhards, 2007) 

Timber property 

Moisture content 

(%) 

Relative change in property from 

20℃ (%) 

At -50℃ At +50℃ 

Modulus of elasticity, parallel to the grain 

0 +11 -6 

12 +17 -7 

>FSP +50 - 
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Modulus of rupture, perpendicular to the 

grain 

6 - -20 

12 - -35 

≥20 - -38 

Shear modulus >FSP - -25 

Bending strength 

≤4 +18 -10 

11-15 +35 -20 

18-20 +60 -25 

≥FSP +110 -25 

Tension strength, parallel to the grain 0-12 - -4 

Compression strength, parallel to the 

grain 

0 +20 -10 

12-45 +50 -25 

Shear strength, parallel to the grain >FSP - -25 

Tension strength, perpendicular to the 

grain 

4-6 - -10 

11-16 - -20 

≥18 - -30 

Compression strength, perpendicular to 

the grain at the proportional limit 

0-6 - -20 

≥10 - -35 

 

Hence, from the above moisture content and environmental temperature affect the 

mechanical properties significantly. Accordingly, experiments on these properties should 

record moisture content and testing temperature, which kept constant when designing 

mechanical strength comparison investigations.    

2.1.4 Summary 

As a kind of building material, the heartwood of tree trunk commonly appears in timber 

structures, because the cell walls are mechanically enhanced by lignification. These consist 

of cellulose, hemicellulose and lignin after lignification. Cellulose has long slender chain 

and a crystalline structure, which supports the cell wall. Hemicellulose and lignin are 
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shorter, but with a lot of branch chains to bind all the molecules firmly and to form a matrix 

structure, respectively. The three molecules work together and contribute to the unique 

mechanical behaviour of timber. However, timber molecular composition can be modified 

due to activity of chemical functional groups, thus affecting the mechanical strength.   

Moisture and temperature can affect mechanical properties significantly. A certain content 

of moisture provides extra elasticity for the cell walls, but excessive water swells molecules 

and leads to loss of molecular connection, thus marring the mechanical properties of the 

timber. Timber strength decreases with temperature rising, so the mechanical properties are 

affected by different temperatures, whilst the chemical composition and moisture content 

remain the same regardless of the temperature in a short-term period.  

To sum up, the chemical composition of timber, moisture content and temperature are the 

three main factors affecting mechanical behaviour.  

2.2 Changes of Timber Chemical Composition  

Timber chemical composition can change in any kind of natural environment and is 

unstoppable. It changes slowly in the natural environment and this process is called ageing. 

Many studies related to timber natural ageing have provided valuable information about 

timber chemical changes during this process. In particular, temperature can accelerate the 

rate of chemical change (Donetzhuber and Swan, 1965). The timber heat treatment industry 

uses this feature to improve the mechanical properties of timber by modifying the chemical 

composition of the timber molecule. Chemically, if the changes affect the molecular length 

or matrix, the mechanical behaviours will also be significantly changed (Tobolsky and 

Mark, 1971). Hence, for all chemical composition discussed in this section, the focus is on 

the changes affecting molecule physical status.  
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In this section, first, the chemical analysis methods are reviewed. Regarding polymer 

chemical analysis, each method has its own advantages and disadvantages. Chemical 

changes of natural ageing and artificial processes are discussed in the second and third 

subsections. A few factors, such as mass loss and colour change due to chemical 

composition change, are subsequently discussed and then, conclusions are drawn. 

2.2.1 Chemical Composition Analysis Method  

Generally, classic wet chemical analysis, pyrolysis, and spectroscopy are the three common 

methods for detecting the chemical composition of timber. Classic wet chemical analysis 

has a long history and involves analysing chemical composition by chemical reagents, with 

most analysis being conducted in the liquid phase. For the pyrolysis method, chemical 

composition of timber decomposed to liquids or gaseous phase with a certain rate of 

temperature rising. The liquid and gases are examined to predict original molecule 

composition. Chemical bonds of all substances can absorb a specific frequency light wave, 

which is the principle underpinning the spectroscopy method.  

Classic Wet Chemical Analysis 

Wet chemical analysis is a series of chemical tests in liquid that is based on the specific 

characteristics of the three timber molecules, cellulose, hemicellulose and lignin. Lignin 

structure is stable due to condensation structure, but few acids can break glycosidic linkages 

on cellulose and hemicellulose into individual sugar which can dissolve in water, so the 

residue is lignin. During the wet chemical analysis process, first, timber is milled into 

powders and treated in 72% H2SO4 for two hours then, in a dilute H2SO4 concentration of 

3%, finally being boiled for four hours. Carbohydrates (cellulose and hemicellulose) 

dissolve in the liquid and lignin residue floats in the liquid. Lignin content is measured after 

filtering, washing and weighting. The residue is named Klason lignin and the method is the 
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standard lignin detecting analysis method (TAPPI T222). The content of holo-cellulose 

(cellulose and hemicellulose) and lignin is measured as the timber chemical composition. 

In addition, the ratio H/L (holo-cellulose/lignin) is normally treated as a reference to 

describe wood chemical composition change. However, Wacek and Schroth (1950) 

indicated that a certain percentage of lignin is soluble in acid. Regarding which, recent 

research has shown that a very small amount (less than 5%) of softwood lignin dissolves 

in acid, but higher amount (greater than 5%) does so for hardwoods and grasses during wet 

chemical analysis process. Since lignin can absorb UV light, but sugar cannot, the filtrate 

after the TAPPI T222 method further investigated by UV absorbance to detect lignin, which 

is known as acid soluble lignin. However, the quantity of this cannot be defined and, thus 

the wet chemical method of detecting lignin has approximately a 5% variation.  

In fact, holocellulose can be measured directly by the chlorite method, which involves 

putting wood meal into glacial acetic acid and sodium chlorite liquid between 70℃ and 

80℃ for three or four hours. Lignin is soluble in the liquid and the residue is full of 

holocellulose. Moreover, cellulose can be isolated by a mixture liquid of acetylacetone,1,4-

dioxane and hydrochloric acid (Seifert, 1960). However, according to Tamburini et al. 

(2017), a certain percentage of lignin is also extracted by this method, which leads to 

unreliable results.  

Hence, a wet chemical analysis report contains Klason lignin, acid soluble lignin, the ratio 

of H/L (holo-cellulose/lignin) as well as the content of hemicellulose and cellulose as basic 

data to illustrate timber chemical composition.  

Spectroscopy (FTIR/FT-NIR) 

The IR (infrared spectroscopy) technique is considered a quick method for detecting timber 

composition. Light with a specific frequency is absorbed by specific chemical functional 
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groups or bonds and a transformed light scan obtains a spectrum.  There are many peaks 

on the spectrum, each corresponding to a specific composition. Chemical composition is 

studied by functional group changes.  

Two similar techniques FTIR (Fourier transform infrared) and FT-NIR (Fourier transform 

near-Infrared) spectroscopy with different spectrum of light being scanned, which are 

commonly deployed for analysing chemical functional groups. Mid-infrared lights are 

absorbed by chemical functional groups while near-infrared lights are affected by the bonds 

between atoms.  

A device emits light with a wide range of frequencies to the samples and a few specific 

frequencies are absorbed by it. The rest of the light penetrates or is reflected by the sample 

and then, received by the device. The received light signal is analysed on a computer by 

Fourier transformation. Many studies (Rana et al., 2010; Chen et al., 2010; Colom et al., 

2003; Kotilainen et al., 2000; Schultz et al., 1985; Horikawa et al., 2019) reported chemical 

compound and its corresponding wavenumber on FTIR spectrum (Table 2-6). The FT-NIR 

spectrum compound and corresponding wavenumber (Table 2-7) have been studied by 

Tsuchikawa and Siesler (2003); Yonenobu and Tsuchikawa (2003); Siesler et al. (2008); 

Osborne et al. (1993); Schwanninger et al. (2004). An advanced FTIR accessory is 

attenuated total reflectance (ATR) FTIR/FT-NIR which test samples more quickly (Figure 

2-14) (Yamauchi et al., 2004).  

 

Figure 2-14 Principle of ATR-FTIR  
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Table 2-6 FTIR Wavenumber and Corresponding Chemical Functional Groups 

No. wavenumber Compound Reference 

1 3336 O-H Stretch  Kondo (1997) 

2 

2938 

2882 

CH- stretch in methyl- and methylene groups 

CH- Stretch in methyl- and methylene groups  

Kotilainen et al. (2000) 

- 

2103 

1990 

Absorption caused by the ATR crystal 

Absorption caused by the ATR crystal 

 

3 1730 

C=O stretching in unconjugated ketone, 

carbonyl, aliphatic and ester groups (frequently 

of carbohydrate origin)  

Harrington et al. (1964) 

Barker and Owen (1999) 

Chow (1971) 

4 1642 -OH bending, affected by water absorption  

Marchessault (1962) 

Fengel and Wegener (1984) 

5 1595 C=C stretching; COO- stretching  

Faix (1991) 

Harrington et al. (1964) 

6 1507 Aromatic skeletal vibration   

Faix (1991) 

Harrington et al. (1964) 

Marchessault (1962) 

7 1456 

C-H deformation stretching in CH2 and CH3, 

aromatic skeletal vibrations  

Kotilainen et al. (2000) 

Harrington et al. (1964) 

8 1421 

O-H in aromatic skeletal; C-H deformation 

stretching in CH2 and CH3  

Harrington et al. (1964) 

9 1366 C–H bending  Liang and Marchessault (1959) 

10 1335 

Phenol group, -OH bond to aromatic 

hydrocarbon group  

Sarkanen and Ludwig (1971) 

Marchessault and Liang (1962) 

11 1318 

Condensation of guaiacyl unit and syringyl 

unit, syringyl unit and CH2 bending stretching  

Evans et al. (1992) 

Kotilainen et al. (2000) 

12 1262 C–O stretching (lignin) 

Harrington et al. (1964) 

Marchessault (1962) 

13 1226 C–C, C–O–C (lignin)  Faix (1991) 

14 1204 C–O-C or O-H in -plane bending  Parker (1983) 
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15 1154 bridge C–O–C stretching  

Müller et al. (2009) 

Marchessault (1962) 

16 1110 C-OH stretching  

Müller et al. (2009) 

Higgins et al. (1961) 

17 1054 C–C, C–O stretching  

Müller et al. (2009) 

Higgins et al. (1961) 

18 1025 C–H in-plane deformation, C-O stretching   

Kotilainen et al. (2000) 

Higgins et al. (1961)  

19 895 Aromatic vibration at β-glycosidic linkage  

Müller et al. (2009) 

Evans et al. (1992) 

 

Table 2-7 FT-NIR Wavenumber and Corresponding Chemical Bonds 

wavenumber Compound 

7000 -OH in amorphous regions in cellulose 

6718 -OH in Semi-crystalline regions in cellulose 

6450 -OH in crystalline regions in cellulose 

6287 -OH in crystalline regions in cellulose 

5980 -CH in aromatic skeletal in lignin 

5800 -CH in furanose/pyranose in hemicellulose 

5587 -CH in semi- or crystalline regions in cellulose 

5464 -OH and -CO in semi- or crystalline regions in cellulose 

5219 -OH in water 

4890-4620 -OH and -CH in cellulose 

4820 -CH in semi- or crystalline regions in cellulose 

4198 -CH in holo-cellulose 

 

Pyrolysis GC/MS analysis 

Pyrolysis-gas chromatography-mass spectrometry (Pyrolysis GC/MS) analysis is a 

combined method. In the GC part, the sample is heated in nitrogen from low to high 
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temperature, by which the molecules are pyrolysed, thus becoming shorter, normally as a 

gas or volatile substance. Depending on the sample’s pyrolysis behaviour, two different 

heating methods are available: keeping at a certain temperature or rising to higher 

temperature at a certain rate. Timber consists of complex high-weight molecules with 

various pyrolysis behaviours, so the rising heating method is commonly used for timber 

sample analysis. The pyrolysis products are examined by a gas chromatography column. 

Gas are brought into the tube, termed a column, by an inert gas (nitrogen or helium). 

Column wall is coated with specific substance which can hold the gas. However, the ability 

to hold specific chemical compounds is different due to adsorption capacity of column, 

such that pure chemical components leave the column one by one over time. A computer 

receives all the signals and produce a component-time spectrum. The decomposition 

products of wood can be deducted and compared with reference chromatograms to 

speculate about the original molecular composition (Yang et al., 2007).  Table 2-8 and 

Figure 2-15 shows the GC/MS spectrum and components of Ficus sycomorus wood 

pyrolysis (Tamburini et al., 2017). 

Łucejko et al. (2012) compared wet chemical analysis and pyrolysis analysis, reporting that 

the results of two methods similar on aged wood, but show a large deviation on new wood 

on the ratio of Hemicellulose / Lignin. Non-bounded or non-lignin aromatic molecules on 

new timber might be the reason of the difference.  
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Figure 2-15 GC/MS spectrum (Tamburini et al., 2017) 

 

Table 2-8 GC/MS Spectrum Peaks and Corresponding Compound (Tamburini et al., 2017) 

number compound origin 

1 1,2-dihydroxyethane (2TMS) 

Holo-

cellulose/Lignin 

2 2-hydroxymethylfuran (TMS) Holo-cellulose 

3 Phenol (TMS) Lignin 

4 2-hydroxypropanoic acid (2TMS) 

Holo-

cellulose/Lignin 

5 2-hydroxyacetic acid (2TMS) 

Holo-

cellulose/Lignin 

6 1-hydroxy-1-cyclopenten-3-one (TMS) Holo-cellulose 

7 3-hydroxymethylfuran (TMS) Holo-cellulose 

8 o-cresol (TMS) Lignin 

9 2-furancarboxylic acid (TMS) Holo-cellulose 

10 Unknown holocellulose I Holo-cellulose 

11 m-cresol (TMS) Lignin 

12 2-hydroxy-1-cyclopenten-3-one (TMS) Holo-cellulose 

13 p-cresol (TMS) Lignin 

14 3-hydroxy-(2H)-pyran-2-one (TMS) Holo-cellulose 
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15 Unknown holocellulose II Holo-cellulose 

16 Unknown holocellulose III Holo-cellulose 

17 Z-2,3-dihydroxycyclopent-2-enone (TMS) Holo-cellulose 

18 E-2,3-dihydroxycyclopent-2-enone (TMS) Holo-cellulose 

19 1,2-dihydroxybenzene (TMS) Holo-cellulose 

20 3-hydroxy-(4H)-pyran-4-one (TMS) Holo-cellulose 

21 5-hydroxy-(2H)-pyran-4(3H)-one (TMS) Holo-cellulose 

22 2-hydroxymethyl-3-methy-2-cyclopentenone (TMS) Holo-cellulose 

23 1-hydroxy-2-methyl-1-cyclopenten-3-one (TMS) Holo-cellulose 

24 1-methy-2-hydroxy-1-cyclopenten-3-one (TMS) Holo-cellulose 

25 1,3-dihydroxyacetone (2TMS) Holo-cellulose 

26 Guaiacol (TMS) Guaiacyl lignin 

27 Unknown holocellulose IV Holo-cellulose 

28 3-hydroxy-6-methyl-(2H)-pyran-2-one (TMS) Holo-cellulose 

29 Unknown holocellulose V Holo-cellulose 

30 2-methyl-3-hydroxy-(4H)-pyran-4-one (TMS) Holo-cellulose 

31 2-methyl-3-hydroxymethyl-2-cyclopentenone (TMS) Holo-cellulose 

32 2,3-dihydrofuran-2,3-diol (2TMS) Holo-cellulose 

33 2-furylhydroxymethylketone (TMS) Holo-cellulose 

34 5-hydroxymethyl-2-furaldehyde (TMS) Holo-cellulose 

35 4-methylguaiacol (TMS) Guaiacyl lignin 

36 1,2-dihydroxybenzene (2TMS) Holo-cellulose 

37 2-hydroxymethyl-2,3-dihydropyran-4-one (TMS) Holo-cellulose 

38 1,4:3,6-dianhydro-α-D-glucopyranose (TMS) Holo-cellulose 

39 Z-2,3-dihydroxycyclopent-2-enone (2TMS) Holo-cellulose 

40 4-methylcatechol (2TMS) Guaiacyl lignin 

41 4-ethylguaiacol (TMS) Guaiacyl lignin 

42 Syringol (TMS) Syringyl lignin 

43 1,4-dihydroxybenzene (2TMS) Holo-cellulose 

44 Arabinofuranose (4TMS) Holo-cellulose 
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45 4-vinylguaiacol (TMS) Guaiacyl lignin 

46 3-hydroxy-2-hydroxymethyl-2-cyclopentenone (2TMS) Holo-cellulose 

47 E-2,3-dihydroxycyclopent-2-enone (2TMS) Holo-cellulose 

48 4-ethylcatechol (2TMS) Guaiacyl lignin 

49 3-hydroxy-2-(hydroxymethyl) cyclopenta-2,4-dienone (2TMS) Holo-cellulose 

50 Eugenol (TMS) Guaiacyl lignin 

51 4-methylsyringol (TMS) Syringyl lignin 

52 3-methoxy-1,2-benzenediol (2TMS) Syringyl lignin 

53 3,5-dihydroxy-2-methyl-(4H)-pyran-4-one (2TMS) Holo-cellulose 

54 1,6-anhydro-β-D-glucopyranose (TMS at position 4) Holo-cellulose 

55 1,6-anhydro-β-D-glucopyranose (TMS at position 2) Holo-cellulose 

56 Z-4-isoeugenol (TMS) Guaiacyl lignin 

57 Vanillin (TMS) Guaiacyl lignin 

58 1,2,3-trihydroxybenzene (3TMS) Holo-cellulose 

59 5-methyl-3-methoxy-1,2-benzenediol (2TMS) Syringyl lignin 

60 4-ethylsyringol (TMS) Syringyl lignin 

61 E-4-isoeugenol (TMS) Guaiacyl lignin 

62 1,4-anhydro-D-galactopyranose (2TMS) Holo-cellulose 

63 1,6-anhydro-D-galactopyranose (2TMS) Holo-cellulose 

64 

2-hydroxymethyl-5-hydroxy-2,3-dihydro-(4H)-pyran-4-one 

(2TMS) 

Holo-cellulose 

65 4-vinylsyringol (TMS) Syringyl lignin 

66 1,4-anhydro-D-glucopyranose (2TMS at position 2 and 4) 306 73 Holo-cellulose 

67 1,2,4-trihydroxybenzene (3TMS) Holo-cellulose 

68 Acetovanillone (TMS) Guaiacyl lignin 

69 4-hydroxybenzoic acid (2TMS) Lignin 

70 4-propenylsyringol (TMS) Syringyl lignin 

71 1,6-anhydro-β-D-glucopyranose (2TMS at position 2 and 4) Holo-cellulose 

72 Vanillic acid methyl ester (TMS) Guaiacyl lignin 

73 5-vinyl-3-methoxy-1,2-benzenediol (2TMS) Syringyl lignin 
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74 Z-4-isopropenylsyringol Syringyl lignin 

75 1,4-anydro-D-galactopyranose (3TMS) Holo-cellulose 

76 Unknown lignin I Lignin 

77 Syringaldehyde (TMS) Syringyl lignin 

78 2,3,5-trihydroxy-4H-pyran-4-one (3TMS) Holo-cellulose 

79 1,6-anhydro-β-D-glucopyranose (3TMS) Holo-cellulose 

80 1,4-anhydro-D-glucopyranose (3TMS) Holo-cellulose 

81 E-4-isopropenylsyringol (TMS) Syringyl lignin 

82 1,6-anhydro-β-D-glucofuranose (3TMS) Holo-cellulose 

83 Unknown lignin II Lignin 

84 Unknown lignin III Lignin 

85 Vanillic acid (2TMS) Guaiacyl lignin 

86 Acetosyringone (TMS) Syringyl lignin 

87 5-propyl-3-methoxy-1,2-benzenediol (2TMS) Syringyl lignin 

88 Coumaryl alcohol (2 TMS) Guaiacyl lignin 

89 syringic acid methyl ester (TMS) Syringyl lignin 

90 Vanillylpropanol (2TMS) Guaiacyl lignin 

91 Z-coniferyl alcohol (2 TMS) Guaiacyl lignin 

92 4-hydroxy-3,5-dimethoxycinnamic acid methyl ester (TMS) Syringyl lignin 

93 Coniferylaldehyde (TMS) Guaiacyl lignin 

94 Trihydroxycinnamyl alcohol (3TMS) 398 73 Syringyl lignin 

95 Syringic acid (2TMS) Syringyl lignin 

96 Unknown lignin IV Lignin 

97 E-coniferyl alcohol (2 TMS) Guaiacyl lignin 

98 3,4-dihydroxy-5-methoxybenzoic acid (3TMS) Syringyl lignin 

99 Syringylpropanol (2TMS) Syringyl lignin 

100 Z-sinapyl alcohol (2TMS) Syringyl lignin 

101 Unknown lignin V Lignin 

102 3,4-dihydroxycinnamyl alcohol (3TMS) Guaiacyl lignin 

103 Trihydroxycinnamyl alcohol I (3TMS) Syringyl lignin 
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104 Sinapylaldehyde (TMS) Syringyl lignin 

105 Trihydroxycinnamyl alcohol II (3TMS) Syringyl lignin 

106 Z-2-methoxy-3,4-dihydroxycinnamyl alcohol (3TMS) Syringyl lignin 

107 Sinapyl alcohol (TMS) Syringyl lignin 

108 E-sinapyl alcohol (2TMS) Syringyl lignin 

109 E-2-methoxy-3,4-dihydroxycinnamyl alcohol (3TMS) Syringyl lignin 

110 Unknown lignin VI Lignin 

111 Unknown anhydrosugar I (dimer) Holo-cellulose 

112 Unknown anhydrosugar II (dimer) Holo-cellulose 

113 Unknown anhydrosugar III (dimer) Holo-cellulose 

114 Unknown anhydrosugar IV (dimer) Holo-cellulose 

115 Unknown anhydrosugar V (dimer) Holo-cellulose 

116 Unknown anhydrosugar VI (dimer) Holo-cellulose 

117 Unknown anhydrosugar VII (dimer) Holo-cellulose 

2.2.2 Chemical Composition Changes During Natural Ageing 

Chemical composition changes in timber are inevitable. The process of organic substances 

transforming back to inorganic ones, such as carbon dioxide, water and ammonia, is a 

natural cycle, but timber ageing is not (Fengel, 1991). It is a series of slow changes to 

timber molecules, which is affected by the environment. Oxygen content, water storage 

and temperature are the most essential factors affecting the natural ageing process. Fengel 

(1991) studied the chemical composition changes of natural aged woods for various species 

and storage environments, concluding that hemicellulose and polyose content decrease 

quicker than cellulose for the first one thousand years. Whilst cellulose content starts to 

dramatically decrease after 107 years. The content of non-hydrolysable residue, including 

crystallised cellulose and cross-linked lignin increase gradually (Figure 2-16). Hence, the 

timber ageing process can be treated as one where the molecular composition turns into 

having a stable status. A similar conclusion was also reported by Ando et al. (2006), who 
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elicited that a 270 year old Japanese red pine (Pinus densiflora Sieb. et Zucc.) was much 

more stable than new wood after carrying out an acoustic emission test on the microscopic 

fracturing process.  

 

Figure 2-16 Timber Composition Changes during Natural Ageing (Fengel, 1991) 

The next part of the literature reviews is divided into two categories: aerobic environment 

(in air) and anaerobic environment (in water or mud). The timber chemical changes in the 

former condition are much more complex than those in the latter. Tamburini et al. (2017) 

investigated different wood species samples (Faidherbia albida, Ficus sycomorus, Taxus 

baccata, Pinus sylvestris and Tamarix sp.) from Egypt for different times (230 years old, 

from 1787AD, 2,000 years old, from 332 BC to 395AD and 3,800 years old, from 1760 

BC). Whilst both the wet chemical method and FTIR indicated that lignin and holocellulose 

(cellulose and lignin) of the sample had been reduced by degradation, the chemical changes 
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were different even for the same species in the same environment. Thus, the factors 

affecting timber natural ageing are more complex.  

Tamburini et al. (2017) also evaluated the wet chemical analysis method and pointed out 

that the ratio of holocellulose/lignin (H/L), which normally illustrates wood’s chemical 

composition change, is not suitable for degradation evaluation in air. However, a few 

accessorial methods, such as FTIR and pyrolysis analysis, can provide comprehensive 

information. In addition, microbials attacking natural aged timber in air lead to more 

complex results regarding the chemical composition, according to Naumann et al. (2005), 

Genestar and Palou (2006), Blanchette (2000), Blanchette et al. (1991) and Blanchette et 

al. (1994). 

In air 

The chemical composition of timber may change anytime and anywhere, in particular, it 

starts to age after harvesting. The first stage of timber change after harvest, is a decrease in 

moisture content and oxygen invasion into the cells (Fengel, 1991). Sapwood is still alive 

180 days after cutting, with sugar still decomposing to provide energy for living cells in it, 

as was found for Japanese Katsura (Cercidiphyllum japonicum) and cedar (Cryptomeria 

japonica) (Ohashi et al., 1988). Lignin is oxidised immediately after harvesting according 

to Fischer and Schmidt (1983). Fengel and Stöcklhuber (1985) compared fresh and 15 years 

naturally drying pine, concluding that lignin is significantly oxidised both in sapwood and 

heartwood in the latter case, but the acid soluble lignin does not show any variation.  

Fengel (1991) introduced an unpublished work after studying pieces of 290 year old spruce 

and 365 year old pine from a roof structure and found that cellulose content had not changed 

significantly when compared with recent dry wood, but polyoses (hemicellulose) had 
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decreased a lot. Acid insoluble lignin was tested by a wet chemical method and showed the 

same content as new timber (ibid).  

108-390 years fir samples (Abies Alba) belonging to a historic building were studied by 

Kačík et al. (2014) using a wet chemical method. Cellulose content increased 13% on the 

390 year old sample than new samples due to hemicellulose degradation. However, 

cellulose molecular structure was stable with no significant change. Moreover, 

hemicellulose decreased by approximately 24% due to degradation. In terms of 

hemicellulose degradation, arabinoglucuronoxylan degraded more than 

galactoglucomannan. Lignin content was reduced 4%, whereas condensation and cross-

linking reactions are observed.  

Tsuchikawa et al. (2005) reported that cellulose does not show any degradations in 

crystalline areas but does degrade greatly in non-crystalline ones regarding hemicellulose 

and lignin when studying a piece of 1,300 year old hinoki cypress (Chamaecyparis obtusa) 

from a pillar of the Todaiji temple in Japan.  

A piece of 1,800 year old teak (Tectona grandis) from a Buddhist temple in India was found 

by Narayanamurti et al. (1958) and chemical analysis showed that the cellulose and lignin 

content had decreased by approximately 2% when compared with new teak. However, 

considering the experiment data variation, 2% was not a significant figure to define 

decreasing. Moreover, soluble lignin extracted by ethanol benzene increased by 

approximately 14 times for the same comparison (ibid).   

Borgin et al. (1975a) studied seven old wood samples with IR spectroscopy (Table 2-9). 

Specifically, ship components samples were stored in a moist soil environment, while 

others were stored in dry air. He demonstrated that the lignin of the wood samples stored 

in dry air had oxidised dramatically due to increasing of the carbonyl groups especially on 
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two species: Pinus pinea and Juniperus phoenicea. Borgin et al. (1975b) also investigated 

these samples using electron microscopy (SEM) and a polarised light microscope. He 

reported that the cell walls of the old samples were no different to new wood (ibid). Cell 

wall structure was also well preserved in 2,000 to 4,000 years old thorn wood (Acacia sp., 

Tamarix spec.), according to Nilsson and Daniel (1990).  

Table 2-9 Wood Samples analysed by Borgin et al. (1975a) 

Timber Scientific name Age Location 

Pine Pinus sylvestris 900 years Oseberg Viking ship in Norway 

Oak Quercus robur 1100 years Klastad Viking ship in Norway 

Oak Quercus robur 1100 years Oseberg Viking ship in Norway 

Pine Pinus sylvestris 2200 years Buried wooden implements in Norway 

Juniper Juniperus phoenicea 4100 years Pyramid of Sneferu in Egypt 

Pine Pinus pinea 4300 years Pyramid of Teti in Egypt 

Thorn Acacia nilotica 4400 years Pyramid of Neferirkare in Egypt 

 

Eight 3,000 years old oak samples (Quercus sp.) which contained both heartwood and 

sapwood, were studied by the classic wet chemical method by Tamburini et al. (2015). The 

samples belonged to a pavement of the ancient living area in Biskupin in Poland. 

Polysaccharides (mainly hemicellulose) were found to have degraded significantly in all 

the samples, which had led to the lignin content increasing from 32.5% to 62.1%. In 

addition, wood from the outside layer had degraded significantly, whereas the inside layer 

was well preserved. In analytical pyrolysis coupled with gas chromatography and mass 

spectrometry (Py-GC/MS) analysis, lignin monomers (sinapyl and coniferyl alcohols) 

content was greater in well preserved specimens, whilst guaiacyl and syringyl units with 

short side chains emerged as being common in the degraded samples (ibid).  
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Grosser et al. (1974) studied a piece of 4,500 year old juniper (Juniperus drupacea) from 

Chattuscha in Asia Minor (1900-1200BC) in a dry atmosphere by FTIR. Carbohydrate 

content was only 5.1%, including 4.7% cellulose. They also compared milled sample lignin 

with new juniper and found a guaiacyl (peak at 1,270 cm-1) increase, but syringl vibration 

(peak at 1,220 cm-1 and 1,320 cm-1) and phenolic OH group (peak at 1,365cm-1, hydroxyl) 

had decreased, which indicated lignin condensation.  

Fengel (1991) introduced another unpublished work on a 5,000 year boat component 

sample (Acacia nilotica and Tamarix spec) from an Egyptian tomb chamber. Chemical 

analysis illustrated that the cellulose content is 55.2% and the polyoses (mainly 

hemicellulose) content decreased largely to 5.2% compared to new sample. 

Hydrogen/carbon ratio was 1.2 whilst the oxygen/carbon ratio was much higher than recent 

wood, which means that lignin is oxidised during the natural ageing process. It was also 

reported that the cell wall colour became dark (ibid). Similar chemical composition was 

reported by Nilsson and Rowell (2012), who found 10,000 years old timber in a Chinese 

tomb with a dry environment.  

Chowdhury et al. (1967) studied four India wood samples that were 2,000 year old Shorea 

robusta, 2,200 year old Tectona grandis, 7,500 year old Lagerstroemia speciosa and 

47,000 year old Mesus ferrea, reporting that crystallised cellulose was well preserved in 

the first three samples. However, in the oldest sample all the cellulose was non-crystallised, 

which indicate that crystallised cellulose can transit to amorphous cellulose over an 

extremely long period.  

In water and soil 

Even though biological degradation causes distinctive chemical composition changes in 

timber stored in water or soil and decreases its mechanical strength (Huisman et al., 2008), 
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many studies have demonstrated that the condition of a waterlogged sample is better than 

one from an air environment. Moreover, softwood resists decay in a water atmosphere more 

than hardwood for at least 3,000 years (Zoia et al., 2015). Similar results were also reported 

by Capretti et al. (2008), who studied three shipwrecks dating back to the first to second 

century AD from near Naples in Italy. The wet chemical method showed that softwood 

cypress (Cupressus sempervirens L.) changes less than hardwood beech (Fagus sylvatica 

L.) or oak (Quercus caducifolia) and walnutare (Juglans regia L.). Christensen et al. (2006) 

investigated 1,400 to 1,800 year old pine and ash wood of an arrow and found that lignin 

was better preserved in a softwood (ash sample) than in hardwood (pine sample). In 

addition, Iiyama et al. (1988) compared three samples buried in soil of softwood torreya 

(Torreya spp., 6,000 years old), hardwood ash (Fraxinus spp., 12,000 years old) and 

chestnut (Castanea spp., 6,000 years old) with new wood. The lignin content of the 

softwood was less than 45%, which is same as the content of new wood, but the hardwood 

lignin content increased to 80% and 81%, respectively, for the hardwoods due to 

hemicellulose degradation. A few 2,600 year old samples stored in seawater, including two 

hardwoods oak, and alder (Quercus spp. subgeneus Leucobalanus and Alntrs rubru) and 

one softwood spruce (Picea sitchensis) were studied by Hedges et al. (1985). They reported 

that the spruce experienced a slight change in the seawater, but the oak and alder degraded 

dramatically that 90% of the polysaccharides and 15-25% lignin disappeared. Hence, it was 

evidenced that softwoods resist decay in this water better than hardwoods. This study also 

reported the stability of hardwood molecule components in seawater according to the 

following order:  vanillyl and ρ-hydroxyl lignin structural > syringyl lignin structural > 

pectin > α-cellulose > hemicellulose (ibid). 

Cellulose and hemicellulose degrade slightly for the first 400 years. A 5 year comparation 

experiment was conducted by Komorowicz et al. (2018), who immersed English oak 
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heartwood (Quercus robur L.) in the Baltic Sea. Both cellulose and pentosans 

(hemicellulose) decreased 5%. Fengel and Wegener (1988) studied spruce after water 

storage for 17 years and found that the cellulose and polyoses (mainly hemicellulose) kept 

the original content. However, the authors also reported that the deviation of the wet 

chemical method was higher. Zoia et al. (2015) examined the chemical composition on an 

approximately 400 year old softwood (Abies alba) and hardwood (Quercus robur) 

shipwreck by the wet chemical method and reported no significant difference from new 

wood regarding holocellulose. 

However, hemicellulose content decreased significantly after 400 years mainly due to a 

hydrolysis reaction.  Five pieces of pedunculate oak (Quercus robur L.) that were 700, 

1,000 (two pieces), 1,700 and 2,700 years old were found in water storage in Poland by 

Sandak et al. (2010). Both wet chemical and FT-INR analysis demonstrated that the 

carbohydrates (hemicellulose) had degraded significantly, but the cellulose content did not 

show a clear change. Łucejko et al. (2012) analysed seven samples by the pyrolysis method, 

including alder (Alnus glutinosa), oak (Quercus roburs) and beech (Fagus sylvatica) 

between 900 and 1,200 years, reporting that the old timber sample contained fewer 

pyrolysis products of polysaccharide thus the hemicellulose was largely degraded. Van 

Bergen et al. (2000) studied 6,000 year old oak samples (Quercus sp.) and found a reduction 

in hydrogen and oxygen elemental content. The reason is that carbohydrates had 

decomposed, mainly because of hydrolysis in a water environment, which led to an increase 

in Klason lignin from 28.77% to 67.35%. Passialis (1997) studied several waterlogged 

samples (Picea abies, Pinus silvestris and Quercus sp.), ranging from 300 to 100,000 years 

old found in anaerobic areas, including glaciers, burial grounds, housing settlements and 

shipwrecks, by wet chemical analysis. Hemicellulose is largely degraded. Similar results 

were elicited by Van Bergen et al. (2000), who studied four oak samples (Quercus sp.) 
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stored in water (two at a 6,000BP site on the south coast of England and natural aged 

samples: one was first century AD from a well and another from a cathedral’s portal dating 

to the sixteenth century, using pyrolysis-gas chromatography/mass spectrometry. They 

demonstrated that the polysaccharide content of natural aged wood was the same as new 

wood, but this decreased dramatically in water stored wood. Hence, it was concluded that 

hemicellulose greatly disappears in water storage.  

The crystalline structure protects cellulose molecules even in a 100,000 year old sample 

(Picea abies) stored in water (Passialis, 1997). However, the amorphous region of cellulose 

exhibits degradation for a 6,000 year old waterlogged sample, according to Van Bergen et 

al. (2000). That is, the FTIR technique deployed showed that amorphous cellulose is largely 

degraded due to a decrease in β-glycosidic linkages (peak at 894 cm-1). Oxidation reaction 

on lignin was also observed on the FTIR spectrum. Moreover, it emerged that cellulose 

cannot resist to microorganism attack (ibid). Iiyama et al. (1988) reported that cellulose 

degradation is greater than hemi-cellulose a 6,000 to 12,000 year old small sample. Higher 

protein content indicated that microorganisms are responsible for cellulose decrease. Kim 

et al. (1990) also observed higher degradation in cellulose than hemicellulose due to 

microorganisms for 700 year old pine wood (Pinus massoninana) stored in seawater. 

Hence, microorganisms consume cellulose as food.  

Lignin in an anaerobic environment, especially in water, is well preserved (Zoia et al., 

2015). Komorowicz et al. (2018) immersed a five year old wood in seawater and reported 

that the lignin content increased 7% due to the degradation of pentosans (hemicellulose). 

Borgin et al. (1975a) found two pieces of old ship components wood samples aged 900 and 

1,100 years stored in moist soil. Lignin content increased slightly due to a reduction in 

carbohydrate content on Quercus robur. Łucejko et al. (2012) also reported stable lignin 

for 900 to 1,200 year old samples by wet chemical analysis, but lignin content increases 



46 

 

due to hemicellulose degradation. Similar results were reported by Sandak et al. (2010), 

where lignin content was found to be increased due to degradation of carbohydrates, but 

the total quantity had not changed when investigating five pieces of pedunculate oak 

samples from 700 to 2,700 years. Lignin content increases from 1.3 to 3.6 times more than 

new wood, according to Passialis (1997), who studied some waterlogged samples (Picea 

abies, Pinus silvestris and Quercus sp.) by wet chemical analysis. These, samples ranged 

from 300 to 100,000 years old, being found in anaerobic area including glaciers, burial 

grounds, housing settlements and shipwrecks.  

However, lignin chemical structure might become changed according to Xia et al. (2018), 

who comprehensively investigated the lignin of a piece of 1,700 to 2,100 year old 

waterlogged pine wood. They reported that part of the lignin molecular weight had reduced 

due to depolymerization, especially for the β-O-4 and β-5 linkage. NMR analysis also 

illustrated a demethoxylation reaction on the syringyl lignin of waterlogged oak samples 

(Van Bergen et al., 2000). Both guaiacyl and syringyl lignin content of a 6,600 year old 

Bischofia polycarpa stored in a river decreased according to Pan et al. (1990). Lignin 

molecules showed O-demethylation, acidcatalysed hydrolysis and a condensation reaction 

on aromatic methoxy groups, α-aryl bonds and aromatic rings, respectively. ο-acetyl groups 

on xylan (hemicellulose) were found to hydrolyse to acetic acid, which promoted 

hydrolysis and condensation reactions in carbohydrates and lignin, respectively.  

As mentioned above, internal wood chemical changes are lesser than for the outer layer, 

probably due to latter protecting the former. Łucejko et al. (2012) studied 900 to 1,200 year 

old oak samples and reported that holo-cellulose drops dramatically in sapwood but 

remains in heartwood.  
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Extractives changes vary because of tree species. Extractives of both softwood and 

hardwood are hydrolysed after one year storage in water, according to Assarsson and 

Akerlund (1967), but resin is much more stable during such storage. In addition, soluble 

extractives were found to have disappeared from 6,600 years old sample (Pan et al., 1990). 

Moreover, Fengel and Wegener (1988) studied spruce in water storage for 17 years and 

reported that extractives only had a slight reduction.  

A 32,000 to 45,000 years old pine was found by Staccioli and Tamburini (1988), with the 

wood illustrating fossilisation. It emerged that cellulose had dramatically degraded; only 

10% remained when compared to new wood. Fossilisation is a lengthy process, where 

mineral elements (normally silicon) replace the carbon of the timber molecule. However, 

timber chemical composition and mechanical property of this status are not structural 

materials, so timber in fossilisation is discussed no further in this research.  

2.2.3 Chemical Composition Changes from Artificial Treatment 

Engineers concerned about the durability of timber structures have devised several artificial 

treatments for accelerating chemical composition changes, which have provided valuable 

information in this respect. Generally, fungi and rot attack and UV exposure cause many 

distinctive chemical composition changes in timber. Heat treatment can improve durability, 

dimensional stability and the mechanical strength of timber. Hence, the timber heat 

treatment industry has become a mature and important part of the timber trade. Timber 

chemical changes are frequently accelerated by human intervention to study decay or 

improve mechanical properties. UV light, biological attack and temperature are the three 

main tools utilised for composition change.  
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In fact, chemical modifications and glued laminated timber can improve mechanical 

strength significantly (Follrich et al., 2006; Gaspar et al., 2010; Rowell et al., 2009; Sernek 

et al., 2008), but this will not be discussed in the chapter.  

UV Light 

UV light with specific frequency can rupture chemical bonds directly in a short time. 

However, this light only affects the surface since the molecules are degraded to a firm layer 

that acts as a protective layer (Croll and Skaja, 2003; Forsthuber and Grüll, 2010; Jelle, 

2012; Stark and Matuana, 2004; Sudiyani et al., 2003). Thus, all studies discussing the 

chemical composition changes caused by just UV light refer to the sample surface.  

Lignin is most affected and quickly degrades due to the ratio of lignin/carbohydrate 

reduction. That is, this diminished dramatically after 50 hours exposure, according to 

Pandey (2005), who detected the chemical composition changes of pine (Pinus roxburghii) 

and rubber wood (Hevea brasiliensis) by FTIR after 1000W UV light exposure from 0 to 

700 hours. Moreover, it emerged that degradation is higher in the latter than the former. 

Pandey and Vuorinen (2008) reported that lignin aromatic structures degrade to o- and p-

quinone structures by UV-vis reflectance, UVTT spectra and FTIR-PAS. They also 

reported that syringyl lignin degrades higher than guaiacyl lignin for both pine and rubber 

wood. Similar results were reported by Colom et al. (2003), who exploited a xenon test 

chamber to induce photodegradation on hardwood aspen (Populus tremula) and softwood 

buxus (Buxus sempervirens). It was found that all lignin feature bands containing 1595    

cm-1, 1510 cm-1 and 1465 cm-1 of FTIR decreased quickly and even disappeared after 24 

weeks exposure. Macleod et al. (1995) obtained the FTIR spectrum of a red cedar panel 

after 50 weeks outdoor exposure and discovered that the bond peaks relating to lignin were 

at 1510 cm-1 and 1265 cm-1 was decreased.  
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Biological Attack 

Both beetles and fungi usually cause decay in timber structures, but in lab environments 

the latter is most commonly researched in this context. Weiland and Guyonnet (2003) 

exploited brown rot (poria placenta) to attack maritime pine (Pinus pinaster) and beech 

(Fagus silvatica), detecting the changes by FTIR. The lignin content increases due to 

cellulose and hemicellulose consumed by microorganisms. Hence, it is clear that fungi 

consume the polysaccharides (mainly hemicellulose and cellulose) of the cell wall, which 

results in high lignin content in the residue. Humar et al. (2006) found similar results from 

brown rot (Antrodia vaillantii and Gloeophyllum trabeum) decay in Norway spruce (Picea 

abies). They also reported MOE decreases and mass loss for the samples. Lignin increase 

was also observed by Pandey and Pitman (2003), who studied Scots pine (Pinus sylvestris 

L.) and beech (Fagus sylvatica L.) attacked by brown rot (Coniophora puteana) for 12 

weeks.  

White rot (Phanerochaete chrysosporium and Coriolus versicolor) causes different 

changes to lignin than brown rot, according to Faix et al. (1991). Both lignin and 

carbohydrate reduce by the same amount in the former case. White rot also causes the 

appearance of a new peak on the FTIR spectrum, as reported by Mohebby (2005), who 

studied its influence (Trametes versicolor) on beech wood (Fagus sylvatica) for 84 days. 

New peaks on the FTIR spectrum appeared after 28 days exposure due to the chemical 

bond breaking for the hemicellulose (FTIR spectrum 1,650-1,800 cm-1) and the aromatic 

derivatives of lignin (FTIR 1,500-1,550 cm-1). Not only does the FTIR technique prove that 

white rot consumes lignin more than brown rot, for this has also been shown to be the case 

through by wet chemical analysis. Ferraz et al. (2000) evaluated pine (Pinus radiate) and 

blue gum (Eucalyptus globulus) attacked by six white rot (Merulius tremellosus, Poria 

medulla-panis, Trametes versicolor, Punctularia artropurpurascens, Ceriporiopsis 
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subvermispora and Ganoderma aplanatum) and two brown rot (Poria cocos and 

Laetiporus sulfureus) form for a period from 30 days to one year. Chemical changes were 

detected by both wet chemical analysis and FTIR. The study showed that the total lignin 

content of pine samples was reduced from 28.1% to 23.3%-27% by white rot attacking but 

increased to 28%-29.3% from the brown rot attack.  

Heat treatment 

Timber heat treatment has a long history of improving timber mechanical properties by 

causing specific chemical composition changes. Durability and stability are also improved 

through this process (Kamdem et al., 2002; Sandberg et al., 2013). Mechanical property 

changes during heat treatment will be discussed in the following chapter, in subsection 

2.3.2, so this part only focuses on chemical composition changes. Generally, such changes 

on timber molecules during heat treatment are crystallisation, degradation/decomposition, 

condensation and cross-linking (Figure 2-17). 

 

Figure 2-17 Timber Molecule Changes during Heat Treatment (Esteves and Pereira, 2008) 
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The earliest literature relating to timber heat-treatment is that of Tiemann (1920), who dried 

timber at a high temperature and found significant enhancement in dimensional stability, 

but the equilibrium moisture content had decreased. Esteves and Pereira (2008) concluded 

that regarding chemical changes during heat treatment under 150℃, loss of moisture from 

free to bond water is the main characteristic. At the temperature between 180℃ and 250℃, 

chemical changes in wood are various and affected by treatment atmosphere significantly. 

Above 250℃, timber is carbonised and degraded, releasing various gases. Chemical 

changes in sapwood are more serious than heartwood, in particular, the hydrolysis reaction, 

according to Metsa-Kortelainen et al. (2006), who heated the sapwood and heartwood of 

Norway spruce (Picea abies) at 170℃, 190℃, 210℃ and 230℃ with different humidity.  

Cellulose is the most stable molecule in timber due to its crystalline structure. Bourgois 

and Guyonnet (1988) found that heat treatment on sawdust of maritime pine at 260℃ did 

not affect the cellulose structure significantly in an environment without oxygen. Yildiz et 

al. (2006) heated spruce wood (Picea orientalis) at 130℃, 150℃, 180℃, and 200℃ for 2, 

6 and 10 hours in air, eliciting that apart from the sample at 200℃ for 10 hours, the quantity 

of cellulose was little affected. Esteves et al. (2008) studied eucalyptus wood (Eucalyptus 

globulus Labill) by heat treatment in an oven with air and in an autoclave with steam at 

170℃-200℃ and 190℃-210℃, respectively, finding that the cellulose as little affected. 

Hence, cellulose is relatively stable in environments of air, anaerobic and steam under 

250℃.  

Heat treatment can cause crystallisation in molecules, which improves the molecular 

structure as well as making them aligned and solid. Wikberg and Maunu (2004) reported 

crystallinity of cellulose increased in spruce, birch and aspen for 195℃ steam treatment as 

well and on oak at 160℃ with steam treatment. However, the carbohydrates in 

hemicellulose and amorphous cellulose molecule were substantially degraded. Similar 
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results were reported by Nakao et al. (1989) and Stamm (1956). Boonstra and Tjeerdsma 

(2006) elicited the same findings by a different heat treatment method with a two-stage 

treatment named “hydro-thermolysis”. This method involves treating samples at 165℃ to 

185℃ for 30 minutes, then 170℃ to 180℃ for 4 hours and inserting a drying process at 

50℃ to 60℃ between the two stage. Sivonen et al. (2002) heated a pine sample (Pinus 

sylvestris) at 180℃ and 230℃ for 4 hours and detected changes in the NMR spectrum peak 

at 89 ppm, which relates to cellulose. Though this study, they observed an increase in 

cellulose crystallinity with rising temperature. Pétrissans et al. (2003) also studied heat 

treatment according to NMR spectrum on pine (Pinus sylvestris), spruce (Picea karst), 

beech (Fagus sylvatica) and poplar (Populus nigra) for 8 hours at 240℃ in an inert 

environment. The increase of the peak at 89 ppm and 85 ppm of the spectrum provided 

proof of a clear crystallisation change after heat treatment. In addition, an X-ray technique 

can also illustrate crystallisation increase during heat treatment. Bhuiyan et al. (2000) 

studied up to 5 days heat-treatment of cellulose powder, spruce (Picea sitchensis) and buna 

(Fagus crenata) in different humidity from 180℃ to 220℃. There was crystallisation 

increase with temperature for spruce and buna, with there being no significant changes in 

pure cellulose. The crystallinity of timber increases in a high humidity environment 

(Bhuiyan and Hirai, 2005). Hence, heat treatment increases the crystallinity of cellulose 

under 250℃ and moisture content is also an important factor.  

Hemicellulose is easily affected by heating and starts to change even at low temperature 

(Zhou et al., 2016). Kocaefe et al. (2008) studied birch (Betula papyrifera) and aspen 

(Populus tremuloides) heated in a rising temperature from 100℃ to 230℃ in an inert 

atmosphere, with 80% nitrogen and 20% carbon dioxide. The FTIR spectrum showed that 

birch with a higher hemicellulose content changes dramatically. Due to the various 

molecular structures of hemicellulose, it pyrolyzes to various shorter chains according to 
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Alen et al. (2002), who heated Norway spruce (Picea abies) in a steam environment at 

180℃ to 225℃ for 2 to 8 hours. Sivonen et al. (2002) and Weiland and Guyonnet (2003) 

studied hemicellulose behaviour by both NMR and FTIR, finding that it degrades to acetic 

acid at 180℃ treatment. Sivonen et al. (2002) also observed that the methyl and carboxylic 

carbons of acetyl groups decrease in hemicellulose which indicates deacetylation. 

Tjeerdsma et al. (1998) studied acetic acid degraded by hemicellulose in beech (Fagus 

sylvatica L.) and scots pine (Pinus sylvestris L.) by NMR, providing that acetic acid has a 

catalysing function of degrading polysaccharide to formaldehyde, furfural and other 

aldehydes. Nuopponen et al. (2005) probed chemical composition by FTIR and UVRR 

spectroscopy, eliciting that furfural is degraded from pentosans. In addition, hemicellulose 

dehydration reaction was observed during heat treatment in nitrogen at temperatures of 

230℃ to 260℃ on maritime pine (Pinus pinaster) and beech (Fagus silvatica) (Weiland 

and Guyonnet, 2003). Many studies have proved that gas and liquid are released from 

timber during heat treatment due to hemicellulose decomposition. Bourgois and Guyonnet 

(1988) reported that acetic acid, formic acid and furfural are from thermolysis of xylose, 

glucuronic chains and dehydration of xyloses, respectively. In terms of liquid release, 

21.5% water, 7.5% acetic acid , 5% formic acid, 3.5% methanol and a small amount of 

furfural are measured by Dirol and Guyonnet (1993), who heated spruce, poplar and fir at 

200℃ to 260℃. To sum up, hemicellulose is affected in all atmosphere heat treatments, 

including air, steam and inert gas. Degradation is the main chemical reaction to 

hemicellulose, which leads to the release of gas and liquid.  

Lignin changes during heat treatment have registered varying results, which have not been 

consistent. Bourgois and Guyonnet (1988) extracted sawdust of maritime pine lignin by the 

sulfuric acid method (ASTM, D1106-56) and reported that lignin increases in an inert 

atmosphere at 260℃ treatment from an untreated 28% to 37%, 41%, 51%, 54% and 84% 
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for 20 minutes, 30 minutes, 1 hour, 1.2 hours and 4 hours, respectively. Similar results were 

reported by Zaman et al. (2000), who heated scots pine (Pinus sylvestris) and silver birch 

(Betula pendula) in steam at 200℃ to 230℃ for 4 hours to 8 hours. Esteves et al. (2008) 

compared oven treatment (in air) with autoclave treatment (saturated steam) at 190℃ to 

200℃ and demonstrated that the lignin content increased from 24.7% to 33.5% for 24 hours 

with the former treatment and 31.8% for 12 hours with the latter, respectively. In a steam 

atmosphere, lignin shows a hydrolysis reaction, especially for softwood, according to 

Shevchenko et al. (1999), who studied this for fir (Pseudotsuga menziesii) by the NMR 

technique. However, a few researchers (Esteves et al., 2008; Boonstra and Tjeerdsma, 

2006; Tjeerdsma and Militz, 2005) have demonstrated that lignin detection method is 

affected by a condensation reaction, whereby the lignin quantity might not have increased, 

but rather, been condensed. Cross-linking during heat treatment is an important change for 

lignin. Kotilainen et al. (2000), Tjeerdsma and Militz (2005) detected chemical changes by 

FTIR, observing a clear increase in methylene bridges (-CH2-) is the products after lignin 

cross-linking. Similar results were reported by Nuopponen et al. (2005), who explained the 

lignin cross-linking reaction process: ether linkages (β-O-4) breaks to phenolic hydroxyl 

groups, α- and β-carbonyl groups firstly, the bond vacancy re-link to methylene bridge by 

crosslinking.  

However, a few studies have shown that lignin is degraded at the beginning of heat 

treatment. Windeisen et al. (2007) detected lignin and non-hydrolysable residue on beech 

wood after heat treatment from 453k Joule heat to 493k Joules. If wood absorbing 473k 

Joule heat, thioacidolysis products are more than non-hydrolysable residue.  Since lignin 

condensation products are a kind of non-hydrolysable residue, its degradation rate is much 

higher than condensation in this stage. However, when wood absorbs 493k Joule heat, non-

hydrolysable residues increase significantly faster than thioacidolysis products, which 
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indicate that a lignin condensation reaction is the main change in this stage. Similar results 

have been found with GC (Gas chromatography). Hence, lignin degradation and 

condensation happen together during heat treatment, but the degradation mainly happens 

at the beginning, while condensation can occur in any atmosphere under 260℃. 

Extractives evaporate along axial parenchyma cells to the outside during heat treatment, 

according to Nuopponen et al. (2003), who implemented heat treatment on Scots pine from 

100℃ to 240℃. Moreover, it was found that these extractives disappear when heated above 

180℃. This study also indicated that resin acids evaporate from the heart of the samples to 

the edge and disappeared above 200℃. Similar results were reported by Kamdem et al. 

(2000).  

2.2.4 Mass Loss and Colour Change during Heat Treatment 

Temperatures accelerate chemical changes in timber molecules (Bourgois et al., 1989). It 

also causes changes in the density and colour of the timber due to decomposition and 

oxidation, respectively.  

Mass loss during heat treatment leads to a decrease in density, which reduces mechanical 

strength (Reiterer et al., 2002). Esteves and Pereira (2008) reviewed many studies of heat 

treatment and concluded that mass loss generally depends on the tree species, temperature 

and treatment period (Figure 2-18). Zaman et al. (2000) reported that the mass loss of pine 

(Pinus syvestris) at 205℃ and 230℃ treatment for 8 hours is less than for birch (Betula 

pendula). Mburu et al. (2008) observed the mass loss of first hour treatment at 250℃ in 

nitrogen is 15% which is largely higher 30% after 24 hours treatment. Bourgois and 

Guyonnet (1988) reported that the mass loss of maritime pine is 18.5% after 15 minutes 

treatment and reaches 30% after an hour at 260℃. The two results also indicated that mass 

loss in air treatment is higher than in nitrogen. Similar results were reported by Mazela et 
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al. (2003), who obtained more mass loss in air than in water at 160℃ to 220℃ for treatment 

on pine (Pinus syvestris). In timber molecule, hydroxyl groups can be oxidised, and 

hydrogen atom will be taken to form water, which decrease timber molecule weight. Hence, 

oxygen plays an important role in mass loss during timber heat treatment 

 

Figure 2-18 Mass Loss and Treatment Period/Atmosphere (Esteves and Pereira, 2008) 

The colour of timber becomes dark during treatment and this is usually measured by the 

CIELAB system (Figure 2-19) which contain five basic evaluation parameters: L*, a*, b* 

C* and h*.  

• L* is the lightness coordinate, from 0 (black) to 100 (white) 

• a* is the red/green coordinate, from +a* (red) to -a* (green) 

• b* is the yellow/blue coordinate, from +b* (yellow) to -b* (blue) 

• C* is the chroma coordinate, the distance from the lightness axis 

• h* is the hue angle, expressed in degrees, with 0° for +a* axis, 90° for the +b* axis, 

180° for -a* and, 270° for -b*. 
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Figure 2-19 CIELAB System 

Bekhta and Niemz (2003) studied the effect of heat treatment on timber colour on spruce 

wood (Picea abies). they found that lightness (L*) starts to decrease at 100℃ and decreases 

more with the treatment period. The red (a*) and yellow colours (b*) increase at 150℃ 

reaching 12 times and 7 time higher, respectively, than with untreated wood. At 200℃, the 

red (a*) continues increase to 4.4 times higher than for 150℃, but the yellow (b*) shows a 

dramatic decrease. The change of C* is same as for yellow (b*) in that it increases at 150℃ 

but decreases sharply at 200℃. Similar results were reported by Sundqvist et al. (2006), 

who detected colour changes (L*, C* and h*) on birch wood (Betula pubescens Ehrh) after 

hydrothermal treatment at 180℃ for 4 hours. This study demonstrated that the dark colour 

is attributed to hemicellulose degradation, secondary condensation products and/or quinone 

and quinonemethide degradation, which result from the breaking of the α-and β-ether of 

lignin. 

 

In addition, many studies have reported that extractives also have a close relationship with 

colour changes. Burtin et al. (1998) measured the colour of sapwood and heartwood of a 

walnut tree (Juglans nigra, J. regia and hybrid) and compared this with the content of four 

H 

C 
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main extractives (hydrojuglone glucoside, quercitrin and two unknown compounds). 

Chemical reactions of hydrolysis, oxidation and polymerisation on hydrojuglone glucoside 

were the reason given for the colour change. Sundqvist and Morén (2002) also compared 

extracted, un-extracted Scots pine (Pinus sylvestris L.) and birch (Betula pubescens Ehrh.), 

reporting that extractives affect the colour of both natural aged and heat-treated timber. 

Gierlinger et al. (2004) also found high correlation between the red hue (+a*) related to 

phenols extractives and brown rot resistance on 293 trees of various species, with R2=0.84. 

Matsuo et al. (2009) reported that cellulose is also involved in the colour changes of timber 

during heat treatment.  

Matsuo et al. (2010) studied colour changes of heat-treated wood (Chamaecyparis obtuse 

Endl) for 90℃ to 180℃ treatment by chemical kinetic analysis and defined colour changes 

according to the following equation: 

𝛥𝐿∗ = 𝐿∗ − 𝐿0
∗ ; 

𝛥𝑎∗ = 𝑎∗ − 𝑎0
∗ ; 

𝛥𝑏∗ = 𝑏∗ − 𝑏0
∗ 

𝛥𝐸𝑎𝑏
∗ = √𝛥𝐿∗2 + 𝛥𝑎∗2 + 𝛥𝑏∗2 

where, 𝛥𝐸𝑎𝑏
∗  is the total colour change. 

The relationship between colour changes with temperature and treatment period (Figure 

2-20) was discussed in this study to produce an appropriate equation for wood colour 

changing prediction. For  𝛥𝐿∗ and 𝛥𝐸𝑎𝑏
∗ : 

f(x) =
𝛼

1 + 𝛽 exp (−𝛾𝑥)
 



59 

 

where f(x) is the colour parameter, while α, β and γ are constants. For 𝛥𝑎∗ and 𝛥𝑏∗, x is 

the related treatment temperature and reference temperature.   

g(x) = ∑𝑃𝑘𝑥
𝑘

7

𝑘=3

 

where g(x) is the colour properties and 𝑃𝑘 are the coefficients.  

The two equations were examined by coefficients of determination (R2) and showed 0.996, 

0.900, 0.861 and 0.995 for 𝛥𝐿∗, 𝛥𝑎∗ , 𝛥𝑏∗and 𝛥𝐸𝑎𝑏
∗ , respectively, which indicates high 

accuracy for prediction.  

 

Figure 2-20 Colour Changes during Natural Aging and Heat Treatment (Matsuo et al., 2010) 

Matsuo et al. (2011) studied colour changes of natural aged wood 560, 737, 921, 1,215, 

1,470, 1,505, 1,395 and 1,773 years old, finding that the two equations also match natural 

aged wood prediction (Figure 2-21). Hence, colour change is an important evaluation on 

timber ageing 

10(Aging time) (h) 
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Figure 2-21 Timber Colour Regression Model (Matsuo et al., 2011) 

2.2.5 Summary 

The chemical composition of timber is affected by the environment, with oxygen playing 

an important role in changes regarding both its natural ageing and artificial treatment. 

Temperature increases the rate of chemical change and a few changes to timber happen at 

specific temperatures.  

Hemicellulose is affected primarily in any atmosphere. Decomposition including 

deacetylase, dehydration and degradation normally happens in hemicellulose molecules 

even at low temperature, but this is much more dramatic at higher ones. Hydrolysis of 

hemicellulose is also an important cause of change in a water environment.  

Cellulose is one of the most stable components, with no changes during hundred thousand 

years natural ageing or at 250℃ high temperature treatment due to its crystalline structure. 

Uncrystallised cellulose is relatively less stable, but the structure also changes slowly. 

Decomposition and hydrolysis are the main chemical changes in uncrystallised cellulose. 

10(Aging time) (h) 
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However, cellulose cannot resist fungi or insect attack, because polysaccharides (cellulose 

and hemicellulose) are nutrition for these organisms.  

Various chemical changes such as oxidation, condensation, hydrolysis and degradation can 

happen in lignin molecules, depending on the environment. For instance, lignin 

condensation and cross-linking reaction is promoted at 160℃ to 200℃ in an atmosphere 

without oxygen, but when it is present, oxidation reaction inhibits condensation and cross-

linking reaction. In addition, oxygen would appear to play an important role in lignin 

degradation, in that its molecular structure in water is more stable than in air. Moreover, 

the cross-linked and condensed structure of lignin is stable as crystallised cellulose. That 

is, the two structures are non-hydrolysable residues which increase with time during the 

natural ageing process.  

Mass loss due to decomposition products (liquid or gaseous) being released from samples 

increases directly with temperature and treatment period. Hemicellulose, uncrystallised 

cellulose, un-crosslinked/un-condensed lignin and moisture are mainly responsible for the 

mass loss. Colour changes are also owing to chemical changes including hydrolysis, 

oxidation and polymerisation.  

Chemical changes in all three kinds of timber molecules are variant. Figure 2-22, Figure 

2-23 and Figure 2-24 shows many ways of chemical changes for cellulose, hemicellulose 

and lignin. In fact, timber molecules consist of many chemical functional groups and 

chemical changes are based on the activity of these groups. A chemical functional group is 

a specific atom group within molecules, which can involve specific chemical changes. For 

instance, an oxygen bridge (-O-) can have a reaction with water (H-OH) and compose 

hydroxyl (-OH) under specific conditions, which is termed hydrolysis. Conversely, two 

hydroxyl groups in the same or different molecules could form an oxygen bridge and water, 
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which is called condensation. Hence, theoretically, chemical changes in timber molecule 

can be reflected in the changes of chemical functional groups.  

 

Figure 2-22 Hemicellulose Changes During Heat Treatment (Zhou et al., 2016) 

 

Figure 2-23 Oxidation Reaction During Heat Treatment (Liu et al., 2019) 



63 

 

 

Figure 2-24 Hydrolysis Reaction During Heat Treatment (Shevchenko et al., 1999) 

The chemical analysis methods regarding timber molecules were discussed in the first 

section of this chapter. As was explained, classic wet chemical analysis can detect the 

quantity change of the main molecules, especially holocellulose and lignin, but the detailed 

change of the molecular structure cannot be illustrated through this method. The pyrolysis 

method breaks up high weight molecules into many pieces with short chains and deduces 

the original molecular status by analysing these. However, temperature might cause 

unexpected changes to molecular composition, so this method is not sufficiently sensitive 

for detecting low degrees of chemical composition changes. The FTIR technique can reflect 

chemical composition changes by sensitively detecting functional groups of molecules and 

it is quick for investigating large numbers of samples. In addition, this technique is a form 

of non-destructive analysis in that the chemical composition of samples is not affected 

during testing. However, FTIR is not good at quantitative analysis, density change is not 

easy to illustrate so mass loss of samples should be recorded as an assistant analysis.  

Chemical composition changes and their corresponding impact on the peak area of the 

FTIR spectrum will be studied in the first section of chapter 4. 
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2.3 Changes in Timber Mechanical Properties  

In relation to timber as a type of building material, mechanical behaviours are the most 

critical evaluation.  In general, mechanical properties are examined by static or dynamic 

testing. Bending and compression testing are the two main static method for the evaluation 

of the mechanical properties of timber in the radial and longitudinal directions, 

respectively. A bending test involves a three- or four-point test. Brancheriau et al. (2002) 

comparted the two tests in the longitudinal direction, finding a high correlation between 

them. The modulus of elasticity (MOE) of all samples tested by four-point bending was 

1.24 times greater than for the three-point test, with R2=0.99. MOE and modulus of rupture 

(MOR) describe the static mechanical properties. MOE is the resistance ability to bending 

and MOR shows the maximum load on samples. In addition, MOE is also called Young 

modulus.  

A dynamic mechanical test is sensitive to identifying polymer molecule status. However, 

unlike static mechanical tests, which has a long history, it is a new test method for 

investigating timber mechanical properties. Hence, the volume of the literatures regarding 

this technique is significantly smaller than that for static mechanical testing, but there are 

some valuable studies from this new area.  

2.3.1 Static Mechanical Properties of Natural Aged Timber.  

Due to the conservation philosophy, which restricts old timber structures being 

destructively tested and the lack of natural aged timber resource, the literature on 

mechanical properties of old timber is limited. In this part, approximately 30 studies are 

reviewed, with the sample ages ranging from 8 years to 1,800 years in various species for 

different environments. Some of these studies have involved identifying the mechanical 



65 

 

properties of samples by a non-destructive methods, namely ultrasonic testing, the results 

of ultrasonic testing may be different compared to 3-point bending test.   

Two thirds of studies reported that the MOE in the longitudinal direction changes only 

slightly during the first 400 years (Kránitz et al., 2016). For instance, the MOE of the 

samples of fir between 29 and 90 years old (Pseudotsuga menziesii) did not show 

significant changes, when compared to new fir, according to Leichti et al. (2005), who 

studied replaced wood structural members from the Pacific northwest (USA). Ninety two 

375 years old wood samples, including zelkova (Keyaki), cedar (Sugi), cypress (Hinoki) 

and pine (Akamatsu) showed no change or just a slight increase in the MOE compared with 

recent wood (Ooka et al., 2012). However,  a few of the zelkova and pine samples were 

attacked by rot.  Erhardt et al. (1996) studied 300 to 400 year old pine (Pinus sylvestris L.) 

from Norway and reported that even though the xylans are hydrolysed, the MOE did not 

show significant changes. Similar results were reported for the species Cyclobalanopsis 

longinux, Castanopsis carlesii, Litsea acuminate, Cyclobalanopsis gilva, Pasania 

harlandii (Lin et al., 2007), Picea jezoensis, Abies sachalinensis (Horie, 2002) and an 

unidentified one by Fridley et al. (1996) and Nakajima and Murakami (2010).  

However, a few reports have indicated that the MOE increases or decreases significantly 

when compared to new wood. Chini (2001) graded 100 years old pine from a historic timber 

structure and found an increase of 5% to 37% in the MOE. However, Attar-Hassan (1976) 

tested 150 year old white pine and illustrated that the MOE decreased significantly. In this 

study, both mechanical and ultrasonic testing were conducted. The ultrasonic pulse velocity 

increased with the MOE decrease, which violate the principle of ultrasonic. Hence, the 

results of ultrasonic testing may not reflect accurately static mechanical properties. Saito et 

al. (2008b) observed a clear decrease in the MOE of 200-500 year old baulk samples from 

a historic building. However, the researchers also observed an insert attack by Nicobium 
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hirtum, which could have been an essential factor in the MOE decrease. A reasonable 

explanation of MOE changes put forward by Kohara (1955) is that it increased for the first 

100 years and following this decreased.  

The MOR, also called bending strength, likewise changes differently. More than of half 

studies observed slight changes in the MOR such as that of Kránitz (2014) on spruce and 

oak, Leichti et al. (2005) on fir, Lin et al. (2007) on oak and Fridley et al. (1996) on 

unidentified species. According to Noguchi et al. (2012), who tested both the MOR and 

MOE on 115, 270 and 290 year old Akamatsu pine (Pinus densiflora) by ultrasonic testing 

and found that even though the MOE increased with time, the ratio of vibrational 

MOE/vibrational bending strength did not change. Similar results were reported by 

Yokoyama et al. (2009), who investigated 360 year old Hinoki wood (Chamaecyparis 

obtusa). However, one study reported a 17% decrease in the MOR for 115 to 290 years old 

Zelkova serrata and Pinus densiflora (Hirashima, 2005), whilst another found a 15% 

decrease for 85 years old pine (Chini, 2001). 

Compressive strength, tensile strength and shear strength have also been investigated by a 

few studies and the majority of the reports show few mechanical changes (Ooka et al., 

2012; Falk and Green, 1999; Rug and Seemann, 1991; Deppe and Rühl, 1993). In fact, the 

three strength changes are the same as for the MOR.  

The changes in mechanical property of natural aged wood over time vary due to different 

environment and position on structure (Cavalli et al., 2016). Few samples are from old 

structure with the function of loading, MOR of the samples decreased significantly. Crews 

and MacKenzie (2008) tested many structural members and found that the MOR decreased 

by 35% on light loaded structures such as a roof and 50% on long term and high loaded 

structures such as storage room floor. Smith (2012) reported a 20% decrease in MOR on 
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loaded structural samples. Falk et al. (1999) and Nakajima and Murakami (2010) also found 

a 15% MOR decrease for a 100 year old column sample (Pseudotsuga menziesii) and 13% 

for a deconstructed structure. In addition, it was found that sample size affects the results 

of mechanical properties, according to Nicholas et al. (2009), who did not find changes to 

the  MOR of 300 year old spruce (Picea abies) by the size of 27×55×200mm. However, 

MOR increases of 17.3% and 42.1% on 270- and 290-years old samples were observed 

respectively of the size 20×20×320mm (Hirashima, 2005). Finally, decay, including insert 

and fungal attacks reduce the mechanical properties of aged samples (Rammer, 1999; Saito 

et al., 2008b; Saito et al., 2008a).  

To sum up regarding the mechanical changes to natural aged timbers, previous loaded 

structure, storage environment and sample size affect the results significantly. However, 

mechanical properties during the first 400 years changes only slightly.  

2.3.2 Static Mechanical Properties of Heat-Treated Timber 

Bending tests are common and important in mechanical property research, because timber 

is invariably used as bending structural members and the bending is the weakest type of 

loading. MOE (Modulus of elasticity) and MOR (Modulus of rupture) reflect the bending 

strength, with the moduli being affected by temperature and treatment period, according to 

Kim (1998), who studied timber heat treatment on pine (Pinus radiata) at 120℃, 150℃ 

and 180℃ in air. The influence on the maximum load of samples or the MOR is more 

significant than for the MOE during heat treatment (Kim, 1998). A similar result was 

reported by Bekhta and Niemz (2003), who found 44% to 50% reduction in the bending 

strength (MOR), but only 4% to 9% decrease in the MOE during 200℃ treatment of spruce 

wood (Picea abies) between 2 and 24 hours. 
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The treatment atmosphere affects mechanical properties significantly. Mitchell (1988) 

heated loblolly pine with different moisture contents (0%, 12% and green) at 150℃ in air, 

oxygen and nitrogen for 1 to 16 hours. It was elicited that both the MOE and MOR of dry 

samples (0% moisture content) increased significantly compared to green wood, even 

reaching 14 times greater for the MOE after 16 hours of treatment. Both the MOE and 

MOR of the dry samples treated in oxygen were reduced by approximately 20%, but there 

were no significant changes in air and only slight increases in nitrogen. Kubojima et al. 

(1998) treated Sitka spruce (Picea sitchensis Carr.) in nitrogen and air at 120℃ to 200℃ 

for 2 hours to 16 hours and found that Young’s modulus (MOE) increased both in the 

longitudinal and radial direction at the beginning in the temperature 120℃ and 160℃. 

200℃ treatment increased the MOE at the beginning, which was followed by a reduction. 

The MOR was not studied in the experiment. A short period of treatment in any atmosphere 

did not cause changes, according to Kubojima et al. (2000), who compared heat treatment 

in nitrogen on green (60% moisture content) and dry spruce (Picea sitchensis Carr.) at 

160℃ for half an hour. Young’s modulus (MOE) did not show significant changes between 

the green and dry samples.  

In a steam atmosphere, heat treatment on pine (Pinus pinaster) between 190℃ and 210℃ 

for 2 to 12 hours caused a 7% increase in the MOE before 4% mass loss, then following a 

decrease, but MOE decreased constantly on eucalyptus wood (Eucalyptus globulus) 

(Esteves et al., 2007). The bending strength (MOR) of both eucalyptus and pine decreased 

constantly with the treatment period. Varga and van der Zee (2008) also observed a 

decrease in the bending strength and hardness for four hardwoods, Robinia pseudoacacia 

L., Quercus robur L., Intsia bijuga and Hymenolobium petraeum after steam treatment in 

a cylindrical pressure chamber. Inoue et al. (1993) compared dry and steaming treatment 

at 180℃, 200℃ and 220℃ on sugi (Cryptmeria japonica D. Don), reporting a reduction 
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in the MOE of 3.3%, 8.6% and 20%, respectively in steam. In the dry atmosphere, the MOE 

increased slightly during the first 8 hours of treatment at 180℃, whilst following this it 

decreased at 200℃ and did so significantly when heated at 220℃. No significant change 

in the MOR occurred at 180℃ and 200℃ in steam treatment but decreased at 220℃. 

Stream treatment also improved dimensional stability, according to Santos (2000). 

In an inert gas atmosphere, Poncsak et al. (2006) heated samples by a thermogravimetric 

system in nitrogen and carbon dioxide for birch (Betula papyrifera). The MOE showed a 

slight decrease between 150℃ and 200℃ treatment, while the MOR reduced with rising 

temperature by approximately 40% at 200℃. In addition, in this study also a slight increase 

in the MOE was observed with the humidity increasing, whereas there was a huge increase 

in the MOR, which suggests that moisture decreases the MOR significantly at high 

temperatures. Mburu et al. (2008) reported that the MOR reduced by approximately 60% 

and that the reduction of the MOE was approximately 30% for oak (Grevillea robusta) 

after 240℃ treatment in an inert atmosphere. Hence, it is concluded that high temperatures 

(above 200℃) timber strength decreases dramatically in any atmosphere.  

Wood species show different behaviour under the same treatment condition, according to 

Shi et al. (2007), who studied mechanical property changes in Quebec spruce (Pices spp.), 

pine (Pinus spp.), fir (Abies spp.), aspen (Populus spp.) and birch (Betula spp.) by applying 

the ThermoWood method treatment (at 200℃ or higher in a low oxygen atmosphere for 3 

hours). The results show that apart from a 6% rise for birch wood, the MOR decreased by 

49%, 28%, 37% and 35% in the spruce, pine, fir and aspen respectively. Only spruce and 

pine showed a slight reduction in the MOE after treatment. The MOE of fir, aspen and birch 

increases 17%-25%, 15% and 30%, respectively, than untreated wood. Boonstra et al. 

(2007a) treated two pines (Pinus radiata D. and Pinus syvestris L.) and one Norway spruce 

(Picea abies Karst) with a two-step technique involving 30 minutes treatment in water at 
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165℃, and 6 hours treatment in steam or nitrogen at 180℃. The MOR of scots pine and 

Norway spruce reduced 3% and 31%, respectively, the same treatment. Wood density and 

different molecule (cellulose, hemicellulose and lignin) content are responsible for the 

changes after heat treatment.  

The results of compression tests have been reported in many studies. Unsal and Ayrilmis 

(2005) studied compression parallel to the grain of river red gum tree wood (Eucalyptus 

camaldulensis Dehn.) for 120℃ to 180℃ treatment for 2 to 10 hours, eliciting that the 

compression strength (MOR) decreases with treatment period and as temperature rise. 

Similar results were reported for Scots pine (Pinus sylvestris L.) by Korkut et al. (2008), 

who undertook treatment with same method. This study also reported a decrease in bending 

strength, tension strength, hardness, impact bending strength and tension strength.  

Timber is an anisotropic material, which means that the mechanical properties of the three 

directions are different. Boonstra et al. (2007b) found that the compressive strength in the 

longitudinal and tangential directions increases by 28% and 8%, respectively, but decreased 

by 43% in the radial direction with Scots pine (Pinus sylvestris L.) after an industrially-

used-two-stage heat treatment.  

2.3.2 Dynamic Mechanical Properties of Timber 

Dynamic mechanical thermal analysis (DMTA) is a technique based on stress-versus-strain 

or load-versus-deformation curves (Figure 2-25), which connects the mechanical property 

of timber with the molecular structure (Birkinshaw et al., 1986; Wetton et al., 1991). The 

technique involves applying a sinusoidal stress to the sample and then, measuring the strain 

response from it; a phase lag appears between the stress and strain. The stress and strain 

can be evaluated by the following equation.  
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Stress:          𝜎 = 𝜎0  sin(𝑡𝜔 + 𝛿) 

Strain:          𝜀 = 𝜀0  sin(𝑡𝜔) 

where, ω is the frequency of strain oscillation and 𝑡 is time.  

 

Figure 2-25 Theory of DMTA Technique 

Phase lag also represents the viscoelastic behaviour of materials, especially for high weight 

polymer materials. DMTA is based on three modulus for describing the viscoelasticity, 

namely the storage modulus (E'), loss modulus (E'') and phase angle (tan δ), the relationship 

for which is shown in Figure 2-26. The storage modulus is the energy stored in the sample, 

the loss modulus is the energy dissipated to heat or other kinds of energy. E* is complex 

modulus to describe materials viscoelasticity.  

 

Storage modulus:     𝐸′ =
𝜎0

𝜀0
 cos 𝛿 

Loss modulus:  𝐸′′ =
𝜎0

𝜀0
 sin 𝛿 

Phase angle:  𝛿 = 𝑎𝑟𝑐 tan
𝐸′′

𝐸′
 

Complex modulus:     𝐸∗ = 𝐸′ + 𝑖𝐸′′ 
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Figure 2-26 Relationships between Complex Modulus, Storage Modulus and Loss Modulus 

 

Figure 2-27 Tan δ Curve During Temperature Scanning (Havimo, 2009) 

Temperature is an important factor that affects DMTA results (Wetton et al., 1991) and tan 

δ can show the characteristics of the materials. In general, in a temperature scan from -

150℃ to 300℃, the storage modulus decreases constantly due to molecule softening 

(Figure 2-27) (Havimo, 2009). Tan δ shows three peaks in the temperature range and from 

low to high temperature are peak γ, peak β and peak α. Peak α is located between 150℃ 

and 300℃, which is considered as the glass transition temperature and timber molecules, 

become very soft and elastic above this temperature. However, this peak is appeared during 

pulping process of making paper, which is rare in sample of solid timber. Timber samples 

at these temperatures experience dramatic decomposition and are carbonised (Esteves and 

Pereira, 2008). Peak β appears between -10℃ and 100℃, with most studies having shown 

Temperature (℃) 
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that the peak is related to water molecule rearrangement in the timber molecules (Obataya 

et al., 2001; Kelley et al., 1987; Backman and Lindberg, 2001). However, Peak β still 

appear in timber samples with low moisture content after impregnation treatment in 

formaldehyde or polyethylene glycol as followed by Scandola and Ceccorulli (1985) as 

well as in a few organic diluents utilised by Handa et al. (1982). Obataya et al. (2001) 

concluded that Peak β relaxation is not related to the timber molecule main chain but rather, 

can be affected by short molecules, such as water. Peak γ appears at the temperature range 

between -150℃ and -10℃.  According to Obataya et al. (2001), Peak γ relaxation is 

affected by methylol groups (CH2-OH) in the amorphous region of cellulose, hemicellulose 

and lignin molecules, because the peak is absent when other functional groups replace these 

groups. In addition, Peak γ may contain two small peaks with dry samples, according to 

Montes and Cavaillé (1999), who elicited that these two small peaks are affected by the 

methylol groups and hydroxyl groups, respectively. In fact, the three peaks are impacted 

upon by the DMTA testing frequency, testing method (bending or compression) and the 

sample size.  

A DMTA temperature scanning from -150℃ to 300℃ test is about 1 and a half hours for 

each sample. However, higher temperature scan may cause changes of chemical 

composition in the timber molecules, especially above 200℃. Hence, timber samples are 

normally tested from -150℃ to 150℃ owing to much less chemical composition changes 

in the molecules.  

Different species of wood have different behaviours under DMTA. Birkinshaw et al. (1986) 

measured the shear storage modulus and Tan δ on ash (Fraxinus excelsior), Brazilian 

mahogany (Swietenia macrophyla), Iroko (Chlorophora excelsa), Keruing (Dipterocarpus 

spp.), Kingwood (Dalbergia cearensis), Obeche (Triplochiton scleroxylan), Parana pine 

(Araucaria augustifolia), pine (Pinus sylvestris), sapele (Entandophragma cylindricum) 
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and spruce (Picea abies) with temperature scanning from -100℃ to 150℃. Even though 

the storage modulus of all the species decreased with temperature rising, Tan δ showed 

significant variations due to different compositions and densities (Figure 2-28). In general, 

Tan δ has two increasing periods from -100℃ to -50℃ and 50℃ to 150℃. The first 

transition is because of molecular branch chain movement, whilst the second, is due to 

increasing thermo-plasticity of lignin. Sugiyama et al. (1998) studied spruce (Picea 

sitchensis Carr.) with four chemical modifications and reported that tan δ decreased due to 

the formation of oxygen bridges between the hydroxyl groups (condensation reaction, 

normally on lignin). Moreover, lignin becomes soft at around 85℃, according to Atack 

(1981), who studied spruce (Picea mariana) with temperature 20℃ to 140℃ and scanned 

by DMTA.  

 

Figure 2-28 Storage Modulus and Tan δ Curve under Temperature Scanning of Different Species 

(Birkinshaw et al., 1986) 

Dynamic mechanical behaviour is different in the longitudinal, radial and tangential 

directions possibly due to the direction of the cellulose microfibrils (Backman and 
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Lindberg, 2001). Tan δ is the highest in the longitudinal direction, while in the radial 

direction it is slighter higher than in the tangential direction at the same temperature. For 

this study, three peaks (molecule relaxation) appears on tan δ and but the author obtained 

different conclusion to other results. First peak is from -120℃ to -40℃ and is affected by 

water adsorption of the methylol group. Both the second peak and third peak at 0℃ and 

40℃ to 60℃, respectively, reflect the glass transition of hemicellulose.  

Moisture content affects DMTA results. Sun et al. (2007) studied dry yellow-poplar 

(Liriodendron tulipifera) and pine (Pinus spp.) through DMTA and reported that moisture 

content increases from 0% to 1%, which results in a significant storage modulus rise.  

Oxidation is also an important factor affecting tan δ, according to Subramanian and 

Hofmann (1983), who studied oxidised and unoxidised fir by DMTA at 72℃. That is, tan 

δ of the oxidised samples was found to be significantly higher than for the unoxidised one. 

Hence, oxidation may cause molecular decomposition or diminish the length of the 

molecules of timber.  

In terms of research on fungi degradation, Ormondroyd et al. (2017) reported a close 

relationship between storage modulus (E') and gDNA (a technique for detecting fungi 

activity better than mass loss) on scots pine (Pinus sylvestris L.) attacked by brown rot (P. 

placenta), with R2=0.9776. The storage and complex moduli decreased constantly over 17 

days of fungi exposure. However, the change of tan δ is not significant, according to 

McCarthy et al. (1991), who utilised DMTA with a temperature scan on a pine (Pinus 

sylvestris) for 42 days fungi exposure, the result of which indicated that the chemical 

composition structure degrades uniformly.   

DMTA technique is also popular in the study of wood adhesives which provide valuable 

information for the relationship between high weight molecule composition and DMTA. 
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High hydroxyl groups content of adhesives leads to an increase in the storage modulus, 

because of hydrogen bonds and cross-linking (Kim and Kim, 2003). In addition, DMTA 

has also been used for the glass transition temperature and creep response of adhesives to 

define their operating temperature and maximum load (Roseley et al., 2011).  

2.3.3 Summary 

Most naturally aged samples do not show significant changes in static mechanical 

properties (MOE and MOR) for the first 400 years and the changes in older samples are 

not defined due to their scarcity. However, the static mechanical properties of natural aged 

timber are affected by previous loading and decay. In addition, specimens size affects the 

mechanical testing results significantly in that a large one shows fewer changes to the MOE 

and MOR than a small one. Timber static mechanical property changes during heat 

treatment are also affected by the environment. That is, the MOR and MOE increase with 

gentle treatment temperature (approximately 120℃-160℃) in an inert atmosphere and 

decrease dramatically at higher temperatures (above 200℃) in air or oxygen. For the 

literature of all heat treatment, oxidation and decomposition reaction of the molecules lead 

to a decrease in mechanical strength, whereas crystallisation, cross-linking and 

condensation improve mechanical behaviour, in particular, regarding the MOR.  

Tan δ of DMTA is an important measure reflecting the dynamic behaviour of timber, which 

illustrates three relaxation (γ, β and α) transitions of timber in the temperature range from 

-150 to 300. Peak γ, peak β and peak α are affected by motions of methylol groups, motions 

of moisture and lignin glass transition, respectively. Theoretically, from low temperature 

to high, Tan δ is affected by the following order: water molecule (glassy state) → side 

groups and chain ends (glassy state) → side chain (glassy state) → main chain (Glass 

transition temperature) → chain slippage (rubbery state). However, in the range from -
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150℃ to 150℃, timber does not show state changes. Many studies prove that carbonisation 

of timber starts from 212℃. Timber may not show rubbery state but stay in glassy state at 

the temperature between -150℃ to 150℃.  

However, even though DMTA can identify the molecular status of timber, the study on 

timbers is less reported. 

2.4 Conclusions 

Cellulose, hemicellulose and lignin molecules comprise timber cell walls, playing an 

important role in the mechanical behaviour of timber with moisture. Cellulose with 45%-

50% content is a single long chain molecule supporting cell walls, a large part of which is 

arranged into a crystalline structure. The orientation of cellulose is parallel to the cell axis, 

which leads to different mechanical behaviour in three directions. The increase of cellulose 

crystallinity results in an increase in the MOE, which means high resistance to bending. 

Hemicellulose is shorter chains and bind celluloses, so degradation of hemicellulose can 

decrease mechanical strength lignin is full of branch chains that unite all the single 

molecules of the cell wall. Condensation and cross-linking reaction on lignin can expand 

its molecules’ spatial influence and consequently, improve the mechanical properties in 

terms of both the MOE and MOR. However, hydrolysis or degradation can decrease this 

spatial influence, thus impairing the timber mechanical behaviour. Water invades the gap 

between timber molecules and connect hydroxyls on them by hydrogen bonding, such that 

the moisture provides an additional force of attraction force between molecules. However, 

excessive moisture swells timber molecules and leads to lose strength in the cell wall. 

Hence, cellulose, hemicellulose, lignin and water are main molecules affecting timber 

mechanical properties.  



78 

 

Dynamic mechanical thermal analysis results are also affected by molecule status. Due to 

different molecule contents and composition (cellulose, hemicellulose and lignin), each 

species of timber shows distinctive changes on an DMTA scan. Chemical reactions related 

to methylol groups, such as oxidisation, condensation, cross-linking reaction on the 

molecule also affect the DMTA results as with moisture content.  

Some important information for experimental design has been obtained after 

comprehensively reviewing the literature. Firstly, the experiment atmosphere should be 

diverse. For, when all chemical changes in timber molecules, including decomposition, 

hydrolysis, oxidisation, condensation, cross-linking and crystallisation are observed, the 

level of reaction depends on the environment, such as temperature, oxygen content and 

humidity. Secondly, experiments can quickly be conducted in a lab environment. However, 

chemical composition changes of naturally aged wood are extremely slow and, UV as well 

as fungi exposure affect samples more seriously on the surface than inside. Hence, such 

wood is not suitable for chemical change analysis in the lab and instead, heat treatment is 

a suitable method for causing chemical composition changes to whole samples. Aerobic 

and anaerobic environment of heat treatment is easy to create by a few specific facilities in 

a lab. In addition, equilibrium moisture content change and mass loss of timber during heat 

treatment should be recorded to facilitate the analysis of chemical composition changes.  

Since timber molecular weight are high, including more than 5,000 units and changes can 

happen in any part, traditional wet chemical analysis cannot identify these changes, whilst 

pyrolysis analysis destroys the original status of the molecule. Hence, a non-destructive 

detecting method, FTIR, based on changes of molecule chemical functional groups is 

deemed a suitable method for overcoming these issues. However, FTIR technique cannot 

detect sample mass loss, which is caused by decomposition or pyrolysis, so density data 

should be recorded at the same time.  
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Various static moduli, including the MOR and MOE in the different directions of timber 

and dynamic moduli, such as the storage modulus, loss modulus and tan δ can be calculated 

by utilising specific testing facilities. However, all moduli are affected by sample size 

significantly. Hence, timber samples of both static and dynamic mechanical testing should 

be the same size. In addition, sample moisture content and testing temperature also affect 

mechanical testing results, which thus should be recorded before and after any kind of 

mechanical experiment.  
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Chapter 3 Materials and Experiment Plan  

3.1 Materials 

A few pieces of timber construction members have been replaced during a restoration 

project on a historic building, the Hall of Fusheng in Qufu, China (Figure 3-1 upper right). 

One piece of old timber can be used for testing. Its original position was as a girder of a 

veranda (Figure 3-1 upper lift). One part, which does not show any cracks, is cut out for 

the study (Figure 3-1 lower right). Despite the piece of timber being exposed to the air, 

there was not much of a damp problem. The meteorological data of Qufu shows that the 

average temperature is 17℃ with a high of 35℃ in July and low of -6℃ in January, whilst 

average humidity is 38%, a which is relatively dry environment. Hence, the piece of old 

timber had naturally aged in this environment. 

A carbon 14 radiation report indicates that the age of the old timber is 580 ± 30 years 

(Figure 3-2) and a species detection report showed that it belongs to Pinus Densiflora. 

Figure 3-3 shows that the cell wall of the old pine timber is in good condition. Another 

piece of new pine of the same species was found in a forest farm in the northeast of China, 

because historical records revealed that all the timbers of the Hall of Fusheng are from the 

area. Hence, the new and old pine were grown in relatively the same climate condition. 

Moreover, the cell walls of the new specimen are also in good condition (Figure 3-4).  

Even though two pieces of timber are the same species, the density and equilibrium 

moisture content of the new and old timber are significantly different. In the conditioning 

chamber at 20℃ with 65% relative humidity, based on the samples with dimensions of 

2mm×4mm×35mm, density was 0.46 g/cm3 and 0.38 g/cm3 for the old and new samples, 

respectively. The growing environment, timber age and different parts of tree trunk are 

responsible for this difference (Fengel, 1991; Yokoyama et al., 2009).  
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The equilibrium moisture content (EMC) at 20℃ with 65% relative humidity was 10% and 

10.5% on old and new pine, respectively. Hence this had decreased only slightly after 580 

years of natural ageing. However, resin may have affected the EMC results for both the 

new and old samples. The moisture content detecting method was to dry the samples at 

105℃ for approximately 24 hours and measure the weight before and after drying. With 

the size 2mm×4mm×35mm, EMC is 10% and 10.5%, respectively, for the old and new 

pine, whilst for 20mm×20mm×40mm, these figures are 9.36% and 9.9%. Resin is easy to 

evaporate off in a small sample, but this is not so with large one (Figure 3-5), which leads 

to slightly higher values in the former.  

 

  

Figure 3-1 Pine Structure Member after Restoration of the Hall of Fusheng 

Girder 
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Figure 3-2 C14 Radiation of Old Pine 

 

 

  

Figure 3-3 Cells of Old Pine 
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Figure 3-4 Cells of New Pine 

 

 

Figure 3-5 Resin in Small and Big Samples 

The FTIR technique does not require a specific sample size but static and dynamic 

mechanical tests need. Mechanical testing results are affected by sample size (Cavalli et 

al., 2016; Esteves and Pereira, 2008) and annual ring direction (Backman and Lindberg, 

2001). Hence, the samples under DMTA and 3-point bending test were set as 

35mm 
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2mm×4mm×35mm (radial × tangential × longitudinal) with an annual ring vertical to the 

longitudinal direction of the cross section (Figure 3-6). In addition, each sample contained 

earlywood and latewood.  

 

Figure 3-6 Sample Size and Annual Ring Direction in the Experiment  

A compression mechanical test on new pine was considered in the experiment. However, 

2mm×4mm×35mm was too small to fit the test facility, so the sample size for the 

compression test was set at 20mm×20mm×40mm.  

3.2 Experiment Design 

Evidence for the existence of a relationship between timber’s chemical composition and 

mechanical behaviour has been provided in the chapter 2. Mechanical testing results are 

also affected by density and moisture content and hence, these two influencing factors were 

recorded in this experiment: 

• Equilibrium moisture content of samples at 20℃ with 65% relative humidity 

before and after heat-treatment; 

• Mass loss during heat-treatment of dry samples; 

• Chemical composition by FTIR before and after heat-treatment; 

2mm 

35mm 

4mm 

Annual ring  
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• Mechanical properties by a 3-point bending test and DMTA after heat-treatment. 

In the experiment, all the samples started in a conditioning chamber at 20℃ and 65% 

relative humidity for at least two weeks to allow to reach equilibrium moisture content. 

After conditioning, FTIR tests were conducted for chemical composition analysis of all the 

samples, then the weight was measured. The samples were subsequently placed in a dry 

oven at 105℃ for approximately 24 hours until the weight did not change. Equilibrium 

moisture content before heat-treatment was obtained. Heat-treatment was started 

immediately after weight scaling. The sample weights were scaled after heat-treatment to 

calculate the mass loss and then, placed back into the conditioning chamber for 

approximately two weeks for equilibrium moisture content after heat-treatment. FTIR 

ascertained the chemical composition changes after heat treatment. Finally, a 3 point-

bending test and DMTA were carried out. The experimental process applied to the samples 

is shown in Figure 3-7.  

 

Figure 3-7 Experimental Process 
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Temperature treatment is a core process for implementing changes to timber. The 

temperature as set at 120℃, 160℃ and 200℃ for 8, 12, 16, 20 and 24 hours. Two treatment 

atmospheres, air (aerobic atmosphere) and vacuum (anaerobic atmosphere) were created 

using a specialised oven. Hence, there are three temperature levels × five treatment periods 

× two treatment atmospheres, which gives a total of 30 groups, with an additional non-

treated reference group. Each group contained 20 new pine samples for 3-point bending 

testing and six samples for DMTA, so the total sample quantity for the new pine as 806. 

However, due to the limited volume of old pine, 3-point bending test samples were only 

carried out at 120℃ and 200℃ for 8, 16 and 24 hours, but the sample quantity for DMTA 

was not affected, so the total quantity of old pine samples was 458. Table 3-1 shows the 

heat treatment design and sample distribution in the experiment.  

In addition, three supplementary experiments were conducted to investigate: 

• The relationship between moisture content and mechanical properties; 

• The relationship between moisture content and DMTA; 

• The compression mechanical property changes during heat-treatment.  

To examine the first objective, 132 samples were placed in the conditioning chamber with 

20℃ and 65% relative humidity for two weeks and then, dried in an oven at 105℃ for 

approximately 24 hours. Subsequently, the samples were returned to the conditioning 

chamber for a different period to provide different moisture content. The static mechanical 

property was tested immediately by the 3-point bending test, whilst DMTA was undertaken 

for approximately 1-hour from -150℃ to 150℃. Since moisture content would change 

significantly, but the facility could not control humidity, only six dry samples and six 

samples with 10.5% moisture content were tested. The 3-point bending test assesses timber 

strength in the tangential direction, while the compression measures that in the longitudinal 
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direction, with a total of 210 samples, 20mm×20mm×40mm, being processed during the 

heat-treatment. However, due to limited volume, the samples were processed only in the 

treatment at 160℃ and 200℃ both in air and vacuum atmospheres. All these three 

supplementary experiments involved only new timber, due to the aforementioned limited 

volume of the old pine.  

Table 3-1 Sample Quantity and Distribution During Heat Treatment 

 

Period 

(hours) 

Air Vacuum 

120℃ 160℃ 200℃ 120℃ 160℃ 200℃ 

New Pine 

0 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

8 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

12 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

16 
20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 
20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

24 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

20 (Bending) 

6 (DMTA) 

10 (Com.) 

Old Pine 

0 

20 (Bending) 

6 (DMTA) 

8 

20 (Bending) 

6 (DMTA) 
6 (DMTA) 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 
6 (DMTA) 

20 (Bending) 

6 (DMTA) 

12 6 (DMTA) 6 (DMTA) 6 (DMTA) 6 (DMTA) 6 (DMTA) 6 (DMTA) 
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16 

20 (Bending) 

6 (DMTA) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

20 6 (DMTA) 6 (DMTA) 6 (DMTA) 6 (DMTA) 6 (DMTA) 6 (DMTA) 

24 
20 (Bending) 

6 (DMTA) 

6 (DMTA) 
20 (Bending) 

6 (DMTA) 

20 (Bending) 

6 (DMTA) 

6 (DMTA) 
20 (Bending) 

6 (DMTA) 

 

Total 

New: 806 samples with 2mm×4mm×35mm, 210 samples with 20mm×20mm×40mm 

Old: 458 samples with 2mm×4mm×35mm 

3.3 Experiment Process and Facility  

3.3.1 Heat treatment  

 

Figure 3-8 Oven with Vacuum Pump 

Temperature is one way to cause chemical and mechanical changes. Whilst mechanical 

properties can be improved or harmed in a specific environment, both during the natural 

ageing process and heat treatment, the former is not efficient due to its slow occurrence. 

Other methods, such as UV, biological attack or chemical modification, cannot control the 

rate of chemical change in timber. Moreover, the stability of timber molecules, cellulose, 

hemicellulose and lignin varies at different temperature levels and in atmospheres. Hence, 

temperature is the most suitable method to cause changes in this experiment.  
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An oven with a vacuum pump was utilised for the heat-treatment. The temperature was set 

at 120℃ ± 5℃, 160℃ ± 5℃ and 200℃ ± 5℃. The vacuum atmosphere is created by 

switching off the valve and pumping all the air to out, whilst for an air atmosphere, the air 

valve is switched on and the pump is run to increase air flow.  

None of the samples are allowed to touch the oven shelf directly, as this could cause uneven 

temperature distribution. Instead, many U shape supporters are made for sample heat 

treatment. After heat treatment, the samples are moved to a glass desiccator to cool down, 

which prevents moisture having an influence during the cooling down process.    

Another oven at 105℃ was used to dry samples before heat treatment to measure moisture 

content. The FTIR spectra show that the chemical composition during the drying process 

underwent  no changes (Figure 3-9) and the mass loss was less than 0.2% (Table 3-2).  

 

Figure 3-9 FTIR Spectrum before and after the Drying Process of New Pine 
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Table 3-2 Mass Loss During the Drying Process 

 

Weight after first 

conditioning (g) 

Weight after 

drying (g) 

Weight after second 

conditioning (g) 

Moisture 

content 

Mass loss after 

drying (g) 

New 

pine 

0.1051 0.0951 0.105 10.41% 0.0001 

0.1086 0.0985 0.1086 10.25% 0 

0.1128 0.1019 0.112 9.91% 0.0008 

0.1123 0.1012 0.112 10.67% 0.0003 

0.1151 0.1045 0.1146 9.67% 0.0005 

0.1088 0.099 0.1085 9.60% 0.0003 

0.109 0.0984 0.1089 10.67% 0.0001 

0.1122 0.1011 0.112 10.78% 0.0002 

0.1097 0.0997 0.1096 9.93% 0.0001 

0.1084 0.0979 0.1084 10.73% 0 

0.1124 0.1021 0.1122 9.89% 0.0002 

0.105 0.0951 0.1049 10.30% 0.0001 

0.1098 0.0992 0.1095 10.38% 0.0003 

0.1099 0.0994 0.1097 10.36% 0.0002 

0.1059 0.0961 0.1056 9.89% 0.0003 

Mean 10.5% 0.000233 

Old 

pine 

0.1575 0.1433 0.1575 9.91% 0 

0.1475 0.1348 0.1474 9.35% 0.0001 

0.1496 0.1361 0.1496 9.92% 0 

0.1437 0.13 0.1437 10.54% 0 

0.1726 0.1574 0.1725 9.59% 0.0001 

0.1501 0.1358 0.1486 9.43% 0.0015 

0.1616 0.1463 0.1611 10.12% 0.0005 

0.1542 0.1406 0.154 9.53% 0.0002 

0.1404 0.1282 0.1404 9.52% 0 

0.2126 0.1904 0.2086 9.56% 0.004 

0.1372 0.1256 0.1372 9.24% 0 

0.1476 0.1341 0.1471 9.69% 0.0005 

0.1479 0.1346 0.1478 9.81% 0.0001 

0.1343 0.1216 0.1343 10.44% 0 

0.1483 0.135 0.1483 9.85% 0 

0.1651 0.1499 0.1641 9.47% 0.001 

Mean 10.04% 0.0005 
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3.3.1 Chemical Analysis  

Wet chemical analysis can obtain the quantities of timber molecules. However, the method 

is not sensitive to tiny changes in the molecules and moreover, the operation process is 

slow, which makes it cumbersome to investigate large numbers of samples. Hence, ATR-

FTIR is a suitable method with the advantages of quick analysis and easy operation. It 

detects chemical composition changes by detecting the functional groups of timber 

molecules and can show very small changes in a molecule’s functional groups. However, 

ATR-FTIR cannot ascertain the density of timber accurately, so mass loss data should be 

recorded as a reference.  

The chemical composition of samples was obtained by Thermo Scientific FTIR equipment 

(Figure 3-10 left) with a PIKE GladiATR accessary (Figure 3-10 right). The facility was 

placed in a laboratory at 20℃ with 65% humidity.  

FTIR resolution was set as 1 cm-1 and scanned 30 times. For each sample, two smooth 

surfaces were chosen for the test. This is because smooth surface samples lead to clearer 

results to achieve this, all the timber specimens were made with an electric fine saw used 

by an expert.   

   

Figure 3-10 FTIR Facility used in the Experiment  
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3.3.2 Static Mechanical Properties 

The static mechanical properties, namely containing the bending modulus of rupture 

(MOR) and modulus of elasticity (MOE), are the fundamental properties of a building 

material. MOR illustrates the maximum stress that a sample can sustains, whilst MOE 

shows the ability of the a sample to resist to bending.  

The static mechanical properties were measured by a INSTRON 3-point bending 

equipment (Figure 3-11) and the stress-strain curve was recorded using Bluehill software. 

The facility was placed in a laboratory at 20℃ with 65% humidity. The span of the fixture 

was 28.5mm and the speed of pressing was set at 0.025mm/s.  

 

Figure 3-11 3-Point Bending Test Facility 

3.3.3 Dynamic Mechanical Properties  

Dynamic mechanical testing can illustrate molecular status between timber molecules 

during a temperature scanning. More friction between molecules, which leads to a higher 

loss modulus of a sample, is responsible for an increase in Tan δ, whilst expanding or 

extending timber molecules contributes to a low loss modulus and a low value of Tan δ. 
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There are two peaks on the Tan δ curve of temperature scanning, which are affected by 

distinctive molecular components and also reflect the form changes of molecules.  

The DMTA testing involved the facility made by Triton Technologies (Figure 3-12). The 

test was based on a 3-point bending clamp accessory with a temperature scan from -150℃ 

to 150℃ at a frequency of 1 Hz. The -150℃ environment was created by liquid nitrogen 

and then, a heating system controlled the temperature automatically at an increasing rate of 

6℃/min.  

Temperature scanning by DMTA can cause chemical composition changes but if so, there 

are extremely small. The weights of the samples were recorded before and after DMTA 

testing, being then compared with the weight after heat-treatment. The results show that 

the weight after the DMTA test was heavier than that after heat treatment, which indicates 

that only moisture is responsible for the mass change (Table 5-1).   

 

   

Figure 3-12 DMTA Facility 

3.4 Peak Fitting of FTIR 

Chemical composition analysis by the ATR accessory of FTIR is easy and quick. However, 

whilst high pressure of clamp improves the absorption of near infrared light (≤1200 
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wavenumber), it decreases the absorption of far infrared light (≥3000 wavenumber), which 

leads to the baseline of the spectrum tilting to a high frequency wavenumber (Spragg, 

2011). A similar result was observed by Lu et al. (2017). Hence, the raw FTIR spectrum 

should be processed with baseline corrections. The FTIR spectrum testing range is from 

600 cm-1 to 4,000 cm-1, but the essential peaks for analysing timber are from 800 cm-1 to 

1800 cm-1. Hence, to ensure the accuracy of baseline corrections, this range is the area 

focused on to be corrected. Baseline correction was calculated in Origin Pro software. 

According to FTIR spectrum literature reviews, the FTIR technique is adept in qualitative 

analysis rather than showing the quantity change of chemical functional groups. The 

relative content of functional groups is more important and thus, all the spectrums were 

normalised as min-max from 0 to 100. Figure 3-13 shows FTIR spectrum before and after 

baseline correction as well as normalisation.  

 

Figure 3-13 FTIR Spectrum before and after Pre-Processing 

In fact, the FTIR spectrum is the result of peak superposition. According to Bradley (2007), 

the peak shape of solid samples is a gaussian curve, and timber is one of these. The peak 
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fitting process can distinguish the size of each peak and was conducted by Origin Pro 

software. Apart from peaks at 3,336 and 2,938-2,882, 17 peaks were found and fitted by 

the software. Figure 3-14 shows the peak fitting of non-treated new pine. The coefficient 

of determination (COD) of fitting was between 0.998 and 0.999, which indicated high 

correlations between the real FTIR spectrum and the predicted fitting. All 19 peak 

wavenumbers and the corresponding compound are shown in Table 3-3.  

 

Figure 3-14 Peak Fitting of the FTIR Spectrum of Non-treated New Pine 

Table 3-3 FTIR Peak Wavenumber and the Corresponding Chemical Functional Groups 

No. wavenumber Compound 

1 3336 O-H Stretch (Kondo, 1997) 

2 

2938 

2882 

CH- stretch in methyl- and methylene groups 

CH- Stretch in methyl- and methylene groups (Kotilainen et al., 2000) 

- 

2103 

1990 

Absorption caused by the ATR crystal 

Absorption caused by the ATR crystal 

3 1730 

C=O stretching in unconjugated ketone, carbonyl, aliphatic and ester groups 

(frequently of carbohydrate origin) (Harrington et al., 1964; Barker and Owen, 1999; 

Chow, 1971) 
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4 1642 

-OH bending, affected by water absorption (Marchessault, 1962; Fengel and 

Wegener, 1984) 

5 1595 C=C stretching; COO- stretching (Faix, 1991; Harrington et al., 1964) 

6 1507 Aromatic skeletal vibration  (Faix, 1991; Harrington et al., 1964; Marchessault, 1962) 

7 1456 

C-H deformation stretching in CH2 and CH3, aromatic skeletal vibrations (Kotilainen 

et al., 2000; Harrington et al., 1964) 

8 1421 
O-H in aromatic skeletal; C-H deformation stretching in CH2 and CH3 (Harrington et 

al., 1964) 

9 1366 C–H bending (Liang and Marchessault, 1959) 

10 1335 

phenol group, -OH bond to aromatic hydrocarbon group (Sarkanen and Ludwig, 

1971; Marchessault and Liang, 1962) 

11 1318 

Condensation of guaiacyl unit and syringyl unit, syringyl unit and CH2 bending 

stretching (Evans et al., 1992; Kotilainen et al., 2000) 

12 1262 C–O stretching (lignin) (Harrington et al., 1964; Marchessault, 1962) 

13 1226 C–C, C–O–C (lignin) (Faix, 1991) 

14 1204 C–O-C or O-H in -plane bending (Parker, 1983) 

15 1154 bridge C–O–C stretching (Müller et al., 2009; Marchessault, 1962) 

16 1110 C-OH stretching (Müller et al., 2009; Higgins et al., 1961) 

17 1054 C–C, C–O stretching (Müller et al., 2009; Higgins et al., 1961) 

18 1025 
C–H in-plane deformation, C-O stretching  (Kotilainen et al., 2000; Higgins et al., 

1961) 

19 895 Aromatic vibration at β-glycosidic linkage (Müller et al., 2009; Evans et al., 1992) 
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Chapter 4 Chemical Composition Changes during Heat Treatment 
 

The chemical composition changes during heat treatment are various. In fact, pure 

cellulose, hemicellulose and lignin behaviour at different temperatures from low to 500℃ 

have been discussed in detail by many studies (Yang et al., 2007; Zhou et al., 2016; 

Kawamoto et al., 2007). Timber mechanical properties are affected by molecule chain 

length, matrix and quantity (Landel and Nielsen, 1993; Tobolsky and Eyring, 1943). This 

chapter only discusses the chemical composition change affecting molecular shape.   

The chemical composition of timber is reflected in the FTIR peak area in this research. The 

first section of this chapter considers chemical reaction according to chemical functional 

groups change and its corresponding peaks on the FTIR spectrum. The chemical 

composition difference between new and old pine can be obtained by FTIR and the 

chemical changes during natural ageing are discussed in the second section. Moisture 

content and mass loss, which could be treated as the change of the hydroxyl group and 

molecular total quantity, respectively, are studied in sections 3 and 4. Chemical 

composition changes during heat treatment at different temperatures and in different 

treatment atmospheres for the new and old timber are discussed in section 5 and section 6, 

respectively. Peak correlation of the FTIR spectrum study is conducted to illustrate 

relationships of peak variance in section 7, whilst a comprehensive discussion is provided 

in the final section (section 8).  

4.1 Mechanism of Chemical Composition Changes of the Timber Molecule 

Many studies have shown that cellulose is very stable in heat treatment under 200℃ for at 

least 24 hours. Hence, the chemical composition changes of hemicellulose and lignin are 
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mainly responsible for peak area changes of the FTIR spectrum. All chemical reactions 

relating to chain length or the matrix are covered in this section.  

Hemicellulose pyrolysis  

Hemicellulose is unstable even at room temperature and temperature can accelerate the rate 

of the change. In many studies, acetic acid release at the beginning of hemicellulose 

pyrolysis have been observed (Sivonen et al., 2002; Weiland and Guyonnet, 2003; 

Tjeerdsma et al., 1998). In fact, acetic acid is due to deacetylase reaction on hemicellulose, 

which is a process that acetyl groups detach hemicellulose main chain, so deacetylase 

reaction could be treated as the first stage of hemicellulose pyrolysis. Acetyl groups detach 

from the hemicellulose chain due to the breaking of C-O bond of the ether linkage (C-O-

C). A hydrogen atom in the phenyl group near the acetyl group is attracted and forms acetic 

acid, which evaporates to the outside. The two chemical bond vacancies, which are the 

previous places of acetyl groups and hydrogen bond, respectively, link together to form 

alkene linkage (C=C) (Figure 4-1) (Zhou et al., 2016).  

 

Figure 4-1 Mechanism of Hemicellulose Deacetylase 

The deacetylase of hemicellulose does not change the chain length, but with rising 

temperature and an increasing treatment period, hemicellulose decomposes into many 

shorter chains. The reaction is violent and variant. A few shorter chain molecules are liquids 

or gas released out of the sample, which leads to a chemical functional groups decrease. 

However, hemicellulose pyrolysis products are rich in carbonyl (C=O) and the alkene 

df 



101 

 

group (C=C), which contribute to an increase on the FTIR spectrum (Figure 4-2) 

(Patwardhan et al., 2011).  

 

Figure 4-2 Mechanism of Hemicellulose Pyrolysis 

Lignin condensation and cross-linking 

Condensation and cross-linking are common chemical reactions leading to extending and 

expanding of lignin molecule chains. There are two kinds of condensation, both happening 

based on the change of ether linkage (C-O-C). In the first kind of condensation, ether 

linkages (C-O-C) near the phenolic ring break and one hydrogen atom of this ring is 

attracted by the gap. A chemical bond vacancy appears on the phenolic ring. Two phenolic 

ring can relink directly by C-C bond or by a methylene bridge (-CH-) (Figure 4-3) 

(Hemmilä et al., 2017). This reaction is termed condensation I in this research. The other 

kind of lignin condensation happens between two hydroxyl groups.  Two hydroxyl groups 

can condense to ether bridge (C-O-C) and water (Figure 4-4) (Liu et al., 2019). This 

reaction is named condensation II. The two hydroxyl groups can be in the same or different 

lignin molecular chains and this reaction can also be considered as dehydration. 
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A lignin cross-linking reaction happens on a single chain of lignin containing an O=C-

C=C- fragment (Figure 4-5). The bond of the alkene group (-C=C-) and carbonyl group (-

C=O-) break to -C-C- and -C-O-, respectively, under a specific treatment. Then two or 

more single chains re-link to a matrix structure at the breaking position.  

 

 

Figure 4-3 Mechanism of Lignin Condensation I 

 

 

Figure 4-4 Mechanism of Lignin Condensation II 

Methylene Bridge  

Lignin 
Lignin 
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Figure 4-5 Mechanism of Lignin Cross-Linking 

Lignin–carbohydrate complexes 

Condensation can also happen between lignin and hemicellulose, forming lignin–

carbohydrate complexes (Figure 4-6) (Imamura et al., 1994). The mechanism of the 

reaction is same as with lignin condensation II, where two hydroxyl groups condense to 

ether linkage, which links lignin and hemicellulose molecules. In addition, lignin can also 

condense with a pyrolysis product of hemicellulose, namely furfural, but a reaction that 

normally happens with lignin condensation I. An aromatic ring of furfural attaches to 

condensed lignin by a methylene bridge. A hydrogen atom and the -CHO group detach 

from the furfural and lignin, respectively, forming formaldehyde gas, which is released out 

of  the sample (Figure 4-7) (Hemmilä et al., 2017).  

 

 

3× 
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Figure 4-6 Mechanism of Lignin-Carbohydrate Complexes formation 

 

 

Figure 4-7 Mechanism of Lignin-Furfural Complexes formation 

Lignin pyrolysis and dehydration 

The lignin molecule is much more stable than hemicellulose, but a few chemical bonds can 

be modified at high temperatures (Kawamoto et al., 2007). Generally, chemical changes 

happen based on the fragment of HO-C-C-C-OH and the middle carbon atom bond to 

phenyl by β-O-4 linkage (a kind of ether linkage) or directly.   

Hemicellulose 

Lignin 

Ether Linkage 

Lignin 

Furfural 

+ CH2O 

+ CH2O 
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β-O-4 linkage detaches the fragment from the middle carbon atom at high temperature, 

which leads to the lignin chain breaking into two pieces. The breaking end of the two pieces 

form a hydroxyl group (-OH) and alkene group (C=C), respectively, (Figure 4-8 upside). 

In addition, phenyl can break up the fragment, forming a hydroxyl group (-OH) and alkene 

group (C=C) on the two breaking ends (Figure 4-9 upside). 

Two hydroxyl groups of the fragment may condense to the alkene group (Figure 4-8 

downside and Figure 4-9 downside), which is known as a dehydration reaction. After 

dehydration, the alkene group on the single lignin chain provides a suitable part for lignin 

cross-linking. The dehydration reaction of lignin contributes to an increase in the alkene 

group and a decrease in the hydroxyl one.  

 

Figure 4-8 Mechanism of Lignin Pyrolysis I 

Lignin 

+ CH3-OH 
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Figure 4-9 Mechanism of Lignin Pyrolysis II 

Oxidation 

Hydroxyl groups of hemicellulose or lignin can be oxidised from the C-OH group to the 

C=O group and water (Figure 4-10) (Kärkäs et al., 2016). Oxidation leads to an increase in 

the carbonyl group and a reduction in the hydroxyl group.  

 

Figure 4-10 Mechanism of Hydroxyl Group Oxidation 

Hydrolysis 

Heat treatment process is run immediately after drying and theoretically, there is no 

moisture content at the beginning of it. However, water can be formed during lignin 

condensation II, lignin-hemicellulose condensation and dehydration on lignin or 

hemicellulose reaction. The new water could cause the hydrolysis of an ether group (C-O-

C) (Figure 4-11). In fact, condensation and hydrolysis is considered as being reversible 

reactions.  

Lignin 
+ CH3-OH 
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Figure 4-11 Mechanism of hydrolysis 

To sum up all the chemical reactions, the changes during heat treatment could be 

distinguished by functional groups. However, their changes are complex in that a few 

groups increase with one chemical change but decrease with another (Table 4-1). Hence, 

FTIR composition analysis should be incorporated with mass loss change, equilibrium 

moisture content change and the treatment environment.  

Table 4-1 Chemical Functional Group Changes and the Corresponding FTIR 

Chemical Reaction Location Name 

Functional 

groups 

Content 

Change 

FTIR Peak 

Deacetylase Hemicellulose 

Carbonyl 

Alkene 

C=O 

C=C 

↓ Peak 1730 

↑ Peak 1595 

Hemicellulose Pyrolysis Hemicellulose 

Carbonyl 

Alkene 

 

C=O 

C=C  

Others 

↑ Peak 1730 

↑ Peak 1595 

↓ Peak 1226 to 1507 

Condensation I Lignin 
Ether 

- 

C-O-C 

C-C 

↓ Peak 1154 

↑ Peak 1054 

Condensation II Lignin 
Ether 

Hydroxyl 

C-O-C 

-OH 

↑ Peak 1154 

↓ Peak 3336 

Cross-linking Lignin 

Alkene 

- 

Carbonyl 

C=C 

C-C 

C=O 

↓ Peak 1595 

↑ Peak 1054 

↓ Peak 1730 

Lignin–carbohydrate 

complexes 

Lignin 

Hemicellulose 

Hydroxyl 

Ether 

-OH 

C-O-C 

↓ Peak 3336 

↑ Peak 1154 

Lignin Carbonyl C=O ↓ Peak 1730 

+ H2O 
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Lignin-Furfural 

Complexes 

Furfural Methylene 

- 

C-H 

C-C 

↑ Peak 2938 

↑ Peak 1054 

Lignin Pyrolysis Lignin 

Hydroxyl 

Alkene 

- 

Ether 

-OH 

C=C 

C-C 

C-O-C 

↓ Peak 3336 and 1110 

↑ Peak 1595 

↓ Peak 1054 

↓ Peak 1154 

Lignin dehydration Lignin 

Hydroxyl  

Alkene 

- 

-OH 

C=C 

C-H 

↓ Peak 3336 and 1110 

↑ Peak 1595 

↓ Peak 1025 

Oxidation 

Lignin 

Hemicellulose 

Hydroxyl 

Ketone 

-OH 

C=O 

↓ Peak 3336 

↑ Peak 1730 

Hydrolysis Hemicellulose 
Hydroxyl 

Ether 

-OH 

C-O-C 

↑ Peak 3336 

↓ Peak 1154 

 

4.2 Chemical Composition Change of the Natural Ageing Process 

The FTIR spectra illustrate a few differences in functional groups between new and old 

pine, which indicates that chemical changes happen during the natural ageing process. As 

discussed in chapter 3.1, chemical composition changes of ageing are affected by the 

environment, the environment is introduced. 

On the FTIR spectrum (Figure 4-12 and Table 4-2), the increase in ether linkage (C-O-C, 

Peak 1154) and the decrease in hydroxyl groups (-OH, peak 1110) of 580 year old pine 

illustrate condensation between the hydroxyl groups. Lignin condensation II (Figure 4-4) 

or lignin-carbohydrate complexes (Figure 4-6) cause the change. A decrease in the 

hydroxyl groups also leads to a fall in the moisture content. Lignin cross-linking might 

happen during the natural ageing process due to a slight decrease in the C-H bond (Peak 

1421 and Peak 1456) and slight increase in the carbonyl (C=O, Peak 1730) and alkene 

groups (C=C, Peak 1595). Hence, condensation and lignin cross-linking happen, which 

extends and/or expands molecule chains of old pine timber.  
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Hemicellulose is decomposed after a long period of natural ageing due to the decrease in 

all the peak relating to its functional groups, namely Peak 1054 and Peaks from 1226 to 

1507 (Table 4-2). The carbonyl group (C=O, Peak 1730) and alkene group (C=C, Peak 

1595) increase significantly in the FTIR spectrum of old pine. These peak changes indicate 

a few complex chemical reactions during natural ageing. Firstly, decomposition of 

hemicellulose leads to more decomposition products, which contain abundant carbonyl and 

alkene groups (Figure 4-2). Hemicellulose experiences a joint condensation and 

decomposition reaction during natural ageing. Secondly, the deacetylase of hemicellulose 

(Figure 4-1) and dehydration of lignin(below of Figure 4-8 and Figure 4-9)  are responsible 

for the increase in the alkene group (C=C). Finally, the decrease in the hydroxyl groups 

could be also due to as oxidation reaction which is attributed to an increase of the carbonyl 

group (C=O) (Figure 4-10).  

Ether linkage, the carbonyl group and the alkene group increase in the process of natural 

ageing, which indicates that these three functional groups are the most stable groups in 

timber.  

 

Figure 4-12 FTIR Spectrum of Non-Treated New and Old Pine 
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Table 4-2 FTIR Peak area of New and Old Pine without Treatment 

 
Peak 1054 Peak 1110 Peak 1154 Peak 1204 Peak 1226 Peak 1262 Peak 1318 

new 146 1052 610 116 432 895 494 

old 85 905 634 82 385 813 450 

 Peak 1335 Peak 1366 Peak 1421 Peak 1456 Peak 1507 Peak 1595 Peak 1730 

new 92 650 568 425 288 355 480 

old 75 723 559 389 275 408 534 

 

4.3 Equilibrium Moisture Content Change During Heat Treatment 

The ability of timber to absorb moisture is based on the hydrogen bonds between its timber 

molecules and moisture. The equilibrium moisture content (EMC) can illustrate the 

moisture composition of the timber molecule indirectly.  

4.3.1 EMC Changes of New and Old pine 

The EMC of new pine and old pine at 20℃ with 65% humidity is 10.5% and 10%, 

respectively. Boonstra and Tjeerdsma (2006) and Esteves et al. (2008) reported that  lignin 

cross-linking and condensation contribute to the decrease in the EMC. On the FTIR 

spectrum, decomposition, condensation, cross-linking and oxidation reactions on old pine 

can be observed (Figure 4-12), with all the reactions being based on the activity of hydroxyl 

group. Hence, hydroxyl groups or hydrogen atoms are responsible for the EMC. Similar 

results were reported by Jämsä and Viitaniemi (2001).  

Figure 4-13, Table 4-3 and Figure 4-14 shows the EMC changes after heat treatment in 

different atmospheres. The EMC of new pine at 120℃ changes slightly at 10.5% after 24 

hours heat treatment. However, it is reduced significantly with temperature rising and 

oxygen content. In the treatment at 200℃, EMC reduce to 5.3% and 6% in air and vacuum 

respectively. At 160℃ treatment, after 24 hours, the EMC drops to 8.2% and 8.5% in air 
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and vacuum, respectively. The EMC of old samples during heat treatment have same trends 

as with the new (Figure 4-15, Table 4-4 and Figure 4-16).  

Chemically, Jämsä and Viitaniemi (2001) reported that EMC is affected by hydroxyl 

groups on the molecule due to hydrogen bonding with water. However, whilst the FTIR 

spectrum of the treatment at 120℃ of the new (Figure 4-23 and Figure 4-29) and old pine 

(Figure 4-36 and Figure 4-40) clearly show a hydroxyl group decrease due to condensation, 

the moisture content is less affected. Hence, the hydroxyl group is not the only functional 

group affecting EMC. Any functional groups containing hydrogen atoms may also bond 

with water by hydrogen bonding, where the reduction of the EMC will be due to a hydrogen 

atom decrease. 

 

Figure 4-13 Equilibrium Moisture Content Change of New Pine during Heat-Treatment 
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Table 4-3 EMC Change and Standard Deviation of New Pine during Heat-Treatment 

Treatment Period 
 Treatment in Vacuum Treatment in Air 

Temperature 120℃ 160℃ 200℃ 120℃ 160℃ 200℃ 

0 
EMC 10.50% 

Standard Deviation 0.33% 

8 
EMC 10.44% 10.27% 7.51% 10.11% 9.84% 8.17% 

Standard Deviation 0.37% 0.40% 0.45% 0.35% 0.34% 0.36% 

12 
EMC 10.10% 8.72% 6.10% 10.10% 8.57% 6.22% 

Standard Deviation 0.36% 0.37% 0.53% 0.33% 0.37% 0.14% 

16 
EMC 10.28% 8.56% 5.97% 10.01% 8.29% 5.30% 

Standard Deviation 0.67% 0.40% 0.27% 0.37% 0.33% 0.21% 

20 
EMC 10.60% 8.48% 6.12% 10.12% 8.30% 5.38% 

Standard Deviation 0.33% 0.36% 0.42% 0.34% 0.32% 0.26% 

24 
EMC 10.16% 8.48% 6.20% 10.38% 8.38% 5.61% 

Standard Deviation 0.41% 0.43% 0.51% 0.49% 0.34% 0.27% 

 

   

 

Figure 4-14 Equilibrium Moisture Content Variation of New Pine during Heat-Treatment 
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Figure 4-15 Equilibrium Moisture Content Change of Old Pine during Heat-Treatment 

Table 4-4 EMC Change and Standard Deviation of Old Pine during Heat-Treatment 

Treatment Period 
 Treatment in Vacuum Treatment in Air 

Temperature 120℃ 160℃ 200℃ 120℃ 160℃ 200℃ 

0 
EMC 10.00% 

Standard Deviation 0.33% 

8 
EMC 9.90% 8.73% 7.37% 9.86% 9.30% 6.77% 

Standard Deviation 0.26% 0.12% 0.65% 0.33% 0.24% 0.36% 

12 
EMC 9.80% 8.15% 6.50% 9.68% 8.30% 6.00% 

Standard Deviation 0.26% 0.42% 0.27% 0.20% 0.24% 0.21% 

16 
EMC 9.85% 8.13% 6.25% 9.69% 8.20% 5.80% 

Standard Deviation 0.49% 0.26% 0.26% 0.37% 0.39% 0.14% 

20 
EMC 10.10% 8.27% 6.20% 9.67% 8.40% 5.82% 

Standard Deviation 0.51% 0.25% 1.42% 0.72% 0.60% 0.06% 

24 
EMC 9.98% 8.19% 6.27% 9.68% 8.34% 5.49% 

Standard Deviation 0.26% 0.46% 0.33% 0.13% 0.34% 0.22% 
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Figure 4-16 Equilibrium Moisture Content Error of Old Pine during Heat-Treatment 

4.3.2 Moisture Content Related to FTIR  

Marchessault (1962) and Fengel and Wegener (1984) indicated that Peak 1642 is affected 

by water absorption, thus having a high relationship with moisture content. Figure 4-17 

shows the relationship between the size of Peak 1642 and moisture content of both new 

and old pine during heat treatment. The moisture content (MC) can be calculated by the 

size of peak 1642 on the FTIR spectrum, and the curve is fitted by Origin with COD (R2) 

= 0.8: 

𝑀𝐶 = (6.69494𝐸 − 10) ×𝑊𝑣1642
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 Where, Wv1642 is peak area of 1642.  

The MC is measured at 20℃ with 65% humidity and different values in these different 

results for the EMC. Hence, the mathematic model has more potential for predicting 

moisture content than oven drying method by FTIR spectrum.  

 

Figure 4-17 Relationship between Peak 1642 Area and Moisture Content 

4.4 Mass Loss of New and Old Timber During Heat Treatment 

Bourgois and Guyonnet (1988) and Tjeerdsma et al. (1998) demonstrated that 

hemicellulose pyrolysis is responsible for mass loss, because few pyrolysis products are 

gas or liquid, which release out of the sample. On the FTIR spectrum, the peaks from 1226 

to 1507 are related to hemicellulose and a decrease in the indicates hemicellulose pyrolysis.  

The mass loss of new pine during heat treatment in air is higher than it is in a vacuum 

atmosphere and increases with temperature and treatment period (Figure 4-18, Table 4-5 

and Figure 4-19). It reaches the highest loss at approximately 14.5% after 24 hours 
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treatment at 200℃ in air, whereas this only approximately 8% in a vacuum. For 160℃ and 

120℃ treatment, mass loss both in air and a vacuum are between 2% to 4%, with the loss 

in the former being slightly higher. In the treatment in air, the hydroxyl group (C-OH) is 

oxidised to the carbonyl one (C=O) (Figure 4-10). One hydrogen atom is attracted by 

oxygen to form a water molecule and hence, the oxidation reaction leads to more mass loss.  

In addition, oxygen promotes hemicellulose pyrolysis by a series of chemical changes.  

For old pine, the mass decreases with temperature and oxygen content (Figure 4-20, Table 

4-6 and Figure 4-21), which is the same as with new pine. Moreover, the mass loss is less 

than for new timber at 120℃, but more at 200℃ treatment. the highest and lowest mass 

loss of 19% and 1.42% happen at 200℃ treatment in air and 120℃ treatment in a vacuum 

after 24 hours, respectively. The chemical composition of old timber molecules resists 

pyrolysis at 120℃ due to hemicellulose linked to lignin by forming lignin-carbohydrate 

complexes during the natural ageing process (Figure 4-6) (Watanabe et al., 1989). 

However, hemicellulose cannot resist the energy at 200℃ treatment and so, is largely 

pyrolysed (Figure 4-2). Part of lignin may also be pyrolysed with the decomposition of 

lignin-carbohydrate complexes (Figure 4-8 and Figure 4-9). In addition, mass loss in air 

and vacuum atmosphere is nearly the same for 120℃ and 160℃ treatments, which 

indicates that oxygen plays less of a role in the mass loss of old pine under the latter. Timber 

molecules of old pine have been oxidised during the 580 years ageing process.  
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Figure 4-18 Mass Loss of New Pine During Heat Treatment 

Table 4-5 Mass Loss and Standard Deviation of New Pine During Heat Treatment 

Treatment Period 
 Treatment in Vacuum Treatment in Air 

Temperature 120℃ 160℃ 200℃ 120℃ 160℃ 200℃ 

0 
Mass Loss 0 

Standard Deviation 0 

8 
Mass Loss 1.02% 1.02% 4.56% 1.09% 1.53% 6.33% 

Standard Deviation 0.08% 0.40% 1.04% 0.16% 0.14% 0.96% 

12 
Mass Loss 1.46% 2.37% 4.64% 1.36% 2.00% 10.63% 

Standard Deviation 0.14% 0.12% 1.13% 0.12% 0.09% 1.29% 

16 
Mass Loss 1.76% 2.45% 5.71% 1.97% 2.50% 11.86% 

Standard Deviation 0.18% 0.14% 0.49% 0.08% 0.20% 0.73% 

20 
Mass Loss 2.01% 2.64% 6.76% 2.09% 2.69% 12.85% 

Standard Deviation 0.17% 0.12% 0.79% 0.36% 0.17% 1.35% 

24 
Mass Loss 2.11% 2.98% 8.05% 2.34% 3.21% 14.52% 

Standard Deviation 0.15% 0.09% 0.72% 0.24% 0.20% 1.62% 
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Figure 4-19 Mass Loss Variation of New Pine During Heat Treatment 
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Figure 4-20 Mass Loss of Old Pine During Heat Treatment 

Table 4-6 Mass Loss and Standard Deviation of Old Pine During Heat Treatment 

Treatment Period 
 Treatment in Vacuum Treatment in Air 

Temperature 120℃ 160℃ 200℃ 120℃ 160℃ 200℃ 

0 
Mass Loss 0 

Standard Deviation 0 

8 
Mass Loss 0.66% 2.03% 7.00% 0.76% 1.78% 8.05% 

Standard Deviation 0.17% 0.95% 4.99% 0.18% 0.16% 3.88% 

12 
Mass Loss 0.72% 2.52% 9.80% 0.92% 2.50% 11.00% 

Standard Deviation 0.24% 0.69% 3.62% 0.42% 0.58% 1.75% 

16 
Mass Loss 0.98% 3.52% 12.00% 1.20% 3.70% 14.36% 

Standard Deviation 0.31% 2.15% 2.87% 0.23% 0.22% 1.12% 

20 
Mass Loss 1.32% 4.00% 14.00% 1.38% 4.79% 17.00% 

Standard Deviation 0.30% 0.33% 1.55% 0.77% 3.19% 1.73% 

24 
Mass Loss 1.42% 4.72% 16.00% 1.65% 5.00% 19.23% 

Standard Deviation 0.18% 2.16% 0.73% 0.79% 1.04% 2.03% 
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Figure 4-21 Mass Loss Variation of Old Pine During Heat Treatment 
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4.5 New Timber Chemical Composition Changes During Heat Treatment 

New timber can be treated as a no chemical changes sample. Different temperature levels 

and oxygen content atmospheres can cause distinctive changes in the timber molecule, 

which provide a meaningful database for the timber natural ageing or accelerated ageing 

process.  

4.5.1 New Samples in Vacuum Treatment 

Figure 4-22 and Figure 4-23 shows FTIR spectrum changes of new timber at 120℃ in 

vacuum treatment and each peak area change.  

In the first 12 hours of treatment, there is an increase in the alkene group (C=C, Peak 1595) 

and a decrease in the carbonyl group (C=O, Peak 1730), which indicates deacetylase 

reactions on hemicellulose (Figure 4-1). Deacetylase is the first stage of hemicellulose 

pyrolysis to form acetic acid (CH3COOH), which is released out of the sample. Decreases 

in Peak 1226, Peak 1262, Peak 1456, and Peak 1595 related to C-C, C-O, C-H, and COO- 

functional groups, respectively, also demonstrate that deacetylase reaction happens. The 

alkene group increase may also be due to dehydration of lignin (Figure 4-8 and Figure 4-9). 

After 12 hours, the alkene group decreases along with the carbonyl group, which indicates 

that lignin is cross-linked during the treatment. The carbonyl (C=O) group rises again after 

16 hours of treatment, which is due to slight pyrolysis in hemicellulose. Hence, the 

deacetylase reaction rate is slow in the 120℃ treatment in a vacuum, but lignin cross-

linking reaction is higher at least in the first 16 hours of treatment. Deacetylase and 

pyrolysis of hemicellulose contribute to 2% mass loss after 24 hours treatment.  

Peak 1154 relates to an ether linkage (C-O-C) increase and Peak 110 to a significant 

decrease in the hydroxyl group, which indicates that this group condenses to ether linkage. 

Two kinds of chemical reaction are responsible for the change. Firstly, hydroxyl groups on 
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the lignin chain condensed as condensation II (Figure 4-4). Another explanation is that 

lignin and hemicellulose condensed to lignin–carbohydrate complexes (Figure 4-6). The 

condensation reaction extends and/or expands molecule chains and thus, enhances the 

stability of timber molecules.  

Peak 1318 corresponding to lignin aromatic ring condensation increases, which indicates 

that lignin condensation I happens (Figure 4-3).  

To sum up, 120℃ treatment in a vacuum improves condensation and cross-linking 

reactions and causes low mass loss.  

 

Figure 4-22 FTIR Spectrum Change of New Pine in 120℃ Vacuum Treatment After 24 hours 
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Figure 4-23 FTIR Peak Area Change of New Pine during 120℃ Vacuum Treatment 
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and condensation might happen in the first few hours, but the rate is much slower than that 

for pyrolysis. Peak 1154 relating to ether linkage (C-O-C) shows an increase after 24 hours 

of treatment. The increase is because ether linkage is not easy to pyrolyse. Lignin 

condensation II (Figure 4-4), hemicellulose linking to lignin (Figure 4-6) may happen 

during the treatment. Therefore, timber molecule cannot resist high temperature. The 

pyrolysis reaction is easily observed on the FTIR spectrum and mass loss. The alkene 

(C=C) and carbonyl groups (C=O) as well as ether linkage (C-O-C) are relatively stable 

chemical functional groups in molecules.   

 

Figure 4-24 FTIR Spectrum Change of New Pine in 200℃ Vacuum Treatment After 24 hours 
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Figure 4-25 FTIR Peak Area Change of New Pine During 200℃ Vacuum Treatment 

Timber molecule composition changes at 160℃ treatment in a vacuum are complex. 

Chemical changes of condensation, cross-linking and pyrolysis are observed on the FTIR 
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responsible for the changes in the carbonyl and alkene groups. In the first 8 hours, 

deacetylase, dehydration and cross-linking reaction happen together. In the 8 to 16 hours 

treatment, Peak 1730 and Peak 1595 change quicker than in the first 8 hours, which 
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indicates that cross-linking is the main chemical reaction, while the deacetylase and 

dehydration reaction rates decrease. The pyrolysis reaction rate is stable, and the carbonyl 

and alkene groups increase dramatically due to pyrolysis products after 16 hours treatment. 

while deacetylase, dehydration and the cross-linking reaction rate are slow after 16 hours 

treatment.  

Ether linkage (C-O-C, Peak 1154) increases but not as much as when treated at 120℃. 

Lignin-hemicellulose condensation (Figure 4-6) and lignin condensation II (Figure 4-4) 

and hemicellulose pyrolysis happen together in the treatment. In the first 8 hours of 

treatment, Peak 1154 (ether linkage) and Peak 1110 (hydroxyl group) changes greatly while 

the mass loss is less than 2%, which demonstrates that the condensation reaction relates to 

the hydroxyl group being in a dominant position in the first 8 of hours treatment at 160℃ 

treatment.  

Peak 1318 relates to condensation of G- or S- lignin units increasing in the first 16 hours 

due to lignin condensation I (Figure 4-3), then following this there is decrease due to 

pyrolysis of lignin.  

Consequently, 160℃ is a temperature for improving all chemical changes in timber. In the 

first few hours, condensation and cross-linking reaction are the main reactions, but these 

rates are slower than pyrolysis after 16 hours treatment.  
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Figure 4-26 FTIR Spectrum Change of New Pine in 160℃ Vacuum Treatment after 24 hours 

 

Figure 4-27 FTIR Peak Area Change of New Pine during 160℃ Vacuum Treatment 
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4.5.2 New Samples in Air Treatment 

With the treatment at 120℃ in air (Figure 4-28 and Figure 4-29), generally, the peak 

changes are the same as for vacuum treatment at 120℃, despite oxygen being involved. 

Both the change of the carbonyl group (C=O, Peak 1730) in air and in a vacuum are the 

same, which clearly indicates deacetylase and cross-linking reactions, so oxidation reaction 

might not affect the two reactions. However, all the peaks from 1226 to 1507 relating to 

hemicellulose decrease a bit more than in a vacuum, especially in the first 8 hours of 

treatment. Hence, oxygen improves hemicellulose deacetylase and pyrolysis. In terms of 

chemical change rate in the first 8 hours of treatment, both the carbonyl and alkene groups 

decrease slightly, which demonstrates that the cross-linking reaction rate is higher than that 

for deacetylase. The alkene group starts to increase after 8 hours treatment, which means 

that the lignin cross-linking reaction tends to slow. 

Peak 1154 relates to an ether linkage (C-O-C group) increase, while Peak 1110 pertains to 

the hydroxyl group decreasing dramatically in the first 8 hours of treatment. Lignin 

condensation II (Figure 4-4) and lignin-hemicellulose condensation (Figure 4-6) are 

responsible for the change. Lignin condensation I (Figure 4-3) also happens in the first 8 

hours due to Peak 1318 (condensed S- or G-ring on lignin) increasing. After 8 hours 

treatment, condensation reaction is slow due to a slight change in Peak 1154 and Peak 1318. 

In summary, 120℃ treatment in air leads to similar changes in timber as in a vacuum, but 

slightly greater pyrolysis results in 0.2% more mass loss. 
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Figure 4-28 FTIR Spectrum Change of New Pine in 120℃ Air Treatment After 24 hours 

 

Figure 4-29 Peak Area Change of New Pine During 120℃ Air Treatment 
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All chemical changes of 160℃ treatment in air are more significant and quicker than with 

120℃ treatment (Figure 4-30 and Figure 4-31), leading to 3.5% mass loss after 24 hours.  

A decrease in the carbonyl group (C=O, Peak 1730) and an increase in the alkene group 

(C=C, Peak 1595) in the first 8 hours treatment illustrates that hemicellulose deacetylase 

and lignin cross-link reactions happen together, with the former being the greater. Hence, 

compared with 120℃ treatment in the first 8 hours, 160℃ treatment improves deacetylase, 

but does not affect or suppress the cross-linking of lignin. The carbonyl group and alkene 

group increase significantly after 8 hours, which is attributed to pyrolysis.    

Lignin condensation I (Figure 4-3), condensation II (Figure 4-4) and lignin-hemicellulose 

condensation (Figure 4-6) are observed due to an increase in ether linkage (C-O-C, Peak 

1154) and the C-C bond (Peak 1054), especially in the first 8 hours of treatment. Lignin-

furfural condensation (Figure 4-7) also happen, but in a low rate. The decrease in Peak 

1110 relates to the hydroxyl group, which also indicates hydroxyl group condensation.  

Lignin S- and G-ring condensation happen in the first 8 hours of treatment due to the 

increase in Peak 1318. However, pyrolysis of hemicellulose and lignin lead to a decrease 

in the peak after 8 hours treatment.  

After 8 hours treatment, the carbonyl group increases significantly than under vacuum 

treatment. Oxidation and pyrolysis reactions are responsible for this increase.  

The treatment at 160℃ is more complex than for a vacuum due to the oxygen involved into 

the chemical reactions. Oxygen can oxidise hydroxyl groups and inhibit the reactions 

relating to the hydroxyl group, such as condensation II. Condensation I and a cross-linking 

reactions happen significantly in the first few hours of treatment. Pyrolysis reaction is the 

main one in the following period and leads to a 4% mass loss.  
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Figure 4-30 FTIR Spectrum Change of New Pine in 160℃ Air Treatment After 24 hours 

 

Figure 4-31 Peak Area Change of New Pine during 160℃ Air Treatment 
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In heat treatment at 200℃ in air (Figure 4-32 and Figure 4-33), pyrolysis of hemicellulose 

and part of the lignin is the dominant reaction due to the decrease in Peak 1226 to 1507, 

which results in 14.5% mass loss after 24 hours.  

Peak 1595 (C=C alkene group) increases in the first 8 hours treatment, but the rate is much 

slower than from 8 to16 hours. Hence, apart from a pyrolysis reaction, lignin cross-linking 

may happen in the first few hours of treatment. Peak 1730 (C=O, carbonyl group) increases 

dramatically due to massive creation of pyrolysis products. In addition, the hydroxyl group 

substantially decreases, which is more than with the treatment at 200℃ in a vacuum. An 

oxidation reaction (Figure 4-10) of the hydroxyl group is also responsible for the carbonyl 

group increasing. As a result,  lignin condensation II (Figure 4-4) and lignin-hemicellulose 

condensation (Figure 4-6) occur less due to a decrease in the hydroxyl group.  

The peak area of ether linkage (C-O-C, Peak 1154) is not changed during 200℃ treatment. 

Ether linkage content reaches a balance due to interactions of lignin condensation II (Figure 

4-4) Lignin-hemicellulose condensation (Figure 4-6), pyrolysis of hemicellulose (Figure 

4-2) and lignin (Figure 4-8).  

The highest temperature treatment in air leads to the largest mass loss due to pyrolysis. 

Condensation and a cross-linking reaction may happen in the treatment, but at a slow rate.  
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Figure 4-32 FTIR Spectrum Change of New Pine in 200℃ Air Treatment After 24 hours 

 

Figure 4-33 Peak Area Change of New Pine during 200℃ Air Treatment 
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4.5.3 Summary 

Chemical composition changes of new pine are mainly in hemicellulose and lignin and the 

changes are affected by the treatment atmosphere, including temperature and oxygen.  

Hemicellulose is easy to affect even at low treatment temperatures. The acetyl group in the 

hemicellulose molecule is its most unstable chemical group, detaching from the 

hemicellulose chain at 120℃ temperature treatment to form acetic acid (Figure 4-1). 

Deacetylase does not affect the length of hemicellulose chain until higher temperatures of 

more than 160℃ are reached, when it starts to break into many shorter chains (Figure 4-2). 

Oxygen and temperature promote the rate of pyrolysis, which leads to large mass loss.  

Lignin condensation and cross-linking reactions are observed in all treatments with 

different temperature and oxygen content; however, the rate of the two changes differ. 

Lignin condensation I (Figure 4-3) happens at 120℃ without oxygen treatment for at least 

24 hours, but only during the first 16 hours at 160℃ in a vacuum and for the first 8 hours 

treatment at 120℃ and 160℃ in air. In 200℃ treatment, lignin condensation I may happen 

in the first few hours. Lignin condensation II (Figure 4-4) and lignin-hemicellulose 

condensation (Figure 4-6) are based on the hydroxyl group and the two reactions happen 

only in the first 8 hours in all treatment environments. A cross-linking reaction (Figure 4-5) 

in lignin is also observed throughout 24 hours treatment at 120℃ in a vacuum atmosphere, 

whilst this is only for 16 hours at 160℃ treatment without oxygen, 8 hours at 120℃ in air, 

160℃ in air and 200℃ in a vacuum treatment. Hence, an aerobic atmosphere inhibits 

condensation and a cross-linking reactions.  

Additionally, an oxidation reaction (Figure 4-10)  is not observed easily at 120℃ treatment 

even in air treatment because the carbonyl group (C=O) changes similarly.   
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Figure 4-34 shows the chemical reaction for the different treatment periods, temperatures 

and atmospheres (air and vacuum).  

 

Figure 4-34 New Pine Chemical Reaction for Different Temperatures, Treatment Period and Atmospheres 

(air and Vacuum) 
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4.6 Old Timber Chemical Composition Changes during Heat Treatment 

Compared to new pine, chemical composition of old pine is different. Lignin-hemicellulose 

condensation (Figure 4-6), oxidation (Figure 4-10) and decomposition (same as pyrolysis, 

Figure 4-2) are observed after 580 years natural ageing. However, the volume of old pine 

was limited, with only six samples being treated at 160℃, whilst 26 samples were treated 

at both 120℃ and 200℃. Given the small sample size at 160℃ treatment and hence, issues 

concerning validity, the behaviour of old pine at this temperature is not discussed.  

4.6.1 Old Samples in a Vacuum  

Regarding the treatment at 120℃ in a vacuum, hemicellulose is less affected, with only 

approximately 1.6% mass loss after 24 hours and the peak relating to it also shows a very 

slight change (Figure 4-35 and Figure 4-36). The decrease on Peak 1730 and Peak 1595 

pertaining to the carbonyl group (C=O) and alkene group (C=C), respectively, indicates 

cross-linking reaction in lignin. The increase of the C-C (Peak 1054) bond also gives 

evidence of the changes to lignin. Lignin condensation I (Figure 4-3) is also observed due 

to a slight increase in Peak 1318. However, ether linkage (C-O-C, Peak 1154) content is 

less affected during the treatment, which indicates very little of the hydroxyl group is 

condensed in the reaction of lignin condensation II (Figure 4-4) and lignin-hemicellulose 

condensation (Figure 4-6).  
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Figure 4-35 FTIR Spectrum Change of Old Pine in 120℃ Vacuum Treatment After 24 hours 

 

Figure 4-36 Peak Area Change of Old Pine During 120℃ Vacuum Treatment 
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Whilst the mass loss of old pine at 120℃ is lower than for new pine in the same treatment, 

a 200℃ temperature destroys the chemical composition of old pine, resulting in more 

intense mass loss than for new pine. The decrease of Peak 1226 to 1456 relating to 

hemicellulose and increase of Peak 1730 and Peak 1595 pertaining to hemicellulose 

pyrolysis products during treatment, indicate that hemicellulose is greatly decomposed 

(Figure 4-37 and Figure 4-38). A lignin cross-linking reaction may happen in the first few 

hours of treatment due to C-C bond increases (Peak 1054 and Peak 1204).  

The ether linkage (Peak 1154, C-O-C) decreases in the first 8 hours treatment, with 

pyrolysis in the lignin-carbohydrate complex (Figure 4-6) being responsible for the 

decrease. After 8 hours treatment, pyrolysis of carbohydrate complex tends to slow and 

lignin condensation I continues to happen (Figure 4-3) which leads to the ether linkage 

content increasing. Pyrolysis products of hemicellulose (Figure 4-2) and lignin (Figure 4-8) 

also contain many ether linkage and contribute to an increase on Peak 1154.  

 

Figure 4-37 FTIR Spectrum Change of Old Pine at 200℃ vacuum Treatment After 24 hours 
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Figure 4-38 Peak Area Change of Old Pine During 200℃ Vacuum Treatment 
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The alkene group (C=C, Peak 1595) increases gradually due to pyrolysis products of 

hemicellulose. Cross-linking reaction of lignin also happen during the treatment due to a 

C-C bond increase (Peak 1054) but the rate is much lower than regarding pyrolysis.  

Ether linkage (C-O-C, peak 1154) changes slightly and there is only approximately 1.65% 

mass loss after treatment, which means that lignin condensation II and lignin-hemicellulose 

condensation do not happen. The hydroxyl groups (Peak 1110) decreases significantly in 

the first 16 hours treatment and no condensation happens, thus lignin dehydration (Figure 

4-8 and Figure 4-9) is responsible for the change. The alkene group (Peak 1595) also 

increases, thereby providing evidence of a dehydration reaction. A lignin condensation I 

reaction happens in the first 16 hours due to an increase of Peak 1318, whereas, lignin 

pyrolysis contributes to decreasing this peak after 16 hours of treatment. 

 

Figure 4-39 FTIR Spectrum Change of Old Pine in 120℃ Air Treatment after 24 hours 
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Figure 4-40 Peak Area Change of Old Pine during 120℃ Air Treatment 
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Figure 4-41 FTIR Spectrum Change of Old Pine in 200℃ Air Treatment After 24 hours 

 

Figure 4-42 Peak Area Change of Old Pine during 200℃ Air Treatment 
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4.6.3 Summary 

Old pine molecules are stable at 120℃ treatment but cannot resist high temperature. The 

reason is that parts of the hemicellulose and lignin are condensed or cross-linked during 

the natural ageing process. Both the FTIR spectrum and mass loss provide evidence for this 

phenomenon.  

Lignin cross-linking happens throughout the vacuum treatment period, but only happens 

for the first 16 hours of treatment in air. Compared to the lignin cross-linking of new pine, 

the reaction rate on old pine is much slower. Higher temperatures improve cross-linking, 

but a pyrolysis reaction occurs as well.    

Due to no changes in the Peak 1154 and Peak 1110 at 120℃ treatment, relating to ether 

linkage and hydroxyl groups, respectively, lignin condensation II and lignin-hemicellulose 

condensation occurs less. Peak 1318 relating to S- and G-ring condensation in lignin 

increases in the first 8 hours both under air and vacuum treatment, which indicates that 

lignin condensation I happens. However, 200℃ treatment obstructs the reaction due to 

serious pyrolysis of the hemicellulose and lignin. Moreover, and oxidation reaction is an 

important feature with 200℃ air treatment. 

The chemical change duration period is shown in Figure 4-43.  
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Figure 4-43 Old Pine Chemical Reaction for Different Temperatures, Treatment Periods and atmosphere 
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The Peak 1318 relating to S- or G-ring condensation in lignin, Peak 1507 pertaining to the 

aromatic skeleton and Peak 1226 relating to C-C bond have high positive correlation with 

the C-H bond. All the five peaks change together, which demonstrates the pyrolysis 

reaction of hemicellulose and lignin. Pyrolysis products also contain high quantities of the 

carbonyl and alkene groups, which leads to the increase of both peak 1595 and peak 1730 

and these have high a negative correlation relationship to others.  

Table 4-7 Correlation of FTIR Peak Area Changes  

   new pine         old pine 

 

Peak 1226 

C-C 

C-O-C 

Peak 1366 

C-H 

Peak 1421 

O-H 

Peak 1507 

Aromatic Ring 

Peak 1595 

C=C 

Peak 1730 

C=O 

Peak 

1318 

-CH- 

      

Peak 

1226 

C-C 

C-O-C 

 

    
 

 

R² = 0.8412 R² = 0.9431 R² = 0.9124 R² = 0.8336 R² = 0.7143 R² = 0.878

R² = 0.7638 R² = 0.7125 R² = 0.8002 R² = 0.6725 R² = 0.815
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Peak 

1366 

C-H 

  

    

Peak 

1421 

O-H 

   

   

Peak 

1507 

Aromatic 

Ring 

    

  

R² = 0.7869 R² = 0.8093 R² = 0.8151 R² = 0.8239

R² = 0.7567 R² = 0.6351 R² = 0.7455

R² = 0.4584 R² = 0.1952
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Peak 

1595 

C=C 

     

 

 

4.8 Discussion and Conclusion 

Equilibrium moisture content and mass have been discussed in sections 4.3 and 4.4. The 

results of the experiments and other literature are covered in that section and will not be 

repeated in this part.  

Various chemical reactions during the natural ageing process, heat treatment on old pine 

and heat treatment on new pine are discussed in this chapter. Generally, the changes can be 

divided into two categories: extending or expanding the length of the molecule or 

diminishing its length. 

Timber molecule length reduction is due to pyrolysis of hemicellulose and lignin. 

Hemicellulose pyrolysis starts from a deacetylase reaction. The acetyl group attaches the 

hemicellulose chain by ether linkage (C-O-C), but the C-O bond near the chain can break 

under heat energy and form acetic acid. The reaction is deacetylase. With rising 

temperature, hemicellulose is pyrolyzed to many shorter molecular chains. A few gas and 

liquid pyrolysis products are released from the sample and these are responsible for mass 

loss. Deacetylase and hydrolysis reactions during the heat treatment process were observed 

by Kocaefe et al. (2008) and Alen et al. (2002) in an anaerobic environment treatment, 

R² = 0.8417
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whilst Sivonen et al. (2002), Weiland and Guyonnet (2003) did so with aerobic treatment. 

Other studies have also reported similar results (Tjeerdsma et al., 1998; Nuopponen et al., 

2005; Dirol and Guyonnet, 1993; Bourgois et al., 1989). Zhou et al. (2016) reported 

comprehensive pyrolysis behaviour of hemicellulose and all the chemical changes in the 

current experiments according to the reaction atmosphere confirm this report. In addition, 

lignin pyrolysis also leads to a decrease in the lignin molecule chain length, but this needs 

a high temperature. Kawamoto et al. (2007) also found that lignin is pyrolysed at high 

temperatures.  

Typical reactions to extend or expand molecule chain are lignin-hemicellulose 

condensation, lignin condensation and lignin cross-linking. The hydroxyl group of lignin 

and hemicellulose molecules could condense to water (H2O) and ether linkage (C-O-C) as 

a bridge. Condensed lignin by ether linkage and the lignin–carbohydrate complex is 

observed on the new pine and naturally aged old pine with treatment at 120℃. The 

chemical composition structure of the condensation is stable at low temperatures, which 

leads to lower mass loss for old pine than new pine. However, at high temperatures, the 

molecules are pyrolysed dramatically, which results in older pine having the greater mass 

loss. A condensation reaction between lignin S- or G-rings is evidenced on new pine during 

heat treatment, but this is not significant for old pine. Funaoka et al. (1990), Li and 

Gellerstedt (2008) studied lignin behaviours during heat treatment and reported the same 

results as with the current experiment. A lignin cross-linking reaction happens in all 

treatments with various atmosphere. Apart from carbonyl (C=O) and alkene group (C=C), 

lignin cross-linking reaction is also observed by the changes of methylene bridge in other 

studies (Tjeerdsma et al., 1998; Nuopponen et al., 2005; Wikberg and Maunu, 2004). The 

lignin cross-linking reaction is also observed in old pine. Lignin-hemicellulose 

condensation, lignin condensation and cross-linking may affect analysis results regarding 
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the wet chemical method. A few studies have reported lignin increasing dramatically under 

inert atmosphere treatment by the wet chemical method, even reaching 84% (Bourgois and 

Guyonnet, 1988; Zaman et al., 2000; Dirol and Guyonnet, 1993). However, the lignin may 

not be pure. The reactions extending or expanding the molecule are responsible for the 

increase.  

A few chemical changes do not affect the molecule length, but rather the functional groups, 

which are involved in the reactions of condensation and cross-linking. Oxidation and 

dehydration are the reactions based on activity of hydroxyl groups (-OH). In an aerobic 

atmosphere, hydroxyl groups can be oxidised to the carbonyl group (C=O), which leads to 

a low condensation rate. Two neighbouring hydroxyl groups on a single chain (HO-C-C-

C-OH) on lignin could have a dehydration reaction with the reaction products of alkene 

group (-C=C-), formaldehyde (CH2O) and water (H2O). Alkene group could be further 

involved in the cross-linking reaction of lignin. Hence, oxidation inhibits a condensation 

reaction, whereas dehydration increases the opportunity for cross-linking.  

Different atmospheres contribute to different rates of chemical composition change. Figure 

4-44 shows functional group changes in different atmospheres. According, next there is 

discussion on the reaction promoting and inhibiting in distinctive atmospheres. The old 

pine compositions have undergone 580 years of the natural ageing process, show different 

FTIR behaviours during heat treatment. The functional group changes of old pine during 

heat treatment are exhibited in Figure 4-45.  

The carbon-carbon bond is a stable chemical bond in the timber molecule. The bond content 

increase with mass loss both on new (① of Figure 4-44) and old pine (① of Figure 4-45). 

Haw and Schultz (1985), Nakamura et al. (2008) and Kawamoto et al. (2007) also reported 

similar results. The C-C bond of new pine at 120℃ both in air and vacuum treatment 
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increases significantly than other treatments. The increasing in C-C content, decrease on 

alkene group (C=C, ⑤ of Figure 4-44) and carbonyl (C=O, ⑥ of Figure 4-44) at 120℃ 

treatment indicates a clear cross-linking reaction in lignin. The old pine sample also shows 

cross-linking reaction for lignin due to the decrease in the alkene (⑤ of Figure 4-45) and 

carbonyl (⑥ of Figure 4-45) groups. However, the related peak changes for old pine are 

slower than for new pine, which provides evidence that lignin has cross-linked in the 

natural ageing process. In addition, a deacetylase reaction on hemicellulose also leads to 

an increase on alkene group and reduction in the carbonyl group. The alkene group of new 

pine decreases under 120℃ treatment, which indicates that the cross-linking reaction rate 

is higher than the deacetylase one, but at 160℃ treatment, the opposite is the case. Hence, 

lignin cross-linking reaction of new pine is encouraged by the following treatment order: 

120℃ in a vacuum → 120℃ in air → 160℃ in a vacuum → 160℃ in air → 200℃ in a 

vacuum → 200℃ in air.  

The hydroxyl group in the timber molecule condenses to ether linkage due to the decrease 

on Peak 1110 and increase on 1154.  Ether linkage (③ of  Figure 4-44) and hydroxyl group 

(② of Figure 4-44) change for new pine during the first 8 hours is quicker than for 8-24 

hours treatment, which shows that hydroxyl group condensation reaction is promoted first 

as opposed to other reactions. At 120℃ treatment, the condensation reaction in air and in 

a vacuum is extremely close, which suggest that oxygen may not affect the hydroxyl groups 

at low temperatures. In treatment above 160℃ in air after 8 hours, a pyrolysis reaction 

leads to a decrease in ether linkage. Treatment above 160℃ in a vacuum is complex due to 

various chemical changes, especially lignin condensation I and pyrolysis. Lignin 

condensation I is based on the breaking of the ether linkage and so, it is promoted under 

vacuum treatment, but obstructed by oxygen. The changes of Peak 1318 (④ of Figure 4-44) 

relating to lignin condensation I also support this complex change. Ether linkage of old 
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pine increases at a lower rate, so the quantity of the hydroxyl group in it is less than for 

new pine due to the oxidation reaction during natural ageing process. 

Compared to the FTIR spectrum of 120℃ treatment in air and 580 years old pine, oxidation 

reaction is very slow during natural ageing process. In fact, there are decorative paintings 

on the old pine, which could be have acted as a protective layer. Finally, the carbonyl group 

(C=O), alkene group (C=C) and ether group’s (C-O-C) content increases even when there 

is high mass loss; there three functional groups being relatively more stable than others.  
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Figure 4-44 Peak Area Change of New Pine in Different Treatment 
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Figure 4-45 Peak Area Change of Old Pine in Different Treatment 
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Chapter 5 Mechanical Property Changes during Heat Treatment  
 

Static and dynamic mechanical properties are discussed in this chapter. Moisture plays a 

significant role in timber strength and its influence is studied in the first section. Section 2 

shows the mechanical difference between new and old timber. Section 3 and 4 discuss the 

static and dynamic mechanical behaviours of new and old pine during heat treatment, 

respectively. In this research, the modulus of elasticity (MOE) and modulus of rupture 

(MOR) are two essential evaluations for determining static timber mechanical properties. 

Storage modulus, loss modulus, complex modulus and Tan δ are the factors reflecting 

dynamic mechanical properties.  

MOE and MOR are calculated with a 3-point bending test (Figure 5-1) by a stress-strain 

curve (Figure 5-2). MOE is calculated by the elastic deformation stage which is a linear 

area. The slope of the elastic deformation stage is calculated as:  

𝑠 =
Δa

Δb
 

where, Δa  is the applied force change of elastic deformation and Δb  is the change in 

deformation. The MOE is given as: 

𝐸𝑓 =
𝐿3𝑠

4𝑤𝑑3
 

Whilst MOR is the highest stress in the moment of mechanical failure: 

𝜎 =
3𝐹𝑚𝑎𝑥𝐿

2𝑤𝑑2
 

Where, for both MOE and MOR, L is length of the supporter span, s is the slope of elastic 

deformation, 𝑤 is the sample width and 𝑑 is the sample thickness.  
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The MOE is the modulus for describing the sample’s resistance ability to mechanical 

deformation and a higher MOE contributes to low strain when applying the same force. 

MOR is one property that defines sample maximum strength.  

 

Figure 5-1 Schematic Diagram of a 3-Point Bending Test 

 

Figure 5-2 Stress-Strain Curve of a 3-Point Bending Test 

The dynamic mechanical properties during temperature scanning are tested by DMTA 

(dynamic mechanical thermal analysis) facility and the results are calculated by a computer. 

Tan δ is the ratio of loss modulus (𝐸′′) / storage modulus (𝐸′) for describing materials’ 

viscoelasticity. When applying an external force, part of the energy is stored by molecule 

deformation and another part is dissipated by molecule friction. An increase in Tan δ 
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indicates intermolecular sliding, while a decrease means that energy is stored by molecule 

bending or stretching. A complex modulus used to describe the property and the 

relationships between the dynamic mechanical properties is shown in Figure 5-3. An 

absolute value of the complex modulus is calculated as follows: 

|𝐸∗| = √𝐸′2 + 𝐸′′2 

 

Figure 5-3 Relationships Between Dynamic Mechanical Properties 

However, the values of both the static and dynamic mechanical properties might not be the 

same as in other studies. The main reason for this being the samples size. That is, in this 

research, sample is designed to fit both a 3-point bending test and DMTA test together for 

comparing static and dynamic mechanical properties, rather than using international 

standards.  

5.1 Moisture Content and Bending Mechanical Properties  

5.1.1 Static Mechanical Properties and Moisture Content 

Moisture content (MC) affects timber’s static mechanical properties significantly such that 

MOR and MOE decrease with moisture content rising (Figure 5-4 and Figure 5-5). 

Specifically, the MOR and MOE decrease by approximately 30% and 10%, respectively, 

in samples from dry to 10% MC. Hence, MOR is affected by moisture content more 

significantly than MOE. Similar results were reported by Dinwoodie (1975); Kretschmann 

and Green (2007). However, regarding the stress-strain curve (Figure 5-6), dry samples and 



158 

 

10% MC samples show a different behaviour. Dry samples show elastic deformation and 

yield stages before mechanical failure, whilst 10% MC samples illustrate a second elastic 

deformation between the yield stage and mechanical failure. Hence, moisture contributes 

to a molecule rearrangement process under external force to form a new balance between 

stress and strain, which gives more deformation extension than with dry samples. Steiner 

(2002) also reported that moisture can improve molecule re-arrangement in a larger 

deformation.  

 

Figure 5-4 MOR and Moisture Content of New Pine 
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Figure 5-5 MOE and Moisture Content of New Pine 

 

Figure 5-6 Stress-Strain Curve of Dry and 10% Moisture Content Samples 

5.1.2 Dynamic Mechanical Properties and Moisture Content 

During a DMTA test, which can reach 150℃, the mass loss of dry samples both new and 

old, is very low (Table 5-1), which can be taken as that chemical composition is little 
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testing period of each sample is approximately 1 hour, which can be treated as no chemical 

changes happen.  

Both the storage moduli of dry and moisture sample decreases with temperature in new 

pine (Figure 5-7) and old pine (Figure 5-10), but with the latter the decrease is greater at 

the temperature from -150℃ to -120℃ in new pine and -150℃ to -90℃ in old pine, dry 

samples have a large storage modulus.  The storage modules and Young’s Modulus (MOE) 

have the same concept and calculation method but the values shown are slightly different. 

Hence, water molecules decrease friction movement between timber molecules at low 

temperatures, which enhance the elasticity of timber samples. Moisture starts to improve 

timber’s molecule with temperature rising and this leads to a lower MOE.  

The loss moduli of dry and moisture samples have complex changes both in new (Figure 

5-8) and old samples (Figure 5-11) and mainly responsible for the behaviours of Tan δ 

curve of new (Figure 5-9) and old samples (Figure 5-12). In general, Tan δ of dry samples 

is lower than for moisture samples, especially above -120℃ for new pine and -90℃ for old 

pine, which means that the timber molecules of dry samples are not subject easily to friction 

and this leads to higher elasticity. All the moisture samples show Peak β for temperature 

scanning between 0℃ and 100℃, with the peaks appearing at nearly the same temperature 

(68℃ for new pine and 71℃ for old pine). However, the peak has disappeared and changed 

to a flat curve in the dry samples. Hence, moisture is responsible for the Peak β. Water 

molecules contribute to molecule friction for temperatures between approximately 10℃ 

and 70℃. Hydrogen bonds between timber and water molecules start to lose bond 

attractions in the temperature range, which leads to an increase in Tan δ. Above 70℃, 

moisture motion is intense and does not affect timber molecules significantly. Timber 

molecules are not easily subject to friction in this higher temperature range, which causes 

a decrease in Tan δ. The relationship was also discussed by Obataya et al. (2001); Kelley 
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et al. (1987) and Backman and Lindberg (2001). Peak γ is affected by methylol groups, 

according to Obataya et al. (2001) and both moisture and dry samples for new and old pine 

have a peak during DMTA temperature scanning. However, the peak γ decreases and 

divides into two peaks in dry samples. Hence, moisture also plays a significant role in peak 

γ. Montes and Cavaillé (1999) reported that the two peaks are caused by methylol and the 

hydroxyl groups, respectively.  

Table 5-1 DMTA of Dry and 10% Moisture Content Samples 

  Sample 
Number 

Dry Density 
(Kg/m3) 

Moisture 
Content 

Dry Weight 
(g) 

Weight after 
DMTA test 

(g) 

Mass Loss 
during DMTA 

(g) 

New 

Dry 

ND1 0.35 0 0.0959 0.0954 0.0005 

ND2 0.34 0 0.1035 0.1032 0.0003 

ND3 0.34 0 0.0992 0.099 0.0002 

ND4 0.34 0 0.0938 0.0935 0.0003 

ND5 0.33 0 0.0901 0.09 0.0001 

ND6 0.34 0 0.096 0.0958 0.0002 

Moisture 

NM1 0.33 10.23% 0.1036 0.1055 -0.0019 

NM2 0.32 10.25% 0.0946 0.0971 -0.0025 

NM3 0.33 9.82% 0.1028 0.1052 -0.0024 

NM4 0.4 10.02% 0.1258 0.1271 -0.0013 

NM5 0.32 10.74% 0.1015 0.1061 -0.0046 

NM6 0.33 9.81% 0.0999 0.1004 -0.0005 

Old 

Dry 

OD1 0.43 0 0.1201 0.1200 0.0001 

OD2 0.44 0 0.1349 0.1347 0.0002 

OD3 0.42 0 0.1195 0.1193 0.0002 

OD4 0.43 0 0.1304 0.1303 0.0001 

OD5 0.46 0 0.1348 0.1348 0 

OD6 0.46 0 0.1306 0.1304 0.0002 

Moisture 

OM1 0.47 9.8% 0.1565 0.1567 -0.0002 

OM2 0.41 9.78% 0.1315 0.1318 -0.0003 

OM3 0.41 10.02% 0.1326 0.1331 -0.0005 

OM4 0.4 9.2% 0.1228 0.1232 -0.0004 

OM5 0.42 9.89% 0.1333 0.1333 0 

OM6 0.44 9.75% 0.1425 0.1448 -0.0023 
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Figure 5-7 DMTA Storage Modulus of a New Sample in Dry and Moisture Samples 

 

Figure 5-8 DMTA Loss Modulus of a New Sample for both Dry and Moisture Samples 
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Figure 5-9 DMTA Tan δ of a New Sample for both Dry and Moisture Samples 

 

Figure 5-10 DMTA Storage Modulus of an Old Sample for both Dry and Moisture Samples 
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Figure 5-11 DMTA Loss Modulus of an Old Sample for both Dry and Moisture Samples 

 

Figure 5-12 DMTA Tan δ of an Old Sample for both Dry and Moisture Samples 
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To sum up, moisture decreases the static mechanical properties (MOE and MOR) 

significantly but can enhance strain extension by re-arranging timber molecules in the yield 

stage. In dynamic mechanical test with temperature scanning, both peak β and peak γ are 

affected by the moisture while peak β disappeared if no moisture was present in samples.  

5.2 Dynamic Mechanical Difference Between New and Old Pine 

Dynamic mechanical thermal analysis (DMTA) highlights a different viscoelasticity 

behaviours for new and old pine samples (Figure 5-13). Generally, two clear peaks, γ and 

β, are clearly shown in the Tan δ curve. Peak γ of both the new and old samples is illustrated 

at approximately -100℃. Moreover, the small peak (γ1), which is affected by the methylol 

group, in the Tan δ curve of dry new and old samples is illustrated for two slightly different 

temperatures (Figure 5-14). γ1 of the old pine samples is found at a slightly lower 

temperature than for the new pine samples, which indicates that the methylol group in the 

former’s molecules is slightly less. Peak β shows a large difference between the new and 

old pine samples. The peak β temperature of old pine is higher than new pine. Peak β is 

affected mainly by moisture content though affecting energy dissipation of molecule main 

chains. Hence, in the old pine samples, the molecule main chain is relatively stable, which 

is affected by moisture at a higher temperature.  

Moisture plays a more significant role in the old pine samples than the new.  Below -65℃, 

Tan δ of the old samples is slightly lower, but it is higher than for the new samples above 

-65℃ and the gap increases with temperature. However, in the dry samples, Tan δ of both 

new and old pine decreases, with the latter decreasing more. Tan δ of old pine samples is 

significantly lower than for new pine under 0℃, but similar above this temperature. Hence, 
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dry old pine samples perform better as elastic materials, which also indicates their stable 

structure.  

 

Figure 5-13 DMTA Tan δ of Moisturised New and Old Pine 

 

Figure 5-14 DMTA Tan δ of Dry New and Old Pine 
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5.3 Mechanical Property Changes in New Timber  

New pine samples were treated at 120℃, 160℃ and 200℃ for 8, 12, 16, 20, 24 hours in 

air and vacuum atmospheres. The mean MOR and MOE are calculated by 15-20 samples 

in each treatment group.   

5.3.1 Static Bending Mechanical Properties of New Pine 

The MOR during heat treatment varies significantly (Figure 5-15 and Table 5-2). In 

general, the changes are affected by a treatment environment such that MOR increases at 

120℃ treatment in a vacuum but decreases at 200℃ treatment in an air atmosphere after 

24 hours.  

MOR of new pine treated at 120℃ in a vacuum has a 15% increase from 55.3 MPa to 63.9 

MPa after 24 hours, with only 2.11% mass loss. In air treatment at 120℃, MOR increases 

significantly after the first 8 hours by approximately 11%, remains stable up to 16 hours 

and then drops significantly at 24 hours treatment. Compared to non-treated samples, the 

treatment at 120℃ both in air and vacuum for 24 hours, MOR is improved. 200℃ treatment 

contributes to a constant decrease in MOR for both air and vacuum environments. In air 

treatment, MOR decreases dramatically by 42% while in vacuum treatment, this decrease 

is only for approximately 15%. Hence, oxygen and a high temperature contribute to the 

decrease in MOR of new pine samples. Under 160℃ treatment both in air and a vacuum 

MOR increases in the first 8 hours by approximately 8% in both, followed by a decrease. 

After 24 hours, MOR decreases by approximately 4% and 2% in air and vacuum treatment, 

respectively.  
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Figure 5-15 Changes in the Mean MOR of New Pine During Heat Treatment 
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Figure 5-16 Change in the MOR Variation of New Pine During Heat Treatment 

Table 5-2 Mean MOR (MPa) Changes of New Pine During Heat Treatment 

 Temperature 
Treatment Period (hours) 

0 8 12 16 20 24 

Air 

120℃ 

55.29 

61.47 61.20 61.26 57.80 57.44 

160℃ 60.10 57.15 56.51 53.02 52.61 

200℃ 44.94 37.20 35.56 33.54 31.83 

Vacuum 

120℃ 60.92 61.57 63.26 63.47 63.88 

160℃ 58.67 56.91 56.93 56.79 54.23 

200℃ 53.34 53.66 50.90 50.57 47.54 
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The MOE of new pine during heat treatment changes complexly (Figure 5-17 and Table 

5-3), but with fewer changes for MOR. Comparing non-treated samples to treatment after 

24 hours, MOE increase approximately 12%, 3%, 2%, 2%, 1% at 120℃ in a vacuum, 

120℃ in air, 160℃ in a vacuum, 200℃ in a vacuum and 160℃ in air, respectively, whilst 

it decreases by approximately 5% at 200℃ in air.  

The mass loss, which is up to 8%, does not affect MOE significantly. In treatment at 200℃ 

in air after 8 hours, and the treatment at 200℃ in a vacuum after 24 hours, MOE increases 

6% and 1%, respectively, whilst the mass losses are 6% and 8%. MOE increases in all 

treatments for the first 8 hours. Unlike MOR changes, which decreased by oxygen, the 

highest MOE increase in the first 8 hours happens at 200℃ in air, being 6%. Treatment at 

160℃ in air also contributes to a 4% increase in MOE in the first 8 hours. Moreover, the 

MOE increase in treatment at 200℃ and at 160℃ in a vacuum is 5% and 2.1%, 

respectively. After 8 hours treatment, MOE decreases constantly in treatment at 200℃ in 

air and results in a 6% decrease after 24 hours treatment, with 14.5% mass loss. Hence, 

oxygen improves timber’s MOE before 8% mass loss.  
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Figure 5-17 Mean MOE Changes of New Pine During Heat Treatment 
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Figure 5-18 MOE Variation Changes of New Pine During Heat Treatment 

Table 5-3 Mean MOE (MPa) Changes of New Pine During Heat Treatment 

 Temperature 
Treatment Period (hours) 

0 8 12 16 20 24 

Air 

120℃ 

4913 

5075 4980 5348 5233 5058 

160℃ 5116 4989 5013 5013 4956 

200℃ 5233 4823 4871 4744 4672 

Vacuum 

120℃ 5167 5229 5168 5432 5516 

160℃ 5015 4987 5084 5127 4995 

200℃ 5166 5203 5115 5094 4976 
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5.3.2 Bending Dynamic Mechanical Properties of New Pine 

Tan δ of the dynamic mechanical properties decreases after 24 hours treatment at 120℃ in 

a vacuum but it increases after treatment at 200℃ in air (Figure 5-19). Compared to the 

static mechanical test, the former also enhances MOR and MOE, whilst the latter decreases 

them. The increase in the elasticity of timber also leads to an improvement in the static 

mechanical properties but an increase in viscosity contributes to a decrease on Tan δ.  

Peaks γ and β on the Tan δ curve have appeared, but move to a higher temperature (Table 

5-4 and Table 5-5), which indicates that timber molecules tend to acquire a stable status 

after any kind of heat treatment. In treatment at 120℃ in a vacuum Peaks γ and β move to 

-80.9℃ and 65.2℃, respectively, under a DMTA temperature scan, whilst with treatment 

at 200℃ in air, they increase to -85.8℃ and 60.3℃, respectively. The peaks on the Tan δ 

curve are affected by specific functional groups or moisture. When the peaks appear at a 

higher temperature, it means that the related functional groups need higher energy to cause 

friction between the timber molecules. Hence, the timber molecule is stable after treatments 

even though the static mechanical strength is decreased.  

 

Figure 5-19 DMTA Mean Tan δ of New Pine Samples after Heat Treatment 
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Table 5-4 Dynamic Mechanical Properties of Peak γ of New Pine after 24 Hours Treatment  

Treatment 

Atmosphere 

Treatment 

Temperature 

(℃) 

Peak 

Temperature 

(℃) 

Storage 

Modulus 

(GPa) 

Loss 

Modulus 

(GPa) 

Tan δ 

Absolute value 

of Complex 

Modulus 

(GPa) 

Non-Treated -101 7928 465 0.059 7942 

Air 

120 -92.2 7519 450 0.059 7532 

160 -92.2 7223 452 0.063 7237 

200 -85.8 6624 419 0.063 6637 

Vacuum 

120 -80.9 7330 434 0.059 7342 

160 -92 7090 426 0.060 7103 

200 -93.9 8004 460 0.057 8017 

Table 5-5 Dynamic Mechanical Properties of Peak β of New Pine after 24 Hours Treatment 

Treatment 

Atmosphere 

Treatment 

Temperature 

(℃) 

Peak 

Temperature 

(℃) 

Storage 

Modulus 

(GPa) 

Loss 

Modulus 

(GPa) 

Tan δ 

Absolute value 

of Complex 

Modulus 

(GPa) 

Non-Treated 43.6 5393 279 0.051 5400 

Air 

120 52.6 5269 249 0.048 5275 

160 49.1 5267 274 0.052 5274 

200 60.3 5016 255 0.051 5023 

Vacuum 

120 65.2 5234 259 0.050 5241 

160 52.8 5163 252 0.049 5163 

200 58.5 6001 278 0.046 6008 
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5.3.3 Compression Tests Parallel to the Grain of New Pine 

Compression tests parallel to the grain during heat treatment carried out to show the 

mechanical behaviours in different directions. Compression samples were cut into 

20mm×20mm×40mm cuboids to fit the compression test facility. However, because of the 

limited sample quantities, the samples were only treated at 160℃ and 200℃ both in air 

and vacuum atmospheres. All the data are illustrated in Table 5-6. 

The changes of mass loss (Figure 5-20 and Figure 5-21) and equilibrium moisture content 

at 20℃ with 65% relative humidity (EMC) (Figure 5-22 and Figure 5-23) during heat 

treatment are much less than for small samples in the same treatment atmosphere, but the 

trend is the same. Mass loss increases with temperature and oxygen. The highest mass loss, 

8.76%, happens at 200℃ in air after 24 hours, which is much less than with small samples 

in the same treatment atmosphere, at 14.5%. In other treatments, the mass loss at 200℃ in 

a vacuum, at 160℃ in air and a vacuum after 24 hours are 4.8%, 1.34% and 1.31%, 

respectively. The EMC drops to 7.55% and 8.62% in the treatment at 200℃ both in air and 

a vacuum after 24 hours, respectively, which is higher than with small samples, standing at 

5.25% and 6%, respectively, after the same treatments. However, the EMC is less affected 

in 160℃ treatment both in air and a vacuum.  
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Figure 5-20 Mass loss of Compression Test Samples During Heat Treatment 

  

Figure 5-21 Mass loss Variation of Compression Test Samples During Heat Treatment 
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Figure 5-22 EMC Change of Compression Test Samples During Heat Treatment 

   

Figure 5-23 EMC Error Change of Compression Test Samples During Heat Treatment 
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compression MOR (modulus of rupture) is more complex than that for MOE (modulus of 

elasticity).  

The compression MOE increases constantly in the treatment at 160℃ in a vacuum by 

approximately 11% after 24 hours, whilst it increases in the first 12 hours treatment in air 

treatment followed by a decrease. In treatment at 200℃, the compressive MOE both in air 

and vacuum treatment increases during the first 8 hours followed by a decrease. However, 

a vacuum atmosphere improves compression MOE significantly more than with air. 

Comparing compression MOE with bending MOE, the static mechanical properties of large 

samples at 160℃ treatment are the same as those for small samples at 120℃ treatment. 

Hence, large samples need higher temperatures to cause a similar mechanical change to 

small ones.  

The compressive MOR of all the samples decrease slightly after 24 hours treatment, with 

the changes being complex and less than 10%. Apart from treatment at 200℃ in air, which 

leads to a constant decrease in the compression MOR, other treatment atmospheres 

contribute to unpredictable wave changes in MOR.  

Hence, the compression MOE are affected by heat treatment atmosphere but compression 

MOR does not show significant changes before 6% mass loss.  
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Figure 5-24 Compression MOE Parallel to the Grain of New Pine 

 

  

Figure 5-25 Compression MOE Variation Parallel to the Grain of New Pine 
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Figure 5-26 Compression MOR Parallel to the Grain of New Pine 

 

   

Figure 5-27 Compression MOR Variation Parallel to the Grain of New Pine 
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Table 5-6 Mass Loss, EMC Change and Static Compression Mechanical Property 

 

Mass loss 

(%) 

EMC 

(%) 

MOE 

(MPa) 

MOR 

(MPa) 

Non-Treated 0 10.86 4070 33.88 

Air 

160 

8 0.59 10.84 4136 30.92 

12 0.75 10.35 4230 32.45 

16 0.93 10.61 4214 32.4 

20 1.31 10.72 4182 31.03 

24 1.34 10.51 4035 32 

200 

8 2.72 9.01 4167 34.26 

12 5.28 7.99 4113 32.89 

16 5.92 8.01 3954 33.19 

20 7.18 7.65 3658 31.96 

24 8.76 7.55 3521 30.66 

Vacuum 

160 

8 0.73 10.86 4142 31.28 

12 1.1 10.9 4191 32.33 

16 1.12 10.82 4218 31.43 

20 1.1 10.89 4418 32.82 

24 1.31 10.87 4532 32.36 

200 

8 2.61 9.48 4379 34.26 

12 3.44 9.15 4286 33.24 

16 3.13 9.27 4210 33.68 

20 3.49 9.07 4170 33.33 

24 4.8 8.62 4007 32.7 

 

5.3.4 Summary 

Heat treatment affects mechanical properties of new pine samples by improving or 

weakening the strength of timber cell walls. The cell wall is a long tube (Figure 5-28), 

which gives the feature of anisotropy for timber materials. The modulus of elasticity (MOE) 

of a bending test and the modulus of rupture (MOR) of a compression test are complex 
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such that the changing trends are difficult to predict. Hence, molecular structures are also 

an important factor affecting the mechanical property changes of timber. The bending 

MOR and compression MOE are affected by the molecule cell wall strength, whilst the 

bending MOE and compressive MOR are affected by the cell structure.  

In general, the changes in the bending MOR and compression MOE are similar. In 

treatment at 120℃ in a vacuum, (for compression samples with a large size, it is 160℃), 

the bending MOR and compression MOE increase constantly, whilst at 200℃ in air the 

two decrease significantly. In other treatments, the two properties increase at first, followed 

by a decrease and mass loss is an important reason for these mechanical properties 

decreasing.  

The dynamic mechanical properties by bending shows that the timber molecule stability is 

enhanced after any kind of heat treatment, due to Peak β and γ appearing at higher 

temperatures. Moreover, the tan δ curve also indicates that the elasticity of new pine is 

enhanced in treatment at 120℃ in a vacuum whilst the viscosity is increased at 200℃ in 

air. Hence, the bending MOR and compression MOE is improved by the increasing in 

viscosity of sample but decreased by the elasticity increasing.  
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Figure 5-28 Scanning Electron Microscope (SEM) of Timber Cells 

5.4 Mechanical Property Changes in Old timber 

Due to limited volume, the old pine samples were only cut into 2mm × 4mm × 35mm size 

and treated only in 120℃ and 200℃ both in air and a vacuum. Hence, the bending 

mechanical property changes of old samples during 160℃ treatment and the compression 

mechanical properties are not covered in this section.  

5.4.1 Static Bending Mechanical Properties of Old Pine 

In general, the MOR of the old pine samples has similar changes during heat treatment at 

120℃ and 200℃ as with new ones (Figure 5-29, Figure 5-30 and Table 5-7). It increases 

by approximately 8% after 24 hours treatment at 120℃ in a vacuum, whilst in air, it 

increases during the first 16 hours of treatment by approximately 7%, followed by a 

decrease. The mass losses of the two treatment after 24 hours are 1.42% and 1.65%, 

respectively. A lower mass loss does not lead to a MOR decrease. In treatment at 200℃, 

timber strength reduces dramatically by approximately 60% and 32% in air and a vacuum, 

with a mass loss of 19% and 16%, respectively.  
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Figure 5-29 MOR of Old Pine Changes During Heat Treatment 

 

  

Figure 5-30 MOR Variation Changes of Old Pine During Heat Treatment 
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Table 5-7 MOR (MPa) Changes of Old Pine During Heat Treatment 

 Temperature 
Treatment Period (hours) 

0 8 16 24 

Air 
120℃ 

76.25 

81.33 83.61 76.12 

200℃ 56.34 38.26 30.78 

Vacuum 
120℃ 76.54 81.26 82.85 

200℃ 68.04 60.34 59.82 

 

The MOE of the old samples also shows complex changes during heat treatment, as with 

the new ones. It improves for all treatments in the first 8 hours (Figure 5-31, Figure 5-32 

and Table 5-8), increasing by approximately 9%, 5%, 3% and 1% at 120℃ in air, 200℃ in 

air, 120℃ in a vacuum and 200℃ in a vacuum respectively. Vacuum treatment at 120℃ 

and 200℃ improves MOE significantly by approximately 15% and 6% after 24 hours 

treatment, with at mass loss of 1.42% and 16%, respectively. Moreover, a large decrease 

in MOE happens at 200℃ in air of 11% after 24 hours. Hence, same as the mechanical 

behaviour of the new pine samples during heat treatment, oxygen can improve MOE over 

a short treatment period with low mass loss, but for a long period, vacuum atmosphere and 

120℃ treatment lead to a higher MOE.  
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Figure 5-31 MOE Changes of Old Pine During Heat Treatment 

  

Figure 5-32 MOE Variation Changes of Old Pine During Heat Treatment 

Table 5-8 MOE (MPa) Changes of Old Pine During Heat Treatment 

 Temperature 
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0 8 16 24 
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5.4.2 Dynamic Mechanical Properties of Old Pine 

In the DMTA test, Tan δ of the old pine samples non-treated and treated at 200℃ in air for 

24 hours, is similar under temperature scanning from -150℃ to 150℃ (Figure 5-33). The 

19% mass loss does not affect the viscoelasticity of the old samples. However, Tan δ 

decreases significantly in treatment at 120℃ in a vacuum due to a loss modulus decrease, 

which indicates low friction between the timber molecules. Hence, the connection between 

the timber molecules are improved in the treatment.  

On the Tan δ curve, both Peak γ (Table 5-9) and Peak β (Table 5-10) are less affected, 

appearing at temperatures from -98℃ to -91℃ and 69℃ to 75℃, respectively. As the two 

peaks are influenced by the methylol groups and moisture in the main chain, respectively, 

the methylol groups and the structure of old pine molecule single chain is less affected by 

heat treatment. Hence, the molecules of old pines show more stability than new pine.  

 

Figure 5-33 DMTA Mean Tan δ of Old Pine Samples after Heat Treatment 
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Table 5-9 Dynamic Mechanical Properties of Peak γ of Old Pine after 24 Hours Treatment 

Treatment 

Atmosphere 

Treatment 

Temperature 

(℃) 

Peak 

Temperature 

(℃) 

Storage 

Modulus 

(GPa) 

Loss 

Modulus 

(GPa) 

Tan δ 

Absolute value 

of the Complex 

Modulus 

(GPa) 

Non-Treated -97.2 9353 523 0.056 9368 

Air 

120 -95.8 9664 534 0.055 9679 

160 -96.6 9882 544 0.056 9897 

200 -91.24 8601 507 0.059 8616 

Vacuum 

120 -95.7 10487 560 0.054 10502 

160 -94.8 10222 520 0.051 10236 

200 -91.4 9087 502 0.056 9103 

 

Table 5-10 Dynamic Mechanical Properties of Peak β of Old Pine after 24 Hours Treatment 

Treatment 

Atmosphere 

Treatment 

Temperature 

(℃) 

Peak 

Temperature 

(℃) 

Storage 

Modulus 

(GPa) 

Loss 

Modulus 

(GPa) 

Tan δ 

Absolute value 

of the Complex 

Modulus 

(GPa) 

Non-Treated 69.2 6103 381 0.063 6115 

Air 

120 70.2 6680 378 0.057 6691 

160 74.9 6789 413 0.061 6802 

200 70.7 6210 371 0.06 6221 

Vacuum 

120 70.3 7068 389 0.055 7079 

160 70.7 7288 383 0.053 7298 

200 74.76 6671 337 0.05 6680 
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5.4.3 Summary 

The static mechanical properties of old pine samples experience similar changes to new 

pine ones. Both the modulus of rupture (MOR) and modulus of elasticity (MOE) are 

improved in treatment at 120℃ in a vacuum by 8% and 15% but decrease in treatment at 

200℃ in air by 60% and 11%, respectively.  

The elasticity increases in vacuum treatment at 120℃, but there is less change in air 

treatment even though the mass loss is high. The temperature at which the Peak γ and β on 

the Tan δ curve appeared are similar after all heat treatments, which indicates that the 

molecule structure of old pine is much more stable than new pine.   

5.5 Discussion and Conclusion   

The mechanical properties of timber changes distinctively in different directions. The 

bending MOR and compression MOE change sensitively during heat treatment, but the 

bending MOE and compression MOR are not affected as much as the two former properties 

even with high mass loss. Korkut et al. (2008) obtained similar changes for treatment at 

120℃, 150℃ and 180℃ for 5, 6, 10 hours on maple. Heat treatment can enhance or 

diminish the strength of cell walls and lead to distinctive changes in mechanical properties. 

Moreover, timber cells, which are long tubes, play an essential role in the differences of 

three direction mechanical properties. Hence, the distinct cell structures also affect the 

bending MOE and compression MOR as well as the cell wall strength. However, according 

to Backman and Lindberg (2001), the Tan δ temperature scanning curve from -150℃ to 

150℃, which contains two peaks, is not changed.  

Density and moisture content play significant roles in static mechanical properties even in 

non-treated samples. The density of old pine samples is more than in new pine by 

approximately 20%. The reason is the two pieces of samples are from different parts of 



190 

 

trunks, which lead to different MOE and MOR. Yang and Evans (2003) found that density 

has high positive correlations with MOE and MOR in different species of E. globulus, E. 

nitens and E. regnans wood with age ranging from 15 to 33 years old. Similar results were 

found by Dinwoodie (1975), who also reported that moisture content affect timber 

mechanical properties with negative correlations. A mathematical model to predict 

mechanical properties by moisture content works well, according to Kretschmann and 

Green (2007), who studied non-treated pine samples (Pinus echinata and Pinus taeda) by 

means of testing. Moisture content also affects the dynamic mechanical properties, 

especially the β peak of Tan δ. Dry samples show higher static mechanical properties and 

elasticity than moist samples, with both new and old samples exhibiting this influence.  

In terms of the bending static mechanical properties, the MOR changes in both new and 

old samples during heat treatment is more significant than those for MOE, due to the 

coefficient of variation (CV) of MOE being largely more than for MOR both in new (Table 

5-11) and old pine (Table 5-12) samples. CV illustrates the degree of variation by the 

following equation: 

𝐶𝑣 =
𝜎

𝜇
× 100% 

where 𝐶𝑣 is coefficient of variation, 𝜎 is the standard deviation and 𝜇 is the mean of the 

data. Kim (1998); Bekhta and Niemz (2003) also reported that MOE is more unpredictable 

than MOR during heat treatment in any atmosphere.  
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Table 5-11 Coefficient of Variation of MOE and MOR of New Pine During Heat Treatments (20 samples) 

 Temperature 
 Treatment Period (hours) 

 0 8 12 16 20 24 

Air 

 

120℃  

MOE 

MOR 

9.7% 

8% 

13% 

6.4% 

17.4% 

8.6% 

10% 

5.3% 

12.5% 

8.3% 

13.3% 

8.5% 

 

160℃  

MOE 

MOR 

11.2% 

7% 

10% 

7.2% 

9.6% 

6% 

14.6% 

8.6% 

9.4% 

6.8% 

 

200℃  

MOE 

MOR 

10.8% 

12.6% 

12.6% 

10% 

11.2% 

10.4% 

13.5% 

9.2% 

14% 

12.4% 

Vacuum 

 

120℃  

MOE 

MOR 

10.7% 

6.1% 

10.1% 

7.8% 

10.3% 

7.5% 

12.4% 

6.3% 

10.4% 

7.2% 

 

160℃  

MOE 

MOR 

11.4% 

6.6% 

9.5% 

7.2% 

12.7% 

10.1% 

11.7% 

7.5% 

14% 

8.2% 

 

200℃  

MOE 

MOR 

12.2% 

6.6% 

11.8% 

7.8% 

11.6% 

10.9% 

12.2% 

9% 

13.9% 

7.3% 

 

Table 5-12 Coefficient of Variation of MOE and MOR of Old Pine During Heat Treatments (20 samples) 

 Temperature 
 Treatment Period (hours) 

 0 8 16 24 

Air 

 

120℃  

MOE 

MOR 

19.1% 

10.4% 

14.1% 

12.1% 

18.7& 

9.2% 

11.2% 

10% 

 

200℃  

MOE 

MOR 

11.8% 

10.7% 

11.3% 

14.6% 

17.3% 

30% 

Vacuum 

 

120℃  

MOE 

MOR 

15.2% 

10.2% 

15.3% 

11.7% 

13.1% 

11.4% 

 

200℃  

MOE 

MOR 

13.8% 

11% 

13.6% 

11.6% 

12.6% 

9.2% 

*upper (MOE), below (MOR) 

In addition to treatment at 200℃ in air, other treatments (200℃ in a vacuum, 160℃ in air 

and vacuum, 120℃ in air and vacuum) improve MOR values in specific period. Similar 

results with the same treatment method and sample preparation were reported by Mitchell 

(1988), who treated pine samples at 150℃ in air and nitrogen. Bekhta and Niemz (2003) 

also observed the MOR of spruce samples increases in a specific period treatment at 100℃ 

and 150℃ in air but decrease at 200℃. Shi et al. (2007) reported that MOR decreases 

constantly from 24 hours to 60 hours treatment at approximately 200℃ in air. However, 

Goroyias and Hale (2002) reported a slight increase in the MOR of pine (Pinus Sylvestris) 

samples after 20 minutes treatment. Hence, in any heat treatment atmosphere, MOR is 

improved in a specific treatment period even though in a higher temperature. A few authors 

have obtained a constant decrease in MOR, which is different to the outcome of the 
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experiments. One important reason for this is that these authors did not consider the sample 

moisture content influence during heat treatment. Boonstra et al. (2007b) reported a 

different level of decrease in few pine and spruce samples with 165℃ to 185℃ treatment 

after 6 hours. The author recorded that samples are treated with 16%-20% moisture content, 

but in this experiment, samples were dried before heat treatment. Moisture was involved in 

the decomposition changes by a hydrolysis reaction, which also contributed to 13% 

decrease in density. Mitchell (1988) observed that the MOR of green samples decrease 

more than dry samples in the same treatment. Similar MOR decreases in moisture samples 

during heat treatment were reported by Poncsak et al. (2006), Kamdem et al. (2000) and 

Mburu et al. (2008). In the treatment of old pine, MOR changes are similar as with new. 

The reported bending MOE changes during heat treatment vary, with some studies 

registering increases (Inoue et al., 1993; Santos, 2000), other decreases (Shi et al., 2007; 

Mburu et al., 2008; Rusche, 1973) and some found little affect (Kim, 1998; Rapp and Sailer, 

2000; Goroyias and Hale, 2002). Mass loss is an important factor, according to Rusche 

(1973), who found that MOE changes slightly before 8-10% mass loss. In addition, MOE 

is also significantly affected by the microfibril angle, especially the S2 layer of the cell wall 

(Evans and Elic, 2001; Evans et al., 2000). In current experiments, the microfibril angles 

of each sample are slightly different, which is a factor contributing to a large variation in 

MOE. The close relationship between the microfibril angle and MOE was also reported by 

Yang and Evans (2003). 

Dynamic and static mechanical properties show a close relation between each other. The 

increase in elasticity due to the decrease in Tan δ also leads to an improvement in the 

bending MOE and MOR. The increase in viscosity owing to the increase in Tan δ, has the 

effects of the decrease of the bending MOE and MOR. Moreover, the two peaks on the Tan 



193 

 

δ curve increase after any kind of heat treatment, which indicates that the molecules are 

stable after being subjected to it.  
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Chapter 6 Chemical Composition and Mechanical Properties 
 

In this chapter, the mechanical properties and chemical compositions of all the samples, 

including new and old pine, are discussed together to address the relationships between the 

two. Both the static and dynamic mechanical properties are predicted by the peak areas of 

the FTIR spectrum through a suitable regression analysis method. Curve fitting, multiple 

regression analysis and ridge regression analysis are the three essential analysis methods 

for the mathematic models.  

6.1 Static Mechanical Properties and Chemical Composition 

The modulus of rupture (MOR) and modulus of elasticity (MOE) are two essential 

measurements in static mechanical property tests used to describe timber strength. In this 

section, the mathematic models are produced to predict the bending MOR and MOE from 

the peaks on the FTIR spectrum. In general, the bending MOR is predicted by a curve 

fitting method with logarithm relation and multiple regression analysis. The bending MOE 

is predicted by multiple regression analysis and ridge regression analysis. The four 

mathematical models have their own advantages, and all are suitable for prediction. 

The relationships between the compression mechanical properties and timber chemical 

compositions are also discussed. However, since the compression testing samples are too 

large to fit the FTIR facility, the regression mathematic models for the compression MOR 

and compression MOE are not provided.  

6.1.1 Bending Modulus of Rupture and Chemical Composition 

Comparing chemical composition and MOR changes during heat treatment, the latter 

increase due to chemical reactions, which can expand or extend the molecule length or the 
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matrix. The reactions happen in hemicellulose and lignin molecules, including lignin 

condensation, lignin-hemicellulose condensation and lignin cross-linking changes. MOR 

is reduced as a result of timber molecules changing into shorter chains including lignin and 

hemicellulose pyrolysis. Moreover, condensation which is based on the hydroxyl groups, 

is inhibited by oxygen since this group can be oxidised to carbonyl group (C=O). High 

temperature and oxygen also improve pyrolysis in hemicellulose and lignin.  

In heat treatment at 120℃ in a vacuum, MOR of both new and old pine increases constantly 

by approximately 15% and 8%, respectively. In terms of new pine, the FTIR spectrum 

shows clear lignin-hemicellulose condensation (Figure 4-6) and lignin condensation II 

(Figure 4-4) due to the increase in the ether linkage (C-O-C, peak 1154) and the decrease 

in the hydroxyl group (-OH), lignin condensation I (Figure 4-3) due to the increase of peak 

1318 and lignin cross-linking (Figure 4-5) due to the increase in the C-C bonds and 

decrease in the carbonyl group (C=O). Hemicellulose deacetylase and a low rate of 

pyrolysis of hemicellulose are also observed due to an increase in the C=C bonds and at 

decrease in the peaks relating to hemicellulose, which leads to 2.11% and 1.42% mass loss 

in new and old pine during the treatment, respectively. In terms of old pine samples 

treatment, MOR increases, which is mainly due to cross-linking, but there are lesser 

condensation reactions, which contribute to a lower increase in MOR than with new pine. 

The FTIR spectrum shows that hemicellulose and lignin molecules have been condensed 

during the natural ageing process, which enhances timber molecules to resist 120℃ 

temperature and leads to lower mass loss than with the new pine samples. In addition, with 

the treatment at 120℃ for the old samples, MOR changes in air and vacuum atmospheres 

are the same. Oxygen does not play a significant role in the MOR of old pine which is 

different to the same treatment in new pine. Hence, old pine also has been oxidised during 

natural ageing.  
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MOR shows a 42% and 60% decrease at 200℃ treatment in air after 24 hours for new and 

old pine samples, respectively. A condensation reaction and cross-linking reaction may 

happen in the first few hours of treatment, whilst pyrolysis of hemicellulose (Figure 4-2) 

and lignin (Figure 4-8 and Figure 4-9) contribute to large decrease on MOR. In fact, 

pyrolysis is not only responsible for gas or liquid being released from the samples, for it 

also leads to molecule lengths decreasing in hemicellulose and lignin. Old pine samples 

show more mass loss than new ones, which indicates that hemicellulose and lignin-

carbohydrate complexes are greatly pyrolysed and this contributes to a 12% MOR decrease.  

In other treatments in new timber at 120℃ in air, both 160℃ in air and vacuum and 200℃ 

in vacuum, MOR increases in a specific period following a decrease. The MOR increase is 

attributed to condensation and cross-linking reactions, which consume the hydroxyl group, 

ether linkages and C=C bonds. The three functional groups, which can experience 

condensation and cross-linking reactions, decrease after a certain period of treatment. 

Hence, these reactions stop earlier than pyrolysis and oxidation. Pyrolysis is the dominant 

reaction after condensation and cross-linking reactions stop, which leads to mass loss and 

MOR decrease. Oxidation enhances pyrolysis but inhibits condensation and cross-linking.  

MOR has high correlations with the chemical composition of samples as detected by the 

FTIR technique. Table 6-1 and Table 6-2 show the Pearson Correlation coefficients 

between MOR and the peak areas of the FTIR spectrum for new and old pine samples, 

respectively. The highest positive and negative correlation coefficients are Peak 1318 and 

Peak 1730, respectively. Peak 1318 is between the S- or G- units of lignin. An increase of 

Peak 1318 indicates lignin condensation and a decrease means lignin pyrolysis. Peak 1730 

is the carbonyl bond (C=O), where a decrease represents lignin cross-linking and an 

increase signifies hemicellulose pyrolysis. In the table, the next two positive correlations 

with high values for both new and old pine are Peak 1366 and Peak 1226, which correspond 
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to C-H bonds and ether linkages (C-O-C), respectively. The C-H bond is highly related to 

pyrolysis in a negative way. Ether linkage increases due to condensation between lignin 

and hemicellulose or between lignin itself but decrease owing to pyrolysis. The second 

highest negative correlation is Peak 1642, which is affected by lignin cross-linking and 

hemicellulose pyrolysis. Hence, MOR can be predicted by three peaks on the FTIR 

spectrum with a positive correlation and two peaks with negative correlation. In addition, 

density is also an essential factor affecting MOR, because the FTIR spectrum does not 

illustrate significant mass loss.  

Table 6-1 Pearson Correlation of New Pine Sample between MOR and FTIR Peaks  

 

Peak 

1318 

Peak 

1335 

Peak 

1366 

Peak 

1421 

Peak 

1456 

Peak 

1507 

Peak 

1595 

Peak 

1642 

Peak 

1730 

MOR 

Pearson 

Correlation 
.852** -.645** .804** .789** .647** .707** -.796** .677** -.821** 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 467 467 467 467 467 467 467 467 467 

 
Peak 

895 

Peak 

1025 

Peak 

1054 

Peak 

1110 

Peak 

1154 

Peak 

1204 

Peak 

1226 

Peak 

1262 

 

Pearson 

Correlation 
.280** -.197** -.645** .538** .561** -.205** .793** .739** 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 467 467 467 467 467 467 467 467 
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Table 6-2 Pearson Correlation of Old Pine Sample between MOR and FTIR Peaks 

 

Peak 

1318 

Peak 

1335 

Peak 

1366 

Peak 

1421 

Peak 

1456 

Peak 

1507 

Peak 

1595 

Peak 

1642 

Peak 

1730 

MOR 

Pearson 

Correlation 
.846** -.248** .798** .665** .362** .498** -.698** .677** -.769** 

Sig. (2-tailed) 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

N 170 170 170 170 170 170 170 170 170 

 
Peak 

895 

Peak 

1025 

Peak 

1054 

Peak 

1110 

Peak 

1154 

Peak 

1204 

Peak 

1226 

Peak 

1262 

 

Pearson 

Correlation 
-0.98 .117 -.622** .556** .586** -.629** .760** .478** 

Sig. (2-tailed) 0.204 0.128 0.000 0.000 0.000 0.000 0.000 0.000 

N 170 170 170 170 170 170 170 170 

 

 

Figure 6-1 MOR & Peak 1318 / Peak 1730 of New Pine 
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Figure 6-2 MOR & Peak 1318 / Peak 1730 of Old Pine 

Regarding the total 637 samples containing both new and old pine samples, each is tested 

by FTIR and static mechanical analysis. The MOR of both new and old pine samples shows 

high correlation to the size ratio of Peak1318/Peak 730 (Figure 6-1 and Figure 6-2). Hence, 

three independent variables, namely density (ρ), size of Peak 1318 (Wv1318) and size of Peak 

1730 (Wv1318) can predict MOR reasonably accurately. In fact, Figure 6-1 and Figure 6-2 

illustrate that the relationship between MOR and the ratio1318/1730 is a natural logarithmic 

one. However, according to Missanjo and Matsumura (2016); Węgiel et al. (2018) and 

Guller (2007), the relationship between MOR and density is linear. Hence, mathematic 

model should have in the following form:  

𝜎 = 𝑎 × 𝜌 × (ln
𝑃𝑒𝑎𝑘𝑠 𝑤𝑖𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑃𝑒𝑎𝑘𝑠 𝑤𝑖𝑡ℎ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
+ 𝑏) 

where 𝑎 and 𝑏 are parameters, 𝜎 is MOR and 𝜌 is density.  

The independent variables (peak area and density) and the dependent variable (MOR) are 

fitted with R2 (Coefficient of determination) = 0.818.  

R² = 0.7291
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𝜎1 = 22.85425 × 𝜌 × (ln
𝑊𝑣1318
𝑊𝑣1730

+ 6.71716) 

where 𝜎1 is MOR, 𝜌 is the density of the sample, 𝑊𝑣1318 is the size of Peak 1318 and 

𝑊𝑣1730 is the size of Peak 1730.  

R-squared and adjusted R-Squared are 0.818 and 0.817, respectively, which indicates that 

the mathematic model is appropriate. However, the model only contains Peak 1318 and 

Peak 1730 of the FTIR spectrum. There are more positive and negative correlation peaks 

detected by Pearson Correlation, which could be used in the model. In the result of MOR 

curve fitting, R-squared and adjusted R-Squared are less affected (Table 6-3).  

𝜎2 = 24.75646 × 𝜌 × (ln
𝑊𝑣1318

√𝑊𝑣1730
2 +𝑊𝑣1595

2

+ 6.70748) 

𝜎3 = 23.84291 × 𝜌 × (ln
√𝑊𝑣1318

2 +𝑊𝑣1366
2

𝑊𝑣1730
+ 5.90796) 

𝜎4 = 25.43515 × 𝜌 × (ln
√𝑊𝑣1318

3 +𝑊𝑣1366
3 +𝑊𝑣1226

33

𝑊𝑣1730
+ 5.55012) 

𝜎5 = 25.8844 × 𝜌 × (ln
√𝑊𝑣1318

2 +𝑊𝑣1366
2

√𝑊𝑣1730
2 +𝑊𝑣1595

2

+ 5.90611) 

𝜎6 = 27.8036 × 𝜌 × (ln
√𝑊𝑣1318

3 +𝑊𝑣1366
3 +𝑊𝑣1226

33

√𝑊𝑣1730
2 +𝑊𝑣1595

2

+ 5.54231) 

where 𝑊𝑣1595, 𝑊𝑣1366 and 𝑊𝑣1226 are the size of Peak 1595, Peak 1366 and Peak 1226, 

respectively.  
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In fact, more permutations of positive/negative correlations, such as addition (𝑊𝑣1318 + 

𝑊𝑣1366  + 𝑊𝑣1226 )/(  𝑊𝑣1730 + 𝑊𝑣1595 ) and multiplication ( 𝑊𝑣1318 × 𝑊𝑣1366  × 

𝑊𝑣1226 )/(  𝑊𝑣1730  ×  𝑊𝑣1595)  are tested, but R-squared and adjusted R-Squared are 

much lower.  

Table 6-3 MOR Curve Fitting with Different Peaks of the FTIR Spectrum 

Equation Related Peak R-Squared (COD) Adj. R-Squared 

𝝈𝟏 

Peak 1318 

Peak 1730 

0.81769 0.8174 

𝝈𝟐 

Peak 1318 

Peak 1730, Peak 1595 

0.80188 0.80156 

𝝈𝟑 

Peak 1318, Peak 1366 

Peak 1730 

0.81927 0.81898 

𝝈𝟒 

Peak 1318, Peak 1366, Peak 1226 

Peak 1730 
0.81659 0.8163 

𝝈𝟓 

Peak 1318, Peak 1366 

Peak 1730, Peak 1595 

0.80214 0.80183 

𝝈𝟔 

Peak 1318, Peak 1366, Peak 1226 

Peak 1730, Peak 1595 

0.79854 0.79822 

 

Figure 6-3 shows the relationship between predicted MOR and measured MOR, including 

both new and old samples. As MOR increases, the predicted MOR is increasingly higher 

than the measured MOR. There are two reasonable hypotheses to explain this deviation. 

First, Peak 1730 is not only affected by lignin cross-linking and hemicellulose pyrolysis 

reactions, but also, by a deacetylase reaction in hemicellulose. Deacetylase is a reaction 

that does not affect the hemicellulose length or matrix, but it leads to a decrease in the 

carbonyl group (C=O). Hence, as a denominator in the mathematic model, the predicted 

MOR becomes slightly higher than the measured MOR. Regarding the second hypothesis, 

a relationship between the quantity of the chemical functional groups and the size of their 
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corresponding peaks on the FTIR spectrum is not proven. The chemical functional groups 

are fitted by a gaussian curve, where a slight increase in peak height can lead to a significant 

increase in the size. A higher predicted MOR might indicate that above a certain value, a 

change in the FTIR peak area is much quicker than changes in the functional group 

quantity.  

   

Figure 6-3 Relationship between Predicted MOR and Measured MOR by Curve Fitting 

Another method to predict MOR is Multiple Regression Analysis (MRA). MRA can predict 

the dependent variable (MOR) by several independent variable (density and peak area), 

with it being presumed that the relationship between the dependent variable and 

independent variables is linear. MRA predicts the dependent variable by the following 

equation: 

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4…+ 𝛽𝑛𝑋𝑛 

where, Y is the dependent variable, and 𝑋1, 𝑋2, 𝑋3…𝑋𝑛 are independent variables. 𝛽0,  𝛽1, 

𝛽3…𝛽𝑛 are regression parameters, which will be defined in the analysis. MRA predicts 
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MOR by the following mathematic model with R square being 0.819 and Adjusted R square 

being 0.817: 

𝜎 = −4.916 − 0.039 ×𝑊𝑣1054 + 0.045 ×𝑊𝑣1366 + 137.258 × 𝜌 − 0.054 ×𝑊𝑣1456

+ 0.059 ×𝑊𝑣1318 − 0.032 ×𝑊𝑣1421 

where, 𝜎 is MOR, 𝑊𝑣1054, 𝑊𝑣1366, 𝑊𝑣1456, 𝑊𝑣1318 and 𝑊𝑣1421 are the sizes of Peak 

1054, 1366, 1456, 1318 and 1421 respectively, whilst 𝜌 is the sample density.  

Table 6-4 shows the MRA summaries of the different mathematic models. The R-square 

and Adjusted R square are the highest in the last model, which indicates that the model is 

suitable. In fact, model 4, 5 and 6 are similar due to similar R, R square and Adjusted R 

square. Hence, Peaks 1054, 1366, 1456 and density are fundamental variables for the MRA 

model. Density and Peak 1366 relating to the C-H bonds in hemicellulose have positive 

correlations, while Peak 1054 and 1456, which are related to the C-O in and C-H bonds in 

cellulose, respectively, have negative correlations to MOR in the model. Cellulose is the 

most stable molecule in timber, whilst the content increase indicates pyrolysis reactions in 

hemicellulose and lignin. Hence, this model predicts MOR by density and the peaks related 

to cellulose (Peak 1054 and 1456), hemicellulose (Peak 1366) and lignin (Peak 1318). 

The relationship between predicted MOR and measure the MOR by MRA method is shown 

in Figure 6-4. The predicted MOR is slightly higher than that measured MOR, which is the 

same as with the curve fitting method. Since peak 1730 is not used in the MRA model, the 

possible hypothesis of the phenomenon is that there is an unclear relationship between the 

quantity of functional groups and the size of the FTIR peaks.  
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Table 6-4 Summary of Multiple Regression Analysis for MOR  

 Related Peak R R-Squared (COD) Adj. R-Squared 

Std. Variation of 

estimate 

1 Peak 1054 0.706 0.497 0.497 10.197 

2 Peak 1054, 1366 0.806 0.649 0.648 8.530 

3 

Peak 1054, 1366, 

density 
0.867 0.752 0.750 7.183 

4 

Peak 1054, 1366, 

density 

Peak 1456 

0.897 0.805 0.803 6.377 

5 

Peak 1054, 1366, 

density 

Peak 1456, 1318 

0.903 0.815 0.814 6.207 

6 

Peak 1054, 1366, 

density 

Peak 1456, 1318, 

1421 

0.905 0.819 0.817 6.146 

 

 

Figure 6-4 Relationship between Predicted MOR and Measured MOR by MRA 
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Both the curve fitting and multiple regression analysis method predict MOR with high R 

square and Adjusted R square. The curve fitting method can achieve a high coefficient of 

determination for MOR by three variables, whilst MRA needs six. In the two methods, the 

predicted MOR is slightly higher than that measured MOR due to the undefined 

relationships between the chemical functional groups quantity and FTIR peak area. To sum 

up, the two methods can predict MOR for both new and old pine samples.  

6.1.2 Bending Modulus of Elasticity and Chemical Composition  

Generally, the average modulus of elasticity (MOE) of both new and old pine in different 

heat treatment atmosphere shows relatively similar change as with MOR. MOE increases 

in treatment at 120℃ in a vacuum by approximately 12% and 15% in new and old samples, 

respectively, due to condensation and cross-linking reactions. MOE decrease in treatment 

at 200℃ in air by approximately 5% and 11% in new and old samples, respectively, with 

mass loss of 14.5% and 19.2% for new and old samples being the reason. Hence, density 

is an important factor affecting timber’s MOE. As MOR, the MOE of both new and old 

pines increase in other treatments in a specific period then following a decrease, which also 

indicates that condensation and cross-linking reaction improve MOE at low mass loss. 

Moreover, an oxidation reaction is also a factor improving MOE. For treatment on new 

pine in air, the maximum increase in MOE is 6.5%, 4% and 8% at 120℃ for 16 hours, 

160℃ for 16 hours and 200℃ for 8 hours, respectively, whilst in a vacuum atmosphere, it 

is 4% and 5% in treatment at 160℃ for 20 hours and 200℃ for 12 hours, respectively. 

Hence, the treatment in air leads to a higher increase in MOE than with in a vacuum. For 

the old samples, that have been oxidised during natural ageing, MOE increases with 

condensation and a cross-linking reaction, but decreases with pyrolysis.  
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The MOE changes are not as significant as with MOR, in that mass losses of new and old 

pine at 200℃ in a vacuum after 24 hours are 8% and 16% for the latter, respectively, whilst 

for the former, these increase 1.2% and 6.1%, respectively. Bekhta and Niemz (2003) also 

reported similar results. Unlike other isotropic materials, the timber cell is the fundamental 

unit for timber mechanical properties. Astley et al. (1998) found a close relationship 

between timber cell geometries and Young’s Modulus (MOE) by comparing measured 

MOE to predicted MOE, including the variables of cell size, cell wall thickness, the shape 

of cell section and microfibrils angle. The relationships were also reported by Qing and 

Mishnaevsky Jr (2009), Mishnaevsky Jr and Qing (2008) and Harrington et al. (1998). 

Since condensation, cross linking reactions and pyrolysis leading to mass loss greatly affect 

cell wall strength but have much less impact on cell wall form, MOE changes are less than 

those for MOR during the heat treatment.  

Table 6-5 shows that the Pearson correlations between MOE and the FTIR spectrum peaks. 

The highest correlation is density, which means this is an important factor for static 

mechanical properties, including MOR and MOE. Peaks 1025 and 895 are the next two 

highest correlations to MOE, which relate to C-H bond and β-glycosidic linkage (a kind of 

ether linkage), respectively. The C-H bond is the most prevalent in the timber molecule, 

which can be treated as a bond representing the quantity of timber molecule. Peak 895 is a 

kind of ether linkage in hemicellulose and lignin, which reflects the degree of condensation. 

Peak 1054, relating to C-C and C-O bonds, has the largest negative correlation to MOE. 
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Table 6-5 Pearson Correlation of All Samples between MOE and Density and FTIR Peaks 

 Density 
Peak 

1335 

Peak 

1366 

Peak 

1421 

Peak 

1456 

Peak 

1507 

Peak 

1595 

Peak 

1642 

Peak 

1730 

MOE 

Pearson 

Correlation 
.737** -.200** .101** .196** -.042 -.139** .180** .066 .058 

Sig. (2-tailed) 0.000 0.000 0.011 0.000 0.288 0.000 0.000 .096 0.141 

N 637 637 637 637 637 637 637 637 637 

 
Peak 

895 

Peak 

1025 

Peak 

1054 

Peak 

1110 

Peak 

1154 

Peak 

1204 

Peak 

1226 

Peak 

1262 

Peak 

1318 

Pearson 

Correlation 
.394** .554** -.467** -.271 -.189** .294** .029 .027 .046 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000 0.000 0.429 0.492 0.026 

N 637 637 637 637 637 637 637 637 637 

 

In the previous section, two mathematic models that can predict MOR with a high 

coefficient of determination were presented. Regarding MOE, the curve fitting method 

does not show reasonable prediction, where multiple regression analysis (MRA) provides 

a suitable model to predict it. Table 6-6 shows stepwise regression analysis and the model 

7 with R square 0.642 and Adjusted R square 0.638 is the best mathematic model for MOE: 

𝐸 = −11641.87 + 13750.99 × 𝜌 + 0.749 ×𝑊𝑣1025 + 7.956 ×𝑊𝑣1054

+ 2.807 ×𝑊𝑣1226 + 1.173 ×𝑊𝑣895 − 2.533 ×𝑊𝑣1456

+ 1.556 ×𝑊𝑣1507 

where 𝜌 is density, 𝑊𝑣1025, 𝑊𝑣1054, 𝑊𝑣1226, 𝑊𝑣895, 𝑊𝑣1456 and 𝑊𝑣1507 are the size of 

Peaks 1025, 1054, 1226, 895, 1456 and 1507 after normalisation, respectively.  

In the model, the predicted MOE is also slightly higher than that measured (Figure 6-5). 

The reason for this has been discussed in the subsection 6.1.2 in relation to MOR, so will 

not be discussed further in this subsection.  
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Table 6-6 Summary of Multiple Regression Analysis for MOE 

 Related Peak R R-Squared (COD) Adj. R-Squared 

Std. Error of 

estimate 

1 Density 0.742 0.550 0.549 634 

2 Density, Peak 1025 0.758 0.575 0.574 617 

3 

Density 

Peak 1025, 1054 

0.769 0.591 0.589 606 

4 

Density 

Peak 1025, 1054, 

1226 

0.783 0.614 0.611 589 

5 

Density 

Peak 1025, 1054, 

1226, 895 

0.792 0.628 0.625 578 

6 

Density 

Peak 1025, 1054, 

1226, 895, 1456 

0.797 0.635 0.632 573 

7 

Density 

Peak 1025, 1054, 

1226, 895, 1456, 

1507 

0.801 0.642 0.638 568 
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Figure 6-5 Relationship between Predicted MOE and Measured MOE by MRA 

In the MRA model, peak 1054 is used as a positive variable but Pearson correlation shows 

that it is negative. This phenomenon is common in an MRA model due to multicollinearity, 

which is caused by the high correlations between two or more variables. Hence, to avoid 

the problem, another regression method, Ridge Regression (RR) is used to predict MOE. 

This is a method to processing multicollinearity data, which improves the reliability of the 

regression coefficient, but reduces the quantity of independent variables and thus, decreases 

the precision of the model. RR analysis shows the following mathematic model with R 

square 0.601, Adjusted R square 0.598 and standard error 599.217. 

𝐸 = −5936.428 + 9291.654 × 𝜌 + 0.588 ×𝑊𝑣1025 + 2.156 ×𝑊𝑣1226

+ 1.171 ×𝑊𝑣895 − 1.101 ×𝑊𝑣1456 

In the model, density and the size of Peak 1025, 1226, 895 and 1456 are the independent 

variables, which means abandoning Peaks 1054 and 1226 included in the MRA method. 

Figure 6-6 shows the relationship between predicted MOE and that measured by RR 

method. The reason for the higher predicted MOE than that measured has been discussed 

in subsection 6.1.1. 
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Figure 6-6 Relationship between Predicted MOE and Measured MOE by RR 

Both multiple regression analysis (MRA) and ridge regression (RR) analysis create a 

suitable mathematic model to predict MOE by FTIR peaks, with each having its distinctive 

advantages. The MRA model has a high coefficient of determination (R square) but suffer 

from a multicollinearity problem. RR produces a model with a high reliability of regression 

coefficient, but the R square is slightly lower than with MRA. In sum, the two mathematic 

models are reasonable for the research.  

6.1.3 Summary 
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MOR can be predicted by a curve fitting method or multiple regression analysis (MRA) 

method. In the curve fitting model, density along with Peaks 1318 and 1730, which are 

related to condensation, cross-linking, and pyrolysis reaction, are three independent 

variables. In the MRA model, density, Peak 1054, 1366, 1456, 1318 and 1421 are the 

variables. Both the two models have more than 0.8 R-square (coefficient of determination), 

which indicate that the two models are suitable for predicting MOR by the FTIR peaks.  

MOE can be predicted by an MRA model with 0.64 R-square. Density as well as Peak 

1025, 1054, 1226, 895, 1456 and 1507 are the important variables. However, the MRA 

model has a problem of multicollinearity, so another Ridge Regression method is used to 

solve the problems with Peaks 1025, 1226, 895 and 1456 as variables, but the R-square is 

reduced to 0.6.  

6.2 Dynamic Mechanical Properties and Chemical Composition 

In temperature scanning from -150℃ to 150℃, Tan δ shows two peaks. Moreover, the Tan 

δ curve decreases in treatment at 120℃ in a vacuum but increase at 200℃ in air. Tan δ 

increases due to an increase in viscosity and decrease in elasticity at the same time, whilst 

Tan δ decreases due to the opposite occurrence. Hence, the chemical reaction, which can 

extend or expand timber molecules including condensation and cross-linking reactions, can 

improve the elasticity of timber. Pyrolysis reactions, which lead to shortening of molecules, 

can increase the viscosity of timber.  

Two peaks, γ and β, appear on the Tan δ curve, which are affected by methylol and moisture 

content, respectively. Peaks γ and β move to a higher temperature after all heat treatments, 

which means that the related functional groups need a high temperature to cause 

intermolecular friction. Hence, condensation and cross-linking reaction contribute to the 

stability of timber molecules as well as the pyrolysis reaction, which leads to an increase 
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in a few stable functional groups including ether linkage, C=C bonds and the carbonyl 

group.  

The storage modulus and loss modulus of Peak γ and β can be predicted by the peak area 

of the FTIR spectrum. The Tan δ value at the two peaks also can be predicted from the 

storage and loss moduli, which have a close relationship to each other (Figure 6-7 and 

Figure 6-8).  

  

Figure 6-7 Relationships of Two Peaks Storage Modulus  
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Figure 6-8 Relationships of Two Peaks Loss Modulus 

6.2.1 Peak γ of Tan δ 

The storage modulus at Peak γ is affected significantly by density (Table 6-7). Peaks 1318 

and 1025, relating to condensation reactions and C-H bonds, respectively, have high 

positive correlations with the storage modulus, whilst Peaks 1054 and 1110 have high 

negative correlations with it. Since these two peaks are related to cellulose an increase 

indicates mass loss caused by the pyrolysis of hemicellulose and lignin. The loss modulus 

at Peak γ is also affected by density with the highest positive correlation (Figure 6-8). The 
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where 𝑆𝑚𝛾 and 𝐿𝑚𝛾 are the storage modulus and loss modulus at peak γ, respectively, 𝜌 

is density, whilst 𝑊𝑣1025  and 𝑊𝑣1318 , are the size of the Peaks at 1025 and 1318, 

respectively. The R-square and adjusted R-square of the storage modulus regression model 

are 0.611 and 0.600, respectively, whilst those of the loss modulus regression model are 

0.383 and 0.373, respectively. The predicted and measured storage and loss moduli are 

shown in Figure 6-9. The predicted modulus is higher than that measured, the reason for 

which has been explained in the subsection 6.1.1. 

Table 6-7 Pearson Correlations between the Storage Modulus of Peak γ and Density and the FTIR Peaks 

 Density 
Peak 

1335 

Peak 

1366 

Peak 

1421 

Peak 

1456 

Peak 

1507 

Peak 

1595 

Peak 

1642 

Peak 

1730 

Storage 

Modulus 

Pearson 

Correlation 
.728** -.059 .237** .308** .042 .027 .104 -.069 -.008 

Sig. (2-tailed) 0.000 0.521 0.009 0.001 0.652 0.773 0.259 .451 0.933 

N 120 120 120 120 120 120 120 120 120 

 
Peak 

895 

Peak 

1025 

Peak 

1054 

Peak 

1110 

Peak 

1154 

Peak 

1204 

Peak 

1226 

Peak 

1262 

Peak 

1318 

Pearson 

Correlation 
.155 .633** -.588** -.422** -.247** .167 .000 .085 .228* 

Sig. (2-tailed) 0.090 0.000 0.000 0.000 0.007 0.068 0.998 0.353 0.012 

N 120 120 120 120 120 120 120 120 120 

 

 

 

 

 

 

 

 

 

 

 



216 

 

Table 6-8 Pearson Correlations between the Loss Modulus of Peak γ and Density and the FTIR Peaks 

 Density 
Peak 

1335 

Peak 

1366 

Peak 

1421 

Peak 

1456 

Peak 

1507 

Peak 

1595 

Peak 

1642 

Peak 

1730 

Loss 

Modulus 

Pearson 

Correlation 
.557** -.084 .189* .258** .061 .003 .118 -.056 .107 

Sig. (2-tailed) 0.000 0.361 0.039 0.004 0.511 0.970 0.201 .544 0.245 

N 120 120 120 120 120 120 120 120 120 

 
Peak 

895 

Peak 

1025 

Peak 

1054 

Peak 

1110 

Peak 

1154 

Peak 

1204 

Peak 

1226 

Peak 

1262 

Peak 

1318 

Pearson 

Correlation 
.156 .559** -.423** -.409** -.229* .-.031 .021 .136 .184** 

Sig. (2-tailed) 0.088 0.000 0.000 0.000 0.012 0.734 0.819 0.140 0.045 

N 120 120 120 120 120 120 120 120 120 

 

  

Figure 6-9 Predicted and Measured Storage and Loss Moduli of Peak γ 

Tan δ at Peak γ can be calculated by the two regression models as: 
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The relationship between the predicted and measured Tan δ at Peak γ is shown in Figure 

6-10, with the R-square 0.35. The temperature at which peak γ appears cannot be predicted 

by the FTIR peaks. One possible reason is that there are no peaks corresponding to the 

methylol group in the timber molecule.  

  

Figure 6-10 Predicted and Measured Tan δ at Peak γ 

6.2.2 Peak β of Tan δ 

Peak β is affected by moisture between timber molecules, whilst intermolecular friction 

happens on main chains and moisture acts as lubrication. Same as peak γ, the storage and 

loss moduli are also affected by density and Peak 1025 with positive correlations and Peaks 

1054 and 1110 with negative ones (Table 6-9 and Table 6-10). MRA shows the models for 

storage and loss moduli by the peak areas of the FTIR spectrum as follows:  
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where 𝑆𝑚𝛽  and 𝐿𝑚𝛽  are the storage modulus and loss modulus at Peak β, 𝜌 is sample 

density. 𝑊𝑣1025, 𝑊𝑣1318. The R-square and adjected R-square for the storage regression 

models are 0.519 and 0.510, respectively, whilst for loss modulus regression model these 

are 0.682 and 0.668, respectively. The predicted and measured moduli are shown in Figure 

6-11, with the former being slightly higher than the later, the reason for which was 

discussed in subsection at 6.1.1. 

The Tan δ at peak γ can be calculated by the following: 

𝑇𝑎𝑛 𝛿𝛾 =
𝐿𝑚𝛾

𝑆𝑚𝛾
⁄  

The relationship between the predicted Tan δ at peak γ and that measured one is shown in 

Figure 6-12.  

Table 6-9 Pearson Correlations between the Storage Modulus of Peak β and Density and the FTIR Peaks 

 Density 
Peak 

1335 

Peak 

1366 

Peak 

1421 

Peak 

1456 

Peak 

1507 

Peak 

1595 

Peak 

1642 

Peak 

1730 

Storage 

Modulus 

Pearson 

Correlation 
.693** -.116 .122 .204* -.038 -.043 .189* -.122 .053 

Sig. (2-tailed) 0.000 0.207 0.185 0.025 0.677 0.640 0.039 0.183 0.566 

N 120 120 120 120 120 120 120 120 120 

 
Peak 

895 

Peak 

1025 

Peak 

1054 

Peak 

1110 

Peak 

1154 

Peak 

1204 

Peak 

1226 

Peak 

1262 

Peak 

1318 

Pearson 

Correlation 
.144 .587** -.530** -.410** -.293** -.106 -.062 -.017 .136 

Sig. (2-tailed) 0.117 0.000 0.000 0.000 0.001 0.249 0.501 0.855 0.140 

N 120 120 120 120 120 120 120 120 120 

 

Table 6-10 Pearson Correlations between the Loss Modulus of Peak β and Density and the FTIR Peaks 

 Density 
Peak 

1335 

Peak 

1366 

Peak 

1421 

Peak 

1456 

Peak 

1507 

Peak 

1595 

Peak 

1642 

Peak 

1730 

Loss 

Modulus 

Pearson 

Correlation 
.757** -.144 .107 .191* .023 -.104 .300** -.073 .184* 
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Sig. (2-tailed) 0.000 0.117 0.243 0.036 0.801 0.260 0.000 0.428 0.045 

N 120 120 120 120 120 120 120 120 120 

 
Peak 

895 

Peak 

1025 

Peak 

1054 

Peak 

1110 

Peak 

1154 

Peak 

1204 

Peak 

1226 

Peak 

1262 

Peak 

1318 

Pearson 

Correlation 
.214* .662** -.617** -.568** -.364** -.098 -.153 -.075 .045 

Sig. (2-tailed) 0.019 0.000 0.000 0.000 0.000 0.286 0.095 0.417 0.626 

N 120 120 120 120 120 120 120 120 120 

 

  

Figure 6-11 Predicted and Measured Storage and Loss Moduli of Peak β 
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Figure 6-12 Predicted and Measured Tan δ at Peak β 

 

The temperature at which Peak β appears can be predicted by the MRA method, with the 

density and moisture content being the only independent variables.  

𝑇𝛽 = 31.464 + 112.455 × 𝜌 − 1.671 ×𝑀𝑐 

where 𝑇𝛽 is the temperature when Peak β appears, 𝜌 is the density and 𝑀𝑐 is the sample 

moisture content. Moreover, the R-square and Adjusted R-square are 0.327 and 0.316, 
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means that the elasticity is enhanced. Pyrolysis contributes to a higher Tan δ, so the 

viscosity is increased by this reaction. Two peaks that appear on Tan δ during temperature 

scanning move to a higher temperature, which means that the molecule structure tends to 

be stable after any kind of heat treatment.  

Apart from the temperature of the two peaks, other dependent variables can be predicted 

by the multiple regression analysis method with acceptable coefficient of determination. 

Both the storage and loss moduli are significantly affected by density with positive 

correlations. Hence, molecule quantity is an important factor affecting the moduli. 

However, FTIR is not a sensitive technique for identifying the quantities of functional 

groups. Hence, dynamic mechanical properties cannot be predicted just by FTIR 

techniques. 

6.3 Discussion and Conclusion  

Both static and dynamic timber mechanical properties have close relations to the chemical 

composition. Condensation and lignin cross-linking reactions play a significant role in 

improvement of the modulus of rupture (MOR) and modulus of elasticity (MOE). The 

MOE improvement also leads to a decrease in Tan δ of the dynamic mechanical properties. 

Mass loss, which is attributed to pyrolysis in hemicellulose and lignin, can decrease MOR 

and MOE, which contributes to an increase in Tan δ. Hence, viscoelasticity has close 

relations to static mechanical properties, whereby elasticity enhances static mechanical 

properties, whilst viscosity reduces them.  

The static mechanical properties, including the bending MOR and MOE, the dynamic 

mechanical properties including storage modulus, loss modulus and Tan δ value at Peak β 

and γ can be predicted by density and a few peaks on the FTIR spectrum. A curve fitting 

method by Origin software as well as multiple regression analysis and ridge regression by 
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SPSS software are three methods for predicting the mechanical properties. The regression 

models are suitable for new and old pine samples, which demonstrates their wide 

applicability for timbers. Moreover, for higher values of all properties, the predicted value 

is slightly higher than the measured one. One important reason is that the relationship 

between the quantities of functional groups and the size of their corresponding FTIR peaks 

is non linear. MOR change is more significant than MOE during heat treatment, which lead 

to higher coefficient of determination (R-square) of bending MOR regression model. Since 

the FTIR technique shows the chemical composition of cell walls, it is found that the cell 

wall strength, which is affected by this composition, has a more significant influence on 

MOR than MOE. The regression models also indicate that MOE is also affected by timber 

cell structure.  

The temperature at which two peaks appear for Tan δ when scanning from -150℃ to 150℃, 

β and γ, cannot be predicted by density and the FTIR peaks. Theoretically, the peaks move 

to a higher temperature due to the stability of the timber molecules increasing. However, 

the stability is not easy to define by the FTIR peaks, which might be an important reason 

affecting the regression model of the temperature.  

Compression samples are too large to fit the FTIR facility, so in the related section, the 

chemical composition measured in small samples was used to discuss the relationship 

between compression mechanical properties and chemical composition. In fact, the 

compression MOE has similar changes as the bending MOR, which indicate that 

condensation and cross-linking reactions can improve the former whilst pyrolysis, which 

also contribute to mass loss, lead to a decrease on it. For compression MOR, apart from the 

chemical composition of timber molecules, cell structures are also an important factor 

affecting this.   
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Chapter 7 Implementation 
 

Two implementations of the research results are produced in this chapter. Section 7.1 

discusses the semi-destructive method to predict the mechanical properties of a specific 

structural member by density and FTIR. Section 7.2 produces a method to accelerate timber 

chemical composition to a specific natural ageing by heat treatment under controlled 

atmosphere.  

7.1 Semi-Destructive Testing on Existing Building Elements 

The relationships between timber chemical composition and its corresponding mechanical 

properties are discussed in the chapter 6, with the mechanical properties mathematic 

models being regressed by density and the peaks on the FTIR spectrum. Theoretically, 

timber’s modulus of elasticity (MOE) and modulus of rupture (MOR) can be predicted by 

these variables.  

A protective layer will be formed on timber’s surface by UV exposure, even when it does 

not face the sunlight directly. When the chemical composition of the layer is greatly 

degraded and very stable (Figure 7-1), it cannot be used to predict mechanical properties. 

An operational method is to extract a few samples at a centimetre depth below the timber 

structural members. The lens of an ATR-FTIR facility is approximately 3mm in diameter, 

so the cross section is best set at 4mm × 4mm. Density is a variable in the regression model, 

which can be calculated by sample weight and volume, the thickness is chosen at 

approximately 2mm. In addition, for accuracy of prediction, it is appropriate to sample 

from multiple places on the timber structural members. In this study, all testing samples 

are from one large piece measuring 20cm × 20cm ×100cm and the FTIR spectrums of each 
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sample do not vary significantly. Hence, for a large size of structural members, in-site 

sampling can be extracted per meter. 

 

Figure 7-1 A Protective Layer after 100 hours UV Exposure  

In the regression model, all independent variables are measured after conditioning at 20℃ 

with 65% humidity. In-site sample should be also procced in the conditioning room. 

Sample weights and dimensions are measured after conditioning, as well as the chemical 

composition, using the FTIR facility. The MOR and MOE can be calculated by the models 

produced in subsection 6.1. Finally, the properties are obtained by the means of the samples 

taken from same timber structural member.   

This method can predict the static mechanical properties of timber structural members with 

negligible destruction at a maximum 4mm × 4mm × 10mm. If the mechanical properties 

of the specific timber members are reduced lower than the structural requirement, a 

replacement or enhancement project would be carried out immediately.  

7.2 Timber Accelerated Ageing  

The functional group changes of pine timber molecule during heat treatment in different 

temperatures, periods and atmospheres are defined in the chapter 4. The chemical 

Protective 

Layer 

Well Preserved 

Cell wall 
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composition of 580 year old pine of the same species is also defined by FTIR techniques. 

Hence, an aim of the research is to obtain a piece of wood that has same chemical 

composition as the old pine, through temperature treatment, which will cause distinctive 

changes in new pine samples.   

In this section, functional group change during any heat treatment is predicted according to 

temperature and treatment period in the first section. The accelerating method, which 

changes new pine to old pine chemically, is covered in the second section.  

7.2.1 Regression of Functional Group Changes During Heat Treatment 

The size of the peaks on the FTIR spectrum during heat treatment change complexly with 

trends of increase, decrease, increase-then-decrease and decrease-then-increase, all being 

observed during heat treatment. However, all the peak change percentages can be predicted 

by multiple regression analysis with oxygen content, temperature and treatment period as 

independent variables. The mean changes of each peak are shown in Table 7-1. Even 

though a few peaks change together with positive or negative correlations, which was 

discussed in section 4.7, these peaks are also regressed to reduce the variation for the 

simulation. Since one regression model cannot combine the samples treated in air and in a 

vacuum, the models for each peak are divided into two so as to test both atmospheres.  

Table 7-1 Percentage Changes of Each Peak During Heat Treatment 

Atmosphere Period 
Peak 

895 

Peak 

1025 

Peak 

1054 

Peak 

1110 

Peak 

1154 

Peak 

1204 

Peak 

1226 

Peak 

1262 

Peak 

1318 

Non-treated 0 0 0 0 0 0 0 0 0 0 

air 

120 

8 7% -1% 21% -9% 18% -8% -11% 0% 10% 

12 6% -1% 19% -8% 18% -7% -6% 0% 9% 

16 10% -1% 23% -8% 17% -9% -10% 0% 4% 

20 11% 0% 19% -9% 17% -9% -9% -1% 5% 

24 12% -1% 21% -9% 18% -5% -9% 2% 5% 

160 
8 11% 0% 20% -7% 16% -8% -11% -2% 0% 

12 14% 0% 20% -10% 16% -9% -14% -1% -3% 
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16 10% 0% 23% -11% 13% -6% -15% -1% -7% 

20 12% 0% 23% -10% 14% -7% -15% -2% -9% 

24 8% 1% 23% -11% 13% -8% -15% -3% -11% 

200 

8 8% 1% 37% -15% 2% -10% -28% -10% -31% 

12 0% 1% 53% -22% 1% -3% -43% -13% -47% 

16 -9% 1% 67% -21% 1% -1% -43% -15% -58% 

20 0% 2% 70% -23% 1% 0% -45% -14% -64% 

24 -7% 1% 70% -22% 1% 1% -47% -16% -68% 

vacuum 

120 

8 13% -2% 16% -5% 17% -4% -5% 1% 7% 

12 15% 0% 18% -7% 16% -8% -10% -2% 7% 

16 17% 0% 16% -8% 16% -7% -7% -2% 8% 

20 10% -1% 16% -7% 16% -9% -10% -2% 9% 

24 11% 0% 20% -8% 17% -7% -11% -2% 12% 

160 

8 -12% -1% 8% -4% 5% -3% -8% -1% 0% 

12 -13% -1% 13% -4% 5% -1% -9% -1% -1% 

16 -11% -2% 11% -2% 5% 2% -7% 1% 0% 

20 -12% 0% 10% -5% 5% 1% -8% 0% -2% 

24 -10% -2% 8% -1% 6% 2% -5% -3% -6% 

200 

8 -8% -1% 16% -4% 6% 7% -10% -4% -13% 

12 -9% -1% 23% -4% 4% 12% -14% -4% -16% 

16 -7% -2% 21% -3% 1% 11% -12% -6% -19% 

20 0% -3% 33% -4% 4% 13% -18% -10% -23% 

24 16% -2% 37% -4% 14% 3% -24% -7% -26% 

Atmosphere PERIOD 
Peak 

1335 

Peak 

1366 

Peak 

1421 

Peak 

1456 

Peak 

1507 

Peak 

1595 

Peak 

1642 

Peak 

1730 
 

air 

120 

8 -16% 17% -9% 16% 6% -7% -6% -43%  

12 -8% 13% -8% 6% 5% -1% -4% -44%  

16 2% 8% -10% -5% -4% 7% -6% -46%  

20 -9% 7% -10% -5% -1% 8% -4% -43%  

24 -23% 6% -11% -5% 9% 15% -4% -41%  

160 

8 -3% 2% -12% -14% -5% 12% -5% -42%  

12 8% 4% -11% -5% 1% 29% -8% -37%  

16 4% 1% -12% -10% -3% 44% -8% -27%  

20 10% -2% -13% -11% -3% 46% -8% -24%  

24 6% -7% -14% -22% -6% 55% -8% -15%  

200 

8 24% -25% -23% -34% -22% 113% -9% 39%  

12 53% -49% -36% -47% -39% 167% -14% 108%  

16 32% -53% -41% -50% -40% 193% -20% 201%  

20 37% -54% -41% -55% -39% 210% -21% 237%  

24 37% -61% -47% -54% -47% 246% -22% 264%  

vacuum 120 

8 -13% 9% -8% -2% 5% 7% -4% -42%  

12 -15% 6% -10% -7% 1% 7% -4% -47%  

16 -14% 4% -10% -10% -2% 2% -4% -52%  
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20 -16% 6% -11% -6% -1% -6% -3% -47%  

24 -3% 1% -11% -16% -5% -12% -5% -44%  

160 

8 7% -6% -12% -13% -4% 10% -2% -15%  

12 5% -6% -13% -13% -1% 19% -7% -28%  

16 -3% -4% -13% -11% 1% 28% -8% -38%  

20 7% -4% -12% -10% 1% 33% -8% -31%  

24 5% -12% -14% -19% -1% 52% -8% -26%  

200 

8 10% -15% -19% -18% 3% 64% -11% 2%  

12 14% -19% -19% -25% 7% 82% -17% 8%  

16 12% -24% -22% -27% -1% 90% -16% 14%  

20 6% -28% -26% -28% -5% 122% -16% 22%  

24 13% -23% -24% -32% -10% 125% -15% 29%  

 

The peaks percentage changes regression models are as follow. 

In air treatment 

𝑃𝑐895  = 0.309 − 0.001 × 𝑇 − 0.002 × 𝑡𝑝 

𝑃𝑐1054 = −0.561 + 0.005 × 𝑇 + 0.008 × 𝑡𝑝 

𝑃𝑐1110 = 0.139 − 0.001 × 𝑇 − 0.002 × 𝑡𝑝 

𝑃𝑐1154 = 0.450 − 0.002 × 𝑇 − 0.001 × 𝑡𝑝 

𝑃𝑐1204 = −0.196 + 0.001 × 𝑇 + 0.002 × 𝑡𝑝 

𝑃𝑐1226 = 0.496 − 0.004 × 𝑇 − 0.004 × 𝑡𝑝 

𝑃𝑐1262 = 0.245 − 0.002 × 𝑇 − 0.001 × 𝑡𝑝 

𝑃𝑐1318 = 1.203 − 0.008 × 𝑇 − 0.011 × 𝑡𝑝 

𝑃𝑐1335 = −0.861 + 0.006 × 𝑇 + 0.001 × 𝑡𝑝 

𝑃𝑐1366 = 1.220 − 0.007 × 𝑇 − 0.011 × 𝑡𝑝 
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𝑃𝑐1421 = 0.448 − 0.004 × 𝑇 − 0.005 × 𝑡𝑝 

𝑃𝑐1456 = 0.958 − 0.006 × 𝑇 − 0.010 × 𝑡𝑝 

𝑃𝑐1507 = 0.754 − 0.005 × 𝑇 − 0.004 × 𝑡𝑝 

𝑃𝑐1595 = −3.483 + 0.023 × 𝑇 + 0.039 × 𝑡𝑝 

𝑃𝑐1642 = 0.191 − 0.002 × 𝑇 − 0.003 × 𝑡𝑝 

𝑃𝑐1730 = −4.809 + 0.027 × 𝑇 + 0.054 × 𝑡𝑝 

In vacuum treatment  

𝑃𝑐895 = 0.226 − 0.002 × 𝑇 + 0.005 × 𝑡𝑝 

𝑃𝑐1054 = −0.073 + 0.001 × 𝑇 + 0.004 × 𝑡𝑝 

𝑃𝑐1154 = 0.277 − 0.001 × 𝑇 + 0.002 × 𝑡𝑝 

𝑃𝑐1204 = −0.310 + 0.002 × 𝑇 

𝑃𝑐1226 = 0.090 − 0.001 × 𝑇 − 0.003 × 𝑡𝑝 

𝑃𝑐1262 = 0.086 − 0.001 × 𝑇 − 0.002 × 𝑡𝑝 

𝑃𝑐1318 = 0.566 − 0.004 × 𝑇 − 0.003 × 𝑡𝑝 

𝑃𝑐1335 = −0.477 + 0.003 × 𝑇 + 0.001 × 𝑡𝑝 

𝑃𝑐1366 = 0.529 − 0.003 × 𝑇 − 0.004 × 𝑡𝑝 

𝑃𝑐1421 = 0.122 − 0.001 × 𝑇 − 0.002 × 𝑡𝑝 

𝑃𝑐1456 = 0.287 − 0.002 × 𝑇 − 0.006 × 𝑡𝑝 

𝑃𝑐1507 = 0.073 − 0.00007620 × 𝑇 − 0.004 × 𝑡𝑝 
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𝑃𝑐1595 = −1.794 + 0.012 × 𝑇 + 0.017 × 𝑡𝑝 

𝑃𝑐1642 = 0.164 − 0.001 × 𝑇 − 0.002 × 𝑡𝑝 

𝑃𝑐1730 = −1.475 + 0.008 × 𝑇 + 0.003 × 𝑡𝑝 

where 𝑃𝑐𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟  are the peak percentage changes during heat treatment, 𝑇  is the 

treatment temperature in Celsius (℃) and 𝑡𝑝 is the treatment period in hours. For high 

accuracy, the two independent variables are best chosen between 120℃ and 200℃ and 

between 0 and 24 hours for the treatment period. Table 7-2 shows the Pearson correlation 

(R), coefficient of determination (R-square), adjusted R-square and standard error of the 

MRA mathematical models for each peak, both in air and vacuum treatments. The R-square 

and Adjusted R-square are high, which means that the models are highly functional. The 

predicted values and measured values of the changes of each peak are shown in Figure 7-2. 

Since the R-square of Peaks 895 and 1025 is low, and Peak 1642 is affected by moisture 

content, the three peaks are not shown in the figure.  

The change of Peak 1025, relating to C-Hs bond and ether linkage, cannot be predicted by 

the regression models. C-H bonds are the majority of bonds in the timber molecule, but the 

changes are not any more significant than other bonds after normalisation. Hence, peak 

1025 is not discussed in the following section. 
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Table 7-2 MRA Models for Peak 1318, 1456 and 1595 Changes During Heat Treatment 

 Samples in Air Samples in Vacuum 

Peak R R-square 

Adjusted 

R-square 

Std. 

Error 

R R-square 

Adjusted 

R-square 

Std. 

Error 

895 0.670 0.449 0.357 0.0561 0.572 0.327 0.214 0.1063 

1054 0.841 0.707 0.658 .0.1185 0.555 0.308 0.193 0.0744 

1110 0.876 0.767 0.729 0.0305 - - - - 

1154 0.941 0.885 0.866 0.0268 0.767 0.588 0.519 0.0410 

1204 0.706 0.499 0.415 0.0271 0.924 0.853 0.828 0.0306 

1226 0.904 0.817 0.787 0.0709 0.695 0.483 0.397 0.0395 

1262 0.909 0.826 0.797 0.2921 0.783 0.545 0.469 0.0208 

1318 0.932 0.869 0.847 0.1103 0.963 0.928 0.916 0.0361 

1335 0.914 0.836 0.808 0.0954 0.906 0.820 0.790 0.0498 

1366 0.926 0.858 0.835 0.1123 0.974 0.949 0.940 0.0293 

1421 0.879 0.772 0.734 0.0719 0.935 0.874 0.853 0.0211 

1456 0.952 0.906 0890 0.0757 0.919 0.845 0.819 0.0379 

1507 0.897 0.805 0.773 0.0918 0.602 0.362 0.255 0.0368 

1595 0.924 0.854 0.830 0.3566 0.929 0.863 0.840 0.1811 

1642 0.865 0.749 0.707 0.0338 0.912 0.832 0.804 0.0234 

1730 0.848 0.720 0.673 0.6441 0.940 0.884 0.865 0.1017 
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Figure 7-2 Predicted and Measured Peak Area Changes of Regression Model 

7.2.2 Accelerated Ageing Method  

The peak areas of untreated new and old pine are illustrated in Table 4-2 and the percentage 

changes are presented in Table 7-3. Hence a simultaneous equations system is set to predict 

two independent variables: treatment temperature and treatment period. Theoretically, 

three kinds of treatment might be used for the chemical change: 

1. Treated in an air atmosphere; 

2. Treated in a vacuum atmosphere; 

3. Treated both in air and in vacuum atmospheres. 

Table 7-3 New Pine Changing to Old Pine 

 Peak 1054 
(C-C, C-O) 

Peak 1110 
(C-OH) 

Peak 1154 
(C-O-C) 

Peak 1204 
(C-O-C) 

Peak 1226 
(C-C) 

Peak 1262 
(C-O) 

Peak 1318 
(G or S Ring) 

new 0 0 0 0 0 0 0 

old -41.78% -13.97% +3.93% -29.31% -10.87% -9.16% -8.91% 

 
Peak 1335 

(-OH) 

Peak 1366 

(C-H) 

Peak 1421 

(O-H) 

Peak 1456 

(C-H) 

Peak 1507 

(Aromatic Ring) 

Peak 1595 

(C=C) 

Peak 1730 

(C=O) 

new 0 0 0 0 0 0 0 

old -18.47% +11.23% -1.58% +8.47% -4.51% +14.92% +11.25% 
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For the first, 𝑇𝐴 and 𝑡𝑝𝐴 are the independent variables of temperature and treatment period. 

For the second, 𝑇𝑉  and 𝑡𝑝𝑉  are the independent variables of temperature and treatment 

period. For the third, the four independent variables are temperature, treatment period as 

well as air and vacuum atmospheres. Accordingly, three simultaneous equations systems 

are created as the follows: 

For treatment in an air atmosphere: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
−0.561 + 0.005 × 𝑇𝐴 + 0.008 × 𝑡𝑝𝐴 = −0.4178

0.139 − 0.001 × 𝑇𝐴 − 0.002 × 𝑡𝑝𝐴 = −0.1397

0.450 − 0.002 × 𝑇𝐴 − 0.001 × 𝑡𝑝𝐴 = 0.0393

−0.196 + 0.001 × 𝑇𝐴 + 0.002 × 𝑡𝑝𝐴 = −0.2931

0.496 − 0.004 × 𝑇𝐴 − 0.004 × 𝑡𝑝𝐴 = −0.1087

0.245 − 0.002 × 𝑇𝐴 − 0.001 × 𝑡𝑝𝐴 = −0.0916

1.203 − 0.008 × 𝑇𝐴 − 0.011 × 𝑡𝑝𝐴 = −0.0891

−0.861 + 0.006 × 𝑇𝐴 + 0.001 × 𝑡𝑝𝐴 = −0.1847

1.220 − 0.007 × 𝑇𝐴 − 0.011 × 𝑡𝑝𝐴 = 0.1123

0.448 − 0.004 × 𝑇𝐴 − 0.005 × 𝑡𝑝𝐴 = −0.0158

0.958 − 0.006 × 𝑇𝐴 − 0.010 × 𝑡𝑝𝐴 = 0.0847

0.754 − 0.005 × 𝑇𝐴 − 0.004 × 𝑡𝑝𝐴 = −0.0451

−3.483 + 0.023 × 𝑇𝐴 + 0.039 × 𝑡𝑝𝐴 = 0.1492

−4.809 + 0.027 × 𝑇𝐴 + 0.054 × 𝑡𝑝𝐴 = 0.1125

 

Simplifying obtains: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

0.005 × 𝑇𝐴 + 0.008 × 𝑡𝑝𝐴 = 0.1432

−0.001 × 𝑇𝐴 − 0.002 × 𝑡𝑝𝐴 = −0.2787

−0.002 × 𝑇𝐴 − 0.001 × 𝑡𝑝𝐴 = −0.4107

0.001 × 𝑇𝐴 + 0.002 × 𝑡𝑝𝐴 = −0.0971

−0.004 × 𝑇𝐴 − 0.004 × 𝑡𝑝𝐴 = −0.6047

−0.002 × 𝑇𝐴 − 0.001 × 𝑡𝑝𝐴 = −0.3366

−0.008 × 𝑇𝐴 − 0.011 × 𝑡𝑝𝐴 = −1.2921

0.006 × 𝑇𝐴 + 0.001 × 𝑡𝑝𝐴 = 0.6763

−0.007 × 𝑇𝐴 − 0.011 × 𝑡𝑝𝐴 = −1.1077

−0.004 × 𝑇𝐴 − 0.005 × 𝑡𝑝𝐴 = −0.4638

−0.006 × 𝑇𝐴 − 0.010 × 𝑡𝑝𝐴 = −0.8733

−0.005 × 𝑇𝐴 − 0.004 × 𝑡𝑝𝐴 = −0.7991

0.023 × 𝑇𝐴 + 0.039 × 𝑡𝑝𝐴 = 3.6322

0.027 × 𝑇𝐴 + 0.054 × 𝑡𝑝𝐴 = 4.9215
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For treatment in a vacuum atmosphere: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

−0.073 + 0.001 × 𝑇𝑉 + 0.004 × 𝑡𝑝𝑉 = −0.4178

0.277 − 0.001 × 𝑇𝑉 + 0.002 × 𝑡𝑝𝑉 = 0.0393

−0.310 + 0.002 × 𝑇𝑉 = −0.2931
0.090 − 0.001 × 𝑇𝑉 − 0.003 × 𝑡𝑝𝑉 = −0.1087

0.086 − 0.001 × 𝑇𝑉 − 0.002 × 𝑡𝑝𝑉 = −0.0916

0.566 − 0.004 × 𝑇𝑉 − 0.003 × 𝑡𝑝𝑉 = −0.0891

−0.477 + 0.003 × 𝑇𝑉 + 0.001 × 𝑡𝑝𝑉 = −0.1847

0.529 − 0.003 × 𝑇𝑉 − 0.004 × 𝑡𝑝𝑉 = 0.1123

0.122 − 0.001 × 𝑇𝑉 − 0.002 × 𝑡𝑝𝑉 = −0.0158

0.287 − 0.002 × 𝑇𝑉 − 0.006 × 𝑡𝑝𝑉 = 0.0847

0.073 − 0.00007620 × 𝑇𝑉 − 0.004 × 𝑡𝑝𝑉 = −0.0451

−1.794 + 0.012 × 𝑇𝑉 + 0.017 × 𝑡𝑝𝑉 = 0.1492

−1.475 + 0.008 × 𝑇𝑉 + 0.003 × 𝑡𝑝𝑉 = 0.1125

 

Simplifying obtains: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

0.001 × 𝑇𝑉 + 0.004 × 𝑡𝑝𝑉 = 0.4908

−0.001 × 𝑇𝑉 + 0.002 × 𝑡𝑝𝑉 = −0.2377

0.002 × 𝑇𝑉 = 0.0169
−0.001 × 𝑇𝑉 − 0.003 × 𝑡𝑝𝑉 = −0.1987

−0.001 × 𝑇𝑉 − 0.002 × 𝑡𝑝𝑉 = −0.1776

−0.004 × 𝑇𝑉 − 0.003 × 𝑡𝑝𝑉 = −0.6551

0.003 × 𝑇𝑉 + 0.001 × 𝑡𝑝𝑉 = 0.2923

−0.003 × 𝑇𝑉 − 0.004 × 𝑡𝑝𝑉 = −0.4167

−0.001 × 𝑇𝑉 − 0.002 × 𝑡𝑝𝑉 = −0.1378

−0.002 × 𝑇𝑉 − 0.006 × 𝑡𝑝𝑉 = −0.2023

−0.0000762 × 𝑇𝑉 − 0.004 × 𝑡𝑝𝑉 = −0.1181

0.012 × 𝑇𝑉 + 0.017 × 𝑡𝑝𝑉 = 1.9432

0.008 × 𝑇𝑉 + 0.003 × 𝑡𝑝𝑉 = 1.5875
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For treatment in both atmospheres: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

−0.561 + 0.005 × 𝑇𝐴 + 0.008 × 𝑡𝑝𝐴 − 0.073 + 0.001 × 𝑇𝑉 + 0.004 × 𝑡𝑝𝑉 = −0.4178

0.139 − 0.001 × 𝑇𝐴 − 0.002 × 𝑡𝑝𝐴 = −0.1397

0.450 − 0.002 × 𝑇𝐴 − 0.001 × 𝑡𝑝𝐴 + 0.277 − 0.001 × 𝑇𝑉 + 0.002 × 𝑡𝑝𝑉 = 0.0393

−0.196 + 0.001 × 𝑇𝐴 + 0.002 × 𝑡𝑝𝐴 − 0.310 + 0.002 × 𝑇𝑉 = −0.2931

0.496 − 0.004 × 𝑇𝐴 − 0.004 × 𝑡𝑝𝐴 + 0.090 − 0.001 × 𝑇𝑉 − 0.003 × 𝑡𝑝𝑉 = −0.1087

0.245 − 0.002 × 𝑇𝐴 − 0.001 × 𝑡𝑝𝐴 + 0.086 − 0.001 × 𝑇𝑉 − 0.002 × 𝑡𝑝𝑉 = −0.0916

1.203 − 0.008 × 𝑇𝐴 − 0.011 × 𝑡𝑝𝐴 + 0.566 − 0.004 × 𝑇𝑉 − 0.003 × 𝑡𝑝𝑉 = −0.0891

−0.861 + 0.006 × 𝑇𝐴 + 0.001 × 𝑡𝑝𝐴 − 0.477 + 0.003 × 𝑇𝑉 + 0.001 × 𝑡𝑝𝑉 = −0.1847

1.220 − 0.007 × 𝑇𝐴 − 0.011 × 𝑡𝑝𝐴 + 0.529 − 0.003 × 𝑇𝑉 − 0.004 × 𝑡𝑝𝑉 = 0.1123

0.448 − 0.004 × 𝑇𝐴 − 0.005 × 𝑡𝑝𝐴 + 0.122 − 0.001 × 𝑇𝑉 − 0.002 × 𝑡𝑝𝑉 = −0.0158

0.958 − 0.006 × 𝑇𝐴 − 0.010 × 𝑡𝑝𝐴 + 0.287 − 0.002 × 𝑇𝑉 − 0.006 × 𝑡𝑝𝑉 = 0.0847

0.754 − 0.005 × 𝑇𝐴 − 0.004 × 𝑡𝑝𝐴 + 0.073 − 0.00007620 × 𝑇𝑉 − 0.004 × 𝑡𝑝𝑉 = −0.0451

−3.483 + 0.023 × 𝑇𝐴 + 0.039 × 𝑡𝑝𝐴 − 1.794 + 0.012 × 𝑇𝑉 + 0.017 × 𝑡𝑝𝑉 = 0.1492

−4.809 + 0.027 × 𝑇𝐴 + 0.054 × 𝑡𝑝𝐴 − 1.475 + 0.008 × 𝑇𝑉 + 0.003 × 𝑡𝑝𝑉 = 0.1125

 

Simplifying obtains: 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

0.005 × 𝑇𝐴 + 0.006 × 𝑡𝑝𝐴 + 0.001 × 𝑇𝑉 + 0.004 × 𝑡𝑝𝑉 = 0.2162

−0.001 × 𝑇𝐴 − 0.002 × 𝑡𝑝𝐴 = −0.2787

−0.002 × 𝑇𝐴 − 0.001 × 𝑇𝑉 − 0.001 × 𝑇𝑉 + 0.002 × 𝑡𝑝𝑉 = −0.6877

0.001 × 𝑇𝐴 + 0.002 × 𝑡𝑝𝐴 + 0.002 × 𝑇𝑉 = 0.2129

−0.004 × 𝑇𝐴 − 0.004 × 𝑡𝑝𝐴 − 0.001 × 𝑇𝑉 − 0.003 × 𝑡𝑝𝑉 = −0.6947

−0.002 × 𝑇𝐴 − 0.001 × 𝑡𝑝𝐴 − 0.001 × 𝑇𝑉 − 0.002 × 𝑡𝑝𝑉 = −0.4226

−0.008 × 𝑇𝐴 − 0.011 × 𝑡𝑝𝐴 − 0.004 × 𝑇𝑉 − 0.003 × 𝑡𝑝𝑉 = −1.8581

0.006 × 𝑇𝐴 + 0.001 × 𝑡𝑝𝐴 + 0.003 × 𝑇𝑉 + 0.001 × 𝑡𝑝𝑉 = 1.1533

−0.007 × 𝑇𝐴 − 0.011 × 𝑡𝑝𝐴 − 0.003 × 𝑇𝑉 − 0.004 × 𝑡𝑝𝑉 = −1.6367

−0.004 × 𝑇𝐴 − 0.005 × 𝑡𝑝𝐴 − 0.001 × 𝑇𝑉 − 0.002 × 𝑡𝑝𝑉 = −0.5858

−0.006 × 𝑇𝐴 − 0.010 × 𝑡𝑝𝐴 − 0.002 × 𝑇𝑉 − 0.006 × 𝑡𝑝𝑉 = −1.1603

−0.005 × 𝑇𝐴 − 0.004 × 𝑡𝑝𝐴 − 0.0000762 × 𝑇𝑉 − 0.004 × 𝑡𝑝𝑉 = −0.8721

0.023 × 𝑇𝐴 + 0.039 × 𝑡𝑝𝐴 + 0.012 × 𝑇𝑉 + 0.017 × 𝑡𝑝𝑉 = 5.4262

0.027 × 𝑇𝐴 + 0.054 × 𝑡𝑝𝐴 + 0.008 × 𝑇𝑉 + 0.003 × 𝑡𝑝𝑉 = 6.3965

 

 

To obtain the most suitable results, the equation quantity is more than the number of 

independent variables. The results are recalculated by the least-square solution, which an 

application for reducing the sum of the squares of the residuals. Table 7-4 shows the results 

of the three simultaneous equation systems, which are simulated by air heat treatment, 
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vacuum heat treatment and a combined heat treatment. The highest coefficient of 

determination (R-square) appears in the combined heat treatment method for an air 

atmosphere at 137℃ for 29 hours and a vacuum atmosphere at 152℃ for 8 hours. For the 

heat treatment prediction in air and vacuum separately, 120℃ for 35 hours and 165℃ for 

8 hours are the best methods, respectively. The prediction is very close to the measured 

value in all the heat treatment methods (Table 7-5, Figure 7-3, Figure 7-4 and Figure 7-5).  

Table 7-4 Results of Simultaneous Equation Systems 

Model 

Independent 

Variables 

Value R-square 

Adjusted R-

square 

Treated in air 

𝑇𝐴 120 (℃) 

0.974 0.967 

𝑡𝑝𝐴 35.6621 (hours) 

Treated in a 

vacuum 

𝑇𝑉 165.078 (℃) 

0.946 0.941 

𝑡𝑝𝑉 8 (hours) 

Treated in both 

atmosphere 

𝑇𝐴 137.2649 (℃) 

0.974 0.971 

𝑡𝑝𝐴 29.75643 (hours) 

𝑇𝑉 152.25664 (℃) 

𝑡𝑝𝑉 8 (hours) 

 

Table 7-5 Model-Predicted and Measured Peak Area of Regression Analysis 

Peak 

New 

Pine 

(Initial) 

Old 

Pine 

(Aim) 

Treated in Air  

(Model-Predicted) 

Treated in vacuum 

(Model-Predicted) 

Treated in Both 

(Model-Predicted) 

1054 146 85 195 165 227 

1110 1052 905 996 1052 991 

1154 610 634 468 688 616 

1204 116 82 116 119 100 

1226 432 385 375 389 281 

1262 895 813 865 810 791 

1318 494 450 415 436 471 

1335 92 75 83 94 97 

1366 650 723 636 651 738 



238 

 

1421 568 560 445 534 530 

1456 425 389 372 387 326 

1507 288 275 289 296 260 

1595 355 408 603 470 499 

1730 480 534 668 418 520 

 

 

Figure 7-3 Model-Predicted and Measured Peak Area of the Air Treatment Method 

 

Figure 7-4 Model-Predicted and Measured Peak Area of the Vacuum Treatment Method 
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Figure 7-5 Model-Predicted and Measured Peak Area of the Combined Treatment Method 

7.3 Summary 

The semi-destructive testing is a quick and accurate method and cause very little 

destruction to predict mechanical properties of the specific timber structural members. The 

tests provide fundamental evaluation for the whole structure, which can help predict 

structural failure in advance.  

The regression mathematical model shows that the chemical composition of 580 year old 

pine can be obtained from new pine of the same species though specific heat treatments. 

The most suitable method for doing so is combining treatment in air and a vacuum at a 

certain temperature for a specific treatment period. Since a vacuum atmosphere improves 

the reactions of condensation and cross-linking, while an air one promotes oxidation and 

pyrolysis, the timber ageing process is a combination of the four reactions at a slow rate.  
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Chapter 8 Conclusion 

8.1 Conclusion  

The objectives of this thesis were to: 

• Investigate the relationship between the chemical composition of timber and the 

static and dynamic mechanical properties; 

• Produce regression models to predict mechanical properties by timber chemical 

composition; 

• Examine chemical composition changes during heat treatment in different 

atmospheres; 

• Produce a mathematical model to predict the changes of timber chemical 

composition in different temperatures, periods and atmospheres, as a method for 

accelerating timber ageing. 

After experimentation and data analysis, the above have been achieved.  

It has been verified that timber chemical composition has close relationships with its 

mechanical properties, both through static and dynamic testing. Physically, the chemical 

reactions that can extend or expand timber molecules as well as condensation between 

hemicellulose and lignin, condensation between lignin and the cross-linking of lignin, 

improve timber mechanical static properties in terms of the bending modulus of rupture 

(MOR) and modulus of elasticity (MOE), whist decreasing energy dissipation of dynamic 

mechanical properties (Tan δ) by reducing friction between the molecules. The reactions 

that can diminish the length of the molecules, such as decomposition in hemicellulose and 

lignin, decrease the static mechanical properties and increase Tan δ significantly. 

Decomposition also contributes to the mass loss in timber. In addition, a deacetylase 

reaction leads to mass loss but does not affect the mechanical properties significantly. 
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Oxidation can increase the bending MOE under low mass loss, but leads to a reduction in 

the bending MOR. However, the bending MOR changes are more significant than those for 

MOE and timber cell structure also plays a close role in MOE. In terms of static 

compression testing, compression MOE changes are more significant for MOR, due to the 

same reason of specific timber cell structures. Regarding the changes in the dynamic 

mechanical properties, condensation and cross-linking reaction contribute to a decrease in 

Tan δ of these due to the lower friction between the timber molecules. Pyrolysis can 

increase the friction between timber molecules and lead to an increase in viscosity. The 

stability of the timber molecules is enhanced, which leads the peaks γ and β of the Tan δ 

temperature scanning curve moving to a higher temperature. The molecular structures of 

old pine samples tend to be stable due to condensation as well as cross-linking, oxidation 

reactions during the natural ageing process, which contributes to a higher temperature of 

the peaks γ and β of Tan δ appearing.  

Timber’s static and dynamic mechanical properties can be predicted by the density and the 

peaks of the FTIR spectrum after baseline correction and curve normalisation. The FTIR 

technique can illustrate the chemical compositions of timber by the peaks corresponding to 

specific functional groups of molecules. One natural logarithm fitting model and one 

multiple regression model can predict the bending MOR, which use density, Peaks 1318, 

1730 and density, Peaks 1054, 1366, 1456, 1318 and 1421 as independent variables, 

respectively. The coefficient of determination (R-square) and adjusted R-square of the two 

models are more than 0.8, which indicates that the measured bending MOR is replicated 

by the regression models. One multiple regression model and one ridge regression model 

can predict the bending MOE by the independent variables of density along with Peaks 

1025, 1226, 895 and 1456. The R-square and adjusted R-square of the two models are 

approximately 0.64 and 0.6, respectively, which can predict more than 75% of the 
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measured bending MOE of the samples. The two regression models also show high 

prediction. However, in the MOE analysis, a multiple regression model illustrates the 

problem of multicollinearity, which means that some independent variables have high 

correlations with each other. A ridge regression model can solve the problem, but this 

reduces R-square. In terms of dynamic mechanical properties, the Tan δ value at the peaks 

γ and β during temperature scanning can be predicted by the FTIR peaks, which show 

viscoelasticity of the timber samples. However, the temperatures at peak γ and β cannot be 

predicted. The main reason is that FTIR is a technique showing the relative content of 

molecular functional groups rather than their quantity. All the regression models, including 

MOR, MOE and the Tan δ of peaks γ and β, are suitable for both new and old samples. 

That is, the regression models are widely functional.  

Temperature and specific atmospheres can cause distinctive changes to timber chemical 

composition. For new pine samples in heat treatment, oxygen, temperature and treatment 

period affect the chemical changes in timber molecules significantly. In temperature at 

120℃ in a vacuum atmosphere for 24 hours, condensation and cross-linking are promoted, 

whilst at 200℃ with oxygen for more than 8 hours, the two are inhibited and pyrolysis 

reaction increase improved dramatically, leading to high mass loss. In other treatments, 

both MOR and MOE increase firstly for a certain period, followed by a decrease. Hence, 

condensation and cross-linking reactions happen immediately under heat treatment, but 

stopped after a certain period. Pyrolysis can happen in a long period. For old pine samples, 

the chemical changes are less than new pine at 120℃ but much intense than it at 200℃. 

Lignin-carbohydrate complexes, which are condensed between lignin and hemicellulose 

during natural ageing, are responsible for this. The changes of new pine’s FTIR peaks 

during heat treatment can be predicted by multiple regression analysis with temperature 

and treatment period as independent variables. 
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The regression models of each peak provide fundamental support for the notion of timber 

chemical composition changes during heat treatment and accelerated timber ageing. That 

is, an accelerated ageing method can be deduced by the regression models. Comparing the 

FTIR peaks of the new and 580 year old pine samples, the former can be treated in air, a 

vacuum or both to obtain similar chemical compositions as with the latter. The accelerating 

method is calculated by simultaneous equations and the results show that a combined 

treatment method, including air and vacuum atmosphere treatment is the most suitable 

method.   

In conclusion, this study has shown that timber mechanical properties can be predicted by 

chemical compositions analysed by the FTIR technique through various mathematical 

regression models. Heat treatment in specific atmospheres contributes to distinctive 

changes, which can be regressed by a multiple regression analysis method. Timber 

accelerated ageing can be conducted by heat treatment in certain atmospheres. However, 

few limitations exist. Firstly, even though all regression models are suitable for the new 

and old pine samples (Pinus Densiflora), it has not been proven that the models are suitable 

for other tree species. Secondly, oxygen affects timber’s chemical composition 

significantly during heat treatment, but the effects of oxygen concentration influence have 

not been studied in the experimentation due to this being an uncontrollable operation. A 

regression model that contains oxygen content as an independent variable, may provide 

more accuracy for the prediction of timber accelerated ageing. Thirdly, the dynamic 

mechanical properties seem not only to be affected by the chemical functional groups of 

timber molecule. Other factors, such as crystallinity, angles of the microfibrils of cell, cell 

shape and cell wall thickness, could affect these properties and a more comprehensive 

experiment design would be needed to capture these influence. Finally, the samples of old 
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timber with different ages were so few that the chemical composition change during natural 

ageing could not be evaluated.  

8.2 Further Research 

Given the limitations of this study addressed above, further research should contain the 

following. 

• More tree species should be studied in heat treatment to improve the prediction 

regression models of timber mechanical properties. More old timber samples with 

different ages should be analysed to produce the regression model of natural ageing.  

• The relationships between the changes of timber FTIR peaks during heat treatment 

and moisture content should be defined. Theoretically, timber chemical 

composition changes during heat treatment are affected by temperatures, treatment 

period and oxygen content. In addition, moisture content is also an important factor 

playing a significant role in the changes. The four independent variables can 

improve accuracy of regression models, thus providing valuable prediction for 

timber accelerated ageing study. However, a more advanced experimental facility 

is needed to improve upon this prediction capability.  

•  A comprehensive experiment containing more composition analysis methods 

needs to be conducted. Crystallinity, microfibril angles and cell wall status can be 

detected by XRD and SEM technique. Increasing the number of independent 

variables could uncover the relationships between chemical composition and 

dynamic mechanical properties.  
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Appendix I C14 Identification Report 
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Appendix II Regression Models 

Bending MOR Nonlinear Curve Fitting by Origin 

MOR (𝝈𝟏) regression model Curve Fitting by Origin Pro 
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MOR (𝝈𝟐) regression model Curve Fitting by Origin Pro 
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MOR (𝝈𝟑) regression model Curve Fitting by Origin Pro 
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MOR (𝝈𝟒) regression model Curve Fitting by Origin Pro 
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MOR (𝝈𝟓) regression model Curve Fitting by Origin Pro 
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MOR (𝝈𝟔) regression model Curve Fitting by Origin Pro 
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Bending MOR Multiple Regression Analysis by SPSS 

Regression 

Model Summaryg 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .706a .498 .497 10.19744095  

2 .806b .649 .648 8.53039095  

3 .867c .752 .750 7.18269401  

4 .897d .805 .803 6.37654417  

5 .903e .815 .814 6.20663349  

6 .905f .819 .817 6.14669176 1.786 

a. Predictors: (Constant), Peak1054 

b. Predictors: (Constant), Peak1054, Peak1366 

c. Predictors: (Constant), Peak1054, Peak1366, density 

d. Predictors: (Constant), Peak1054, Peak1366, density, Peak1456 

e. Predictors: (Constant), Peak1054, Peak1366, density, Peak1456, Peak1318 

f. Predictors: (Constant), Peak1054, Peak1366, density, Peak1456, Peak1318, Peak1421 

j. Dependent Variable: MOR 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 

Regression 65476.290 1 65476.290 629.654 .000b 

Residual 66032.254 635 103.988   

Total 131508.544 636    

2 

Regression 85373.905 2 42686.953 586.621 .000c 

Residual 46134.639 634 72.768   

Total 131508.544 636    

3 

Regression 98851.382 3 32950.461 638.685 .000d 

Residual 32657.162 633 51.591   

Total 131508.544 636    

4 

Regression 105811.225 4 26452.806 650.580 .000e 

Residual 25697.319 632 40.660   

Total 131508.544 636    

5 Regression 107200.973 5 21440.195 556.566 .000f 
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Residual 24307.571 631 38.522   

Total 131508.544 636    

6 

Regression 107705.998 6 17951.000 475.123 .000g 

Residual 23802.546 630 37.782   

Total 131508.544 636    

a. Dependent Variable: MOR 

b. Predictors: (Constant), Peak1054 

c. Predictors: (Constant), Peak1054, Peak1366 

d. Predictors: (Constant), Peak1054, Peak1366, density 

e. Predictors: (Constant), Peak1054, Peak1366, density, Peak1456 

f. Predictors: (Constant), Peak1054, Peak1366, density, Peak1456, Peak1318 

g. Predictors: (Constant), Peak1054, Peak1366, density, Peak1456, Peak1318, Peak1421 

 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. 

95.0% Confidence 
Interval for B 

Correlations 
Collinearity 
Statistics 

B 
Std. 
Error 

Beta 
Lower 
Bound 

Upper 
Bound 

Zero-
order 

Partial Part Tolerance 

1 

(Constant) 99.691 1.703  58.547 .000 96.347 103.034     

Peak1054 -.251 .010 -.706 
-

25.093 
.000 -.270 -.231 -.706 -.706 -.706 1.000 

2 

(Constant) 67.156 2.429  27.648 .000 62.387 71.926     

Peak1054 -.191 .009 -.538 
-

20.984 
.000 -.209 -.173 -.706 -.640 -.494 .843 

Peak1366 .039 .002 .424 16.536 .000 .034 .043 .637 .549 .389 .843 

3 

(Constant) -10.642 5.230  -2.035 .042 -20.912 -.372     

Peak1054 -.047 .012 -.133 -4.015 .000 -.070 -.024 -.706 -.158 -.080 .359 

Peak1366 .048 .002 .521 23.274 .000 .044 .052 .637 .679 .461 .781 

density 127.251 7.873 .495 16.163 .000 111.791 142.712 .659 .540 .320 .419 

4 

(Constant) -2.867 4.681  -.612 .540 -12.058 6.325     

Peak1054 -.046 .010 -.129 -4.381 .000 -.066 -.025 -.706 -.172 -.077 .359 

Peak1366 .082 .003 .893 25.763 .000 .075 .088 .637 .716 .453 .258 

density 116.615 7.037 .453 16.573 .000 102.797 130.433 .659 .550 .291 .413 

Peak1456 -.067 .005 -.433 
-

13.083 
.000 -.077 -.057 .354 -.462 -.230 .282 

5 

(Constant) -16.319 5.077  -3.214 .001 -26.288 -6.349     

Peak1054 -.025 .011 -.071 -2.341 .020 -.046 -.004 -.706 -.093 -.040 .322 

Peak1366 .038 .008 .411 4.718 .000 .022 .053 .637 .185 .081 .039 

density 138.407 7.751 .538 17.857 .000 123.187 153.627 .659 .579 .306 .323 
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Peak1456 -.054 .005 -.350 -9.971 .000 -.065 -.044 .354 -.369 -.171 .238 

Peak1318 .053 .009 .441 6.006 .000 .036 .071 .619 .233 .103 .054 

6 

(Constant) -4.916 5.917  -.831 .406 -16.534 6.703     

Peak1054 -.039 .011 -.111 -3.479 .001 -.062 -.017 -.706 -.137 -.059 .284 

Peak1366 .045 .008 .489 5.505 .000 .029 .061 .637 .214 .093 .036 

density 137.258 7.682 .533 17.867 .000 122.172 152.344 .659 .580 .303 .322 

Peak1456 -.054 .005 -.348 
-

10.019 
.000 -.065 -.044 .354 -.371 -.170 .238 

Peak1318 .059 .009 .489 6.615 .000 .042 .077 .619 .255 .112 .053 

Peak1421 -.032 .009 -.158 -3.656 .000 -.050 -.015 .642 -.144 -.062 .154 

h. Predictors in the Model: (Constant), Peak1054, Peak1366, density, Peak1456, Peak1318, Peak1421, Peak1110 

i. Predictors in the Model: (Constant), Peak1054, Peak1366, density, Peak1456, Peak1318, Peak1421, Peak1110, Peak1025 

j. Predictors in the Model: (Constant), Peak1054, Peak1366, density, Peak1456, Peak1318, Peak1421, Peak1110, Peak1025, 
Peak1204 

 

Charts 

 

 

Bending MOE Multiple Regression Analysis by SPSS 

Regression 

Model Summaryh 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .742a .550 .549 634.71297496  

2 .758b .575 .574 617.14997975  

3 .769c .591 .589 606.13115830  

4 .783d .614 .611 589.29624207  

5 .792e .628 .625 578.82145606  

6 .797f .635 .632 573.69803838  

7 .801g .642 .638 568.81835710 1.868 
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a. Predictors: (Constant), density 

b. Predictors: (Constant), density, Peak1025 

c. Predictors: (Constant), density, Peak1025, Peak1054 

d. Predictors: (Constant), density, Peak1025, Peak1054, Peak1226 

e. Predictors: (Constant), density, Peak1025, Peak1054, Peak1226, Peak895 

f. Predictors: (Constant), density, Peak1025, Peak1054, Peak1226, Peak895, Peak1456 

g. Predictors: (Constant), density, Peak1025, Peak1054, Peak1226, Peak895, Peak1456, Peak1507 

h. Dependent Variable: MOE 

Coefficientsa 

Model 

Unstandardized 
Coefficients Standardized Coefficients 

t Sig. 

95.0% Confidence Interval 
for B 

B Std. Error Beta Lower Bound 

1 (Constant) 631.868 174.352  3.624 .000 289.491 

density 12542.374 450.332 .742 27.851 .000 11658.054 

2 (Constant) -3959.171 767.123  -5.161 .000 -5465.581 

density 10683.255 532.463 .632 20.064 .000 9637.650 

Peak1025 .483 .079 .193 6.136 .000 .329 

3 (Constant) -5687.283 831.113  -6.843 .000 -7319.355 

density 12971.181 699.465 .767 18.544 .000 11597.629 

Peak1025 .495 .077 .198 6.399 .000 .343 

Peak1054 4.352 .884 .186 4.925 .000 2.617 

4 (Constant) -9724.941 1041.889  -9.334 .000 -11770.924 

density 14556.960 727.450 .861 20.011 .000 13128.449 

Peak1025 .652 .079 .260 8.203 .000 .496 

Peak1054 8.180 1.062 .350 7.706 .000 6.096 

Peak1226 3.031 .494 .194 6.139 .000 2.061 

5 (Constant) -10514.662 1035.945  -10.150 .000 -12548.979 

density 13362.807 754.820 .790 17.703 .000 11880.543 

Peak1025 .687 .078 .274 8.761 .000 .533 

Peak1054 7.862 1.045 .337 7.525 .000 5.810 

Peak1226 3.142 .486 .201 6.472 .000 2.189 

Peak895 1.042 .212 .132 4.907 .000 .625 

6 (Constant) -10814.056 1030.312  -10.496 .000 -12837.319 

density 13349.065 748.149 .789 17.843 .000 11879.896 

Peak1025 .709 .078 .283 9.096 .000 .556 

Peak1054 7.908 1.036 .339 7.636 .000 5.874 

Peak1226 4.396 .599 .281 7.336 .000 3.219 
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Peak895 1.066 .211 .135 5.061 .000 .652 

Peak1456 -1.173 .334 -.115 -3.510 .000 -1.830 

7 (Constant) -11641.870 1049.459  -11.093 .000 -13702.738 

density 13750.990 750.914 .813 18.312 .000 12276.388 

Peak1025 .749 .078 .299 9.584 .000 .595 

Peak1054 7.956 1.027 .341 7.748 .000 5.939 

Peak1226 2.807 .752 .179 3.731 .000 1.330 

Peak895 1.173 .211 .148 5.554 .000 .758 

Peak1456 -2.533 .516 -.248 -4.913 .000 -3.546 

Peak1507 4.556 1.323 .238 3.443 .001 1.958 

Charts 

 

 

 

Storage Moduli of Peak γ Multiple Regression Analysis by SPSS 

Regression 

Model Summaryd 

Model R R Square Adjusted R Square 
Std. Error of the 

Estimate Durbin-Watson 

1 .728a .529 .525 1.133562491E+009  

2 .762b .581 .574 1.073883306E+009  

3 .781c .611 .600 1.040104561E+009 1.820 

a. Predictors: (Constant), density 

b. Predictors: (Constant), density, p1025 

c. Predictors: (Constant), density, p1025, p1318 

d. Dependent Variable: @1111storageM 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
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1 Regression 170566924628522430000.000 1 170566924628522430000.000 132.741 .000b 

Residual 151625742776031050000.000 118 1284963921830771710.000   

Total 322192667404553500000.000 119    

2 Regression 187265300930212600000.000 2 93632650465106300000.000 81.192 .000c 

Residual 134927366474340880000.000 117 1153225354481545980.000   

Total 322192667404553500000.000 119    

3 Regression 196701837603942100000.000 3 65567279201314040000.000 60.608 .000d 

Residual 125490829800611380000.000 116 1081817498281132540.000   

Total 322192667404553500000.000 119    

a. Dependent Variable: @1111storageM 

b. Predictors: (Constant), density 

c. Predictors: (Constant), density, p1025 

d. Predictors: (Constant), density, p1025, p1318 

 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 847188543.899 673078936.922  1.259 .211 

density 18595711664.469 1614027243.957 .728 11.521 .000 

2 (Constant) -8801156649.781 2614502036.534  -3.366 .001 

density 13934500451.459 1959210986.580 .545 7.112 .000 

p1025 1040794.323 273517.352 .292 3.805 .000 

3 (Constant) -9316273883.271 2538262794.097  -3.670 .000 

density 13965915655.331 1897614281.562 .546 7.360 .000 

p1025 979872.670 265715.779 .275 3.688 .000 

p1318 2783218.591 942362.513 .172 2.953 .004 

 

Coefficientsa 

Model 

95.0% Confidence Interval for B Correlations 

Lower Bound Upper Bound Zero-order Partial Part 

1 (Constant) -485690996.457 2180068084.255    

density 15399498303.691 21791925025.246 .728 .728 .728 

2 (Constant) -13979040929.787 -3623272369.776    

density 10054385757.773 17814615145.146 .728 .549 .426 

p1025 499107.539 1582481.107 .633 .332 .228 

3 (Constant) -14343623174.333 -4288924592.208    

density 10207451466.633 17724379844.029 .728 .564 .426 

p1025 453589.089 1506156.252 .633 .324 .214 
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p1318 916750.894 4649686.287 .228 .264 .171 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 (Constant)   

density 1.000 1.000 

2 (Constant)   

density .609 1.642 

p1025 .609 1.642 

3 (Constant)   

density .609 1.642 

p1025 .605 1.652 

p1318 .991 1.009 

a. Dependent Variable: @1111storageM 

Coefficient Correlationsa 

Model density p1025 p1318 

1 Correlations density 1.000   

Covariances density 2605083944234178600.000   

2 Correlations density 1.000 -.625  

p1025 -.625 1.000  

Covariances density 3838507689937590300.000 -
335045381524014.900 

 

p1025 -335045381524014.800 74811742104.408  

3 Correlations density 1.000 -.624 .006 

p1025 -.624 1.000 -.078 

p1318 .006 -.078 1.000 

Covariances density 3600939961587065900.000 -
314518738410119.250 

10023711741008.482 

p1025 -314518738410119.250 70604875266.750 -19438393259.184 

p1318 10023711741008.482 -19438393259.184 888047105430.496 

a. Dependent Variable: @1111storageM 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 6.22658150E+009 1.24249139E+010 8.50974658E+009 1.285673605E+009 120 

Residual -
4.460239360E+009 

2.301244928E+009 2.559026082E-006 1.026910312E+009 120 

Std. Predicted 
Value 

-1.776 3.045 .000 1.000 120 

Std. Residual -4.288 2.213 .000 .987 120 
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a. Dependent Variable: @1111storageM 

Charts 

 

 

Loss Moduli of Peak γ of Tan δ Multiple Regression Analysis by SPSS 

Regression 

Variables Entered/Removeda 

Model 
Variables 
Entered Variables Removed Method 

1 p1025 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-
F-to-remove >= .100). 

2 density . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-
F-to-remove >= .100). 

a. Dependent Variable: @11111LossM 

Model Summaryc 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate Durbin-Watson 

1 .559a .312 .306 5.893509712E+007  

2 .619b .383 .373 5.604475744E+007 2.174 

a. Predictors: (Constant), p1025 

b. Predictors: (Constant), p1025, density 

c. Dependent Variable: @11111LossM 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 185924758166868416.000 1 185924758166868416.000 53.529 .000b 

Residual 409854789339418690.000 118 3473345672367955.000   

Total 595779547506287100.000 119    

2 Regression 228280811629283904.000 2 114140405814641952.000 36.339 .000c 

Residual 367498735877003200.000 117 3141014836555583.000   

Total 595779547506287100.000 119    
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a. Dependent Variable: @11111LossM 

b. Predictors: (Constant), p1025 

c. Predictors: (Constant), p1025, density 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -
474073399.994 

130330497.227 
 

-3.637 .000 

p1025 85711.221 11715.021 .559 7.316 .000 

2 (Constant) -
264495003.985 

136447909.818 
 

-1.938 .055 

p1025 52937.702 14274.562 .345 3.709 .000 

density 375475721.382 102249009.668 .342 3.672 .000 

 

Coefficientsa 

Model 

95.0% Confidence Interval for B Correlations 

Lower Bound Upper Bound Zero-order Partial Part 

1 (Constant) -732163266.888 -215983533.101    

p1025 62512.290 108910.152 .559 .559 .559 

2 (Constant) -534722939.329 5732931.359    

p1025 24667.680 81207.724 .559 .324 .269 

density 172976915.717 577974527.047 .557 .321 .267 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 (Constant)   

p1025 1.000 1.000 

2 (Constant)   

p1025 .609 1.642 

density .609 1.642 

a. Dependent Variable: @11111LossM 

 

Coefficient Correlationsa 

Model p1025 density 

1 Correlations p1025 1.000  

Covariances p1025 137241718.747  

2 Correlations p1025 1.000 -.625 

density -.625 1.000 
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Covariances p1025 203763116.190 -912555824580.769 

density -912555824580.769 10454859978123732.000 

a. Dependent Variable: @11111LossM 

 

Collinearity Diagnosticsa 

Model Dimension Eigenvalue Condition Index 

Variance Proportions 

(Constant) p1025 density 

1 1 1.999 1.000 .00 .00  

2 .001 48.429 1.00 1.00  

2 1 2.986 1.000 .00 .00 .00 

2 .014 14.746 .03 .01 .69 

3 .001 70.635 .97 .99 .31 

a. Dependent Variable: @11111LossM 

 

Casewise Diagnosticsa 

Case Number Std. Residual @11111LossM Predicted Value Residual 

118 -3.941 2.700000E+008 4.90891541E+008 -2.208915405E+008 

a. Dependent Variable: @11111LossM 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 4.18845792E+008 5.79375424E+008 4.78657657E+008 4.379870030E+007 120 

Residual -2.208915360E+008 1.301088800E+008 1.753369967E-007 5.557179744E+007 120 

Std. Predicted Value -1.366 2.300 .000 1.000 120 

Std. Residual -3.941 2.322 .000 .992 120 

a. Dependent Variable: @11111LossM 

Charts 
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Storage Moduli of Peak β of Tan δ Multiple Regression Analysis by SPSS 

Regression 

Variables Entered/Removeda 

Model 
Variables 
Entered Variables Removed Method 

1 density . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-
remove >= .100). 

2 p1025 . Stepwise (Criteria: Probability-of-F-to-enter <= .050, Probability-of-F-to-
remove >= .100). 

a. Dependent Variable: @2222storageM 

Model Summaryc 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate Durbin-Watson 

1 .693a .480 .475 766565299.804  

2 .720b .519 .510 740440083.539 1.959 

a. Predictors: (Constant), density 

b. Predictors: (Constant), density, p1025 

c. Dependent Variable: @2222storageM 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 63933425873324070000.000 1 63933425873324070000.000 108.800 .000b 

Residual 69339438345979520000.000 118 587622358864233220.000   

Total 133272864219303600000.000 119    

2 Regression 69127436693951790000.000 2 34563718346975896000.000 63.044 .000c 

Residual 64145427525351800000.000 117 548251517310699140.000   

Total 133272864219303600000.000 119    

a. Dependent Variable: @2222storageM 

b. Predictors: (Constant), density 

c. Predictors: (Constant), density, p1025 

 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 1339760650.939 455165869.552  2.943 .004 

density 11384904250.261 1091476903.638 .693 10.431 .000 

2 (Constant) -4041290696.200 1802693175.211  -2.242 .027 

density 8785264998.808 1350871494.822 .534 6.503 .000 

p1025 580469.250 188589.589 .253 3.078 .003 
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Coefficientsa 

Model 

95.0% Confidence Interval for B Correlations 

Lower Bound Upper Bound Zero-order Partial Part 

1 (Constant) 438408310.650 2241112991.228    

density 9223482827.264 13546325673.258 .693 .693 .693 

2 (Constant) -7611430066.208 -471151326.191    

density 6109934790.759 11460595206.856 .693 .515 .417 

p1025 206977.451 953961.048 .587 .274 .197 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 (Constant)   

density 1.000 1.000 

2 (Constant)   

density .609 1.642 

p1025 .609 1.642 

a. Dependent Variable: @2222storageM 

 

Coefficient Correlationsa 

Model density p1025 

1 Correlations density 1.000  

Covariances density 1191321831175765760.000  

2 Correlations density 1.000 -.625 

p1025 -.625 1.000 

Covariances density 1824853795521320960.000 -159282952004696.500 

p1025 -159282952004696.500 35566033093.192 

a. Dependent Variable: @2222storageM 

Collinearity Diagnosticsa 

Model Dimension Eigenvalue Condition Index 

Variance Proportions 

(Constant) density p1025 

1 1 1.988 1.000 .01 .01  

2 .012 12.932 .99 .99  

2 1 2.986 1.000 .00 .00 .00 

2 .014 14.746 .03 .69 .01 

3 .001 70.635 .97 .31 .99 

a. Dependent Variable: @2222storageM 
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Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 5097365504.00 8500041728.00 6031029858.49 762169816.616 120 

Residual -2851695616.000 1961107712.000 .000 734191532.296 120 

Std. Predicted Value -1.225 3.239 .000 1.000 120 

Std. Residual -3.851 2.649 .000 .992 120 

a. Dependent Variable: @2222storageM 

Charts 

 

 

 

Loss Moduli of Peak β of Tan δ Multiple Regression Analysis by SPSS 

Regression 

Model Summaryf 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate Durbin-Watson 

1 .757a .574 .570 50829128.6065  

2 .795b .632 .626 47429766.8902  

3 .807c .652 .643 46323409.9255  

4 .815d .665 .653 45669352.1442  

5 .826e .682 .668 44689079.0389 1.550 

a. Predictors: (Constant), density 

b. Predictors: (Constant), density, p1025 

c. Predictors: (Constant), density, p1025, p1335 

d. Predictors: (Constant), density, p1025, p1335, p1154 

e. Predictors: (Constant), density, p1025, p1335, p1154, peak895 

f. Dependent Variable: @2222LossM 

ANOVAa 
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Model Sum of Squares df Mean Square F Sig. 

1 Regression 410167399056559870.000 1 410167399056559870.000 158.758 .000b 

Residual 304864837157896190.000 118 2583600314897425.500   

Total 715032236214456060.000 119    

2 Regression 451831050104942080.000 2 225915525052471040.000 100.426 .000c 

Residual 263201186109513952.000 117 2249582787260803.000   

Total 715032236214456060.000 119    

3 Regression 466112672587425470.000 3 155370890862475168.000 72.405 .000d 

Residual 248919563627030592.000 116 2145858307129574.000   

Total 715032236214456060.000 119    

4 Regression 475177917808415620.000 4 118794479452103904.000 56.957 .000e 

Residual 239854318406040448.000 115 2085689725269917.000   

Total 715032236214456060.000 119    

5 Regression 487361264685166850.000 5 97472252937033376.000 48.807 .000f 

Residual 227670971529289216.000 114 1997113785344642.200   

Total 715032236214456060.000 119    

a. Dependent Variable: @2222LossM 

b. Predictors: (Constant), density 

c. Predictors: (Constant), density, p1025 

d. Predictors: (Constant), density, p1025, p1335 

e. Predictors: (Constant), density, p1025, p1335, p1154 

f. Predictors: (Constant), density, p1025, p1335, p1154, peak895 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -54440172.757 30180970.267  -1.804 .074 

density 911897370.658 72373247.159 .757 12.600 .000 

2 (Constant) -
536381726.825 

115473647.329 
 

-4.645 .000 

density 679066628.107 86531674.233 .564 7.848 .000 

p1025 51988.400 12080.330 .309 4.304 .000 

3 (Constant) -
568822111.243 

113478943.142 
 

-5.013 .000 

density 640510359.354 85824519.428 .532 7.463 .000 

p1025 57943.098 12022.201 .345 4.820 .000 

p1335 -180582.544 69998.303 -.144 -2.580 .011 

4 (Constant) -
386600618.856 

141971727.885 
 

-2.723 .007 

density 622411825.720 85056904.169 .517 7.318 .000 
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p1025 52743.916 12111.976 .314 4.355 .000 

p1335 -186797.959 69074.338 -.149 -2.704 .008 

p1154 -182452.900 87515.674 -.120 -2.085 .039 

5 (Constant) -
455849454.266 

141725259.541 
 

-3.216 .002 

density 565004658.791 86415559.365 .469 6.538 .000 

p1025 56967.607 11974.729 .339 4.757 .000 

p1335 -150450.466 69175.137 -.120 -2.175 .032 

p1154 -225070.615 87358.192 -.148 -2.576 .011 

peak895 82797.555 33522.439 .142 2.470 .015 

 

Charts 

 

 

Temperature of Peak β of Tan δ Multiple Regression Analysis by SPSS 

Regression 

Variables Entered/Removeda 

Model Variables Entered Variables Removed Method 

1 density . Stepwise (Criteria: Probability-
of-F-to-enter <= .050, 
Probability-of-F-to-
remove >= .100). 

2 moisture . Stepwise (Criteria: Probability-
of-F-to-enter <= .050, 
Probability-of-F-to-
remove >= .100). 

a. Dependent Variable: @2222temperature 

Model Summaryc 

Model R R Square Adjusted R Square 
Std. Error of 
the Estimate 

Durbin-
Watson 

1 .547a .299 .293 11.5811  
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2 .572b .327 .316 11.3920 1.572 

a. Predictors: (Constant), density 

b. Predictors: (Constant), density, moisture 

c. Dependent Variable: @2222temperature 

ANOVAa 

Model 
Sum of 

Squares df 
Mean 

Square F Sig. 

1 Regression 6748.007 1 6748.007 50.313 .000b 

Residual 15826.271 118 134.121   

Total 22574.279 119    

2 Regression 7390.265 2 3695.133 28.473 .000c 

Residual 15184.014 117 129.778   

Total 22574.279 119    

a. Dependent Variable: @2222temperature 

b. Predictors: (Constant), density 

c. Predictors: (Constant), density, moisture 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 14.940 6.877  2.173 .032 

density 116.964 16.490 .547 7.093 .000 

2 (Constant) 31.464 10.046  3.132 .002 

density 112.455 16.347 .526 6.879 .000 

moisture -1.671 .751 -.170 -
2.225 

.028 

 

Coefficientsa 

Model 

95.0% Confidence Interval for B Correlations 

Lower Bound Upper Bound Zero-order Partial Part 

1 (Constant) 1.323 28.558    

density 84.310 149.618 .547 .547 .547 

2 (Constant) 11.568 51.360    

density 80.081 144.829 .547 .537 .522 

moisture -3.159 -.183 -.235 -.201 -.169 

 

Coefficientsa 

Model 

Collinearity Statistics 

Tolerance VIF 

1 (Constant)   
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density 1.000 1.000 

2 (Constant)   

density .985 1.016 

moisture .985 1.016 

a. Dependent Variable: @2222temperature 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value 52.047 96.806 63.137 7.8805 120 

Residual -43.3084 25.2275 .0000 11.2959 120 

Std. Predicted Value -1.407 4.272 .000 1.000 120 

Std. Residual -3.802 2.214 .000 .992 120 

a. Dependent Variable: @2222temperature 

Charts 

 

 

 

Peak area Changes in Air Treatment Multiple Regression Analysis by SPSS 

Peak 895 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate 
Durbin-
Watson 

1 .670a .449 .357 .056150074553 .871 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p895_A 

ANOVAa 

Model 
Sum of 

Squares df 
Mean 

Square F Sig. 

1 Regression .031 2 .015 4.885 .028b 
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Residual .038 12 .003   

Total .069 14    

a. Dependent Variable: p895_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .309 .083  3.714 .003 

temp -.001 .000 -.649 -3.030 .010 

period -.002 .003 -.165 -.768 .457 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.00696007069 .13213315606 .06258654587 .046906934921 15 

Residual -.094131737947 .067260988057 .000000000000 .051984867625 15 

Std. Predicted Value -1.483 1.483 .000 1.000 15 

Std. Residual -1.676 1.198 .000 .926 15 

a. Dependent Variable: p895_A 

Peak 1054 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate 
Durbin-
Watson 

1 .841a .707 .658 .118545132552 .306 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1054_A 

ANOVAa 

Model 
Sum of 

Squares df 
Mean 

Square F Sig. 

1 Regression .407 2 .204 14.490 .001b 

Residual .169 12 .014   

Total .576 14    

a. Dependent Variable: p1054_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -.561 .176  -3.191 .008 

temp .005 .001 .812 5.199 .000 
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period .008 .005 .218 1.395 .188 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value .08407731354 .59464001656 .33935866993 .170554234726 15 

Residual -.170070290565 .139958143234 .000000000000 .109751466447 15 

Std. Predicted Value -1.497 1.497 .000 1.000 15 

Std. Residual -1.435 1.181 .000 .926 15 

a. Dependent Variable: p1054_A 

Peak 1110 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .876a .767 .729 .030513885244 .704 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1110_A 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .037 2 .018 19.784 .000b 

Residual .011 12 .001   

Total .048 14    

a. Dependent Variable: p1110_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .139 .045  3.072 .010 

temp -.001 .000 -.852 -6.121 .000 

period -.002 .001 -.202 -1.449 .173 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.20474010706 -.05431405827 -.12952707947 .051298814298 15 

Residual -.039650134742 .043053593487 .000000000000 .028250368281 15 

Std. Predicted Value -1.466 1.466 .000 1.000 15 

Std. Residual -1.299 1.411 .000 .926 15 

a. Dependent Variable: p1110_A 

Peak 1154 Regression 

Model Summaryb 

Model R R Square Adjusted R Square 
Std. Error of the 

Estimate Durbin-Watson 
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1 .941a .885 .866 .026857274711 .666 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1154_A 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression .067 2 .033 46.249 .000b 

Residual .009 12 .001   

Total .075 14    

a. Dependent Variable: p1154_A 

b. Predictors: (Constant), period, temp 

 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .450 .040  11.288 .000 

temp -.002 .000 -.938 -9.593 .000 

period -.001 .001 -.067 -.690 .503 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value .02201529406 .19848756492 .11025143280 .069034217979 15 

Residual -.021557267755 .044145401567 .000000000000 .024865004753 15 

Std. Predicted Value -1.278 1.278 .000 1.000 15 

Std. Residual -.803 1.644 .000 .926 15 

a. Dependent Variable: p1154_A 

Peak 1204 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .706a .499 .415 .027172221170 .856 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1204_A 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .009 2 .004 5.973 .016b 

Residual .009 12 .001   

Total .018 14    

a. Dependent Variable: p1204_A 

b. Predictors: (Constant), period, temp 
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Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -.196 .040  -4.860 .000 

temp .001 .000 .578 2.827 .015 

period .002 .001 .406 1.989 .070 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.10329042375 -.01524754893 -.05926898587 .025099715860 15 

Residual -.045188955963 .029495453462 .000000000000 .025156588515 15 

Std. Predicted Value -1.754 1.754 .000 1.000 15 

Std. Residual -1.663 1.086 .000 .926 15 

a. Dependent Variable: p1204_A 

Peak 1226 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .904a .817 .787 .070696706481 .524 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1226_A 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .268 2 .134 26.797 .000b 

Residual .060 12 .005   

Total .328 14    

a. Dependent Variable: p1226_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .496 .105  4.728 .000 

temp -.004 .001 -.890 -7.210 .000 

period -.004 .003 -.156 -1.266 .230 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.40820080042 -.02044950426 -.21432515127 .138321426657 15 

Residual -.088338777423 .098637059331 .000000000000 .065452431847 15 

Std. Predicted Value -1.402 1.402 .000 1.000 15 
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Std. Residual -1.250 1.395 .000 .926 15 

a. Dependent Variable: p1226_A 

 

 

 

Peak 1262 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate 
Durbin-
Watson 

1 .909a .826 .797 .029239929326 .401 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1262_A 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .049 2 .024 28.483 .000b 

Residual .010 12 .001   

Total .059 14    

a. Dependent Variable: p1262_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) .245 .043  5.639 .000 

temp -.002 .000 -.903 -7.497 .000 

period -.001 .001 -.105 -.874 .399 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.13003617525 .02726318873 -.05138649080 .058982603054 15 

Residual -.033971920609 .038677740842 .000000000000 .027070914286 15 

Std. Predicted Value -1.333 1.333 .000 1.000 15 

Std. Residual -1.162 1.323 .000 .926 15 

a. Dependent Variable: p1262_A 

 

Peak 1318 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .932a .869 .847 .110385361907 .260 

a. Predictors: (Constant), period, temp 
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b. Dependent Variable: p1318_A 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .967 2 .484 39.688 .000b 

Residual .146 12 .012   

Total 1.113 14    

a. Dependent Variable: p1318_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 1.203 .164  7.345 .000 

temp -.008 .001 -.905 -8.648 .000 

period -.011 .005 -.224 -2.142 .053 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.56588166952 .21056066453 -.17766049387 .262841395149 15 

Residual -.118633300066 .158773809671 .000000000000 .102196986775 15 

Std. Predicted Value -1.477 1.477 .000 1.000 15 

Std. Residual -1.075 1.438 .000 .926 15 

a. Dependent Variable: p1318_A 

Peak 1335 Regression 

Model Summaryb 

Model R 
R 

Square 

Adjusted 
R 

Square Std. Error of the Estimate 
Durbin-
Watson 

1 .914a .836 .808 .095497991279 1.784 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1335_A 

ANOVAa 

Model 
Sum of 

Squares df Mean Square F Sig. 

1 Regression .556 2 .278 30.482 .000b 

Residual .109 12 .009   

Total .665 14    

a. Dependent Variable: p1335_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 
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Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) -.861 .142 
 

-
6.082 

.000 

temp .006 .001 .913 7.802 .000 

period .001 .004 .035 .296 .773 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.14429496229 .34757208824 .10163856227 .199281032563 15 

Residual -.124846786261 .194242209196 .000000000000 .088413959814 15 

Std. Predicted Value -1.234 1.234 .000 1.000 15 

Std. Residual -1.307 2.034 .000 .926 15 

a. Dependent Variable: p1335_A 

Peak 1366 Regression 

Model Summaryb 

Model R R Square Adjusted R Square 
Std. Error of the 

Estimate 
Durbin-
Watson 

1 .926a .858 .835 .112324563267 .382 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1366_A 

ANOVAa 

Model 
Sum of 

Squares df Mean Square F Sig. 

1 Regression .918 2 .459 36.370 .000b 

Residual .151 12 .013   

Total 1.069 14    

a. Dependent Variable: p1366_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) 1.220 .167  7.323 .000 

temp -.007 .001 -.897 -8.261 .000 

period -.011 .005 -.230 -2.121 .055 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 
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Predicted Value -.50799721479 .25281241536 -.12759240140 .256034582481 15 

Residual -.113768123090 .153173759580 .000000000000 .103992338371 15 

Std. Predicted Value -1.486 1.486 .000 1.000 15 

Std. Residual -1.013 1.364 .000 .926 15 

a. Dependent Variable: p1366_A 

Peak 1421 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate 
Durbin-
Watson 

1 .879a .772 .734 .071910556964 .325 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1421_A 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .211 2 .105 20.365 .000b 

Residual .062 12 .005   

Total .273 14    

a. Dependent Variable: p1421_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .448 .107  4.202 .001 

temp -.004 .001 -.850 -
6.170 

.000 

period -.005 .003 -.224 -
1.629 

.129 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.38170626760 -.01551206596 -.19860917293 .122653747782 15 

Residual -.087876163423 .104911342263 .000000000000 .066576239023 15 

Std. Predicted Value -1.493 1.493 .000 1.000 15 

Std. Residual -1.222 1.459 .000 .926 15 

a. Dependent Variable: p1421_A 

 

Peak 1456 Regression 

Model Summaryb 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate 
Durbin-
Watson 

1 .952a .906 .890 .075713759181 .694 
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a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1456_A 

ANOVAa 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression .664 2 .332 57.904 .000b 

Residual .069 12 .006   

Total .733 14    

a. Dependent Variable: p1456_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .958 .112  8.530 .000 

temp -.006 .001 -.915 -
10.349 

.000 

period -.010 .003 -.261 -2.949 .012 

 Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.52565300465 .13300365210 -.19632469073 .217760660243 15 

Residual -.104087769985 .128650605679 .000000000000 .070097320079 15 

Std. Predicted Value -1.512 1.512 .000 1.000 15 

Std. Residual -1.375 1.699 .000 .926 15 

a. Dependent Variable: p1456_A 

Peak 1507 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .897a .805 .773 .091839296506 .574 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1507_A 

ANOVAa 

Model 
Sum of 

Squares df 
Mean 

Square F Sig. 

1 Regression .419 2 .209 24.816 .000b 

Residual .101 12 .008   

Total .520 14    

a. Dependent Variable: p1507_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 
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Model 

Unstandardized 
Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .754 .136  5.537 .000 

temp -.005 .001 -.887 -
6.966 

.000 

period -.004 .004 -.134 -
1.055 

.312 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.36336803436 .11196826398 -.12569989087 .172921530957 15 

Residual -.119476653636 .114676721394 .000000000000 .085026666654 15 

Std. Predicted Value -1.374 1.374 .000 1.000 15 

Std. Residual -1.301 1.249 .000 .926 15 

a. Dependent Variable: p1507_A 

Peak 1595 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .924a .854 .830 .356636452330 .298 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1595_A 

ANOVAa 

Model 
Sum of 

Squares df Mean Square F Sig. 

1 Regression 8.927 2 4.463 35.093 .000b 

Residual 1.526 12 .127   

Total 10.453 14    

a. Dependent Variable: p1595_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -3.483 .529  -6.585 .000 

temp .023 .003 .886 8.036 .000 

period .039 .016 .261 2.368 .036 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.45589902997 1.97342824936 .75876460547 .798522102520 15 

Residual -.520910859108 .484907001257 .000000000000 .330181195878 15 

Std. Predicted Value -1.521 1.521 .000 1.000 15 
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Std. Residual -1.461 1.360 .000 .926 15 

a. Dependent Variable: p1595_A 

Peak 1642 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate 
Durbin-
Watson 

1 .865a .749 .707 .033855461573 .492 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1642_A 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .041 2 .020 17.884 .000b 

Residual .014 12 .001   

Total .055 14    

a. Dependent Variable: p1642_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .191 .050  3.809 .002 

temp -.002 .000 -.824 -
5.695 

.000 

period -.003 .002 -.264 -
1.828 

.093 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.18134118617 -.01421576831 -.09777847860 .054114991483 15 

Residual -.050078988075 .046744126827 .000000000000 .031344066811 15 

Std. Predicted Value -1.544 1.544 .000 1.000 15 

Std. Residual -1.479 1.381 .000 .926 15 

a. Dependent Variable: p1642_A 

Peak 1730 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate 
Durbin-
Watson 

1 .848a .720 .673 .644171824480 .237 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1730_A 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 
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1 Regression 12.780 2 6.390 15.399 .000b 

Residual 4.979 12 .415   

Total 17.759 14    

a. Dependent Variable: p1730_A 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) -4.809 .955  -5.034 .000 

temp .027 .005 .800 5.232 .000 

period .054 .029 .283 1.850 .089 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -1.17683219910 1.82515799999 .32416289007 .955427164433 15 

Residual -.905765056610 .809890568256 .000000000000 .596387222810 15 

Std. Predicted Value -1.571 1.571 .000 1.000 15 

Std. Residual -1.406 1.257 .000 .926 15 

a. Dependent Variable: p1730_A 

Peak area Changes in Vacuum Treatment Multiple Regression Analysis by SPSS 

Peak 895Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .572a .327 .214 .106336205032 .465 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p895 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .066 2 .033 2.911 .093b 

Residual .136 12 .011   

Total .202 14    

a. Dependent Variable: p895 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .226 .158  1.435 .177 



309 

 

temp -.002 .001 -.527 -2.225 .046 

period .005 .005 .221 .934 .369 

a. Dependent Variable: p895 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.11148623377 .11063919216 -.00042352033 .068568034124 15 

Residual -.132889434695 .194035410881 .000000000000 .098448195952 15 

Std. Predicted Value -1.620 1.620 .000 1.000 15 

Std. Residual -1.250 1.825 .000 .926 15 

a. Dependent Variable: p895 

Peak 1025 Regression 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate Durbin-Watson 

1 .568a .322 .209 .007086954910 2.506 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1025 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 

1 Regression .000 2 .000 2.853 .097b 

Residual .001 12 .000   

Total .001 14    

a. Dependent Variable: p1025 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .009 .011  .835 .420 

temp .000 .000 -.567 -2.386 .034 

period 3.894E-5 .000 .029 .120 .906 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.01764542237 -.00632857950 -.01198700093 .004524726035 15 

Residual -.011354804970 .009918206371 .000000000000 .006561245302 15 

Std. Predicted Value -1.251 1.251 .000 1.000 15 

Std. Residual -1.602 1.400 .000 .926 15 

a. Dependent Variable: p1025 

Peak 1054 Regression 
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Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate Durbin-Watson 

1 .555a .308 .193 .074421527303 .589 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1054 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .030 2 .015 2.675 .109b 

Residual .066 12 .006   

Total .096 14    

a. Dependent Variable: p1054 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -.073 .110  -.665 .519 

temp .001 .001 .457 1.903 .081 

period .004 .003 .316 1.316 .213 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value .09670008719 .25775450468 .17722730133 .046008835516 15 

Residual -.131377682090 .112124785781 .000000000000 .068900945833 15 

Std. Predicted Value -1.750 1.750 .000 1.000 15 

Std. Residual -1.765 1.507 .000 .926 15 

 

a. Dependent Variable: p1054 

 

Peak 1110 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .673a .452 .361 .016803722367 2.013 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1110 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .003 2 .001 4.955 .027b 

Residual .003 12 .000   

Total .006 14    
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a. Dependent Variable: p1110 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) -.109 .025  -4.367 .001 

temp .000 .000 .669 3.130 .009 

period .000 .001 -.072 -.337 .742 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.06515327841 -.02775163576 -.04645245793 .014137701722 15 

Residual -.018551502377 .038294386119 .000000000000 .015557223919 15 

Std. Predicted Value -1.323 1.323 .000 1.000 15 

Std. Residual -1.104 2.279 .000 .926 15 

a. Dependent Variable: p1110 

Peak 1154 Regression 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate Durbin-Watson 

1 .767a .588 .519 .041030543843 .915 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1154 

ANOVAa 

Model 
Sum of 

Squares df Mean Square F Sig. 

1 Regression .029 2 .014 8.558 .005b 

Residual .020 12 .002   

Total .049 14    

a. Dependent Variable: p1154 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .277 .061  4.557 .001 

temp -.001 .000 -.751 -4.054 .002 

period .002 .002 .152 .823 .427 

Residuals Statisticsa 
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 Minimum Maximum Mean Std. Deviation N 

Predicted Value .02659853175 .15646274388 .09153063747 .045366604428 15 

Residual -.050990678370 .090406112373 .000000000000 .037986902194 15 

Std. Predicted Value -1.431 1.431 .000 1.000 15 

Std. Residual -1.243 2.203 .000 .926 15 

a. Dependent Variable: p1154 

 

 

Peak 1204 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .924a .853 .828 .030614970490 1.824 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1204 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .065 2 .033 34.777 .000b 

Residual .011 12 .001   

Total .076 14    

a. Dependent Variable: p1204 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -.310 .045  -6.829 .000 

temp .002 .000 .923 8.338 .000 

period .000 .001 -.019 -.170 .868 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.07363096625 .09162077308 .00899490573 .068238612498 15 

Residual -.058225173503 .041541121900 .000000000000 .028343955033 15 

Std. Predicted Value -1.211 1.211 .000 1.000 15 

Std. Residual -1.902 1.357 .000 .926 15 

a. Dependent Variable: p1204 

Peak 1226 Regression 

Model Summaryb 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate Durbin-Watson 
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1 .695a .483 .397 .039581811111 .902 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1226 

ANOVAa 

Model 
Sum of 

Squares df Mean Square F Sig. 

1 Regression .018 2 .009 5.600 .019b 

Residual .019 12 .002   

Total .036 14    

a. Dependent Variable: p1226 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .090 .059  1.534 .151 

temp -.001 .000 -.602 -2.900 .013 

period -.003 .002 -.347 -1.671 .121 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.16385829449 -.04296753928 -.10341291507 .035403847735 15 

Residual -.076135732234 .080607205629 .000000000000 .036645636312 15 

Std. Predicted Value -1.707 1.707 .000 1.000 15 

Std. Residual -1.924 2.036 .000 .926 15 

a. Dependent Variable: p1226 

Peak 1262 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .738a .545 .469 .020802163026 .786 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1262 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .006 2 .003 7.178 .009b 

Residual .005 12 .000   

Total .011 14    

a. Dependent Variable: p1262 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model Unstandardized Coefficients Standardized Coefficients t Sig. 
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B Std. Error Beta 

1 (Constant) .086 .031  2.798 .016 

temp -.001 .000 -.654 -3.360 .006 

period -.002 .001 -.341 -1.752 .105 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.06409113854 .00672719022 -.02868197233 .021065543964 15 

Residual -.037579432130 .038419764489 .000000000000 .019259060649 15 

Std. Predicted Value -1.681 1.681 .000 1.000 15 

Std. Residual -1.807 1.847 .000 .926 15 

a. Dependent Variable: p1262 

Peak 1318 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .963a .928 .916 .036080634268 .481 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1318 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .201 2 .100 77.062 .000b 

Residual .016 12 .001   

Total .216 14    

a. Dependent Variable: p1318 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .566 .054  10.575 .000 

temp -.004 .000 -.953 -12.278 .000 

period -.003 .002 -.143 -1.838 .091 

  

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.20716759562 .12144514173 -.04286122993 .119713996664 15 

Residual -.055915892124 .043493527919 .000000000000 .033404176418 15 

Std. Predicted Value -1.372 1.372 .000 1.000 15 

Std. Residual -1.550 1.205 .000 .926 15 
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a. Dependent Variable: p1318 

Peak 1335 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .906a .820 .790 .049866593208 1.678 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1335 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .136 2 .068 27.353 .000b 

Residual .030 12 .002   

Total .166 14    

 

a. Dependent Variable: p1335 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -.477 .074  -6.446 .000 

temp .003 .000 .902 7.371 .000 

period .001 .002 .075 .614 .550 

 

 Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.11690136045 .13793130219 .01051497060 .098573538533 15 

Residual -.075294494629 .068827085197 .000000000000 .046167494299 15 

Std. Predicted Value -1.293 1.293 .000 1.000 15 

Std. Residual -1.510 1.380 .000 .926 15 

a. Dependent Variable: p1335 

Peak 1366 Regression 

Model Summaryb 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate Durbin-Watson 

1 .974a .949 .940 .029356342023 1.523 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1366 

ANOVAa 

Model 
Sum of 
Squares df Mean Square F Sig. 
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1 Regression .191 2 .095 110.803 .000b 

Residual .010 12 .001   

Total .201 14    

a. Dependent Variable: p1366 

b. Predictors: (Constant), period, temp 

 Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .529 .044  12.157 .000 

temp -.003 .000 -.952 -14.557 .000 

period -.004 .001 -.204 -3.112 .009 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.24645674229 .09055002034 -.07795336060 .116796136467 15 

Residual -.052215896547 .054586123675 .000000000000 .027178691500 15 

Std. Predicted Value -1.443 1.443 .000 1.000 15 

Std. Residual -1.779 1.859 .000 .926 15 

a. Dependent Variable: p1366 

Peak 1421 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .935a .874 .853 .021094661240 .708 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1421 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .037 2 .018 41.495 .000b 

Residual .005 12 .000   

Total .042 14    

 

a. Dependent Variable: p1421 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B 
Std. 
Error Beta 

1 (Constant) .122 .031  3.899 .002 

temp -.001 .000 -.904 -8.808 .000 
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period -.002 .001 -.238 -2.324 .038 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.22552023828 -.07219632715 -.14885828367 .051359562826 15 

Residual -.040627852082 .036256358027 .000000000000 .019529861374 15 

Std. Predicted Value -1.493 1.493 .000 1.000 15 

Std. Residual -1.926 1.719 .000 .926 15 

a. Dependent Variable: p1421 

Peak 1456 Regression 

Model Summaryb 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate Durbin-Watson 

1 .919a .845 .819 .037964531786 1.411 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1456 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .094 2 .047 32.689 .000b 

Residual .017 12 .001   

Total .112 14    

a. Dependent Variable: p1456 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .287 .056  5.100 .000 

temp -.002 .000 -.844 -
7.427 

.000 

period -.006 .002 -.363 -
3.197 

.008 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.29160448909 -.02464209311 -.15812328733 .082040861582 15 

Residual -.048475556076 .082367874682 .000000000000 .035148326606 15 

Std. Predicted 
Value 

-1.627 1.627 .000 1.000 15 

Std. Residual -1.277 2.170 .000 .926 15 

a. Dependent Variable: p1456 

Peak 1507 Regression 

Model Summaryb 
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Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .602a .362 .255 .036810197043 1.099 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1507 

ANOVAa 

Model 
Sum of 
Squares df 

Mean 
Square F Sig. 

1 Regression .009 2 .005 3.402 .068b 

Residual .016 12 .001   

Total .025 14    

a. Dependent Variable: p1507 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .073 .055  1.333 .207 

temp -7.620E-5 .000 -.060 -.262 .798 

period -.004 .002 -.598 -
2.595 

.023 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.04713065550 .02872879989 -.00920092820 .025660546527 15 

Residual -.064686059952 .064052022994 .000000000000 .034079620299 15 

Std. Predicted Value -1.478 1.478 .000 1.000 15 

Std. Residual -1.757 1.740 .000 .926 15 

a. Dependent Variable: p1507 

Peak 1595 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .929a .863 .840 .181167779796 .403 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1595 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 2.474 2 1.237 37.689 .000b 

Residual .394 12 .033   

Total 2.868 14    

a. Dependent Variable: p1595 
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b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -1.794 .269  -6.677 .000 

temp .012 .001 .901 8.421 .000 

period .017 .008 .226 2.114 .056 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.20697799325 1.03758788109 .41530491827 .420374748295 15 

Residual -.188831865788 .280879139900 .000000000000 .167728771966 15 

Std. Predicted Value -1.480 1.480 .000 1.000 15 

Std. Residual -1.042 1.550 .000 .926 15 

a. Dependent Variable: p1595 

Peak 1642 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .912a .832 .804 .023473459909 1.392 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1642 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .033 2 .016 29.751 .000b 

Residual .007 12 .001   

Total .039 14    

a. Dependent Variable: p1642 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) .164 .035  4.722 .000 

temp -.001 .000 -.897 -7.583 .000 

period -.002 .001 -.167 -1.412 .183 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.15334643424 -.01656093821 -.08495368573 .048392773004 15 
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Residual -.035215944052 .049713898450 .000000000000 .021732200995 15 

Std. Predicted Value -1.413 1.413 .000 1.000 15 

Std. Residual -1.500 2.118 .000 .926 15 

a. Dependent Variable: p1642 

 

Peak 1730 Regression 

Model Summaryb 

Model R R Square Adjusted R Square Std. Error of the Estimate Durbin-Watson 

1 .940a .884 .865 .101742378179 .491 

a. Predictors: (Constant), period, temp 

b. Dependent Variable: p1730 

ANOVAa 

Model Sum of Squares df Mean Square F Sig. 

1 Regression .948 2 .474 45.768 .000b 

Residual .124 12 .010   

Total 1.072 14    

a. Dependent Variable: p1730 

b. Predictors: (Constant), period, temp 

Coefficientsa 

Model 

Unstandardized Coefficients Standardized Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -1.475 .151  -9.776 .000 

temp .008 .001 .938 9.542 .000 

period .003 .005 .069 .704 .495 

 

Residuals Statisticsa 

 Minimum Maximum Mean Std. Deviation N 

Predicted Value -.52825087309 .13799774647 -.19512657433 .260155899940 15 

Residual -.181039199233 .153854832053 .000000000000 .094195138716 15 

Std. Predicted Value -1.280 1.280 .000 1.000 15 

Std. Residual -1.779 1.512 .000 .926 15 

a. Dependent Variable: p1730 
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Timber Accelerated Ageing Model Origin  

Treated in Air 

 



322 

 

Treated in Vacuum 
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Treated in Air and Vacuum 

 

 

 

 

 


