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Abstract

The main objectives of this PhD thesis are to investigate health inequality in low- and middle-

income countries in Asia. The thesis consists of four independent chapters. The first two chapters

explore the inequality of opportunity in health and the last two chapters evaluate the conditional

cash transfer programmes.

Chapter 1 explores the inequality of opportunity in child health in ten developing countries

in Asia, i.e. Bangladesh, Nepal, Pakistan, Maldives, India, Cambodia, Myanmar, East Timor,

Tajikistan and Kyrgyzstan. We quantify the degree of inequality in child nutritional status

between children with advantaged parental socio-economic backgrounds and those with disad-

vantaged parental socio-economic backgrounds. We then investigate the factors contributing to

the observed disparities. The results provide strong evidence that priority should be given to

protecting children from marginalised households in order to mitigate the inequality in child

health.

Chapter 2 proposes a new approach to measuring the inequality of opportunity with copulas

to overcome some of the shortcomings of the existing methods. The proposed approach is ap-

plied to the inequality in body mass associated with its intergenerational transmission from

parents to children in Indonesia.

Chapter 3 evaluates the conditional cash transfer programme in Indonesia, the Program Kelu-

arga Harapan (PKH). We estimate its impacts on the entire distributions of child health and

household expenditure. We explore the mechanism by which the PKH affects child nutritional

status by decomposing the treatment effect on health into the part that can be explained by

the change in household expenditure and the remaining part that is due to behavioural changes.

An improvement in height among children aged 24-36 months is observed. Its improvement is

explained not by the increase in household expenditure but by the behavioural changes of the

beneficiaries.

Chapter 4 re-visits the conditional cash transfer programme in India, the Janani Suraksha Yo-

jana (JSY) and examines the existing non-experimental evidence of its impact on maternal

healthcare use through the partial identification approach. We find that the average treatment

effects estimated in the previous studies are outside of the average treatment effect bounds esti-

mated under weaker but more credible assumptions, thereby suggesting that average treatment

effect in previous studies may have been over- or under-estimated due to untenable identification

assumptions.
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Preface

The study into health inequality has played an important role in health economics. In recent

decades, many health economics scholars have studied the inequality in health and healthcare

service (van Doorslaer et al., 2000, 2004; van Doorslaer and Jones, 2004; van Doorslaer and Kool-

man, 2004; van Doorslaer et al., 2006; Wagstaff and van Doorslaer, 2000). The majority of this

literature focuses on developed countries; research on health inequality in developing countries,

where substantial demographic changes and remarkable improvement in living conditions are

occurring, has started only recently. This PhD thesis investigates health inequality in low- and

middle-income countries in Asia.

Strong economic growth in Asian countries, without doubt, provides wider opportunities for

better health. In the case of child health, for example, the number of stunted children in Asia,

which was 134.6 million in 2000, declined to 83.6 million in 2017 (UNICEF, 2017). Despite

the strong economic growth, its health benefits are not necessarily equally distributed. A large

volume of the literature has shown that children whose parents have lower socio-economic back-

grounds tend to experience worse health conditions than those with parents who have more

advantaged socio-economic backgrounds (Case and Paxson, 2002; Bradley and Corwyn, 2002).

Children’s health is thus heavily influenced by the characteristics of the families into which they

are born, which causes the intergenerational transmission of socio-economic status and health,

making it even harder for poor households to find a way to get out of poverty (Case et al., 2002).

But for appropriate social policies to ensure reasonable fairness, the economic growth itself brings

little benefit to health equity (Marmot et al., 2008). Given that health is one of the most impor-

tant elements of human capital (Johnson and Schoeni, 2011; Bleakley, 2010), inequality in this

regard can be an obstacle for sound and inclusive development. Investigating health inequality

and effective policies to mitigate it, should contribute to assisting the sustainable and resilient

development of the low- and middle-income countries in the region.
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The thesis consists of four independent chapters. The first two chapters explore the inequal-

ity of opportunity (IOp) in health. The IOp is an illegitimate form of inequality whereby causes

are not attributable to individual choices. In both studies, we regard the environmental circum-

stances where children grew up as factors beyond children’s control and estimate how much of

the overall inequality is explained by these circumstances.

Chapter 1 explores the IOp in child malnutrition in ten developing countries in Asia, where

a high proportion of children still remain vulnerable to food insecurity. This study takes account

of multi-dimensional aspects of household and parental socio-economic status, and partitions

children into distinct types through a data-driven clustering method. This is followed by a com-

parison of the malnutrition rates between types. Next, we decompose the observed between-type

disparity in malnutrition rates into the factors that are associated with the observed disparity

through a non-linear decomposition method. The results indicate that in all ten countries, sig-

nificant between-type disparities are found. We find the largest difference in Pakistan as 21.7

percentage points and the smallest difference in Maldives as 5.9 percentage points. In five of

the ten countries, the difference in household affluence explains the largest part of the observed

between-type disparity. All the results suggest that priority should be given to protecting chil-

dren from marginalised households in order to mitigate the inequality in child health.

Chapter 2 measures inequality of opportunity using copulas within the framework developed

by Roemer (1998). Non-parametric and parametric methods have been widely used to measure

IOp, but each of them tends to have a significant technical concern when the sources of inequality

are not categorical and multi-dimensional, and when a severe specification error is suspected re-

spectively. Chapter 2 introduces an alternative approach to measuring ex-post IOp using copulas

which model various structures of dependence between efforts, factors for which individuals are

responsible, and circumstances, factors beyond the individual’s control. Semi-parametric esti-

mation of the outcome distribution and flexible modelling of the dependence structure between

efforts and circumstances help to overcome the concerns in the existing methods. The method

is applied to measuring inequality in the body mass index (BMI), attributable to its intergener-

ational transmission from parents to their adult offspring in Indonesia. A 21-year gap between

the first wave and the last wave of the Indonesian Family Life Survey is exploited to estimate

the effect of parental BMI when offspring are below 15 years old on the BMI of grown-up off-
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spring. The results show that 16.2 per cent of the overall variance in grown-up children’s BMI

is associated with intergenerational BMI transmission.

The last two chapters investigate the effectiveness of conditional cash transfer programmes, which

are one of the most widely adopted programmes in the world in the last two decades after their

success in Latin American countries. Progresa/Oportunidades in Mexico and Bolsa Escola in

Brazil are well known as the most successful programmes. Conditional cash transfer programmes

transfer money to low-income households with pregnant mothers and/or children contingent on

investments in human capital. The cash transfer combined with multiple conditionalities en-

courages poor households to invest in long-term human capital development. Conditional cash

transfer programmes are justified by social equity concerns as they redistribute resources from

richer to poorer households. Recently, conditional cash transfer programmes have been launched

in several countries beyond Latin America; Asian countries began to introduce the programmes.

We evaluate the impacts of conditional cash transfer programmes conducted in Indonesia and

India on health and healthcare use in chapter 3 and chapter 4 respectively.

Chapter 3 investigates the impact of a conditional cash transfer programme in Indonesia, the Pro-

gram Keluarga Harapan (PKH), on the marginal and joint distributions of child nutritional status

and household expenditure 26-30 months after its implementation. The cluster-randomised con-

trol trial project conducted in Indonesia provides an opportunity to semi-parametrically estimate

the causal impacts on the dependence between them. The results show that the PKH increases

the higher quantiles of weight-for-age z-score among children aged between 25-36 months. Its

improvement is explained not by the rise in the household expenditure due to the PKH but by

the change in the association between nutritional status and household expenditure. Further-

more, the PKH strengthens the positive association between nutritional status and household

expenditure among them. For the other younger age groups, the improvement in nutritional

status is not observed.

Chapter 4 re-estimates the causal impacts of a conditional cash transfer programme in India,

the Janani Suraksha Yojana (JSY), on maternal and child healthcare use. The main goal is

to provide new evidence and assess the validity of the identification assumptions employed in

previous studies on the JSY, through the conservative partial identification approach. We find

13



that the average treatment effects estimated under the conditional independence assumption lie

outside the bound of the treatment effects that are estimated under weaker but more credible

assumptions, thereby suggesting that the selection bias could not have been fully controlled for

by the observable characteristics and that the average treatment effects estimated in the previous

studies may have been over- or under-estimated.
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Chapter 1

Ex-ante Inequality of Opportunity in Child Malnutrition: New

Evidence from Ten Developing Countries in Asia

Abstract

This study explores the inequality of opportunity in child malnutrition in ten developing countries in

Asia, where a high proportion of children still remain vulnerable to food insecurity. This study takes

account of multidimensional aspects of household and parental socio-economic status, and partitions

children into distinct types through a data-driven clustering method. This is followed by a comparison of

the malnutrition rates between types. Next, we decompose the observed disparity into the factors that

are associated with the between-type disparity in malnutrition rates through a non-linear decomposition

method. The results indicate that in all ten countries, significant between-type disparities are found. We

find the largest difference in Pakistan as 21.7 percentage points and the smallest difference in Maldives

as 5.9 percentage points. In five of the ten countries, the difference in household affluence explains the

largest part of the observed between-type disparity. All the results suggest that priority should be given

to protecting children from marginalised households in order to mitigate the inequality in child health.

JEL code: D63, I12, I14, I15

Keywords: Inequality of opportunity; Clustering; Malnutrition; Decomposition; Asia
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1.1 Introduction

The Sustainable Development Goals (SDGs), adopted by all United Nations Member States in

2015, call for action to end all forms of malnutrition among children under five years of age

and to protect them from preventable deaths (United Nations, 2015). Malnutrition triggers a

potentially lethal cycle of worsening illness and further deterioration in nutritional status. Nu-

merous studies have revealed that malnutrition in the early stages of life increases the risk of poor

child development, resulting in a greater likelihood of death from infectious diseases in childhood

(Pelletier et al., 1995; Caulfield et al., 2004). According to UNICEF (2017), nearly half of all

deaths in children under five are attributable to malnutrition. Moreover, the negative impact of

restricted development due to malnutrition in childhood is persistent and its long-term effects

are not limited to the health domain.1 Ill health in childhood has persistent adverse impacts on

the development of both cognitive and non-cognitive skills (Sánchez, 2017; Walker et al., 2011;

Grantham-McGregor et al., 2007; Victora et al., 2008), motor development, educational outcomes

(Glewwe et al., 2001) and future earnings (Smith, 2009; Johnson and Schoeni, 2011). Not taking

action at the very early stages of life will have lifelong, irreversible adverse consequences for the

future health of children, and even for the subsequent generation and the welfare of societies

(Walker et al., 2011).

The stunting rate is gradually declining globally; in 2016, 22.9 per cent of children under the age

of five had stunted growth, compared with 32.7 per cent in 2000 (UNICEF, 2017). Despite this

enormous progress, more than six million children still die before their fifth birthday every year.

Moreover, there is a large regional disparity in the prevalence of malnutrition. In 2016, two out

of five stunted children in the world lived in Southern Asia, where the prevalence rate of stunting

exceeds 30 per cent (UNICEF, 2017). Certainly, developing countries in Asia are experiencing

strong economic growth, which has led to a number of children under five being able to escape the

misery caused by poverty and malnutrition. However, the benefits of economic growth have not

necessarily been enjoyed equally by all people within a country, and therefore health inequality

has not disappeared. The malnutrition rate is persistently higher among poor children in rural

areas. Numerous studies have revealed significant relationships between parental socio-economic

status and child health. For example, children whose parents come from lower socio-economic

1See for example, Strauss and Thomas (2007); Almond and Mazumder (2013); Almond and Currie (2011); Case
et al. (2005); Alderman et al. (2006); Smith et al. (2012); Blackwell et al. (2001); Portrait et al. (2017); Victora
et al. (2008).
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backgrounds tend to have worse health compared with those parents who have higher socio-

economic backgrounds (Case et al., 2002; Currie and Moretti, 2003; Currie and Vogl, 2013).

Achieving equity and equality in child health would be an essential public policy objective to

ensure sustainable and resilient economic growth. Addressing health inequality among children

is as important, or potentially more important, as mitigating it among adults. First, in contrast

to adults, health disparity among children cannot generally be attributed to their own lifestyles

for which they should be held responsible. Clearly, children cannot choose their parents and they

have no control over the environments in which they grow up. In this sense, health disparity

among children may well be considered inequitable. Second, the first few years of life are of

huge importance because vital development occurs in all domains at this stage, including the

structural and functional capacity development of the brain (Grantham-McGregor et al., 2007).

Mitigating health inequality by improving the nutritional status of impoverished children would

help to bring about long-term benefits for the children themselves, as well as for society in general.

In this paper, we examine the existence of inequality of opportunity in child health in ten

developing countries in Asia; namely Bangladesh, Nepal, Pakistan, Maldives, India, Cambodia,

Myanmar, East Timor, Tajikistan and Kyrgyzstan. We first partition the children in each coun-

try into a few types, namely, a set of people with the same circumstances in which children grow

up (Roemer, 1998). Then, we compare the nutritional status across different types. In particular,

we test for the existence of inequality of opportunity by comparing the nutritional status between

the least advantaged type and the most advantaged type. If a significant difference is detected,

this is a sign of the existence of inequality of opportunity (Peragine and Serlenga, 2007; Lefranc

et al., 2008, 2009; Aaberge et al., 2011; Lefranc and Trannoy, 2017; Ramos and Van de gaer, 2016).

Next, in order to better understand the factors that are related to health inequality in child

development, we decompose the observed between-type difference in health status into the fac-

tors that are associated with the observed difference by the non-linear decomposition approach

developed by Fairlie (2005). The decomposition analysis would be helpful for policymakers who

seek to design effective policies to mitigate health inequality. The results show that significant

between-type disparities are found in all ten countries. The largest difference is observed in

Pakistan and the smallest difference is found in Maldives. In five of the ten countries, the dif-
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ference in household affluence explains the largest part of the observed between-type disparity.

Exploiting the Demographic and Health Survey (DHS) in which data collection procedures and

interviewer training are standardised across countries, this paper ensures the comparability of

the results across different countries.

1.2 Related literature

The existing literature on health inequality can be roughly categorised into two types (Wagstaff

and van Doorslaer, 2004). The first type explores how health differs across various socio-economic

dimensions. This variation of the literature typically analyses the difference in health across dif-

ferent segments of the population with regression-based approaches (Kamal, 2011; Pathak and

Singh, 2011; Van de Poel and Speybroeck, 2009) or explores income-related or wealth-related

health inequality with the concentration index (Wagstaff et al., 1991). Socio-economic health

inequality rests on the normative idea that everyone should have an equal opportunity to enjoy

better health regardless of their socio-economic status. The majority of the existing literature

on child health inequality focuses mainly on a single country (e.g. Zere and McIntyre, 2003;

Subramanyam et al., 2010; Hong and Mishra, 2006; Hong et al., 2006; Hong, 2007; Thang and

Popkin, 2003). On both a regional and global level, for example, Wagstaff and Watanabe (2000);

Houweling et al. (2003) and Van de Poel et al. (2008) analyse the socio-economic inequality in

child nutritional status and Van de Poel et al. (2007) and Smith et al. (2005) analyse the urban-

rural inequality across various developing countries.

The second type of literature focuses on inequality in health itself, rather than on the cor-

relations between health and socio-economic status. This variation of the literature analyses

the distribution of health with the techniques commonly applied to income inequality research

(Le Grand, 1987; Gakidou et al., 2000). For example, Pradhan et al. (2003) explore global in-

equality in child nutritional status and decompose it into within- and between-country inequality.

Castillo-Salgado et al. (2001) apply the Gini index to measuring infant mortality rates across

South American countries and Fang et al. (2010) analyse the regional differences in inequality in

health in China. This type of literature usually does not clearly distinguish between legitimate

and illegitimate inequality.

The approach utilised by this paper does not belong to either strand of research in the strictest
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sense; rather, it can be regarded as a mixture of both or an extension of the first type. The

inequality of opportunity is an illegitimate inequality whereby causes are not attributable to

individual choices (Roemer, 1998). Equality is achieved when the same opportunities to secure

better health are shared by all children, irrespective of the circumstances in which they grow

up. This goal is often referred to as the ex-ante approach, which promotes equality of out-

comes among those facing the same circumstances by making their average outcomes as equal

as possible (Pignataro, 2012; Ferreira and Gignoux, 2011). Inequality of opportunity is a more

general concept of inequality than income- or wealth-related health inequality in the sense that

household income or wealth is just a subset of unjustifiable sources of inequality (Fleurbaey and

Schokkaert, 2012; Schokkaert, 2015). In fact, in the literature on income-related health inequal-

ity, other parental and household factors, such as parental educational backgrounds, tend not to

be recognised as illegitimate inequality sources unless they are captured by income.

In contrast to the existing research, this paper takes account of multidimensional circumstances–

a set of factors over which individuals have no control. In the real world, unjustifiable sources of

health inequality are wide-ranging (Cutler et al., 2008) and income and wealth are just subsets

of circumstance factors. From children’s perspective, parental educational backgrounds and lo-

cation of domicile may well be regarded as important factors that can be sources of unfair health

inequality. Consideration of the multidimensionality of circumstances allows us to explore the

in-depth health inequality which could not be captured by just a single index such as income or

wealth. Taking account of various aspects of inequality source is especially important as there

is a general consensus that composite factors, including affluence, education and occupation,

together represent various aspects of socio-economic status better than any of these elements

alone does (White, 1982).

1.3 Data

1.3.1 The Demographic and Health Survey

The Demographic and Health Survey (DHS) project is an ongoing collaboration between the

United States Agency for International Development and country-specific agencies. They con-

duct nationally representative household sample surveys covering a range of population health

indicators in low- and middle-income countries (Corsi et al., 2012). The DHS data has been
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Table 1.1: Country and year

Country Region Year N Malnutrition rate

Bangladesh South 2014 6,988 0.483
Nepal South 2016 3,759 0.414
Pakistan South 2012/13 4,807 0.536
Maldives South 2009 3,521 0.323
India South 2015/16 40,200 0.548
Cambodia South East 2014 4,332 0.431
Myanmar South East 2015/16 5,616 0.361
East Timor South East 2009/10 10,968 0.718
Tajikistan Central 2012 8,800 0.355
Kyrgyzstan Central 2012 5,483 0.212

gathered on the basis of comparable nationally representative household surveys that have been

conducted in more than 85 countries worldwide since 1984. The DHS respondents are selected

using a two-stage sampling process stratified by urban and rural location. Populations selected

in the DHS are representative of the entire country or region of interest. Key advantages of the

DHS include the national coverage and high participation rates (response rates typically exceed

90 per cent). In addition, the DHS questionnaire has been standardised and pre-tested to en-

sure comparability across populations and over time. Standard data collection procedures and

interviewer training in the DHS ensure that the data is both reliable and comparable.

This study uses the latest DHS conducted in ten Asian countries listed in Table 1.1.2 In each

country, selected households are visited by a trained interviewer who conducts a brief house-

hold interview, completes a household roster and identifies eligible women (aged 15-49) for an

individual interview. In this study, we use the data concerning children aged under five.

1.3.2 Variables

Nutritional status

We measure child nutritional status by a height-for-age z-score (HAZ score), a weight-for-age

z-score (WAZ score) and a weight-for-height z-score (WHZ score) of children under five. From

the actual measurements of the heights and weights of the children, the HAZ, WAZ and WHZ

scores were calculated. The HAZ/WAZ scores measure the difference between the height/weight

of an individual and the medial value of the “healthy” reference population for the same sex

2Afghanistan, Kazakhstan, Indonesia, Philippines, Sri Lanka, Thailand, Uzbekistan and Vietnam are excluded
from this study because their DHS data does not contain recent child nutritional information that has been
surveyed post-2005.
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and age, divided by the standard deviation of the reference population (O’Donnell et al., 2008).3

The HAZ score measures the long-term cumulative nutritional conditions and a low HAZ score

is associated with chronic under-nutrition caused by poor nutrition (Walker et al., 2007). The

WAZ score, on the other hand, measures the short-term nutritional conditions. A low WAZ score

is associated with the condition of being underweight. Finally, the WHZ score measures current

nutritional status and is used to screen children at risk and to measure short-term changes in

nutritional status. A low WHZ score is associated with the condition of wasting. Low HAZ, WAZ,

and WHZ scores are mainly caused by poor diet and often compounded by recurrent infectious

diseases including diarrhoea. The risk of death increases with descending scores (Black et al.,

2008). For details of the computations of these scores, see World Health Organization (2006).

A HAZ score, WAZ score and WHZ score below −2, i.e. two standard deviations below the

international reference median, are often indicators of being stunted, underweight and wasting,

respectively. In this study, children with malnutrition are defined as those who have any of these

three malnutrition conditions. Of the ten countries analysed in this study, East Timor shows

the highest malnutrition rate, followed by India and Pakistan. Kyrgyzstan shows the lowest

malnutrition rate.

Circumstance factors

In this study, we consider the nine circumstance factors that are assumed to capture multidi-

mensional circumstances, on the basis of which we partition the observations into a few clusters.

They are (I) Maternal health, (II) Maternal education, (III) Paternal education, (IV) Demogra-

phy, (V) Housing condition, (VI) Affluence, (VII) Sanitation, (VIII) Parental occupation, and

(IX) Media exposure (Table 1.2). Certainly, these nine circumstance factors are just a subset

of conceivable circumstances, and each country typically may have a country-specific circum-

stance factor, such as the Caste system in India. However, in this research, we consider the

circumstance variables that are surveyed in all ten countries. Considering only the common cir-

cumstance variables allows us to compare the results across countries. First, as a measurement

of maternal health, following Smith et al. (2005), we use maternal body mass index (BMI).4 BMI

3In the standard that the World Health Organization issued in 2006, the reference population is healthy
and well-nourished children in the United States. This standard captures the growth and development process
of children from widely diverse ethnic and cultural backgrounds (O’Donnell et al., 2008). Their rationales are
discussed in de Onis and Lobstein (2010).

4Certainly, paternal BMI could also be an important circumstance factor. In most countries, however, infor-
mation about heights and weights of fathers is not surveyed in the DHS dataset. In this paper we consider only
maternal BMI to achieve international comparability of the results.
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Table 1.2: Circumstance factors and their composition elements

Factor Composition element

(I) Maternal health Maternal body mass index (kg/m2)
(II) Maternal education Maternal education years
(III) Paternal education Paternal education years
(IV) Demography Maternal age at birth, Family size, Number of children,

Living in urban cities
(V) Housing condition Natural/rudimentary/finished floors,

Natural/rudimentary/finished walls,
Natural/rudimentary/finished roofs

(VI) Affluence Radio, TV, Refrigerator, Bicycle, Motorcycle, Car, Mobile phone,
Electricity, Safe fuel

(VII) Sanitation Piped water, Flushing toilet, Water treatment for drinking
(VIII) Parental occupation Farmer, Professional worker, Non-manual worker, Manual worker
(IX) Media exposure Frequency of TV watching, Frequency of radio listening,

Frequency of newspaper reading

is defined as an individual’s weight divided by their height squared and then expressed in units

of kg/m2. Information on heights and weights in the DHS was based on actual measurements

and therefore was less likely to be subject to measurement errors such as under-reporting of

weight and over-reporting of height (Gorber et al., 2007). The effects of maternal health on

child health are reported in both developed and developing countries (Bhalotra and Rawlings,

2013; Özaltin et al., 2010; Ahsan and Maharaj, 2018; Ferreira et al., 2009; Li et al., 2009). For

example, malnourished women are more likely to deliver smaller babies and less successful at

breastfeeding their children (Beard, 2001; Gillespie, 1997).

Second, we use the maternal and paternal educational backgrounds, which are measured by the

number of years of education completed by a mother and a father. This is motivated by a number

of empirical research papers on the relationship between parental educational backgrounds and

child development (Chen and Li, 2009; Currie and Moretti, 2003; Ahsan and Maharaj, 2018;

Appoh and Krekling, 2005). For example, it is argued that more educated mothers are capable

of better processing information, using effectively healthcare facilities and communicating with

healthcare providers for children (Smith et al., 2005; Levin et al., 2000).

Next, for the circumstance factors (IV)-(IX), we create continuous summary indices from con-

tinuous and binary variables by the principal component analysis.5 Individual covariates in each

5Certainly the principal component analysis is designed primarily for continuous variables, but it also works
with binary variables as well, although the derived score may not be as numerically meaningful as the one derived
from continuous variables. In this study, the score is used only in the clustering process and the difficulty of
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factor are summarised in Table 1.2. We create a demographic circumstance index from maternal

age at birth, family size, number of children in the household, location of living (urban/rural).

Family size affects child health not only because there are more mouths to feed for a given in-

come but also because of the likelihood of crowding and the spread of infection (Hatton et al.,

2018). Becker (1960), Becker and Lewis (1973) and Becker and Tomes (1986) formulated the link

between family size and child outcomes (the quantity and quality trade-offs). The detrimental

effects of family size on child health are reported in several countries (Hatton et al., 2018; Liu,

2014; Alderman, 1990; Glick et al., 2007; Blake, 1981). With regard to location of living, urban

children generally have a better nutritional status than those in rural areas (Van de Poel et al.,

2007).

As a measurement of household affluence, we create its index from the following nine asset-

ownership variables (Filmer and Pritchett, 2001; Rutstein and Staveteig, 2014; Montgomery

et al., 2000): (i) owning a radio, (ii) owning a television, (iii) having a refrigerator, (iv) having

a bicycle, (v) having a motorcycle (vi) having a car, (vii) having a mobile phone, (viii) access

to electricity, and (ix) the availability of safe cooking fuel (i.e. electricity, LPG, natural gas).

The higher value of affluence index is associated with the better-off living standards. Household

affluence is one of the important socio-economic factors that create inequality in health (Cha-

lasani, 2012; Huda et al., 2017; Aizawa and Helble, 2017).

The index for housing characteristics is derived from the materials of floors, walls, roofs, and

number of rooms in a household. The housing condition is closely related to child health. Di-

lapidated, poor and crowded housing has been regarded as one of the important causes of child

illness (Marmot, 1999; Bradley et al., 2001). Household sanitary condition is an equally im-

portant factor for child health. As a measurement of household sanitary condition levels, we

create its index from the following dummy variables: (i) access to drinking water, (ii) having a

flushing toilet in a house, and (iii) whether water has a treatment for drinking. It is known that

sanitary conditions have a substantial influence on health (Ahsan et al., 2017; Caulfield et al.,

2004; Checkley et al., 2004). For example, poor water condition is known as a leading cause of

diarrhoea (Konteh, 2009).

numerical interpretation is of less concern herein.

27



In respect of parental occupation, four occupation types for each mother and father are used in

constructing its index: (i) professional/technical/managerial work, (ii) clerical, sales or employ-

ment in the service sector, (iii) farming6, and (iv) manual work.7 Not currently participating in

the labour force is a benchmark category.8 The association between parental employment status

and child health is reported by Ruhm (2004); Blau et al. (1996) and McGuire and Popkin (1990).

The last category, media exposure, includes the mother’s frequency of watching TV, listen-

ing to the radio and reading newspapers. Frequencies of exposure to the respective media are

divided into three levels: (i) not at all/less than once a week, (ii) at least once a week, and (iii)

almost every day (benchmark category). As the mass media often disseminate information that

could lead to children receiving better nutrition or avoiding an illness or disease, the degree of

maternal media exposure is an important factor to take into consideration (Olken, 2009). The

descriptive statistics of nutritional status and circumstance variables are shown in Table 1.A.1

in the Appendix.

1.4 Methods

1.4.1 Defining types

When we define types, considering multidimensional circumstance factors is important to reflect

the various circumstances that children may face. However, defining the types is not always easy

in cases where we have multidimensional circumstance variables. As we consider more and more

circumstance factors, we are likely to suffer the curse of dimensionality (Ferreira and Gignoux,

2011). The precision of the analysis deteriorates as the number of circumstance factors increases,

because the exponentially growing number of types often leads to very few observations in each

type. The situation becomes even worse when circumstance variables are continuous; here, dis-

crete types can still be defined, but the choice of cut-off point to make a continuous variable

discrete tends to be arbitrary. Li Donni et al. (2015) proposed a way of defining endogenously fi-

nite types with a latent class approach to deal with the multidimensionality of circumstances, and

O’Neill et al. (1999) proposed a method of dealing with the continuity of circumstance variables

with kernel estimation. In this paper, we deal with the multidimensionality of circumstances

using the clustering approach, which is a data-driven technique of clustering to find distinctive

6Either as an employee or as an owner.
7Including both skilled and non-skilled manual work.
8This includes those not seeking employment, such as homemakers.
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subgroups among the observations. Clustering is one of the unsupervised machine learning ap-

proaches that partition the observations into a pre-specified number of non-overlapping clusters

so that the observations within each group become similar to each other, while at the same time

the observations in different groups differ from one another. We use the K-means clustering

method, which is one of the most popular clustering methods due to its tractable algorithm and

high computational speed.

K-means clustering requires us to firstly specify a desired number of clusters K. Then, the

K-means algorithm will assign each observation to exactly one of the K clusters so that the

within-cluster variation, summed over all clusters, becomes as small as possible. In the K-means

clustering, the within-cluster variation for the Kth cluster is measured by the sum of all of the

pairwise squared Euclidean distances between the observations in the Kth cluster, divided by

the total number of observations in the Kth cluster. Before applying the K-means clustering,

we normalise the circumstance factors so that they will range from 0 to 1, which allows us to

calculate the Euclidean distances between the observations.

Determining the optimal number of clusters, K∗, in a data set is a fundamental issue in clus-

tering. If the optimal number of clusters were known a priori, we would be able to use that

number, but such information is seldom available in advance. In most cases, the selection of

a number of clusters tends to be a later consideration, and so it is important to try several

numbers of clusters and compare their performances measured by some objective criteria. One

of the methods commonly used in the literature to choose the optimal number of clusters is

the elbow method. This method first calculates the total within-cluster sum of square variation

(WSS) and plots the total WSS as a function of the number of clusters. In the plot, we should

choose a number of clusters so that adding another cluster does not improve the total WSS very

much. In the plotted WSS, the location of a bend/knee in the plot is generally considered to be

an indicator of the appropriate number of clusters. However, spotting a bend/knee in the plot

usually requires our subjective judgement and hence the choice of the optimal number of clusters

is often non-unanimous. Different people may choose a different number of clusters from the

same plot. Therefore, we consider an alternative approach called the average silhouette method

(Kaufman and Rousseeuw, 1990).
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The average silhouette method computes the average silhouette of observations for different

numbers of K. The average silhouette determines how well each observation lies within its clus-

ter, so a high average silhouette indicates a good clustering. The optimal number of clusters K∗

is the one that maximises the average silhouette over a range of the cluster numbers K (Kaufman

and Rousseeuw, 1990). When we plot the curve of the average silhouette against the number

of clusters K, the location of the maximum is considered to be the optimal number of clusters

(Kaufman and Rousseeuw, 1990).

After the K-means algorithm assigns each observation to one of the K∗ clusters, we compare

the child malnutrition rates between clusters. If we find a significant difference across clusters,

it is a sign of the existence of inequality in child nutritional status that is associated with the

circumstances. We define the most advantaged type as the better-off class with the lowest mal-

nutrition rate, and the least advantaged type as the worse-off class with the highest malnutrition

rate (Roemer, 1998).9

1.4.2 Non-linear Oaxaca-Blinder decomposition

Overall decomposition

Next, we decompose the observed between-type differences regarding the malnutrition rates be-

tween the least advantaged type and the most advantaged type to better understand what aspects

of circumstances are strongly associated with the observed difference in malnutrition rate. We

decompose the between-type difference into the part which is attributable to the difference in

the distribution of circumstance variables (the explained part) and the part which is not (the

unexplained part).

We employ the non-linear decomposition method (Fairlie, 1999, 2005), which is an extension

of the linear Oaxaca-Blinder decomposition (Oaxaca, 1973; Blinder, 1973) to the parametric

non-linear case. We use the following notations and the explanations of the decomposition

method follows Aizawa (2018a). g = {L,M} represents the group to which individuals belong.

In this study, g = L is the least advantaged type, while g = M is the most advantaged type.

Ng denotes the observation size of the group g. Y denotes a binary child malnutrition status

9It is worth noting that the most advantaged type does not necessarily have better circumstance variables than
the other types because in this paper the distinction between the most advantaged type and the least advantaged
type is based on the malnutrition rate of each type, not on the circumstance variables themselves.
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variable. Y becomes one if a child has any of the malnutrition conditions, and X = {X1, ..., Xk}

is a vector of individual circumstance variables that are used for the clustering. As Y is a binary

variable, Y
g

= 1
Ng

∑Ng

i=1 Yi denotes the proportion of children in group g whose value of Y equals

1.

The predicted probability of individual i in group g is expressed as

Ŷ g
i = F (Xg

i β̂
g), g = {L,M} (1.1)

where F (.) denotes a logistic distribution and β̂g is a vector of coefficients which are estimated

separately for group g. In the spirit of the Oaxaca-Blinder decomposition (Oaxaca, 1973; Blinder,

1973), we decompose the between-type difference in the average predicted probabilities as follows:

Y
L − YM

=

NL∑
i=1

F (XL
i β̂

L)

NL
−

NM∑
i=1

F (XM
i β̂M )

NM︸ ︷︷ ︸
Observed difference

(1.2)

=
{ NL∑

i=1

F (XL
i β̂

L)

NL
−

NM∑
i=1

F (XM
i β̂L)

NM

}
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Explained part

+
{NM∑

i=1

F (XM
i β̂L)

NM
−

NM∑
i=1

F (XM
i β̂M )

NM

}
︸ ︷︷ ︸

Unexplanined part

(1.3)

where
∑NM

i=1
F (XM

i β̂L)

NM is an average of counterfactual predicted probability that would be ob-

served if the children in the most advantaged type had the coefficient vector that the least

advantaged type has. The first bracket in equation (1.3) relates to the part of the gap which

can be due to the between-type differences in the distribution of X. We call this the explained

part. Another interpretation of the explained part is that it shows how much we could make the

observed difference smaller, if we were able to nullify the between-type difference in the distribu-

tions of circumstance variables. The second bracket represents the term due to the between-type

differences in the function determining levels of Y , which we call the unexplained part. The

unexplained part is the remaining part of the observed difference that cannot be explained by

the between-type difference in the distribution of X. The unexplained part reflects the difference

due to not only parental efforts but also circumstance factors that are not considered in this study.

Basically, the explained part is the average differences in the predicted probabilities of the least

advantaged type and the most advantaged type samples with the same coefficient vector. How-

ever, the decomposition in equation (1.3) is dependent on the choice of reference group (Oaxaca
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and Ransom, 1994). Namely, equation (1.3) is based on the reference coefficient vector, β̂L, and

the decomposition result varies if we use β̂M as a reference coefficient vector instead. To deal

with this problem, we use the coefficients estimated with the pooled sample (β̂P ) as the reference

coefficient vector (Fairlie, 2005). So equation (1.2) can be rewritten as

Y
L − YM

=
{ NL∑
i=1

F (XL
i β̂

P )

NL
−
NM∑
i=1

F (XM
i β̂P )

NM

}
︸ ︷︷ ︸

Explained part

+

{ NL∑
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F (XL
i β̂

L)

NL
−
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i=1
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i β̂

P )

NL
+
NM∑
i=1

F (XM
i β̂P )

NM
−
NM∑
i=1

F (XM
i β̂M )

NM

}
︸ ︷︷ ︸

Unexplanined part

(1.4)

The first bracket in equation (1.4) is interpreted as the explained part, while the second bracket

is interpreted as the unexplained part.

Detailed decomposition

The next step is to further decompose the explained part into its contributions made by indi-

vidual covariates. Identifying the contributing factors would help policymakers understand the

underlying mechanism that drives the disparity between types. However, in contrast to the linear

Oaxaca-Blinder decomposition method, the procedure of the detailed decomposition of the non-

linear model is not simple. The approach of sequentially switching the covariate distributions is

proposed by Fairlie (2005).

The fundamental idea of the detailed decomposition is to first find one-to-one matching of the

observations of each type and sequentially switch each marginal distribution of X. When the

observation sizes of each type are identical (NM = NL), finding one-to-one matching pairs

is straightforward. However, when the sample sizes are different, we cannot find one-to-one

matched pairs, and in general K-means clustering generally does not partition observations into

equal-sized clusters. To deal with such a common situation, the following algorithm is proposed

(Fairlie, 2005).

First, we estimate the coefficients using the pooled samples (β̂P ) and calculate predicted prob-

abilities for each population, namely Ŷ g
i = F (Xg

i β̂
P ). Next, we draw the random samples with

size NL from the observations of the most advantaged type with a replacement. Then, each

observation in the least and most advantaged types is separately ranked by the predicted proba-

bilities and matched by their respective rankings. This procedure allows us to find a one-to-one

pair of observations from each type. The contribution made by each covariate is then calculated

as a marginal contribution made by a respective covariate to the explained disparity. The con-
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tribution made by each covariate to the disparity is equal to the change in the average predicted

probability that is observed when we replace the covariate distribution of the least advantaged

type with that of the most advantaged type while holding the distribution of the other variables

constant.

For example, the marginal contributions made by X1 and X2 to the explained part are expressed

by

∆X1 =

NL∑
i=1

F (β̂P0 +XL
1iβ̂

P
1 +XL
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2 +, ..., XL
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where X̃M
i = {X̃M

1i , ..., X̃
M
ki } is a vector of covariates of the drawn sample of the most advantaged

type. Similarly, we can sequentially estimate the marginal contributions for every covariate.

Although the sum of contributions of each covariate equals the explained part, the individual

contributions can vary depending on the order of the switching procedure, which is widely known

as the path dependency problem. To deal with this problem, we randomise the order of the

covariate switching in each replication, which approximates average results over all possible

orderings. We implement 5,000 decompositions for each country.

1.5 Results

1.5.1 Clustering

First, we choose the optimal number of clusters, K∗, for each country. Figure 1.1 plots the

average silhouette width against the number of clusters. The number of clusters which max-

imises the average silhouette is the optimal number of clusters. The average silhouette width

method chooses two clusters for Bangladesh, Nepal, Pakistan, India, Cambodia, East Timor and

Tajikistan. This method chooses three clusters for Maldives, four clusters for Myanmar, and

six clusters for Kyrgyzstan.10 Figure 1.2 illustrates the mean values of nine circumstance fac-

tors for each cluster in the respective countries, which reveals that K-means clustering succeeds

in partitioning the observations into clusters with a distinctive difference in the characteristic

of circumstance factors. For example, the clusters in Bangladesh, Pakistan, India, Cambodia,

10As a robustness check, we repeated the implementation of the K-means algorithm with different initial cluster
assignments, and obtained very stable results.
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Figure 1.1: Average silhouette width plot
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Table 1.3: Malnutrition rates and between-type difference
Least advantaged type Most advantaged type Difference

Cluster N Percentage Cluster N Percentage Percentage

Bangladesh 2 3665 56.7 1 3323 39.0 17.7
Nepal 1 2172 44.6 2 1587 37.1 7.5
Pakistan 2 2657 63.3 1 2150 41.6 21.7
Maldives 3 960 35.4 1 1361 29.5 5.9
India 2 19782 64.8 1 20418 45.1 19.6
Cambodia 2 2077 48.9 1 2255 37.7 11.2
Myanmar 1 1525 42.6 3 763 22.5 20.1
East Timor 2 6708 75.6 1 4260 65.7 9.9
Tajikistan 1 4663 38.5 2 4137 32.2 6.3
Kyrgyzstan 4 475 26.5 2 737 14.7 11.9

Myanmar and East Timor have large between-cluster differences of affluence. In Cambodia and

East Timor, the first cluster has larger mean values for all the circumstance factors than the sec-

ond cluster. Figure 1.3 illustrates the malnutrition rates with their 95 per cent level confidence

intervals across clusters in each country. Comparing the malnutrition rates for each cluster in

each country, we define the most advantaged clusters and the least advantaged clusters. Table 1.3

shows the pairs of these two clusters and their malnutrition rates. We find the largest difference

in the rate in Pakistan as 21.7 percentage points, and the smallest difference in Maldives as 5.9

percentage points. The descriptive statistics stratified by the types are provided in Tables 1.A.3

and 1.A.4 in the Appendix. In the following decomposition analysis, we explore the factors that

are strongly associated with these observed between-type disparities in the malnutrition rates.

1.5.2 Decomposition results

In this subsection, we examine the decomposition results for each country one by one. To

facilitate the interpretation of the detailed decomposition results, the results are aggregated

across the category which was used in the K-means clustering (Table 1.2). Full results without

this aggregation are provided in Table 1.A.2 in the Appendix.

Bangladesh, Nepal, Pakistan and Maldives

Table 1.4 shows the decomposition results for Bangladesh, Nepal, Pakistan and Maldives. First,

in Bangladesh, the malnutrition rate of the least advantaged type is 56.7 per cent and that of

the most advantaged type is 39.0 per cent. The between-type difference in the malnutrition

rate is 17.7 percentage points (p < 0.01). When we decompose this observed difference into the

explained part and the unexplained part, we find that the explained part explains the 102.1 per
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Figure 1.2: Mean values of circumstances across clusters

Note: Each circumstance variable is normalised so that each has a value from 0 to 1.
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Figure 1.3: Malnutrition rates across clusters

Note: 95% confidence intervals are illustrated.
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cent (=18.0 percentage points) of the observed difference, which is partly offset by the negative

contribution made by the unexplained part.

The observation that the relative contribution of the explained part is over 100 per cent suggests

that if children among the least advantaged type had the covariate distribution that children

in the most advantaged type have, children in the least advantaged type would have a smaller

malnutrition rate than children in the most advantaged type. The finding that the relative

contribution of the unexplained part is negative suggests that the between-type difference in

the functional form in equation (1.1) buffers the observed disparity in malnutrition rate that

is associated with the difference in covariates. For example, the unexplained part can become

negative, if the negative relationship between affluence and malnutrition is weaker among the

most advantaged type than that among the least advantaged group. Also, the negative relative

contribution of the unexplained part suggests that there might exist some unobservable factors

that substantially contribute to mitigating the gap in malnutrition rate.

Among the explained part, the difference in household affluence shows the largest contribu-

tion, explaining the 48.8 per cent (=8.8 percentage points) of the explained difference (p < 0.01).

The difference in maternal health also shows a large contribution and this explains the 17.8 per

cent (=3.2 percentage points) of the explained difference (p < 0.01). A significant effect is also

found for paternal educational background (p < 0.01).

Second, in Nepal, the malnutrition rates for the least advantaged type and the most advan-

taged type are 44.6 per cent and 37.1 per cent, respectively. The difference, 7.5 percentage

points, is significant (p < 0.01). The decomposition analysis reveals that the 95.6 per cent of

the observed difference, i.e. 7.2 percentage points, is explained by the between-type difference

in the observed covariate distributions (p < 0.01). Among all the categories, maternal education

and sanitary condition (p < 0.01) show the large contributions to the observed difference. They

explain 28.5 per cent (=2.1 percentage points) and 20.1 per cent (=1.4 percentage points) of the

explained difference, respectively. However maternal education shows a higher standard error,

making its contribution statistically insignificant. We also find significant contributions made

by the differences in maternal health, demography, affluence and maternal media exposure (all

p < 0.01).
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Third, in Pakistan, 63.3 per cent of children in the least advantaged type have a nutritional

problem, compared with 41.6 per cent of children in the most advantaged type. The difference is

21.7 percentage points (p < 0.01). The difference in the observed covariate distributions accounts

for the 92.0 per cent (=20.0 percentage points) of the observed difference in malnutrition rate

(p < 0.01). Maternal education (p < 0.01) is the largest contributor to the observed difference,

explaining the 25.5 per cent (=5.1 percentage points) of the explained difference. The differences

in maternal health, paternal education, housing and media exposure also show significant con-

tributions to the observed difference (all p < 0.01).

Finally, in Maldives, the malnutrition rate of the least advantaged type is 35.4 per cent and

that of the most advantaged type is 29.5 per cent. The difference is 5.9 percentage points

(p < 0.05) and this difference is the smallest among all the countries analysed in this paper.

The 86.2 per cent (=5.1 percentage points) of the difference is associated with the difference in

the observed covariate distributions between the types (p < 0.01). The differences in parental

occupation and demography show large contributions to the observed difference, but the contri-

bution of parental occupation is not statistically significant at the 5 per cent level. Demography

shows the largest significant contribution to the observed difference, and it explains the 25.8 per

cent (=1.3 percentage points) of the explained difference (p < 0.05). The differences in housing

characteristics and affluence also show significant contributions (both p < 0.01).

India, Cambodia, Myanmar and East Timor

Table 1.5 shows the decomposition results for India, Cambodia, Myanmar and East Timor. First,

in India, 64.8 per cent of children in the least advantaged type suffer nutritional problems, while

45.1 per cent of children in the most advantaged type do. The difference, 19.6 percentage points,

is statistically significant (p < 0.01). The 19.0 percentage points are explained by the between-

type difference in the covariate distributions. A detailed decomposition result shows that the

differences in household affluence (p < 0.01), maternal health (p < 0.01) and maternal education

(p < 0.01) exhibit large contributions to the observed difference. They account for the explained

part by 28.7 per cent (=5.4 percentage points), 17.8 per cent (=3.4 percentage points) and

14.8 per cent (=2.8 percentage points), respectively. The differences in paternal education, sani-

tation, parental occupation and media exposure also show significant contributions (all p < 0.01).
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Table 1.4: Decomposition results: Bangladesh, Nepal, Pakistan and Maldives
Bangladesh Nepal

Estimates SEs Contr (%) Estimates SEs Contr (%)

Probability
Least advantaged type 0.567*** 0.008 0.446*** 0.010
Most advantaged type 0.390*** 0.008 0.371*** 0.012

Overall decomposition
Observed difference 0.177*** 0.011 0.075*** 0.016
Explained part 0.180*** 0.010 102.063 0.072*** 0.015 95.643
Unexplained part -0.004 0.006 -2.063 0.003 0.006 4.357

Detailed decomposition
Maternal health 0.032*** 0.003 17.787 0.005*** 0.001 6.883
Maternal education 0.005 0.005 2.511 0.021 0.016 28.525
Paternal education 0.023*** 0.006 12.824 0.002 0.005 2.787
Demography -0.002 0.005 -1.065 0.012*** 0.005 16.283
Housing 0.007 0.009 3.908 0.001 0.002 0.919
Affluence 0.088*** 0.014 48.820 0.008*** 0.003 11.488
Sanitation 0.009 0.006 5.114 0.014*** 0.003 20.145
Parental occupation 0.004 0.008 2.072 0.002 0.002 2.620
Media exposure 0.014 0.011 8.028 0.008*** 0.003 10.525

Pakistan Maldives
Estimates SEs Contr (%) Estimates SEs Contr (%)

Probability
Least advantaged type 0.633*** 0.009 0.354*** 0.016
Most advantaged type 0.416*** 0.010 0.295*** 0.013

Overall decomposition
Observed difference 0.217*** 0.014 0.059*** 0.021
Explained part 0.200*** 0.012 92.013 0.051*** 0.019 86.232
Unexplained part 0.017*** 0.007 7.987 0.008 0.009 13.768

Detailed decomposition
Maternal health 0.014*** 0.003 6.758 -0.003*** 0.001 -5.505
Maternal education 0.051*** 0.015 25.490 0.010 0.011 19.688
Paternal education 0.026*** 0.007 12.979 -0.002 0.002 -3.743
Demography 0.005 0.007 2.488 0.013** 0.006 25.826
Housing 0.030*** 0.012 15.236 0.007*** 0.003 13.892
Affluence 0.028* 0.015 13.884 0.012*** 0.005 23.851
Sanitation 0.013 0.008 6.520 -0.001 0.003 -2.808
Parental occupation 0.006 0.006 3.112 0.017 0.015 32.927
Media exposure 0.027*** 0.011 13.531 -0.002 0.003 -4.380

Contribution (Contr) of the explained and unexplained part is the one to the observed difference.
Contribution (Contr) of the individual category is the one to the explained part.
Standard errors (SEs) are obtained by bootstrap with 5,000 repetitions.
*p < 0.10,**p < 0.05,***p < 0.01.
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Next, the malnutrition rate in Cambodia among the least advantaged type is 48.9 per cent,

and among the most advantaged type it is 37.7 per cent. The difference, 11.2 percentage points,

is statistically significant (p < 0.01). We find that the difference in covariates makes a larger

contribution to the between-type disparity than is actually observed. It explains the 117.7 per

cent (=13.2 percentage points) of the observed difference (p < 0.01). This suggests that if the

children in the least advantaged type had the covariate distribution that the children in the

most advantaged type have, the children belonging to the least advantaged type would have a

smaller malnutrition rate than the children in the most advantaged type. The differences in

household affluence and sanitation explain larger parts of the observed difference. The difference

in household affluence explains 43.5 per cent (=5.7 percentage points) of the explained difference

(p < 0.01). The difference in sanitation explains the 32.2 per cent (=4.2 percentage points) of the

explained difference (p < 0.01). We also find a significant contribution made by the difference in

maternal health (p < 0.01).

In Myanmar, the malnutrition rate of the least advantaged type is 42.6 per cent, whilst that

of the most advantaged type is 22.5 per cent. The observed between-type difference is 20.1

percentage points and it is statistically significant (p < 0.01). The explained part accounts for

the 88.7 per cent (=17.8 percentage points) of the observed difference (p < 0.01). A detailed

decomposition result shows that the difference in household affluence explains the 46.1 per cent

(=8.2 percentage points) (p < 0.01) and paternal education explains the 12.9 per cent (=2.3

percentage points) (p < 0.01) of the explained difference. We also find significant contributions

made by the differences in maternal health (p < 0.01) and maternal media exposure (p < 0.05).

In East Timor, 75.6 per cent of children belonging to the least advantaged type have some

conditions of malnutrition, and 65.7 per cent of children belonging to the most advantaged type

suffer from malnutrition. The difference is 9.9 percentage points and this difference is statis-

tically significant (p < 0.01). The between-type difference in covariates explains the 93.6 per

cent (=9.3 percentage points) of the observed disparity in malnutrition rate (p < 0.01). Looking

at the result of the detailed decomposition, we observe that the difference in household afflu-

ence shows the largest contribution, explaining the 28.6 per cent (=2.6 percentage points) of

the explained difference (p < 0.01). The second largest significant contributor is the difference
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in sanitary condition, explaining the 21.6 per cent (=2.0 percentage points) of the explained

difference (p < 0.01). We also find that the differences in maternal health (p < 0.01), maternal

education (p < 0.05) and demographic characteristics (p < 0.05) show significant contributions.

Tajikistan and Kyrgyzstan

Table 1.6 shows the decomposition results for Tajikistan and Kyrgyzstan. In Tajikistan, the mal-

nutrition rate of the least advantaged type is 38.5 per cent, while the rate of the most advantaged

type is 32.2 per cent. The difference is 6.3 percentage points (p < 0.01). The observed difference

in covariate accounts for the 100.7 per cent (=6.3 percentage points) of the observed disparity

(p < 0.01), which suggests that if the children in the least advantaged type had the covariate

distributions that the children in the most advantaged type have, the disparity in malnutrition

rate would disappear. The detailed decomposition reveals that the difference in parental occu-

pation types shows the largest contribution to the disparity, explaining the 75.1 per cent (=4.7

percentage points) of the explained part (p < 0.01). The difference in affluence also contributes

to the explained difference by 15.3 per cent (=1.0 percentage points) (p < 0.01). Although they

are small, the differences in maternal health (p < 0.05) and maternal educational attainment

(p < 0.01) show significant contributions.

Last of all, in Kyrgyzstan, among the least advantaged type, the malnutrition rate is 26.5 per

cent, and the rate among the most advantaged type is 14.7 per cent. The difference is 11.9

percentage points (p < 0.01). We find that the difference in covariates explains the 74.3 per

cent (=8.8 percentage points) of the observed difference (p < 0.01). The detailed decomposition

reveals that the difference in maternal education is the largest contributor, explaining the 46.9

per cent of the explained difference (=4.1 percentage points) (p < 0.01).

1.5.3 Heterogeneity between male and female children

Although the difference in the physical developmental process between male and female children

is taken account of when calculating the HAZ, WAZ and WHZ scores, the degree of inequality

and its determinants can differ between them. Wamani et al. (2007) report that in sub-Saharan

Africa male children under five years of age are more likely to become stunted than female chil-

dren, and that boys have a steeper socio-economic gradient of under-nutrition. In this section,

we explore the heterogeneity of the determinants between boys and girls. We split the sam-
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Table 1.5: Decomposition results: India, Cambodia, Myanmar and East Timor
India Cambodia

Estimates SEs Contr (%) Estimates SEs Contr (%)

Probability
Least advantaged type 0.648*** 0.003 0.489*** 0.011
Most advantaged type 0.451*** 0.004 0.377*** 0.011

Overall decomposition
Observed difference 0.196*** 0.005 0.112*** 0.015
Explained part 0.190*** 0.004 96.688 0.132*** 0.013 117.738
Unexplained part 0.007*** 0.003 3.312 -0.020*** 0.007 -17.738

Detailed decomposition
Maternal health 0.034*** 0.002 17.810 0.013*** 0.002 9.852
Maternal education 0.028*** 0.004 14.800 -0.001 0.004 -0.993
Paternal education 0.009*** 0.003 4.884 0.001 0.003 0.690
Demography -0.007*** 0.002 -3.949 -0.017* 0.009 -12.860
Housing 0.024*** 0.004 12.682 0.005 0.010 3.431
Affluence 0.054*** 0.006 28.675 0.057*** 0.017 43.454
Sanitation 0.023*** 0.004 12.363 0.042*** 0.012 32.232
Parental occupation 0.012*** 0.003 6.292 0.021 0.017 15.857
Media exposure 0.012*** 0.005 6.450 0.011 0.010 8.352

Myanmar East Timor
Estimates SEs Contr (%) Estimates SEs Contr (%)

Probability
Least advantaged type 0.426*** 0.013 0.756*** 0.005
Most advantaged type 0.225*** 0.015 0.657*** 0.007

Overall decomposition
Observed difference 0.201*** 0.021 0.099*** 0.009
Explained part 0.178*** 0.016 88.719 0.093*** 0.009 93.628
Unexplained part 0.023* 0.013 11.281 0.006** 0.003 6.372

Detailed decomposition
Maternal health 0.017*** 0.003 9.681 0.009*** 0.001 9.699
Maternal education -0.006 0.005 -3.241 0.008** 0.004 8.756
Paternal education 0.023*** 0.007 12.874 -0.004** 0.002 -4.487
Demography -0.005 0.012 -2.538 0.009** 0.004 9.255
Housing 0.022* 0.012 12.594 0.006 0.005 6.318
Affluence 0.082*** 0.018 46.058 0.026*** 0.009 28.627
Sanitation 0.016 0.010 8.724 0.020*** 0.005 21.644
Parental occupation 0.008 0.007 4.613 0.018* 0.010 18.962
Media exposure 0.020** 0.010 11.219 0.001 0.006 1.233

Contribution (Contr) of the explained and unexplained part is the one to the observed difference.
Contribution (Contr) of the individual category is the one to the explained part.
Standard errors (SEs) are obtained by bootstrap with 5,000 repetitions.
*p < 0.10,**p < 0.05,***p < 0.01.
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Table 1.6: Decomposition results: Tajikistan and Kyrgyzstan
Tajikistan Kyrgyzstan

Estimates SEs Contr (%) Estimates SEs Contr (%)

Probability
Least advantaged type 0.385*** 0.007 0.265*** 0.021
Most advantaged type 0.322*** 0.008 0.147*** 0.013

Overall decomposition
Observed difference 0.063*** 0.010 0.119*** 0.025
Explained part 0.063*** 0.010 100.776 0.088*** 0.021 74.319
Unexplained part 0.000 0.002 -0.776 0.030*** 0.012 25.681

Detailed decomposition
Maternal health 0.002** 0.001 2.416 -0.001 0.001 -1.223
Maternal education 0.001*** 0.000 1.204 0.041*** 0.008 46.920
Paternal education -0.001 0.001 -2.224 -0.005 0.005 -5.553
Demography 0.002 0.003 2.480 0.014 0.010 16.165
Housing 0.001 0.003 2.206 0.015 0.014 16.832
Affluence 0.010*** 0.003 15.309 -0.004 0.006 -4.078
Sanitation 0.002 0.003 3.454 0.028 0.023 31.799
Parental occupation 0.047*** 0.011 75.105 0.002 0.005 2.282
Media exposure 0.000 0.002 0.050 -0.003*** 0.001 -3.190

Contribution (Contr) of the explained and unexplained part is the one to the observed difference.
Contribution (Contr) of the individual category is the one to the explained part.
Standard errors (SEs) are obtained by bootstrap with 5,000 repetitions.
*p < 0.10,**p < 0.05,***p < 0.01.

ple and implement the decomposition analysis for each subsample. Figure 1.4 illustrates the

malnutrition rates of each cluster, from which we redefine the most advantaged types and the

least advantaged types, and explore the factors that are strongly associated with the observed

between-type disparity in the malnutrition rate.

Tables 1.7 and 1.8 present the decomposition results for boys and girls respectively. In Bangladesh,

Pakistan, India, Cambodia, Myanmar, East Timor and Tajikistan, we find that the subsample

analysis shows very similar results to the main results of the entire sample analysis and we do

not find substantial heterogeneity between boys and girls. On the other hand, in Nepal, Maldives

and Kyrgyzstan, we find notable differences in terms of the proportion of the explained part and

the largest determinants. In this subsection, we discuss the results obtained from these three

countries.

First in Nepal, compared with the main result, the result of the boys’ sample shows that a much

larger proportion of the explained part is contributed by the difference in maternal education

(p < 0.01). While in the entire sample analysis its relative contribution is 28.5 per cent, here it

44



Figure 1.4: Malnutrition rates of boys and girls across clusters

Note: 95% confidence intervals are illustrated.
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is 57.2 per cent. In the result of the girls’ sample, on the other hand, we find that the largest

contributor is the difference in demographic factors (p < 0.01) and the difference in maternal

education does not show a significant contribution.

Next, in Maldives, we find interesting heterogeneities between boys and girls. In the boys’

sample, the malnutrition rate of the least advantaged type is 39.8 per cent, whilst that of the

most advantaged type is 29.4 per cent. The observed between-type difference is 10.5 percentage

points and it is statistically significant (p < 0.01). The explained part accounts for the 87.7

per cent (=9.2 percentage points) of the observed difference (p < 0.01). Looking at the detailed

decomposition results, we find a much larger contribution of the difference in parental occupation

types (p < 0.05) than that observed in the entire sample analysis. On the other hand in the

girls’ sample, we do not find a statistically significant between-type difference in malnutrition

rate, which suggests that the significant difference found in the entire sample is mainly due to

the between-type difference of the boys.

In Kyrgyzstan, we find a few notable differences between boys and girls in terms of the pro-

portion of the explained part and its main contributors. For boys, the malnutrition rates for

the least advantaged type and the most advantaged type are 31.0 per cent and 16.2 per cent,

respectively. The difference is 14.8 percentage points (p < 0.01). The difference in the observed

covariate distributions accounts for the 82.3 per cent (12.2 percentage points) of the observed

difference in malnutrition rate. This relative contribution is larger than the contribution of 74.3

per cent which is estimated in the entire sample analysis. The largest contribution is made by

the difference in sanitary condition, but its large standard error makes it statistically insignif-

icant. The difference in maternal education makes the largest significant contribution (p < 0.01).

In the girls’ sample in Kyrgyzstan, the malnutrition rate of the least advantaged type is 22.7

per cent, whilst that of the most advantaged type is 13.2 per cent. The observed between-type

difference is 9.5 percentage points and it is statistically significant (p < 0.01). The explained part

accounts for only 84.7 per cent (=8.0 percentage points) of the observed difference, which is also

larger than the contribution of 74.3 per cent which is estimated in the entire sample analysis.

The largest contribution is made by the difference in maternal education (p < 0.01), which is

consistent with the entire sample analysis.
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1.6 Discussion and conclusion

Health inequality among children is not merely an infringement of various social equalities. Given

that health is one of the most important elements of human capital (Johnson and Schoeni, 2011),

it can be a substantial future obstacle for the sound, inclusive social and economic development

of a country. This study explores the inequality of opportunity in child nutritional status in ten

developing countries in Asia, where a high proportion of children still remain vulnerable to food

insecurity and suffer malnutrition. As determinants of child health inequality are often multidi-

mensional and mutually related, this study considers various aspects of circumstances that are

totally beyond the control of children. We partition child observations into distinct types defined

by a data-driven clustering method. This study clarifies the sources of unfair inequality in child

malnutrition which could not be captured by an unidimensional indicator of socioeconomic sta-

tus. Then, in order to better understand what aspects of circumstances are strongly associated

with the between-type disparity in malnutrition rate, we decompose the observed disparity into

its contributing factors with a non-linear decomposition method. The latest DHS data allows us

to compare the results across countries. Although the decomposition results in this study do not

necessarily reflect the causal relationships, the descriptive association can be equally important

from a policymaking perspective.

Our decomposition analysis elucidates the important factors that are associated with the in-

equality in child nutritional status across the country. First, we find strong evidence of the

existence of inequality of opportunity in child nutritional status in all ten countries. The largest

between-type disparity in malnutrition rate is observed in Pakistan as 21.7 percentage points.

The decomposition results show that in eight countries, the difference in household affluence

shows the significant contribution and that in five of the countries, the difference in household

affluence exhibits the largest contribution to the observed disparity in malnutrition rate. This is

consistent with a variety of literature which reports that children from poorer households tend

to be vulnerable to food insecurity and to have higher mortality rates (Chalasani, 2012; Black

et al., 2013; Huda et al., 2017).

The difference in maternal health shows a significant contribution in Bangladesh, Nepal, Pak-

istan, India, Cambodia, Myanmar, East Timor and Tajikistan, where we find the significantly

larger maternal BMI among the most advantaged type. The difference in demographic factors
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show significant contributions in Nepal, Maldives and East Timor. In Nepal and East Timor,

the difference in the maternal age at birth made the largest contribution, while in Maldives the

difference in the proportion of households living in urban areas made the largest contribution

(Table 1.A.2).

The difference in housing characteristics shows a significant contribution in Pakistan, Maldives

and India. In Maldives, the difference in number of rooms is the main contributor. In Pak-

istan and India, where children in the least advantaged type tend to live in poorer houses, the

difference in the materials of housing make large contributions (Table 1.A.2). The difference

in sanitary condition, which is known as a leading cause of diarrhoea and intestinal parasites

(Konteh, 2009), exhibits a significant contribution in Nepal, India, Cambodia and East Timor,

where a much lower proportion of households among the least advantaged type have access to

piped water, own a flushing toilet, and treat water for drinking. In these four countries, the

between-type difference in the proportion of households with a flushing toilet makes the largest

contribution (Table 1.A.2).

In Nepal, Pakistan, India and Myanmar, the difference in maternal exposure to the media

significantly explains the observed difference. In these countries, the differences in frequency

of watching TV and reading a newspaper made the largest contributions (Table 1.A.2). The

difference in the frequency of listening to radio did not show a significant contribution at the

five per cent level in these countries. These findings suggest the existence of a gap in knowledge

about childrearing that could be obtained by being exposed to the TV and newspaper.

In addition, the difference in maternal educational backgrounds significantly explains the ob-

served disparity in Pakistan, India, East Timor, Tajikistan and Kyrgyzstan. On the other

hand, the difference in paternal educational backgrounds shows a significant contribution to

the observed disparity in Bangladesh, Pakistan, India and Myanmar. In all the countries except

Bangladesh and Myanmar, the contributions made by paternal education are significantly smaller

than those made by maternal education (p < 0.05). This can be attributed to the observations

that, in most Asian countries, mothers play a major role in raising children. Protecting children

from mothers with a less advantaged educational background is significant and enhancing the

“health-related literacy” among mothers should be considered. Moreover, enhancing educational
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opportunities for children could lessen the inequality in nutritional status for future generations.

The difference in parental occupation types show a significant contribution in India and Tajik-

istan. In these countries, among the least advantaged type, the proportion of parents working

as manual workers or farmers is significantly higher and the proportion of parents working as

professional workers is significantly lower than among the most advantaged type. In India, the

between-type difference in the proportion of fathers working as farmers shows the largest signif-

icant contribution. In Tajikistan, the larger proportion of non-manual workers among fathers of

the most advantaged type makes the largest significant contribution. These findings imply that

the inequality in child nutritional status is significantly and strongly associated with paternal

occupation-related socio-economic status.

Overall, all the evidence from this study suggests that priority should be given to protecting chil-

dren from marginalised households to mitigate the inequality in child health. To promote child

health among poor households, conditional cash transfer programmes, which transfer money to

households contingent on investments in human capital, have been implemented globally (Handa

and Davis, 2006).11 In Asia, some countries have launched conditional cash transfer programmes

(Rawlings and Rubio, 2005), but the number of countries which introduced these programmes

is still limited in the region.12 Given the reported improvement in nutritional status of children

from poor households in a number of Latin American countries (Behrman and Hoddinott, 2005;

Gertler, 2004; Maluccio and Flores, 2005; Attanasio et al., 2005), governments in Asian countries

might also wish to assess the possibility of introducing the conditional cash transfer programme.

Moreover, as food insecurity is a key risk factor for child malnutrition, encouraging social move-

ment to promote affordable food could also be beneficial (Capone et al., 2014; Baig-Ansari et al.,

2006). The food assistance programmes undertaken across the world show higher returns for

very young children in poor households (Lentz and Barrett, 2013). The in-kind food assistance

programme targeting poor households could be an alternative option to the conditional cash

transfer programmes. While the conditional cash transfer programmes, which allow households

to choose more diverse diets, tend to result in the increased consumption of nutritionally rich

11The most famous examples are Progresa/Oportunidades in Mexico and Bolsa Escola in Brazil.
12In Asia, Indonesia introduced a conditional cash transfer programme called the PKH (Program Keluarga

Harapan) in 2007. In India and Nepal, similar programmes were introduced for pregnant women in order to
promote institutional delivery, both in 2005.
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foods such as animal-source foods, vegetables and fruits, in-kind food and community vouchers

allow agencies to target specific nutrition interventions such as vitamin-fortified oils (Meyer and

TANGO International Inc., 2012).

Providing education about nutrition to mothers with limited educational backgrounds appears

to be equally important (Bryce et al., 2008). The success of nutrition education in terms of

reducing malnutrition has been reported in Pakistan (Khan et al., 2013). Policymakers should

ensure that children can equally enjoy better health and affordable healthcare access, irrespective

of parental occupations. Once we take into account the intergenerational benefits, the potential

benefit of early intervention would be exponential (Black and Hurley, 2014).

Finally, it is worth discussing a limitation and some potential extensions to this study. First,

thanks to the detailed DHS information, we are able to consider multidimensional aspects of

household and parental socio-economic status, but the circumstance factors beyond the con-

trol of children are without doubt much more complex (Currie and Vogl, 2013). For example,

health inequality starts even at the prenatal stage (Dipietro et al., 1999; Kramer, 1987; Almond,

2006) and genetic factors are one such circumstance factor. However, such information is rarely

available in large-scale general-purpose surveys. Moreover, in some countries, institutional in-

equalities, such as the Caste system in India, are also likely to play a considerable role in creating

health inequality (Van de Poel and Speybroeck, 2009). In this study, in order to make the re-

sults comparable across countries, we did not consider country-specific factors, but including

more detailed country-specific circumstance factors could possibly allow us to define finer types

in a single-country study.

Second, if there were some large-scale natural disasters and epidemic shocks around the time

of data collection, the between-type gap may have reflected their heterogeneous effects. How-

ever, the main goal of this study is to describe in detail the existing inequality of opportunity in

child malnutrition. Hence, the heterogeneous effects of these shocks, if any, are also incorporated

as a part of the inequality associated with the circumstance factors. Third, as this study involves

cross-sectional analysis, we did not discuss the trends of health inequality over time. Exploring

the trend of health inequality and changes in the contributing factors for each country with

the multiple waves of the DHS data would be a promising research topic and complement the
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findings of this study.
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1.A Appendix

Table 1.A.1: Descriptive statistics
BGD NPL PAK MDV IND KHM MMR TLS TJK KGZ
mean mean mean mean mean mean mean mean mean mean

Child malnutrition 0.48 0.41 0.54 0.32 0.55 0.43 0.36 0.72 0.36 0.21
Mother BMI 21.62 21.36 23.70 24.10 21.32 22.08 22.69 20.51 23.16 23.93
Maternal education years 2.72 1.99 1.80 3.81 2.88 2.95 2.89 3.57 5.05 5.32
Paternal education years 2.64 2.66 2.80 3.60 3.40 3.23 3.05 2.52 5.39 5.54
Demography 0.03 -0.02 -0.05 0.01 0.00 0.04 0.02 0.04 0.02 0.04
Housing 0.02 -0.09 -0.01 -0.03 -0.06 -0.06 -0.22 0.01 -0.02 0.16
Affluence -0.02 -0.08 -0.01 0.18 -0.05 -0.05 -0.23 -0.01 0.03 0.03
Sanitation -0.07 -0.23 -0.15 -0.00 -0.15 -0.21 0.03 -0.02 -0.16 -0.24
Occupation 0.00 0.02 -0.01 -0.00 1.50 0.01 -0.00 -0.02 -0.00 0.01
Media exposure -0.02 -0.12 -0.01 0.03 -0.17 -0.11 -0.11 -0.06 -0.07 -0.04
Mother age at birth 25.58 25.77 28.86 28.22 27.31 28.57 30.67 31.33 27.51 28.45
Family size 6.05 7.45 11.56 10.21 6.45 5.85 6.74 8.14 10.16 6.81
Number of children 1.34 1.63 2.79 2.06 1.74 1.53 1.58 2.22 2.64 1.85
Urban 0.32 0.58 0.45 0.14 0.25 0.27 0.24 0.21 0.26 0.25
Natural floors 0.00 0.11 0.01 0.00 0.10 0.00 0.00 0.01 0.00 0.00
Rudimentary floors 0.00 0.00 0.00 0.00 0.07 0.66 0.63 0.03 0.21 0.26
Finished floors 0.31 0.29 0.42 0.99 0.49 0.26 0.30 0.34 0.49 0.69
Natural walls 0.11 0.06 0.08 0.00 0.21 0.16 0.07 0.65 0.11 0.19
Rudimentary walls 0.09 0.52 0.20 0.00 0.12 0.14 0.65 0.03 0.32 0.37
Finished walls 0.79 0.41 0.66 0.93 0.67 0.70 0.27 0.31 0.57 0.40
Natural roofs 0.02 0.11 0.04 0.00 0.08 0.07 0.30 0.23 0.04 0.00
Rudimentary roofs 0.00 0.00 0.26 0.00 0.05 0.00 0.01 0.01 0.00 0.01
Finished roofs 0.98 0.88 0.42 1.00 0.63 0.93 0.68 0.75 0.90 0.99
Number of rooms 2.32 2.92 2.78 3.67 2.01 1.64 1.83 2.76 3.33 2.45
Radio 0.03 0.28 0.19 0.90 0.09 0.34 0.29 0.36 0.24 0.36
TV 0.43 0.47 0.64 0.99 0.59 0.62 0.54 0.20 0.97 0.99
Refrigerator 0.20 0.11 0.48 0.88 0.26 0.11 0.12 0.05 0.47 0.73
Bicycle 0.25 0.44 0.29 0.55 0.47 0.53 0.35 0.12 0.26 0.27
Electricity 0.62 0.89 0.95 1.00 0.86 0.56 0.56 0.36 0.99 1.00
Car 0.01 0.05 0.10 0.04 0.06 0.18 0.06 0.02 0.45 0.55
Mobile phone 0.90 0.97 0.90 0.99 0.92 0.88 0.68 0.44 0.95 0.99
Safe fuel 0.13 0.18 0.40 0.92 0.31 0.18 0.16 0.01 0.65 0.64
Motorcycle 0.08 0.18 0.40 0.38 0.37 0.72 0.54 0.12 0.02 0.02
Piped water 0.06 0.26 0.32 0.09 0.26 0.15 0.12 0.18 0.39 0.45
Flushing toilet 0.18 0.73 0.73 0.97 0.45 0.53 0.40 0.35 0.13 0.08
Water treatment 0.10 0.17 0.08 0.51 0.38 0.65 0.74 0.87 0.81 0.52
Mother professional worker 0.02 0.03 0.02 0.11 0.02 0.04 0.05 0.02 0.06 0.13
Mother manual worker 0.06 0.04 0.05 0.14 0.05 0.14 0.24 0.02 0.11 0.03
Mother non-manual worker 0.02 0.06 0.07 0.13 0.04 0.22 0.16 0.08 0.04 0.05
Mother farmer 0.15 0.48 0.07 0.01 0.13 0.34 0.15 0.30 0.02 0.03
Father professional worker 0.06 0.05 0.11 0.14 0.07 0.09 0.08 0.16 0.14 0.16
Father manual worker 0.34 0.41 0.47 0.32 0.33 0.30 0.56 0.06 0.52 0.40
Father non-manual worker 0.23 0.33 0.27 0.30 0.23 0.14 0.08 0.16 0.28 0.11
Father farmer 0.24 0.17 0.12 0.22 0.32 0.46 0.27 0.61 0.03 0.31
Watch TV less than once a week 0.09 0.24 0.21 0.01 0.08 0.16 0.19 0.09 0.13 0.07
Watch TV once a week 0.50 0.40 0.46 0.97 0.61 0.53 0.52 0.30 0.81 0.92
Read newspaper less than once a week 0.09 0.20 0.20 0.35 0.15 0.17 0.25 0.17 0.19 0.27
Read newspaper once a week 0.06 0.04 0.04 0.26 0.18 0.06 0.12 0.17 0.26 0.43
Listen to radio less than once a week 0.02 0.31 0.15 0.08 0.06 0.25 0.20 0.14 0.15 0.19
Listen to radio once a week 0.02 0.26 0.04 0.81 0.09 0.24 0.20 0.31 0.23 0.30
Observations 6988 3759 4807 3521 40200 4332 5616 10968 8800 5483

BGD: Bangladesh; NPL: Nepal; PAK: Pakistan; MDV: Maldides; IND: India
KHM: Cambodia; MMR: Myanmar; TLS: East Timor; TJK: Tajikistan; KGZ: Kyrgyzstan
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Table 1.A.3: Descriptive statistics stratified by types
BGD
L adv

BGD
M adv

NPL
L adv

NPL
M adv

PAK
L adv

PAK
M adv

MDV
L adv

MDV
M adv

IND
L adv

IND
M adv

mean mean mean mean mean mean mean mean mean mean

Child malnutrition 0.57 0.39 0.45 0.37 0.63 0.42 0.35 0.30 0.65 0.45

Mother BMI 20.61 22.74 21.27 21.50 22.85 24.75 24.36 23.89 20.18 22.43

Maternal education years 2.06 3.44 0.53 3.98 0.21 3.77 6.67 3.42 1.45 4.27

Paternal education years 1.75 3.62 2.22 3.26 2.00 3.80 4.19 3.49 2.37 4.40

Demography 0.08 -0.02 0.02 -0.07 0.00 -0.12 0.01 0.07 0.15 -0.15

Housing -0.50 0.59 -0.12 -0.05 0.72 -0.91 -0.04 -0.01 -0.91 0.76

Affluence -0.97 1.02 -0.13 -0.01 -0.78 0.93 -0.06 0.34 -1.18 1.05

Sanitation -0.57 0.49 -0.38 -0.02 -0.64 0.46 -0.84 1.35 -1.10 0.78

Occupation 0.59 -0.64 0.04 -0.01 -0.21 0.23 -0.84 1.35 2.44 0.59

Media exposure -0.64 0.66 -0.11 -0.12 -0.51 0.61 -0.02 0.03 -0.79 0.43

Mother age at birth 25.98 25.14 26.99 24.09 29.43 28.17 28.70 27.34 27.58 27.05

Family size 5.88 6.22 7.44 7.45 11.79 11.26 10.24 10.25 6.48 6.42

Number of children 1.38 1.30 1.69 1.55 2.94 2.61 2.10 2.04 1.88 1.61

Urban 0.17 0.48 0.54 0.62 0.30 0.64 0.07 0.25 0.10 0.39

Natural floors 0.00 0.00 0.12 0.09 0.01 0.01 0.00 0.00 0.17 0.04

Rudimentary floors 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.07

Finished floors 0.09 0.55 0.28 0.30 0.22 0.67 0.99 0.99 0.22 0.75

Natural walls 0.17 0.05 0.06 0.07 0.13 0.02 0.00 0.00 0.34 0.08

Rudimentary walls 0.13 0.04 0.52 0.52 0.31 0.06 0.00 0.00 0.15 0.08

Finished walls 0.68 0.91 0.42 0.41 0.46 0.90 0.93 0.92 0.50 0.83

Natural roofs 0.03 0.00 0.12 0.10 0.07 0.01 0.00 0.00 0.13 0.03

Rudimentary roofs 0.00 0.00 0.00 0.01 0.39 0.10 0.00 0.00 0.06 0.04

Finished roofs 0.96 1.00 0.88 0.89 0.40 0.44 1.00 0.99 0.49 0.76

Number of rooms 2.03 2.64 2.82 3.05 2.57 3.04 3.42 3.84 1.73 2.27

Radio 0.02 0.05 0.25 0.33 0.16 0.23 0.92 0.89 0.05 0.13

TV 0.17 0.72 0.47 0.48 0.48 0.84 0.98 0.99 0.30 0.87

Refrigerator 0.02 0.40 0.10 0.12 0.27 0.74 0.82 0.93 0.04 0.48

Bicycle 0.24 0.25 0.45 0.43 0.28 0.29 0.56 0.49 0.51 0.44

Electricity 0.39 0.87 0.88 0.91 0.92 0.99 1.00 1.00 0.73 0.98

Car 0.00 0.02 0.04 0.06 0.04 0.17 0.03 0.06 0.01 0.12

Mobile phone 0.83 0.98 0.96 0.98 0.84 0.96 0.98 0.99 0.86 0.98

Safe fuel 0.02 0.26 0.17 0.20 0.19 0.66 0.89 0.95 0.07 0.54

Motorcycle 0.03 0.15 0.19 0.16 0.28 0.55 0.25 0.50 0.17 0.56

Piped water 0.01 0.11 0.23 0.29 0.24 0.41 0.06 0.13 0.11 0.42

Flushing toilet 0.05 0.32 0.68 0.81 0.58 0.93 0.95 0.99 0.19 0.71

Water treatment 0.03 0.17 0.17 0.17 0.03 0.13 0.49 0.48 0.21 0.55

Mother professional worker 0.01 0.04 0.04 0.01 0.01 0.04 0.05 0.19 0.00 0.03

Mother manual worker 0.03 0.09 0.03 0.05 0.07 0.03 0.21 0.04 0.06 0.04

Mother non-manual worker 0.03 0.01 0.07 0.06 0.07 0.07 0.09 0.19 0.03 0.04

Mother farmer 0.22 0.06 0.47 0.49 0.12 0.02 0.02 0.01 0.23 0.04

Father professional worker 0.02 0.12 0.06 0.04 0.05 0.18 0.09 0.27 0.02 0.12

Father manual worker 0.16 0.53 0.40 0.42 0.54 0.38 0.49 0.00 0.34 0.31

Father non-manual worker 0.21 0.26 0.31 0.35 0.21 0.35 0.04 0.71 0.12 0.33

Father farmer 0.42 0.04 0.19 0.15 0.17 0.07 0.37 0.00 0.48 0.17

Watch TV less than once a week 0.14 0.03 0.23 0.25 0.25 0.16 0.02 0.01 0.13 0.04

Watch TV once a week 0.22 0.81 0.38 0.42 0.28 0.69 0.97 0.97 0.33 0.88

Read newspaper less than once a week 0.04 0.15 0.18 0.23 0.05 0.38 0.38 0.31 0.08 0.22

Read newspaper once a week 0.01 0.12 0.05 0.03 0.00 0.09 0.20 0.34 0.03 0.32

Listen to radio less than once a week 0.01 0.03 0.28 0.36 0.11 0.19 0.08 0.10 0.05 0.06

Listen to radio once a week 0.01 0.04 0.23 0.29 0.03 0.05 0.84 0.77 0.05 0.12

Observations 3665 3323 2172 1587 2657 2150 960 1361 19782 20418

L adv: Least advantaged type; M adv: Most advantaged type
BGD: Bangladesh; NPL: Nepal; PAK: Pakistan; MDV: Maldives; IND: India
KHM: Cambodia; MMR: Myanmar; TLS: East Timor; TJK: Tajikistan; KGZ: Kyrgyzstan
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Table 1.A.4: Descriptive statistics stratified by types
KHM
L adv

KHM
M adv

MMR
L adv

MMR
M adv

TLS
L adv

TLS
M adv

TJK
L adv

TJK
M adv

KGZ
L adv

KGZ
M adv

mean mean mean mean mean mean mean mean mean mean

Child malnutrition 0.49 0.38 0.43 0.23 0.76 0.66 0.38 0.32 0.27 0.15

Mother BMI 21.67 22.46 22.24 24.10 20.16 21.06 22.91 23.43 23.94 23.59

Maternal education years 2.47 3.39 1.09 2.63 2.55 5.18 5.00 5.11 4.78 2.47

Paternal education years 2.78 3.64 1.24 3.35 2.16 3.10 5.56 5.21 4.84 6.14

Demography -0.17 0.24 0.00 0.20 0.01 0.08 0.18 -0.17 -0.90 -0.01

Housing -0.87 0.68 -1.04 1.61 -0.53 0.85 -0.23 0.20 -1.02 0.24

Affluence -1.08 0.89 -1.10 2.00 -0.76 1.17 -0.16 0.24 0.28 -0.02

Sanitation -0.98 0.51 0.24 -2.83 -1.03 1.57 -0.38 0.09 3.56 -0.59

Occupation -1.34 1.26 -0.39 -0.21 -1.03 1.57 -1.19 1.34 -0.27 0.02

Media exposure -0.52 0.27 -0.40 0.56 -0.40 0.49 -0.21 0.09 0.32 0.24

Mother age at birth 28.61 28.53 31.35 30.81 32.08 30.15 27.28 27.77 29.93 28.29

Family size 5.51 6.17 6.64 7.15 8.06 8.26 10.50 9.77 5.66 6.62

Number of children 1.55 1.51 1.68 1.41 2.20 2.24 2.73 2.53 1.67 1.77

Urban 0.06 0.47 0.11 0.75 0.10 0.39 0.17 0.37 0.81 0.19

Natural floors 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

Rudimentary floors 0.85 0.49 0.71 0.32 0.04 0.02 0.21 0.22 0.06 0.25

Finished floors 0.06 0.45 0.17 0.64 0.20 0.57 0.43 0.56 0.93 0.71

Natural walls 0.27 0.06 0.12 0.00 0.77 0.47 0.12 0.10 0.00 0.21

Rudimentary walls 0.13 0.14 0.74 0.32 0.04 0.03 0.38 0.25 0.06 0.44

Finished walls 0.58 0.80 0.13 0.67 0.19 0.50 0.50 0.65 0.53 0.33

Natural roofs 0.12 0.01 0.50 0.02 0.31 0.11 0.04 0.03 0.00 0.00

Rudimentary roofs 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.06 0.00

Finished roofs 0.87 0.98 0.47 0.98 0.67 0.88 0.91 0.89 0.93 1.00

Number of rooms 1.33 1.93 1.63 2.45 2.61 2.98 3.35 3.30 2.09 2.41

Radio 0.26 0.42 0.23 0.33 0.29 0.47 0.23 0.24 0.25 0.36

TV 0.37 0.85 0.33 0.95 0.06 0.43 0.97 0.98 1.00 0.99

Refrigerator 0.00 0.21 0.03 0.56 0.01 0.13 0.37 0.59 0.90 0.74

Bicycle 0.46 0.59 0.27 0.58 0.05 0.22 0.24 0.29 0.15 0.25

Electricity 0.26 0.83 0.39 0.96 0.18 0.64 0.99 1.00 1.00 0.99

Car 0.14 0.22 0.02 0.26 0.00 0.06 0.41 0.50 0.65 0.57

Mobile phone 0.80 0.95 0.49 0.98 0.27 0.72 0.94 0.97 1.00 0.99

Safe fuel 0.02 0.33 0.05 0.60 0.00 0.03 0.60 0.70 0.99 0.63

Motorcycle 0.58 0.84 0.38 0.68 0.03 0.27 0.01 0.03 0.02 0.02

Piped water 0.03 0.26 0.09 0.01 0.12 0.27 0.30 0.49 0.99 0.37

Flushing toilet 0.25 0.78 0.25 0.71 0.21 0.58 0.07 0.20 0.85 0.00

Water treatment 0.61 0.69 0.74 0.18 0.85 0.90 0.81 0.82 0.55 0.50

Mother professional worker 0.00 0.08 0.04 0.12 0.00 0.05 0.04 0.08 0.16 0.16

Mother manual worker 0.06 0.22 0.31 0.13 0.02 0.03 0.13 0.09 0.02 0.03

Mother non-manual worker 0.05 0.38 0.09 0.29 0.05 0.14 0.03 0.06 0.13 0.07

Mother farmer 0.67 0.05 0.10 0.02 0.41 0.12 0.02 0.02 0.01 0.03

Father professional worker 0.01 0.16 0.05 0.20 0.01 0.39 0.00 0.29 0.40 0.15

Father manual worker 0.09 0.49 0.69 0.50 0.01 0.15 0.98 0.00 0.37 0.39

Father non-manual worker 0.02 0.26 0.05 0.22 0.00 0.41 0.00 0.59 0.20 0.13

Father farmer 0.88 0.07 0.18 0.06 0.97 0.03 0.00 0.07 0.01 0.31

Watch TV less than once a week 0.20 0.12 0.21 0.12 0.09 0.09 0.15 0.11 0.00 0.00

Watch TV once a week 0.30 0.75 0.32 0.84 0.14 0.55 0.78 0.85 0.98 0.99

Read newspaper less than once a week 0.09 0.23 0.14 0.32 0.13 0.23 0.19 0.19 0.28 0.29

Read newspaper once a week 0.01 0.10 0.05 0.33 0.10 0.28 0.22 0.31 0.50 0.51

Listen to radio less than once a week 0.25 0.25 0.17 0.18 0.13 0.15 0.16 0.14 0.19 0.22

Listen to radio once a week 0.18 0.30 0.14 0.21 0.20 0.48 0.20 0.27 0.40 0.32

Observations 2077 2255 1525 763 6708 4260 4663 4137 475 737

L adv: Least advantaged type; M adv: Most advantaged type
BGD: Bangladesh; NPL: Nepal; PAK: Pakistan; MDV: Maldives; IND: India
KHM: Cambodia; MMR: Myanmar; TLS: East Timor; TJK: Tajikistan; KGZ: Kyrgyzstan
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Chapter 2

A Copula-based Measure of Inequality of Opportunity: With an

Application to Health Inequality in Body Mass in Indonesia

Abstract

Inequality of opportunity (IOP) is an illegitimate form of inequality whereby causes are not attributable

to individual choices. Non-parametric and parametric methods have been widely used to measure IOP,

but each of them tends to have a significant technical concern when the sources of inequality are not

categorical and multi-dimensional, and when a severe specification error is suspected respectively. This

paper introduces an alternative approach to measuring ex-post IOP using copulas which model various

structures of dependence between efforts, factors for which individuals are responsible, and circumstances,

factors beyond individual’s control. Semi-parametric estimation of the outcome distribution and flexible

modelling of the dependence structure between efforts and circumstances help to overcome the concerns

in the existing methods. The method is applied to measuring inequality in the body mass index (BMI),

attributable to its intergenerational transmission from parents to their adult offspring in Indonesia. A

21-year gap between the first wave and the last wave of the Indonesian Family Life Survey is exploited

to estimate the relationship between parental BMI when offspring are below 15 years old and the BMI

of grown-up offspring. The results show that 15.1 per cent of the overall variance in grown-up children’s

BMI is associated with intergenerational BMI transmission.

JEL codes: I14, I18

Keywords: inequality of opportunity, copulas, intergenerational mobilities of BMI, Indonesia
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2.1 Introduction

There is a large volume of literature on the measurement of inequality of opportunity (IOP).

From the viewpoint of responsibility sensitive egalitarianism (Dworkin, 1981a,b; Cohen, 2011;

Arneson, 1989; Roemer, 1996), not all kinds of inequalities are ethically objectionable, and two

types of inequality can be defined. One is legitimate inequality, in which differences in outcomes

are attributable to individual responsibility, and the other is illegitimate inequality, in which

outcome differences cannot be attributed to individual responsibility. A typical example of the

former is differences in body mass across individuals with different lifestyles, caused, for instance,

by dietary choices and daily exercise habits. Such inequality is considered morally ‘fair’, because

the difference in the consequential health outcome is the result of an individual’s freedom of

choice. On the other hand, illegitimate inequality is typically exemplified by different mortality

rates across different backgrounds, such as genetics, parental social class and race, and inequality

attributable to factors beyond the scope of individual control is viewed as ‘unfair’. This distinc-

tion suggests that equality in outcomes is not always the most equitable or justifiable situation,

because it could fail to hold people accountable for things for which they should be held partially

responsible. In other words, the unobjectionable situation for responsibility-sensitive egalitarians

is not a perfectly equal distribution of the outcome per se but a distribution in which differences

in the outcomes, due to individuals’ voluntary choices, remain, and any disparity owing to cir-

cumstances beyond their control is appropriately compensated. The question of ‘inequality of

what’ supports the equality of opportunity (EOP) concept, which is achieved when all people,

regardless of their circumstances, have the same chances of achieving an outcome. In this sense,

EOP is popularly formulated in the ‘level-the-playing-field’ metaphor (Roemer, 1996; Rosa Dias

and Jones, 2007).

In the literature on EOP, Roemer (1996, 1998, 2002) established a seminal framework in which

all the factors influencing individual attainment can be sorted into effort factors and circum-

stance factors. Effort factors are those for which individuals are held partially responsible, while

circumstance factors are those that are beyond an individual’s control and are sources of unjusti-

fiable inequality. In the context of health, effort factors typically include lifestyle choices such as

diet, smoking, alcohol consumption, exercise and so forth, and disparities that arise unavoidably

are typically considered neutral. Circumstances, on the other hand, are typified by race, family

socioeconomic and biological background and so on. As Roemer (1996) argues, effort factors are
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not necessarily independent of circumstance factors, as some of the former can be more or less

influenced by some of the latter. A typical example is that smoking behaviours are more or less

affected by parents’ smoking behaviours and socio-economic status. Such effects are assumed to

be a part of circumstances in the Roemer framework.1

As described above, we can define conceptually both legitimate and illegitimate inequality. The

question, however, is how we should measure overall illegitimate inequality. This paper proposes

a new method for measuring IOP. The key features of the proposed method are twofold: first,

copula functions model a structure of dependence between efforts and circumstances, making

it possible to express simply the hypothetical outcome distribution in a situation where EOP

is achieved. Second, the proposed method generates a hypothetical outcome from the semi-

parametrically estimated outcome distribution function, without relying on a linear functional

form of the outcome.

This paper illustrates the application of the proposed method to the measurement of IOP in

relation to individuals’ body mass in Indonesia. This application measures the inequality in

body mass index (BMI) of early adults aged between 20 and 35, with respect to the intergen-

erational transmission of BMI from their parents. The results show that 15.1 per cent of the

overall variance is associated with the IOP. Last of all, the estimated results are compared with

the ones estimated by the traditional parametric method.

2.2 Related literature

The idea of EOP embodies two fundamental principles. The reward principle demands that in-

equalities, due to different levels of effort, should be considered acceptable, and the compensation

principle claims that inequalities, due to circumstances, should be eliminated. The compensation

principle has two approaches, namely the ex-ante approach and the ex-post approach (Fleurbaey

and Peragine, 2013; Pignataro, 2012; Li Donni et al., 2014). The ex-ante approach promotes

equality of outcomes among those facing the same circumstances, by making their average out-

comes as equal as possible. Ex-ante EOP is achieved when the set of opportunities is the same

for all people, irrespective of their circumstances. The ex-post approach, on the other hand, en-

1On the other hand, from the viewpoint of Swift (2005), circumstances only include past variables that are
independent of efforts (Jusot et al., 2013). Jusot et al. (2013) discuss whether these differences in normative
principles matter empirically.
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courages the compensation of inequality caused by different circumstantial factors among those

exerting the same level of effort. When the outcome does not vary across people with different

circumstances at any given effort level, ex-post EOP is achieved.2

At the stage of testing the existence of the IOP, the ex-ante and ex-post compensation ap-

proaches can be divided further into two approaches, namely a non-parametric method and a

parametric method. The non-parametric method defines types, i.e. a set of people with the same

circumstances, and tranches, i.e. a set of people exerting the same efforts. An ex-ante non-

parametric approach typically tests the existence of IOP by applying the stochastic dominance

test for outcome distributions across different types defined by parental socio-economic status,

etc. (e.g. Peragine and Serlenga, 2007; Lefranc et al., 2008, 2009; Aaberge et al., 2011). An

ex-post non-parametric approach measures between-type inequality among those who belong to

the same tranche. Checchi and Peragine (2010) proposed non-parametric ways to measure IOP

from the ex-ante and ex-post perspectives.

The advantage of the non-parametric method is that it does not make any assumptions about the

functional form of the outcome variable. However, the precision of the estimation deteriorates

as the number of circumstance factors becomes large, because the exponentially growing number

of types often leads to very few observations in each type and unreliably imprecise estimates.

Besides, as the number of effort variables increases, the number of possible tranches that needs

to be considered is also exponentially growing. The situation becomes even worse when circum-

stance and effort variables are continuous. When circumstance variables are continuous, discrete

types can be still defined, but continuous information of circumstance variables tend to be lost

and full information of circumstances are not exploited.3

On the other hand, the parametric method allows us to define finer categories of types, rely-

ing on a functional form assumption of the outcome variable. The parametric method mostly

2However, it is known that the ex-ante and the ex-post approaches are logically incompatible in a general
setting in which circumstances and efforts are not additively separable in the outcome function (Fleurbaey and
Peragine, 2013). This stems from incompatibility between the reward principle and the compensation principle in
a general setting. For further discussion, see, for example, Ferreira and Peragine (2015).

3Li Donni et al. (2015) proposed a way to define endogenously finite types with a latent class approach and
deal with the multidimensionality of circumstances. O’Neill et al. (1999) proposed a method to deal with the
continuity of circumstance variables, using kernel estimation. Aizawa (2019) used the clustering approach to taking
into account the multidimensionality of circumstances. These studies implicitly take into account unobservable
circumstances.
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employs a regression-based approach, and the measurement of IOP is implemented through two

steps. The first step estimates a conditional mean function of the outcome variable and obtains

estimates of the effects of circumstances and efforts, following which the parametric approach

constructs a counterfactual outcome distribution by suppressing the valuations of circumstances.

The second stage indirectly measures the IOP by comparing the inequality level between the

observed distribution and the derived hypothetical distribution. This indirect approach is based

on the spirit of fairness gap proposed by Fleurbaey and Schokkaert (2009).4

In contrast to the non-parametric model, the parametric method can handle a large number

of continuous circumstance and effort variables in a multivariate regression model. Bourguignon

et al. (2007), for example, first construct a linear structural model, as shown in equation (2.1).


Yi = α+ βCCi + βEEi + εYi

Ei = γ + δCi + εEi ,

(2.1)

where Yi is an outcome variable. Ei and Ci are efforts and circumstances, respectively. εYi

and εEi are error terms. When we compute the hypothetical outcome in which the variation

of circumstances is suppressed, one needs to take into account the indirect effect of C on E.

To address this matter, Bourguignon et al. (2007) estimate the reduced form of the structural

equation, as shown in equation (2.2).

Yi = (α+ βEγ)︸ ︷︷ ︸
ζ

+ (βC + βEδ)︸ ︷︷ ︸
κ

Ci + (βEε
E
i + εYi )︸ ︷︷ ︸
ξi

. (2.2)

In equation (2.2), κ = (βC + βEδ), which is the coefficient of C, reflects the direct and indirect

partial effects of C on Y . Conceptually the direct effect means the partial effect of C on Y after

controlling for E. The indirect effect is the partial impact of C on Y through E.

Finally, in order to quantify the IOP, Bourguignon et al. (2007) predict an individual outcome

under the hypothetical situation in which C is constant, and compares the Gini coefficient of the

original distribution with that in a hypothetical situation in which everybody faces the same level

circumstances. For example, when C is fixed at its sample mean level, Ci = C for all i, the hypo-

thetical individual outcome is estimated by Y EOP
i = ζ̂ + κ̂C + ξ̂i. By subtracting the inequality

4For a more detailed review of the direct approach, see, for example, Ramos and Van de gaer (2016).
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level of the hypothetical distribution Y EOP from the that of the original outcome distribution

Y , the parametric method quantifies the degree of IOP. This type of indirect quantification is

based on the fairness gap approach (Fleurbaey and Schokkaert, 2009), which is widely used in

empirical studies (Pistolesi, 2008; Salehi-Isfahani et al., 2014; Belhaj Hassine, 2012).5

However, contrary to the non-parametric method, the parametric approach may suffer speci-

fication errors. In the context of health, normally there is little consensus about the functional

form of the health outcome variable. Furthermore, not all of the continuous health outcome vari-

ables can be best specified in a linear model; for example, medical care expenditure often shows

a heavily skewed distribution.6 In the presence of a significant specification error, the estimated

IOP can be biased downwards because the model cannot model satisfactorily an association

between circumstances and an outcome.7 Pistolesi (2008) proposes a semi-parametric method

which does not rely on the linearity assumption. Pistolesi (2008) estimates the conditional dis-

tributions of outcome and efforts by employing the duration model (Foresi and Peracchi, 1995),

and from the estimated conditional distribution, the author predicts the counterfactual individ-

ual hypothetical outcome level by assuming that the individual effort and the outcome in the

hypothetical situation, where variation in C is suppressed, are predicted at the same quantiles as

those in the actual distributions. This rank preservation assumption implies that while the cir-

cumstances can change the absolute values of efforts and outcomes of individuals, circumstances

do not influence the relative ranks/positions of individuals in their respective distributions.

Comprehensive reviews of empirical studies on EOP are found in Pignataro (2012); Ramos

and Van de gaer (2012, 2016); Ferreira and Peragine (2015); and Roemer and Trannoy (2016).

Amongst them, Roemer and Trannoy (2016) present a detailed discussion on the broad concept of

EOP, while Ramos and Van de gaer (2016) provide a concise, recent review of the methodologies

from the viewpoint of both ex-ante and ex-post approaches. For the health context, Fleurbaey

5The fairness gap approach is normatively consistent with the ex-post approach. The other direct quantification
method, which calculates the inequality after removing the effect of all legitimate variables, is called the direct
unfairness approach, and it is consistent with the ex-ante approach. For more details, see Fleurbaey and Schokkaert
(2009).

6When the nonlinear specification is appropriate, the reduced form of a structural model is rarely used; instead,
a structural recursive nonlinear model with a multivariate normality assumption of error terms is often employed
(Rosa Dias, 2010; Garćıa-Gómez et al., 2015).

7When there is a significant specification error, the outcome variation that should have been attributable
to circumstances would be captured by the error term. As the error term is not regarded as the sources of
illegitimate inequality in the Roemer framework and its contribution to the outcome is differenced-out when we
indirectly quantify the IOP using the fairness gap approach, the estimated IOP can be smaller than the IOP
estimated with the correctly-specified model.
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and Schokkaert (2012) provide extensive discussions.

This paper addresses the aforementioned shortcomings of the parametric and the non-parametric

methods by introducing a new alternative method for measuring ex-post IOP. Instead of mak-

ing a parametric assumption on the conditional expectation function of the outcome variable

– as in equation (2.1) – it imposes an assumption on its conditional distribution function as is

done in Pistolesi (2008). We use copula functions to model the dependence structure between

circumstances and efforts. Copulas capture a wide range of types of dependence structures by a

function. Then hypothetical outcomes when the variation of circumstances are suppressed will

be simulated, taking account of the estimated original dependence structure. The method rests

on the semi-parametric ex-post compensation approach.

Specifically, the proposed method has a number of advantages over the traditional approaches.

The proposed method is in particular of use when circumstance and effort variables are contin-

uous. The advantage over the non-parametric method is that circumstances and efforts do not

have to be discrete in order to define types and tranches. Therefore information from continuous

variables is fully exploited herein. Contrary to the traditional parametric method, the proposed

method does not impose a linearity assumption for the conditional mean of the outcome variable,

which allows for heterogeneous impacts of circumstances on the distribution of the outcome.

2.3 Model setting

This paper uses the following notation: Y ∈ R+ is a non-negative, measurable, interperson-

ally comparable and one-dimensional outcome variable that has a distribution FY (y). C =

(C1, ..., Cp)
′ ∈ Rp denotes the vector of circumstances, and E = (E1, ..., Eq)

′ ∈ Rq stands for the

vector of efforts. X = (C ′, E′)′ ∈ Rp+q is a vector of potential determinants of Y . We consider

a general model of the form

Y = m(X, η) = m(C,E, η), (2.3)

where η is an unobservable factor. Following the Roemer framework (Roemer, 1998), we make

the following assumption on the distinction between E and C.

Assumption 1 Unambiguous responsibility-cut and measurability of efforts and circumstances:
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X can be divided unambiguously into E and C and both E and C are measurable.

This assumption states that the determinants of Y can be sorted into either E or C, but it does

not require the independence between E and C.8

FX(x), FE(e), FC(c) are joint distributions of X, efforts and circumstances, respectively. fX(x),

fE(e) and fC(c) stand for their respective joint densities. FEm(em)(m = 1, ..., q) and FCn(cn)(n =

1, ..., p) are marginal distributions of Em and Cn, and fEm(em) (m = 1, ..., q) and fCn(cn) (n =

1, ..., p) are their marginal densities. Finally, v(FY (y)), where v : FY 7→ R, is an inequality

statistic.

Applying the law of iterated expectation, the association between the outcome and its deter-

minants is expressed as follows (Pistolesi, 2008):

FY (y) =

∫
X
FY |X(y|x)dFX(x) (2.4)

=

∫
C

∫
E
FY |E,C(y|e, c)dFE|C(e|c)dFC(c), (2.5)

where FY |X(y|x) and FY |E,C(y|e, c) are conditional distributions of the outcome, given X, and

given E and C, respectively, while FE|C(e|c) is a conditional distribution of E given C. Equation

(2.5) reflects the argument that E is influenced by C (Roemer, 1996).

2.3.1 Copulas

In general, multivariate joint distributions can be expressed by their marginal distributions and a

copula. Hence, copulas allow us to model dependence structures of variables from their marginal

distributions, and they have the property that a functional association between underlying vari-

ables is not influenced by their marginal behaviours. Sklar’s theorem states that for an n-variate

distribution function F (y1, ..., yn), the copula is a distribution function C : [0, 1]n 7→ [0, 1] that

satisfies, for all real values of y1, .., yn,

F (y1, ..., yn) = C(F1(y1), ..., Fn(yn); θ), (2.6)

8Other than efforts and circumstances, Lefranc et al. (2009) build up the model where outcomes are assumed to
be dependent not only on efforts and circumstances, but also on luck, which is a set of random factors that affect
all individuals’ decision makings. However, in this study, following the original Roemer framework, we assume
that X can be divided into E and C only. This implies that in the proposed model the random factors are included
in efforts.
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where θ ∈ Θ is a parameter vector of the copula. If F1, .., Fn are continuous, the copula can be

uniquely expressed.9 Alternatively, equation (2.6) can be expressed as

C(u1, ..., un; θ) = F (F−1
1 (u1), ..., F−1

n (un)). (2.7)

Every copula has its derivative (Nelsen, 2006). For example, let C(u1, u2) be a bivariate copula.

For any u2, the partial derivative ∂C(u1,u2)
∂u1

exists for almost all u1. For such u1 and u2, the range

of its derivative is

0 ≤ ∂C(u1, u2)

∂u1
≤ 1. (2.8)

Similarly, the partial derivative ∂C(u1,u2)
∂u2

exists for almost all u2.

Although a long list of copulas has been proposed in the statistical literature, we focus only

on the several examples that are frequently used in applied econometrics. Table 2.1 lists the

functions of copulas typically employed in empirical studies, their parameter ranges and the

number of parameters. First, the Product copula, which takes the simplest form, does not allow

dependences among marginal distributions and consequently does not have a dependence param-

eter. Second, the Frank copula is capable of modelling both positive and negative dependence

and is suitable for data that exhibit weak tail dependence (Trivedi and Zimmer, 2007). Third,

the Clayton copula can better capture strong left tail dependence and relatively weak right tail

dependence, but it is not suitable for negative dependence. As its dependence parameter goes

to 0, the marginal distributions become independent. Fourth, the Gumbel copula, similar to

the Clayton copula, is not able to model negative dependence, but it can better capture strong

right tail dependence and relatively weak left tail dependence. Fifth, the Joe copula also allows

only positive dependence and is appropriate to model the very strong right tail dependence and

relatively weak left tail dependence between marginals. Finally, the Gaussian copula is flexible

in the sense that it allows for equal degrees of positive and negative dependence. It can ac-

commodate at most n(n − 1)/2 parameters, which reflect pairwise correlations. The multiple

parameters of the Gaussian copula help model various dependence structures between marginals.

For more details about copulas in general, see Nelsen (2006). For their econometric applications,

9y1, .., yn need to be continuous so that copula expression is always uniquely expressed. It is agreed that while
the lack of uniqueness of copula presentation for discrete distributions is a theoretical issue, it does not inhibit
empirical application for the estimation of joint distribution functions (Trivedi and Zimmer, 2007).
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Table 2.1: Copulas

Copula C(u1, ..., un)
Parameter Number of
range parameters

Product
∏n
i=1 ui NA 0

Frank −1
θ ln(1 +

∏n
i=1 exp(−θui)−1

(exp(−θ)−1)n−1 ) (−∞,∞) 1

Clayton (
∑n

i=1 u
−θ
i − n+ 1)−

1
θ (0,∞) 1

Gumbel exp[−[
∑n

i=1(−ln(ui))
θ]

1
θ ] [1,∞] 1

Joe 1− [1−
∏n
i=1(1− (1− ui)θ)]

1
θ [1,∞] 1

Gaussian Φn(Φ−1(u1), ...,Φ−1(un); θ) [−1, 1] n(n− 1)/2

Note: Φn(.; θ) is a multivariate normal distribution function with correlation parameters θ.

Φ(.) is a univariate normal distribution function.

see Trivedi and Zimmer (2007).

2.4 Methodology

2.4.1 Hypothetical outcome distribution

In order to measure the illegitimate inequality attributable to circumstances, we obtain a hypo-

thetical outcome distribution whereby variations of circumstances are suppressed. Let FEOPY (y)

be the hypothetical outcome distribution in which people are faced with the same circum-

stances and consequently, by definition, there exists no IOP. Therefore, v(FEOPY (y)) is viewed

as legitimate inequality according to the opportunity-egalitarian view. Next, following the

fairness gap approach (Fleurbaey and Schokkaert, 2009), we indirectly quantify the absolute

level of IOP by subtracting it from the inequality of the observed outcome distribution, ∆ =

v(FY (y))− v(FEOPY (y)). We also measure the relative level of IOP by 1− v(FEOPY (y))
v(FY (y)) .

In the hypothetical situation, everybody has the same constant circumstance, denoted as C̃,

which are called the reference values of C, such as their sample means. We make the following

assumption about the range of the reference levels.

Assumption 2 Restricted range of the reference values of C:

C̃ needs to be contained in the observed support of C.

This assumption states that the reference values need to be set between the maximum and the

minimum C, which guarantees that marginal distributions FCn(c̃n) (n = 1, ..., p) lie between 0

and 1. This assumption is essential in modelling the joint distribution of E and C, when C is

evaluated at C̃. This assumption corresponds to the common support assumption used in the
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parametric method that requires that C̃ should be in the support of C.

Next, exploiting the property of copulas that a functional association between underlying vari-

ables is not influenced by their marginal behaviours, we assume that the dependence structure

between efforts and circumstances does not change when we manipulate the marginal distribution

of C.

Assumption 3 Stability of dependence structure:

The original copula functional form and its parameter vector θ are stable when the marginal

distributions of circumstances are manipulated.

This assumption states that original functional associations between underlying variables are not

influenced by the manipulations of their marginal distributions. The important point to note is

that it does not require that the distribution of E is unaffected when we manipulate the distri-

bution of C. In contrast, this assumption ensures that the effect of C on E will be considered

through the estimated copula function when we construct the hypothetical distribution of Y . In

the parametric case, this assumption corresponds to the exogeneity assumption requiring that C

is independent of εE in equation (2.1).

Under the assumptions above, the following proposition holds.

Proposition 1 The actual outcome distribution and the hypothetical outcome distribution can

be expressed using copulas as follows:

FY (y) =

∫
C

∫
E
FY |E,C(y|e, c)Ψ(e, c)dFE(e)dFC(c) (2.9)

FEOPY (y) =

∫
E
FY |E,C(y|e, c = c̃)Ψ(e, c = c̃)dFE(e), (2.10)

where Ψ(e, c) =
dFE|C
dFE

=
c(FE1

(e1),...,FEq (eq),FC1
(c1),...,FCp (cp);θ)

ce(FE1
(e1),...,FEq (eq);θe)cc(FC1

(c1),...,FCp (cp);θc)
is a weighting factor.

c(FE1(e1), ..., FEq(eq), FC1(c1), ..., FCp(cp); θ), ce(FE1(e1), ..., FEq(eq); θe) and

cc(FC1(c1), ..., FCp(cp); θc) are copula density functions.

Proof of the proposition is provided in the Appendix.

The weighting factor, Ψ(e, c) =
dFE|C
dFE

, in equation (2.9) is basically a ratio between the con-

ditional effort distribution given circumstances and the unconditional effort distribution. The
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use of weighting factor to estimate a counterfactual distribution was firstly proposed by DiNardo

et al. (1996) in the context of the income inequality analysis. Intuitively, Ψ(e, c = c̃) in equation

(2.10) re-weights the observations so that the weighted observations will have the distribution of

E that would be realised when the variation of C is suppressed. In other words, the indirect im-

pact of levelling the circumstances on efforts are taken into consideration through this weighting

factor. Therefore, Ψ(e, c = c̃) makes sure that FEOPY (y) is the hypothetical outcome distribution

after taking account of the original dependence structure between E and C.

Based on the spirits of fairness-gap measurement approach (Fleurbaey and Schokkaert, 2009),

inequality due to circumstances is then indirectly measured by calculating the difference between

inequality of the original outcome distribution and that of the hypothetical outcome distribution,

i.e. ∆ = v(FY (y)) − v(FEOPY (y)). As discussed above, v(FEOPY (y)) can be seen as legitimate

inequality attributable to the different levels of efforts, and ∆ can be regarded as the contribution

of specific circumstances to overall inequality (Ferreira and Gignoux, 2011; Trannoy et al., 2010).

This method does not make a functional form assumption about the conditional mean of outcome,

which implies that we are not assuming that efforts and circumstances are additively separable

in the outcome function. It is known that the size of estimated IOP can vary according to the

reference values of circumstances when outcomes are not additively separable into efforts and

circumstances (Fleurbaey and Schokkaert, 2009, 2012).10 Certainly, the set of the mean values

of circumstances, i.e. C̃ = C, is a common choice in the empirical literature, but there is some

arbitrariness left. It is recommended to calculate IOP by setting various reference values and

then taking their average as part of a sensitivity analysis (Ramos and Van de gaer, 2012).

2.4.2 Estimation

Replacing the functions in equation (2.10) with their respective estimators and taking the average

across E,

F̂EOPY (y) =

∫
E
F̂Y |E,C(y|e, c = c̃)Ψ̂(e, c = c̃)dF̂E(e).

=
1

N

N∑
i=1

F̂Y |E,C(y|e = ei, c = c̃)Ψ̂(e = ei, c = c̃). (2.11)

10This means that when the additive separability of E and C in the outcome is imposed, the choice of reference
values does not make a difference.
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For the derivation of the hypothetical distribution of Y , we first need to estimate FY |E,C(y|e, c),

the conditional distribution function and the weighting factor.

Estimation of the conditional distribution function

First, the conditional distribution function, FY |E,C(y|e, c), is estimated by employing the distri-

butional regression method (Foresi and Peracchi, 1995; Chernozhukov et al., 2013).11 The basic

idea behind the distributional regression is to model directly the conditional distribution of Y ,

given E and C, through a family of binary response models in the event that the dependent

variable yi exceeds each threshold of Y , which we denote as qjY (j = 1, ..., J).12 In essence, the

distributional regression estimates the consistent conditional distribution by approximating it by

a bunch of step functions.

The conditional distribution of Y at the jth threshold is given by

FY |E,C(qjY |e, c) = P (y ≤ qjY |e, c) = Λ(αj + e′βjE + c′βjC + I(e, c)′βjEC), (2.12)

where Λ(.) is a strictly increasing link function13, and I(e, c)i is a vector of two-way interaction

terms between E and C. Equation (2.12) is estimated by making an assumption on Λ(.). The

coefficients αj and βj = (βjE
′
, βjC

′
, βjEC

′
)′ are allowed to vary with the threshold of Y . For

example, if we assume that the link function is a standard normal distribution function, αj , βjE ,

βjC and βjEC are estimated by running a probit regression of a dummy variable 1{yi ≤ qjY } on

a constant term, Ei, Ci, and interaction terms between E and C. For the probit version, the

maximum likelihood estimators are given by



α̂j

β̂jE

β̂jC

β̂jEC


= arg max

a ∈ R

bE ∈ Rq

bC ∈ Rp

bEC ∈ Rpq

N∑
i=1

[1{yi ≤ qjY }ln(Φ(a+ e′ibE + c′ibC + I(e, c)′ibEC)) +

1{yi > qjY }ln(1− Φ(a+ e′ibE + c′ibC + I(e, c)′ibEC))], (2.13)

11Alternatively, the quantile regression method can be employed (Machado and Mata, 2005; Melly, 2005).
12For example, the empirical application of this study uses the 100 thresholds which are uniformly chosen from

the 0.001th and 0.999th quantiles of Y .
13In practice, a logistic, probit or identity distribution function is often used.
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where 1(.) is an indicator function and Φ(.) is a normal distribution function. Estimating the

coefficients for every j = 1, ..., J and interpolating these estimated points, we can construct an

approximately continuous conditional distribution function of Y (Chernozhukov et al., 2013).14

Estimation of the weighting factor

Next, our estimation of the weighting factor, Ψ(e, c) =
c(FE1

(e1),...,FEq (eq),FC1
(c1),...,FCp (cp);θ)

ce(FE1
(e1),...,FEq (eq);θe)cc(FC1

(c1),...,FCp (cp);θc)
,

requires estimations of (i) the copula function of C and E, (ii) the copula function of E and (iii)

the copula function of C.

Two-step sequential likelihood estimation is employed to estimate a copula. This separates

the estimation of the marginals from that of the dependence parameter(s), and produces con-

sistent estimates of the dependence parameter(s) (Trivedi and Zimmer, 2007). For example, in

order to model the joint distribution of E and C, the first step estimates univariate marginal

distributions of each element of E and C by these empirical cumulative distribution functions,

i.e. F̂Em(em) = 1
N

∑N
i=1 1(emi ≤ em) for m = 1, ..., q and F̂Cn(cn) = 1

N

∑N
i=1 1(cni ≤ cn) for

n = 1, ..., p.

The second step then estimates the dependence parameter(s), using the estimated marginal

distributions from the first step. It is essential to select an appropriate copula for modelling a

joint distribution. If dependence structures were known a priori, it would be easier to choose an

appropriate copula, but such information is seldom available in advance. The selection of the

copula tends to be a posterior consideration, and so it is important to estimate several copulas

and compare their performances.

The dependence parameters are estimated by employing the maximum likelihood method from

the marginal distributions with parametric assumptions of each copula function (Trivedi and

Zimmer, 2007). An appropriate copula is the one which can best capture the dependence struc-

tures of the data. Maximised likelihood values, Akaike information criteria (AIC) and Bayesian

information criteria (BIC) provide guidance on the selection.15 The AIC and BIC select the best

14It is known that the estimated conditional function may be non-monotonic in the sense that qjY > qkY does not

necessarily lead to F̂Y |E,C(qjY ) > F̂Y |E,C(qkY ). In such a case, the estimated distribution function cannot be directly
inverted. To deal with this potential non-monotonicity, following Chernozhukov et al. (2010), we re-arrange the
estimated conditional distribution so that the re-arranged distribution function satisfies monotonicity.

15AIC = −2 ∗ ln(likelihood) + 2 ∗K and BIC = −2 ∗ ln(likelihood) + K ∗ ln(K), where K is the number of
parameters of a copula function.

71



model, taking account of the trade-off between the bias due to misspecification and the sample

variation resulting from over-fitting (Stone, 1977). The parameter estimator is given by

θ̂ = arg max
θ∈Θ

N∑
i=1

ln c(F̂E1(e1i), ..., F̂Eq(eqi), F̂C1(c1i), ..., F̂Cp(cpi); θ), (2.14)

where c(.) is the likelihood function of a specific copula. Likewise, the copula functions of E and

C are estimated respectively by

θ̂e = arg max
θe∈Θ

N∑
i=1

ln ce(F̂E1(e1i), ..., F̂Eq(eqi); θe) (2.15)

θ̂c = arg max
θc∈Θ

N∑
i=1

ln cc(F̂C1(c1i), ..., F̂Cp(cpi); θc). (2.16)

Then we obtain an estimate of Ψ(e, c).

Once we estimate FY |E,C and Ψ, we can generate the hypothetical distribution of Y from F̂EOPY .16

2.4.3 Direct and indirect effects

As discussed in the introduction, some observed efforts may depend on circumstances, it is there-

fore insightful to decompose ∆ = v(FY (y))− v(FEOPY (y)) further into two parts: a direct effect

and an indirect effect, following Bourguignon et al. (2007), Ferreira and Gignoux (2011) and Pis-

tolesi (2008). The direct effect is the illegitimate inequality attributable solely to the distribution

of circumstances in the absence of any interplay between efforts and circumstances, while the

indirect effect is the counterpart which is caused by the dependence of efforts on circumstances.

We prepare for the counterfactual distribution of Y , denoted as FEOP,directY (y), which would

be realised when the variation of circumstances are suppressed while the variation of efforts are

unaffected. When manipulating the marginal distributions of each element of circumstances does

not affect the joint or marginal distributions of efforts, the hypothetical outcome distribution

16Noting that the statistical property that as the random variable U = FEOPY (y), is uniformly distributed on

(0, 1), the random variable Y = F̂EOP,−1
Y (U) has distribution F̂EOPY .
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under the EOP is expressed by

F̂EOP,directY (y) =

∫
E
F̂Y |E,C(y|e, c = c̃)Ψ̂(e, c)dF̂E(e)

=
1

N

N∑
i=1

F̂Y |E,C(y|e = ei, c = c̃)Ψ̂(e = ei, c = ci). (2.17)

Note that the weighting factor in equation (2.17) is a function of both E and C. ci in the

weighting factor is the observed circumstances before its manipulation, not the fixed reference

value. Intuitively, different from the weighting factor in equation (2.10), i.e. Ψ̂(e = ei, c = c̃),

the weighting factor in equation (2.17), i.e. Ψ̂(e = ei, c = ci), does not take into consideration

the indirect pathway by which C influences E when we suppress the variation of C. Hence,

F̂EOP,directY (y) is the hypothetical outcome distribution with circumstances fixed at the reference

level and with original efforts unaffected by our levelling circumstances.

Finally, in the fairness-gap spirits (Fleurbaey and Schokkaert, 2009), ∆̂direct = v(F̂Y (y)) −

v(F̂EOP,directY (y)) yields the direct effect. Subtracting this from the total IOP measurement

gives the indirect effect, i.e. ∆̂indirect = ∆̂− ∆̂direct.

2.5 Empirical application: Ex-post IOP in intergenerational trans-

mission of body mass in Indonesia

2.5.1 Background and motivation

This section illustrates the proposed copula-based measurement approach through its application

to the intergenerational transmission of the body mass index (BMI) in Indonesia. The growing

number of overweight and obese people is a major public health issue in both developed and de-

veloping countries (Kelly et al., 2008). According to World Health Organization (2015), 39 per

cent of the adult population in the world were overweight and around 13 per cent of them were

obese in 2014. A higher BMI is a leading risk factor in chronic diseases such as cardiovascular dis-

ease, stroke, diabetes and musculoskeletal disorders (Ng et al., 2014). As well as over-nutrition,

low- and middle-income countries are faced with the persistence of under-nutrition and the con-

sequences of being underweight, which is also associated with elevated morbidity and mortality

(Strauss and Thomas, 2007; Waaler, 1984). These two forms of malnutrition are one of the major

public health issues in low- and middle-income countries.
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The existence of the intergenerational transmission of BMI is increasingly recognised interna-

tionally and parental over- and under-nutritions are strong significant predictors of those of their

offspring (Dolton and Xiao, 2015; Freeman et al., 2012; Yan, 2015; Brown and Roberts, 2013;

Costa-Font and Gil, 2013; Li et al., 2009; Whitaker et al., 1997). Dolton and Xiao (2017) estimate

intergenerational elasticity across six countries17 with substantially different economic develop-

ment and finds that intergenerational elasticity is very similar across these nations and relatively

constant. Intergenerational BMI transmission is a result of both genetic inheritance and family

environment (Frayling et al., 2007; Bouchard, 2009; Burke et al., 2001; Brown and Roberts, 2013;

Martin, 2008; Salsberry and Reagan, 2007), and a significant correlation is found to persist even

after children have grown up (Abrevaya and Tang, 2011; Reynolds et al., 2007; Laitinen et al.,

2001). Given the medical evidence that extreme BMI can have detrimental effects on health

(Forouzanfar et al., 2015; Ng et al., 2014; Jung, 1997; Waaler, 1984), the large intergenerational

transmission of BMI would be against the ideal of equal opportunities in relation to good health.

This analysis focuses on the BMI of grown-up children aged between 20 and 35 and the BMI of

their parents in their childhood and adolescence.

While there is epidemiological evidence that parental BMI is important determinants of BMI in

their offspring, it seems also quite true that the current BMI of offspring is largely due to their

own current lifestyles, revolving around matters such as dietary choices and daily exercise. The

responsibility-cut demarcation in this application is based on the following normative criteria.

First, from the viewpoint of children, they obviously cannot choose their parents, and therefore

the adiposity of their parents in their childhood and adolescence is beyond their responsibility

or control. Second, it seems reasonable to think that, after they reach adulthood, they should

be held responsible for the lifestyle they choose.

The goal of this application is to measure the ex-post IOP in BMI associated with its inter-

generational transmission among grown children aged between 20 and 35 in Indonesia. As 15 is

the age of majority in Indonesia, i.e. the recognised threshold of adulthood,18 this application

assumes that the BMI of their parents when they were children or adolescents aged below 15

are illegitimate causes of inequality. Hence, we treat only parental BMI as circumstances herein

17The United Kingdom, the United States, China, Indonesia, Spain and Mexico
18http://www.youthpolicy.org/factsheets/country/indonesia/ (accessed 18/07/2017)
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and aim to quantify the inequality attributable solely to parental BMI, which implies that all

the other factors are treated as efforts in this study. However, it is noteworthy that treating

the other factors as efforts does not decrease the usefulness of the method at all. In general,

the demarcation between efforts and circumstance varies, depending on the context of research,

and the flexibility of normative judgement regarding the demarcation is indeed an advantage of

the EOP research framework (Schokkaert, 2015). We admit that the inherent determinants of

BMI can be enormous, and parental BMI are just a subset of conceivable circumstances for their

offspring. Furthermore, it is true that the BMI of offspring can also be influenced by socioeco-

nomic characteristics, family environments, peer pressure from school mates and so forth, which

can also be potentially regarded as circumstances in the sense that they are not controllable by

respondents. In this sense, the inequality attributable to the intergenerational transmission can

also be interpreted as the fraction of the entire IOP.

The study of Indonesia is of interest not only from the viewpoints of public health but also

economic perspectives. Indonesia has the largest population in Southeast Asia and the fourth

largest population in the World (United Nations, 2016). As in other developing countries in

Southeast Asia, Indonesia has been showing high economic growth and a strong increase in

overweight and obese people. It has been reported that obesity has increased rapidly across all

Indonesian population groups including rural and low-income people (Aizawa and Helble, 2017;

Aizawa, 2018b; Roemling and Qaim, 2012). Although the prevalence rate of being underweight

has been exhibiting a decline, under-nutrition has not yet entirely disappeared (Witoelar et al.,

2009; Oddo et al., 2012; Vaezghasemi et al., 2014, 2016; Hanandita and Tampubolon, 2015; Doak

et al., 2005; Roemling and Qaim, 2013). Studying Indonesia provides a good case study in South-

east Asia, which is currently experiencing strong economic growth, a rapid increase in obesity

and persistent under-nutrition, especially among the poor.

2.5.2 Data

The Indonesian Family Life Survey (IFLS)

The Indonesian Family Life Survey (IFLS) is a large-scale, ongoing longitudinal survey and was

designed and implemented by the RAND Corporation, launched first in 1993/94. It currently

has five waves (as of 2018), the latest of which was completed in 2014. The survey questions

are very extensive, covering a household’s economy, education, employment and a wide range of

75



health conditions. The sample is representative of people living in 13 of the 27 provinces in the

country, where about 83 per cent of the total population resides.19 The high re-contact rates of

each wave are one of the strengths of the IFLS20, which helps to lessen the potential risk of bias

owing to non-random attrition. In fact, its re-contact rates are as high as, or higher than, most

longitudinal surveys available in the United States and Europe (Strauss et al., 2016).

Outcome variable

The health outcome of interest is the BMI of grown-up children aged between 20 and 35. From

measurements of the heights and weights of the respondents, BMI was calculated, which is defined

as an individual’s weight divided by their height squared and expressed internationally in units

of kg/m2. Hence, BMI conveys cardinal information about body mass. Information on heights

and weights in the IFLS was based on actual measurements, and therefore it was less likely to be

subject to measurement errors such as under-reporting of weights and over-reporting of heights

(Gorber et al., 2007), which substantially enhances the credibility of the result.21

Circumstance variables

Circumstance variables in this application are parental BMI when respondents were below 15

years old. This study exploits the panel structure of the IFLS to obtain them, i.e. the 21-year

gap between the first wave (completed in 1993/94) and the last wave (completed in 2014) of the

IFLS allows us to obtain that information (Figure 2.1). The high re-contact rates in the IFLS

make this possible. Parental BMI in 1993/94 may well be recognised as circumstances affecting

the BMI of their adult offspring in 2014.

The fundamental reason not to use contemporaneous parents’ BMI as circumstances is that

they are not necessarily uncontrollable by grown-up offspring. For instance, it is quite likely

that grown-up sons/daughters encourage their overweight/obese parents to try to participate in

physical activities to lose weight. It is also likely that grown-up children play important roles

19Four provinces on Sumatra (North Sumatra, West Sumatra, South Sumatra and Lampung), all five of the
Javanese provinces (DKI Jakarta, West Java, Central Java, DI Yogyakarta and East Java) and four provinces
covering the remaining major island groups (Bali, West Nusa Tenggara, South Kalimantan and South Sulawesi)
are included (Strauss et al., 2016).

20For example, the re-contact rate in the latest wave among the households interviewed in the first wave was
reported at 92.0 per cent. Among the households interviewed in the first wave, 86.9 per cent were involved in all
five waves.

21In the survey, heights were measured using a Seca plastic height board and weight measurements were taken
using Seca floor-model scales developed in collaboration with UNICEF. The floor-model scales have a digital
readout and are accurate to the nearest 0.1 kg.
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Figure 2.1: BMI of grown-up children and parental BMI in the IFLS

Note: The outcome variable (Y) in this application is the BMI of grown-up children aged between 20 and 35
years. The circumstance variables (C) are parental BMI when offspring were below 15 years old, which is
obtained from the data in the first wave of the IFLS. The effort variables (E) are lifestyles of grown-up children,
of which information is obtained from the last wave of the IFLS.

in the choice of daily meals for their parents. In these cases, parental BMI in 2014 may not be

undoubtedly viewed as circumstances for grown-up children. On the other hand, before offspring

become mature, they are by far less likely to influence parents’ BMI and it is plausible to regard

them as exogenous for children.

In the Roemer framework, a part of E is dependent on C. It is highly probable that fam-

ily environments in childhood shape children’s weight-related behaviours and life-long beliefs

throughout their development. Especially before children grow up, their parents play an im-

portant role in choosing foods, preparing meals and monitoring children’s use of time. These

parental controls could influence weight-related behaviours, values and preferences, even after

children reach adulthood (Wardle et al., 2001; Fisher et al., 2002; Fogelholm et al., 1999; Birch

and Davison, 2001; Davison and Birch, 2002). In this sense, parts of the lifestyles in adulthood

are dependent on parental behaviours during development. Following the Roemer framework,

such influences are treated as parts of circumstances, and their contributions to the IOP are

captured as the indirect effect.

Effort variables

The set of effort variables used in this analysis is composed of the following five categories: 1)

education, 2) long-term household affluence, 3) food expenditure and choices, 4) exercise and 5)

smoking. First, years of education completed by the respondents are included in the model. As
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variables reflecting the households’ affluence, logarithmic family-size adjusted household wealth22

is used. The advantage of using wealth over income is that the former, as a stock of income,

is suitable as an indicator reflecting the long-term living standards of households. In addition,

wealth is less susceptible to temporary economic shocks and seasonal events such as drought,

which is important for the analysis of developing countries in which agriculture plays an impor-

tant role.

Next, as measurements of food expenditure and choices, the logarithmic amount of family-size

adjusted total expenditure on food is used.23 The proportion of expenditure spent on prepared

foods outside the home to total food expenditure is used in this study, in order to capture the

different food choices made by the household. Increasing the consumption of foods prepared out-

side the home, including meals at restaurants, is considered one of the main factors contributing

to excess body fat. In the case of the United States, the rise in the share of food budget spent

on foods prepared away from the home versus total food expenditure is reported as being part of

the reason for an increase in obesity (McCrory et al., 1999). Moreover, the analysis also includes

the share of food expenditure spent on staple foods,24 which is important, because developing

Asian countries are experiencing a rapid change in diet, known as the ‘nutrition transition’ (Pop-

kin, 2001; Popkin and Du, 2003; Popkin and Gordon-Larsen, 2004; Popkin et al., 2006). As in

traditional Indonesian cultures, unprocessed staples have played a major role (Roemling and

Qaim, 2012), a lower share of staple food could be considered to indicate the lesser importance

of traditional cuisine in diet choice.

Furthermore, this study uses information about daily vigorous and moderate physical activi-

ties. In the IFLS, vigorous activities are defined as those that make one breathe much harder

than normal and may include heavy lifting, digging, ploughing, aerobics, fast cycling and cy-

cling with a load. Moderate activities make one breathe somewhat harder than normal and may

include carrying light loads, cycling at a regular pace or mopping the floor. For both vigorous

22Wealth is defined as the aggregated total value of the following various assets, which are commonly found in
typical Indonesian households: House and land occupied by a household; Other house/building (including land);
Land (not used for farming); Poultry; Livestock/fish pond; Hard stem plant not used for farming, or a non-
farm business; Vehicles (cars, boats, bicycles, motorbikes); Household appliances (radio, tape recorder, television,
fridge, sewing or washing machine, video and CD player, cell phone, etc.); Savings/certificates of deposits/stocks;
Receivables; Jewellery; Household furniture and utensils.

23In the survey, the reporting of food expenditure information was done according to the household unit. This
study assumes that household members share expenditure on an equal basis.

24Hulled, uncooked rice, sago/flour, cassava, tapioca and other staple foods.
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Table 2.2: Descriptive statistics

count mean sd p50 min max

BMI 4564 23.21 4.38 22.40 13.95 43.39
Father’s BMI in 1993 4564 21.17 2.74 20.71 13.93 33.71
Mother’s BMI in 1993 4564 21.97 3.41 21.44 12.07 33.91
Education years 4564 11.16 3.45 12.00 0.00 16.00
ln(Wealth) 4564 16.51 1.84 16.66 0.00 20.91
ln(Food expenditure) 4564 12.04 0.60 12.03 9.82 14.49
Prepared food ratio 4564 0.15 0.19 0.07 0.00 1.00
Staple food ratio 4564 0.18 0.15 0.16 0.00 0.94
Vigorous activity 4564 2.43 5.86 0.00 0.00 28.00
Moderate activity 4564 5.79 7.41 3.00 0.00 28.00
Eating frequency 4564 0.17 1.28 -0.11 -1.45 9.11

sd=Standard deviation; p50=Median

and moderate physical activities, work that takes fewer than ten minutes is not counted as an

exercise. The intensity of these exercises is calculated by the time spent and the frequency of

the respective activity.25 Finally, the index of frequency of eating unhealthy foods in a week26,

which is obtained by the principal component analysis using the first principal component, is

included.

Sample selection

After dropping the outliers27 and deleting observations with missing values, the sample size

becomes 4,564.28 The Kolmogorov–Smirnov test fails to reject the equality of the offspring’s

BMI distribution of the complete observations and that of the incomplete observations which are

deleted due to missing values. The descriptive statistics are shown in Table 2.2. Figure 2.2 shows

the estimated density and cumulative distribution functions. The parametric Shapiro-Francia

test and the non-parametric Kolmogorov-Smirnov test reject the normality of BMI (p < 0.01).

25The variable is the product of the time they usually spend in a day (1 is given, if they did no exercise; 2 is
given to less than 30 minutes’ exercise; 3 is given to exercises between 30 minutes and 4 hours; 4 is given, if it is
more than 4 hours) and the days on which they do this in a week. The lowest value is zero (no exercise in a week)
and the highest is 28 (more than 4 hours and 7 days a week).

26Unhealthy foods considered herein are instant noodles, fast foods, soft drinks, fried snacks and sweet snacks.
27Some observations show extremely high or low BMI, which seems biologically impossible. Observations from

the top 0.1 per cent or bottom 0.1 per cent of BMI of respondents and parental BMI are dropped from the sample
as possible outliers.

28The original sample size is 14,774 of which 12,129 observations have information of respondent’s BMI and
7,575 observations had an interview in the first wave. 23 observations are deleted as possible outliers and 2,297
observations with missing values of either efforts or circumstances are deleted.
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Figure 2.2: Kernel density and cumulative distribution functions of BMI
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2.5.3 Results

Regression analysis

First, we implement a regression analysis to understand better the association between the BMI

of children and that of their parents. We focus predominantly on the effects of parental BMI

here. Table 2.3 shows the results of the ordinary least squares (OLS) regression and uncon-

ditional quantile regressions.29 The OLS estimation result in the first column illustrates that

both maternal and paternal BMI in 1993 had significant associations with the BMI of their

child/children in 2014 (p < 0.01). We cannot find a significant difference in their coefficient sizes

at the 5 per cent level.

Figure 2.3 illustrates their heterogeneous effects at the different points of distribution. The uncon-

ditional quantile regression results reveal that the impacts of parental BMI on their child/children’s

BMI vary across the distribution. That is to say, the parental BMI are more relevant around the

middle and the right tail of the offspring’s BMI distribution, which is suggestive of the nonlinear

relations between them. The existence of heterogeneous effects across the distribution is in line

29The unconditional quantile regression was proposed by Firpo et al. (2009), and a brief explanation is available
in the Appendix.
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Figure 2.3: Unconditional quantile regression coefficients of parental BMI
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Note: We estimate the marginal effect of parental BMI when offspring were children on the quantiles of BMI of
grown-up children. Estimated coefficients of respective circumstance variables by the unconditional quantile
regression are plotted. Efforts variables are controlled for (Not shown here).

with previous literature (Dolton and Xiao, 2015, 2017; Classen, 2010). Again, the differences in

the paternal and maternal BMI’ coefficient sizes are not significant at the 5 per cent level for

every estimated quantile point.

Measurement of inequality of opportunity

Table 2.4 presents the maximised log-likelihood values, AIC and BIC of the copula estimations.

For the estimation of the copula function for E and C and that of E, we fail to obtain results for

the Frank copula, because its log-likelihood values did not converge during the estimation. For

the copula function estimation of C, the Clayton copula did not converge. Failure of convergence

could be an indication of inconsistency between the data properties and the copula restriction on

the dependence parameter (Trivedi and Zimmer, 2007). Among the others, the Gaussian copula,

which can have multiple dependence parameters, shows the highest likelihoods and the lowest

AIC and BIC in the estimations of the joint distribution of E and C and that of E, dominating

the other copulas in terms of fitting to the data. The Gumbel copula shows the highest likeli-

hood and the lowest AIC and BIC for the estimation of the joint distribution of C, which implies

that the parental BMI have strong right tail dependence. Hence, in this application, we use the
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Table 2.4: Maximised log-likelihood, AIC and BIC of the copula estimations
Copula Frank Clayton Gumbel Joe Gaussian

Joint distribution of E and C
Log likelihood NA 204.569 59.098 7.666 1970.634
AIC NA −407.139 −116.197 −13.332 −3851.268
BIC NA −409.139 −118.197 −15.332 −3769.969

Joint distribution of E
Log likelihood NA 145.601 14.721 0.011 1664.229
AIC NA −289.202 −27.442 1.977 −3238.458
BIC NA −291.202 −29.442 −0.023 −3157.158

Joint distribution of C
Log likelihood 143.909 NA 158.932 131.828 154.536
AIC −285.818 NA −315.864 −261.657 −307.073
BIC −287.818 NA −317.864 −263.657 −309.073

Note: NA means that a likelihood function did not converge. AIC: Akaike information criteria. BIC: Bayesian
information criteria.

Gaussian copula and the Gumbel copula to model the respective joint distributions.

In the distributional regression, we implement 100 probit estimations and 5,000 random samples

are drawn from the hypothetical health distribution. Figure 2.4 illustrates the density functions

of the offspring’s BMI under the original covariate distributions and under the hypothetical

distribution where circumstance values are set to their sample means. We find that the hypo-

thetical BMI distributions exhibit less variation, compared with the observed BMI distribution.

This perfectly makes sense because the hypothetical distributions are those distributions when

we suppress the variation of the circumstance variables. Hence, the reduction in the variation of

BMI can be interpreted as a part of the total BMI variation associated with its intergenerational

transmission (Fleurbaey and Schokkaert, 2009).

Table 2.5 summarises the main estimation results of this application. Standard errors are ob-

tained by bootstrap with 500 repetitions. Table 2.5 is composed of two sections, indicated in

the rows 1) Inequality measurement and 2) IOP percentage. The first section reports the mean,

variance (Var), coefficient of variation (CV), Gini coefficient (Gini) and Theil index (Theil) of

the originally observed health distribution and two hypothetical distributions.30 The first hypo-

thetical distribution is the one in which we take into account both direct and indirect effects of

circumstances on the outcome. The second hypothetical distribution is the one in which we only

consider their direct effects. These two hypothetical distributions reflect the inequality under

30Inequality statistics are defined as follows: V ar(Y ) = 1
N

∑N
i=1(yi − y)2; CV (Y ) = Std.Dev.

y
=√

1
N

∑N
i=1(yi − y)2/y; Gini(Y ) =

2
∑N

i=1 iyi
n
∑N

i=1 yi
− N+1

N
; and Theil(Y ) = 1

2Ny2

∑N
i=1(yi − y)2.
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Figure 2.4: Density functions of the hypothetical and observed BMI

EOP, where the variations in circumstances are suppressed. These inequality statistics are based

on the hypothetical situation when the reference values are set to their sample means.

The second section reports the percentage share of the IOP in relation to overall inequality.

The first row in the second section reports the total effect, i.e. 100 ∗ {1 − v(FEOPY (y))
v(FY (y)) }. The

second and third rows show the percentage share of the direct effect and the indirect effect in

relation to the IOP respectively. The result suggests that the shares of IOP in relation to overall

inequality vary, depending on the inequality statistics. With respect to the variance, for example,

the IOP accounts for around 15.1 per cent when the sample means are used as reference values.

Compared to the case of variance, we observe relatively smaller variations in the case where the

coefficient of variation, the Gini coefficient, and the Theil index are used as inequality statistics.

2.5.4 Comparison with the parametric approach

Next, we measure the IOP with the parametric approach (Bourguignon et al., 2007). Assuming

the linearity of effort factors and BMI31, we estimate the counterfactual distribution of effort

31As we include the two-way interaction terms between C and E, the parametric model does not impose the
additivity of individual factors.
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factors and BMI in a situation where everybody faces a fixed parental BMI. The associated OLS

coefficient estimates are provided in Appendix 2.A.3. We do not consider the non-parametric

approach in this application study because continuous circumstance and effort variables require

a large number of observations. Possible numbers of types and tranches in this application study

are by far larger than the number of available samples, which makes it impossible to conduct the

non-parametric analysis.

Results with the parametric approach are shown in Table 2.6, where associated standard er-

rors are obtained by bootstrap with 500 repetitions. In the parametric method, we find that

11.4 per cent of the total variance is associated with the parental BMI, which is lower than the

estimates in Table 2.5. The smaller effects of parental BMI are also observed for coefficient of

variation, Gini coefficient and Theil index. The observation that estimated IOP in the parametric

model is smaller than that estimated by our semi-parametric estimation may suggest that, due

to the possible specification error in the parametric model, the association between outcome and

circumstances may not have been satisfactorily modelled, thereby resulting in the downwardly

biased IOP estimates. The second row in the second section in Table 2.6 indicates that a large

part of the IOP is due to the direct effect of parental BMI on BMI of offspring. The very small

indirect effect in the parametric method suggests that the relationships between C and E may

not have been satisfactorily modelled by a linear regression model.

2.5.5 Sensitivity analysis

We repeat estimations, using several reference values of circumstance variables, which is suggested

by Ramos and Van de gaer (2016). Table 2.7 reports the average of the inequality statistics when

the reference values are set from the 0.05th to 0.95th quantiles. Specifically, this is calculated by

averaging inequalities which are estimated when the reference values are set to the 0.05th, 0.20th,

0.35th, 0.50th, 0.65th, 0.80th and 0.95th quantiles of circumstance variables. The result suggests

that the shares of IOP in relation to overall inequality vary, depending on the reference values

of circumstances. For example, intergenerational transmission of BMI accounts for around 15.2

per cent on average when the reference values are set to various quantiles of circumstances.

86



T
ab

le
2.

6:
E

st
im

at
io

n
re

su
lt

s
of

th
e

p
ar

am
et

ri
c

m
o
d

el
M

e
a
n

V
a
r

C
V

G
in

i
T

h
e
il

E
st

im
a
te

s
S
E

s
E

st
im

a
te

s
S
E

s
E

st
im

a
te

s
S
E

s
E

st
im

a
te

s
S
E

s
E

st
im

a
te

s
S
E

s

In
e
q
u
a
li
ty

m
e
a
su

re
m

e
n
t

O
ri

g
in

a
l

d
is

tr
ib

u
ti

o
n
:
v
(F
Y

)
2
3
.2

0
8
*
*
*

0
.0

6
3

1
9
.1

7
7
*
*
*

0
.4

8
3

0
.1

8
9
*
*
*

0
.0

0
2

0
.1

0
4
*
*
*

0
.0

0
1

0
.0

1
7
*
*
*

0
.0

0
0

H
y
p

o
th

et
ic

a
l

d
is

tr
ib

u
ti

o
n
:
v
(F

E
O
P

Y
)

2
3
.2

0
2
*
*
*

0
.0

6
8

1
6
.9

9
9
*
*
*

0
.4

2
1

0
.1

7
8
*
*
*

0
.0

0
2

0
.0

9
8
*
*
*

0
.0

0
1

0
.0

1
5
*
*
*

0
.0

0
0

H
y
p

o
th

et
ic

a
l

d
is

tr
ib

u
ti

o
n

(d
ir

ec
t)

:
v
(F

E
O
P
,d
ir
e
c
t

Y
)

2
3
.2

0
1
*
*
*

0
.0

6
8

1
6
.9

9
9
*
*
*

0
.4

2
1

0
.1

7
8
*
*
*

0
.0

0
2

0
.0

9
8
*
*
*

0
.0

0
1

0
.0

1
5
*
*
*

0
.0

0
0

IO
P

p
e
rc

e
n
ta

g
e

T
o
ta

l
eff

ec
t

1
1
.3

5
6
*
*
*

0
.9

7
1

5
.8

2
3
*
*
*

0
.5

1
7

5
.5

8
4
*
*
*

0
.5

3
0

1
0
.6

6
1
*
*
*

0
.9

3
1

D
ir

ec
t

eff
ec

t
1
1
.3

5
5
*
*
*

0
.9

7
2

5
.8

2
0
*
*
*

0
.5

1
7

5
.5

8
0
*
*
*

0
.5

3
1

1
0
.6

4
8
*
*
*

0
.9

3
3

In
d
ir

ec
t

eff
ec

t
0
.0

0
1

0
.0

0
3

0
.0

0
3

0
.0

1
0

0
.0

0
4

0
.0

0
9

0
.0

1
4

0
.0

2
3

N
o
te

:
S
ta

n
d
a
rd

er
ro

rs
(S

E
s)

a
re

o
b
ta

in
ed

b
y

b
o
o
ts

tr
a
p

w
it

h
5
0
0

re
p

et
it

io
n
s.

N
u
m

b
er

o
f

o
b
se

rv
a
ti

o
n
s

is
4
,5

6
4
.

IO
P

p
er

ce
n
ta

g
e

is
th

e
p
ro

p
o
rt

io
n

o
f

in
eq

u
a
li
ty

o
f

o
p
p

o
rt

u
n
it

y
to

th
e

o
b
se

rv
ed

in
eq

u
a
li
ty

.

T
o
ta

l
eff

ec
t

(∆
)

=
1
−

v
(F

E
O

P
Y

)

v
(F

Y
)

D
ir

ec
t

eff
ec

t
(∆

d
ir
e
c
t
)

=
v
(F
Y

)
−
v
(F

E
O
P
,d
ir
e
c
t

Y
)

In
d
ir

ec
t

eff
ec

t
(∆

in
d
ir
e
c
t
)

=
∆
−

∆
d
ir
e
c
t
.

*
p
<

0
.1

0
,

*
*
p
<

0
.0

5
,

*
*
*
p
<

0
.0

1

87



T
ab

le
2.

7:
IO

P
es

ti
m

at
io

n
re

su
lt

s
u

n
d

er
va

ri
ou

s
re

fe
re

n
ce

va
lu

es
C

o
p

u
la

-b
a
se

d
m

e
th

o
d

M
e
a
n

V
a
r

C
V

G
in

i
T

h
e
il

E
st

im
a
te

s
S
E

s
E

st
im

a
te

s
S
E

s
E

st
im

a
te

s
S
E

s
E

st
im

a
te

s
S
E

s
E

st
im

a
te

s
S
E

s

In
e
q
u
a
li
ty

m
e
a
su

re
m

e
n
t

O
ri

g
in

a
l

d
is

tr
ib

u
ti

o
n
:
v
(F
Y

)
2
3
.2

0
8
*
*
*

0
.0

6
5

1
9
.1

7
7
*
*
*

0
.4

7
0

0
.1

8
9
*
*
*

0
.0

0
2

0
.1

0
4
*
*
*

0
.0

0
1

0
.0

1
7
*
*
*

0
.0

0
0

H
y
p

o
th

et
ic

a
l

d
is

tr
ib

u
ti

o
n
:
v
(F

E
O
P

Y
)

2
3
.0

5
7
*
*
*

0
.1

0
2

1
6
.4

5
5
*
*
*

0
.5

7
5

0
.1

7
4
*
*
*

0
.0

0
3

0
.0

9
6
*
*
*

0
.0

0
2

0
.0

1
5
*
*
*

0
.0

0
0

H
y
p

o
th

et
ic

a
l

d
is

tr
ib

u
ti

o
n

(d
ir

ec
t)

:
v
(F

E
O
P
,d
ir
e
c
t

Y
)

2
3
.1

1
0
*
*
*

0
.1

1
0

1
6
.9

0
5
*
*
*

0
.6

2
3

0
.1

7
6
*
*
*

0
.0

0
3

0
.0

9
7
*
*
*

0
.0

0
2

0
.0

1
5
*
*
*

0
.0

0
0

IO
P

p
e
rc

e
n
ta

g
e

T
o
ta

l
eff

ec
t

1
4
.0

6
3
*
*
*

2
.7

9
4

7
.7

4
8
*
*
*

1
.3

0
5

7
.4

7
4
*
*
*

1
.3

2
7

1
4
.0

7
5
*
*
*

2
.3

7
9

D
ir

ec
t

eff
ec

t
1
1
.5

8
2
*
*
*

3
.1

4
9

6
.7

9
5
*
*
*

1
.3

4
1

6
.3

7
0
*
*
*

1
.3

5
6

1
2
.1

6
4
*
*
*

2
.5

1
8

In
d
ir

ec
t

eff
ec

t
2
.4

8
1
*

1
.5

0
6

0
.9

5
3
*

0
.5

7
4

1
.1

0
4
*

0
.5

9
1

1
.9

1
1
*

1
.1

2
1

P
a
ra

m
e
tr

ic
m

e
th

o
d

M
e
a
n

V
a
r

C
V

G
in

i
T

h
e
il

E
st

im
a
te

s
S
E

s
E

st
im

a
te

s
S
E

s
E

st
im

a
te

s
S
E

s
E

st
im

a
te

s
S
E

s
E

st
im

a
te

s
S
E

s

In
e
q
u
a
li
ty

m
e
a
su

re
m

e
n
t

O
ri

g
in

a
l

d
is

tr
ib

u
ti

o
n
:
v
(F
Y

)
2
3
.2

0
8
*
*
*

0
.0

6
3

1
9
.1

7
7
*
*
*

0
.4

8
3

0
.1

8
9
*
*
*

0
.0

0
2

0
.1

0
4
*
*
*

0
.0

0
1

0
.0

1
7
*
*
*

0
.0

0
0

H
y
p

o
th

et
ic

a
l

d
is

tr
ib

u
ti

o
n
:
v
(F

E
O
P

Y
)

2
3
.2

1
3
*
*
*

0
.0

7
2

1
7
.0

6
0
*
*
*

0
.4

3
2

0
.1

7
9
*
*
*

0
.0

0
2

0
.0

9
8
*
*
*

0
.0

0
1

0
.0

1
6
*
*
*

0
.0

0
0

H
y
p

o
th

et
ic

a
l

d
is

tr
ib

u
ti

o
n

(d
ir

ec
t)

:
v
(F

E
O
P
,d
ir
e
c
t

Y
)

2
3
.2

0
5
*
*
*

0
.0

8
0

1
7
.0

6
0
*
*
*

0
.4

3
2

0
.1

7
9
*
*
*

0
.0

0
2

0
.0

9
8
*
*
*

0
.0

0
1

0
.0

1
6
*
*
*

0
.0

0
0

IO
P

p
e
rc

e
n
ta

g
e

T
o
ta

l
eff

ec
t

1
0
.9

9
2
*
*
*

0
.9

6
3

5
.1

3
2
*
*
*

0
.5

2
9

4
.8

7
0
*
*
*

0
.5

3
6

8
.8

1
6
*
*
*

0
.9

3
0

D
ir

ec
t

eff
ec

t
1
0
.9

9
1
*
*
*

0
.9

6
3

5
.0

9
0
*
*
*

0
.5

5
1

4
.8

2
6
*
*
*

0
.5

5
7

8
.7

2
1
*
*
*

0
.9

7
7

In
d
ir

ec
t

eff
ec

t
0
.0

0
1

0
.0

0
6

0
.0

4
3

0
.1

0
9

0
.0

4
4

0
.1

1
1

0
.0

9
5

0
.2

1
4

N
o
te

:
S
ta

n
d
a
rd

er
ro

rs
(S

E
s)

a
re

o
b
ta

in
ed

b
y

b
o
o
ts

tr
a
p

w
it

h
5
0
0

re
p

et
it

io
n
s.

N
u
m

b
er

o
f

o
b
se

rv
a
ti

o
n
s

is
4
,5

6
4
.

T
h
e

av
er

a
g
e

o
f

th
e

d
is

tr
ib

u
ti

o
n
a
l

st
a
ti

st
ic

s
a
re

re
p

o
rt

ed
w

h
en

C
is

se
t

fr
o
m

0
.0

5
th

q
u
a
n
ti

le
to

0
.9

5
th

q
u
a
n
ti

le
.

IO
P

p
er

ce
n
ta

g
e

is
th

e
p
ro

p
o
rt

io
n

o
f

in
eq

u
a
li
ty

o
f

o
p
p

o
rt

u
n
it

y
to

th
e

o
b
se

rv
ed

in
eq

u
a
li
ty

.

T
o
ta

l
eff

ec
t

(∆
)

=
1
−

v
(F

E
O

P
Y

)

v
(F

Y
)

D
ir

ec
t

eff
ec

t
(∆

d
ir
e
c
t
)

=
v
(F
Y

)
−
v
(F

E
O
P
,d
ir
e
c
t

Y
)

In
d
ir

ec
t

eff
ec

t
(∆

in
d
ir
e
c
t
)

=
∆
−

∆
d
ir
e
c
t
.

*
p
<

0
.1

0
,

*
*
p
<

0
.0

5
,

*
*
*
p
<

0
.0

1

88



2.6 Discussion and conclusion

In welfare economics, two types of inequality can be defined: legitimate inequality and ille-

gitimate inequality. This distinction is based on the normative judgements as to whether the

causes of inequality are things for which an individual can be held responsible. The IOP is

the illegitimate inequality attributable to circumstances beyond the individual’s control. This

paper proposes a new methodology to measure the ex-post IOP with copulas. The copula func-

tion models dependence structures between effort and circumstance variables, following which

the hypothetical outcome distribution in a situation in which the variations of circumstances

are suppressed is derived. The proposed semi-parametric model is particularly useful when the

non-parametric method is not applicable because effort and circumstance factors are continuous

variables.

It is worth noting that, as discussed by Ferreira and Gignoux (2011), the measurement of IOP

yields only the lower limit of illegitimate inequality.32 In most cases, some of the circumstance

variables are unobservable or non-quantifiable. The real cause of illegitimate inequality can con-

sist of a far more complex set of circumstances, but only its subset is available to researchers.

In this sense, as Wagstaff and Kanbur (2015) and Kanbur and Wagstaff (2015, 2016) argue, the

importance of showing the lower limit for policymakers deserves consideration. The result of

low IOP should not be received optimistically, either, and needs to be carefully interpreted. It

seems important in implementing an empirical analysis to ask oneself how meaningful it is in

the research context to report the lower limit of illegitimate inequality. Furthermore, the actual

demarcation between efforts and circumstances is not obvious to everyone and often requires

personal normative judgement regarding distributional justice. Of course, there might not al-

ways be consensual agreement on the distinction. Judgement about which situations are unfair

can vary from place to place and from time to time (Whitehead, 1992); however, one of the

benefits of the EOP framework is that it can handle our various normative values in the model,

making it possible to discuss the upper and lower limits of illegitimate inequality (Schokkaert,

2015; Garćıa-Gómez et al., 2015). To make the most of the versatility of the framework, it is

important to state explicitly the standpoint of one’s own normative judgement on the demarca-

tion in empirical analyses.

32A notable exception is Niehues and Peichl (2014), in which the authors propose measuring the upper limit of
illegitimate inequality with longitudinal data.

89



This paper applies the copula-based method in order to study the ex-post IOP in BMI distribu-

tion among Indonesian people aged between 20 and 35. The application exploits the longitudinal

nature of IFLS data and measures the inequality associated with the intergenerational transmis-

sion of BMI from parents to offspring. The circumstance variables are paternal and maternal

BMI when respondents were in their childhood and adolescence. As effort variables, various

lifestyle choices are included. The results suggest that the proportions of IOP vary, depend-

ing on the choice of inequality statistics and the choice of the reference values of circumstance

variables. Although these estimates do not necessarily reflect the causal relationship between

them, this study shows that intergenerational transmission of BMI is forming the non-negligible

part of entire BMI distribution. When the reference values are set to the sample means of the

circumstance variables, 15.1 per cent of the overall variance in the respondents’ BMI is found to

be associated with their parents’ BMI.

Last of all, it is worth discussing the limitations of this study. Most of the copulas can deal

with multiple marginal distributions, but not all of the popular copula functions can have multi-

ple dependence parameters. If a certain copula can have only a single parameter, the parameter

is supposed to capture dependences of all the possible combinations of marginal distributions.

In this case, these copulas cannot always capture the dependence structures satisfactorily. When

the X dimension is large, the practical choice of copula functions is likely to be more constrained.

In such a case, we might not be able to enjoy the full benefit of employing copulas in modelling

relations between C and E. One practical solution to deal with this issue would be to reduce

dimensions by the principal component analysis before estimating copula functions. Another so-

lution would be to consider a much wider array of copula functions which are capable of flexibly

modelling more complex multi-dimensional dependency. A more thorough exploration of further

possibilities would be our future research topic and this would expand the potential of copulas

in the study into the IOP.
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2.A Appendix

2.A.1 Proof of proposition 1

In this proof, C and E denote the sets of circumstance and effort variables, i.e. C = (C1, ..., Cp)

and E = (E1, ..., Eq).

From equation (2.5),

FY (y) =

∫
C

∫
E
FY |E,C(y|e, c)

dFE|C(e|c)
dFE(e)

dFE(e)dFC(c)

=

∫
C

∫
E
FY |E,C(y|e, c)Ψ(e, c)dFE(e)dFC(c), (2.A.1)

where Ψ(e, c) is a weighting factor and expressed as

Ψ(e, c) =
dFE|C(e|c)
dFE(e)

=
fE|C(e|c)
fE(e)

=
fE,C(e, c)

fE(e)fC(c)
(2.A.2)

Next, the joint density functions, fE,C(e, c), fE(e) and fC(c) are expressed by their copula func-

tions as follows;

fE,C(e, c) =
∂p+qFE,C(e, c)

∂E1...∂Eq∂C1...∂Cp

=
∂p+qC(FE1 , ..., FEp , FC1 , ..., FCp ; θ)

∂E1...∂Eq∂C1...∂Cp

=
∂p+qC(FE1 , ..., FEp , FC1 , ..., FCp ; θ)

∂FE1(e1)...∂FEq(eq)∂FC1(c1)...∂FCp(cp)

∂FE1(e1)...∂FEq(eq)∂FC1(c1)...∂FCp(cp)

∂E1...∂Eq∂C1...∂Cp

= c(FE1 , ..., FEp , FC1 , ..., FCp ; θ)

q∏
m=1

fEm(em)

p∏
n=1

fCn(cn) (2.A.3)

fE(e) =
∂qFE(e)

∂E1...∂Eq

=
Ce(FE1 , ..., FEp ; θe)

∂FE1(e1)...∂FEq(eq)

∂FE1(e1)...∂FEq(eq)

∂E1...∂Eq

= ce(FE1 , ..., FEp ; θe)

q∏
m=1

fEm(em) (2.A.4)

fC(c) =
∂pFC(c)

∂C1...∂Cp

=
Cc(FC1 , ..., FCp ; θc)

∂FC1(c1)...∂FCp(cp)

∂FC1(c1)...∂FCp(cp)

∂C1...∂Cp

= cc(FC1 , ..., FCp ; θc)

p∏
n=1

fCn(cn), (2.A.5)

91



where FEm(em) and FCn(cn) are marginal distribution functions of Em and Cn. fEm(em) and

fCn(cn) are their respective marginal density functions.

Substituting equation (2.A.3)-(2.A.5) into equation (2.A.2),

Ψ(e, c) =
c(FE1 , ..., FEp , FC1 , ..., FCp ; θ)

∏q
m=1 fEm(em)

∏p
n=1 fCn(cn)

ce(FE1 , ..., FEp ; θe)
∏q
m=1 fEm(em)cc(FC1 , ..., FCp ; θc)

∏p
n=1 fCn(cn)

=
c(FE1(e1), ..., FEp(ep), FC1(c1), ..., FCp(cp); θ)

ce(FE1(e1), ..., FEq(eq); θe)cc(FC1(c1), ..., FCp(cp); θc)
(2.A.6)

This gives equation (2.9).

Secondly, from equation (2.5) the hypothetical outcome distribution can be defined by,

FEOPY (y) =

∫
C

∫
E
FY |E,C(y|e, c)dFE|C(e|c)dFC(c = c̃) (2.A.7)

Under the assumption of Stability of the conditional distribution function, equation (2.A.7) be-

comes

FEOPY (y) =

∫
E
FY |E,C(y|e, c = c̃)dFE|C(e|c = c̃)

=

∫
E
FY |E,C(y|e, c = c̃)

dFE|C(e|c = c̃)

dFE(e)
dFE(e)

=

∫
E
FY |E,C(y|e, c = c̃)Ψ(e, c = c̃)dFE(e), (2.A.8)

where

Ψ(e, c = c̃) =
dFE|C(e|c = c̃)

dFE(e)
=
fE|C(e|c = c̃)

fE(e)
=

fE,C(e, c = c̃)

fE(e)fC(c = c̃)
(2.A.9)

is a weighting factor. Under the assumption of Stability of dependence structure, substituting

equation (2.A.3)-(2.A.5) to equation (2.A.9),

Ψ(e, c = c̃) =
c(FE1(e1), ..., FEp(ep), FC1(c̃1), ..., FCp(c̃p); θ)

ce(FE1(e1), ..., FEq(eq); θe)cc(FC1(c̃1), ..., FCp(c̃p); θc)
(2.A.10)

The assumption of Restricted range of the reference values of C guarantees 0 ≤ FCn(c̃n) ≤ 1, for

all n = 1, ..., p.
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This gives equation (2.10).

�

2.A.2 Unconditional quantile regression

The unconditional quantile regression developed by Firpo et al. (2009) uses the recentred influ-

ence function (RIF) of quantiles of the outcome variable, y. Coefficients of explanatory variables

at each quantile is estimated by regressing the vector of RIF values on a set of covariates. The

difference from OLS is that the RIF regression uses the estimated RIF of quantiles as a dependent

variable. The RIF vector is obtained by the following equation:

RIF (y; qτ ) = qτ +
τ − I(y ≤ qτ )

f(qτ )
, (2.A.11)

where qτ is the τth quantile of the outcome variable of interest and f(qτ ) is the unconditional

kernel density of y at the τth quantile. I(y ≤ qτ ) is an indicator function and it becomes 1 if y

is smaller or equal to the τth quantile of the outcome distribution.

2.A.3 OLS regression results

Tables 2.A.1 and 2.A.2 show the OLS regression results for effort variables and for child BMI

respectively.
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Table 2.A.2: OLS regression results for BMI

(1)
BMI

Father’s BMI in 1993 -0.583 (0.500)
Mother’s BMI in 1993 0.883∗∗ (0.415)
Education years 0.0252 (0.187)
ln(Wealth) 0.203 (0.315)
ln(Food expenditure) -0.676 (0.972)
Prepared food ratio -3.193 (3.282)
Staple food ratio -2.685 (4.533)
Vigorous activity -0.153 (0.0984)
Moderate activity 0.0431 (0.0766)
Eating frequency -1.360∗∗∗ (0.430)
Father’s BMI*Mother’s BMI -0.00272 (0.00617)
Father’s BMI*Education years 0.00195 (0.00776)
Father’s BMI*ln(Wealth) -0.0142 (0.0133)
Father’s BMI*ln(Food expenditure) 0.0928∗∗ (0.0410)
Father’s BMI*Prepared food ratio 0.147 (0.130)
Father’s BMI*Staple food ratio 0.133 (0.194)
Father’s BMI*Vigorous activity 0.00529 (0.00426)
Father’s BMI*Moderate activity -0.00324 (0.00324)
Father’s BMI*Eating frequency 0.0283 (0.0183)
Mother’s BMI*Education years -0.00748 (0.00609)
Mother’s BMI*ln(Wealth) 0.0112 (0.0111)
Mother’s BMI*ln(Food expenditure) -0.0531 (0.0341)
Mother’s BMI*Prepared food ratio -0.0299 (0.107)
Mother’s BMI*Staple food ratio -0.0789 (0.149)
Mother’s BMI*Vigorous activity -0.00123 (0.00354)
Mother’s BMI*Moderate activity 0.00216 (0.00255)
Mother’s BMI*Eating frequency 0.0305∗∗ (0.0143)
Constant 15.03 (11.67)

Observations 4564
R-squared 0.132

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Chapter 3

Joint Impact of the Conditional Cash Transfer on Child

Nutritional Status and Household Expenditure in Indonesia

Abstract

Child malnutrition, which hampers sound human capital development, is often associated with the low

socio-economic status of poor households in developing countries. This study investigates the impact

of a conditional cash transfer programme in Indonesia, the Program Keluarga Harapan (PKH), on the

marginal and joint distributions of child nutritional status and household expenditure 26-30 months after

its implementation. The cluster-randomised control trial project conducted in Indonesia provides an

opportunity to semi-parametrically estimate the causal impacts on the dependence between them. The

results show that the PKH increases the higher quantiles of weight-for-age z-score among children aged

between 25 and 36 months. Its improvement is explained not by the rise in household expenditure due

to the PKH but by the change in the association between nutritional status and household expenditure.

Furthermore, the PKH strengthens the positive association between nutritional status and household

expenditure. For the other younger age groups, a significant improvement in nutritional status is not

observed.

JEL code: I14, I15, I18, I38

Keywords: Conditional cash transfer; Malnutrition; Change-in-changes estimator; Copulas;

Indonesia
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3.1 Introduction

In developing countries, malnutrition is a substantial factor in the causes of death among children

aged under five. In fact, child malnutrition contributes to nearly half of all deaths in children

under five years of age, translating into the loss of approximately 3 million young lives every

year (UNICEF, 2017). Malnutrition accounts for 35 per cent of the burden of disease in children

under five (Black et al., 2008). It also impedes their sound human capital development beyond

the health domain (Hoddinott et al., 2013). The first few years of a child’s life are of enormous

importance for growth because vital development occurs in all areas in these very early stages, in-

cluding the development of the brain’s structural and functional capacity (Grantham-McGregor

et al., 2007). Mounting evidence has shown that health conditions in childhood have persistent

and continued effects on adult health, cognitive development, educational achievement and even

future income.1 Malnourished children may be at high risk of impaired health and function

throughout their lives (Martorell, 1995). As these conditions extend into adulthood and hence

the reproductive years, restricted development in childhood affects subsequent generations, per-

petuating an intergenerational vicious cycle of economic and health inequality (Black and Hurley,

2014; World Bank, 2006).

Numerous studies have revealed significant relationships between parental socio-economic status

(SES) and child health. Children in poorer households are often at a higher risk of experiencing

malnutrition (Case et al., 2002; Currie and Moretti, 2003; Currie and Vogl, 2013; Aizawa, 2019),

partly because they tend to live in dilapidated, poor and crowded houses with poor sanitary

conditions (Ahsan et al., 2017; Caulfield et al., 2004; Marmot, 1999) and with parents who of-

ten have limited educational backgrounds (Chen and Li, 2009; Currie and Moretti, 2003; Ahsan

and Maharaj, 2018; Appoh and Krekling, 2005). In contrast to adults, any health disparity

among children generally cannot be attributed to their own lifestyles for which they can be held

responsible. Clearly, children cannot choose their parents and they have no control over the

environment in which they grow up. In this sense, such health disparities among children may

well be considered inequitable.

Addressing child malnutrition is hugely important for both the resilient economic growth of

countries and for individuals because the economic costs attributable to child malnutrition are

1See for example Case and Paxson (2010); Strauss and Thomas (2007); Hoddinott et al. (2013) for a review.
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substantial. According to World Bank (2006), productivity loss due to malnutrition is estimated

to be more than 10 per cent of lifetime incomes. The Sustainable Development Goals, adopted

in 2015 by the United Nations, call for worldwide action to end all forms of malnutrition among

children under five years of age and to protect them from avoidable death (UNICEF, 2017).

Conditional cash transfer (CCT) programmes, which transfer money to households contingent

on investments in human capital, have been some of the most adopted initiatives in the last two

decades after the success of the CCT programmes in Mexico (Progresa, renamed Oportunidades

in 2001) and Brazil (Bolsa Escola) (Handa and Davis, 2006). To date, these CCT programmes

have been launched in several countries in Latin America, Africa and Asia.2 The primary ob-

jectives of the CCTs are to mitigate short-term poverty, assist long-term well-being through in-

vestments in human capital development and break the vicious cycle of intergenerational poverty.

CCTs are expected to improve the welfare of beneficiaries through two main mechanisms: cash

transfer and conditionality. Conditionality is considered to be the main driver of behavioural

change in beneficiaries. An unconditional cash transfer (UCT), which transfers cash without any

strings attached, may be theoretically preferable to CCTs under the assumption that individual

beneficiaries are rational and fully informed and that the market is functioning perfectly (Bassett,

2008). Nevertheless, imposing conditionality is justified in situations where myopic individuals

with incomplete information undervalue the long-term benefits of human capital development

and do not fully recognise the risk of child malnutrition. CCTs are designed to help poor house-

holds with high discount rates to make better decisions. Furthermore, in the presence of market

failure such as positive externalities, individually optimal levels of human capital investment may

be lower than socially optimal investment levels; child immunisation and household investment

in sanitary conditions are typical examples. In such cases, imposing conditionality can help them

attain a socially desirable and optimal level of human capital investment (Fiszbein et al., 2009;

Adato and Hoddinott, 2007).

The main objective of this study is to estimate the impacts of the CCT pilot programme in

Indonesia on the marginal and joint distributions of child nutritional status and household ex-

penditure. We take advantage of the randomised experimental design that was implemented

2For reviews of the CCT programmes, see Rawlings and Rubio (2005).
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for the purpose of evaluating the programme. We measure the impacts on their association by

simulating the hypothetical marginal and joint distribution of health and expenditure for the

treatment group in the absence of the treatment, which is achieved by the change-in-changes

(CIC) method with an additional identification assumption regarding a copula structure control-

ling the dependence between health and expenditure (Athey and Imbens, 2006; Cañón Salazar,

2016). Estimating the hypothetical joint distribution not only makes it possible to measure the

impact on the association between child health and household expenditure but also allows us to

explore the mechanism by which the CCT affects nutritional status. We estimate how much of

the treatment effect on health is due to the change in household expenditure. We decompose

the impact on the marginal distribution of health into the part that is attributable to the rise in

expenditure (expenditure effect) and the remaining part that cannot be explained by the change

in expenditure (behavioural effect) through a re-weighting decomposition approach (DiNardo

et al., 1996). This decomposition analysis helps us disentangle the pathways by which CCTs

influence a child’s nutritional status.

3.2 The conditional cash transfer programme in Indonesia

Despite rapid and strong economic growth in Indonesia, 87 million people still remain vulnerable

to food insecurity, and the country has the fifth highest number of stunted children in the world

(FAO, IFAD and WFP, 2015). In 2007, Indonesia introduced a pilot conditional cash transfer

programme called the PKH (Program Keluarga Harapan). This initiative is aimed at very poor

households in seven provinces that were chosen based on their willingness to participate and the

extent to which they represented the country’s diversity.3 Like other CCT programmes in Latin

America, the PKH is intended to improve the welfare of poor households by providing them

with a quarterly cash transfer in order to improve the health and educational outcomes of the

participating children (Table 3.1-A).

The PKH aims to mitigate household poverty in the short term while encouraging human capital

investment by enhancing school enrolment and improving the health conditions of children and

pregnant women in the long term. The provision of subsidies, in principle, is conditional on the

fulfilment of the following conditions (Table 3.1-B): in respect of pregnant women, they must

3The provinces selected were DKI Jakarta, West Java, East Java, West Sumatra, North Sulawesi, East Nusa
Tenggara and Gorontalo.
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take iron supplements and visit an office for postnatal care; with regard to children aged under

6 years, they must complete immunisation programmes and receive regular health check-ups;

and for children aged 6-15, they must achieve 85 per cent school attendance. Field facilitators

advise the beneficiary households to comply with the conditionalities, informing them of their

rights and obligations and monitoring eligibility. If these conditionalities are not complied with,

subsequent transfer payments are reduced and, after a series of warnings, the transfers cease

altogether.4

The PKH cash benefit is transferred directly to mothers only and the amount of the cash trans-

fer is around 12 per cent of the total expenditure of the beneficiary household (World Bank,

2012). Moreover, the amount of subsidy depends on the number of children in the household

as well as their age (Table 3.1-C), and it ranges from IDR 600,000 (approximately USD 65) to

IDR 2,200,000 (approximately USD 240) per year including the fixed base cash transfer.5 IDR

1,000,000 per year is provided to households with children aged under 6 or to those with pregnant

or lactating mothers. Households with a primary school student (aged 7-12) receive IDR 800,000

per year while IDR 1,000,000 per year is awarded to households with a secondary school student

(aged 13-15). The government limited the maximum transfer to IDR 2,200,000 regardless of the

number of children in the household. There are no specific rules as to how the transferred cash

must be used. As well as the cash transfer, the PKH beneficiaries can receive in-kind benefits.

They can use maternal and infant healthcare services at district hospitals, community health

centres (puskesmas), community health posts (posyandu) and village delivery posts (polindes)

without out-of-pocket expenditure in accordance with the applicable regulations to comply with

the conditionality.

3.3 Experimental evidence of impacts of CCTs on anthropomet-

ric and nutritional outcomes

Evidence of the causal impacts of CCTs on child anthropometric measures is extremely mixed

across countries (Manley et al., 2013; Hoddinott and Bassett, 2008). In contrast to healthcare

utilisation where the majority of CCTs show positive impacts, impacts on nutrition-related

measures are more sensitive to the timing of the impact measurement and the extent of the

4However, in practice, the verification system did not begin until at least 2010 (Cahyadi et al., 2018).
5The exchange rate as of 1 August 2007 is used for the currency conversion.
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treatment (Fiszbein et al., 2009; Leroy et al., 2009; Glassman et al., 2007). Moreover, significant

results tend to be observed only in some beneficiary subgroups (Lagarde et al., 2007). In this

section, we firstly review experimental evidence of the impacts of CCTs on child nutritional

outcomes in Latin America, where the various types of CCTs were designed, and we then review

the existing evidence in relation to the CCT in Indonesia. Programme details, major studies and

their impacts are summarised in Table 3.2.

3.3.1 Limited improvements in Honduras and Brazil

The CCTs in Honduras (Programa de Asignación Familiar) and Brazil (Bolsa Alimentação)

reveal no significant effect on child anthropometric outcomes (Morris et al., 2004; Hoddinott and

Bassett, 2008). The lack of impact on nutritional status in Honduras is in all likelihood due to

the small size of the transfer, which is less than 4 per cent of average beneficiary expenditure

and around 10 per cent of household consumption, and the infrequent distribution of the transfer

(IFPRI, 2003; Hoddinott and Bassett, 2008). In Brazil, where around 8 per cent of household

expenditure is transferred, a negative impact on the height-for-age z-score (HAZ score) for chil-

dren younger than 7 is even observed (Morris et al., 2004). Morris et al. (2004) attribute this

counterintuitive negative effect to beneficiaries perhaps misunderstanding the programme’s eligi-

bility criteria. Morris et al. (2004) argue that some beneficiaries may have had a misconception

that benefits would be discontinued if their child’s growth began to improve.

3.3.2 Significant improvements in Colombia, Mexico and Nicaragua

On the other hand, significant improvements in child nutritional outcomes have been found in

Colombia, Mexico and Nicaragua. The CCT programme in Colombia (Familias en Acción),

which transfers around 24 per cent of household expenditure, improved the HAZ score by 0.16

in respect of newborns and infants aged under 24 months (p < 0.10), translating into a 6.9 per-

centage point decrease in the probability of stunting (Attanasio et al., 2005). However, studies

do not show any impact on the nutritional status of children aged 24 months and older.

Positive impacts of the programme in Mexico (Progresa/Oportunidades) on child nutritional

status are reported by several studies (Behrman and Hoddinott, 2001; Leroy et al., 2008; Rivera

et al., 2004; Gertler, 2004; Behrman and Hoddinott, 2005; Hoddinott and Bassett, 2008). For

example, Gertler (2004) reports that children aged 12-36 months who were exposed to the pro-
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gramme for one year are taller than children from controlled areas by 0.96 cm (p < 0.01), but a

reduction in the likelihood of being stunted was not observed. Rivera et al. (2004) report an in-

crease in height by 1.1 cm (p < 0.05), after two years of exposure to the treatment, among infants

younger than 6 months at baseline living in the poorest households. Behrman and Hoddinott

(2005) also find similar results, reporting the increase in height by 1.02 cm (p < 0.10) among

children aged 12-36 months at baseline after a one-year exposure to the Progresa. The authors

argue that the main positive impact comes from the children aged 24-36 months who are given

nutritional supplements when they are underweight.6 The large transfer size, approximately

one-fifth of per capita household expenditure, and the provision of a nutritional supplement con-

tribute to the significant positive effect of Progresa/Oportunidades (World Bank, 2008; Handa

and Davis, 2006).

In Nicaragua, the CCT (Red de Protección Social) reduces the prevalence of being stunted and

underweight by 5.5 (p < 0.10) and 6.2 (p < 0.05) percentage points respectively (Maluccio and

Flores, 2005). This impressive improvement is attributed to the relatively large transfer, approx-

imately 18 per cent of average monthly household expenditure, and the programme’s wide range

of nutrition-related conditionality (Maluccio and Flores, 2005; Hoddinott and Bassett, 2008). On

the other hand, it does not lower the probability of being wasted, which is due to the very low

level of wasting at baseline (Maluccio and Flores, 2005).

Bassett (2008) argues that the size of the transfer appears to be critical in terms of nutritional

improvement. The successful CCT programmes in Mexico, Nicaragua and Colombia transfer

approximately 20 per cent of the average beneficiary expenditure, while in Honduras and Brazil,

where no significant improvement was found, the transfer is below 8 per cent of the average ben-

eficiary expenditure. Fernald et al. (2008) report that the larger transfer yields greater health

improvement in the case of Mexico. Bassett (2008) also points out that the successful CCT pro-

grammes have multiple nutrition-related conditionalities, including a micronutrient supplement

in Nicaragua and a nutritional supplement in Mexico, which could have brought about the even

larger impact on nutritional status.

6Progresa provided a nutritional supplement (called a papilla) to pregnant and lactating women, children aged
between 4 and 24 months, and children aged between 2 and 5 with any signs of malnutrition. The supplement
for children constituted 20 per cent of their daily caloric requirements and 100 per cent of their micronutrient
requirements (Rosado et al., 2000).
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3.3.3 Evidence in Indonesia

In Indonesia, while the PKH significantly improved the use of maternal and child healthcare ser-

vices (Alatas, 2011; Kusuma et al., 2017, 2016), the impacts of the PKH on nutritional status are

mixed, although they are not statistically significant; a positive impact of the PKH on the mean

weight-for-age z-score (WAZ) and a negative impact on the mean HAZ score have been reported

two years after the PKH was implemented (Alatas, 2011). Kusuma et al. (2017) estimate the

impact on children’s food consumption and nutritional outcomes. Regarding food consumption,

the authors find significant positive impacts of the PKH on the consumption of milk (p < 0.10)

and fish (p < 0.10). In respect of the nutritional outcome, they report that, for children aged

24-36 months at baseline in 2007, the PKH reduces the prevalence of wasting and severe wasting

by 6.3 percentage points (p < 0.05) and 3.7 percentage points (p < 0.10) respectively. However,

a reduction in the likelihood of being stunted is not observed (Kusuma et al., 2017).

Cahyadi et al. (2018) recently reported the continued effect on various outcomes by re-surveying

the households to measure the medium-run performance of the PKH. They show cumulative

effects on the prevalence of stunting six years after the PKH was implemented. In their six-year

follow-up survey, the prevalence of being stunted declined by approximately 9-11 percentage

points (p < 0.05) among children aged 0-60 months. On the other hand, no significant impact

was observed regarding the likelihood of being underweight. Cahyadi et al. (2018) highlight the

possible cumulative effect of the PKH on children’s height. This follow-up research suggests

that the period for which children are exposed to the treatment is also a significant factor of

nutritional improvement.

Our study’s main contributions to the literature are threefold. First, this study estimates the

treatment effect on the entire distribution of health outcomes and household expenditure, which

tends to be unexplored in the majority of empirical studies on CCTs. Certainly, estimating the

average treatment effect provides valuable information to policymakers, but a sole focus on the

average treatment effect could potentially miss important distributional effects that do not show

up as a change in means. A more thorough evaluation becomes possible by exploring the impacts

on the entire outcome distributions beyond their means. Second, this paper estimates the im-

pact of the PKH on the joint distribution of health outcomes and household expenditure, which

has not specifically been examined by the existing literature. CCT programmes are likely to,
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directly and indirectly, affect both nutritional status and households’ purchasing power through

the cash transfer and behavioural changes. Hence, they are likely to change the association

between health outcomes and household expenditure, as well as individual outcomes. Examin-

ing the impact on the joint distribution allows us to analyse whether the PKH strengthens or

weakens the association between household expenditure and health. Third, this paper aims to

disentangle the mechanism by which the PKH affects health outcomes by estimating how much

of the changes in health outcomes is driven solely by the change in the distribution of household

expenditure. This is achieved by decomposing the estimated effect on health into the part that

can be attributed to the change in household expenditure and the remaining part that cannot

be explained by it.

3.4 Data

3.4.1 Randomisation design of the PKH pilot programme

The pilot PKH programme was conducted in 2007 in six provinces7 within which the richest

20 per cent of districts were excluded. The selection of eligible sub-districts was based on

certain characteristics, including the prevalence of malnutrition, the poverty rate, school drop-

outs and the availability of health and education facilities. A total of 1,085 sub-districts that

were considered “supply-side ready” were randomly selected to participate in the programme.

As a result, 769 sub-districts were included in the treatment group and the remaining 316 sub-

districts were retained as control groups. Targeted households were those classified as extremely

poor by Statistics Indonesia using both economic and asset-based poverty measurements.8

3.4.2 Sample construction

A baseline household survey in the treatment and control sub-districts was conducted between

June and August 2007 by the National Planning Agency and the World Bank. It was designed

as a cluster-randomised control trial at sub-district level. Randomising over sub-districts (not

households or villages) captures the intra-sub-district spill-over effects, while eliminating any bias

from inter-sub-district spill-over effects. Ethical approval was not necessary because this study

7They are Jakarta, West Java, East Java, North Sulawesi, East Nusa Tenggara and Gorontalo.
8Under the definition supplied by Statistics Indonesia, a very poor household is one that has less-than-poverty-

line expenditure overall, spends a large proportion of its available income on basic staple foods, cannot afford
medical treatment (except at community health clinics or other subsidised or free public health facilities) and
cannot afford sufficient new or replacement clothing.
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utilises public data without identifiable private information.9

First, 180 treatment sub-districts and 180 control sub-districts were randomly selected. Both

treatment and control samples were stratified by urban and rural classification. Within each

selected sub-district, eight villages were then randomly selected. Per village, one ward was ran-

domly selected. Next, five households per ward were randomly selected based on PKH beneficia-

ries criteria (two households with pregnant/lactating women and three households with children

aged 6 to 15) (Figure 3.1). Eventually, 14,326 households consisting of 73,563 individuals were

interviewed in the baseline survey. The distributions of household characteristics are balanced

in the baseline survey (Sparrow et al., 2008). About 75 per cent of the survey households were

located in urban areas. The same households were interviewed again in the follow-up survey

conducted between October and December 2009, allowing us to construct fully balanced panel

data to evaluate the impact of the PKH approximately 26-30 months after its implementation.

3.4.3 Nutritional status

We measure child development by a weight-for-age z-score (WAZ score) and a height-for-age

z-score (HAZ score). These scores were calculated on the basis of actual measurements of the

heights and weights of the respondents. The WAZ/HAZ scores measure the difference between

the weight/height of an individual and the median value of the “healthy” reference population

for the same sex and age, divided by the standard deviation of the reference population.10 The

WAZ and HAZ scores are commonly used as measurements of the nutritional status of children

(Glewwe et al., 2001; Case and Paxson, 2010; Caulfield et al., 2004; Pelletier et al., 1993). The

WAZ score measures short-term nutritional conditions. A low WAZ score is associated with

the condition of being underweight. Meanwhile, the HAZ score measures long-term cumulative

nutritional conditions and a low HAZ score is associated with chronic under-nutrition caused by

poor food consumption (Walker et al., 2007). Low WAZ and HAZ scores are both caused by

poor diet and often compounded by recurrent infectious diseases. The risk of death increases

with descending WAZ and HAZ scores (Black et al., 2008). A WAZ score and a HAZ score below

−2 (i.e., two standard deviations below the international reference median) are defined as the

9We use the Impact Evaluation of PNPM Generasi Program data set provided by the World Bank.
10According to World Health Organization (2006), the reference population refers to healthy and well-nourished

children in the United States. This standard captures the growth and development process of children from widely
diverse, ethnic and cultural backgrounds (O’Donnell et al., 2008). Their rationales are discussed in de Onis and
Lobstein (2010).
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indicators of being underweight and stunted respectively, while scores below −3 are defined as

the indicators of being severely underweight and severely stunted respectively.

3.4.4 Household expenditure

As a measurement of household welfare or socio-economic status, we use the logarithm of house-

hold expenditure on non-food purchases and food consumption during the last 12 months of the

interview process.11 To reflect the difference in household compositions, the equivalent house-

hold expenditure is calculated using the Oxford scale12, which assigns a weight of 1.0 to the

first household member, 0.7 to each additional adult and 0.5 to each child, then calculating

the weighted average expenditure per household member.13 Certainly, a household’s food con-

sumption is directly related to a child’s nutritional status, but non-food purchases are equally

important to their health. For example, a household’s spending on child healthcare and invest-

ment in its sanitary conditions are essential elements of better child health. The spending on

non-food purchases and food consumption can reflect both the long-term and short-term living

standards of the household. Compared with income, household expenditure is less susceptible

to seasonal events such as drought, which is significant in the analysis of developing countries

where agriculture plays an important role.

3.5 Method

3.5.1 Notation

First, g ∈ {A,B} denotes the control and treatment groups and t ∈ {1, 2} denotes the time pe-

riod. The group g = B in period t = 2 is the only group that is exposed to the treatment. In the

first period (t = 1), both groups had no treatment. H and Y denote continuous health outcomes

and expenditure. Conditional health and expenditure in group g in period t are denoted by Hgt

11Specifically, non-food includes (a) housing and household facilities, (b) miscellaneous goods and services, (c)
educational costs, (d) health costs, (e) clothing, shoes and headwear, (f) durable goods and household equipment,
(g) taxes, (h) health insurances, and (i) feasts and rituals. Food consumption measures the monetary values of the
food consumed, and this includes not only food purchased but also that which the participants produce themselves
or receive from other sources. As the survey information on food consumption relates to just one week, the total
values are multiplied by 52 (weeks) to ensure consistency with the measurement of non-food purchases.

12Also known as the OECD equivalence scale.
13As robustness checks, we calculate the equivalent expenditure by the square root scale equivalisation methods,

which divide the total household expenditure by the squared family size, and the equivalent expenditure which
divides the total expenditure by family size. However, we did not find systematic differences in the final results
across the adjustment methods. This is mainly thanks to the successful stratified data collection across household
compositions in both the control and treatment groups. The t-test and the Kolmogorov-Smirnov test did not
indicate a significant difference in the household compositions between the control and treatment groups.
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and Ygt respectively. Hgt and Ygt have marginal distributions, FH,gt(h) and FY,gt(y), and their

supports are denoted by Hgt and Ygt.

Following Rubin (1974), we assume that each individual has two possible outcomes, namely

HI
gt ∈ HI

gt and Y I
gt ∈ YIgt in the presence of the treatment and HN

gt ∈ HN
gt and Y N

gt ∈ YNgt in the

absence of the treatment. We can only observe one of them for each person, but never both.

That is HI
gti and Y I

gti are observed only if g = B and t = 2, and HN
gti and Y N

gti are observed unless

g = B and t = 2.

Let FH,Y,gt be the bivariate joint distributions of (H,Y ) and let v(FH,Y,gt), v(FH,gt) and v(FY,gt)

denote the distributional summary statistics of interest. We define the treatment effects on

the joint distribution as τHY = v(F IH,Y,B2) − v(FNH,Y,B2) and on the marginal distributions as

τH = v(F IH,B2)−v(FNH,B2) and τY = v(F IY,B2)−v(FNY,B2). As we condition on whether the house-

hold resides in a treatment sub-district, not on the actual participation in the PKH programme,

in essence, the estimates reflect the intention-to-treat effect.

The fundamental identification problem with regard to the treatment impacts is that for any

individual in group g = B in time period t = 2, we cannot observe their potential outcomes in

the absence of the treatment, i.e. the outcome that a person in group g = B and time period

t = 2 would have experienced had he/she not been exposed to the treatment. The impossibility

of observing (HN
B2, Y

N
B2) prevents us from estimating v(FNH,Y,B2), v(FNH,B2) or v(FNY,B2), and hence

we cannot identify the treatment effects without further assumptions.

3.5.2 Estimation of the counterfactual distributions by change-in-changes es-

timators

The experimental study design gives us a reliable source of identification. Athey and Imbens

(2006) propose a non-linear difference-in-differences model, which is also known as the change-

in-changes model (CIC). The CIC does not rely on functional form assumptions and can non-

parametrically estimate the entire counterfactual distribution of the outcome for the treatment

group in the post-treatment period in the absence of the treatment, i.e. FNH,B2 and FNY,B2. Specif-

ically, the CIC non-parametrically estimates the change across time that happened in the control

group, and estimates the counterfactual distribution for the treatment group by assuming that
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the distribution in the treatment group would have experienced the same change without the

treatment. The CIC allows the effects of time and treatment to differ across individuals. Esti-

mation of the counterfactual distribution makes it possible to identify, in essence, the treatment

effect on any univariate functional of the outcome variable beyond its mean.

Suppose H and Y have the following general structures in the absence of the treatment:

HN = m(uH , t) (3.1)

Y N = n(uY , t), (3.2)

where m(.) and n(.) are unknown functions, and uH and uY denote the unobservable charac-

teristics of individuals for H and Y respectively. We assume uH and uY are not necessarily

independent. Equations (3.1) and (3.2) imply that the outcomes do not directly depend on the

group indicator and that all relevant unobservable characteristics in each outcome can be cap-

tured in a single index. We do not impose specific functional form assumptions.

With the CIC model, the full marginal distributions of HN
B2 and Y N

B2 are identified through

FNH,B2(h) = FNH,B1(F−1,N
H,A1 (FNH,A2(h))) (3.3)

FNY,B2(y) = FNY,B1(F−1,N
Y,A1 (FNY,A2(y))). (3.4)

Equations (3.3) and (3.4) imply that the counterfactual distribution in the absence of the treat-

ment can be identified from the observable distributions. Assumptions used to estimate them by

the CIC are described in section 3.A.1 in the Appendix. Equations (3.3) and (3.4) can be more

intuitively interpreted, if we take their inverse as follows:

F−1,N
H,B2 (α) = F−1,N

H,A2 (FNH,A1(F−1,N
H,B1 (α))) (3.5)

F−1,N
Y,B2 (α) = F−1,N

Y,A2 (FNY,A1(F−1,N
Y,B1 (α))). (3.6)

For example, equation (3.6) states that an individual at the αth quantile of the counterfactual

expenditure distribution in the treatment group (g = B) in the post-treatment period (t =

2) without the treatment would be at the FNY,A1(F−1,N
Y,B1 (α))th quantile point of the observable

distribution in the control group (g = A) in the post-treatment period (t = 2).
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3.5.3 Extension of the CIC for the bivariate joint distribution

An additional assumption regarding the joint distribution of unobservable characteristics enables

us to measure distributional effects with multiple treatment outcomes (Cañón Salazar, 2016).

We assume the invariance of dependence structure. Specifically, this assumes that within each

group, the dependence structure of (uH , uY ) is invariant across time, i.e. (uH , uY ) ⊥ t|g. This

assumption states that the dependence structure between uH and uY can systematically vary

across the groups, but not over time within groups. This, however, does not necessarily require

that individual i should have the same values (uHi , u
Y
i ) in each period, but rather this assumption

only requires that the dependence structure of (uH , uY ) is stable across time given the group.

This assumption, though not testable, is plausible when group composition does not change over

time. The immediate implication is that the dependence of (uHB1, u
Y
B1) is assumed to be identical

to that of (uHB2, u
Y
B2). More detailed explanations are provided in section 3.A.2 in the Appendix.

The counterfactual joint distribution in group B in period t = 2 in the absence of the treat-

ment is given by:

FNH,Y,B2(h, y) = FNH,Y,B1(F−1,N
H,A1 (FNH,A2(h)), F−1,N

Y,A1 (FNY,A2(y))). (3.7)

The identification of the counterfactual joint distribution leads to the identification of the treat-

ment impact on the joint distribution. In addition, this allows us to identify the counterfactual

conditional distribution of H given Y (Cañón Salazar, 2016). We subsequently make the most

of this property in disentangling the mechanism by which the PKH affects child health by de-

composing the impact on child health into two components (see section 3.5.5).

If the invariance of dependence structure assumption fails, we cannot identify the counterfactual

joint distribution in group B in period t = 2 in the absence of the treatment. However, it does

not prevent us from estimating the impacts on the marginal distributions of health outcome and

expenditure. Certainly, as the invariance of dependence structure assumption is the one relat-

ing to the hypothetical distribution of unobservable factors in the absence of the treatment, we

cannot test it from the available data. However we did not find strong evidence against its plausi-

bility. First, we did not find any large-scale natural disaster or epidemic shock between the time

of data collection which could threaten the assumption. Second, in this study, as we use fully
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balanced panel data, both groups did not experience structural changes in their within-group

compositions.

3.5.4 Copulas

Joint distribution and copulas

In general, joint distributions can be expressed by their marginal distributions and a copula

function. Copulas allow us to model dependence structures of variables from their marginal

distributions, and they have the property that a functional association between underlying vari-

ables is not influenced by their marginal behaviours (Nelsen, 2006; Trivedi and Zimmer, 2007).

In general, applying Sklar’s theorem, there exists a copula function, C(., .), such that

FH,Y (h, y) = C(FH(h), FY (y); θ), (3.8)

where θ ∈ Θ is a parameter vector. Various copulas are proposed in the statistical literature

(Nelsen, 2006; Gudendorf and Segers, 2010) and major parametric copulas are introduced in

section 3.A.3 in the Appendix. We employ a two-step maximum likelihood estimation to esti-

mate a copula function for the joint outcome distribution. This separates the estimation of the

marginals from that of the dependence parameter(s) and produces consistent estimates of the

dependence parameter(s) (Trivedi and Zimmer, 2007). The estimation procedure is explained in

section 3.A.4 in the Appendix.

Simulation from the estimated copula

We make pseudo-random draws with the conditional sampling method, using the estimated

copula function. In essence, the conditional sampling method generates the random samples

from the multivariate joint distribution using the following three steps. Let C(v1, v2) be a

bivariate copula. First, we draw v1 from the standard uniform distribution. Second, we set

v2 = ∂C(v1,v2)
∂v1

.14 The pair (v1, v2) are uniformly distributed variables from the copula function

14Every copula has its derivative (Nelsen, 2006). For any v2, the partial derivative ∂C(v1,v2)
∂v1

exists for almost all

v1. For such v1 and v2, the range of its derivative is 0 ≤ ∂C(v1,v2)
∂v1

≤ 1. Similarly, the partial derivative ∂C(v1,v2)
∂v2

exists for almost all v2.
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C(.) because the second step exploits the property of the derivative of copulas,

∂C(v1, v2)

∂v1
= lim

∆v1→0

C(v1 + ∆v1, v2)− C(v1, v2)

∆v1
(3.9)

= Pr[V2 ≤ v2|V1 ≤ v1]. (3.10)

Third, we generate the random variables H = F̂−1
H (v1) and Y = F̂−1

Y (v2). The outcomes (H,Y )

can be considered as a set of pseudo-random sampling from the joint distribution of (H,Y ). We

generate the set of (HN
B2, Y

N
B2) of which size is as large as the sample size of the treated groups

(g = B, t = 2), which allows us to calculate the distributional statistics of the counterfactual

marginal and joint distributions, i.e. v(FNH,B2), v(FNY,B2) and v(FNH,Y,B2).

3.5.5 Decomposition of the treatment effect on health

Estimating the counterfactual joint distribution allows us to quantify how much of the treatment

effect on the health distribution is contributed by the change in the distribution of household

expenditure. We decompose the treatment effect on the health distribution into two effects:

the expenditure effect and the behavioural effect. The expenditure effect is the part of the to-

tal effect attributable to the change in the expenditure distribution due to the treatment, and

the behavioural effect is the remaining part which is not attributable to the expenditure effect.

Hence, the behavioural effect captures the effect attributable to the changes in the association

between health and household expenditure, which is induced by the behavioural changes due to

the treatment. This decomposition exercise does not necessarily produce causal effects, but the

decomposition would help us explore the pathways by which CCTs affect child nutrition.

We decompose the total effect into the expenditure effect and the behavioural effect by adding

and subtracting counterfactual distributional statistics v(F INH,B2), as follows:

v(F IH,B2)− v(FNH,B2)︸ ︷︷ ︸
Total effect

= {v(F IH,B2)− v(F INH,B2)}︸ ︷︷ ︸
Expenditure effect

+ {v(F INH,B2)− v(FNH,B2)}︸ ︷︷ ︸
Behavioural effect

. (3.11)

The distribution F INH,B2 is a counterfactual health distribution of group B in the post-treatment

period, which is composed of the conditional distribution of H with the treatment and the

marginal distribution of Y without the treatment. In other words, F INH,B2 is the health distribution

with the treatment in a situation where no one changed their expenditure patterns even in the
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presence of the treatment. Formally, applying the law of iterated expectation, F IH,B2, FNH,B2, and

F INH,B2 are expressed by

F IH,B2 =

∫
Y
F IH|Y,B2(h)dF IY,B2(y) (3.12)

FNH,B2 =

∫
Y
FNH|Y,B2(h)dFNY,B2(y) (3.13)

F INH,B2 =

∫
Y
F IH|Y,B2(h)dFNY,B2(y). (3.14)

The expenditure effect in equation (3.11) captures the effect on the health distribution due to

the difference in the marginal expenditure distribution, i.e. the difference between F IY,B2 and

FNY,B2. The behavioural effect, which reflects the difference in the conditional distribution of

health given expenditure, i.e. the difference between F IH|Y,B2 and FNH|Y,B2, measures the effects

on health that are attributable to the change in the association between H and Y due to the

treatment.

To estimate the expenditure and behavioural effects, we need to estimate the counterfactual

health distribution, F INH,B2. This counterfactual health distribution can be estimated by employ-

ing the re-weighting decomposition approach (DiNardo, Fortin, and Lemieux, 1996) (hereafter

denoted as “DFL weighting”). In essence, we replace the marginal distribution of Y I
B2 with

the marginal distribution of Y N
B2, using the DFL weighting factor to produce the counterfactual

distribution as follows:

F INH,B2 =

∫
Y
F IH|Y,B2(h)dFNY,B2(y)

=

∫
Y
F IH|Y,B2(h)Ψ(Y )dF IY,B2(y), (3.15)

where Ψ(Y ) =
dFNY,B2

dF IY,B2
in equation (3.15) is the DFL weighting factor. Intuitively, the weighting

factor re-weights the entire treated observations so that they would have the health outcome

distribution that would be realised under the marginal expenditure distribution without the

treatment.

For the implementation of the decomposition, we need to estimate the DFL weighting factor,

115



which can be done from the observed and simulated data:

Ψ(Y ) =
dFNY,B2(y)

dF IY,B2(y)
=
f(Y |g = B, t = 2, N)

f(Y |g = B, t = 2, I)
=
Pr(Y |g = B, t = 2, N)

Pr(Y |g = B, t = 2, I)

=
Pr(Y, g = B, t = 2, N)/Pr(g = B, t = 2, N)

Pr(Y, g = B, t = 2, I)/Pr(g = B, t = 2, I)

=
Pr(N |g = B, t = 2, Y )Pr(g = B, t = 2, Y )/Pr(g = B, t = 2, N)

Pr(I|g = B, t = 2, Y )Pr(g = B, t = 2, Y )/Pr(g = B, t = 2, I)

=
Pr(N |g = B, t = 2, Y )Pr(g = B, t = 2, I)

Pr(I|g = B, t = 2, Y )Pr(g = B, t = 2, N)

=
Pr(N |g = B, t = 2, Y )Pr(I|g = B, t = 2)Pr(g = B, t = 2)

Pr(I|g = B, t = 2, Y )Pr(N |g = B, t = 2)Pr(g = B, t = 2)

=
{1− Pr(I|g = B, t = 2, Y )}Pr(I|g = B, t = 2)

Pr(I|g = B, t = 2, Y )Pr(N |g = B, t = 2)
, (3.16)

where Pr(I|g = B, t = 2, Y ) is the probability of getting the treatment in group B in period 2,

given the covariate Y , and it is estimated by the logit model. The ratio Pr(I|g=B,t=2)
Pr(N |g=B,t=2) becomes

one because the identical numbers of untreated samples and treated samples are simulated with

the conditional sampling method (see section 3.5.4).

The DFL weighting is based on the assumption that the support of Y N
B2 is in support of Y I

B2,

i.e. YNB2 ∈ YIB2. This common support assumption requires the overlap in the expenditure

distributions in group B, in the sense that there is no such value of Y that is observed only in

the absence of the treatment. Although the validity of this common support assumption cannot

be tested from the observed distributions, given that the PKH is a cash transfer programme,

it is unlikely that the upper support of Y N
B2 exceeds that of Y I

B2. The failure of the common

support assumption prevents us from estimating the counterfactual health distribution with the

re-weighting factor, because such a situation makes the propensity score zero or one. Intuitively,

if the propensity score is close to zero or one, observations will get close to zero or an extremely

high weight in estimates of the contractual distribution with the DFL re-weighting approach, po-

tentially leading to an imprecise estimation. We deal with the potential lack of common support

by trimming the samples outside the top 0.1 per cent and bottom 0.1 per cent of the propensity

score (Crump et al., 2009).

3.5.6 Entropy balance weighting

Despite randomisation, pre-treatment differences across groups are expected to be present, and

controlling for the pre-treatment characteristics can increase statistical precision and help the

116



identification assumptions to be satisfied (Abadie and Imbens, 2011; Abadie, 2005). We balance

the distributions of these pre-treatment variables with entropy balance weighting proposed by

Hainmueller (2012), which non-parametrically assigns weights such that the covariate distribu-

tions in the weighted data satisfy a set of moment conditions set by a researcher. Specifically,

weights are assigned to the control group so that the moments of the weighted covariate distribu-

tions in the control group match those in the treatment group. Balancing the higher moments of

the covariate distributions can further enhance the credibility of the treatment effect estimation.

The algorithm of the entropy balance weighting is provided in section 3.A.5 in the Appendix.

3.6 Results

3.6.1 Sample selection

The original sample size for children aged below 36 months who construct fully balanced panel

data is 7,090 observations.15 Then, 56 observations are dropped because they do not have com-

plete information about pre-treatment individual-, household- and village-level characteristics in

either the baseline or follow-up surveys. The Kolmogorov-Smirnov test does not indicate system-

atic differences in the distribution of HAZ score, WAZ score and household expenditure between

the dropped samples and the remaining samples, implying that dropping the observations with

missing information about pre-treatment characteristics is not likely to produce severe selection

bias. Following the previous studies in Mexico (Behrman and Hoddinott, 2005), we implement

an analysis across three age groups in the baseline: (1) 0-12 months; (2) 13-24 months; and (3)

25-36 months. Since the constructed data is fully balanced panel data, the structures of each

age group are consistent across periods, which helps identification assumptions to be satisfied.

The sample sizes of each age group are 3,020, 2,738 and 1,276 respectively.16

3.6.2 Entropy balance weighting

First, we balance the distribution of pre-treatment individual-, household- and village-level char-

acteristics for each age group by the entropy balance weighting. Specifically, as individual-

15From the initial 11,938 observations, 4,848 observations are dropped because they do not have complete
nutritional status and/or household expenditure information in either the baseline or follow-up surveys. However,
the Kolmogorov-Smirnov test fails to reject the equality in the distribution of the household- and village-level
characteristics between the dropped samples and the included samples, implying that the missing information is
random.

16As the height and weight were measured among children aged under five, children aged 25-36 months in the
baseline have fewer samples in the follow-up survey, compared with children aged 0-12 months and 13-24 months.
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and household-level characteristics, we balance the distribution of sex, residential location (ur-

ban/rural) and family size. As village-level characteristics, we balance the distribution of pop-

ulation size (divided by 1,000), ratio of farmers, Islamic population ratio, and the existence of

community health centres (puskesmas), community health facilities, birth attendants, private

clinics, government hospitals, private hospitals and drug stores. Their distributions are balanced

up to their second moments. The covariate distributions before and after the balancing are

provided in Table 3.3.

3.6.3 Copula selection of the joint distribution of health and expenditure of

the treatment group

Copula selection results are shown in Table 3.4, which presents the maximised log-likelihood val-

ues, Akaike information criteria (AIC) and Bayesian information criteria (BIC) of the maximum-

likelihood estimations. We observe the failure of convergence for some copulas, which could be

an indication of inconsistency between the data properties and the copula restriction on the

dependence parameter (Trivedi and Zimmer, 2007). For the joint distribution of the WAZ score

and expenditure, the Gaussian copula, the Student-t copula and the FGM copula show the high-

est likelihoods and the lowest AIC and BIC for children aged 0-12 months, children aged 13-24

months and children 25-36 months respectively. In the estimations of the joint distribution of

HAZ score and expenditure, the Student t copula shows the highest likelihoods and the lowest

AIC and BIC among children aged 0-12 months. The Placket copula shows the highest likeli-

hoods and the lowest AIC and BIC for children aged 13-24 months. For children aged 25-36

months, the FGM copula shows the highest likelihoods and the lowest AIC and BIC. These

selected copulas are used to simulate the counterfactual distributions of health and expenditure.

3.6.4 Impacts on the marginal distributions of WAZ score, HAZ score and

expenditure

Figure 3.2 shows the estimated cumulative distribution functions of WAZ score, HAZ score and

the household expenditure of the control group (g = A) and the treatment group (g = B) in the

post-treatment period (t = 2). In addition, Figure 3.2 illustrates the estimated counterfactual

cumulative distribution functions of the treatment group if they had not been treated. The

horizontal difference between the distribution of the treatment group and the counterfactual dis-
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Table 3.4: Copula estimation
Copula WAZ score and expenditure HAZ score and expenditure

Log likelihood AIC BIC Log likelihood AIC BIC
Age 0-12 months

Clayton NA NA NA NA NA NA
Frank 0.828 0.344 −1.656 0.004 1.992 −0.008
Gumbel 0.127 1.747 −0.253 0.086 1.827 −0.173
AMH 0.854 0.291 −1.709 0.004 1.992 −0.008
Joe 0.000 2.000 0.000 0.130 1.740 −0.260
Gaussian 1.025 −0.051 −2.051 0.013 1.974 −0.026
Student-t 0.911 0.178 −1.822 0.503 0.994 −1.006
FGM 0.872 0.256 −1.744 0.004 1.992 −0.008
Plackett 0.807 0.387 −1.613 0.004 1.992 −0.008
Galambos 0.338 1.324 −0.676 0.309 1.382 −0.618
Husler Reiss 0.383 1.234 −0.766 0.328 1.343 −0.657
Tawn 0.018 1.963 −0.037 NA NA NA

Age 13-24 months
Clayton 3.009 −4.018 −6.018 NA NA NA
Frank 1.257 −0.513 −2.513 2.326 −2.651 −4.651
Gumbel 1.549 −1.098 −3.098 0.764 0.472 −1.528
AMH 1.338 −0.677 −2.677 2.315 −2.630 −4.630
Joe 0.972 0.057 −1.943 0.142 1.716 −0.284
Gaussian 1.507 −1.015 −3.015 2.242 −2.484 −4.484
Student-t 3.899 −5.799 −7.799 2.091 −2.183 −4.183
FGM 1.165 −0.330 −2.330 2.312 −2.625 −4.625
Plackett 1.306 −0.613 −2.613 2.331 −2.663 −4.663
Galambos 0.934 0.132 −1.868 0.666 0.668 −1.332
Husler Reiss 0.802 0.396 −1.604 0.659 0.682 −1.318
Tawn 1.926 −1.852 −3.852 0.830 0.341 −1.659

Age 25-36 months
Clayton 0.540 0.921 −1.079 NA NA NA
Frank 0.764 0.473 −1.527 0.109 1.782 −0.218
Gumbel 0.000 2.000 0.000 0.000 2.000 0.000
AMH 0.742 0.517 −1.483 0.108 1.783 −0.217
Joe 0.000 2.000 0.000 0.000 2.000 0.000
Gaussian 0.760 0.481 −1.519 0.090 1.821 −0.179
Student-t 0.708 0.584 −1.416 0.050 1.900 −0.100
FGM 0.819 0.362 −1.638 0.113 1.775 −0.225
Plackett 0.739 0.523 −1.477 0.108 1.785 −0.215
Galambos NA NA NA 0.012 1.975 −0.025
Husler Reiss NA NA NA 0.019 1.963 −0.037
Tawn NA NA NA NA NA NA

Note: NA means that a likelihood function did not converge. AIC: Akaike information criteria. BIC:
Bayesian information criteria.
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tribution corresponds to the quantile treatment effect. The non-parametric Kolmogorov-Smirnov

test rejects the equality of the distributions (p < 0.01), but stochastic dominance of the distri-

butions of the treatment group over the counterfactual distributions is not observed in all cases.

Table 3.5 reports the impacts of the PKH programme on the mean and deciles of each outcome

distribution. Associated standard errors are obtained by bootstrap with 500 repetitions. First,

on the distribution of the WAZ score, the impact of the PKH is mixed across the age groups.

For children aged 0-12 months, increases in the WAZ score are observed in the middle and higher

percentiles of the distribution, but we did not find significant increases. For children aged 13-24

months, the impact on the WAZ score distribution shows positive signs, but it is not statistically

significant except on the 40th percentile (p < 0.10). For children aged 25-36 months, we find

a significant large positive impact on the mean (p < 0.10), the 80th (p < 0.01) and the 90th

(p < 0.05) percentiles of the distribution.

The result for children aged 25-36 months shows that the significant improvement is not observed

uniformly across the distribution. At the lower percentile of the distribution, the significant in-

crease is not found, thereby suggesting that the PKH did not work effectively among those who

most need the intervention. The null of the improvement in the lower percentile of the dis-

tribution would indicate the importance of re-designing the CCT programme with appropriate

conditionality so that the benefits would effectively reach the neediest.

Another interesting finding is that children aged 0-12 months and children aged 13-24 months

show little improvement in health. The most plausible explanation for this is that these children

are too young to get the benefit of the programme. In Indonesia, breastfeeding was almost uni-

versal with over 96 per cent of children in the country being breastfed (Beatty et al., 2017; World

Health Organization, 2010). Continued breastfeeding at least until age two is recommended in

Indonesia and the exclusive breastfeeding rate is higher among poorer mothers (Beatty et al.,

2017). Children aged 0-24 months who grew mainly through breastfeeding may have enjoyed

little benefit from the PKH.

Next, on the distribution of the HAZ score, the treatment effect on the mean and deciles of

the distribution is insignificant among all three age groups. This could be attributable to the

relatively short evaluation period, as argued by Cahyadi et al. (2018). In contrast to the WAZ
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Figure 3.2: HAZ score, WAZ score and expenditure distributions in the post-treatment period
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score, the improvement in the HAZ score requires exposure to the programme over a sustained

period of time (UNICEF, 2013; Strauss and Thomas, 1998; Waterlow et al., 1977). The distribu-

tional impacts in the medium and long term with the follow-up surveys would be worth exploring

and this would complement the findings made by Cahyadi et al. (2018).17 However, note that

treatment exposure duration in this study, i.e. for 26-30 months, is not necessarily shorter than

other experimental studies in Latin America (see Table 3.2).

Lastly, on the distribution of household expenditure, the significant positive impact is observed

on the 90th percentile of the distribution among children aged below 12 months (p < 0.10) and on

the 80th (p < 0.05) and 90th (p < 0.10) percentiles among children aged 13-24 months. Among

children aged 25-36 months, we do not observe the significant increase in household expenditure.

Table 3.5 also shows the treatment impact on the prevalence of malnutrition. A decline in

the prevalence of being underweight (WAZ < −2) is observed across all three age groups, but

it is statistically insignificant. For the prevalence of being stunted (HAZ < −2), we observe

an increase among children aged 13-24 months and children aged 25-36 months, and a decrease

among children aged below 12 months, although these changes are not statistically significant.

3.6.5 Decomposition of the treatment effect on health

Then, we decompose the treatment effect on the distribution of nutritional status in order to

estimate how much of the treatment effect is attributable to the change in the household ex-

penditure due to the PKH (equation (3.11)). Table 3.6 and Table 3.7 report the expenditure

and behavioural effects of the PKH on the marginal distributions of WAZ and HAZ scores. We

find that much larger proportions of the total effects are contributed by the behavioural effect,

which implies that the PKH impacts the marginal health distribution by directly affecting health

rather than influencing it through the change in household expenditure.

One likely explanation for the behavioural change is the knowledge transfer from healthcare

providers to beneficiary mothers through the conditionality. Previous studies in Indonesia showed

that the PKH increased healthcare use among mothers and children; for example, prenatal care,

institutional delivery, postnatal care, immunisations of children and growth-monitoring check-ups

17As of August 2019, the six-year follow-up survey data was not yet publicly available. Once the data becomes
available to the public, estimating the long-term effects would complement the findings of this study.
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Table 3.5: Treatment effect on the WAZ score, HAZ score and expenditure
WAZ score HAZ score Expenditure

Estimates SEs Estimates SEs Estimates SEs

Age 0-12 months
Mean 0.063 0.111 -0.072 0.188 0.011 0.035
10th percentile -0.092 0.135 -0.212 0.219 -0.074 0.065
20th percentile -0.030 0.113 -0.078 0.160 -0.046 0.045
30th percentile 0.067 0.107 0.091 0.190 -0.032 0.045
40th percentile 0.096 0.099 0.041 0.166 -0.030 0.042
50th percentile 0.136 0.106 0.153 0.182 -0.049 0.037
60th percentile 0.063 0.101 0.018 0.207 -0.030 0.042
70th percentile 0.104 0.140 -0.015 0.244 0.037 0.051
80th percentile 0.160 0.199 0.048 0.310 0.083 0.058
90th percentile 0.072 0.219 -0.066 0.527 0.124* 0.065
Undernutrition -0.029 0.045 -0.021 0.048
Severe undernutrition 0.009 0.024 -0.017 0.041

Age 13-24 months
Mean 0.144 0.105 0.047 0.164 0.014 0.038
10th percentile 0.200 0.138 0.089 0.305 -0.031 0.058
20th percentile 0.129 0.150 0.039 0.163 -0.003 0.051
30th percentile 0.188 0.119 -0.087 0.154 -0.055 0.058
40th percentile 0.180* 0.107 -0.059 0.159 -0.054 0.050
50th percentile 0.131 0.098 -0.073 0.175 -0.039 0.036
60th percentile 0.119 0.104 -0.039 0.153 -0.003 0.043
70th percentile 0.037 0.149 0.065 0.168 0.052 0.056
80th percentile 0.071 0.161 0.070 0.191 0.123** 0.056
90th percentile 0.084 0.236 0.277 0.335 0.125* 0.068
Undernutrition -0.071 0.044 0.020 0.051
Severe undernutrition -0.036 0.024 0.012 0.035

Age 25-36 months
Mean 0.232* 0.128 -0.137 0.222 0.033 0.054
10th percentile 0.048 0.216 -0.140 0.327 -0.004 0.092
20th percentile 0.152 0.161 -0.214 0.231 -0.036 0.092
30th percentile 0.074 0.169 -0.050 0.209 0.011 0.061
40th percentile 0.119 0.135 -0.108 0.200 0.041 0.066
50th percentile 0.127 0.132 -0.073 0.176 0.013 0.061
60th percentile 0.121 0.134 -0.171 0.172 0.047 0.064
70th percentile 0.222 0.137 -0.095 0.213 0.103 0.072
80th percentile 0.466*** 0.193 0.010 0.229 0.136 0.087
90th percentile 0.483** 0.236 -0.121 0.774 0.131 0.094
Undernutrition -0.034 0.055 0.028 0.056
Severe undernutrition 0.000 0.032 0.043 0.055

Note: Standard errors (SEs) are obtained by bootstrap with 500 repetitions.
Sample sizes of each age group are 3,020, 2,738 and 1,276 respectively.
Pre-treatment characteristics are balanced with entropy balance weighting.
Undernutrition is the condition of z-score being below -2.
Severe undernutrition is the condition of z-score being below -3.
* p < 0.10, ** p < 0.05, *** p < 0.01
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all saw significant increases (Alatas, 2011; Kusuma et al., 2017). The improvement of health-

related knowledge as a result of more frequent health clinic visits and interactions with health

professionals due to conditionality contributes to the improved WAZ score. Furthermore, pre-

vious studies also showed that the PKH changed the composition of household expenditure.

Beneficiary households increased the proportion of health expenditure to total expenditure by

two percentage points by lowering the proportions of other expenditure (Alatas, 2011). The in-

creased healthcare utilisation and the re-orientation towards higher healthcare use suggest that

the PKH enhanced the “health literacy” among beneficiaries.

3.6.6 Treatment effect on the dependence measurements

Next, we look at the treatment effect on the dependence between nutritional status and household

expenditure. The most well-known dependence concept is the Pearson correlation coefficient,

which measures linear dependence.18 We also use rank correlations as alternative measurements

of dependence; in this paper we use Spearman’s rho and Kendall’s tau.19 Both rank correlation

measurements do not depend on the functional forms of the marginal distributions (Trivedi and

Zimmer, 2007). The degree of dependence, measured by correlation coefficients, allows us to

quantify the change in dependence and the change in copula functions made by the treatment.

The difference in the dependence measurements in the presence of the treatment and those in

the absence of the treatment gives the effect of the PKH on the dependence measurements.

Table 3.8 reports the effects on the dependence measurements between expenditure and the

WAZ score and those between expenditure and the HAZ score. Without the treatment, the

dependence measurement indicates either statistically null dependence or positive dependences.

A positive dependence implies concordance between expenditure and HAZ/WAZ score; that is,

large values of household expenditure are associated with the large value of WAZ/HAZ score.

We observe that the PKH significantly increases the degrees of dependence, measured by the

three measurements, between expenditure and WAZ score among children aged 25-36 months

(p < 0.05). On the dependence between household expenditure and HAZ score, the PKH does

not show significant effects for all three age groups.

18Formerly known as the Pearson product-moment correlation coefficient.
19They are defined by ρs(H,Y ) = ρ(FH(h), FY (y)) and ρτ (H,Y ) = Pr{(h1 − h2)(y1 − y2) > 0} − Pr{(h1 −

h2)(y1−y2) < 0}, where ρ(., .) is a linear correlation coefficient and (h1, y1) and (h2, y2) are two independent pairs
of random variables from FH,Y .
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Table 3.6: Decomposition of the treatment effect on the WAZ score
WAZ score Total effect Expenditure effect Behavioural effect

Estimates SEs Estimates SEs Estimates SEs

Age 0-12 months
Mean 0.063 0.111 0.000 0.006 0.063 0.111
10th percentile -0.092 0.135 0.000 0.008 -0.092 0.136
20th percentile -0.030 0.113 0.000 0.013 -0.030 0.114
30th percentile 0.067 0.107 0.000 0.010 0.067 0.109
40th percentile 0.096 0.099 0.000 0.007 0.096 0.100
50th percentile 0.136 0.106 0.000 0.008 0.136 0.106
60th percentile 0.063 0.101 0.000 0.010 0.063 0.100
70th percentile 0.104 0.140 -0.005 0.010 0.109 0.141
80th percentile 0.160 0.199 -0.010 0.010 0.170 0.202
90th percentile 0.072 0.219 0.000 0.014 0.072 0.219

Age 13-24 months
Mean 0.144 0.105 0.000 0.008 0.144 0.105
10th percentile 0.200 0.138 0.000 0.018 0.200 0.138
20th percentile 0.129 0.150 0.000 0.021 0.129 0.150
30th percentile 0.188 0.119 0.000 0.012 0.188 0.121
40th percentile 0.180* 0.107 0.000 0.008 0.180* 0.108
50th percentile 0.131 0.098 0.000 0.007 0.131 0.098
60th percentile 0.119 0.104 0.000 0.010 0.120 0.104
70th percentile 0.037 0.149 0.000 0.009 0.037 0.150
80th percentile 0.071 0.161 0.000 0.015 0.071 0.161
90th percentile 0.084 0.236 -0.010 0.015 0.094 0.235

Age 25-36 months
Mean 0.232* 0.128 0.011 0.030 0.222* 0.129
10th percentile 0.048 0.216 0.000 0.037 0.048 0.220
20th percentile 0.152 0.161 0.004 0.044 0.148 0.160
30th percentile 0.074 0.169 0.001 0.036 0.072 0.163
40th percentile 0.119 0.135 0.015 0.029 0.104 0.134
50th percentile 0.127 0.132 0.020 0.028 0.107 0.127
60th percentile 0.121 0.134 0.010 0.030 0.111 0.135
70th percentile 0.222 0.137 0.015 0.031 0.207 0.136
80th percentile 0.466*** 0.193 0.001 0.044 0.465*** 0.195
90th percentile 0.483** 0.236 -0.002 0.062 0.484** 0.233

Note: Standard errors (SEs) are obtained by bootstrap with 500 repetitions.
Sample sizes of each age group are 3,020, 2,738 and 1,276 respectively.
Pre-treatment characteristics are balanced with entropy balance weighting.
v(F IH,B2)− v(FNH,B2)︸ ︷︷ ︸

Total effect

= {v(F IH,B2)− v(F INH,B2)}︸ ︷︷ ︸
Expenditure effect

+ {v(F INH,B2)− v(FNH,B2)}︸ ︷︷ ︸
Behavioural effect

.

* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3.7: Decomposition of the treatment effect on the HAZ score
HAZ score Total effect Expenditure effect Behavioural effect

Estimates SEs Estimates SEs Estimates SEs

Age 0-12 months
Mean -0.072 0.188 0.001 0.011 -0.072 0.190
10th percentile -0.212 0.219 0.000 0.012 -0.212 0.221
20th percentile -0.078 0.160 0.000 0.021 -0.078 0.160
30th percentile 0.091 0.190 0.000 0.010 0.091 0.192
40th percentile 0.041 0.166 0.000 0.012 0.041 0.169
50th percentile 0.153 0.182 0.000 0.011 0.153 0.183
60th percentile 0.018 0.207 0.000 0.010 0.018 0.207
70th percentile -0.015 0.244 0.000 0.018 -0.015 0.246
80th percentile 0.048 0.310 -0.010 0.019 0.058 0.312
90th percentile -0.066 0.527 -0.001 0.029 -0.065 0.530

Age 13-24 months
Mean 0.047 0.164 0.001 0.010 0.046 0.164
10th percentile 0.089 0.305 0.000 0.008 0.089 0.305
20th percentile 0.039 0.163 0.000 0.013 0.039 0.162
30th percentile -0.087 0.154 0.000 0.010 -0.086 0.153
40th percentile -0.059 0.159 0.000 0.008 -0.059 0.160
50th percentile -0.073 0.175 0.000 0.015 -0.073 0.176
60th percentile -0.039 0.153 0.000 0.015 -0.039 0.156
70th percentile 0.065 0.168 0.000 0.012 0.065 0.170
80th percentile 0.070 0.191 0.000 0.009 0.070 0.192
90th percentile 0.277 0.335 -0.001 0.009 0.278 0.337

Age 25-36 months
Mean -0.137 0.222 0.013 0.033 -0.150 0.218
10th percentile -0.140 0.327 -0.001 0.037 -0.139 0.319
20th percentile -0.214 0.231 0.000 0.048 -0.213 0.226
30th percentile -0.050 0.209 0.009 0.033 -0.060 0.204
40th percentile -0.108 0.200 0.008 0.036 -0.116 0.201
50th percentile -0.073 0.176 0.009 0.038 -0.082 0.174
60th percentile -0.171 0.172 0.000 0.031 -0.171 0.170
70th percentile -0.095 0.213 0.002 0.038 -0.097 0.214
80th percentile 0.010 0.229 0.016 0.050 -0.006 0.226
90th percentile -0.121 0.774 -0.003 0.053 -0.118 0.773

Note: Standard errors (SEs) are obtained by bootstrap with 500 repetitions.
Sample sizes of each age group are 3,020, 2,738 and 1,276 respectively.
Pre-treatment characteristics are balanced with entropy balance weighting.
v(F IH,B2)− v(FNH,B2)︸ ︷︷ ︸

Total effect

= {v(F IH,B2)− v(F INH,B2)}︸ ︷︷ ︸
Expenditure effect

+ {v(F INH,B2)− v(FNH,B2)}︸ ︷︷ ︸
Behavioural effect

.

* p < 0.10, ** p < 0.05, *** p < 0.01.

127



Table 3.8: Treatment effect on the dependence measurements between expenditure and nutri-
tional status
WAZ score With treatment Without treatment Treatment effect

Estimates SEs Estimates SEs Estimates SEs

Age 0-12 months
Pearson’s correlation -0.002 0.057 0.071 0.047 -0.073 0.075
Kendall’s tau -0.004 0.042 0.047 0.037 -0.051 0.057
Spearman’s rho -0.007 0.063 0.071 0.054 -0.077 0.085

Age 13-24 months
Pearson’s correlation 0.008 0.053 0.060 0.064 -0.052 0.094
Kendall’s tau 0.022 0.034 0.043 0.039 -0.021 0.057
Spearman’s rho 0.032 0.051 0.063 0.057 -0.031 0.086

Age 25-36 months
Pearson’s correlation 0.114 0.071 -0.100 0.069 0.214** 0.107
Kendall’s tau 0.098** 0.045 -0.065 0.047 0.163** 0.074
Spearman’s rho 0.146** 0.068 -0.098 0.071 0.243** 0.112

HAZ score With treatment Without treatment Treatment effect
Estimates SEs Estimates SEs Estimates SEs

Age 0-12 months
Pearson’s correlation 0.017 0.064 0.011 0.061 0.006 0.087
Kendall’s tau 0.007 0.037 0.012 0.042 -0.005 0.056
Spearman’s rho 0.010 0.056 0.018 0.062 -0.008 0.082

Age 13-24 months
Pearson’s correlation 0.016 0.048 0.127*** 0.050 -0.110 0.082
Kendall’s tau 0.012 0.030 0.086*** 0.036 -0.074 0.052
Spearman’s rho 0.017 0.044 0.131*** 0.053 -0.114 0.077

Age 25-36 months
Pearson’s correlation 0.101 0.065 -0.009 0.062 0.109 0.086
Kendall’s tau 0.062 0.039 0.001 0.042 0.061 0.055
Spearman’s rho 0.097* 0.058 0.002 0.064 0.096 0.082

Note: Standard errors (SEs) are obtained by bootstrap with 500 repetitions.
Sample sizes of each age group are 3,020, 2,738 and 1,276 respectively.
Pre-treatment characteristics are balanced with entropy balance weighting.
* p < 0.10, ** p < 0.05, *** p < 0.01

The increase in the dependence among children aged 25-36 months is consistent with the in-

crease in their WAZ score. Given that the change in the marginal distribution of expenditure is

not statistically significant among this age group, the increase in the dependence between WAZ

score and expenditure suggests that the PKH improves the WAZ score of children in relatively

better-off households among the beneficiaries. Again, this implies the PKH does not necessarily

reach the children who most need the intervention. Improving the nutritional outcomes of chil-

dren in the poorest households is essential to achieve the ultimate goal of the CCT programme.
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3.7 Discussion and conclusion

Numerous research papers have suggested that malnutrition during the early stages of life has irre-

versible adverse impacts on the development of both cognitive and non-cognitive skills (Sánchez,

2017; Walker et al., 2011; Grantham-McGregor et al., 2007), motor development, educational

outcome (Glewwe et al., 2001) and future earnings (Smith, 2009; Johnson and Schoeni, 2011).20

Despite the country’s strong economic growth, the child malnutrition rate in Indonesia remains

high. The PKH was introduced in 2007 with the intention of improving the welfare of poor

households. Like other CCT programmes across the world, the PKH aims to change health-

related behaviours through cash transfers and multiple conditionalities.

The PKH is expected to improve child nutritional status by cash transfer and through the

associated conditionalities. As a lack of household purchasing power is one of the fundamental

causes of child malnutrition, the cash transfer would contribute to improved nutritional status

through increased quantity and quality of food consumption by overcoming budget constraints

on appropriate nutritious diets. In addition, imposing conditions related to children’s health

and monitoring compliance help poor households increase their healthcare utilisation to the de-

sired level. This study evaluates the treatment effects on the entire distribution of child health

outcomes and household expenditure and then explores the pathway through which the PKH

influences child nutritional status by estimating its impacts on the joint distribution of them.

The results show that the impact on the total household expenditure distribution is very modest

and statistically indistinguishable from zero at most parts of the distribution. The statistically

significant increase is observed only at the higher percentile of the expenditure distribution of

the households with children aged 0-12 months and 13-24 months. The PKH programme has im-

proved the WAZ score among children aged 25-36 months. Decomposition analysis shows that the

improvement of the WAZ score is not explained by the change in the household expenditure dis-

tribution, which is not surprising given that the increase in the total expenditure is not observed

among the households with children aged 25-36 months. The decomposition analysis suggests

that their improvement in WAZ score is driven by behavioural changes in beneficiary households.

20For more evidence, see for example Strauss and Thomas (2007); Almond and Currie (2011); Case et al. (2005);
Alderman et al. (2006); Blackwell et al. (2001); Portrait et al. (2017) and Victora et al. (2008).
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Overall, this study shows that the PKH did not improve the nutritional condition of those

at high risk of under-nutrition. One possible explanation is that the amount of cash transfer is

not sufficiently large. Compared with the successful CCTs in Latin America, where the trans-

ferred cash is typically above 20 per cent of average beneficiary household expenditure, the cash

transfer of the PKH is around 12 per cent of the total expenditure of beneficiary households

(World Bank, 2012). Furthermore, in contrast to the successful CCTs in Latin America, the

PKH does not have a nutrition-related conditionality such as participants taking a nutritional

supplement (Maluccio and Flores, 2005; Skoufias, 2005). In Mexico, for example, mothers must

visit a clinic at least once a month to pick up packets of supplements per eligible child if signs of

malnutrition are detected by the clinic’s personnel. Although the effectiveness of the nutrition

supplement itself is not yet fully confirmed, the Indonesian government may wish to assess the

option to introduce a nutrition-related conditionality.

Some additional complementary conditionalities related to feeding practice would potentially

enhance the effectiveness of the PKH on child health outcomes. For example, while attending

a nutritional education workshop or utilising a counselling service are included in CCT pro-

grammes in Colombia21, Brazil, El Salvador, Mexico, Nicaragua and Peru (Bassett, 2008), the

conditionality of the PKH does not include mothers participating in nutrition counselling. Pro-

viding educational opportunities in which beneficiaries frequently get advice about child diets

from healthcare professionals could assist the nutritional improvement.

Adding the conditionality regarding hygiene and sanitation promotions would also be an op-

tion to enhance the effectiveness of the CCT programme (Hoddinott and Bassett, 2008). For

example, significant improvements in child health due to the promotion of hand-washing using

soap have been reported in India (Bhutta et al., 2008). Combining education counselling sessions

on diets, hygiene and other topics relating to child health and growth with regular growth moni-

toring would also further help to promote child growth by maximising the potential effectiveness

of the CCT (Hoddinott and Bassett, 2008).

In addition, this study provides evidence that the PKH strengthens the positive dependence

between child nutritional status and household expenditure among children aged 25-36 months.

21In Colombia, attending workshops is encouraged but not mandatory.
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In the existing literature, the impact of CCTs on the joint distribution has not been afforded

any examination, but its impact should not be completely ignored in the process of economic

policy evaluations because the rationale of the CCTs rests on social equity which requires that

everyone, regardless of their socio-economic background, should have the equal opportunity to

achieve sound human capital development (Fiszbein et al., 2009). We would like to emphasise

that the CCTs should be designed with appropriate conditionalities to ensure that their benefits

will effectively reach the neediest.

By way of conclusion, it is worth discussing a limitation and some potential extensions of this

study. First, since the respondents are not representative of the sub-district populations as they

were instead selected by means of purposive sampling, the implications of this study are not

necessarily applicable to the entire population (Deaton and Cartwright, 2018). In other words,

although we find that the PKH changes the association between nutritional status and expen-

diture among the eligible households, it is still uncertain whether it is strong enough to change

the socio-economic gradient in health in the entire population, including the non-poor ineligible

households.

Second, the effectiveness of each conditionality of the PKH is worth exploring. The PKH has

several education- and health-related conditionalities (Table 3.1-B), and careful examination

of the effectiveness of each one would contribute to a more thorough evaluation of the policy.

However, the randomisation design of the data used in this study does not provide us with the

opportunity to conduct a detailed investigation of what conditions mainly trigger the effect. The

ideal experimental design to identify the marginal contributions of each conditionality would

be a randomised controlled trial with multiple treatment groups, each of which complies with

each conditionality of the programme and a control group receiving no transfers. Exploitation

of structural modelling with multiple outcomes and a more detailed randomisation design would

promote a better understanding of the detailed causal pathways.
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3.A Appendix – Notes on methodology

3.A.1 Assumptions for the CIC

First, we assume the independence between treatment assignment and latent outcomes:

Assumption 1 Random treatment assignment

uH and uY are independent of the treatment assignment.

This is a core identification assumption which allows identification of the treatment effect pa-

rameter. In this study, as eligibility for the PKH is randomly assigned, this assumption is usually

satisfied. Next, the CIC imposes an assumption on the unobserved characteristics.

Assumption 2 Strict monotonicity (Athey and Imbens, 2006)

m(uH , t) and n(uY , t) are strictly increasing in uH ∈ UH and uY ∈ UY for t ∈ {1, 2}.

The strict monotonicity assumption requires that the higher level of u corresponds to the strictly

higher outcomes. Equations (3.1) and (3.2) with strict monotonicity imply that the outcomes of

an individual i with uji = uj , j ∈ {H,Y } will be the same in a given period of time, regardless

of the group status. In other words, in the absence of the treatment, all differences between

the two groups in a given time period are attributable to the differences in the distribution of u

conditional on g.

In addition, the CIC makes an assumption about the distribution of uj , j ∈ {H,Y }.

Assumption 3 Time invariance within groups (Athey and Imbens, 2006)

The distribution of uj can systematically vary across the groups, but not over time within groups.

uj ⊥ t|g, j ∈ {H,Y }. (3.A.1)

Time invariance within groups is a core assumption for the CIC. Conceptually, the time in-

variance assumption in the CIC is a generalisation of the common trend assumption used in the

standard difference-in-differences method. In essence, the time invariance within groups assump-

tion requires that the population in a given group does not change over time. In our case, as

we use fully balanced panel data, group composition is preserved over time. This assumption is

required to extrapolate the distribution of uj in the second period from its distribution in the

first period. Conditional on the group, the marginal distribution of uj|g,t=1 is identical to the
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marginal distribution of uj|g,t=2 for j ∈ {H,Y }. Time invariance of the distribution of uj , how-

ever, does not require that a particular individual i has the same realisation uji in each period.

This assumption only requires that the distribution of uj is the same across time given the group.

Lastly, the CIC makes an assumption on the support of uj .22

Assumption 4 Common support (Athey and Imbens, 2006)

The support of uj in the group B is in the support of uj in the group A.

Uj|g=B ∈ Uj|g=A, j ∈ {H,Y }. (3.A.2)

The common support assumption implies the following four support conditions of the outcome:

HN
B1 ∈ HN

A1 (3.A.3)

HN
B2 ∈ HN

A2 (3.A.4)

YNB1 ∈ YNA1 (3.A.5)

YNB2 ∈ YNA2. (3.A.6)

The support assumption ensures that the counterfactual distributions of HN
B2 and Y N

B2 are iden-

tified at all points in the support of HN
A2 and Y N

A2.

3.A.2 Identifying the joint distribution with the extended CIC

The invariance of dependence assumption, combined with the assumptions for the CIC model,

allows us to relate the joint cumulative distribution of (HN
gt , Y

N
gt ) to the joint cumulative distri-

butions of (uHgt, u
Y
gt) as follows (Cañón Salazar, 2016):

FNH,Y,gt(h, y) = Pr{m(uHgt, t) ≤ h, n(uYgt, t) ≤ y}

= Pr{uHgt ≤ m−1(h; t), uYgt ≤ n−1(y; t)}

= FUHgt ,UYgt(m
−1(h; t), n−1(y; t)), (3.A.7)

where FUHgt ,UYgt(., .) is a joint distribution function of (uHgt, u
Y
gt).

22Technically, this assumption is not the vital assumption for estimating the counterfactual distribution. This
assumption ensures that the counterfactual distribution is all identified in the support of Y jA2. Even without this
assumption, the distribution of Y N,jB2 in the support of Y jA2 is identified, although the distribution of Y N,jB2 outside
the support of Y jA2 is not identified. For details, see Corollary 3.1 of Athey and Imbens (2006).
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3.A.3 Major parametric copulas

In the statistical literature, a long list of copulas has been proposed for modelling the depen-

dence between the variables, but we focus only on the several examples that are frequently

used empirically in econometrics. A particular group of copulas which has proven useful is

the Archimedean family copulas, which are easily derived and are capable of capturing vari-

ous types of dependence structures. The Archimedean family copulas take the general form

C(v1, v2) = ψ−1(ψ(v1) +ψ(v2)), where ψ(.) is called a generator function and its functional form

is unique to each Archimedean family copula. Product copula, Frank copula, Clayton copula,

Gumbel copula, Joe copula and Ali-Mikhail-Haq (AMH) copula are major Archimedean family

copulas.

First, the Product copula, which takes the simplest form, does not allow dependence between

marginal distributions and consequently does not have a dependence parameter. Second, the

Frank copula is capable of modelling both positive and negative dependence, and is suitable

for data that exhibit weak tail dependence (Trivedi and Zimmer, 2007). The Clayton copula

can better capture strong left tail dependence and relatively weak right tail dependence, but it

is not suitable for negative dependence. As its dependence parameter goes to 0, the marginal

distributions become independent. The Gumbel copula, similar to the Clayton copula, is not

able to model negative dependence, but it can better capture strong right tail dependence and

relatively weak left tail dependence. The Joe copula also allows only positive dependence and

is appropriate for modelling the very strong right tail dependence and relatively weak left tail

dependence between marginals. The AMH copula is suitable only for modelling the weak depen-

dence.

The elliptical family copulas are also frequently employed in the empirical literature. The el-

liptical copulas are simply the copulas with elliptically contoured distributions. The Gaussian

copula and the Student t copula are major copulas in the elliptical family. The elliptical family

copulas are flexible in the sense that they allow for positive and negative dependence. They

are suitable for the marginals with a symmetric dependence structure. A disadvantage of the

elliptical family copulas is that they do not have a closed functional form. The Student t copula

has two dependence parameters, (θ1, θ2). The first parameter governs the heaviness of the tails.

As θ1 →∞, the Student t copula becomes the Gaussian copula with parameter θ2.
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In addition, we consider the Plackett copula and the Farlie-Gumbel-Morgenstern (FGM) copula.

The Plackett copula can model both positive and negative dependences well. If the marginals

have relatively strong tail dependences, the Plackett copula is better at modelling them than the

Gaussian copula. The FGM copula is a perturbation of the product copula. Similar to the AMH

copula, the FGM copula is only suitable for modelling the two marginals with modest depen-

dence. If the dependence parameter θ goes to zero, the FGM copula becomes the product copula.

Finally, we consider the extreme-value copulas. A copula is called an extreme-value copula

if there exists a copula function CF such that

CF (v
1
n
1 , v

1
n
2 )n → C(v1, v2) as n→∞. (3.A.8)

The common extreme-value copulas are the Galambos copula, Hüsler Reiss copula and Tawn

copula.23 The extreme-value copulas are used mainly in the field of finance for modelling the

dependence structure between rare events, but they can also be used to model data with positive

dependence. Compared with the class of Archimedean family copulas, one advantage is that

they can better model the marginals with asymmetric dependence and strong tail dependence.

For more details about the extreme-value copulas, see Gudendorf and Segers (2010). Table 3.A.1

lists the functions of copulas employed in this paper, their parameter ranges and the number of

parameters.

3.A.4 Copula selection and parameter estimation

We employ maximum likelihood estimation to parametrically estimate a copula function for the

joint outcome distribution. This separates the estimation of the marginals from that of the depen-

dence parameter(s) and produces consistent estimates of the dependence parameter(s) (Trivedi

and Zimmer, 2007). The first step non-parametrically estimates univariate marginal distributions

of health and expenditure. The second step then estimates the dependence parameter(s), using

the estimated marginal distributions from the first step. It is essential to select an appropriate

copula for modelling a joint distribution. If dependence structures were known a priori, it would

be easier to choose an appropriate copula, but such information is seldom available in advance.

23The Gumbel copula, which is also a family of Archimedean family copulas, also belongs to the extreme-value
copulas.
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The selection of the copula tends to be a posterior consideration, and so it is important to esti-

mate several copulas and compare their performances. The dependence parameters are estimated

by employing the maximum likelihood method from the marginal distributions with parametric

assumptions of each copula function (Trivedi and Zimmer, 2007). An appropriate copula is the

one which can best capture the dependence structures of the data. Maximised likelihood values,

Akaike information criteria (AIC) and Bayesian information criteria (BIC) provide guidance on

the selection.24 The parameter estimator is given by

θ̂ = arg max
θ∈Θ

N∑
i∈{g=B,t=1}

ln c(F̂H,B1(hi), F̂Y,B1(yi); θ), (3.A.9)

where c(.) is the likelihood function of a specific copula.

3.A.5 Entropy balance weighting

The entropy balancing method has a few advantages over the propensity score inverse proba-

bility weighting (PS-IPW). First, the entropy balancing method can “perfectly” balance a set

of moments of the covariate distributions between two groups, while the parametric PS-IPW

methods often fail to jointly balance all the covariate distributions in practice, partly because

of the misspecification of the propensity score. To improve the balance of some covariates, the

PS-IPW method usually needs to sacrifice the balance of the other covariates (Iacus et al., 2012).

Thanks to the perfect balancing with the entropy balancing method, manual balance checking

is no longer necessary. Hence, we do not have to go back and forth between estimating the

propensity score and manually checking the balance of the covariates (Hainmueller, 2012).

In the entropy balancing method, each observation in the control group gets a weight satis-

fying a set of balance constraints set by a researcher a priori (Hainmueller, 2012). Entropy

balancing estimates the weights directly from a potentially large set of balance constraints and

the normalisation and non-negativity constraints. The optimal weights for the control group are

chosen so that they minimise the following entropy distance metric:

ŵi = arg min
wi

∑
{i|control}

wiln(wi/qi), (3.A.10)

24AIC = −2 ∗ ln(likelihood) + 2 ∗K and BIC = −2 ∗ ln(likelihood) + K ∗ ln(K), where K is the number of
parameters of a copula function.
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subject to the following balance and normalisation constraints:

∑
{i|control}

wicri(Xi) = mr with r ∈ {1, ..., R}, (3.A.11)

∑
{i|control}

wi = 1, and (3.A.12)

wi ≥ 0, ∀i ∈ (Control). (3.A.13)

Equation (3.A.11) is a set of balance constraints. Equations (3.A.12) and (3.A.13) are the nor-

malisation constraint and the non-negativity constraint respectively. wicri(Xi) = mr in equation

(3.A.11) describes a set of R balance constraints imposed on the moments of the weighted distri-

butions of the covariates in the control group. Each balance constraint equates a certain order

moment of the weighted covariate distributions in the control group to the corresponding mo-

ment of the covariate distributions in the treatment group. As the entropy balancing can balance

the higher order moments of the distributions, the moment constraints can include not only the

mean (first moment), but also the variance (second moment), the skewness (third moment) and

beyond. For example, if we are interested in estimating the weights for balancing the r-th order

moment of a specific covariate, say Xp, we set cri(Xip) = (Xip)
r or cri(Xip) = (Xip − µp)r with

mean µp. The choice of the moment order can vary across the covariates and largely depends on

the researcher’s a priori knowledge about their distribution types. For example, if the covariates

are binary variables, the first order moment balancing is sufficient, while for the case of the vari-

ables that are normally distributed, balancing the first and second order moments is sufficient

to balance their entire distributions.
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Chapter 4

Reviewing the Existing Evidence of the Conditional Cash

Transfer in India on Maternal Healthcare through the Partial

Identification Approach

Abstract

This study re-estimates the causal impacts of a conditional cash transfer programme in India, namely the

Janani Suraksha Yojana (JSY), on maternal and child healthcare use. The main goal is to provide new

evidence and to assess the validity of the identification assumptions employed in previous studies on the

JSY, through the conservative partial identification approach. We find that the average treatment effects

estimated under the conditional independence assumption lie outside the bound of the treatment effect

estimated under weaker but more credible assumptions, thereby suggesting that selection bias could not

have been fully controlled for by the observable characteristics, and that the average treatment effects

estimated in the previous studies may have been over- or under-estimated.

JEL codes: I12, I15, I18

Keywords: Conditional cash transfer; Partial identification; Conditional independence; India
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4.1 Introduction

4.1.1 Background

The adequate use of healthcare services is an essential factor in successful maternal and child

health outcomes (Campbell and Graham, 2006; Chou et al., 2015; Darmstadt et al., 2009; Scott

and Ronsmans, 2009). However, women in developing countries are often faced with multiple

barriers to accessing health services, and improvements in maternal healthcare access, especially

by poor women, remain inadequate. In India, only 51.2 per cent of women access antenatal care,

and in 2014, only 38.7 per cent gave birth in a health institution (UNICEF, 2018a). In addition,

India has the highest neonatal mortality rate in the world – as of 2015, around 20 per cent (=1.2

million) of global under-five deaths occurred in the country (UNICEF, 2015, 2018b). Promoting

institutional delivery and adequate use of antenatal care is a key method in improving infant

and neonatal mortalities (Lahariya, 2009; Pathak and Mohanty, 2010; Freedman et al., 2007).

However, women’s uptake of maternal care in India has been associated strongly with wealth,

and facilitating the adequate use of maternal care among poor and marginalised women is still

a major challenge (Pathak et al., 2010; Kesterton et al., 2010).

The success of conditional cash transfer (CCT) programmes in Latin America has led to an

enthusiastically mirrored response in Africa and Asia, and CCT has become one of the most

adopted demand-side programmes to enhance healthcare use (Handa and Davis, 2006; Rawlings

and Rubio, 2005). CCTs influence health-seeking behaviours through financial incentives by

transferring money to households, contingent on investments in human capital such as health

and education. Interest in using financial incentives to promote maternal and child healthcare

utilisation has also spread to Southern Asia, which has low maternal healthcare use and high

neonatal mortality rates. CCT programmes intending to encourage maternity and child health-

care use have been introduced in India, Nepal and Bangladesh (Devadasan et al., 2008).1

On 12 April 2005, the Indian government launched a nationwide CCT programme called Janani

Suraksha Yojana (JSY), or the ‘Safe Motherhood Programme’, to promote institutional delivery

and the receipt of timely antenatal and postnatal care, in order to reduce infant and neonatal

mortalities (Horton, 2010; Bhutta et al., 2010). The JSY has become one of the largest cash

1Pakistan and Cambodia also introduced a voucher-type programme with the same aims as the CCTs in South
Asia (Jehan et al., 2012; Van de Poel et al., 2014).
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transfer programmes in the world in terms of the number of beneficiaries. It provides a cash

incentive to mothers that give birth in government-approved health facilities2, and in this sense,

it has a much narrower aim than most of the CCTs in Latin America, which have multiple goals

beyond maternal and child healthcare. Funded by central government, the JSY is administered

through the National Rural Health Mission. In 2014-2015, 10.4 million women benefited from

the scheme, representing a third of all women giving birth in the country annually (Ministry of

Health and Family Welfare, 2015).

Evidence in most previous studies has largely relied on inappropriate data or potentially un-

tenable identification assumptions, in order to yield a definitive causal impact. Until now, no

study has ever tried to explore the validity of the identification assumptions employed in pre-

vious studies on the JSY. The main goal of this study is to re-estimate the causal impact of

JSY participation on maternal and child healthcare use, with weaker but more credible identi-

fication assumptions than used in previous studies. Specifically, we non-parametrically identify

the average treatment effect (ATE) by bounds. The partial identification approach abandons

point identification with strong assumptions and instead seeks causal effects with much more

credible assumptions (Manski, 1990, 1997; Manski and Pepper, 2000). In this sense, the partial

identification approach yields more conservative results.

In this study, we perform inference under a spectrum of assumptions of varying identification

power, following the approach taken by Gundersen et al. (2012, 2017); Gonzalez (2005); Gerfin

and Schellhorn (2006) and Kreider et al. (2012). Any point-estimate obtained under the conven-

tionally imposed strong assumptions should lie within the bounds, if these assumptions are valid.

In this study, we show that the causal impacts based on the assumptions employed in previous

studies are larger/smaller than the upper/lower limits of the ATE bounds, thus suggesting that

the existing evidence could have been over- or under-estimated.

4.1.2 Janani Suraksha Yojana (JSY)

In the JSY scheme, women of 19 years of age and above are eligible for a cash benefit if they

have a below-the-poverty-line card issued by the government, or if they belong to a scheduled

caste or tribe. They can receive 600 Indian rupees in urban areas and 700 rupees in rural areas

2This includes public hospitals and accredited private institutions.
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Table 4.1: Differences in eligibility and cash transfer size between HPSs and LPSs

High performing states (HPSs) Low performing states (LPSs)

Eligibility

Marginalised women who gives birth in a All women who gives birth in a public facility.
public facility for their first two live births.

Women need to have a below-the-poverty-line
card or belong to a scheduled caste/tribe.

Cash transfer size

600 rupees in urban areas 1,000 rupees in urban areas
700 rupees in rural areas 1,400 rupees in rural areas

Note: This eligibility criteria and cash transfer amounts began to be applied after November 2006.

after the delivery of their first two live births in a public health facility. The JSY does not cover

the actual cost of institutional delivery and maternal healthcare. The basic JSY scheme used to

be the same across the country, but after November 2006, different eligibility criteria and cash

transfer amounts began to be applied in ten states with high levels of maternal mortality and

low levels of institutional delivery (i.e. Uttar Pradesh, Uttaranchal, Bihar, Jharkhand, Madhya

Pradesh, Chhattisgarh, Assam, Rajasthan, Odisha and Jammu and Kashmir) (Bredenkamp,

2009). In these ten low-performing states (LPSs), the JSY provides a cash incentive to all

women regardless of age, numbers of children or socio-economic status. In other words, every

woman who gives birth in a public facility is eligible to receive a cash benefit. Moreover, in

the LPSs, a higher cash incentive is provided, namely 1,000 rupees in urban areas and 1,400

rupees in rural areas.3 In other states that are classified as high-performing states (HPSs), the

original eligibility criteria, as well as the same cash incentives for pregnant mothers, continue

to be applied. The differences between HPSs and LPSs are summarised in Table 4.1. The left

panel of Figure 4.1 illustrates the HPSs and LPSs in the country, and the right panel of Figure

4.1 shows JSY participation rates among women who gave birth between 2010 and 2016 across

the states.

The JSY addresses both the demand and the supply constraints of maternal healthcare services,

i.e. it also has a supply-side component, in which community-level health workers are given

incentive payments for encouraging pregnant women to give birth in official health facilities.

Community-level health workers, known as ‘accredited social health activists’, are the first and

3This is around 8-12 paid days off from minimum wage manual labour (Joshi and Sivaram, 2014).
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Figure 4.1: State types and JSY participation rates in 2010-16

Source: Author’s calculation from the National Family Health Survey.
Note: LPS=Low-performing state; and HPS=High-performing state. The left panel illustrates the HPSs and
LPSs in the country, and the right panel shows the participation rates of the JSY across the states.

most important point of contact for pregnant women – they identify and register all pregnant

women, assist them in developing their birth plans and arrange the JSY for them. Accredited

social health activists are given additional cash incentives to encourage mothers to complete

postnatal care. Cash incentives given to health workers are intended to reduce absenteeism and

enhance their overall performance.

4.2 Related literature

4.2.1 Evidence of the impacts of the JSY on maternal healthcare use

The positive impacts of CCTs in Latin America on maternal healthcare utilisation are reported

by numerous studies (Ranganathan and Lagarde, 2012; Barber and Gertler, 2010; Morris et al.,

2004). For systematic literature reviews of the CCT programme, see Glassman et al. (2013);

Lagarde et al. (2007); Bassett (2008) and Gaarder et al. (2010). In Mexico and El Salvador,

for example, birth attendance by skilled personnel increased by 11.4 percentage points and 12.3

percentage points, respectively, (Urquieta et al., 2009; de Brauw and Peterman, 2011). However,

different from CCTs with much broader aims beyond maternal healthcare, studies on those with

narrower aims, such as the JSY, are relatively sparse. Most of the existing literature has explored

the descriptive associations between JSY receipt and healthcare use and health (Gupta et al.,

2012, 2011; Thongkong et al., 2017; Randive et al., 2014, 2013; Mukherjee and Singh, 2018; Puro-
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hit et al., 2014; Ng et al., 2014; Gopalan and Varatharajan, 2012), while studies estimating the

causal impacts of the JSY are rather limited, mainly because the rigorous randomised controlled

trial (RCT) designed for the evaluation of the programme was not conducted in India (Joshi and

Sivaram, 2014).

Lim et al. (2010) is the first seminal study to estimate the causal impact of JSY from the

observational data. Specifically, Lim et al. (2010) estimate the causal impacts on institutional

delivery, use of antenatal care, using the individual-level and district-level data. According to

their estimates with matching, the JSY increases institutional deliveries by 43.5 percentage points

and skilled birth attendance by 36.6 percentage points. In addition, they report a significant

increase in the use of antenatal care by 10.7 percentage points.

After the study by Lim et al. (2010), a number of studies extended the analysis by explor-

ing heterogeneity in the average treatment effect (ATE) across the population and estimating

the impacts on the use of various healthcare services (Carvalho et al., 2014). Major research into

the causal effects of the JSY are listed in Table 4.2. As well as the increase in maternal health-

care utilisation, reductions in neonatal mortality and increases in the use of child healthcare are

reported by Sengupta and Sinha (2018), who estimate causal impacts by employing the inverse

probability weighting regression approach. In addition, improvements in the mental health of

beneficiary mothers (Powell-Jackson et al., 2016), breastfeeding and further pregnancies (Powell-

Jackson et al., 2015; Nandi and Laxminarayan, 2016) are reported as additional – unintended –

benefits.

Most studies exploit the second and the third waves of the District Level Household and Fa-

cility Survey (DLHS-2 and DLHS-3), data for which were collected in 2002-2004 and 2007-2008.

The DLHS-2 was conducted before the JSY was launched, and DLHS-3 was conducted in the

initial stage of JSY’s implementation. Despite the introduction of JSY in 2005, its proper imple-

mentation actually started in 2007 (Das et al., 2011). Das et al. (2011) argues that in DLHS-3,

many women who gave birth before 2007 were misclassified as JSY beneficiaries, and only a

smaller proportion of women knew about the programme itself at that time. Also, during the

first few years of the implementation, many institutions were not adequately prepared for ma-

ternal and child healthcare (Gopichandran and Chetlapalli, 2012). As such, it turned out that
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the DLHS-3 was not appropriate for causal analysis, and we had to wait for new data to become

available in order to estimate the causal effect of the JSY programme.

Recently, Rahman and Pallikadavath (2017) and Rahman and Pallikadavath (2018) have re-

estimated the impact of the JSY with the latest wave of the DLHS (DLHS-4), which was imple-

mented in 2013-2014 when JSY had matured enough to be known by almost all pregnant women.

Rahman and Pallikadavath (2017) estimated the impacts of the JSY on various healthcare util-

isations with propensity score matching (PSM). Rahman and Pallikadavath (2018) additionally

estimated the impacts with the fuzzy regression discontinuity design (RDD), which exploits

changes of eligibility for the JSY programme with birth orders in HPSs.

4.2.2 Identification assumptions in previous studies

Most of the existing literature that uses individual-level data relies on strong assumptions in order

to point-identify the ATE. Previous studies on the JSY imposed the conditional independence

assumption (CIA), requiring that, conditional on specific observable characteristics, the selection

of the treatment is random (Imbens and Wooldridge, 2009).4 Methods based on the CIA do not

assume the possibility that unobserved differences between participants and non-participants are

associated with difference in outcomes. However, participation in the JSY programme is likely

to be dependent on individual unobservable characteristics that could also affect healthcare use,

such as the degree of being risk-averse. Also, participants in the JSY may be more aware of the

importance of maternal healthcare use and the potential risk of delivery at home. If the receipt

of the JSY is related to such unobservable characteristics, the approaches based on the CIA still

suffer selection bias and fail to estimate the causal impact.

Joshi and Sivaram (2014) estimated the intention-to-treat effect to deal with selection prob-

lems that had not been properly addressed, using the eligibility criteria, but we should note that

the intention-to-treat effect (ITT) is conceptually different from the treatment effects explored in

other literature (Table 4.2). The district-level difference-in-differences (DID) is employed in Lim

et al. (2010) and Powell-Jackson et al. (2015), but the effect identified with the district-level DID

is also conceptually different from the ATEs identified in other studies that rely on individual-

level data (Table 4.2). As the district-level DID exploits variations in the roll-out of the JSY, it

4A notable exception is Powell-Jackson et al. (2016), who collected their own data and exploited the fact that
some women did not receive the cash due to administrative problems in its disbursement.
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estimates the effect of percentage point changes in the JSY coverage rate on the probability of

healthcare use, not the effect of JSY participation itself. Hence, in this study, we do not consider

the ITT or the district-level DID.

The fuzzy RDD can deal with individual unobservable characteristics, but the estimate is lo-

cal in the sense that it is the impact among those who have a value for the running variable

near the cut-off value (Imbens and Angrist, 1994). Hence, it is often difficult to extrapolate the

impact for the entire population from the estimated results for the the sub-population. Rahman

and Pallikadavath (2018) use the birth order (parity) as a running variable and exploit the gap in

the probability of participating in the programme between mothers having one and two children

and mothers having three to seven children. However, the parity itself is highly likely to be

endogenous, so the observed discontinuity in the probability of programme participation could

be invalid as an exogenous source of identification.

In contrast to the existing literature, this study takes a totally different approach. Rather than

relying on strong and yet questionable assumptions, to achieve point-identification of the causal

impact, we impose just weak but credible identification assumptions to find the bound estima-

tion of the causal effect (Manski, 1990). The partial identification approach highlights what may

be learned from the data without invoking potentially untenable assumptions (Manski, 2003,

2013). By gradually adding assumptions, we explore how much we can narrow the estimated

bounds. The partial identification approach is very useful in a situation in which a rigorous

RCT has not been implemented – and hence valid instrumental variables to deal with possible

endogeneity are not available to researchers. The partial identification approach has been applied

to various topics in microeconomics, such as labour (Lee, 2009; Gonzalez, 2005; Blundell et al.,

2007), crime (Manski, 2013; Manski and Nagin, 1998), education (Ginther, 2000; Huber et al.,

2017) and health (Gerfin and Schellhorn, 2006; Gundersen et al., 2017, 2012; Kreider et al., 2012).

The identification assumptions employed in the existing literature have not been sufficiently

justified or assessed. In this study, we first re-estimate the causal impacts of the JSY with the

DLHS-4, closely following the approaches taken by Rahman and Pallikadavath (2018), Lim et al.

(2010) and Sengupta and Sinha (2018), which all rely on the CIA. We then estimate the bounds

of ATE through the partial identification approach and compare the point-identified impacts
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with the bound-identified impacts, in order to assess the validity of the assumptions used by

their respective studies.

4.3 Data

4.3.1 District Level Household and Facility Survey (DLHS)

We use the latest wave of the District Level Household and Facility Survey (DLHS-4), which

was conducted in 2013-2014 when the JSY had been rolled out across the country and matured

somewhat (Rahman and Pallikadavath, 2017, 2018). As such, the DLHS-4 does not suffer the

data contamination problem that is found in DLHS-3 (Das et al., 2011). The DLHS-4 covers the

18 HPSs5 and three high-performing union states.6 The DLHS-4 is a representative survey only

at the district level, and it collects data only in HPSs, so this study only focuses on the HPSs.

We complement our findings in HPSs by proving additional evidence in LPSs using another

latest set of survey data, namely the National Family Health Survey (NFHS-4), in which data

were collected also from LPSs, though the sample sizes are much smaller. Results for LPSs are

discussed in section 4.A.1 in Appendix 4.A.

4.3.2 Outcomes

This study estimates the impacts on the following eight maternal and child healthcare utilisations.

First, we estimate the impacts on (1) giving birth at health institutions7, which is the primary

target outcome of the JSY programme and (2) skilled birth attendance. We also estimate the

impacts on using (3) antenatal care (ANC) at least once, (4) ANC three times or more, (5)

postnatal care (PNC) for mothers, (6) PNC for babies, (7) iron and folic acid (IFA) tablets/syrup

during pregnancy and (8) tetanus toxoid (TT) injections to prevent babies from getting tetanus

after birth.

4.3.3 Covariates for the point-identification

In order to make our results comparable as much as possible with those in the existing literature,

we control for the individual- and household-level confounding factors, closely following Rahman

and Pallikadavath (2018). As factors reflecting demographic and socio-economic characteristics,

5Andhra Pradesh, Arunachal Pradesh, Goa, Haryana, Himachal, Pradesh, Karnataka, Kerala, Maharashtra,
Manipur, Meghalaya, Mizoram, Nagaland, Punjab, Sikkim, Tamil Nadu, Telangana, Tripura and West Bengal.

6Andaman and Nicobar Islands, Chandigarh and Puducherry.
7Health institution herein includes both the public and the private health sector.
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we control for below-the-poverty-line card ownership, maternal age, a residential location (ur-

ban/rural) and a birth order (parity). A Hindu dummy variable is used to reflect individual

socio-cultural backgrounds. Other religions (e.g. Islam, Christianity, Sikhism, Buddhism) are

benchmark groups. In addition, we use dummy variables for the scheduled castes and tribes.

Scheduled castes/tribes are the most socially disadvantaged groups, members of which have suf-

fered the greatest burden of social and economic segregation and deprivation (Chitnis, 1997). We

control for parental educational levels, measured by the number of education years. Household

wealth is captured through a composite index of relative standards of living.8

4.3.4 Sample selection

In this study, we focus only on women aged between 15 and 49 who gave birth in the five

years prior to the survey, so that all of those analysed in this study gave birth after the proper

implementation of the JSY. We restrict our attention to the most recent birth of each woman and

exclude women who participated in programmes for childbirth other than the JSY. The DLHS-4

has 84,266 observations. After dropping observations with missing information9, our sample size

becomes 67,595. Descriptive statistics are shown in Table 4.3.

4.4 Methods

4.4.1 Notations

Let Y = {0, 1} be an indicator for observed healthcare utilisation. Y becomes 1 if a woman

uses a healthcare service. D = {0, 1} is an indicator for participation in the JSY, and it equals

1 for those who participated in the JSY programme, and 0 otherwise. Following Rubin (1974),

we assume that each individual has two potential outcomes, namely Y0 in the absence of the

treatment and Y1 in the presence of the treatment. They are latent, in the sense that we

can only observe one of them for each person, but never both. What is actually observed for

8Following Rahman and Pallikadavath (2018), we derive the wealth index by applying the principal component
analysis over various household characteristics. They are cooking fuel, house type, number of dwelling rooms,
electricity, house ownership, landholding, radio, television, computer, internet, telephone, mobile phone, washing
machine, refrigerator, sewing machine, watch, bicycle, motorcycle, car, tractor, tube well, cart and air cooler.

9We dropped 27 observations because of the missing information about below-the-poverty-line card ownership.
We dropped 82 and two observations that did not have information about caste and religion, respectively. In total,
2,916 observations were then dropped because of missing information about parity. We dropped 79 observations and
13,171 observations because they did not have information about maternal and parental educational backgrounds,
respectively. We dropped eight observations with missing information about household wealth. Lastly, we dropped
386 observations with missing information about outcomes.
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Table 4.3: Descriptive statistics for the DLHS-4

Non-participants Participants
mean mean

Institutional delivery 0.82 0.95
Skilled birth attendance 0.89 0.97
Antenatal care at least once 0.87 0.96
Antenatal care (≥ 3 times) 0.70 0.81
Postnatal care for mother 0.64 0.72
Postnatal care for baby 0.78 0.83
Iron and folic acid (IFA) supplement 0.68 0.82
Tetanus toxoid (TT) injection 0.83 0.93
Below the poverty line card 0.30 0.46
Scheduled caste 0.77 0.75
Scheduled tribe 0.16 0.19
Rural 0.56 0.67
Birth order (parity) 2.01 1.78
Hindu 0.67 0.69
Maternal age 27.23 26.05
Maternal education years 9.81 9.23
Paternal education years 10.92 9.98
Wealth 0.54 -0.26

Observations 52732 14863

Source: DLHS-4.

researchers is

Y = DY1 + (1−D)Y0. (4.1)

The causal impact of the JSY for individual j ∈ J is Y1j − Y0j , and we are interested in the

average treatment effect (ATE), which is defined by ATE ≡ P (Y1 = 1) − P (Y0 = 1). Theo-

retically, the ATE ranges from -1 to +1 and has a width of 2. Let X be observed individual

characteristics, which determine Y and D.

Using the law of total probability, we can express P (Y1 = 1) and P (Y0 = 1) as

P (Y1 = 1) = P (Y1 = 1|D = 1)P (D = 1) + P (Y1 = 1|D = 0)︸ ︷︷ ︸
Unobservable

P (D = 0) (4.2)

P (Y0 = 1) = P (Y0 = 1|D = 1)︸ ︷︷ ︸
Unobservable

P (D = 1) + P (Y0 = 1|D = 0)P (D = 0), (4.3)

where P (Y1 = 1|D = 0) is the counterfactual probability that untreated women would use a

healthcare service under the treatment, and P (Y0 = 1|D = 1) is the counterfactual probability

that treated women would use a healthcare service if they had not been treated. P (Y1 = 1|D = 1),
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P (Y0 = 1|D = 0), P (D = 1) and P (D = 0) are immediately identifiable from the distribution of

the observed data, but P (Y1 = 1|D = 0) and P (Y0 = 1|D = 1) are unobservable, which makes

the ATE unidentifiable without further assumptions.

4.4.2 Point-identification with the independence assumption

Researchers must impose assumptions regarding P (Y1 = 1|D = 0) and P (Y0 = 1|D = 1), in order

to identify the ATE. For example, if we assume that participation in the treatment is random,

we can point-identify the ATE from the observed distribution. This assumption is called the

‘independence assumption’ and can be expressed as

P (Y1 = 1|D = 0) = P (Y1 = 1|D = 1) (4.4)

P (Y0 = 1|D = 0) = P (Y0 = 1|D = 1). (4.5)

The ATE is point-identified by ATE = P (Y1 = 1|D = 1)−P (Y0 = 1|D = 0). This independence

assumption is valid under the rigorous RCTs, without which it is usually too stringent. Another

identification assumption that is conventionally imposed in the policy evaluation literature is the

conditional independence assumption (CIA) in which participation in the treatment is assumed

to be random, conditional on the observable characteristics X. The CIA is formalised by

P (Y1 = 1|D = 0, X) = P (Y1 = 1|D = 1, X) (4.6)

P (Y0 = 1|D = 1, X) = P (Y0 = 1|D = 1, X). (4.7)

For example, evaluations with the multivariate regression approach and the propensity score

matching approach are based on this assumption (Imbens and Wooldridge, 2009; Abadie and

Cattaneo, 2018). Although the CIA itself cannot be tested by the data, this assumption can

be untenable in many cases. If the decision to participate in the programme is dependent on

unobservable characteristics that can affect outcomes, the CIA fails, resulting in a biased causal

effect estimate.

In this study, we point-estimate the ATEs by (1) mean comparison between the participants and

non-participants, which we call ‘Independence’, (2) multivariate ordinary least squares (OLS)

regression, (3) propensity score matching (PSM), (4) OLS regression with inverse probability

weighting adjustment (IPW+OLS), (5) nearest neighbourhood matching (NNM), (6) entropy
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Table 4.4: Point-identification approaches and assumptions

Method Short name Assumption

Mean comparison Independence Exogenous/independent treatment assignment

Multivariate OLS Conditional independence;
linear regression Outcome linear functional-from;

Additive linearity of the treatment
status and the unobservable;

Same treatment effect for all individuals

Propensity PSM Conditional independence;
score matching Propensity score functional-form

Nearest neighbour matching NNM Conditional independence

OLS adjusted with the IPW+OLS Conditional independence
inverse probability weighting

Entropy balance weighting EBW Conditional independence

Regression discontinuity RDD Exogenous discontinuity in the probability of
design the JSY participation at birth order two

balance weighting (EBW) and (7) fuzzy regression discontinuity design (RDD). Their key as-

sumptions are summarised in Table 4.4.

The mean comparison between participants and non-participants rests on the independence as-

sumption, and the OLS, PSM, IPW+OLS, NNM and EBW approaches rest on the CIA. Some

also rely on functional form assumptions; for example, the OLS assumes that the treatment

variable and the error term are additively separated and the treatment effect is identical for

everyone. The PSM and IPW+OLS rely on the functional form assumption of the propensity

score. The EBW non-parametrically balances the moments of the covariate distributions, the

algorithm of which is explained in the Appendix 4.B.1.

For fuzzy RDD, we also closely follow the approach taken by Rahman and Pallikadavath (2018),

which exploits JSY eligibility, i.e. mothers who are eligible for the JSY up to their second live

birth. The eligibility change of JSY at birth order two was exploited as a source of identification.

Following Rahman and Pallikadavath (2018), we first run an OLS regression of the JSY dummy

variable on z1 = 1{parity ≤ 2}, z2 = z1 ∗ (parity− 2), z3 = (parity− 2) and the other covariates

as the first-stage OLS regression, where z1 and z2 are excluded instruments. Using the predicted

value of the JSY dummy variable, we estimate the causal impact of JSY in the second-stage OLS
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regression.

The DLHS is repeated cross-sectional data. If longitudinal data were available, we could possibly

employ the fixed effect (FE) model, which deals with the situation where individual unobservable

and time-invariant characteristics influence treatment selection. However, the FE model is less

appealing for the study on maternal healthcare, because it is not realistic to assume that the

degree of risk-aversion is time-invariable; it can change as mothers experience more childbearing.

For example, the motivation to join the JSY programme for primiparity can be different from

the one for the second or third childbirth. In this study, we do not consider the individual-level

DID approach either, mainly for two reasons. First, the JSY is a nationwide programme, which

makes it difficult to set up the control group, and second, we have gaps of more than 10 years

between data collection before and after JSY implementation; the DLHS-2 was conducted in

2002-2004. The long periods between the waves could substantially deteriorate the credibility of

common-trend assumption that is essential for the DID.

4.4.3 Partial identification assumptions

In essence, partial identification first estimates sharp bounds for P (Y1 = 1) and P (Y0 = 1) and

then constructs a sharp bound of ATE. A sharp bound is defined as the narrowest bound that can

be obtained under the maintained assumptions regarding the unobservable distribution. When

the bound of P (Yt = 1) is (LBt, UBt), the ATE bound is defined as

(LB1 − UB0) ≤ ATE ≤ (UB1 − LB0). (4.8)

Note that first, the ATE bound is conceptually different from the confidence interval of the point-

estimated ATE. The width of the ATE bound reflects the identification power of the imposed

assumptions. In addition, bound width indicates tension between the strength of assumptions

and their credibility (Manski, 2007), and it does not change when sample sizes change. On the

other hand, the width of confidence interval for the point-identified ATE reflects the uncertainty

of sampling variability, which does vary when sample sizes change. We discuss the uncertainty

of sampling variability for the ATE bound in section 4.4.5. In this study, unless otherwise indi-

cated, we use the term ‘bound’ to denote an ATE bound of partial identification, and use the

term ‘interval’ to indicate a confidence interval.
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Second, as the partial identification approach does not assume that participation in the treat-

ment is random and conditional on the covariates, there is no specific need to condition on a long

list of covariates. Hence, the partial identification approach is not susceptible to criticisms of

omitted variable bias (Manski and Nagin, 1998). Splitting the sample by a covariate to explore

heterogeneity across the population is also possible for partial identification as well, but in this

study we do not implement sample splitting.

No assumptions (Worst-case)

First, as a benchmark, we specify a range of P (Y1 = 1|D = 0) and P (Y0 = 1|D = 1) to

construct a bound for P (Y1 = 1) and P (Y0 = 1), without imposing any assumption regarding

the counterfactual probabilities. Since P (Y1 = 1|D = 0) and P (Y0 = 1|D = 1) are probabilities,

they necessarily belong to [0,1], so the bounds of P (Y1 = 1) and P (Y0 = 1) are given from

equations (4.2) and (4.3) by

P (Y1 = 1|D = 1)P (D = 1)︸ ︷︷ ︸
LB1

≤ P (Y1 = 1) ≤ P (Y1 = 1|D = 1)P (D = 1) + P (D = 0)︸ ︷︷ ︸
UB1

(4.9)

P (Y0 = 1|D = 0)P (D = 0)︸ ︷︷ ︸
LB0

≤ P (Y0 = 1) ≤ P (Y0 = 1|D = 0)P (D = 0) + P (D = 1)︸ ︷︷ ︸
UB0

. (4.10)

In equation (4.9), the lower bound of P (Y1 = 1) is attained if all non-participants would have

used the healthcare had they participated in the JSY. The upper bound of P (Y1 = 1) is attained

if all non-participants would have had no healthcare had they participated in the JSY. The

bound width of P (Y1 = 1) is P (D = 0). The bounds of P (Y0 = 1) in equation (4.10) can be

interpreted in the same fashion, and bound width is P (D = 1). The sharp bound of ATE can

be obtained via equation (4.8) (Manski, 1990):

P (Y1 = 1|D = 1)P (D = 1)︸ ︷︷ ︸
LB1

−{P (Y0 = 1|D = 0)P (D = 0) + P (D = 1)}︸ ︷︷ ︸
UB0

≤ ATE (4.11)

≤ {P (Y1 = 1|D = 1)P (D = 1) + P (D = 0)}︸ ︷︷ ︸
UB1

−P (Y0 = 1|D = 0)P (D = 0)︸ ︷︷ ︸
LB0

.

This bound is the narrowest sharp band that can be inferred from the data alone, which is often

called a ‘worst-case’ bound. Note that even without any assumption about unobserved probabil-

ities, the data alone tighten the theoretical width of ATE to half, if the support of the outcome

variable is bounded (Manski, 1989). It is known that without any identification assumption,
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Table 4.5: Partial-identification assumptions

Assumption Implication

Monotone treatment Individuals do not participate in the programme that makes them
response (MTR) worse-off with respect to the outcome.

Positive/negative The treated are more/less likely to have the healthcare
monotone treatment than the non-treated both in the presence and
selection (MTS) absence of the treatment.

Monotone instrumental Eligible people are less likely to have healthcare
variable (MIV) conditional on the treatment than ineligible women.

the bound on the ATE in equation (4.11) always has a width of 1 and includes 0. Hence, with-

out additional assumptions, we cannot evaluate the sign of the treatment effect on healthcare

use. Next, we consider three assumptions: (i) the monotone treatment response (MTR), (ii) the

monotone treatment selection (MTS) and (iii) the monotone instrumental variable (MIV). The

key implications of each assumption are summarised in Table 4.5.

Monotone treatment response

Second, we assume that individuals do not select a treatment that would make them worse

off with respect to maternal and child healthcare use. This assumption is called the ‘mono-

tone treatment response’ (MTR) assumption and it implies that, ceteris paribus, response varies

monotonically with treatment (Manski, 1997).

Formally, the MTR assumes that for all individual j ∈ J , Y0j ≤ Y1j . We obtain the new

bounds for P (Y1 = 1|D = 0) and P (Y0 = 1|D = 1) as follows:

P (Y0 = 1|D = 0) ≤ P (Y1 = 1|D = 0) ≤ 1 (4.12)

0 ≤ P (Y0 = 1|D = 1) ≤ P (Y1 = 1|D = 1). (4.13)

We observe shrinkage in the counterfactual probability bounds. For P (Y1 = 1|D = 0), while the

bound of this counterfactual probability in the worst-case ranges from 0 to 1, its new range under

the MTR assumption ranges from P (Y0 = 1|D = 0) to 1. Also, the new range of P (Y0 = 1|D = 1)

under the MTR assumption runs from 0 to P (Y1 = 1|D = 1). The following bounds of P (Y1 = 1)

155



and P (Y0 = 1) can be obtained from equations (4.1) and (4.3):

P (Y1 = 1|D = 1)P (D = 1) + P (Y0 = 1|D = 0)P (D = 0)

= P (Y = 1)︸ ︷︷ ︸
Updated LB1

≤ P (Y1 = 1) (4.14)

≤ P (Y1 = 1|D = 1)P (D = 1) + P (D = 0)

and

P (Y0 = 1|D = 0)P (D = 0)

≤ P (Y0 = 1) (4.15)

≤ P (Y1 = 1|D = 1)P (D = 1) + P (Y0 = 1|D = 0)P (D = 0)

= P (Y = 1)︸ ︷︷ ︸
Updated UB0

,

where the lower bound of P (Y1 = 1) and the upper bound of P (Y0 = 1) in the worst-case scenario

are both replaced by P (Y = 1). Via equation (4.8), it follows

0 ≤ ATE ≤ {P (Y1 = 1|D = 1)P (D = 1) + P (D = 0)} − P (Y0 = 1|D = 0)P (D = 0). (4.16)

Under the MTR assumption, the lower bound of ATE becomes 0. Therefore, the MTR assump-

tion precludes a non-negative ATE and assumes away the possibility of the detrimental impact

of the JSY. In other words, the MTR assumes that the JSY programme would never decrease

the likelihood of receiving healthcare. The MTR assumption, however, leaves open the question

of whether the programme has a strong beneficial effect, a mild beneficial effect or no effect at

all (Gundersen et al., 2017).

In general, the credibility of the MTR assumption depends on the type of policy we are analysing.

As the MTR assumes the sign of the treatment effect, the MTR assumption can be admittedly

too stringent in the case where we have no clue at all regarding the sign of the ATE a priori.

However, in the context of the JSY programme, it is unlikely that a mother does not use the

healthcare service when she is treated and does use the service when she is untreated, because

the accredited social health activists, who support pregnant mothers in the JSY programme,
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encourage women to receive timely maternal and child healthcare. Furthermore, they encourage

women to undergo three antenatal cares and to give birth in a health institution. They also

assist pregnant women to obtain tetanus toxoid injections and iron/folic acid supplements. The

Ministry of Health and Family Welfare also states, in their guidelines for the implementation of

JSY, that all pregnant mothers should receive at least three ANCs. Therefore, it is reasonable

to presume that the JSY programme will not decrease healthcare use.

Monotone treatment selection

Third, we make an assumption on the selection mechanism through which women participate in

the JSY. Specifically, we make an assumption as to whether or not individuals participating in the

JSY programme are more likely to use maternal and child healthcare services on average, condi-

tional on the treatment assignment. This assumption is called the ‘monotone treatment selection’

(MTS) assumption (Manski and Pepper, 2000) and sounds similar to the MTR assumption, but

they are different, although not mutually exclusive. In contrast to the MTR assumption, which

is on individual-level potential behaviours, the MTS assumption is on expected probability. The

MTS can be regarded as the weaker version of the independence assumption, whereby equalities

in equations (4.4) and (4.5) are weakened to the point of becoming inequalities. There are two

types of MTS assumption, namely positive MTS and negative MTS, and they make different

assumptions regarding the direction of the selection bias.

(i) Positive MTS: When we assume that mothers participating in the JSY are likely to use no

fewer healthcare services on average than non-participants, conditional on treatment assignment,

this assumption is called the ‘positive MTS assumption’. It is plausible in situations where risk-

averse women are more likely to participate in the JSY and use healthcare services than women

with lower degrees thereof, and/or where women in socially and economically segregated ethnic

groups know less about the JSY. The positive MTS assumption is formalised as follows:

0 ≤ P (Y1 = 1|D = 0) ≤ P (Y1 = 1|D = 1) (4.17)

P (Y0 = 1|D = 0) ≤ P (Y0 = 1|D = 1) ≤ 1. (4.18)

Note that in equations (4.17) and (4.18), the MTS assumes only the direction of the selection

bias, and it does not assume its strength. The positive MTS assumption lowers the upper bound

of P (Y1 = 1|D = 0) in the worst-case, from 1 to P (Y1 = 1|D = 1), and raises the lower bound of
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P (Y0 = 1|D = 1) in the worst-case, from 0 to P (Y0 = 1|D = 0).

The new sharp bounds of P (Y1 = 1) and P (Y0 = 1) can then be obtained from equations

(4.2) and (4.3) as follows (Manski and Pepper, 2000):

P (Y1 = 1|D = 1)P (D = 1) ≤ P (Y1 = 1) ≤ P (Y1 = 1|D = 1)︸ ︷︷ ︸
Updated UB1

(4.19)

P (Y0 = 1|D = 0)︸ ︷︷ ︸
Updated LB0

≤ P (Y0 = 1) ≤ P (Y0 = 1|D = 0)P (D = 0) + P (D = 1). (4.20)

Compared with their bounds in the worst-case scenario, the upper bound of P (Y1 = 1) has

become smaller and the lower bound of P (Y0 = 1) has become larger. The sharp bound of ATE

is given via the equation (4.8) and it is

P (Y1 = 1|D = 1)P (D = 1)− {P (Y0 = 1|D = 0)P (D = 0) + P (D = 1)}

≤ ATE (4.21)

≤ P (Y1 = 1|D = 1)− P (Y0 = 1|D = 0).

We find that, compared with the worst-case ATE bound in equation (4.11), the upper bound in

equation (4.21) has become smaller. It is easy to show that the upper bound of ATE under the

MTS assumption corresponds to the ATE estimated under the independence assumption (see

the note in the Appendix 4.B.2), which implies that the upper bound of ATE is achieved when

there exists no selection bias regarding participation in the JSY.

(ii) Negative MTS: If we anticipate that mothers who had the greater difficulty in using

healthcare services had higher motivation to participate in the JSY, or they were more strongly

encouraged by the accredited social health activists to participate in the JSY, it may be more

appropriate to assume that mothers participating in the JSY are likely to use no more health-

care services on average than non-participants. This assumption is called the ‘negative MTS

assumption’, which is formalised as follows:

P (Y1 = 1|D = 1) ≤ P (Y1 = 1|D = 0) ≤ 1 (4.22)

0 ≤ P (Y0 = 1|D = 1) ≤ P (Y0 = 1|D = 0). (4.23)

The negative MTS assumption raises the worst-case upper bound of P (Y1 = 1|D = 0) from 0

to P (Y1 = 1|D = 1) and lowers the worst-case lower bound of P (Y0 = 1|D = 1) from 1 to
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P (Y0 = 1|D = 0). The bounds of P (Y1 = 1) and P (Y0 = 1) become

P (Y1 = 1|D = 1)︸ ︷︷ ︸
Updated LB1

≤ P (Y1 = 1) ≤ P (Y1 = 1|D = 1)P (D = 1) + P (D = 0) (4.24)

P (Y0 = 1|D = 0)P (D = 0) ≤ P (Y0 = 1) ≤ P (Y0 = 1|D = 0)︸ ︷︷ ︸
Updated UB0

. (4.25)

The sharp bound of ATE is given via equation (4.8) and is

P (Y1 = 1|D = 1)− P (Y0 = 1|D = 0)

≤ ATE (4.26)

≤ {P (Y1 = 1|D = 1)P (D = 1) + P (D = 0)} − P (Y0 = 1|D = 0)P (D = 0).

We find that, compared with the worst-case bound in equation (4.11), the lower bound of the

ATE in equation (4.26) has become larger. Also, this bound shows that the lower bound of ATE

under the negative MTS assumption corresponds to the ATE estimated under the independence

assumption, which implies that the lower bound of ATE is achieved only when there exists no

selection bias regarding the participation in the JSY (see the note in the Appendix 4.B.2).

In general, sources of selection bias are multiple. The ultimate direction of the selection mech-

anism is expected to vary across the outcomes, but moreover, in essence, there is no definitive

way to examine the sources of selection bias and the direction of this bias. However, we can find

a clue by comparing the size of the ATE estimated under the independence assumption and the

one estimated under the CIA. When the ATE under the independence assumption is larger than

that under the CIA, it implies the existence of positive selection bias, part of which is removed by

controlling for covariates. On the other hand, when the difference between the ATEs is negative,

it suggests the existence of negative selection bias. We infer the sign of selection bias for each

outcome, and then we impose either a positive or a negative MTS assumption accordingly.

Monotone instrumental variable

The last assumption we consider is the monotone instrumental variable (MIV) assumption (Man-

ski and Pepper, 2000), which states that the latent probability of having healthcare varies weakly

and monotonically with an observed instrument, v. Different from the standard instrumental

variable approach (Imbens and Angrist, 1994), the MIV assumption does not impose the mean

independence assumption requiring that the latent outcomes are mean-independent of the in-
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strument, namely P (Yt = 1|v = 1) = P (Yt = 1|v = 0) for t ∈ {0, 1}. The instrument v is allowed

to be dependent on the mean of the potential outcome, as long as the direction of its effect is

monotone. Hence, in this sense, the MIV is weaker than the mean independence assumption.

Also, the MIV assumption itself does not impose any assumption regarding the association be-

tween the instrument and the treatment status. Thus, the MIV assumption is not susceptible to

criticisms of weak instruments.

Following Gundersen et al. (2017, 2012)10, we use the non-eligibility status of the JSY as an

instrument. We assume that ineligible women, who tend to be richer, are more likely to use

healthcare services conditional on the treatment than eligible women. This assumption is sup-

ported by the observations in developing countries that poorer women are less likely to use

maternal healthcare services (Pathak et al., 2010; Pathak and Mohanty, 2010; Kesterton et al.,

2010; Balarajan et al., 2011). We discuss the plausibility of our MIV assumption further in

section 4.6.2.

Formally, let v be a binary instrument, and v = 1 indicates that a woman is not eligible for

the JSY. The MIV assumption imposed herein is expressed as

P (Y1 = 1|v = 0) ≤ P (Y1 = 1|v = 1) (4.27)

P (Y0 = 1|v = 0)︸ ︷︷ ︸
Eligible women

≤ P (Y0 = 1|v = 1)︸ ︷︷ ︸
Ineligible women

. (4.28)

Note that equations (4.27) and (4.28) are the assumptions on the latent outcomes. The MTS

assumption is a special case of the MIV assumption, in which the participation status itself is

used as an instrument, i.e. v = D.

The MIV assumption gives the following sharp bounds of P (Y1 = 1) and P (Y0 = 1) in equations

10Gundersen et al. (2017, 2012) estimate the ATE bounds of food assistance programmes targeting poor house-
holds in the US on nutritional status.
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(4.29) and (4.30). Their derivations are provided in the Appendix 4.B.3.

P (v = 0)P (Y1 = 1|D = 1, v = 0)P (D = 1|v = 0)

+P (v = 1) max{P (Y1 = 1|D = 1, v = 0)P (D = 1|v = 0), P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1)}

≤ P (Y1 = 1) (4.29)

≤ P (v = 0) min{P (Y1 = 1|D = 1, v = 0)P (D = 1|v = 0) + P (D = 0|v = 0),

P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1) + P (D = 0|v = 1)}

+P (v = 1)[P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1) + P (D = 0|v = 1)]

and

P (v = 0)P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0)

+P (v = 1) max{P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0), P (Y0 = 1|D = 0, v = 1)P (D = 0|v = 1)}

≤ P (Y0 = 1) (4.30)

≤ P (v = 0) min{P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0) + P (D = 1|v = 0),

P (Y0 = 1|D = 0, v = 1)P (D = 0|v = 1) + P (D = 1|v = 1)}

+P (v = 1)[P (Y0 = 1|D = 0, v = 1)P (D = 0|v = 1) + P (D = 1|v = 1)].

The sharp bound of the ATE can be obtained by equation (4.8).11 ATE bounds under the MIV

assumption, and those in the worst-case scenario, coincide if the worst-case lower and upper

bounds of P (Yt = 1|v = u) weakly increase with u; in such cases, the MIV assumption has no

identifying power, and the MIV assumption does not make the ATE bounds narrower (Manski

and Pepper, 2000; Richey, 2016).

4.4.4 Joint imposition of partial identification assumptions

We consider the case where we jointly impose the assumptions introduced so far. We add mild

assumptions one by one and see how much each additional assumption can make the ATE bound

11It is known that when we estimate the ATE bound under the MIV assumption with the sample analogue,
the estimate can suffer finite-sample bias, which in turn could potentially make the bound narrower than the true
bound (Manski and Pepper, 2009). Following Jensen’s inequality, the estimated lower bounds are potentially biased
upwards because of their maxima operators, and the estimated upper bounds are potentially biased downwards
because of their minima operators. Details are provided in the Appendix 4.B.4. To address this bias, we implement
a bootstrap-based correction proposed by Kreider and Pepper (2007). This method estimates bias by using the
bootstrap distribution and adjusting the sample analogue estimate in accordance with the estimated bias. For
example, when we have a random sample of size N , let LBN be the sample analogue estimate of the lower bound
in question. We denote Eb(LBN ) as the mean of the estimate from the bootstrap distribution of size b. Bias
is estimated as Eb(LBN ) − LBN , and the bias-corrected estimate is given by LBN − {Eb(LBN ) − LBN} =
2LBN − Eb(LBN ). We correct the bias of the upper bound in the same way. In this study, we estimate bias
with b = 100 bootstrap repetitions. The performance of this method is confirmed by Monte Carlo simulations in
Manski and Pepper (2009).
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narrower. In the context of the JSY programme, the MTR assumption is the most plausi-

ble, followed by the MTS assumption. Lastly, we add the MIV assumption, which seems the

strongest of all three assumptions. Hence, in this study we mainly consider the following two

cases: MTR+MTS and MTR+MTS+MIV.

When we jointly impose different assumptions, we derive the bounds of P (Y1 = 1) and P (Y0 = 1)

under the jointly imposed assumptions, in order to get the ATE bound. ATE bounds’ estimators

and their full derivations are in the Appendix 4.C. For the other combinations, i.e. MTR+MIV

and MTS+MIV, their estimators are also provided in the Appendix 4.D.

4.4.5 Inference of partial identification

Estimating the ATE bounds requires us to consider sampling variabilities. The ATE bounds

introduced so far concern the conclusions that could be drawn under different assumptions if

we were to observe the JSY participation status and outcomes experienced by everyone in the

population. Sampling variability, however, arises when these data are available for only a sample

of the population. We consider sample variability by constructing the confidence intervals for

the bound estimates.

A confidence interval for the bound estimate contains the parameter of interest; however, there

is no consensus on its definition, and related research is still ongoing. When we consider a con-

fidence interval in the partial identification, the question arises as to whether to construct an

interval over the region of identification (Chernozhukov et al., 2007) or over the actual parameter

of interest (Imbens and Manski, 2004).12

We obtain the confidence intervals for the estimated bounds via the method developed by Imbens

and Manski (2004). The confidence intervals defined by Imbens and Manski (2004) asymptoti-

cally cover the true parameter, namely ATE, with a fixed probability, rather than covering the

entire identification region with fixed probability.

Formally, the confidence intervals for parameter θ at the 1 − α level are defined as sets of

the parameters where we cannot reject the null hypothesis that θ is an element of the iden-

12Instead, some studies provide confidence intervals for the upper and lower ATE bounds, respectively (Ginther,
2000).

162



tification set, Θ, at the α level. When the estimated lower and upper bounds are [L̂B, ÛB]

and their standard errors are σ̂LB and σ̂UB, 1 − α level confidence intervals of Imbens and

Manski (2004) are constructed as CI1−α ∈ [L̂B − cσ̂LB, ÛB + cσ̂UB], where parameter c solves

Φ(c+ (σ̂UB−σ̂LB)
max{σ̂LB ,σ̂UB})− Φ(−c) = 1− α with the Newton-Raphson method. For more details, see

Imbens and Manski (2004). Confidence intervals are obtained by bootstrap with 200 repetitions.

4.5 Results

4.5.1 Point-identification

We point-estimate the ATEs by: (1) Independence, (2) OLS, (3) PSM, (4) IPW+OLS, (5) NNM,

(6) EBW and (7) RDD. For these approaches (2)-(7), we use the set of covariates used in Rah-

man and Pallikadavath (2018). Logistic regression is used to estimate the propensity score.13

Table 4.6 shows the estimation results, and we observe that the JSY has positive impacts on all

outcomes (p < 0.01). When we relax the independence assumption and instead impose the CIA,

we find larger effects on institutional delivery, skilled birth attendance, PNC for mothers and

PNC for babies, and smaller effects on ANC at least once, ANC at least three times, iron and

folic acid supplement intakes and tetanus toxoid injections.

The results of the fuzzy RDD approach are shown in Table 4.6. They show the largest ATEs on

all outcomes except PNC for mothers. As is well known, the RDD estimates the ATE among

a sub-population that has been induced to participate in the treatment with the change in in-

strumental variables, and these people are often called ‘compliers’. Hence, an ATE estimated

by RDD can be different from ATEs estimated by other approaches, if compliers are very much

different from the entire sample population (Imbens and Angrist, 1994). The jumps and kinks in

the probability of participating in the programme, and the probability of using healthcare, are

shown in Figure 4.2.

4.5.2 Partial identification

Table 4.7 presents the main result of this study, and it reports changes in the bound estimates

for each outcome as we incrementally tighten the ATE bounds by adding stronger assumptions

one by one. Herein, we consider the following four cases: (1) No assumption, (2) MTR, (3)

13The result for which is available from the author upon request.
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Table 4.6: Point-estimated ATE
Estimates SEs Confidence intervals

Institutional delivery
Independence 0.126*** 0.003 (0.12, 0.132)
OLS 0.129*** 0.003 (0.123, 0.135)
PSM 0.129*** 0.003 (0.123, 0.135)
IPW+OLS 0.132*** 0.003 (0.126, 0.138)
NNM 0.122*** 0.003 (0.116, 0.128)
EBW 0.131*** 0.003 (0.125, 0.137)
RDD 0.19*** 0.037 (0.117, 0.263)

Skilled delivery attendance
Independence 0.081*** 0.002 (0.077, 0.085)
OLS 0.088*** 0.002 (0.084, 0.092)
PSM 0.088*** 0.002 (0.084, 0.092)
IPW+OLS 0.09*** 0.002 (0.086, 0.094)
NNM 0.082*** 0.002 (0.078, 0.086)
EBW 0.094*** 0.002 (0.09, 0.098)
RDD 0.134*** 0.030 (0.075, 0.193)

Antenatal care +1
Independence 0.091*** 0.002 (0.087, 0.095)
OLS 0.079*** 0.003 (0.073, 0.085)
PSM 0.078*** 0.003 (0.072, 0.084)
IPW+OLS 0.08*** 0.003 (0.074, 0.086)
NNM 0.072*** 0.003 (0.066, 0.078)
EBW 0.079*** 0.003 (0.073, 0.085)
RDD 0.139*** 0.035 (0.07, 0.208)

Antenatal care +3
Independence 0.108*** 0.004 (0.1, 0.116)
OLS 0.082*** 0.005 (0.072, 0.092)
PSM 0.07*** 0.006 (0.058, 0.082)
IPW+OLS 0.079*** 0.005 (0.069, 0.089)
NNM 0.075*** 0.006 (0.063, 0.087)
EBW 0.091*** 0.004 (0.083, 0.099)
RDD 0.129*** 0.050 (0.031, 0.227)

Postnatal care for mother
Independence 0.086*** 0.004 (0.078, 0.094)
OLS 0.105*** 0.005 (0.095, 0.115)
PSM 0.094*** 0.006 (0.082, 0.106)
IPW+OLS 0.106*** 0.005 (0.096, 0.116)
NNM 0.102*** 0.006 (0.09, 0.114)
EBW 0.106*** 0.004 (0.098, 0.114)
RDD 0.071 0.051 (-0.029, 0.171)

Postnatal care for baby
Independence 0.054*** 0.004 (0.046, 0.062)
OLS 0.076*** 0.004 (0.068, 0.084)
PSM 0.068*** 0.005 (0.058, 0.078)
IPW+OLS 0.077*** 0.004 (0.069, 0.085)
NNM 0.073*** 0.004 (0.065, 0.081)
EBW 0.071*** 0.004 (0.063, 0.079)
RDD 0.113*** 0.044 (0.027, 0.199)

Iron folic acid supplement intakes
Independence 0.14*** 0.004 (0.132, 0.148)
OLS 0.099*** 0.005 (0.089, 0.109)
PSM 0.091*** 0.006 (0.079, 0.103)
IPW+OLS 0.096*** 0.005 (0.086, 0.106)
NNM 0.085*** 0.006 (0.073, 0.097)
EBW 0.105*** 0.004 (0.097, 0.113)
RDD 0.145*** 0.051 (0.045, 0.245)

Tetanus toxoid injections
Independence 0.099*** 0.003 (0.093, 0.105)
OLS 0.088*** 0.003 (0.082, 0.094)
PSM 0.088*** 0.004 (0.08, 0.096)
IPW+OLS 0.088*** 0.003 (0.082, 0.094)
NNM 0.078*** 0.004 (0.07, 0.086)
EBW 0.09*** 0.003 (0.084, 0.096)
RDD 0.17*** 0.039 (0.094, 0.246)

Source: DLHS-4. Note: Number of observations is 67,595. The choice of covariates follows Rahman and Pallikadavath
(2018). 95% confidence intervals are shown. PSM=Propensity score matching; IPW+OLS=OLS adjusted with propensity
score inverse probability weighting; NNM=Nearest neighbour matching; and EBW=Entropy balance weighting; and
RDD=Regression discontinuity design. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure 4.2: Discontinuities in the probabilities of treatment participation and healthcare use at
parity more than two

Source: DLHS-4. Note: ANC=Antenatal care; PNC=Postnatal care; IFA=Iron and folic acid; and TT=tetanus
toxoid.

MTR+MTS and (4) MTR+MTS+MIV. Table 4.7 also reports the confidence intervals for the

respective ATE bound estimates. We observe that the widths of the confidence intervals are just

slightly wider than those of the estimated ATE bounds. Compared with the widths of the bound

estimates, the additional widths due to sampling variability are very small, which is thanks to

the large sample sizes. This suggests that the identification problem is the dominant concern for

inference in relation to the impacts, and sampling variance poses a much less serious problem

for inference (Manski and Nagin, 1998).

Institutional delivery

First, for institutional delivery, in the worst-case scenario where we do not impose any assump-

tion, the lower bound is -0.650 and the upper bound is 0.350. In the worst case, the bound width

is always 1, and the bound always includes 0. This bound just ensures that the true ATE can

never be outside of this bound as long as the ATE is estimated from these data. Although this
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Table 4.7: ATE bounds
Estimates Confidence intervals

Lower bound Upper bound Lower bound Upper bound

Institutional delivery
No assumption −0.652 0.348 −0.654 0.351
MTR 0.000 0.348 0.000 0.351
MTR+MTS 0.126 0.348 0.122 0.351
MTR+MTS+MIV 0.262 0.331 0.255 0.335

Skilled delivery attendance
No assumption −0.702 0.298 −0.705 0.301
MTR 0.000 0.298 0.000 0.301
MTR+MTS 0.081 0.298 0.078 0.301
MTR+MTS+MIV 0.176 0.294 0.170 0.297

Antenatal care +1
No assumption −0.685 0.315 −0.688 0.319
MTR 0.000 0.315 0.000 0.319
MTR+MTS 0.000 0.091 0.000 0.095
MTR+MTS+MIV 0.000 0.042 0.000 0.050

Antenatal care +3
No assumption −0.587 0.413 −0.590 0.417
MTR 0.000 0.413 0.000 0.417
MTR+MTS 0.000 0.108 0.000 0.115
MTR+MTS+MIV 0.000 0.014 0.000 0.029

Postnatal care for mother
No assumption −0.558 0.442 −0.561 0.445
MTR 0.000 0.442 0.000 0.445
MTR+MTS 0.086 0.442 0.078 0.445
MTR+MTS+MIV 0.196 0.430 0.187 0.434

Postnatal care for baby
No assumption −0.644 0.356 −0.647 0.358
MTR 0.000 0.356 0.000 0.358
MTR+MTS 0.054 0.356 0.048 0.358
MTR+MTS+MIV 0.158 0.349 0.150 0.352

Iron folic acid supplement intakes
No assumption −0.570 0.430 −0.573 0.433
MTR 0.000 0.430 0.000 0.433
MTR+MTS 0.000 0.140 0.000 0.146
MTR+MTS+MIV 0.000 0.065 0.000 0.081

Tetanus toxoid injections
No assumption −0.664 0.336 −0.668 0.339
MTR 0.000 0.336 0.000 0.339
MTR+MTS 0.000 0.099 0.000 0.104
MTR+MTS+MIV 0.000 0.046 0.000 0.056

Source: DLHS-4. Note: Number of observations is 67,595. Note: 95% confidence intervals are calculated
following Imbens and Manski (2004) by bootstrap with 200 repetitions.
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bound has a wider negative range, it does not necessarily mean that the ATE is more likely to be

negative. Also, the centre of the bound (-0.15 in this case) is not necessarily the most probable

ATE.

When we impose the MTR assumption, it truncates the lower bound of the ATE at 0, be-

cause the MTR assumes that the ATE is non-negative. We then add the MTS assumption to

the MTR assumption. As the ATE estimated by OLS is larger than the ATE estimated by mean

comparisons, we assume the negative MTS assumption here. Negative selection bias assumes

that individual observable and unobservable characteristics are correlated with participation in

the programme and institutional delivery in the opposite directions. One possible case would be

that richer mothers who seek high-quality healthcare at private hospitals may have lower moti-

vation to participate in the JSY. Imposing the MTS assumption, we find that the lower bound

becomes even larger, from 0 to 0.126. Furthermore, adding the MIV assumption makes the ATE

bound even narrower. The lower bound has become 0.262 and the upper bound has become 0.331.

After adding the MIV assumption, we find that all point-identified ATE estimates are out-

side of the ATE bound. ATEs on institutional delivery and estimated under the CIA are smaller

than the lower ATE bound estimated under the MTR, MTS and MIV assumptions, thereby

suggesting that their maintained assumptions are not compatible with the MTR, MTS and MIV

assumptions used in the partial identification approach.14 This incompatibility occurs because

(1) the CIA is not valid, (2) functional-form assumptions are not correct and/or (3) the MTR,

MTS and MIV assumptions are not valid. The finding that the non-parametric EBW estimate is

outside of the bound implies that regardless of functional-form assumptions, the point-identified

ATE is outside of the ATE bound.

Moreover, as discussed in the previous section, the identification assumptions used for the bound

estimation are supported by empirical and observational evidence. Given that the CIA is hard

to justify for the case of the JSY, it would be reasonable to think that the incompatibility

between assumptions for the point-identification and those for the partial-identification mainly

comes from the possibly unacceptable CIA and/or functional form specification errors.15 Also,

14Strictly speaking, even without the MTR assumption, all the point-identified ATEs are found to be outside of
the bound estimates (see Figure 4.4).

15We estimated the propensity score differently with the probit and linear probability model, but we still obtained
similar results.
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we found that the ATE estimated by the fuzzy RDD is also smaller than the lower bound of

the ATE, which implies that the compliers are very much different from the other populations

and/or the assumption of discontinuity is not valid.

Skilled birth attendance

For skilled birth attendance, in the worst case, the ATE bound runs from -0.702 to 0.298. The

MTR assumption truncates the lower bound at 0. As the ATE estimated by OLS is larger

than the ATE estimated by mean comparisons, we assume the negative MTS assumption. We

speculate that most of the rich mothers who can afford to give birth in the presence of skilled

birth attendants may not have been eligible for the JSY. Adding the negative MTS assumption

raises the lower bound up to 0.081. Furthermore, adding the MIV assumption makes the band

narrower. Under the three assumptions, the lower and upper bounds become 0.176 and 0.294,

respectively.

All point-estimated ATEs are smaller than the lower limit of this ATE bound, which suggests

that they could be under-estimated under the maintained assumptions. The confidence interval

of the ATE bound under the MTR, MTS and MIV assumptions is between 0.170 and 0.297,

which does not include the point-identified ATEs.

ANC use at least once

For ANC use at least once, in the worst case, the ATE bound is from -0.685 to 0.315. The MTR

assumption makes the bound non-negative. As the ATE estimated by OLS is smaller than the

ATE estimated by mean comparisons, we add the positive MTS assumption to the MTR, which

thus implies that mothers with higher awareness of the importance of maternal healthcare may

be more likely to participate in the JSY and receive ANC. Adding the MTS assumption substan-

tially narrows the upper bound of ATE to 0.091, implying that the assumption regarding the

direction of selection bias has strong identifying power. The MIV assumption further narrows

the upper bound to 0.042.

We observe that ATEs under the independence assumption and the CIA lie beyond the up-

per limit of this ATE bound. We also observe that the ATE estimated by the RDD is outside

of this bound, thereby implying that the compliers are very much different from the entire pop-
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ulation and/or the assumption of discontinuity is not valid. We do not observe the overlapping

of confidence intervals between point-estimated ATEs and the bound-estimated ATE.

ANC use at least three times

We also observe similar shrinkage in the ATE bound for ANC use three times and more. Its worst-

case bound ranges from -0.587 to 0.413, and the MTR assumption truncates the lower bound at

0. As the ATE estimated by OLS is smaller than the ATE estimated by mean comparisons, we

assume the positive MTS assumption, which narrows the upper bound from 0.413 to 0.108. The

MIV assumption further narrows it up to 0.014. After adding the MIV assumption, the point-

identified ATEs are again found beyond this upper bound. We do not observe the overlapping

of confidence intervals between point-estimated ATEs and the bound-estimated ATE.

PNC for mothers

For PNC for mothers, the worst-case bound is -0.558 to 0.442, and the MTR assumption makes

the lower bound non-negative. As the ATE estimated by OLS is larger than the ATE estimated

by mean comparisons, we assume the negative MTS assumption, which suggests that those moth-

ers who have greater difficulty in accessing healthcare may have been more strongly encouraged

by the accredited social health activists to join the JSY programme and/or that mothers who

can afford to receive PNC may not have been eligible for the JSY. We find that the negative

MTS has strong identifying power and succeeds in increasing the lower bound up to 0.086. The

MIV assumption contributes to further narrowing the bounds of the ATE.

Under the three assumptions, we observe that the ATE is no less than 0.193 and no larger

than 0.430. Under the three assumptions, we observe that the point-identified ATEs are all

smaller than the lower limit of the ATE bound, suggesting the possibility of under-estimating

ATEs under the CIA (Figure 4.5). The ATE under the RDD assumption lies also outside the

bound. We do not observe the overlapping of confidence intervals between point-estimated ATEs

and the bound-estimated ATE.

PNC for babies

For PNC for babies, the worst-case bound runs from -0.644 to 0.356. Along with PNC for

mothers, as the ATE estimated by OLS is larger than the ATE estimated by mean comparisons,
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we assume the negative MTS assumption. The MTR and negative MTS assumptions raise the

lower limit of the ATE bound up to 0.054, and the MIV assumption further narrows the lower

bound to 0.158 and the upper bound to 0.349. We find that ATEs under the CIA and the RDD

assumption lie below this lower bound, thereby suggesting that they could be under-estimated.

Even when considering sampling variability, the confidence interval of the ATE bound does not

include the point-estimated ATEs.

Iron and folic acid supplement intakes

For iron and folic acid supplement intakes, we find that in the worst case, the ATE ranges from

-0.570 to 0.430. As the ATE estimated by OLS is smaller than the ATE estimated by mean

comparisons, we impose the positive MTS assumption, implying that mothers who understand

the importance of maternal healthcare are more likely to participate in the programme and receive

the supplement. The MTR assumption makes the bound non-negative, and the positive MTS

assumption substantially narrows the upper bound to 0.140. Adding the MIV assumption further

narrows the upper bound up to 0.065. We find that all point-estimated ATEs are greater than

the upper bound, thereby suggesting their over-estimation. Although the confidence interval of

the ATE bound does not include the point-identified ATEs, we observe the overlapped confidence

intervals of the ATEs point-estimated by PSM, NNM and RDD with that of the bound-estimated

ATE.

Tetanus toxoid injections

Finally, for the tetanus toxoid injections, the worst-case bound is from -0.664 to 0.336, and

the MTR assumption truncates the lower bound at 0. As for the case with iron and folic

acid supplements, as the ATE estimated by OLS is smaller than the ATE estimated by mean

comparisons, we assume the positive MTS assumption. We hypothesise that more risk-averse

mothers are more likely to join the JSY and access treatment. We observe that the positive MTS

assumption substantially contributes to narrowing the upper bound up to 0.099, and adding the

MIV assumption contributes to narrowing it further up to 0.046. We find that the point-estimated

ATEs are once again all outside of the bound, indicating the evidence of over-estimation. We

do not observe the overlapping of confidence intervals between point-estimated ATEs and the

bound-estimated ATE.
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4.5.3 Result summary

Figure 4.3 visually summarises the results presented above. The bounds shown in Figure 4.3 are

the sharp bounds under the MTR, MTS and MIV assumptions. We find that the point-identified

ATEs are below the lower ATE bound of institutional delivery, skilled birth attendance and PNC

for mothers and children. On the other hand, for ANC at least once and ANC at least three

times, the point-identified ATEs are over the upper limit of the ATE bounds. In particular, a

larger deviation from the lower bound is observed for institutional delivery. Even considering the

uncertainty of sampling variability, we do not observe the overlapping of the confidence intervals

between point-identified and partially-identified ATEs for institutional delivery, ANC at least

once, PNC for mothers and tetanus toxoid injections.

Next, we explore how each of the three assumptions contributes to estimating the ATE bounds

for each outcome. Figure 4.4 and Figure 4.5 illustrate the sharp ATE bounds for each outcome

estimated under the eight different combinations of assumptions. By comparing the bound

widths, we can infer the identification power of each assumption. The joint imposition of the

MTS and MIV assumptions leads to our main finding that point-estimated ATEs are outside

the bound-estimated ATEs. Interestingly, even without the MTR assumption, we could have

reached the same finding, although the estimated ATE bound can have a larger width. Another

interesting finding is that the MTR assumption is not binding in the presence of the negative

MTS assumption, because the negative MTS assumption itself made the lower limits of the ATE

bounds positive. Nevertheless, the MTR assumption significantly contributes to narrowing the

ATE bounds, unless the negative MTS assumption is imposed.

4.6 Robustness checks and further analysis

4.6.1 Robustness check: choice of covariates

As robustness checks with respect to the choice of covariates, we point-estimate ATEs again with

different covariate sets used in the previous studies and the full covariate sets, in order to see

whether the choice of covariates substantially affects our findings. Note that as an ATE bound is

unconditional on covariates, it is invariant across the covariate sets. First, we closely follow Lim

et al. (2010) and use the following covariate sets: state of residence, urban residence, below-the-

poverty-line card ownership, wealth quintile, scheduled caste, education, parity and maternal age.
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Figure 4.3: Point-estimated ATE and bound-estimated ATE under the MTR, MTS and MIV
assumptions

Source: DLHS-4. Note: The choice of covariates follows Rahman and Pallikadavath (2018).
PSM=Propensity score matching; IPW+OLS=OLS adjusted with propensity score inverse probability weighting;
NNM=Nearest neighbour matching; EBW=Entropy balance weighting; RDD=Regression discontinuity design;
ANC=Antenatal care; PNC=Postnatal care; IFA=Iron and folic acid; and TT=Tetanus toxoid. The bounds
shown here are sharp bounds estimated under the MTR, MTS and MIV assumptions. The shaded areas show
the 95% level confidence interval of the ATE bound under the MTR, MTS and MIV assumptions.
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Figure 4.4: ATE bounds for institutional delivery, skilled birth attendance and antenatal care

Source: DLHS-4. Note: The choice of covariates follows Rahman and Pallikadavath (2018).
PSM=Propensity score matching; IPW+OLS=OLS adjusted with propensity score inverse probability weighting;
NNM=Nearest neighbour matching; EBW=Entropy balance weighting; and RDD=Regression discontinuity
design. The bounds shown are sharp bounds under the MTR, MTS and MIV assumptions. The shaded areas
show the 95% level confidence interval of the ATE bound under the MTR, MTS and MIV assumptions.
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Figure 4.5: ATE bounds for postnatal care, iron and folic acid supplement intakes and tetanus
toxoid injections

Source: DLHS-4. Note: The choice of covariates follows Rahman and Pallikadavath (2018).
PSM=Propensity score matching; IPW+OLS=OLS adjusted with propensity score inverse probability weighting;
NNM=Nearest neighbour matching; EBW=Entropy balance weighting; and RDD=Regression discontinuity
design. The bounds shown are sharp bounds under the MTR, MTS and MIV assumptions. The shaded areas
show the 95% level confidence interval of the ATE bound under the MTR, MTS and MIV assumptions.
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Next, we closely follow Sengupta and Sinha (2018), who used the following variables as de-

terminants of JSY participation and healthcare use: residence in North-Western states, urban

residence, below-the-poverty-line card ownership, number of live births, scheduled caste, sched-

uled tribe, whether pregnancy was known within three months, any previous stillbirth, any

previous miscarriage, any child who died, age at which living with a husband, age at time of

birth, ratio of male to female members in a household, being Hindu, wealth quintiles, living in

a kachcha (made of natural materials) house and maternal and paternal education dummies.16

As well as these, following Sengupta and Sinha (2018), we use the following variables that affect

healthcare use only: sex of baby, number of brothers and sisters, whether any household member

is covered by health insurance and having no toilet facility or water treatment for drinking.

Third, we control for more variables, to take account of the selection bias as best as we can

manage. We control for the following covariates: birth-year fixed effects, birth-month fixed ef-

fects, state-fixed effects, urban residence, below-the-poverty-line card ownership, number of live

births, scheduled caste, scheduled tribe, whether pregnancy was known within three months,

any previous stillbirth, any previous miscarriage, any child who died, age at which living with a

husband, age at time of birth, ratio of male to female members in a household, wealth quintiles,

maternal and paternal education levels and being Hindu. This comprehensive set of covariates is

expected to remove more effectively the selection bias attributable to measurable characteristics.

If the point-estimated ATEs estimated with this full covariate set are outside of the ATE bounds,

then it supports our finding that the CIA is implausible.

The results estimated with these three sets of covariates are shown in Table 4.8 and summarised

visually in Figure 4.6. We find that all point-identified ATEs lie outside of ATE bounds in three

sets of covariates. We reconfirm that the point-identified ATEs are likely to be over-estimated

for ANC, iron and folic acid supplement intakes and tetanus toxoid injections. Also, we observe

that the point-identified ATEs are likely to be under-estimated for institutional delivery, skilled

birth attendance and PNC. Overall, these findings are consistent with our main results in Figure

4.3, implying that regardless of the choice of covariate set, the CIA and the functional form

assumption are likely to be invalid.

16We defined the following three educational levels for mothers and fathers, respectively: 1-6 years of education,
7-12 years of education and more than 12 years of education.
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Table 4.8: Point-estimated ATE with different covariate sets
Lim et al. (2010) Sengupta et al. (2018) Full sets
Estimates SEs Estimates SEs Estimates SEs

Institutional delivery
Independence 0.432*** 0.005 0.432*** 0.005 0.432*** 0.005
OLS 0.127*** 0.003 0.131*** 0.002 0.128*** 0.003
PSM 0.124*** 0.003 0.129*** 0.003 0.127*** 0.003
IPW+OLS 0.129*** 0.003 0.131*** 0.003 0.131*** 0.003
NNM 0.122*** 0.003 0.126*** 0.003 0.12*** 0.003
EBW 0.131*** 0.003 0.139*** 0.003 0.13*** 0.003

Skilled delivery attendance
Independence 0.349*** 0.005 0.349*** 0.005 0.349*** 0.005
OLS 0.087*** 0.002 0.086*** 0.002 0.087*** 0.002
PSM 0.083*** 0.002 0.087*** 0.002 0.086*** 0.002
IPW+OLS 0.088*** 0.002 0.086*** 0.002 0.089*** 0.002
NNM 0.081*** 0.002 0.081*** 0.002 0.082*** 0.002
EBW 0.094*** 0.002 0.095*** 0.002 0.092*** 0.002

Antenatal care +1
Independence 0.105*** 0.005 0.105*** 0.005 0.105*** 0.005
OLS 0.078*** 0.003 0.089*** 0.002 0.078*** 0.003
PSM 0.075*** 0.004 0.089*** 0.003 0.074*** 0.004
IPW+OLS 0.078*** 0.003 0.087*** 0.003 0.079*** 0.003
NNM 0.074*** 0.004 0.085*** 0.003 0.075*** 0.004
EBW 0.078*** 0.003 0.092*** 0.002 0.076*** 0.003

Antenatal care +3
Independence 0.101*** 0.007 0.101*** 0.007 0.101*** 0.007
OLS 0.079*** 0.005 0.098*** 0.004 0.079*** 0.005
PSM 0.074*** 0.006 0.093*** 0.006 0.075*** 0.006
IPW+OLS 0.078*** 0.005 0.093*** 0.004 0.077*** 0.005
NNM 0.07*** 0.006 0.091*** 0.005 0.073*** 0.005
EBW 0.092*** 0.004 0.109*** 0.004 0.089*** 0.004

Postnatal care for mother
Independence 0.178*** 0.007 0.178*** 0.007 0.178*** 0.007
OLS 0.104*** 0.005 0.088*** 0.005 0.104*** 0.005
PSM 0.111*** 0.006 0.084*** 0.006 0.097*** 0.006
IPW+OLS 0.106*** 0.005 0.089*** 0.005 0.107*** 0.005
NNM 0.104*** 0.006 0.09*** 0.006 0.094*** 0.006
EBW 0.106*** 0.004 0.094*** 0.004 0.108*** 0.004

Postnatal care for baby
Independence 0.065*** 0.007 0.065*** 0.007 0.065*** 0.007
OLS 0.074*** 0.004 0.058*** 0.004 0.075*** 0.004
PSM 0.076*** 0.005 0.055*** 0.005 0.068*** 0.005
IPW+OLS 0.075*** 0.004 0.059*** 0.004 0.077*** 0.004
NNM 0.071*** 0.004 0.062*** 0.004 0.064*** 0.004
EBW 0.071*** 0.004 0.06*** 0.004 0.072*** 0.004

Iron folic acid supplement intakes
Independence 0.104*** 0.006 0.104*** 0.006 0.104*** 0.006
OLS 0.098*** 0.005 0.125*** 0.004 0.097*** 0.005
PSM 0.087*** 0.006 0.126*** 0.005 0.095*** 0.006
IPW+OLS 0.096*** 0.005 0.119*** 0.004 0.094*** 0.005
NNM 0.086*** 0.006 0.118*** 0.005 0.09*** 0.006
EBW 0.105*** 0.004 0.126*** 0.004 0.101*** 0.004

Tetanus toxoid injections
Independence 0.056*** 0.004 0.056*** 0.004 0.056*** 0.004
OLS 0.086*** 0.003 0.098*** 0.003 0.087*** 0.003
PSM 0.084*** 0.004 0.097*** 0.004 0.083*** 0.004
IPW+OLS 0.086*** 0.003 0.095*** 0.003 0.087*** 0.004
NNM 0.079*** 0.004 0.095*** 0.004 0.083*** 0.004
EBW 0.09*** 0.003 0.101*** 0.003 0.087*** 0.003

Source: DLHS-4. Note: 95% confidence intervals are shown. PSM=Propensity score matching; IPW+OLS=OLS adjusted
with the propensity score inverse probability weighting; NNM=Nearest neighbour matching; and EBW=Entropy balance
weighting. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure 4.6: ATE bound and point-estimated ATE with different covariate sets

Source: DLHS-4. Note: PSM=Propensity score matching; IPW+OLS=OLS adjusted with propensity score
inverse probability weighting; NNM=Nearest neighbour matching; EBW=Entropy balance weighting;
ANC=Antenatal care; PNC=Postnatal care; IFA=Iron and folic acid; and TT=tetanus toxoid. The bounds
shown are sharp bounds estimated under the MTR, MTS and MIV assumptions. The shaded areas show the
95% level confidence interval of the ATE bound under the MTR, MTS and MIV assumptions.
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4.6.2 Robustness check: validity of the MIV assumption

Manski (2003) argues that the credibility of estimates decreases in line with the strength of the

assumptions maintained (The Law of Decreasing Credibility). We observe that the MIV assump-

tion played a key role in our finding that point-identified ATEs lie outside the bound-estimated

ATEs, and so consequently it is important to examine the credibility of the MIV assumption.

Although a large volume of literature reports that socio-economic status is negatively associated

with maternal and child healthcare use in developing countries (Pathak et al., 2010; Pathak and

Mohanty, 2010; Kesterton et al., 2010; Balarajan et al., 2011), we cannot directly test the valid-

ity of MIV assumption formalised in equations (4.27) and (4.28) in principle, because these are

assumptions on latent probabilities. Nevertheless, we can still explore the validity of equation

(4.27), using National Family Health Survey data, which were collected in 2005-2006. By focus-

ing only on women who delivered before 12 April 2005, we can observe both P (Y0 = 1|v = 0) and

P (Y0 = 1|v = 1) among women who gave birth before the introduction of the JSY. Figure 4.7

shows that P (Y0 = 1|v = 1) is larger than P (Y0 = 1|v = 0) for all outcomes (p < 0.01), indicat-

ing that in the absence of treatment, ineligible women are more likely to use healthcare services

than eligible women. This supports the validity of equation (4.27) and provides confidence in

our results.

4.7 Conclusion

In India, the CCT programme, i.e. the JSY, was introduced in 2005 and promotes the use

of maternal and child healthcare with cash incentives, in order to reduce infant and neonatal

mortalities. In contrast to other countries with CCT programmes, a rigorous RCT was not con-

ducted in India for the JSY (Joshi and Sivaram, 2014), and hence a valid instrumental variable

has not been available for researchers. Lim et al. (2010) conducted a first estimate of the causal

impacts of the JSY, and this has attracted much attention for a number of years. To date,

several studies have attempted to estimate its causal impacts on various healthcare services and

health outcomes. However, according to Das et al. (2011), the JSY was immature until 2007,

and the dataset analysed by Lim et al. (2010) and others (i.e. DLHS-3) was not reliable enough

to estimate the causal impact. The latest wave of the DLHS (DLHS-4) has become available

only recently, and Rahman and Pallikadavath (2017) and Rahman and Pallikadavath (2018) re-

estimated the causal impacts, acknowledging the potential serious errors that had occurred in

178



Figure 4.7: Comparison in the mean outcomes between eligible and non-eligible mothers without
treatment

Source: National Family Health Survey (2004-05). Note: 95% confidence intervals are shown. Mean outcomes
are calculated among women in HPSs aged between 15 and 49 who delivered in the five years prior to the survey
but before 12 April 2005. The left bars show P (Y0 = 1|v = 1), and the right bars show P (Y0 = 1|v = 0).

DLHS-3.

Up until now, however, no study has ever tried to assess the validity of the identification as-

sumptions employed in previous studies. For example, Lim et al. (2010), Rahman and Pallika-

davath (2018) and Sengupta and Sinha (2018) all relied on the CIA requiring that participation

in the JSY programme could be regarded as random if we control for observable household and

individual characteristics. However, the CIA is extremely hard to justify for the case of JSY.

The utilisation of maternal and child healthcare use, and participation in the JSY, is likely to

be dependent on individual unobservable characteristics such as the degree of being risk-averse

and awareness of the importance of maternal and child healthcare. If there exist some selection

mechanisms that cannot be controlled for by the observable characteristics, the estimated ATE

under the CIA suffers selection bias, potentially resulting in flawed and conflicting conclusions

(Manski, 2013). This study assessed the validity of the identification assumptions used in pre-

vious studies and provided new evidence through a partial identification approach. The partial

identification provided herein yielded an honest and credible bound of ATE, which is valuable

when we are not confident of the conventionally imposed identification assumptions.
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If the imposed assumptions are valid, any point-estimate of ATE should lie within the ATE

bound. However, we find that ATEs under the CIA lie beyond ATE bounds, suggesting the inva-

lidity of identification assumptions and the possibility of over- or under-estimation. Especially,

we find that the point-identified ATEs are below the lower ATE bounds of institutional delivery,

skilled birth attendance and PNC for mothers and children. On the other hand, for ANC at

least once and ANC at least three times, the point-identified ATEs are over the upper limits of

the ATE bounds. For institutional delivery, the largest deviations of the point-estimated ATEs

from the lower limit of its ATE bound is observed.17 We find consistent results even when we

use different covariate sets that have been used in two other previous studies.

Overall, this study provided sufficiently strong evidence that point-estimated ATEs could have

been biased in previous studies. It re-estimated causal impacts through a partial identification

approach and showed the conservative bounds of ATEs. Also, this study quantified how much at

least the point-identified ATEs under questionable identification assumptions could be far from

the true ATE. Certainly, the ATE bounds themselves do not give definite values for the causal

impacts. We believe, however, that the honest estimation of the bounds based on the credible

assumptions could be more useful and valuable in policy-making than definitive ATE estimates

that heavily rely on unpalatable or untenable assumptions. We hope the results of this study

contribute to evaluating the JSY thoroughly.

17However, it does not necessarily mean that the actual under-estimation size for the institutional delivery is
the largest; it just means that its lower limit of potential under-estimation is the largest.
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Appendix

4.A Appendix – Additional results

4.A.1 Additional evidence in LPSs with the National Family Health Survey

(NFHS)

We complement the analysis by providing additional evidence from within LPSs with the latest

National Family Health Survey (NFHS-4) conducted in 2015-2016. In contrast to the DLHS-

4, the NFHS is nationally representative, which allows us to estimate the impacts in LPSs.

The NFHS is a nationwide household survey that provides information on health, health-related

behaviours and household socio-economic status, and it is the Indian version of the Demographic

Health Survey conducted in more than 85 low- and middle-income countries (Corsi et al., 2012).

The NFHS-4 has 19,906 female observations in LPSs.18 After dropping observations with missing

information19, our final sample size was 13,121. Descriptive statistics for the NFHS-4 are shown

in Table 4.A.1.

Point-identification in LPSs

In this subsection, we show the results for the LPSs obtained with the NFHS-4 data. In contrast

to the DLHS-4, the NFHS-4 collected data from LPSs as well as HPSs (Figure 4.1). To make

the results comparable as much as possible to those obtained from the DLHS-4 data, we use the

same covariate sets used for the DLHS-4, i.e. the covariate set used in Rahman and Pallikadavath

(2018).20 The only difference in terms of covariates is the component of household wealth. In

both datasets, wealth is created from the principal component analysis from indicators of asset

ownership, housing characteristics and water and sanitation facilities, but their components are

different. In the NLHS-4, we use wealth officially derived in collaboration with the World Bank,

and it has been shown to be a consistent proxy for household income and expenditure (Rutstein

and Staveteig, 2014; Montgomery et al., 2000).21 Although in LPSs all women are eligible for

the JSY regardless of their age, socio-economic status or number of children, we continue to use

18In the NFHS data, not all women in the samples were interviewed about their husbands’ characteristics. In
this study, we use the nationally representative female samples in which information about a woman’s husband is
also collected.

19We dropped 67 observations with missing information about the JSY status, and 68 observations that did not
have information about paternal educational background.

20We also estimate the ATEs with the covariate sets in Lim et al. (2010) and Sengupta and Sinha (2018), and
we obtain very similar results.

21The list of indicators can be downloaded from the official website (https://www.dhsprogram.com/
programming/wealth%20index/India%20DHS%202015-16/IndiaNFHS4.pdf)–Accessed in 14/02/2019–.
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Table 4.A.1: Descriptive statistics in LPSs of the NFHS-4
Non-participants

LPSs
Participants

LPSs
mean mean

Institutional delivery 0.80 1.00
Skilled birth attendance 0.82 0.99
Antenatal care at least once 0.86 0.95
Antenatal care (≥3 times) 0.76 0.87
Postnatal care for mother 0.72 0.87
Postnatal care for baby 0.35 0.48
Iron and folic acid (IFA) supplement 0.83 0.92
Tetanus toxoid (TT) injection 0.89 0.94
Below the poverty line card 0.31 0.38
Scheduled caste 0.16 0.24
Scheduled tribe 0.25 0.30
Rural 0.65 0.69
Birth order (parity) 2.18 1.90
Hindu 0.64 0.65
Maternal age 27.62 26.88
Maternal education years 3.55 3.72
Paternal education years 3.73 3.74
Wealth 3.38 2.03

Observations 10783 2338

Source: NFHS-4.

the same eligibility criteria that are applied in HPSs as a monotone instrument, which makes

the results comparable with the previous results in HPSs.

Table 4.A.2 reports the ATEs estimated by: (1) Independence, (2) OLS, (3) PSM, (4) IPW+OLS,

(5) NNM and (6) EBW. All point-estimated ATEs are positive and significant (p < 0.01). We

find much larger ATEs in LPSs on institutional delivery and skilled birth attendance than ATEs

in HPSs estimated from the DLHS-4 data, which could be attributed to the observation that

in LPSs the initial outcome levels are far lower than those in HPSs. The lower initial level and

wider coverage of the programme may have led to larger ATEs (Dongre, 2012).

Partial identification in LPSs

First, we explore the direction of the selection bias. Comparing the ATE under the indepen-

dence assumption and the ATE estimated by OLS, we find that ATEs under the independence

assumption are larger than those estimated by OLS for ANC at least once, PNC for babies, iron

and folic acid supplement intakes and tetanus toxoid injections. Hence, for these outcomes, we
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Table 4.A.2: Point-estimated ATE in LPSs with the NFHS-4
Estimates SEs Confidence intervals

Institutional delivery
Independence 0.432*** 0.005 (0.422, 0.442)
OLS 0.433*** 0.004 (0.425, 0.441)
PSM 0.435*** 0.005 (0.425, 0.445)
IPW+OLS 0.433*** 0.004 (0.425, 0.441)
NNM 0.428*** 0.005 (0.418, 0.438)
EBW 0.429*** 0.005 (0.419, 0.439)

Skilled delivery attendance
Independence 0.349*** 0.005 (0.339, 0.359)
OLS 0.35*** 0.005 (0.34, 0.36)
PSM 0.35*** 0.005 (0.34, 0.36)
IPW+OLS 0.35*** 0.005 (0.34, 0.36)
NNM 0.346*** 0.005 (0.336, 0.356)
EBW 0.345*** 0.005 (0.335, 0.355)

Antenatal care +1
Independence 0.105*** 0.005 (0.095, 0.115)
OLS 0.105*** 0.005 (0.095, 0.115)
PSM 0.104*** 0.006 (0.092, 0.116)
IPW+OLS 0.105*** 0.005 (0.095, 0.115)
NNM 0.097*** 0.006 (0.085, 0.109)
EBW 0.095*** 0.005 (0.085, 0.105)

Antenatal care +3
Independence 0.101*** 0.007 (0.087, 0.115)
OLS 0.104*** 0.007 (0.09, 0.118)
PSM 0.105*** 0.008 (0.089, 0.121)
IPW+OLS 0.104*** 0.007 (0.09, 0.118)
NNM 0.093*** 0.008 (0.077, 0.109)
EBW 0.099*** 0.007 (0.085, 0.113)

Postnatal care for mother
Independence 0.178*** 0.007 (0.164, 0.192)
OLS 0.18*** 0.007 (0.166, 0.194)
PSM 0.176*** 0.008 (0.16, 0.192)
IPW+OLS 0.18*** 0.007 (0.166, 0.194)
NNM 0.178*** 0.008 (0.162, 0.194)
EBW 0.178*** 0.007 (0.164, 0.192)

Postnatal care for baby
Independence 0.065*** 0.007 (0.051, 0.079)
OLS 0.061*** 0.007 (0.047, 0.075)
PSM 0.055*** 0.008 (0.039, 0.071)
IPW+OLS 0.06*** 0.007 (0.046, 0.074)
NNM 0.058*** 0.008 (0.042, 0.074)
EBW 0.064*** 0.007 (0.05, 0.078)

Iron folic acid supplement intakes
Independence 0.104*** 0.006 (0.092, 0.116)
OLS 0.095*** 0.006 (0.083, 0.107)
PSM 0.093*** 0.007 (0.079, 0.107)
IPW+OLS 0.095*** 0.006 (0.083, 0.107)
NNM 0.086*** 0.007 (0.072, 0.1)
EBW 0.091*** 0.006 (0.079, 0.103)

Tetanus toxoid injections
Independence 0.056*** 0.004 (0.048, 0.064)
OLS 0.052*** 0.004 (0.044, 0.06)
PSM 0.052*** 0.004 (0.044, 0.06)
IPW+OLS 0.052*** 0.004 (0.044, 0.06)
NNM 0.05*** 0.004 (0.042, 0.058)
EBW 0.047*** 0.003 (0.041, 0.053)

Source: NFHS-4. Note: Number of observations is 13,121. The choice of covariates follows Rahman and
Pallikadavath (2018). PSM=Propensity score matching; IPW+OLS=OLS adjusted with propensity score inverse
probability weighting; NNM=Nearest neighbour matching; and EBW=Entropy balance weighting. *p < 0.10,
**p < 0.05, ***p < 0.01.
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impose the positive MTS assumption. For the other outcomes, namely institutional delivery,

skilled birth attendance, ANC three times and more and PNC for mothers, the negative MTS

assumption is imposed.

Table 4.A.3 shows the ATE bounds in LPSs estimated with the NFHS-4 data. Figure 4.A.1

visually summarises the bound-estimated ATEs and the point-estimated ATEs. Overall, we find

that the point-identified ATEs are outside of the ATE bounds for institutional delivery, skilled

birth attendance, ANC at least once, ANC three times and more and PNC for mothers. Com-

pared with the results in HPSs, deviations in the point-identified ATEs from the upper/lower

limits of ATE bounds are substantially smaller in LPSs, suggesting the lower limits of the po-

tential selection bias in LPSs. For PNC for babies, iron and folic acid supplement intakes and

tetanus toxoid injections, some of the ATEs estimated under the CIA are included within the

ATE bounds. In particular, for the iron and folic acid supplement intakes, all the point-identified

ATEs are within the bound, which is attributable to the weak identification power of the MIV as-

sumption. The additional imposition of the MIV contributes little to tightening its ATE bound.

Overall, we find that most of the ATEs under the CIA are outside the ATE bounds. The excep-

tion is the effect on the iron and folic acid supplement intakes in which all the point-identified

ATEs are inside the partially-identified ATE bound. Comparing the results in both HPSs and

LPSs, we observe that deviations from the ATE bounds are larger in HPSs. The contrast be-

tween HPSs and LPSs suggests that we are more likely to suffer larger selection bias when the

eligibility of the JSY is restricted to marginalised mothers.

4.B Appendix – Note on methodology

4.B.1 Entropy balance weighting

In the non-experimental study, wherein participation in treatment is not randomised, the pure

comparison between treated people and untreated people does not generally provide the causal

treatment effects because those who are treated can be fundamentally different from the un-

treated people with regard to their characteristics, such as the educational background. An

entropy balance weighting, developed by Hainmueller (2012), perfectly balances the moments of

the covariate distributions.
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Table 4.A.3: ATE bounds in LPSs estimated with the NFHS-4
Estimates Confidence intervals

Lower bound Upper bound Lower bound Upper bound

Institutional delivery
No assumption −0.319 0.681 −0.325 0.686
MTR 0.000 0.681 0.000 0.686
MTR+MTS 0.432 0.681 0.425 0.686
MTR+MTS+MIV 0.505 0.624 0.494 0.632

Skilled delivery attendance
No assumption −0.364 0.636 −0.369 0.642
MTR 0.000 0.636 0.000 0.642
MTR+MTS 0.349 0.636 0.341 0.642
MTR+MTS+MIV 0.413 0.583 0.402 0.592

Antenatal care +1
No assumption −0.487 0.513 −0.493 0.519
MTR 0.000 0.513 0.000 0.519
MTR+MTS 0.000 0.105 0.000 0.114
MTR+MTS+MIV 0.000 0.086 0.000 0.098

Antenatal care +3
No assumption −0.460 0.540 −0.466 0.547
MTR 0.000 0.540 0.000 0.547
MTR+MTS 0.101 0.540 0.089 0.547
MTR+MTS+MIV 0.130 0.500 0.114 0.510

Postnatal care for mother
No assumption −0.432 0.568 −0.437 0.574
MTR 0.000 0.568 0.000 0.574
MTR+MTS 0.178 0.568 0.167 0.574
MTR+MTS+MIV 0.219 0.521 0.205 0.531

Postnatal care for baby
No assumption −0.449 0.551 −0.455 0.557
MTR 0.000 0.551 0.000 0.557
MTR+MTS 0.000 0.065 0.000 0.075
MTR+MTS+MIV 0.000 0.056 0.000 0.069

Iron folic acid supplement intakes
No assumption −0.477 0.523 −0.483 0.529
MTR 0.000 0.523 0.000 0.529
MTR+MTS 0.000 0.104 0.000 0.114
MTR+MTS+MIV 0.000 0.103 0.000 0.114

Tetanus toxoid injections
No assumption −0.526 0.474 −0.532 0.480
MTR 0.000 0.474 0.000 0.480
MTR+MTS 0.000 0.056 0.000 0.061
MTR+MTS+MIV 0.000 0.050 0.000 0.058

Source: NFHS-4. Note: Number of observations is 13,121. 95% confidence intervals are calculated following
Imbens and Manski (2004) by bootstrap with 200 repetitions.
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Figure 4.A.1: Bound-estimated and point-estimated ATE in LPSs under the MTR, MTS and
MIV assumptions with the NFHS-4

Source: NFHS-4. Note: The choice of covariates follows Rahman and Pallikadavath (2018).
PSM=Propensity score matching; IPW+OLS=OLS adjusted with propensity score inverse probability weighting;
NNM=Nearest neighbour matching; EBW=Entropy balance weighting; ANC=Antenatal care; PNC=Postnatal
care; IFA=Iron and folic acid; and TT=tetanus toxoid. The bounds shown are sharp bounds estimated under
the MTR, MTS and MIV assumptions. The shaded areas show the 95% level confidence interval of the ATE
bound under the MTR, MTS and MIV assumptions.
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The entropy balance weighting method assigns weights such that the covariate distributions

in the weighted data satisfy a set of moment conditions set by a researcher. Specifically, weights

are assigned to the control group so that the moments of the weighted covariate distributions in

the control group match those in the treatment group. The entropy balance weighting method

has a few advantages over the propensity score weighting. Firstly, the entropy balance weighting

can “perfectly” balance a set of moments of the covariate distributions between two groups,

while the propensity score methods often fail to jointly balance all the covariate distributions in

practice partly because of the misspecification of the propensity score. In order to improve the

balance of some covariates, the propensity score method usually needs to sacrifice the balance

of the other covariates (Iacus et al., 2012). Thanks to the perfect balancing obtained with the

entropy balancing method, manual balance checking is no longer necessary. Hence, we don’t

have to go back and forth between estimating the propensity score and manually checking the

balance of the covariates (Hainmueller, 2012).

Each observation in the untreated group gets a weight satisfying a set of balance constraints

set by the researcher a priori. Entropy balancing estimates the weights directly from a set of bal-

ance constraints and the normalisation and non-negativity constraints. The optimal weights for

the untreated group are chosen in such a way that they minimise the following entropy distance

metric:

H(w) =
∑

{i|Untreated}

wiln(wi/qi), (4.B.1)

subject to the following balance and normalisation constraints:

∑
{i|Untreated}

wicri(Xi) = mr with r ∈ {1, ..., R}, (4.B.2)

∑
{i|Untreated}

wi = 1, and (4.B.3)

wi ≥ 0, ∀i ∈ (Untreated). (4.B.4)

Equation (4.B.2) is a set of balance constraints. Equations (4.B.3) and (4.B.4) are the normal-

isation constraint and the non-negativity constraint respectively. The part wicri(Xi) = mr in

equation (4.B.2) describes a set of R balance constraints imposed on the moments of the weighted

distributions of the covariates in the control group. Each balance constraint equates a certain

order moment of the weighted covariate distributions in the control group to the corresponding

moment of the covariate distributions in the treated group. As the entropy balancing can bal-

ance the higher order moments of the distributions, the moment constraints can be not only the
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mean (first moment), but also the variance (second moment), the skewness (third moment), and

beyond them. For example, if we are interested in estimating the weights for balancing the rth

order moment of a specific covariate, say Xp, we set cri(Xip) = (Xip)
r or cri(Xip) = (Xip − µp)r

with mean µp. The choice of the moment order can vary across the covariates and largely de-

pends on the researcher’s a priori knowledge about their distribution types. For example, if the

covariates are binary variables, the first order moment balancing is sufficient, whereas in the

case of the variables that are normally distributed, balancing the first and second order moments

is sufficient to balance their entire distributions. In this study, we will balance the covariate

distributions up to their second moments.

4.B.2 MTS sharp bound and independence

This note shows why the upper bound of ATE under the positive MTS assumption corresponds

to the ATE under the independence assumption. This note is based on the explanation made

by McCarthy et al. (2015). Since the upper bound of ATE is, by definition, the difference be-

tween the upper bound of P (Y1 = 1) and the lower bound of P (Y0 = 1), we firstly discuss in

what circumstance the upper bound of P (Y1 = 1) and the lower bound of P (Y0 = 1) are attained.

Applying the law of total probability to P (Y1 = 1),

P (Y1 = 1) = P (Y1 = 1|D = 1)P (D = 1) + P (Y1 = 1|D = 0)P (D = 0)

= P (Y1 = 1|D = 1){1− P (D = 0)}+ P (Y1 = 1|D = 0)P (D = 0)

= {P (Y1 = 1|D = 0)− P (Y1 = 1|D = 1)}P (D = 0) + P (Y1 = 1|D = 1). (4.B.5)

Under the positive MTS assumption, the term in the bracket is non-positive. The upper bound

of P (Y1 = 1), which is P (Y1 = 1|D = 1), is achieved when the term in the bracket becomes 0,

where the independence assumption, i.e. P (Y1 = 1|D = 0) = P (Y1 = 1|D = 1), is satisfied.

Next, applying the law of total probability to P (Y0 = 1),

P (Y0 = 1) = P (Y0 = 1|D = 1)P (D = 1) + P (Y0 = 1|D = 0)P (D = 0)

= P (Y0 = 1|D = 1)P (D = 1) + P (Y0 = 1|D = 0){1− P (D = 1)}

= {P (Y0 = 1|D = 1)− P (Y0 = 1|D = 0)}P (D = 1) + P (Y0 = 1|D = 0), (4.B.6)

Under the positive MIS assumption, the term in the bracket is non-negative. The lower bound

of P (Y0 = 1), which is P (Y0 = 1|D = 0), is achieved when the term in the bracket becomes 0,
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where the independence assumption, i.e. P (Y0 = 1|D = 1) = P (Y0 = 1|D = 0), is satisfied.

Combined them together, the upper limit of ATE, which is P (Y1 = 1|D = 1)−P (Y0 = 1|D = 0),

is achieved when P (Yt = 1|D = 1) = P (Yt = 1|D = 0) = P (Yt = 1) holds for t ∈ {0, 1}. This

condition is indeed the independence assumption. In the same way, we can show that the lower

bound of ATE under the negative MTS assumption corresponds to the ATE estimated under

the independence assumption.

4.B.3 Derivation of the MIV bounds in equations (4.29) and (4.30)

First, for t ∈ {0, 1} and t′ 6= t, the bound of the conditional probability, P (Yt = 1|v = u) is given

from equations (4.9) and (4.10) by

P (Yt = 1|D = t, v = u)P (D = t|v = u)

≤ P (Yt = 1|v = u) (4.B.7)

≤ {P (Yt = 1|D = t, v = u)P (D = t|v = u) + P (D = t′|v = u)}.

Under the MIV assumption, for u1 ≤ u ≤ u2,

max
u1≤u

P (Yt = 1|D = t, v = u1)P (D = t|v = u1)

≤ P (Yt = 1|v = u) (4.B.8)

≤ min
u≤u2

{P (Yt = 1|D = t, v = u2)P (D = t|v = u2) + P (D = t′|v = u2)}.

Applying the law of total probability, we obtain the bounds of P (Yt = 1) as follows:

∑
u∈V

P (v = u) max
u1≤u

P (Yt = 1|D = t, v = u1)P (D = t|v = u1)

≤ P (Yt = 1) (4.B.9)

≤
∑
u∈V

P (v = u) min
u≤u2

{P (Yt = 1|D = t, v = u2)P (D = t|v = u2) + P (D = t′|v = u2)}.
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When an instrument is binary, we can simplify this. As u, u0 and u1 take the values of 0 or 1,

P (v = 0)P (Yt = 1|D = t, v = 0)P (D = t|v = 0)

+P (v = 1) max{P (Yt = 1|D = t, v = 0)P (D = t|v = 0), P (Yt = 1|D = t, v = 1)P (D = t|v = 1)}

≤ P (Yt = 1) (4.B.10)

≤ P (v = 0) min{P (Yt = 1|D = t, v = 0)P (D = t|v = 0) + P (D = t′|v = 0),

P (Yt = 1|D = t, v = 1)P (D = t|v = 1) + P (D = t′|v = 1)}+

P (v = 1)[P (Yt = 1|D = t, v = 1)P (D = t|v = 1) + P (D = t′|v = 1)].

This leads to equations (4.29) and (4.30).

4.B.4 Finite-sample bias in the presence of maxima and minima operators

First, for t ∈ {0, 1} and t′ 6= t, we show the estimate of the lower bound of P (Yt = 1|v = u) has

an upward bias.

When the estimate of P (.) is denoted by P̂ (.) from equation (4.B.8), the estimated lower bound

is expressed as

max
u1≤u

P̂ (Yt = 1|D = t, v = u1)P̂ (D = t|v = u1). (4.B.11)

Since a maximum operator is a convex function, by the Jensen’s inequality,

E[max
u1≤u

P̂ (Yt = 1|D = t, v = u1)P̂ (D = t|v = u1)]

≥ max
u1≤u

E[P̂ (Yt = 1|D = t, v = u1)P̂ (D = t|v = u1)]

= max
u1≤u

P̂ (Yt = 1|D = t, v = u1)P̂ (D = t|v = u1). (4.B.12)

Equality in the last holds due to the unbiasedness of P̂ (.). Hence equation (4.B.12) shows that

the estimate of the lower bound can have an upward bias.

Next, we show the estimate of the upper bound of P (Yt = 1|v = u) has a downward bias.

From equation (4.B.8), the estimated upper bound is expressed as

min
u≤u0

{P̂ (Yt = 1|D = t, v = u0)P̂ (D = t|v = u0) + P̂ (D = t′|v = u0)}. (4.B.13)
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Since a maximum operator is a concave function, by the Jensen’s inequality,

E[ min
u≤u0

{P̂ (Yt = 1|D = t, v = u0)P̂ (D = t|v = u0) + P̂ (D = t′|v = u0)}]

≤ min
u≤u0

E[{P̂ (Yt = 1|D = t, v = u0)P̂ (D = t|v = u0) + P̂ (D = t′|v = u0)}]

= min
u≤u0

{P (Yt = 1|D = t, v = u0)P (D = t|v = u0) + P (D = t′|v = u0)}. (4.B.14)

Equation (4.B.14) shows that the estimate of the upper bound can have a downward bias.

4.C Appendix – Derivations of ATE bounds under joint assump-

tions

4.C.1 MTR+MTS

We consider the case in which the MTR and MTS assumptions are jointly imposed. Imposing the

MTR assumption and the MTS assumption jointly means that we are assuming the intersection

of the bounds of P (Y1 = 1) and P (Y0 = 1) that are derived under each assumption.

(i) MTR+ Positive MTS: If we combine the MTR assumption and the positive MTS as-

sumption, the bounds of P (Y1 = 1) and P (Y0 = 1) become

P (Y = 1)︸ ︷︷ ︸
MTR

≤ P (Y1 = 1) ≤ P (Y1 = 1|D = 1)︸ ︷︷ ︸
Positive MTS

(4.C.1)

P (Y0 = 1|D = 0)︸ ︷︷ ︸
Positive MTS

≤ P (Y0 = 1) ≤ P (Y = 1)︸ ︷︷ ︸
MTR

, (4.C.2)

where for t ∈ {0, 1} the bound of P (Yt = 1) is an intersection of the corresponding bounds under

the MTR assumption and the positive MTS assumption. The new bound of ATE is given by

0 ≤ ATE ≤ P (Y1 = 1|D = 1)− P (Y0 = 1|D = 0). (4.C.3)

The upper bound of ATE is given by the upper bound under the positive MTS assumption,

while the lower bound is 0 thanks to the MTR assumption.

(ii) MTR+ Negative MTS: The combination of the MTR assumption and the negative

MTS assumption can be obtained in the same fashion.

max{P (Y = 1)︸ ︷︷ ︸
MTR

, P (Y1 = 1|D = 1)︸ ︷︷ ︸
Negative MTS

} ≤ P (Y1 = 1) ≤ P (Y1 = 1|D = 1)P (D = 1) + P (D = 0)︸ ︷︷ ︸
Worst case

(4.C.4)

P (Y0 = 1|D = 0)P (D = 0)︸ ︷︷ ︸
Worst case

≤ P (Y0 = 1) ≤ min{P (Y = 1)︸ ︷︷ ︸
MTR

, P (Y0 = 1|D = 0)︸ ︷︷ ︸
Negative MTS

} (4.C.5)
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and the ATE is given by

max{P (Y = 1), P (Y1 = 1|D = 1)} −min{P (Y = 1), P (Y0 = 1|D = 0)}

≤ ATE (4.C.6)

≤ {P (Y1 = 1|D = 1)P (D = 1) + P (D = 0)} − P (Y0 = 1|D = 0)P (D = 0),

where the upper bound corresponds to that in the worst-case.

4.C.2 MTR+MTS+MIV

We estimate the bounds under the MTR, MTS and MIV assumptions. When we impose the

MIV assumption, the sharp bounds of P (Y1 = 1) and P (Y0 = 1) cannot be expressed simply by

the intersection of the bounds estimated under each of assumption. We firstly derive the bounds

for conditional probabilities P (Y1 = 1|v = u) and P (Y0 = 1|v = u) under the three assumptions.

This is followed by the derivations of the bounds of P (Y1 = 1) and P (Y0 = 1).

(i) MTR+ positive MTS+ MIV: Under the MTR and positive MTS assumptions, the

bounds of the conditional probabilities P (Y1 = 1|v = u) and P (Y0 = 1|v = u) are give by

P (Y = 1|v = u)︸ ︷︷ ︸
MTR

≤ P (Y1 = 1|v = u) ≤ P (Y1 = 1|D = 1, v = u)︸ ︷︷ ︸
Positive MTS

(4.C.7)

P (Y0 = 1|D = 0, v = u)︸ ︷︷ ︸
Positive MTS

≤ P (Y0 = 1|v = u) ≤ P (Y = 1|v = u)︸ ︷︷ ︸
MTR

. (4.C.8)

Under the MIV assumption, for u1 ≤ u ≤ u2,

max
u1≤u

P (Y = 1|v = u1) ≤ P (Y1 = 1|v = u) ≤ min
u≤u2

P (Y1 = 1|D = 1, v = u2) (4.C.9)

max
u1≤u

P (Y0 = 1|D = 0, v = u1) ≤ P (Y0 = 1|v = u) ≤ min
u≤u2

P (Y = 1|v = u2). (4.C.10)

Applying the law of total probability, we obtain the bounds of P (Y1 = 1) and P (Y0 = 1).

∑
u∈V

P (v = u) max
u1≤u

P (Y = 1|v = u1)

≤ P (Y1 = 1) (4.C.11)

≤
∑
u∈V

P (v = u) min
u≤u2

P (Y1 = 1|D = 1, v = u2)
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and

∑
u∈V

P (v = u) max
u1≤u

P (Y0 = 1|D = 0, v = u1)

≤ P (Y0 = 1) (4.C.12)

≤
∑
u∈V

P (v = u) min
u≤u2

P (Y = 1|v = u2).

When an instrument is binary, we can simplify them. As u, u0 and u1 take the values of 0 or 1,

arranging these equations lead to equations (4.C.13) and (4.C.14).

P (v = 0)P (Y = 1|v = 0) + P (v = 1) max{P (Y = 1|v = 0), P (Y = 1|v = 1)}

≤ P (Y1 = 1) (4.C.13)

≤ P (v = 0) min{P (Y1 = 1|D = 1, v = 0), P (Y1 = 1|D = 1, v = 1)}+ P (v = 1)P (Y1 = 1|D = 1, v = 1)

and

P (v = 0)P (Y0 = 1|D = 0, v = 0) + P (v = 1) max{P (Y0 = 1|D = 0, v = 0), P (Y0 = 1|D = 0, v = 1)}

≤ P (Y0 = 1) (4.C.14)

≤ P (v = 0) min{P (Y = 1|v = 0), P (Y = 1|v = 1)}+ P (v = 1)P (Y = 1|v = 1).

The sharp bound of the ATE can be obtained via equation (4.8).

(i) MTR+ negative MTS+ MIV: Under the MTR, negative MTS and MIV assumptions,

the bounds of the conditional probabilities P (Y1 = 1|v = u) and P (Y0 = 1|v = u) are

max{P (Y = 1|v = u)︸ ︷︷ ︸
MTR

, P (Y1 = 1|D = 1, v = u)︸ ︷︷ ︸
Negative MTS

}

≤ P (Y1 = 1|v = u) (4.C.15)

≤ P (Y1 = 1|D = 1, v = u)P (D = 1|v = u) + P (D = 0|v = u)

and

P (Y0 = 1|D = 0, v = u)P (D = 0|v = u)

≤ P (Y0 = 1|v = u) (4.C.16)

≤ min{P (Y = 1|v = u)︸ ︷︷ ︸
MTR

, P (Y0 = 1|D = 0, v = u)︸ ︷︷ ︸
Negative MTS

}.
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Under the MIV assumption, for u1 ≤ u ≤ u2,

max
u1≤u

max{P (Y = 1|v = u1), P (Y1 = 1|D = 1, v = u1)}

≤ P (Y1 = 1|v = u) (4.C.17)

≤ min
u≤u2

[P (Y1 = 1|D = 1, v = u2)P (D = 1|v = u2) + P (D = 0|v = u2)]

and

max
u1≤u

P (Y0 = 1|D = 0, v = u1)P (D = 0|v = u1)

≤ P (Y0 = 1|v = u) (4.C.18)

≤ min
u≤u2

min{P (Y = 1|v = u2), P (Y0 = 1|D = 0, v = u2)}.

Applying the law of total probability,

∑
u∈V

P (v = u) max
u1≤u

max{P (Y = 1|v = u1), P (Y1 = 1|D = 1, v = u1)}

≤ P (Y1 = 1) (4.C.19)

≤
∑
u∈V

P (v = u) min
u≤u2

{P (Y1 = 1|D = 1, v = u2)P (D = 1|v = u2) + P (D = 0|v = u2)}

and

∑
u∈V

P (v = u) max
u1≤u

P (Y0 = 1|D = 0, v = u1)P (D = 0|v = u1)

≤ P (Y0 = 1) (4.C.20)

≤
∑
u∈V

P (v = u) min
u≤u2

min{P (Y = 1|v = u2), P (Y0 = 1|D = 0, v = u2)}.

As u, u1 and u2 take the values of 0 or 1, arranging them leads to equations (4.C.21) and

(4.C.22).

P (v = 0) max{P (Y = 1|v = 0), P (Y1 = 1|D = 1, v = 0)}+

P (v = 1) max{P (Y = 1|v = 0), P (Y1 = 1|D = 1, v = 0), P (Y = 1|v = 1), P (Y1 = 1|D = 1, v = 1)}

≤ P (Y1 = 1) (4.C.21)

≤ P (v = 0) min{P (Y1 = 1|D = 1, v = 0)P (D = 1|v = 0) + P (D = 0|v = 0),

P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1) + P (D = 0|v = 1)}

+P (v = 1){P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1) + P (D = 0|v = 1)}
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and

P (v = 0)P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0)

+P (v = 1) max{P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0), P (Y0 = 1|D = 0, v = 1)P (D = 0|v = 1)}

≤ P (Y0 = 1) (4.C.22)

≤ P (v = 0) min{P (Y = 1|v = 0), P (Y0 = 1|D = 0, v = 0), P (Y = 1|v = 1), P (Y0 = 1|D = 0, v = 1)}

+P (v = 1) min{P (Y = 1|v = 1), P (Y0 = 1|D = 0, v = 1)}.

The sharp bound of the ATE can be obtained via equation (4.8).

4.D Appendix – Derivations of ATE under the other combina-

tions of assumptions

4.D.1 MTS+MIV

(i) Positive MTS+MIV: Under the positive MTS assumption, the bounds of the conditional

probabilities P (Y1 = 1|v = u) and P (Y0 = 1|v = u) are given from equations (4.19) and (4.20)

by

P (Y1 = 1|D = 1, v = u)P (D = 1|v = u)

≤ P (Y1 = 1|v = u) (4.D.1)

≤ P (Y1 = 1|D = 1, v = u)

and

P (Y0 = 1|D = 0, v = u)

≤ P (Y0 = 1|v = u) (4.D.2)

≤ P (Y0 = 1|D = 0, v = u)P (D = 0|v = u) + P (D = 1|v = u).

Under the MIV assumption, for u1 ≤ u ≤ u2,

max
u1≤u

P (Y1 = 1|D = 1, v = u1)P (D = 1|v = u1)

≤ P (Y1 = 1|v = u) (4.D.3)

≤ min
u≤u2

P (Y1 = 1|D = 1, v = u2)
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and

max
u1≤u

P (Y0 = 1|D = 0, v = u1)

≤ P (Y0 = 1|v = u) (4.D.4)

≤ min
u≤u2

{P (Y0 = 1|D = 0, v = u2)P (D = 0|v = u2) + P (D = 1|v = u2)}.

Applying the law of total probability, we obtain the bounds of P (Y1 = 1) and P (Y0 = 1) as

follows:

∑
u∈V

P (v = u) max
u1≤u

P (Y1 = 1|D = 1, v = u1)P (D = 1|v = u1)

≤ P (Y1 = 1) (4.D.5)

≤
∑
u∈V

P (v = u) min
u≤u2

P (Y1 = 1|D = 1, v = u2)

and

∑
u∈V

P (v = u) max
u1≤u

P (Y0 = 1|D = 0, v = u1)

≤ P (Y0 = 1) (4.D.6)

≤
∑
u∈V

P (v = u) min
u≤u2

{P (Y0 = 1|D = 0, v = u2)P (D = 0|v = u2) + P (D = 1|v = u2)}.

When an instrument is binary, we can simplify them. As u, u0 and u1 take the values of 0 or 1,

P (v = 0)P (Y1 = 1|D = 1, v = 0)P (D = 1|v = 0) +

P (v = 1) max{P (Y1 = 1|D = 1, v = 0)P (D = 1|v = 0), P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1)}

≤ P (Y1 = 1) (4.D.7)

≤ P (v = 0) min{P (Y1 = 1|D = 1, v = 0), P (Y1 = 1|D = 1, v = 1)}+

P (v = 1)P (Y1 = 1|D = 1, v = 1)

and

P (v = 0)P (Y0 = 1|D = 0, v = 0) +

P (v = 1) max{P (Y0 = 1|D = 0, v = 0), P (Y0 = 1|D = 0, v = 1)}

≤ P (Y0 = 1) (4.D.8)

≤ P (v = 0) min{P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0) + P (D = 1|v = 0),

P (Y0 = 1|D = 0, v = 1)P (D = 0|v = 1) + P (D = 1|v = 1)}+

P (v = 1){P (Y0 = 1|D = 0, v = 1)P (D = 0|v = 1) + P (D = 1|v = 1)}.
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The sharp bound of the ATE can be obtained via equation (4.8).

(ii) Negative MTS+MIV: Under the negative MTS assumption, the bounds of the condi-

tional probabilities P (Y1 = 1|v = u) and P (Y0 = 1|v = u) are given from equations (4.24) and

(4.25) by

P (Y1 = 1|D = 1, v = u)

≤ P (Y1 = 1|v = u)

≤ P (Y1 = 1|D = 1, v = u)P (D = 1|v = u) + P (D = 0|v = u) (4.D.9)

and

P (Y0 = 1|D = 0, v = u)P (D = 0|v = u)

≤ P (Y0 = 1|v = u)

≤ P (Y0 = 1|D = 0, v = u). (4.D.10)

Under the MIV assumption, for u1 ≤ u ≤ u2,

max
u1≤u

P (Y1 = 1|D = 1, v = u1)

≤ P (Y1 = 1|v = u) (4.D.11)

≤ min
u≤u2

{P (Y1 = 1|D = 1, v = u2)P (D = 1|v = u2) + P (D = 0|v = u2)}

and

max
u1≤u

P (Y0 = 1|D = 0, v = u1)P (D = 0|v = u1)

≤ P (Y0 = 1|v = u) (4.D.12)

≤ min
u≤u2

P (Y0 = 1|D = 0, v = u2).

Applying the law of total probability, we obtain the bounds of P (Y1 = 1) and P (Y0 = 1) as

follows:

∑
u∈V

P (v = u) max
u1≤u

P (Y1 = 1|D = 1, v = u1)

≤ P (Y1 = 1) (4.D.13)

≤
∑
u∈V

P (v = u) min
u≤u2

{P (Y1 = 1|D = 1, v = u2)P (D = 1|v = u2) + P (D = 0|v = u2)}
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and

∑
u∈V

P (v = u) max
u1≤u

P (Y0 = 1|D = 0, v = u1)P (D = 0|v = u1)

≤ P (Y0 = 1) (4.D.14)

≤
∑
u∈V

P (v = u) min
u≤u2

P (Y0 = 1|D = 0, v = u2).

When an instrument is binary, we can simplify them. As u, u0 and u1 take the values of 0 or 1,

P (v = 0)P (Y1 = 1|D = 1, v = 0) +

P (v = 1) max{P (Y1 = 1|D = 1, v = 0), P (Y1 = 1|D = 1, v = 1)}

≤ P (Y1 = 1) (4.D.15)

≤ P (v = 0) min{P (Y1 = 1|D = 1, v = 0)P (D = 1|v = 0) + P (D = 0|v = 0),

P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1) + P (D = 0|v = 1)}+

P (v = 1){P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1) + P (D = 0|v = 1)}

and

P (v = 0)P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0) +

P (v = 1) max{P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0), P (Y0 = 1|D = 0, v = 1)P (D = 0|v = 1)}

≤ P (Y0 = 1) (4.D.16)

≤ P (v = 0) min{P (Y0 = 1|D = 0, v = 0), P (Y0 = 1|D = 0, v = 1)}+

P (v = 1)P (Y0 = 1|D = 0, v = 1).

The sharp bound of the ATE can be obtained via equation (4.8).

4.D.2 MTR+MIV

Under the MTR assumption, the bounds of the conditional probabilities P (Y1 = 1|v = u) and

P (Y0 = 1|v = u) are given from equations (4.14) and (4.15) by

P (Y = 1|v = u)

≤ P (Y1 = 1|v = u) (4.D.17)

≤ P (Y1 = 1|D = 1, v = u)P (D = 1|v = u) + P (D = 0|v = u)
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and

P (Y0 = 1|D = 0, v = u)P (D = 0|v = u)

≤ P (Y0 = 1|v = u) (4.D.18)

≤ P (Y = 1|v = u).

Under the MIV assumption, for u1 ≤ u ≤ u2,

max
u1≤u

P (Y = 1|v = u1)

≤ P (Y1 = 1|v = u) (4.D.19)

≤ min
u≤u2

[P (Y1 = 1|D = 1, v = u2)P (D = 1|v = u2) + P (D = 0|v = u2)]

and

max
u1≤u

P (Y0 = 1|D = 0, v = u1)P (D = 0|v = u1)

≤ P (Y0 = 1|v = u) (4.D.20)

≤ min
u≤u2

P (Y = 1|v = u2).

Applying the law of total probability, we obtain the bounds of P (Y1 = 1) and P (Y0 = 1) as

follows:

∑
u∈V

P (v = u) max
u1≤u

P (Y = 1|v = u1)

≤ P (Y1 = 1) (4.D.21)

≤
∑
u∈V

P (v = u) min
u≤u2

[P (Y1 = 1|D = 1, v = u2)P (D = 1|v = u2) + P (D = 0|v = u2)]

and

∑
u∈V

P (v = u) max
u1≤u

P (Y0 = 1|D = 0, v = u1)P (D = 0|v = u1)

≤ P (Y0 = 1) (4.D.22)

≤
∑
u∈V

P (v = u) min
u≤u2

P (Y = 1|v = u2).
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When an instrument is binary, we can simplify them. As u, u0 and u1 take the values of 0 or 1,

P (v = 0)P (Y = 1|v = 0) +

P (v = 1) max{P (Y = 1|v = 0), P (Y = 1|v = 1)}

≤ P (Y1 = 1) (4.D.23)

≤ P (v = 0) min{P (Y1 = 1|D = 1, v = 0)P (D = 1|v = 0) + P (D = 0|v = 0),

P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1) + P (D = 0|v = 1)}

+P (v = 1){P (Y1 = 1|D = 1, v = 1)P (D = 1|v = 1) + P (D = 0|v = 1)}

and

P (v = 0)P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0) +

P (v = 1) max{P (Y0 = 1|D = 0, v = 0)P (D = 0|v = 0), P (Y0 = 1|D = 0, v = 1)P (D = 0|v = 1)}

≤ P (Y0 = 1) (4.D.24)

≤ P (v = 0) min{P (Y = 1|v = 0), P (Y = 1|v = 1)}+

P (v = 1)P (Y = 1|v = 1).

The sharp bound of the ATE can be obtained via equation (4.8).
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Conclusion

This thesis has contributed to an understanding of health inequality in low- and middle-income

countries in Asia. It has investigated two important topics in health economics. The first two

chapters focused on the inequality of opportunity (IOp) in health. Chapter 1 explored the ex-

ante IOp in child health in ten developing countries in Asia, i.e. Bangladesh, Nepal, Pakistan,

Maldives, India, Cambodia, Myanmar, East Timor, Tajikistan and Kyrgyzstan. We observed

significant health disparities between children from households with advantaged socio-economic

status and those from households with disadvantaged socio-economic status in all ten countries.

A decomposition analysis yielded strong evidence that the observed health disparities are strongly

associated with households’ living standards and suggested that priority should be given to pro-

tecting children from marginalised households. Chapter 2 proposed a new approach to measuring

the ex-post IOp. The proposed approach employed the statistical property of copulas to model

the distributional dependency between effort and circumstance variables. Combined with the

semi-parametric distributional regression, the proposed method estimated a conditional distri-

bution function of health and then quantified the IOp. We applied the method to the inequality

in body mass in Indonesia associated with its intergenerational transmission from parents to

grown-up offspring. We found that the non-negligible proportion of overall inequality in body

mass is related to its intergenerational transmission.

The last two chapters evaluated the conditional cash transfer programmes conducted in In-

donesia and India. Chapter 3 evaluated the impacts of the Program Keluarga Harapan (PKH)

on child nutritional status and household expenditure in Indonesia. This chapter has contributed

to the existing evidence by estimating the distributional impacts and by investigating the path-

ways through which the PKH influences child health. A significant improvement in weight for

age z-score was observed only among children aged 25-36 months, and its improvement was not

explained by the rise in household expenditure due to the PKH. We investigated why health im-

provement was not observed among younger age groups and discussed how the programme could

be improved to maximise its potential on the basis of the evidence in Latin America. Chapter 4

re-visited the impact of the Janani Suraksha Yojana (JSY) programme in India, on maternal and

child healthcare use. In contrast to major conditional cash transfer programmes in Lain Amer-

ica, the randomised controlled trial designed for the programme evaluation was not conducted

in India. We reviewed the existing non-experimental evidence through the partial identification
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approach and assessed the validity of the identification assumptions employed in the previous

studies. The results indicated that the average treatment effects (ATEs) estimated under the

identification assumptions used in previous studies lie outside of the ATE bounds estimated

under weaker but more credible assumptions. These findings suggested that the identification

assumptions imposed in the previous studies could have been invalid and estimated treatment

effects had been over- or under-estimated because unobserved confounding factors were not fully

controlled for.

As a concluding remark, I would like to discuss future research extensions of each chapter here.

First, for chapter 1, the dynamic changes of IOp in child health across time would be worth

exploring. Asian developing countries have been experiencing strong economic growth, rapid

urbanisation and relentless globalisation, which has been substantially changing the food sys-

tems, including the processing, distribution and marketing thereof, and made more food choices

available. Furthermore, hand-in-hand with economic development comes more income, which

in turn can be spent more not only on foods but also on housing and early education, thereby

dramatically changing the lifestyles of the people. Also, diversification in family composition has

been observed by a growing middle class, with a rise in females participating in the labour force

and the advent of dual-income nuclear families. Exploring the trend of health inequality and

its changes over time would complement the cross-sectional findings of this study and foster an

understanding of health inequality dynamics in the 21st century in Asia.

Exploring the inequality in the life-course is also worth looking into, in order to better un-

derstand the mechanism by which the child health inequality takes place and evolves across the

developmental stages. Life-course perspectives on the evolution of inequalities allow us to ex-

plore the dynamic link between early-life circumstances and later consequences and to identify

the optimal timing of when circumstances and events matter the most (Ben-Shlomo and Kuh,

2002; Lynch et al., 1997; Lynch and Smith, 2005). Future research would be well served by

investigating how the trajectory of inequality in children’s development associated with early-

life circumstances diverges from early in life through to early adulthood and at what age such

inequality peaks and whether and how it changes across the developmental stages.

Next, in the applied economics, with the accumulation of big-data, how we can handle the

203



high dimensional data has been widely discussed recently. Research into IOp is no exception; as

in-depth genetic information is becoming available, high dimensional data is receiving attention

these days in health economics. As genetic characteristics are totally beyond our control and any

health disparity attributable to them can be considered inequitable. Hence, ultimately tens of

thousands of genetic factors might also be considered to be non-ignorable circumstances. How-

ever, economists rarely know what genetic characteristics matter or how they are related to our

health a priori. Furthermore, too much genetic information may often build up the model which

has more circumstance variables than total sample sizes, resulting in the curse of dimensionality

in a regression analysis. At the end of chapter 2, we discussed the potential limitations of copulas

in the presence of high dimensional circumstance and effort variables. Recently, Brunori et al.

(2019) argue that estimating the IOp can be understood as a prediction problem and suggest

incorporating some of the machine learning techniques in quantifying the IOp. Exploring the

potential of the machine learning approach in the study of the IOp would be beneficial for future

research into health inequality in the era of big data.

For chapter 3, as we touched upon in the conclusion, estimating the much longer-term effects

would complement our findings. In contrast to the healthcare utilisation, it requires much longer

periods for the effect on child nutritional status to appear, in particular, increase in height. We

observed little improvement in height-for-age z-score and weight-for-age z-score among children

aged 0-12 months and children aged 13-24 months, 26-30 months after the implementation of

the PKH. Estimating even longer-term effects with further follow-up surveys would definitely

contribute to a more thorough policy evaluation. Also, evaluating effectiveness for various in-

termediate outcomes beyond household total expenditure and investigating the effects on house-

hold’s resource allocation would further enrich our understanding of the behavioural changes of

beneficiaries.

Finally, for chapter 4, another important investigation to be conducted is to explore the het-

erogeneity of the ATE bounds across the population. As is often carried out in empirical studies

with the traditional point-identification approach, testing the existence of heterogeneity is no

less important in the partial-identification approach than in the point-identification approach.

Due to space limitations, we did not implement sample-splitting in the study, but it is intriguing

to estimate the ATE bounds across states, religions and ethnicities of households and maternal
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education levels. Through the comprehensive exploration into the heterogeneity, we can infer

which population could potentially be most subjected to the selection bias due to unobservable

confounding factors.
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